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ABSTRACT

The last several years have seen a surge of interest in interpretability in AI and

machine learning–the idea of producing human-understandable explanations for AI

model behavior. This interest has grown out of concerns about the robustness and

accountability of AI-driven systems, particularly deep neural networks, in light of the

increasing ubiquity of such systems in industry, science and government. The general

hope of the field is that by producing explanations of model behavior for human

consumption, one or more model-using stakeholder groups (e.g. model designers,

model-advised decision-makers, recipients of model-driven decisions) will be able to

derive some type of increased utility from those models (e.g. easier model debugging,

better decision-making, higher user satisfaction).

The early years of this field have seen a profusion of technique but a paucity of

evaluation. A number of methods have been proposed for explaining the decisions of

deep neural models, or of constraining neural models to behave in more interpretable

ways. However, it has proven difficult for the community to reach a consensus about

how to evaluate the quality of such methods. Automated evaluation protocols such

as collecting gold-standard explanations do not necessarily correlate well with true

practical utility, while fully application-oriented evaluations are expensive, difficult

to generalize from, and, it increasingly appears, an extremely difficult HCI challenge.

In this work I address gaps in both the design and evaluation of interpretability

methods for text classifiers.

I present two novel interpretability methods. The first method is a feature-based

explanation technique which uses an adversarial attention mechanism to identify all

viii



predictive signal in the body of an input text, allowing it to outperform strong base-

lines with respect to human gold-standard annotations. The second method is an

example-based technique that retrieves explanatory examples using only the features

that were important to a given prediction, leading to examples which are much more

relevant than those produced by strong baselines.

I accompany each method with a formal user study evaluating whether that type

of explanation improves human performance in model-assisted decision-making. In

neither study am I able to demonstrate an improvement in human performance as

an effect of explanation presence. This, along with other recent results in the in-

terpretability literature, begins to reveal an intriguing expectation gap between the

enthusiasm that the interpretability topic has engendered in the machine learning

community and the actual utility of these techniques in terms of human outcomes

that the community has been able to demonstrate.

Both studies represent contributions to the design of evaluation studies for inter-

pretable machine learning. The second study in particular is one of the first human

evaluations of example-based explanations for neural text classifiers. Its outcome

reveals several important, nonobvious design issues in example-based explanation

systems which should helpfully inform future work on the topic.

ix



CHAPTER I

Introduction

Interpretable machine learning, sometimes referred to as explainable machine

learning or explainable AI (XAI), seeks to explain the predictions of machine learning

models in human-understandable terms.

This is an important area of study. Recent years have seen a huge proliferation

in applications of machine learning to every aspect of society including other areas

of science such as medicine, business and government. At the same time, the rise of

neural networks as the dominant machine learning paradigm has lead to predictive

models that are unprecedentedly vast, powerful, complex and opaque in comparison

to older modeling styles. While these recent improvements in modeling power have

increased the applicability of machine learning, this opacity continues to limit its

safety (Guidotti et al., 2018; Gilpin et al., 2018; Murdoch et al., 2019).

Machine learning models make mistakes. They have a tendency to be brittle,

having a hard time generalizing beyond whatever particular circumstances are present

in the training data. They often end up absorbing bias from their training data.

They are vulnerable, in some domains, to adversarial examples–inputs which have

been manipulated in ways that are imperceptible to the human eye, but which result

in vastly different model output (Gilpin et al., 2018). Even beyond these kinds of

pathological model behaviors, there are many tasks where it simply is not possible to
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train a completely reliable model due to noisy or sparse data (e.g. deceptive review

detection (Lai and Tan, 2019)), or intrinsic randomness in the outcome relative to the

available signal (e.g. police officer misconduct (Carton et al., 2016)). The opacity of

complex models can often make it difficult to recognize when these types of mistakes

have occurred.

Humans make mistakes. In many domains, models have been found to be more

generally reliable than human experts and in some cases have been shown to make

different mistakes from those made by humans (e.g Kleinberg et al. (2017); Ardila

et al. (2019)). However, the crucial difference between model mistakes and human

mistakes is that human decisions are generally (at least nominally) reason-driven. A

judge who convicts a defendant does so based on evidence–if the evidence is shown

to be false the conviction can be overturned. A physician accused of malpractice can

try to justify their decisions for scrutiny by a third party.

This accountability is crucial because it allows bad or unfair decisions to be rec-

ognized, reported, appealed and reversed. If someone is denied a loan as a result of a

bankruptcy they did not experience, an explanation of their denial will give them the

information they need to dispute the decision where they might otherwise have simply

given up. This type of affordance is the stated rationale behind the “right to expla-

nation” clause of the recent European Union General Data Protection Regulation

(GDPR):

In any case, such processing should be subject to suitable safeguards,

which should include specific information to the data subject and the

right to obtain human intervention, to express his or her point of view, to

obtain an explanation of the decision reached after such assessment and

to challenge the decision. (Wachter et al., 2017a)

Equally important to the ability to overturn bad decisions is the ability to learn

from them. When John Hinckley Jr. attempted to assassinate US President Ronald

2



Reagan, the Insanity Defense Reform Act was passed to address what was perceived

as a failure to sentence him appropriately (Finkel , 1989). More recently, when a

diabetic woman in the United Kingdom lost her child because she opted for a natural

birth whose risks she hadn’t been made properly aware of, the subsequent court case

set a new standard for obtaining informed consent from patients (Whittaker , 2015).

In both of these cases, a precise understanding of the reasons behind the precipitating

failure event were crucial in adjusting the “algorithm” involved to be more optimal.

What interpretability can bring to machine learning is accountability. Individual

machine decisions may be more accurate on average than human decisions, but it is

only through interpretability that those decisions can be incorporated into the kind

of robust decision ecosystem described above, where a decision is a dynamic object

capable of being critiqued, changed and learned from.

This quality of accountability is important across many different levels of human-

machine cooperation. In scenarios like recidivism prediction or medical diagnosis,

where every decision needs to be carefully weighed and considered, interpretability

can give human operators a way to more easily integrate machine advice into their own

decision processes. However, even in more automated scenarios such as fingerprint

recognition, interpretability can give model builders a way to understand and debug

the occasional model errors that their systems will inevitably produce.

The challenge for machine learning researchers and engineers is to design inter-

pretability methods which afford a level of human understanding to make this kind

of accountability possible. However, how exactly to operationalize the notion of “hu-

man understanding” is a topic of active discussion within the interpretable machine

learning literature, as it cuts to the very heart of what is meant by “interpretable”.

As I discuss below, that literature has proposed a variety of potential answers to the

question of “what is interpretability?”, as well as a profusion of methods designed to

achieve these proposed objectives.
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1.1 Interpretable Machine Learning

1.1.1 Why do we want interpretability?

In the above introduction, I make the case for interpretability as a way of improv-

ing the robustness of AI-in-the-loop decision systems. However, the literature has

suggested a number of reasons why interpretable models might be desirable. Three

well-cited reviews (Lipton et al., 2016; Doshi-Velez and Kim, 2017; Samek et al., 2017)

produce the following combined list of use cases for how the presence of explanations

might increase the utility of machine learning models. I preserve the exact wording

used by the original works in order to convey the range of ways these ideas have been

articulated.

Learning from the model/causality/scientific understanding Explanations

can suggest causal relationships in the domain that are of general interest to a human

observer, and which can prompt further investigation (Samek et al., 2017; Lipton

et al., 2016; Doshi-Velez and Kim, 2017).

Safety/verification Explanations may allow human overseers to better supervise

the functioning of a model that is not reliable enough to be allowed to operate on its

own (Doshi-Velez and Kim, 2017; Samek et al., 2017).

Mismatched objectives/transferability Explanations may expose generaliza-

tion issues arising from cases where a model is trained against objectives that do not

entirely match their desired application (Doshi-Velez and Kim, 2017; Lipton et al.,

2016).

Informativeness Explanations may allow models to provide more useful advice to

human overseers in making decisions (Lipton et al., 2016).
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Trust Explanations may increase user confidence in the model (Lipton et al., 2016).

Ethics Explanations may reveal discrimination in the reasoning behind a model’s

predictions (Doshi-Velez and Kim, 2017).

Multi-objective trade-offs Explanations may clarify how two competing objec-

tives in a model are being balanced against one another (Doshi-Velez and Kim, 2017).

Improvement of the system Explanations can provide clues about how to im-

prove a faulty model (Samek et al., 2017).

Compliance to legislation Explanations can enable compliance with laws like the

GDPR right to explanation (Samek et al., 2017).

1.1.2 How do we quantify interpretability?

Highly related to the question of why we want interpretability is how we measure

it. What does it mean for an algorithm to be interpretable, or for an explanation of

an algorithm’s behavior to be a good explanation? Like the motivations listed above,

the literature is far from settled on this question, but a number of desiderata have

been identified.

Sparsity The most common desired quality of an explanation is sparsity–that an

explanation should reduce the informational complexity of the underlying decision

process by some significant degree. In the most common interpretability approach,

feature attribution, this amounts to reducing a model input to just those features

which had a particularly large impact on the model output (Murdoch et al., 2019;

Doshi-Velez and Kim, 2017).
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Usability Another common desired quality of explanations is that they should in-

crease the user satisfaction, trust, and overall usability of AI-powered systems, as

might be measured by a survey (Abdul et al., 2018).

Decision quality To directly assess the impact of explanations on the robustness

of a system, we can measure the quality of the decisions that humans make in collab-

oration with an interpretable system (Doshi-Velez and Kim, 2017).

Simulatability Another common goal is that of simulatibility: that for an expla-

nation to cause a human to “understand” a model is for them to be able to look at

the explanation and simulate the behavior of the model by correctly guessing what

it will predict (Murdoch et al., 2019; Doshi-Velez and Kim, 2017).

Comparison to human-produced explanations Some authors use similarity

to human-produced explanations as criteria for machine-generated explanations, for

example showing that the machine attention used by a classifier matches the visual

attention used by human subjects on an image recognition task, or that machine-

produced explanations match human-produced explanations for the same task (e.g.

Lei et al. (2016); Mohseni and Ragan (2018)).

Fidelity An often-discussed quality is the notion of fidelity–that an explanation

should be faithful to the behavior of the underlying model (Murdoch et al., 2019).

Some interpretability techniques (e.g. (Ribeiro et al., 2016)) are based on the idea

of approximating the behavior of a complex model with a simple model, and then

using the structure of the simple model to explain the behavior of the complex model.

However, there are concerns that these types of explanations are really only “explain-

ing” the approximation, and that they may in fact be misleading in cases where the

approximation differs from the underlying model (Rudin, 2019).
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Uniqueness A final quality that has undergone recent discussion is the idea of

uniqueness–that a good explanation should have a one-to-one mapping with the model

decision it is intended to explain. A good explanation method should not be able

to produce multiple equally-plausible explanations for the same model output, nor

should a given explanation be equally plausible for a range of model outputs (Jain

and Wallace, 2019).

Figure 1.1:
Diagram of how a human and model agent interact in a hybrid system
(left) as opposed to either type of agent operating alone (right).

1.1.3 It’s (almost) all about robustness

Explanations are intended for human consumption. What this means is that when

we discuss interpretable machine learning, we are implicitly discussing a hybrid system

(Figure 1.1) in which a trained model makes a prediction and produces an explanation
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for the benefit of a human overseer, who then has to make a choice about whether

they want to trust the model. This trust decision can happen on an immediate time

scale (do I trust the model on this particular prediction?) or on a longer scale (do I

generally trust this model enough to let it operate with autonomy?), but the ultimate

goal is for good decisions to be made.

I argue that most of the above-listed motivations and desiderata for interpretabil-

ity can be reduced to a hope that explanations can improve the robustness of this

hybrid system. They reflect a concern that even very powerful modern models (i.e.

deep neural networks) are not reliable enough to operate with full autonomy. They

reflect a hope that interpretability can enable efficient human auditing of such mod-

els in order to ultimately improve the quality of decisions made in conjunction with

them. The connection between this idea of “hybrid robustness” and accountability

as discussed earlier is that accountability drives robustness–accountable decisions are

decisions that can be audited in service to a more robust outcome.

Safety/verification and its direct operationalization of measuring decision quality

are the clearest example of this, asking interpretability to allow humans to trou-

bleshoot the decisions of a faulty model. However, transferability and ethics, while

presented as separate concepts, both just represent specific ways for a model to be in-

correct (by generalizing poorly or discriminating against certain groups respectively).

The idea of informativeness merely shifts focus to the idea of an interpretable model

improving the decisions of a human expert. In all cases, the ultimate goal is for

the combined human-model system to make fewer mistakes with the benefit of inter-

pretability than without.

Trust and usability can be articulated in terms of decision quality as well. A

well-designed interpretability system should inspire user trust and satisfaction in a

model–but only when that model is correct. They should prompt suspicion when the

model is incorrect. That is, the trust that explanations engender should be properly
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calibrated to the true reliability of the model, to the ultimate benefit of decisions

made by human users in conjunction with that model.

With respect to legislative compliance, the motivation behind the GDPR “right to

explanation” concept is to allow the subjects of algorithmic decision-making to audit

the decisions that affect their lives. The implicit expectation is that these subjects

should be able to recognize and appeal these decisions when they are based on flimsy

or spurious reasoning. For example, an individual denied a loan by an automated

risk assessment algorithm should in theory be able to recognize when the algorithm

is utilizing an inaccurate accounting of their credit score and be able to appeal that

decision.

Perhaps the hardest motivation to link to the idea of robustness is that of gen-

erating scientific insight, since this goal abstracts away from the idea of a specific

decision task that can be performed with more or less accuracy. However, the mark

of a strong scientific theory is that it has good predictive power–robustness, in fact.

So even this use case for interpretable machine learning can be thought of as enabling

hybrid robustness of a sort, it is simply that at some point under this scheme the

actual model is removed from consideration, leaving only the insights it was able to

impart to its human partner.

The way these seemingly disparate goals can be expressed as reflections of the

same idea gives rise to the central thesis of this dissertation:

Thesis 1. The primary goal of interpretable AI is to improve the robustness of human

decision-making in the presence of an AI model.

Another way of articulating this goal is that the purpose of interpretability is to

improve the performance of the hybrid system that implicitly emerges whenever a

human overseer interacts with an AI model (Figure 1.1). By allowing the overseer to

gain a better understanding of the model’s reasoning, we hope that interpretability

allows them to make a higher-quality decision about when to trust or distrust the
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model.

All of the work described in this document proceeds from the assumption that

this robustness objective is the ultimate goal of interpretability, and I describe the

contributions herein in terms of their progress toward this goal.

In particular, I focus in this dissertation on local robustness, which, mirroring

the definition of local interpretability that I give below, means allowing humans to

audit individual model decisions and, hopefully, catch classifier errors without acci-

dentally tagging classifier successes as erroneous. This is distinct from a more global

type of robustness that would apply to the decision to trust or distrust a model gen-

erally, or the choice of models between alternatives. A good example of the latter is

Amazon’s recent discovery (by examining feature importance weights) that a model

trained to rate the quality of job applicants was biased against women (Dastin, 2018).

However, I assume in this document the presence of a model which either static or

as optimized as possible, and examine the potential for explanations to improve the

utility of such a model.

1.1.4 Methods

The last several years have seen a huge proliferation of work on interpretability

methods, particularly as applied to neural networks. There are several important

conceptual divisions in the methods literature, including: global versus local expla-

nations; explanation type; posthoc versus intrinsic interpretability; and input data

type. I review these divisions as a means to provide a brief survey of the field.

1.1.4.1 Global versus Local Explanations

One of the most important distinctions in recent interpretability work is that be-

tween global and local interpretability. Global interpretability is generally considered

to mean a model which can be understood by directly examining its parameters and
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structure. Examples of models considered to be globally interpretable include linear

models such as logistic regression and support vector machines, as well as simple tree-

based methods such as decision trees (Murdoch et al., 2019). In a logistic regression,

for example, a human auditor can gain insight into the functioning of the model by

looking at its top regression coefficients in order to understand which features have

the greatest impact on the model when present. A similar inspection is possible with

decision trees.

One hallmark of globally interpretable models is that they cannot exceed a cer-

tain level of complexity while still being subject to human examination. This limits

their predictive power. So, while some recent work has focused on reducing complex

models to simple, globally interpretable models (e.g. Wu et al. (2017)), it is gener-

ally believed that there is an unavoidable tradeoff between global interpretability and

predictive power. As a result, most recent interpretability work has focused on local

interpretability rather than global.

Local interpretability refers to models whose structure may be too complex to ex-

amine as a whole, but for which individual decisions can still be understood (Guidotti

et al. (2018)). The most common example of local interpretability is the idea of lo-

cal feature attribution. In this scenario, a complex model such as a deep neural net

makes a decision on some input xi, and then some procedure is followed to determine

which features xij of the input had what impact on the output. What makes such an

explanation “local” is that the relationships that are described, such as that feature

xij has a high positive impact on the output ŷi, may hold for that particular input but

not for others. There might exist some other input xn for which that same feature

actually has a negative impact or no impact, because of its interactions with other

features of the input. Furthermore, it might be impossible to succinctly describe the

range of ways that feature xj can affect the model output across the full input space.
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1.1.4.2 Explanation Types: Feature-based and Example-based

Local explanations for model decisions fall broadly into two categories: feature-

based and example-based. Feature-based explanations seek to clarify the relationship

between the features xij of an input xi and the model output ŷi, while example-based

explanations attempt to draw in information from outside that particular example-

prediction pair, sometimes in the form of other input examples xn which in some way

contextualize the model’s prediction on input xi. This basic distinction mirrors that

which exists in statistical learning theory between model-based prediction methods

like linear regression and model-less methods like k-nearest-neighbors (Hastie et al.,

2001b).

Within the ambit of feature-based explanations, feature attribution is by far the

most common approach, sometimes described as saliency maps or rationales (Guidotti

et al., 2018). As discussed above, this type of explanation seeks to generate a parsi-

monious set of weights on the features of the input which describe how those features

impacted the output of the model. One distinction between different approaches to

feature attribution is what exact semantic meaning is attached to the weights that

are generated by the method: if a feature xj is assigned a high-magnitude weight zj

with respect to an output ŷ for an input x, there are a variety of things that weight

can mean. It can mean that xj had a high positive impact on ŷj (e.g. (Arras et al.,

2017), or that it simply had a high impact on the output, regardless of sign (e.g.

(Simonyan et al., 2013)). This latter interpretation is usually what is referred to as

saliency.

Another distinction between feature attribution methods is how they deal with

feature collinearity. (Li et al., 2016) generates each attribution mask z by finding the

minimum subset of features which, when erased from the input, causes the model’s

output class to flip. (Lei et al., 2016), by contrast, finds the minimum set of features

necessary for the model to produce an output ŷ which is similar to the target value
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y. While this is a subtle difference, it can lead to different attribution weights with

different interpretations. While there has been some high-level discussion of feature

attribution as a general approach (e.g. Ancona et al. (2018); Galassi et al. (2019)),

there have been so many papers on this topic and so little high-level synthesis that

there does not yet exist a comprehensive taxonomy of feature attribution methods

which enumerates their relative strengths, weaknesses, and semantic differences.

While feature attribution methods dominate the literature on methods for feature-

based interpretable machine learning, there are other explanation types that have

been explored. Rule-based explanations seek to identify logical rules that hold rea-

sonably reliably over the operation of complex models at either a local or a global

level (e.g. Ribeiro et al. (2018); Lakkaraju et al. (2017)). Natural language explana-

tions seek to articulate model reasoning in the form of textual explanations (Ehsan

et al., 2018).

Example-based explanations are much less well-represented than feature-based

explanations in the contemporary interpretable ML literature. They generally seek to

draw in information from beyond the very narrow scope of the given input example

x and the model’s prediction ŷ in order to provide evidence for, against, or which

otherwise helpfully contextualizes that prediction.

The classical example-based prediction (as distinct from interpretability) algo-

rithm is k-nearest-neighbors, which makes a prediction about an input xj by reference

to the target values of xj’s neighbors within the input space {xn}. Also of note is the

venerable field of case-based-reasoning (CBR) which, broadly construed, “addresses

new problems by remembering and adapting solutions previously used to solve similar

problems” (Goel and Diaz-Agudo, 2017). CBR is a broad literature which predates

contemporary machine learning and remains independent of the general thread of ma-

chine learning research, though it does frequently overlap with it. However, much of

CBR research pertains to the making of correct decisions based on existing evidence
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(cases), and not to the explanation of existing algorithms per se. There has been

some recent discussion in the CBR literature of the “twinning” of CBR ideas with

machine learning models (Keane and Kenny , 2019).

Within the recent literature on interpretable ML, a somewhat representative

example-based algorithm is (Koh and Liang , 2017), which uses the Hessian matrix of

a model’s loss function to identify points that were highly influential in training that

model to make its decision on input xj. Related but slightly different to example-

based algorithms are prototype-based algorithms, which seek to reduce the dataset to

a small set of “prototype” examples which are thought to represent the entire dataset

and which can then be used as justification for model decisions (Kim et al., 2016; Li

et al., 2017).

Finally, there is a small line of literature on what could be called “concept-based”

explanations, which perform clustering of input features into human-understandable

“concepts”, and then try to explain classifier decisions in terms of these concepts.

In a sense, this style of approach is a hybrid between feature- and example-based

approaches, because it synthesizes the dataset into useful feature clusters and then

uses these clusters to explain model decision. Examples of this approach include

(Ghorbani et al., 2019; Kim et al., 2017; Chen et al., 2018).

1.1.4.3 Posthoc versus Intrinsic Interpretability

A very important distinction in the contemporary interpretable machine learn-

ing literature is that between posthoc and intrinsic (or model-based) interpretability,

sometimes framed as “explain” versus “interpret” (Rudin, 2019). Posthoc explana-

tions seek to explain an existing model, while intrinsic model-based explanations seek

to engineeer models that incorporate interpretability into their reasoning in ways

which can be directly audited (Murdoch et al., 2019).

Posthoc explanations can be further subdivided into analytic and perturbation-
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based methods. Analytic methods, sometimes also referred to as gradient-based meth-

ods, are exclusive to neural nets. They typically involve some variant of the idea of

mathematically decomposing the output of the model in order to understand how

each input contributed to said output (Ancona et al., 2018).

Perturbation methods, by contrast, involve directly calculating feature impacts

by perturbing the input and seeing how the output changes. These include the very

popular LIME method (Ribeiro et al., 2016), which constructs a local explanation for

a model by training a linear approximation to that model on perturbations around the

input-of-interest. SHAP (Lundberg and Lee, 2017) is another example, claiming to

represent a generalization of existing methods including LIME, deepLIFT (Shrikumar

et al., 2016) and layerwise relevance propagation (LRP) (Bach et al., 2015).

Posthoc methods have the advantage of being applicable to already-trained mod-

els, meaning that engineers can apply them to their existing models rather than having

to train intrinsically interpretable models that may suffer in performance compared

to conventional ones. Perturbation methods in particular are often model agnostic,

working as well for a random forest as for a convolutional or recurrent neural network.

However, both types of posthoc explanation method have drawbacks. Analytic

methods such as LRP (Bach et al., 2015) are often specific to a particular neural

architecture and difficult to adapt to novel architectures, while perturbation methods

can be prohibitively slow since they often involve running an iterative procedure on

every point that needs to be explained. Furthermore, explanation procedures that

retroactively analyze the reasoning of a non-interpretable model can sometimes reveal

pathological behavior that leads to incomprehensible explanations (Feng et al., 2018).

Model-based interpretability, by contrast, seeks to engineer models which have

intrinsic interpretability. A common approach to this goal is the idea of model at-

tention, in which models selectively choose to focus more on certain portions of a

given input than others, generally with a sparsity constraint that encourages them
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to attend to as little as possible of a given input. These attention weights can then

be examined in much the same way as those produced by a posthoc method (Galassi

et al., 2019; Guidotti et al., 2018). In addition to improving interpretability, neural

attention has been found to improve model performance on certain tasks such as

machine translation (Luong et al., 2015), and attention-based models are a crucial

component of the current state-of-the-art on a number of NLP tasks (Devlin et al.,

2018).

Model attention has advantages and disadvantages in comparison with posthoc

methods. One advantage is that attention scales well in comparison to perturbation

methods because attention weights are generated as part of the model’s ordinary

functioning rather than as a result of additional processing and analysis. Another

advantage of attention is that it can be manipulated via the model objective function

to actually force models to reason in a more interpretable way without necessarily

reducing their performance (Rudin, 2019). This can potentially represent a solution

to the types of pathological behavior observed in Feng et al. (2018).

However, model attention represents an estimate by the attention layer of feature

importance. Just because the attention layer chooses to attend to a feature does

not necessarily mean that that feature is impactful in driving the model’s prediction.

This observation and others have lead to an ongoing debate in the interpretability

literature about the legitimacy of model attention as an explanatory mechanism (Jain

and Wallace, 2019; Serrano and Smith, 2019; Vashishth et al., 2019; Wiegreffe and

Pinter , 2019).

1.1.4.4 Input Data Type

A final important conceptual division in contemporary interpretability literature

is that of input data type. Interpretability work has tended to be pioneered on image

data and then transferred to other domains such as text and tabular data. Other data
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types, such as time series data, have seen relatively little attention in the literature

(Guidotti et al., 2018).

Image data is composed of pixels which are individually meaningless but which,

when clustered appropriately, form themselves into visual concepts that are easily

recognizable by humans (e.g. “wing”, “dog”, “chair”). Text data, by contrast, is

generally modeled as being composed of tokens which have meaning, but which don’t

group naturally into easily recognizable concepts. For this reason, works such as

(Chen et al., 2018) which decompose images into visual concepts and then explain

model prediction in terms of those concepts are appropriate for image data, but less

so for text data.

Another difference between these two genres of data is that image recognition

tasks generally involve fewer causal pathways than textual data. That is, the most

basic reason why an image would be a picture of a dog is because it has a dog

in it somewhere. Text data, by contrast, can arrive at a typical text classification

category via a number of routes: a sentiment recognition model might deem a text

to be “angry” for any number of reasons, from the use of angry words, to the use

of excessive exclamation points, to the use of all-caps typing. Two equally “angry”

texts can share few or no tokens in common.

As a result of this contrast, works such as (Kim et al., 2016) which find a small set

of “prototype” examples to represent each class, are more appropriate for image data

than for text data–it makes sense to explain a prediction of “dalmation” by showing

a single prototypical dalmation image, but it would be difficult to generate or identify

a single prototypical example of “angry” that would serve as a suitable explanation

for any instance of anger in a sentiment detection task.

Tabular data has different properties altogether from text and image data. As

discussed above, image- and text-classification tasks often have different conceptual

hierarchies that make certain kinds of explanation methods more or less appropri-
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ate: tabular data often lacks any kind of recognizable conceptual hierarchy at all.

(Poursabzi-Sangdeh et al., 2018) investigates the effect of interpretable machine learn-

ing on the ability of humans to make accurate predictions about the prices of apart-

ments. Their results are largely negative, and they conclude that humans simply don’t

have strong enough intuitions about how apartment qualities factor into apartment

pricing to be able to benefit from simpler, better explained models.

Tabular data is also more likely to be involved in prediction tasks rather than

classification tasks per se (Hastie et al., 2001a). What that means is the modeling

of tabular data often contains a degree of intrinsic randomness in the outcome that

is lacking in tasks such as image and text classification. Hence, interpretability tech-

niques for tabular data need additionally to express this underlying uncertainty, a

topic which has seen some discussion in the HCI literature (e.g. (Kay et al., 2015)),

but has yet to make its way into the main stream of contemporary interpretability

work.

1.1.4.5 Summary

The conceptual divisions listed above are broadly orthogonal with one another.

For example, prototype-based explanations can be seen as a global form of example-

based explanations in that they involve defining a limited set of representative proto-

types for each class across the entire input space. Both feature-based and example-

based explanations can be generated in either post-hoc or intrinsic manners, although

only intrinsically feature-based prediction algorithms can produce intrinsic feature-

based explanations and vice versa.

The division of input data type stands out from the other three listed divisions in

that it is more a consideration than a categorization per se–any type of explanation

can be generated for any input type, but certain types of explanations are more

naturally suited to certain input data types.
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1.1.5 Evaluation

Doshi-Velez and Kim (2017) group evaluations of interpretable machine learning

into three categories:

1. Functionally-grounded: No humans are involved; evaluation based on proxy

metrics (e.g. measuring explanation sparsity).

2. Human-grounded: Human subjects attempt a simplified or indirect task us-

ing interpretable machine learning (e.g. user satisfaction surveys).

3. Application-grounded: Human subjects attempt a real decision task using

interpretable machine learning (e.g. diagnosing model errors).

Every new interpretability algorithm is presented with some form of evaluation,

usually falling into one or the other of the first two categories. The most common

evaluation for a new technique is to define a proxy quality such as “fidelity” or “in-

terpretability” (read sparsity) and then to perform an automated evaluation of the

proposed algorithm on these qualities in comparison to competing algorithms (e.g.

Lakkaraju et al. (2017); Arras et al. (2017); Shrikumar et al. (2017)). This type of

evaluation is often presented in conjunction with one or more case studies showing

anecdotal examples of the proposed algorithm’s beneficial qualities (e.g Kim et al.

(2016); Li et al. (2017); Chen et al. (2018)).

Less commonly will a methods paper include a user study. These studies some-

times directly measure subject performance outcomes like decision quality, but often

measure human performance on proxy tasks such as simulation or indirect metrics

such as user satisfaction. These studies tend to be quite small scale (n < 50) (e.g.

Ribeiro et al. (2016); Kim et al. (2016); Lakkaraju et al. (2016)).

A recent trend within the interpretability literature has been the emergence of

work centered solely around user studies with the goal of teasing out the human factors

of interpretability rather than pioneering new algorithms. These papers typically fall
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into the “application-grounded” category of Doshi-Velez and Kim (2017), measuring

human speed, accuracy and other outcomes on applied tasks with and without the

benefit of explanations. These works have assessed the impact of interpretability on

how humans detect deceptive online reviews(Lai and Tan, 2019), estimate apartment

prices (Poursabzi-Sangdeh et al., 2018), perceive the competence of a visual reasoning

system (Cai et al., 2019b), as well as their performance on synthetic decision tasks

(Lage et al., 2018; Friedler et al., 2019). While this style of literature is growing, it

still represents a minority of interpretability work, and there have been several calls

for more rigorous human experimentation within this field (Doshi-Velez and Kim,

2017; Abdul et al., 2018).

Because of the relative paucity of this type of work, there is no consensus yet

on what constitutes an ideal experimental design for this type of study. The basic

structure generally takes the form of a between-subjects experiment in which sub-

jects are asked to interact with a model’s predictions about individual items in some

prediction task. Different experimental groups of subjects are generally exposed to

different models or variants of the same model with different putative levels of in-

terpretability, and their performance is measured on some outcome measure. This

measure is often accuracy on the decision task at hand relative to a known ground

truth, but sometimes other tasks such as ability to successfully simulate the outcome

of the model, as discussed above.

Perhaps the biggest distinguishing feature between these types of work is their

handling of the relative balance between human and model skill. Some studies (e.g.

Lage et al. (2018); Friedler et al. (2019) focus on artificial decision tasks for which

human subjects cannot by definition have existing intuitions. Others involve real-

world prediction tasks for which humans have more (e.g. the sentiment detection

task used by Nguyen (2018)) or less strong intuitions (e.g. the apartment price

prediction task used by Poursabzi-Sangdeh et al. (2018)). Among studies based on
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real world tasks, some choose to measure baseline unassisted human performance on

the prediction task and some do not, posing themselves as purely a relative comparison

between different interpretability conditions.

I argue that this balance of human and model skill is an as-yet undiscussed but

crucial factor in the design of studies intended to evaluate the interpretability of

predictive models. For example, in cases where the baseline unassisted performance of

human subjects is much lower than that of the model (e.g. Lai and Tan (2019)), a big

improvement to human predictive performance can be gained simply by persuading

subjects to more readily accept model decisions.

A notable commonality between these works is that those of them which make

the appropriate comparisons have generally failed to find a significant positive impact

of explanations on human accuracy (e.g. Lai and Tan (2019); Lage et al. (2018);

Poursabzi-Sangdeh et al. (2018); Friedler et al. (2019); Bussone et al. (2015); Weerts

et al. (2019)). That is, none of the studies cited above have found that the presence

of explanations improves human accuracy on the given prediction task. This is an

interesting result because it represents a sharp contrast to the general enthusiasm

with which interpretability methods work has been greeted by the machine learning

community at large. The user studies described in chapters III and V continue this

trend.

What it suggests is that the task of productively aligning human and machine

decision making is extremely challenging, and much more than simply a question

of inventing interpretability methods that demonstrate good fidelity, sparsity, etc.

It suggests that there are deep human factors involved in what makes an effective

interpretability technique, factors which can only begin to be teased apart by further

human experimentation.

Finally, another commonality in the recent literature on this subject is that it

largely pertains to feature-based explanations. Lai and Tan (2019) has one example-

21



based experimental condition, while Cai et al. (2019b) and Cai et al. (2019a) study

example-based explanations but measure satisfaction rather than performance-based

outcomes. The other cited studies involve only feature-based methods. The consistent

failure of feature-based explanations to improve outcomes across multiple domains

seems to imply that this type of explanation, which clarifies the relationship between

the input and the model outcome, may simply not provide human users with enough

information to make more accurate decisions about the items of interest in a given

scenario.

If this is true, then example-based explanations may be necessary in some domains

to produce real gains in human performance. This style of explanation can add the

additional information that is lacking from feature-based explanations, in the form of

examples that can provide evidence for or against a model’s prediction on a given item-

of-interest. However, this additional information represents an exponential increase

in the size of the design space surrounding how to actually present explanations to

users.

Beyond interpretability per se, the work presented here is an example of AI-

advised human decision making, which has been shown to be a difficult and delicate

partnership to enable (Bansal et al., 2019). Even more generally it falls into a genre

of literature which might be termed human-AI interaction, which has shown recently

that intelligent-yet-opaque algorithms tend to inspire both discomfort and inordinate

trust (Springer et al., 2017; Warshaw et al., 2015). This discomfort, at least, can be

partially alleviated by increasing transparency (Eslami et al., 2018).

1.2 Toxicity Detection

Throughout this work I use the task of detecting abusive social media content

as my primary application domain for interpretable machine learning. Abusive lan-

guage goes by many names and sub-categories in the literature, including hate speech
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(Fortuna and Nunes , 2018), aggression (Kumar et al., 2018), toxicity (Wulczyn et al.,

2017), cyberbullying (Hosseinmardi et al., 2015), harassment (Golbeck et al., 2017)

and incivility (Anderson et al., 2016). Waseem et al. (2017b) proposes a typology

of different types of abuse. Because I primarily use models trained on the toxicity

dataset introduced by Wulczyn et al. (2017), I generally use the term “toxicity” for the

target outcome for the decision tasks considered in this paper, while acknowledging

that toxicity is one among a number of related dimensions in this domain.

Toxicity detection has two qualities that make it particularly apt as a domain for

exploring the utility of interpretable machine learning: 1) it is a worthwhile task with

significant real world implications; 2) it is a task with strong potential for improvement

from interpretable machine learning.

Toxicity detection is a worthwhile task–abusive language on social media is a major

societal problem. Even when it doesn’t directly harm its objects, it still causes harm

by limiting the productivity of conversations about controversial topics like politics–

it’s impossible for ideologically opposed people to find common ground without a

basic level of conversational civility (Anderson et al., 2014). On many platforms,

human moderators work to filter posts that violate community standards for civil

conversation, but this is expensive, labor-intensive and vulnerable to biases, mistakes

and fatigue among those moderators.

The salience of the issue has attracted a good deal of recent attention from the

computational community. Scholarly work has assessed the prevalence and impact of

online abuse (Lenhart et al., 2016; Anderson et al., 2014; Pew , 2016; Anderson et al.,

2016), while a number of studies have sought to construct datasets for its study and

modeling (Wulczyn et al., 2017; Abbott et al., 2016; Kennedy et al., 2017; Napoles

et al., 2017; Golbeck et al., 2017). Annual workshops for the study of the issue have

been established at several NLP and machine learning conferences (Waseem et al.,

2017a; Kumar et al., 2018; for Computing Machinery (ACM), 2016). Many papers
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have been published on the application of machine learning to the detection of abusive

online content (e.g. Nobata et al. (2016); Fortuna and Nunes (2018); Cheng et al.

(2015); Pavlopoulos et al. (2017); Chancellor et al. (2017).

However, it is considered unlikely that a completely automated approach can pro-

vide a good solution to the problem. The task is subjective and context-specific. Dif-

ferent communities, for instance, have different norms for acceptable content (Chan-

drasekharan et al., 2018; Fiesler et al., 2018). Different individuals have different

perceptions about what constitutes abuse with respect to linguistic features like pro-

fanity (Malmasi and Zampieri , 2018) or context (Blackwell et al., 2018a). It is very

easy for labeler bias to propagate into trained models (Binns et al., 2017), while

Olteanu et al. (2017) points out that traditional metrics like accuracy may belie the

actual human impact of model errors. Toxicity classifiers are also easy to fool with

nonstandard language (Hosseini et al., 2017).

What appears to be needed is a way to combine the efficiency of automated

approaches with the flexibility of human oversight. Examples that have begun to

be explored in the literature include hybrid systems which query humans about low-

confidence items (Link and Hellingrath, 2016; Pavlopoulos et al., 2017) and using inter-

face design to encourage bystanders to intervene in cyberbullying incidents (DiFranzo

et al., 2018).

This need for hybrid approaches is where interpretable machine learning can po-

tentially improve the status quo for detecting toxic content on social media. In

combination with ideas like reserving human judgement for low-confidence examples,

interpretable machine learning has the potential to allow moderators to make quicker,

more fair, more consistent judgments about content.

A few works have specifically pursued the idea of interpretable ML for abuse

detection: Svec et al. (2018) shows that an interpretable model can match human-

generated annotations with high precision, while Pavlopoulos et al. (2017) proposes
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using explanations to help humans make decisions about borderline instances. Wang

(2018) analyzes pitfalls associated with using interpretable ML for abuse detection,

showing that recurrent neural nets suffer from certain kinds of pathological behav-

ior that prevent conventional interpretation techniques from working well, behaviors

which are also noted and explored by Feng et al. (2018).

In summary, the problem of abusive language on social media is a good testbed

for interpretable machine learning because it is a recurrent text classification problem

with significant real-world impact, for which some level of human oversight will prob-

ably always be necessary, but which may be able to benefit from machine learning.

The potential of interpretable machine learning to efficiently hybridize human and

machine effort could be the key to enabling this type of collaboration in this domain.

1.2.1 Generalizability

Given the focus on this one domain, a reasonable question is whether method-

ological advances are likely to generalize to other application areas. Is a feature

attribution technique which is proven to help human annotators make more accurate

toxicity judgments liable to help as an aid for automated essay grading?

I argue that proxy metrics such as attribution mask recall (as I use in the Chapter

II empirical evaluation) are likely to generalize beyond the task of toxicity. If an

attribution technique can be shown to do a good job of identifying tokens constituting

predictive signal in one domain, there seems no strong reason to think that result

would not generalize to another domain, except insofar as the model might struggle

to perform classification in that domain in the first place.

Human outcomes are likely to be more domain-specific, since the extent to which

human subjects benefit from the highlighting of toxic content is likely to differ from

how they benefit from the highlighting of indicators of bad grammar in a student

essay. In section 1.1.5 I discuss the effect of human-model skill complementarity.
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This factor alone would cause big differences in the subject-model relationship across

the domain, with humans having strong intuitions in some domains (e.g. toxicity)

and not others (e.g. deceptive review detection), and likewise for models.

The question of how human results are likely to generalize is complicated some-

what by the fact that the contemporary applied interpretability literature has yet to

demonstrate a significant positive result. What this means is that not only do we not

know how a positive outcome in one domain is likely to transfer to another domain,

we do not even know how to achieve a positive outcome at all.

1.3 Contributions

In this dissertation I propose two novel interpretability algorithms for neural text

classifiers. Both methods are for local interpretation, meaning that they both involve

trying to explain a classifier’s prediction on a single item of interest f(xi) = ŷi.

The first method combines the idea of adversarial training with that of neural

attention to produce attention masks which capture all available predictive signal in

a given input. The second method combines the idea of feature attribution with that

of example-based explanations to retrieve explanatory examples based only on the

features that actually impacted the model prediction.

Each of these methods represents a novel contribution in its own right. The

adversarial attention mechanism I propose brings a level of semantic clarity to neural

attention which has previously been lacking from this particular approach to feature

attribution (e.g. Jain and Wallace (2019)). The reason this represents a contribution

to feature attribution as a whole is that neural attention is easier and more intuitive

to manipulate via the model’s objective function than gradient-based methods such

as Ross et al. (2017), and perturbation methods cannot be manipulated at all. If

we want attention masks to be more sparse, more cohesive or more comprehensive,

these qualities can all be encouraged by adding different terms to the overall objective
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function.

This quality of being able to place constraints on the model’s feature attribution

allows us to not only understand how it is reasoning, but to change the way it rea-

sons entirely. As I discuss in Chapter VI, this flexibility opens up new avenues for

manipulating model behavior beyond passive attribution.

The second proposed algorithm uses model attention to reduce an item-of-interest

down to only the features that were predictive of the target class, and then retrieves

analogous examples from the training data in order to contextualize the model’s

prediction on that item. The algorithmic contribution of this method is in producing

examples which are visibly relevant to the item-of-interest while still retaining useful

qualities as indicators of potential model error.

I evaluate both methods with rigorous, relatively large scale user studies that test

their utility in terms of human performance, as well as revealing insights into the

human factors driving the practical effectiveness of interpretable machine learning.

The first study evaluates the utility of the adversarial attention mechanism. We

ask subjects to predict the consensus toxicity of a series of comments drawn from

the dataset used to train the model. Different subject groups perform this task

with varying levels of algorithmic assistance, ranging from no assistance to both the

prediction and attention mask produced by the adversarial attention model described

above. I find that while these attention masks reduce the cognitive burden associated

with the visible presence of a model prediction, they do not help subjects make

better decisions about the correctness of those decisions (though they do change the

distribution of human error).

Beyond its outcome, this study represents a contribution to the literature on

designing evaluation studies for interpretable machine learning. I argue that several

of the steps we take in this study, such as performing stratified sampling of comments

for subjects to label, and recollecting the existing ground-truth value, address threats
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to validity that would otherwise exist in this type of study.

The second study evaluates both the desirability and utility of the proposed

attention-based explanatory example retrieval method. Subjects perform a similar

task to that of the first study–predicting the consensus toxicity of social media com-

ments. In one experimental group, subjects are asked to choose between examples

produced by several retrieval algorithms: our proposed method and two baselines.

We find that subjects prefer our method to the baselines by a wide margin.

In a second experiment with the same items, subjects are asked to use examples

retrieved by a single algorithm to attempt to identify and correct classifier errors

via analogous reasoning. We find that none of the algorithms we test, neither our

proposed algorithm nor either baseline, are able to improve human predictive perfor-

mance on this task. However, by overcoming the basic problem of identifying relevant

text examples in the first place, we are able to identify several design issues that would

otherwise be masked, such as the importance of both diversity and representativeness

in selecting examples to display to a subject.

Taken together, the two proposed algorithms are a way to exploit the entire

feature-example data matrix underlying a machine learning model (Figure 1.2). The

adversarial attention mechanism provides a way of identifying a small set of important

feature columns and clarifying their relationship with the model output. The example

retrieval method allows for the identification of analogous example rows which can

provide useful insights about the model’s prediction on the item-of-interest.

As summarized in section 1.1.5, the literature, including our first user study, has

generally found that feature-based explanations have no impact or only a marginal

positive impact on human accuracy in troubleshooting classifier predictions. While

our initial foray into the potential for example-based explanations for this purpose

finds a similar negative result, I argue nevertheless that this type of method is a

promising research direction for applied interpretability work.
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Figure 1.2:
Diagram of information available to an explanatory system. Both features
(grey) and examples (red) can be identified to explain a prediction.
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CHAPTER II

Adversarial Attention for Feature Attribution

2.1 Introduction

As discussed in Chapter I, feature attribution is a common way to explain classifier

decisions. In this style of explanation, sometimes known as rationales, saliency masks,

or feature importance, a small subset of input features are identified as having been

particularly impactful on the model output, in the form of a set of weights z of

the same dimensionality of the input x (Guidotti et al., 2018). This type of local

explanation may not completely elucidate why a given example is assigned a given

outcome, but it does simplify the relationship by identifying what attributes were

considered in the decision

Feature attribution generally comes in three flavors: attention methods, analytic

methods and perturbation- based methods. In attention methods, the model produces

this attribution mask z as an additional output to its prediction ŷ. In analytic

methods, the model is mathematically probed to estimate the impact of input feature,

often utilizing the error or output gradients of the model. Finally, perturbation-

based methods involve estimating feature importance by perturbing a given input

0This chapter consists of content published in
Carton, S., Mei, Q. and Resnick, P. (2018). Extractive Adversarial Networks: High-Recall Explana-
tions for Identifying Personal Attacks in Social Media Posts, in Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing.
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Figure 2.1:
An example of a highly-attacking comment from the test set, rationalized
by the model

and observing resultant changes in model output.

The advantage of attention methods among these approaches is that they can be

controlled via the model objective function. If we want the attention mask to be more

sparse, more cohesive, etc., these properties can be controlled by adding weighted

terms to the model objective function controlling this aspect of model output. There

has been work that does something similar for model error gradients (Ross et al.,

2017).

However, attention methods have certain drawbacks when used as feature attribu-

tion methods. Jain and Wallace (2019), for example, report poor alignment between

model attention and other attribution methods. One possible explanation for this gap

is that existing work on this topic has not explicitly addressed the problem of local

feature redundancy. That is, when two features are equally predictive of an outcome,

which of them should be included in the attribution mask for that decision? Typical

sparsity constraints encourage minimal sufficient masks–unveiling just enough of the

Figure 2.2:
An example of a not-very-attacking example from the test set, rationalized
by the model
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example to justify the outcome. This can lead to ambiguously-defined or incomplete

masks that may not accord well with the true semantics of the decision task.

As a solution to this ambiguity, we propose an adversarial mechanism for neural

attention which is optimized to identify all potential predictive signal in a given input.

We apply this model to the task of identifying which social media comments contain

personal attacks and which words in those comments are the basis for classifying them

as containing personal attacks. We train this model on a large dataset (Wulczyn et al.,

2017) of comments labeled for the presence of such attacks, and use the explanatory

capacity of the model to identify spans that constitute personal attacks within those

comments. We extend the work of (Lei et al., 2016) in using one recurrent neural

net (RNN) to produce an explanatory hard-attention rationale and a second RNN to

make a prediction, the two models trained in an end-to-end fashion.

The adversarial mechanism works as follows: to produce complete (i.e. high-recall)

explanations, we add to this existing architecture a second, adversarial predictive layer

whose purpose is to try to make predictions based on what is left out of the rationale.

We then add a term to the attention layer objective function which encourages it

to fool this secondary predictive layer into making poor predictions by including all

predictive signal (i.e. personal attacks) in the mask that it generates.

We also show that manipulating the model bias term to set a semantically appro-

priate “default behavior” or “null hypothesis” for the model significantly improves

performance. That is, by explicitly choosing what output a zero-information, empty

explanation should correspond to, the model is able to learn explanations that corre-

spond more closely with human-generated data.

In an empirical evaluation, we collect a dataset of human judgments about which

spans of texts constitute personal attacks in a subset of the Wulczyn et al. (2017)

dataset. We show that our proposed algorithm achieves both better precision and

better recall at the token level than existing baselines, demonstrating the effectiveness
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of the adversarial approach to feature attribution.

To summarize, the contributions of this chapter are as follows:

• We articulate feature attribution as an adversarial problem and introduce an

adversarial scheme for extraction of complete (high-recall) attribution masks

for text classifier decisions.

• We demonstrate the value of explicitly setting a default output value in such

an explanatory model via bias term manipulation.

• We apply explanatory machine learning for the first time to the task of detecting

personal attacks in social media comments, and develop a validation dataset for

this purpose.

2.2 Model

Given the application domain of detecting personal attacks, the goal of the pro-

posed architecture is to highlight personal attacks in text when such are present, and

to highlight little or nothing when there are none, while also performing accurate

overall prediction.

These requirements prompt two important edge cases. First, there may be no

particular predictive signal in the comment text (i.e. no personal attacks); in a more

typical explanatory setting there is always assumed to be some explanation for a

decision. Second, there may be redundant signal (i.e. multiple personal attacks), more

than is strictly required for accurate prediction, and we assume that it is desirable to

identify all of it. We address both of these cases with modifications to the original

model architecture.

The model (Figure 2.3A) is a hard attention architecture which uses one RNN to

extract an attention mask of either 0 or 1 for each token, and a different RNN to make

a prediction from the attention-masked text (detailed in Figure 2.3B). Following (Lei
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Figure 2.3:
(A) Overall architecture. Generator and predictors are RNNs; (B) Detail
of interaction between generator and one predictor layer. G and P are
recurrent units of any kind. O is a sigmoid output layer.

et al., 2016), we refer to the mask-producing layer g as the generator, but for clarity

we call the predictive layer f the predictor rather than the encoder. Again following

previous work, we refer to the output z of the generator as the rationale, in that it

rationalizes the prediction of the predictor. We also refer to the inverse rationale,

defined as 1− z, as the antirationale.

To this basic two-layer scheme, we add a secondary, adversarial predictor f2, which

views the text masked by the antirationale rather than the rationale. The secondary

predictor’s role is to act as an adversarial discriminator–it tries to make accurate

predictions on the antirationale, while the generator tries to prevent it from doing so,

which ensures that all predictive signal ends up in the rationale.

2.2.1 Primary predictor

The primary predictor f is an RNN which views the input text masked by the

rationale produced by the generator. Its objective is simply to reduce its own squared

loss:

costf (z,x, y) =
[
f(x, z)− y

]2
(2.1)
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2.2.1.1 Default behavior via predictor bias term manipulation

The default behavior of the model is the prediction the predictor makes if the input

is entirely masked by the rationale: f(x, 0). When working with a recurrent unit that

has no internal bias term, this behavior is entirely determined by the bias term of the

final sigmoid output layer, σ(wx + b), which with typical random initialization of b

results in a default predicted value of roughly 0.5.

However, this 0.5 default value is not always optimal or semantically appropriate

to the predictive task. In the personal attack detection task, if no attacks can be

detected, the “natural” default target value for a text should be close to 0. We show

in the experiments that manually setting the output layer bias term b to logit(0.05) =

−2.94, so that the default predicted value is 0.05, improves model performance.

2.2.2 Secondary adversarial predictor

The secondary adversarial predictor is an RNN which views the input text masked

by the antirationale, defined as 1 minus the rationale z. Its purpose is to encourage

high-recall explanations by trying to make accurate predictions from the antirationale,

while the generator tries to prevent it from doing so.

Figure 2.4:
(A) Fabricated sample batch masked by antirationales. Note the corre-
lation between mask and target; (B) The batch with some antirationales
switched with those of other items. The correlation no longer holds.
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However, if the adversarial predictor’s objective function were simply
[
f2(x, 1 −

z)−y
]2

, it would be able to gain an unfair advantage from the presence of masking in

the antirationale. Seeing evidence of “blanked-out” tokens would tell it that personal

attacks were present in that comment, giving it strong hint that the target value is

close to 1.0 and vice-versa (see figure 2.4A).

To take away this advantage, the input to the adversarial predictor has to be

permuted such that the mask itself is no longer correlated with the target value,

while still allowing it to scan the antirationale for residual predictive signal.

Our solution is to replace the masks of half the items in a training batch with the

masks of other items in the batch. We order the batch by target value. If item xi

is selected for replacement, it gets the mask of item xN−i where N is the size of the

batch. We call this permutation function c:

c(zi) = c(g(xi)) =


g(xi) if ki = 1

g(xN−i) if ki = 0

xi ∈ {x0, ...,xN} ki ∼ Bernoulli(0.5)

This ensures that low-target-value items get masks associated with high target

values and vice-versa, to maximize the dissociation between masks and target values.

Figure 2.4B demonstrates an example of such permutation. This may slow down

the learning, since the adversarial predictor will sometimes have access to somewhat

different features of the input than it will have on the test data, but it should not lead

to incorrect learning, since the training data always has the correct label, regardless

of the mask.

With c(1− z) as the permuted antirationale resulting from applying this random-

ization process. The objective for the secondary, adversarial predictor is its predictive
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accuracy on this permuted antirationale:

costf2(z,x, y) =
[
f2(x, c(1− z))− y

]2
(2.2)

2.2.3 Generator

Given that the two predictors are trying to minimize error on the rationale and

(permuted) antirationale respectively, the objective function for the generator is as

follows:

costg(z,x, y) = (3)[
f(x, z)− y

]2
(3.1)

+λ1||z|| (3.2)

+λ1λ2
∑
t

|zt − zt−1| (3.3)

+λ3
[
f2(x, 1− z)− f2(x, 0)

]2
(3.4)

Terms 3.1-3.3 are present in the model of Lei et al. (2016). Term 3.1 encourages

the generator to allow the primary predictor to make accurate predictions, prevents it

from obscuring any tokens that would prevent the predictor from doing so. Term 3.2

encourages the generator to produce minimal rationales; obscuring as many tokens

as possible. Term 3.3 encourages rationale coherence by punishing the number of

transitions in the rationale; it encourages few contiguous phrases rather than many

fragments in the rationale.

In theory, these three terms ensure high precision, selecting the minimal (term

3.2) rationale with sufficient signal for accurate prediction (term 3.1), subject to a

coherence constraint (term 3.3).

Term 3.4, which is new, ensures recall by encouraging the adversarial predictor’s

prediction on the antirationale to be similar to the prediction it would make with
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no information at all (aka the default value). That is, the antirationale should

contain no predictive signal. Any personal attacks left out of the rationale would

appear in the antirationale, letting the adversarial predictor make a more accurate

prediction, which would be penalized by term 3.4.

2.2.4 Extractive Adversarial Network

In the GAN framework (Goodfellow et al., 2014), a discriminator attempts to

accurately classify synthetic examples which a generator is striving to match to the

distribution of the true data. In our framework, the adversarial predictor attempts

to accurately classify censored examples which the generator is striving to strip of

all predictive signal. The discriminator in the GAN framework is trained half on

real data, and half on fakes; our adversarial predictor is trained half on correctly-

masked items and half on items with permuted masks. Where our framework differs

from GAN is instead of generating adversarial examples which are compared to true

examples, our architecture extracts a modified example out of an existing example,

and so can therefore be described as an Extractive Adversarial Network (EAN).

2.2.5 Implementation details

For comparability with the original algorithm, we use the same recurrent unit

(RCNN) and REINFORCE-style policy gradient optimization process (Williams ,

1992) as Lei et al. (2016) to force the generator outputs to be a discrete 0 or 1.

In this framework, the continuous output of the generator on each token is treated

as a probability from which the mask is then sampled to produce a discrete value for

each token. The gradient across this discontinuity is approximated as:

∂Ez∼g(x)[costg(z,x, y)]

∂θg

= Ez∼g(x)

[
costg(z,x, y)

∂ log p(z|x)

∂θg

]
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In theory, one would sample z several times from the generator g to produce a

good estimate of the gradient. In practice, we find that a single sample per epoch is

sufficient. The predictors f and f2 are trained as normal, as the error gradient with

respect to their parameters is smooth.

We employ a particular hard attention model, but the idea of an adversarial critic

is not limited to either hard attention or any particular recurrent unit. In a soft

attention setting, our adversarial scheme will actually encourage “harder” attention

by encouraging any non-zero attention weight to go to 1.0 (or else the inverse of that

weight will leave predictive signal in the anti-explanation).

The attention weights produced by the generator are applied to the predictor at

the output rather than the input level. When the recurrent unit P of the predictor

operates on a token xt modified by attention weight zt, it ingests xt normally, but

depending on zt it either produces its own output or forwards that of the previous

token:

P (xt, zt) = ztPbase(xt) · (1− zt)Pbase(xt−1)

We investigate a similar range of sparsity hyperparameter values as the original

model 1. The weight on the inverse term only matters relative to the model sparsity,

as that term cooperates rather than competing with the predictive accuracy term

(because it almost never hurts accuracy to add more to the rationale). Therefore we

set λ3 to 1.0 when we want to include the inverse term.

We use Word2Vec (Mikolov et al., 2013) to create input token word vectors and

Adam (Kingma and Ba, 2014) for optimization.

1λ1=[0.0003, 0.0006, 0.0009, 0.0012, 0.0015, 0.0018, 0.0021], λ2=[0, 1, 2]
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2.3 Data

To train our model of personal attacks, we use the dataset introduced by (Wulczyn

et al., 2017), which consists of roughly 100,000 Wikipedia revision comments labeled

via crowdsourcing for aggression, toxicity and the presence of personal attacks. This

dataset includes its own training, development and test set split, which we also use.

To this dataset we add a small validation set of personal attack rationales. 40

undergraduate students used Brat (Stenetorp et al., 2012) to highlight sections of

comments that they considered to constitute personal attacks. Comments were sam-

pled in a stratified manny by selecting even numbers from each toxicity decile, from

the development and test sets of the Wulczyn et al. dataset, and each student anno-

tated roughly 150 comments, with each comment viewed by roughly 4 annotators. To

calculate gold-standard rationales, we take the majority vote among annotators for

each token in each comment. 1089 distinct comments were annotated, split between

a development and test set of 549 and 540 examples respectively.

The Krippendorff’s alpha on our validation set is 0.53 at the whole-comment level,

meaning that annotators agreed at this level on whether they found any personal at-

tacks at all in a given comment. This value is comparable with that of Wulczyn et al.

(2017) (0.45). Agreement at the token level is a lower 0.41, because this includes to-

kens which are a matter of preference among annotators, such as articles and adverbs,

as well as content tokens.

2.4 Empirical Evaluation

We conduct an empirical evaluation of the proposed algorithm in terms of its

ability to match human effort in identifying which tokens in a comment are parts

of personal attacks. This would not necessarily be appropriate in all domains, but

in this particular task of predicting whether a comment has any personal attacks
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in it, we argue that it is reasonable to define a good attention mask as one which

contains all the tokens that were elements of personal attacks. We use the validation

set described in the previous section to evaluate the performance of our algorithm on

this objective.

We show that both modifications to the original algorithm, bias term manipulation

and adversarial predictor, increase the tokenwise F1 of the predicted rationales rela-

tive to our human-annotated test set. All hyperparameters were tuned to maximize

tokenwise F1 on the development set.2

2.4.1 Baselines

We generate six baselines for comparison with our variant of the (Lei et al., 2016)

architecture. These include the following:

Sigmoid predictor (logistic regression): Bag-of-words representation with a sig-

moid output layer.

RNN predictor: The same sequence model used for the predictor, but with no

generator layer.

Mean human performance: The mean tokenwise performance of human annota-

tors measured against the majority vote for the comments they annotated (with their

vote left out).

Sigmoid predictor + feature importance: Bag-of-words representation with

sigmoid output layer, with post-hoc feature importance based on model coefficients.

Cutoff threshold for features tuned to maximize rationale F1 on development set.

RNN predictor + sigmoid generator: Rationale mask generated by sigmoid layer

applied independently to each input token. Prediction layer is same as predictor.

RNN predictor + LIME: Rationale mask generated by applying LIME (Ribeiro

et al., 2016) post-hoc to RNN layer predictions. Masking threshold tuned to maximize

2λ1=0.0006 for variants without inverse term, λ1=0.0015 for variant with inverse term, λ2=2
(Tuned for maximum F1 on original model, then held constant for comparability)
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rationale F1.

2.4.2 Rationale performance

In the main experiment, we evaluate model rationales relative to rationales created

by human annotators. In our validation dataset, human annotators typically chose

to annotate personal attacks at the phrase level; hence in the sentence “Get a job,

you hippie s***bag”, the majority-vote rationale consisted in our validation set of the

entire sentence, where it could arguably consist of the last two or even the last word.

Therefore, in addition to tokenwise precision, recall and positive F1, we also report

a relaxed “phrasewise” version of these metrics where any time we capture part of a

contiguous rationale chunk, that is considered a true positive.

We report results for the original model (i.e. terms 3.1-3.3 in the objective func-

tion), the original model with its bias term set for a default value of 0.05, and the

bias-modified model with the additional inverse term (term 3.4). For every model

variant, we optimized hyperparameters for tokenwise F1 on the development set. We

also report results for the baselines described above.

Model
Rationale

Prediction

Tokenwise Phrasewise

F1 Pr. Rec. F1 Pr. Rec. MSE Acc. F1

Sigmoid predictor - - - - - - 0.029 0.94 0.74
RNN predictor - - - - - - 0.018 0.95 0.78

Mean human performance 0.55 0.62 0.57 0.72 0.78 0.69 - - -

Sigmoid predictor + feature importance 0.20 0.62 0.12 0.64 0.59 0.70 0.029 0.94 0.74
RNN predictor + sigmoid generator 0.29 0.22 0.45 0.31 0.19 0.92 0.038 0.91 0.70
RNN predictor + LIME 0.33 0.29 0.39 0.4 0.25 0.96 0.018 0.95 0.78

Lei2016 0.44 0.38 0.52 0.51 0.38 0.83 0.021 0.95 0.77
Lei2016 + bias 0.49 0.48 0.49 0.60 0.46 0.86 0.02 0.95 0.77
Lei2016 + bias + inverse (EAN) 0.53 0.48 0.58 0.61 0.47 0.87 0.021 0.95 0.77

Table 2.1:
Rationale performance relative to human annotations. Prediction accuracy
is based on a binary threshold of 0.5. Performance of both Lei2016 model
variants is significantly different from the baseline model (McNemar’s test,
p < 0.05)

Table 2.1 displays the results. The difference in performance between the three
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baselines that don’t use a RNN generator and the three model variants that do demon-

strates the importance of context in recognizing personal attacks within text. The

relative performance of the three variants of the Lei et al. model show that both mod-

ifications, setting the bias term and the addition of the adversarial predictor, lead to

marginal improvements in tokenwise F1. The best-performing model approaches av-

erage human performance on this metric.

The phrasewise metric is relaxed. It allows a contiguous personal attack sequence

to be considered captured if even a single token from the sequence is captured. The

results on this metric show that in an absolute sense, 87% of personal attacks are at

least partially captured by the algorithm. The simplest baseline, which produces ra-

tionales by thresholding the coefficients of a logistic regression model, does deceptively

well on this metric by only identifying attacking words like “jerk” and “a**hole”, but

its poor tokenwise performance shows that it doesn’t mimic human highlighting very

well.

2.4.3 Original model tokenwise recall

A perplexing result of the rationale performance comparison is how good the

tokenwise recall of the model is without the inverse term. Without it, the model is

encouraged to find the minimal rationale which offers good predictive performance.

Comments with more than one personal attack (e.g. Figure 2.1) constitute 29%

of those with at least one attack and 13% of all comments in our validation set.

For comments like these, the model should in theory only identify one such attack.

However, it tends to find more information than needed, leading to a higher-than-

expected recall of .52 in the best overall version of this variant.

To explain this behavior, we run a leave-one-out experiment on the original+bias

and original+bias+inverse model variants. For each distinct contiguous rationale

chunk predicted by each model (when it generates multi-piece rationales), we try
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removing this chunk from the predicted rationale, running the prediction layer on

the reduced rationale, and seeing whether the result lowers the value of the overall

objective function.

For the original+bias model variant, we find that performing this reduction im-

proves the value of the objective function 65% of the time. However, the combined

average impact of these reductions on the objective function is to worsen it. What

this means is while 65% of distinct phrases discovered by the generator are unnec-

essary for accurate prediction, the 35% of them that are necessary lead to a major

decrease in predictive accuracy.

That is, the generator “hedges its bets” with respect to predictive accuracy by

including more information in the rationales than it has to, and experiences a better

global optimum as a result. This behavior is less prominent with the inclusion of the

inverse term, where the percentage of unnecessary rationale phrases falls to 47%.

Figure 2.5:
Evolution of model loss over time with and without bias term manipula-
tion
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Figure 2.6:
Evolution of development set rationale F1 score over time with and with-
out bias term manipulation

2.4.4 Impact of bias term manipulation

In theory, the model should learn a good bias term for the predictor layer, and

therefore the idea of explicitly initializing or fixing the bias term to match the se-

mantics of the task should not impact model performance or represent much of a

contribution.

In practice however, as Figures 2.5 and 2.6 demonstrate, the initialization of the

bias term has a big impact on even the long-term learning behavior of the model.

Using the best hyperparameters for the original no-bias, no-inverse-term model, figure

2.5 shows that either initializing or permanently fixing the predictor bias for a default

output value of 0.05 leads to improved model loss with respect to its own objective

function. Figure 2.6 shows a similar pattern for tokenwise F1 score.

2.5 Discussion

One interpretation of the impact of the bias term on model behavior is that

an explanation of “why” is really an explanation of “why not”–that is, an expla-
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Figure 2.7:
Further examples of labeled and rationalized comments. Items E) and G)
show that the algorithm struggles with sarcasm.

nation is information that distinguishes an item from some alternative hypothesis,

and explicitly choosing what this alternative is can improve explanation performance

(particularly precision).

Manually setting the model to produce some reasonable default value for an empty

rationale makes sense in our setting, but not in domains where there is no default

value, such as the beer review dataset of (Lei et al., 2016). A more general approach

would be to base explanations on confidence rather than accuracy, where the default

value would simply be the mean and variance of the training data, and explanations

would consist of tokens that tighten the bounds on the output.

A surprising finding is that the original algorithm often ends up defying its own

objective and finds more complete rationales than needed. The leave-one-out exper-

iment described above suggests that the reason for this behavior is that it is how

the generator deals with predictive uncertainty, and that it achieves a better global

optimum by producing locally suboptimal rationales.

While this “bug” proves useful in our case, it may not generalize. In our setting
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the adversarial predictor gives a modest improvement in recall; it will produce a larger

improvement in settings where the unaltered algorithm is more successful at producing

the minimal explanations described by its objective function. Li et al. (2016) finds

that a memory network predictor requires less occlusion than an LSTM to flip its

predictions, indicating that choice of model can affect completeness of explanations.

In theory, interpretable models can aid human moderators by pointing them di-

rectly at the potentially objectionable content in a comment and giving them a start-

ing point for making their own holistic decision about the comment. However, there

are potential pitfalls. Adding explanations as a model output gives the model an-

other way to be wrong–one which humans may be even less able to troubleshoot than

simple misclassification. Relatedly, explanations may inspire overconfidence in model

predictions. Extensive user testing would clearly be needed before any deployment.

2.5.1 Hybrid robustness

The design and initial empirical evaluation of this algorithm proceeds from the

assumption that in the domain of toxicity detection, a complete attention mask is

one which includes all toxic content. In service to our central goal of improving

the robustness of a human/model hybrid, we assume that a human overseer will

benefit from as holistic a view as possible of the toxicity of a comment in trying to

guess the consensus toxicity of that comment, and we orient our evaluation toward

accomplishing this intermediate objective.

However, we have no concrete evidence that high-recall explanations are really

optimal explanations in this context. Are high-recall explanations that mimic human

highlighting tendencies really optimal for the types of moderating/self-moderating

tasks involved in the domain of personal attacks in online social media? This question

can only be answered with human subject experimentation, which we address in

Chapter III.

47



CHAPTER III

User Study 1: Effect of Feature Attribution

3.1 Introduction

We performed a user study to evaluate the effectiveness of the adversarial attention

algorithm proposed in Chapter II in helping humans make decisions about the toxicity

of social media posts.

While the empirical evaluation reported in that chapter measures the algorithm’s

success in mimicking human effort on the task of identifying personal attacks, we

argue in Chapter I that the ultimate goal of interpretable machine learning is to

allow human beings to make better decisions about when to trust the predictions of

machine learning models.

For the purpose of this study we switch from the task of detecting personal attacks

to that of assessing overall toxicity. Both of these targets are dimensions of the

dataset introduced by Wulczyn et al. (2017), but toxicity represents a more holistic

(but more loosely defined) indicator of the overall objectionability of a given social

media comment. Therefore, while while we argue that personal attacks were an

easier target for annotators in the Chapter II empirical evaluation to label at the

token level, toxicity represents a more externally valid target for a user study focused

0This chapter consists of content published in
Carton, S., Mei, Q. and Resnick, P. (2020). Attention-Based Explanations Don’t Help Humans
Detect Misclassifications of Online Toxicity, In submission.
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on comment-level labels.

The basic structure of the study was as follows: we sampled comments from

the Wulczyn et al. (2017) dataset representing a range of true toxicity scores and

model errors (i.e. comments on which the model was correct and incorrect). In a

first phase, we recollected ground-truth toxicity scores for these sampled comments

in order to ensure low variance in our outcome measurements. Finally, as a second

phase we conducted a 2× 2 between-subject experiment that assessed the impact of

adding 1) a model prediction as a visual element alongside the comment text, and

2) explanations for the predictions of that model via highlighting relevant words and

phrases within the text. For clarity, we refer to participants in the first phase as

“workers” and those in the second phase as “subjects”.

We also included two extension conditions that tested variant explanation tech-

niques; a “partial” variant that highlights a minimal amount of relevant text, and

a “keyword” variant that only identifies toxic words without regard for context or

phrase structure. Figure 3.1 summarizes the 6 experimental groups.

Figure 3.1: Experimental conditions.

This user study was designed to investigate three research questions:
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RQ1: Presence of model predictions. How does the advice of a partially informa-

tive but unreliable predictive model affect subject performance?

RQ2: Presence of explanations. Do (attention-based) explanations help subjects

make better use of advice from an unreliable model in predicting the perceived

toxicity of social media comments?

RQ3: Explanation type. Do more minimal “partial” or sparser “keyword” explana-

tions exhibit different performance properties from explanations optimized for

completeness?

We used the adversarial attention model described in section II to generate attri-

bution masks on sampled comments. We generated the “partial” variant by reducing

each mask to only the single worst instance of toxicity in the text. We generated the

“sparse” variant by applying essentially a dictionary approach, identifying individ-

ual words associated with toxicity according to the coefficients of an independently

trained logistic regression model.

The contributions of this chapter are as follows:

• We test the feasibility of interpretable machine learning for semi-automated

toxicity detection.

• We add to a small but growing body of evidence suggesting that the most

popular types of explanations aren’t adequate to improving human performance

on decision tasks.

• We test the relative effectiveness of three different approaches for extractive,

feature-based explanations of text classifier decisions.
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3.2 Experiment Design

The experiment sought to evaluate how well subjects predict the perceived toxicity

of social media comments with varying levels of algorithmic assistance. It consisted

of the following protocol:

1. Sample comments: Draw a sample of comments from the Wulczyn et al.

(2017) dataset, selecting for diversity in toxicity scores and model error. 96

comments sampled, split into 2 sets of 48 each. Each subject labels one comment

set.

2. Model comments: Train attention model and run it on all 96 comments, pro-

ducing predicted toxicity score and attention mask for each comment. Different

subject groups label comment sets with different combinations of these features

visible.

3. Collect ground truth (phase 1): Collect low-variance ground truth toxicity

score for each comment by asking workers for their personal opinion of each

comment and aggregating response. 54 subjects reviewed each of the 2 comment

set, 108 workers total.

4. Predict ground truth (phase 2): Ask subjects to predict outcome of phase

1 with varying levels of algorithmic assistance. 40 subjects reviewed each of the

2 comment sets across 6 treatment conditions, 480 subjects total.

The structure of the phase 2 experiment was a 2× 2 between-subject design with

two treatments: presence of prediction and presence of explanation, as well as two

extension conditions in which the prediction is present with a variant explanation

type, “keyword” and “partial” (Figure 3.1).
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3.2.1 Subjects

Subjects were recruited using the Amazon Mechanical Turk platform in August

2018. Subjects had to be US-based, and had to have completed at least 1000 HITs

with 95% acceptance or more in order to qualify for the experiment. The study

involved 588 total participants, 108 workers in the phase 1 labeling task and 480

subjects who in the phase 2 experiment (as enumerated above).

This subject count was chosen through a simulated power analysis to have a high

( 80%) chance of detecting an effect size of 0.05 in the primary outcome, accuracy,

given outcome variances observed in a pilot study. This minimum detectable effect

size was chosen as representing a 10% improvement on what was observed to be

the baseline human accuracy of roughly 50% on the task. Details on outcomes and

statistical analysis are given below.

Figure 3.2:
(A) Example comment in the phase 1 personal opinion task; (B) Example
comment in the phase 2 prediction task

3.2.2 Comment sampling

We sampled comments from the Wulczyn et al. (2017) dataset. This dataset

consists of roughly 100,000 Wikipedia revision comments each labeled on a 5-point
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toxicity scale (figure 3.2A) by at least 10 workers on the CrowdFlower platform. We

followed Wulczyn et al. (2017) in binarizing each 5-point label to toxic(1)/nontoxic(0),

and took the fraction of users who found the comment toxic to form a continuous

toxicity value for each comment. Hence, a comment which 3/10 CrowdFlower workers

deemed toxic is assigned a 0.3 true toxicity label for the purpose of model training

and evaluation.

For the purpose of the experiment, we convert this toxicity prediction task into

a four-class classification task, with each class representing one quartile of the true

toxicity score: Large majority (75% to 100%); Majority (50% to 75%); Minority

(25% to 50%); and Small minority (0% to 25%). We chose to frame the task this way

rather than as a binary classification task in order to make it more difficult for human

participants, and therefore to provide more room for improvement in accuracy.

The Wulczyn et al. (2017) dataset is quite unbalanced. Roughly 90% of instances

have a toxicity score below 0.5. Furthermore, it represents a relatively “easy” classi-

fication task: our LSTM classifier achieves 96% accuracy against the (binarized) true

toxicity scores. We were interested in understanding human performance across the

full range of true labels. Furthermore, we wanted to investigate whether explana-

tions could allow human users to overturn classifier errors. Hence, in choosing which

comments to present to our human subjects, it was necessary to perform stratified

sampling on these two qualities: true toxicity and model error.

Specifically, we sampled 48 comments total for each comment set, split evenly

across the 4 toxicity quartiles described above. For each quartile, we sampled 12

comments: 6 where our model predicted the correct quartile, and 2 each of where

the model predicted each of the 3 other quartiles. For the two edge quartiles, large

majority and small minority, there were not enough cases where the model predicted

the other extreme. For these, we instead sampled 3 from the next most extreme error

and only 1 from the most extreme.

53



Put together, this process resulted in a sample which is 50% toxic/nontoxic, 25%

in each quartile, and on which our model achieves 50% classification accuracy at the

quartile level (with respect to the labels present in the Wulczyn et al. (2017) dataset).

Thus, subjects were presented with a roughly even number of comments that were

toxic versus nontoxic, and a roughly even number for which the classifier was correct

versus incorrect.

As a result of this process, we presented participants with a sample of comments

on which the model is quite inaccurate. As we discuss further below, it is in fact less

accurate than the baseline accuracy of human subjects in our study. This is a contrast

to similar studies such as Poursabzi-Sangdeh et al. (2018) and Lai and Tan (2019),

where the model was more accurate than the human subjects. In those studies, a big

improvement to human accuracy was possible simply by persuading subjects to agree

with the model, so an effective explanation was one which increased user trust in the

model output. In our study, no such avenue existed.

Figure 3.3:
Example of explanation variants: (A) Full explanation; (B) Partial ex-
planation; (C) Keyword explanation

3.2.3 Modeling

For every comment, we generated both a prediction about the toxicity of that

comment and a feature attribution mask indicating which tokens in the comment the

model thought were toxic (Figure 3.2B). We use the model described in section 2.2
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to generate these predictions and masks.

We supplemented the full model with two variants which were intended to gauge

the effectiveness of different styles of feature attribution for text.

In the first variant, we produced “partial” explanations by taking any multi-phrase

explanation produced by the model and reducing it to just the single phrase which

maximizes the accuracy of the predictor when considering only that phrase. So when

a comment has multiple discrete instances of toxicity, we reduce the explanation to

just the most toxic instance (see figure 3.3B). This variant was intended to test the

hypothesis that an explanation needs to consist only of the most decisive information

present in an instance rather than all relevant information.

The second variant produces keyword-based explanations. We train a bag-of-

words logistic regression classifier on the same dataset as the full model, and use the

coefficients of this model to designate certain words as toxic (e.g. “pissing”, “morons”

in figure 3.3C). This amounts to a dictionary-based approach, where certain words are

always considered toxic and others nontoxic. It produces very sparse explanations,

where only the most toxic single words are highlighted, without regard for context or

phrase structure. This variant was intended to test how important it is to capture

whole phrases, or whether identifying individual words is sufficient.

3.2.4 Ground truth collection (phase 1)

In phase 1, we recollected ground-truth toxicity scores despite having access to an

existing ground truth in the Wulczyn et al. (2017) dataset. We did so by having 54

subjects label each comment using the same questionnaire as Wulczyn et al. (2017),

which asks the worker to rate the comment on a 5-point scale between “Very toxic”

and “Very healthy” (Figure 3.2A). When we aggregated the results of this phase, we

binarized each response into either toxic (“toxic” or “very toxic”) or nontoxic (any

other option), took the mean across subjects, and then bucketed each mean into the
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appropriate quartile to serve as the true toxicity label for that comment.

We recollected these labels for several reasons. First, having 54 subjects for each

comment instead of 10 meant a generally lower-variance true label for each comment.

Second, drawing our ground truth from the same population as the phase 2 subjects

was more fair to them, since that phase involved asking them to make predictions

about their own population rather than that of CrowdFlower.

The third reason is somewhat more nuanced. As a subjective quality, the true

toxicity of a comment is a distribution, not a point value. Any attempt to estimate

the mean of this distribution by surveying a population is going to have a certain

amount of random error, where for some items a significant fraction of labelers are

bots, trolling, inattentive, etc. Because we sampled a disproportionate fraction of

items where the classifier was incorrect, we were worried that a disproportionate

number of these items would be ones where the label itself was noisy due to random

labeler error. The phase 1 experiment, therefore, served to reduced this chance by

re-surveying the toxicity of the selected items.

As for why we chose to follow the Wulczyn et al. (2017) questionnaire in the first

place and define ground truth toxicity scores as a mean of binary responses, the reason

for this is synchronicity with the model. If we recollected a ground truth generated

differently from this dataset (and therefor drawn from a different distribution), the

model’s predictions and explanations would be tuned to a different data distribution

than this ground truth, and this disjunction would represent a threat to the to the

validity of the study.

3.2.4.1 Phase 1 quality assurance and compensation

Quality assurance for phase 1 was via two attention checks in each question set.

Subjects were made aware of the presence of the attention checks, though not of how

many there were. Each attention check consisted of a sentence embedded within a
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comment asking the user to assign it a certain label chosen to be the opposite of the

true label for that item. Workers thus were likely to miss the attention checks if they

were putting random labels or failing to carefully read the comment texts.

Phase 1 workers were compensated with a base payment of $1.50 plus a bonus of

$0.50 for each attention check they marked correctly. We discarded the results of any

subject who missed both attention checks (3 in total).

3.2.5 Prediction experiment (phase 2)

In phase 2, we asked subjects to predict the outcome of phase 1. Hence, if a

comment was designated toxic by 60 % of the subjects who reviewed it in phase 1,

the target class for that comment would have been “majority” in phase 2.

The purpose of phase 2 was to examine how well subjects were able to integrate

advice from an unreliable model into their own predictions, and the extent to which

explanations made them more or less effective in doing do.

As described briefly in previous sections, each phase 2 subject made predictions

under one of six different experimental conditions:

1. No prediction + no explanation (control)

2. Prediction + no explanation

3. No prediction + full explanation

4. Prediction + full explanation

5. Prediction + partial explanation

6. Prediction + keyword explanation

Phase 2 subjects were asked to review each text and choose one of the toxicity

quartiles described above (figure 3.2B).

In the control condition, workers made toxicity predictions without any algo-

rithmic assistance. Two treatments were explored: the presence of the algorithmic

predictions, and the presence of explanations in the form of word highlighting As
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described above, explanations came in three variants: full, partial and keyword-based

(figure 3.3).

In prediction-present conditions, the algorithm’s prediction was presented to the

right of the comment text figure 3.2B). In order to prevent workers from simply

mirroring the model prediction, the instructions explained that the model was “not

entirely reliable”, and that workers would have to decide how much they wanted to

rely on it.

In explanation-present conditions, the explanation was presented as red highlight-

ing over the comment text (also figure 3.2B)). This feature was explained to users as

the algorithm attempting to highlight toxic content.

3.2.6 Phase 2 quality assurance and compensation

Workers in phase 2 were given a base payment of $1.25 plus a bonus of $0.05

for each item they predicted correctly relative to the aggregated results of phase 1.

We didn’t use any other quality assurance mechanism for two reasons. First, we

were relying on the natural desire of our subjects to maximize their earnings under

the stipulation of the unreliable model. Second, we wanted to observe a natural

distribution of carelessness–forcing subjects to read every comment carefully would

have been unrealistic compared to how social media posts are consumed in a real-

world setting.

3.3 Results

We consider the results of the phase 2 experiment in terms of 5 outcome variables

which cover the accuracy, speed and trust that subjects felt in the classifier:

• Quartile prediction accuracy

• Quartile prediction false positive rate

• Quartile prediction false negative rate
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• Agreement with classifier prediction

• Median seconds-spent-per-comment

We achieved a binary Krippendorf’s Alpha of 0.51 on the phase 1 experiment,

comparable that of 0.45 reported in Wulczyn et al. (2017).

In our analysis of phase 2 results, we calculate the effect size of each condition in

comparison the most appropriate control for that condition given our research ques-

tions. To assess the impact of predictions and explanations alone (RQ1), we compare

“No prediction + full explanation” and “Prediction + no explanation” against “No

prediction + no explanation”. To assess the impact of explanations given the presence

of a prediction (RQ2) we compare “Prediction + full explanation” against “Prediction

+ no explanation”. Finally, to understand the relative impact of the two explanation

variants (RQ3), we compare both “Prediction + partial explanation” and “Prediction

+ sparse explanation” against “Prediction + full explanation”.

For every comparison we perform a two-tailed t-test. We report the p-value for

each comparison, adjusted by Benjamini-Hochberg correction across the 5 compar-

isons and 5 outcomes with a target false discovery rate of 0.05.

3.3.1 Accuracy and agreement

Condition
Mean %
highlighted

Accuracy Agreement
Mean p Mean p

Model 0.375 1

1 No prediction + no explanation 0.544 0.432
2 No prediction + full explanation 0.26 0.514 0.29381 0.436 0.95851

3 Prediction + no explanation 0.525 0.51291 0.535 0.00001∗∗∗

4 Prediction + full explanation 0.26 0.524 0.95853 0.533 0.95853

5 Prediction + partial explanation 0.234 0.526 0.95854 0.519 0.66514

6 Prediction + keyword explanation 0.048 0.518 0.95854 0.531 0.95854

Table 3.1:
Mean subject quartile accuracy, agreement with model, and percentage of
text highlighted across conditions. p-value superscripts indicate compari-
son condition.
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Table 3.1 summarizes the mean quartile accuracy of users in each condition, as

well as that of the model. It also summarizes the mean agreement of subjects in each

condition with the model’s predictions, as well as the mean percentage of tokens that

are highlighted by each attribution method.

We find that the presence of the model’s prediction has a marginal negative ef-

fect on the accuracy of subjects, an effect that does not vary significantly with the

presence of explanations (of any variant). However, we do find that the presence of

a visible prediction significantly increases subject agreement with the model, though

explanations do little to moderate this interaction (Figure 3.4).

Figure 3.4:
Mean agreement of users with model across experimental conditions and
question subsets with 95% confidence intervals.

This agreement effect explains the accuracy effect of prediction presence. As figure

3.5 shows, when the model is correct, the presence of predictions increases subject

accuracy. When the model is incorrect, it decreases accuracy. Because the model is

(by design) relatively inaccurate in this study, this leads to slightly more cases of the

model negatively influencing subjects than positively influencing them.
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Figure 3.5:
Mean quartile accuracy of model and users across experimental conditions
and model correctness.

3.3.2 False positive rate and false negative rate

Condition
False negative
rate

False positive
rate

Mean p Mean p
Model 0.396 0.229

1 No prediction + no explanation 0.276 0.179
2 No prediction + full explanation 0.353 0.00421∗ 0.133 0.03381∗

3 Prediction + no explanation 0.315 0.15431 0.16 0.38911

4 Prediction + full explanation 0.337 0.38913 0.139 0.29383

5 Prediction + partial explanation 0.357 0.43444 0.116 0.28924

6 Prediction + keyword explanation 0.346 0.9244 0.135 0.95854

Table 3.2:
Mean false positive rate and false negative rate across conditions. p-value
superscripts indicate comparison condition.

While we find no significant effect of explanations on accuracy per se, breaking

subjects errors down into false negatives and false positives shows they do impact the

distribution of errors made by humans (Table 3.2).

In particular, we find that explanations alone increase false negative rates while

decreasing false positive rates relative to the completely unassisted condition (Figures
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3.6 and 3.7). This result implies that feature attribution changes the way that subjects

read the comments, making it easier for them to avoid errors of attribution but more

liable to make errors of omission

Figure 3.6: Mean false positive rate of subjects across conditions.

Figure 3.7: Mean false negative rate of subjects across conditions.
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3.3.3 Speed

Condition
Seconds/
comment
Mean p

1 No prediction + no explanation 10.162
2 No prediction + full explanation 9.752 0.57721

3 Prediction + no explanation 11.869 0.04451∗

4 Prediction + full explanation 9.954 0.03203∗

5 Prediction + partial explanation 10.645 0.37354

6 Prediction + keyword explanation 9.878 0.91964

Table 3.3:
Mean seconds-per-comment across conditions. p-value superscripts indi-
cate comparison condition.

Figure 3.8: Mean seconds-per-comment of subjects across conditions

Table 3.3 summarizes the speed effect of the various conditions. We find that

the addition of a prediction adds a significant time penalty in comparison to the

unassisted condition, presumably as users are forced to attempt to reconcile their
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own opinions with that of the classifier. However, adding explanations erases this

time penalty, bringing the mean comment labeling time back down to that of the

unassisted condition. Figure 3.8 demonstrates this visually.

3.4 Discussion

The results described above provide answers to our five research questions:

3.4.1 RQ1: Presence of model predictions

We find that the presence of a visible model prediction tends to bias subjects in

favor of the prediction, whether it is correct or incorrect. There is also a significant

speed penalty associated with the presence of a model prediction, as users are forced

to ingest and reconcile an additional piece of information beyond the text itself.

This suggests that it is difficult for users to effectively integrate advice from a

model into their decision-making. In our experiment, they are as likely to discard

good advice as to reject bad advice.

3.4.2 RQ2: Presence of explanations

We find no significant effect of explanations on user accuracy or agreement when

exposed to a model prediction. One possible explanation for this failure is that, in

this domain, the difficulty in prediction lies not in identifying what words and phrases

may be toxic, but in predicting exactly how those words and phrases are liable to be

perceived by the general population.

Dividing subject errors into false negatives and false positives sheds a bit more

light on the situation. The model has both a high false negative rate and false

positive rate compared to unassisted subjects, but both prediction and explanations

alone raise the false negative rate and lower the false positive rate among human
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subjects. Explanations alone lower the FPR by a greater amount than predictions

alone.

This result suggest that in this context, explanations are particularly liable to

cause subjects to make mistakes of omission, presumably as they focus only on the

text that has been highlighted without seriously considering the un-highlighted text

(which may sometimes contain evidence of toxicity).

The one unequivocal benefit we do find is that explanations erase the speed penalty

of prediction presence, allowing users to more speedily determine whether they believe

or disbelieve in the model output.

3.4.3 RQ3: Explanation type

We find that “partial” explanations, which identify only a single instance of toxi-

city, cause subjects to produce more marginally more false negatives relative to “full”

explanations optimized to catch all toxicity. This suggests that it is important to ex-

plicitly optimize for completeness, possibly because human subjects find incomplete

explanation confusing and contradictory, and so are forced to dedicate more time to

understanding them.

By contrast, we find no significant difference between the full explanation model

and the much simpler “keyword” explanation variant which just highlights potentially

problematic words regardless of context, even though the “keyword” variant occludes

5 times less content on average than the “full” variant (Table 3.2). This results

suggests that while it is important for explanations to reflect all toxic material in a

given comment, it is less important that they cover entire phrases.

3.4.4 Experiment design

The results of this study, in combination with other similar recent studies like Lai

and Tan (2019) and Nguyen (2018), seem to imply that relative balance of model and
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human skillfulness is a crucial factor in the design of evaluation studies for explanatory

machine learning.

In order for explainable machine learning to be useful from a decision quality per-

spective, we argue that they have to allow human operators to make more accurate

decisions than either unassisted human baseline accuracy or unsupervised model ac-

curacy. Otherwise, there is no point in combining the two types of agent–one or the

other working alone would be a better solution.

For this to be the case, there need to be a substantial proportion of instances

for which model performance is good and human performance poor, and vice versa.

Kleinberg et al. (2017) found this to be the case for recidivism prediction, as an ex-

ample. The more of a performance gap exists between baseline human and model

performance, the less common such instances will be, meaning that the greatest po-

tential improvement exists when human and model baseline performance is roughly

equal.

To achieve such a balance in this experiment, we generated a sample of comments

from the Wulczyn et al. (2017) stratified by model error relative to the existing ground

truth, and we were careful to include one experimental condition for assessing baseline

human accuracy. While we did not observe an accuracy effect in our study, we believe

that failing to account for these issues in future studies may result in spurious effects.

Another important point of experimental design explored in this study is that of

re-collecting ground truth. There is both a variance and bias argument for doing this.

The variance argument is that for a task based on consensus human labels such as

toxicity or sentiment, individual ground truth labels may be too noisy for an accuracy

effect to be recognizable in a medium-scale human user study. The bias argument is

that if items are sampled in a way which is dependent on their existing ground-truth

labels (e.g. as described above) this selection process may result in sampled items

whose noise distribution is different from the dataset as a whole. Recollecting ground
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truth labels for items can mitigate both of these potential issues.

3.4.5 Limitations

The experiment had several limitations that will have to be addressed in further

work. First, the three explanation variants we test are not fully representative of the

current interpretability literature. Rather, they represent three extremes: capturing

all locally pertinent information (full variant), capturing minimal locally pertinent

information (partial variant), and capturing independent globally pertinent informa-

tion (keyword variant). It is possible that there exists some feature highlighting tech-

nique (e.g. Arras et al. (2017)) that would produce better outcomes, though it seems

unlikely given the relatively consistent negative result across the three explanation

variants as well as other similar studies.

We also limited ourselves to discrete binary highlighting–a token is either in or

out of an explanation, without further embellishment. We did not include words

and phrases of nontoxic valence, nor did we allow for grades of relevance, as in Arras

et al. (2017). It is possible that a more informative style of feature-highlighting would

produce the accuracy benefits that we failed to observe in this work.

We display all information at once–that is, text, prediction and highlighting were

all presented together to each user. A multi-phase presentation, where users are

prompted for an initial decision before being exposed to any algorithmic assistance,

might result in less bias toward the model prediction. However, it would also reduce

the potential for time savings, as users would have to go to all the trouble of making

a careful decision before getting a chance to process the output of the algorithm.

Finally, the stratified question sets we employed in this experiment are signifi-

cantly more toxic than a random sample of social media comments would be, while

the model was significantly less accurate than a model would be on randomly dis-

tributed data (40% versus the 96%). While we were able break down task performance
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by individual-comment accuracy, the particular distribution of toxicity and classifier

error probably prompted subjects to be more skeptical of the model and differently

sensitive to toxicity than if the comments had been sampled in a more representative

manner.

3.4.6 Toxicity detection versus moderation

Our experiment involves untrained Mechanical Turk workers making predictions

about what percentage of other workers are likely to find comments toxic. The com-

ments they view represent a variety of different true levels of toxicity and are removed

from conversational context. This is somewhat abstracted from a true moderation

setting, where trained moderators apply a specific set of community standards to

comments, typically in response to some kind of reporting mechanism.

However, the purpose of this study is less to prototype a machine-assisted mod-

eration system than to test the impact of interpretable machine learning on human

performance on a decision task that involves a tension between existing intuitions

and an external standard for correctness. In a true moderation task, the external

standard would consist of a set of community guidelines; in our experiment it is the

consensus label established by the phase 1 labeling task.

The question of the difference between “toxicity detection” and moderation is an

important one, but it is also one that belongs to the larger literature on machine

approaches to online abuse. The Perspective API, for example, is a prominent and

well-cited service for assessing the toxicity of social media posts, trained on the same

dataset used in this paper. While there has been criticism of the idea of classification

in place of human moderation (e.g. Blackwell et al. (2018b)), we are not aware of

existing theoretically-motivated attempts to reconcile the classification task encoded

in a dataset such as Wulczyn et al. (2017) with the task of moderation as experienced

0https://www.perspectiveapi.com
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by real-world moderators.

3.4.7 Design implications

This study has several implications for systems which seek to provide advice from

a text classifier to a human worker, particularly on a subjective task such as toxicity

detection.

The way in which explanations change the distribution of human error suggests

that a system builder needs to be very careful in their choice of explanation mech-

anism, because explanations could exacerbate a pre-existing tendency toward false

negatives. If time is not a factor, it may actually be better in some cases to have

no explanatory mechanism, as this forces users to be thorough in resolving any dis-

agreement between themselves and the advisory classifier. The good news is that

the lack of difference between the full and keyword-based explanation types suggest

that simple highlighting methods, even dictionary methods, can be just as effective as

more sophisticated ones, as long as they are tuned to catch as much relevant content

as possible.

This need for explanation completeness seems particularly true for an intuitive

task such as toxicity detection where subjects are more able to troubleshoot errors

of spurious association than errors of omission. This is a result that designers of

semi-automated moderation systems would need to consider particularly carefully.

Finally, the high-level implication of this study is that interpretable machine learn-

ing is not necessarily the immediate panacea to unreliable models that the inter-

pretability literature tends to assume it is–the most popular type of explanation fails

to improve how well humans use such a model, and poor explanations can actu-

ally reduce human performance by discouraging critical thinking about the model’s

predictions.
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3.4.8 Hybrid robustness

This study represents one attempt to achieve the hybrid robustness improvement

that is the central goal of this dissertation. While it achieves several intriguing sec-

ondary outcomes, it does not succeed in improving human predictive performance on

a decision task with advice from a predictive model. While it is possible that this a

result of the particular algorithm we use in this task (the one described in Chapter

II), the relatively unanimous results of similar studies like Lai and Tan (2019), Lage

et al. (2018) and Weerts et al. (2019) demonstrate that this improvement is a very

difficult outcome to achieve.

One possible reason for this consistent failure is that feature-based explanations

are not enough to improve human performance. Simply clarifying which features the

model attended to and (in some systems) what impact they had on the output may not

help humans make better decisions in domains where the decision itself is ambiguous

or difficult. For example, it might be relatively easy (and therefore unhelpful) for a

human to identify “I hate you” as a potentially toxic phrase within a larger text, but

less easy for them to classify exactly what percentage of people are likely to find that

phrase toxic.

Hence, in Chapters IV and V we turn to example-based explanations as a potential

solution to this shortfall. Where a feature-based explanation is limited in how much

insight it can shed on an ambiguous phrase like “I hate you”, an example-based

explanation can actually reach into the dataset to find other instances of that phrase,

and present those examples as evidence for a given outcome.
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CHAPTER IV

Attribution-Conscious Explanatory Examples

4.1 Introduction

Most of the explanatory machine learning methods that have been proposed in

recent years have focused on clarifying the relationship between model input and

output. Feature attribution methods such as deepLIFT (Shrikumar et al., 2017),

layerwise relevance propagation (Bach et al., 2015) and LIME (Ribeiro et al., 2016)

are the most common instances of this approach, but even other types of techniques

such as rule-based explanations (e.g. Lakkaraju et al. (2016)) have this basic goal.

The swell of technical work in this area has been accompanied by a correspond-

ing swell of experimental work seeking to understand whether and to what extent

explanation methods can improve human understanding and trust in machine learn-

ing models (e.g. Poursabzi-Sangdeh et al. (2018); Lai and Tan (2019); Narayanan

et al. (2018)). What these studies tend to have in common is that they generally

observe either no impact or a marginal impact of explanations on the accuracy of the

decision ultimately made by the human user. That is, it remains unclear how (and

if) explanatory machine learning can lead to more accurate predictions from hybrid

human-machine systems.

0This chapter and the following one consist of content published in
Carton, S., Mei, Q. and Resnick, P. (2020). Model Attention for Example-Based Explanations of
Text Classifiers, In submission.
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Figure 4.1:
Image versus text examples. Without additional visual cues, it is diffi-
cult to assess text similarity. Image examples courtesy of (Papernot and
McDaniel , 2018).

This would seem to suggest that a different basic approach is needed. In many

cases it may simply not be possible to improve human accuracy by explaining the

relationship between model input and output. In the case of predicting social media

comment toxicity, it may be that no articulation of what parts of a text the model

considers toxic, or how the model would respond to various types of perturbations of

the input, can give a human being insight into what percentage of people would find

a phrase such as “this idea is stupid” to be toxic.

Rather than just clarifying the relationship between model input and output, it

may be necessary to turn to example-based explanations, which extract or generate

evidence from the training data in order to justify the model’s predictions (Guidotti
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et al., 2018). What this type of explanation offers beyond any feature-based explana-

tion is the opportunity to perform analogical reasoning. Given an item-of-interest xi

and the model’s prediction about it f(xi) = ŷi, explanatory examples can give a user

a way to reason about the reliability of that prediction based on the model’s behavior

(and performance) on similar items.

For the purpose of this work, we consider explanatory examples to be real (x, ŷ, y)

triplets drawn from the training set. Every algorithm we consider for extracting

these examples uses the same basic two steps: 1) develop a compact “retrieval repre-

sentation” of each item-of-interest which preserves useful semantic qualities; then 2)

retrieve explanatory examples by performing a nearest-neighbor search within that

representation space. For this reason we use the terms “explanatory example” and

“neighbor” interchangeably in this work.

The task of generating explanatory examples for text classification presents dif-

ferent challenges than for image classification, which is where most recent literature

has focused (e.g. Kim et al. (2016)). One obvious difference is that it is much more

difficult for humans to make quick comparisons between texts than between images

(Figure 4.1). In fact, unassisted comparison of texts represents such a cognitive

burden that we argue it represents the first major hurdle in allowing this style of

explanation to be practical for text data.

4.1.1 Feature attribution, relevance and fidelity

Feature attribution can help reduce the cognitive burden of comparing texts. By

reducing each text to only the tokens that were impactful in the model’s predic-

tion, feature attribution can clarify how the explanatory examples are related to the

comment of interest (Figure 4.2).

However, performing this reduction can reveal issues that threaten the analogical

validity of these examples. For example, Figure 4.2.2, while it is of similar predicted
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Figure 4.2:
Text examples with feature attribution. Neighbor 1 is a valid analogy
for the item of interest; Neighbor 2 is irrelevant; Neighbor 3 is visually
similar but displays poor fidelity with the model’s decision on the item of
interest.

toxicity to the comment-of-interest, uses different vocabulary. A human user would

hesitate to draw conclusions about the true toxicity of the comment-of-interest from

such an irrelevant example.

By contrast, Figure 4.2.3 has very similar attributed content, but its predicted

toxicity is different from that of of the comment-of-interest. As a result of this infi-

delity to the model’s behavior on the item-of-interest, it would be problematic to use

that particular example as an indicator about how accurate the model is likely to be

on the comment-of interest.
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An important distinction to make here is between shallow relevance and deep

relevance. When the algorithm identifies a neighbor such as Figure 4.2.1 with similar

attributed content and a similar prediction to the item-of-interest, it is clear why

the algorithm considers the two to be similar. However, a human overseer with a

deeper semantic understanding of the text may be able to realize that the neighbor

is different in meaning from the item-of-interest despite its superficial similarity.

That, we propose, is the point at which human and machine expertise can interact

in this type of explanation. The retrieval algorithm can identify neighbors of super-

ficial (shallow) relevance, and the human can select from among these the neighbor

with the greatest real (deep) relevance to use as a precedent for their decision about

the item-of-interest. Thus from an algorithmic perspective we argue that relevance

and fidelity are the basic criteria for useful explanatory examples for human analogical

reasoning. In this context we define relevance as visible and recognizable similarity

between the input xi of the item-of-interest and that of the neighbor xn. Fidelity we

define to mean that the model treats xi and xn similarly, producing similar outputs

ŷi and ŷn. A good explanatory example retrieval algorithm is one which generally

produces examples which are relevant to the item-of-interest and consistent with the

model’s treatment of that item.

A common formulation of an analogical argument is: given that an object O1 has

properties A, B and C, then an object O2 with properties A and B probably also

has property C. The strength of such an analogy is determined by the pertinence

of properties A and B to property C, the degree of similarity between objects O1

and O2 on these dimensions, as well as the number and diversity of objects O1 which

are able to serve as premises for the comparison. Fallacies such as bad analogies or

slippery slope arguments emerge when these criteria are not fulfilled (Salmon, 2012).

In interpretable machine learning, the object of comparison is a relationship be-

tween an output ŷi and an input xi –the prediction we are trying to explain and the
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input upon which the model produced that prediction. Depending on the exact for-

mulation of our task, we may be trying to estimate the error of the prediction or we

may be trying to estimate the true label of the input. Either way, the key properties

in this comparison are the input and the output, and if either comparison fails we are

at risk of a spurious analogy.

4.1.2 Confidence estimation

Explanatory example retrieval has two faces: human and machine-oriented. We

argue above that showing examples to a human user can allow that human to apply

analogical reasoning to assessing the reliability of a machine prediction on a given

item-of-interest. However, explanatory examples can also be used as part of an au-

tomated confidence estimation procedure by deriving indicators of potential model

error from aspects of the relationship between an item-of-interests and its neighbors

under a given retrieval scheme.

Papernot and McDaniel (2018) explores the latter application by drawing on the

idea of conformal prediction (Shafer and Vovk , 2007; Papadopoulos , 2008) to propose

that explanatory examples can be used as a better estimate of model confidence

than conventional methods. They use the idea of nonconformity, the extent to which

a predicted class disagrees with the true classes of the explanatory examples, as a

way to estimate model confidence. In their formulation, the nonconformity α of a

predicted class ci for an input xi is the number of retrieved examples with a different

class from that predicted:

α(xi, ci)←
∑
n

|cn 6= ci| (4.1)

The intuition here is that if the model proposes a different output for the item-of-

interest than the true labels of many of its nearest neighbors in the chosen retrieval

space, then that prediction is more likely to be erroneous than one with greater
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agreement.

Figure 4.3:
Possible comparisons between item-of-interest and explanatory examples.
Relevance and fidelity defined above are comparisons of xi against {xn},
and ŷi against {ŷn} and respectively. Nonconformity as defined by Pa-
pernot and McDaniel (2018) is a comparison between ŷi and {yn}

However, this is just one comparison that can be made between an item-of-interest

and a series of explanatory examples. As Figure 4.3 shows, there are a variety of

possible comparisons that can be made between the prediction of the model on the

item-of-interest and the predictions of the model on a given set of N explanatory

examples. Relevance and fidelity, as defined above, represent comparisons between

the inputs x and predictions ŷ for the item-of-interest and the explanatory examples.

Nonconformity as defined by Papernot and McDaniel (2018) is a comparison between

a prediction ŷi for the item-of-interest and the true labels yn of the explanatory

examples.

We suggest two other potentially useful comparisons: retrieval distance and ex-

ample error (Figure 4.4).
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Figure 4.4:
Proposed comparisons between item-of-interest and explanatory exam-
ples.

We define retrieval distance as the mean distance between retrieved examples and

the item-of-interest, by whatever metric is used to retrieve those examples in the first

place. The motivation for this comparison is that an item-of-interest for which the

only explanatory examples available are relatively far away, may be an item for which

the training data lacks support and thus for which the prediction error is likely to be

high.

We define example error as the mean prediction error of the retrieved examples.

If this error is high, that indicates that the item-of-interest may reside in a region

of feature space for which the model was unable to learn a good prediction function,

which again may serve as an indicator of increased error likelihood.

Nonconformity, retrieval distance and example error all are potential avenues for

gleaning insight about the error of the model on specific items-of-interest. We base

part of our empirical evaluation on the extent which the compared retrieval methods

produce neighbors where these qualities are predictive of model error on the item-of-
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interest.

4.1.3 Contributions

In this chapter we propose to use model attention to achieve the selection of

neighbors which are relevant, high-fidelity and predictive of model error, as well as

to present of those neighbors in an effective way.

To select explanatory examples for a text classifier’s decision about a given item-of-

interest, we use a variant of the adversarial attention mechanism proposed in (Carton

et al., 2018) to identify the parts of the comment the classifier considered to be

indicative of the positive class (in this case, online comment toxicity). We generate

vector representations for the whole dataset by using the attention mask for each item

as an additional weighting on the embedding centroid method proposed by Arora et al.

(2017). Finally, we select neighbors for an item-of-interest by using a space-preserving

data structure to identify examples from the training set that are close in terms of

euclidean distance to this attention-weighted representation.

In an empirical evaluation, we show how the proposed algorithm compares with

a selection of baseline methods in the qualities of the retrieved neighborhoods. The

result of this evaluation shows that our proposed approach exceeds baseline methods

at finding relevant examples while remaining comparable in terms of fidelity and

correlates of model error.

The contributions of this chapter are as follows:

• We propose a framework for evaluating the quality of an explanatory example

retrieval algorithm.

• We propose a retrieval algorithm that outperforms strong baselines in terms of

the proposed framework.
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4.2 Methods

The proposed algorithm applies feature attribution to a simple sentence embed-

ding technique based on finding the centroid of the tokens in the given text. It uses a

model attention mechanism for feature attribution, and combines it with the centroid

method proposed by Arora et al. (2017) to find neighbors which have high relevance

and fidelity to the model’s predictions.

4.2.1 Hypothetical attention

To generate feature importance weights we employ a variant of the model proposed

in Chapter II. In the original model (section 2.2), an RNN attention layer produces an

attention mask z which is fed, along with the input x, into an RNN prediction layer

to make a prediction ŷ. The attention and predictive layers are trained in tandem to

make accurate predictions with attention masks which, while sparse, are encouraged

via the presence of an additional adversarial predictive layer to contain all available

predictive signal.

Figure 4.5:
Hypothetical attention architecture. The predictive layer is trained to
maximize the accuracy of the unattended prediction. The attention layer
is trained to push the attended prediction close to the unattended pre-
diction, and the inverse attended prediction close to 0.
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In this variant (Figure 4.5), we dispense with the adversarial predictor and don’t

filter the input to the predictive layer through the attention layer. Hence, the (now

solitary) predictive layer f is a standard RNN (an LSTM specifically), training ac-

cording to a standard squared-loss objective:

costf (x, y) =
[
f(x)− y

]2
(4.2)

The attention layer is trained in terms of the impact that it would have on the

primary predictor if it were used to filter input to that layer. Hence, the attention

masks produced by this variant model can be thought of as “hypothetical attention”.

We refer to f(x) as the prediction made by the predictive layer without attention,

and f(x, z) to be the prediction that would have made if the attention mask z were

used as a weighting on the input x. We also refer to the inverse attention prediction

f(x,1 − z), the prediction that the predictive layer would make if the input were

masked by the inverse of the attention mask z.

Specifically, the attention layer is trained to produce attention masks which cause

the attention-prediction f(z, x) to deviate as little as possible from the non-attention

prediction f(x), while simultaneously encouraging the inverse-attention-prediction to

be as low as possible. The objective function also includes the sparsity and cohesive-

ness terms from the original model, leading to the following objective function:

costg(z, x, y) = (3)[
f(x, z)− f(x)

]2
(3.1)

+λ1||z|| (3.2)

+λ1λ2
∑
t

|zt − zt−1| (3.3)

+λ3
[
f(x, 1− z)− f(x, 0)

]2
(3.4)
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Term 3.1 encourages the attention mask to alter the model’s prediction as little

as possible. Terms 3.2 and 3.3 encourage the model to produce sparse but “chunky”

attention masks favoring long strings of similar weights.

Term 3.4 is where this variant differs from the original architecture. Instead of

encouraging the attention layer to disallow an independent adversarial predictor from

finding any predictive signal in the inverse-masked input, it instead encourages that

layer to disallow the primary predictor from doing this, while the primary predic-

tor does not learn adversarially with respect to this objective in the way that the

adversarial predictor does in the original model.

Ultimately this accomplishes something very similar to the algorithm of Chapter

II. In the toxicity detection task it encourages the attention mask to retain the toxic

content which drives the model’s prediction while also encouraging it not to leave any

toxic content out of the mask. This algorithm ends up being similar to that described

in (Li et al., 2016), though the objective is slightly different and it does not employ

hard attention.

Where this variant differs from the original algorithm is there is no adversarial

predictor attempting to detect trace evidence of toxicity in the residual of the existing

attention mask. What this means is that the attention mask catches the content

that drives the model’s predictions, but not necessarily all the content that could

drive those predictions. This translates to somewhat lower recall of toxic content.

Dispensing with the adversarial predictor also obviates the need for the confusion

step described in section 2.2.2.

However, the advantage of this variant approach is that it produces a predictive

layer which is indistinguishable from an ordinary LSTM trained with an ordinary

objective function. This allows us to make a direct comparison between our proposed

explanatory example retrieval method and baseline methods based on the extraction

of latent vector representations from the LSTM model.
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4.2.2 Attention-weighted word centroids

Explanatory example retrieval seeks to identify items from the labeled dataset

which explain or otherwise helpfully contextualize the model’s prediction on a given

item-of-interest (IOI). Doing so involves two steps: 1) generating a useful representa-

tion of items; 2) choosing a distance metric and retrieval method.

A common explanatory representation for neural networks is the final layer of the

model–that is, the final vector produced by the model before it is transformed via

sigmoid or softmax into an output prediction (Caruana et al., 1999; Wallace et al.,

2018; Papernot and McDaniel , 2018). The rationale for this approach is that by the

time inputs have reached this point in the model, they should be linearly separable,

residing in a latent vector space in which inputs of different classes are located on

opposite sides of the unit hyperplane. Points that are in close in this space, then,

should be points with both a similar predicted class and similar values on what the

algorithm determined to be the most useful linear factors of the desired prediction

task.

However, when applied to RNN models for text classification, this method has

a tendency to retrieve examples which are incoherent–unrecognizable to a human as

being related to the item-of-interest, a result noted in Wallace et al. (2018) and which

we demonstrate in the empirical evaluation.

Our alternative approach is simple. We generate explanatory examples by apply-

ing the weights produced by the attention layer described above to the embedding

centroid method described in Arora et al. (2017). This method embeds a word se-

quence by finding the centroid of the individual word embeddings, weighted by the

corpus frequency of each word. Finally, the method computes the principal compo-

nent of the full set of embeddings over the whole vocabulary and then subtracts the

first component from all sentence embeddings.

Incorporating attention weights into Arora et al. (2017), the explanatory represen-
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tation of an input item x of length l composed of words {w0, ..., wl} with embedding

vectors {v0, ..., vl} of dimensionality d, for which the attention layer g(x) has produced

an attention mask z = {z0, ..., zl} is calculated in two steps. First, the unadjusted

weighted embedding centroid v
′
x is produced as follows:

v
′

x ←
1

l

i∑
l

a

a+ p(wi)
zivi (4.4)

Here, a is a smoothing constant set at 0.001, and p(wi) the frequency of word i,

which we calculate from the training set.

In the second step, the unadjusted centroids {v′
x0, ..., v

′
xm} of all m training set

items are concatenated together as columns of a large matrix V of dimension l × d.

The first principal component of this matrix is calculated as u, and is subtracted from

the unadjusted centroid to form the final vector representation of the input x:

vx ← v
′

x − uuTv
′

x (4.5)

The effect of this procedure is to represent the input sequence x as the centroid

of only those words in the sequence that were impactful to the model’s prediction.

The embeddings that are produced have fidelity to the model in the sense that they

are based on the model’s feature importance weights, but are also comprehensible to

a human user because they are based on word similarity between the texts.

We include the unaltered centroid method as a baseline method for comparison.

4.3 Empirical Evaluation

We perform an empirical evaluation of the proposed attention-weighted centroid

retrieval method to show how it performs in terms of the criteria described in sec-

tion 4.1. In terms of the taxonomy proposed by Doshi-Velez and Kim (2017), this

is a functionally-grounded evaluation extending from the principle that a good ex-
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planatory example should be of high relevance and fidelity and should be useful in

predicting model error.

We compare our proposed attention-weighted word embedding centroid method

with a number of baselines, including:

• Random: Neighbors are sampled randomly from the dataset and assigned a

random distance between 0 and 1.

• Output: Nearest neighbors in terms of model prediction.

• Pre-output layer: Nearest neighbors in euclidean distance between model pre-

output layer (e.g. Wallace et al. (2018)).

• Corpus-frequency weighted wording embedding centroids (Arora et al., 2017).

All retrieval methods use the same model, meaning that all model predictions and

attention masks are identical across retrieval methods. The primary baseline is the

pre-output layer method, as this is a commonly suggested technique for identifying

explanatory neighbors for neural nets (e.g. Wallace et al. (2018); Caruana et al.

(1999).

The model is trained on the toxicity dimension of the dataset described in Wulczyn

et al. (2017), which consists of roughly 100,000 training instances, 30,000 development

instances and 30,000 test instances. Our evaluations are performed on the test set

using neighbors drawn from the training set.

4.3.1 Relevance and fidelity

We evaluate each algorithm in terms of the mean relevance of retrieved neighbors

as well as the fidelity of the model’s prediction on those neighbors with its prediction

on the item-of-interest (Table 4.1). All metrics are based on the closest 3 neighbors

generated by each method.

Relevance is operationalized as mean jaccard similarity between neighbor and

item-of-interest text. We report both an unweighted jaccard similarity which reflects
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the overall text similarity, and an attention-conscious jaccard similarity that only con-

siders tokens whose attention weight was above a threshold of 0.25. This latter value

measures the retrieval method’s success in finding examples with similar attention

masks to that of the item-of-interest.

We also report the mean structural difference between item-of-interest and neigh-

bor texts, defined as the mean absolute difference between text lengths for both text

and attention-thresholded text.

We report fidelity by treating the mean neighbor prediction {ŷn} as an estimate

of the item-of-interest prediction ŷi, and then reporting the mean absolute error and

accuracy of this prediction (the latter with respect to binarized versions of {ŷn} and

ŷi). A perfectly faithful neighborhood with {ŷn} identical to ŷi will thus have zero

error and perfect accuracy on this metric.

Semantic relevance
(Jaccard similarity)

Structural relevance
(Text length difference)

Fidelity

Text
Attributed
text

Text
Attributed
text

MAE Acc.

Random 0.072 0.001 94.455 6.554 0.172 0.896
Output 0.083 0.013 92.081 4.983 0 1
Pre-output layer 0.163 0.054 42.007 2.823 0.017 0.992
Attention centroid 0.141 0.222 72.206 5.272 0.046 0.972
Centroid 0.172 0.02 216.267 15.352 0.082 0.954

Table 4.1:
Comparison of relevance and fidelity metrics across different retrieval al-
gorithms.

Table 4.1 summarizes the results. The results show that while the pre-output

layer method is the most successful method at finding neighbors of high general

text similarity, it fails to find neighbors of high attributed text similarity. However,

this retrieval method is successful at finding neighbors of high attributed structural

similarity, tending to find neighbors with attention masks of similar length to that of

the item-of-interest. What this suggests is that the internal representation learned by

the LSTM is more structural than semantic, remembering roughly how many toxic
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words were encountered but not what they were. Figure 4.2.2 is a demonstration

of this phenomenon: the attention mask of that neighbor has the same length but

consists of a different word than that of the item-of-interest.

By contrast, our proposed attention-weighted centroid method produces neighbors

of slightly less general text similarity but much higher attributed text similarity,

succeeding much better at finding neighbors which are recognizably relevant to a given

item-of-interest. Meanwhile, while the pre-output layer method retrieves neighbors of

almost perfect model prediction fidelity to the item-of-interest, our proposed method

retrieves neighbors of only slightly less fidelity. Understandably, perfect fidelity is

achieved by finding neighbors based solely on the model’s output, but this trivial

method finds neighbors which are not otherwise particularly similar to the item-of-

interest.

Hence, while our algorithm is slightly more likely to produce low-fidelity explana-

tory examples, it is much more likely to succeed at producing relevant examples, and

thus to fulfill the criteria for analogical validity outlined in the introduction.

4.3.2 Predicting model classification error

We evaluate each retrieval method in terms of its ability to produce explanatory

examples which can be aggregated into neighborhood metrics that are predictive of

model classification error, namely neighbor nonconformity, neighbor retrieval distance

and neighbor error. We define these metrics below:

Nonconformity measures the extent to which the predicted class of the item-of-

interest agrees with the true classes of the retrieved neighbors:

nonconformity(xi)← 1

n

∑
n

|cn − ci| (4.6)

Neighbor retrieval distance measures the mean euclidean distance between the
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item-of-interest and its neighbors, in terms of the retrieval representation v of each

item:

distance(xi)← 1

n

∑
n

(vi − vn)2 (4.7)

Neighbor error measures the mean absolute prediction error achieved by the model

on the retrieved neighbors for the item-of-interest:

error(xi)← 1

n

∑
n

|yn − ŷn| (4.8)

For each retrieval method/neighborhood metric pair, we perform the following

procedure:

1. Retrieve the top three neighbors for every item in the development and test sets

using the given retrieval method

2. Train a logistic regression model on the development set, predicting classifica-

tion error using the given neighborhood metric as the sole input feature.

3. Evaluate trained model on the test set using cross-entropy of predicted error

probability

We follow Guo et al. (2017) in using cross-entropy as an evaluation metric for

this task. For a given item xi, our model produces a class probability ŷi which is

optimized to be as close as possible to the true class probability yi. We can treat this

as a classification problem by binarizing ŷi and yi to class labels ĉi and ci respectively

and then considering the classification error of this prediction eic = 0 if ĉi = ci else 0.

If we consider a confidence estimation to be a prediction about the probability of the

classification error pie = p(eic = 1), then we define the cross-entropy loss lie as follows:

lie ← eiclog(pie)− (1− eic)log(1− pie) (4.9)
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This metric measures the ability of the method to produce error probabilities

which are consistent with the empirical error distribution. A useful upper bound on

error for this metric is the trivial approach of using the development set accuracy of

95.5% as a confidence estimate for every item in the test set. Doing this results in a

cross-entropy confidence error of 0.181 on the test set.

The toxicity dataset of Wulczyn et al. (2017) differs from many classification

datasets in providing class probabilities as training data rather than class labels alone.

This allows us to train an unusually well-calibrated classifier where the distance of

the true and predicted class probability from the decision boundary of 0.5 can serve

as an estimate of model error. We find that using these predicted class probabilities

as a confidence estimate results in a cross-entropy loss of 0.124, while using the true

class probabilities results in a cross entropy loss of .11. These values serve as soft

lower bounds on the cross-entropy error of the proposed neighbor-based methods in

the sense that it would be very difficult for improve on them.

Non-
conformity

Retrieval
distance

Neighbor
error

All
methods

Random 0.177 0.181 0.181 0.177
Output 0.159 0.181 0.159 0.159
Pre-output layer 0.156 0.181 0.162 0.155
Attention centroid 0.15 0.176 0.168 0.149
Centroid 0.165 0.181 0.178 0.164

Table 4.2:
Comparison of model confidence estimation cross-entropy (with respect to
true classification error) across different retrieval and estimation methods.
0.181 represents a trivial result.

Table 4.2 summarize the result of using each metric as a predictor of binary model

classification error, as well as the result of combining all three metrics into one pre-

dictive model. What the results show is that neighbor nonconformity is generally

the best-performing indicator of model error, while our proposed retrieval method

produces neighbors which are more predictive of model error for two of three confi-

dence estimation methods, as well as when all three methods are combined into one
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confidence estimation model.

Our proposed method is the only one tested in which neighbor distance is a mean-

ingful predictor of model error, but it does not add much predictive utility to non-

conformity when incorporated into a combined model of classifier error.

The nontrivial result of nonconformity for the random neighbor/random distance

retrieval method can be explained by the non-independent class and error distribution

of the Wulczyn et al. (2017) dataset. The dataset is 89% negative (nontoxic), and the

model achieves a binary accuracy of 98.5% on these negative examples but only 71.9%

on the positive 11% of the dataset. So, when a random three neighbors are chosen for

a given xi, these neighbors will mostly be of the negative class and therefore of low

nonconformity to a negative xi (on which the model is liable to be accurate) and of

high nonconformity to a positive xi (on which the model is liable to be inaccurate).

Hence, the nonconformity of random neighbors is predictive of the predicted class of

the item, which itself is predictive of model error.

Taken as a whole, the empirical evaluation demonstrates that our proposed method

of retrieving neighbors based solely on attributed content results in explanatory ex-

amples which are significantly more visually relevant, only slightly less faithful to

the model’s treatment of the item-of-interest, and slightly more predictive of model

unreliability than comparable baseline methods.

4.4 Discussion

This chapter describes an automated evaluation which compares the success of

several explanatory example retrieval algorithms in selecting neighbors that are ana-

logically valid and faithful to model behavior, as well as their potential to reveal

insights about the predictive error of the model. Our approach uses feature attribu-

tion to assign importance weights to every token of a given input, and then retrieves

examples by finding items with similar important tokens.
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The results of this evaluation show that our proposed algorithm is much more

able to retrieve neighbors with similar attribution masks than competing algorithms,

while not suffering much in terms of fidelity to model behavior on those neighbors

(Table 4.1). At the same time, our proposed method performs better than baseline

methods in producing useful predictors of model error (Table 4.2)

One interesting result of this evaluation is how unaligned the pre-output layer

of the LSTM is with feature attribution performed against its predictions–nearest

neighbors retrieved using this final representation within the model generally do not

have similar attributed features to their items-of-interest. However, this retrieval

method does succeed in finding texts of similar lengths, and with attributed sections

of similar sizes. What this implies is that much of what is saved into the output layer

of an LSTM model is of a structural rather than a semantic nature, recording only

that the predictive content was encountered rather than what that content was.

Figure 4.6 demonstrates this tendency in action. The pre-output layer finds a

neighbor with a similar one-word attention mask, but it is a different (and semanti-

cally dissimilar) word from that used in the comment-of-interest.

Our attention-based proposed algorithm maintains a substantial degree of fidelity

to the model behavior while producing neighbors that align better in terms of at-

tributed content. However, our method does remain intrinsically decoupled from the

model because it is based on the input representation and thus does not directly

reflect the model’s decision in the way that the pre-output layer does.

One solution that could combine the best of both worlds–the relevance of our

method with the model fidelity of the pre-output layer–would be to place a generative

objective on the pre-output layer that would encourage it to be able to reconstruct

the (attributed) input text. Thus, the model would be optimized not only to be

able to make accurate predictions from the pre-output layer, but also to recover the

input tokens, with a high weight attached to tokens that were of high impact in the
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Figure 4.6:
Closest neighbor for each algorithm tested in the user study: 1) attention
centroids; 2) pre-output layer; 3) centroids.

prediction and a low weight to those that were less impactful.

A sequence-to-sequence architecture (Sutskever et al., 2014) would be a natural

fit for this idea. It is possible, however, that the requirement of reconstructing the
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original sequence in order would be unnecessary and overly strict. In this case, it

might work better to place a non-sequence-based decoder on the pre-output layer,

such as the decoder half of a skip-gram model (Mikolov et al., 2013), which would

optimize simply to recover the correct tokens without worrying about the sequence

order. In either architecture it would be relatively straightforward to fold in the

feature attribution as a weighting on which tokens needed to be recovered and which

could be ignored.

4.4.1 Hybrid robustness

Like Chapter II, our empirical evaluation in this chapter proceeds from an assump-

tion about how human subjects are likely to use example-based methods in order to

improve their estimates about the consensus toxicity of social media comments. We

assume that subjects will perform analogical “this is like that” reasoning based on the

similarity between the texts and the model outputs for those texts. Thus we assume

that a proper example is both visibly similar to the item-of-interest (relevance) as

well as treated similarly by the model (fidelity) so that the human subject does draw

any incorrect inferences from the the model’s output on that item.

Like our assumption about the importance of high-recall attribution masks, this

conceit is reasonably well-supported by the dictionary definition of analogical reason-

ing, but it requires a user study to see if it holds up in practice. We perform such a

study in Chapter V.
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CHAPTER V

User Study 2: Effect of Example-based

Explanations

5.1 Introduction

The empirical evaluation we describe in chapter IV shows that our proposed al-

gorithm retrieves neighbors with more similar attributed content than competing

baselines and comparable useful numerical qualities such as prediction fidelity and

correlation with model error.

However, as is the case with any approach to interpretable machine learning, per-

formance on proxy measures is only one part of the story. While such an evaluation

provides indicators of the potential for such an algorithm to improve human perfor-

mance, a user study is needed to assess whether it actually achieves this improvement.

We describe such a study in this chapter.

The second part of our evaluation consists a user study that compares the relative

desirability and utility of three of the nearest neighbor selection algorithms discussed

in the previous chapter:

1. Pre-output layer: The final parameter-weighted vector that is passed into the

0This chapter and the previous one consist of content published in
Carton, S., Mei, Q. and Resnick, P. (2020). Model Attention for Example-Based Explanations of
Text Classifiers, In submission.
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output sigmoid of the LSTM.

2. Attention centroid: Our proposed attention-weighted embedding centroid

algorithm, described in subsection 4.2.2

3. Centroid: The unaltered word embedding centroid algorithm proposed by

Arora et al. (2017).

5.2 Experiment design

Our user study compared the relative desirability and utility of the three al-

gorithms listed above. Subjects in our study participated in one of three related

sub-studies:

1. Ground truth collection and baseline prediction: workers provide their

own opinion about the toxicity of items, as well as predicting the mean perceived

toxicity of each item without any algorithmic assistance. This is primarily a

label collection task, but also assessed the baseline unassisted performance of

human workers.

2. Neighbor preference: subjects choose between neighbors suggested by the

three algorithms. This is a within-subject experiment testing which retrieval

algorithm subjects prefer when given a choice of neighbors.

3. Neighbor prediction: subjects make predictions about toxicity assisted by

neighbors drawn from a single algorithm. This is a between-subject experiment

of whether neighbors helped subjects make better predictions.

In discussing the latter two experiments, we draw a distinction between the

comments-of-interest that subjects were asked to evaluate predictions about and the

neighbor comments that were used to explain those predictions. In the study we used
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the term “main comment” to refer to the comments-of-interest, so we use these terms

interchangeably throughout the rest of this chapter. We also follow Chapter IV in

using the terms neighbor and example interchangeably.

Figure 5.1:
Ground truth and baseline prediction task. Subjects are asked to 1) pro-
vide a subjective label; 2) make a prediction about their own population.

5.2.1 Ground truth collection and baseline prediction

In the ground truth and baseline prediction task (Figure 5.1), subjects reviewed

a series of comments-of-interest drawn from the Wulczyn et al. (2017) dataset. For

each comment, they gave their personal judgment about whether the comment was

toxic or not according to the same questionnaire used in Wulczyn et al. (2017). They

were also asked to use a range slider to predict what percentage of other workers were

liable to find each comment toxic or very toxic.

The purpose of this task was to collect low-variance ground truth toxicity scores

for the selected comments, as well as an understanding of the baseline accuracy of

workers in predicting the toxicity perceptions of their own cohort.

5.2.2 Neighbor preference

The preference experiment was a within-subject experiment designed to behav-

iorally evaluate which neighbor retrieval algorithm subjects preferred when asked to
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Figure 5.2:
Algorithm preference task. Users are asked to 1) make an initial predic-
tion; 2) choose an evidence comment; 3) make a final prediction.

use those neighbors to help perform a prediction task.

In this task (Figure 5.2), subjects were presented with a series of comments as

well as a model prediction and a feature attribution mask over the text in the form

of highlighting of putatively toxic content. The prediction and highlighting were gen-

erated by the variant of the Chapter II model described in subsection 4.2.1. Subjects

were asked to provide three responses for each comment:

For the first input (Figure 5.2.1), subjects were presented with the model’s pre-

diction and feature attribution about the toxicity of the comment and asked to make

their own prediction about what percentage of other workers are liable to find that

comment toxic.

For the second input (Figure 5.2.2), subjects were presented with three explana-

tory neighbors–the nearest neighbor in the training set found by each of the three

methods. Each neighbor was highlighted as appropriate by the attention mechanism
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described above, but otherwise presented alone.

Subjects were asked to select the single neighbor they felt would provide the

strongest evidence about the true toxicity of the main comment. The instructions

elaborated on this goal by suggesting the subject choose the most “similarly toxic”

comment to the main comment. The reason we provided this particular nudge was

to encourage subjects to try to select the neighbor that was the most similar in terms

of the target outcome (toxicity) to each item-of-interest. We found in pilot testing

that subjects felt confused about what could constitute “evidence” in the context of

the presented decision problem.

For the third input (Figure 5.2.3), subjects were presented with the predicted

and true toxicity for each neighbor, and asked to adjust their initial prediction based

on any insight they may have gotten from the displayed neighbors (with a visual

reminder showing them which neighbor they selected in the previous step).

The purpose of this experiment was to gauge neighbor preference by examining

which algorithm users choose the selected neighbor from (noting that subjects were

not aware that neighbors were being produced by multiple algorithms). The purpose

of the two prediction steps was to incentivize subjects to select a neighbor they felt

would be predictively useful. For that reason we did not analyze nor report the

prediction results of this experiment–only the neighbor selection results.

5.2.3 Prediction with neighbors

Finally, the prediction experiment was a between-subject experiment designed to

gauge whether subjects were able to benefit from the presence of explanatory examples

generated by any of the three compared algorithms. This experiment contained three

conditions, one for each neighbor retrieval algorithm. Any given subject was only

shown neighbors generated by one algorithm, as opposed to the preference task where

subjects were shown one neighbor from each.
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Figure 5.3:
Prediction-with-evidence task. Users are asked to 1) make an initial pre-
diction; 2) choose an evidence comment; 3) make a final prediction.

The prediction experiment (Figure 5.3) asked subjects to perform a similar three-

stage task for each comment as the preference experiment. Subjects were asked to 1)

make an initial prediction; 2) Select a related comment; 3) make a final prediction;

Like the preference condition, subjects were asked in part 2 of their labeling task

for each comment (Figure 5.3.2) to select the comment they believed represented the

strongest evidence about the true toxicity of the main comment.

However, instead of showing subjects the closest neighbor generated by each al-

gorithm, subjects in the prediction condition were shown two comments retrieved by

the same algorithm: the closest neighbor of each true class. That is, they were shown

the nearest neighbor whose labeled toxicity was above 50% (making it majority toxic)

and the nearest neighbor whose labeled toxicity was below 50% (making it majority

nontoxic). Each neighbor comment was displayed with feature highlighting as well as

an indication of which class it belonged to (Figure 5.3.2).

The reason for selecting one neighbor from each class is that it was found in pilot

testing that simply presenting the N nearest neighbors from a single algorithm would
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often result in a selection of very similar neighbors, none of which was clearly stronger

than the others. Part of the purpose of this condition was to gauge whether our

retrieval algorithm would allow users to make a better choice about which neighbor to

regard as the strongest analogy for the item-of-interest. Selecting the closest neighbor

of each class allowed more diversity in this choice, as well as a clear winner when

compared to the true class of the item.

In addition to measuring the accuracy of the chosen neighbor, we measured the

change in error between the subject’s initial and final prediction. That is, the extent to

which the presentation of the explanatory examples nudged user predictions toward or

away from the true toxicity of each comment, as collected in the ground truth/baseline

prediction task described above.

5.2.4 Subjects

As stated above, the experiment consists of three sub-studies: the ground truth/baseline

prediction task, and the neighbor preference and neighbor prediction experiments.

The neighbor prediction experiment was divided into three conditions corresponding

to the three retrieval algorithms compared in this study.

50 subjects were recruited for the ground truth task, and 50 for the preference ex-

periment. 30 subjects each were recruited for each of the three prediction conditions.

The entire study was repeated across two distinct comment-of-interest sets, leading

to a total subject count of 380.

This subject count was chosen as a result of a simulated power analysis which

showed it would be able to detect clinically significant effect sizes (which we define as

0.1 for the preference task and 0.05 for the prediction task) in the outcome measures

(discussed in the result section below) with the standard minimum probability of

80%. We used a pilot study to estimate outcome variances for this analysis.

Subjects were recruited via, and participated in the study on, the Mechanical
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Turk crowdworking platform. Subjects were required to be based in the US and to

have completed more than 999 Mechanical Turk human intelligence tasks (HITs) with

more than a 98% acceptance rate.

Figure 5.4:
Mean absolute error of model across model prediction values for the test
set. The red line indicates sample density: the dataset is very unbalanced.

Subjects were compensated via a combination of base pay, attention checks and

performance bonuses. The base pay ($0.50 for the ground truth task and $1.00 for the

two experiments) was augmented by a flat $0.25 bonus per caught attention check

(of which there were 4 in every condition). Subjects in were also given a bonus

for accuracy relative to the average accuracy of their condition in predicting the

true toxicity of the comments they labeled. This bonus was calculated by setting a

maximum possible accuracy bonus for perfect accuracy at $1.00 for the ground truth

task and $1.50 for the preference and prediction experiments, and setting average

performance to receive half these maximum bonuses. Subjects were then awarded

performance bonuses on a linear scale between these two points.

Any subject who missed more than one attention check was discarded and is not
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Selection
proportion

Subject prediction error
Initial Final Change

Pre-output
layer

0.297 0.198 0.229 +0.031**

Attention
centroids

0.443*** 0.2 0.212 +0.013

Centroids 0.26 0.195 0.204 +0.009

Table 5.1: Comparison of subject prediction performance across retrieval algorithms

reflected in the results described below. Only 1 HIT from the preference condition

and 3 HITs from the prediction condition had to be discarded in this way.

5.2.5 Comment sampling

Each subject reviewed 13 comments sampled from the Wulczyn et al. (2017)

dataset. These comments were sampled from the subset of the test set for which

the model predicted a toxicity level between 0.4 and 0.6. As figure 5.4 shows, model

error is disproportionately high on this segment of the data. This scheme also aligns

with other work such as Nobata et al. (2016), which suggests hybrid moderation sys-

tems that selectively seek human input for borderline instances specifically.

5.3 Results

The outcomes we measure include: neighbor preference; chosen neighbor error;

and error difference between initial and final prediction. Table 5.1 summarizes the

results of both the preference and prediction tasks.

In the preference task, subjects preferred neighbors retrieved by our proposed

algorithm by a significant margin (p < 0.005)1 (Figure 5.5). This outcome is in line

with the relevance outcome described in section 4.3.1 above, which demonstrates that

our algorithm is much more likely to retrieve neighbors with a similar attention mask

1Pairwise independent t-tests between all conditions with Benjamini-Hochberg correction incor-
porating all outcomes with a target FDR of 0.05.
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Figure 5.5:
Fraction of comments for which each retrieval algorithm was selected in
preference task.

to the item-of-interest than other baselines.

In the prediction task, however, in none of the three conditions did the presence

of neighbors improve human performance below its mean absolute error of 0.214.

Rather, the presence of neighbors actually caused mean absolute error to increase

on average (Figure 5.6). This increase in error ranged from marginal (p < 0.1) in

the case of the centroids and attention-weighted centroids methods to statistically

significant (p < 0.005) in the case of the pre-output layer method 2.

Examining which neighbors subjects chose in the prediction task helps explain this

result (Table 5.2). Subjects in this task were presented with two neighbor comments,

one with a true toxicity score above the classification threshold of 0.5 and one below

(Figure 5.3). Our hypothesis was that our proposed retrieval method would allow

2Related two-tailed t-test between initial and final prediction error for each condition with 3-fold
Bonferroni correction.
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Figure 5.6:
Mean absolute initial and final user error across condition, compared to
model error and baseline user error.

subjects to choose neighbor comments with a true toxicity closer to that of the item-

of-interest.

As Figure 5.7 shows, subjects were able to “beat the mean” in all conditions

by selecting neighbors whose true toxicity error was less than the mean error of the

presented neighbors. They were able to beat it by the widest margin in the unweighted

centroid condition. This result may possibly be because in this condition there tended

to be a wider margin of error between the two presented neighbors, thus making for

a more clear and meaningful choice between the two neighbors.

However, in none of the three conditions were subjects able to choose neighbors

with a mean true toxicity error lower than the baseline human predictive performance.

Therefore, even if their final guess was simply a reflection of the true toxicity of

their chosen neighbor, subjects were not able to reliably choose neighbors with lower
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Figure 5.7:
Error of the true toxicity of the chosen neighbor in the prediction task,
compared to the best, worst and mean error.

toxicity error than their own baseline human accuracy.

5.4 Discussion

This chapter describes a user study which tested the relative merits of three ex-

planatory algorithms (pre-output layer, attention centroids and centroids) in terms of

several human outcomes. It found that human subjects, when asked to select neigh-

bors to serve as evidence in making predictions about the items of interest, preferred

the attention centroids algorithm by a large margin.

However, none of the three algorithms were able to actually improve human per-

formance on this prediction task, a goal which still remains elusive in the literature

on interpretable machine learning. As Table 5.2 shows, the best neighbor from each
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Neighbor error
Worst Mean Selected Best

Pre-output
layer

0.436 0.301 0.274 0.166

Attention
centroids

0.436 0.293 0.254 0.15

Centroids 0.473 0.299 0.243 0.125

Table 5.2: Error of chosen neighbor across retrieval algorithms.

algorithm was generally closer to the true label than the baseline human prediction,

but subjects were not able to select this optimal neighbor consistently enough for

either their mean neighbor selection nor their mean final error to be any lower than

their baseline accuracy.

The slight edge in performance enjoyed by the centroids method in terms of se-

lected neighbor accuracy and human prediction error change implies that neighbor

diversity may be an important design factor in this type of explanation. Showing

neighbors that represent a wider range of possible outcomes appears to make it easier

to select a neighbor that provides real insight into the decision at hand. The idea

of diversity has a long history in the information retrieval literature, and it is possi-

ble that concepts like maximum marginal relevance (Carbonell and Goldstein, 1998)

could be fruitfully applied to this task.

Another concern in the task of retrieving explanatory examples is that of true label

variance. Comments in the Wulczyn et al. (2017) dataset were given a binary label

by roughly 10 crowd workers each, and we use the mean of these binary responses as

the true labels in the training and explanation of our model. What that means is that

a comment like figure 4.6.1, for which the true label was 0.5, could easily have had a

different label depending on which workers annotated it. We attempt to reduce this

variance in the user study by collecting 50 binary responses for each item-of-interest,

but the true labels of the neighbors we present still have this property.

Even less subjective tasks will often have this property of a nondeterministic
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relationship between input and true label. For example, in the fake review task

studied by Lai and Tan (2019), two reviews could have identical texts but opposite

labels. The truthfulness or fakeness of a review is a property external to the text

itself which is associated with certain text qualities but not defined by them. This

kind of task will lead to the same sort of true label variance as in the Wulczyn et al.

(2017) dataset.

Because of this variance, the premise of displaying a small number of carefully-

chosen evidence comments for a user to apply analogical reasoning to may be the

wrong approach entirely. It is possible that what is really needed is a an interactive

interface like that proposed in Ming et al. (2018), using a dimension reduction tech-

nique such as T-SNE (Maaten and Hinton, 2008) to display a large number of nearest

neighbors in a way that conveys the level of support for a given true label amongst

the neighbors on display. Such a system would be more robust to true label variance,

as it would display aggregate labels across clusters of similar neighbors.

5.4.1 Hybrid robustness

The study described in this chapter represents a second attempt to realize the core

goal of this dissertation and, I argue, the core goal of the contemporary interpretability

literature: that of using explanations to improve hybrid human-machine performance

on a decision task.

We do not succeed in this primary objective. We find that subjects were only

somewhat able to select apt neighbors to identify as evidence, and having done so

their performance actually dropped on average. So the theory engendered by the

result of the Chapter III study, that examples might succeed where attribution failed,

was not supported by the results of this study.

However, given how large the design space is for example-based explanations and

how little attention has been given to them (especially their evaluation), and how
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difficult the research community has found it so far to demonstrate a positive effect

from explanations of any kind, it would have been surprising if we had achieved a

significant positive result in this study. As it is, by overcoming the basic barrier of

producing text examples which are simple enough to read and comprehend, we were

able to expose specific design issues that could inform future work on a similar topic,

such as the importance of neighbor diversity.
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CHAPTER VI

Conclusion

This dissertation proposes that the primary goal of interpretable machine learning

is to improve the quality of decisions made by humans in the presence of AI models.

I focus on the local robustness use case, in which human analysts attempt to make

decisions in the presence of model advice and must decide from case to case whether

to accept or override that advice.

To that end, I introduce two algorithms for local explanations of neural net text

classifiers: adversarial attention for feature attribution, and attention-conscious re-

trieval of explanatory examples. Each algorithm is evaluated by both a functional

empirical evaluation and a rigorous application-based user study. Both types of work

presented in this document, methods and evaluation, represent contributions to the

overall literature on interpretability and suggest future work in the field.

6.1 Methods

The two algorithms introduced in this work seek to generate explanations which

leverage respectively the two dimensions of the data matrix that any machine learning

algorithm operates on: features (columns) and examples (rows).

The adversarial attention method described in Chapter II uses an adversarial

training regime to combine the idea of model attention with the idea of counterfactual
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reasoning used by many posthoc methods (e.g Mothilal et al. (2019); Li et al. (2016);

Wachter et al. (2017b)). It shifts the counterfactual logic of evaluating “how would

the model output change if this feature changed” from posthoc analysis to training,

producing a model whose attention mask consists of all tokens that are liable to

provide predictive signal about the outcome.

This method comes at a time when there is controversy in the interpretability

literature about whether model attention can be treated as explanations for model

behavior (Jain and Wallace, 2019; Serrano and Smith, 2019; Vashishth et al., 2019;

Wiegreffe and Pinter , 2019). Jain and Wallace (2019), for example, find that the

attribution masks produced by a standard attention mechanism show poor agreement

with other attribution methods. While the empirical evaluation presented in Chapter

II does not include this exact analysis, the fact that our method competes favorably

with methods like LIME (Ribeiro et al., 2016) is an indication that it might represent

a solution to some of the problems that have been discussed in this series of papers.

The explanatory example method described in Chapter IV uses a variant of the

Chapter II attention method to simplify the representations of input texts in order to

then retrieve and display explanatory examples from the training data, for the purpose

of helpfully contextualizing model predictions. The contribution of this algorithm is

to articulate a minimal set of criteria (relevance and fidelity) for generating such

explanatory examples, and proposing a method designed to optimize a balance of

these two qualities.

This contribution is made particularly strong because of the relative paucity of

literature pertaining to this type of explanation. Existing work has tended to be

focused on image rather than text data and on the utility of explanatory examples

for non-human-oriented goals, and accordingly has not tended to include user studies

measuring behavioral outcomes (e.g. Papernot and McDaniel (2018); Wallace et al.

(2018); Kim et al. (2016); Cai et al. (2019a)). Our algorithm contributes to this
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literature by producing examples which are actually intended for human consumption

in addition to holding other types of utility.

6.1.1 Intrinsic versus posthoc interpretability

A dichotomy in the current interpretability literature that I discuss briefly in

Chapter I is the tension between intrinsic interpretability methods like neural atten-

tion and posthoc methods like LIME (Ribeiro et al., 2016). The methods proposed in

this dissertation are a reflection of this tension. The Chapter II attention mechanism

is an intrinsic interpretability method, while the Chapter IV example method is a

posthoc method.

By forcing complex models to be interpretable, we not only end up with explana-

tions we can use to reason about the behavior of those models, but with models that

reason in a more interpretable way. The adversarial attention mechanism described in

Chapter II teaches the classifier to generate attention masks by reasoning “this is the

minimum set of words which, if removed from this text, would render it nontoxic”.

This training regime produces attention masks with a more semantically precise def-

inition than the more conventional attention objective of “the minimum set of words

needed to make an accurate prediction”, which has been noted to produce masks that

accord poorly with human judgement (Feng et al., 2018; Jain and Wallace, 2019).

By contrast, the explanatory example retrieval algorithm described in Chapter

IV and then evaluated in Chapter V is a posthoc explanation mechanism because

it explains the behavior of an existing model using a retroactive process (retrieving

and presenting explanatory examples). However, the only way that example-based

explanations could be generated in a way intrinsic to the functionality of a classifier

is if the classifier itself were example-based, such as the popular k-nearest neighbors

algorithm. This type of model, while popular in application, tends to suffer from

generalization problems (Hastie et al., 2001b) and is not regarded as an especially
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active area of machine learning research. For example, the proceedings of the 2019

International Conference in Machine Learning (ICML) contain 74 instances of the

word “neural” and only 4 of the word “neighbor”1.

So there is a conflict between a desire for models with intrinsic interpretability

and a desire for more work on example-based explanations. Generalization-based (i.e.

model-based) machine learning is preferred to example-based machine learning, but

it is impossible to generate example-based explanations which are perfectly coupled

to generalization-based predictions in the way that is called for by the idea of intrinsic

interpretability.

A partial solution to this paradox exists in ideas like conformal prediction, in

which a generalization-based model still makes predictions, but these predictions are

either nudged through optimization (e.g. Chen et al. (2018)), or adjusted in a posthoc

manner (e.g. Papernot and McDaniel (2018)) to conform to their neighbors within

the representation space learned by the model. I believe that the former approach

represents a rich avenue for further research, with the potential to generate models

that combine the power of generalization with the interpretability of example-based

methods.

One way to perform this nudging could be the inclusion of a generative objective

in the training process for the classifier. We can place a generative objective on the

output layer of a classification model such as an attention LSTM which encourages

it to not only make accurate predictions but also be able to regenerate its (attention-

masked) input. If done properly, I hypothesize that this would produce a model

whose pre-output layer representation is useful for both prediction and retrieval of

semantically similar items (as opposed to the structural similarity we noted in section

4.3).

The idea of combining generative and discriminative objectives accords with recent

1https://icml.cc/Conferences/2019/Schedule?type=Poster
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developments in NLP that have demonstrated the utility of pretraining a generative

language model on unlabeled data and then fine-tuning such a model for particular

tasks (Peters et al., 2018; Devlin et al., 2018). Starting with one of these models

would be a practical way of approaching this joint optimization idea.

The Chapter II adversarial attention algorithm could also potentially benefit from

the inclusion of generative modeling. This algorithm requires a special training

paradigm to prevent the adversarial learner from learning the relationship between

the presence of masking and the true toxicity label of the comment. This could be

avoided if, rather than strictly blanking out tokens with low attention weights, the

model were to instead replace them with manufactured tokens chosen specifically to

fool the adversarial predictor. This would obviate the need for the confusion step

of model training, and would additionally mitigate any incidental data leakage that

might be slipping through that step.

6.1.2 Interpretability and active learning

One advantage of model attention over other feature attribution techniques is that

it produces an attention mask as an additional output that can be manipulated via

its own terms in the model objective function. In the adversarial attention model

described in Chapter II, we optimize this attention mask to be sparse but compre-

hensive, as well as cohesive.

This property could be used to close the loop on interpretability and active learn-

ing. If known model errors are shown to humans along with their corresponding

attention masks, those humans can potentially diagnose those errors at the attention

level by identifying tokens the model should or should not have been attending to.

These attention-level corrections can then be fed back into the model training as a

target value on the attention output for those tokens.

Combining model attention and active learning in this way could represent a
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breakthrough in model debugging, as it would allow precisely targeted human feed-

back into a buggy model without being dependent on the difficult task of selecting

additional data to label, as in traditional active learning approaches (Settles , 2010).

6.2 Evaluation

In Chapter I, I argue that the goal of improving the predictive performance of

human decision-makers in conjunction with AI models, what can be described as

a hybrid system drawing on both human and model insight, is the “holy grail” of

interpretability work that no study has been able to conclusively claim so far.

Every evaluation performed in this dissertation is a reflection of this basic goal in

some way. The two empirical evaluations represent operationalizations of qualities we

theorize to be important in utilizing the corresponding methods for effective decision-

making (completeness and analogical validity, respectively), while the two user studies

are direct implementations of this goal of increasing robustness.

While both user studies have primarily negative results, I argue that this result

does not invalidate this primary claim. In combination with other similar recent

works, it suggests that the task of improving hybrid robustness is extremely challeng-

ing from both a machine learning and a human-computer interaction perspective.

Furthermore, because the bulk of the work on this problem has come from the ma-

chine learning community, there is a large expectation gap in the field, in which the

topic has attracted a great deal of attention in the methods literature but has proven

to be consistently unhelpful in human performance outcomes in the limited human

experimentation literature that has been published (e.g. Lage et al. (2018); Lai and

Tan (2019); Poursabzi-Sangdeh et al. (2018)).

This dissertation works to characterize if not close this gap by including two rela-

tively large-scale user studies assessing the impact of attribution-based and example-

based explanations respectively on human performance on a reasonably realistic pre-
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diction task. While we are as unable as the works cited above to achieve a robustness

improvement, these two studies help push out our understanding of the design space

of applied interpretability.

From the feature-based study described in Chapter III, for example, we learn

that while feature highlighting does not improve human accuracy, it does change the

distribution of human error, causing subjects to make more false negatives but fewer

false positives. Noting this, I suggest that future work in applied interpretability

should be conscious of what type of error it seeks to reduce in its subjects. For

example, a model intended to be used in an applied interpretability application could

actually be tuned to produce more false positives than false negatives on the basis

that this type of error seems easier to overturn with the benefit of explanations.

At the very least, designers should carefully consider the prevalence and severity of

different types of errors in choosing whether to incorporate explanations into their

applications.

More generally, these ambiguous results begin to suggest that the relationship

between the baseline distributions of human and model error is a huge factor in

determining whether interpretability can aid human performance on a given decision

task. The less that either type of agent can uniquely contribute to the joint system,

the less potential there is for improvement, and the less likely it is that the combined

human-model decision system can outperform humans or models alone.

We address this issue in both user studies. In the Chapter III study, we oversample

model errors from across the full range of true toxicity scores in the dataset, resulting

in a comment sample for which the model and baseline human performance is similar

(accuracy 0.4 versus 0.5). In the Chapter V study we sample comments from those

with borderline predicted toxicity, on which the model is naturally somewhat unreli-

able. This again results in a comparable model versus human baseline performance

(mean absolute error 0.24 versus 0.21).
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While these are both reasonable solutions to the problem of unbalanced model and

human error distributions, future evaluation studies may need to include some sort

of “potential improvement assessment” pilot in which baseline human performance

is measured and the complementarity of human and model error on that particular

decision task is assessed to see what improvement could come from better human

understanding of model behavior. As the literature matures, this assessment step

could grow to accommodate a more nuanced understanding of the types of error

interpretability is liable to mitigate (like the type I/type II distinction we noticed in

our first user study).

It is possible that beyond understanding the distribution of human error, it may

be necessary to understand the reasons for human error on these decision tasks before

we can design interpretability methods to mitigate those errors. One way to collect

this data in future evaluation studies would be to ask human subjects to explain their

decisions by selecting areas of text (or images, or tabular data, as appropriate), and

then diagnosing human errors at the feature level by comparing the annotations of

accurate subjects with inaccurate ones. Gaze studies might be even more fruitful for

capturing the true reasons underlying human decisions (and thus human errors).

We find in the Chapter V study that subjects struggle to choose “good” neighbors

and to use these neighbors to make better assessments about toxicity. There are a

few possible reasons for this failure, including:

• Diversity of presented neighbors (hinted at by the slightly better performance

of the centroids method in this regard)

• Unreliability of ground truth labels for those neighbors (because of label noise

in the Wulczyn et al. (2017) dataset)

• Risk of presenting neighbors that are actually outliers (exacerbated in our study

by choosing the closest neighbor of each possible class)

These are all issues that future studies on this topic need to explore, but it was
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only by testing an algorithm which fulfilled the basic criteria of producing neighbors

that were both visually recognizably relevant and pertinent to the model’s prediction

on each item-of-interest that these deeper design issues could have been revealed.

Beyond the specific issues that we identified as salient, example-based explanations

represent a vast, untapped design space. Some of the design decisions made in the

Chapter V study include: 1) how to select examples; 2) which examples and how many

examples to display to users; 3) what information to display about each example;

4) when (i.e. what order) to display each type of information; 5) how to account

for label noise and/or labeler disagreement in the presence of training examples;

6) whether to display synthetic examples generated by the model or true examples

drawn from the dataset; 7) whether and how to integrate example-based and feature-

based explanations. While this list is by no means exhaustive, it helps illustrate the

combinatorial explosion of options for how to combine designs elements in this type

of explanatory system.

Further experimentation may be able to arrive at an optimal combination of pre-

dictive model, neighbor retrieval algorithm, and visual presentation that gives human

users ways to reason about the reliability of model predictions in a way that actu-

ally improves performance above both baseline human and model performance. The

Chapter V user study represents a probe into this space which resolves one basic

unaddressed problem in the literature (that of retrieving comprehensible neighbors

with similar model behavior), while revealing a number of secondary design issues for

this type of explanation method (choice diversity, label noise, neighbor representa-

tiveness).

Therefore, I argue that the two user studies presented in this dissertation are

valuable contributions to the interpretability literature as a whole because they help

highlight this expectation gap between method and application, and because they

suggest methodological research directions that would not have been evident without
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their conclusions.

6.2.1 Training effects

Experiments in applied interpretability have tended to be one-shot prediction

tasks that implicitly assume that the human and model agents in question are static

entities with set predefined prediction and error behavior. While a model can always

be retrained with different hyperparameters (e.g. a higher penalty on false nega-

tives), human agents are also dynamic entities capable of learning and adapting to

the capabilities of a system.

That is to say, it is possible that the desired performance improvement might

emerge in longer-term training of human subjects over the simple one-shot experi-

ments that have been performed so far. With real-time feedback about the correctness

of their predictions, users might get better and better at the given task (toxicity pre-

diction in our case). It is possible that explanations would have an impact on this

training process, either on the time required to achieve a certain level of improvement

or on the level of improvement attainable.

6.3 Conclusion

In this work I present two novel interpretability algorithms which fill significant

gaps in the interpretability methods literature and two rigorous user studies which

address calls for more rigorous user testing of interpretability concepts while revealing

insights about the human factors involved in machine learning interpretability. These

contributions reveal a number of potential avenues for future work on both methods

and human experimentation.
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