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ABSTRACT 

 

This thesis includes (1) the distorted Born approximation (DBA) and an improved coherent 

model for vegetation-covered surfaces at L-band for data-cube based soil moisture retrieval; (2) a 

unified approach for combined active and passive remote sensing of vegetation-covered surfaces 

with the same input physical parameters; (3) Numerical Maxwell Model in 3D (NMM3D) 

simulations of a vegetation canopy comprising randomly distributed dielectric cylinders; and (4) 

a hybrid method based on the generalized T matrix of single objects and Foldy-Lax equations for 

NMM3D full-wave simulations of the realistic vegetation/forest with vector spherical, spheroidal 

and cylindrical wave expansoins. 

The main contributions and novelty of this thesis are NMM3D full-wave simulations of 

vegetation/forest canopy using the generalized T matrix of the single object and Foldy-Lax 

equations of multiple scattering among many objects. Before this work, the large-scale full-wave 

simulations of vegetation/forst such as many tree trunks were deemed very difficult. The NMM3D 

full-wave simulation results showed that the results of past models significantly overestimate 

attenuation in a vegetation/forest canopy. The NMM3D full-wave models predict transmissions 

that are several times greater than that of past models. A much greater microwave transmission 

means the microwave can better penetrate a vegetation/forest canopy and thus it can be used to 

retrieve soil moisture.  
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The thesis starts with the DBA to compute the backscattering coefficients for various kinds 

of vegetation-covered surfaces such as pasture, wheat and canola fields. For the soybean fields, an 

improved coherent branching model is used by taking into account the correlated scattering among 

scatterers. The novel feature of the analytic coherent model consists of conditional probability 

functions to eliminate the overlapping effects of branches in the former branching models. In order 

to make use of complex physical models for real time retrieval for satellite missions, the outputs 

of the physical model are provided as lookup-tables (with three axes; therefore, called data cube). 

The three axes are: vegetation water content (VWC), root mean square (RMS) height of the rough 

soil surface and soil permittivity which is directly related to the soil moisture, each of which 

covering the full range of natural conditions. By inverting the data cubes, time-series retrieval of 

soil moisture is performed. Next, the DBA is extended to calculate the bistatic scattering 

coefficients. Emissivities are calculated by integrating the bistatic scattering coefficients over the 

hemispherical solid angle. The backscattering coefficients and emissivities calculated using this 

approach form a consistent model for combined active and passive microwave remote sensing. 

This has the advantage that the active and passive models are founded on the same theoretical basis 

and hence allow the use of the same physical parameters. In comparison, current approaches 

generally use different models and different parameters for active and passive with the tau-omega 

model most frequently used as the passive model with empirical input parameters. The modeled 

backscattering coefficients, brightness temperatures and soil moisture retrieval results are 

validated with the measurements from the Soil Moisture Active Passive Validation Experiment 

2012 (SMAPVEX12). 

In the analytical physical models mentioned above, as well as in another commonly used 

approach of the radiative transfer equation (RTE), the attenuation of the wave is accounted for by 
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the attenuation rate per unit distance 𝜅𝑒 , which originates from the concept of an “effective 

medium”. Such a model is unsuitable for a vegetation canopy. 𝜅𝑒  is calculated using 𝜅𝑒 =

𝑛0(𝜎𝑎 + 𝜎𝑠), where 𝑛0 is the number density of scatterers, and 𝜎𝑎 and 𝜎𝑠 are the scattering cross 

section and the absorption cross section of a single scatterer, respectively. In calculating the 

scattering cross section, the scatterers are assumed to be illuminated uniformly which is not valid 

due to the influence of other scatterers. Moreover, RTE/DBA does not account for gaps and gives 

the same results independent of the existence of gaps. Because of these issues, NMM3D full-wave 

simulations of vegetation are pursued. At first, the scattering of a vegetation canopy consisting of 

cylindrical scatterers is calculated. The approach for solving Maxwell’s equations is based on the 

Foldy-Lax multiple scattering equations (FL) combined with the body of revolution (BOR). For a 

layer of extended-cylinders distributed in clusters, the NMM3D simulations at C-band show very 

different results from DBA/RTE, with NMM3D giving a much larger transmission coefficient (i.e 

much smaller optical thickness τ). The quantity τ has been used in active and passive microwave 

remote sensing. For example, the radar sensitivity to soil moisture of vegetation-covered surfaces 

depends strongly on the value of τ of the vegetation canopy. The method FL-BOR is limited for 

rotationally symmetric objects such as cylinders and circular disks. Realistic vegetation/forests, 

that are what we see with our eyes (unlike the models generated using Lindenmayer Systems), 

consist of arbitrarily-shaped scatterers. To perform NMM3D full-wave simulations for realistic 

vegetation/forests, a hybrid method is used, which is a hybrid of the off-the-shelf techniques (e.g. 

HFSS) and newly developed techniques. The newly developed techniques are the three key steps 

of the hybrid method: (1) extracting the generalized T matrix of each single object using vector 

spheroidal/cylindrical waves, (2) vector spheroidal/cylindrical wave transformations, and (3) 

solving FL for all the objects. The hybrid method is much more efficient than the HFSS brute force 
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(FEM) and MoM methods for vegetation scattering and applicable to a wide range of conditions 

including full-wave simulations of trees.  
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CHAPTER 

 

CHAPTER I                                                                                                                     

Introduction 

 

The focus of my research is physical modelling of microwave interactions with vegetation 

and forest cover for applications in microwave remote sensing of soil moisture.  The research is 

aimed at the use of satellite remote sensing of Earth for the monitoring of soil moisture, which is 

important for the global climate change, the water cycle and the carbon cycle [1]. In recent years, 

many satellites have been launched by NASA, the European Space Agency, China, as well as other 

countries in North America, Europe, Asia and South America. There have been major 

advancements in instruments such as radiometers, radars, SAR (Synthetic Aperture Radar), InSAR 

(Interferometric SAR) and the recent usage of signals of opportunity such as GNSS-R (Global 

Navigation Satellite System Reflectometry) [2]. The mapping of soil moisture is important for 

hydrologic modelling, climate prediction, and flood and drought monitoring [3]. Soil moisture acts 

as a storage of water between rainfall and evaporation and influences the infiltration and runoff 

prediction in hydrologic processes [3]. Much of the soil is covered by vegetation/forest, and it is 

in these arable regions and croplands where measuring soil moisture is particularly useful for 

agriculture and environmental monitoring. Thus, understanding the effects of vegetation/forests 

on microwave transmission/emission is important for remote sensing of soil moisture. 

Vegetation/forest is characterized as random media [4]. The electromagnetic modelling of 

microwave interaction with random media is important to these satellite missions in the following 

three aspects. Firstly, in the mission design stage, the modelling provides the theoretical basis to 
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predict the microwave signals and builds foundations for mission design such as the choice of 

microwave frequencies, incident angles and polarizations to be used for maximal sensitivity. 

Secondly, in the mission calibration/validation stage, airborne and ground measurements are 

performed, and the modelling interprets the microwave measurements and provides calibration 

and validation for the data. Finally, after the satellite is launched, electromagnetic modelling 

provides the basis for the application of physically based retrieval algorithms of parameters such 

as soil moisture, snow water equivalent, biomass, forests height etc. 

In the first two years of my PhD research, I used a method that combines DBA for a 

vegetation canopy with NMM3D full-wave simulations for soil surfaces to compute the 

backscattering coefficient for various kinds of vegetation-covered surfaces such as pasture, wheat 

and canola fields. For the soybean fields, an improved coherent branching model is developed by 

taking into account the correlated scattering among scatterers [5]. This provides the physical model 

for the Soil Moisture Active Passive (SMAP) baseline radar algorithm [3]. In order to make use of 

the complex physical models for real-time retrieval for satellite missions, the outputs of the 

physical models are provided as lookup-tables (with three axes; therefore, called data cube) [6]. 

By inverting the data cubes, time-series retrievals of soil moisture, vegetation biomass and RMS 

soil roughness are performed. The data cubes, together with the retrieval algorithm, have been 

validated with extensive field campaigns. SMAP was launched in Jan 2015 [3]. The baseline 

algorithm has been applied to provide global soil moisture maps using the SMAP radar data over 

the entire observation period [7]. 

Combined active and passive microwave remote sensing of soil moisture is of great interest 

and importance, given the increasing number of active and passive satellite microwave missions 

and datasets available for studies in land hydrology and ecology [1]. Complementary information 
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contained in active and passive multi-frequency and multi-polarization measurements can be used 

to retrieve detailed soil and vegetation characteristics. However, the commonly used passive and 

active models are quite different, requiring different sets of parameters for the same vegetatation-

covered surface scenes. Passive microwave models used in satellite retrieval algorithms (including 

the SMAP mission) are mostly based on the omega-tau model [8], which is a zeroth-order radiative 

transfer solution. Roughness effects in the omega-tau model are based on the h-Q formulation. For 

active remote sensing, such as for the SMAP “data-cube” retrieval [6], a first-order radiative 

transfer model is used, which is inconsistent with the passive model. Empirical parameters are 

used for the passive model while physical parameters are used for the active model. Because of 

these issues, consistent active and passive microwave remote sensing models were used to enable 

a truly synergistic retrieval approach that makes full use of information in the passive and active 

signatures [9]. The active model (DBA for a vegetation canopy and the NMM3D full-wave 

simulations for soil surfaces designed to compute the backscattering coefficients) was extended to 

calculate the bistatic scattering coefficients. Emissivities are calculated by integrating the bistatic 

scattering coefficients over the hemispherical solid angle. The backscattering coefficients and 

emissivities calculated using this approach form a consistent pair for combined active and passive 

microwave remote sensing. This has the advantage that the active and passive models are founded 

on the same theoretical basis and hence allow the use of the same physical parameters. The 

modeled backscattering coefficients (active measurements), brightness temperatures (passive 

measurements) and soil moisture retrieval results are validated using the measurements from the 

Soil Moisture Active Passive Validation Experiment 2012 (SMAPVEX12) [10]. 

Understanding how vegetation/forests interact with microwaves is important for remote 

sensing of soil moisture. Of particular importance is the attenuation properties of the vegetation 
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canopy. For three decades, the two most commonly used models have been the radiative transfer 

equation (RTE) [4] and DBA [11]. There are two key assumptions associated with the past 

RTE/DBA models: (1) the positions of the scatterers are assumed to be statistically homogeneous 

in 3D and (2) each scatterer is uniformly illuminated. However, these two assumptions are invalid 

for most types of vegetation/forests. For example, trees have trunks, branches and leaves in a 

correlated structure and there are gaps among branches and different trees.  In my most recent 

research, innovative methods were developed for Numerical Maxwell Model in 3D (NMM3D) 

simulations of vegetation/forest. At first, the Foldy-Lax equations were combined with the Z 

matrix from the Body of Revolution (BOR) [12] (FL-BOR) for NMM3D full-wave simulations of 

grass canopy modeled by dielectric cylinders [13]. The NMM3D results show much greater 

transmission and smaller optical thickenss 𝜏 than the values predicted by RTE/DBA at C-band. 

However, this method of FL-BOR is limited to multiple scattering of objects with rotational 

symmetry such as cylinders. Moreover, this method is difficult to extend to cylinders with large 

radii compared with the wavelength, such as the case for trees at L-band. Because of these limits, 

an innovative hybrid method is developed for calculating the scattering from areas of 

vegetation/forests. With the use of the hybrid method, NMM3D simulations can be performed for 

realistic plants such as stalks with complicated branches, in addition to cylinders and disks. To 

perform NMM3D full-wave simulations efficiently for vegetation/forests, the hybrid method 

combines: 

(i) Off-the-shelf technique for single objects. Off-the-shelf technique such as HFSS, BOR[12], 

ICA [4], and FEKO can solve Maxwell’s equations for a complicated single object such as 

long cylinders, branches with leaves. 



5 

  

(ii) Extract T matrices for single objects for vector spheroidal and cylindrical waves, apply vector 

wave transformations and use the Foldy-Lax multiple scattering equations to compute multiple 

scattering among the single objects.  

In (ii), three innovative steps were implemented: (1) extracting the T matrix for each single 

object using vector spheroidal waves, (2) vector spheroidal wave transformations, and (3) solving 

Foldy-Lax multiple scattering equations (FL) for all the objects. The T matrix relates the incident 

fields to the scattered fields for an arbitrarily-shaped scatterer. Previously, vector spherical wave 

expansions were used for the T matrix, where a circumscribing sphere is defined. However, when 

the objects are closely packed, it is impractical to enclose each object within a spherical surface 

without overlap. In general, spheroidal/cylindrical surfaces are more compact to enclose closely 

packed objects. Thus, vector spheroidal/cylindrical wave expansions are used, which are more 

complicated than the spherical waves. In the hybrid method, Maxwell’s equations are solved using 

the Foldy-Lax multiple scattering equations (FL) with generalized T matrix. The Foldy-Lax 

equations were derived rigorously from Maxwell’s equations. The wave interactions among 

scatterers are taken into account in the Foldy-Lax equations. Thus, the effects of complex 

vegetation structure, including canopy clustering and gaps, are accounted for. Using the hybrid 

method, forests environment with 196 tree trunks at height of 20m and diameter of 20cm was 

simulated at L-band frequency.  Before this work, the large-scale full-wave simulations of many 

tree trunks were deemed very difficult. The NMM3D full-wave simulation results showed that the 

results of past models significantly overestimate attenuation in a vegetation/forest canopy. The 

NMM3D full-wave models predict transmissions that are several times greater than that of past 

models. A much greater microwave transmission means the microwave can better penetrate a 

vegetation/forest canopy and thus it can be used to retrieve soil moisture.  
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This thesis is organized as follows. In chapter II, DBA is derived from the Foldy-Lax 

equation with first-order iteration. DBA for vegetation is combined with NMM3D for rough 

surfaces. For soybean fields, an improved coherent model is developed, consisting of conditional 

probability functions to eliminate the overlapping effects of branches in the former branching 

models. DBA and the improved coherent model are used to generate data-cubes at L-band for the 

data-cube based soil moisture retrieval for SMAP.  In chapter III, a unified combined active and 

passive model is constructed, with the active and passive microwave remote sensing models 

founded on the same theoretical basis and hence allow the use of the same physical parameters. 

DBA combined with NMM3D for rough surfaces is extended to calculate the bistatic scattering 

coefficients and then integrating the bistatic scattering coefficients over the hemispherical solid 

angle to compute the emissivity. The vegetation models in chapter II and III are single scattering 

models where multiple scattering among scatterers is not considered. In chapter IV, Foldy-Lax 

multiple scattering equations are combined with BOR for NMM3D full-wave simulations of 

vegetation with scatterers of rotational symmetry. This full-wave method accounts for all the 

interactions and multiple scattering among vegetation scatterers. Grass canopy of different 

vegetation water content (VWC) modeled by a layer of dielectric cylinders at C-band is simulated. 

In chapter V, an innovative hybrid method is developed for NMM3D full-wave simulations of 

vegetation/forest. The hybrid method combines off-the-shelf techniques for single scatterer and 

developed techniques of Foldy-Lax techniques. The fields are expanded in terms of vector 

spherical/spheroidal/cylindrical waves. The off-the-shelf techniques such as the commercial 

software HFSS is suitable for complicated single object with moderate size such as branches with 

realistic leaves and a single soybean plant. The developed techniques account for the multiple 

scattering among single objects and solve the Maxwell’s equations for the vegetation/forest 
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canopy, including extracting the T matrix, vector wave translation addition and solving the Foldy-

Lax equations. 
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CHAPTER II                                                                                                               

DBA and an Improved Coherent Model for Vegetation-covered Surfaces at L-

Band for Data-Cube Based Soil Moisture Retrieval 

 

In this Chapter, two models are used to calculate the backscattering coefficient for the 

vegetation-covered surfaces: the distorted Born approximation (DBA) (section 2.2) and an 

improved coherent model (section 2.3). The two models are used for the data-cube based soil 

moisture retrieval at L-band (section 2.4). 

 For wheat and canola fields, DBA is used. DBA is derived from the Foldy-Lax equation 

with first-order iteration. DBA has three scattering terms: volume scattering, double-bounce 

scattering and surface scattering. The coherent reflectivity in the double-bounce scattering and the 

surface scattering are determined by the numerical solutions of Maxwell’s equations (NMM3D). 

Using DBA, forward lookup-tables (data-cubes) for VV and HH backscattering coefficients at L-

band are developed for wheat and canola fields.  The data-cubes have three axes: vegetation water 

content (VWC), root mean square (RMS) height of rough soil surface and soil permittivity. The 

results of the data-cubes are compared with airborne radar measurements collected during the Soil 

Moisture Active Passive Validation Experiment 2012 (SMAPVEX12) for ten wheat fields and five 

canola fields. The results show good agreement between the data-cube simulation and the airborne 

data: the root mean squared error (RMSE) of 0.82 dB and 0.78 dB for HH backscattering 

coefficients, and 0.97 dB and 1.30 dB for VV backscattering coefficients for wheat and canola 

fields, respectively. The data-cubes are next used to perform the time-series retrieval of the soil 
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moisture, which was the baseline active retrieval algorithm for the NASA’s Soil Moisture Active 

Passive (SMAP) mission. The RMSE of the soil moisture retrieval is 0.043 cm3/cm3 for wheat 

fields and 0.082 cm3/cm3 for canola fields.  The larger RMSE for canola fields is attributed to the 

dominance of volume scattering which does not depend on soil moisture. 

For soybean fields, an improved coherent branching model is developed by taking into 

account the correlated scattering among scatterers. The novel feature of the analytical coherent 

model consists of conditional probability functions to eliminate the overlapping effects of branches 

in the former branching models. Backscattering coefficients are considered for a variety of 

scenarios over the full growth cycle for VWC and the complete dry-down conditions for soil 

moisture. The results of the coherent model show that HH scattering has a significant difference 

up to 3 dB, from that computed on the basis of the independent scattering when VWC is low; for 

example, 0.2 kg/m2. Forward model calculations are performed for the scattering from the soybean 

field for the full range of the three axes of the data-cubes using the coherent model. The soybean 

volume scattering including the double-bounce term is combined with the forward scattering 

model of bare soil from the numerical Maxwell solutions that incorporates RMS height, soil 

permittivity and correlation length, to form the forward model lookup-table for the vegetation-

covered soil. The results are compared with data from 13 soybean fields collected as part of the 

SMAPVEX12. Time-series retrieval of soil moisture is also applied to the soybean fields by 

inverting the forward model lookup-table. During the retrieval, the VWC is optimized with 

physical constraints obtained from ground measurements. The retrieval performances are 

significantly improved by using the proposed coherent model: the root mean squared error (RMSE) 

of the soil moisture retrieval is decreased from 0.09 to 0.05 cm3/cm3 and the correlation coefficient 

is increased from 0.66 to 0.92.  
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2.1 Introduction 

The mapping of soil moisture on a golobal scale has many potential benefits including flood 

assessment, drought monitoring, global carbon balance quantification, and more. Providing this 

information is one of the important goals of NASA’s Soil Moisture Active Passive (SMAP) 

mission [1, 3]. SMAP, which was launched in January 2015, utilized a L-band radar and radiometer 

to provide global maps of soil moisture at 3-, 9-, and 36-km resolutions [1, 14]. Empirical and 

semi-empirical models have been developed to retrieve the soil moisture information for 

vegetation-covered surfaces [15-17] using backscattering coefficients, but they have limited 

capability on a global scale because the empirical equations were derived using a small set of 

measurements. Complex physical scattering models have also been used to calculate the 

backscattering [18-21]. In order to make use of the complex physical models for real time-retrieval 

during the SMAP mission, lookup-tables of backscattering are constructed. Using the measured 

data and the lookup-tables, time-series retrieval of soil moisture can be carried out in real time [6, 

10]. In the SMAP baseline active radar retrieval algorithm, the data-cubes are inverted. The soil 

permittivity directly related to the soil moisture [22, 23]. The SMAP baseline algorithm for radar-

based retrieval inverts the data-cubes. The data-cubes were validated against airborne and field 

measurements and were also used for retrieval of soil moisture from the airborne radar 

measurements. Previously, the validation and soil moisture retrieval for soybean and corn covered 

surfaces were published [5].  In this chapter, we report on the validation and soil moisture retrieval 

of wheat and canola vegetation-covered surfaces using airborne and field measurements of 

SMAPVEX12 [10]. Wheat is the most abundant crop in terms of the acreage in the world [24]. 

Canola is a major crop in North America. Accurate retrieval of soil moisture for these crops is a 

critical step towards soil moisture retrieval at SMAP’s 3-km resolution for croplands.  
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In vegetation-covered surfaces, the commonly used physical models of radar backscattering 

at L-band are based on the incoherent addition of three contributions: volume scattering, double-

bounce and surface scattering. There are also models accounting for the interactions between 

different vegetation scatterers [25], and the vegetation and slightly rough surface [26]. These 

models are more complicated than the incoherent model. In previous studies [27],  physical models 

for wheat and canola fields were derived using MIMICS (Michigan Microwave Canopy Scattering) 

model [28] where the first-order radiative transfer equation is used to calculate volume and double-

bounce scattering while the surface-scattering component is computed using the physical optics 

model [4, 28]. However, in the backscattering direction, the forward and reverse going ground-

vegetation interaction scattering fields are exactly in phase according to reciprocity, and thus their 

coherent interaction cannot be neglected. This backscattering enhancement effect in double-

bounce scattering is accounted for by the field-based distorted Born approximation [11, 29] which 

gives a factor of 2 difference for the double-bounce term. In this chapter, the distorted Born 

approximation [11] is used to compute scattering from a vegetation medium. The distorted Born 

approximation is derived from the Foldy-Lax equation with the use of the T matrix [30, 31] and 

half-space Green’s function with the effective propagation constant. For surface scattering, we use 

the numerical solutions of Maxwell’s equations in 3-dimensional simulations (NMM3D) for 

backscattering. We also use the rough surface coherent reflectivity derived from NMM3D for the 

specular reflection in the double-bounce term.  In the previous soybean model [5], we used the 

coherent addition of scattered fields which gives significant improvement when compared with 

backscattering data. For wheat and canola, we found that the incoherent addition model suffices.   

The wheat canopy is modeled as a layer of uniformly distributed finite cylinders, while two 

kinds of cylinders with different sizes and circular disks are used for canola to model its main stem, 
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branches and leaves, respectively. The scatterers are treated as embedded in the equivalent media 

[11] whose dielectric constant is computed from the Foldy’s approximation [4]. The imaginary 

part of the equivalent dielectric constant accounts for the attenuation through the vegetation layer. 

The surface-scattering component is determined by NMM3D for a random rough surface [32]. 

NMM3D results are based on the Method of Moments (MoM) with Rao-Wilton-Glisson (RWG) 

basis function using Gaussian random rough surfaces with exponential correlation functions. The  

NMM3D simulation results have been shown to be in good agreement with experimental data for 

surfaces with RMS height varying from 0.55cm to 3.47cm at L-band [32].  The agreement has 

been shown to be superior to the predictions of the small perturbation method (SPM), physical 

optics (PO), small slope approximation (SSA) and advanced integral equation model (AIEM). The 

soil medium is considered to be homegeneious in this section. There are models to calculate 

scattering from rough surface with inhomogeneous dielectric profiles [33]. According to the 

ground ]data from the Soil Moisture Active Passive Validation Experiment 2012 (SMAPVEX12) 

[34], the RMS height for more than half of the wheat and canola fields is within the range of 

0.55cm to 1cm.  The data-cubes computed from the forward model are validated with the VV and 

HH backscattering coefficient measurements from SMAPVEX12 [34], taking into account the 

growth of the crops as determined from ground measurements  during the summer season. 

SMAPVEX12 started at the period of early crop development and finished at the point where crops 

had reached maximum biomass during which soil moisture also significantly varied [34]. The 

long-duration measurements over a wide range of soil moisture and vegetation conditions are a 

unique and valuable attribute of this field campaign when compared with previous airborne 

experiment and provide an extensive data set critical to test the vegetation scattering models and 

radar-based soil moisture retrieval algorithm for SMAP [34].  The retrieved soil moisture derived 



13 

  

by inverting the data-cubes is also compared with the ground truth data from the SMAPVEX12 

field campaign [10].  

In the models of the distorted Born approximation and first-order radiative transfer equation, 

the results are in terms of the absolute square of the scattering amplitude of a single scatterer. The 

incoherent addition of the scattering from a single scatter can be referred to as the “incoherent 

scattering model” since the collective scattering effects of the scatterers are not accounted for [2, 

28]. For example, when two scatterers are close to each other within a 𝜆/4 scale, there is a 

relatively small phase difference (less than 𝜋/2) and the individual scattering superimposes on 

each other collectively, producing significant constructive interference. Models taking into 

account these relative phase shifts are known as “coherent scattering models”. Generalized 

coherent models for dissimilar plant elements, crops in a growing cycle and multilayer vegetation 

have been proposed. It was suggested that an agricultural crop could be considered a statistically 

uniform random medium and represented with a nth-scale branching model. Different parameters 

were used for different stages of the crops in a growing cycle obtained from ground measurements 

[35]. Yueh et al. [36] proposed an analytical branching model for soybean and showed that the 

geometry and internal structure of vegetation affect the coherent scattering. Monte Carlo 

simulations of soybean field were also carried out to simulate the statistical properties of the 

backscatter at different incidence angles, by averaging over many realizations untill convergence 

is realized. For each realization, a group of soybean plants was generated using random number 

generators with a pre-described probability distribution function, and then the scattered fields were 

computed. It was shown that the contributions from the second-order near field and the double 

ground-bounce mechanism are negligible at L band [37]. The coherent model was also applied to 

other canopies such as alfalfa. Each alfalfa plant was represented by a clump defined as a collection 
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of stems in a conical shape with leaflets clustered on each stem. The scattering from the alfalfa 

was substantially increased by including the coherent wave interactions. It was shown that the 

proximity of the scatterers in relation to wavelength is important and should be included in the 

calculation of the backscattering from the canopy. [38] In the previous coherent model for soybean 

[36], different branches overlap physically, which is unrealistic. In this chapter, we use an 

improved branching model that introduces conditional probabilities of non-overlap of branches 

both in locations and in orientations for the soybean, which has a typical main stem attached with 

branches. The analytical simulation results are significantly different from those by the prior 

branching models in that they either allow the physical overlap or are based on the incoherent 

model. We initially constructed the data-cube based on the incoherent scattering models. But they 

are not in good agreement with the magnitudes of backscattering nor the polarization ratios 

observed during the SMAPVEX12 campaign. The new data-cube based on the improved coherent 

model enhances the forward matching with experimental data of the 13 soybean fields from 

SMAPVEX12, as well as the soil moisture retrieval accuracy. 

 

2.2 The Distorted Born Approximation (DBA) for Wheat and Canola Fields 

Wheat and canola are two of the major crops studied during the Soil Moisture Active 

Passive Validation Experiment 2012 (SMAPVEX12) conducted to support NASA’s Soil Moisture 

Active Passive (SMAP) mission. The models are used in the baseline active retrieval algorithm for 

the SMAP mission. Forward lookup-tables (data-cubes) for VV and HH backscattering 

coefficients at L-band are developed for wheat and canola fields. The volume scattering and 

double-bounce scattering of the fields are calculated using the distorted Born approximation 

derived from the Foldy-Lax equation with first-order iteration. The coherent reflectivity in the 
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double-bounce scattering and the surface scattering are determined by the numerical solutions of 

Maxwell’s equations (NMM3D). The results of the data-cubes are compared with airborne radar 

measurements collected during SMAPVEX12 for ten wheat fields and five canola fields. The 

results show good agreement between the data-cube simulation and the airborne data: the root 

mean squared error (RMSE) is 0.82 dB and 0.78 dB for HH backscattering coefficients, and 0.97 

dB and 1.30 dB for VV backscattering coefficients for wheat and canola fields, respectively. In 

this section, the distorted Born approximation (DBA) is derived based on the Foldy-Lax equation 

with first-order iteration. The results are compared the first-order radiative transfer equation. After 

that, the DBA is applied to generate the data-cubes for wheat and canola fields and the modeled 

data-cubes are compared with SMAPVEX12 airborne UAVSAR data. 

 

2.2.1 Derivation of DBA 

We consider a vegetation field as shown in Figure II.1. There are three regions: air, 

vegetation and soil. The reflection at the artificial boundary between the air and vegetation is 

ignored. The distorted Born approximation (DBA) calculates the final backscattering in terms of 

volume scattering, double-bounce scattering and surface scattering. The derivations for the three 

terms are given below based on the Foldy-Lax equation with first-order iteration. The derivations 

are different from the traditional method as in [11]. 

The effective propagation constant in the vegetation layer is [39], 
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where k is the propagation constant in free space and n0 is the number density of the vegetation 

scatterers with unit m-3. ( ,i i  ) defines the incident angle. ( ), ; ,ivv i i if      and ( ), ; ,hh ii i if      are 

the scattering amplitudes of single scatterers in the forward direction for the porlarizations VV and 

HH, respectively. The angle bracket means average over orientations of scatterers. 

 

Figure II.1. Backscattering of vegetation-covered surface. The four scattering terms are: (I) 

volume scattering, (II) double-bounce scattering (scattering from the scatterer and then reflected 

by the surface), (III) double-bounce scattering (scattering of the reflected wave by a scatterer), 

and (IV) surface scattering. 

 

Because of the phase matching condition [39], the z component of the effective propagation 

constant in the vegetation layer is  

( )

( ) ( )

( )

22

0

2

0
0

0 2 2

0

0

0 2 2

0

sin

2
4 , ; , , ; ,

cos 1
cos

4 , ; ,
cos 1

2 cos

pz p

pp i i i pp i i i

pp

i

i i i i

i

k

n
n f f

k
k

k

n f
k

k

k k 


        




    




= −

 
  +   

 = +

  
+ 

 

           (2.2.3) 
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where the subscript ‘p’ is either ‘v’ or ‘h’ polarization. 0  is the incident angle.  

The 
pzk  can be written using the real part and imaginary part as 

pz pz pzk k ik = + , with 

( )0

0

0

4 , ; ,
cos Re

2 cos

pp i i ii

pz

n f
k k

k

    





  

= +  
 

                                 (2.2.4) 

( )0

0

4 , ; ,
Im

2 cos

ipp i i i

pz

n f
k

k

    




  

=  
 

                                                (2.2.5) 

Next, the dyadic Green’s function for free space is used to calculate volume scattering. The dyadic 

Green’s function for free space is [39] 

( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )
( )

2

2

( )

exp
ˆ ˆˆ ˆ        for 0

8

exp
ˆ ˆˆ ˆ  for 0

8

P

x y z

x y z z z z

z

x y z

x y z z z z

z

G r

ik x ik y ik zi
dk dk e k e k h k h k z

k

ik x ik y ik zi
dk dk e k e k h k h k z

k





 

− −

 

− −

+ +
 + 
 

=
+ −

 − − + − − 
 

 

 

   (2.2.6) 

where for TE polarization (h-pol) : ( ) ( )
ˆ ˆ 1

ˆ ˆ ˆ
ˆ ˆ| |

z y x

k z
e k xk yk

kk z 


= = −


 and for TM polarization (v-

pol) :  ( ) ( )ˆ ˆˆ ˆ ˆ ˆz
z x y

kk
h k e k xk yk z

kk k





=  = − + + . 

In the vegetation layer, the dyadic Green’s function of free space is modified using the effective 

propagation constant 

( ) ( ) ( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( ) ( ) ( )
( )

2

2

( )

exp
ˆ ˆˆ ˆ exp exp   for 0

8

exp
ˆ ˆˆ ˆ exp exp for 0

8

P

x y

x y z z hz z z vz

z

x y

x y z z hz z z vz

z

G r

ik x ik yi
dk dk e k e k ik z h k h k ik z z

k

ik x ik yi
dk dk e k e k ik z h k h k ik z z

k





 

− −

 

− −

=

+
 + 
 

+
 − − − + − − − 
 

 

 

(2.2.7) 
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It is noted that only the phase-dependent terms are changed to the effective propagation constant 

while the amplitude-dependent terms are not changed. It is because the effects are small for 

amplitude. Generally, for the vegetation canopy, more than 99% is empty air and less than 1% 

contains vegetation scatterers. Thus, the effective propagation constant of the vegetation layer is 

close to that in free space. The change in the amplitude can be ignored. However, the change in 

the phase terms cannot be ignored.  

The Green’s function of the reflective wave from the soil surface in the vegetation layer is  

( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )( )
2

,

ˆ ˆexp 2 exp exp

ˆ ˆ8 exp 2 exp

R

TE

hz hz z z hz x y

x y
TM

zvz vz z z vz

G r r

R ik z ik d e k e k ik z ik x x ik y yi
dk dk

kR ik z ik d h k h k ik z



  
 

− −

=

 + − − + −
 
 + + −
 

 

(2.2.8) 

 

where d is the height of the vegetation canopy. 

Thus, at the observation point of z = 0 in Figure II.1, Green’s function for the total wave, which is 

the sum of that of the free space and the reflective wave, is  

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( )

11

2

, , ,

ˆ ˆ ˆexp exp 2 exp

ˆ ˆ ˆ8 exp exp 2 exp

exp

P R

TE

z z hz hz z hz

x y
TM

vz vz z xz z

x y

z

z

G r r G r r G r r

e k e k ik z R ik d e k ik zi
dk dk

h k h k ik z R ik d h k ik z

ik x x ik y y

k



  

 

 

− −  

 

= + =

  − + −
  

 
 + − + −   

− + −


       (2.2.9) 

where the subscript ‘11’ means that both the source point and the observation point are in region 

1 (i.e., the vegetation region). 

For z>0, the phase continues as exp(ikzz) because there is no physical reflection at z=0 which is 

the artificial boundary between the air and the vegetation layer. Hence, 
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( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( )

01

2

,

ˆ ˆ ˆexp exp 2 exp

ˆ ˆ ˆ8 exp exp 2 exp

exp

v

TE

z z hz hz z hz

x y
TM

z z xz zz vz

x y z

z

G r r

e k e k ik z R ik d e k ik zi
dk dk

h k h k ik z R ik d h k ik z

ik x x ik y y ik z

k





 

 

− −  

 

=

  − + −
  

 
 + − + −   

− + − +


       (2.2.10) 

where the subscript ‘01’ means that both the source point is in region 1 (i.e., vegetation region) 

while the observation point is in region 0 (i.e., air region). 

After some mathematical manipulations, the expressions becomes  

( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( )

01

2

,

ˆ ˆ ˆexp exp 2 exp

ˆ ˆ ˆ8 exp exp 2 exp

exp( )
exp

TE

z z hz hz z hz

x y
TM

z z vz vz z vz

x y

z

G r r

e k e k ik z R ik d e k ik zi
dk dk

h k h k ik z R ik d h k ik z

ik r
ik x ik y

k





 

 

− −  

 

=

  − + −
  

 
 + − + −   


 − −

      (2.2.11) 

In the far field, using the stationary-phase method, sin cosx s sk k  = , sin siny s sk k  = , 

cosz sk k =  and 
2

exp( ) exp( )

8 4
x y

z

i ik r ikr
dk dk

k r 

 

− −


→  . Thus,  

( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( )

01 ,

ˆ ˆ ˆexp exp 2 expexp( )
exp

ˆ ˆ ˆ4 exp exp 2 exp

TE

z z hz hz z hz

x y
TM

z z vz vz z vz

G r r

e k e k ik z R ik d e k ik zikr
ik x ik y

r h k h k ik z R ik d h k ik z



 

 

 

=

  − + −
  

− − 
 + − + −   

(2.2.12) 

where 

 ( ) ( ) ( ) ( )ˆ ˆˆ ˆ ˆsin cos , ,z s s s s s s s se k x y h h      = − = − = − −                   (2.2.13) 

( ) ( ) ( ) ( )ˆ ˆˆ ˆ ˆsin cos , ,z s s s s s s s se k x y h h      − = − = − = − −                   (2.2.14) 
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 ( ) ( ) ( )ˆ ˆ ˆ ˆˆcos cos sin sin ,z s s s s s s sh k x y z v     = − + + = −                    (2.2.15) 

( ) ( ) ( )ˆ ˆ ˆ ˆˆcos cos sin sin ,z s s s s s s sh k x y z v      − = + + = − −                (2.2.16) 

Next, the Green’s function ( )01 ,G r r   can be written into two parts as 

( ) ( ) ( )
(0) ( )

01 01 01, , ,
R

G r r G r r G r r  = +                                   (2.2.17) 

where 

( )
( ) ( ) ( )

( ) ( ) ( )
( )

(0)

01

ˆ ˆ expexp( )
, exp

ˆ ˆ4 exp

z z hz

x y

z z vz

e k e k ik zikr
G r r ik x ik y

r h k h k ik z



  



 − +
 = − −
 −
 

               (2.2.18) 

( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( )

( )

01

ˆ ˆexp 2 expexp( )
, exp

ˆ ˆ4 exp 2 exp

TE
R z hz z hz

x y
TM

z vz z vz

e k R ik d e k ik zikr
G r r ik x ik y

r h k R ik d h k ik z



  



 − +
 = − −
 −
 

   (2.2.19) 

Let the incident wave be 

( ) ( ) ( ) ( )ˆˆ , exp , expinc vi i i iv hi i i ihE E v iK r E h iK r     = −  + −               (2.2.20) 

where ix iy iip zpk x k y k zK = + − , indicating that the wave is travelling downward. 

The reflected wave is  

( ) ( ) ( ) ( ) ( ) ( )ˆˆexp 2 , exp exp 2 , expref vi vi ivz i i iv hi hi ihz i i ihE E R ik d v ik r E R ik d h ik r   =  +      (2.2.21) 

where ,TM TE

v hR R R R= =  and the phase shift caused by the vegetation canopy is included.  

According to [30], the Foldy-Lax equation is  

01

1

N
ex

inc ref j j

j

E E E G T E
=

= + +                                  (2.2.22) 

where N is the total number of vegetation scatterers. 

For first-order iteration, 
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( )01

1

N

inc ref j inc ref

j

E E E G T E E
=

= + + +                      (2.2.23) 

Thus, the scattered fields from the vegetation canopy is 

( )01

1

N

s j inc ref

j

E G T E E
=

= +                                          (2.2.24) 

Let 
1

N

s sj

j

E E
=

=  , the summation of the scattered fields from each vegetation scatterer, and 

substituting  ( ) ( ) ( )
(0) ( )

01 01 01, , ,
R

G r r G r r G r r  = +  leads to 

(0) ( ) (0) ( )

01 01 01 01

R R

sj j inc j inc j ref j refE G T E G T E G T E G T E= + + +              (2.2.25) 

The first term represents the volume scattering, the second and third terms are the double-bounce 

scattering and the last term is the triple bounce scattering. The last term is ignored in the distorted 

Born approximation. Hence, 

(0) ( ) (0)

01 01 01

R

sj j inc j inc j refE G T E G T E G T E= + +                                  (2.2.26) 

(a) Volume Scattering 

In this subsection, the expressions for volume scattering 
( ) (0)1

01sj j incE G T E=  is calculated as below. 

(0)(1)

01( ) |sj j incE r dr G dr r T r r E    =                          (2.2.27) 

Substituting the expressions for the Green’s function and the incident field leads to 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

(1) exp( ) ˆ ˆˆ ˆ( ) exp exp
4

ˆˆ , exp , exp

sj z z h z z v

j vi i i iv hi i i ih

ikr
E r dr e k e k ik r h k h k ik r

r

dr r T r E v iK r E h iK r



     

  

    

 = −  + − 
 

    −  + − 
 





    (2.2.28) 

According to [30], 
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( )

3 3

3 3

| |
(2 ) (2 )

exp
(2 ) (2 )

j j

j

dp dp
r T r r p p T p p r

dp dp
ip r ip r p T p

 

 


     


   

 =    

=  −   

 

 

              (2.2.29) 

( )( ) ( )exp ,j pjp T p i p p r T p p   = − −                                   (2.2.30) 

Substituting these into 
(1)

( )sjE r  leads to 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( )

( ) ( ) ( ) ( )

(1)

3 3

exp( ) ˆ ˆˆ ˆ( ) exp exp
4

exp exp ,
(2 ) (2 )

ˆˆ , exp , exp

sj z z h z z v

pj

vi i i iv hi i i ih

ikr
E r dr e k e k ik r h k h k ik r

r

dp dp
dr ip r ip r i p p r T p p

E v iK r E h iK r



 

     

  


     

 

 = −  + − 
 

  −  − − 

  −  + − 
 



       (2.2.31) 

Because ( ) ( ) ( )3exp exp (2 )h hdr ik r ip r p k   −   = − , then 

( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( )

( )
( ) ( )

( ) ( )

(1)

3

ˆ ˆ exp ,exp( )
( )

4 (2 ) ˆ ˆ exp ,

ˆ , exp
exp

ˆ , exp

pz z h j h

sj

pz z v j v

vi i i iv

hi i i ih

e k e k i k p r T k pikr dp
E r dr

r h k h k i k p r T k p

E v iK r
ip r

E h iK r

 

  

  

 




 



 



 − − 
 =
 
+ − −   

 − 
  − 
 + − 
 

 
           (2.2.32) 

Because ( ) ( ) ( )3exp exp (2 )iv ivdr ip r iK r p K     −   = −  and use of (2.2.13) – (2.2.16), then  

( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( )

(1)

ˆ ˆ ˆ, , exp , ,

ˆ ˆ ˆ, , exp , ,exp( )
( )

4 ˆ ˆ ˆ, , exp , ,

ˆ ˆ, , exp

ps s s s h iv j h iv vi i i

ps s s s h ih j h ih hi i i

sj

ps s s s v iv j v iv vi i i

s s s s v th

h h i k K r T k K E v

h h i k K r T k K E hikr
E r

r v v i k K r T k K E v

v v i k K

      

      

       

   

− −    −

+ − −    −
=

+ − −    −

+ − − ( ) ( ) ( )ˆ, ,pj v ih hi i ir T k K E h   

 
 
 
 
 
 
 
   −
 

(2.2.33) 

The relationship between the scattering amplitude and the T matrix is  
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( )

( ) ( ) ( ) ( )( ) ( ) ( )( )

ˆ, ; ,

1 ˆ ˆ ˆ ˆˆ ˆ ˆ, , , , , , ,
4

s s i i i

ps s s s s s s s s s i i i

F e

v v h h T kk kk e

   

           


 =

+  

          (2.2.34) 

This means that 

( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )

1 ˆ ˆˆ ˆ, ; , , , , , ,
4

1 ˆ ˆ ˆˆ, ; , , , , , ,
4

1 ˆ ˆ ˆ ˆ, ; , , , , , ,
4

1 ˆ ˆ ˆ, ; , , , ,
4

pvv s s i i s s s s i i i i

pvh s s i i s s s s i i i i

phv s s i i s s s s i i i i

phh s s i i s s s s

f v T kk kk v

f v T kk kk h

f h T kk kk v

f h T kk kk

           


           


           


        


=  

=  

=  

=  ( )( ) ( )ˆ, ,i i i ih  

                (2.2.35) 

For vegetation scatterers, the main stems, stalks and branches are usually modeled as dielectric 

cylinders and in this case, the Infinite Cylinder Approximation (ICA) [39, 40] can be used to 

calculate the scattering amplitude  f  for a single vegetation scatterer in the above equation.  The 

leaves are usually modeled as dielectric disks, and in this case, the Generalized Rayleigh-Gans 

Approximation [4, 41] can be used to calculate the scattering amplitude. There are also other 

methods [42] to calculate the scattering from dielectric disks. 

From equations (2.2.33) – (2.2.35), 

( ) ( )( ) ( )

( ) ( )( ) ( )

( ) ( )( ) ( )

( ) ( )( ) ( )

(1)

ˆ , exp , ; ,

ˆ , exp , ; ,exp( )
( )

ˆ , exp , ; ,

ˆ , exp , ; ,

s s h iv j hv s s i i vi

s s h ih j hh s s i i hi

sj

s s v iv j vv s s i i vi

s s v ih j vh s s i i hi

h i k K r f E

h i k K r f Eikr
E r

r v i k K r f E

v i k K r f E

      

      

      

      

 
 
 +
 
 
+ 
 
 +


− −  −

− −  −
=

− −  −

−


− − 

          (2.2.36) 

Substituting into 
1

N

s sj

j

E E
=

=  leads to 

( )( ) ( )( )(1) (1) (1) (1) (1)exp( ) ˆ ˆ( ) , ,s s s hv vi hh hi s s vv vi vh hi

ikr
E r h S E S E v S E S E

r
    = + + +

 
       (2.2.37) 
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where 

( )( ) ( )(1)

1

exp , ; ,
N

hv h iv j hv s s i i

j

S i k K r f     
=

= − −  −                    (2.2.38)

( )( ) ( )(1)

1

exp , ; ,
N

hh h ih j hh s s i i

j

S i k K r f     
=

= − −  −                   (2.2.39) 

( )( ) ( )(1)

1

exp , ; ,
N

vv v iv j vv s s i i

j

S i k K r f     
=

= − −  −                    (2.2.40) 

( )( ) ( )(1)

1

exp , ; ,
N

vh v ih j vh s s i i

j

S i k K r f     
=

= − −  −                   (2.2.41) 

Assuming that (1) there is no correlation between vegetation scatterers and the scattering from the 

vegetation scatterers are independent of each other, and (2) the vegetation scatterers are 

statistically identical and uniformly distributed in the vegetation layer, then 

( ) ( )

( ) ( )( ) ( ) ( )

( ) ( )( ) ( ) ( )

1 1 *

* * *

1

* * *

0

1
exp , ; , , ; ,

exp , ; , , ; ,

pp pp

N

j p ip p ip j ppj s s i i ppj s s i i

j

j p ip p ip j ppj s s i i ppj s s i i

S S

dr i k K k K r f f
V

n dr i k K k K r f f

         

         

=

 = − − − −  − −
 

 = − − − −  − −
 

 



(2.2.42) 

In the backscattering direction, 

,s i s i    = = +                                                            (2.2.43) 

After integration, the following results are obtained 

( ) ( ) ( )
( )

''
21 1 *

0 ''

1 exp 4
= , ; ,

4

ipz

pp pp pp i i i i

ipz

k d
S S n A f

k
     

− −
+ −            (2.2.44) 

Hence, the backscattering coefficient for volume scattering is given by 
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( )
( )

''
2

0 ''

1 exp 4
,4 ; ,  

4

ipz

pp i i i i

ip

vol

z

pp

k d
n f

k
     

− −
+ −=           (2.2.45) 

In this chapter, only the backscattering coefficient for co-pol is calculated, because only co-pol is 

used for the data-cube based soil moisture retrieval as will be explained later. The backscattering 

coefficient for cross-pol can be calculated using a similar method by computing 
( ) ( )1 1 *

pq pqS S . 

(b) Double-bounce Scattering 

In this subsection, the expressions for double-bounce scattering are derived as below. The double-

bounce scattering has two terms: (1) 
( )(2)

01( )
R

sj j incE r G T E= , scattered by the vegetation scatterer 

and then reflected by the rough surface, and (2) 
(0)(3)

01( )sj j refE r G T E= , reflected by the rough 

surface and then scattered by the vegetation scatterer: 

( )(2)

01( ) |
R

sj j incE r dr G dr r T r r E    =                      (2.2.46) 

Substituting the expressions for 
( )

01

R

G  and incE , and using (2.2.29) – (2.2.30), we obtain that 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )( ) ( )

( ) ( ) ( ) ( )

(2)

3 3

ˆ ˆexp 2 expexp( )
( )

ˆ ˆ4 exp 2 exp

exp exp ,
(2 ) (2 )

ˆˆ , exp , exp

TE

z kz z h

sj
TM

z vz z v

pj

vi i i iv hi i i ih

e k R ik d e k iK rikr
E r dr

r h k R ik d h k iK r

dp dp
dr ip r ip r i p p r T p p

E v iK r E h iK r



 

     








     

 

 − − 
 =
 + − − 
 

 −  − − 

 −  + − 



  


 

          (2.2.47) 

Using the following properties,  
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( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

3

3

3

3

exp exp (2 )

exp exp (2 )

exp exp (2 )

exp exp (2 )

h h

v v

iv iv

ih ih

dr iK r ip r p K

dr iK r ip r p K

dr ip r iK r p K

dr ip r iK r p K

 

 

 

 

  

  

    

    

−   = −

−   = −

−   = −

−   = −









                (2.2.48) 

Together with (2.2.13) – (2.2.16) and the relationship between the scattering amplitude and the T 

matrix, we obtain that 

( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( )

( )

(2) exp( )
( )

ˆ , exp 2 exp , ; ,

ˆ , exp 2 exp , ; ,

ˆ , exp 2 exp , ; ,

ˆ , exp 2

sj

TE

s s kz h iv j hv s s i i vi

TE

s s hz h ih j hh s s i i hi

TM

s s vz v iv j vv s s i i vi

TM

s s

ikr
E r

r

h R ik d i K K r f E

h R ik d i K K r f E

v R ik d i K K r f E

v R i

       

       

       

 

= 

− −  − −

− −  − −

+

− −

+

+ − − 

( ) ( )( ) ( )v exp , ; ,z v ih j vh s s i i hik d i K K r f E     

 
 
 
 
 
 
 
 − −  − − 
 

        (2.2.49) 

where 

( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )( ) ( )

1 ˆ ˆˆ ˆ, ; , , , , , ,
4

1 ˆ ˆ ˆˆ, ; , , , , , ,
4

1 ˆ ˆ ˆ ˆ, ; , , , , , ,
4

pwv s s i i s s s s i i i i

pvh s s i i s s s s i i i i

phv s s i i s s s s i i i i

hh

f v T kk kk v

f v T kk kk h

f h T kk kk v

f

                 


                 


                 




− − = −  − −  −

− − = −  − −  −

− − = −  − −  −

−( ) ( ) ( ) ( )( ) ( )
1 ˆ ˆ ˆ ˆ, ; , , , , , ,

4
ps s i i s s s s i i i ih T kk kk h                


− = −  − −  −

        

(2.2.50) 

Next, substituting into 
1

N

s sj

j

E E
=

= and using ,TM TE

v hR R R R= =  leads to 

( )( ) ( )( )(2) (2) (2) (2) (2)exp( ) ˆ ˆ( ) , ,s s s hv vi hh hi s s vv vi vh hi

ikr
E r h S E S E v S E S E

r
    = + + +

 
       (2.2.51) 

where 
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( ) ( )( ) ( )(2)

1

exp 2 exp , ; ,
N

hv hs h iv j hv s s iz i

j

hS R ik d i K K r f      
=

= − −  − −           (2.2.52) 

( ) ( )( ) ( )(2)

1

exp 2 exp , ; ,hz

N

hh hs h ih j hh s s i i

j

S R ik d i K K r f      
=

= − −  − −           (2.2.53) 

( ) ( )( ) ( )(2)

1

exp 2 exp , ; ,
N

wv vs vz v iv j vv s s i i

j

S R ik d i K K r f      
=

= − −  − −           (2.2.54) 

( ) ( )( ) ( )(2)

1

exp 2 exp , ; ,
N

vh vs vz v ih j vh s s i i

j

S R ik d i K K r f      
=

= − −  − −           (2.2.55) 

The subscript ‘s’ of R means the reflection coefficient in the specular direction. 

Next, for the other term in the double-bounce scattering contribution, 

(3) (0)

01( ) |j refsjE r dr G dr r T r r E    =                          (2.2.56) 

Substituting the expressions for 
(0)

01G  and refE , and using (2.2.29) – (2.2.30) leads to 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

(3)

3 3

exp( ) ˆ ˆˆ ˆ( ) exp exp
4

exp exp ,
(2 ) (2 )

ˆˆexp 2 , exp exp 2 , exp

sj z z h z z v

j p

vi vi ivz i i iv hi hi ihz i i ih

ikr
E r dr e k e k ik r h k h k ik r

r

dp dp
dr ip r ip r i p p r T p p

E R ik d v ik r E R ik d h ik r



 

   

  


     

 

 = −  + − 
 

 −  − − 

  + 
 



    (2.2.57) 

Similarly, using the properties in (2.2.48) and (2.2.13) – (2.2.16) leads to 

( ) ( )( ) ( ) ( )

( ) ( )( ) ( ) ( )

( ) ( )( ) ( ) ( )

( ) ( )( )

(3)

ˆ , exp , ; , exp 2

ˆ , exp , ; , exp 2exp( )
( )

4 ˆ , exp , ; , exp 2

ˆ , exp

s s h iv j hv s s i i vi vi ivz

s s h ih j hh s s i i hi hi ihz

sj

s s v iv j vv s s i i vi vi ivz

s s v ih j v

h i k k r f E R ik d

h i k k r f E R ik dikr
E r

r v i k k r f E R ik d

v i k k r f

     

     

      

 

− − 

+ − − 
=

+ − − 

+ − −  ( ) ( ), ; exp 2h s s i h hi ikE R ik d  

 
 
 
 
 
 
 
 
 

    (2.2.58) 

where 
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( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )

1 ˆ ˆˆ ˆ, ; , , , , , ,
4

1 ˆ ˆ ˆˆ, ; , , , , , ,
4

1 ˆ ˆ ˆ ˆ, ; , , , , , ,
4

1 ˆ ˆ ˆ, ; , , , ,
4

pwv s s i i s s s s i i i i

pvh s s i i s s s s i i i i

phv s s i i s s s s i i i i

phh s s i ii s s s s

f v T kk kk v

f v T kk kk h

f h T kk kk v

f h T kk kk

           


           


           


       


=  

=  

=  

=  ( )( ) ( )ˆ, ,i i i ih   

         (2.2.59) 

Next, substituting into 
1

N

s sj

j

E E
=

= , we obtain that  

( )( ) ( )( )(3) (3) (3) (3) (3)exp( ) ˆ ˆ( ) , ,s s s hv vi hh hi s s vv vi vh hi

ikr
E r h S E S E v S E S E

r
    = + + +

 
       (2.2.60) 

where 

( )( ) ( ) ( )(3)

1

exp , ; , exp 2
N

hv h iv j hv s s i i vi ivz

j

S i k k r f R ik d   
=

= − −                (2.2.61) 

( )( ) ( ) ( )(3)

1

exp , ; , exp 2
N

hh h ih j hh s s i i hi ihz

j

S i k k r f R ik d   
=

= − −                (2.2.62) 

( )( ) ( ) ( )(3)

1

exp , ; , exp 2
N

vv v iv j vv s s i i vi ivz

j

S i k k r f R ik d   
=

= − −                (2.2.63) 

( )( ) ( ) ( )(3)

1

exp , ; , exp 2
N

vh v ih j vh s s i i hi ihz

j

S i k k r f R ik d   
=

= − −                (2.2.64) 

The scattering matrix of the double-bounce scattering is the sum of two terms, 

( ) ( )2 3db

pq pq pqS S S= +                                                   (2.2.65) 

According to reciprocity [39], 

( ) ( ), ; , , ; ,pp i i s s pp s s i if f           − + − + =                           (2.2.66) 
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In the backscattering direction, 
ipz pzk k=  and s i = . Thus, the following equality relations are 

established:  

( ) ( )exp 2 exp 2  ;pz ipzik d ik d=

( ) ( ) ( ) ( )ˆ ˆsin cos sin cos sin sin sin sin  ;p i s s i i s sp p ip ii k x kK K k yk        − −− = − = +

( )( ) ( )( )exp exp  ;p ip j jp ipi K K r i k k r− − = − −  

 .ps piR R=  

Therefore, in the backscattering direction, the forward and reverse going ground-vegetation 

interaction scattering fields are exactly the same, 
( ) ( )2 3

pp ppS S= .  

Hence, 

( ) ( )( ) ( )
1

2 exp 2 exp , ; ,p

N
db

pp ps ip j s s i i

j

z p ppS R ik d i K K r f      
=

= − −  − −          (2.2.67)                                                             

Similarly, assuming independent scattering, statistically identical and uniformly distributed 

vegetation scatterers, we obtain 

( ) ( )

( ) ( )( ) ( ) ( )

( ) ( )

* * *

0

* * *

2 2
''

0

4 exp 2 exp 2

exp , ; , , ; ,

4 exp 4 , ; ,

pp pp j ps pz ps pz

p ip p ip j ppj s s i i pp

db

j s s i i

ps ipz p

d

p i i i

b

i

S n dr R ik d R ik d

i K K K K r f f

n Ad R k d f

S

           

    

= − 

 − − − −  − − − −
 

= − +



  (2.2.68) 

Thus, the backscattering coefficient for double scattering is 
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( ) ( )
2 2

db* ''

016 exp 4 , ; ,
4 db

pp pp ps ip

db

z pp i i ip ip S S n d R d f
A

k


     = − +=    (2.2.69)            

When there are several kinds of scatterers, such as the case for the canola canopy where the main 

stems, branches and leaves are modeled by different shapes, the effective propagation constant in 

the vegetation layer, the backscattering coefficient for volume scattering and the backscattering 

coefficient for double-bounce scattering are calculated as follows 

( )0,

1

, , ; ,
2

pp

T

p t

t

t i i i i
k

fk k n      


=

− −= +                                   (2.2.70) 

( )
( )

''
2

0, ,''
1

1 exp 4
,4 ; ,

4

T
ipz

t pp t i i

vol

pp i i

tipz

k d
n f

k
      

=

− −
+ −=                     (2.2.71) 

( ) ( )
2 2

''

0, ,

1

exp 4 ,16 ; ,
T

ps ipz t pp t i i

db

i

t

pp id R k d n f      
=

− +=              (2.2.72) 

where T is the total number of scatterers’ types (three for the canola: main stems, stalks and leaves), 

n0,t is the number of scatters of type t per unit volume and fppt is the scattering amplitude of the 

scatterer of type t. 

Finally, the surface-scattering component in the backscattering direction is the bare rough-surface 

scattering coefficient reduced by the attenuation by the vegetation canopy, 

( )' ,'exp 4 ipz

surf surf bare

pp ppk d = −                                            (2.2.73) 

where 
,surf bare

pp is the backscattering coefficient of the bare rough surface computed from NMM3D 

[32]. 
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In the DBA, the total backscattering is the sum of the volume scattering, double-bounce scattering 

and surface scattering, 

total vol db surf

pp pp pp pp   = + +                                                (2.2.74) 

 

(c) Comparison with the First-Order Radiative Transfer Model 

In this section, we compare the formulas of DBA with that of the first-order radiative transfer 

equation as used in the MIMIC model [2, 28, 43].  

The effective propagation constant for p polarization 𝑘𝑝 is a sum of real part 𝑘𝑝
′  and the imaginary 

part 𝑘𝑝
′′ 

𝑘𝑝 = 𝑘𝑝
′ + 𝑖𝑘𝑝

′′                                                     (2.2.75) 

Similarly, 𝑘𝑖𝑝𝑧 = 𝑘𝑖𝑝𝑧
′ + 𝑖𝑘𝑖𝑝𝑧

′′ . Substituting them into 2 2 2sinipz p ik k k = − and then squaring 

both sides lead to 

𝑘𝑖𝑝𝑧
′2 − 𝑘𝑖𝑝𝑧

′′2 + 𝑖2𝑘𝑖𝑝𝑧
′ 𝑘𝑖𝑝𝑧

′′ = 𝑘𝑝
′2 − 𝑘𝑝

′′2 + 2𝑖𝑘𝑝
′ 𝑘𝑝

′′ − 𝑘2𝑠𝑖𝑛2𝜃𝑖             (2.2.76) 

Balancing the real and imaginary parts, and ignoring 𝑘𝑖𝑝𝑧
′′2  and 𝑘𝑝

′′2, because they are much smaller 

than the other terms, we obtain 

𝑘𝑖𝑝𝑧
′2 = 𝑘𝑝

′2 − 𝑘2𝑠𝑖𝑛2𝜃𝑖                                                (2.2.77) 

𝑘𝑖𝑝𝑧
′′ =

𝑘𝑝
′ 𝑘𝑝

′′

𝑘𝑖𝑝𝑧
′                                                                  (2.2.78) 

In the vector radiative transfer equation, the imaginary part, 𝑘𝑝
′′,  is equal to half of the extinction 

coefficient 𝜅𝑒,𝑝 [43] 

𝑘𝑝
′′ =

𝜅𝑒,𝑝

2
                                                                  (2.2.79) 
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Since the fractional volume of vegetation is no more than 0.5% with the other 99.5% being air, 

𝑘𝑝
′ = 𝑘, 𝑘𝑖𝑝𝑧

′ = 𝑘𝑐𝑜𝑠𝜃𝑖. Hence, 

𝑘𝑖𝑝𝑧
′′ =

𝜅𝑒,𝑝

2
𝑠𝑒𝑐𝜃𝑖                                                        (2.2.80) 

Substituting into equation (2.2.45) leads to 

( )
( )( )2

0

,

1
4

exp 2
, ; ,

2

p i

pp i i

v

i i

e p

ol

pp

i

sec
n f

sec

 
     

 
 

− −
+ −=               (2.2.81) 

where 
,p e pd = is the optical thickness and the quantity ( )

2

,4 ; ,pp i i i if      + −  is the 

averaged pp-polarized backscattering cross section of a single particle. 

Similarly, the double-bounce scattering term becomes 

( ) ( )( )2 2

04 R exp 2 4 , ; ,0db

p p i p i ip pp d sec n f     −=             (2.2.82) 

The surface-scattering term becomes 

( ) ,2expsurf surf ba

p i

re

pp ppsec  −=                                (2.2.83) 

Equations (2.2.81) and (2.2.83) are the same as equations (11.10) and (11.4) in [2], respectively,  

derived from the first-order radiative transfer equation. (It is noted that the optical thickness is 

defined as 
,p e p ised c  =  in [2].) Equation (2.2.82) is the same as equation (11.15a) in [2] except 

that equation (2.2.83) has a factor of 4 instead of 2. It is because the radiative transfer equation 

deals with power instead of electric fields [2] and ignores the coherent effects in the double-bounce 

direction. Thus, the DBA agrees with the first-order radiative transfer equation except that the 

double-bounce term in the DBA is two times larger than that in the first-order radiative transfer 

equation. This difference in the DBA is also called the backscattering enhancement, which is not 

considered in the radiative transfer equation. 
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Two modifications included in this section are the NMM3D for bare rough-surface scattering 

in the surface-scattering term and the coherent reflectivity (i.e., R in (2.2.69)) in the double-bounce 

term. 

 

2.2.2 Computation and Validation for the Wheat and Canola Data-cubes 

The variables defined in the three axes of the data-cubes [44] are the parameters which 

affect the backscattering coefficients mostly. The ranges of the data-cube axes are 0.1cm ~ 4.0cm 

for RMS height and 3 ~ 30 for the real part of epsrsoil, the combination of of which covers a wide 

range of natural conditions. The range for VWC depends on the typical VWC values for the 

particular crop. The wheat data-cubes are plotted in Figure II.2. The corresponding soil moisture 

can be obtained via the dielectric model for soil given in [22]. It is observed that the backscattering 

coefficients generally increase with the increase of rough surface RMS height and soil permittivity. 

When the RMS height is small, the backscattering coefficients first increases with VWC and then 

decreases with VWC when VWC is large. This is because, when RMS height is small, volume 

scattering and double-bounce scattering dominate. The scattering from the vegetation scatterers 

increases with VWC but larger VWC also provides larger attenuation. When the RMS height is 

large, the backscattering coefficients generally decreases with VWC. In this case, surface 

scattering dominates and larger VWC results in larger attenuation for the surface-scattering term.  

In this section, we explain how to generate the data-cubes for wheat and canola fields. The 

data-cubes are then validated using the SMAPVEX12 data. 
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(a) 

 

 

(b) 

Figure II.2. Wheat data-cube, (a) σVV, (b) σHH. epsrsoil, stands for the real part of the soil 

permittivity. 

 

As detailed in [10, 34], SMAPVEX12 was designed to support the development and 

assessment of SMAP soil moisture products in an agricultural region with an area of about 15km 

× 70km, located within the larger Red River Watershed south of Winnipeg, Manitoba (Canada). 

SMAPVEX12 was conducted between June 7 and July 19, 2012 during which soil moisture and 

vegetation conditions varied significantly, which provides extended-duration measurements that 

exceed those of any past soil moisture remote sensing field experiment. Uninhabited Aerial 

σVV 

VWC 

(kg/m2) 

RMS (cm) epsrsoil 

σHH 

VWC 

(kg/m2) 

RMS (cm) epsrsoil 
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Vehicle Synthetic Aperture Radar (UAVSAR) [45], an aircraft-based fully polarimetric L-band 

radar, provided high-quality backscatter data, with its high spatial resolution, stable platform, and 

reliable calibration. The aircraft carrying the UAVSAR was flown several times per week, a 

frequency similar to that of the SMAP satellite. Data within the UAVSAR swath were collected 

over a wide range of incidence angles. These 𝜎0 values were normalized to an incidence angle of 

40 degrees for this algorithm test in order to be applicable to the SMAP data, using the histogram-

matching method [46]. The residual error in the normalization is smaller than 1 dB stdev. The 

speckle noise was nearly removed by averaging over a large number of single looks at ~7m 

resolution over each field (~800m×800m). The measured backscatter coefficients are compared 

with the outputs from the data-cubes and also serve as the inputs for the time-series retrieval of 

soil moisture, which will be presented in later sections. The VWC, RMS rough-surface height and 

soil permittivity (and hence, soil moisture) were also measured, which are the inputs to sample the 

data-cube of VV and HH backscattering coefficients. VWC was measured through destructive 

sampling at three sample points for each field by cutting and collecting the plants on the ground in 

a small area with all the measurements scaled to 1 m2 area. The water content is the wet weight 

minus dry weight obtained by drying the sampled plants in an oven for several days, then 

multiplied by a conversion factor to account for the little remained water after the drying process. 

The RMS height of each field is assumed to be constant during SMAPVEX12 because the 

experiment began after seeding and without further tillage operations to affect the roughness. The 

surface topography was approximately flat for the vegetation fields. The RMS height of each field 

was acquired by post-processing the data measured using the 1m long profilometer together with 

a digital camera. Repeated measurements were performed to obtain a 3m profile consisting of three 

1m profiles for each site. During flight days, the soil moisture, which changed rapidly, was 
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measured concurrently with the airborne acquisitions so that the backscatter and soil moisture data 

collection were nearly coincident. The handheld Stevens Water Hydra Probe connected to a 

Personal Digital Assistant was used to measure the surface soil moisture with site-specific 

calibrations [47, 48] where individual calibration equations were developed for each of the fields. 

There were 16 soil moisture sample points for each field with three replicate volumetric soil 

moisture measurements at each point so as to capture spatial variability. Vegetation attributes, such 

as crop density, plant height, stem diameter, stalk height, stalk angle, leaf thickness and leaf width 

were also measured, which provided a basis for specifying the parameters of the physical forward 

models used to compute the data-cubes. For each field, the plant density was obtained by counting 

the number of plants in ten rows with 1m row length. Plant height and stem diameter were 

measured at the sample points for VWC just before cutting the vegetation samples, with ten 

measurements at each point.  The other vegetation attributes were measured at four wheat fields 

and three canola fields five to six times during the campaign. [34]. 

(a) Vegetation and Roughness Parameters for the Wheat and Canola 

Wheat is modeled as a layer of uniformly distributed cylinders with different orientations as shown 

in Figure II.3.  The model parameters for the wheat data-cube presented in Table II-1 are estimated 

from the ground measurements of SMAPVEX12.  

 

Table II-1. Model parameters for the wheat data-cube. 

The probability function for scatterer elevation angle (β, measured from vertical, as shown in 

Figure II.3 (a)) is chosen to be p(β)=Csin2(β)cos2(β) so that a good agreement between the data-

cube and measurements is achieved, where the coefficient C is determined so that the integration 

of p(β) over 0 ~ 30 is 1. The distribution of scatterer azimuth angle (α as shown in Figure II.3 (a)) 

is uniform over all the angles.  

Diameter (mm) Mveg Na (m-2) β α 

3.6 50% 350 0 ~ 30  0 ~ 360  
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z

x

y

β

α

                                                                              
   (a)                                                                                            (b) 

Figure II.3. (a) Wheat model, (b) picture of wheat from the SMAPVEX12 campaign. 

 

 

The length of the cylinders is calculated from VWC using: 

2

water a wheat

VWC
l

a N Mveg 
=                                                   (2.2.84) 

Where a, ρwater, Na and Mveg stand for radius, water density, number of cylinders per m2 and 

volumetric water content of vegetation, respectively. The measured length is not used because it 

was not necessarily synchronized with UAVSAR data; however, VWC was synchronized with 

UAVSAR data. Mveg is estimated from the gravimetric water content (Mg) measured during 

SMAPVEX12 which determines the dielectric constant [49] of a plant organ and subsequently 

affects the scattering by the vegetation. These parameters are used to calculate VV and HH 

backscattering coefficients to form the wheat data-cubes using the scattering model developed in 

section 2.2 for different ratios of cl/s (correlation length to RMS height) [5].  
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(a)                                               (b)                                               (c)  

Figure II.4. (a) Canola model; picture of canola from SMAPVEX12 taken at (b) June 25th,  (c) 

July 17th . 

For canola, two different types of cylinders with different radii and lengths are used to 

model the main stem and branches while circular disks are used to model the leaves, as shown in 

Figure II.1 and Figure II.4 (a). These elements are assumed to be uniformly distributed in the 

canola layer, similar to the wheat case.  

Table II-2. Experimental data of SMAPVEX12 canola Field 84 at two different dates. Mv is the 

volumetric soil moisture, hereinafter the same. 

 

Date Mv VWC VV backscattering 

coefficients 

HH backscattering 

coefficients 

June 25th 0.14 cm3/cm3 2.23 kg/m2 -13.34 dB -10.21 dB 

July 17th 0.13 cm3/cm3 2.37 kg/m2 -16.95 dB -14.74 dB 

Table II-2 lists the measured volumetric soil moisture (Mv), VWC, and the VV and HH 

backscattering coefficients for the same field on two different dates in June and July during 

SMAPVEX12. There is about a 4dB difference for both VV and HH backscattering coefficients 

between those two dates even though the soil moisture and the VWC are similar. The RMS height 
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and cl/s ratio for the same field are approximately the same during the experiment, since they are 

expected to vary very little in the absence of tillage. The reason for the backscatter difference is 

that the leaves take larger portion of the total VWC in June than in July. It can be seen from Figure 

II.4 (b) and (c) that there were more leaves with larger radii in June than in July. The backscattering 

of leaves increases with their radius and density. Generally, the volume scattering, which is mostly 

contributed by the leaves, dominates the total backscattering for canola (i.e., the total 

backscattering is mainly determined by the scattering by leaves.). Thus, for the two cases with the 

same VWC which is the sum of VWC, from leaves, branches and main stems, the one with more 

leaves generates more backscattering.  

 

Figure II.5. (VV+HH)/2 data for the five SMAPVEX12 canola fields: large decrease observed 

between July 8th and 10th. The x-axis presents time: “JN” stands for “June” while “JY” stands for 

“July”, hereinafter the same. 

In the data-cubes, each set of input (Mv, VWC, RMS height, and cl/s ratio) should produce 

only one unique set of VV and HH backscattering coefficients. Thus, two different data-cubes 
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computed from different model parameters are needed for canola in order to account for the two 

significantly different values of VV and HH backscattering coefficients in Table II-2. In the 

evaluation of the data-cube and its inversion for soil moisture retrieval, it will be necessary to know 

when to use the appropriate data-cube. As shown in Figure II.5, there was a large decrease in the 

measured (VV+HH)/2 between July 8th and July 10th for all the canola fields despite the fact that 

there was no significant decrease in soil moisture or VWC based upon the ground measurement in 

Table II-3. Therefore, a switch is made in the data-cube used beginning July 10th (July data-cube). 

It is also noticed in Figure II.5 that the (VV+HH)/2 for canola Field 115 was much smaller than 

that of the other fields in June, so the July data-cube which produces smaller VV and HH 

backscattering coefficients is used for Field 115 over the entire period. The parameters used to 

generate the two data-cubes are listed in Table II-4. The Mveg and leaf radius are adjusted to smaller 

values for the July data-cube based on the ground measurement, which can also be seen from 

Figure II.4 (b) and (c) where the canola in July appears to be withered compared to conditions in 

June. 

Table II-3. Change of Mv and VWC for the canola fields (July 10th minus July 8th). 

Field No. 61 84 115 122 124 

∆Mv (cm3/cm3) 0.056  0.084  -0.064 0.0048  0.029  

∆VWC (kg/m2) 0.10 0.10 0.074 -0.20 -0.38 

 

 

From the in-situ measurements, the average number of canola plants per m2 (Na) is about 60 and 

the number of leaves per plant (Nl) is about bNs with b = 2 and 1 for June and July data-cubes, 

respectively and Ns is the number of branches per plant. The main stem diameter (d), which 

increases with VWC, is calculated from the allometric relationship with VWC obtained from the 

data through curve fitting: 
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 20.03135 +0.938 +4.87d VWC VWC= −  in mm,  

as shown in Figure II.6 (a). Similarly, the main stem length (l) is obtained from: 

-1.186121.4 +130.2l VWC= − in cm,  

as shown in Figure II.6 (b). Ns can be calculated from VWC using the following formula:  

( )

water a stem stem
s

a water branch branch leaf leaf

VWC N Vol Mveg
N

N Vol Mveg bVol Mveg





−
=

+
                   (2.2.85) 

where stemVol , branchVol  and 
leafVol  are the volume of stem, branch and leaf, respectively. 

 

 

Table II-4. Model parameters for the canola data-cubes. 

The Mveg values in plain font and in parentheses are used for June and July data-cube, respectively.  

Mveg is estimated from the measured Mg in the way as the wheat [49]. VWC is measured in situ. 

d and l  are derived from VWC based on the empirical allometry relationships. The distribution 

of azimuthal angle (α as shown in Figure II.4 (a)) is uniform over 0 ~ 360 for the stem, branch 

and leave.                                                                                                                                                              

 
Diameter 

(mm) 

Length 

(cm) 
Mveg Distribution of β 

Stem d  l  60% (40%) Uniform over 0 ~ 5  

Branch / 2d  / 3l  60% (40%) Uniform over 0 ~ 35  

Leaf 140 (80) 0.03 60% (40%) 
Uniform over 

40 ~ 90  
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(a) 

 

 
(b) 

 

Figure II.6. Vegetation parameters during SMAPVEX12: (a) Main stem diameter as a function 

of VWC, (b) Main stem length as a function of VWC. 
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(b) Validation for the Wheat and Canola Data-cubes 

First, we compute the data-cubes using the model described in section 2.2.2 (a) and using 

vegetation and roughness parameters as measured in section 2.2.2 (b).  

 

Figure II.7. Wheat data-cube applied to SMAPVEX12 wheat Field 91 with cl/s=15. 

‘CORR’ is short for ‘correlation coefficient’. The dash-dot curve plots VWC, hereinafter the same. 

‘VV model’ and ‘HH model’ indicate the backscatters from the data-cube. ‘VV mea’ and ‘HH 

mea’ represent the measured backscatters from the UAVSAR.  Soil moisture (Mv) and VWC are 

scaled as Mv/0.1 and VWC/0.5 for plot, respectively. 

 

Next, the data-cubes are evaluated by comparing the predictons to the backscatter 

measurements from the UAVSAR for the ten wheat fields and five canola fields studied during 

SMAPVEX12. The measured RMS height, VWC and in-situ soil moisture are used as inputs to 

the data-cube to estimate the VV and HH backscattering coefficients, and then compared to the 

UAVSAR data for each day of flight. An example of the time-series forward comparison between 

the data-cube and the UAVSAR data for one of the wheat fields is presented in Figure II.7, which 

has an RMSE of 0.80 dB and 0.58 dB for VV and HH backscattering coefficients, respectively. 
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Here,  

( )
2

,i ,i

1

1 N

data cube

i

RMSE
N

 
=

= −                                           (2.2.86) 

where N is the number of samples, data  is the measured backscattering coefficient and cube is the 

predicted backscattering coefficient from the data-cube. 

 

Figure II.8. Canola data-cubes applied to SMAPVEX12 canola Field 61 with cl/s=4. Soil 

moisture (Mv) is scaled as Mv/0.05 for plot. 

Similarly, Figure II.8 is one example for the canola fields (RMSE values of 0.66 dB and 

0.62 dB and correlation coefficients of 0.95 and 0.98 for VV and HH backscattering coefficients, 

respectively). The forward comparisons for all the wheat and canola fields are presented using the 

scatter plots in Figure II.9 and Figure II.10. The RMSE and correlation coefficient for each field 

are listed in Table II-5 and Table II-6. The RMSE for all the wheat fields is 0.97 dB for VV 

backscattering coefficients and 0.82 dB for HH backscattering coefficients while the RMSE for 
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the all canola fields is 1.30 dB for VV backscattering coefficients and 0.78 dB for HH 

backscattering coefficients.  

 
(a) 

 

 
(b) 
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Figure II.9. Comparison between the data-cube and UAVSAR measurements for the ten 

SMAPVEX12 wheat fields (a) VV backscattering coefficients, (b) HH backscattering 

coefficients. 

 

 
(a) 

 

 
(b) 

 

Figure II.10. Comparison between the data-cube and UAVSAR measurements for the five 

SMAPVEX12 canola fields (a) VV backscattering coefficients, (b) HH backscattering 

coefficients. 
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Table II-5. RMSE and correlation coefficient of backscatters between data-cube simulations and 

UAVSAR observations for the ten wheat fields. 

Field No. RMSE (dB) Correlation Coefficient 

VV  HH VV HH 

91 0.80 0.58 0.85 0.85 

85 0.91 0.87 0.62 0.87 

81 1.37 0.84 0.88 0.94 

74 0.66 0.98 0.88 0.91 

73 0.56 1.03 0.99 0.92 

65 1.51 0.64 0.95 0.96 

44 1.04 0.87 0.83 0.89 

42 1.04 0.74 0.82 0.89 

41 0.62 0.56 0.90 0.98 

31 1.02 0.91 0.82 0.97 

 

Table II-6. RMSE and correlation coefficient of backscatters between data-cube simulations and 

UAVSAR observations for the five canola fields. 

Field No. RMSE (dB) Correlation Coefficient 

VV HH VV HH 

124 1.75 0.47 0.45 0.95 

122 0.94 0.60 0.87 0.96 

115 1.46 1.23 0.79 0.57 

84 1.55 0.78 0.86 0.95 

61 0.66 0.62 0.95 0.98 

 

Table II-7. Error of estimated backscatters for wheat, compared with [27]. 

 Esys (dB) Eres (dB) Etot (dB) 

 VV HH VV HH VV HH 

Site #12 of [27] -1.17 -0.10 0.91 0.68 1.48 0.96 

Site #13 of [27] -0.57 0.63 0.76 0.47 0.95 0.79 

Ten SMAPVEX12 Fields 0.20 0.17 0.82 0.68 0.84 0.70 

 

Table II-8. Error of estimated backscatters for canola, compared with [27]. 

 Esys (dB) Eres (dB) Etot (dB) 

 VV HH VV HH VV HH 

Site #23 of [27] -2.27 -0.51 1.06 0.70 2.51 0.86 

Site #31 of [27] -0.18 0.18 1.08 0.73 1.09 0.75 

Five SMAPVEX12 Fields -0.34 0.18 1.03 0.66 1.08 0.69 
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The systematic error (Esys), residual error (Eres) and total error (Etot) defined as below [27] 

are also calculated for all the wheat and canola fields. 

( ),i ,i

1

1 N

sys data cube

i

E
N

 
=

= −                                        (2.2.87) 

( )
2

,i ,i

1

1 N

res data cube sys

i

E E
N

 
=

= − −                                (2.2.88) 

2 2

tot sys resE E E= +                                                  (2.2.89) 

The results are compared with [27] at 40 degrees incident angle and L-band as shown in 

Table II-7 and Table II-8 for wheat and canola, respectively.  In terms of the number of fields, 

SMAPVEX12 with ten wheat fields and five canola fields provides more extensive data than [27] 

which has two wheat fields and two canola fields. The total error from the wheat data-cube is 

smaller than that from [27], especially compared to the VV backscattering coefficients for site #12 

where the total error from the data-cube is smaller by 0.64 dB. For the canola data-cubes, the total 

error is also smaller than that from [27] and is smaller by 1.42 dB than the VVbackscattering 

coefficients for site #23.  

Some sources of error to be considered when interpreting the results are: (1) the ground 

measurements of RMS height, VWC and soil moisture (e.g., the RMS height was likely to be 

influenced by the rain which would flatten the soil surface but a constant RMS height was used 

during the whole study period for each field), (2) UAVSAR data (e.g., there is a normalization 

error when normalizing the raw data to 40º and the RMSE is about 1 dB [34]), (3) Data-cube 

parameters (e.g., the plant density is generally different for different fields and only an average 

value is used in the data-cube that is applied to all the fields), (4) Scattering model (e.g., the 

scatterers are assumed to be uniformly distributed in the vegetation layer which is unlikely to be 

true for the crop fields. Furthermore, the space between rows is not taken into account, where the 
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surface scattering is larger than that from the current model because of no attenuation by the 

vegetation layer). 

The results of Figure II.9 and Figure II.10 show that the data-cube model predictions are 

in good agreement with airborne radar measurements. 

 

2.3 An Improved Coherent Model for Soybean Fields 

In this section, an improved coherent branching model for L-band radar remote sensing of 

soybean is proposed by taking into account the correlated scattering among scatterers.  The novel 

feature of the analytical coherent model consists of conditional probability functions to eliminate 

the overlapping effects of branches in the former branching models. There are models using 

fractal-generated plants to eliminate overlap [50-52]. They can be more computationally intenstive 

compared with the one using conditional probalility functions. Backscattering coefficients are 

considered for a variety of scenarios over the full growth cycle for vegetation water content (VWC) 

and the complete drydown conditions for soil moisture. The results of the coherent model show 

that HH scattering has a significant difference of up to 3 dB from that of the independent scattering 

when VWC is low (~ 0.2 kg/m2). Forward model calculations are performed for scattering from 

the soybean field for the full range of the three axes of data-cubes using the coherent model. The 

soybean volume scattering including the double-bounce term is combined with the forward 

scattering model of bare soil from the numerical Maxwell solutions that incorporates RMS height, 

soil permittivity and correlation length, to form the forward model lookup-table for the vegetation-

covered soil. The results are compared with data from 13 soybean fields collected as part of the 

Soil Moisture Active Passive Validation Experiment 2012 (SMAPVEX12). 
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2.3.1 Incoherent and Coherent Models 

Soybean is a branching plant composed of a main stem and several stalks attached with a 

compound leaf which is comprised of three leaflets [36], as shown in Figure II.11 (a).  The soybean 

plant is modeled as a vertical cylinder (main stem) with several attached branches, drawn in Figure 

II.11 (b). Each branch is a combination of a cylinder (stalk) and three disks (leaves). The 

orientation angles of the stem, stalk and disk are based on the Eulerian angle system [28]. As 

shown in Figure II.11 (c), ( , )   and ( , )d d   are the orientation angles of cylinder and disk, 

respectively, with alpha and beta referring to the azimuth and elevation angles. The lengths of stem 

and stalk are d  and l , respectively. ( , , )j j jx y z  is the position of scatterer j  and ( , )s s  , which 

defines  the orientation angle of stem are not illustrated in the simplified sketch.               

Let the direction of the incident wave be i( , )i   and ˆ
iK  be the incident wave vector 

ˆ ˆ ˆ ˆsin cos sin sin cosi i i i i iK x y z    = + −                        (2.3.1) 

Then the specular reflected direction is 

ˆ ˆ ˆ ˆsin cos sin sin cosi i i i i ik x y z    = + +                             (2.3.2) 

Let sin cos , sin sin  and cosxi i i yi i i zi ik k k k k k    = = = , where k  is the wave number in free 

space. Let ˆ ˆ( , )pp sf k k  be the scattering amplitude from direction k̂  to ˆ
sk . The function f  is 

calculated by ICA [4] for the cylinder (
cf ) and Generalized Rayleigh-Gans Approximation [4] 

for the disk (
df ). The subscript p  denotes the polarization.  
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Figure II.11. (a) Picture of a soybean plant from SMAPVEX12, (b) Diagram of a soybean plant, 

(c) Sketch of coordinate system and characteristic parameters. 
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We only consider like polarization (i.e., VV and HH) in this chapter. Let us first ignore the 

difference between the propagation constants in the air and vegetation layer. As shown in Figure 

II.12, ˆ ˆ( , )pp i if K K−   is the scattering amplitude for volume scattering (term 1), while ˆ ˆ( , )pp i if k K−  

is the scattering amplitude in the double-bounce direction (terms 2 and 3). A factor of 2 is added 

to account for terms 2 and 3 which are the same because of reciprocity. In the case of soybean 

fields, the triple bounce term is likely to be weak and thus ignored. 

2 31
 

Figure II.12. Backscattering Terms. 

For the coherent model, we need to include the phase term associated with the position of 

the scatterer and the path of the wave in the random medium. For volume and double-bounce 

scattering: 

( ) ˆ ˆexp 2 ( , )vol xi j yi j zi j pp i iF i k x k y k z f K K = + − −
 

                                (2.3.3) 

( ) ˆ ˆ2 exp 2 ( , )db p xi j yi j zi pp i iF R i k x k y k d f k K =  + + −
 

                         (2.3.4) 

where the subscripts “ vol ” and “ db ” stand for volume scattering and double-bounce scattering, 

respectively. The corresponding subscript pp  in F  indicating either VV or HH is omitted for 

simplicity. The symbol d  is the vegetation layer thickness, which is assumed to be the same as 

the length of the main stem in the case of soybean. 
pR  is the Fresnel reflection coefficient 

determined by numerical solutions of Maxwell’s equations in 3 dimensional simulations (NMM3D) 
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for random rough-surface scattering [32]. It is worth noting that the double-bounce scattering does 

not depend on the z  component of the scatter’s coordinate. 

 

(a) Incoherent Model 

For the incoherent model, since a branch consists of a stalk (cylinder) and a compound leaf 

(disk), the scattering by one branch is given by 

2 2 2 2 2
branch c c d d

inco vol db vol dbF F F F F= + + +                                   (2.3.5) 

where the superscripts c  and d  stand for cylinder and disk, respectively, and the subscript 

“ inco ” stands for incoherent. The angle brackets represent averaging. Let LN  be the number of 

branches per soybean plant. Hence, the scattering by one plant is 

2 2 2
plant stem branch

inco L incoF F N F= +                                          (2.3.6) 

Let SN  be the number of soybean plants in a unit area (1 m2) field. The overall scattering is 

therefore 

2 2
field plant

inco S incoF N F=                                            (2.3.7) 

 

(b) Coherent Model 

For the coherent model, we use the analytical branching model proposed by Yueh et al. [36]. 

For one branch, the scattering amplitude of the branch j  is the coherent summation of the 

scattering from the cylinder and the disk 

( )

( )

, ˆ ˆexp 2 ( , )

ˆ ˆexp 2 ( , )

branch j c c c c

vol xi j yi j zi j pp i i

d d d d

xi j yi j zi j pp i i

F i k x k y k z f K K

i k x k y k z f K K

 = + − −
 

 + + − −
 

                        (2.3.8) 
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( )

( ) 

, ˆ ˆ2 exp 2 ( , )

ˆ ˆexp 2 ( , )

branch j c c c

db p xi j yi j zi pp i i

d d d

xi j yi j zi pp i i

F R i k x k y k d f k K

i k x k y k d f k K

 = + + −
 

 + + + −
 

              (2.3.9) 

where ( , , ) and ( , , )c c c d d d

j j j j j jx y z x y z  are the coordinates of the 
thj  branch’s stalk center and leaf 

center, respectively.  

Using subscript “ co ”for coherent, then 

, , ,branch j branch j branch j

co vol dbF F F= +                                                  (2.3.10) 

2 2 2

2 Re( )branch branch branch branch branch

co vol db vol dbF F F F F = + +           (2.3.11) 

The coherent scattering amplitude of a soybean plant with LN  branches is 

,

1

= +
LN

plant stem branch j

co co

j

F F F
=

                                                      (2.3.12) 

When calculating the intensity
2

plant

coF , there are additional terms of correlation between the 

scattering amplitudes. 

2 2
,

1

2
, , , *

1 1 1,

2Re( )
L

L L L

N
plant stem stem branch j

co co

j

N N N
branch j branch j branch m

co co co

j j m m j

F F F F

F F F



=

= = = 

= +

+ +



  

                          (2.3.13) 

Assuming the branches are statistically identical, the correlation between two different branches 

, , *branch j branch m

co coF F is the same for each two branches and there are ( )-1L LN N  terms, so it leads to 

( )

( )

2 2

2
, , *

2 Re

              + + -1

plant stem stem branch

co co L co

branch branch j branch m

L co L L co co

F F N F F

N F N N F F

= +

                     (2.3.14) 
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where ( )Re stem branch

coF F  is the real part of the average of the correlation between stem and 

branch. For soybean, the distance between stem center and branch center is usually much larger 

than / 4  (π/2 in phase difference) and the real part of the correlation can be either positive or 

negative, resulting in a small average value. Comparing the coherent and incoherent models, we 

find that the extra term ( ) , , *-1 branch j branch m

L L co coN N F F  can make significant difference, particularly 

when LN  is large as demonstrated in section 2.3.3. Thus, it is important to accurately calculate 

correlation of scattering between two different branches , , *branch j branch m

co coF F . In the previous 

coherent model [36], , , *branch j branch m

co coF F  is calculated as *branch branch

co coF F . This formulation 

implies the case that two branches overlap and therefore their scattering fields are completely in 

phase which results in large total scattering intensity. In reality, there is some space between two 

branches, which we refer to as “mutual exclusion”. We will introduce conditional probabilities to 

formulate the mutual exclusion in section 2.3.2. 

 

 
 

Figure II.13. SMAPVEX12 soybean Field 64 illustrating the spacing between soybean plants. 

 

Next, consider the coherent scattering amplitude of the soybean field with SN  plants. In 

our model, it is assumed that each soybean plant occupies a certain area with radius R where other 
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plants are not allowed to grow (as shown in Figure II.13), while outside that region the other 

soybean plants are uniformly distributed. According to [36], 

( )
2 2 1 *

(2 )
+ -1field plant plant plant

co S co S S co co

RJ k R
F N F N N F F

k






=                    (2.3.15) 

where 2 2

xi yik k k = +  and
1(2 )J k R  is the Bessel function of the first kind.         

             

2.3.2 Coherent Model with Conditional Probabilities 

(a) Conditional Probability for Branch Geometry 

The mutual exclusion method avoids the unrealistic situation that two branches overlap in 

space, thereby constructing more reasonable geometry for a soybean plant. To implement the 

mutual exclusion, the improved coherent model applies the conditional probability to two factors: 

the positions of the bottom of the branches z, and the orientation angles   of the branches. Let 

 / 2( 1)Ls d N= −  be half of the average spacing between two adjacent branches. In the 

calculations below, it is assumed that the main stem is parallel to the z axis. The conditional 

probability that scatterers exist within given z is zero if two branches are within half of the average 

spacing ( s ) and uniform otherwise.  

Let 
jz  and mz  be the z coordinates of the attachment of the branches j  and m  to the main stem, 

respectively. Then the conditional probability is 

     2

0,        if 
( | )

( ),  otherwise

m j

m j

j

z z s
p z z

A z

 − 
= 


                                            (2.3.16) 

where ( )jA z  is chosen so that 
0

2 ( | ) 1m m j

d

dz p z z
−

= . 

For the case when 
jz  is less than s  from the top, 0js z−   ,  
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1
( )= , ,  j m j

j

A z z d z s
d s z

  − − − +
                                            (2.3.17) 

If 
jz is at distance more than s  from the top or from the bottom,

jd s z s− +   − , according to 

equation (2.3.16), there is an exclusion zone within the distance s  on each side of 
jz where a 

neighbor branch cannot exist. 

1
( )= , ,0 ,

2
j m j jA z z z s or d z s

d s
    + − −   −

                                    (2.3.18) 

For the case when 
jz  is less than s  from the bottom, 

jd z d s−   − + , 

1
( )= , ,0   j m j

j

A z z z s
z s

  + − −
                                             (2.3.19) 

In summary, 

1
, 0, ,                 

1
( ) , , ,0 ,

2

1
, , ,0                   

j m j

j

j j m j j

j m j

j

s z z d z s
d s z

A z d s z s z z s or d z s
d s

d z d s z z s
z s


 −    − −  − +




   = − +   −  + − −    −


 −   − +  +  − −


               (2.3.20) 

The joint probability is 

2

1
( , ) ( | ) ( ), with ( )m j m j j jp z z p z z p z p z

d
= =                                     (2.3.21) 

 

(b) Calculation of the Term of Correlation between Two Branches 

As explained in section 2.3.1, , , *branch j branch m

co coF F  is a critical term distinguishing coherent 

model from incoherent model. 
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( )( ), , * , , , * , *

, , * , , *

, , * , ,

                            

branch j branch m branch j branch j branch m branch m

co co vol db vol db

branch j branch m branch j branch m

vol vol vol db

branch j branch m branch j branch

db vol db db

F F F F F F

F F F F

F F F F

= + +

= +

+ + *m

                   (2.3.22) 

We define x and y coordinates of the main stem of each soybean plant to be (0, 0). Then the 

coordinates of the cylinder and the disk of branch j  are as follows. 

sin cos
2

sin sin
2

cos
2

c

j j j

c

j j j

c

j j j

l
x

l
y

l
z z

 

 



=

=

= +

                                                 (2.3.23) 

sin cos

sin sin

cos

d

j j j

d

j j j

d

j j j

x l

y l

z z l

 

 



=

=

= +

                                                 (2.3.24) 

where ,  and j jl   are the parameters of the branch j  as shown in Figure II.11 (c). Then equation 

(2.3.8) becomes, 

( ) 

, ˆ ˆexp( 2 ) exp 2 sin cos sin sin cos ( , )
2 2 2

ˆ ˆexp 2 sin cos sin sin cos ( , )

branch j c

vol zi j xi j j yi j j zi j pp i i

d

xi j j yi j j zi j pp i i

l l l
F ik z i k k k f K K

i k l k l k l f K K

    

    

   
= − + − −   

  

 + + − −
 

    

(2.3.25) 

Let 

( )

,

0
ˆ ˆexp 2 sin cos sin sin cos ( , )

2 2 2

ˆ ˆexp 2 sin cos sin sin cos ( , )

branch j c

vol xi j j yi j j zi j pp i i

d

xi j j yi j j zi j pp i i

l l l
F i k k k f K K

i k l k l k l f K K

    

    

  
= + − −  

  

 + + − −
 

    (2.3.26) 

Then 

, ,

0exp( 2 )branch j branch j

vol zi j volF ik z F= −                                        (2.3.27) 
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We assume that the positions and orientation angles are statistically independent 

( ), , * , , *

0 0exp 2branch j branch m branch j branch m

vol vol zi j m vol volF F ik z z F F = − −
 

                  (2.3.28) 

where 

( )
0 0

exp 2 ( , )exp 2 ( )zi j m m j m j zi j m
d d

ik z z dz dz p z z ik z z A B C D
− −

   − − = − − = + + +             (2.3.29) 

where the integrations are separated into four parts, A, B, C, and D as follows  

0 0 0

2

2

0

2

( , ) ( | ) ( )

                                  ( | ) ( )

                                  ( | ) ( )

       

j

j

j

d s

m j m j m j m j j
d d z s d

z s s

m j m j j
d d s

s

m j m j j
z s d s

dz dz p z z dz dz p z z p z

dz dz p z z p z

dz dz p z z p z

− +

− − + −

− −

− − +

−

+ − +

=

+

+

   

 

 
0

2                           ( | ) ( )
jz s

m j m j j
d s

dz dz p z z p z
−

− −
+  

                        (2.3.30) 

After calculations, the following four expressions are obtained. 

exp( 2 ) exp(2 )1

2

d s zi j zi

j
d

zi j

ik z ik s
A dz

idk z s

− +

−

 − −
=  

− −  
                               (2.3.31) 

  ( ) 
( )2

exp 2 ( ) exp 2exp( 2 )

2 4 2

zi zizi

zi zi

ik d s ik sik s
B

idk k d d s

− − − −−
= −

−
                    (2.3.32) 

( )   
( )2

exp 2 exp 2 ( )exp(2 )

2 4 2

zi zizi

zi zi

ik s ik d sik s
C

idk k d d s

− −
= − +

−
                     (2.3.33) 

0 exp( 2 ) exp( 2 ( ))1

2

zi zi j

j
s

zi j

ik s ik z d
D dz

ik d d s z−

 − − − +
=  

− +  
                     (2.3.34) 

The correlation between the volume scattering and double-bounce scattering is 

( ), , * , , *

0exp 2branch j branch m branch j branch m

vol db zi j vol dbF F ik z F F= −                         (2.3.35) 

where 
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( ) 

, ˆ ˆ2 exp 2 sin cos sin sin ( , )
2 2

ˆ ˆexp 2 sin cos sin sin ( , )

branch m c

db p xi j j yi j j zi pp i i

d

xi j j yi j j zi pp i i

l l
F R i k k k d f k K

i k l k l k d f k K

   

   

   
= + + −   

  

 + + + −
 

         (2.3.36)  

which does not depend on z . 

( ) ( )
( )0 exp 2 1

exp 2 ( )exp 2
2

zi

zi j j j zi j
d

zi

ik d
ik z dz p z ik z

ik d−

−
− = − =                         (2.3.37) 

Similarly, 

( )
( ), , * , , * , , *

0 0

1 exp 2
exp 2

2

zibranch j branch m branch j branch m branch j branch m

db vol zi m db vol db vol

zi

ik d
F F ik z F F F F

ik d

− −
= =  

(2.3.38) 

For mutual exclusion of orientation angles, we use the conditional probability  

     3

0,     if 
2

( | )
1

,   otherwise

m j

m jp


 

 




− 

= 



                                                  (2.3.39) 

The joint probability of αm and αj is 

3

1
( , ) ( | ) ( ), with ( )

2
m j m j j jp p p p     


= =                               (2.3.40) 

Since , , *

0 0

branch j branch m

vol volF F , , , *

0

branch j branch m

vol dbF F , , , *

0

branch j branch m

db volF F and the remaining term in equation 

(2.3.22) , , *branch j branch m

db dbF F  are independent of z and depend on α and β, their averages are calculated 

as below, 

2 2
, , * , , *2

1 2 1 2
0 0 0

( ) ( , )branch j branch m branch j branch m

t t m j m j t tF F p d d d p F F


 

     =                  (2.3.41) 

where the subscripts “t1” and “t2” represent “vol0” or “db”. p(β) is the probability of β as in 

Figure II.11 (c). The integrations in equation (2.3.41) are calculated numerically. 
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2.3.3 Simulation Results and Comparison 

The three models illustrated above are simulated for one soybean plant. The values of the major 

parameters describing the plant geometry used for simulations are: number of branches 10LN = ; 

length of main stem 12 cmd = , length of stalk 6 cml = , leaf thickness is 0.3 mm ; radius of stem 

and stalk are both 1.5 mm , radius of compound leaf is 4.3 cm ; distribution of stem, stalk and leaf 

orientation angles are uniform inclination (β as shown in Figure II.11) over 0 ~ 5  , 0 ~ 60  and 

0 ~ 90 , respectively. Other kinds of distributions such as cosine distribution were used for leaf 

orientation angles [53], and uniform distribution which is closer to the measurement is used here. 

The incident angle =40  and the radar frequency f=1.26 GHz.  

Table II-9. Simulation results for three scattering models of one soybean plant. 

Models 1 to 3 are incoherent model, coherent model with no mutual exclusion, and coherent model 

with conditional probabilities, respectively. S1-S5 are 
2

plantF , 
2

stemF , 
2

branch

LN F , 

( )2 Re stem branch

L coN F F , ( ) *-1 branch branch

L L co coN N F F , respectively. Two values in italics means 

they are out of phase with the other terms.  

 Mode

l 

S1 

[dB] 

S2 

[dB] 

S3 

[dB] 

S4 

[dB] 

S5 

[dB] 

HH 

1 -47.8 -83.0 -47.8 N/A N/A 

2 -42.3 -83.0 -47.1 -61.0 -44.2 

3 -44.7 -83.0 -47.1 -61.0 -48.6 

VV 

1 -50.6 -64.9 -50.8 N/A N/A 

2 -49.1 -64.9 -49.6 -58.0 -55.9 

3 -49.4 -64.9 -49.6 -58.0 -57.6 

 

 

The simulation results of the three models are presented in  Table II-9. It is noticed that among the 

terms S2-S5, S5 ( ( ) *-1 branch branch

L L co coN N F F ) causes the largest difference among the three models. 

For the incoherent model, there is no correlation between two different branches. The coherent 

model with conditional probabilities decreases the correlation (S5) by 4.4 dB and 1.7 dB for HH 
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and VV backscattering coefficients, respectively, compared with the coherent model with no 

mutual exclusion. 

For the HH backscattering coefficient simulation results, the difference between the 

incoherent model and coherent model with no mutual exclusion is 5.5 dB. When the conditional 

probabilities are introduced, the difference decreases to 3.1 dB. This means our method works well 

to decrease the overlap effect in soybean scattering. In model 2, the dominant term is the coherent 

scattering between branches. In model 3, the scattering by branches and the coherent scattering 

between branches are close. This demonstrates that the effect of the overlap needs to be removed 

through the mutual exclusion. 

For the VV backscattering coefficient simulation results, the difference between the 

incoherent and coherent models is smaller than the case for the HH backscattering coefficients, 

because the scattering by branches dominates. In comparison, the difference between the two 

coherent models originating from the term ( ) , , *-1 branch j branch m

L L co coN N F F  is small. Thus, the results 

of the coherent model with mutual exclusion are only slightly different from those of the previous 

coherent model. 

 

2.3.4 Computation and Validation for the Soybean Data-Cube 

Data-cube is used in the time-series retrieval of soil moisture, and is a pre-computed lookup-

table developed from a physically-based forward model [6]. The backscattering coefficients σVV 

and σHH are computed using the coherent model over the full observed range of the three variables 

of the data-cubes.  
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(a) Data-cubes with Different Correlation Length to RMS Height (cl/s) Ratios  

Each data-cube has only one cl/s ratio. It was observed during SMAPVEX12 that different 

soybean fields had different cl/s ratios. Thus, the method to construct data-cubes with different cl/s 

ratios is needed. According to the Kirchhoff approximation [54], the double-bounce scattering 

depends on RMS height instead of correlation length. The results from NMM3D show a similar 

conclusion that the double-bounce term has almost no dependence on the correlation length (i.e., 

cl/s ratios). To generate the data-cube, we used the coherent reflectivity from the results of 

NMM3D for rough-surface scattering. 

 

 
 

Figure II.14. Method of generating data-cubes with different cl/s ratios. 
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As shown in Figure II.14, two different types of data-cubes (i.e., Rough Surface data-cube and 

Vegetation data-cube) are used to construct the data-cube of vegetation-covered soil for a certain 

cl/s ratio. The output of Rough Surface data-cube is the surface scattering by bare soil for different 

combinations of soil permittivity (epsrsoil), RMS height and cl/s ratio. On the other hand, since 

volume scattering does not depend on the cl/s ratio and double-bounce scattering is only weakly 

dependent on cl/s ratio, the two scattering mechanisms as well as the attenuation through 

vegetation can be calculated independently of cl/s ratio. The total backscattering is the summation 

of volume scattering, double-bounce scattering and the surface scattering with attenuation. Once 

a cl/s ratio is chosen, the surface scattering for this certain cl/s ratio is provided by the Rough 

Surface data-cube. The remaining parts to compute the total backscattering are available from the 

Vegetation data-cube. This way of generating data-cubes with different cl/s ratios improves 

computational efficiency significantly because it avoids 4 independent axes.  Instead, it uses two 

data-cubes each with 3 independent axes. The present scheme avoids repeating the calculations of 

the volume and double-bounce scattering as well as the attenuation through vegetation. 

 

(b) Backscattering Coefficient 

The attenuation caused by the vegetation layer is calculated as follows. According the Foldy’s 

approximation [4], 1k  for polarization p in the vegetation layer is 

( )1

2 ˆ ˆ ˆ ˆ ˆ ˆ( , ) ( , ) ( , )leaf stalk stem

p leaf pp i i stalk pp i i stem pp i ik k n f K K n f K K n f K K
k


= + + +      (2.3.42) 
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where ˆ ˆ( , )pp i if K K  is the forward scattering and averaged over the orientation angles; 

,    and  leaf stalk stemn n n  are the number of leaves, stalks and stems per m3, respectively. Then the 

volume and double-bounce scattering become 

2

1 ˆ ˆexp 2 ( , )
cos cos

p

vol xi j yi j j pp i i

i i

k k
F i k x k y z f K K

k



 

   
= + − − −         

            (2.3.43) 

2

1 ˆ ˆ2 exp 2 ( , )
cos cos

p

db p xi j yi j pp i i

i i

k k
F R i k x k y d f k K

k



 

   
= + + − −         

                    (2.344) 

2 2

1 1zk k k= −  and the imaginary part of 1zk introduces the attenuation. The attenuation for 

surface scattering is ( ) 
2

1exp 2Im zk d−   .  

The backscattering coefficient for one soybean branch using the distorted Born approximation 

[11] is: 

2

, 4branch branch branch

co pp vol dbF F = +                                               (2.3.45) 

A factor of 4  is multiplied to the scattering intensity [55]. Considering the surface scattering 

surface

pp , the total backscattering coefficient computed in the data-cube is 

2

, 4 +field field surface

co pp co ppF  =                                             (2.3.46) 

 

(c) Parameters Used for the Soybean Data-cube 

During SMAPVEX12 the VWC and geometry parameters of soybean plants were measured 

every week for multiple soybean fields. Both stem diameter and length are dynamic properties 

which increase with VWC. Allometric equations are derived empirically (Figure II.15 and Table 

II-10).  
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(a) 

 
(b) 

 

Figure II.15. (a) Stem diameter as a function of VWC, (b) Stem length as a function of VWC. 

 

Table II-10. Allometric relationship between VWC and plant geometry parameters. 

This relationship is obtained from the data, shown in Figure II.15 (a) and (b), through curve fitting. 

Volumetric water content (Mveg) which is used to calculate the dielectric constant is estimated from 

the gravimetric water content (Mg) measured in SMAPVEX12 [49]. The Mveg for leaf is adjusted 

to a smaller value than that for stalk since the permittivity of soybean leaf is generally smaller than 
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the permittivity of stalk[14]. The distribution of azimuthal angle (α as shown in Figure II.11) is 

uniform over 0 ~ 360 for all of steam, stalk, and leaf. 

 Diameter [m] Length [m] Mveg 
Distribution of 

β 

Stem 0.2040.0049 VWC  0.490.496 VWC  60% 
Uniform over 

0 ~ 5  

Stalk 0.2040.0033 VWC  0.490.248 VWC  60% 
Uniform over 

0 ~ 60  

Leaf 5×10-2 0.3×10-3 40% 
Uniform over 

0 ~ 90  

 

With the equations, a given VWC evaluates the geometry parameters that in turn are used 

to run the forward model and generate the data-cube. There are about 36 soybean plants per m2 

( SN = 36). The number of branches per plant ( LN ) can be calculated from VWC using the 

following formula:  

( )
water S stem stem

L

water S stalk stalk leaf leaf

VWC N Vol Mveg
N

N Vol Mveg Vol Mveg





−
=

+
                      (2.3.47) 

where water  is water density.  stemMveg , stalkMveg  and 
leafMveg  are the volumetric water content 

of stem, stalk and leaf, respectively. stemVol , stalkVol  and 
leafVol  are the volume of stem, stalk and 

leaf, respectively. 

The forward model calculation is performed at a 40  incident angle. Previously, the soybean 

data-cube was based on the incoherent model whose results are also listed for comparison. For the 

incoherent data-cube, the soybean field was regarded as a combination of cylinders (stalks and 

stems) and disks (leaves) without the branching configuration because the positions of the 

scatterers do not matter. To simplify calculations, we assumed that the stems were the same as 

stalks since they were both cylinders with similar radius and the number of stems was much smaller 

than that of stalks. Some other parameters were adjusted to produce the best forward model 
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matching with data: uniform inclination over 0 ~ 90  for both cylinders and disks. The soybean 

data-cube at one cl/s ratio is plotted in Figure II.16. 

 

 
 (a) 

 

 
 (b) 

 

Figure II.16. Examples of soybean data-cube (a) σVV, (b) σHH. The corresponding soil moisture 

can be calculated from soil permittivity by dielectric model for soil [22]. 

 

 

 

(d) Validation for Data-cubes With Airborne SAR Data 

As described in section 2.2.2, SMAPVEX12 [34] was designed to support the requirements of 

soil moisture retrieval algorithms and products by providing extended time-series measurements 
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for diverse vegetation conditions. Both RMS height and cl/s ratio are assumed to be constant over 

the study period. For each day of flight, the in-situ values of RMS height, VWC and soil moisture 

(used to compute epsrsoil) are input to sample σVV and σHH from the soybean data-cube. These 

predicted values are compared with the UAVSAR data. The cl/s ratio is chosen so that the 

difference between the UAVSAR and data-cube values is minimized over the entire 13 flights. 

The optimal cl/s often does not match the observed cl/s, which may be explained by the well-

known uncertainty in the observation of cl (~50% error [23]).         

Table II-11. RMSE and correlation coefficient of data-cube and UAVSAR measurement 

comparison for backscattering coefficients, 

Field 

No. 

RMSE (dB) Correlation Coefficient 

Incoherent Data-cube Coherent Data-cube Incoherent Data-cube Coherent Data-cube 

VV HH VV HH VV HH VV HH 

11 0.77 1.76 0.67 1.30 0.87 0.98 0.93 0.98 

12 1.34 0.98 1.30 0.98 0.74 0.43 0.74 0.44 

14 1.39 0.92 1.19 0.65 0.84 0.91 0.87 0.93 

33 1.74 1.03 1.47 0.93 0.68 0.71 0.71 0.63 

34 1.05 0.92 1.08 0.86 0.81 0.85 0.77 0.85 

51 1.94 1.77 1.04 0.76 0.77 0.96 0.91 0.99 

52 1.18 1.11 0.71 0.60 0.87 0.88 0.82 0.95 

63 1.09  1.39  0.83 0.59 0.84 0.92 0.92 0.95 

64 0.92 0.79 0.88 0.75 0.89 0.72 0.88 0.77 

102 2.09 1.07 0.82 0.88 0.22 0.89 0.86 0.93 

103 1.74 1.41 1.53 1.09 -0.07 0.74 0.29 0.87 

111 1.94 1.77 1.04 0.76 0.77 0.96 0.91 0.99 

112 2.09 0.80 0.46 0.79 0.28 0.94 0.95 0.94 

 

It can be seen from Table II-11 that the coherent model with conditional probabilities in general 

improves the agreement with the measurement compared with the incoherent model in terms of 

correlation coefficient and RMSE. For the incoherent model, when VWC is low in June the volume 

and double-bounce scattering are very small and thus the backscattering is primarily from the 

surface scattering. For the incoherent data-cube, a small cl/s ratio is chosen to ensure an appropriate 

HH backscattering coefficient to match the data. However, VV simulation is larger than the 
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measurement as shown in Figure II.17 (b) and Figure II.18 (b). Thus, the polarization ratio of VV 

to HH backscattering coefficients from the incoherent model is larger than the measurement when 

VWC is small, which cannot be reduced by selecting a different cl/s ratio. Using the coherent 

model, this apparent dilemma of not being able to match HH and VV backscattering coefficients 

simultaneously was resolved. For the coherent model, when VWC is low, the soybean plant is 

small and the branches and leaves are close to each other, so the coherent effect increases the 

volume and double-bounce scattering significantly, especially for HH backscattering coefficients. 

A larger cl/s ratio is chosen so that VV is sufficiently small and improves the agreement with the 

observation (VV is also mostly contributed by surface scattering when VWC is low in the coherent 

model). The surface scattering of HH backscattering also becomes smaller; however, the coherent 

model increases the volume and double-bounce scattering of HH backscattering to match the data. 

Overall, both VV and HH backscattering coefficients match the measurement well using the 

coherent data-cube. The polarization ratio between VV and HH backscattering coefficients is used 

during the dual-polarized time-series retrieval [6]. As a result of the coherent scattering effect, the 

polarization ratio agrees well with the observations when the VWC is small. When VWC becomes 

large in July, the soybean plant grows tall and the branches and leaves are far apart, where the 

coherent model with conditional probabilities also restricts the branches not to be too close to each 

other. Thus, the coherent effect generally becomes less significant than that in June. The 

improvement is significant when the volume and double-bounce scattering are comparable to the 

surface scattering by the soybean fields such as Field 63 and Field 112 shown in Figure II.17 and 

Figure II.18. To better illustrate the coherent data-cube, the previous coherent model with no 

mutual exclusion is also applied to the Field 112 as shown in Figure II.18 (c) where HH 

backscattering coefficients are overestimated with RMSE of 1.49 dB. 
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(a) 

 
(b) 

 

Figure II.17.  (a) Coherent data-cube applied to SMAPVEX12 Field 63 with cl/s=30, (b) 

Incoherent data-cube applied to soybean Field 63 with cl/s=20. Different cl/s ratios are chosen 

for the best matching of both models. The dash-dot curve indicates VWC and the x-axis presents 

time: “JN” stands for “June” while “JY” stands for “July”, hereinafter the same. 
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(a) 

 
(b) 
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(c) 

 

Figure II.18. (a) The coherent data-cube applied to SMAPVEX12 Field 112 with cl/s=120, (b) 

The incoherent data-cube applied to SMAPVEX12 Field 112 with cl/s=40, (c) The coherent 

model with no mutually exclusion applied to SMAPVEX12 Field 112 with cl/s=120. 

 

The coherent and incoherent data-cubes are compared with the data for 13 soybean fields from 

SMAPVEX12, as shown in Figure II.19 and Figure II.20. The comparison results are variable 

depending on the soil moisture, RMS height and VWC growth. The coherent model with 

conditional probabilities decreases the RMSE and increases the correlation coefficient for both VV 

and HH backscattering coefficients. The forward model presented in this chapter is based on the 

physical principles of scattering as well as the numerical and analytical solutions based on the 

principles. The scattering mechanisms do not depend on specific set of measurements, unlike 

empirical models such as water-cloud model [56] for the vegetation scattering. This suggests that 

the current model may be applicable to independent observations of soybean fields. This capability 

will benefit SMAP mission where the goal is the global retrieval of soil moisture. The dependence 

of the model parameterization on the particular SMAPVEX12 fields is limited to the empirical 
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derivation of the allometric equation, and some choices of the vegetation parameters. Other data-

cubes are needed for soybean fields which have very different properties. For example, the soybean 

Field 92 has similar VWC, soil moisture and RMS height as the soybean Field 102, but much 

larger measured VV and HH backscattering coefficients. Some reasons for the mismatch are: (1) 

Field 92 is not suitable for the data-cube (e.g., its plant density may be much higher than 36 per 

m2.); (2) there is measurement error (e.g., the RMS height which is assumed to be constant was 

measured only once during the campaign but it may be changed by erosion. There may also be 

error in the VWC data.).  Since the data-cube generated in this chapter is suitable for most of the 

SMAPVEX12 soybean fields, the necessity to build another data-cube for Field 92 will be 

analyzed when more data are available. Model performance will be assessed with independent 

observations in the future, to test its general applicability. 
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(b) 

 

Figure II.19. VV comparison between data-cube and observation over the 13 SMAPVEX12 

soybean fields (a) the coherent data-cube, (b) the incoherent data-cube. 

 

 

 

 

 
(a) 

-25 -20 -15 -10
-25

-20

-15

-10

Measurement dB

D
a
ta

c
u
b
e
 d

B

RMSE : VV(1.64)
CORR : VV(0.78)

-25 -20 -15 -10
-25

-20

-15

-10

Measurement dB

D
a
ta

c
u
b
e
 d

B

RMSE : HH(0.84)
CORR : HH(0.94)



76 

  

 

 
(b) 

 

Figure II.20. HH backscattering coefficients comparison between data-cube and observation over 

the 13 SMAPVEX12 soybean fields (a) the coherent data-cube, (b) the incoherent data-cube. 

 

 

2.4 Data-cube Based Soil Moisture Retrieval 

The data-cubes developed above are used here to retrieve the soil moisture. Based on the 

time-series retrieval algorithm developed for the SMAP mission [6], the measured VV and HH of 

all the N days collected in a specific field are the inputs. The outputs are N values of VWC and 

epsrsoil as well as the RMS height. epsrsoil is then converted to soil moisture using the Mironov 

dielectric model [22] with the ancillary data on the clay fraction of the soil. It is assumed that the 

RMS height remains unchanged over the retrieval period. The retrieval approach then minimizes 

the difference between the measurement and the data-cube over all the N days as defined in the 
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cost function below where VVw and HHw are the weighting factors which are uniform in time and 

also the same for VV and HH backscattering coefficients in the case of SMAP radar [10]. 

( ) ( )
2 2

1

cost
N

VV data cube HH data cube

day

w VV VV w HH HH
=

 = − + −
                           (2.4.1) 

The number of unknowns (2N+1) is larger than that of inputs (2N), so some constraints 

should be added during the retrieval to avoid the improper solutions.  

 

2.4.1 Soil Moisture Retrieval for Wheat and Canola Fields 

In this section, a VWC constraint is used under the assumption that the vegetation will not 

change significantly during an observation cycle. The ratio of the VWC between two sequential 

observation days (larger one divided by the smaller one) is assumed to be less than 1.10 and 1.14 

for wheat and canola, respectively, according to the measured VWC of all the fields as shown in 

Figure II.21 and Figure II.22.  

 

Figure II.21. VWC of the ten SMAPVEX12 wheat fields. 
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Figure II.22. VWC of the five SMAPVEX12 canola fields (The scale of the y axis is different 

from that of Figure II.21). 

 

 

Figure II.23. Time-series soil moisture retrieval for SMAPVEX12 wheat Field 91. Mvmea stands 

for the measured soil moisture while Mvretr stands for the data-cube retrieved soil moisture, 

hereinafter the same. 
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The wheat data-cube is applied to the soil moisture retrieval of the ten wheat fields. Figure 

II.23 shows one example for the time-series retrieval of wheat Field 91 where the RMSE is 0.026 

cm3/cm3 with correlation coefficient of 0.91. The retrieval results for all the ten wheat fields are 

presented in Figure II.24. The RMSE and correlation coefficient values for each field are listed in 

Table II-12. The correlation coefficient is 0.94 and the RMSE is 0.043 cm3/cm3 which is about the 

same as that obtained for bare soil [10] despite the fact that there was substantial levels of 

vegetation effect during SMAPVEX12. The RMSE is better than that for the pasture fields [6] (the 

vegetation structure is similar between pasture and wheat although the scatterer orientation angle 

may differ).  

As described earlier, there are two data-cubes for canola, so it is important to decide which 

data-cube to use during the soil moisture retrieval. The approach based upon the campaign date 

used in the forward comparison is not suitable for retrieval because SMAP is designed for global 

soil moisture retrieval and the canola growth stage could vary at the same time in different areas. 

Based on Figure II.5 where (VV+HH)/2 became less than -13 dB since July 10th, thus when 

(VV+HH)/2 is less than -13 dB, the July data-cube should be used; otherwise, the other data-cube 

should be used. Similarly, the retrieval results are presented in Figure II.25, Figure II.26 and Table 

II-13 with the averaged RMSE of 0.082 cm3/cm3 for all the five canola fields.  
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Figure II.24. Retrieved soil moisture compared with measurements for the ten SMAPVEX12 

wheat fields. The x and y axes represent the measured soil moisture and data-cube based retrieval 

results, respectively. 

 

Table II-12.  RMSE and correlation coefficient of soil moisture between retrieval results and 

ground measurements for the ten wheat fields. 

Field No. RMSE (cm3/cm3) Correlation Coefficient 

91 0.026 0.91 

85 0.034 0.89 

81 0.025 0.91 

74 0.034 0.99 

73 0.053 0.97 

65 0.042 0.96 

44 0.056 0.88 

42 0.051 0.92 

41 0.032 0.96 

31 0.061 0.94 
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Figure II.25. Time-series soil moisture retrieval for SMAPVEX12 canola Field 61. 

 

 

Figure II.26. Retrieved soil moisture compared with measurements for the five SMAPVEX12 

canola fields. The x and y axes represent the measured soil moisture and data-cube based 

retrieval results, respectively. 
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Table II-13.  RMSE and correlation coefficient of soil moisture between retrieval results and 

ground measurements for the five canola fields. 

Field No. RMSE (cm3/cm3) Correlation Coefficient 

124 0.082 0.66 

122 0.075 0.65 

115 0.10 0.83 

84 0.089 0.43 

61 0.053 0.72 

 

As presented in section 2.2, the averaged RMSE of the backscattering coefficients between 

the data-cube and the measurement for all the fields in the forward comparison is similar for the 

wheat and canola which is around 1 dB. However, the soil moisture retrieval results for wheat are 

much better than those for canola. The main reason is that the backscattering coefficient of wheat 

is more sensitive to the soil moisture than that of canola, especially for VV. This is because the 

double-bounce and surface scattering, which depend significantly on the soil permittivity, usually 

dominate among the three backscattering mechanisms for wheat. On the other hand, volume 

scattering, which is independent of the soil moisture and only depends on the VWC, usually 

dominates for canola while the soil surface scattering is relatively small because of the significant 

attenuation from the generally large VWC as shown in Figure II.22. Another reason for the 

retrieval error of canola is its large VWC range (1 kg/m2 ~ 9 kg/m2) and the uncertainties associated 

with estimating it over this large range. 

The data-cubes are applicable to the SMAP retrieval over the wheat and canola land cover 

classes, since the empirical tuning was performed only on the vegetation parameterization over the 

entire field, not for individual fields.  The retrieval error mainly originates from the radar 

measurements, data-cube modeling and dielectric model, as discussed in more detail in [6]. 

Considering the uncertainties of in-situ soil moisture measurement (<0.03 cm3/cm3 [48]), the 

actual error could be smaller. The retrieval error can be further reduced by updating the data-cubes 
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with more data. Generally, the retrieval soil moisture based on the data-cubes are in good 

agreement with ground measured soil moisture.   

 

2.4.2 Soil Moisture Retrieval of Soybean Fields 

The constraints of VWC for the soybean fields are derived through the analysis of the 

soybean VWC measured during SMAPVEX12. As shown in Figure II.27, the VWC generally 

increases with time. Also, the soybean plants cannot grow too fast. The VWC growth rate that is 

defined as the ratio of the VWC of two alternate days has a maximum of 1.24. For example, if the 

retrieved VWC values contradict the VWC constraints, this series of retrieval results (one RMS 

height and N sets of VWC and epsrsoil) will be abandoned. Then another set associated with the 

minimum cost will be selected if it satisfies the VWC constraints. 

 
Figure II.27. Measured VWC of the 13 soybean fields. 
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The time series retrievals of soil moisture are shown in Figure II.28. The coherent data-cube 

results in more accurate soil moisture retrievals than the incoherent one. The retrieval method is 

now applied to the 13 soybean fields from SMAPVEX12 and the results are presented in Figure 

II.29. The coherent model data-cube yields better soil moisture retrievals with a lower RMSE of 

0.05 cm3/cm3 and higher correlation coefficient of 0.92 compared with the incoherent data-cube. 

The retrieval error is about the same as that obtained for bare soil [57], despite the fact that the 

vegetation effect is substantial during SMAPVEX12. The forward model employs the physically 

based solution to radar scattering. The empirical tuning was performed only on the vegetation 

parameterization over the entire field, not for individual fields. These aspects of the forward model 

and retrieval suggest that this approach may be applicable to other observations of soybean. 

 

         
(a) 
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(b) 

 

Figure II.28. Field 63 soil moisture (Mv) retrieval using (a) the coherent data-cube, (b) the 

incoherent data-cube. X-axis represents time: “120617” stands for June 17th 2012, hereinafter the 

same. 
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(b) 

 

Figure II.29. Mv retrieval compared with data using (a) the coherent data-cube, (b) the 

incoherent data-cube.  

 

 

2.5 Conclusions 

Wheat and canola data-cubes are developed based on a physical scattering model to support 

soil moisture retrieval for the SMAP mission. The physical model combines the distorted Born 

approximation with the NMM3D. The distorted Born approximation is derived from the Foldy-

lax equation with first-order iteration using the half-space Green’s function and the T matrix. The 

backscattering coefficients of the data-cubes compare well with the UAVSAR data collected 

during the SMAPVEX12 field campaign over a wide range of VWC and soil moisture. Correlation 

coefficient are 0.84 and 0.93 for HH backscattering coefficients, and 0.85 and 0.77 for VV 

backscattering coefficients of wheat and canola fields, respectively. The RMSE are 0.82 dB and 

0.78 dB for HH backscattering coefficients, and 0.97 dB and 1.30 dB for VV backscattering 
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coefficients of wheat and canola fields, respectively. The total error for the backscattering 

coefficient from the data-cubes is generally smaller than that from the MIMICS model applied in 

[27] for the wheat and canola fields at 40 degrees incident angle and L-band. The time-series 

retrieval algorithm developed for the SMAP mission is implemented to retrieve the soil moisture 

using the data-cubes, resulting in a RMSE of 0.043 cm3/cm3 for the wheat fields, compared with 

the in-situ soil moisture from SMAPVEX12. The retrieval performance for the canola fields is not 

as good, a RMSE of 0.082 cm3/cm3, mainly because the volume scattering, which is independent 

of soil moisture, dominates among the backscattering mechanisms. The satisfactory results in the 

chapter will contribute to SMAP’s global soil moisture retrieval since there is no empirical tuning 

for individual fields. In the future, the data-cubes will be refined with more field campaign data 

sets so that the retrieval accuracy can be further improved, especially for the canola data-cubes. 

Recently, the SMAP baseline active retrieval algorithm based on data-cubes has been applied to 

the SMAP satellite data [7]. 

A coherent model with conditional probabilities is developed to compute the radar scattering 

from soybean fields. With the use of conditional probabilities, the unrealistic overlap of two 

branches at the same location is avoided. The new model is closer to the reality than the previous 

models, and produces smaller scattering compared with the previous coherent model predictions. 

However, it also generates significantly larger scattering than the incoherent model. By 

comparisons with SMAPVEX 12 data, we are able to show that this approach agrees well with 

observations in both the absolute values of backscattering and the polarization ratios between VV 

and HH backscattering coefficients. Using the coherent model with conditional probabilities, the 

RMSE of the data-cube prediction decreases to 1.1 dB for VV backscattering coefficients and 0.84 

dB for HH backscattering coefficients. The accuracy of the time-series retrieval of soil moisture 
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also improves by using the new data-cube based on the coherent model with conditional 

probabilities, compared with the incoherent data-cube. By imposing a constraint on the VWC in 

retrieval, the RMSE of the retrieved soil moisture for the 13 SMAPVEX12 soybean fields was as 

small as 0.05 cm3/cm3. Moreover, the current model with improved physical representation may 

be applicable to other soybean fields because it does not depend on the characteristics of individual 

field or flight campaign. The data-cube method of soil moisture retrieval depends on the accuracy 

of the data-cube which requires that long enough time-series should be acquired to train the data-

cube before the retrieval of soil moisture. Thus, SMAPVEX12 is necessary before the launch of 

SMAP. Although the retrieval performance will vary somewhat with the SMAP data due to the 

difference in speckle and landcover heterogeneity, the satisfactory retrieval reported in this chapter 

adds confidence to the algorithm and will benefit SMAP mission’s goal of the global soil moisture 

retrieval. 
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CHAPTER III                                                                                                              

A Unified Combined Active and Passive Model for Microwave Remote 

Sensing of Agricultural Vegetation at L-Band 

 

The distorted Born approximation (DBA) of volume scattering was combined with the 

numerical solution of Maxwell’s equations (NMM3D) for rough surfaces to calculate radar 

backscattering coefficients for the Soil Moisture Active Passive (SMAP) mission, in chapter II. 

The model results were validated with the Soil Moisture Active Passive Validation Experiment 

2012 (SMAPVEX12) data. In this chapter, this existing model is extended to calculate the bistatic 

scattering coefficients for each of the three scattering mechanisms: volume, double-bounce and 

surface scattering. Emissivities are calculated by integrating the bistatic scattering coefficients 

over the hemispherical solid angle. The backscattering coefficients and emissivities calculated 

using this approach form a consistent model for combined active and passive microwave remote 

sensing. This has the advantage that the active and passive microwave remote sensing models are 

founded on the same theoretical basis and hence allow the use of the same physical parameters 

such as crop density, plant height, stalk orientation, leaf radii, and surface roughness, amongst 

others. In this chapter, this combined active and passive model, DBA/NMM3D, is applied to four 

vegetation types to calculate both backscattering coefficients and brightness temperature: wheat, 

winter wheat, pasture and canola. We demonstrate the use of the DBA/NMM3D for both active 

and passive using the same input parameters for matching active and passive coincident data. The 

model results are validated using coincident airborne Passive Active L-band System (PALS) low-
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altitude radiometer data and Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) 

data taken during the SMAPVEX12 field campaign. Results show an average root mean squared 

error (RMSE) of 1.04 dB and 1.21 dB for backscatter at VV and HH backscattering coefficients, 

respectively, and 4.65 K and 6.44 K for brightness temperature at V-pol and H-pol, respectively. 

The results are comparable to those from the tau-omega model which is commonly used to 

compute the brightness temperature, though the physical parameters used in this model are 

different from the empirically adjusted parameters used in the tau-omega model.  

 

3.1 Introduction 

Combined active and passive microwave remote sensing of vegetation-covered surfaces is 

of great interest and importance given the increasing number of active and passive satellite 

microwave missions and datasets available for studies of land surfaces for application in hydrology 

and terrestrial ecology [1]. For example, L-band radar and radiometer data can be used to retrieve 

soil moisture over crop fields. According to the previous research, L-band is the optimal choice 

for remote sensing of near surface soil moisture of vegetation-covered surfaces with moderate 

vegetation water content (VWC) [58, 59]. At L-band, the atmosphere can be near transparent even 

under cloudy and rain conditions and the transmissivity through the vegetation canopy with 

moderate VWC is relatively high; so that the L-band radar or radiometer data has considerable 

sensitivity to the near surface soil moisture of the agricultural fields [2, 3, 58, 59]. Soil moisture is 

closely linked to crop water stress and its availability hence provides better crop supply and 

demand information. This in turn enables improvements in crop productivity [3]. The VWC is 

closely related to the crop development and can also be estimated from the radar and radiometer 

data. This further enables crop assessment and monitoring [3]. For many years, passive microwave 
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retrieval algorithms for satellite missions such as Advanced Microwave Scanning Radiometer-E 

(AMSR-E), Soil Moisture Ocean Salinity (SMOS), and SMAP have been based on the tau-omega 

model [58, 60], which is derived from a zeroth order solution of the radiative transfer equation. 

Since the zeroth order solution ignores the phase matrix term [4], an empirically adjusted scattering 

albedo ω, which is usually smaller than the physical parameter, must be used to fit this model to 

observations. The vegetation parameter b used in the tau-omega model to relate VWC to the optical 

thickness τ is also empirical. In modeling the rough surface effects in the tau-omega model, the h-

Q formulation [61] is used; it includes only the coherent wave specular reflection while ignoring 

the bistatic scattering. Thus, empirical “best-fit” parameters rather than physical parameters are 

used in the tau-omega model. For active remote sensing modeling, we previously used the distorted 

Born approximation (DBA) [11] and the numerical solutions of the Maxwell’s equations 

(NMM3D) [32] (this method is called NMM3D-DBA for short), where the coherent reflectivity 

and rough-surface scattering are calculated by NMM3D [32]. This model was used to calculate the 

VV and HH backscatter at L-band for pasture [6], wheat, winter wheat and canola fields. The 

active model has been validated using data from the Soil Moisture Active Passive Validation 

Experiment 2012 (SMAPVEX12) [6, 10]. The distorted Born approximation is valid for these 

vegetation types because the optical thickness at L-band is small.  

Combined active and passive approaches for remote sensing of vegetation-covered surfaces 

have been studied extensively. In many studies, the analyses for radiometer and radar data were 

based on different models: the tau-omega model was used as a passive model [62, 63], while an 

empirical model [62] or the water-cloud model [63] was used as an active model. Ferrazzoli et al. 

[64] and Guerriero et al. [65]  discussed the interrelations between emission and scattering for 

vegetation-covered surfaces. In [64, 65], the emissivity and backscattering coefficient were 
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computed in a unified approach using the radiative transfer theory and the “matrix doubling” 

algorithm. Chauhan et al. [66] used DBA to compute both the backscattering coefficient and 

brightness temperature for corn. But the direct scattering from the soil surface was not taken into 

account, which can be important for rough soil surface [67]. Furthermore, only brightness 

temperature data at H-polarization over a one-week period were used for comparison. In this 

chapter, we study active and passive microwave remote sensing in a consistent manner using 

NMM3D-DBA for both active and passive. The active model NMM3D-DBA is extended to 

calculate bistatic scattering, and integration of the bistatic scattering over the hemispherical solid 

angle is used to calculate emissivity. Thus, the active and passive microwave remote sensing 

models are founded on the same theoretical basis and allow the use of the same physical parameters 

such as crop density, plant height, stalk orientation, leaf radii, surface roughness, amongst others. 

The vegetation canopy is modeled as a layer of uniformly distributed dielectric cylinders and disks 

representing stalks and leaves, respectively [11]. The distorted Born approximation is derived from 

the Foldy-Lax equation with first-order iteration using the half-space Green’s function and the T 

matrix [4]. The attenuation through the vegetation layer is accounted for by the imaginary part of 

the effective propagation constant calculated by Foldy’s approximation [4]. NMM3D results are 

based on the Method of Moments (MoM) with the Rao-Wilton-Glisson (RWG) basis function 

using Gaussian random rough surfaces with exponential correlation functions, which have been 

shown to agree well with experimental data for various root mean square (RMS) height values and 

soil moisture conditions [32]. The total bistatic scattering is expressed as the incoherent sum of 

three scattering mechanisms: volume scattering, double-bounce scattering and surface scattering. 

In the coherent model [36, 68], the collective scattering between the vegetation scatterers is taken 

into account, and then the scattering from the vegetation and the scattering from the rough surface 
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are added incoherently. The coherent model is more difficult to implement than the incoherent 

model, especially for calculating emissivity which includes integration over the upper 

hemispherical solid angle. The coherent model also requires more input parameters such as the 

relative positions of the scatterers. In this chapter, it is the first time that the incoherent model is 

combined with NMM3D for emissivity calculations. The MIMICS model [28] uses first-order 

radiative transfer (RT) and the rough-surface scattering is calculated by one of the three methods: 

Geometrical Optical Model (GO), Physical Optics Model (PO) and Small Perturbation Model 

(SPM).  In this chapter, we use NMM3D-DBA. The DBA is the same as the first-order RT theory 

except that it includes backscattering enhancement [43] in the double-bounce term. In the 

backscattering direction, the double-bounce term from DBA is twice (3dB) larger than that from 

the first-order RT for co-pol.  The rough-surface scattering is calculated by the numerical solution 

of Maxwell’s equations (NMM3D). 

Here, the NMM3D-DBA model is applied to the analysis of SMAPVEX12 data for wheat, 

winter wheat, pasture and canola fields to calculate both brightness temperatures and radar 

backscatter coefficients. The collective and multiple scattering effects do not contribute 

significantly for the fields studied in this chapter since bistatic surface scattering mostly dominates 

among the three scattering mechanisms and the scattering parameter ω as well as the optical 

thickness τ is not large for these fields. Thus the distorted Born approximation which is easier to 

implement and requires less input parameters than the coherent model [36] and the multiple 

scattering model [5] is applied to these fields. The model results are compared with the brightness 

temperature and backscatter observations from SMAPVEX12 [34]. SMAPVEX12 was a pre-

launch Soil Moisture Active Passive (SMAP) field experiment. Observations began during the 

period of early crop development and finished at the point where crops had reached maximum 
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biomass. Soil moisture also varied significantly [34]. These long-duration measurements, over a 

wide range of soil moisture and vegetation conditions, are a unique and valuable attribute of this 

field campaign when compared with previous airborne experiment, and provide an extensive data 

set critical to test the vegetation scattering models and radar-based soil moisture retrieval algorithm 

for SMAP [34].  

The outline of the chapter is as follows: section 3.2 presents the derivations of the bistatic 

scattering coefficients using NMM3D-DBA that are used to calculate the emissivity. In section 

3.3, the NMM3D-DBA model uses the same physical parameters to compute both brightness 

temperature and backscatter, which are evaluated by the SMAPVEX12 PALS low-altitude 

radiometer data and UAVSAR data, respectively. Section 3.4 presents the comparison between the 

NMM3D-DBA and the tau-omega model. 

 

3.2 Unified Combined Active and Passive Model Based on NMM3D-DBA  

Emissivity (eq) related to brightness temperature through the physical temperature of the 

object, is calculated by integrating the bistatic scattering coefficients over the hemispherical solid 

angle as given in the equation below [64, 65] 

( )
/2 2

 or 0 0

1
1 sin , ; ,

4
q s s s pq s s i ip v h

e d d
 

       
 =

= −                  (3.2.1) 

where the subscripts ‘p’ and ‘q’ stand for polarization, either ‘v’ or ‘h’. pq  is the bistatic 

scattering coefficient with ‘q’ denoting the polarization of transmitting and ‘p’ denoting the 

polarization of receiving. i  and i  as used in a spherical coordinate system define the incident 
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direction, while s  and s  define the scattering direction. The integration is calculated numerically 

using the Trapezoid rule. The convergence of the integration with regard to the number of points 

used has been checked. To calculate the bistatic scattering coefficient γ we use the distorted Born 

approximation for the vegetation volume scattering, which is derived below, and NMM3D [32] 

for coherent reflectivity and bistatic rough-surface scattering by the soil surface. In the derivations 

below, the crucial assumptions are: (1) the vegetation scatterers are uniformly distributed in the 

vegetation layer; (2) each type of vegetation scatterer, such as stalks or leaves, is statistically 

identical in terms of the size, shape and permittivity; (3) there is no correlation between the 

scattered fields of different vegetation scatterers, hence the incoherent model can be used; and (4) 

the first-order scattering contributions are significantly larger than the high-order scattering 

contributions in the vegetation, such that a single scattering approximation is applicable. 

 
(a) 

 

 
(b) 
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(c) 

Figure III.1 Scattering from a vegetation-covered surface. The three scattering mechanisms are: 

(a) volume scattering; (b) double-bounce scattering (i) scattering from the scatterer and then 

reflected by the surface, (ii) scattering of the reflected wave by a scatterer; (c) surface scattering. 

 

As shown in Figure III.1, let the vegetation layer be region 1 and the air above the 

vegetation layer be region 0. Then, the total field in region 0 is according to the Foldy-Lax equation 

[4] with first-order iteration: 

( )01

1

N

inc ref inc ref

j

jE E E G T E E
=

= + + +                                         (3.2.2) 

where N is the total number of scatterers and jT  is the transfer operator for scatterer j [4]. The 

subscript ‘01’ of the Green’s function ( 01G ) indicates that the scatterers are in region 1 while the 

observation is in region 0. incE  and refE  are the incident and reflected field by the rough surface 

under the vegetation, respectively.  

The vegetation scatterers are in the upper space over a lower space of soil, as shown in 

Figure III.1. There is reflection at the boundary between the vegetation layer and the soil while 

there is no physical reflection at z = 0 (between the vegetation layer and air). Thus, the half space 

Green’s function [4] is used and can be separated into two terms (
(0)

01G and 
(R)

01G  as below). The 

total scattered field from the N vegetation particles can be written as [4]: 
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( ) ( )
(0) (R)

01 01 01

1 1

+
N N

s inc ref inc ref

j j

j jE G T E E G G T E E
= =

 
= + = + 

 
                       (3.2.3a) 

where 
(R)

01G  with the superscript ‘(R)’ represents the part of Green’s function with reflection by 

the soil below while 
(0)

01G  with the superscript ‘(0)’ represents the remaining part of the Green’s 

function.  

Multiplying out the two brackets yields  

(0) (R) (0) (R)

01 01 01 01

1

     = j j j ref j re

N

s in fc inc

j

E G T E G T E G T E G T E
=

 
 
 

+ + +                      (3.2.3b) 

    
(0) (R) (0)

01 01 01

1

  
N

s inc inj j j refc

j

E G T E G T E G T E
=

 
  


+ +


                                         (3.2.3c) 

The first term (
(0)

01

1

j

N

inc

j

G T E
=

 ) is the volume scattering while the second and third terms (

(R)

01

1

N

inc

j

jG T E
=

 and 
(0)

01

1

j

N

j

refG T E
=

 )  are the double-bounce scattering, as illustrated in Figure III.1 

(a) and (b). The last term (
(R)

01

1

j

N

j

refG T E
=

 ) in is the triple bounce scattering, which is likely to be 

weak in the case of grass, wheat, canola and soybean fields at L-band [27]; it is ignored here as 

shown in equation (3.2. 3c).  

According to the analysis above, the total bistatic scattering is calculated as the sum of the three 

scattering mechanisms shown in Figure III.1: volume scattering, double-bounce scattering and 

surface scattering. 

vol db surf

pq pq pq pq   = + +                                                    (3.2.4) 
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where the superscript ‘vol’ is short for volume scattering, ‘db’ is short for double-bounce scattering 

and ‘surf’ is short for surface scattering. 

The bistatic scattering coefficient is calculated as [2]: 

*4

cos
 pq

i

pq pqS
A

S





=                                              (3.2.5) 

where A is the illumination area, pqS  is the element in the scattering matrix and the angle brackets 

in the expressions indicate the statistical average over the orientations of different scatterers. 

The calculations of pqS  was explained in details in chapter II. 

z

x

y

β

α

                                                                              
Figure III.2 Cylinder scatterer elevation angle (β) and azimuth angle (α). 
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Figure III.3 Photos of wheat from SMAPVEX12. 

 

 

 

Figure III.4 Photos of pasture from SMAPVEX12. 
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The pqS for volume scattering is 

( )( ) ( ),

1

exp , ; ,
N

vol
iq jsppq pq j s s i i

j

S i k K r f     
=

= − − −                       (3.2.6)        

ˆ ˆ ˆ ˆ ˆ ˆwith, sin cos sin sin z,  sin cos sin sin ziqsp s s s s spz i i i i iqzk k x k y k K k x k y k       = + + = + −   

(3.2.7) 

where the subscript ‘i’ represents incident and is changed to ‘s’ when representing scattered. 

ˆ ˆ ˆj j j jr x x y y z z= + +  is the position of the jth scatterer. k is the wavenumber in free space. fpq,j is 

the scattering amplitude for the jth scatterer. Cylinders and disks are used to model the vegetation 

scatterers [11]. For example, grass, wheat and the stalks of the canola plants are modeled as 

cylinders while canola leaves are modeled as disks as shown in Figure III.2, Figure III.3, Figure 

III.4, and Figure II.4 (a). The scattering amplitudes fpq,j for cylinders and disks are calculated using 

the Infinite Cylinder Approximation (ICA) and Generalized Rayleigh-Gans Approximation [4], 

respectively.  

The boundary condition, which is also called the phase matching condition, states that the 

tangential component of the total electric field is continuous across the boundary when there are 

no sources at the boundary [2]. With the application of the phase matching condition [2] at the 

boundary between the air and vegetation layer, we obtain  

2 2 2siniqz q ik k k = −                                                        (3.2.8) 

where kq is the effective propagation constant in the vegetation layer for polarization ‘q’. kq is 

calculated by Foldy’s approximation where the scatterers are treated as embedded in the 

equivalent homogenous media [4],  
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( )0 ,0 ,0
2

;q qq i i

n
k k

k
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
− −= +                             (3.2.9) 

where n0 is the number of scatterers per m3.  

spzk  is obtained in the same way. Using equation (3.2.6) and assuming independent scattering,  

( )( ) ( )( )
( ) ( )

* *

vol*

*1

, ,

exp exp
 =

, ; , , ; ,

N iq j iq jsp sp
vol

pq pq

j

pq j s s i i pq j s s i i

i k K r i k K r
S S
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 
− − − 

 
  − −
 

                (3.2.10) 

Assuming that the scatterers are statistically identical and uniformly distributed in the vegetation 

layer [4], we can rewrite equation (3.2.10) as: 

( )( ) ( )
2

vol* exp 2Im , ; ,vol
j iq jsppq pq pq s s i i

N
S S dr k K r f

V
    = − −          (3.2.11) 

where V is the volume of the vegetation layer, and Im() indicates that only the imaginary part is 

used. According to the phase matching condition [2], the x and y components of spk and iqK  are 

real and only the z component has an imaginary part. 
0

N
n

V
= . Let the thickness of the vegetation 

layer be d, and then it follows that: 

( )( ) ( )
0 2

vol*

0 exp 2Im , ; ,vol

pq pq spz iqz j pq s s i i j
d

S S n A k K z f dz    
−

= − −          (3.2.12) 

where zj is the z coordinate of the jth scatterer. The limits of the integration is –d and 0 since the 

vegetation layer is within the range of –d to 0 as illustrated in Figure III.1. 

And finally, by substituting equation (3.2.12) into (3.2.5), 

( ) ( )( )( )
( ) ( )( )

( )0
2

14

cos

exp 2 Im Im
, ; ,

2 Im Im

spz iqz

pq s s i i

spz i
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pq

i qz

k k d
f

k

n

k





    −=

− +

+

−
            (3.2.13) 

Next, for double-bounce scattering, there are two terms: (i) scattering from a scatterer that is then 

reflected by the surface, and (ii) scattering of the reflected wave by a scatterer, as shown in Figure 
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III.1 (b). The bistatic scattering coefficient for double-bounce scattering is thus the sum of the 

bistatic scattering coefficient of these two scattering terms: 

 
,sr ,rsdb db db

qp qp qp  = +                                                                 (3.2.14) 

where the superscripts ‘sr’ and ‘rs’ stand for term (i) and term (ii) of the double-bounce scattering, 

respectively. 

For 
,srdb

qp  (scattered by the scatterer and then reflected), we have 

( ) ( ) ( )( ) ( ),

1

R exp 2 exp , ; ,
N

db sr
sp iq jpq p s spz pq s s i i

j

S ik d i K K r f      
=

= − − − −        (3.2.15) 

where Rp is the coherent reflectivity of the rough surface for p polarization calculated from 

NMM3D [43] and d is the thickness of the vegetation layer. 

Similarly, the assumption that the scatterers are statistically identical, mutually independent and 

uniformly distributed in the vegetation layer [4] leads to  
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After simplification and substituting into equation (3.2.5), we obtain 
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(3.2.17) 
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For the other term in the double-bounce scattering, 
,srdb

qp  (reflected by the rough surface and then 

scattered by the scatterer), 

  ( ) ( ) ( )( ) ( ),

1

R exp 2 exp , ; ,
N

db rs
jsp iqpq q i iqz pq s s i i

j

S ik d i k k r f    
=

= − −            (3.2.18) 

Similarly, assuming independent scattering and that the scatterers are statistically identical and 

uniformly distributed in the vegetation layer [4],  

( )( ) ( )

( )( ) ( )
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0 2
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 

        (3.2.19) 

Finally, 
,db sr

pq can be expressed as: 
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 (3.2.20) 

Finally, for surface scattering, the bistatic scattering can be expressed as [6, 32]: 

( ) ( )exp expsurf R

pq spz iqz pqS ik d ik d S=                                               (3.2.21) 

where 
R

pqS is the surface scattering by bare soil calculated from NMM3D [32] and the exponential 

parts account for the attenuation through the vegetation layer.  

In NMM3D, Maxwell’s equations are solved numerically based on MoM and RWG basis 

functions, which is an intensive computational problem [43]. Tapered incidence fields are used 

since the simulated random rough surface is of finite extent, and the results for infinite surfaces 

are extracted from the simulations of the finite surfaces [43]. The soil surfaces are assumed to be 
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Gaussian random rough surfaces with exponential correlation functions, which appear to provide 

the best fit to the natural surfaces among the correlation functions reported in literature [2]. For L-

band in this chapter, the surface area used for simulations in NMM3D is 16 by 16 square 

wavelengths. In this case, the RMS heights that can be simulated are within the range of 0 ~ 5 cm 

(0.21 wavelengths) which covers the RMS heights for all the fields studied in this chapter and 

captures the wide range of the natural conditions [6]. If an RMS height larger than 0.21 

wavelengths is required, a larger surface area has to be simulated, which requires more 

computation resources and time. 

Then, 
surf

pq can be calculated by substituting the following expression into equation (3.2.17). 

( )( ) ( )( )surf* R*exp 2Im exp 2Imsurf R

pq pq spz iqz pq pqS S k d k d S S= − −                  (3.2.22) 

After calculating the bistatic scattering coefficients γ, the emissivity is obtained by the integration 

of γ over the hemispherical solid angle as shown in equation (3.2.1). Finally, multiplying the 

emissivity by the physical temperature yields the brightness temperature of the vegetation fields. 

For active microwave remote sensing, the backscattering coefficients are needed. We used 

the same vegetation model and formulations as illustrated above to calculate the backscattering 

coefficients and substitute ,  and s i s i    = = +  which indicates the backscattering direction 

into the equations. In this way, the active and passive models are founded on the same theoretical 

basis and the same physical parameters as will be explained in section III are used. 
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3.3 Model Validation for Different Vegetation Types 

In this section, the unified combined active and passive model is applied to calculate the 

backscattering coefficient and brightness temperature for different vegetation types. The results 

are compared with the data. 

 

3.3.1 Physical Parameters for Different Vegetation Types 

(1)
(2)

(3)

(4)

 
 

  Figure III.5  SMAPVEX12 study area (white box), sampling fields (cyan boxes) and low 

altitude PALS flight lines (yellow lines).                                   

 

To validate the consistent combined active and passive model NMM3D-DBA, we used the 

data from the SMAPVEX12 campaign. The SMAPVEX12 campaign is briefly summarized in this 

section and its details are available in [34]. Since SMAPVEX12 was described in chapter II. Here, 
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complementary information related to this chapter about SMPAVEX is described. The study area 

of SMAPVEX12 is shown in Figure III.5, where the dominant vegetation types are cereals 

(including wheat, winter wheat and oat), soybeans, canola, corn and pasture. The number of 

soybean fields is largest among all the sampling fields, as compared to the other vegetation types. 

The SMAPVEX12 campaign provided vegetation data, soil moisture data and coincident 

backscatterer and brightness temperature data which are of value in algorithm development for 

vegetation-covered surfaces.    

Flights of the Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) [45], an 

aircraft-based fully polarimetric L-band radar, provided backscatter data of high-quality from its 

stable platform with high spatial resolution and reliable calibration. For UAVSAR, the noise floor 

was   -45 dB and the relative calibration error was 0.3 dB. Flights of the Passive Active L-band 

System (PALS) provided both brightness temperature and radar backscatter data. For the passive 

sensor of PALS, the noise level for the field averages was less than 0.1 K and the calibration 

accuracy was 0.2 K. The UAVSAR was flown on a G-III aircraft while the PALS was flown on a 

Twin Otter. The flight lines of low altitude PALS are shown in Figure III.5 where the lines (3) and 

(4) were also flown by UAVSAR. Both aircrafts were flown several times per week providing 

coverage with a temporal frequency similar to that of the SMAP satellite. The operating 

frequencies were 1.413 GHz and 1.26 GHz for PALS and UAVSAR, respectively. Data within the 

UAVSAR swath were collected over a wide range of incidence angles. These values were 

normalized to an incidence angle of 40 degrees using the histogram-matching method [46], in 

order to be comparable to the SMAP data. The residual error in the normalization is smaller than 

1 dB standard deviation. Speckle noise was significantly removed by averaging single-look data 

at ~7 m resolution over each field (~800 m×800 m). PALS was designed to measure data at a 40 
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degrees incidence angle, therefore already matching the observation angle of SMAP. PALS data 

were acquired at both low and high aircraft altitudes. The low-altitude flights provided an effective 

resolution of 600 m, which is smaller than the typical field size of 800 m×800 m. The PALS low-

altitude data are hence more suitable for NMM3D-DBA model validation, which assumes 

homogeneous vegetation conditions. The PALS radiometer operates using a two-reference 

switching scheme with a matched load and a noise diode as the two references to remove internal 

gain fluctuations [34]. The calibration utilizes three measurements: the noise diode level, a lake 

and 45 degrees polarization rotation angle over the lake and land surface as detailed in [34]. The 

measured backscatter and brightness temperature data are compared with computed outputs from 

the model which will be illustrated in following sections.  

Other measured model inputs were VWC, RMS rough-surface height, soil moisture, and 

soil and vegetation temperatures. The measurements of VWC, RMS rough-surface height, soil 

moisture, were described in chapter II. Subsurface soil, surface soil and vegetation temperatures 

were also measured on flight days at four sites in each field. Subsurface soil temperatures were 

measured at 5 cm and 10 cm using a digital thermometer. The temperatures for sunlit and shaded 

vegetation and surface soil were recorded using a thermal infrared thermometer. Vegetation 

attributes including crop density, plant height, stem diameter, stalk height, stalk angle, leaf 

thickness and leaf width were also measured. These observations provided a basis for choosing 

the parameters for the combined active and passive model. For the SMAPVEX12 wheat and winter 

wheat fields, most of the data were taken during the stem elongation, booting, heading, and ripened 

stages. The pasture fields varied little throughout the campaign. The growth stages of the 

SMAPVEX12 canola crops progressed from leaf development to stem elongation and finally 

entering ripening. 
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To validate the combined active and passive model using SMAPVEX12 data, the measured 

RMS height, VWC and in-situ soil moisture are input to the model to compute backscatter and 

brightness temperature; these are then compared with the UAVSAR and PALS low-altitude 

radiometer measurements. Other physical parameters needed in the model including crop density, 

plant height, stalk orientation and leaf radii are derived from the ground measurements which are 

explained in detail for each vegetation type as below. In general, the measured data directly 

ingested into the model are the RMS height, VWC and in-situ soil moisture. (The measured soil 

and vegetation temperatures are also directly given to the model to convert the emissivity to 

brightness temperature.) The other inputs are either constants estimated from field measurements 

or values calculated from the VWC, depending on how much the parameters changed during the 

SMAPVEX12 campaign. The goal when developing the forward models is to retrieve information 

about the vegetation-covered surfaces, such as the soil moisture and VWC, from the radar and 

radiometer data. In the future, we plan to implement a data-cube retrieval algorithm as detailed in 

[6], where lookup-tables are computed using the forward model. It is noted that the parameters 

used for wheat and canola plants listed below are a little different from those listed in chapter II. 

This is the DBA model has approximations and the results are based on fine tuning to match the 

data. In chapter II, only active data (i.e., backscattering coefficients) need to be matched. In this 

chapter, both active and passive (i.e., brightness temperature) data need to be matched, using the 

same sets of parameters. Thus, the parameters tuning is a little different in these two chapters. But 

all the parameters are tune within the reasonable ranges in nature. In the latter two chapters, new 

vegetation models which are accurate and solve Maxwell’s equations for vegetation will be 

developed. 
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(i) Wheat and Winter Wheat 

Wheat is modeled as a layer of uniformly distributed cylinders with different orientations. For 

simplicity, the wheat leaves and ears are ignored since the wheat plants during SMPAVEX 12 

were dominated by the stalks, as shown in Figure III.3.  The model parameters (diameter, density 

and orientations of the cylinders) for the wheat and winter wheat fields are presented in Table 

III-1.. The length of the cylinders is calculated from VWC using: 

2

water a wheat

VWC
l

a n Mveg 
=                                                   (3.3.1) 

where l, a, ρwater, na and Mveg stand for the length, radius, water density, number of cylinders per 

m2 and volumetric water content of vegetation, respectively. The measured length is not used 

because it was not measured on flight days; instead, VWC was synchronized with the UAVSAR 

and PALS data. VWC measures the weight of the water contained in the vegetation in an area of 1 

m2 which has the unit kg/m2. Mveg is defined as the volume of the water in plant divided by the 

total volume of the plant. Mveg is estimated from the gravimetric water content (Mg) measured 

during SMAPVEX12, which determines the dielectric constant [49] of leaves and stalks and 

subsequently affects the scattering by the vegetation. 

Table III-1. Physical parameters for the wheat fields. 

Mveg is the volumetric water content of the wheat. na is the number of wheat plants in 1 m2. β and 

α which define the orientation of the scatterer are the elevation angle and the azimuth angle, 

respectively, as shown in Figure III.2. The probability function for the scatterer elevation angle is 

chosen to be p(β)=Csin8(β)cos2(β) to achieve a good agreement between the data-cube and 

measurements. The coefficient C is determined so that the integration of p(β) over 5 ~ 30 is 1. 

The distribution of the scatterer azimuth angle is uniform over all the angles. For winter wheat, 

Mveg is 70% and na is 450 m-2. 

Diameter (mm) Mveg na (m-2) β α 

2.6 80% 400 5 ~ 30  0 ~ 360  

 

(ii) Pasture 
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Pasture vegetation is modeled as a layer of uniformly distributed cylinders. The physical 

parameters (diameter, length and orientations of the cylinders) for the pasture field are presented 

in Table III-2.. The number of cylinders per unit volume is related to VWC: 

0 2 2

water wheat

VWC
n

a l Mveg 
=                                                    (3.3.2) 

 

Table III-2. Physical parameters for the pasture field. 

Mveg is the volumetric water content of the pasture. The probability function for the scatterer 

elevation angle (β, measured from vertical, as shown in Figure III.2) is chosen to be 

p(β)=Csin6(β)cos(β) to achieve good agreement between the data-cube and measurements. The 

coefficient C is determined so that the integration of p(β) over 10 ~ 90 is 1. The distribution of 

the scatterer azimuth angle (α as shown in Figure III.2) is uniform over all the angles.  

Diameter (mm) Mveg Length (cm) β α 

3.0 80% 60 10 ~ 90  0 ~ 360  

 

 

 (iii) Canola 

For canola, two different kinds of cylinders with different radii and lengths are used to 

model its main stem and branches while circular disks are used to model its leaves, as shown in 

Figure II.4 (a). The leaf thickness is much smaller than the wavelength at L-band, and thus the 

total area of the leave is more important than its shape [5]. Similar to the pasture and wheat case, 

these elements are assumed to be uniformly distributed in the canola layer with different 

orientations. It can be seen from Figure II.4 (b) and (c) that the geometry of the canola plant in 

June was different from that in July. There were more leaves with larger radii in June than July. 

Thus, two sets of physical parameters were used for canola to represent the geometry of the canola 

plants at the respective growth stages. The parameters are listed in Table III-3. The Mveg and leaf 

radius are adjusted to smaller values for the July data-cube based on the ground data. It can be seen 

from Figure II.4 (b) and (c) that the canola in July appears to be withered compared to conditions 
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in June. From the in-situ measurements, the average number of canola plants per m2 (na) is about 

60 and the number of leaves per plant (Nl) is about b (b = 2 for June and 1 for July, respectively) 

multiplied by the number of branches per plant (Ns). The main stem diameter (d), which increases 

with VWC, is calculated from the allometric relationship with VWC obtained from the data through 

curve fitting: 20.03135 +0.938 +4.87d VWC VWC= −  in mm, as in chapter II. Similarly, the main stem 

length (l) is obtained as: -1.186121.4 +130.2l VWC= −  in cm, as in chapter II. Ns can be calculated from 

VWC using the following formula:  

( )

water a stem stem
s

a water branch branch leaf leaf

VWC n Vol Mveg
N

n Vol Mveg bVol Mveg





−
=

+
                                (3.3.3) 

where stemVol , branchVol  and 
leafVol  are the volume of stem, branch and leaf, respectively. 

Table III-3. Physical parameters for the canola fields. 

The values in parentheses are used starting from July 10th according to the data. The volumetric 

water content Mveg is estimated from the measured Mg in the same way as for the wheat [49]. 

VWC is measured in-situ. d and l  are derived from VWC based on the empirical allometric 

relationships. β is the scatterer elevation angle. The distribution of the azimuthal angle (α as 

shown in Figure II.4 (a)) is uniform over 0 ~ 360 for the stem, branch and leaves.                                                                                                                                                          

 
Diameter 

(mm) 

Length 

(cm) 
Mveg Distribution of β 

Stem d  l  60% (40%) Uniform over 0 ~ 5  

Branch / 2d  / 3l  60% (40%) Uniform over 0 ~ 50  

Leaf 140 (80) 0.03 60% (40%) 
Uniform over 

70 ~ 90  

 

 

  

3.3.2 Validation with SMAPVEX UAVSAR and PALS Data 

The measured RMS height, VWC, in-situ soil moisture, and soil and vegetation temperature, 

as well as the physical parameters presented in section 3.3.1 are used as inputs to the combined 

active and passive model, as summarized in Table III-4. The calculated backscatter coefficients 

and brightness temperatures are validated using concurrent airborne PALS low-altitude radiometer 
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data and UAVSAR data for each day of flights during the SMAPVEX12 field campaign. The radar 

measurements from UAVSAR are used because they provide higher spatial resolution than PALS. 

Only fields that have PALS low-altitude radiometer data are considered here because the focus in 

this chapter is on the joint validation for emissivity and backscatter calculated from the combined 

active and passive model. 

Table III-4. Input parameters for the combined active and passive model. 

The parameters indicated with ‘*’ are estimated from measurements whose values are listed in 

Table III-1 ~ Table III-3. The parameters indicated with ‘**’ are calculated from measured VWC, 

where the formulas are presented in section 3.3. The remaining parameters without any indicators 

are directly ingested in the model with their measured values. The orientation is defined by the 

probability function of the two orientation angles α and β. 

Land Cover Input Parameters for the Combined Active and Passive Model 

wheat / 

winter wheat 

VWC, RMS rough-surface height, soil moisture, soil and vegetation 

temperatures, diameter*, Mveg
*, length**, na

*, orientation*   

pasture VWC, RMS rough-surface height, soil moisture, soil and vegetation 

temperatures, diameter*, Mveg
*, length*, n0

**, orientation*   

canola VWC, RMS rough-surface height, soil moisture, soil and vegetation 

temperatures, na
*, stem diameter**, stem Mveg

*, stem length**, stem 

orientation*, stalk diameter**, stalk Mveg
*, stalk length**, stalk orientation*, leaf 

diameter*, leaf Mveg
*, leaf thickness*, leaf orientation*      

 

The time-series forward comparison between the model results and data for the wheat fields 

is presented in Figure III.6 and Figure III.7 (a) and (b), and Figure III.8 (a), where (a) shows 

brightness temperature while (b) shows backscatter. Since there are no UAVSAR data to compare 

for field 931, therefore only brightness temperature comparisons are presented in Figure III.8 (a). 

In these figures, “CORR” stands for “correlation coefficient”. “TBVmea” and “TBHmea” indicate 

measured brightness temperature at vertical polarization and horizontal polarization from the 

PALS radiometer. “TBVmod” and “TBHmod” represent the modeled brightness temperature at 

vertical polarization and horizontal polarization. “Mv” stands for soil moisture. “VV model” and 

“HH model” indicate modeled backscatter. “VVmea” and “HHmea” are measured backscatter from 

the UAVSAR. Soil moisture (Mv) and VWC are scaled as Mv/0.5 and VWC*0.8 for plotting, 



113 

  

respectively. The x-axis presents the campaign date. For example, “120615” represents June 15th, 

2012. The same notations apply for the other figures in this chapter. 

For the three wheat fields the same set of vegetation parameters (such as the radius, 

orientation and crop density) are used to characterize the vegetation but the measured RMS height, 

VWC, in-situ soil moisture, and soil and vegetation temperature are different for the different fields. 

This is useful for the data-cube based soil moisture retrieval [5, 6] where a lookup-table is inverted. 

This lookup-table is computed using the forward model with the same set of parameters for each 

group of vegetation. It is worth mentioning that the input parameters and the allometric 

relationships from curve fitting based on the SMAPVEX12 ground measurements will put a 

burden on a future data-cube based inversion methodology where only three variables (RMS 

height, VWC and soil moisture) can be retrieved.  

The root mean squared error (RMSE) between the modeled and measured backscatter is 

calculated using: ( )
2

,i model,i

1

1 N

data

i

RMSE
N

 
=

= −  ,  where N is the number of samples, σdata is the 

measured backscattering coefficient and model is the predicted backscattering coefficient from the 

model. The RMSE between the modeled and measured brightness temperature is calculated in the 

same way. In terms of the RMSE and correlation coefficients, the consistent combined and passive 

model NMM3D-DBA provides a good prediction for the wheat fields for both active and passive 

for both polarizations under various soil and vegetation conditions. 
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(a) 

 

 
(b) 
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(c) 

 

Figure III.6.  Model and measurement comparison of wheat field 31 for (a) brightness 

temperature using NMM3D-DBA, (b) backscatter using NMM3D-DBA, (c) brightness 

temperature using the tau-omega model. Soil surface RMS height is 0.81 cm. 

 

 

 

 

 
(a) 
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(b) 

 

 
(c) 

 

Figure III.7.  Model and measurement comparison of wheat field 91 for (a) brightness 

temperature using NMM3D-DBA, (b) backscatter using NMM3D-DBA, (c) brightness 

temperature using tau-omega model. Soil surface RMS height is 0.91 cm. 
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(a) 

 

 
(b) 

 

Figure III.8.  Model and measurement comparison of wheat field 931 for brightness temperature 

using (a) NMM3D-DBA, (b) tau-omega model. Soil surface RMS height is 1.00 cm. 
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It is observed that the model results agree better with the measurements for V-pol than H-

pol for both backscatters and brightness temperatures. This may be caused by that we modeled the 

wheat canopy as a layer of cylinders where the wheat leaves were ignored, resulting in more errors 

in H-pol than V-pol. The wheat leaves were oriented nearly parallel to the ground, as shown in 

Figure III.3, so that the horizontally polarized incident waves (H-pol) coupled more into the wheat 

leaves than the vertically polarized ones (V-pol). It is also observed that towards the end of the 

campaign, the NMM3D-DBA model generally overestimates the backscatter. This may be 

explained by the use of a fixed Mveg value for the whole period for simplicity and feasibility [5, 6]. 

As the wheat ripened, its Mveg generally decreased. Thus, during the end of the campaign, a higher 

Mveg value is used in the model, resulting in larger vegetation permittivity and larger scattering 

than expected. This general overestimation or underestimation in the last few campaign days is not 

observed in the brightness temperature comparisons. Similarly, the time-series forward 

comparisons for the winter wheat fields are presented in Figure III.9 and Figure III.10 (a) and (b), 

and Figure III.11 (a). There is no UAVSAR data to compare for field 941. It can be seen that the 

comparisons are similar to those of the wheat fields. The wheat and winter wheat were based on 

the same vegetation model and similar physical parameters were used.  

For the pasture field, the comparison results are presented as time-series in Figure III.12 

(a) and (b). The VWC of the pasture fields stays almost constant during the whole campaign period. 

It is observed from both the model results and measured radiometer and radar data that when the 

soil moisture increases with a fixed VWC, the brightness temperature generally decreases while 

the backscatter increases; and vice versa. This can be explained from the combined active and 

passive model as follows: when soil moisture increases, the soil permittivity increases. Then, the 

scattering from the soil surface and the soil surface reflectivity increase. For a fixed VWC, the 
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attenuation through the vegetation layer and the vegetation scattering stay unchanged. Thus, the 

total scattering from the vegetation-covered surface composed of surface scattering, double-

bounce scattering and volume scattering increases. Therefore, the backscatter increases while the 

brightness temperature proportional to the emissivity, which is one minus the integration of bistatic 

scattering, decreases. The changes of the VV and HH backscattering coefficients ratio, as well the 

TBv (brightness temperature for V-pol) and TBh (brightness temperature for H-pol) ratio, with the 

soil moisture are also observed in both the model results and measurements. It is also noticed in 

Figure III.12 (b) that there are some mismatches for polarization ratio of VV and HH 

backscattering coefficients between model and measurements. This may be caused by the reason 

that a constant pasture orientation is used in the model but the pasture orientation could be changed 

by the wind and rain. The pasture orientation is hard to measure and the data of orientation for 

different dates is not available. The general polarization mismatch is not observed in the brightness 

temperature comparisons.  

 

 
(a) 
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(b) 

 

 
(c) 

 

Figure III.9.  Model and measurement comparison of winter wheat field 41 for (a) brightness 

temperature using NMM3D-DBA, (b) backscatter using NMM3D-DBA, (c) brightness 

temperature using tau-omega model. Soil surface RMS height is 1.15 cm. 
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(a) 

 

 
(b) 
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(c) 

 

Figure III.10. Model and measurement comparison of winter wheat field 42 for (a) brightness 

temperature using NMM3D-DBA, (b) backscatter using NMM3D-DBA, (c) brightness 

temperature using tau-omega model. Soil surface RMS height is 1.61 cm. 

 

 

 
(a) 
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(b) 

 

Figure III.11.  Model and measurement comparison of winter wheat field 941 for brightness 

temperature using (a) NMM3D-DBA, (b) tau-omega model. Soil surface RMS height is 1.10 cm. 

 

 

 

 

  
(a) 
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(b) 

 

 
(c) 

 

Figure III.12.  Model and measurement comparison of pasture field 21 for (a) brightness 

temperature using NMM3D-DBA, (b) backscatter using NMM3D-DBA, (c) brightness 

temperature using tau-omega model. Soil surface RMS height is 0.90 cm. 
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For the canola field, the comparison results are presented as time-series in Figure III.13 (a) 

and (b). From June 25th to June 27th, the soil moisture increased, but the measured brightness 

temperature increased and the backscatters decreased. This may be caused by the decrease of the 

VWC between these two days, which resulted in less attenuation for the surface scattering and less 

vegetation scattering. Mismatches between the model and measurements for brightness 

temperature are observed from June 25th to June 29th, which are larger than the other dates, 

especially for H-pol. However, this is not observed in the backscatter comparisons. This could be 

caused by the constant RMS height used during the whole period. The soil moisture was relatively 

low from June 25th to June 29th, and thus the surface scattering is relatively small compared with 

the volume scattering and double-bounce scattering in the backscattering direction. Therefore, the 

error caused by RMS height which has the most influence on surface scattering does not affect the 

total backscatter much. On the other hand, the integration of surface scattering over the bistatic 

directions including the specular direction is also important compared with the integration of 

volume scattering and double-bounce scattering. Thus, the constant RMS height assumption in the 

model has a larger influence on the brightness temperature than the backscatter. 
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(a) 

 

 

 
(b) 
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(c) 

 

Figure III.13. Model and measurement comparison of canola field 61 for (a) brightness 

temperature using NMM3D-DBA, (b) backscatter using NMM3D-DBA, (c) brightness 

temperature using tau-omega model. Soil surface RMS height is 1.00 cm. 

 

In the NMM3D-DBA model the same input parameters are used to compute both brightness 

temperature and backscatter. In terms of the RMSE and correlation coefficient between the model 

and measurement, the modeled backscatters are in good agreement with the UAVSAR data, while 

the modeled brightness temperatures are in good agreement with the PALS low-altitude radiometer 

data. For vertical polarization, the averaged RMSE and correlation coefficient over all the fields 

are 4.65 K and 0.91 for brightness temperature and 1.04 dB and 0.95 for backscatter at VV, as 

shown in the scatter plots in Figure III.14. For horizontal polarization, the average RMSE and 

correlation coefficient are 6.44 K and 0.94 for brightness temperature and 1.21 dB and 0.90 for 

backscatter at HH, as shown in Figure III.15. According to the analysis above, the defects in the 

vegetation modelling such as ignoring the wheat leaves generally have more influence on the 

backscatter than the brightness temperature while the defects in the rough surface modelling such 
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as using a constant RMS height generally have more influence on the brightness temperature than 

the backscatter, for the vegetation fields studied in this chapter. The RMSE and correlation 

coefficient for each field is summarized in Table III-5. Values in columns 3-6 are the backscatter 

while columns 7-10 show values for brightness temperature. The values in the last four columns 

are the results from the tau-omega model, which will be explained in the following section.  

The sources of error, when comparing the backscatters from NMM3D-DBA and the data, 

are detailed in [6]. Thus, we focus on analyzing the sources of error between the brightness 

temperature computed from NMM3D-DBA and the measured values from the low altitude PALS. 

One of the main sources of error is expected to come from the measurement error in RMS rough-

surface height. The contribution from the bistatic surface scattering generally dominates among 

the three scattering mechanisms for the wheat, winter wheat, pasture and canola fields studied in 

this chapter. The surface scattering strongly depends on the RMS height. Thus, the emissivity and 

brightness temperature also strongly depend on the RMS height. Furthermore, there is considerable 

uncertainty in the roughness measurements [21]. The RMS height was measured only once and 

thus a constant RMS height was used for the whole study period for each field [34]. The RMS 

height could have been influenced by rain, which would flatten the soil surface. Furthermore, the 

RMS height was measured at only two locations in each field, assuming the roughness variations 

are small over the same field [34] which may not be true. The change of brightness temperature 

with the RMS height for the bare soil surface computed from NMM3D-DBA is plotted in Figure 

III.16 where a volumetric soil moisture of 25% m3/m3 and soil physical temperature of 25 ̊C are 

used; these are around the average measured values of all the fields. The range of the RMS height 

in the figure covers the typical values for the vegetation-covered surfaces at L-band. It can be seen 

from the figure that 0.1 cm change in RMS height results in brightness temperature change of about 
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1 K and 2 K for V-pol and H-pol, respectively. Some other sources of error to be considered when 

interpreting the results are: (1) the spatial variations of the soil moisture and VWC are not 

considered; (2) UAVSAR data, more specifically the normalization error when transforming the 

raw data to 40º (RMSE is about 1 dB [34]); (3) PALS data and the associated calibration error as 

detailed in [34]; (4) the physical temperature used to calculate brightness temperature from 

emissivity. The physical temperature of the soil-vegetation continuum is necessary to precisely 

calculate the brightness temperature from the emissivity [69]. Since it is not available, an averaged 

measured soil and vegetation temperature is used instead; (5) model parameters. The plant 

geometry such as the radius and length vary for different plants and average values are used; (6) 

NMM3D-DBA model. The scatterers are assumed to be uniformly distributed in the vegetation 

layer, which is not strictly true for the crop fields; and (7) the resolution/scaling gap between model 

and observations. The model assumes vegetation-covered field is homogeneous which is better 

applicable to small scales than large scales. 

 

 
(a) 
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(b) 

 

 
(c) 

 

Figure III.14. NMM3D-DBA model and measurement comparison of all the fields at vertical 

polarization for (a) brightness temperature TB (V-pol), (b) backscatter VV. (c) NMM3D-DBA 

model and tau-omega model comparison for brightness temperature TB (V-pol). The two grey 

dashed auxiliary lines in each plot are for +/- 5K or +/- 1dB. 
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(a) 

 

 
(b) 
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(c) 

 

Figure III.15. NMM3D-DBA model and measurement comparison of all the fields at horizontal 

polarization for (a) brightness temperature TB (H-pol), (b) backscatter HH. (c) NMM3D-DBA 

model and tau-omega model comparison for brightness temperature TB (H-pol). The two grey 

dashed auxiliary lines in each plot are for +/- 5K or +/- 1dB. 

 

 

Table III-5. RMSE and correlation coefficient (CORR) of backscatter and brightness 

temperatures (TB) between model results and UAVSAR and PALS low-altitude radiometer 

observations. 

There is no UAVSAR data available for field 931 and 941 to compare with the modeled 

backscatter. 

Field 

No. 

Land 

Cover 

Backscatter  

(NMM3D-DBA) 

TB  

(NMM3D-DBA) 

TB  

(Tau-omega) 

RMSE 

(dB) 

CORR RMSE  

(K) 

CORR RMSE  

(K) 

CORR 

VV HH VV HH V H V H V H V H 

31 wheat 1.25 1.76 0.64 0.42 5.14 7.25 0.97 0.91 7.79 9.37 0.98 0.92 

91 1.02 1.22 0.68 0.36 4.47 7.33 0.88 0.77 4.30 7.82 0.93 0.84 

931 - - - - 3.93 8.22 0.99 0.81 5.95 7.31 0.96 0.79 

41 winter 

wheat 

1.32 1.45 0.61 0.53 4.98 5.59 0.75 0.88 4.82 5.84 0.88 0.90 

42 1.19 1.28 0.73 0.59 3.97 7.20 0.98 0.93 4.21 15.1 0.94 0.91 

941 - - - - 5.06 3.71 0.96 0.97 6.02 3.98 0.97 0.95 

21 pasture 0.90 0.97 0.61 0.65 4.85 4.20 0.95 0.93 8.08 18.4 0.88 0.90 

61 canola 0.66 0.79 0.94 0.98 4.09 6.98 0.91 0.90 3.68 8.93 0.90 0.83 
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Figure III.16. Brightness temperature change with RMS rough-surface height for bare surface 

based on NMM3D 

 

3.4 Comparisons with the Tau-Omega Model 

In comparison, the formulas for the tau-omega model which only computes the brightness 

temperature instead of the backscattering coefficient is also presented here. In the tau-omega 

model [8], the brightness temperature TB of the vegetation-covered surface is calculated as:  

( ) ( )( ) ( )( )

( ) ( )( )( ) ( ) ( )( )( )

1 exp sec

            1 1 exp sec 1 exp sec

B soil

veg

T T r

T r

   

     

= − − +

− − − + −
             (3.4.1) 

where θ is the observation angle of 40 degrees for SMAP and PALS in SMAPVEX12, Tsoil is the 

physical temperature of the soil, Tveg is the physical temperature of the vegetation, ω is the 

scattering albedo of the vegetation, τ=b×VWC is the vegetation optical thickness and r(θ) is the 

reflectivity of the soil surface defined as [8, 70]: 

( ) ( )( ) ( )( )2

0, 0,1 exp cosp p qr Q r Qr h = − + −                                    (3.4.2) 
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where the subscripts ‘p’ and ‘q’ denote polarization, r0 is the reflectivity of the smooth surface 

calculated from the Fresnel equations, Q is the polarization mixing coefficient, and h is the 

effective roughness parameter defined as [70]: 

( )
2

02h k=                                                               (3.4.3) 

where σ is the RMS height of the soil surface and k0 is the wave number in free space.  

The tau-omega model for passive microwaves uses empirical parameters instead of 

physical parameters and is totally different from the NMM3D-DBA model used for active 

microwaves. On the other hand, the combined active and passive model derived in the chapter uses 

the same model NMM3D-DBA and the same input physical parameters for both active and passive 

microwaves.    

 

Table III-6. Comparison of vegetation scattering parameter ω and vegetation parameter b used in 

the tau-omega model for SMAPVEX12 [70] and calculated (cal.) from the NMM3D-DBA 

model.            

Land 

Cover 

Tau-omega NMM3D-DBA 

ωV ωH bV bH cal. ωV cal. ωH cal. bV cal. bH 

wheat 0.05 0.05 0.20 0.08 0.33 0.27 0.24 0.08 

w. wheat 0.05 0.05 0.20 0.08 0.27 0.21 0.21 0.07 

pasture 0.05 0.05 0.10 0.10 0.41 0.41 0.25 0.23 

canola 0.05 0.05 0.21 0.12 0.15 0.15 0.26 0.24 

* “w. wheat” is short for “winter wheat” 

 

The tau-omega model is derived from the zeroth order solution of the radiative transfer 

equation. Since the zeroth order solution ignores the phase matrix term, it is only valid when ω is 

small. However, typical calculated values of ω at L-band are in the range of 0.15 to 0.41 using the 

physical scattering model of branches and leaves as shown in Table III-6. The value of ω used to 

fit the tau-omega model to observations is thus an empirically-determined effective parameter 

rather than a physical parameter. The value of ω used in the tau-omega model for SMAPVEX12 
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was empirically set to 0.05 to best match the SMAPVEX12 PALS low-altitude radiometer data 

[70] to the tau-omega model and is much smaller than the physically calculated ω as shown in 

Table III-6. The physically-based ω is defined as 𝜔 = 〈𝜅𝑠〉/〈𝜅𝑒〉 [4], where 〈𝜅𝑠〉 and 〈𝜅𝑒〉 are the 

scattering coefficient and extinction coefficient, respectively. 〈𝜅𝑠〉 and 〈𝜅𝑒〉 are calculated using 

the physical parameters as illustrated above. It is worth noting that the calculations of ω are not 

needed in the NMM3D-DBA model as shown in the derivations in section 3.3 and ω is calculated 

here for comparison with the empirically chosen ω. The physically calculated ω depends on the 

size of the scatterers such as the radius and length. As explained in section 3.3, for wheat, winter 

wheat and canola the size of the vegetation components (stalks, main stem and leaves) depends on 

VWC, thus ω also depends on VWC. The ω values for the wheat, winter wheat and canola fields in 

Table III-6 are calculated at VWC equal to 2 kg/m2, which is a typical VWC value for these 

vegetation types.  

For the τ parameter, if the physical ω is small, then attenuation is dominated by absorption, and 

the optical thickness τ of the vegetation layer is determined by the VWC and the b parameter, which 

is the proportionality constant between τ and VWC. However, if the physical ω is not small, then 

the b parameter also becomes non-physical. The physically calculated b and empirically adjusted 

b for SMAPVEX12 [70] are different and listed in Table III-6. Physically, the optical thickness is 

defined as  𝜏 = 〈𝜅𝑒〉𝑑 [4] where d is the thickness of the vegetation layer. Then, the physically-

based b is calculated as 𝑏 = 〈𝜅𝑒〉𝑑/𝑉𝑊𝐶 using the physical parameters. It is worth noting that the 

calculations of b are not needed in the NMM3D-DBA model and b is calculated here for 

comparison with the empirically chosen b. 

The tau-omega model rough surface parameters Q and h are also empirically tuned to fit the data. 

According to previous studies it is commonly assumed that Q=0 at L-band [70]. In this case, h is 
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adjusted based on soil moisture, precipitation events and soil texture [70] to best fit the PALS 

observations. In this chapter, equations (3.4.2) and (3.4.3) with Q=0 are used for the tau-omega 

model for simplicity. When rp(θ) for the tau-omega model is compared with the integration of 

R*R

pq pqS S  calculated from NMM3D, the results from NMM3D are generally larger than rp(θ). This 

is because rp(θ) only includes the coherent wave specular reflection [61] while ignoring the bistatic 

scattering. One example of a comparison between the result from NMM3D and the rp(θ) used in 

the tau-omega model, under various soil moisture conditions and for an RMS height of 0.91cm 

(field 91), is shown in Figure III.17. It can be seen that regardless of the polarization, the results 

from NMM3D are larger than rp(θ). It is also noticed that the results from the tau-omega model 

follow the same trend as those from the NMM3D which has several degrees more of complexity. 

This is because the coherent component along the specular direction dominates for rough surface 

with ks (product of the wavenumber and the RMS height which is around 0.2 in this case) on the 

order of 0.1 [2] and the error from the neglection of non-coherent components along the bistatic 

directions in the tau-omega model is small in this case. 

The tau-omega model brightness temperatures calculated using the empirical parameters for 

SMAPVEX12 [70] are compared with the PALS low-altitude radiometer data for each of the fields 

as shown in Figure III.6 ~ Figure III.13. The results from tau-omega and NMM3D-DBA models 

for all the fields are also presented in the scatter plots in Figure III.14 (c) and Figure III.15 (c). The 

RMSE and correlation coefficient between the tau-omega model results and PALS observations 

are listed in Table III-5 for comparison with the NMM3D-DBA. It can be seen that the results 

from the tau-omega and NMM3D-DBA are comparable to each other even though empirical 

parameters are used in the tau-omega model, while physical parameters are used in NMM3D-DBA. 

The RMSE is generally lower and the correlation coefficient (CORR) higher for the NMM3D-
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DBA than for the tau-omega model, indicating better agreement between measurement and model 

using the NMM3D-DBA, but this is not the case for all fields. 

 

 
Figure III.17.  Comparison of (1-emissivity) for bare soil surface contribution between the tau-

omega model and NMM3D-DBA for field 91 at RMS height 0.91cm. 

 

 

3.5 Conclusions 

A consistent model for combined active and passive microwave remote sensing is formulated 

in which the same physical model NMM3D-DBA is used to calculate both backscatter and 

brightness temperature. The novel feature of this combined active and passive approach is its use 

of the same model NMM3D-DBA and physical parameters (such as the crop density, plant height, 

stalk orientation, leaf radius, surface roughness, amongst others) for both active and passive for 

vegetation-covered surfaces to achieve a consistent modeling framework. The NMM3D-DBA 

model allows the understanding that the defects in the vegetation modelling have more influence 

on the backscatter than the brightness temperature while the defects in the rough surface modelling 
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have more influence on the brightness temperature than the backscatter, for the vegetation fields 

studied in this chapter. In comparison, current approaches generally use different models and 

different parameters for active and passive with the tau-omega model most frequently used as the 

passive model with empirical input parameters. The physical model combines the distorted Born 

approximation (DBA) with the NMM3D, including three scattering mechanisms: volume 

scattering, double-bounce scattering and surface scattering. The distorted Born approximation is 

derived from the Foldy-Lax equation with first-order iteration using the half-space Green’s 

function and the T matrix. NMM3D is used for the soil surface, which includes both the coherent 

wave specular reflection and the bistatic scattering of the rough surface. The emissivity is obtained 

by integration of the bistatic scattering over the hemispherical solid angle. The NMM3D-DBA 

model results are validated using coincident airborne PALS low-altitude radiometer data and 

UAVSAR data taken during the SMAPVEX12 field campaign. For vertical polarization the 

averaged RMSE and correlation coefficient over all the fields are 4.65 K and 0.91 K for brightness 

temperature and 1.04 dB and 0.95 dB for VV backscatter, while for horizontal polarization the 

average RMSE and correlation coefficient are 6.44 K and 0.94 K for brightness temperature and 

1.21 dB and 0.90 dB for HH backscatter. The uncertainty in the RMS height measurements can be 

one of the main sources of error for the modeled brightness temperature which strongly depends 

on the RMS height for the vegetation-covered fields studied in this chapter. The NMM3D-DBA 

model assumes the vegetation scatterers are uniformly distributed which is not strictly true for the 

crop fields. This assumption can also cause errors in the model. Overall, on comparisons with the 

passive data, the results from NMM3D-DBA are comparable or better than those from the tau-

omega model. The tau-omega model uses empirically adjusted parameters though the empirical 

parameters, such as ω, which are different from the physically calculated values. 
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In the future, the vegetation structure will be modeled more accurately by taking into account 

the leaves and grains for wheat and using elliptical disks for canola leaves. The consistent 

combined active and passive model based on NMM3D-DBA adopts a single scattering model for 

vegetation; it has been shown to be able to provide good estimations for backscatter and brightness 

temperature at L-band for wheat, winter wheat, pasture, and canola fields. As the frequency 

increases, multiple scattering effects in vegetation become more important [5]. Thus, at 

frequencies much higher than L-band, a multiple scattering approach should be used for vegetation 

instead of the distorted Born approximation. We can use the same concept as presented in this 

chapter to develop a consistent model for both active and passive at higher frequencies by using 

NMM3D for the soil surface together with a multiple scattering model for vegetation where the 

brightness temperature is calculated by integration of bistatic scattering coefficients. There are 

other vegetation types, such as soybean and corn, whose results are not presented here because the 

distorted Born approximation is not suitable for modeling them. Collective scattering effects of 

the vegetation scatterers are important for the soybean [5], thus a more accurate coherent model 

must be used for this vegetation type. For the corn field, multiple scattering effects [5] must be 

included because of the large scattering albedo and optical thickness. These two vegetation types 

and more accurate scattering models for higher frequencies will be studied in the future. Recently 

we have started the NMM3D full-wave simulations of vegetation scattering [31].  Future work will 

consist of using NMM3D to replace the DBA part of the methodology of combined active and 

passive. 
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CHAPTER IV                                                                                                                     

NMM3D Full-wave Simulations of a Layer of Dielectric Cylinders Using Fold-

Lax Equations and Body of Revolution 

 

Transmission, scattering and absorption by a layer of dielectric cylinders are studied in the 

context of microwave propagation through vegetation. The electromagnetic fields are calculated 

by Numerical Solutions of 3D Maxwell’s equations (NMM3D) using the method of Foldy-Lax 

multiple scattering equations combined with method of the body of revolution (BOR). Using the 

calculated transmission, we derive, the “tau”, the optical thickness, which describes the magnitude 

of the transmission. Two cases are considered: the short cylinders case and the extended-cylinders 

case. The case of short cylinders is that the lengths of cylinders are much smaller than the layer 

thickness, while the case of extended cylinders is that the lengths of the cylinders are the same as 

or comparable to the layer thickness. Numerical results are illustrated for plane vertical polarized 

waves obliquely incident on the layer of cylinders. The NMM3D results for the extended-cylinders 

case show large differences of transmission from the results of approaches such as effective 

permittivity (EP), the distorted Born approximation (DBA), and the radiative transfer equation 

(RTE). For the case of short cylinders, the NMM3D results are in close agreement with those from 

EP, DBA and RTE. 
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4.1 Introduction 

Propagation, scattering and transmission of waves through a layer of finite-length dielectric 

cylinders have many applications including airborne and satellite microwave remote sensing over 

vegetation and forests, wireless communications in forests, radar foliage penetration (FoPen) and 

metamaterials of wires, etc [7, 30, 71-76]. In vegetation-covered surfaces, the finite length 

dielectric cylinders have been used to model grass, wheat, corn, rice, tree trunks of forests etc. [5, 

6, 11, 27, 28, 77, 78]. A key calculation is the transmission of microwaves through such a canopy. 

The fraction of power transmitted for a plane wave at normal incidence is represented by 𝑒𝑥𝑝(−𝜏). 

The quantity τ, “tau” has been extensively used in active and passive microwave remote sensing 

[1, 60, 74].  The phase shifts have been used in SAR interferometry [2, 79-81].   

The existing methods used in the calculation of transmission are the effective permittivity 

(EP) [82], the distorted Born approximation (DBA) [11], and the vector radiative transfer equation 

(RTE) [4]. These three approaches make an assumption that the positions of the scatterers are 

statistically homogeneous in 3D.  This means that the scatterers are uniformly distributed. The 

formulas of transmission utilize the scattering and absorption cross sections of a single scatterer 

which are averaged over distributions of sizes and orientations. A consequence is that there exists 

a per unit distance effective propagation constant 𝑘𝑒𝑓𝑓. In the approach of effective permittivity 

[82], the effective permittivity 𝜀𝑒𝑓𝑓 is used to calculate the effective propagation constant by the 

relation 𝑘𝑒𝑓𝑓
2 = 𝑘2𝜀𝑒𝑓𝑓/𝜀 , where k and ε are the propagation constant and permittivity of the 

background medium, respectively. The per unit distance attenuation rate 𝜅𝑒  (extinction 

coefficient) is twice the imaginary part of the effective propagation constant [2, 4]. The product of  

𝜅𝑒  and the layer thickness 𝑑 gives τ. The product of the real part of the effective propagation 

constant 𝑘𝑒𝑓𝑓 and the layer thickness 𝑑 gives the phase shift of transmission.   
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Figure IV.1.  Extended cylinders with length comparable to layer thickness. Incident Plane wave.  

The area marked T is the transmission reception area at 1 cm below the layer. The area marked R 

is the reflection reception area at 1 cm above the layer. 𝑟̅𝑗 is the center of jth cylinder. 𝑟̅𝑐 is the 

center of the vegetation canopy. 𝑟̅𝑜,𝑓𝑎𝑟 is the far field observation point which is far away from 

the vegetation fields with |𝑟̅𝑜,𝑓𝑎𝑟 − 𝑟̅𝑐| = 500𝜆. θ is the far fields observation angle used in FL-

BOR and FL-ICA comparison. 

 

Full-wave simulations by Numerical Solutions of 3D Maxwell’s equations (NMM3D) of 

random rough surfaces have been performed for more than a decade [43].  NMM3D simulations 

for dense random media such as terrestrial snow [83, 84] began several years ago. Multiple 

scattering of vegetataion canopy upto second order was derived in [85, 86]. We started NMM3D 

simulations of vegetation recently, where all the multiple scatterings among the vegetation 

scatterers are considered. In this section, we study the scattering by a vegetation canopy consisting 

of thin dielectric cylindrical scatterers. The full-wave approach for solving Maxwell’s equations  

is based on the Foldy-Lax multiple scattering equations (FL) [4, 30] combined with the Body of 

revolution (BOR) [12] (FL-BOR). The transmission is calculated using Monte Carlo simulation 

where the cylinders, as many as 500, are generated in each realization. The purpose of Monte Carlo 
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procedure is to simulate randomly placed receivers that are in the vegetation. Instead of randomly 

placing the receiver, we fix the receiver location and randomly shuffling the cylinders to create the 

many realizations. A merit of FL-BOR is the much smaller number of surface unknowns using 

only 1-dimensional discretization of the surface of the cylinder combined with Fourier expansions 

in the azimuthal direction. In usual 3D MoM codes, such as FEKO, the Rao-Wilton-Glisson 

(RWG) 2- dimensional basis functions are used. The results of transmission for C-band V-

polarized (TM) incident wave are compared with those of EP, DBA and RTE. Two cases are 

studied: extended cylinders (Figure IV.1) and short cylinders (Figure IV.2). Extended cylinders 

mean that the cylinder lengths are the same as or comparable to the thickness of the vegetation 

layer.  

This chapter is organized as follows. In Section 4.2, the approaches and the results of the 

effective permittivity (EP), the distorted Born approximation (DBA) and the radiative transfer 

equation (RTE) are reviewed. The derivation of the RTE equation using elemental cylindrical 

volumes is illustrated. Such elemental cylindrical volumes can be constructed for the case of short 

cylinders, but are improbable for extended cylinders. After that, the approach of Foldy-Lax 

equations combined with BOR (FL-BOR) is described. In section 4.3, the approach of FL-BOR is 

validated by comparing with the results from the commercial software HFSS as well as the method 

of combining Foldy-Lax equations with Infinite Cylinder Approximation (FL-ICA). In section 4.4, 

the procedures of Monte Carlo simulations of NMM3D for transmission, reflection, absorption, 

emission and the profiles of the electric field in the vegetation canopy are described. Next, the 

numerical results of short cylinders and extended cylinders are illustrated. The simulations are 

performed at C band (5.4GHz) with a plane vertically polarized incident wave at 40 degrees 

incident angle.   
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Figure IV.2.  Short cylinders statistically homogeneous in 3D and a RTE elemental volume.  

A RTE cylindrical elemental volume with cross-sectional area A and length l containing N 

scatterers [36] is drawn in black. n0 is the number of scatterers per m3. The input and output 

intensities are 𝐼𝑖𝑛 and 𝐼𝑜𝑢𝑡 which are comparable with ∆𝐼 = 𝐼𝑜𝑢𝑡 − 𝐼𝑖𝑛 . Each scatterer has 𝜎𝑎 and 

𝜎𝑠, the absorption and scattering cross section respectively. The area marked T is the 

transmission reception area at 1 cm below the layer. The area marked R is the reflection 

reception area at 1 cm above the layer. 

 

4.2 Foldy-Lax Equation Combined with Body of Revolution (FL-BOR) 

4.2.1 Review of RTE Derivation, DBA and EP 

We first review the derivation of the radiative transfer equation [2, 43, 87, 88] for a random 

medium of discrete scatterers (Figure IV.2). Consider an RTE cylindrical elemental volume 

containing N scatterers. The elemental volume is defined by cross-sectional area A and length l as 



145 

  

shown in Figure IV.2.The change of power as the wave passes through the cylindrical elemental 

volume is  

∆𝑃 = (𝐼𝑜𝑢𝑡 − 𝐼𝑖𝑛)𝐴                                                    (4.2.1) 

The power change is caused by absorption and scattering by the scatterers inside the cylindrical 

elemental volume. Let 𝜎𝑎  and 𝜎𝑠  represent the absorption and scattering cross section of a 

scatterer, respectively. Then  

∆𝑃 = −𝑁(𝜎𝑎 + 𝜎𝑠)𝐼                                                      (4.2.2) 

Let the scatterers per unit volume be  𝑛0. Then 𝑁 = 𝑛0𝐴𝑙. Substituting into equation (2) and 

comparing with (1), we get ∆𝑃 = (𝐼𝑜𝑢𝑡 − 𝐼𝑖𝑛)𝐴 = −𝑛0𝐴𝑙(𝜎𝑎 + 𝜎𝑠)𝐼. Then   

∆𝐼

𝑙
= −𝑛0(𝜎𝑎 + 𝜎𝑠)𝐼                                                          (4.2.3) 

where ∆𝐼 = (𝐼𝑜𝑢𝑡 − 𝐼𝑖𝑛), and  𝐼 = (𝐼𝑜𝑢𝑡 + 𝐼𝑖𝑛)/2 is the “average 𝐼”.   

The extinction coefficient 𝜅𝑒 which calculates the power attenuation rate per unit distance through 

the vegetation layer is defined as 

𝜅𝑒 = 𝑛0𝜎𝑎 + 𝑛0𝜎𝑠                                                                (4.2.4) 

By taking the small length limit of l, a differential equation is obtained   

𝑑𝐼

𝑑𝑠
= −𝜅𝑒𝐼                                                               (4.2.5) 

The assumed properties of the elemental cylindrical volume [2, 43, 87, 88] include the 

following: 1) The number of scatterers inside RTE cylindrical elemental volume must not be small. 

2) The entire scatterer must be inside the elemental volume because 𝜎𝑎 and 𝜎𝑠 are calculated for 

an entire scatterer and not part of a scatterer. 3) The 𝐼 on the right-hand-side of equation (5) is the 

average of 𝐼𝑜𝑢𝑡 and 𝐼𝑖𝑛 so that 𝐼𝑜𝑢𝑡 and 𝐼𝑖𝑛 are not much different.  
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To complete RTE derivation, a similar argument accounts for coupling through the 

scattering phase function 𝑝(𝑠̂, 𝑠̂′) which is the scattering from direction 𝑠̂′ into direction 𝑠̂. The 

phase function is caused by the scatterers inside the cylindrical volume. Then  [4, 43, 88] 

𝑑𝐼

𝑑𝑠
= −𝜅𝑒𝐼 + ∫𝑑𝑠̂′ 𝑝(𝑠̂, 𝑠̂′)𝐼(𝑠̂′)                                         (4.2.6)  

The transmitted intensity, 𝐼𝑡  of RTE for an incident wave with intensity 𝐼𝑖𝑛𝑐  is, ignoring the 

contribution of the phase function,  

𝐼𝑡 = 𝐼𝑖𝑛𝑐𝑒𝑥𝑝(−𝜅𝑒𝑑(𝑠𝑒𝑐𝜃𝑖))                                       (4.2.7) 

where 𝜃𝑖 is the incident angle and d is the thickness of the vegetation layer.  

The optical thickness 𝜏, in the radiative transfer approach, is 𝜏 = 𝜅𝑒𝑑 [4]. Then the transmission 

can be calculated as 

𝑡 = 𝑒𝑥𝑝(−𝜏𝑠𝑒𝑐𝜃𝑖)                                                        (4.2.8) 

Another common approach is using the distorted Born approximation [11]. The distorted 

Born approximation follows from the lowest order of the mass operator in the Dyson equation 

[89], in which the mean field 𝐸 is obtained for the  vegetation layer as an equivalent medium with 

an effective permittivity 𝜀𝑒𝑓𝑓 [82]. This means  𝐷̅ = 𝜀𝑒𝑓𝑓𝐸̅. The effective propagation constant is 

𝑘𝑒𝑓𝑓 = 𝜔√𝜇𝜀𝑒𝑓𝑓 . Since the intensity is the square of absolute value of the electric field, the 

transmission is 

𝑡 = exp [−2𝐼𝑚(𝑘𝑒𝑓𝑓)𝑑𝑠𝑒𝑐𝜃𝑖]                                     (4.2.9) 

where 𝐼𝑚(𝑘𝑒𝑓𝑓) indicates the imaginary part of 𝑘𝑒𝑓𝑓. 

Using Foldy’s approximation [4, 11], which assumes a sparse concentration of scatterers, the 

effective propagation constant is  
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𝑘𝑒𝑓𝑓 = 𝑘 +
2𝜋𝑛0

𝑘
𝑓(𝑘̂𝑖 , 𝑘̂𝑖)                                      (4.2.10) 

where 𝑘  is the propagation constant of the background medium and 𝑓(𝑘̂𝑖 , 𝑘̂𝑖)  is the forward 

scattering amplitude of a single scatterer.  

Then, 2𝐼𝑚(𝑘𝑒𝑓𝑓) =
4𝜋𝑛0

𝑘
𝐼𝑚 (𝑓(𝑘̂𝑖 , 𝑘̂𝑖)). From forward scattering theorem [4], 

4𝜋

𝑘
𝐼𝑚 (𝑓(𝑘̂𝑖 , 𝑘̂𝑖)) = 𝜎𝑎 + 𝜎𝑠                                       (4.2.11) 

Substituting equation (4.2.11) into equation (4.2.9) and using equation (4.2.6) for 𝜅𝑒 , the 

transmission for DBA is obtained as 𝑡 = 𝑒𝑥𝑝(−𝜅𝑒𝑑𝑠𝑒𝑐𝜃𝑖).   Thus, RTE and DBA have the same 

formula of the attenuation rate per unit distance 𝜅𝑒. The Dyson’s equation is a result of using 

Feymann diagrams. In the book chapter of Frisch [89] the lowest order approximation (equation 

(6.40) in [89]) of the mass operator is 

⊗= ∑ ∫𝑝(𝑟̅𝑎)𝑆(𝑟̅ − 𝑟̅𝑎, 𝑟̅′ − 𝑟̅𝑎)
𝑁
𝑎=1 𝑑𝑟̅𝑎                         (4.2.12) 

where 𝑝(𝑟̅𝑎) is the probability density function of scatterers’ positions, 𝑆 is the scattering matrix 

and 𝑁 is the total number of scatterers. 

In Frisch [89], the probability density function 𝑝(𝑟̅𝑎), for the position of a scatterer is  

𝑝(𝑟̅𝑎) =
1

𝑉
                                                     (4.2.13) 

This means that the scatterers are statistically homogeneously distributed in the 3D space. Then 

∑
1

𝑉
𝑁
𝑎=1 =

𝑁

𝑉
= 𝑛0 and the mass operator becomes 

⊗= 𝑛0 ∫ 𝑆(𝑟̅ − 𝑟̅𝑎, 𝑟̅′ − 𝑟̅𝑎)𝑑𝑟̅𝑎                                   (4.2.14) 

The vegetation layer of short cylinders are illustrated in Figure IV.2. The figure shows that 

the RTE elemental cylindrical volume can be constructed for such a medium.  The figure also 

shows that the pdf of equation (4.2.13) of 3D statistical homogeneity also applies.  However, for 

the extended cylinders of Figure IV.1, it is improbable to construct the RTE elemental cylindrical 
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volume since the length of the extended cylinder is the same or comparable to the layer thickness. 

Figure IV.1 shows that the cylinders can be translated horizontally but vertical translation would 

move the cylinders out of the bounds of the layer. The case of extended cylinders represents several 

vegetation types such as grass, wheat, canola, corn and the understory of forests. 

Three other observations of the formula are: 1) 𝑛0 is clearly defined for the short cylinder 

case.   Strictly speaking, 𝑛0 is not defined for the extended cylinder case. It has been customary to 

use 𝑛𝑎 = 𝑛0𝑑 where 𝑛𝑎 is the number of cylinders per unit area [5, 6, 28]. 2) In the calculations 

of 𝜎𝑎 and 𝜎𝑠, the entire cylinder of length L is used which means the entire cylinder from top to 

bottom receives the same incident electric fields. This does not apply to the extended-cylinders 

case since attenuation and scattering in the vegetation canopy will change the wave significantly 

before the wave hits the lower part of the cylinder. 3) In the calculations of scattering phase 

function 𝑝(𝑠̂, 𝑠̂′), far field approximation is used, which means each two cylinders much be in the 

far field region of each other. Far field distance is larger than 𝐿2 𝜆⁄  where L is the length of the 

cylinder and 𝜆 is the wavelength. For example, the far field distance for 30cm tall grass at C-band 

is around 1.8m. But the adjacent two grass cannot be so far from each other. 

To summarize, firstly, the geometries and positions of extended cylinders do not satisfy 

the assumption of elemental cylindrical volume used in the derivation of RTE. Secondly, RTE 

assumes uniform distributions of scatterers while in vegetation and forest canopies, the positions 

of scatterers are not uniform. The scatterers can be in dense clusters and in the other extreme, there 

can be large gaps between scatterers. Thirdly, RTE uses far field approximation but the adjacent 

vegetation scatterers are generally not in the far field region of each other. Thus, in this chapter, 

we use numerical solutions of Maxwell’s equations which can take into accounts these factors that 

are not addressed by RTE. 
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4.2.2 Formulations of FL-BOR 

In this section, the formulation of FL-BOR is presented in subsection (a). The derivations 

of Foldy-Lax equations and the Body of Revolution method is also presented in subsection (b). 

(a) FL-BOR 

Consider the case of 𝑁𝐿  scatterers illuminated by an incident plane wave. The Foldy-Lax 

multiple scattering equations are [4, 90] 

𝐸̅𝑚
𝑒𝑥 = 𝐸̅𝑚

𝑖𝑛𝑐 + ∑ 𝐸̅𝑛
𝑠𝑐𝑎𝑡𝑁𝐿

𝑛=1
𝑛≠𝑚

                                           (4.2.15) 

where 𝐸̅𝑚
𝑒𝑥 is the excitation field on scatterer m, 𝐸̅𝑚

𝑖𝑛𝑐 is the incident field on scatterer m, and 𝐸̅𝑛
𝑠𝑐𝑎𝑡 

is the scattered field from scatterer n to scatterer m. The Foldy-Lax multiple scattering equations 

are derived from Maxwell’s equations and are exact relations without approximations. The 

derivation can be found in sections 1 and 2 of chapter 5 in [30] and a brief derivation is also 

presented in section 4.2.2 (b). The Foldy-Lax multiple scattering equations state that the final 

exciting field on scatterer m is the sum of incident wave and the scattered waves from all other 

scatterers except m itself. 

Using the T matrix of an isolated scatterer that 0
scat x

nn
e

nE G T E= . Previously, the numerical 

implementations of Foldy-Lax equations are using the spherical wave expansions for both the 

Green’s function 𝐺̿0 and the T matrix nT  [4, 90, 91]. However, spherical wave expansions are not 

suitable for cylinders which have large aspect ratios of length to radius. We use BOR which are 

for rotationally symmetric objects such as cylinders and disks. In this section, we use the Z matrix 

from BOR instead of the T matrix. In this case, wave expansions are not needed. Huygen’s 

principles are used to calculate scattering from the cylinder to another cylinder [4]. 
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𝐸̅𝑛
𝑠𝑐𝑎𝑡 = ∫ 𝑑𝑆′[𝐺̿0 ∙ 𝑖𝜔𝜇0𝐽(̅𝑟̅

′) − ∇ × 𝐺̿0 ∙ 𝑀̅(𝑟̅
′)]

𝑑𝑆𝑛
                                           (4.2.16) 

where 𝐺̿0 is the dyadic Green’s function, and 𝐽(̅𝑟̅′) and 𝑀̅(𝑟̅′) are the equivalent surface electric 

and magnetic currents, respectively. 

Substituting equation (4.2.16) into the Foldy-Lax equations, we obtain  

𝐸̅𝑚
𝑒𝑥 = 𝐸̅𝑚

𝑖𝑛𝑐 + ∑ ∫ 𝑑𝑆′ [
𝐺̿0 ∙ 𝑖𝜔𝜇0𝐽(̅𝑟̅

′) −

∇ × 𝐺̿0 ∙ 𝑀̅(𝑟̅
′)
]

𝑑𝑆𝑛

𝑁𝐿
𝑛=1
𝑛≠𝑚

                         (4.2.17) 

Similarly, for magnetic fields, we have 

𝐻̅𝑚
𝑒𝑥 = 𝐻̅𝑚

𝑖𝑛𝑐 +∑ ∫ 𝑑𝑆′ [
𝐺̿0 ∙ 𝑖𝜔𝜀0𝑀̅(𝑟̅

′) +

∇ × 𝐺̿0 ∙ 𝐽(̅𝑟̅
′)

]
𝑑𝑆𝑛

𝑁𝐿
𝑛=1
𝑛≠𝑚

                             (4.2.18) 

To solve equations (4.2.17) and (4.2.18) numerically, each cylinder is divided into NS sections. 

The total number of sections of all the cylinders are 𝑁𝑡𝑜𝑡 = 𝑁𝐿 × 𝑁𝑆 . Equations (4.2.17) and 

(4.2.18) are put together in matrix form as, 

[𝐸̅
𝑒𝑥

𝐻̅𝑒𝑥
] = [𝐸̅

𝑖𝑛𝑐

𝐻̅𝑖𝑛𝑐
] + 𝑃̿ [

𝐽 ̅

𝑀̅
]                                              (4.2.19) 

𝐸̅ and 𝐻̅ are expressed in 𝑥̂, 𝑦̂  and  𝑧̂ directions. For each section, the surface currents 𝐽 ̅and 𝑀̅ are 

decomposed into vector components of two directions 𝑡̂ and 𝜙̂ which are the body directions of 

the cylinder in the longitudinal and azimuthal directions, respectively. Thus [𝐸̅
𝑒𝑥

𝐻̅𝑒𝑥
] and [𝐸̅

𝑖𝑛𝑐

𝐻̅𝑖𝑛𝑐
] are 

both 6𝑁𝑡𝑜𝑡 × 1 matrices, [
𝐽 ̅

𝑀̅
] is a 4𝑁𝑡𝑜𝑡 × 1 matrix and 𝑃̿ is a 6𝑁𝑡𝑜𝑡 × 4𝑁𝑡𝑜𝑡 matrix. The orders 

for the matrix elements section by section are as follows: 

[𝐸̅
𝑒𝑥

𝐻̅𝑒𝑥
] = [𝐸𝑥,1

𝑒𝑥 ; 𝐸𝑦,1
𝑒𝑥 ; 𝐸𝑧,1

𝑒𝑥 ; 𝐻𝑥,1
𝑒𝑥 ; 𝐻𝑦,1

𝑒𝑥 ; 𝐻𝑧,1
𝑒𝑥 ;… 

𝐸𝑥,𝑁𝑡𝑜𝑡
𝑒𝑥 ; 𝐸𝑦,𝑁𝑡𝑜𝑡

𝑒𝑥 ; 𝐸𝑧,𝑁𝑡𝑜𝑡𝑡
𝑒𝑥 ; 𝐻𝑥,𝑁𝑡𝑜𝑡

𝑒𝑥 ; 𝐻𝑦,𝑁𝑡𝑜𝑡
𝑒𝑥 ; 𝐻𝑧,𝑁𝑡𝑜𝑡

𝑒𝑥 ], 

where the semicolon indicates that it is a column vector instead of a row vector. Similarly, 
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[𝐸̅
𝑖𝑛𝑐

𝐻̅𝑖𝑛𝑐
] = [𝐸𝑥,1

𝑖𝑛𝑐; 𝐸𝑦,1
𝑖𝑛𝑐; 𝐸𝑧,1

𝑖𝑛𝑐; 𝐻𝑥,1
𝑖𝑛𝑐; 𝐻𝑦,1

𝑖𝑛𝑐; 𝐻𝑧,1
𝑖𝑛𝑐;… 

𝐸𝑥,𝑁𝑡𝑜𝑡
𝑖𝑛𝑐 ; 𝐸𝑦,𝑁𝑡𝑜𝑡

𝑖𝑛𝑐 ; 𝐸𝑧,𝑁𝑡𝑜𝑡
𝑖𝑛𝑐 ; 𝐻𝑥,𝑁𝑡𝑜𝑡

𝑖𝑛𝑐 ; 𝐻𝑦,𝑁𝑡𝑜𝑡
𝑖𝑛𝑐 ; 𝐻𝑧,𝑁𝑡𝑜𝑡

𝑖𝑛𝑐 ], 

and  

[
𝐽 ̅

𝑀̅
] = [𝐽𝑡,1; 𝐽𝜙,1;𝑀𝑡,1;𝑀𝜙,1; … 

𝐽𝑡,𝑁𝑡𝑜𝑡; 𝐽𝜙,𝑁𝑡𝑜𝑡;𝑀𝑡,𝑁𝑡𝑜𝑡;𝑀𝜙,𝑁𝑡𝑜𝑡]. 

Matrix 𝑃̿ is defined as 

𝑃̿ = [

𝑝̿1,1 ⋯ 𝑝̿1,𝑁𝑡𝑜𝑡
⋮ ⋱ ⋮

𝑝̿𝑁𝑡𝑜𝑡,1 ⋯ 𝑝̿𝑁𝑡𝑜𝑡,𝑁𝑡𝑜𝑡

] 

with each 𝑝̿𝑖,𝑗 BEING A 6 × 4 MATRIX. 𝑝̿𝑖,𝑗 calculates the scattered fields from section j to the 

section i caused by the equivalent surface currents on section j. 

In the derivations below, the radius of the cylinder is assumed to be much less than the 

wavelength. The assumption is valid for many vegetation types at L- and C- band such as grass 

and wheat. We assume here that the cylinders are vertically oriented. There is no conceptual 

difficulty in extending the formulation to cylinders with an orientation distribution and to cylinders 

with larger radii. In the vertically oriented case, 𝑡̂ equals 𝑧̂  for all cylinders. As explained above, 

the scattered field from the cylinder itself is excluded in the Foldy-Lax equations. Thus, 𝑝̿𝑖,𝑗 is 0̿ 

if j and i sections are on the same cylinder. For example, 𝑝̿1,2 = 0̿ since both section 1 and section 

2 are on cylinder 1. In mathematical notations, 

𝑝̿𝑖,𝑗 = 0̿  {
𝑖 = (𝑘 − 1)𝑁𝑆 + 1: 𝑘𝑁𝑆
𝑗 = (𝑘 − 1)𝑁𝑆 + 1: 𝑘𝑁𝑆

 , 
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where 𝑘 = 1,2, … ,𝑁𝐿 . Otherwise, the thin cylinder approximation is used to calculate 𝑝̿𝑖,𝑗  as 

follows. According to equation (4.2.16), the scattered fields from section j to the center of section 

i is calculated as 

𝐸̅𝑗
𝑠𝑐𝑎𝑡(𝑟̅𝑖) = ∫ 𝑑𝑆′ [

𝐺̿0(𝑟̅𝑖 , 𝑟̅
′) ∙ 𝑖𝜔𝜇0𝐽(̅𝑟̅

′) −

∇ × 𝐺̿0(𝑟̅𝑖 , 𝑟̅
′) ∙ 𝑀̅(𝑟̅′)

]
𝑑𝑆𝑗

                                     (4.2.20) 

where 𝑟̅𝑖 = 𝑥𝑖𝑥̂ + 𝑦𝑖𝑦̂ + 𝑧𝑖𝑧̂ is center of section i. 

Since the radius of the cylinder is much less than wavelength (thin cylinder) and the section length 

∆𝑧 is chosen to be small, 𝐽(̅𝑟̅′) and 𝑀̅(𝑟̅′) are approximately constant within each section. Let the 

surface currents on section j be 𝐽(̅𝑟̅𝑗) and 𝑀̅(𝑟̅𝑗), which are decomposed into the two directions 𝑡̂′ 

and 𝜙̂′. For vertically oriented cylinders, 𝑡̂′ = 𝑧̂ and 𝜙̂′ = −𝑠𝑖𝑛𝜙′𝑥̂ + 𝑐𝑜𝑠𝜙′𝑦̂. Thus 

𝐽(̅𝑟̅𝑗) = 𝐽𝑡,𝑗 𝑡̂
′ + 𝐽𝜙,𝑗𝜙̂

′ = −𝐽𝜙,𝑗𝑠𝑖𝑛𝜙
′𝑥̂ + 𝐽𝜙,𝑗𝑐𝑜𝑠𝜙

′𝑦̂ + 𝐽𝑡,𝑗𝑧̂, 

and  

𝑀̅(𝑟̅𝑗) = 𝑀𝑡,𝑗 𝑡̂
′ +𝑀𝜙,𝑗𝜙̂

′ = −𝑀𝜙,𝑗𝑠𝑖𝑛𝜙
′𝑥̂ + 𝑀𝜙,𝑗𝑐𝑜𝑠𝜙

′𝑦̂ + 𝑀𝑡,𝑗𝑧̂. 

Under the thin cylinder assumption, Green’s function 𝐺̿0(𝑟̅𝑖 , 𝑟̅
′) can also be approximated by 

𝐺̿0(𝑟̅𝑖 , 𝑟̅𝑗) where 𝑟̅𝑗 is the center of section j. The expression for the dyadic Green’s function is 

 𝐺̿0(𝑟̅𝑖 , 𝑟̅𝑗) = 𝐺1(𝑅)𝐼 ̿ + 𝐺2(𝑅)𝑅̂𝑅̂                                               (4.2.21) 

with  𝐼 ̿ = 𝑥̂𝑥̂ + 𝑦̂𝑦̂ + 𝑧̂𝑧̂,  

𝑅 = √(𝑥𝑖 − 𝑥𝑗)
2
+ (𝑦𝑖 − 𝑦𝑗)

2
+ (𝑧𝑖 − 𝑧𝑗)

2
 , 

 𝐺1(𝑅) =
exp (𝑖𝑘𝑅)

4𝜋𝑘2𝑅3
(−1 + 𝑖𝑘𝑅 + 𝑘2𝑅2) 

𝐺2(𝑅) =
exp(𝑖𝑘𝑅)

4𝜋𝑘2𝑅3
(3 − 3𝑖𝑘𝑅 − 𝑘2𝑅2), 

𝑅̂ = [(𝑥𝑖 − 𝑥𝑗)𝑥̂ + (𝑦𝑖 − 𝑦𝑗)𝑦̂ + (𝑧𝑖 − 𝑧𝑗)𝑧̂]/𝑅. 
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From equation (4.2.21), 𝐺̿0(𝑟̅𝑖 , 𝑟̅𝑗) can be written in the form 𝐺̿0(𝑟̅𝑖 , 𝑟̅𝑗) = 𝐺̅𝑥,𝑖𝑗𝑥̂ + 𝐺̅𝑦,𝑖𝑗𝑦̂ + 𝐺̅𝑧,𝑖𝑗𝑧̂. 

Next, the expression for the curl of the dyadic Green’s function is  

∇ × 𝐺̿0(𝑟̅𝑖 , 𝑟̅𝑗) = 

exp(𝑖𝑘𝑅)

4𝜋𝑅2
(𝑖𝑘 −

1

𝑅
) [(𝑥𝑖 − 𝑥𝑗)(𝑧̂𝑦̂ − 𝑦̂𝑧̂) + (𝑦𝑖 − 𝑦𝑗)(𝑥̂𝑧̂ − 𝑧̂𝑥̂) + (𝑧𝑖 − 𝑧𝑗)(𝑦̂𝑥̂ − 𝑥̂𝑦̂)]                               

(4.2.22) 

Let 𝐹̿0(𝑟̅𝑖 , 𝑟̅𝑗) = ∇ × 𝐺̿0(𝑟̅𝑖 , 𝑟̅𝑗). Similarly, from equation (4.2.22), 𝐹̿0(𝑟̅𝑖 , 𝑟̅𝑗) can be written in the 

form 𝐹̿0(𝑟̅𝑖 , 𝑟̅𝑗) = 𝐹̅𝑥,𝑖𝑗𝑥̂ + 𝐹̅𝑦,𝑖𝑗𝑦̂ + 𝐹̅𝑧,𝑖𝑗𝑧̂. 

The surface integration can be expressed as ∫ 𝑑𝑆′
𝑑𝑆𝑗

= 𝑎𝑗 ∫ 𝑑𝜙′
2𝜋

0
∫ 𝑑𝑧′
𝑧𝑗+∆𝑧𝑗/2

𝑧𝑗−∆𝑧𝑗/2
 with 𝑎𝑗 , 𝑧𝑗  and 

∆𝑧𝑗 being the radius, z component of the center position and the length of section j, respectively. 

Substituting these into equation (20), then 

𝑎𝑗∫ 𝑑𝜙′
2𝜋

0

∫ 𝑑𝑧′
𝑧𝑗+

∆𝑧𝑗
2

𝑧𝑗−
∆𝑧𝑗
2

(𝐺̿0(𝑟̅𝑖 , 𝑟̅𝑗) ∙ 𝐽(̅𝑟̅𝑗)) = 𝑎𝑗∆𝑧𝑗

[
 
 
 
 
 
 −𝐽𝜙,𝑗𝐺̅𝑥,𝑖𝑗∫ 𝑑𝜙′𝑠𝑖𝑛𝜙′

2𝜋

0

+𝐽𝜙,𝑗𝐺̅𝑦,𝑖𝑗∫ 𝑑𝜙′𝑐𝑜𝑠𝜙′
2𝜋

0

+𝐽𝑡,𝑗𝐺̅𝑧,𝑖𝑗∫ 𝑑𝜙′
2𝜋

0 ]
 
 
 
 
 
 

= 2𝜋𝑎𝑗∆𝑧𝑗𝐽𝑡,𝑗𝐺̅𝑧,𝑖𝑗 

(4.2.23) 

Similarly,  

𝑎𝑗 ∫ 𝑑𝜙′
2𝜋

0
∫ 𝑑𝑧′
𝑧𝑗+∆𝑧𝑗/2

𝑧𝑗−∆𝑧𝑗/2
(∇ × 𝐺̿0(𝑟̅𝑖 , 𝑟̅𝑗) ∙ 𝑀̅(𝑟̅𝑗)) = 2𝜋𝑎𝑗∆𝑧𝑗𝑀𝑡,𝑗𝐹̅𝑧,𝑖𝑗            (4.2.24) 

Thus equation (4.2.20) becomes  

𝐸̅𝑗
𝑠𝑐𝑎𝑡(𝑟̅𝑖) = 2𝜋𝑎𝑗∆𝑧𝑗[𝑖𝜔𝜇0𝐺̅𝑧,𝑖𝑗𝐽𝑡,𝑗 − 𝐹̅𝑧,𝑖𝑗𝑀𝑡,𝑗]                                   (4.2.25) 

Similarly, for magnetic fields, 

𝐻̅𝑗
𝑠𝑐𝑎𝑡(𝑟̅𝑖) = 2𝜋𝑎𝑗∆𝑧𝑗[𝑖𝜔𝜀0𝐺̅𝑧,𝑖𝑗𝑀𝑡,𝑗 + 𝐹̅𝑧,𝑖𝑗𝐽𝑡,𝑗]                                    (4.2.26) 
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Substituting equation (4.2.25) and (4.2.26) into equation (4.2.19), the expression for the non-zeros 

𝑝̿𝑖,𝑗 is obtained as  

𝑝̿𝑖,𝑗 = 2𝜋𝑎𝑗∆𝑧𝑗 [
𝑖𝜔𝜇0𝐺̅𝑧,𝑖𝑗 0̅ −𝐹̅𝑧,𝑖𝑗 0̅

𝐹̅𝑧,𝑖𝑗 0̅ 𝑖𝜔𝜀0𝐺̅𝑧,𝑖𝑗 0̅
]                                (4.2.27) 

where 𝑎𝑗 is the radius and ∆𝑧𝑗 is the length of section j. 𝐺̅𝑧,𝑖𝑗 = [𝐺𝑥𝑧,𝑖𝑗; 𝐺𝑦𝑧,𝑖𝑗; 𝐺𝑧𝑧,𝑖𝑗] which is 

obtained from the expression for the  dyadic Green’s function 𝐺̿0(𝑟̅𝑖 , 𝑟̅𝑗) in equation (4.2.21). 

Similarly,𝐹̅𝑧,𝑖𝑗 = [𝐹𝑥𝑧,𝑖𝑗; 𝐹𝑦𝑧,𝑖𝑗; 𝐹𝑧𝑧,𝑖𝑗] is obtained from equation (4.2.22). 

 
Figure IV.3.  One dimensional discretization of the cylinder in the BOR. 

 

The expressions for the matrix 𝑃̿ which relates the surface currents to the scattered fields are 

obtained. The next step is to relate the surface currents to the exciting fields, and for this the BOR 

formulation [12] is used. In BOR, the surface currents 𝐽𝑠̅(𝑟̅
′) and 𝑀̅𝑠(𝑟̅

′) are represented by locally 

oriented basis functions (𝑡̂′ and 𝜙̂′), which are expanded in Fourier series in the 𝜙̂′ dimension 

making use of the rotational symmetry [12, 92]. Therefore only 1-dimensional discretization is 

used in MoM, as shown in Figure IV.3. This is different from the usual surface integral equation 

where the Rao-Wilton-Glisson (RWG) 2- dimensional vector basis functions are used to represent 

tangential surface fields on curved surfaces. The electric surface currents are solved as: 
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𝐽𝑠̅(𝑟̅
′) = ∑ ∑ [

𝐼𝛼,𝑠
𝐽,𝑡′𝑓𝑠

𝐽,𝑡′𝑒−𝑖𝛼𝜙
′
𝑡̂′ +

𝐼𝛼,𝑠
𝐽,𝜙′
𝑓𝑠
𝐽,𝜙′
𝑒−𝑖𝛼𝜙′𝜙̂′

]
𝑁𝑆
𝑠=1

∞
𝛼=−∞                                       (4.2.28) 

where 𝛼 is the Fourier harmonic order, 𝐼𝛼,𝑠
𝐽,𝑡′

 and 𝐼𝛼,𝑠
𝐽,𝜙′

 are the unknown coefficients, and 𝑓𝑠
𝐽,𝑡′

 and 

𝑓𝑠
𝐽,𝜙′

 are the one-dimensional basis functions for electric surface current in the 𝑡̂′ and 𝜙̂′ direction, 

respectively.  

Since the radius of the cylinder is much smaller than the wavelength, only the zeroth Fourier 

harmonic (𝛼 = 0) is important. Thus, equation (4.2.28) becomes  

𝐽𝑠̅(𝑟̅
′) = ∑ [𝐼0,𝑠

𝐽,𝑡′𝑓𝑠
𝐽,𝑡′ 𝑡̂′ + 𝐼0,𝑠

𝐽,𝜙′
𝑓𝑠
𝐽,𝜙′
𝜙̂′]

𝑁𝑆
𝑠=1                                          (4.2.29) 

Similarly, for 𝑀̅𝑠(𝑟̅
′), 

𝑀̅𝑠(𝑟̅
′) = ∑ [𝐼0,𝑠

𝑀,𝑡′𝑓𝑠
𝑀,𝑡′ 𝑡̂′ + 𝐼0,𝑠

𝑀,𝜙′
𝑓𝑠
𝑀,𝜙′

𝜙̂′]
𝑁𝑆
𝑠=1                                       (4.2.30) 

where 𝐼𝛼,𝑠
𝑀,𝑡′

 and 𝐼𝛼,𝑠
𝑀,𝜙′

 are the unknown coefficients, and 𝑓𝑠
𝑀,𝑡′

 and 𝑓𝑠
𝑀,𝜙′

 are the one-dimensional 

basis functions for the magnetic surface current in the 𝑡̂′ and 𝜙̂′ direction, respectively. 

In this section, the basis functions are chosen to be pulse functions with amplitude one for currents 

in 𝜙̂′ direction currents and amplitude 
1

2𝜋𝑎
 for currents in 𝑡̂′ direction where a is the radius of the 

cylinder. Thus, 

[
𝐽 ̅

𝑀̅
] = 𝐶̿ [ 𝐼

𝐽̅

𝐼𝑀̅
]                                                          (4.2.31) 

where [ 𝐼
𝐽̅

𝐼𝑀̅
] is the matrix for the unknown coefficients 𝐼0,𝑠

𝐽,𝑡′
  and 𝐼0,𝑠

𝑀,𝑡′
, and 

𝐶̿ = [

𝑐1̿ 0̿

⋱

0̿ 𝑐𝑁̿𝑆

], with 𝑐𝑠̿ =

[
 
 
 
 
1

2𝜋𝑎
0 0 0

0 0 0 0

0 0
1

2𝜋𝑎
0

0 0 0 0]
 
 
 
 

. 
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Using both the Electric Field Integral Equation (EFIE) and the Magnetic Field Integral Equation 

(MFIE), we have for the cylinder n that [12] 

[ 𝐼
𝐽̅

𝐼𝑀̅
]
𝑛
= 𝛽̿𝑛

−1 [𝑉̅
𝐸

𝑉̅𝐻
]
𝑛

                                                   (4.2.32) 

where the subscript n denotes cylinder n. The details of the formulations are available in [12]  and 

the matrix elements of 𝛽̿𝑛 are available on pages 23-28 in [12] The testing functions are pulse 

functions with amplitude one. The column vector on the right-hand side is related to the excitation 

field.   

Substituting equation (4.2.32) to equation (4.2.31), we obtain 

[
𝐽 ̅

𝑀̅
]
𝑛

= 𝑧𝑛̿
−1 [𝑉̅

𝐸

𝑉̅𝐻
]
𝑛

                                                  (4.2.33) 

where 𝑧𝑛̿
−1 = 𝐶̿𝛽̿𝑛

−1 is the modified inverse of the MoM system matrix for cylinder n which relates 

the excitation to the surface current. 

The BOR code, developed by Glisson and Wilton  [12],  provides 𝑧𝑛̿
−1. But the code [12] only 

calculates solutions for incident plane waves.   For the present case, we study multiple scattering 

from one cylinder to another. Thus, we compute scattering field from one point on the cylinder to 

another point as the exciting field and then convert the exciting fields to harmonics. 𝑉̅𝐸 and 𝑉̅𝐻 

are results from integration of testing function with the excitation fields. 𝐽,̅ 𝑀̅, 𝑉̅𝐸 and 𝑉̅𝐻 have 

both 𝑡̂′ and 𝜙̂′ components and there are 𝑁𝑆 sections in total; therefore, 𝑧𝑛̿
−1 is of size 4𝑁𝑆 × 4𝑁𝑆. 

Consider section j on the cylinder n. Then [12], 

𝑉𝑡′
𝐸 = 𝑎𝑗 ∫ 𝑑𝜙′

2𝜋

0
∫ 𝑑𝑧′
𝑧𝑗+

∆𝑧𝑗

2

𝑧𝑗−
∆𝑧𝑗

2

𝐸𝑡′
𝑒𝑥(𝑟̅′)                          (4.2.34) 

𝑉𝜙′
𝐸 = 𝑎𝑗 ∫ 𝑑𝜙′

2𝜋

0
∫ 𝑑𝑧′
𝑧𝑗+

∆𝑧𝑗

2

𝑧𝑗−
∆𝑧𝑗

2

𝐸𝜙′
𝑒𝑥(𝑟̅′)                         (4.2.35) 
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where the subscripts 𝑡′  and 𝜙′  denote the 𝑡̂′  and 𝜙̂′  components, respectively. Pulse testing 

functions are used to obtain equations (4.2.34) and (4.2.35) as in [12]. 

Since the cylinders are vertically oriented, 𝐸𝑡′
𝑒𝑥(𝑟̅′)     =     𝐸𝑧

𝑒𝑥(𝑟̅′) , and 𝐸𝜙′
𝑒𝑥(𝑟̅′) =

−𝑠𝑖𝑛𝜙′𝐸𝑥
𝑒𝑥(𝑟̅′) + 𝑐𝑜𝑠𝜙′𝐸𝑦

𝑒𝑥(𝑟̅′) . As discussed before, the excitation fields 𝐸̅𝑒𝑥(𝑟̅′)  on each 

section can be approximated by a constant value for the thin cylinders. As before, we use the 

excitation fields at the center of each section. Then, equations (4.2.34) and (4.2.35) become 

𝑉𝑗,𝑡′
𝐸 = 𝑎𝑗 ∫ 𝑑𝜙′

2𝜋

0
∫ 𝑑𝑧′
𝑧𝑗+

∆𝑧𝑗

2

𝑧𝑗−
∆𝑧𝑗

2

𝐸𝑧
𝑒𝑥(𝑟̅𝑗) = 2𝜋𝑎𝑗∆𝑧𝑗𝐸𝑧

𝑒𝑥(𝑟̅𝑗)                      (4.2.36) 

𝑉𝑗,𝜙′
𝐸 = 𝑎𝑗 ∫ 𝑑𝜙′

2𝜋

0
∫ 𝑑𝑧′
𝑧𝑗+

∆𝑧𝑗

2

𝑧𝑗−
∆𝑧𝑗

2

[
−𝑠𝑖𝑛𝜙′𝐸𝑥

𝑒𝑥(𝑟̅𝑗)

+𝑐𝑜𝑠𝜙′𝐸𝑦
𝑒𝑥(𝑟̅𝑗)

] = 0                             (4.2.37) 

Similarly, 𝑉𝑗,𝑡′
𝐻 = 2𝜋𝑎𝑗∆𝑧𝑗𝐻𝑧

𝑒𝑥(𝑟̅𝑗), and 𝑉𝑗,𝜙′
𝐻 = 0. Thus for section j, 

[
𝑉̅𝑗
𝐸

𝑉̅𝑗
𝐻] = [

𝑤̿𝑗
𝐸 0̿

0̿ 𝑤̿𝑗
𝐻
] [
𝐸̅𝑗
𝑒𝑥

𝐻̅𝑗
𝑒𝑥]                                                          (4.2.38) 

where 𝑤̿𝑗
𝐸 = 𝑤̿𝑗

𝐻 = [
0 0 2𝜋𝑎𝑗∆𝑧𝑗
0 0 0

]. 

The equations for all the cylinders are put in matrix form,  

[
𝐽 ̅

𝑀̅
] = 𝑍̿−1 [𝑉̅

𝐸

𝑉̅𝐻
] = 𝑍̿−1 𝑊̿ [𝐸̅

𝑒𝑥

𝐻̅𝑒𝑥
]                                             (4.2.39) 

where 

𝑍̿−1 = [
𝑧1̿
−1 0̿

⋱

0̿ 𝑧𝑁̿𝐿
−1

].  

𝑧𝑛̿
−1 is the modified inverse of the MoM system matrix for the cylinder n as in equation (4.2.33). 

The exciting fields are related to 𝑉̅ by the matrix  

 



158 

  

𝑊̿ = [

𝑤̿1 0̿

⋱

0̿ 𝑤̿𝑁𝑡𝑜𝑡

], where   𝑤̿𝑗 = [
𝑤̿𝑗
𝐸 0̿

0̿ 𝑤̿𝑗
𝐻
] as in equation (4.2.38). 

Letting 𝑄̿ = 𝑍̿−1 𝑊̿ and substituting Equation (4.2.39) into (4.2.19), we have  

[𝐸̅
𝑒𝑥

𝐻̅𝑒𝑥
] = [𝐼 ̿ − 𝑃̿𝑄̿]

−1
[𝐸̅

𝑖𝑛𝑐

𝐻̅𝑖𝑛𝑐
]                                        (4.2.40) 

Equation (4.2.40) is the final form of the Foldy-Lax multiple scatter equations derived from 

Maxwell’s equations where the matrix 𝑃̿  is calculated using Huygen’s principle and 𝑄̿  is 

calculated using the BOR technique. 

After the final exciting fields are solved, they are substituted into Equation (4.2.39) to find 

the equivalent surface currents from which the absorption can be calculated.  

Using Huygen’s principle, the scattered fields from the vegetation canopy are obtained 

from the surface currents by superposition of the scattered fields from all the cylinders. Let the 

observation point be at 𝑟̅𝑜. Following the derivations for 𝑃̿ above, the same equations as (4.2.25) 

and (4.2.26) for scattered fields are obtained except replacing 𝑟̅𝑗 by 𝑟̅𝑜. In matrix form, the final 

scattered fields at 𝑟̅𝑜 from all the cylinders are 

𝐸̅𝑠(𝑟̅𝑜) = 𝑆̿
𝐸(𝑟̅𝑜) [

𝐽 ̅

𝑀̅
]                                        (4.2.41a) 

𝐻̅𝑠(𝑟̅𝑜) = 𝑆̿
𝐻(𝑟̅𝑜) [

𝐽 ̅

𝑀̅
]                                        (4.2.41b) 

where 𝑆̿𝐸(𝑟̅𝑜) = [𝑠̿𝑜,1
𝐸 , … , 𝑠̿𝑜,𝑁𝑡𝑜𝑡

𝐸 ] with each  𝑠̿𝑜,𝑗
𝐸 = 2𝜋𝑎𝑗∆𝑧𝑗[𝑖𝜔𝜇0𝐺̅𝑧,𝑜𝑗 0̅ −𝐹̅𝑧,𝑜𝑗 0̅] being a 

3 × 4 matrix and  𝑆̿𝐻(𝑟̅𝑜) = [𝑠̿𝑜,1
𝐻 , … , 𝑠̿𝑜,𝑁𝑡𝑜𝑡

𝐻 ] with each 𝑠̿𝑜,𝑗
𝐻 = 2𝜋𝑎𝑗∆𝑧𝑗[𝐹̅𝑧,𝑜𝑗 0̅ 𝑖𝜔𝜀0𝐺̅𝑧,𝑜𝑗 0̅] 

being a 3 × 4 matrix. The expressions for 𝐺̅𝑧,𝑜𝑗 and 𝐹̅𝑧,𝑜𝑗 are the same as those for 𝐺̅𝑧,𝑖𝑗 and 𝐹̅𝑧,𝑖𝑗 

except replacing 𝑟̅𝑗 by 𝑟̅𝑜.  
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(b) Review of Key Derivations of Foldy-Lax Equations and BOR 

Foldy-Lax Equations 

The detail derivations can be found in sections 1 and 2 of chapter 5 in [30] and a brief derivation 

using operator notation following the methods in [30] is presented here.  

Considering 𝑁𝐿 scatterers, the Maxwell’s equations give [4, 30] 

𝐺̿ = 𝐺̿0 + ∑ 𝐺̿0𝑈̿𝑛𝐺̿
𝑁𝐿
𝑛=1                                          (4.2.42) 

where 𝐺̿ is the exact Green’s function for the problem, 𝐺̿0 is the unperturbed Green’s function and 

𝑈̿𝑛 is the scattering potential for scatterer n.       

Then, 

𝐺̿ = 𝐺̿0 + ∑ 𝐺̿0𝑈̿𝑛𝐺̿
𝑁𝐿
𝑛=1
𝑛≠𝑚

+ 𝐺̿0𝑈̿𝑚𝐺̿                         (4.2.43) 

Next, define 

𝐺̿𝑚 = 𝐺̿0 + ∑ 𝐺̿0𝑈̿𝑛𝐺̿
𝑁𝐿
𝑛=1
𝑛≠𝑚

                                        (4.2.44) 

Then equation (4.2.43) becomes 

𝐺̿ = 𝐺̿𝑚 + 𝐺̿0𝑈̿𝑚𝐺̿                                                (4.2.45) 

Multiply both sides of equation (4.2.45) by 𝑈̿𝑚, 

𝑈̿𝑚𝐺̿ = 𝑈̿𝑚𝐺̿𝑚 + 𝑈̿𝑚𝐺̿0𝑈̿𝑚𝐺̿                                    (4.2.46) 

Then,  

(𝐼 ̿ − 𝑈̿𝑚𝐺̿0)𝑈̿𝑚𝐺̿ = 𝑈̿𝑚𝐺̿𝑚                                             (4.2.47) 

Thus, 

𝑈̿𝑚𝐺̿ = (𝐼 ̿ − 𝑈̿𝑚𝐺̿0)
−1
𝑈̿𝑚𝐺̿𝑚                                   (4.2.48) 

Since the transition operator for scatterer m [4, 30] is 

𝑇̿𝑚 = (𝐼 ̿ − 𝑈̿𝑚𝐺̿0)
−1
𝑈̿𝑚                                        (4.2.49) 
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Substituting equation (4.2.49) to (4.2.48) leads to 

𝑈̿𝑚𝐺̿ = 𝑇̿𝑚𝐺̿𝑚                                                           (4.2.50) 

Substituting it into equation (4.2.44), then 

𝐺̿𝑚 = 𝐺̿0 + ∑ 𝐺̿0𝑇̿𝑛𝐺̿𝑛
𝑁𝐿
𝑛=1
𝑛≠𝑚

                                      (4.2.51) 

Applying source state to equation (4.2.51) [4, 30] 

𝐸̅𝑚
𝑒𝑥 = 𝐺̿𝑚|𝐽⟩̅                                                         (4.2.52a) 

𝐸̅𝑖𝑛𝑐 = 𝐺̿0|𝐽⟩̅                                                          (4.2.52a) 

We obtain 

𝐸̅𝑚
𝑒𝑥 = 𝐸̅𝑚

𝑖𝑛𝑐 + ∑ 𝐺̿0𝑇̿𝑛𝐸̅𝑛
𝑒𝑥𝑁𝐿

𝑛=1
𝑛≠𝑚

                                (4.2.53) 

 Since 𝐺̿0𝑇̿𝑛𝐸̅𝑛
𝑒𝑥 = 𝐸̅𝑛

𝑠𝑐𝑎𝑡 is the scattered field from scatterer n, equation (4.2.53) becomes 

𝐸̅𝑚
𝑒𝑥 = 𝐸̅𝑚

𝑖𝑛𝑐 + ∑ 𝐸̅𝑛
𝑠𝑐𝑎𝑡𝑁𝐿

𝑛=1
𝑛≠𝑚

                                        (4.2.54) 

Equation (4.2.54) is the Foldy-Lax multiple scattering equations which states that the final exciting 

field on scatterer m is the sum of incident wave and the scattered waves from all other scatterers 

except m itself. It is to be noted that in the derivations of (4.2.54) above, no approximations were 

made. 

 

Body of Revolution (BOR) Method 
 

The detail derivations can be found in [12, 92],and brief derivation is summarized here. 

EFIE: 

( ) ( ) ( )

( ) ( )
( )

( ) ( ) ( )

1 1 2 2

1 2

1 2

1 2

ˆ ˆ( ) , ,

, ,
ˆ

ˆ , ,

inc

S

S S
P

S
P

n E r i n dS g r r g r r J r

g r r g r ri
n dS J r

n dS g r r g r r M r

  

  

   

 

  

   

 −  =  +
 

 
+   +   

  

  −   + 
  







                  (4.2.55) 
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MFIE: 

( ) ( ) ( )

( ) ( )
( )

( ) ( ) ( )

1 1 2 2

1 2

1 2

1 2

ˆ ˆ( ) , ,

, ,
ˆ

ˆ , ,

inc

S

S S
P

S
P

n H r i n dS g r r g r r M r

g r r g r ri
n dS M r

n dS g r r g r r J r

  

  

   

 

  

   

 −  =  +
 

 
+   +   

  

 +   + 
 







                    (4.2.56) 

The surface electric and magnetic currents are expanded using the basis function as blow, 

( )
1

ˆˆ( ) ( ) ( ) ( ) ( )
N

Jt i J i

n n anS n

n

J r I f t e t r I f t e r  








− −

=− =

= −                          (4.2.57) 

( )
1

ˆˆ( ) ( ) ( ) ( ) ( )
N

i M i

n n an

Mt

n

n

SM r I g t e t r I g t e r  








− −

=− =

= −                        (4.2.58) 

where Jt

nI , J

anI  , Mt

nI and M

anI  are the unknown coefficients for nth basis function and order α. ( )nf t

and ( )ng t  are the basis functions. It is noted that ( )nf t  and ( )ng t  are 1-D basis function with 

discretization only in the t̂  direction. Because of rotational symmetry of the object, the function 

of 𝜙 is expanded into Fourier series. In this chapter, we let 
( )

( ) ( )
( )

n
n n

T t
f t g t

t
= = . 

 

Figure IV.4. Definition of t̂  and ̂   in BOR (picture from [12, 92]). 
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The unit vectors in the t and 𝜙 directions are 

ˆ ˆ ˆ ˆsin cos sin sin cost x y z    = + +                             (4.2.59) 

ˆ ˆ ˆsin cosx y  = − +                                                       (4.2.60) 

where 
2

sin

1

d

dz

d

dz






=

 
+  
 

 and 
2

1
cos

1
d

dz




=

 
+  
 

. 

Then, the following properties can be derived, 

( )

( )

( )

( )

ˆ ˆ sin sin

ˆˆ sin sin

ˆ ˆ sin sin cos cos cos

ˆ ˆ cos

t

t

t t

   

   

     

   

  

 

   

 

 = −

 = − −

 = − +

 = −

                                   (4.2.61) 

Also, the derivatives can be derived, 

2

2

2
2

2

ˆ
0

ˆ
ˆˆ

1

ˆ
ˆˆ ˆcos sin

ˆ 1 ˆ

1

t

d
t ddz z
t dzd

dz

x y

t d

dzd

dz










  






 


=



  
= − +     

+  
   


= − − = −



  
=     

+  
 

                                            (4.2.62) 

Using these properties, the following manipulations on the Green’s function are calculated as 

( )
1ˆ sin

dg
g

dR R
     = − −                                                   (4.2.63) 
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( )( ) ( )
1

ˆ cos sin cos
dg

t g z z
dR R

         = − − + −
 

               (4.2.64) 

( ) ( )
1

ˆ cos cos cos sin
dg

n g z z
R dR

          = − − − −
 

            (4.2.65) 

where ( ) ( ) ( )
2 2 2

R x x y y z z  = − + − + − , and ( ), ( )g r r g R = . 

Next, let  

( ) ( ) ( )ˆ ˆ
S S StJ r J r t J r    = +                                     (4.2.59) 

( ) ( ) ( )ˆ ˆ
S StSM r M r t M r    = +                                  (4.2.60) 

where the subscript ‘𝜙’ means the current in the 𝜙 direction while the subscript ‘t’ means the 

current in the t direction. 

The t component of the EFIE can be calculated as 

( ) ( ) ( ) ( )11 12 13 14( )inc

t St S St SE r J J M M    = + + +              (4.2.61) 

where,  

( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )( )

11 1 1

1

1

, , sin sin cos cos cos

1 1 1
ˆ ˆ, ,

St St

St

J i dS g r r g r r J r

i
dS t g r r t g r r J r

t

         


   

      

    

 

  = − + − +
   

    
−  +        





(4.2.62) 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

12 1 1

1

1

, , sin sin

1 1 1
ˆ ˆ, ,

S S

S

J i dS g r r g r r J r

i
dS t g r r t g r r J r

 



      

    

    

   

 

   = + −
   

   
−  +    

  




                         (4.2.63) 

( )

( )

( )

( ) ( )

( )
( )1

13

cos sin sin

( ) ( )1
sin cos sin

sin sin sin

St St

d g R g R
M dS M r

R dR

z z

    

     

   

 

    

  

 −
  +
 = − −
 
 − − −
 

                (4.2.64) 
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( ) ( ) ( ) ( ) 
 

( )

14

1

cos cos sin cos

( ) ( )1

S

S

M S z z

d g R g R
M

dR

d

r
R





            



 = − − − − −
 

+



      (4.2.65) 

The 𝜙 component of EFIE is calculated as 

( ) ( ) ( ) ( )21 22 23 24( )inc

St S St SE r J J M M     = + + +               (4.2.66) 

where, 

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( )

21 1 1

1

1

ˆ ˆ, ,

1 1 1ˆ ˆ, ,

St St

St

J i dS g r r g r r t J r

i
dS g r r g r r J r

t

    

  
   

    

    

 

 = − + 
 

  
−  +  

 




          (4.2.67) 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

22 1 1

1

1

ˆ ˆ, ,

1 1 1ˆ ˆ, ,

S S

S

J i dS g r r g r r J r

i
dS g r r g r r J r

 



     

 
    

    

   

 

 = − + 
 

   
−  +    

  




            (4.2.68) 

( )
( )( )

( ) ( )
( )1

23

cos cos1 ( ) 1 ( )

sin cos
St St

dg R dg R
M dS M r

R dR R dR z z

    


  

  

 

  

 − + −   = +     + − −
 

    (4.2.69) 

( ) ( )( ) ( )1
24

1 ( ) 1 ( )
sinS S

dg R dg R
M dS z z M r

R dR R dR
         = + − − −    

             (4.2.70) 

Next, let the testing function be 

ˆ( ) ( ) ( )t i

m nf r f t e t r

 =                                           (4.2.71) 

ˆ( ) ( ) ( )i

m nf r f t e r 

 =                                          (4.2.72) 

Substituting the basis function and the testing function leads to 

( ) ( )
11

1

( )
N

tt Ei Jt

m St mn n

n

dSf t e J L I








=− =

=                               (4.2.73a) 
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( ) ( )
12

1

( )
N

t Ei I

m St mn n

n

dSf t e J L I
 








=− =

=                              (4.2.73b) 

( ) ( )
13

1

( )
N

tt Ei Mt

m St mn n

n

dSf t e M K I








=− =

=                              (4.2.73c) 

( ) ( )
14

1

( )
N

t Ei M

m S mn n

n

dSf t e M K I
 

 






=− =

=                              (4.2.73d) 

where, 

 
( )

( ) ( ) ( )

( )

1 1
2 2

0 0

1

1

ˆ ˆ, , ( )

1 1
( )

m n

tt E i i

mn

m n

i g r r g r r T t T t t t

L dt dt d d e ei
g g T t T t

 
 

  

 

  



   

  −

  

  − + 
  

=   
+ +  
   

        (4.2.74) 

( )

( )( )

( )
( )

1 1

2 2

10 0

1

ˆˆ( )

( )

m n

t E i i

mn

m n

i T t T t g g t

L dt dt d d e eg g
T t T t

t

   

   

  

 



 

  −

 



 + 
 

=   
− +  

   

                                (4.2.75) 

( )

( )

( )

( ) ( )

( )
( )

2 2
1

0 0

cos sin sin

( ) ( )1
sin cos sin ( )

sin sin sin

tt E i i

mn m n

d g R g R
K dt dt d d T t T t e e

R dR

z z

 
 

    

      

   



 

      −

  

 −
  +
 − −
 
 − − −
 

=    

(4.2.76) 

( ) ( ) ( ) ( ) 
 

( )

2 2

0 0

1

cos cos sin cos

( ) ( )1
( )

t E

mn

i i

m n

K dt dt d d z z

d g R g R
T t T t e e

R dR

 

 

         



     

 −

 = − − − − − −
 

+
 
 

   
   (4.2.77) 

The integrations can be calculated following [12, 92].  

Thus, 

( ) ( ) ( ) ( )( )
1

( ) ( )
N

tt E t E tt E t EJt J Mt M i inc

mn n mn n mn n mn n m t

n

L I L I K I K I dSf t e E r
   

   





=− =

+ + + =                (4.2.78) 

Similar manipulations are performed for the 𝜙 component of EFIE.  
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( ) ( ) ( ) ( )( )
1

( ) ( )
N

t E E t E EJt J Mt M i inc

mn n mn n mn n mn n m

n

L I L I K I K I dSf t e E r
     

    





=− =

+ + + =                (4.2.79) 

Using duality property, the equations for MFIE are obtained.  

The integrations of 
2

0

i id e e


 
 −

 gives 
 which results in  = . 

Finally, in matrix form, 

( )
( ) ( ) ( ) ( ) 2

0

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

tt E t E tt E t E
i inc

m t
Jt

t E E t E E

J

Mttt M t M tt M t M

M

t M M t M M

dt d T t e EL L K K
I

L L K K I

I
K K L L

I

K K L L

  


   

   


    

 


    

   

   


= = = =

= = = =

= = = =

= = = =

 
 

 
 

 
 

  = 
 

 − −  
   
 
− − 

  ( )

( ) ( )

( ) ( )

( ) ( )

2

0

2

0

2

0

i inc

m

i inc

m t

i inc

m

r

dt d T t e E r

dt d T t e H r

dt d T t e H r




















 
 
 
 
 
 
 
 
 

 

 

 

          (4.2.80) 

where the superscript ‘(E)’ stands for EFIE while ‘(M)’ stands for MFIE.  

The formulas for the matrix components are available in [12, 92].  The square matrix in 

equation (4.2.80) is the Z matrix using in the FL-BOR calculations. 

 

4.3 FL-BOR Compared with HFSS and FL-ICA  

First, we calculate the absorption of two and five cylinders in clusters at C-band (5.4 GHz) 

as shown in Figure IV.5 (a) and (b), respectively.  

  

Figure IV.5. Top view of the Cylinders. 
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Typical parameters for grass are used with 1mm radius, 30cm length and permittivity of 

30.7+5.5i. The incident angle is 90𝑜. The averaged absorption cross section of each cylinder for 

different spacing between the cylinders (s) is presented in Table IV-1. The absorption cross section 

for a single isolated cylinder without the existence of other cylinders is 1.1 × 10−3 𝑚2. According 

to the results from FL-BOR, when the spacing between the cylinders is 0.5 cm (~0.09λ), the 

averaged absorption cross section is about 35% and 63% less than that of a single isolated cylinder. 

This means that the internal fields of the cylinder changes when there are other cylinders close by. 

HFSS is also used to simulate the two cases for comparison. The results for the two cylinders’ 

cluster are also presented in Table IV-1, which compare well with the FL-BOR results with no 

more than 10−4 𝑚2 error. For the five cylinders’ cluster, only the case of s=1cm is simulated on 

HFSS for the sake of time saving. The result is 0.88 × 10−3 𝑚2 which compares well with the 

result of 0.83 × 10−3 𝑚2 from FL-BOR. The ratio between the averaged absorption cross section 

of two cylinders and the absorption cross section of a single cylinder without the other cylinder is 

plotted in Figure IV.6. Three methods are used: FL-BOR, MoM and HFSS. It is observed that the 

results of the three methods compared where. It also can be seen that the absorption cross section 

of the cylinder changes significantly when there is another cylinder close by. Thus, the assumption 

in RTE/DBA that the absorption cross section of a cylinder is unchanged with the existence of the 

other cylinders is inaccurate.  

In terms of the computation time, our FL-BOR code is much faster than HFSS. The FL-BOR 

codes used 266s and 267s while HFSS used 1080s and 4942s CPU time for the two cylinders’ 

cluster and five cylinders’ cluster, respectively. The CPU time required by HFSS increases 

significantly when the number of cylinders increases. This means HFSS is not suitable for 

simulations of vegetation layer which contains a large number of cylinders. 
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Table IV-1. Averaged absorption cross section (𝑚2) of each cylinder for different spacing s for 

two cases: (a) two cylinders and (b) five cylinders in a cluster. 

 s(cm) 0.5 1 2 4 5 

(a) FL-BOR (10-3) 0.72 1.0 1.4 1.1 1.2 

HFSS (10-3) 0.82 1.1 1.5 1.1 1.3 

(b) FL-BOR (10-3) 0.41 0.83 1.0 0.70 0.75 

 

 

Figure IV.6. Comparisons of the ratio between the averaged absorption cross section of two 

cylinders and the absorption cross section when only one cylinder exists using three methods: 

FL-BOR, MoM and HFSS. 

The Foldy-Lax multiple scattering equations and infinite cylinder approximation (ICA) 

were combined (FL-ICA) previously for scattering by vertical cylinders [93, 94]. The approach 

was later applied to scattering by a rice canopy [71, 72].  In the approach [93, 94], the dyadic 

Green’s function and the fields including incident, exciting, internal and scattered fields are 

expanded in terms of vector cylindrical waves. The ICA is used to calculate the scattering by each 

cylinder. An iterative method is used to solve the unknown coefficients of the internal fields. An 

integration over 𝑑𝑘𝑧 is used to represent the fields in various oblique directions. In the integration 

of 𝑑𝑘𝑧 from minus infinity to infinity, evanescent waves in ρ are also included. Here, the results 
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from the first-order FL-ICA and FL-BOR are compared. The interactions between different 

cylinders are not taken into account in the first-order solutions. 

Following the methods in [93, 94], the first-order solution for FL-ICA is briefly derived 

here. 

The scattered fields of the vegetation at the observation points is the sum of all the scattered 

fields from all the NL cylinders modelling the vegetation particles. 

( ) ( )
1

NL
s s

jo o

j

E r E r
=

=                                                (4.3.1) 

where 𝑟̅𝑜 is the location of the observation point.  

Let the center of the jth cylinder be 𝑟̅𝑗 = (𝑥𝑗 , 𝑦𝑗 , 𝑧𝑗).  Using Huygen’s principle [4], the scattered 

fields from the jth cylinder are 
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where 𝜙𝜌𝜌𝑗 and 𝜌𝜌𝜌𝑗 are polar coordinates with center at 𝜌̅𝑗 = 𝑥𝑗𝑥̂ + 𝑦𝑗𝑦̂. L and 𝑎 are the length 

and radius of the cylinder, respectively. 𝐺̿0 is the free space Green’s function. 𝐻̅𝑗
𝑝(𝑟̅) and 𝐸̅𝑗

𝑝(𝑟̅) 

are the internal magnetic and electric fields of the jth cylinder.  

Using the infinite cylinder approximation (ICA) [4], the internal fields are expressed in terms of 

vector cylindrical waves: 

𝐸̅𝑗
𝑝(𝑟̅) = ∑ ∫ 𝑑𝑘𝑧

′ [
𝑐
𝑛′,𝑗

(𝑀)(𝑘𝑧
′ ) ∙ 𝑅𝑔𝑀̅𝑛′(𝑘𝑝𝜌

′ , 𝑘𝑧
′ , 𝑟̅ − 𝑟̅𝑗)

+𝑐
𝑛′,𝑗

(𝑁)(𝑘𝑧
′ ) ∙ 𝑅𝑔𝑁̅𝑛′(𝑘𝑝𝜌

′ , 𝑘𝑧
′ , 𝑟̅ − 𝑟̅𝑗)

]
∞

−∞
∞
𝑛′=−∞                   (4.3.3) 

 

𝑖𝜔𝜇𝐻̅𝑗
𝑝(𝑟̅) = ∑ 𝑘𝑝

∞
𝑛′=−∞ ∫ 𝑑𝑘𝑧

′ [
𝑐
𝑛′,𝑗

(𝑀)(𝑘𝑧
′ ) ∙ 𝑅𝑔𝑁̅𝑛′(𝑘𝑝𝜌

′ , 𝑘𝑧
′ , 𝑟̅ − 𝑟̅𝑗)

+𝑐
𝑛′,𝑗

(𝑁)(𝑘𝑧
′ ) ∙ 𝑅𝑔𝑀̅𝑛′(𝑘𝑝𝜌

′ , 𝑘𝑧
′ , 𝑟̅ − 𝑟̅𝑗)

]
∞

−∞
            (4.3.4) 
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where 𝑘𝑝 is the wavenumber inside the cylinder and 𝑘𝑝𝜌
′ = √𝑘𝑝

2 − 𝑘𝑧
′2.  𝑐

𝑛′,𝑗

(𝑀)(𝑘𝑧
′ ) and 𝑐

𝑛′,𝑗

(𝑁)
 are the 

unknown coefficients and will be calculated later. 𝑅𝑔𝑀̅𝑛′  and 𝑅𝑔𝑁̅𝑛′ are vector cylindrical waves 

calculated as [4] 

𝑅𝑔𝑀̅𝑛(𝑘𝜌, 𝑘𝑧, 𝑟̅) = 𝑅𝑔𝑚̅𝑛(𝑘𝜌, 𝑘𝑧, 𝜌̅)𝑒
𝑖𝑘𝑧𝑧+𝑖𝑛𝜙                      (4.3.5) 

𝑅𝑔𝑁𝑛(𝑘𝜌, 𝑘𝑧, 𝑟̅) = 𝑅𝑔𝑛̅𝑛(𝑘𝜌, 𝑘𝑧, 𝜌̅)𝑒
𝑖𝑘𝑧𝑧+𝑖𝑛𝜙                       (4.3.6) 

with 

𝑅𝑔𝑚̅𝑛(𝑘𝜌, 𝑘𝑧, 𝜌̅) = 𝜌̂
𝑖𝑛

𝜌
𝐽𝑛(𝑘𝜌𝜌) − 𝜙̂𝑘𝜌𝐽𝑛

′ (𝑘𝜌𝜌)                    (4.3.7) 

𝑅𝑔𝑛̅𝑛(𝑘𝜌, 𝑘𝑧, 𝜌̅) = 𝜌̂
𝑖𝑘𝜌𝑘𝑧

𝑘
𝐽𝑛
′ (𝑘𝜌𝜌) − 𝜙̂

𝑛𝑘𝑧

𝑘𝜌
𝐽𝑛(𝑘𝜌𝜌) + 𝑧̂

𝑘𝜌
2

𝑘
𝐽𝑛(𝑘𝜌𝜌)         (4.3.8) 

The vector cylindrical waves have the relation that 

∇ × 𝑅𝑔𝑀̅𝑛(𝑘𝜌, 𝑘𝑧, 𝑟̅) = 𝑘𝑅𝑔𝑁̅𝑛(𝑘𝜌, 𝑘𝑧, 𝑟̅)                                    (4.3.9) 

∇ × 𝑅𝑔𝑁𝑛(𝑘𝜌, 𝑘𝑧, 𝑟̅) = 𝑘𝑅𝑔𝑀̅𝑛(𝑘𝜌, 𝑘𝑧, 𝑟̅)                                  (4.3.10) 

where 𝑘 = √𝑘𝜌
2 + 𝑘𝑧

2. 

The free space Green’s function 𝐺̿0 can also be expanded using vector cylindrical waves centered 

at 𝑟̅𝑗 as [4] 

𝐺̿0(𝑟̅, 𝑟̅′) = −
𝑧̂𝑧̂

𝑘𝑜
2 𝛿(𝑟̅ − 𝑟̅′) +

𝑖

4𝜋
∫ 𝑑𝑘𝜌

1

𝑘𝑧𝑘𝜌
∑ (−1)𝑛 ∙∞
𝑛=−∞

∞

0

{
 
 

 
 
𝑅𝑔𝑀̅𝑛(𝑘𝜌, 𝑘𝑧, 𝑟̅)𝑅𝑔𝑀̅−𝑛(𝑘𝜌, −𝑘𝑧, 𝑟̅′) +

𝑅𝑔𝑁𝑛(𝑘𝜌, 𝑘𝑧, 𝑟̅)𝑅𝑔𝑁̅−𝑛(𝑘𝜌, −𝑘𝑧, 𝑟̅′)
  𝑓𝑜𝑟 𝑧 > 𝑧′

𝑅𝑔𝑀̅𝑛(𝑘𝜌, −𝑘𝑧, 𝑟̅)𝑅𝑔𝑀̅−𝑛(𝑘𝜌, 𝑘𝑧, 𝑟̅′) +

𝑅𝑔𝑁𝑛(𝑘𝜌, −𝑘𝑧, 𝑟̅)𝑅𝑔𝑁̅−𝑛(𝑘𝜌, 𝑘𝑧, 𝑟̅′)
  𝑓𝑜𝑟 𝑧 < 𝑧′

                                      (4.3.11) 
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Next, equations (4.3.3), (4.3.4) and (4.3.11) are substituted into equation (4.3.2). Since we 

calculate the scattered fields below the vegetation canopy, we choose the Green’s function 

expansion for 𝐺̿0(𝑟̅, 𝑟̅𝑜) which satisfies 𝑧𝑜 > 𝑧. The final scattered fields are 

𝐸̅𝑗
𝑠(𝑟̅𝑜) = ∑ (−

𝐿𝑗

𝜋
)∞

𝑛′=−∞ ∫ 𝑑𝑘𝑧
′ ∫ 𝑑𝑘𝜌

∞

0

𝑘𝜌

𝑘𝑧
𝑒(𝑖(𝑘𝑧

′+𝑘𝑧)(𝑧𝑗+𝑑))𝑠𝑖𝑛𝑐 ((𝑘𝑧
′ + 𝑘𝑧)

𝐿𝑗

2
) ∙

∞

−∞

{
 
 
 

 
 
 
𝑅𝑔𝑀̅𝑛′(𝑘𝜌, 𝑘𝑧, 𝑟̅𝑜 − 𝑟̅𝑗) [

𝑐
𝑛′,𝑗

(𝑀)(𝑘𝑧
′ )𝑅𝑔𝐴𝑛′

𝑀𝑀(𝑘𝜌, 𝑘𝑧, 𝑘𝑝𝜌
′ , 𝑘𝑧

′ , 𝑎𝑗)

+𝑐
𝑛′,𝑗

(𝑁)(𝑘𝑧
′ )𝑅𝑔𝐴𝑛′

𝑀𝑁(𝑘𝜌, 𝑘𝑧, 𝑘𝑝𝜌
′ , 𝑘𝑧

′ , 𝑎𝑗)
]

+𝑅𝑔𝑁𝑛′(𝑘𝜌, 𝑘𝑧, 𝑟̅𝑜 − 𝑟̅𝑗) [
𝑐
𝑛′,𝑗

(𝑀)(𝑘𝑧
′ )𝑅𝑔𝐴𝑛′

𝑁𝑀(𝑘𝜌, 𝑘𝑧, 𝑘𝑝𝜌
′ , 𝑘𝑧

′ , 𝑎𝑗)

+𝑐
𝑛′,𝑗

(𝑁)(𝑘𝑧
′ )𝑅𝑔𝐴𝑛′

𝑁𝑁(𝑘𝜌, 𝑘𝑧, 𝑘𝑝𝜌
′ , 𝑘𝑧

′ , 𝑎𝑗)
]

}
 
 
 

 
 
 

           (4.3.12)        

where 

𝑅𝑔𝐴𝑛′
𝑀𝑀(𝑘𝜌, 𝑘𝑧, 𝑘𝑝𝜌

′ , 𝑘𝑧
′ , 𝑎) = −

𝑖𝑎𝜋

2𝑘𝜌
2 [𝑘𝑝𝜌

′2 𝑘𝜌𝐽𝑛(𝑘𝑝𝜌
′ 𝑎)𝐽𝑛

′ (𝑘𝜌𝑎) − 𝑘𝑝𝜌
′ 𝑘𝜌

2𝐽𝑛
′ (𝑘𝑝𝜌

′ 𝑎)𝐽𝑛(𝑘𝜌𝑎)]  

𝑅𝑔𝐴𝑛′
𝑀𝑁(𝑘𝜌, 𝑘𝑧, 𝑘𝑝𝜌

′ , 𝑘𝑧
′ , 𝑎) = −

𝑖𝑎𝜋

2𝑘𝜌
2 [

𝑛

𝑘𝑝𝑎
(𝑘𝑝𝜌

′2 𝑘𝑧 − 𝑘𝑧
′𝑘𝜌

2)𝐽𝑛(𝑘𝑝𝜌
′ 𝑎)𝐽𝑛(𝑘𝜌𝑎)]  

𝑅𝑔𝐴𝑛′
𝑁𝑀(𝑘𝜌, 𝑘𝑧, 𝑘𝑝𝜌

′ , 𝑘𝑧
′ , 𝑎) = −

𝑖𝑎𝜋

2𝑘𝜌
2 [

𝑛

𝑘𝑎
(𝑘𝑝𝜌

′2 𝑘𝑧 − 𝑘𝑧
′𝑘𝜌

2)𝐽𝑛(𝑘𝑝𝜌
′ 𝑎)𝐽𝑛(𝑘𝜌𝑎)]  

𝑅𝑔𝐴𝑛′
𝑁𝑁(𝑘𝜌, 𝑘𝑧, 𝑘𝑝𝜌

′ , 𝑘𝑧
′ , 𝑎) = −

𝑖𝑎𝜋

2𝑘𝜌
2 [
𝑘𝑘𝜌

𝑘𝑝
𝑘𝑝𝜌
′2 𝐽𝑛(𝑘𝑝𝜌

′ 𝑎)𝐽𝑛
′ (𝑘𝜌𝑎) −

𝑘𝑝𝑘𝑝𝜌
′

𝑘
𝑘𝜌
2𝐽𝑛
′ (𝑘𝑝𝜌

′ 𝑎)𝐽𝑛(𝑘𝜌𝑎)]  

For the first-order solution [94],  

𝑐
𝑛′,𝑗

(𝑀)(𝑘𝑧
′ ) = 𝑐

𝑛′,𝑗

(𝑀)(−𝑘𝑖𝑧)𝛿(𝑘𝑧
′ + 𝑘𝑖𝑧)                               (4.3.13) 

𝑐
𝑛′,𝑗

(𝑁)(𝑘𝑧
′ ) = 𝑐

𝑛′,𝑗

(𝑁)(−𝑘𝑖𝑧)𝛿(𝑘𝑧
′ + 𝑘𝑖𝑧)                               (4.3.14) 

where 𝑐
𝑛′,𝑗

(𝑀)(−𝑘𝑖𝑧)  and 𝑐
𝑛′,𝑗

(𝑁)(−𝑘𝑖𝑧)  are obtained using ICA for a single cylinder [39]. After 

substituting equations (4.3.13) and (4.3.14) to (4.3.12), the first-order scattered fields from cylinder 

j are 
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𝐸̅𝑗
𝑠(𝑟̅𝑜) = ∑ (−

𝐿𝑗
𝜋
)

∞

𝑛′=−∞

∫ 𝑑𝑘𝜌

∞

0

𝑘𝜌

𝑘𝑧
𝑒(𝑖

(−𝑘𝑖𝑧+𝑘𝑧)(𝑧𝑗+𝑑))𝑠𝑖𝑛𝑐 ((−𝑘𝑖𝑧 + 𝑘𝑧)
𝐿𝑗
2
)

∙ {𝑅𝑔𝑀̅𝑛′(𝑘𝜌, 𝑘𝑧, 𝑟̅𝑜 − 𝑟̅𝑗) [
𝑐
𝑛′,𝑗

(𝑀)(−𝑘𝑖𝑧)𝑅𝑔𝐴𝑛′
𝑀𝑀(𝑘𝜌, 𝑘𝑧, 𝑘𝑝𝜌

′ , −𝑘𝑖𝑧, 𝑎𝑗)

+𝑐
𝑛′,𝑗

(𝑁)(−𝑘𝑖𝑧)𝑅𝑔𝐴𝑛′
𝑀𝑁(𝑘𝜌, 𝑘𝑧, 𝑘𝑝𝜌

′ , −𝑘𝑖𝑧, 𝑎𝑗)
]

+ 𝑅𝑔𝑁̅𝑛′(𝑘𝜌, 𝑘𝑧, 𝑟̅𝑜 − 𝑟̅𝑗) [
𝑐
𝑛′,𝑗

(𝑀)(−𝑘𝑖𝑧)𝑅𝑔𝐴𝑛′
𝑁𝑀(𝑘𝜌, 𝑘𝑧, 𝑘𝑝𝜌

′ , −𝑘𝑖𝑧, 𝑎𝑗)

+𝑐
𝑛′,𝑗

(𝑁)(−𝑘𝑖𝑧)𝑅𝑔𝐴𝑛′
𝑁𝑁(𝑘𝜌, 𝑘𝑧, 𝑘𝑝𝜌

′ , −𝑘𝑖𝑧, 𝑎𝑗)
]} 

 (4.3.15) 

Finally, the first-order scattered fields from all the cylinders are obtained by substituting equation 

(4.3.15) to (4.3.1). 

For the first-order FL-BOR, equation (4.2.15) becomes 

𝐸̅𝑚
𝑒𝑥,1𝑠𝑡 = 𝐸̅𝑚

𝑖𝑛𝑐                                                            (4.3.16) 

The first-order exciting fields are substituted into equation (4.2.39) to find the surface currents 

without the calculations of 𝑃̿ . The final scattered electric fields are obtained from equation 

(4.2.41a).  We compute the scattered fields form the vegetation canopy consisting of extended 

cylinders randomly and uniformly distributed 1 m2 area, as shown inFigure IV.1.. Typical 

parameters for grass are used with 1mm radius, 30cm length and permittivity of 30.7+5.5i. All the 

cylinders are vertically oriented. The center of the lower boundary of the vegetation layer is 

𝑟̅𝑐,𝑏𝑜𝑡𝑡𝑜𝑚 = [0.5 𝑚, 0.5 𝑚,−𝑑] where d is the layer thickness and is the same as the cylinder length 

in this case. First, we compare the scattered near fields computed from FL-BOR and FL-ICA. 64 

cylinders are used. The observation point is chosen to be 4 cm below the vegetation layer (i.e., the 

z component of the observation point 𝑧𝑜 = −𝑑 − 0.04 𝑚) and  𝑦𝑜 = 0.5 𝑚. The scattered field 

|𝐸̅𝑠|/|𝐸̅𝑖𝑛𝑐| at different 𝑥𝑜 (x component of the observation point) computed from first-order FL-
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BOR and FL-ICA are presented in Figure IV.7. The results are in good agreement. Next, the 

scattered fields in the far field, 𝑓𝑣𝑣 are calculated from 𝐸̅𝑠  

𝑓𝑣𝑣 = lim
|𝑟̅𝑜|→∞

[𝐸̅𝑠(𝑟̅𝑜) ∙ 𝑣̂(𝑟̅𝑜)] [exp (𝑖𝑘|𝑟̅𝑜|) |𝑟̅𝑜|⁄ ] ⁄                            (4.3.17) 

where the incident field is normalized to one. 

 
Figure IV.7.  Near fields comparison between FL-ICA and FL-BOR with observation points at 

4cm below the vegetation layer and the y component of the observation positions is 0.5 m. 

 

 
Figure IV.8.  Far fields comparison between first-order FL-ICA and FL-BOR. The angle θ is 

shown in Figure IV.1. 
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The same parameters of the cylinders are used as before with 100 cylinders for simulation. The 

observation point is chosen to be far away so that |𝑟̅𝑜 − 𝑟̅𝑐| = 500𝜆, with 𝑟̅𝑐 = [0.5 𝑚, 0.5 𝑚,−𝑑/

2] being the center of the vegetation layer. 𝑟̅𝑜 is also chosen to be below the vegetation layer and 

in the x-z plane. The results for |𝑓𝑣𝑣|
2 from both FL-ICA and FL-BOR are plotted in Figure IV.8. 

The scattering angle θ is the angle between 𝑟̅𝑜 − 𝑟̅𝑐 and −𝑥̂, as shown in Figure IV.1. It can be seen 

that the first-order FL-ICA results are in agreement with those from the first-order FL-BOR. 

 

4.4 Simulation of Transmission, Reflection, Absorption and Field Profile 

4.4.1 Simulation Procedures 

We use Monte Carlo simulations to calculate the transmission, reflection and absorption of 

a vegetation canopy composed of dielectric cylinders. For each realization, a large number of 

cylinders, such as 500, are generated.  For each realization, the solutions of electromagnetic fields 

and equivalent surface currents on the cylinders are calculated by using FL-BOR. The FL-BOR 

calculations are repeated for each realization. For the calculations of transmission and reflection 

(Figure IV.1 and Figure IV.2), we use a receiver of area of one square wavelength to calculate the 

power received in reflection and transmission. In numerical simulations in this section, we simulate 

this scenario by fixing the position of the receiver and shuffling the positions of the cylinders from 

realization to realization. The receiver is fixed at the center below the layer for transmission and 

at the center above the layer for reflection (Figure IV.1 and Figure IV.2).   

(a) Transmission through the Vegetation Canopy 

We first calculate the power received by the receiver of one square wavelength in size. The 

“receiver” is put at 1cm below the center of the bottom boundary of the vegetation canopy. Thus, 
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the center of the “receiver” is at 𝑟̅𝑐𝑏 = [𝐿/2, 𝐿/2,−𝑑 − 0.01] where L×L is the area occupied by 

the cylinders. The intensity transmitted downward at the observation point 𝑟̅𝑜 is 

𝐼𝑡(𝑟̅𝑜) =
1

2
𝑅𝑒[𝐸̅𝑡𝑜𝑡(𝑟̅𝑜) × (𝐻̅

𝑡𝑜𝑡(𝑟̅𝑜))
∗
] ∙ (−𝑧̂)                            (4.4.1) 

with,  𝐸̅𝑡𝑜𝑡(𝑟̅𝑜) = 𝐸̅
𝑖𝑛𝑐(𝑟̅𝑜) + ∑ 𝐸̅𝑛

𝑠𝑐𝑎𝑡(𝑟̅𝑜)
𝑁𝐿
𝑛=1                             (4.4.2a) 

𝐻̅𝑡𝑜𝑡(𝑟̅𝑜) = 𝐻̅
𝑖𝑛𝑐(𝑟̅𝑜) + ∑ 𝐻̅𝑛

𝑠𝑐𝑎𝑡(𝑟̅𝑜)
𝑁𝐿
𝑛=1                            (4.4.2b) 

where the superscript ‘tot’ denotes the total field, which is the sum of the incident and the scattered 

fields from all the cylinders. The scattered fields are calculated from FL-BOR using equations 

(4.2.41a) and (4.2.41b). 

The transmitted Poynting vector at the observation point 𝑟̅𝑜 is defined as 

𝑇𝑠,𝑝 =
𝐼𝑡(𝑟̅𝑜)

𝐼𝑖𝑛𝑐(𝑟̅𝑜)
=

𝑆̅𝑡𝑜𝑡(𝑟̅𝑜)∙(−𝑧̂)

𝑆̅𝑖𝑛𝑐(𝑟̅𝑜)∙(−𝑧̂)
                                      (4.4.3) 

where 𝑆̅𝑡𝑜𝑡(𝑟̅𝑜) and 𝑆̅𝑖𝑛𝑐(𝑟̅𝑜) are the total and incident Poynting vector, respectively.  

We next consider an area of 𝜆 × 𝜆 to define transmission as follows.  

𝑇𝑠 = ∬ 𝐼𝑡𝜆2
∬ 𝐼𝑖𝑛𝑐𝜆2
⁄                                             (4.4.4) 

𝑇𝑠 is the normalized transmitted power received by a 𝜆 × 𝜆 “receiver” put right below the center 

of the vegetation layer (Figure IV.1 and Figure IV.2) which is normalized by the incident intensity. 

The transmission 𝑡 for the vegetation canopy is obtained after averaging over all 𝑁𝑟 realizations: 

𝑡𝛽(𝜃𝑖 ) = 〈𝑇𝑠〉 = (∑ 𝑇𝑠𝑁𝑟 )/𝑁𝑟                                        (4.4.5) 

where 𝛽 is the incident polarization and 𝜃𝑖 is the incident angle. 𝑇𝑠 is the normalized transmitted 

power at each realization. The number of realizations 𝑁𝑟 is chosen to be large enough so that 𝑡 

converges. It is to be noted that the transmission is calculated by solving the Foldy-Lax equations 

without the need of defining nor calculating the attenuation rate per unit distance 𝜅𝑒. 
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(b) Optical Thickness 𝝉 from NMM3D Simulations 

Since NMM3D only calculates transmission, we define 𝜏 in NMM3D as 

𝜏𝑁𝑀𝑀3𝐷 = −𝑐𝑜𝑠𝜃𝑖ln (𝑡)                                     (4.4.6) 

where 𝜃𝑖 is the incident angle.  

(c) Electric Field Profile inside the Vegetation Canopy 

Using FL-BOR, we can calculate the total fields anywhere including inside the vegetation 

canopy. The electric field profile inside the vegetation canopy is the absolute value of the total 

electric field of the vegetation canopy. Because the vegetation layer is horizontally statistical 

invariant, we choose the center line as indicated by the red dashed line in Figure IV.1. From the 

profile, we can observe the change of the total electric field as the wave propagates through the 

vegetation canopy. The magnitude of the electric field 〈|𝐸̅𝑡𝑜𝑡(𝑧)|〉 is averaged over 𝑁𝑟 realizations 

〈|𝐸̅𝑡𝑜𝑡(𝑧)|〉 = (∑ |𝐸̅𝑡𝑜𝑡(𝑧)|𝑁𝑟 )/𝑁𝑟                                (4.4.7) 

where z is from z = 0 to z = -d since the observation point is inside the vegetation canopy. The x 

and y component of the observation point are both at 𝐿/2. The electric field is that of outside the 

cylinder.   

The realizations where there is a cylinder located on the center axis are discarded because 

this corresponds to fields inside the cylinder and not outside the cylinder. The probability for the 

point to fall inside the cylinder is low since the volume fraction of the scatterers in the vegetation 

fields is low (0.20% for the extended-cylinders case). Thus only a few realizations are discarded.  

(d) Reflection from the Vegetation Canopy 

The 𝜆 × 𝜆  “receiver”is placed 1cm above the center of the upper boundary of the 

vegetation layer, as shown in Figure IV.1 and Figure IV.2 highlighted using purple. (i.e., the 𝜆 × 𝜆 
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“receiver” is centered at 𝑟̅𝑐𝑢 = [𝐿/2, 𝐿/2,0.01]). Using the idea of shuffling the cylinders instead 

of moving the “receiver”, the reflection r is averaged over realizations 

𝑟𝛽(𝜃𝑖 ) = 〈𝑅𝑠〉                                                             (4.4.8) 

where,  𝑅𝑠 =
∬ 𝑆𝑠̅(𝑟̅𝑜)∙(𝑧̂)𝜆2

∬ 𝑆𝑖̅𝑛𝑐(𝑟̅𝑜)∙(−𝑧̂)𝜆2

                                                  (4.4.9) 

𝑆𝑠̅(𝑟̅𝑜) is the Poynting vector of the scattered energy, defined as 
1

2
𝑅𝑒[𝐸̅𝑠𝑐𝑎𝑡(𝑟̅𝑜) × (𝐻̅

𝑠𝑐𝑎𝑡(𝑟̅𝑜))
∗
] 

where 𝐸̅𝑠𝑐𝑎𝑡  and 𝐻̅𝑠𝑐𝑎𝑡  are the scattered electric and magnetic fields which are the sum of the 

scattered fields from all the cylinders as calculated in equation (4.2.41). It is noticed that the 

scattered fields are used instead of the total fields since the reflection comes from the scattering by 

the scatters inside the vegetation canopy. 𝑆𝑠̅(𝑟̅𝑜) ∙ (𝑧̂) calculates the intensity going up at 𝑟̅𝑜 which 

is the reflected intensity.  

(e) Absorption by the Vegetation Cano 

Absorption is the power absorbed by all the cylinders in the vegetation canopy. The power 

absorbed by a  cylinder is [39] 

𝑃𝑎 =
1

2
𝜔𝜀𝑐

′′∭𝑑𝑣 |𝐸̅𝑖𝑛𝑡|
2
                                                        (4.4.10) 

where 𝜀𝑐
′′ is the imaginary part of the permittivity of the cylinder and 𝐸̅𝑖𝑛𝑡 is the internal electric 

field. Since the radius of the cylinder is small, we approximate the internal electric field by the 

surface electric field whose magnitude is the same as that of the surface magnetic current. Then, 

𝑃𝑎 =
1

2
𝜔𝜀𝑐

′′∑ 𝜋𝑎𝑗
2∆𝑧𝑗|𝑀̅𝑗|

2𝑁𝑆
𝑗=1                                           (4.4.11) 

where 𝜋𝑎𝑗
2∆𝑧𝑗  is the volume of section j and 𝑀̅𝑗  is the surface magnetic current of section j 

calculated in FL-BOR. 
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Figure IV.9. Cylinders inside the center 𝜆 × 𝜆 area (red). 

Next, the averaged absorption for each cylinder inside the center 𝜆 × 𝜆 area (Figure IV.9) 

in the vegetation canopy is obtained by averaging over many realizations. Finally, the absorption 

by the vegetation canopy (𝑎𝛽(𝜃𝑖)) is the total number of cylinders multiplied by the averaged 

absorption for each cylinder, and then normalized by the incident power,  

𝑎𝛽(𝜃𝑖) =
𝑁𝐿〈𝑃𝑎〉

∬ 𝑆𝑖̅𝑛𝑐(𝑟̅𝑜)∙(−𝑧̂)𝑆

                                                 (4.4.12) 

where 𝑁𝐿  is the total number of cylinders simulated, 〈𝑃𝑎〉 is the averaged absorption for each 

cylinder over many realizations, and 𝑆 is the simulated area.  

(f) Emissivity of the Vegetation Canopy  

In passive microwave remote sensing, the brightness temperature 𝑇𝐵  at angle 𝜃𝑖  for 

polarization 𝛽 is [2] 

𝑇𝐵,𝛽(𝜃𝑖 ) = 𝑒𝛽(𝜃𝑖 )𝑇                                         (4.4.13) 

where 𝑒𝛽(𝜃𝑖 ) is the emissivity at angle 𝜃𝑖 for polarization 𝛽. T is the physical temperature.  
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The emissivity is equal to one minus the integration of bistatic scattering and transmission of the 

vegetation canopy over hemispherical solid angles. In the NMM3D simulations of transmission 

and reflection described previously, the transmission and reflection “receivers” capture all the 

bistatic transmission and scattering. Thus, the present simulation procedure does not require 

angular integrations. Then the emissivity of the vegetation canopy is 

𝑒𝛽(𝜃𝑖 ) = 1 − 𝑡𝛽(𝜃𝑖 ) − 𝑟𝛽(𝜃𝑖 ) = 𝑎𝛽(𝜃𝑖 )                     (4.4.14) 

where the transmissivity 𝑡𝛽(𝜃𝑖 )  is given by equation (4.4.5), reflectivity 𝑟𝛽(𝜃𝑖 )  is given by 

equation (4.4.8) and absorption 𝑎𝛽(𝜃𝑖 ) is given by equation (4.4.12). 

 

4.4.2 Simulation Results 

In this section, the NMM3D simulation results for the cases of extended cylinders and short 

cylinders are presented.  The simulations are at C-band (5.4 GHz) with V-polarized incident wave, 

that is 𝛽 = 𝑉 and incidence angle 𝜃𝑖 is 40 degrees.  

(a) NMM3D Simulation Results of Transmission and Comparison with EP/DBA/RTE 

The extended-cylinders case 

The density of the cylinders in the vegetation canopy is set at 2122 per m2, corresponding 

to vegetation water content (VWC) 1kg/m2 which is a typical value for grass fields. Note that for 

such cases the average spacing between cylinders is less than half a wavelength. We compute 

results for 100 and 500 cylinders (𝑁𝐿 ). They occupy an area (S) of 0.217×0.217 m2 and 

0.485×0.485 m2, respectively. The side length of the area needed for simulation should be at least 

2𝑑𝑡𝑎𝑛𝜃𝑖, where d is the height of the vegetation layer, as illustrated in Figure IV.10. 
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                                         (a)                                                                           (b) 

Figure IV.10. Illustration of simulation area needed for NMM3D, 𝜃𝑖 = 40
𝑜 in this case. 

The parameters for the cylinders are the same as those used in section 4.3. The layer 

thickness d is 0.3 m which is the same as the cylinders’ lengths. Two distributions are simulated: 

one is uniformly distributed and the other is distributed in clusters with five cylinders per cluster, 

as shown in Figure IV.11 (a) and (b), respectively. Figure IV.11 (c) shows the top view of a 

cylinder cluster for the clustered case.  

       
                                (a)                                                           (b)                                     (c) 

Figure IV.11. Positions of the 500 cylinders on the x-y plane in one realization for (a) uniformly 

distributed case, (b) clustered case. The scale of both axes is meter. (c) Top view of a cylinder 

cluster composed of five cylinders with radius a. The separation s is 0.5 cm for each cluster. 
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                                      (a)                                                                 (b) 

Figure IV.12. Transmitted Poynting vector at different observation points within an area 𝜆 × 𝜆 

centered at 𝑟̅𝑐𝑏 for two realizations of the uniformly distributed 500 cylinders. 

 

  
                                      (a)                                                                     (b) 

Figure IV.13. Transmitted Poynting vector at different observation points within an area 𝜆 × 𝜆 

centered at 𝑟̅𝑐𝑏 for two realizations of the clustered distributed 500 cylinders. 

 

The transmitted Poynting vector 𝑇𝑠,𝑝 defined in equation (4.4.3) at different observation 

points within an area 𝜆 × 𝜆 centered at 𝑟̅𝑐𝑏 for two realizations using 500 cylinders are shown in 

Figure IV.12 and Figure IV.13  for the uniform distribution and clustered distribution, respectively. 

Note that the transmitted Poynting vector can be larger than unity, because of constructive or 

destructive interferences of the scattered waves from all the cylinders and the incident wave 

𝑇𝑠,𝑝 

𝑇𝑠,𝑝 𝑇𝑠,𝑝 

𝑇𝑠,𝑝 
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(speckle fluctuations). It can be seen that the transmitted Poynting vector fluctuates significantly 

over the 𝜆 × 𝜆 area. The figure shows that the transmitted Poynting vector in the clustered case 

fluctuates more than that in the uniform case. This is because the scattered field at the point right 

below one cluster composed of five cylinders is significantly different from that at the point not 

below the cluster. In comparison, the fluctuations of the scattered field are less for the uniform 

case.  

 
 

(a) 

 

 
 

(b) 

 

𝑇𝑠 

𝑇𝑠 
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Figure IV.14. 𝑇𝑠 (power received by the “receiver” below the vegetation canopy) for 100 

realizations for the extended-cylinders case using 500 cylinders for simulation: (a) Histogram of  

𝑇𝑠 for the uniform distribution, (b) Histogram of  𝑇𝑠 for the clustered distribution. 

 

Figure IV.14 (a) and (b) show histograms of the, for 100 realizations. It is observed that 

for the clustered case, 𝑇𝑠 has larger fluctuation between realizations than it has for the uniform 

case. For the simulation using 100 cylinders, the standard deviation of 𝑇𝑠 is 0.2017 for the clustered 

case and 0.0591 for the uniform case. For the simulation using 500 cylinders, the standard 

deviation of 𝑇𝑠 is 0.2144 for the clustered case and 0.0385 for the uniform case. The 𝑇𝑠 for each 

realization is also plotted in Figure IV.15. It can be seen that the transmission for the clustered case 

has larger fluctuation between realizations than that for the uniform case, as expected. Results are 

convergent after 100 realizations. The results of transmission 𝑡 using NMM3D simulations are 

listed in Table IV-2. For the uniform case, 𝑡 is 0.6874 and 0.6124 for the 100-cylinders simulations 

and 500-cylinders simulations, respectively. For the clustered case, 𝑡 is 0.7527 and 0.7044 for the 

100-cylinders simulations and 500-cylinders simulations, respectively. Comparing the NMM3D 

results for the 100-cylinders and 500-cylinders simulations, there are small differences. A larger 

number of cylinders with a larger area will be studied in the future to study the sensitivity due to 

variations of the number of cylinders. 
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Figure IV.15. 𝑇𝑠 for each realization for the clustered case (blue) and uniform case (red). 

 

Table IV-2. Transmission through vegetation layer for the extended-cylinders case with uniform 

and clustered distributions computed from EP/DBA/RTE and NMM3D simulations. 100 

cylinders and 500 cylinders are used in NMM3D simulations. 

Cylinder No. L (m) 

(Area=L2) 

EP/DBA/RTE NMM3D 

Uniform 

NMM3D 

Clustered 

100 0.217 0.1722 0.6874 0.7527 

500 0.485 0.1722 0.6124 0.7044 

For comparison, the transmission through the vegetation canopy is also calculated using 

EP/DBA/RTE using equation (4.2.8). The extinction  𝜅𝑒 is calculated using equation (4.2.4) and 

the standard procedures are used to calculate 𝑛0, and 𝜎𝑎 and 𝜎𝑠 for one cylinder [2, 39, 87, 88]. 

The  𝜅𝑒 is calculated to be 4.4914m-1 and thus the transmission computed from EP/DBA/RTE is 

0.1722 which is also listed in Table IV-2. It can be seen that the transmissions from NMM3D 

simulations of the 500 cylinders are 3.56 times (5.51 dB) and 4.09 times (6.12 dB) larger than that 

from EP/DBA/RTE, for the uniform distribution and clustered distribution, respectively. Thus, the 

attenuation of EP/DBA/RTE is much larger than that of NMM3D for the case of extended 

cylinders. 
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In EP/DBA/RTE, 𝜏 = 𝜅𝑒𝑑. The values for 𝜏 are tabulated in Table IV-3. The results for 

the extended-cylinders case show that 𝜏𝑁𝑀𝑀3𝐷 from NMM3D 500-cylinders simulations are 3.6 

and 5.0 times smaller than the 𝜏 from EP/DBA/RTE for the uniform distribution and clustered 

distribution, respectively. 

Table IV-3. Values of the optical thickness 𝜏 from EP/DBA/RTE and NMM3D simulations for 

the extended-cylinders case. 

Cylinder No. EP/DBA/RTE NMM3D Uniform NMM3D Clustered 

100 1.347 0.2871 0.2176 

500 1.347 0.3756 0.2684 

 

The short-cylinders case  

NMM3D full-wave simulations are next applied to the short-cylinders case as shown in 

Figure IV.2 where the short thin cylinders are uniformly distributed in 3D in the vegetation layer. 

There are 720 cylinders in total. The average spacing between the cylinders is about 10cm (~1.8λ). 

The simulation area is 1m × 1m. The radius and length of the cylinders are 1mm and 3cm, 

respectively. The total vegetation canopy height is 60cm and the incident angle is 40𝑜 . The 

histogram of the averaged transmitted Poynting 𝑇𝑠  for 100 realizations is presented in Figure 

IV.16. The standard deviation of 𝑇𝑠 is 0.0188. The computed transmission t through vegetation 

layer using NMM3D is 0.9097. In EP/DBA/RTE, 𝜅𝑒 is calculated to be 0.1368m-1 and thus the 

transmission is 0.8984 as calculated using equation (4.2.9). The results for transmission from 

NMM3D simulations and EP/DBA/RTE agree with each other for the case of short cylinders.  



186 

  

 
 

Figure IV.16.  The histogram of  𝑇𝑠 (power received by the “receiver” below the vegetation 

canopy) for 100 realizations for the short-cylinders case. 

 

The optical thickness 𝜏𝑁𝑀𝑀3𝐷  from NMM3D simulations is 0.0725. In comparison 𝜏 from 

EP/DBA/RTE is 0.0821, which is close to that from NMM3D.  

(b) Electric Field Profile Simulations  

The profiles for the extended-cylinders case from NMM3D simulations and EP/DBA/RTE are 

plotted in Figure IV.17. For EP/DBA/RTE, the absolute values of the total effective electric fields 

inside the vegetation canopy is 

|𝐸̅𝑒𝑓𝑓
𝑡𝑜𝑡 (𝑟̅𝑜)| = 𝑒𝑥𝑝 (−

1

2
𝜅𝑒|𝑧𝑜|𝑠𝑒𝑐𝜃𝑖)                                 (4.4.15) 

where 𝑧𝑜 is the z component of the observation point 𝑟̅𝑜.  

𝑇𝑠 
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Figure IV.17.  Profile of the averaged total field inside the vegetation canopy composed of 

extended cylinders. The red-dash line is for NMM3D simulations using uniform distribution, 

blue line is for NMM3D simulations using clustered distribution, and the black-dot line is for 

EP/DBA/RTE. 
 

It can be seen that the electric fields computed from EP/DBA/RTE are attenuated more in 

the vegetation canopy than those from NMM3D simulations. At the bottom of the vegetation 

canopy (i.e., z = -0.3m), the averaged total electric field from NMM3D simulations is about twice 

larger than that from EP/DBA/RTE. Since power is electric field squared, it is about four times 

larger from NMM3D simulations, compared with EP/DBA/RTE. Figure IV.17 shows that the 

electric field profiles from NMM3D simulations show approximately exponential decay merely at 

the top 5cm of the vegetation layer (i.e., z = 0 to z = 0.05m).  EP/DBA/RTE gives exponential 

decay for the entire profile. The fluctuations of the total electric fields from NMM3D simulations 

is due to the interference of the incident field and the scattered fields from all the cylinders. 
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The profiles for the short-cylinders case from NMM3D simulations and EP/DBA/RTE are plotted 

in Figure IV.18. It can be seen that the two profiles agree with each other except that there are 

fluctuations in the NMM3D simulation results. 

 
Figure IV.18. Profile of the averaged total field inside the vegetation canopy composed of short 

cylinders. The red-dash line is for NMM3D simulations and the blue line is for EP/DBA/RTE. 

 

(c) Simulation Results of Reflection and Absorption, and Energy Conservation Check for 

both Extended-cylinders and Short-cylinders Cases   

The reflection from NMM3D simulations using 500 cylinders for the extended-cylinders case 

is 0.0020 and 0.0045 for the uniform distribution and clustered distribution, respectively. The 

absorption from NMM3D simulations is 0.4030 for the uniform distribution. For the clustered 

distribution, there are 100 five-cylinder clusters and the clusters are uniformly randomly 

distributed in the vegetation area. We calculate the averaged absorption of the four clusters closest 

to the center of the vegetation fields in each realization. 
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The absorption is also calculated by equation (4.4.12) after replacing 𝑁𝐿 by the number of clusters 

and 〈𝑃𝑎〉 by the averaged absorption for each cluster over many realizations. The absorption from 

NMM3D simulations is 0.3249 for the clustered distribution. 

For the short-cylinders case, the reflection and absorption from NMM3D simulations are 

0.0023 and 0.0920, respectively. 

For energy conservation, the sum of transmission, reflection and absorption should be unity. 

The sums of the transmission, reflection and absorption from NMM3D simulations for the 

different cases are listed in Table IV-4, which shows 1.0174, 1.0338 and 1.0040 for the extended-

cylinders case with uniform distribution, the extended-cylinders case with clustered distribution, 

and the short-cylinders case, respectively. It can be seen that the results for all of them are close to 

one.   

Table IV-4. Energy conservation check for the extend-cylinders and short-cylinders cases.  

The transmission (𝑡𝑉), reflection (𝑟𝑉) and absorption (𝑎𝑉) are normalized to the incident power. 

The subscript “V” stands for V-polarization. 

Case Transmission (𝑡𝑉) Reflection (𝑟𝑉) Absorption (𝑎𝑉) 𝑡𝑉 + 𝑟𝑉 + 𝑎𝑉  

Extended-cylinders 

Uniform 

0.6124 0.0020 0.4030 1.0174 

Extended-cylinders 

Clustered 

0.7044 0.0045 0.3249 1.0338 

Short-cylinders  0.9097 0.0023 0.0920 1.0040 

  

(d) NMM3D Simulations of Transmission and Tau of Vegetation for Different VWC and 

Frequency  

We also applied the NMM3D to simulated grass canopies composed of cylinders for different 

VWC. Figure IV.19 shows the microwave transmission 𝑡 from the NMM3D simulations for the 

grass canopy with uniform distribution of cylinders at C-band (5.4 GHz) with  40𝑜 incident angle 
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as a function of VWC. The transmission generally decreases with VWC. The transmission from 

NMM3D is much larger than that from RTE/DBA, especially when the VWC is high. The 

transmission from RTE/DBA decreases exponentially with the increase of VWC while the 

transmission from NMM3D decrease much slower. For example, at VWC = 1.5 kg/m2, the 

transmission from NMM3D is 0.5372 while it is only 0.0715 from RTE/DBA. In this case, the 

transmission from NMM3D is 7.5 times larger than that from RTE/DBA. The tau from NMM3D 

is 0.4760, which is 4.2 times smaller than that of RTE.   

 

Figure IV.19. Transmission from RTE/DBA and NMM3D vs VWC. 

 

The FL-BOR is also applied for NMM3D simulations of small tree trunks at P-band (370 

MHz). The incident angle is 40 degrees. Tree height is 4m with diameter of 6cm. The VWC is 

8.14 kg/m2 with tree density of 4 per m2. The results are listed in Table IV-5, which shows that 

transmission from NMM3D is 4.2 times larger than that from RTE/DBA. 

 Table IV-5. P-band: The transmission t and optical thickness τ from RTE/DBA and NMM3D 

for tree trunks. 
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 NMM3D RTE/DBA 

Transmissivity (𝑡) 0.1559 0.0371 

Optical Thickness (𝜏) 2.5232 1.4237 

 

4.5 Conclusion 

In the past, the common approaches of studying propagation of microwaves through 

vegetation are using the Radiative transfer equation and the distorted Born approximation. We 

showed that the derivation of RTE is based on the assumption of cylindrical elemental volumes. 

The concept of cylindrical elemental volumes is applicable to short cylinders and small particles, 

but is difficult to apply to extended cylinders. We noted that the attenuation constant 𝜅𝑒 used in 

EP/DBA/RTE is based on the assumption of 3D statistically homogenous distribution of the 

scatterers. The attenuation rate  𝜅𝑒 is not a result from Maxwell’s equations. In the calculation of 

attenuation constants in RTE and DBA, the scattering and the absorption cross sections of entire 

cylinders are used. The cross sections of such extended cylinders are large, making the attenuation 

constant a large number. Thus, in this section, we use a new approach of NMM3D full-wave 

simulations which are used to calculate transmission, reflection and absorption of the vegetation 

canopy composed of many vertically oriented dielectric thin cylinders.  The results are 

significantly different from past approaches for the case of extended cylinders. The correctness of 

the FL-BOR simulation method is validated by comparing with FL-ICA and checking the energy 

conservation. The NMM3D simulations are performed at C-band for vertical polarization and 

applied to the extended-cylinders case and the short-cylinders case. The results are compared with 

those from EP/DBA/RTE. The results from the NMM3D and EP/DBA/RTE agree for the short-

cylinders case. For the examples of extended-cylinders case, the transmission from the NMM3D 
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is 6.12 dB larger than that from EP/DBA/RTE while the optical thickness 𝜏 from the NMM3D is 

5.0 times smaller than that from EP/DBA/RTE.  

The NMM3D method and results, presented in this section, are studied in the context of 

airborne and satellite active and passive microwave remote sensing of vegetation-covered surfaces. 

The significant differences in results from those of RTE and DBA suggest that there is a need to 

make theoretical predictions using NMM3D simulations to re-evaluate the ability of microwaves 

to penetrate vegetation canopy of extended cylinders which are characteristic of many vegetation 

and forest types. The physical process of radiative transfer at microwave frequencies are governed 

exactly by Maxwell’s equations. The radiative transfer equation (RTE) make assumptions on 

radiative transfer and such assumptions can be invalid. The NMM3D methodology described in 

this section can also be used for wireless communications through vegetation canopy, foliage 

penetration radar, and waves in wire-like metamaterials.    

This section presents first results based on a new approach to vegetation effects in 

microwave propagation, scattering and emission in vegetation. For future studies, other 

polarizations such as H polarization and cross polarizations should be considered.  Orientation 

distributions should also be considered. The phase shifts of the transmitted wave relative to the 

incident wave will be calculated.  
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CHAPTER V                                                                                                                             

NMM3D Full-wave Simulations of Vegetation/Forest Using Hybrid Method in 

Fold-Lax Equations with Vector Spherical/Spheroidal/Cylindrical Wave 

Expansions 

 

In this chapter, a hybrid method is developed for Numerical Maxwell Model of 3D 

(NMM3D) full-wave simulations of vegetation/trees. The hybrid method combines off-the-shelf 

techniques for single object and our developed techniques of Foldy-Lax method that include 

extracting the T matrix for single object, vector translation addition theorem and solving Foldy-

Lax multiple scattering equations (FL). Vector spherical, spheroidal and cylindrical waves are 

used. For vector spherical and spheroidal waves, the commercial software HFSS is utilized to 

extract the T matrix of a single object. HFSS enables us to perform full-wave simulations of single 

objects with complicated structures. From the numerical integration of the scattered fields from 

HFSS with the vector spherical/spheroidal waves, the T matrix is obtained. To perform wave 

transformations (i.e., addition theorem) for vector spherical/spheroidal waves, we develop robust 

numerical methods. In solving FL, the coherent wave interactions among the objects are 

considered and the multiple scattering of all the objects is calculated. For cylindrical scatterers 

such as tree trunks, the T matrix in vector 3D cylindrical waves are extracted from Infinite Cylinder 

Approximation (ICA). The extracted T matrices have been verified. The results of the hybrid 

method have also been verified by the HFSS brute force method for the cases feasible to be run on 

HFSS. In comparison, the hybrid method is much more efficient than HFSS for vegetation 
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scattering and applicable to large problems such as full-wave simulations of trees. The hybrid 

method has been applied to calculate the propagation of microwaves in randomly distributed 

dielectric cylinders representing tree trunks. In solving FL to calculate statistical moments, we 

iterate one order of multiple scattering at a time, with averaging over realizations performed after 

each order. This physically based iterative method of calculating averaged solution converges 

faster than the traditional iterative method of calculating the exact solution for each realization. 

Numerical results are illustrated for a large number of cylinders of up to 196 and cylinder lengths 

of up 94 wavelengths which are typical of forests at L-band.  Results of the simulations of the 

hybrid method show that the transmission coefficient of waves are several times larger than that 

of the commonly used models of the radiative transfer equation (RTE) and the distorted Born 

approximation (DBA). The material covered in this Chapter has been partially published in [31]. 

 

5.1 Introduction 

A large fraction of the soil is covered by vegetation/trees. Thus, understanding the effects of 

vegetation/trees on microwaves is important for remote sensing of soil moisture: in particular, how 

much electromagnetic energy can penetrate through the vegetation/trees to reach the soil 

underneath. In radar remote sensing, understanding the effects of vegetation/forests on microwave 

propagation, is important for retrieval of soil moisture and snow-wate-equivalent (SWE) below 

the trees [95, 96]. For passive remote sensing, the transmission coefficient determines the amount 

of surface emission which can pass through vegetation/forests to reach the radiometer above the 

vegetation/forest canopy [8] [97]. In terms of wireless communications, transmission through 

forest can help to model how well the electronic devices such as cell phones and GPS receivers 

can receive wireless signals under the forest [98]. 
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For three decades, computations of wave propagation coefficient in randomly distributed 

cylinders have been based on radiative transfer equations (RTE) [4, 28] and the distorted Born 

approximation (DBA) [6, 11]. In both DBA and RTE, a key parameter is the attenuation rate per 

unit distance 𝜅𝑒. 𝜅𝑒 is calculated using 𝜅𝑒 = 𝑛0(𝜎𝑎 + 𝜎𝑠), where 𝑛0 is the number of scatterers per 

m3, and 𝜎𝑎  and 𝜎𝑠  are the scattering cross section and the absorption cross section of a single 

scatterer, respectively. RTE originates from the applications in clouds and rainfalls where the water 

droplets have 3D statistical homogeneity [2, 4]. Thus, RTE is regarded commonly as a 

‘cloud/droplets’ model to represent the scatterers. There are several assumptions in RTE and DBA 

that are difficult to justify for modelling a layer of randomly distributed cylinders. Three of the 

most significant ones are listed as follows: (i) The derivation of the RTE and DBA equations 

assume that the scatterers were uniformly distributed in 3D. The gaps between tree trunks are 

ignored. The free propagation of microwaves through the gaps results in an effect that the uniform 

scattering layer is not able to capture. (ii) The absorption and scattering cross section of the entire 

objects based on plane wave illuminations are included in the attenuation coefficients and phase 

matrix. These cannot be justified in tall cylinder environments such as tree trunks because the 

waves scattered by cylinders affect each other. (iii) RTE/DBA uses the far field approximation in 

the scattering phase matrix. The far field means distance larger than 
2 /length wavelength .  The 

far field approximation is not valid for the cases of trees at L-band where the far field distance is 

tens to hundreds of meters. In addition to RTE and DBA, another model is the coherent/branching 

model [5, 36]. The coherent/branching model is a single scattering approach and the attenuation 

was not calculated correctly. 

In an earlier paper, second order theory was used for Monte Carlo simulations of scattering 

by vertical dielectric cylinders [94]. Full-wave simulations of dielectric cylinders with random 
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orientations was also studied using the Method of Moment (MoM) [99]. In chapter IV, a full-wave 

simulation method combining Foldy-Lax full multiple scattering equations and the impedance 

matrix of the body of resolution (BOR) was developed for a layer of dielectric cylinders of small 

radii.   

To perform NMM3D full-wave simulations of vegetation and trees, a hybrid method is 

developed in this chapter. This method is a hybrid of the off-the-shelf technique (e.g.HFSS) and 

newly developed techniques. The newly developed techniques are the three key steps of the hybrid 

method: (1) calculating the T matrix of each single object using vector waves, (2) vector wave 

transformations, and (3) solving Foldy-Lax multiple scattering equations (FL) for all the objects. 

Vector spherical, spheroidal and cylindrical waves are used. The T matrix relates the incident fields 

to the scattered fields for an arbitrary-shape scatterer [4]. Previously, vector spherical wave 

expansions were used for the T matrix for a sphere, where a circumscribing sphere is defined [4]. 

In this chapter, we extract the T matrix for an arbitrarily-shaped object. When the objects are 

closely packed, it is impractical to enclose each object by a spherical surface without overlap. In 

general, spheroidal surfaces are more compact to enclose closely packed objects. Thus, vector 

spheroidal wave expansions are also used, which are more complicated than the spherical waves. 

To extract the T matrix for an arbitrary-shape object, the off-the-shelf technique HFSS is used. 

HFSS enables us to perform full-wave simulations of single objects with complicated structures. 

To extract the T matrix of the single object from HFSS, we first define a spherical/spheroidal 

surface (∂S) which encloses the object. Then, we excite the object using incident plane waves at 

different incident angles and polarizations in HFSS. Using the scattered field values on ∂S from 

HFSS, the spherical/spheroidal wave expansion coefficients of the scattered waves are obtained. 

Since the expansion coefficients of the incident plane waves are known, the T matrix is extracted. 
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The accuracy of the extracted T matrix from HFSS is verified by comparison with the analytical 

solution for the sphere. It is noted that the T matrix extraction method works for arbitrary-shaped 

objects.  It is noted that the T matrix extraction method also works for those requiring a spheroidal 

surface with a large aspect ratio (e.g. branches with leaves). Next, we develop robust numerical 

methods to perform wave transformations for vector spherical and spheroidal waves, which is also 

called addition theorem. Finally, the extracted T matrices for the single objects are substituted to 

FL, and the FL is solved with the use of the numerical wave transformations. In solving FL, the 

multiple scattering of all the objects is calculated. The hybrid method for full-wave solutions of 

multiple scattering is illustrated using several complicated objects. For three objects, it is feasible 

to simulate them with the HFSS brute force method to provide validation. However, the HFSS 

brute force method is impractical computationally for large problems including lots of objects or 

empty space, while the hybrid method can still operate with available computation resources. The 

hybrid method is feasible to perform full-wave simulations of vegetation/trees, which has 

applications in microwave remote sensing of vegetation, vegetation-covered surfaces, and forest. 

  For trees/tree trunks, the hybrid method with 3D vector cylindrical wave expansions is 

used. It is because trees/tree trunks can be compactly enclosed by infinite cylindrical surfaces. The 

vegetation/forest components such as trunks, branches, main stems, stalks, etc. are modeled by 

dielectric cylinders [9, 77, 100, 101]. We use ICA to extract the T matrix for the cylinder and the 

analytical expressions for the T matrix are derived. The main purpose is to simulate tall tree trunks 

at L-band and ICA is of sufficient accuracies. The accuracy of the T matrix is also verified. For 

3D vector cylindrical waves, the scattered field formulation of FL is used instead of the usual 

exciting field formulation. In traditional method of solving such matrix equations of FL, the 

equations are solved iteratively using conjugate gradient or similar algorithms for each realization 
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until the root mean squared error (RMSE) for the coefficients reaches a threshold. Then the 

averaged solutions of scattering and transmission coefficient are calculated by taking averages 

over many realizations such as 10 to 40 realizations. For simulating large problems of many tree 

trunks, we use a physically based iterative method to calculate the averaged solution which is based 

on the observation that the averaged multiple scattering solutions have a much faster convergence 

because of inherent averaging. We have implemented the hybrid method on parallel computing. 

Using the hybrid method, we calculate the transmission of microwaves through the forest canopy, 

represented by a layer of randomly distributed cylinders. To model tree trunks at L-band, dielectric 

cylinders of up to 20 meters tall are simulated. The results of hybrid method show that the past 

models of RTE/DBA significantly overestimate attenuation for a layer of cylinders. The hybrid 

method predicts transmission coefficient several times larger and and the optical thickness $\tau$ 

several times smaller than that of the past models.  

 This chapter is organized as follows. Section 5.2 provides the derivations and formulas for 

vector spherical, spheroidal and cylindrical waves. Section 5.3 derives the three steps of the hybrid 

method in detail for all the three kinds of vector waves: (1) T matrix extraction, (2) vector wave 

transformations, and (3) solving the Foldy-Lax equations. Section 5.4 presents the intermediate 

results and final results of the hybrid method, as well as discussions. 

 

5.2 Vector Spherical, Spheroidal and Cylindrical Waves 

In the Fold-Lax equations, the fields are expanded in terms of vector waves [4]. The vector 

waves are complete basis functions outside the exclusion volume. As illustrated in Figure V.1: 

when the two branches are far apart, they can be enclosed by spherical surfaces without overlap. 

In this case, the exclusion volume is spherical and thus vector spherical wave expansions are used 
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for fields outside the spherical surfaces. When the two branches are close to each other, they can 

be enclosed by spheroidal surfaces without overlap. In this case, the exclusion volume is spheroidal 

and thus vector spheroidal wave expansions are used for fields outside the spheroidal surfaces. 

Figure V.2 illustrates the infinite cylindrical exclusion volume. The tree trunk (Figure V.2 left) 

and the whole tree (Figure V.2 right) can be enclosed by infinite cylindrical volume without 

overlap and thus 3D vector cylindrical wave expansions are used outside the cylindrical surfaces.   

 

Figure V.1. Illustration of spherical and spheroidal exclusion volumes for vector spherical and 

spheroidal waves, respectively. 

 

 

    
 

Figure V.2. Illustration of infinite cylindrical exclusion volumes for 3D vector cylindrical waves. 

 

The scalar wave equation is  
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                                   ( )2 2 ( ) 0k r + =                                                   (5.2.1)                                                    

The vector wave equation is  

2 ( ) 0E k E r − =                                                  (5.2.2) 

 

The vector spherical, spheroidal and cylindrical waves are the solutions to the vector wave 

equation in spherical, spheroidal and cylindrical coordinate systems, respectively 

 

5.2.1 Vector Spherical Waves 

The three parameters in the spherical coordinate system are (𝑟, 𝜃, 𝜙). The outgoing scalar 

spherical wave is 

(1)( , , ) ( ) (cos )m im

mn n nkr h kr P e    =                                       (5.2.3) 

where (1)

nh  is the spherical Hankel function of the first kind and m

nP  is the associated Legendre 

function defined as 
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where m = 0, ±1, ±2,… , ±n, and n starts with 0. 

The regular scalar spherical wave is  

( , , ) ( ) (cos )m im

mn n nRg kr j kr P e    =                               (5.2.5)    

where the prefix Rg stands for regular and jn is the spherical Bessel function. 

 The regular vector spherical waves are 
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                             (5.2.6)   
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The vector spherical waves 
mnM  and 

mnN  are obtained by changing the spherical Bessel function 

to Hankel function of the first kind. mn  is defined as  
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                                                 (5.2.8) 

The 
mnC , 

mnP  and 
mnB  are the vector spherical harmonics defined as follows. 
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n starts with 0 for 
mnP  and starts with 1 for 

mnC and 
mnB . The orthogonality relation for vector 

spherical harmonics is  
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5.2.2 Vector Spheroidal Waves 

The three parameters in the spheroidal coordinate system are (ξ, η, ϕ), with −1 ≤ 𝜂 ≤

1,1 ≤ 𝜉 < ∞,0 ≤ 𝜙 ≤ 2𝜋. The transformation between the Cartesian coordinate system and the 

spheroidal coordinate system is 

( )( )

( )( )

2 2

2 2
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2
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2
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d
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d
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d
z

  
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=

                                      (5.2.15) 

Then, it can be deduced that 
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where d is the interfocal distance. For constant 𝜙, the plot is a half plane (Figure V.3 (A)), the 

same as the spherical system. For constant 𝜉, the plot is a spheroidal surface (Figure V.3 (B)). The 

major axis length is 𝑑𝜉 and the minor axis length is 2 1
2

d
 − . For constant 𝜂,  the plot is a 

hyperboloid (Figure V.4). 

                       

                                                   (A)                                                         (B) 



203 

 

Figure V.3. (A) Constant ϕ = π/8 and (B) constant ξ = 1.05 in the spheroidal coordinate 

system. 

 

                  

                                         (A)                                                         (B) 

Figure V.4. Constant η, (A) η = 0.1 and (B) η = −0.1. 

 The prolate spheroidal scalar wave function is  

( )
sin

( , ) ( , )
cos

mn mn mnS c R c m   =                                       (5.2.18) 

where 
1

2
c kd= . ( )sin m are the odd modes while ( )cos m  are the even modes, which are used 

instead of ( )exp im to follow the formulations in [102]. ( , )mnS c   is the spheroidal angular 

function and ( , )mnR c   is the spheroidal radial function.  

 The spheroidal angular function ( , )mnS c   satisfy the following equation, 
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             (5.2.19) 

where mn  is the characteristic value. 

There are two linearly independent solutions to this equation: spheroidal angular function of the 

first kind 
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and spheroidal angular function of the second kind 
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where ( )m

m rP +
is the associated Legendre function of the first kind and ( )m

m rQ +
 is the Legendre 

function of the second kind. The prime on the summation means that the summation is over even 

k when (n-m) is even and over odd k when (n-m) is odd. In this section, only prolate spheroidal 

function is used and thus only (1)( , )mnS c   is needed. For simplification, the superscript ‘(1)’ is 

omitted later in this section. 

The coefficient mn

rd  can be calculated using the following formula, 

2 2( ) ( ) ( ) ( ) ( ) ( ) ( ) 0m mn m mn m mn

r r r mn r r rA c d c B c c d c C c d c+ −
 + − + =                 (5.2.22) 

The detailed steps of calculations can be found in [103, 104]. 

( , )mnS c   for m=0, c=5 and n=0,1,2,3 is plotted in Figure V.5 (a) and ( , )mnS c   for m=1, 

c=5, and n=1,2,3,4 is plotted in Figure V.5 (b). The plots compare well with those in [103] which 

validates the correctness of the results. 

 
(a) 
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(b) 

Figure V.5. ( , )mnS c   for different n at (a) m=0, c=5 and (b) m=1, c=5. 

For our application, the spheroidal surface is used to enclose vegetation scatterers such as 

a branch with leaves. In this case, the aspect ratio (i.e., the ratio between the major axis length and 

minor axis length) is large. In this case, 𝜉 us close to 1. An example is shown in Figure V.6. For 

d=1m, c=14.76 at L-band of frequency 1.41 GHz.  

                   

Figure V.6. A branch enclosed by a prolate spheroidal surface (left), spheroidal surface 

with 𝜉 = 1.05. 

𝒅 
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(a) 

 
(b) 

Figure V.7. ( , )mnS c   for different n at (a) m=0, c=14.76 and (b) m=1, c=14.76. 

( , )mnS c   for m=0, c=14.76 and n=0,1,2,3 is plotted in Figure V.7 (a) and ( , )mnS c   for m=1, 

c=14.76, and n=1,2,3,4 is plotted in Figure V.7 (b). ( , )mnS c   is also plotted for different c as 

shown in Figure V.8. It can be seen that ( , )mnS c   decreases with c.  
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(a) 

 
(b) 

Figure V.8. ( , )mnS c   for different c at (a) m=0, n=0 and (b) m=0, n=1. 

The spheroidal radial function ( , )mnR c   satisfies the following equation 

 ( )
2

2 2 2

2
1 ( , ) ( , ) 0

1
mn mn mn

d d m
R c c R c

d d
    

  

  
− − − + =   −   

                      (5.2.23) 

The solution is as follows 
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𝑅𝑚𝑛
(𝑖) (𝑐, 𝜉) =

1

∑ ′ 𝑑𝑟
𝑚𝑛(𝑐)

(2𝑚 + 𝑟)!
𝑟!

∞
𝑟=0,1

(
𝜉2 − 1

𝜉2
)

𝑚/2

 

∙ ∑ ′ 𝑖𝑟+𝑚−𝑛𝑑𝑟
𝑚𝑛(𝑐)

(2𝑚 + 𝑟)!

𝑟!

∞

𝑟=0,1

𝑧𝑚+𝑟
(𝑖)

(𝑐𝜉) 

                   (5.2.24) 

where i = 1,2,3,4 with 𝑧𝑛
(1)(𝑥) = 𝑗𝑛(𝑥),  𝑧𝑛

(2)(𝑥) = 𝑛(𝑥), 𝑧𝑛
3(𝑥) = ℎ𝑛

(1)(𝑥), 𝑧𝑛
(4)(𝑥) =

ℎ𝑛
(2)(𝑥).  

Thus,  

𝑅𝑚𝑛
(3) (𝑐, 𝜉) = 𝑅𝑚𝑛

(1) (𝑐, 𝜉) + 𝑖𝑅𝑚𝑛
(2) (𝑐, 𝜉)                                    (5.2.25) 

𝑅𝑚𝑛
(4) (𝑐, 𝜉) = 𝑅𝑚𝑛

(1) (𝑐, 𝜉) − 𝑖𝑅𝑚𝑛
(2) (𝑐, 𝜉)                                    (5.2.26) 

𝑅𝑚𝑛
(1) (𝑐, 𝜉) for m=0, c=5 and n=0,1,2,3 is plotted in Figure V.9 (a) and 𝑅𝑚𝑛

(2) (𝑐, 𝜉) for m=1, 

c=5, and n=1,2,3,4 is plotted in Figure V.9 (b). The plots compare well with those in [103] which 

validates the correctness of the results. 

 
(a) 
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(b) 

Figure V.9. (a) 𝑅𝑚𝑛
(1) (𝑐, 𝜉) for m=0, c=5 and (b) 𝑅𝑚𝑛

(2) (𝑐, 𝜉) for m=1, c=5, at different n. 

𝑅𝑚𝑛
(1) (𝑐, 𝜉) for m=0, c=14.76 and n=0,1,2,3 is plotted in Figure V.10 (a) and 𝑅𝑚𝑛

(2) (𝑐, 𝜉) for m=1, 

c=14.76, and n=1,2,3,4 is plotted in Figure V.10 (b). 𝑅𝑚𝑛
(1) (𝑐, 𝜉) and 𝑅𝑚𝑛

(2) (𝑐, 𝜉) is also plotted for 

different c as shown in Figure V.8. It can be seen that the oscillation frequency increase with c for 

both 𝑅𝑚𝑛
(1) (𝑐, 𝜉) and 𝑅𝑚𝑛

(2) (𝑐, 𝜉).  
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(a) 

 
(b) 

Figure V.10. (a) 𝑅𝑚𝑛
(1) (𝑐, 𝜉) for m=0, c=14.76 and (b) 𝑅𝑚𝑛

(2) (𝑐, 𝜉) for m=1, c=14.76, at different n. 

The comparisons between the spherical wave function and spheroidal wave function are 

summarized in Table V-1. When 𝑐 → 0 , or 𝜉 → ∞ , the spheridal wave function approaches 

spherical wave functions. Both wave functions have the same 𝜙 dependence.  

 
(a) 
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(b) 

Figure V.11. (a) 𝑅𝑚𝑛
(1) (𝑐, 𝜉) and (b) 𝑅𝑚𝑛

(2) (𝑐, 𝜉) for m=0, n=0, at different n. 

Table V-1. Comparisons between the spherical and spheroidal functions. 

Spherical function (𝑟, 𝜃, 𝜙) Spheroidal function (𝜉, 𝜂, 𝜙) 

(𝑐 → 0, or 𝜉 → ∞: spheroidal → spherical) 

𝑒𝑥𝑝(𝑖𝑚𝜙) 𝑒𝑥𝑝(𝑖𝑚𝜙) 
𝑃𝑛
𝑚(𝑐𝑜𝑠𝜃) 𝑆𝑚𝑛(𝑐, 𝜂) 
𝑗𝑛(𝑘𝑟) 

ℎ𝑛
(1)(𝑘𝑟) = 𝑗𝑛(𝑘𝑟) + 𝑖𝑛𝑛(𝑘𝑟) 

𝑅𝑚𝑛
(1) (𝑐, 𝜉): expansion of 𝑗𝑛(𝑘𝑟) 

𝑅𝑚𝑛
(2) (𝑐, 𝜉): expansion of 𝑛𝑛(𝑘𝑟) 

𝑅𝑚𝑛
(3) (𝑐, 𝜉) = 𝑅𝑚𝑛

(1) (𝑐, 𝜉) + 𝑖𝑅𝑚𝑛
(2) (𝑐, 𝜉)  

𝑅𝑔𝜓𝑚𝑛 = 𝑃𝑛
𝑚(𝑐𝑜𝑠𝜃)𝑗𝑛(𝑘𝑟)𝑒𝑥𝑝(𝑖𝑚𝜙) 

𝜓𝑚𝑛 = 𝑃𝑛
𝑚(𝑐𝑜𝑠𝜃)ℎ𝑛

(1)
(𝑘𝑟)𝑒𝑥𝑝(𝑖𝑚𝜙) 

𝜓𝑚𝑛
(1)

= 𝑆𝑚𝑛(𝑐, 𝜂)𝑅𝑚𝑛
(1) (𝑐, 𝜉)𝑒𝑥𝑝(𝑖𝑚𝜙) 

𝜓𝑚𝑛
(3)

= 𝑆𝑚𝑛(𝑐, 𝜂)𝑅𝑚𝑛
(3) (𝑐, 𝜉)𝑒𝑥𝑝(𝑖𝑚𝜙) 

 

The vector spheroidal wave functions are calculated from the scalar wave functions as below 

( ) ( ), ,

( ) ( ) ˆ( ; , , )e o mn e o mn

a i i aM c     = 
 

                                  (5.2.27) 

( ) ( )

( )
,

(

,

) 1
ˆ( ; , , )e o mn e o mn

a i ic a
k

N     = 
 

                          (5.2.28) 

where â  is ˆ ˆ ˆ, ,x y z  or r̂ .  
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In this section, we use r̂ . The expressions for the vector prolate spheroidal wave functions are as 

follows [104]. 

( ) ( ) ( ) ( )

( , ) ( , ) , , ( , ) , , ( , ) , ,
ˆ ˆˆr i r i r i r i

e o mn e o m n e o m n e o m nM M M M    = + +                    (5.2.29) 

with 

( ) ( )

( ) ( )

( , ) , , 1 1
2 2 22 2

sin
( )

cos
1

r i i

e o m n mn mn

m
M S R m




  

 
=  − − −

 

( ) ( )

( ) ( )

( , ) , , 1 1
2 2 22 2

sin
( )

cos
1

r i i

e o m n mn mn

m
M S R m




  

 −
=  − − −

 

( ) ( )
1 1

2 22 2 ( )
( ) ( )

( , ) , , 2 2

cos

s

1 1
( )

in

i
r i imn mn
e o m n mn mn

dS dR
M R S m

d d


 
  

   

− −    
= −   −   

 

 

( ) ( ) ( ) ( )

( , ) ( , ) , , ( , ) , , ( , ) , ,
ˆ ˆˆr i r i r i r i

e o mn e o m n e o m n e o m nN N N N    = + +                  (5.2.30) 

with 
( )

( )

( )

( )( )

2 2 ( )
( )1

2 2 2 22 2
( )

( , ) , , 1
2

2 2 2 ( )

2 2

cos

si

1 1

2 1
( )

1

n

1

i
imn mn

mn mn

r i

e o m n

i

mn mn

dS dR
R S

d d
N m

mkd S R



  


       


 
 

  −    −
 −     −  −−      =    

  − +
 − −
 

 

( )

( )

( )

( )( )

2 ( ) 2
( )1

2 2 2 22 2
( )

( , ) , , 1
2

2 2 2 ( )

2 2

1 1

2 1
(

cos

si
)

1 1

n

i
imn mn

mn mn

r i

e o m n

i

mn mn

dR dS
S R

d d
N m

mkd S R



  


       


 
 

  −    −
 − +     −  −−      = −    

  − −
 − −
 

 

( ) ( )
( )

( ) ( )

1 1
2 22 2

( ) ( ) ( )

( , ) , , 2 22 2

2 1 1 sin1 1
( )

cos1 1

r i i i

e o m n mn mn mn mn

m d d
N S R S R m

d dkd


 
  

    

− −   −
= −    −− −−    

 

where the upper function of ( )m  is for even function while the lower sign is for odd function. 

mnS  is function of   and ( )i

mnR  is function of   which are not written out explicitly for simplicity. 
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It can be seen that the first and second order derivatives are needed in calculating the spheroidal 

vector wave functions. The first-order derivative of the spheroidal angular function is 

'

0,1

( , ) ( )
( )

m
mnmn m r
r

r

dS c dP
d c

d d

 

 


+

=

=                                          (5.2.31) 

𝑑𝑆𝑚𝑛(𝑐, 𝜂)/𝑑𝜂 for c=14.76 and m=0 and m=1 is plotted in Figure V.12. 

 
(a) 

 
(b) 

Figure V.12. 𝑑𝑆𝑚𝑛(𝑐, 𝜂)/𝑑𝜂  for (a) m=0, c=14.76 and (b) m=1, c=14.76, at different n. 
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The second order derivative is calculated using equation (5.2.19),  

( )

2 2
2 2

2 22

( , ) 1
2 ( , ) ( , )

11

mn
mn mn mn

d S c d m
S c c S c

d d


    

  

  
= − − −  

−−   
         (5.2.32) 

𝑑2𝑆𝑚𝑛(𝑐, 𝜂)/𝑑𝜂
2 for c=14.76 and m=0 and m=1 is plotted in Figure V.13. 

 
(a) 

 
(b) 

Figure V.13. 𝑑2𝑆𝑚𝑛(𝑐, 𝜂)/𝑑𝜂
2  for (a) m=0, c=14.76 and (b) m=1, c=14.76, at different n. 
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The first-order derivative of the spheroidal radial function is  

𝑑𝑅𝑚𝑛
(𝑖) (𝑐, 𝜉)

𝑑𝜉
=

1

∑ ′ 𝑑𝑟
𝑚𝑛(𝑐)

(2𝑚 + 𝑟)!
𝑟!

∞
𝑟=0,1

 

∙ ∑ ′ 𝑖𝑟+𝑚−𝑛𝑑𝑟
𝑚𝑛(𝑐)

(2𝑚 + 𝑟)!

𝑟!

∞

𝑟=0,1

𝑑 [(
𝜉2 − 1
𝜉2

)
𝑚/2

𝑧𝑚+𝑟
(𝑖) (𝑐𝜉)]

𝑑𝜉
 

(5.2.33) 

𝑑𝑅𝑚𝑛
(1)
(𝑐, 𝜉)/𝑑𝜉 for c=14.76 and m=0 and m=1 is plotted in Figure V.14 and 𝑑𝑅𝑚𝑛

(2)
(𝑐, 𝜉)/𝑑𝜉 for 

c=14.76, and m=0 and m=1 is plotted in Figure V.15. It observed that the change of 𝑑𝑅𝑚𝑛
(1)
(𝑐, 𝜉)/𝑑𝜉 

with 𝜉 is very different for m=0 and m=1. In comparison, the change of 𝑑𝑅𝑚𝑛
(2)
(𝑐, 𝜉)/𝑑𝜉 with 𝜉 is 

similar for m=0 and m=1. 

            
                                      (a)                                                                          (b) 

Figure V.14. 𝑑𝑅𝑚𝑛
(1)
(𝑐, 𝜉)/𝑑𝜉 for (a) m=0, c=14.76 and (b) m=1, c=14.76, at different n. 
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                                    (a)                                                                              (b) 

Figure V.15. 𝑑𝑅𝑚𝑛
(2)
(𝑐, 𝜉)/𝑑𝜉 for (a) m=0, c=14.76 and (b) m=1, c=14.76, at different n. 

        
                                     (a)                                                                            (b) 

Figure V.16. 𝑑2𝑅𝑚𝑛
(1) (𝑐, 𝜉)/𝑑𝜉2 for (a) m=0, c=14.76 and (b) m=1, c=14.76, at different n. 

 

The second order derivative of the spheroidal radial function is calculated as 

( )

2 2
2 2

2 22

1
( , ) ( , ) 2 ( , )

11
mn mn mn mn

d m d
R c c R c R c

d d
     

  

  
= − + −  

−−   
    (5.2.34) 

Thus, the second order derivative can be calculated using the first-order derivative. 
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𝑑2𝑅𝑚𝑛
(1) (𝑐, 𝜉)/𝑑𝜉2  for c=14.76 and m=0 and m=1 is plotted in Figure V.16 and 𝑑2𝑅𝑚𝑛

(2) (𝑐, 𝜉)/

𝑑𝜉2for c=14.76, and m=0 and m=1 is plotted in Figure V.17. It observed that the change of 

𝑑2𝑅𝑚𝑛
(1)
(𝑐, 𝜉)/𝑑𝜉2  with 𝜉  is very different for m=0 and m=1. In comparison, the change of 

𝑑𝑅𝑚𝑛
(2)
(𝑐, 𝜉)/𝑑𝜉 with 𝜉 is similar for m=0 and m=1. 

       
                                        (a)                                                                        (b) 

Figure V.17. 𝑑2𝑅𝑚𝑛
(2)
(𝑐, 𝜉)/𝑑𝜉2 for (a) m=0, c=14.76 and (b) m=1, c=14.76, at different n. 

 

5.2.3 3D Vector Cylindrical Waves 

As detailed in [39], the regular scalar 3D cylindrical wave function is 

( ) ( ), , zik z in

n z nRg k k r J k e 

   +=                                                   (5.2.35) 

This is called 3D cylindrical waves because it depends on zk  while there is no zk  dependence for 

2D cylindrical waves. For outgoing waves, the Bessel function is changed to Hankel function:  

( ) ( )(1), , zik z in

n z nk k r H k e 

   +=                                                 (5.2.36)  

The regular 3D vector cylindrical wave functions are 

( ) ( ), , , , zik z in

n z n zRgM k k r Rgm k k e 

   +=                                        (5.2.37) 
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( ) ( ), , , , zik z in

n z n zRgN k k r Rgn k k e 

   +=                                     (5.2.38) 

where 

( ) ( ) ( )ˆˆ, ,n z n n

in
Rgm k k J k k J k       



= −  

( ) ( ) ( ) ( )
2

ˆˆ ˆ, ,
z z

n z n n n

ik k knk
Rgn k k J k J k z J k

k k k

 

        


= − + . 

For outgoing 3D vector cylindrical waves ( ), ,n zM k k r  and ( ), ,n zN k k r , the Bessel function is 

changed to Hankel function. 

 

5.3 The Hybrid Method  

The hybrid method for NMM3D full-wave simulations of vegetation combines  

(iii)Off-the-shelf techniques for single objects. Off-the-shelf techniques, such as HFSS, BOR 

(Body of Revolution) [12], ICA (Infinite Cylinder approximation) [4], and FEKO are used to 

solve Maxwell’s equations for a complicated single object of a moderate size, such as trunks 

and branches with leaves attached. 

(iv) We developed techniques that (a) extract T matrices of single objects from (i), (b) perform 

translation addition theorem for vector cylindrical and spheroidal waves, and (c) utilize the 

Foldy-Lax multiple scattering equations to calculate multiple scattering among the single 

objects.  

In NMM3D full-wave simulations, we use the Foldy-Lax multiple scattering equations 

(FL) with generalized T matrix. Consider an incident wave 𝐸̅𝑖𝑛𝑐  incident on N number of 

scatterers. In the Foldy-Lax equations, one uses 𝐸̅𝑒𝑥
𝑚 , the final exciting field of scatterer m. Let 
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there be N number of scatterers. The coupled equations of N final exciting fields, 𝐸̅𝑒𝑥
𝑛 ,   

n=1,2,3,...N  are (Figure V.18) : 

𝐸̅𝑒𝑥
𝑚 = 𝐸̅𝑖𝑛𝑐 + ∑ 𝐺̿𝑚𝑛𝑇̿𝑛𝐸̅𝑒𝑥

𝑛𝑁
𝑛=1
𝑛≠𝑚

                                                 (5.3.1) 

where 𝑇̿𝑛 is the generalized T matrix of scatterer n, 𝐺̿𝑚𝑛 is the Green’s function of propagation 

of wave from scatterer n to scatterer m, which can be in the near field, intermediate field or far 

field. Foldy-Lax equations were rigorously derived from Maxwell’s equations [4].  

 

Figure V.18. Illustration of the Foldy-Lax equations with six objects. 

In the Hybrid Method, we first use off-the-shelf softwares to solve Maxwell’s equations 

for single objects. This is followed by three steps that we developed: (1) extracting the T matrix 

of vector cylindrical/spheroidal waves using robust numerical methods; (2) 

numerical/analytical vector wave transformations where scattered waves from one object are 

transformed to incident waves on another object; and (3) solving Foldy-Lax equations (FL) 

and using physical multiple scattering orders of iteration with averaging after each order. The 

three steps are explained below. 
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5.3.1 Numerical and Analytical T Matrix Extraction 

The exciting fields are expanded in regular vector waves while the scattered waves outside 

the enclosing surface (𝜕𝑆) are expressed with outgoing vector waves. Then, the T matrix describes 

the linear relation between scattering coefficients and the exciting field coefficients [4]. 

(11) (12)( ) ( ) ( )

( ) ( ) ( )(21) (22)

S M E M E M

S N E N E N

T Ta a a
T

a a aT T

      
= =      
       

                                  (5.3.2) 

where the size of the T matrix (𝑇̿) is 2𝐿𝑚𝑎𝑥 × 2𝐿𝑚𝑎𝑥. 𝐿𝑚𝑎𝑥 depends on the number of multipole 

(𝑁𝑚𝑎𝑥)  used. For example, for vector spherical waves,  𝐿𝑚𝑎𝑥 = 𝑁𝑚𝑎𝑥(𝑁𝑚𝑎𝑥 + 2) [4]. 𝑁𝑚𝑎𝑥  is 

decided by the electrical size of the scatterer. 

 To find  𝑇̿ numerically, we excite the scatterer with 2𝐿𝑚𝑎𝑥 different incident waves (different 

incident angles and polarizations) and calculate the scatter fields using off-the-shelf techniques such 

as BOR, HFSS, FEKO, etc. After the expansion coefficients are calculated, 𝑇̿ is obtained by 

𝑇̿ = [
𝑎̅1
𝑆(𝑀)

… 𝑎̅2𝐿𝑚𝑎𝑥
𝑆(𝑀)

𝑎̅1
𝑆(𝑁)

… 𝑎̅2𝐿𝑚𝑎𝑥
𝑆(𝑁)

] [
𝑎̅1
𝐸(𝑀)

… 𝑎̅2𝐿𝑚𝑎𝑥
𝐸(𝑀)

𝑎̅1
𝐸(𝑁)

… 𝑎̅2𝐿𝑚𝑎𝑥
𝐸(𝑁)

]

−1

                         (5.3.3) 

where 𝑎̅𝑙
𝐸  and 𝑎̅𝑙

𝑆  are the coefficients of exciting field 𝑙 and the resulting scattered field, 

respectively.  

Thus, the key steps in extracting the T matrix numerically is calculating the expansion 

coefficients. Since different vector waves have different properties, different methods are used to 

find the expansion coefficients, as detailed below. 

(a) The T Matrix Extraction for Vector Spherical Waves 

The scattered fields are expanded using the outgoing vector spherical waves as 
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( ) ( ) ( )( ) ( )

,

, , , ,m

S S M S N

mn mn n mn

m n

E r a M kr a N kr    = +                 (5.3.4) 

where the expansion coefficients ( )

mn

S Ma  and ( )S N

mna  are needed to be obtained. 

Next, applying dot product with ( ), ,
m n

M kr   −
 and integration over   and   to the equation, 

( ) ( )

( ) ( ) ( )

2

0 0

,

2
( ) ( )

0 0

sin , ,

sin , , , , , ,

S

m n

S

mn mn

M S N

mn mn m
m

n
n

d d E r M kr

d d a M kr a N kr M kr

 

 

    

        

 

 

−

−



 = +  

 

 
    (5.3.5) 

To calculate the integration on the right hand side, we substitute the expressions for ( ), ,mnM kr    

and ( ), ,mnN kr    as listed in section 5.2. Then, 

( ) ( )

( ) ( ) ( ) ( )

( ) ( )

2

0 0

2

0 0

3

sin , , , ,

sin , ,

mn m n

mn nm n n m n

mn nm n n m

m

m nn m n

n

d d M kr M kr

h kr h kr d d C C

h kr h kr z

 

 

      

        

   

 

    

      

−

− −

−



= 

=

 

                     (5.3.6) 

where the orthogonality property is used and 
( )

3

4 1
( 1)

2 1

m

m n

n n
z

n



 

 



+
= −

+
. The expressions for   

are in section 5.2, 

Next, 

( ) ( )

( )
 

( ) ( )

2

0 0

2

0 0

sin , , , ,

( )( 1) ( )
sin , , ( ) ,

0

mn m n

nn
mn mn mn m n n m n

d d N kr M kr

krh krn n h kr
d d P B h kr C

kr kr

 

 

      

          

 

    

−



− −



  + 
 = +    

    

=

 

 

(5.3.7) 

Substituting into equation (5.3.5) leads to 

( ) ( )

( ) ( )

2

( ) 0 0

3

sin , ,S

m nS M

m n

m n n m n n m n

d d E r M kr
a

h kr h kr z

 

    

 

 

 

       

−

−


=
 

                           (5.3.8) 
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Similarly, applying dot product with ( ), ,
m n

N kr   −
 and integration over   and   to the 

equation, 

( ) ( )

( ) ( ) ( )

2

0 0

,

2
( ) ( )

0 0

sin , ,

sin , , , , , ,

S

m n

S

mn mn

M S N

mn mn m
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n
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d d E r N kr

d d a M kr a N kr N kr

 

 

    

        

 

 

−

−



 = +  

 

 
    (5.3.9) 

Since, 

( ) ( )
2

0 0
sin , , , , 0mn m n

d d M kr N kr
 

       −
 =                                 (5.3.10) 

and, 
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1 2
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z z
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 + +


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(5.3.11) 

Then, 

( ) ( )

( ) ( ) ( )

2

( ) 0 0

22

1 2

sin , ,

1

S

m nS N

m n

nn

m n m n m n m n

d d E r N kr
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krh krn n h kr
z

kr kr
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 

    

 

 

 



       

−


 

−


=

     +   + 
    
     

 
                 (5.3.12) 

Since 𝑚′ and 𝑛′ are dummy variables, we can change them to m and n. Thus 

( ) ( )

( ) ( )

2

( ) 0 0

3

sin , ,

n

S

mnS M

mn

mn mm nn n

d d E r M kr
a

h kr h kr z

 

    

 

−

−


=
 

                        (5.3.13a) 
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( ) ( ) ( )
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mnS N
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n

mn mn n mn

n

m

d d E r N kr
a

krh krn n h kr
z

kr kr
z

 

    

 

−



−


=

   +     +        

 
             (5.3.13b) 

The scattered fields ( )SE r  is obtained using the off-the-shelf techniques for the single scatterer, 

such as ICA, BOR, commercial software HFSS, FEKO, etc. After that, the integration in the 

nominator is calculated numerically. 

If the tangential scattered fields are used, the scattered field coefficients can also be obtained using 

𝑎𝑚𝑛
𝑆(𝑀) = [𝛾𝑚𝑛ℎ𝑛(𝑘𝑅)𝑧2𝑚𝑛]

−1 ∫ 𝑑𝜃𝑠𝑖𝑛𝜃 ∫ 𝑑𝜙𝑟̂ × 𝐸̅𝑠(𝑟, 𝜃, 𝜙) ∙
2𝜋

0

𝜋

0
𝐵̅−𝑚𝑛(𝜃, 𝜙)         (5.3.14a) 

𝑎𝑚𝑛
𝑆(𝑁) = [𝛾𝑚𝑛

[𝑘𝑅ℎ𝑛(𝑘𝑅)]
′

𝑘𝑅
𝑧3𝑚𝑛]

−1

∫ 𝑑𝜃𝑠𝑖𝑛𝜃 ∫ 𝑑𝜙𝑟̂ × 𝐸̅𝑠(𝑟, 𝜃, 𝜙) ∙
2𝜋

0

𝜋

0
𝐶̅−𝑚𝑛(𝜃, 𝜙)         (5.3.14b) 

The derivations for the above equations are similar to those above. 

 After the scattered field coefficients are obtained, the next step is calculating the incident 

field coefficients. For incident plan waves 𝐸̅𝑖 = 𝐸𝑝𝑖𝑝̂𝑖𝑒
𝑖𝑘̅𝑖 ∙𝑟̅, the vector spherical wave expansion 

coefficients are [4], 

𝑎𝑚𝑛
𝐸(𝑀) = (−1)𝑚

(2𝑛+1)

𝛾𝑚𝑛𝑛(𝑛+1)
𝑖𝑛[𝐸𝑝𝑖(𝑝̂𝑖 ∙ 𝐶̅−𝑚𝑛(𝜃𝑖 , 𝜙𝑖))]                               (5.3.15a) 

𝑎𝑚𝑛
𝐸(𝑁) = (−1)𝑚

(2𝑛+1)

𝛾𝑚𝑛𝑛(𝑛+1)
𝑖𝑛[𝐸𝑝𝑖(𝑝̂𝑖 ∙ (−𝑖𝐵̅−𝑚𝑛(𝜃𝑖 , 𝜙𝑖)))]                       (5.3.15b) 

where the superscript ‘E’ means exciting fields. 𝑝̂𝑖 is the polarization (either 𝑣̂ or  ℎ̂).  

The expressions for both the scattered fields and incident fields are obtained. the T matrix with 

vector spherical wave expansions for arbitrarily shaped objects is can be obtained. It is noted that 

this numerical method of extracting T matrix works for the object with arbitrary shape since the 

scattered fields from the object can be obtained using the commercial software such as HFSS and 

FEKO. Then, the scattered field coefficients are obtained, and the T matrix is extracted.  
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(b) The T Matrix Extraction for Vector Spheroidal Waves 

For vector spheroidal waves, there is no orthogonality property as for the vector spherical 

waves; therefore, calculating the scattered field expansion coefficients are more complicated than 

that for the vector spherical waves. 

Using the even and odd modes, the scattered field is expanded as 

( ), (3) ( ), (3) ( ), (3) ( ), (3)

, , , ,

,

s S M e a S M o a S N e a S N o a

mn e mn mn o mn mn e mn mn o mn

m n

E a M a M a N a N = + + +               (5.3.16) 

where ‘e’ stands for the even mode and ‘o’ stands for the odd mode. The superscript ‘(3)’ means 

the vector spheroidal waves of the third kind, which is the outgoing vector spheroidal waves. The 

definition of ‘a’ is in section 5.2. In this section, a = r. 

 Next, finding the tangential fields and applying dot product and integration on both sides,  

(3)
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 

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                    (5.3.17) 

where 𝜎 = 𝑒 𝑜𝑟 𝑣, and 𝑉 = 𝑀 𝑜𝑟 𝑁. The integration is performed over the spheroidal surface. 

To simply the expression, let (3) ,

,

ˆ s a V

m n m nSO
E V b 


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
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then, 

, , , , ( ), , , , ( ), , , , ( ), , , , ( ),

,

V V M e S M e V M o S M o V N e S N e V N o S N o

mn mn mn mnm n mnm n mnm n mnm n mnm n
m n

b C a C a C a C a    
          = + + +         (5.3.18) 

In matrix form, 

Sb Ca=                                                                    (5.3.19) 

Then, the scattered field coefficients are obtained as 
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1Sa C b−=                                                                   (5.3.20) 

Thus, the key points are to find the matrix C  and the column vector b . 

There are four combinations for 
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where the expressions for different components of 
(3)

,

a

e mnM  are in section 5.2. 

Then, 
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               (5.3.22)  

where 𝑓 = 𝑑/2 and d is the interfocal distance.  

To simply the expression, let 
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                                           (5.3.23) 

By comparing the expressions in section 5.2, we obtain 
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(5.3.26) 

It is noted that M

mnf   and M

mnf   are only functions of  , since the   is a constant for a defined 

spheroidal surface. 

Using the property that 
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We obtain 
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C   =                                                 (5.3.28) 

Next,  

( ) ( ) ( )

( ) ( ) ( )
( )

, , , (3) (3)

, ,

1 1
2 1
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   (5.3.29) 

Using the property that 
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Thus, 
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The integration will be examined later. It is noted that, the case that 𝑚 = 𝑚′ = 0 is excluded here.  

Next, 
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To simplify the expressions, let 
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By comparing with the expressions in section 5.2, we obtain 
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  (5.3.36) 

Then,  
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Thus, 
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Thirdly, let ( )(3) (3)
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  , the next step is to calculate the integrations over  . Following is a 

summary of the integration needed to be computed.  
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                                 (5.3.54) 

where ( ) ( ) ( ) ( ) ( )Me Mo Ne Nog g g g g    = = = = . 

The analytical solutions of the integrations are not available. Thus, we use numerical 

integration. The values for the values of ( , )mnS c  , 𝑅𝑚𝑛
(3) (𝑐, 𝜉) and their first and second derivatives 

have been computed in section 5.2. Then, ( )M

mnf    and ( )M

mnf    are ready to be computed. For 
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dS
S R

m d
f

kd dR
S R

d




   

 


 

  −
+  

− − −   =
 −  
− +  

−   

                              (5.3.56) 

To avoid singularity, let ( ) ( ) ( ) ( ) ( )( )
3

2 2 21Me Mo Ne Nog g g g      = = = = − − . Thus, 

( )( ) ( ) ( ) ( )1/2 3/2
2 2 2 2 21

iM

mn mn mnf m S R       − − = −                 (5.3.57) 

( ) ( ) ( ) ( ) ( )( ) ( )
( )1 1

1/2 3/2
2 2 2 2 2 2 22 21 1 1

i
iM mn mn

mn mn mn

dS dR
f R S

d d

          
 

 
− − = − − − − 

 
   (5.3.58) 
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 − − − + + − − − 
  
 

  
= − − − − + −  

  
 

− 
+

 −
 

             (5.3.59) 
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( ) ( ) ( )
( ) ( )

( ) ( )

( )
( )

2

1
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2 1 1
1

imn
mn mn
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i

i mn
mn mn

dS
S R

m d
f

kd dR
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d






    
   




 − −  
+  

− − −   
− − =  

 
 − + 
   

  (5.3.60) 

It is observed that there is no singularity in the equations (5.3.57) – (5.3.60). These functions are 

also plotted blow. ( )( ) ( )
1/2 3/2

2 2 21M

mnf     − −  is plotted in  Figure V.19. 

 

(a) Plot of ( )( ) ( )
1/2 3/2

2 2 21M

mnf     − −   

 

 

(b) ( )( ) ( )
1/2 3/2

2 2 21M

mnf     − −  
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(c) ( ) ( ) ( )
1/2 5/2

2 2 21N

mnf     − −  

 

 

(d) ( )( ) ( )
1/2 3/2

2 2 21N

mnf     − −  

Figure V.19. Plot of functions (5.3.57) – (5.3.60), at c=3.8773, 𝜉 = 1.05: blue: (m, n) = (0, 1), 

red: (m, n) = (1, 1), and black (m, n) = (1,2). 

 

It is noted that ( ) ( ) ( )
1/2 5/2

2 2 21N

mnf     − −  is plotted instead of ( ) ( ) ( )
1/2 3/2

2 2 21N

mnf     − − , 

because ( ) ( ) ( )
1/2 3/2

2 2 21N

mnf     − −  has singularity. However, in the integration as listed in 
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(5.3.54), ( )N

mnf    is multiplied with the other functions which gives another ( )2 2 −  to ( )N

mnf    

and makes the resulted functions has no singularity over the whole range of  . For example, the 

integrand ( ) ( ) ( ) ( )
1

2 2 2 N N

mn m n
f f g      −  is also plotted in Figure V.20, which shows no 

singularity over the range of  . 

 

Figure V.20. Plot of the integrand in (5.3.54) at c=3.8773, 𝜉 = 1.05, (m’, n’) = (m, n) : blue: (m, 

n) = (0, 1), red: (m, n) = (1, 1), and black (m, n) = (1,2). 

 

Then, these functions are ready to be integrated numerically to find the matrix C . To find the 

scattered fields coefficients, the next step is to find the column vector b . The element of b  is 

defined as ( ), (3)

,

ˆV s a

m n m nSO
b E V g


     


=   , the integration of the dot product of the tangential 

components of the scattered fields and the vector spheroidal harmonics. This integration is also 

performed numerically. The calculations of ( )(3)

,

a

m n
V g


    have been discussed above. The scattered 

fields 
sE  are obtained from the off-the-shelf techniques. For example, a method applied to 

generally objects is using the commercial software HFSS. In HFSS, the output scattered fields are 
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usually defined in the rectangular coordinates ˆ ˆ ˆ
x y zE E x E y E z= + + . Thus, the output scattered 

fields need to be transformed into spheroidal coordinates ˆ ˆˆE E E E    = + + . The 

transformations between the rectangular coordinate so prolate spheroidal coordinate are, 

( )

( )
( )

( )

( )

( )

( )
( )

( )

( )

1 1
2 22 2

1 1
2 2 2 22 2

1 1
2 22 2

1 1
2 2 2 22 2

1 1
ˆ ˆ ˆ ˆcos sin

1 1
ˆ ˆ ˆ ˆcos sin

ˆ ˆ ˆsin cos

x y z

x y z

x y

 
    

   

 
    

   

  

− −
= − + +

− −

− −
= + +

− −

= − +

                (5.3.61) 

Thus,  

ˆ ˆ ˆ ˆˆ ˆ ˆ
x y zE E E x E y E z    =  =  +  +                                    (5.3.62) 

( )

( )
( )

( )

( )

1 1
2 22 2

1 1
2 2 2 22 2

1 1
cos sinx y zE E E E

 
   

   

− −
= − + +

− −

          (5.3.63) 

Similarly, 

( )

( )
( )

( )

( )

1 1
2 22 2

1 1
2 2 2 22 2

1 1
ˆcos sinx y zE E E E z

 
  

   

− −
= + +

− −

             (5.3.64) 

sin cosx yE E E  = − +                                        (5.3.65) 

After the b and C  are obtained, the expansion coefficients for the scattered fields are obtained as 

1Sa C b−= . To find the T matrix, the expansion coefficients for the incident fields are also needed. 

The incident plane waves are expanded in terms of incoming prolate spheroidal waves  [102]. For 

TE plane wave, 
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𝐸̅𝑝𝑙𝑎𝑛𝑒,𝑇𝐸 = ∑ ∑ 𝑖𝑛[𝑓𝑚𝑛
(2)
𝑀̅𝑒,𝑚𝑛
𝑟(1) + 𝑖𝑓𝑚𝑛

(1)
𝑁̅𝑜,𝑚𝑛
𝑟(1) ]𝑛

𝑚=0
𝑁𝑚𝑎𝑥
𝑛=1                  (5.3.66) 

For TM plane wave, 

𝐸̅𝑝𝑙𝑎𝑛𝑒,𝑇𝑀 = ∑ ∑ 𝑖𝑛[𝑓𝑚𝑛
(1)
𝑀̅𝑜,𝑚𝑛
𝑟(1) − 𝑖𝑓𝑚𝑛

(2)
𝑁̅𝑒,𝑚𝑛
𝑟(1) ]𝑛

𝑚=0
𝑁𝑚𝑎𝑥
𝑛=1                  (5.3.67) 

where  

(1) '

0,1

4 (cos )
( )

( )( 1) sin
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r m r i
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m d P
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r m r m
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                             (5.3.68) 
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mn

rd  is calculated in section 5.2. The definition of mn is  

' *

0,1

(| | )! 2
( ) ( )

(| | )! 2(| | ) 1

mmn

r r

r

n

mn

m m r
d c d c

m m r m r



=


+

+ +
=

+

− +
              (5.3.70) 

The incident plane waves propagate in the xz plane at angle i to the z axis. In this section, c is 

real and ( )r

mnd c  is also real. The values of ( )r

mnd c  at different combinations of c, m, n, r are listed 

in Table V-2. 

Table V-2. Example values of 𝑑𝑟
𝑚𝑛(𝑐). 

𝑑0
00(𝑐 = 5) 0.560317604 𝑑1

01(𝑐 = 10) 0.118899627 

𝑑2
00(𝑐 = 5) -0.695612643 𝑑3

01(𝑐 = 10) -0.234891914 

𝑑4
00(𝑐 = 5) 0.215476299 𝑑5

01(𝑐 = 10) 0.171269083 

𝑑6
00(𝑐 = 5) -0.032721208 𝑑7

01(𝑐 = 10) -0.06961685 

𝑑8
00(𝑐 = 5) 0.002935928 𝑑9

01(𝑐 = 10) 0.018226738 

𝑑10
00(𝑐 = 5) -0.000173179 𝑑11

01(𝑐 = 10) -0.003331058 

𝑑12
00(𝑐 = 5) 7.2083067E-06 𝑑13

01(𝑐 = 10) 0.000448444 

𝑑14
00(𝑐 = 5) -2.2270283E-07 𝑑15

01(𝑐 = 10) -4.6258553E-05 

𝑑16
00(𝑐 = 5) 5.3044690E-09 𝑑17

01(𝑐 = 10) 3.7688450E-06 

𝑑18
00(𝑐 = 5) -1.0031759E-10 𝑑19

01(𝑐 = 10) -2.4845627E-07 
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It is noted that the superscript ‘(1)’ is used that 𝑀̅𝑚𝑛
𝑟(1)

, 𝑁̅𝑚𝑛
𝑟(1)

 because the incident waves are 

expanded in terms of income vector spheroidal waves. 

 After the expansion coefficients for both scattered fields and the corresponding incident 

fields are computed, The T matrix with vector spheroidal waves is obtained.  

(c) The T Matrix Extraction for 3D Vector Cylindrical Waves 

The scatter fields can be expanded into out-going 3D vector cylindrical waves, while 

exciting fields can be expanded into in-coming 3D vector cylindrical waves, with expressions as 

below. 

( ) ( )( ) ( ( , ) ( ) ( , ) ( ))s M N

z m z m z m z m z

m

E r dk M k r a k N k r a k


−
= +              (5.3.71) 

( ) ( )( ) ( ( , ) ( ) ( , ) ( ))ex M N

z m z m z m z m z

m

E r dk RgM k r w k RgN k r w k


−
= +         (5.3.72) 

where the expressions for ( , )m zM k r , ( , )m zN k r , ( , )m zRgM k r , and ( , )m zkR N rg  are available in 

section 5.2. ( )( )M

m za k  and ( )( )N

m za k  are the expansion coefficients for the scattered fields while 

( )( )M

m zw k  and ( )( )N

m zw k  are the expansion coefficients of the exciting fields. 

The T matrix relates the exciting field coefficients to the scattered field coefficients. 

( ) ( , ) ( )

,

( ) ( , ) ( )m z z mm z z m z

M N m

a k dk T k k w k   





 
−

=

  =                               (5.3.73) 

where 𝛼, 𝛽 = 𝑀 𝑜𝑟 𝑁 corresponding to the expansion coefficients of the 3D vector cylindrical 

waves 𝑀̅  and 𝑁̅ , respectively. This notation is used in the remaining part of this chapter.  

( , )( , )mm z zT k k 


  are the elements of the T matrix. 

It is noted that the T matrix with 3D vector cylindrical waves are a little different from the T matrix 

with vector spherical or spheroidal waves, as there is integration over 𝑑𝑘𝑧 . In numerical 
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computation, the integration can be transformed into summation. Thus, the integration over 𝑑𝑘𝑧 

is similar to summation over n in the vector spherical or spheroidal waves. 

Generally, the T matrix for an arbitrary-shaped object of moderate size can be extracted 

for commercial software such as HFSS. Section 5.3.1 (a) and (b) describe the procedures to extract 

the T matrix from HFSS with vector spherical and spheroidal wave expansions. The procedures to 

extract the T matrix with 3D vector cylindrical wave expansions are similarly, but the incident 

fields and the scattered fields on the enclosing cylindrical surface obtained from HFSS are 

expanded into 3D vector cylindrical waves instead of vector spherical waves. In this section, the 

hybrid method with 3D vector cylindrical waves are applied to forest of tree trunks which are 

modeled as tall cylinders that are much larger than a wavelength. For example, at the L-band (1.41 

GHz), tree trunks that are 20 meters tall correspond to 94 wavelengths. In this section, the focus is 

to study forests at L-band. For these cases, the trees are as tall as 94 wavelengths. ICA is valid 

when the length of the cylinder is much longer than the wavelength. When using Body of 

Revolution (BOR), the length of the cylinder needs to be discretized into many sections for long 

cylinders, which requires much memory and computation CPU. For example, for the cylinders 

with length of 94 wavelength, parallel computing is needed for BOR while ICA can be run on a 

single computer with results obtained in seconds. For the tree trunks simulated in this section, ICA 

is much more efficient than BOR and ICA also provides satisfactory accuracies. Thus, we choose 

to use ICA instead of BOR to obtain the T matrix. Using ICA, the T matrix for a vertically oriented 

cylinder with radius A, length L and relative permittivity 
p
 is derived as below.  

The first step in extracting the T matrix is finding the scattered field from the cylinder. 

Without loss of generality, let the cylinder centered at [0,0,0]. According to Huygen's principle, 

the scattered fields is obtained as 
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ˆ ˆ( ) { ( , ) [ ( )] ( , ) [ ( )]}s

S
E r dS ik G r r n H r G r r n E r



      =   +                   (5.3.74) 

where S   is the surface area of the cylinder and n̂   is the unit normal vector. 

The Dyadic Green's function is then expanded using 3D vector cylindrical waves. 

2

( , ) ( , )1
( , ) ( 1)

8 ( , ) ( , )

n z n zn

z

n n z n z

M k r RgM k ri
G r r dk

k N k r RgN k r


 −

−
−

 −
= −  

+ −  
                         (5.3.75 a) 

2

( , ) ( , )1
( , ) ( 1)

8 ( , ) ( , )

n z n zn

z

n n z n z

N k r RgM k rik
G r r dk

k M k r RgN k r


 −

−
−

 −
 = −  

+ −  
                        (5.3.75 b) 

To extract the T matrix, let the incident wave be 

( ) ( , )inc

zm
E r Rg k r 

=                                                    (5.3.76) 

Then, using ICA [4], the internal fields of the cylinder are obtained as 

( , ) ( , )( ) ( ) ( , , ) ( ) ( , , )int M N

z p z z p zm m m m
E r c k RgM k k r c k RgN k k r 

    

        = +                 (5.3.77) 

( , ) ( , )( ) [ ( ) ( , , ) ( ) ( , , )]
pint M N

z p z z p zm m m m

ik
H r c k RgN k k r c k RgM k k r

k

 

 


   

        = − +      (5.3.78) 

where p pk k=  is the wave number inside the cylinder. 
( , )( )M

zm
c k




 and 

( , )( )N

zm
c k




 are the 

coefficients of the vector cylindrical harmonics of order m , corresponding to the incident wave. 

These coefficients are obtained from ICA, as detailed in page 41-44 in [39]. 2 2

p p zk k k

 = − . pk 


  

is writing explicitly in the expressions of 
m

M   and 
m

N   to incident they are the vector cylindrical 

harmonics inside the cylinder with wavenumber 
pk , instead of k  as above. 

According to the boundary condition on the cylinder surface, 

ˆ ˆ( ) ( )intn H r n H r    =                                                        (5.3.79) 

ˆ ˆ( ) ( )intn E r n E r    =                                                         (5.3.80) 
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Next, substitute the expressions of the Dyadic Green’s function and the internal fields into 

Huygen’s principle to calculate ( )sE r . It is noted that the Dyadic Green’s function has 

summations of two parts, similarly for the curl of the Dyadic Green’s function and the internal 

electric and magnetic fields. Thus, ( )sE r  can be calculated as the summation of eight terms, 

8

1

( )s s

term

term

E r E
=

=                                                           (5.3.81) 

Each term is calculated as below. 

2
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( , )

1
( 1) ( , ) ( , )

8
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S
p M
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 
 
 
 
 


−
−

=

 
 
−



 
                  (5.3.82) 

The unit normal vector n̂   in this case is ˆ
p

  , ̂  direction at p 
. This is because the integration to 

obtain the scattered fields in ICA is over the lateral surface, ignoring the two bases [4].  

Substituting the expressions of the vector cylindrical waves as listed in section 5.2.3 and 

simplification lead to 

2

( , )

1

sin(( ) )
2( ) ( ) ( ) ( , )
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−
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−
        (5.3.83) 

Similarly, for the other seven terms 
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The expressions for ( )sE r  are obtained. After that, these expressions are compared with those of 

( )sE r obtained from the T matrix method to extract the T matrix for the cylinder. When 

( ) ( , )inc

zm
E r Rg k r 

= , the scattered fields are as follows according to the T matrix method. 
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Comparing the ( )sE r  derived from ICA as in the expressions of the eight terms above, the 

expressions for the T matrix of the cylinder are obtained as, 
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It is noted that there is a delta function ( )m m −  in the expressions of the T matrix. It is because 

there is summation over m in the scattered fields obtained from the T matrix method, while there 

is no summation over m in the simplified solutions of the scattered fields from ICA (i.e., the eight 

terms). Then, the delta function ( )m m −  is needed to cancel the summation of m in the results 

of the T matrix method to match the results from ICA. In the expressions of the T matrix of the 

cylinder above, m  is changed to m , which dose not change the results because of the delta 

function ( )m m − . 

 

5.3.2 Numerical and Analytical Translation Addition Method 

The second step in the hybrid method is wave transformations for all the single-objects 

pairs. To find the scattered fields from object centered at 𝑟̅2 to object centered at 𝑟̅1, the outgoing 

spherical waves centered at 𝑟̅2 need to be transformed to incoming spherical waves centered at 

object 𝑟̅1 , as illustrated in Figure V.21 (a). This is also called translation addition theorem. 

Similarly, the translation addition theorem for vector spheroidal waves and 3D vector cylindrical 

waves are illustrated in Figure V.21 (b) and (c), respectively. 

                    
                        (a)                                                      (b)                                              (c) 

 

Figure V.21. Illustration of translation addition for (a) vector spherical waves, (b) vector 

spheroidal waves, and (c) 3D vector cylindrical waves.  
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(a) Translation Addition Method for Vector Spherical Waves 

 For vector spherical waves, the translation addition theorem is formulated as below [4].  

𝑀̅𝑚𝑛(𝑘𝑟𝑟𝑎̅̅ ̅̅ ) = ∑ {𝐴𝜇𝜈𝑚𝑛(𝑘𝑟𝑏𝑟𝑎̅̅ ̅̅ ̅)𝑅𝑔𝑀̅𝜇𝜈(𝑘𝑟𝑟𝑏̅̅ ̅̅ ) + 𝐵𝜇𝜈𝑚𝑛(𝑘𝑟𝑏𝑟𝑎̅̅ ̅̅ ̅)𝑅𝑔𝑁̅𝜇𝜈(𝑘𝑟𝑟𝑏̅̅ ̅̅ )}𝜇𝜈       (5.3.94 a) 

𝑁̅𝑚𝑛(𝑘𝑟𝑟𝑎̅̅ ̅̅ ) = ∑ {𝐵𝜇𝜈𝑚𝑛(𝑘𝑟𝑏𝑟𝑎̅̅ ̅̅ ̅)𝑅𝑔𝑀̅𝜇𝜈(𝑘𝑟𝑟𝑏̅̅ ̅̅ ) + 𝐴𝜇𝜈𝑚𝑛(𝑘𝑟𝑏𝑟𝑎̅̅ ̅̅ ̅)𝑅𝑔𝑁̅𝜇𝜈(𝑘𝑟𝑟𝑏̅̅ ̅̅ )}𝜇𝜈       (5.3.94 b) 

where 𝑀̅𝑚𝑛(𝑘𝑟𝑟𝑎̅̅ ̅̅ )  and 𝑁̅𝑚𝑛(𝑘𝑟𝑟𝑎̅̅ ̅̅ )   are the outgoing vector spherical wave centered at 𝑟̅𝑎 . 

𝑅𝑔𝑀̅𝜇𝜈(𝑘𝑟𝑟𝑏̅̅ ̅̅ ) and 𝑅𝑔𝑁𝜇𝜈(𝑘𝑟𝑟𝑏̅̅ ̅̅ ) are the incoming regular vector spherical waves centered at 𝑟̅𝑏.  

𝐴𝜇𝜈𝑚𝑛 and 𝐵𝜇𝜈𝑚𝑛 are the corresponding translation addition coefficients.  

 Thus, the key in the wave transformations is calculating the coefficients 𝐴𝜇𝜈𝑚𝑛 and 𝐵𝜇𝜈𝑚𝑛.  

[4] gives the analytical solutions of  𝐴𝜇𝜈𝑚𝑛 and 𝐵𝜇𝜈𝑚𝑛 for vector spherical waves 
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The definitions for mn ,  ( )p oh kr , and ( ),m

p o oY   −
 are listed in section 5.2. The remaining 

parameter is defined as below 
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where 
( )

1 2 3

1 2 1 2

j j j

m m m m

 
 

− + 
 is the Wigner 3j symbols [105]. 

This analytic method is tedious and is not applicable to other kinds of vector waves such 

as vector spheroidal waves. Thus, a numerical method for translation addition is developed which 

is straightforward and robust. This method is similar to the numerical method of calculating the 

expansion coefficients of the scattered fields.  To find 𝐴𝜇𝜈𝑚𝑛, dot product with 𝑅𝑔𝑁̅−𝜇𝜈(𝑘𝑟𝑟𝑏̅̅ ̅̅ ) and 

integration over the spherical surface is applied to both sides of equation (5.3.94 a), with the use of 

the orthogonality property. To find 𝐵𝜇𝜈𝑚𝑛, dot product with 𝑅𝑔𝑀̅−𝜇𝜈(𝑘𝑟𝑟𝑏̅̅ ̅̅ ) and integration over 

the spherical surface is applied to both sides of equation (5.3.94 a). After simplification, we obtain  

𝐴𝜇𝜈𝑚𝑛(𝑘𝑟𝑏𝑟𝑎̅̅ ̅̅ ̅) = [𝛾𝜇𝜈𝑗𝜈(𝑘𝑅𝑏)𝑧3𝜇𝜈]
−1
∫ 𝑑𝜃𝑠𝑖𝑛𝜃 ∫ 𝑑𝜙𝑀̅𝑚𝑛(𝑘𝑟𝑟𝑎̅̅ ̅̅ ) ∙
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where 𝛾𝜇𝜈 , 𝑧3𝜇𝜈 , 𝐶̅−𝜇𝜈(𝜃, 𝜙)  and 𝐵̅−𝜇𝜈(𝜃, 𝜙)  are defined in section 5.2. The integrations are 

conducted numerically. 
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                            (a)                                                                           (b) 

 
(c) 

Figure V.22. |𝑀̅𝑚𝑛(𝑟𝑟𝑗̅̅ ̅)| on the spherical surface centered at 𝑟𝑙̅, where 𝑟𝑙̅ = [0,0,0], 𝑟𝑗̅ =

[−
𝜆

2
, 0,0] for (a) m=0, n=1; (b) m=0, n=5; (c) m=5, n=5. 

 

The outgoing spherical harmonics 𝑀̅𝑚𝑛(𝑟𝑟𝑗̅̅ ̅) is plotted in Figure V.22. It is observed that, 

its magnitude increases as m and n increases. However, the power of each order of spherical 

harmonics is the same, as proved blow. 
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The expressions for ( ), ,mnM kr    and ( ), ,mn krN    are available in section 5.2. For convenience 
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Then, the pointing vector is 
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The power for spherical harmonics of order mn is 
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        = +    
    

=



 



 kr

  
  
     

 

(5.3.107) 

The next step is to compute the integration. From section 5.2.1, 

( ) ( )

( ) ( )
( )

( )2

2
0 0

ˆ ˆcos cos
4 1sin

sin 1
2 1ˆ ˆcos cos

sin

m m im

n n
m

mn

m m im

n n

im d
P P e

n nd
d d z

nim d
P P e

d



 



   
 

  

   
 

− − −

  
−    +   

= = − 
+−  −    

 

(5.3.108) 

Use the following properties, 
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( ) ( )
( )

( )
( )

( )
( )

( )

( )

( )

!
cos 1 cos

!

cos ! cos
1

!

mm m

n n

m m
mn n

n m
P P

n m

dP n m P

d n m d

 

 

 

−

−

−
= −

+

−
= −

+

                          (5.3.109) 

After simplification, we obtain 

( )
( )

( )
( ) ( ) ( )

( )
2 2

0

! 4 1
2 1 sin cos cos 1

! sin 2 1

m mm m

n n

n m n nm d
d P P

n m d n

 
    

 

 − +   
− + = −    

+ +     


(5.3.110) 

Thus,  

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( )

2 2

2

0
sin cos cos

sin

2 1 ! 2 1 ! 1

4 1 ! 2 1 ! 2

m m

mn n n

m d
d P P

d

n n m n n n m

n n n m n n m



    
 

 

    
+    

     

   + − + +
= =   

+ + + −   


                 (5.3.111) 

Substituting into the expressions for mnP , 

( ) ( )( )( )
2

Re
2

mn n n

R
P ih kR h kR






=                             (5.3.112) 

Next, we will prove that 

( )
( ) 2

1
Re

n

n

krh kr
ih kR

kr kR


         =         

                            (5.3.113) 

Using the following properties for spherical Hankel function, 

( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( ) ( )

1

1 2

1 /

2 1 /

n n n

n n n

h kR h kR n kR h kR

h kR n kR h kR h kR



−

− −

= − +

= − −
                    (5.3.114) 

Then, 
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( ) ( )( )( )
( ) ( )( )( )
( ) ( ) ( ) ( )( ) ( )( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( ) ( )( ) ( ) ( )( )

( ) ( ) ( )( ) ( ) ( )( )( ) ( ) ( )( )

1 1

1 2 1 1 2
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Im
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n n n n n

n n n n n

n n n n n

ih kR h kR

h kR h kR

h kR h kR n kR h kR h kR h kR

n kR h kR h kR h kR h kR h kR

h kR n kR h kR h kR h kR h kR







  
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 

− − − − −




− − − − −

= −

= − − + = −

= − − − =

= − − = −

=

   (5.3.115) 

Thus, 

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )1 1 2 2 3 1 0Im Im Im ... Imn n n n n nh kR h kR h kR h kR h kR h kR h kR h kR   

− − − − −− = − = − = = −

(5.3.116) 

Then, 

( ) ( )( )( )
( ) ( )( ) ( ) ( )( )

( ) ( )

1 1 0

2 2

Re

Im Im

1 1
Im

n n

n n

ikR
ikR

ih kR h kR

h kR h kR h kR h kR

i e
i e i

kR kRkR kR




 

−



= − = −

    
= − − −  − =         

                      (5.3.117) 

Finally, 

22

2

1 1

2 2
mn

R
P

kR k



 

 
= = 

 
                                         (5.3.118) 

Thus, the power for each order of vector spherical harmonics is the same and does not depend on 

the order. mnP  also does not depend on R which satisfies the energy conservation. 

 As will be shown in section 5.4, the transformation coefficients obtained from the 

numerical method agrees with those from the analytical method. But the numerical method is more 

robust than the analytical method. 
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(b) Translation Addition Method for Vector Spheroidal Waves 

The mathematical expressions for the translation addition theorem for vector spheroidal 

waves are  

( ) ( )
( )
( ) ( ) ( ) ( )

( ) ( ) ( )

( )
( ) ( ) ( ) ( )

( ) ( ) ( )

, 1 , 1

, ,, ,3

, , 1 , 1
,

, ,, ,

, , ,

I M e a I M o a

e l o lmn mna

mn j j j I N e a I N o a
v

e l o lmn mn

A M krr A M krr
M c

A N krr A N krr

    




    

  
 +
 =
 + +
 

              (5.3.119 a) 

( ) ( )
( )
( ) ( ) ( ) ( )

( ) ( ) ( )

( )
( ) ( ) ( ) ( )

( ) ( ) ( )

, 1 , 1

, ,, ,3

, , 1 , 1
,

, ,, ,

, , ,

I M e a I M o a

e l o lmn mna

mn j j j I N e a I N o a
v

e l o lmn mn

B M krr B M krr
N c

B N krr B N krr

    




    

  
 +
 =
 + +
 

             (5.3.119 b) 

where 𝜎  is either ‘e’ or ‘o’.  These equations mean the outgoing vector spheroidal waves 

( ) ( )3

, , , ,
a

mn j j jM c     and 
( ) ( )3

, , , ,
a

mn j j jN c     centered at jr  are expressed the incoming vector 

spheroidal waves 
( ) ( )1

,

a

lM krr   and 
( ) ( )1

,

a

lN krr   centered at lr .  

 The transformation coefficients ( )
( ),
,

I M e

mn
A

 
, ( )

( ),
,

I M o

mn
A

 
, ( )

( ),
,

I e

mn

N
A

 
, ( )

( ),
,

I o

mn

N
A

 
, ( )

( ),
,

I M e

mn
B

 
, ( )

( ),
,

I M o

mn
B

 
, 

( )
( ),
,

I e

mn

N
B

 
, ( )

( ),
,

I o

mn

N
B

 
. For generally cases, there is no analytical methods available to obtain these 

coefficients. In this section, a numerical method to find these coefficients will be developed. It is 

observed that the transformation coefficients are similar to the expansion coefficients of the 

scattered fields, except that 
( ) ( )3

, , , ,
a

mn j j jM c     and 
( ) ( )3

, , , ,
a

mn j j jN c     are vector spheroidal 

waves instead of scattered fields and the expansion basis functions are incoming waves instead of 

outgoing waves. Thus, similar method of calculating the expansion coefficients of scattered fields 

in section 5.3.1 can be used here. First, let us consider the translation addition theorem for 

( ) ( )3

, , , ,
a

mn j j jM c    . Following the method in section 5.3.1, we obtain 
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( )

( )

( )

( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )
, , , , , , , , , , , ,

, ,1 1 1 1

, , , , , , , , , , , ,,
1 1 1 1

, , , , , , , , , , , , ,

1 1 1 1
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, , , , , , , , , , , ,

1 1 1 1

M e M e M e M o M e N e M e N o
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M e M o M o M o N e M o N o M oM M o

M N e M e N e M o N e N e N e N o N e

M N o
M e N o M o N o N e N o N o N o

C C C C
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C C C Cb

b C C C C

b C C C C

 
   
   
   =   
   
    

 

( )

( )

( )

,

,

,

I M o

I N e

I N o

A

A

A

 
 
 
 
 
 
 

                  (5.3.120) 

It is noted that subscripts ‘(1)’ are used in the C matrices to denote that they are integration of inner 

product of incoming vector spheroidal waves instead of outgoing vector spheroidal waves as in 

section 5.3.1. The C matrices are calculated in the same way as described in section 5.3.1, except 

that the outgoing vector spheroidal waves are replaced by incoming vector spheroidal waves in the 

calculations. The b vectors are obtained by integrating of the inner product of  

( ) ( )3

,
ˆ , , ,

l

a

r mn j j jM c     and the incoming vector spheroidal waves centered at lr  over the 

spheroidal surface also centered at lr ,   

( ) ( ) ( ) ( )
, 1 3

,,

ˆ , , ,
l

V a a

l mn l l lv vO

M

S
b V M c



  
   



    


 =  
                              (5.3.121) 

where the subscript ‘l’ means centered at lr . In chapter V, ‘a’ is ‘r’.  

This integration is performed numerically. The key calculations in this numerical integration are 

calculating the values of 
( ) ( )3

,

a

mn jM krr  at the points on the spheroidal surface centered at lr .   

              
                                       (a)                                                         (b) 
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                                       (c)                                                       (d)     

Figure V.23. |𝑀̅𝜎,𝑚𝑛
𝑟(3)

(𝑟𝑟𝑗̅̅ ̅)| on the spheroidal surface centered at 𝑟𝑙̅, where 𝑟𝑙̅ = [0,0,0], 𝑟𝑗̅ =

[−
𝜆

2
, 0,0] for (a) 𝜎=e, m=0, n=1; (b) 𝜎=o, m=0, n=1; (c) 𝜎=e, m=1, n=2; (d) 𝜎=o, m=1, n=2. 

 

The magnitude of 
( ) ( )3

,

a

mn jM krr  is plotted on the spheroidal surface centered at lr  in Figure V.23 

It is observed that  |𝑀̅𝑜,01
𝑟(3)(𝑟𝑟𝑗̅̅ ̅)| = 0. This can be verified by substituting m=0 and n=1 into the 

expression of  
( )3

,

a

o mnM  in section 5.2.1. 

The following eight steps to obtain the transformation coefficients are summarized below.  

Step 1: Generate quadrature points for integration on the spheroidal surface centered at lr . For 

each point ( ), ,l l l   , transform it into the corresponding point ( ), ,l l lx y z  in the rectangular 

coordinate centered at lr , using the following relationship 

( )( )

( )( )

2 2

2 2

1 1 cos
2

1 1 sin
2

2

l
l l l l

l
l l l l

l
l l l

d
x

d
y

d
z

  

  

 

= − −

= − −

=

                                          (5.3.122)  

Step 2: Transform ( ), ,l l lx y z  to the corresponding point ( ), ,j j jx y z  in the rectangular coordinate 

centered at jr . Let [ , , ]j l l jr r r r x y z= − =    , then 
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( ) ( ), , , ,j j j l l lx y z x x y y z z= +  +  +                               (5.3.123) 

Step 3: Transform ( ), ,j j jx y z  to the corresponding point ( ), ,j j j    in the prolate spheroidal 

coordinate centered at jr , using the following relationship 

( )
2

2 2

2 2 2 2 2 2 2 2

atan2 ,

2
%

4 4

2

j j j

j j

j j j j j j j j j

j

j

j

j j

x y

d d
z x y z x y d z

d

z

d








=

   
= + + + + + + + −   

   

=

        (5.3.124) 

where ‘atan2’ is a matlab function which computes the four-quadrant inverse tangent. 

Step 4: Calculate 
( ) ( )3

, , , ,
a

mn j j jM c     using the expressions in section 5.2.2. 

Step 5: Transform 
( ) ( )3

, , , ,
a

mn j j jM c     in the spheroidal coordinate centered at jr into the 

rectangular coordinate. 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

3

,
ˆ ˆˆ, , , , , , , , , , , ,
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        

= + +

= + +
       (5.3.125) 

The following relationship is used. 
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         (5.3.126) 
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Step 6: Transform 
( ) ( )3

, , , ,
a

mn j j jM c     in the rectangular coordinate into the spheroidal coordinate 

centered at lr . 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

3

,
ˆ ˆ ˆ, , , , , , , , , , , ,
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         (5.3.128) 

Step 7: Calculate the element of b vector 
( ) ( ) ( ) ( )

, 1 3
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l
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S
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Step 8: Finally, the transformation coefficients for 
( )3

,

a

mnM  are obtained as 
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               (5.3.130) 

These eight steps are performed for all the combinations of (𝜎,𝑚, 𝑛) to obtain the transformation 

coefficient matrix ( )jA krr . 

 Similarly, methods are used to calculate the transformation coefficients ( )jB krr  for 

( ) ( )3

, , , ,
a

mn j j jN c    .  
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               (5.3.131) 

The C matrix is the same as that for calculating ( )jA krr . The b vectors are obtained by integrating 

of the inner product of  
( ) ( )3

,
ˆ , , ,

l

a

r mn j j jN c     and the incoming vector spheroidal waves centered 

at lr  over the spheroidal surface also centered at lr ,   

( ) ( ) ( ) ( )
, 1 3

,,

ˆ , , ,
l

V a a

l mn l l lv vO

N

S
b V N c



  
   



    


 =  
                              (5.3.132) 

In calculating 
( ),N V

v
b







  , the same eight steps are performed except that ‘M’ is changed to ‘N’. 

(c) Translation Addition Method for 3D Vector Cylindrical Waves 

The analytical expressions translation addition theorem for 3D vector cylindrical waves are  

[4] 

(1) ( | |)exp( ( ) )
( , )

exp( ( )) ( , )

p q
m p q r r

m z p

z p q z q

H k i m
k rr

ik z z RgM k r
M

r

 




   −
 − − −
 =
  − − 

                     (5.3.133) 

(1) ( | |)exp( ( ) )
( , )

exp( ( )) ( , )

p q
m p q r r

m z p

z p q z q

H k i m
k rr

ik z z RgN k r
N

r

 




   −
 − − −
 =
  − − 

                     (5.3.134) 

For 3D vector cylindrical waves, the numerical methods for wave transformations are not needed. 
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5.3.3 Solving the Foldy-Lax Multiple Scattering Equation  

The final step in the hybrid method is solving the Foldy-Lax equations. For vector spherical 

waves, the Foldy-Lax equation formulation is available in [4]. The extracted T matrix and the 

transformation coefficients from section 5.3.1 and 5.3.2 are submitted to the Foldy-Lax equations. 

Similar formulation is used for vector spheroidal waves. For 3D vector cylindrical waves, the 

scattered field formulation of the Foldy-Lax equation is used instead of the usual exciting field 

formulation as used for the vector spherical and spheroidal waves. The detailed derivations are 

presented below. 

As derived in chapter 4, the Foldy-Lax equations (FL) for Nt number of objects are 

1,

tN
ex inc s

q qp

p p q

E E E
= 

= +                                                     (5.3.135) 

where 
ex

qE  is the final exciting field on object q, 
incE is the incident field and 

s

qpE  is the scattered 

field from object p to q. It states that the final exciting on the object is the incident field plus the 

scattered fields from all the other objects except itself. 

The exciting field is expanded into in-coming 3D vector cylindrical waves as in section 5.3.1. The 

incident field is also expanded into in-coming 3D vector cylindrical waves. In this chapter, incident 

plane wave is used which is commonly-used for remote sensing. Let the incident plane wave be 

ˆˆ( )exp( )inc

vi hi iE vE hE ik r= +  , where v̂  and ĥ  are the vertical and horizontal polarization, 

respectively, and ˆ ˆ ˆsin( )cos( ) sin( )sin( ) cos( )i i i i i ik xk yk zk    = + + . The expansion coefficients 

for the incident plane wave are [4] 

( ) [ ( , ) ( , )]
iimm

inc

hi n iz vi n iz

m i

i e
E r iE RgM k r E RgN k r

k





−

= −                      (5.3.136) 
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The scattered field from object p is expanded into out-going 3D vector cylindrical waves, where 

the expansion coefficients are related to the exciting field coefficients by the T matrix as expressed 

in section 5.3.1 (c). Then, 

( , ) ( )

, ,

( , ) ( )
, , ,

( , ) ( )
( ) ( , , )

( , ) ( )

M M

mm p z z m p zs
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− −
=  

 
 
 

 
− = −

 + 
          (5.3.137) 

where the subscript p means the coefficients and the T matrix are for the object p. 

The next step is applying the vector translation addition theorem which transforms the out-going 

waves centered at 𝑟𝑝  to in-coming waves centered tat 𝑟𝑞 , as illustrated in section 5.3.2. After 

substituting the translation addition theorem into the scattered fields, the scattered field from object 

p is expanded in terms of in-coming 3D vector cylindrical waves centered at object q. In this way, 

ex

qE , 
incE  and 

s

qpE  in FL are expanded in terms of in-coming 3D vector cylindrical waves. 

Matching the coefficients for different orders of waves leads to 

( )

,

(1)

( , ) ( ) ( , ) ( )
1,

, , , ,

exp( )
( ) exp( ) ( )
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 
  

   (5.3.138) 

where ,   ;   ,   .hi viC iE when M C E when N  = = = − =  

In the above equation of the exciting field formulation of the Foldy-Lax equation, the unknowns 

to be solved is the final exciting field coefficients of all the objects. It is noted that there is a delta 

function in the above equation caused by the incident plane wave expansion. To avoid the delta 

function, this exciting field formulation is modified to scattered field formulation where the 

unknowns are the final scattered field coefficients as below, 
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For rotational symmetric object such as a cylinder, the T matrix has a delta function as in it: 

( , ) ( , )( , ) ( , ) ( )mm z z m z zT k k T k k m m    
  = − . This can simply the above equation into 
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      (5.3.140) 

We consider the cases that the cylinders are not that close to each other so that the evanescent 

waves can be ignored, for the application of Foldy-Lax equations with 3D vector cylindrical wave 

expansions. This means 
k

z z
k

dk dk


 

− −  . Next, using the relationship coszk k = , the 

integration over zk   is changed to the integration over   , sin
i

z
i

dk k d


 
 − 

− 
  =  . For the case 

of cylinders, sin  removes the 
2 2

1

zk k−
 singularity of 

( , )( , )m z zT k k 


  when zk k = . It is noted 

that when zk k  , the wave becomes evanescent. In this chapter for 3D vector cylindrical waves, 

we exclude the evanescent waves which are not important for the simulations of vegetation/forest 

canopy as will be shown in the following sections. Then, 
0

sin
k

z
k
dk k d



 
−

  =  . Next, multiply 

sin( )  on both sides of the above equation and define ( )sin ( )za k a = , ( )sin ( )za k a   = , and 

sin ( , ) ( , )z zk T k k T   = .  After that, changing the integration into numerical summation, the 

above equation becomes 
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(5.3.141) 

where i  is the incident angle, n n =    and n n 
=  . The summation over n  is from 

0 to maxN . In this chapter, uniform discretization is used and thus / maxN  = . The unknowns 

in the above equation are the scattered field coefficients of the scattered fields from all the objects 

at two polarizations. Thus, the total number of unknowns are 2 (2 1)t max maxN M N+ . The unknowns 

are on both sides of the equation and can be written in the matrix form as a c Ba= + . Then, the 

scattered field coefficients are solved as 
1( )a I B c−= − . 

After the scattered coefficients are solved, the final scattered fields from all the objects at 

observation point r  is 

( ) ( )

, ,

,1

( ) ( ) ( cos , ) ( ) ( cos ,[ ) ( )]
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s M N

m n q m q n m n q m q n

m nq

E r k M k r r a N k r r a    
=

=  − + −       (5.3.142) 

 

5.4 Results and Discussions 

In this section, the results of the three steps of the hybrid method are verified. After that, 

the hybrid method is applied for NMM3D full-wave simulations of vegetation/forest. 

5.4.1 The T Matrix Extraction 

First, the extracted T matrix from off-the-shelf techniques is verified. For the T matrix with 

vector spherical wave expansions, analytical expression of the T matrix for a sphere is available [4] 
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𝑇̿𝑠𝑝ℎ𝑒𝑟𝑒 = [
𝑇̿(11) 0

0 𝑇̿(22)
]                                              (5.4.1) 

with                                      𝑇𝑚𝑛𝑚′𝑛′
(11)

= 𝛿𝑚𝑚′𝛿𝑛𝑛′𝑇𝑛
(𝑀)

;  𝑇𝑚𝑛𝑚′𝑛′
(22)

= 𝛿𝑚𝑚′𝛿𝑛𝑛′𝑇𝑛
(𝑁)
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where a is the radius of the sphere, k is the wavenumber in the background and kp is the 

wavenumber inside the sphere. 

                  
Figure V.24. T matrix from HFSS extraction (left) and analytical solution (right) for a sphere. 

It is observed that the T matrix for the sphere is a diagonal matrix. The T matrix extracted from 

HFSS is compared with the analytical solution for a sphere with radius of 6 cm and permittivity of 

27.22+5.22i at 1.41 GHz. In this case, 𝑁𝑚𝑎𝑥 = 2 and the T matrix size is 16 × 16. Figure V.24 

plots the absolute values of the T matrix from both methods. It is observed that the T matrix for the 

sphere extracted from HFSS is also a diagonal matrix and agrees well with the analytical solution. 

For the off-diagonal elements, the Root Mean Squared Error (RMSE) between the two solutions is 

1.11 × 10−4. It is noted that this numerical method of extracting the T matrix works for arbitrarily 
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shaped object such as complicated branches with leaves, as will be shown later. A sphere is used 

here only for verification. 

 For vector spheroidal waves, the analytical expression for the T matrix is not available. To verify 

the T matrix, we use the extracted T matrix to calculate the scattered fields and compare the 

scattered fields with those from HFSS. For incident plane wave, the expansion coefficients of the 

incident waves are detailed in section 5.3.1. Using the extracted T matrix, the expansion coefficients 

of the scattered waves are obtained using equation (5.3.2).  Then, the scattered fields are 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
max max

, 3 , 3 , 3 , 3

, , , ,

1 0 1 1

N n N n
S M e a S N e a S M o a S N o as
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n m n m

E a M a N a M a N
= = = =

   = + + +
               (5.4.2) 

It is noted that the even and odd functions are written into two parts and the summation indexes 

are different for the even and odd functions. The m for the odd functions starts from m=1 instead 

of m=0. This is because for m=0, the odd functions are zero, as explained before in section 5.3.2. 

This can also be verified by substituting m=0 to the expressions for the odd functions in section 

5.2.2. 

Here, we want to compare the RCS. For RCS,   → . In this case, l r →  and cos → . Then, 
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ˆ ˆ ˆsin cosx y  = − +                                                    (5.4.3 c) 

Thus, in the far field direction,  

;     v hE E E E = =                                                        (5.4.4) 
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Thus, in the far field region, 
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RCS of the scatterer using the T matrix with vector spheroidal wave expansions is obtained.  
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                     (a)                                                                      (b) 

 
(c) 

Figure V.25. (a) a branch with complicated leaves for simulation; RCS from HFSS compared 

with that from the T matrix for (b) 𝜎𝑣𝑣 and (c) 𝜎ℎℎ. 

 

 The RCS are computed using two methods for a branch with complicated leaves (Figure V.25 

(a)) : the T matrix method as explained above, and directly computed from HFSS. The results are 

shown in Figure V.25 (b) and (c). The length of the center stalk of the branch is 8cm and the 

permittivity is 27.22+5.22i with frequency at 1.41 GHz. The T matrix is extracted from HFSS using 
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the method in section 5.3. It can be seen that the results from the T matrix and HFSS compares well. 

This verifies the correctness of the T matrix with vector spheroidal wave expansions. 

 For 3D vector cylindrical waves, the correctness of the T matrix is verified by comparing the 

scattered or total fields from one cylinder calculated with three different methods: (a) using the T 

matrix to calculate the scattered field coefficient and then calculate the scattered fields; (b) using 

ICA to calculate the scattered fields directly as in [4]; (c) using the commercial full-wave solvers 

HFSS or FEKO to calculate the fields. The total fields are the scattered fields plus the incident 

fields. The total field | |totE  is the incident field plus the scattered field. Radar Cross Section (RCS) 

is also calculated which is defined as 
2

2

2

| |
lim4

| |

s

r
i

E
r

E
 

→
= . Method (a) calculates RCS by making 

the observation points at the far field region. Method (b) uses the far field approximation of the 

Green's function as detailed in [4]. 

 The results are shown in Figure V.26 (a) for the RCS of a cylinder with radius 2cm and length 

1.5m; and Figure V.26 (b) for the near field of a cylinder with radius 6cm and length 5m. The 

center of the cylinder is at [0,0,0]. the permittivity of the dielectric cylinders is set to be 30.7+5.5i, 

the incident angle i  is 140o , the incident polarization is V-pol, the cylinder is vertically oriented 

and the frequency for simulation is L-band at 1.41 GHz. 

 The results from the T matrix matches those from ICA which shows the correctness of the T 

matrix derived from ICA. The results of ICA and the T matrix are also in good agreement with 

those from the commercial software. The errors are caused by the assumptions in ICA: the cylinder 

is considered as infinite cylinder in receiving the exciting fields and radiating as a finite cylinder 

without considering the top and bottom of the cylinder [4]. This error can be eliminated by 

extracting the T matrix of the cylinder from BOR. However, BOR [12, 92] needs to be made more 
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efficient for long cylinders such as 94 wavelengths in length. We simulate tall tree trunks up to 94 

wavelengths. For these cases, ICA provides satisfactory accuracy with good efficiency. The main 

application of the hybrid method in this section is calculating the transmission and tau of forest for 

Earth remote sensing and ICA has been widely used in vegetation models for Earth remote sensing. 

The main purpose of this section is to develop the new method of Foldy-Lax with 3D vector 

cylindrical wave expansions for random media instead of extracting the T-matrix of a single object. 

This new method computes the multiple scattering of many objects instead of the scattering from 

a single object. Because of these reasons, we use the T-matrix extracted from ICA instead of BOR 

in this section. 

 
(a) RCS at ϕs = 0. 
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(b) Near Fields | |Etot  plotted against z (m) at x = 1.5m and y = 0m. 

Figure V.26. Comparisons between the methods using the T matrix, ICA and commercial full-

wave solvers for one cylinder. 

 

 

5.4.2 Translation Addition Theorem 

After the T matrix extraction is validated, the next step is verifying the numerical translation 

addition theorem. First, for vector spherical waves, we randomly choose 𝑟̅𝑎 = [0.1,0.1,0.1] and 

𝑟̅𝑏 = [0,0,0] without the loss of generality. Let the size of 𝐴𝜇𝜈𝑚𝑛(𝑘𝑟𝑏𝑟𝑎̅̅ ̅̅ ̅) and 𝐵𝜇𝜈𝑚𝑛(𝑘𝑟𝑏𝑟𝑎̅̅ ̅̅ ̅) both 

be 8 × 8. The results from the analytical and numerical solutions and their absolute errors are 

plotted in Figure V.27. It shows that the absolute errors for the matrix elements are all less than 

10−15 . The RMSE between the two methods are 4.73 × 10−16  and 2.35 × 10−16  for 

𝐴𝜇𝜈𝑚𝑛(𝑘𝑟𝑏𝑟𝑎̅̅ ̅̅ ̅) and 𝐵𝜇𝜈𝑚𝑛(𝑘𝑟𝑏𝑟𝑎̅̅ ̅̅ ̅), respectively. It means that the robust numerical method for wave 

transformations is accurate. 
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(a) |𝐴𝜇𝜈𝑚𝑛| from analytical method (left) and numerical method (left) 

 

(b) |𝐵𝜇𝜈𝑚𝑛| from analytical method (left) and numerical method (left) 

 

(c) Absolute error between the analytical and numerical wave transformation matrix: 𝐴𝜇𝜈𝑚𝑛 (left), 

𝐵𝜇𝜈𝑚𝑛 (right). 

Figure V.27. Analytical and numerical translation addition comparisons for vector spherical 

waves. 
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 For vector spheroidal waves, there is no analytical translation addition theorem available for 

general cases. The 𝐶̿(1) matrix needed in the numerical translation addition method as in equation 

(5.3.120) can be verified. To verify 𝐶̿(1) , we replace 𝑀̅𝑚𝑛(𝑘𝑟𝑟2̅̅ ̅̅ ) by incident plane wave 𝐸̅𝑖𝑛𝑐 in 

the numerical translation addition method. With the same  𝐶̿(1) , when 𝑏̅ is integration using 𝐸̅𝑖𝑛𝑐, 

the resulting 𝐴̅ and 𝐵̅ are the expansion coefficient for incident plane waves.  For incident plane 

waves, the analytical solutions of the expansion coefficients are available as listed in section 5.3. 

The expansion coefficients from the numerical method are compared with analytical solutions in 

Figure V.28, for both TE and TM polarizations. The incident plane waves are of 𝜙𝑖 = 0 and 𝜃𝑖 =

10𝑜 and 40𝑜. For 𝜃𝑖 = 10
𝑜, the real part of the expansion coefficient is in red while the imaginary 

part is in blue. For 𝜃𝑖 = 40
𝑜, the real part of the expansion coefficient is in magenta while the 

imaginary part is in green. The circle marker indicates the results of the analytical method while the 

cross marker indicates the results of the numerical method. It is observed that the results from 

analytical and the numerical method matches well. This means that the 𝐶̿(1)  and the way of 

calculating 𝑏̅ for the translation addition method is correct. 
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(a) 

 

(b) 

Figure V.28. Vector spheroidal wave expansion coefficients for incident plane waves using 

numerical method (maker of cross) and analytical method (maker of circle) for (a) TE and (b) 

TM polarizations. 

 



270 

 

5.4.3 Solving Foldy-Lax Equations 

The methods developed in the first two steps (i.e., the T matrix extraction and numerical translation 

addition) of the hybrid method have been validated. Then, the resulted T matrix and translation 

addition matrix are submitted into the Foldy-Lax equations and we are ready to solve the equations 

to find the full-wave solutions of many vegetation scatterers. First, only serval vegetation scatterers 

are simulated which are feasible to be run on the commercial full-wave solvers such as HFSS and 

FEKO to provide validation. We calculate the scattering by three complicated branches attached 

with many irregular-shape leaves as shown in Figure V.29 (a). The permittivity of the vegetation 

scatterers is 27.22+5.22i and the simulation frequency is 1.41 GHz. The center position of the three 

branches are at [-7cm,0,0] [7cm,0,0], [0,8cm,8cm], respectively.  

           

                                        (a)                                                       (b) 

Figure V.29. (a) Scattering of three complicated branches using hybrid method and HFSS brute 

force method; (b) Absolute value of the final exciting fields for one of the branches. 

 

 In the hybrid method, the T matrix of each branch is extracted from HFSS. Then the T matrices 

are substituted into FL, with numerical wave transformations applied. By solving the FL for the 

three branches, the wave interactions among them are taken into account. Let the incident plane 

wave at 40𝑜 with magnitude 1. Figure V.29 (b) plots the final exciting fields (|𝐸̅𝑚
𝑒𝑥|) of the branch 

at lower right-hand-side on a spherical surface with diameter 12 cm enclosing the branch. It is 
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observed that the magnitudes of the exciting fields vary a lot. Thus, the exciting fields for the 

branches are not plane waves due to the influence of the other two branches.  

 

Figure V.30. Absolute value of the scattered fields on the enclosing sphere in Figure 7 for V-pol, 

from: hybrid method (left), HFSS brute force method (right). 

 

 

Figure V.31. Absolute value of the scattered fields on the enclosing sphere for H-pol, from: 

hybrid method (left), HFSS brute force method (right). 

 

 The total scattered fields from the three branches resulted from the hybrid method are compared 

with the HFSS brute force method. The HFSS brute force method simulates the three branches 

together in HFSS. For three branches, the HFSS brute force method is feasible. The scattered near 

fields on the enclosing sphere (shown in Figure V.29 (a) with radius 16 cm) are plotted in Figure 

V.30 and Figure V.31 for both V-pol and H-pol incident waves, respectively. The radar cross 
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sections 𝜎𝑉𝑉 and 𝜎𝐻𝐻 are also obtained and plotted in Figure V.32, for both methods. It can be seen 

that the results from the hybrid method agree with those from the HFSS brute force method. 

          

                                          (a)                                                                             (b) 

Figure V.32. (a) σVV and (b) σHH at different scattered angles from the two methods. NMM3D 

uses the hybrid method. θs is the angle with z-axis. 

 

 When simulating the case including a large number of objects or lots of empty space, the hybrid 

method is more efficient than the HFSS brute force method in terms of the CPU time and memory. 

Two reasons are discussed here. Firstly, the HFSS brute force method discretizes the whole volume 

including the empty space between the objects into tetrahedrons (as shown in Figure V.33, the 

rectangular box is the perfect matched layer (PML) defined in HFSS acting as an artificial absorbing 

boundary). In comparison, for the hybrid method, only the single object within the enclosing 

volume is discretized, when extracting the T matrix for each single object from HFSS. (i.e., Most 

of the empty space between the objects is not discretized in the hybrid method.) Secondly, the 

hybrid method uses the T matrix to account for the scattering properties of the objects while the 

HFSS brute force method calculates all the internal and surface fields of the objects. Figure V.34 

(a) shows the total surface fields on the branch simulated using HFSS. Figure V.34 (b) shows the 
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total fields on the enclosing spherical / spheroidal surface of the branch which are used to extract 

the T matrix. It is observed that the fields shown in Figure V.34 (a) is much more complicated than 

those shown in Figure V.34 (b), since the near fields interaction is proportional to 1 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒3⁄   

[4]. Thus, the T matrix is much less complicated than the internal fields. Then, the use of the T 

matrix in the hybrid method significantly decreases the number of unknowns to be solved, 

compared with the HFSS brute force method.  

 

Figure V.33. The whole volume was discretized in HFSS. 

 

                         (a)                                                                               (b) 

Figure V.34. (a) Surface fields on a branch; (b) Fields on the enclosing spherical and spheroidal 

surface of the branch in (a). 

 

 Next, we simulate the case of 10 branches whose positions are shown in Figure V.35 (a). Each 

branch is similar to that in Figure V.29 (a). The simulations are performed a single PC with Intel 
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Core i7-4790 CPU and 32 GB RAM. The HFSS shows out of memory when simulating the 10 

branches all together. However, it is feasible to simulate the 10 branches using the hybrid method. 

The T matrix for each branch is of size 48 × 48 (𝑁𝑚𝑎𝑥 = 4). Simulating each branch at different 

incident plane waves in HFSS for the T matrix extraction takes around 10 minutes each. Extracting 

the T matrix for each branch using the scattered fields exported from HFSS takes around 1 second 

each. Then, the T matrices for all the branches are stored for use in step 3 of the hybrid method 

(memory required is 48 × 48 × 10). Finally, performing wave transformations and solving FL for 

the 10 branches takes around 5 seconds. The largest matrix stored and solved is of size 480 × 480, 

which is much less than the memory limit of the single PC. The radar cross sections 𝜎𝑉𝑉 and 𝜎𝐻𝐻 

of the 10 branches calculated using the hybrid method are plotted in Figure V.35 (b).  

 

                 (a)                                                                            (b) 

Figure V.35. (a) Positions of the ten branches for simulation; (b) σVV (left) and σHH (right) at 

different scattered angles for the 10 branches. 

 

 This example of full-wave simulation of 10 branches illustrated that the hybrid method is much 

more efficient than the HFSS brute force method for large problems. For the vegetation 

canopy/trees, the volume fraction of the vegetation scatterers is typically less than 1% (i.e., more 

than 99% is air). It means that the volume discretized in the HFSS brute force method would be 

approximately 99 times more than that discretized for the T matrix extraction in the hybrid method. 
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Thus, the hybrid method is much more efficient than the HFSS brute force method for simulating 

the vegetation field. Full-wave simulations for vegetation/trees including a large number of objects 

are nearly impossible using the HFSS brute force method. However, the hybrid method can be 

readily used for these problems. Another advantage of the hybrid method is that the T matrix 

extraction for each single object which is the time-consuming part only needs to be conducted once. 

It is because the T matrix only depends on the geometry and material of the object, and is not related 

to the other properties such as the position of the object and the incident wave. The positions of the 

objects and the incident waves are taken into account by FL. Thus, if the positions of the objects 

are changed, the hybrid method only needs to solve FL again without re-calculating the T matrices, 

while the HFSS brute force method needs to re-calculate the whole problem again. This property 

of the hybrid method will save lots of time in the Monte Carlo simulations for vegetation/trees.   

 For 3D vector cylindrical waves, we simulate the case of two cylinders where there are 

interactions among cylinders. Each cylinder has a radius 2cm and length 1.5m, at the location of 

[0,0,0] and [0.3m,0,0], respectively. The permittivity of the cylinder is 30.7 + 5.5i, the simulation 

frequency is 1.41 GHz and the incident angle is vertical polarization at 140𝑜. The scattered/total 

fields are calculated using the hybrid method detailed in section 5.3 and compared with those from 

the full-wave solvers. The results are shown in Figure V.36 for both far fields (RCS 𝜎𝑉𝑉) and near 

fields. It is noticed that there are small differences in the results from the commercial software 

HFSS and FEKO. This can be caused by that different methods are used in HFSS and FEKO: HFSS 

uses Finite Element Method while FEKO uses the Method of Moment. It can be seen that the results 

from the hybrid method agree with those from the commercial full-wave solvers. This means the 

hybrid method is correct. 
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(a) 𝜎𝑉𝑉 at ϕs = 0. 

 

 

(b) Near Fields |𝐸𝑡𝑜𝑡| plotted against z (m) at x=0.15m and y=0m. 

 

 

(c) Near Fields |𝐸𝑡𝑜𝑡| plotted against x (m) at y=0 and z=-0.75m. 

Figure V.36.  Comparisons of the hybrid method and commercial full-wave solvers for two 

cylinders. 
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5.4.4 NMM3D Simulation Results of Vegetation/Forest 

In this section, we apply the hybrid method for NMM3D full-wave simulations of 

vegetation/forest and calculate the transmission and optical thickness tau through the 

vegetation/forest canopy. 

The normalized transmitted energy is defined as the transmitted energy at the bottom of 

the cylinders normalized by the energy when there are no cylinders, 

ˆ1 ( ) ( )

ˆ( ) ( )

tot

incS

S r z
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S S r z

 −
=

 −                                                  (5.4.8) 

where 
*( ) [ ( ) ( )] / 2S r Re E r H r=  . S is the size of the NMM3D ‘receiver’, put right below the 

vegetation/forest canopy. 

The transmission is obtained by moving the ‘receiver’ all over the simulation area and then 

taking the average over the T at different locations. But there are edge effects when the ‘receiver’ 

is close to the edge of the simulation area. Edge effects are artificial effects caused by using finite 

area to simulate the infinite area of vegetation/forests. To avoid the effects, instead of moving the 

‘receiver’, we fix the ‘receiver’ at the center of the simulation area and shuffling the plants/trees. 

Thus, the transmission t is obtained using Monte Carlo simulations by averaging over realizations, 

1

1 N

n

n

t T
N =

=                                                            (5.4.9) 

where N is the total number of realizations. 

A. Simulation setup 

The dielectric cylinders can be used to represent tree trunks (Figure V.37). The parameters 

for the two simulation cases are shown in Table V-3. The simulations are performed at 1.41 GHz 

and the incident wave is vertical polarization. The simulation area needed depends on the height 
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of cylinders and the incident angle and the minimum length of the area ( L L ) is 2 iL h tan=  . 

We simulate two cases and the parameters are listed in Table V-3.  

 
Figure V.37.  Tree trunks (left) are modeled as dielectric cylinders (right). 

 

Table V-3. Parameters for the two simulations cases. 

 Height (h) Diameter Density 

Case 1 20 m 12 cm 0.17 m-2 

Case 2 5 m 8 cm 2.2 m-2 

 

The minimum total number of cylinders needed for simulations is 2

tN L Density=  , which is 192 

and 155 for Case 1 and 2, respectively. For the convenience of generating uniform distribution in 

a square area, we use 196 and 169 cylinders, the square root of which is integer, for Case 1 and 2, 

respectively. Uniform distribution is used for both cases. The top view of the centers of the 

cylinders in Case 2 for one realization is shown in Figure V.38. For Case 1, the number of 

discretizations in   is 800 and the number of harmonics in   is 9. Since there are two 

polarizations, the total number of unknown coefficients for each tree is 800 9 2 14,400  = . Thus, 

the total number of unknown coefficients are 196 14,400 2,822,400 = . Thus, the matrix to be 

solved is of size 2,822,400 2,822,400 . For Case 2, the number of discretizations in   is 200, 
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the number of harmonics in   is 5 and the matrix to be solved is of size 338,000 338,000 . 

Parallel computing is used to solve the matrix. 

 

 
Figure V.38.  Top view of the centers of the cylinders in Case 2 with ‘receiver’ of different sizes 

in the center. 

 

B. Physically based iterative method for statistical moments 

In the traditional approach, the exact solution of Maxwell's equation is obtained for each 

realization using conjugate gradient on the matrix equations. But such exact solution may not be 

useful because of random fluctuations from realization to realization. The results of many 

realizations are smoothed by taking average over realizations. In stochastic multiple scattering 

problems, the useful results are the statistical moments of the fields. In this paper, we use a new 

iterative method of determining the statistical moments of fields. Usually, statistical moments up 

to the 4th moments are useful. 

In traditional method of solving such matrix equations, the equations are solved iteratively 

using conjugate gradient or similar algorithms for each realization. For example, when solving 

Zx b= , the iterations terminate when || ||nZx b err−  , where nx  is the solution at nth iteration 

and err is a sufficiently small residual. This means Maxwell’s equations are solved exactly for 
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each realization. The number of iterations for problems of the size of several millions are several 

thousands. To obtain statistical averaged, the solutions of Maxwell’s equations of all these 

realizations, such as 5 to 20 realizations, are averaged. Thus, the total number of iterations for the 

averaged result would be tens of thousands. For example, for 10 realizations and 1000 iterations 

for each realization, there are a total of 10,000 iterations. The physically based iteration method 

are based (i) The exact solution of Maxwell equation for each realization may not be useful as the 

solution fluctuate from realization to realization and fluctuate at different locations of the receiver 

area, and (ii) In classical analytical theory such as radiative transfer theory, the averaged result is 

calculated and these averaged results converge usually in a few orders of multiple scattering. 

Thus ,we expect that on that the averaged multiple scattering solutions converge much faster. This 

turns out to be the case as shown in the examples below. 

 
Figure V.39.  Illustration of physically based iterative method for statistical moments over N 

realizations and the receiver area. ‘EME’ is short for ‘Exact solutions of Maxwell’s Equations’. 

 

We iterate one multiple scattering order at a time. The averaging over 5 to 20 realizations 

and averaging over the receiver area are performed for each order. The averaged results usually 
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converge in several orders such as 4th of multiple scattering. Thus for 10 realizations, the total 

number of iterations is only 40, which is 250 times less than the traditional method of 10,000 

iterations. 

The physically multiple scattering iterated approach for averaged results is illustrated in 

Figure V.39. The traditional iterative method iterates until convergence of solution of Maxwell 

equation for each realization is achieved. The physically based iterative method for statistical 

moments iterates until the convergence of averaged result is achieved. In calculating the 

transmission t, the results is obtained as long as the averaged result is converged and thus the 

physically based iterative method can be applied. It is noted that, there are two kinds of statistical 

average in calculating the transmission: one is averaging over realizations of Monte Carlo 

simulations, and the other is integrating over the ‘receiver’ area since integration divided by the 

fixed area is the average. Figure V.40 shows the convergence of T over the order of multiples 

scattering for one realization of Case 2, where T is the integration over the receiver area of 

2 2m m  (red dash square in Figure V.38). It is observed that the value of T converges at 4th order 

of iteration.  

 
Figure V.40.  Convergence of T over the order of multiple scattering. 
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Figure V.41. Convergence of t over the number of realizations. 

Figure V.41 shows the convergence of t over the number of realizations in Monte Carlo simulations 

of Case 2, where t is the transmission as defined above. It is observed that the transmission 

converges at around 8 realizations. In this case, total number of iterations to calculate the 

transmission using the physically based iterative method is only 4 8 32 = . 

C. Size of the receiver area 

We examine the choice of the the size of the ‘receiver’ in calculating the transmission. The 

receiver size is a numerical parameter as the physical transmission should be independent of the 

choice of the numerical parameter. However, the receiver size cannot be too large to cause the 

edge effects, since the infinite canopy area is simulated using a finite area. We calculate the 

transmission of Case 2 using four different sizes of ‘receiver’: 2 2m m , 1 1m m , 0.5 0.5m m , 

and 0.21 0.21m m  (i.e.,  ), as illustrated in Figure V.38. The T at different realizations is 

plotted in Figure V.42 for these different receiver sizes.  
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Figure V.42. T at different realizations for different receiver sizes. 

It is observed that larger receiver size results in smaller fluctuations of T over different 

realizations. The standard deviation of T over the 16 realizations is listed in Table V-4, which 

shows the same conclusion that larger receiver size results in smaller standard deviations (i.e. less 

fluctuations). Smaller fluctuations of T means less number of realizations of Monte Carlo 

simulations are needed to calculate t. This is reasonable as explained below. When measuring the 

transmission, the receiver is moved all over the simulation area. The larger the receiver size is, the 

less number of movements are needed to cover all the simulation area. As illustrated in the 

beginning, to avoid the edge effects, we fixed the receiver at the center of the simulation area and 

shuffling the scatterers. The number of movements is positively correlated with the number of 

realizations of shuffling the scatterers in Monte Carlo simulations. Thus, less number of 

realizations is needed when receiver of larger area is used.    

Table V-4. Receiver sizes and the standard deviation of T over 16 realizations. 

Size 2 2m m  1 1m m  0.5 0.5m m  0.21 0.21m m

(i.e.,  ) 

Std. 0.0871 0.1308 0.1734 0.2420 
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Figure V.43. Convergence of t over the number of realizations for different receiver sizes. 

Next, T is averaged over realizations to calculate the transmission t. The value of average T 

as a function of total number of realizations is plotted in Figure V.43, for these different sizes of 

receivers. Comparing the red line with circle marker and the blue line with square marker, it is 

clear that larger receiver size needs less number of realizations to converge: 2 2m m  receiver 

needs around 8 realizations to converge while 0.21 0.21m m  needs around 16 realizations to 

converge. It is also observed that the averaged T converges to the about same value 0.45 for 

different receiver sizes. This shows that this method of calculating transmission is robust and does 

not depends on the receiver size as long as the receiver is not too large to cause the edge effects. 

D. Comparisons with RTE/DBA for transmission and   

In RTE/DBA, the transmission through randomly distributed cylinders are calculated as 

( sec( ))R R it exp  = −                                                (5.4.10) 

where the subscript R represents the method ‘RTE/DBA’ and   is the optical thickness. 

  of RTE/DBA is calculated as 

0( )R s an d  = +                                             (5.4.11) 
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where 0n  is the number of cylinders per m3 which is the number of cylinder per m2 divided by the 

length of the cylinder. The 0n  is 0.0085 m-3 and 0.44 m-3 for Case 1 and 2, respectively. s  and 

a  are the scattering cross section and absorption cross section of one cylinder, which are 

calculated using the plane wave illumination. The length of the cylinder is represented by d. 

         
Figure V.44. Integrand of T for two realizations in Case 2.  

As illustrated above, the transmission from the hybrid method for Case 2 is 0.45. For Case 

1, following the simulations described above, the transmission is 0.66. The integrand of T for two 

realizations are plotted in Figure V.44. The receiver size is 2 2m m  (i.e., 9.406 9.406  ). The 

blank hole in the top figure shows a cylinder right above in the receiver area in this realization. 

The T for these two realizations (left and right of Figure V.44) is 0.6340 and 0.6434, respectively. 

The blank hole indicates the cross section area occupied by the cylinder which is excluded from 

the integration to obtain T. Thus, this area is left blank without plotting the integrand. 

Using Maxwell’s equations, we calculate transmission not  . In order to compare with 

RTE/DBA, we defind the ‘ ’ of the hybrid method by ( )sec( )H H iln t = − , where the subscript 

H represents the hybrid method.  

Table V-5. Transmission coefficient from RTE/DBA and the hybrid method. 
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Transmission RTE/DBA Hybrid Method 

Case 1 0.35 0.66 

Case 2 0.089 0.45 

 

Table V-6. Optical thickness tau from RTE/DBA and the hybrid method. 

Tau RTE/DBA Hybrid Method 

Case 1 0.80 0.32 

Case 2 1.85 0.61 

 

The results for Case 1 and 2 from RTE/DBA and the hybrid method are tabulated in Table 

V-5 and Table V-6 for transmission and  , respectively. For Case 1, the transmission from the 

hybrid method is around twice larger than the transmission from RTE/DBA while the   from the 

hybrid method is only 40% of the   computed using RTE/DBA. For Case 2, the transmission from 

the hybrid method is around five times larger than the transmission from RTE/DBA while the   

from the hybrid method is only 33% of the   computed using RTE/DBA. Thus, the transmission 

from the hybrid method is much larger than that from RTE/DBA while the   is much smaller than 

that from RTE/DBA. Because of the influences of the other cylinders, the final exciting fields on 

the cylinders are not plane wave anymore. Generally, the fields exciting on the bottom of the 

cylinder is less than those exciting on the top of the cylinder due to the attenuation. However, the 

s  and a  in RTE/DBA are calculated using plane wave exciting, which overestimates s  and 

a . Thus, RTE/DBA overestimates   and underestimates transmission. The results from the 

hybrid method also illustrates that the microwaves can penetrate through the gaps that are larger 

than the microwave wavelengths which are not accounted for in RTE/DBA based on the concept 

of homogenization. 
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5.5 Conclusions 

 The hybrid method combines the off-the-shelf techniques and the developing computational 

electromagnetics techniques, consisting of three steps: (1) the generalized T matrix extraction, (2) 

wave transformations, and (3) wave interactions among single objects. Vector spherical, 

spheroidal and cylindrical waves are used for the wave expansions. The T matrix extraction 

technique is applicable for arbitrary-shape objects which have no analytical solutions. The 

technology of extracting T matrix from HFSS with vector spherical wave expansions is validated 

using a sphere which has the analytical solutions for the T matrix. The extracted T matrix with 

vector spheroidal wave expansions is verified by comparing the scattered fields computed from 

the T matrix to those from the HFSS, for a branch with complicated leaves. For 3D vector 

cylindrical waves, the analytical expressions of the T matrix for a dielectric cylinder are derived 

and the correctness of the T matrix calculated from ICA is verified. The technique of numerical 

wave transformations is verified by the analytical solutions for vector spherical waves, resulting 

in RMSE on the order of 10−15. The numerical method is more robust than the analytical method. 

The numerical method for wave transformations are also applied to spheroidal waves where the 

analytical method is not available. The results of the hybrid method are checked by the HFSS brute 

force method using three complicated branches attached with leaves. The full-wave simulation 

results from the hybrid method agree with those from the HFSS brute force method for both near 

fields and radar cross sections. The hybrid method is much more efficient in terms of CPU time 

and memory than the HFSS brute force method when simulating the case including a large number 

of objects or lots of empty space, such as vegetation canopy/trees. One reason is that the HFSS 

brute force method discretizes the whole volume including the empty space between the objects 

while the hybrid method only discretizes the single objects. When extracting the T matrix, each 
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single object is simulated on HFSS alone without the other objects. The multiple scattering of 

waves among the single objects are accounted for by solving FL. The hybrid method is also 

illustrated using 10 branches which cannot be simulated by the HFSS brute force method on the 

single PC. The hybrid method also has the advantage of only one-time computations of the T 

matrices since the T matrices are independent of positions and incident waves. This saves time 

when performing Monte Carlo simulations by randomly shuffling the objects. For 3D vector 

cylindrical waves, the scattered fields formulation of FL is used. Examples of cylindrical scatterers 

are illustrated and the correctness of the method is verified by HFSS. Both far and near fields are 

in good agreement with those from HFSS. The hybrid method is applied to calculate the 

transmission through a layer of dielectric cylinders representing tree trunks at L-band. Physically 

iterative method is developed to calculate the statistical moments by taking averages over each 

multiple scattering order. There are two kinds of averages to calculate the transmission: averages 

over the receiver area and averages over Monte Carlo simulations. It is found that the larger receiver 

size results in smaller fluctuations over realizations and thus smaller number of realizations needed 

for convergence. However, the receiver size does not affect the transmission in this simulation 

method which is robust. The transmission from the hybrid method is much larger than that from 

RTE/DBA while the optical thickness tau from the hybrid method is much smaller than that from 

RTE/DBA. 

 In the future, the hybrid method will be applied for modelling of irregularly shaped objects by 

extracting the T matrix from the commercial software which is suitable to irregularly shaped single 

object of moderate size such as a corn/soybean plant and a small tree with branches and leaves. 
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CHAPTER VI                                                                                                            

Conclusions 

 

This thesis focuses on electromagnetic modelling of vegetation/forests at microwave 

frequencies which is used for remote sensing of soil moisture. Both analytical and numerical 

models for vegetation/forests are studied. Chapter II and III are about the analytical models for 

vegetation-covered surfaces, using the distorted Born approximation (DBA), an improved 

coherent model and a unified model for combined active and passive, which were used for soil 

moisture retrieval in SMAP. Chapter IV and V are about Numerical Maxwell Model in 3D 

(NMM3D) full-wave simulations of vegetation/forests. The main contributions and novelty of this 

thesis are the development of the hybrid method for NMM3D full-wave simulations of 

vegetation/forest canopy, based on the generalized T matrix of the single object and Foldy-Lax 

equations of multiple scattering among many objects. This hybrid method is efficient for large-

scale full-wave simulations of vegetation/forst. In NMM3D full-wave simulations, plants’ 

structures gaps, heterogeneity and the wave interactions among scatterers are accounted for. We 

showed that the NMM3D results predict transmissions several times larger than that of the past 

two models. For passive remote sensing, a larger microwave transmission means the emission 

from soil can pass through the vegetation/forests to reach the radiometer. For radars, a much larger 

microwave transmission means the microwave can penetrate vegetation/forest canopy and thus 

can sense the soil moisture below. The advanced radiative transfer theory using NMM3D provides 
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the basis for improved physical model based retrievals of soil moistures from the stattellite 

measurements such as SMAP and combined SMAP and NISAR measurements. 

The DBA is derived from the Foldy-lax equation with first-order iteration using the half-

space Green’s function. DBA is incoherent scattering model and it inclues three scattering 

mechanisms: volume scattering, double-bounce scattering and surface scattering. The surface 

scattering in DBA is computed by the attenuation of the vegetation canopy times the bare surface 

scattering from NMM3D.  Wheat and canola data-cubes are generated based on this analytical 

scattering model to support soil moisture retrieval for the Soil Moisture Active Passive (SMAP) 

mission. The backscattering coefficients of the data-cubes compare well with the UAVSAR data 

collected during the SMAP validation experiment 2012 (SMAPVEX12) field campaign over a 

wide range of VWC and soil moisture. The data-cube based time-series retrieval algorithm for the 

SMAP mission is implemented to retrieve the soil moisture. The retrieved soil moisture is in good 

agreement with the in-situ soil moisture from SMAPVEX12. A coherent model with conditional 

probabilities is developed to compute the radar scattering from soybean fields. With the use of 

conditional probabilities, the unrealistic overlap of two branches at the same location is avoided. 

The new model is closer to the reality than the previous models, and produces smaller scattering 

compared with the previous coherent model predictions. However, it also generates significantly 

larger scattering than the incoherent model such as DBA. By comparisons with SMAPVEX 12 

data, it is shown that this improved coherent model agrees well with observations in both the 

absolute values of backscattering and the polarization ratios between VV and HH backscattering 

coefficients. The accuracy of the time-series retrieval of soil moisture also improves by using the 

new data-cube based on the coherent model with conditional probabilities, compared with the 

incoherent data-cube.  
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A consistent model for combined active and passive microwave remote sensing is formulated 

in which the same physical model NMM3D-DBA (i.e., NMM3D for rough surfaces combined 

with DBA for vegetation) is used to calculate both backscatter and brightness temperature. The 

emissivity is obtained by integration of the bistatic scattering over the hemispherical solid angle. 

The novel feature of this combined active and passive approach is its use of the same model 

NMM3D-DBA and physical parameters for both active and passive for vegetation-covered 

surfaces to achieve a consistent modeling framework. In comparison, current approaches generally 

use different models and different parameters for active and passive with the tau-omega model 

most frequently used as the passive model with empirical input parameters. The NMM3D-DBA 

model results are validated using coincident airborne PALS low-altitude radiometer data and 

UAVSAR data taken during the SMAPVEX12 field campaign. On comparisons with the passive 

data, the results from NMM3D-DBA are comparable or better than those from the tau-omega 

model.  

The analytical models such as radiative transfer equation (RTE) and DBA are based on some 

assumptions that are hard to justify for vegetation/forest, such as uniform random position of 

vegetation scatterers, uniform illumination of entire scatters and far field distance between each 

two scatterers. The physical process of radiative transfer at microwave frequencies are governed 

exactly by Maxwell’s equations. The radiative transfer equation (RTE) make assumptions on 

radiative transfer and such assumptions can be invalid.  Because of these issues, the new numerical 

approach of NMM3D full-wave simulations is developed. For the vegetation canopy composed of 

many vertically oriented dielectric thin cylinders, we develop the method of Foldy-Lax equations 

combined with the Z matrix of BOR (FL-BOR). The correctness of the FL-BOR simulation 

method is validated by comparing with the commercial software HFSS and the method FL-ICA 
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and by checking the energy conservation. The NMM3D simulations are performed at C-band for 

vertical polarization and applied to the extended-cylinders case and the short-cylinders case. The 

results are compared with those from effective permittivity (EP)/DBA/RTE. The results from the 

NMM3D and EP/DBA/RTE agree for the short-cylinders case. Because the short-cylinder case 

satisfies the assumptions of EP/DBA/RTE. For the examples of extended-cylinders case which 

resembles the grass canopy, the transmission from the NMM3D is 6.12 dB larger than that from 

EP/DBA/RTE while the optical thickness 𝜏 from the NMM3D is 5.0 times smaller than that from 

EP/DBA/RTE.   

 FL-BOR is limited to rational symmetric object and it is hard to be extended to cylinders 

with large radii. These limitations are resolved by the hybrid method developed in chapter V. The 

hybrid method is efficient for NMM3D full-wave simulations of vegetation/forest with realistic 

vegetation structures such as branches with complicated leaves. The hybrid method combines the 

off-the-shelf techniques (e.g. commercial software HFSS, FEKO; available computer codes ICA, 

BOR, ect.) and the developing computational electromagnetics techniques, consisting of three 

steps: (1) the generalized T matrix extraction, (2) wave transformations, and (3) wave interactions 

among single objects. Vector spherical, spheroidal and cylindrical waves are used for the wave 

expansions. The numerical T matrix extraction technique is applicable for arbitrary-shape objects 

which have no analytical solutions. A robust numerical method is developed for the translation 

addition theorem for vector spherical and spheroidal waves. The multiple scattering of waves 

among the single objects are accounted for by solving the Foldy-Lax equatons (FL). For 3D vector 

cylindrical waves, the scattered fields formulation of FL is used instead of the usual exciting field 

formulation. The results of the hybrid method are verified by the HFSS brute force method using 

three complicated branches attached with leaves. The hybrid method is much more efficient in 
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terms of CPU time and memory than the HFSS brute force method when simulating the case of 

including a large number of objects or lots of empty space, such as vegetation canopy/trees. One 

reason is that the HFSS brute force method discretizes the whole volume including the empty space 

between the objects while the hybrid method only discretizes the single objects. The hybrid method 

also has the advantage of only one-time computations of the T matrices since the T matrices are 

independent of positions and incident waves. This saves time when performing Monte Carlo 

simulations by randomly shuffling the objects. The hybrid method is applied to calculate the 

transmission through a layer of dielectric cylinders with up to 100-wavelength length and large 

radius, representing tree trunks at L-band. Physically iterative method is developed to calculate the 

statistical moments by taking averages over each multiple scattering order. There are two kinds of 

averages to calculate the transmission: averages over the receiver area and averages over Monte 

Carlo simulations. The transmission from the hybrid method is much larger than that from 

RTE/DBA while the optical thickness tau from the hybrid method is much smaller than that from 

RTE/DBA. A much larger microwave transmission means the microwave can better penetrate 

vegetation canopy and thus it can be used to retrieve soil moisture. 

 For future studies, the hybrid method with 3D vector cylindrical wave epansions will be 

combined with HFSS to perform full-wave simulations of crops such as wheat, soybean, corn, and 

canola. In addition to transmission, the NMM3D model will also be used to calculate the phase shift 

through the vegetation/canopy, which is important for SAR polarimetry and SAR interferometry. 

The NMM3D simulations also be extended to compute the passive information of brightness 

temperature. Brightness temperature is the physical temperature times emissivity. Because of the 

thermal equilibrium, the energy emitted equals the energy absorbed (i.e., emissivity equals 

absorption). Integration of the Poynting vector over the surface areas gives the absorption. This 
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method avoids the tedious integration of the bistatic scattering over all the hemispherical solid 

angle. This research work will help to build the next generation radiative transfer model which 

will be based on Maxwell’s equations without RTE. Besides the current satellite mission such as 

Soil Moisture Active/Passive (SMAP) and Cyclone Global Navigation Satellite System 

(CYGNSS), this full-wave model can also be useful for future satellite missions such as NASA-

ISRO Synthetic Aperture Radar (NISAR) and The Copernicus Imaging Microwave Radiometer 

(CIMR). CIMR is planned to launche CIMR-A in 2027 and CIMR-B shortly afterwards to provide 

enhanced global coverage. The CIMR mission will utilize radiometeris at multi-frequencies 

including L-, C-, X-, Ku-, and Ka-band. The observations at L-, C- and X-band can be useful for 

mapping of global soil moisture. Further enhancement can also be included such as including P-

band and using broad-band radiometry at 0.5 ~3 GHz. Electromagnetic modelling of 

vegetation/forest at multiple freququencies is important for CIMR mission.  The past RTE/DBA 

model has three key assumptions that are invalide and can cause large errors, as discussed in 

Chapters IV and V in detail. The problem becomes even more serious for multi-frequency models 

requiring different parameter tunings at the two frequencies. The hybrid method for full-wave 

simulations of vegetation/forest can provide us reliable simulation results under different conditions 

at multiple frequencies. The analysis of data with hybrid method will help us to define lookup tables 

and algorithms for multi-frequency soil moisture retrieval. 
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