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Abstract

Vibration-based self-powered systems are electromechanical technologies that are mechani-

cally coupled to vibratory phenomena, and have the capability to convert this mechanical

energy into electrical energy to power their operations. These systems are fully energy-

autonomous because they derive all the energy needed for operation directly from the vibra-

tory disturbances to which they are subjected. Examples include (i) a wireless sensor node

that powers its sensing, computing, and transmission tasks by converting low-level structural

vibrations into electrical energy, (ii) an ocean wave energy converter that transforms the os-

cillating motion of ocean waves into electrical energy and uses a portion of this converted

energy to power its control operations, and (iii) a structural vibration suppression control

system that powers its operation by storing and recycling the energy it extracts from the

vibrating structure.

In this thesis, we consider the general problem of control design for vibration-based self-

powered systems in the context of discrete-time optimal control theory, and realize the

optimal control solution in real-time using Model Predictive Control (MPC). The function-

ality of a self-powered system is constrained due to the limited availability of the vibratory

energy resource, and also due to the finite bounds of its on-board energy storage subsystem.

In addition, there are parasitic losses associated with harvesting energy and running intelli-

gence, as well as decay of stored energy. These effects further restrict the functionality of the

system. Consequently, the main challenge associated with control design for these systems

relates to carefully managing energy harvesting, usage, and storage.

First, we develop a general model for self-powered systems and provide conditions on the

model parameters for stability and feasibility. We restrict our attention to linear, time-

varying, discrete-time systems, and assume the exogenous disturbances are known exactly.

We then formulate the discrete-time optimal control problem to minimize a quadratic perfor-

mance measure subject to constraints on the on-board energy storage, which is, in general, a

nonconvex quadratically constrained quadratic program. We formulate the dual relaxation

xiv



of the self-powered optimal control problem, which may be solved uniquely and efficiently.

Its solution provides a lower bound on the optimal primal performance measure. The duality

gap is the difference between the optimal primal and optimal dual objectives. We illustrate

that if a certain easy-to-check condition holds for the obtained dual optimum, then there is

no duality gap, and consequently the dual and primal optima are coincident. In this situ-

ation, it follows that this duality technique can be used as a convex means of solving the

primal (nonconvex) optimal control problem exactly. If there is a nonzero duality gap, the

resulting trajectory does not satisfy the constraints of the original optimal control problem.

In this case, we introduce an algorithm to guarantee that the first time-step of the trajectory

is feasible and can be implemented in real-time via MPC.
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Chapter 1

Introduction

1.1 Motivation

The incorporation of embedded intelligence and actuation into the design and operation

of electromechanical dynamical systems is increasing with the need for real-time sensing,

control, and adaptation. It is often advantageous for these physical systems to operate in

complete energy-autonomy, as they do not require access to an energy source, and instead

have the capability to convert energy available in their environments into electricity to power

their operations. In this thesis, we consider the general problem of control design for these

energy-autonomous systems that are mechanically coupled to vibratory phenomena.

We assume the transducers used to implement the control have bi-directional power flow

capability; that is, they can be controlled to inject power into a vibratory system (as ac-

tuators), and to remove power from this system (as generators). These transducers are

electronically interfaced with localized energy storage subsystems so that they are capable of

storing and reusing the energy they harvest. Crucially, we assume that the energy in these

storage systems is the only energy that the transducers, sensors, and control intelligence can

access to power their operation. This type of system is fully energy-autonomous since it

derives all the energy needed for operation directly from the vibratory disturbances to which

it is subjected. We refer to a vibratory network equipped with such control technologies

as a self-powered system. To ground these concepts in technology, consider the following

examples of self-powered systems excited by vibratory phenomena.

1. Wireless Sensor Node: Small-scale embedded sensing systems have applications

across a wide range of fields including biomedical devices implanted within the human

body, and structural monitoring systems in buildings and other civil infrastructure

1
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Figure 1.1: Vibration energy-harvesting wireless sensor node

[31]. In many cases, power availability is one of the most daunting challenges. In gen-

eral, on-board batteries must be periodically replaced or recharged as their energy is

depleted, and the service life of a sensing system can be several decades. This requires

routine maintenance, which is undesirable for many reasons. For instance, it requires

that the sensor (or at least the storage subsystem) be easily accessible. In infrastruc-

ture monitoring applications, this prohibits sensors from being embedded internally

in structural components or joint connections during construction. In addition, re-

quired routine maintenance may prohibit the use of such sensors in hostile and remote

environments [3, 67].

In infrastructure monitoring applications, low-level vibrations are a common form of

available environmental energy, which can be exploited to power small-scale embedded

sensing systems [45, 60]. Figure 1.1 shows a schematic of a vibration energy-harvesting

wireless sensor node, where a base acceleration excites a mass-spring-damper system

and this mechanical energy is converted into electrical energy via a transducer. Al-

though many forms of transduction may be used to dynamically convert vibratory

energy into electricity, at the µW-mW scale three modes of transduction – piezoelec-

tric, electromagnetic, and electrostatic – are most prevalent. Harvested energy is stored

in an energy storage system, which can either be used to power tasks like sensing or

transmitting, or can be injected back into the mass-spring-damper system to aid in

harvesting more energy.

2. Active Vibration Suppression System: There is a long history of research on the

use of active control systems to suppress vibratory responses in civil structures (i.e.,

buildings and bridges) during seismic and wind events [34]. To implement active con-

trol requires the use of large-scale electromechanical actuators distributed throughout

2



the structure, which are controlled in real-time in response to sensor feedback. This

technology can significantly outperform passive technologies (e.g., shock absorbers,

tuned mass dampers, etc.). However, these control systems require enormous amounts

of external power and energy in order to function properly. In many cases, especially in

the case of seismic response protection, the external power grid cannot be relied upon.

These reliability concerns have been one of the chief impediments to the adoption of

active control technologies in structural engineering.

In many aerospace applications, structural vibration suppression is also a central con-

cern. However, delivery of power to a wide array of actuators used for vibration

suppression in an aerospace structure may be impractical or undesirable. Hence, many

such applications make use of passive vibration suppression technologies; most no-

tably, piezoelectric transducers [28, 61]. Although these passive technologies perform

adequately in many circumstances, superior response suppression can theoretically be

achieved via the use of active control.

Active vibration suppression systems that can simultaneously harvest energy (using, for

example, piezoelectric [75] or electromagnetic devices [82, 83]) and suppress vibration

without the need for an external power source, allow for the improved performance of

active control without external power reliability concerns. Figure 1.2 depicts a self-

powered active vibration suppression system for a civil structure subjected to a base

acceleration. Each floor of the civil structure is equipped with a transducer, which is

then connected to an energy storage system via power electronics.

3. Wave Energy Converter: WECs are devices that convert the oscillatory motion of

ocean waves into electrical energy, and send this harvested energy back to shore to

be incorporated into the power grid [20, 62]. There are many types of WECs, e.g.,

submerged flaps, attenuators of various geometries, and oscillating water columns;

however, the most established technology is a point absorber buoy, which floats on the

surface of the ocean and is connected to the seabed via moorings [17]. Various types

of transducers (which are referred to as Power Take-Off (PTO) devices in the WEC

industry) are used in point absorber buoys: hydraulic, direct drive mechanical, and

linear generators, for instance. Actively controlled WEC buoys significantly outperform

passively controlled buoys [59], but active controllers require an energy source to realize

bi-directional power flow.

Although a WEC could be designed to draw power for active control directly from

3
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Figure 1.2: Self-powered active vibration suppression system for a civil structure

the grid, there are benefits to using a local, bottom-mounted energy storage device to

provide this power. Figure 1.3 depicts a WEC farm consisting of four buoys, each con-

nected to a common energy storage system. The system supports bi-directional power

flow between the buoys and the energy storage system, but only single-directional

power flow to the grid on shore. A benefit of this design is that the energy storage

system can be used to smooth out the power sent to the grid. This is critical for

WECs because, in general, these devices produce power with much higher variability

than other renewable energy technologies, for instance, wind turbines [49]. From the

perspective of a grid operator, single-directional power flow to shore simplifies the in-

corporation of these renewable energy devices into the larger grid and reduces reliability

concerns. Furthermore, because WECs have access to a finite amount of stored energy,

this method guarantees stability of the actively controlled buoy. Therefore, we classify

this type of WECs with a bottom-mounted energy storage device as a self-powered

system.
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Figure 1.3: WEC farm with a common bottom-mounted energy storage system

1.2 Self-Powered System Model

Figure 1.4 shows a general model of a self-powered system. The plant is excited by d

exogenous disturbances a(t) =
[
a1(t) · · · ad(t)

]T
, and is actuated through m transducer

ports. Transducer port j has an associated control input uj(t) and collocated potential

variable vj(t). We collect control inputs and potential variables into vectors u(t) and v(t),

respectively, i.e., u(t) =
[
u1(t) · · ·um(t)

]T
and v(t) =

[
v1(t) · · · vm(t)

]T
. The ports are

interfaced with p energy storage systems, where a single port can connect to a single storage

system, but a storage system may connect to multiple ports. The energy in the ith storage

system is represented by Ei(t), which, due to physical constraints on the storage device, is

required to be within the bounds Ei(t) ∈ [Ei
L, E

i
U ], where Ei

L, E
i
U > 0 are the lower and

upper energy constraints, respectively. Each energy storage system is connected to either a

resistor bank or a power bus, which either burns off excess energy that cannot be stored or

sends power to the bus. Let qi(t) be this power term for the ith storage system, and collect

all power terms in vector q(t) =
[
q1(t) · · · qp(t)

]T
.

In addition to the restriction that they operate using only the energy they harvest, self-
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Figure 1.4: General schematic for a vibration-based self-powered system with d dis-
turbances, p energy storage systems, and m ports

powered systems exhibit additional constraints as a consequence of the connectivity of their

electronics. To illustrate this point, consider Figure 1.5 that shows a five degree-of-freedom

mass-spring-damper system with three transducers for active vibration suppression. It also

shows the connectivity of the transducers with the energy storage units through power-

electronic interfaces. The three cases in the figure vary by the restrictions in the flow of

energy. In Figure 1.5a, all transducers are connected to a single storage system, such that

the energy extracted by one can be reused by any. In Figure 1.5b, two of the transducers

share one storage system, while the third is isolated. In Figure 1.5c, each transducer’s energy

storage unit is isolated, implying that although they can each store and reuse energy, they

cannot transmit energy between each other.

Figure 1.4 also illustrates a generic feedback loop that accepts the system state x(t) and

disturbance a(t), and produces desired (i.e., commanded) values for the control inputs u∗(t),

and the power dissipations q∗(t). These commands are then sent to the power electronic

converters in the system, which facilitate high-bandwidth tracking between the desired and

actual values. Designing the feedback law for self-powered systems is challenging for a few

reasons:
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1. Exogenous disturbance forecasting: Environmental energy sources are stochastic,

and this randomness introduces uncertainty in the availability and magnitude of envi-

ronmental energy. Therefore, supplemental to the control design, we require a predictor

for the future stochastic process based on past and present disturbance measurements.

In some situations, such as the WEC problem, the future disturbance can be known

with a fair amount of accuracy ahead of time through the use of up-wave sensors.

2. Finite energy resource and storage: A self-powered system is constrained by

the requirement that it not exceed its energy storage bounds at any time along its

trajectory; i.e., it must be the case that Ei(t) ∈ [Ei
L, E

i
U ], ∀t, i ∈ {1...p}.

3. Energy dissipation and decay: We assume that the energy recovered by the system

decays. Consequently, a self-powered system can operate at a higher efficiency if its

control law reuses this energy more rapidly. In addition, because the presence of

parasitic losses will in general depend on the control input u(t), these parasitics must

be factored into the control design in order to properly account for the dissipation

associated with a given control action.

4. Divided control effort: In some situations, harvesting energy and the primary per-

formance objective require conflicting control actions. For instance, it is generally the

case that optimal energy harvesting and optimal vibration suppression are conflicting

control objectives. A control law that makes optimal effort to replenish the energy

storage system may result in poor vibration suppression. On the other hand, a control

law that disregards the replenishment of energy will likely result in violation of the

energy constraints.

1.3 Scope

The objective of this thesis is to develop a general theory for the control design of self-powered

systems that minimize a performance measure J while satisfying the physical constraints of

the energy storage units. As discussed earlier, we are specifically interested in implementing

these control algorithms on electromechanical systems subject to vibratory disturbances. For

many of these types of devices, there are well-established linear dynamic models that char-

acterize the plant in Figure 1.4. Due to the need to strictly enforce the physical constraints

of the energy storage units, we develop a control design for these systems in the context of
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casted exogenous disturbances {âk . . . âk+N} and the estimated current state
x̂k are fed into a trajectory optimization algorithm, and then the first time-
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discrete-time optimal control theory, and realize the optimal control solution in real-time

using economic Model Predictive Control (MPC) techniques [9, 46].

Economic Model Predictive Control (MPC) is an iterative method in which the perfor-

mance measure J is minimized over a finite-time horizon. Let k be the discrete-time step

corresponding to the continuous-time interval t ∈ [k∆t, (k + 1)∆t), and let N be the num-

ber of time steps in the receding horizon. Figure 1.6 shows the components of the system

intelligence block in Figure 1.4, which is used to implement the optimal control solution via

MPC. For each time step k, the following steps are executed:

1. The exogenous disturbances are measured by a set of sensors, and then a disturbance

forecaster uses these data to predict the next N + 1 future disturbances {âk . . . âk+N}.
Simultaneously, the states or outputs are also measured by sensors, and if not directly

measured, the current state is estimated x̂k.

2. Treating {âk . . . âk+N} as deterministic, the trajectory optimization algorithm then

calculates optimal control inputs {u∗k . . .u∗k+N} and optimal energies flowing to the

resistor banks or power buses {q∗k . . . q∗k+N} to minimize a receding-horizon performance

measure, J .

3. The first time-step of these trajectories, u∗k and q∗k, are realized in Zero Order Hold

(ZOH) over the duration t ∈ [k∆t, (k + 1)∆t).

To simplify the analysis, we assume that u∗(t) and q∗(t) can be tracked with infinite band-

width by the power electronics, such that u∗(t) = u(t) and q∗(t) = q(t). Of these steps,
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step 2 (i.e., trajectory optimization) is the computational bottleneck, and is the focus of the

thesis.

1.3.1 Trajectory Optimization Techniques

In general, trajectory optimizations associated with self-powered systems are nonconvex.

We show in Section 4.1.3 that the nonconvexity results from the physical constraints on

the energy storage units, and that these constraints are quadratic functions in u. If perfor-

mance measure J is also a quadratic function, the trajectory optimization is a Quadratically

Constrained Quadratic Program (QCQP). QCQPs have the following general form where

z ∈ Rm is the optimization variable and we enforce b quadratic constraints:

QCQP =



Given: Qi, si, ri, ∀i ∈ {0...b}

Minimize: zTQ0z + sT0 z + r0

Domain: z ∈ Rm

Constraints: zTQiz + sTi z + ri 6 0, ∀i ∈ {1...b}.

Specific QCQPs can be solved efficiently. For example, convex QCQPs can be solved in

polynomial-time using well-known convex optimization techniques [10], and QCQPs with a

single variable can be solved analytically. Nonconvex QCQPs with only one constraint have

zero duality gap and hence can be solved in polynomial-time via its convex dual, which is

known as the S-procedure or S-lemma [12]. However, these special cases do not encompass

the trajectory optimizations for self-powered systems, which are nonconvex, and in general,

MPC horizons extend beyond a single time-step. There are no specialized solution methods

available for general nonconvex QCQPs, and these problems are NP-hard [55].

To solve the original nonconvex problem directly, it is common to use a generic non-

linear optimization algorithm, for instance, barrier methods or Sequential Quadratic Pro-

gramming (SQP). When using barrier methods, we solve a sequence of equality-constrained

minimizations, while in SQP, we solve a series of Quadratic Programs (QPs) [10]. There

are many commercially available and open-source packages (e.g., Matlab’s optimization tool-

box, GAMS, AMPL, YALMIP) that implement these types of algorithms to solve generic

nonlinear optimizations, and other available packages that calculate Nonlinear MPC con-

trol actions directly (e.g., Matlab’s Model Predictive Control Toolbox, ACADO, PANOC).

Although these techniques ensure local convergence, because a series of problems must be

solved sequentially, the computational cost can be high. Furthermore, these techniques are
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highly sensitive to the algorithm’s starting point. As we plan to implement the optimal

control actions via MPC, trajectory optimizations must be solved to an acceptable precision

during a single time-step ∆t, making computation time critical.

Instead of solving the original (primal) nonconvex problem, we can instead solve a convex

relaxation to obtain bounds on the optimal performance measure. First, consider a Semi-

Definite Relaxation (SDR) that lifts the original QCQP into a higher dimensional space

through the introduction of the new variable Z ∈ Sm, where Sm is the set of all real m×m
symmetric matrices:

SDR =



Given: Qi, si, ri, ∀i ∈ {0...b}

Minimize: Tr(ZQ0) + sT0 z + r0

Domain: z ∈ Rm, Z ∈ Sm

Constraints: Tr(ZQi) + sTi z + ri 6 0, ∀i ∈ {1..b}

Z � zzT .

The optimal solution of the SDR is equivalent to the optimal solution of the original QCQP

if Z = zzT [11, 73]. SDRs are employed in various engineering problems: for example, in

the context of the sensor network localization problem [44], and in the optimal power flow

problem, where the relaxed solution is exact under special conditions [39].

Another type of convex relaxation is a dual (or Lagrangian) relaxation where we maxi-

mize over the Lagrange multipliers (as opposed to minimizing over the primal variables in

the original problem). Let L(z,λ) be the Lagrangian, where λ ∈ Rb
>0 are the Lagrange

multipliers used to enforce the constraints:

L(z,λ) = zTQ0z + sT0 z + r0 +
b∑
i=1

λi
(
zTQiz + sTi z + ri

)
.

Then, the dual relaxation is:

Dual Relaxation =



Given: Qi, si, ri, ∀i ∈ {0...b}

Maximize: G(λ) = inf
z
L(z,λ)

Domain: λ

Constraints: λ > 0,
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where G(·) is the dual function (see Section 2.5 for an overview of Lagrangian duality). From

the optimal Lagrange multipliers, we can recover the associated primal variable z. The dual

relaxation also provides a lower bound on the optimal solution of the primal problem, and

can also be framed as a Semi-Definite Program (SDP) [10]. Dual relaxations are implemented

in many engineering problems, for example, in the unit commitment problem [53, 74].

The dual relaxation and SDR are duals of each other, and consequently, they provide the

same lower bound on the original nonconvex QCQP (assuming constraint qualifications are

satisfied) [10, 11]. The original nonconvex trajectory optimization problem has (m+p)(N+1)

variables (at each time-step of the receding horizon, there is a control input u associated

with each of the m transducer ports, and a power dissipation term q for each of the p energy

storage units). For the SDR, in addition to the (m+ p)(N + 1) original variables, there are
1
2
((m + p)2(N + 1)2 + (m + p)(N + 1)) unique entries of symmetric matrix Z. The dual

relaxation has 2p(N + 1) variables (see Chapter 5), significantly fewer than the SDR.

Both relaxations grow in dimensionality with the length of the MPC horizon (N) and

the number of energy storage units (p). However, the SDR also grows with the number

of transducer ports (m) and grows quadratically in all these variables. In this thesis, we

only consider the dual relaxation. Furthermore, we exploit the specific structure of the

self-powered optimal control problem in the formulation of the dual relaxation to increase

efficiency.

1.3.2 Dual Relaxation Algorithm for Model Predictive Control

Dual relaxations provide lower bounds on the performance measure of the original nonconvex

problem. However, if these bounds are not tight, the optimal trajectories produced by these

relaxations are infeasible in the primal domain, i.e., they do not satisfy all the physical

constraints of the energy storage units. Many researchers have explored stochastic SDRs,

where the performance measure is minimized and constraints are satisfied in expectation

[44]. Park and Boyd introduce the Suggest-and-Improve algorithm for obtaining approximate

solutions to general QCQPs [56]. In this algorithm, a relaxation of the original problem is first

solved (the suggest portion), and then a local optimization method is used to improve upon

this initial solution (the improve portion). However, the Suggest-and-Improve algorithm also

does not guarantee feasibility.

One way to guarantee feasibility is to verify that there is zero duality gap. The duality

gap is the difference between the minimum performance measure of the nonconvex primal
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trajectory optimization and the maximum dual function of the dual relaxation. Because the

dual relaxation always produces a lower bound of the original primal problem, the duality

gap is a nonnegative value. Under special circumstances, the duality gap is zero, meaning

that the dual and primal optima are equal. When this is the case, the primal optimal

solution can be found by solving the convex dual problem instead of the nonconvex primal

problem, which always results in feasible trajectories. In Chapter 5, we introduce sufficient

conditions for zero duality gap for the self-powered system trajectory optimization. For

situations where there is a nonzero duality gap, we modify the trajectory resulting from the

dual relaxation. Because we are implementing the trajectory optimization using MPC, we

only need to guarantee feasibility of the first control action. In Chapter 6, we introduce an

optimization algorithm to ensure feasibility of the first time-step.

1.4 Outline

The following is an overview of the content of each chapter of this thesis:

Chapter 2: We present a general overview of the foundational topics of the work presented

in this thesis. We review linear matrix and system theory, input-output relations,

discrete-time optimal control, and Lagrangian duality.

Chapter 3: We develop a general model for a self-powered system and provide conditions on

the model parameters for stability and feasibility in continuous-time. The model for

an energy storage subsystem is formulated to account for the decay of stored energy

and transduction losses. We then discretize these models and provide discrete-time

feasibility conditions.

Chapter 4: We formulate the trajectory optimization problem for self-powered systems, and

derive conditions for convexity. Barrier methods are introduced to solve the original

nonconvex problem, and then we demonstrate this method by maximizing the data

transmission of an energy-harvesting wireless sensing node.

Chapter 5: We use the dual relaxation to solve the trajectory optimization presented in

Chapter 4. A closed-form expression of the dual function is derived, as well as condi-

tions to guarantee that it is finite. We present easy-to-check sufficient conditions for

zero duality gap. Last, we demonstrate the techniques developed in this chapter on a

piezoelectric vibration energy harvester.
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Chapter 6: We first present an overview of MPC, and then introduce an algorithm to guar-

antee feasibility of the first time-step of the dual relaxation discussed in Chapter 5. We

conclude this chapter by investigating two example problems: a spherical buoy-type

WEC with the goal of maximizing energy generation, and an energy-harvesting active

vibration suppression system.

Chapter 7: We first summarize the contributions of this thesis. Then, we discuss future

work that builds on the ideas presented in this dissertation: (i) a method to forecast

exogenous disturbances, (ii) a technique to smooth the power extracted from WECs,

(iii) on-going work to derive necessary and sufficient conditions on the problem data

to guarantee zero duality gap, and (iv) improvements to the loss model.
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Chapter 2

Preliminaries

In this chapter, we first present the mathematical notation used throughout this thesis.

We then provide a brief review of concepts from linear matrix and system theory, input-

output theory, discrete-time optimal control, and Lagrangian duality that are relevant to

this dissertation. Basic definitions and relations from linear algebra and linear system theory

are not presented here; however, [33] can be used as a reference.

2.1 Notation

Let R be the set of real numbers, C be the set of complex numbers, and Z be the set of

integers. Let [a, b] be the set of real numbers on the interval from a to b, and {a...b} be the

set of integers from a to b. Rn×m is the set of n ×m real matrices, Rn is the set of n × 1

real vectors, and Sn is the set of real n × n symmetric matrices. When applicable, these

same notations are also used for the set of complex numbers C. The complex conjugate of

a complex number c ∈ C is designated as c̄, and the real part of c ∈ C is Re (c). Let L2 be

the Lebesgue space of functions that are square-integrable. All other sets are designated as

uppercase letters in the blackboard (double-barred) font.

Matrices are bolded upper-case symbols (e.g., M ), and vectors are bolded lower-case

symbols (e.g., v). In is the n×n identity matrix, and 0n×m is a n×m matrix of zeros. M(t)

represents a continuous-time, time-varying matrix with t ∈ R. In general, superscripts refer

to parameters or variables related to the ith energy storage system (e.g., vi). In general,

the first subscript refers to discrete-time time-step, e.g., vk is the discrete-time, time-varying

matrix, where k ∈ Z is the counter. The jth element of vector vk is denoted as vk,j. Let

Mk:m be the sequence of discrete-time, time-varying matrices from time-step k to m, i.e.,
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Mk:m = {Mk . . .Mm}, and the same notation is used for vectors. Let M 6 0 (M = 0) be

refer to the element-by-element inequality (equality).

2.2 Linear Matrix and System Theory

Definition 2.1. (Continuous-Time Linear Time Varying (LTV) System, Continuous-Time

Linear Time Invariant (LTI) System) Let Sc,LTV be a continuous-time LTV system, which

is represented by the following set of equations:

Sc,LTV :

{
ẋ(t) =A(t)x(t) +B(t)u(t)

v(t) =C(t)x(t) +D(t)u(t),
(2.1)

with initial condition x(0), and where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the input

vector, v(t) ∈ Rp is the output vector, A(t) ∈ Rn×n, B(t) ∈ Rn×m, C(t) ∈ Rp×n, and

D(t) ∈ Rp×m for all times t ∈ R. If matrices A, B, C, and D are time-invariant, then

Sc,LTV becomes the continuous-time LTI system Sc,LTI which is of the form:

Sc,LTI :

{
x(t) =Ax(t) +Bu(t)

v(t) =Cx(t) +Du(t).
(2.2)

Definition 2.2. (Discrete-Time LTV System, Discrete-Time LTI System) Let Sd,LTV be a

discrete-time LTV system, which is represented by the following set of equations:

Sd,LTV :

{
xk+1 =Akxk +Bkuk

vk =Ckxk +Dkuk,
(2.3)

with initial condition x0, and where xk ∈ Rn is the state vector, uk ∈ Rm is the input vector,

vk ∈ Rp is the output vector, Ak ∈ Rn×n, Bk ∈ Rn×m, Ck ∈ Rp×n, and Dk ∈ Rp×m for all

time indices k ∈ Z. If matrices A, B, C, and D are time-invariant, then Sd,LTV becomes

the discrete-time LTI system Sd,LTI which is of the form:

Sd,LTI :

{
xk+1 =Akxk +Bkuk

vk =Ckxk +Dkuk.
(2.4)

Definition 2.3. (Matrix Definiteness) Let M ∈ Sn. If for all x ∈ Rn \ 0:
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1. xTMx > 0, M is positive definite, denoted as M � 0

2. xTMx > 0, M is positive semi-definite, denoted as M � 0

3. xTMx < 0, M is negative definite, denoted as M ≺ 0

4. xTMx 6 0, M is negative semi-definite, denoted as M � 0

Theorem 2.1. (Matrix Inversion Lemma) [33]. Let B = A+XRY , where A ∈ Rn is non-

singular, X ∈ Rn×m, R ∈ Rm×m is nonsingular, and Y ∈ Rm×n. Then, if (R−1 + Y A−1X)

and A are nonsingular, we can write the inverse of B as:

B−1 =A−1 −A−1X
(
R−1 + Y A−1X

)−1
Y A−1.

Theorem 2.2. (Derivative of Matrix Inverse) [33]. Let M (x) be a square matrix, which is

a function of variable x, then the derivative of M(x) is:

∂M(x)−1

∂x
=−M(x)−1∂M (x)

∂x
M (x)−1.

Definition 2.4. (Schur Complement) [33]. Let M ∈ R(n+m)×(n+m) be a matrix of the form:

M =

[
M11 M12

M21 M22

]
,

where M11 ∈ Rn×n, M12 ∈ Rn×m, M21 ∈ Rm×n and M22 ∈ Rm×m. If block M22 is

nonsingular, then the Schur complement of block M22 is:

M/M22 =M11 −M12M
−1
22 M21.

If block M11 is nonsingular, then the Schur complement of block M11 is:

M/M11 =M22 −M21M
−1
11 M12.

Theorem 2.3. (Schur Complement Condition for Positive Definiteness and Positive Semi-

Definiteness) [33]. Let M ∈ S(n+m) be of the form:

M =

[
M11 M12

MT
12 M22

]
,
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with M11 ∈ Sn, M12 ∈ Rn×m, and M22 ∈ Sm. Then, if M11 is nonsingular the following

are true:

1. M � 0 if and only if M11 � 0 and M/M11 � 0

2. M � 0 if and only if M11 � 0 and M/M11 � 0.

If M22 is nonsingular, then the following are true:

1. M � 0 if and only if M22 � 0 and M/M22 � 0

2. M � 0 if and only if M22 � 0 and M/M22 � 0.

Remark 2.1. Let M be defined as in Theorem 2.3. If M11 is nonsingular, then:[
I −M−1

11 M12

0 I

]T [
M11 M12

MT
12 M22

][
I −M−1

11 M12

0 I

]
=

[
M11 0

0 M/M11

]
.

If M22 is nonsingular, then:[
I −M−1

22 M12

0 I

][
M11 M12

MT
12 M22

][
I −M−1

22 M12

0 I

]T
=

[
M/M22 0

0 M22

]
.

Definition 2.5. (Reverse Discrete-Time Riccati Difference Equation (RDRDE), Discrete-

Time Algebraic Riccati Equation (DARE)) [2]. Let Pk ∈ Sn, Ak ∈ Rn×n, Bk ∈ Rn×m,

Rk ∈ Rm×m, and Qk ∈ Rn×n for all k ∈ Z>0. The RDRDE is of the form:

Pk−1 =AT
kPkAk −

(
BT
k PkAk

)T (
Rk +BT

k PkBk

)−1 (
BT
k PkAk

)
+Qk.

If matrices A, B, R, Q, and P are time-invarient, the RDRDE reduces to the DARE as:

P =ATPA−
(
BTPA

)T (
R+BTPB

)−1 (
BTPA

)
+Q.

Definition 2.6. (Markov Parameters) Consider the discrete-time, LTV system Sd,LTV in

(2.3). The matrix impulse response with initial condition x0 = 0 is:

Hk =


Dk, k = 0

Ck

k−1∏
i=1

AiB0, k > 0,
(2.5)
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where the terms Hk are the Markov parameters of system (2.3).

Definition 2.7. (Continuous-Time State Transition Matrix) Consider the continuous-time

LTV, unforced system of the form ẋ(t) = A(t)x(t) with initial condition x(0). Let t1, t2 ∈ R
and t1 6 t2. Then, Φ(t2, t1) is the continuous-time state transition matrix, and is the unique

solution to:
∂
∂t2

Φ(t2, t1) = A(t2)Φ(t2, t1), (2.6)

with the initial condition Φ(t1, t1) = I.

Definition 2.8. (Discrete-Time State Transition Matrix) Consider the discrete-time LTV,

unforced system of the form xk+1 = Akxk with initial condition x0. Let k, i ∈ Z, and k > i.

Ψ(k, i) is the discrete-time state transition matrix and is the unique solution to:

Ψ(k + 1, i) = AkΨ(k, i), (2.7)

with the initial condition Ψ(i, i) = I.

2.3 Input-Output Theory

2.3.1 Continuous Time

Definition 2.9. (Bounded-Input-Bounded-State Stable) Consider the continuous-time sys-

tem represented by the following differential equation with initial condition x(0) = 0:

ẋ(t) = f(t,u(t),x(t)), (2.8)

where f : R × Rm × Rn → Rn. If there exist a constant α ∈ R such that for all u ∈ (L2)m

and t > 0: ∫ t

0

xT (τ)x(τ)dτ 6 α

∫ t

0

uT (τ)u(τ)dτ, (2.9)

then (2.8) is bounded-input-bounded-state stable.

Definition 2.10. (Continuous-Time Passive System) [14]. Let Sc be a continuous-time

system represented by the following set of equations:

Sc :

{
ẋ(t) =f(t,u(t),x(t))

v(t) =g(t,u(t),x(t),
(2.10)
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where f : R × Rm × Rn → Rn and g : R × Rm × Rn → Rm . If for each initial condition

x(0) ∈ Rn, there exists a β > 0 such that for all u ∈ (L2)m and t > 0:∫ t

0

uT (τ)v(τ)dτ > −β,

then Sc is continuous-time passive.

Definition 2.11. (Continuous-Time Positive Real (PR) and Strictly Positive Real (SPR)

Transfer Functions) [38]. Consider a m×m continuous-time transfer function T (s) : C→
Cm×m of real, rational functions, where s ∈ C. T (s) is PR if:

1. all elements of T (s) are analytic for all s ∈ C such that Re(s) > 0

2. T (s) is real for all real, positive values of s

3. T (s) + T T (s̄) � 0, for all s ∈ C such that Re(s) > 0.

T (s) is SPR if there exists an α > 0 such that T (s− α) is PR.

Theorem 2.4. (Continuous-Time, Time-Invariant Positive Real Lemma) [38]. Let {A,B,C,D}
be a minimal realization of the continuous-time, LTI system Sc,LTI in (2.2). Then, let the

continuous-time, real, proper, and rational transfer function of u 7→ v be:

T (s) = C [sI −A]−1B +D. (2.11)

T (s) is PR if and only if there exists P = P T � 0 such that:[
ATP + PA PB −CT

(PB −CT )T −(D +DT )

]
� 0.

Theorem 2.5. (Passivity of Continuous-Time LTI Systems) [38]. Let {A,B,C,D} be a

minimal realization of the continuous-time, LTI system system Sc,LTI in (2.2). Let T (s) be

the continuous-time, real, proper, and rational transfer function of u 7→ v in (2.11). Then,

T (s) is PR if and only if system (2.3) is a continuous-time, passive system.

2.3.2 Discrete Time

Definition 2.12. (Discrete-Time Passive System) [38]. Let Sd be a system represented by
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the following set of equations:

Sd :

{
xk+1 =fk(uk,xk)

vk =gk(uk,xk),
(2.12)

where f : Rm × Rn → Rn and g : Rm × Rn → Rm. If for each initial condition x0 ∈ Rn,

there exists a β > 0 such that for all u0:k ∈ (Rm)k+1 and k ∈ Z>0:

k∑
i=0

uTi yi > −β,

then Sd is discrete-time passive.

Definition 2.13. (Discrete-time PR and SPR Transfer Functions) [38]. Consider a m×m,

rational, and proper discrete-time transfer function T (z) : C → Cm×m, where z ∈ C. T (z)

is PR if:

1. all elements of T (z) are analytic for |z| > 1

2. T (z) + T T (z̄) � 0, ∀|z| > 1.

T (z) is SPR if there exists an α ∈ (0, 1) such that T (αz) is PR.

Theorem 2.6. (Discrete-Time Time-Invariant Positive Real Lemma) [38]. Let {A,B,C,D}
be a minimal realization of discrete-time LTI system Sd,LTI in (2.4). Then, let the discrete-

time, real, proper, and rational transfer function of u 7→ v be:

T (z) = C [zI −A]−1B +D. (2.13)

T (z) is PR if and only if there exists P = P T � 0 such that:[
ATPA− P ATPB −CT

(ATPB −CT )T −(D +DT ) +BTPB

]
� 0.

and T (z) is SPR if and only if the above matrix is negative definite.

Theorem 2.7. (Passivity of Discrete-Time LTI Systems) [38]. Let {A,B,C,D} be a

minimal realization of discrete-time LTI system Sd,LTI in (2.4). Consider T (z), the discrete-

time, real, proper, and rational transfer function of u 7→ v in (2.13). Then, T (z) is PR if

and only if system (2.4) is a discrete-time, passive system.
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2.4 Discrete-Time Optimal Control

Definition 2.14. (Discrete-Time Performance Measure, Lagrangian, Optimal Control Prob-

lem (OCP), Constrained Optimal Control Problem (COCP), Unconstrained Optimal Control

Problem (UOCP)) Consider the following discrete-time difference equation for the evolution

of x with initial condition x0 ∈ Rn:

xk+1 =fk(uk,xk), (2.14)

where k ∈ Z>0 is the discrete-time counter, uk ∈ Rm is the control input, and xk ∈ Rn is

the state vector.

Let the discrete-time performance measure (also referred to as the objective function or

cost function) be J(u0:N ,x0:N+1) : (Rm)N+1 × (Rn)N+2 → R, which is:

J(u0:N ,x0:N+1) =Φ(xN+1) +
N∑
k=0

Lk(uk,xk), (2.15)

where N ∈ Z>0 is the length of the MPC horizon, Φ(xN+1) : Rn → R is a final-time penalty

function, and Lk(uk,xk) : Rm × Rn → R is the Lagrangian.

Let ck(uk,xk) : Rm × Rn → Ri be the i inequality constraint functions, and hk(uk,xk) :

Rm × Rn → Rj be the j equality constraint functions. Now, let a COCP have the following

form:

COCP =



Given: fk(·, ·), ck(·, ·), hk(·, ·), Lk(·, ·), ∀k ∈ {0...N}

Φ(·), x0 ∈ Rn

Minimize: J(u0:N ,x0:N+1)

Domain: u0:N , x0:N+1

Constraints: xk+1 = fk(uk,xk),

ck(uk,xk) 6 0,

hk(uk,xk) = 0,

∀k ∈ {0...N},

(2.16)

where we optimize over control inputs u0:N and states x0:N+1 to minimize the performance

objective J(u0:N ,x0:N+1) while satisfying the i(N+1) inequality constraints (ck(uk,xk) 6 0)

and j(N + 1) equality constraints (hk(uk,xk) = 0).
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Let a UOCP have the following form:

UOCP =



Given: fk(·, ·), Lk(·, ·), ∀k ∈ {0...N}

Φ(·), x0 ∈ Rn

Minimize: J(u0:N ,x0:N+1)

Domain: u0:N , x0:N+1

Constraints: xk+1 = fk(uk,xk),

∀k ∈ {0...N},

(2.17)

i.e., there are no inequality or equality constraints. We refer to both COCPs and UOCPs as

OCPs.

Definition 2.15. (Primal Domain, Feasible and Infeasible Primal Domains, Feasible and

Infeasible Primal Trajectories, Feasible and Infeasible OCPs) [10]. Let Dp ⊆ ((Rm)N+1 ×
(Rn)N+1) be the primal domain of an OCP in Definition 2.14, which is defined as:

Dp = dom J(u0:N ,x0:N+1)
N⋂
k=0

domfk(uk,xk)
N⋂
k=0

dom ck(uk,xk)
N⋂
k=0

domhk(uk,xk).

Now, let Fp ⊆ Dp be the feasible primal domain, which is defined as the set of control inputs

and states {u0:N ,x0:N+1} that satisfy the constraints, i.e.:

Fp =

{
{u0:N ,x0:N+1}

∣∣∣∣∣ xk+1 = fk(uk,xk), ck(uk,xk) 6 0

hk(uk,xk) = 0, ∀k ∈ {0...N}

}
.

Then, the infeasible primal domain is ((Rm)N+1 × (Rn)N+2) \ Fp. A primal trajectory

{u0:N ,x0:N+1} is feasible if {u0:N ,x0:N+1} ∈ Fp, and infeasible otherwise. An OCP is

infeasible if Fp = ∅, and feasible otherwise.

Definition 2.16. (Minimal Performance Measure, Unbounded Optimal Control Problem,

Optimal Trajectory) [10]. Consider the definition of an OCP in Definition 2.14, and let Fp

be the primal feasible domain in Definition 2.15. Now, let J∗ be the minimal performance
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measure, which is defined as:

J∗ =


∞, Fp = ∅

inf

{
J(u0:N ,x0:N+1)

∣∣∣∣∣∣ xk+1 = fk(uk,xk), ck(uk,xk) 6 0,

hk(uk,xk) = 0, ∀k ∈ {0..N}

}
, Fp 6= ∅.

(2.18)

An OCP is unbounded if J∗ = −∞. Let {u∗0:N ,x
∗
0:N+1} ∈ Fp be an optimal trajectory if

J(u∗0:N ,x
∗
0:N+1) = J∗.

Definition 2.17. (Hamiltonian, Lagrange Multipliers, Costates, Dual Variables, Augmented

Performance Measure) [15]. Consider an OCP from Definition 2.14. Then, the Hamiltonian

for the kth time step is Hk(uk,xk,λk,σk,ρk) : Rm×Rn×Ri×Rj×Rn → R, which is defined

as:
Hk (uk,xk,λk,σk,ρk) =Lk(uk,xk) + λTk ck(uk,xk)

+ σTk hk(uk,xk) + ρTk+1fk(uk,xk),
(2.19)

where Lk(uk,xk) is the Lagrangian from Definition 2.14, λk ∈ Ri
>0 are the Lagrange multi-

pliers that enforce the i inequality constraints (ck(uk,xk) 6 0) at the kth time step, σk ∈ Rj

are the Lagrange multipliers that enforce the j equality constraints (hk(uk,xk) = 0) at the

kth time step, and ρk+1 ∈ Rn are the costates that enforce the evolution of the state dynamics

(xk+1 = fk(uk,xk)) at the kth time step.

The Lagrange multipliers and costates are also referred to as dual variables. Now, ref-

erence the performance measure in Definition 2.14, and let the augmented performance

measure J̄(u0:N ,x0:N+1,λ0:N ,σ0:N ,ρ1:N+1) : (Rm)N+1 × (Rn)N+2 × (Ri)N+1 × (Rj)N+1 ×
(Rn)N+2 → R be:

J̄(u0:N ,x0:N+1,λ0:N ,σ0:N ,ρ1:N+1) =Φ(xN+1) +
N∑
k=0

Hk(uk,xk,λk,σk,ρk). (2.20)

Definition 2.18. (Primal Minimax Problem) Consider an OCP from Definition 2.14, which

can be written in the following primal minimax form:

J∗ = inf
{u0:N , x0:N+1}

sup
{λ0:N>0,σ0:N ,ρ1:N+1}

J̄(u0:N ,x0:N+1,λ0:N ,σ0:N ,ρ1:N+1), (2.21)

where J̄ is the augmented performance objective in (2.20), and J∗ is the minimal performance
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objective in (2.18). The associated optimal trajectory is then:

{u∗0:N ,x
∗
0:N+1} = arginf

{u0:N , x0:N+1}
sup

{λ0:N>0,σ0:N ,ρ1:N+1}
J̄(u0:N ,x0:N+1,λ0:N ,σ0:N ,ρ1:N+1).

Theorem 2.8. (Finite-horizon, discrete-time Linear Quadratic Regulator (LQR)) [41]. The

finite-horizon, discrete-time LQR problem is an UOCP where the state dynamics are repre-

sented by the discrete-time LTV system (2.3), and the performance measure is of the form:

J(u0:N ,x0:N+1) =
1

2
xTN+1PN+1xN+1 +

1

2

N∑
k=0

xTkQkxk + uTkRkuk + 2uTkSkxk,

where P T
N+1 = PN+1 � 0, RT

k = Rk � 0. Then, the optimal control input trajectory

∀k ∈ {0...N} is u∗k = −Kkxk where:

Kk =
(
Rk +BT

k PkBk

)−1
BT
k PkÃk +R−1

k S
T
k .

Let Ãk = Ak −BkR
−1
k S

T
k , and the Pk is the solution to the following RDRDE:

Pk−1 =Q̃k + ÃT
kPkÃk − ÃT

kPkBk

(
Rk +BT

k PkBk

)−1
BkPkÃk,

with final condition PN+1.

2.4.1 Convexity

Definition 2.19. (Convex Set, Nonconvex Set) [10]. A set A is convex if ∀x,y ∈ A and

∀α ∈ [0, 1]:

αx+ (1− α)y ∈ A,

and set A is nonconvex otherwise.

Definition 2.20. (Convex Function, Strictly Convex Function, Concave Function, Strictly

Concave Function) A function g(x) : Rn → R is convex in x if the following are true:

1. dom g(x) is a convex set

2. ∀x,y ∈ dom g(x) and ∀α ∈ [0, 1], g(αx+ (1− α)y) 6 αg(x) + (1− α)g(y).
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Function g(x) is strictly convex if the inequality in the second requirement is strict. Func-

tion g(x) is concave if −g(x) is convex, and strictly concave if −g(x) satisfies the second

requirement with strict inequality.

Definition 2.21. (Convex OCP, Nonconvex OCP) [10]. Let x◦0:N(u0:N ,x0) be the solution

to (2.14) over the interval k ∈ {0...N}; i.e.,

x◦k+1(u0:N ,x0) = fk(uk,x
◦
k(u0:N ,x0)).

An OCP from Definition 2.14 is convex if the following are true:

1. Performance measure J(u0:N ,x
◦
0:N+1(u0:N ,x0)) is convex in u0:N

2. Inequality constraint functions ck(uk,x
◦
k(u0:N ,x0)) 6 0 are convex in u0:N , ∀k ∈

{0...N}

3. Equality constraint functions, hk(uk,x
◦
k(u0:N ,x0)) = 0 are affine in u0:N , ∀k ∈ {0...N}.

It follows that the feasible primal domain of a convex OCP, Fp, is a convex set. An OCP is

nonconvex if it is not convex.

2.4.2 Special Optimization Problem Forms

Definition 2.22. (QP) [10]. A QP is a optimization problem with a quadratic performance

measure that has the form:

QP =



Given: Q ∈ Sn, s ∈ Rn, r,

M ∈ Rm×n,p ∈ Rm,A ∈ Rp×n, b ∈ Rp

Minimize: xTQx+ sTx+ r

Domain: x ∈ Rn

Constraints: Mx 6 p,

Ax = b.

The QP is convex if Q � 0.

Definition 2.23. (QCQP) [10]. A QCQP is an optimization problem with a quadratic
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performance measure and quadratic inequality constraints that has the form:

QCQP =



Given: Qi ∈ Sn, si ∈ Rn, ri, ∀i ∈ {0...m}

A ∈ Rp×n, b ∈ Rp

Minimize: xTQ0x+ sT0 x+ r0

Domain: x ∈ Rn

Constraints: xTQix+ sTi x+ ri 6 0, ∀i ∈ {1...m}

Ax = b,

If Qi = 0 for all i ∈ {1...m}, then the constraints are linear and the problem is a QP. The

QCQP is convex if Qi � 0, for all i ∈ {0...m}, and nonconvex if there exists an i ∈ {0...m}
such that Qi is not positive semi-definite.

Definition 2.24. (SDP) [10]. A SDP is an optimization problem that has the form:

SDP =



Given: C ∈ Sn, b ∈ Rm,Ak ∈ Sn,∀k ∈ {1...m}

Minimize:
n∑
i=1

n∑
j=1

CijXij

Domain: X ∈ Sn

Constraints:
n∑
i=1

n∑
j=1

Ak,ijXij = bk, ∀k ∈ {1...m}

X � 0.

2.5 Lagrangian Duality

Definition 2.25. (Dual Function, Dual Problem, Dual Minimax Problem, Dual Feasible,

Optimal Dual Solution) Consider the COCP from Definition 2.14, and let the dual function

G : (Ri
>0)N+1 × (Rj)N+1 → R be defined as:

G(λ0:N ,σ0:N) = sup
ρ1:N+1

inf
{u0:N , x0:N+1}

J̄(u0:N ,x0:N+1,λ0:N ,σ0:N ,ρ1:N+1),

where J̄ is the augmented performance objective in (2.20). The dual function G(λ0:N ,σ0:N)
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is always a lower bound on the minimal primal performance measure, i.e.,

G(λ0:N ,σ0:N) 6 J∗, ∀{λ0:N ,σ0:N} ∈ ((Ri
>0)N+1 × (Rj)N+1).

Then, the problem of finding the greatest lower bound on J∗, which is the maximal dual

function G∗, is the dual problem, i.e.:

Dual COCP =



Given: G(·, ·)

Maximize: G(λ0:N ,σ0:N)

Domain: λ0:N ,σ0:N

Constraints: λ0:N > 0.

Note that the dual function is concave, regardless of the convexity of the primal problem

which can be written in the following dual minimax form:

G∗ = sup
{λ0:N>0,σ0:N ,ρ1:N+1}

inf
{u0:N , x0:N+1}

J̄(u0:N ,x0:N+1,λ0:N ,σ0:N ,ρ1:N+1). (2.22)

Let {λ0:N ,σ0:N} be dual feasible if λ0:N > 0. Let {λ∗0:N ,σ
∗
0:N} be an optimal dual point if

G(λ∗0:N ,σ
∗
0:N) = G∗.

Definition 2.26. (Duality Gap, Strong Duality) [10]. The difference between the minimum

performance measure, J∗, and the maximum dual function, G∗, is the duality gap, i.e.,

J∗−G∗, which is always a nonnegative value. An optimization problem has zero duality gap

if J∗ = G∗, then we say that strong duality holds.

Definition 2.27. (Karush-Kuhn-Tucker (KKT) Conditions, Constraint Qualification) [10].

Consider the COCP from Definition 2.14. Let the performance measure J(·, ·), inequality

constraints ck(·, ·), and equality constraints hk(·, ·) be differentiable functions in u0:N and

x0:N+1. The KKT conditions are the first-order necessary conditions for the primal solution:

{u∗0:N ,x
∗
0:N+1,λ

∗
0:N ,σ

∗
0:N ,ρ

∗
1:N+1}

to be optimal, given that a constraint qualification (also known as a regularity condition) is

satisfied. The KKT conditions are:

1. ck(u
∗
0:N ,x

∗
0:N+1) 6 0 and hk(u

∗
0:N ,x

∗
0:N+1) = 0, ∀k ∈ {0...N} (primal feasibility)
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2. λ∗k > 0, ∀k ∈ {0...N} (dual feasibility)

3. (λ∗k)
Tck(u

∗
0:N ,x

∗
0:N+1) = 0, ∀k ∈ {0...N} (complementary slackness)

4. ∇J(u∗0:N ,x
∗
0:N+1) +

N∑
k=0

(λ∗k)
T∇ck(u∗0:N ,x

∗
0:N+1) + (σ∗k)

T∇hk(u∗0:N ,x
∗
0:N+1)

+ (ρ∗k+1)T∇fk(u∗k,x∗k) = 0 (zero gradient).

Theorem 2.9. (Slater’s Constraint Qualification) [8, 10]. Consider a convex COCP from

Definition 2.14, and let Fp be its feasible domain. Then, if there exists {u0:N ,x0:N} ∈
relint(Fp) such that ck(u0:N ,x0:N+1) < 0, xk+1 = fk(uk,xk), and hk(u0:N ,x0:N+1) = 0,

∀k ∈ {0...N} (i.e., the inequality constraints hold with strict inequality), then strong duality

holds.
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Chapter 3

Self-Powered System Modeling

In this chapter, we introduce continuous-time dynamical models for the plant and energy

storage blocks in Figure 1.4. We characterize each of the components of these models. Then,

we show that for plant models satisfying certain properties, a self-powered system cannot

be destabilized by any feasible control input. Last, we discretize the dynamics of the plant

energy storage system models, and then discuss properties of the discrete-time models that

guarantee a nonempty feasible domain.

3.1 Continuous-Time Model for Self-Powered Systems

3.1.1 Continuous-Time Plant Model

We begin by modeling the linear, time-varying dynamics of the plant in Figure 1.4 in conti-

nuous time with n states, m control inputs, and d exogenous disturbances as:

P :

{
ẋ(t) =Ā(t)x(t) + B̄(t)u(t) + Ḡ(t)a(t)

v(t) =C̄(t)x(t) + D̄(t)u(t),
(3.1)

where the overbar later distinguishes the continuous-time system matrices from the dis-

cretized matrices.

Definition 3.1. For continuous-time plant models of the form (3.1), we define P to be the

set of all models satisfying the following properties:

1. The mapping u 7→ v is continuous-time passive (see Definition 2.10)
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2. The plant is bounded-input-bounded-state stable (see Definition 2.9), i.e., there exist

constants gu and ga such that for x(0) = 0, a(t) ∈ (L2)d, u ∈ (L2)m, and t > 0:∫ t

0

xT (τ)x(τ)dτ 6 gu

∫ t

0

uT (τ)u(τ)dτ + ga

∫ t

0

aT (τ)a(τ)dτ.

Assumption 1. We assume P ∈ P for the entirety of this thesis.

The passivity of u 7→ v is a consequence of thermodynamic constraints on the plant.

Physically, the plant is a passive vibratory network, implying that it contains no internal

energy sources. Equivalently, as seen from the terminals of the transducer ports, the equiv-

alent circuit for the driving point impedance of the plant can be realized via a network of

ideal, time-varying resistors, capacitors, inductors, transformers and gyrators.

Both the passivity property and the bounded-input-bounded-state property is important

in proving the guaranteed stability of self-powered systems (see Section 3.1.5). If either of

these conditions are violated it may still be the case that the MPC algorithm to be presented

here could be applied in this situation. However, in that case closed-loop stability would

need to be guaranteed explicitly for the MPC algorithm.

3.1.2 Continuous-Time Energy Storage Model

Reference Figure 1.4, where m transducer ports are interfaced with p energy storage sys-

tems. The energy in the ith storage system is represented by Ei(t), which, due to physical

constraints on the storage device, is required to be within the bounds Ei
L 6 Ei(t) 6 Ei

U ,

where Ei
L, E

i
U > 0 are the lower and upper energy constraints, respectively. Each energy

storage system is connected to a resistor bank or power bus. The evolution of stored energy

in the ith energy storage system is:

d
dt
Ei(t) = − 1

T iS
Ei(t)− uT (t)Kiv(t)− µi(t)− qi(t), (3.2)

where:

• T iS > 0 is a time constant derived from the physical parameters of the ith storage

system that accounts for the loss of energy due to decay in the storage system. For

T iS →∞, there is no decay of energy in the storage system, and for T iS = 0, no energy

can be stored in the storage system.
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• Ki is an m ×m diagonal matrix with entries of {1, 0} that describe the connectivity

between the m ports and the ith energy storage system. Each port can only connect to

a single energy storage system, however, each energy storage system may have multiple

ports connected to it. Therefore, we require
∑p

i=1K
i = Im. Let Ki be the set of all

ports connected to the ith energy storage unit, e.g., in Figure 1.5b K1 = {1, 2} and

K2 = {3}.

• µi(t) accounts for transmission power dissipation, e.g., due to losses within the power

electronics, which we discuss in detail in Section 3.1.3.

• qi(t) > 0 is the power sent from energy storage system i to its resistor bank or power

bus.

3.1.3 Continuous-Time Transmission Loss Model

In equation (3.2), µi(t) represents the transmission losses associated with the facilitation of

power flow from the transducer ports to storage system i. In this work, we assume µi(t) to

be a quadratic function of u(t) and v(t); i.e.,

µi(t,u(t),v(t)) =

[
u(t)

v(t)

]
M i(t)

[
u(t)

v(t)

]
. (3.3)

Assumption 2. We make the following assumptions regarding µi(·, ·, ·), i ∈ {1...p}.

1. For all t > 0, M i(t,u(t),v(t)) � 0.

2. There exists a matrix RL � 0 such that ∀{u(t),v(t)} ∈ (Rm × Rm) and ∀t > 0:

p∑
i=1

µi(t,u(t),v(t)) � uT (t)RLu(t).

3. For each v(t) ∈ Rm and t > 0, there exists a u(t) ∈ Rm such that:

uT (t)v(t) + µi(t,u(t),v(t)) 6 0, ∀i ∈ {1...p}. (3.4)

Assumption 2.1 ensures that the power dissipated upon transmission from the transducer

ports to storage system i is uniformly nonnegative. This is a consequence of physical con-

straints on the network. Assumption 2.2 is only of importance for proving the unconditional
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stability of the self-powered system, to be discussed later in Section 3.1.5. Assumption 2.3

stipulates that for each potential variable, there exists a control input such that the power

extracted at the transducer ports exceeds the transmission losses incurred in the electronics.

This assumption is important for the feasibility analysis to be discussed next.

3.1.4 Valid Continuous-Time Models and Control Feasibility

Definition 3.2. We refer to a self-powered system modelM as the collection of the following:

1. A continuous-time plant model P as in (3.1)

2. A set of p continuous-time energy storage models as in (3.2), together with physical

storage bounds {E1
L . . . E

p
L} and {E1

U . . . E
p
U}

3. A set of p continuous-time transmission loss models {µ1(·, ·, ·) . . . µp(·, ·, ·)} as in (3.3).

Definition 3.3. We define a model M to be valid if:

1. P ∈ P

2. T iS ∈ (0,∞], and 0 6 Ei
L 6 Ei

U , ∀i ∈ {1 . . . p}

3. Assumption 2 holds for the transmission loss models {µ1(·, ·, ·) . . . µp(·, ·, ·)}.

Definition 3.4. We refer to the set of all valid models as M.

For a given M∈M, we collect all energy storage values in vector E(t) as:

E(t) =
[
E1(t) · · · Ep(t)

]T
,

and then we define the feasibility domain of E(t) as:

RE = [E1
L, E

1
U ]× · · · × [Ep

L, E
p
U ].

Definition 3.5. Given model M∈M, disturbance a ∈ (L2)d, state initial condition x(0) ∈
Rn, and energy initial condition E(0) ∈ RE:

1. Control inputs {u, q} ∈ (L2)m × (L2)p are called feasible if they result in E(t) ∈ RE

and q(t) > 0, for all t > 0.

2. The set of all feasible control inputs is denoted FM (a,x(0),E(0)).
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Lemma 3.1. Let M ∈ M, and for each i ∈ {1...p} either Ei
L = 0 or T iS → ∞. Then,

FM (a,x(0),E(0)) is nonempty for all {a,x(0),E(0)} ∈ (L2)d × Rn × RE.

Proof. M ∈ M implies that Assumption 2.3 holds. Then, there exists a feedback law κ

which maps {x(t), t} 7→ u(t) such that (3.4) holds uniformly for t > 0. Let x(t) be the

response of plant P with this feedback law imposed under exogenous disturbance a, and let:

piµ(t) = vT (t)κ (x(t), t) + µi(t,κ (x(t), t) ,v(t)) 6 0,

be evaluated along this response trajectory. First, consider the case where Ei
L = 0. Then:

d
dt
Ei(t) = − 1

T iS
Ei(t)− piµ(t)− qi(t).

Now let:

qi(t) =

max
{

0,− 1
T iS
Ei(t)− piµ(t)

}
, Ei(t) = Ei

U

0, Ei(t) 6= Ei
U .

Clearly, qi(t) > 0, ∀t > 0. Then, because piµ(t) 6 0 and qi(t) = 0 when Ei(t) = 0, it follows

that Ei(t) > 0, ∀t > 0. Furthermore, for qi(t) as above, Ei(t) cannot exceed Ei
U for any

t > 0 if Ei(0) 6 Ei
U . For the case where T iS → ∞, the proof follows analogously, but the

above differential equation reduces to:

d
dt
Ei(t) = −piU(t)− qi(t),

and then because Ei(0) ∈ [Ei
L, E

i
U ], it follows that Ei(t) > Ei

L, ∀t > 0.

3.1.5 Stability

Theorem 3.1. Let M ∈ M be subject to exogenous disturbance a ∈ (L2)d, and initial

conditions x(0) ∈ Rn, and E(0) ∈ RE. Then there exists a function fM (a,x(0),E(0)) <∞,

such that: ∫ ∞
0

xT (t)x(t)dt 6 fM (a,x(0),E(0)) , (3.5)

for all {u, q} ∈ FM (a,x(0),E(0)).
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Proof. First, we define:

V (t) =

p∑
i=1

Ei(0) +

∫ t

0

(
−uT (τ)v(τ)− uT (τ)RLu(τ)

)
dτ.

Then it follows that V (t) >
∑p

i=1 E
i(t), for all t > 0. To see this, consider that:

d

dt

(
p∑
i=1

Ei(t)− V (t)

)
= −

p∑
i=1

(
1

T iS
Ei(t) + qi(t) + µi(t,u(t),v(t))− uT (t)Ri

Lu(t)

)
.

If M is a valid model then by Assumption 2.2, the second term on the right-hand side is

negative. If {u, q} is feasible then the first term must be negative, and consequently we have

that
∑p

i=1E
i(t) − V (t) is a non-increasing function, which, with an initial condition of 0,

must therefore be nonpositive for all t > 0. Consequently, we have that:

V (t) >
p∑
i=1

Ei(t).

But if {u, q} is feasible then Ei(t) > 0, ∀i ∈ {1...p} and then we conclude that V (t) > 0,

∀t > 0. This is equivalent to stating that:

p∑
i=1

Ei(0)−
∫ t

0

uT (τ)v(τ)dτ >
∫ t

0

uT (τ)RLu(τ)dτ. (3.6)

But if M ∈ M this implies that P ∈ P, which, by Definition 3.1, implies the existence of a

β(x0,a) > 0 such that: ∫ t

0

uT (τ)v(τ)dτ > −β(x0,a) , ∀t ∈ R>0. (3.7)

Adding (3.6) and (3.7) we have that:

p∑
i=1

Ei(0) + β(x0,a) >
∫ t

0

uT (τ)RLu(τ)dτ.

By Assumption 2.2, RL � 0. As such, let λ(RL) > 0 be the minimum eigenvalue of RL and
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we have the further bound:

p∑
i=1

Ei(0) + β(x0,a)

λ(RL)
>
∫ t

0

uT (τ)u(τ)dτ.

Because P ∈ P, it follows that (2.9) holds independently of a and u and consequently:

∫ t

0

xT (τ)x(τ)dτ 6 αu

p∑
i=1

Ei(0) + β(x0,a)

λ(RL)
+ αa

∫ t

0

aT (τ)a(τ)dτ.

However, a ∈ (L2)d so the integral on the right-hand side has finite value as t → ∞ and

consequently there exists a αu, αa ∈ R such that (3.5) holds.

Theorem 3.1 states that a valid plant for a self-powered system cannot be destabilized

by any control input that is physically realizable (i.e., feasible). As such, it is physically

impossible for a self-powered system to destabilize.

3.1.6 Alternative Modeling Methods

In the previous subsection, we define self-powered system model M in Definition 3.2, and

as mentioned earlier, {u(t), q(t)} are the control variables over which we optimize. The

challenging aspect of this modeling method is that the differential equation for the energy

in the storage system (3.2) is nonlinear (specifically, quadratic in u(t)), and because Ei(t)

is not guaranteed to be in the range [Ei
L, E

i
U ], we must enforce constraints to ensure the

physical bounds of the storage units are satisfied. However, there are alternative methods of

formulating the self-powered system problem, which introduce different challenges. Consider

the following alternative methods.

1. Directly Controlling Transducer Power Flow: To explain this approach, we

consider the case with one port (m = 1) and one energy storage system (p = 1). It is

common in power systems engineering to control power flow pT (t) = u(t)v(t) explicity,

as opposed u(t). Then, the differential equation for the evolution of energy in the

storage system is linear in pT (t):

d
dt
E(t) = − 1

TS
E(t)− pT (t)− µ(t)− q(t).
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However, depending on how the transmission losses µ(·, ·, ·) are modeled, this linearity

may be lost. Commonly, transmission losses are modeled assuming a fixed efficiency

η ∈ (0, 1) as:

µ(pT (t)) =

(1− η)pT (t), pT (t) > 0

(1− 1
η
)pT (t), pT (t) < 0.

If this is the case, then d
dt
E(t) is no longer linear in pT (t), and the benefits of instead

controlling transducer power pT (t) are unclear. Furthermore, the plant P in (3.1) also

becomes nonlinear:

P :


ẋ(t) =Ā(t)x(t) + B̄(t)

pT (t)

v(t)
+ Ḡ(t)a(t)

v(t) =− C̄(t)x(t)

2
±

√(
C̄(t)x(t)

2

)2

− D̄(t)pT (t).

2. Modeling Energy Storage Units as Capacitors: For the special case where the

energy storage units are modeled as capacitors (or flywheels, which are the mechanical

analogy of capacitors), let iic(t) be the current, wic(t) be the voltage, and Ci be the

capacitance of the ith capacitor. Then, iic(t) = Ci dw
i
c(t)
dt

, and the energy in the capacitor

is:

Ei(t) =
1

2
Ci(wic(t))

2,

which is nonnegative for all wic(t) ∈ L2. Therefore, for this modeling method, there

is no need to enforce the energy storage constraints when Ei
L = 0 because Ei(t) is

always nonnegative. However, we do need to enforce a maximum allowable voltage:

|wic(t)| 6 wmax. Then, the power delivered to the capacitor is:

iic(t)w
i
c(t) = −uT (t)Kiv(t)− µi(t).

Let the evolution of the capacitor voltage be modeled via the following nonlinear dif-

ferential equation for wic(t) 6= 0:

dwic(t)

dt
= − 1

C

(
uT (t)Kiv(t) + µi(t)

wic(t)

)
. (3.8)

Although this modeling method does not require the use of energy storage constraints,

it introduces the nonlinear differential equation for wic(t) in (3.8). This nonlinear

37



differential equation does not linearize well, which can make control strategies difficult

to implement.

All three modeling approaches include nonlinearities somewhere in the their formulation,

but the quadratic nonlinearity in u(t) in (3.2) may be the easiest to implement numerically.

In the method used in this thesis, we are also able to model the plant via linear differential

equations, which is exploited in later sections to simplify the analysis. The downside of this

method is that it necessitates the use of constraint functions, which, as we discuss in Section

4.1.3, introduces nonconvexity into the optimal control problem. Although Methods 1 and

2 discussed above are also viable approaches, we use the model presented in Sections 3.1.1

and 3.1.2 because of the linear plant dynamics and quadratic energy storage model.

3.2 Discrete-Time Model for Self-powered Systems

3.2.1 Discrete-Time Plant Model

The ultimate purpose of the continuous-time physical model developed in the previous section

is for use in a MPC trajectory optimization algorithm. Hence, the continuous-time model

M must be converted to a discrete-time model. Inputs u are mapped from discrete to

continuous time via ZOH, i.e.:

u(t) = uk , t ∈ [k∆t, (k + 1)∆t) (3.9)

where k ∈ Z>0 denotes the discrete-time counter, and ∆t is the discrete time-step.

The dynamics of plant P in (3.1) can be modeled in discrete time using the following

linear, time-varying state space:

xk+1 =Akxk +Bkuk + ak (3.10)

vk =Ckxk +Dkuk, (3.11)

where the discrete-time disturbance is:

ak =

∫ (k+1)∆t

k∆t

Φ((k + 1)∆t, τ)Ḡ(τ)a(τ)dτ, (3.12)
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the discrete-time matrices are:

Ak =Φ((k + 1)∆t, k∆t), Bk =

∫ (k+1)∆t

k∆t

Φ((k + 1)∆t, τ)B̄(τ)dτ

Ck =C̄(k∆t), Dk =D̄(k∆t),

(3.13)

and where Φ(t2, t1) is the continuous-time state transition matrix (see Definition 2.7).

3.2.2 Discrete-Time Energy Storage Model

Let the stored energies at the discrete-time points be:

Ei
k = Ei(k∆t), ∀k ∈ Z>0, ∀i ∈ {1...p}. (3.14)

We collect all the discrete-time energies at time-step k in vector Ek as:

Ek =
[
E1
k · · · Ep

k

]T
.

We want to develop a discrete-time evolution equation for Ei
k such that (3.14) is satisfied

exactly. We define this type of discrete-time model as energy-preserving. To create energy-

preserving storage models, we first define yik as:

yik =Ki

∫ (k+1)∆t

k∆t

e
−(k+1)∆t+t

T is v(t)dt

=Ci
E,kxk +Di

E,kuk + aiE,k, (3.15)

where:

Ci
E,k =Ki

∫ (k+1)∆t

k∆t

e
−(k+1)∆t+τ

Tis C̄(τ)Φ(τ, k∆t)dτ (3.16)

Di
E,k =Ki

∫ (k+1)∆t

k∆t

e
−(k+1)∆t+τ

Tis

(
D̄(τ) + C̄(τ)

∫ τ

k∆t

Φ(α, k∆t)B̄(α)dα

)
dτ (3.17)

aiE,k =Ki

∫ (k+1)∆t

k∆t

e
−(k+1)∆t+τ

Tis C̄(τ)

∫ τ

k∆t

Φ(α, k∆t)Ḡ(α)a(α)dαdτ. (3.18)

In terms of these quantities, Ei
k evolves in discrete time according to:

Ei
k+1 = γiEi

k − uTk yik − µik − qik, (3.19)
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where Ei
0 ∈ [Ei

L, E
i
U ] is the initial energy in storage system i, and where γi, µik, and qik are

defined as follows.

The unitless variable γi represents the decay of energy in the ith storage system, and is

calculated as:

γi =e
−∆t

T i
S , (3.20)

which exists in the range [0, 1]. An ideal storage system with no decay has γi = 1, and a

system with no ability to store energy has γi = 0.

The power sent to the ith resistor bank or power bus, qi(t), is mapped from discrete to

continuous time via ZOH. However, for simplicity, in discrete time we instead control the

energy sent during time step k. Let qik be the ZOH discrete-time energy sent to the ith

resistor bank or power bus:

qik = χiqi(k∆t) , t ∈ [k∆t, (k + 1)∆t), (3.21)

where the scalar χi, which has units of time, is a function of T iS, ∆t and γi:

χi =


∆t, γi = 1

T iS(1− γi), 0 < γi < 1

0, γi = 0.

Now, we collect all energies sent to the resistor banks or power buses at time-step k in vector

qk:

qk =
[
q1
k · · · qpk

]T
.

3.2.3 Discrete-Time Transmission Loss Model

The term µik captures the transmission losses in discrete time. Technically, this should be

evaluated as:

µik =

∫ (k+1)∆t

k∆t

e
τ−(k+1)∆t

T i
S µi(t,u(t),v(t))dt.

However, for the purposes of MPC trajectory optimization we assume this discrete-time

transmission loss can be approximated (or, at least, conservatively over-bounded) by a

quadratic loss model, which is described in the next.
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Quadratic Loss Models

For the purposes of MPC trajectory optimization we assume that the transmission loss µik
is a quadratic function of {uk,yik}; i.e.,

µik(uk,y
i
k) =

[
uk

yik

]T [
M i

uu,k M i
uy,k

(M i
uy,k)

T M i
yy,k

][
uk

yik

]
, (3.22)

where M i
k � 0. The simplest transmission loss model is the case in which M i

uy,k = 0,

M i
yy,k = 0, and M i

uu,k � 0. In this case, the losses are modeled as a quadratic penalty

on the control inputs u. Physically, if these inputs u correspond to transducer currents or

voltages, then this simple loss model captures the “i2R” losses associated with the control,

with M i
uu taking the form of a resistance or admittance matrix, respectively.

In many cases, the system’s energy dissipation may be best modeled via a non-quadratic

loss function. Let µ̂ik(uk,y
i
k) be the true, non-quadratic loss model. Then, in some cases it is

possible to find a quadratic overbound of µ̂ik(uk,y
i
k), which has the form (3.22) and where:

µik
(
uk,y

i
k

)
> µ̂ik

(
uk,y

i
k

)
, ∀{uk,yik} ∈ (Rm × Rm).

For example, in many studies, the efficiency of a self-powered system is assumed to be a

static value. Consider port j, and let ηj ∈ (0, 1) be the efficiency between port j and the

storage system to which it is connected. Then, at time-step k, let uk,j be the control input

for this port and yik,j be its colocated energy-preserving output for the ith storage unit. We

model the energy dissipation over one time sample via a static efficiency as:

µ̂ik,j(uk,j, y
i
k,j) =

(1− ηj)uk,jyik,j, uk,jy
i
k,j > 0(

1− 1
ηj

)
uk,jy

i
k,j, uk,jy

i
k,j < 0.

Then, the true non-quadratic loss model for the ith energy storage unit is the summation of

the losses of its connected ports:

µ̂ik
(
uk,y

i
k

)
=
∑
j∈Ki

µ̂ik,j(uk,j, y
i
k,j),

where Ki is the set of all ports connected to storage system i (see Section 3.1.2). We now

show that it is possible to find a quadratic overbound function for µ̂ik(·, ·) of the form (3.22)
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with the following matrices:

M i
uu,k =


Muu,k,1

. . .

Muu,k,m

M i
yy,k =


Myy,k,1

. . .

Myy,k,m

M i
uy,k =


Muy,k,1

. . .

Muy,k,m

 .
From the definition of yik in (3.15) and because the above matrices are diagonal, we can

rewrite the quadratic overbound as:

µik
(
uk,y

i
k

)
=
∑
j∈Ki

µik,j(uk,j, y
i
k,j) =

∑
j∈Ki

[
uk,j

yik,j

]T [
Muu,k,j Muy,k

(Muy,k,j)
T Myy,k,j

][
uk,j

yik,j

]
. (3.23)

For each port j ∈ {1...m}, let hk,j > 0 be a design parameter. The overbound then

satisfies:

µik,j(uk,j, y
i
k,j) > µ̂ik,j(uk,j, y

i
k,j), ∀{uk,j, yik,j} ∈ (R× R), (3.24)

and the equality holds if uk,j = −hk,jyik,j; i.e.,

µik,j(−hk,jyik,j, yik,j) = µ̂ik,j(hk,jy
i
k,j, y

i
k,j) (3.25)

= (1− ηj)hk,j(yik,j)2. (3.26)

In order for conditions (3.2.3) and (3.23) to satisfy (3.24) for all {uk,j, yik,j} ∈ (R×R), both

of the following equations must hold:

(2Muy,k,j − 1 + ηj)
2 6 4Muu,k,jMyy,k,j or 2Muy,k,j − 1 + ηj > 0 (3.27)(

2Muy,k,j − 1 +
1

ηj

)2

6 4Muu,k,jMyy,k,j or 2Muy,k,j − 1 +
1

ηj
< 0. (3.28)

Condition (3.26) requires that:

2Muy,k,j − 1 + ηj = −Myy,k,j

hk,j
−Muu,k,jhk,j.

42



Noting that the right-hand side is always negative, (3.27) and (3.28) become:(
Myy,k,j

hk,j
−Muu,k,jhk,j

)2

6 0 (3.29)

−Myy,k,j

hk,j
−M j

uu,khk,j − ηj +
1

ηj
6 2
√
Muu,k,jMyy,k,j. (3.30)

The only way (3.29) can be satisfied is to set:

Myy,k,j = Muu,k,j(hk,j)
2.

Then (3.30) becomes:

−ηj +
1

ηj
6 2Muu,k,jhk,j.

The least-conservative value of Muu,k,j satisfying this is:

Muu,k,j =
1− (ηj)

2

2ηjhk,j
.

Then, the values of Myy,k,j, and Muy,k,j that are the least conservative over-bound are:

Myy,k,j =
1− (ηj)

2

2ηj
hk,j

Muy,k,j =
1− ηj

2
− 1− (ηj)

2

2ηj
.

3.2.4 Valid Discrete-Time Models and Control Feasibility

Definition 3.6. For a valid self-powered system model M, discrete time step ∆t, and ex-

ogenous disturbance a ∈ (L2)d, the associated discrete-time model D(M,∆t,a) is comprised

of:

1. Discrete-time state evolution equation (3.10) with energy-preserving outputs yi as in

(3.15) for i ∈ {1...p}

2. Discrete-time energy evolution equations (3.19) for i ∈ {1...p}

3. Discrete-time loss modeling equation (3.22) for i ∈ {1...p}.

Note that for a discrete-time model, the continuous-time exogenous disturbance a gener-

ates time-varying parameters that affect the discrete-time state evolution, energy evolution,
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and loss model equations in different ways. In the state evolution equation the consequence

of a is the presence of discrete-time exogenous input ak, as evaluated from (3.12). In the

energy evolution equations, the consequence of a is the presence of output disturbances aE,k,

as evaluated from (3.18).

When implementing trajectory optimizations via MPC, it is necessary to constrain the

discrete-time control inputs uk and qk such that, when mapped back to continuous-time via

(3.9) and (3.21), they result in feasibility; i.e., they render E(t) ∈ RE, for all t > 0 within

the optimization horizon. However, imposing this constraint over a continuous time interval

is computationally problematic. Therefore, we define a relaxation of feasibility for use in

discrete-time optimization, as described below.

Definition 3.7. Let Md = D(M,∆t,a) be a discrete-time model, in which M ∈ M. At

discrete time k, let xk ∈ Rn and Ek ∈ RE. Let inputs {u`, q`} be defined over the interval

` = {k...k +N}. Then:

1. We say that these inputs are finite-horizon discrete-time feasible if they result in E`+1 ∈
RE for ` ∈ {k...k +N}.

2. Denote the set of all finite-horizon discrete-time feasible inputs as FMd
(xk,Ek, N).

Finite-horizon discrete-time feasibility does not imply continuous-time feasibility, because

the constraint Ei(t) ∈ [Ei
L, E

i
U ] is only enforced at discrete times t = k∆t. It is therefore

possible that for some i ∈ {1...p}, Ei(t) could satisfy the feasibility condition at two consec-

utive discrete time points but violate it in between. This is illustrated in Figure 3.1 for the

case with Ei
L = 0. For a physical self-powered system with Ei

L = 0, if such a control input is

commanded, the result is that the continuous-time control inputs {u(t), q(t)} would fail to

track their zero-order-hold commands, {u∗, q∗}. Consequently there would be distortion in

the ZOH inputs, to the degree necessary to maintain Ei(t) > 0. This distortion is shown in

red in Figure 3.1. For the purposes of MPC trajectory optimization, we do not model these

distortion effects.

Discrete-time feasibility does imply continuous-time feasibility if one assumes that the

continuous-time function E(t) can be recovered from discrete-time samples Ek via linear

interpolation. As ∆t is made smaller, this assumption becomes more justified. In the case

with ∆t→ 0, the assumption may be viewed as being asymptotically exact.

The following Lemma gives conditions for a nonempty set of feasible inputs FMd
(xk,Ek, N).

First, we introduce y̌ik, which is the portion of yik that does not depend on the kth input uk,

i.e., yik = y̌ik +Di
E,kuk.
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Figure 3.1: Trajectory violating the lower energy storage bound is shown in blue, and
the ZOH input distortion is shown in red as a consequence of inter-sample
loss of feasibility
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Lemma 3.2. Let Md = D(M,∆t,a) be a discrete-time model in which M ∈ M, and for

each i ∈ {1...p} let either Ei
L = 0 or γi = 1. For all i ∈ {1...p}, ` ∈ {k...k + N}, and each

y̌i` ∈ Rm, let there exists a u` ∈ Rm such that:[
u`

yi`

]T [
M i

uu,` M i
uy,` + 1

2
I

(M i
uy,`)

T + 1
2
I M i

yy,`

][
u`

yi`

]
6 0. (3.31)

At discrete time `, let x` ∈ Rn and E` ∈ RE. Then, FMd
(xk,Ek, N) is nonempty.

Proof. The proof is directly analogous to the that of Lemma 3.1 for the continuous-time

case, and is omitted in the interest of brevity.

Note that it is trivial to verify that if M i
uy,` = 0 and M i

yy,` = 0 for all i ∈ {1...p}, then

(3.31) is satisfied with uk = 0. It is also straight-forward to verify that the inequality can

also be satisfied for the static efficiency loss model example discussed in Section 3.2.3, by

setting uk,j = −hk,jyik,j for all i ∈ {1...p} and all j ∈ Ki.

Assumption 3. We assume that for the discrete time models Md considered, for all i ∈
{1...p}, ` ∈ {k...k +N}, and each y̌i` ∈ Rm, there exists a u` ∈ Rm such that (3.31) holds.
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Chapter 4

Trajectory Optimization

In this chapter, we first formulate the trajectory optimization problem associated with the

self-powered system in Figure 1.4. We then show that this trajectory optimization is non-

convex in general, and determine specific conditions for which the problem regains convexity.

Next, we discuss special cases of this optimization: the LTI version, passivity-constrained

problem, energy harvesting problem, and zero energy storage problem. Last, we introduce

the barrier method to solve the original nonconvex trajectory optimization in the primal do-

main, and present an example using an energy-harvesting piezoelectric wireless sensor node

with the goal of maximizing data transmission.

4.1 Formulating the Trajectory Optimization Problem

Referring back to Figure 1.6, the core of the MPC feedback law is the trajectory optimization

that maps the state estimation x̂k and the exogenous disturbance trajectory forecast â(t),

t ∈ (k∆t, (k + N)∆t] into an input command {u∗k, q∗k}. As discussed in the introduction,

this problem is made tractable by two key assumptions:

1. {u, q} track their commanded values {u∗, q∗} with high bandwidth, and consequently

the algorithm can be viewed as optimizing {uk:k+N , qk:k+N} directly.

2. For the purposes of trajectory optimization, â(t) = a(t), for t ∈ (k∆t, (k+N)∆t], and

x̂k = xk. That is, we assume perfect knowledge of the exogenous disturbances and

that we can measure all states at time-step k.

In the interest of reducing the notation, we present the results for the specific case in which

k = 0.
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4.1.1 Performance Measure

Let J(u0:N , q0:N ,x0:N+1) : (Rm)N+1 × (Rp)N+1 × (Rn)N+2 → R be the performance measure

function to be minimized by the trajectory optimization algorithm. Then, J(·, ·, ·) has the

form:

J(u0:N , q0:N ,x0:N+1) =φ(xN+1) +
N∑
k=0

Lk(uk, qk,xk), (4.1)

where φ(·) is the final state penalty term, and Lk(·, ·, ·) is the Lagrangian (see Definition

2.14).

Quadratic Performance Measure

Consider the special case where the performance measure is a function of, and quadratic in

{u0:N ,x0:N+1}, i.e.,

J(u0:N ,x0:N+1) =xTN+1PN+1xN+1 +
N∑
k=0

xkuk
ak


T Qk Sk Tk

STk Rk Uk

T T
k UT

k Vk


xkuk
ak

 , (4.2)

where for the purposes of our analysis we assume Rk � 0 and PN+1 � 0.

This quadratic form encompasses many performance measures of interest, for example,

the energy harvesting problem (see Section 4.2.2), and the vibration suppression problem

(see Section 6.4). Therefore, we focus to this specific quadratic form in later chapters.

In most optimal control applications, it is also customary to make the assumption that

Qk − SkR−1
k S

T
k � 0, ∀k ∈ {0...N}, which renders the Lagrangian positive-semidefinite,

therefore guaranteeing the existence of a finite minimum of the optimization. However, for

the analyses to be conducted, this condition is conservative, and may be relaxed while still

guaranteeing that J(·, ·) has a finite global minimum. This is shown in Theorem 4.1 below.

However, prior to presenting this theorem we first introduce the notation x◦0:N(u0:N ,x0) as

the solution to (3.10) over the interval k ∈ {0...N}; i.e.,

x◦k(u0:N ,x0) =x̄k(x0) +
N∑
j=0

Ψ(k, j)Bjuj,
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where Ψ(k, j) is the discrete-time state transition matrix (see Definition 2.8):

Ψ(k, j) =


0, k 6 j

I, k = j + 1

Ak−1 . . .Aj+1, k > j + 2,

(4.3)

and where x̄k isolates the terms related to the initial condition x0 and disturbance a:

x̄k(x0) =Ψ(k, 0)x0 +
N∑
j=0

Ψ(k, j)aj. (4.4)

Theorem 4.1. Let J(·, ·) be the quadratic performance measure in (4.2). Let xk evolve

according to (3.10), with initial condition x0 ∈ Rn, and with disturbance a0:N ∈ Rd×(N+1).

Let Rk � 0, ∀k ∈ {0...N}, and PN+1 � 0. Then, J(u0:N ,x
◦
0:N+1(u0:N ,x0)) has a unique,

finite minimum over u0:N if and only if Υk = (Rk +BT
k PkBk) � 0, ∀k ∈ {0 . . . N}, where

Pk is solution to the following RDRDE:

Pk−1 = Qk +AT
kPkAk −

(
Sk +BT

k PkAk

)T (
Rk +BT

k PkBk

)−1 (
Sk +BT

k PkAk

)
, (4.5)

with terminal constraint PN+1.complement

Proof. (⇐ Sufficient) Assume that (Rk + BT
k PkBk) � 0, ∀k ∈ {0...N}. Let H be the

Hessian of J(·, ·) with respect to the input u, i.e., H = ∂2J
∂u∂uT

. J(·, ·) has a unique, finite

minimum if and only if H � 0. Let Ĥ be the block diagonal matrix:

Ĥ =


Υ0

Υ1

. . .

ΥN

 .

We construct the transformation matrix T such that H = TĤT T . Let Ψ(k, i) be the

discrete-time state transition matrix in (4.3), where i, k ∈ {0...N} and xk+1 = Ψ(k, 0)x0 +
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∑k−1
i=0 Ψ(k, i)(Biui +Giai). Let Hi,j = ∂2J

∂ui∂uTj
be the m×m submatrix of H , where:

Hi,j = BT
i Ψ(N + 1, i)TPNΨ(N + 1, j)Bj +

N∑
k=0

BT
i Ψ(k, i)TQkΨ(k, j)Bj + δi,jRi

+BT
i Ψ(j, i)TSj + STi Ψ(i, j)Bj.

Assume that the transformation matrix T is the product of N matrices as T = TN . . .T2T1.

Now, let Ĥk = (Tk . . .T2T1) Ĥ
(
T T

1 T
T
2 . . .T T

k

)
. We then define:

H`
i,j = BT

i Ψ(`+ 1, i)TP`Ψ(`+ 1, j)Bj + H̃`
i,j,

where ` ∈ {0...N} and:

H̃`
i,j =

∑̀
k=0

BT
i Ψ(k, i)TQkΨ(k, j)Bj + δi,jRi +BT

i Ψ(j, i)TSj + STi Ψ(i, j)Bj.

Then, note that HN
i,j = Hi,j. We begin to construct T1 by first expanding P0 according to

Riccati equation (4.5) in Υ0 = R0 +BT
0 P0B0 as:

Υ0 = R0 + BT
0

(
Q1 +AT

1P1A1

)
B0 − BT

0

(
S1 +BT

1 P1A1

)T
Υ−1

1

(
S1 +BT

1 P1A1

)
B0.

(4.6)

Noting that (4.6) is the Schur complement of the matrix:[
R0 +BT

0

(
Q1 +AT

1P1A1

)
B0 BT

0

(
S1 +BT

1 P1A1

)T(
S1 +BT

1 P1A1

)
B0 Υ1

]
,

we let T1 be:

T1 =


Im BT

0

(
S1 +BT

1 P1A1

)T
Υ−1

1

0m Im
. . .

Im

 .

50



Then Ĥ1 = T T
1 ĤT1, and:

Ĥ1 =



H̃1
0,0 H̃1

0,1

H̃1
1,0 H̃1

1,1

Υ2

. . .

ΥN


+



BT
0 A

T
1

BT
1

0
...

0


P1



BT
0 A

T
1

BT
1

0
...

0



T

.

We repeat this process by expanding P1 according to Riccati equation (4.5). The kth trans-

formation matrix Tk is:

Tk =


Ikm ΠkΥ

−1
k

0m×km Im
. . .

Im


where:

Πk =


(BT

0 A
T
1 · · ·AT

k−1)
...

BT
k−1

(Sk +BT
k PkAk

)T
,

and Ĥk is:

Ĥk =



H̃k
0,0 · · · H̃k

0,k

...
. . .

...

H̃k
k,0 · · · H̃k

k,k

Υk+1

. . .

ΥN


+



BT
0 A

T
1 · · ·AT

k

...

BT
k

0
...

0


Pk



BT
0 A

T
1 · · ·AT

k

...

BT
k

0
...

0



T

.
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Then we have that ĤN = H , i.e.,

ĤN =


H̃N

0,0 · · · H̃N
0,N

...
. . .

...

H̃N
N,0 · · · H̃N

N,N

+


BT

0 A
T
1 · · ·AT

N

...

BT
N

PN

BT

0 A
T
1 · · ·AT

N

...

BT
N


T

=


H0,0 · · · H0,N

...
. . .

...

HN,0 · · · HN,N


= H .

(⇒ Necessary) Transformation matrix Tk is upper triangular with identity matrices along

the diagonal, therefore Tk, k ∈ {0...N}, is invertible. And we have that T−1HT−T = Ĥ .

Corollary 4.1. For the conditions in Theorem 4.1, if J(u0:N ,x
◦
0:N+1(u0:N ,x0)) has a finite

and unique minimum in u0:N , then J(u0:N ,x
◦
0:N+1(u0:N ,x0)) is a convex function of u0:N .

Proof. The proof follows directly from the fact that J(u0:N ,x
◦
0:N+1(u0:N ,x0)) is quadratic

in u0:N .

Theorem 4.1 has a close connection to (Q,S,R) dissipativity, as defined in [38]. Indeed,

it may be viewed as providing necessary and sufficient conditions for discrete-time, time-

varying, finite-horizon (Q,S,R) dissipativity. In special cases for choices of {Qk,Sk,Rk}
it distills to conditions for various versions of the finite-horizon Kalman-Yakubovich-Popov

(KYP) Lemma, including the positive-real and bounded-real lemmas. Anderson and Vong-

panitlerd in [5] provide an optimal-control-based proof of the finite-horizon positive-real

lemma in continuous-time, before taking the asymptotic limit as the time horizon approaches

infinity, and showing that for time-invariant plant parameters one arrives at the matrix in-

equality condition for positive-realness of time-invariant plants. Green and Limebeer, in

[26], show the analogous continuous-time, optimal-control-based proof to Theorem 4.1 for

the bounded real lemma.

However, there does not appear to be analogous finite-horizon proofs in the open literature

in the discrete-time case. Rather, the discrete-time version of the KYP lemma (whether in

its general form, or specifically for positive-real or bounded-real cases) is usually only proved

in the time-invariant, infinite-horizon case, with the usual approach being to relate it to

the continuous-time KYP lemma using a bilinear transformation (e.g., [14, 25, 32]). The
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discrete-time finite-horizon time-varying positive real lemma follows directly from Theorem

4.1.

Corollary 4.2. (Discrete-Time Finite-Horizon Time-Varying Positive Real Lemma) Let xk

evolve according to the LTV difference equation (3.10) with initial condition x0 ∈ Rn, and

exogenous disturbance a0:N ∈ Rd×(N+1). Now, let p = 1 and y1
k be defined according to (3.15),

and let performance measure J(·, ·) be:

J(u0:N ,x
◦
0:N+1(u0:N ,x0)) =

N∑
k=0

uTk y
1
k,

which can be written in the form (4.2) with PN+1 = 0 and with matrix parameters:

Sk =
1

2
(C1

E,k)
T , Rk =

1

2
(D1

E,k + (D1
E,k)

T )

Uk =I, Qk =Tk = Vk = 0,

where C1
E,k, and D1

E,k are defined in (3.16), and (3.17), respectively. Then, the discrete-time

mapping u 7→ y1 is passive if and only if the RDRDE:

P̃k−1 = AT
k P̃kAk +

(
C1
E,k −BT

k P̃kAk

)T (
D1

E,k + (D1
E,k)

T −BT
k P̃kBk

)−1 (
C1
E,k −BT

k P̃kAk

)
,

with final condition P̃N+1 = 0, has a solution where (D1
E,k + (D1

E,k)
T −BT

k P̃kBk) � 0. If

the solution to P̃k exists, then P̃k � 0, ∀k ∈ {0...N + 1}.

Proof. The proof follows analogously from Theorem 4.1, where P̃k = −Pk in Equation (4.5).

Because Qk = 0, P̃N+1 = 0, and
(
D1

E,k + (D1
E,k)

T −BT
k P̃kBk

)
� 0, we can conclude that

P̃k � 0, ∀k ∈ {0...N + 1}.

Assumption 4. Let Md = D(M,∆t,a) be the discrete-time model under consideration,

and let x evolve according to (3.10). Then, we assume that if the performance measure is of

form (4.1), then J(u0:N , q0:N ,x
◦
0:N(u0:N ,x0)) is convex in {u0:N , q0:N}. If the performance

measure is of form (4.2), then J(u0:N ,x
◦
0:N(u0:N ,0)) is convex in u0:N .
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4.1.2 Energy-Constrained Optimal Control Problem

The energy stored in the ith unit Ei
k+1 can be written explicitly in terms of {u0:N , q0:N ,x0:N}

as:

Ei
k+1(u0:N , q0:N ,x0:N) = (γi)k+1Ei

0 −
k∑
`=0

(γi)k−`(uT` y
i
` + µi`(u`,y

i
`) + qi`),

where yi` is related to {u0:N , q0:N ,x0:N} via (3.15). Let cLk (·, ·, ·) and cUk (·, ·, ·) be the set of

p lower and p upper energy constraint functions, respectively:

cLk (u0:N , q0:N ,x0:N) =EL −Ek+1

cUk (u0:N , q0:N ,x0:N) =Ek+1 −EU ,

where EL =
[
E1
L · · ·E

p
L

]T
and EU =

[
E1
U · · ·E

p
U

]T
. Then clearly:

Ek+1 ∈ RE ⇐⇒ cLk (u0:N , q0:N ,x0:N) 6 0, cUk (u0:N , q0:N ,x0:N) 6 0,

with the inequalities taken element-by-element. Let the trajectory optimization, where we

enforce that the discrete-time states evolve according to (3.10), be the Energy-Constrained

Optimal Control Problem (ECOCP), which has the following form:

ECOCP =



Given: x0, E0,ak,a
i
E,k,

Ak,Bk,C
i
E,k,D

i
E,k, γ

i,M i
k

∀k ∈ {0...N}, ∀i ∈ {1...p}

Minimize: J(u0:N , q0:N ,x
◦
0:N+1(u0:N ,x0))

Domain: u0:N , q0:N

Constraints: cLk (u0:N , q0:N ,x
◦
0:N(u0:N ,x0)) 6 0,

cUk (u0:N , q0:N ,x
◦
0:N(u0:N ,x0)) 6 0,

qk > 0,

∀k ∈ {0...N}.

(4.7)

Define the Lagrange multipliers that enforce the kth lower energy constraint, and kth upper

energy constraint of the ith energy storage system as λL,ik and λU,ik , respectively. Let λLk and

λLk be vectors of length p containing these Lagrange multipliers for each energy storage
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system:

λLk =
[
λL,1k · · · λL,pk

]T
, λUk =

[
λU,1k · · · λU,pk

]T
.

Now, let λk be a vector of length 2p of all these Lagrange multipliers at the kth time step:

λk =
[
(λLk )T (λUk )T

]T
=
[
λL,1k · · · λL,pk λU,1k · · · λU,pk

]T
.

The KKT conditions require these Lagrange multipliers to be non-negative at the optimum,

i.e., λLk ,λ
U
k > 0, ∀k ∈ {0...N}. We explicitly enforce the energy constraints and state

dynamics in the augmented performance measure function J̄(·, ·, ·, ·) as:

J̄(u0:N , q0:N ,x
◦
0:N+1(u0:N ,x0),λ0:N) = x◦N+1(uN ,x0)TPN+1x

◦
N+1(u0:N ,x0)

+
N∑
k=0

Lk(uk,x
◦
k(u0:N ,x0)) +

N∑
k=0

(λLk )TcLk (u0:N , q0:N ,x
◦
0:N(u0:N ,x0))

+
N∑
k=0

(λUk )TcUk (u0:N , q0:N ,x
◦
0:N(u0:N ,x0)). (4.8)

Then, the ECOCP is equivalent to the following primal minimax problem:

J∗(x0) = inf
u0:N , q0:N>0

{
sup
λ0:N>0

J̄(u0:N , q0:N ,x
◦
0:N+1(u0:N ,x0),λ0:N)

}
. (4.9)

4.1.3 Convexity

The ECOCP is convex if performance measure J(u0:N , q0:N ,x
◦
0:N+1(u0:N ,x0)) in (4.1) is a

convex function of {u0:N , q0:N}, and if the inequality constraint functions:

cLk (u0:N , q0:N ,x
◦
0:N(u0:N ,x0)) 6 0 and cLk (u0:N , q0:N ,x

◦
0:N(u0:N ,x0)) 6 0

are convex in {u0:N , q0:N}, for all k ∈ {0...N} (see Definition 2.21). If the ECOCP is convex,

then its feasibility domain FMd
(xk,Ek, N) is a convex set. Assumption 4 ensures that

J(u0:N , q0:N ,x
◦
0:N+1(u0:N ,x0)) is a convex function of {u0:N , q0:N}. Hence, we focus on the
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convexity of the storage constraint functions, but first, we introduce some notation. Let:

ũik =(γi)−k/2uk, x̃ik =(γi)−k/2xk, ỹik =(γi)−k/2yik, (4.10)

and then we define the ith modified system as:(
γi
)1/2

x̃ik+1 =Akx̃
i
k +Bkũ

i
k

ỹik =Ci
E,kx̃

i
k +Di

E,kũ
i
k,

(4.11)

with initial condition x̃i0 = x0 ∈ Rn. Recall that γi ∈ (0, 1] is a unitless scalar that quantifies

the decay of energy within the ith storage system as defined in (3.20).

Theorem 4.2. For all i ∈ {1...p}, let the mapping ũi 7→ ỹi be discrete-time passive (see

Definition 2.12). Then, the following are true ∀k ∈ {0...N}:

1. cLk (u0:N , q0:N ,x
◦
0:N(u0:N ,x0)) is a vector of convex functions in {u0:N , q0:N}

2. cUk (u0:N , q0:N ,x
◦
0:N(u0:N ,x0)) is a vector of concave functions in {u0:N , q0:N}.

Proof. First, we show statement 1. Let {ua0:N , q
i,a
0:N} and {ub0:N , q

i,b
0:N} each satisfy the lower

energy constraint for the ith energy storage unit, cL,ik (·, ·, ·) 6 0 for k ∈ {0...N}, i.e., they are

feasible trajectories for these constraints. Let Ei,a
0:N+1 and Ei,b

0:N+1 be the resulting energies

from implementing these feasible inputs. Let α ∈ [0, 1], and define the linear interpolation

between these two feasible trajectories as:

uab0:N =αua0:N + (1− α)ub0:N , (4.12)

qi,ab0:N =αqi,a0:N + (1− α)qi,b0:N ,

and let Ei,ab
0:N+1 be the resulting energy from implementing these interpolated inputs. Due to

linearity, the corresponding responses for yi0:N and x0:N are also interpolations; i.e.,

yi,ab0:N =αyi,a0:N + (1− α)yi,b0:N ,

xab0:N =αxa0:N + (1− α)xb0:N .

Function cL,ik (·, ·, ·) is convex if:

Fk = cL,ik (uab0:N , q
ab
0:N ,x

ab
0:N)− αcL,ik (ua0:N , q

a
0:N ,x

a
0:N)− (1− α)cL,ik (ub0:N , q

b
0:N ,x

b
0:N) 6 0.
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Then, simplifying we have that:

Fk =− Ei,ab
k+1 + αEi,a

k+1 + (1− α)Ei,b
k+1

=
k∑
`=0

(γi)k−`((uab` )Tyi,ab` + µi`(u
ab
` ,y

i,ab
` ) + qi,ab` )

− α
k∑
`=0

(γi)k−`((ua` )
Tyi,a` + µi`(u

a
` ,y

i,a
` ) + qi,a` )

− (1− α)
k∑
`=0

(γi)k−`((ub`)
Tyi,b` + µi`(u

b
`,y

i,b
` ) + qi,b` ).

Because µ`(·, ·) is quadratic, this simplifies to:

Fk = −(α− α2)

(
k∑
`=0

(γi)k−`(ua` − ub`)T (yi,a` − y
i,b
` ) +

k∑
`=0

(γi)k−`µi`(u
a
` − ub`,y

i,a
` − y

i,b
` )

)

The second term in the parentheses is positive because µ`(·, ·) is positive-semidefinite. Then,

we have that:

Fk 6− (α− α2)γk
k∑
`=0

(ũi`)
T ỹi`,

where ũi` = (γi)−`/2(ua` − ub`) and ỹi` = (γi)−`/2(yi,a` − y
i,b
` ). Note that ỹi` depends only on

ũi0:N (but not a and x0). Recall that the mapping ũi 7→ ỹi is discrete-time passive, and this

requires that with x0 = 0 and a0:N = 0:

k∑
`=0

(
ũi`
)T
ỹi` > 0, ∀ũi0:N ∈ Rm×(N+1), ∀k ∈ Z>0.

Then, it follows that Fk 6 0, ∀k ∈ {0...N}. Thus, completing the proof for statement 1.

To show statement 2, we repeat the same process, but instead show that Fk > 0 ∀k ∈
{0...N}, and therefore cU,ik (u0:N , q0:N ,x

◦
0:N(u0:N ,x0)) is a concave constraint in {u0:N , q0:N}.

In the above proof, we show that the energy storage constraints are quadratic in u0:N , and

therefore if the performance measure is also quadratic in u0:N , the ECOCP is a nonconvex

QCQP in general. However, under special conditions on the model parameters, the ECOCP
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is convex.

Let Ei
max be the maximum possible energy that the ith storage system can extract at

time-step N + 1 from disturbance a0:N ∈ (Rd)(N+1) with initial condition x0 ∈ Rn, no decay

in the storage system (γi = 1), and ignoring lower storage bounds. That is:

Ei
max = max

u0:N

{
Ei
N+1(u0:N , q

i
0:N = 0,x◦0:N(u0:N ,x0))

}
. (4.13)

Therefore, Ei
max is an upper bound on the amount of energy in storage system i.

Corollary 4.3. For a given set of initial conditions and exogenous disturbances, there exists

bounds {Ê1
U · · · Ê

p
U} such that the ECOCP is convex if for all i ∈ {1...p}:

1. Ei
U > Êi

U

2. The mapping ũi 7→ ỹi is discrete-time passive.

It then follows that the feasibility domain FMd
(x0,E0, N) is a convex set.

Proof. Assumption 4 states that performance measure J is a convex function of {u0:N , q0:N}.
Theorem 4.2 shows that the upper energy constraint cUk (·, ·, ·) is a concave function in u0:N .

However, if Ei
U > Ei

max, which is defined in (4.13), for all i ∈ {1...p}, then the upper energy

constraint is inactive for all k ∈ {0...N} and for all {u0:N , q0:N} ∈ (Rm)(N+1)× (Rp)(N+1). It

follows that the ECOCP is convex. A tighter bound, where Êi
U < Ei

max, may exist.

The requirement that the mapping ũi 7→ ỹi be discrete-time passive ∀i ∈ {1...p} is rather

restrictive. To simplify matters, consider the case in which γi = 1, ∀i ∈ {1...p}. Then,

this effectively requires discrete-time passivity of each mapping u 7→ yi, ∀i ∈ {1...p}. It

is straight-forward to show that this is the case if p = 1, i.e., if there is only one storage

system, because in this case the discrete-time passivity of u 7→ y1 is inherited from the

continuous-time passivity of the plant, which we prove below. However, if p > 1, then this

discrete-time passivity condition does not hold in general, irrespective of the passivity of

the continuous-time system. And even if the mapping ũi 7→ ỹi is discrete-time passive for

γi = 1, it may fail to hold for γi below a certain threshold (see Section 4.2.1 for an extended

discussion on this).

Lemma 4.1. Consider the case with one energy storage unit p = 1 and where T 1
S →∞. If

the mapping u 7→ v is continuous-time passive, which is the case for all P ∈ P, then the

discrete-time mapping u 7→ y1 is discrete-time passive.
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Proof. It follows from the definition of continuous-time passivity in Definition 2.10 that for

each initial condition x(0) ∈ Rn and exogenous disturbance trajectory a ∈ (L2)d, there

exists a β > 0 such that for all u ∈ (L2)m and all ` ∈ Z>0:∫ (`+1)∆t

0

uT (τ)v(τ)dτ > −β.

Then, when u(τ) = uk for τ ∈ [k∆t, (k + 1)∆t) and for all k ∈ {0...`}, i.e., u is a ZOH

trajectory, we can write the above as:

uT0

∫ ∆t

0

v(τ)dτ + uT1

∫ 2∆t

∆t

v(τ)dτ + · · ·+ uT`
∫ (`+1)∆t

`∆t

v(τ)dτ > −β.

When T 1
S →∞, y1

k simplifies to y1
k =

∫ (k+1)∆t

k∆t
v(τ)dτ , and then it follows that:

∑̀
k=0

uTk y
1
k > −β,

and therefore, the mapping u 7→ y1 is discrete-time passive via Definition 2.12.

4.2 Special Cases of the Energy-Constrained Optimal

Control Problem

4.2.1 Linear Time Invariant Plant

Consider the special case where the dynamics of the continuous-time plant P in (3.1) are

LTI. Then, it follows that the discrete-time plant dynamics evolves according to the following

discrete-time LTI difference equation:

xk+1 =Axk +Buk + ak

yik =Ci
Exk +Di

Euk + aiE,k.
(4.14)

where:
A =eĀ∆t, B =Ā−1(A− I)B̄

D =D̄, C =C̄.
(4.15)
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Then, the energy-preserving, discrete-time matrices in (3.16), (3.17), and (3.18) simplify to:

Ci
E =KiC(Ā+ 1

T iS
I)−1

(
A− γiI

)
Di

E =Ki
(
C(Ā+ 1

T iS
I)−1

(
B − B̄χi

)
+Dχi

)
aiE,k =Ki

(
C(Ā+ 1

T iS
I)−1

(
Ā−1(A− I)Ḡ− Ḡχi

))
ak.

(4.16)

Now, we can represent the discrete-time mapping u 7→ yi by the following transfer function:

T i(z) =Ci
E (zI −A)−1B +Di

E, (4.17)

and the discrete-time mapping ũi 7→ ỹi , where ũi and ỹi are defined in (4.10), are repre-

sented by following transfer function:

T̃ i(z) = Ci
E

(
(γi)

1
2 zI −A

)−1

B +Di
E. (4.18)

We specialize Theorem 4.1 and Corollary 4.3 for LTI systems using transfer functions (4.17)

and (4.18).

Corollary 4.4. Consider the case where the dynamics of the continuous-time plant P in

(3.1) are LTI. There exists bounds {Ê1
U · · · Ê

p
U} such that the ECOCP is convex if for all

i ∈ {1...p}:

1. Ei
U > Êi

U

2. Transfer function T̃ i(z) in (4.18) is PR.

Recall from Theorem 2.7 that a transfer function is PR if and only if the associated

discrete-time LTI system is passive. Consider the case where mapping u 7→ yi is discrete-

time passive for i ∈ {1...p}. If p = 1, we can guarantee u 7→ y1 is discrete-time passive

via Lemma 4.1; however, we cannot guarantee passivity for p > 1. As mentioned in Section

4.1.3, there exists a threshold for γi below which passivity of ũi 7→ ỹi is lost. This result

becomes more obvious in the LTI case because we can more easily analyze how transfer

function T̃ i(z) changes with decreasing γi. First, consider the case where γi = 1. Then,

T̃ i(z) = T i(z) and the mappings ũi 7→ ỹi and u 7→ yi are equivalent. Hence, for γi = 1,

Corollary 4.4 requires T i(z) to be PR. However, if γi < 1, we require a stronger condition

on T i(z) to hold. It follows directly from Definition 2.13 that for γi ∈ (0, 1], T̃ i(z) is PR if:
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1. all elements of T i(z) are analytic for ∀|z| > (γi)
1
2

2. T i(z) + (T i)T (z̄) � 0, ∀|z| > (γi)
1
2 .

As γi decreases, the region over which the above requirements must be satisfied grows.

Therefore, the conditions for T̃ i(z) to be PR become more restrictive with decreasing γi.

For the case where γi = 0, there is no energy storage (see Section 4.2.4), and the ECOCP is

always nonconvex.

4.2.2 Energy Harvesting Problem

In the energy harvesting problem, the goal is to maximize the total generated energy (i.e.,

the energy delivered from the transducers to the storage system, minus transmission losses)

over a finite time horizon. Then, the energy harvesting performance measure is:

J(u0:N ,x
◦
0:N+1(u0:N ,x0)) =

p∑
i=1

N∑
k=0

uTk y
i
k + µik

(
uk,y

i
k

)
, (4.19)

where yik is defined in (3.15), and µik (·, ·) is the quadratic transmission loss model in (3.22).

Note that the energy harvesting performance measure can written as the quadratic form in

(4.2).

Theorem 4.3. Consider the energy harvesting performance measure in (4.19). Let the

mapping u 7→ yi be discrete-time passive ∀i ∈ {1...p}, then the energy harvesting performance

measure (4.19) is a convex function of u0:N .

Proof. First, we show that the first term of performance measure J(·, ·) is a convex function

of u0:N . We write this first term as a quadratic function of u0:N :

p∑
i=1

N∑
k=0

uTk y
i
k =


u0

...

uN


T (

p∑
i=1

V i

)
u0

...

uN

+


u0

...

uN


T

p∑
i=1

Li, (4.20)
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with:

V i =
1

2


(Di

E,0)T +Di
E,0 (Ci

E,1Ψ(1, 0)B0)T · · · (Ci
E,NΨ(N, 0)B0)T

Ci
E,1Ψ(1, 0)B0 (Di

E,1)T +Di
E,1 · · · (Ci

E,NΨ(N, 1)B1)T

...
...

. . .
...

Ci
E,NΨ(N, 0)B0 Ci

E,NΨ(N, 1)B1 · · · (Di
E,N)T +Di

E,N



Li =


aiE,0 +Ci

E,0x̄0

aiE,1 +Ci
E,1x̄1

...

aiE,N +Ci
E,N x̄N

 ,

and where x̄k is defined in (4.4). Because V i is a matrix of Markov parameters (see Definition

2.6) and if u 7→ yi is discrete-time passive, it follows that:

N∑
k=0

uTk ŷ
i
k =


u0

...

uN


T 

ŷi0
...

ŷiN

 =


u0

...

uN


T

V i


u0

...

uN

 > 0.

Then, V i � 0. The sum of positive semi-definite matrices is a positive semi-definite matrix,

so it follows that
∑p

i=1 V
i � 0. We conclude that (4.20) is a convex function of u0:N

Now, we show that the second term of performance measure J(·, ·):

p∑
i=1

N∑
k=0

µik
(
uk,y

i
k

)
=

p∑
i=1

N∑
k=0

[
uk

yik

]T [
M i

uu,k M i
uy,k

(M i
uy,k)

T M i
yy,k

][
uk

yik

]

is a convex function of u0:N . Let ŷik be the portion of yik forced by the control input, and

not by the initial condition or exogenous disturbance, i.e., ŷik = Ci
E,k(xk − x̄k) +Di

E,kuk.

Then:

p∑
i=1

N∑
k=0

[
uk

yik

]T [
M i

uu,k M i
uy,k

(M i
uy,k)

T M i
yy,k

][
uk

yik

]
=

p∑
i=1

N∑
k=0

[
uk

ŷik

]T [
M i

uu,k M i
uy,k

(M i
uy,k)

T M i
yy,k

][
uk

ŷik

]

+ 2

[
uk

ŷik

]T [
M i

uy,k

(
Ci
E,kx̄k + aiE,k

)
M i

yy,k

(
Ci
E,kx̄k + aiE,k

)]+
(
Ci
E,kx̄k + aiE,k

)T
M i

yy,k

(
Ci
E,kx̄k + aiE,k

)
(4.21)
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Because M i � 0 and ŷik is a linear function of the control inputs, (4.21) is a convex function

of u0:N . The sum of convex functions is a convex function, so we conclude that performance

measure (4.19) is a convex function of u0:N .

4.2.3 Passivity-Constrained Problem

In the passivity-constrained problem, we enforce the constraint:

k∑
j=0

uTj y
i
j > 0, ∀i ∈ {1...p}, and ∀k ∈ {0...N},

which is equivalent to the lower energy constraint cLk (·, ·, ·) with γi = 0 and µi(·, ·) = 0

for all i ∈ {1...p}. This type of constraint is useful for robust control, where the Passivity

Theorem guarantees the feedback connection of two passive systems is stable. The passivity-

constrained problem has the form:

Passivity-Constrained =



Given: x0, E0 = 0,ak,Ak,Bk,

Ci
E,k,D

i
E,k,a

i
E,k ∀k ∈ {0...N}

Minimize: J(u0:N ,x
◦
0:N+1(u0:N ,x0))

Domain: u0:N

Constraints:
k∑
j=0

uTj y
i
j > 0,

∀i ∈ {1...p}, ∀k ∈ {0...N},

Previous research exploits passivity (or (Q,S,R)-dissipativity, which can be thought of as

a more general version of passivity [38]) in MPC optimization problems. References [57, 77,

80] impose passivity-based state constraints to enforce closed loop stability, and [69] uses dis-

sipativity conditions to implement distributed MPC. References [6, 48] exploit dissipativity

to find the optimal steady-state operation in the context of economic MPC. Falugi in [22] im-

plements passivity-constrained MPC for passive plants and focuses on ensuring feasibility of

constrained trajectories for nonlinear plants, which ensures robustness in a continuous-time

setting.
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4.2.4 Zero Energy Storage Problem

Consider the case where all transducer ports are connected to a single energy storage system.

In the zero energy storage problem, E1
L = E1

U = 0, meaning that energy cannot be stored

from time-step to time-step. In this case, feasible trajectories require E1
k = 0, ∀k ∈ {0...N}.

This is equivalent to enforcing a power directionality constraint, meaning that the aggregate

power from all transducers must flow out of the ports, i.e., uTk y
1
k 6 0, ∀k ∈ {0...N}. This

is also equivalent to the case with γ = 0, i.e., all energy in the energy storage system is

dissipated during a single time step. In the zero energy storage problem the two inequality

constraints cLk (·, ·, ·) 6 0 and cUk (·, ·, ·) 6 0 can be simplified to a single equality constraint:

cLk (·, ·, ·) = cUk (·, ·, ·) = 0, and therefore it is always a nonconvex problem.

4.3 Barrier Method Approach

In this section, we present an overview of the barrier method approach to solve the nonconvex

ECOCP and then demonstrate this algorithm on a piezoelectric wireless sensor node with

the goal of maximizing transmitted data.

As previously mentioned in Section 1.3.1, barrier methods are used to solve a sequence of

equality-constrained minimizations to which Newton’s method can be applied to ultimately

find a solution of the desired constrained problem [10]. Consider the general COCP in (2.16)

with inequality constraint vector ck(u0:N ,x0:N+1) 6 0 of length i. Let ck,j(·, ·) be the jth

constraint in this vector. Then, the indicator function of ck,j(·, ·) is:

1(ck,j(u0:N ,x0:N+1)) =

0, ck,j(u0:N ,x0:N+1) 6 0

∞, ck,j(u0:N ,x0:N+1) > 0.

We can enforce compliance of the inequality constraints by adding the indicator function

to the performance measure and instead minimizing this altered performance measure. The

altered performance measure is:

J̃(u0:N ,x0:N+1) = J(u0:N ,x0:N+1) +
N∑
k=0

i∑
j=1

1(ck,j(u0:N ,x0:N+1))

However, the indicator function is not differentiable. Therefore, solution methods that

make use of derivatives of the performance measure, like Newton’s method, cannot be used
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in conjunction with J̃(·, ·). We can approximate the indicator function with the following

differentiable logarithmic function, which we refer to as a log barrier. Let the log barrier of

ck,j(·, ·) with constant β > 0 be:

1̂(β, ck,j(u0:N ,x0:N+1)) =

− 1
β

ln (cj,k(u0:N ,x0:N+1)), ck,j(u0:N ,x0:N+1) 6 0

∞, ck,j(u0:N ,x0:N+1) > 0.
(4.22)

Note that the approximation of the indicator function improves as β increases. Then, we

can minimize the performance measure plus the log barriers of each constraint as:

Ĵ(β,u0:N ,x0:N+1) = J(u0:N ,x0:N+1) +
N∑
k=0

i∑
j=1

1̂(β, ck,j(u0:N ,x0:N+1)).

When using barrier methods to solve an optimization problem, we do not need to enforce

the inequality constraints explicitly, and instead we solve a sequence of equality-constrained

minimizations, increasing the value of β in each successive minimization. With each succes-

sive minimization, the approximation of the indicator function improves with increasing β.

We iterate on the inputs until desired convergence is achieved for a sufficiently large β. An

advantage of the barrier method is that the optimization is performed completely within the

primal, feasible domain so there is no activation and de-activation of the multipliers. Here

we have described the basic methodology of barrier methods; however, [8, 10] can be used

as references to provide extended commentary about this class of algorithm. Next we look

at using barrier methods to solve trajectory optimizations for a self-powered system.

4.3.1 Example: Piezoelectric Wireless Sensor Node

This example is based off of work in [37]. We use the barrier method approach to find the

optimal control solution which maximizes data transmitted by a piezoelectric wireless sensor

node subject to base acceleration impulses. Consider the model of a piezoelectric energy

harvesting single-user wireless communication system depicted in Figure 4.1. This system

has five components: (1) a piezoelectric bimorph cantilever beam, (2) a power electronic

energy conversion circuit, (3) an energy storage system (e.g., a rechargeable battery), (4) a

data queue, and (5) a data transmitter.

Base acceleration a(t) excites the piezoelectric beam, resulting in mechanical vibrations,

and in turn, a voltage v(t) at the transducer. The power-electronic circuit controls the en-
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Figure 4.1: Wireless sensor node equipped with a piezoelectric bimorph cantilever
beam, a power electronic circuit, an energy storage system, a data queue,
and a transmitter.

ergy extracted from the transducer, and then delivers this harvested energy to the storage

subsystem. By reciprocity, harvesting energy also removes mechanical energy, which imposes

supplemental damping on the beam [40, 60]. If energy is harvested too aggressively, then the

resulting high damping will suppress beam resonance, which may reduce the magnitude of

future power injection to the beam from the disturbance. Oppositely, if energy is harvested

too slowly, the injected disturbance energy will be lost due to mechanical damping. Conse-

quently, the effectiveness of an energy harvesting system is strongly related to the dynamics

of the control system used to extract power.

A commonly-used power-electronic circuit at the interface of the transducer is a diode

bridge rectifier, which trickle-charges the energy storage system. This circuit cannot be con-

trolled to maximize harvested energy, and hence it cannot adapt to optimize the damping

imposed on the beam. Liu et al. in [43] use a PWM-controlled H-bridge circuit for piezo-

electric energy harvesting, which is shown in Figure 4.2. Through high-frequency PWM

switching of the circuit’s four MOSFETs {S1, S2, S3, S4}, the H-bridge circuit can realize

any desired transducer current, including trajectories that result in two-way power flow (i.e.,

absorbing energy from and injecting energy into the transducer). In this work, we assume

the use of an H-bridge circuit at the interface between the transducer and storage system.

We consider the case where the wireless node is exclusively powered by energy harvested

from a periodic chain of base acceleration impulses. We assume that the arrival times and

magnitudes of these impulses are known a priori. Our goal is to determine the optimal off-

line control of the transmission power and the transducer current that maximizes the number

of bits transmitted over the wireless network in a fixed time period. Although we focus on

piezoelectric transduction and impulsive disturbances, the techniques described in this paper

may be applied to other energy harvesting technologies and/or disturbance regimes in an

analogous manner.
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Figure 4.2: Circuit drawing of power electronics interfacing the piezoelectric trans-
ducer with the energy storage system, an H-bridge circuit

Recent work that identifies an optimal scheduling policy to maximize data transmission of

an energy harvesting node abstracts the source and transduction method. Energy arrival is

often treated as a discrete event, and energy is delivered to the harvester instantaneously in

“energy packets” or “energy bursts” [50, 52, 54, 72, 78]. As described earlier, the dynamics

of a piezoelectric transducer are affected by harvesting energy, and hence modeling a node

without transducer dynamics may significantly vary the optimal solution. In addition, mod-

eling energy arrival as a discrete event does not account for the time period over which that

energy is harvested. For example, it may take x time units to harvest y energy units, but

if we model all y units arriving instantaneously, we may schedule the use of those y energy

units before they have actually been harvested.

Many studies also do not account for the energy consumed by the harvesting process, i.e.,

the parasitic losses of the power electronics [50, 52, 54, 72, 78]. Although transmitting data

over a wireless network is a particularly energy-intensive task, operating power electronics

does not come without an energy cost as well. [79] and [18] account for the energy con-

sumption of the circuitry by including a constant penalty term for each unit time when the

system is ON, however, this consumption model may not be conservative. For a general

vibration energy harvesting system, [63] studies the parasitic losses of the power electronics.

They show that loss models that are quadratic in the transducer current overbound the par-

asitic dissipation. In this study, we assume non-negligible parasitic losses and model these

losses conservatively as shown in [63]. Our optimal scheduling policy must allocate energy

resources between two energy-consuming tasks: harvesting energy and transmitting data.

We examine this problem in the context of full-information optimal control, in a manner

that accounts for the transducer dynamics and parasitic losses associated with the recharge

circuit. Although outside the scope, this technique can be compared to the more abstracted
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solutions that currently exist in the literature. In addition, the optimal off-line control

solution considered here provides intuition about the optimal real-time controller. Finally,

the analysis presented here establishes an upper bound on the performance of any real-time

controller, for which a priori disturbance information would likely be unavailable, and which

would also have to contend with uncertainty in the model and feedback measurements.

Modeling

Reference the general model of a self-powered system in Figure 1.4, and the definition of

model M in Definition 3.2. Here we consider the case with a single piezoelectric beam

(m = 1) connected to one energy storage system (p = 1). As shown in Figure 4.1, our

control input is the current i(t) into the transducer, the potential variable is the transducer

voltage v(t), and the exogenous disturbance is a periodic chain of base acceleration impulses

to the piezoelectric beam each with a magnitude a0. Then, the rest of the components of

the model are as follows:

1. Plant: Here we model P ∈ P, the dynamic response of the piezoelectric cantilever

beam in Figure 4.1, by the following set of dynamic equations:

P :

{
mwẅ(t) + dwẇ(t) + kww(t) = ζwa(t)− θwv(t)

Cwv̇(t) + 1
Rw
v(t) = θwẇ(t) + i(t),

(4.23)

where w(t) is the displacement of the piezoelectric beam, v(t) is the transducer voltage,

i(t) is the transducer current, a(t) is the base acceleration, mw is the mass of the beam,

dw is the beam damping, kw is the beam stiffness, ζw is the disturbance input coefficient,

θw is the electro-mechanical coupling factor, Cw is the equivalent capacitance, and Rw

is the dielectric leakage resistance. Note that the subscript w is meant to distinguish

the model parameters from the other parameters used in this thesis. The electro-

mechanical dynamics of a piezoelectric beam are constructed in [29], and the set of

equations in (4.23) are based on simplifications of this model described in [66] and [64].

Next, we nondimensionalize plant P by making the following variable substitutions

t =
√

mw
kw
t̂ w(t) = ζwa0

kw
ŵ(t̂) v(t) = ζa0√

Cwkw
v̂(t̂)

a(t) =a0

√
kw
mw
â(t̂) Rw = 1

Cw

√
mw
kw
R̂w i(t) =ζwa0

√
Cw
mw
î(t̂),

(4.24)

where the hat indicates the nondimensional version of that variable. The nondimen-
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sional mechanical damping d̂w, electromechanical coupling factor θ̂w, and dielectric

leakage coefficient κ̂w are equal to:

d̂w = dw√
kwmw

θ̂w = θw√
Cwkw

κ̂w =Cw
Rw

√
kw
mw

We represent the plant in continuous-time with states x(t) =
[
ŵ(t) ˙̂w(t) v(t)

]T
,

where ŵ(t) and ˙̂w(t) are the nondimensionalized displacement and velocity of beam

tip, respectively. The states evolve according to (3.1) with LTI matrices:

Ā =

 0 1 0

−1 −d̂w −θ̂w
0 θ̂w −κ̂w

 , B̄ =

 0

0

−1

 , Ḡ =

0

1

0

 , C̄ = −B̄T , D̄ = 0,

where control input is the transducer current, u(t) = i(t).

2. Transmission Losses: For the PWM-controlled H-bridge circuit, we assume it is

equipped with a high-bandwidth current-tracking loop. This enables us to assume

that at the time scale of the electromechanical beam dynamics, transducer current i(t)

can be made to track any desired signal with negligible error, allowing us to treat it as

a control input. This versatility of the H-bridge circuit does not come without a price,

as it exhibits higher parasitic losses than other popular power electronic circuits used

for this interface (e.g., a diode bridge rectifier, or a buck-boost DC/DC converter).

The higher parasitic losses are due to presence of four MOSFETs, which must be

gated in PWM, and use of feedback control. We model the power electronics’ parasitic

dissipation quadratically as:

µ1(t) = Rci(t)
2, (4.25)

where Rc is the circuit resistance. To nondimensionalize µ1(t), we use the relations in

(4.24), and Rc = 1
Cw

√
mw
kw
R̂c.

3. Dissipated Power From Energy Storage: In this example, let q1(t) be the trans-

mission power of the communication system. Define r(t) as the transmission rate in bits

per second. Assuming an additive white Gaussian noise data channel with zero-mean

and unit variance, the transmission rate and transmission power are related through

the following function:

q1(t) = τ(eαr(t) − 1),
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where τ > 0 and α > 0 are physical constants (with units of power and time, re-

spectively) that are dependent on the proprieties of the transmitter hardware. The

transmission rate is a non-negative value, i.e., r(t) > 0. The power terms q1(t) and τ is

nondimensionalized via the relation q1(t) = (ζa0)2
√
mwkw

q̂1(t̂), and α is nondimensionalized

via the relations in (4.24).

4. Energy Storage System: We assume the evolution of the energy in the storage sys-

tem E1(t) is governed by Equation (3.2), where the lower energy constraint is E1
L = 0.

We vary the upper energy constraint E1
U in the following analysis. Note that the energy

in the storage system is nondimensionalized via the relation E1(t) = (ζwa0)2

kw
Ê1(t̂).

We suppress the hat notation for the remainder of the example, and exclusively use the

nondimensional parameters and variables from here on. The discretized state space is of the

form (4.14) with matrices (4.15) and (4.16), and the discrete-time dynamics of the energy in

the storage system are of the form (3.19).

ECOCP Formulation

Our goal is to maximize the number of bits transmitted to the receiver over a finite time pe-

riod without violating the input and energy constraints. Framed as a minimization objective,

the resultant optimal control problem is then:

Given: x0, E
1
0 ,A,B,C

1
E,D

1
E, γ

1,

ak, a
1
E,k, µ

1
k,∀k ∈ {0...N},

Minimize: J(q1
0:N) = −

N∑
k=0

ln
(

1
τ
q1
k + 1

)
Domain: u0:N , q

1
0:N

Constraints: cLk (u0:N , q
1
0:N ,x

◦
0:N(u0:N ,x0)) 6 0,

cUk (u0:N , q
1
0:N ,x

◦
0:N(u0:N ,x0)) 6 0,

q1
k > 0,

∀k ∈ {0...N},

Note that to simplify the analysis, we assume zero initial conditions, i.e., E1
0 = 0, and

x0 = 0. However, the development is not fundamentally different when other (known) initial

conditions are assumed. Now, we eliminate the explicitly enforced inequality constraints by
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implementing log barriers as:

Given: x0, E
1
0 ,A,B,C

1
E,D

1
E, γ

1, β, ak, a
1
E,k, µ

1
k,∀k ∈ {0...N},

Minimize: J(q1
0:N) = −

N∑
k=0

ln
(

1
τ
q1
k + 1

)
+ 1̂(β, cLk (u0:N , q

1
0:N ,x

◦
0:N(u0:N ,x0))

+ 1̂(β, cUk (u0:N , q
1
0:N ,x

◦
0:N(u0:N ,x0)) + 1̂(β,−q1

k)

Domain: u0:N , q
1
0:N

where 1̂(·, ·) is the log barrier and β is the log barrier constraint defined in Definition 4.22.

However, due to the computational complexity of the energy constraints, we introduce two

slack variables,
¯
σk and σ̄k, to enforce them. We require that for all k ∈ Z0:N :

¯
σk 6 −

(
uTk y

1
k + µ1

k

)
6 σ̄k.

Then, let
¯
E1
k+1 be a lower approximation of the stored energy and Ē1

k+1 be an upper approx-

imation of the stored energy using these slack variables, i.e.,

¯
E1
k+1 = γ1

¯
E1
k +

¯
σk − q1

k, Ē1
k+1 = γ1Ē1

k + σ̄k − q1
k,

which implies that
¯
E1
k 6 E1

k 6 Ē1
k . We enforce new constraints containing these slack vari-

ables instead of the original constraints cLk (·, ·, ·) and cUk (·, ·, ·). Let c̃Lk (·, ·, ·, ·) and c̃Uk (·, ·, ·, ·)
be:

c̃Lk (u0:N , q
1
0:N ,x

◦
0:N(u0:N ,x0),

¯
σk) =

[
¯
σk +

(
uTk y

1
k + µ1

k

)
−

¯
E1
k+1

]

c̃Uk (u0:N , q
1
0:N ,x

◦
0:N(u0:N ,x0), σ̄k) =

[
−σ̄k −

(
uTk y

1
k + µ1

k

)
Ē1
k+1 − E1

U

]
.

71



We modify the optimal control problem to reflect the addition of these new slack variables

and constraints:

Given: x0, E
1
0 ,A,B,C

1
E,D

1
E, γ

1, β, ak, a
1
E,k, µ

1
k,∀k ∈ {0...N},

Minimize: J(q1
0:N) = −

N∑
k=0

ln
(

1
τ
q1
k + 1

)
+ 1̂(β,−q1

k)

+
2∑
j=1

1̂(β, c̃Lk,j(u0:N , q
1
0:N ,x

◦
0:N(u0:N ,x0),

¯
σk)

+ 1̂(β, c̃Uk,j(u0:N , q
1
0:N ,x

◦
0:N(u0:N ,x0), σ̄k)

Domain: u0:N , q
1
0:N , ¯

σ0:N , σ̄0:N

Now, we can solve the above optimization by iterating on the inputs {u0:N , q
1
0:N , ¯

σ0:N , σ̄0:N}
by using a conjugate gradient algorithm paired with a line search. Once desired convergence

is achieved, β is increased and another optimization is performed. [10] gives stopping criteria

as a function of β.

Results

We emphasize that this example is primarily demonstrative, and is not meant to be an accu-

rate depiction of any realistic hardware. All parameters are treated in their nondimensional

units. Let time step ∆t = 1, number of time steps N = 299, mechanical damping dw = 0.05,

electromechanical coupling factor θw = 0.2, dielectric leakage coefficient κw = 0.001, circuit

resistance Rc = 0.001, and γ1 = 0.99. The system is excited every T = bj 2π
∆t
c for j ∈ Z by

acceleration impulses with magnitude a0 = 1.

We compare the cases where storage capacity is E1
U → ∞, E1

U = 1, E1
U = 0.5, and

E1
U = 0.1. These four considered cases are marked in black, blue, green and red, respectively,

in the following figures. Figure 4.3 shows the energy in the storage system, transmission

energy, and transducer current for the considered cases over the entire time period. Figure

4.4 shows these same variables in addition to the transducer power, i.e., pT,k = ikvk for times

150 to 180.

For cases E1
U = 0.5 and E1

U = 0.1, the transducer power is negative for all time, meaning

that power is only flowing into the energy storage system. For cases E1
U →∞ and E1

U = 1,

the transducer current cycles energy into and out of the transducer (i.e., this current could not

be realized by a circuit that trickle-charges the storage system). From a design standpoint,
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Figure 4.3: The energy in storage system E1, transmission energy q1, and transducer
current i over the entire time series. The capacity of the energy storage
system is marked as a dashed line in the color corresponding to each case
in the energy plot.
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Figure 4.4: The energy in storage system E1, transmission energy q1, transducer cur-
rent i, and transducer power pT,k from times 150 to 180. The dashed
vertical lines indicates the arrival of a base acceleration impulse.
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it is necessary to implement a recharge circuit with two-way power flow for these larger

E1
U cases to achieve optimally, however, for the smaller E1

U cases, a trickle-charge circuit is

sufficient. In Figure 4.4, note that energy is produced and then completely consumed in all

cases. Although the magnitude of the transmission power and transducer current differs for

each case, the shape of the trajectories are similar.
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Chapter 5

The Dual Problem

As shown in Chapter 3, ECOCPs are nonconvex in general. Nonconvex optimal control

problems can be challenging to solve as they may be computationally expensive, and only

local optima can be assured. However, constrained optimal control problems can be viewed

from two perspectives: the primal problem (in which we minimize over the control variables,

as demonstrated in Section 4.3.1), and the dual problem (in which we maximize over the La-

grange multipliers). As discussed in Chapter 2, dual problems are always convex, regardless

of the convexity of the primal problem, and hence, global solutions to the dual problem can

often be found in polynomial time. Furthermore, the dual problem provides a lower bound

on the optimal solution of the primal problem [10].

The duality gap is the difference between the optimal primal and dual solutions (see

Definition 2.26). In the case where the optimal primal and dual solutions are coincident, the

duality gap is zero. Therefore, we investigate the use of duality techniques to aid in finding

the primal optimal solution (when the duality gap is zero) or a lower bound on the primal

optimal performance measure (when the duality gap is nonzero). In this chapter, we develop

the dual problem (which we also refer to as the dual relaxation) for a ECOCP with quadratic

performance measures (see Section 4.1.1), and present easy-to-check sufficient conditions for

zero duality gap. The work in this chapter expands on ideas originally presented in [36].
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5.1 Formulating the Dual Problem for the

Energy-Constrained Optimal Control Problem

with Quadratic Performance Measures

Let G(·) be the dual function of the ECOCP, which is:

G(λ0:N) = inf
u0:N , q0:N>0

J̄(u0:N , q0:N ,x
◦
0:N(u0:N ,x0),λ0:N), (5.1)

where J̄(·, ·, ·, ·) is the augmented performance measure defined in (4.8). Then, as discussed

in Section 2.5, the dual problem of the ECOCP constitutes a reversal of the infimum and

supremum in primal minimax problem (4.9) as:

G∗ = sup
λ0:N>0

G(λ0:N). (5.2)

In this section, we solve the dual problem in lieu of the primal problem, as a means of de-

termining a trajectory {u0:N , q0:N}. It is a classical result that dual problems are always

convex [10], and consequently this approach eliminates the nonconvexity of the primal prob-

lem, leading to efficient determination of a global optimum for G(λ0:N). However, (5.2) may

exhibit a duality gap in which case J∗ > G∗. In this circumstance, the optimum λ0:N does

not correspond to a feasible trajectory for {u0:N , q0:N}.

5.1.1 Feasibility of the Dual Solution

We begin by showing that for the assumptions made in this paper, G∗ > −∞.

Lemma 5.1. Let Md = D(M,∆t,a) be the discrete-time model under consideration. Let

J(·, ·) be defined as in (4.2). Given that Assumption 4 holds, then G∗ > −∞.

Proof. Evaluating G(λ0:N) at λ0:N = 0 gives the minimal unconstrained performance; i.e.,

G(0) = arginf
u0:N

J(u0:N ,x
◦
0:N+1(u0:N)).

From Corollary 4.1, it is known that under the stated conditions the above infimium has

finite value. Because G∗ is the supremum of G(λ0:N) over λ0:N , this finite value is a lower

bound, i.e., −∞ < G(0) < G∗.
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5.1.2 Closed-Form Expression of the Dual Function

Let:

νik =
N∑
j=k

(γi)j−k
(
λU,ij − λ

L,i
j

)
, (5.3)

and define νk =
[
ν1
k · · · νpk

]T
and ν =

[
νT0 · · · νTN

]T
. Now, we can write the augmented

performance measure J̄(·, ·, ·, ·) in quadratic form as:

J̄(u0:N , q0:N ,x
◦
0:N(u0:N ,x0),λ0:N) =


u0

...

uN


T

H(λ0:N)


u0

...

uN

+ 2bT (λ0:N)


u0

...

uN


+ f(λ0:N)−

N∑
k=0

νTk qk, (5.4)

where the (i, j)th m×m block of the symmetric m(N + 1)×m(N + 1) matrix H(·) is:

Hjk(λ0:N) = gTN+1,jPN+1gN+1,k +Rjδjk + gTkjSk + STj gjk − gE,jk +
N∑
h=0

gThjQhghk

−ΨT (h, j)

(
p∑
i=1

νih(C
i
E,h)

TM i
yy,hC

i
E,h

)
Ψ(h, k), (5.5)

the jth subvector of length m of the m(N + 1) vector b(·) is:

bj(λ0:N) = gTN+1,jPN+1x̄N+1 + STj x̄j +Ujaj

−
p∑
i=1

νij

((
1

2
Ci
E,j + (M i

uy,j)
TCi

E,j + (Di
E,j)

TM i
yy,jC

i
E,j

)
x̄j

+

(
1

2
I +M i

uy,j + (Di
E,j)

TM i
yy,j

)
aE,j

)
+

N∑
k=0

gTkj (Qkx̄k + Tkak)

−ΨT (k, j)

p∑
i=1

νij
(
(Ci

E,k)
TM i

yy,ka
i
E,k + (Ci

E,k)
TM i

yy,kC
i
E,kx̄k

)
(5.6)
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and the scalar term f(·) is:

f(λ0:N) = x̄TN+1PN+1x̄N+1 +
N∑
k=0

x̄TkQkx̄k+aTkVkak+
(
(λLk )TEL − (λUk )TEU

)
+

p∑
i=1

γiEi
0ν

i
0

− νik
(
x̄Tk (Ci

E,k)
TM i

yy,kC
i
E,kx̄k + 2x̄Tk (Ci

E,k)
TM i

yy,ka
i
E,k + (aiE,k)

TM i
yy,ka

i
E,k

)
. (5.7)

Parameters gjk and gE,jk have the following forms:

gjk =

0, j 6 k

Ψ(j, k)Bk, j > k
,

gE,jk =


0, j < k
p∑
i=1

νij
(
Di

E,j +M i
uu,j

)
, j = k

p∑
i=1

νij
(
Ci
E,j + 2M i

ux,j

)
Ψ(k, j)Bk, j > k,

where Ψ(k, j) is the discrete-time state transition matrix defined in (4.3).

Let {u∗0:N(λ0:N), q∗0:N(λ0:N)} be the primal trajectory as a function of the Lagrange mul-

tipliers that minimizes J̄(·, ·, ·, ·), i.e.,

{u∗0:N(λ0:N), q∗0:N(λ0:N)} = arginf
u0:N , q0:N>0

J̄(u0:N , q0:N ,x
◦
0:N(u0:N ,x0),λ0:N).

Then, we have the following result.

Lemma 5.2. Reference the definition of νik in (5.3) and the dual function in (5.1). Then,

the following are true:

1. If νik > 0 for some k ∈ {0...N} and i ∈ {1...p}, then G(λ0:N)→ −∞.

2. If G(λ0:N) is finite then νTk q
∗
k(λ0:N) = 0, ∀k ∈ {0...N}.

Proof. To prove statement 1, we note that q0:N appears only affinely in the last term in

(5.4), and independently of u0:N . We have that:

q∗0:N(λ0:N) = arginf
q0:N>0

N∑
k=0

{
−νTk qk

}
.

79



Clearly if any νik > 0, then the objective being infimized decreases linearly with qik, which is

constrained to be positive. Consequently, the infimizing solution is qik → ∞, rendering an

objective which is −∞.

To prove statement 2, we note that in the equation above, if νik < 0, then the objective

increases linearly with qik. Consequently, because qik is constrained, the infimium is achieved

at qik = 0.

An interpretation of the results of Lemma 5.2, is that the q0:N > 0 sequence acts as

Lagrange multipliers to enforce the constraint ν0:N 6 0, i.e. for all k ∈ {0...N} and i ∈
{1...p}:

(qik)
∗


= 0, νik < 0

> 0, νik = 0

→∞, νik > 0.

Also as a result of Lemma 5.2, we can disregard q when formulating the dual function

G(·). Let a prime, i.e. J̄ ′(u0:N ,x
◦
0:N(u0:N ,x0),λ0:N), denote the evaluation of J̄(·, ·, ·, ·) with

qTk νk = 0, ∀k ∈ {0...N}. Then it follows that we can write the dual function in (5.1) to

reflect this:

G(λ0:N) = inf
u0:N

J̄ ′(u0:N ,x
◦
0:N(u0:N ,x0),λ0:N). (5.8)

It is worth emphasizing that H(λ0:N) is the m(N + 1) × m(N + 1) Hessian of J̄ ′(·, ·, ·)
with respect to the control inputs u0:N , evaluated at a given value of λ0:N , i.e.,

H(λ0:N) =



∂2J̄ ′

∂u0∂u0

∂2J̄ ′

∂u1∂u0
· · · ∂2J̄ ′

∂uN∂u0

∂2J̄ ′

∂u0∂u1

∂2J̄ ′

∂u1∂u1
· · · ∂2J̄ ′

∂uN∂u1

...
...

. . .
...

∂2J̄ ′

∂u0∂uN

∂2J̄ ′

∂u1∂uN
· · · ∂2J̄ ′

∂uN∂uN


. (5.9)

Definition 5.1. For an initial condition x0 ∈ Rn and exogenous disturbance a ∈ (L2)d, the

set G(x0,a) is comprised of all λ0:N for which the following conditions hold:

1. λ0:N > 0

2. ν0:N 6 0
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3. H(λ0:N) � 0 or
(
H(λ0:N) � 0 and b(λ0:N) ∈ N (H(λ0:N))

)
.

Theorem 5.1. The dual function G(λ0:N) can be expressed in the following closed-form

solution:

G(λ0:N) =

−bT (λ0:N)H†(λ0:N)b(λ0:N) + f(λ0:N), λ0:N ∈ G(x0,a)

−∞, else,
(5.10)

where (·)† denotes the Moore-Penrose inverse. The dual function is finite if and only if

λ0:N ∈ G(x0,a). For finite G(λ0:N), the associated optimal control input for a given λ0:N

is:

u∗(λ0:N) = −H†(λ0:N)b(λ0:N).

Proof. From Lemma 5.2, we know if there exists a k ∈ {0...N} and i ∈ {1...p} such that νik >

0, then G(λ0:N) → −∞. Now, consider J̄ ′(·, ·, ·), which has the quadratic term H(λ0:N).

From (5.8), it follows that G(λ0:N) is finite if H(λ0:N) � 0, and equal to −∞ if H(λ0:N)

has at least one negative eigenvalue. When H(λ0:N) has a null space, the boundedness of

G(λ0:N) requires that b be in the null space.

5.2 Numerical Methods to Solve the Dual Problem

In this section, we outline a method to solve the dual problem by solving a series of QPs.

Newton’s method is an iterative algorithm that can be used to find the direction in which

to modify the Lagrange multipliers λ0:N that maximizes the second-order approximation of

G(·). Let λ
(j)
0:N be the jth iteration of the Lagrange multpliers. Then, let the second-order

Taylor approximation of the dual function about λ
(j)
0:N be Ĝ(j)(ζ(j)) where ζ(j) is the direction

that we optimize. The second-order approximation Ĝ(j)(ζ(j)) is:

Ĝ(j)
(
ζ(j)
)

= G
(
λ

(j)
0:N

)
+

(
∂G

∂λ
(j)
0:N

)T

ζ(j) +
1

2

(
ζ(j)
)T  ∂2G

∂λ
(j)
0:N

(
∂λ

(j)
0:N

)T
 ζ(j),

where the gradient has the following form:

∂G

∂λk
=
[

∂G

∂λL,1k

· · · ∂G

∂λL,pk

∂G

∂λU,1k

· · · ∂G

∂λU,pk

]T
,

∂G

∂λ0:N

=
[
( ∂G
∂λ0

)T · · · ( ∂G
∂λN

)T
]T
,
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and where the Hessian has the following form:

∂2G

∂λ2
0:N

=



∂2G

∂λL,10 ∂λL,10

· · · ∂2G

∂λL,p0 ∂λL,10

∂2G

∂λU,10 ∂λL,10

· · · ∂2G

∂λU,p0 ∂λL,10

· · · ∂2G

∂λL,1N ∂λL,10

· · · ∂2G

∂λL,pN ∂λL,10

∂2G

∂λU,1N ∂λL,10

· · · ∂2G

∂λU,pN ∂λL,10

...
...

...
...

...
...

...
...

∂2G

∂λL,10 ∂λL,p0

· · · ∂2G

∂λL,p0 ∂λL,p0

∂2G

∂λU,10 ∂λL,p0

· · · ∂2G

∂λU,p0 ∂λL,p0

· · · ∂2G

∂λL,1N ∂λL,p0

· · · ∂2G

∂λL,pN ∂λL,p0

∂2G

∂λU,1N ∂λL,p0

· · · ∂2G

∂λU,pN ∂λL,p0

∂2G

∂λL,10 ∂λU,10

· · · ∂2G

∂λL,p0 ∂λU,10

∂2G

∂λU,10 ∂λU,10

· · · ∂2G

∂λU,p0 ∂λU,10

· · · ∂2G

∂λL,1N ∂λU,10

· · · ∂2G

∂λL,pN ∂λU,10

∂2G

∂λU,1N ∂λU,10

· · · ∂2G

∂λU,pN ∂λU,10

...
...

...
...

...
...

...
...

∂2G

∂λL,10 ∂λU,10

· · · ∂2G

∂λL,p0 ∂λU,p0

∂2G

∂λU,10 ∂λU,p0

· · · ∂2G

∂λU,p0 ∂λU,p0

· · · ∂2G

∂λL,1N ∂λU,p0

· · · ∂2G

∂λL,pN ∂λU,p0

∂2G

∂λU,1N ∂λU,p0

· · · ∂2G

∂λU,pN ∂λU,p0

...
...

...
...

...
...

...
...

∂2G

∂λL,10 ∂λL,1N

· · · ∂2G

∂λL,p0 ∂λL,1N

∂2G

∂λU,10 ∂λL,1N

· · · ∂2G

∂λU,p0 ∂λL,1N

· · · ∂2G

∂λL,1N ∂λL,1N

· · · ∂2G

∂λL,pN ∂λL,1N

∂2G

∂λU,1N ∂λL,1N

· · · ∂2G

∂λU,pN ∂λL,1N

...
...

...
...

...
...

...
...

∂2G

∂λL,10 ∂λL,pN
· · · ∂2G

∂λL,p0 ∂λL,pN

∂2G

∂λU,10 ∂λL,pN
· · · ∂2G

∂λU,p0 ∂λL,pN
· · · ∂2G

∂λL,1N ∂λL,pN
· · · ∂2G

∂λL,pN ∂λL,pN

∂2G

∂λU,1N ∂λL,pN
· · · ∂2G

∂λU,pN ∂λL,pN
∂2G

∂λL,10 ∂λU,1N

· · · ∂2G

∂λL,p0 ∂λU,1N

∂2G

∂λU,10 ∂λU,1N

· · · ∂2G

∂λU,p0 ∂λU,1N

· · · ∂2G

∂λL,1N ∂λU,1N

· · · ∂2G

∂λL,pN ∂λU,1N

∂2G

∂λU,1N ∂λU,1N

· · · ∂2G

∂λU,pN ∂λU,1N

...
...

...
...

...
...

...
...

∂2G

∂λL,10 ∂λU,1N

· · · ∂2G

∂λL,p0 ∂λU,pN

∂2G

∂λU,10 ∂λU,pN
· · · ∂2G

∂λU,p0 ∂λU,pN
· · · ∂2G

∂λL,1N ∂λU,pN
· · · ∂2G

∂λL,pN ∂λU,pN

∂2G

∂λU,1N ∂λU,pN
· · · ∂2G

∂λU,pN ∂λU,pN



.

Given λ
(j)
0:N , we solve the following QP to find the vector ζ(j) that maximizes Ĝ(j)(·):

Dual QP =



Given: λ
(j)
0:N

Maximize: Ĝ(j)
(
ζ(j)
)

Domain: ζ(j)

Constraints: λ
(j)
0:N + ζ(j) > 0.

(5.11)

The Newton step is the value that maximizes Ĝ(j)(·) without the non-negativity constraints

on the Lagrange multipliers, which is:

ζ(j) = −

 ∂2G

∂λ
(j)
0:N

(
∂λ

(j)
0:N

)T

−1

∂G

∂λ
(j)
0:N

.

However, given the constraints on the Lagrange multipliers, we cannot guarantee that the

Newton step is the solution to (5.11). Therefore, a common method used to solve these

QPs are interior-point algorithms, which can enforce the non-negativity constraints on the

Lagrange multipliers [10].

After solving (5.11) for the optimal value of ζ(j), which we designate as ζ(j)∗, a scalar

line search is performed over α(j) to maximize the original dual function G(λ
(j)
0:N + α(j)ζ(j)∗)

82



subject to the nonnegativity constraints on the Lagrange multipliers, that is:

α(j)∗ = argmax
α(j)

{
G
(
λ

(j)
0:N + α(j)ζ(j)∗

) ∣∣ λ
(j)
0:N + α(j)ζ(j)∗ > 0

}
.

Then, the (j + 1)th iteration of the Lagrange multipliers is:

λ
(j+1)
0:N =λ

(j)
0:N + α(j)∗ζ(j)∗.

We continue this iteration process until iteration h where α(h)∗ = ε. Then, the maximum

dual function is G∗ = G
(
λ

(h)
0:N

)
. In the following section, we formulate the gradient and

Hessian of the dual function with respect to λ0:N .

5.2.1 Formulating the Dual Gradient and Hessian

Due to the structure of the dual function, it is easier to take derivatives with respect to ν0:N ,

which is defined in (5.3), than λ0:N . Reference the equations for H(·) and b(·) in (5.5) and

(5.6), respectively, where λ0:N only appears in H(·) and b(·) in the form of ν0:N . Let Ĝ(·)
be the portion of dual function G(·) that directly dependent on ν0:N , i.e.,

G(λ0:N) = Ĝ(ν0:N) +
N∑
k=0

(λLk )TEL − (λUk )TEU .

First, we determine the Hessian of Ĝ(·) with respect to ν0:N , which has the following form:

∂2Ĝ

∂ν2
0:N

=



∂2Ĝ
∂ν1

0∂ν
1
0
· · · ∂2Ĝ

∂νp0∂ν
1
0
· · · ∂2Ĝ

∂ν1
N∂ν

1
0
· · · ∂2Ĝ

∂νpN∂ν
1
0

...
...

...
...

∂2Ĝ
∂ν1

0∂ν
p
0
· · · ∂2Ĝ

∂νp0∂ν
p
0
· · · ∂2Ĝ

∂ν1
N∂ν

p
0
· · · ∂2Ĝ

∂νpN∂ν
p
0

...
...

...
...

∂2Ĝ
∂ν1

0∂ν
1
N
· · · ∂2Ĝ

∂νp0∂ν
1
N
· · · ∂2Ĝ

∂ν1
N∂ν

1
N
· · · ∂2Ĝ

∂νpN∂ν
1
N

...
...

...
...

∂2Ĝ
∂ν1

0∂ν
p
N
· · · ∂2Ĝ

∂νp0∂ν
p
N
· · · ∂2Ĝ

∂ν1
N∂ν

p
N
· · · ∂2Ĝ

∂νpN∂ν
p
N


,
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where the ((k − 1)p+ h, (j − 1)p+ i)th element of the Hessian is:

∂2Ĝ

∂νhk∂ν
i
j

=4

(
∂b

∂νij

)T
H†

∂H

∂νhk
H†b− 2

(
∂b

∂νij

)T
H†

∂b

∂νhk
− 2bTH†

∂H

∂νij
H†

∂H

∂νhk
H†b.

Note that the second derivatives of H(ν0:N) and b(ν0:N) both zero, i.e., ∂2H
∂νhk ∂ν

i
j

= ∂2b
∂νhk ∂ν

i
j

= 0.

The gradient of Ĝ(·) with respect to ν0:N has the form:

∂Ĝ

∂ν0:N

=
[
∂Ĝ
∂ν1

0
· · · ∂Ĝ

∂νp0
· · · ∂Ĝ

∂ν1
N
· · · ∂Ĝ

∂νpN

]T
,

where the ((j − 1)p+ i)th element of the gradient of Ĝ(·) is:

∂Ĝ

∂νij
=− 2

(
∂b

∂νij

)T
H†b+ bTH†

∂H

∂νij
H†b+

∂f̃

∂νij
,

where f̃(·) is:

f̃(ν0:N) = x̄TN+1PN+1x̄N+1 +
N∑
k=0

x̄TkQkx̄k + aTkVkak +

p∑
i=1

γiEi
0ν

i
0

− νik
(
x̄Tk (Ci

E,k)
TM i

yy,kC
i
E,kx̄k + 2x̄Tk (Ci

E,k)
TM i

yy,ka
i
E,k + (aiE,k)

TM i
yy,ka

i
E,k

)
.

The gradient of the dual function G(·) with respect to λ0:N is:

∂G

∂λ0:N

=

(
∂ν0:N

∂λ0:N

)T
∂Ĝ

∂ν0:N

+
∂

∂λ0:N

(
N∑
k=0

(λLk )TEL − (λUk )TEU

)
,

and the Hessian of the dual function with respect to λ0:N is:

∂2G

∂λ2
0:N

=

(
∂ν0:N

∂λ0:N

)T
∂2Ĝ

∂ν2
0:N

(
∂ν0:N

∂λ0:N

)
.

It is notationally cumbersome to present ∂ν0:N

∂λ0:N
for general p, so we instead present the case
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with p = 1. Let ϕi = λL,i − λU,i, and then:

∂ν0:N

∂ϕ0:N

=


∂ν1

0

∂ϕ1
0

∂ν1
0

∂ϕ1
1
· · · ∂ν1

0

∂ϕ1
N

∂ν1
1

∂ϕ1
0

∂ν1
1

∂ϕ1
1
· · · ∂ν1

1

∂ϕ1
N

...
...

. . .
...

∂ν1
N

∂ϕ1
0

∂ν1
N

∂ϕ1
1
· · · ∂ν1

N

∂ϕ1
N

 =


1 (γ1) · · · (γ1)N

0 1 · · · (γ1)N−1

...
...

. . .
...

0 0 · · · 1

 ,

and:

∂ϕ0:N

∂λ0:N

=



∂ϕ1
0

∂λL,10

∂ϕ1
0

∂λU,10

∂ϕ1
0

∂λL,11

∂ϕ1
0

∂λU,11

· · · ∂ϕ1
0

∂λL,1N

∂ϕ1
0

∂λU,1N
∂ϕ1

1

∂λL,10

∂ϕ1
1

∂λU,10

∂ϕ1
1

∂λL,11

∂ϕ1
1

∂λU,11

· · · ∂ϕ1
1

∂λL,1N

∂ϕ1
1

∂λU,1N

...
...

...
...

. . .
...

...
∂ϕ1

N

∂λL,10

∂ϕ1
N

∂λU,10

∂ϕ1
N

∂λL,11

∂ϕ1
N

∂λU,11

· · · ∂ϕ1
N

∂λL,1N

∂ϕ1
N

∂λU,1N

 =


−1 1 0 0 · · · 0 0

0 0 −1 1 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · −1 1

 ,

and it follows that:
∂ν0:N

∂λ0:N

=

(
∂ν0:N

∂ϕ0:N

)(
∂ϕ0:N

∂λ0:N

)
.

For the case with p = 1, we have that:

∂

∂λ0:N

(
N∑
k=0

(λLk )TEL − (λUk )TEU

)
=
[
E1
L −E1

U E1
L −E1

U · · · E1
L −E1

U

]T
.

Note that for the zero energy storage case (see Section 4.2.4), we can optimize directly over

the ν0:N because the above derivative is zero.

5.3 Alternative Method Using Costates

The method outlined in the last section to formulate the dual function, gradient, and Hessian

can be computationally intractable because it requires the construction and inversion of

Hessian H(·). A less computationally expensive method is to instead formulate the dual

function, gradient, and Hessian using costates. Let ρk+1 be the (k + 1)th costate which

enforces the (k + 1)th difference equation modeling the evolution of the states, i.e., xk+1 =

Akxk +Bkuk + ak.
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5.3.1 Closed-Form Expression of the Dual Function

Let J ′ρ(·, ·, ·, ·) be the modified performance measure incorporating the costates and disre-

garding the term with q as discussed in Lemma 5.2:

J ′ρ(u0:N ,x0:N+1,λ0:N ,ρ1:N+1) =

p∑
i=1

νi0γ
iEi

0 +
N∑
k=0

ξTk Πkξk + (λLk )TEL

− (λUk )TEU + ρTk+1(Akxk +Bkuk + ak − xk+1),

where:

ξk =

x
◦
k(u0:N ,x0)

uk

1

 , Πk =

Xk Ωk Λk

ΩT
k Zk Ξk

ΛT
k ΞT

k Yk


with:

Xk = Qk −
p∑
i=1

νik(C
i
E,k)

TM i
yy,kC

i
E,k

Ωk = Sk −
p∑
i=1

νik

(
1

2
(Ci

E,k)
T + (Ci

E,k)
TM i

uy,k + (Ci
E,k)

TM i
yy,kD

i
E,k

)

Λk = Ukak −
p∑
i=1

νik(C
i
E,k)

TM i
yy,ka

i
E,k

Zk = Rk −
p∑
i=1

νik
(
(Di

E,k)
T +M i

uu,k +M i
uy,kD

i
E,k + (Di

E,k)
TM i

yy,kD
i
E,k

)
Ξk = Tkak −

p∑
i=1

νik

(
1

2
I +M i

uy,k + (Di
E,k)

TM i
yy,k

)
aiE,k

Yk = aTkVkak −
p∑
i=1

νik(a
i
E,k)

TM i
yy,ka

i
E,k.

Note that M i
uu,k, M

i
yy,k, and M i

uy,k are components of the quadratic loss model in (3.22).

Then, the associated dual function is:

G(λ0:N) = sup
p1:N+1

inf
u0:N , x0:N+1

J ′ρ(u0:N ,x0:N+1,λ0:N ,ρ1:N+1).
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The Hamiltonian (see Definition 2.17) associated with J ′ρ(·, ·, ·, ·) is:

Hk(uk,xk,λk:N ,ρk+1) = ξTk Πkξk + (λLk )TEL − (λUk )TEU

+ ρTk+1 (Akxk +Bkuk + ak − xk+1) .

Then, from Pontryagin’s minimum principle [15, 41] we require that u∗0:N , x∗0:N , and ρ∗1:N+1

satisfy the following first order necessary conditions for optimality, ∀k ∈ {0...N}:

∂Hk

∂uk
= Σkuk + 2ΩT

kxk + 2Ξk +BT
k ρk+1 = 0 (5.12)

∂Hk

∂xk
= 2Xkxk + 2Ωkuk + 2Λk +AT

k ρk+1 = ρk (5.13)

∂Hk

∂ρk+1

= Akxk +Bkuk + ak = xk+1 (5.14)

and final costate condition:

∂Φ

∂xN+1

= 2PN+1xN+1 = ρN+1, (5.15)

where Σk =
(
Zk +ZT

k

)
. To find the optimal control input, we solve for uk in (5.12) as:

u∗k(λ0:N) = −Σ−1
k

(
2ΩT

kx
∗
k +BT

k ρ
∗
k+1 + 2Ξk

)
. (5.16)

Let {x◦0:N ,ρ
◦
0:N} be the unique solutions to the following two-point boundary value problem,

which follows from (5.13)–(5.15):[
x◦k+1

ρ◦k

]
=

[
Akx

◦
k +Bkuk + ak

2Xkx
◦
k + 2Ωkuk + 2Λk +AT

k ρ
◦
k+1

]
,

[
x◦0

ρ◦N+1

]
=

[
x0

2PN+1xN+1

]
, (5.17)

and then: [
x∗k(λ0:N)

ρ∗k(λ0:N)

]
=

[
x◦k(λ0:N ,u

∗
0:N(λ0:N))

ρ◦k(λ0:N ,u
∗
0:N(λ0:N))

]
.

Now since we have established the optimal trajectories of u0:N , x0:N , and ρ1:N+1 as a

function of λ0:N , we can now formulate the closed-form expression of G(λ0:N). First, we

multiply both sides of (5.13), the partial derivative of the Hessian with respect to the states,
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by 1
2
(x∗k)

T :

1

2
(x∗k)

T ∂Hk

∂x∗k
=(x∗k)

TXkx
∗
k + (x∗k)

TΩku
∗
k + (x∗k)

TΛk +
1

2
(x∗k)

TAT
k ρ
∗
k+1

=(ξ∗k)
TΠkξ

∗
k − (u∗k)

TΩT
kx
∗
k − (u∗k)

TZku
∗
k +

1

2
(ρ∗k+1)T

(
∂Hk

∂ρ∗k+1

−Bku
∗
k − ak

)
− 2(u∗k)

TΞk −ΛT
kx
∗
k − Yk.

Gathering terms, and then using the relation Σku
∗
k =

(
2ΩT

kx
∗
k +BT

k ρ
∗
k+1 + 2Ξk

)
from (5.16),

we have:

1

2
(x∗k)

T ∂Hk

∂x∗k
=(ξ∗k)

TΠkξ
∗
k − (u∗k)

TZku
∗
k −

1

2
(u∗k)

T
(
2ΩT

kx
∗
k +BT

k ρ
∗
k+1 + 2Ξk

)
+

1

2
(ρ∗k+1)T

(
∂Hk

∂ρ∗k+1

− ak
)
− (u∗k)

TΞk −ΛT
kx
∗
k − Yk

=(ξ∗k)
TΠkξ

∗
k − (u∗k)

TZku
∗
k +

1

2
(u∗k)

TΣku
∗
k +

1

2
(ρ∗k+1)T

(
∂Hk

∂ρ∗k+1

− ak
)

− (u∗k)
TΞk −ΛT

kx
∗
k − Yk

=(ξ∗k)
TΠkξ

∗
k +

1

2
(ρ∗k+1)T

∂Hk

∂ρ∗k+1

−
(

1

2
(ρ∗k+1)Tak + (u∗)TkΞk + x∗kΛk + Yk

)
.

Solving for (ξ∗k)
TΠkξ

∗
k, and using the relations in (5.13) and (5.14), we have that

(ξ∗k)
TΠkξ

∗
k =

1

2
(x∗k)

T ∂Hk

∂x∗k
− 1

2
(ρ∗k+1)T

∂Hk

∂ρ∗k+1

+

(
1

2
aTk ρ

∗
k+1 + ΞT

ku
∗
k + ΛTx∗k + Yk

)
=

1

2
(x∗k)

Tρ∗k −
1

2
(ρ∗k+1)Tx∗k+1 +

(
1

2
aTk ρ

∗
k+1 + ΞT

ku
∗
k + ΛT

kx
∗
k + Yk

)
. (5.18)

Now, we plug relations (5.18), (5.13), and (5.14) into (4.8) to derive the dual function

G(λ0:N), and then from Theorem 5.1, we have that:

G(λ0:N) =



1

2
xT0 ρ

∗
0 +

p∑
i=1

νi0γ
iEi

0 +
N∑
k=0

(λLk )TEL

− (λUk )TEU +
1

2
aTk ρ

∗
k+1 + ΞT

ku
∗
k + ΛT

kx
∗
k + Yk,

λ0:N ∈ G(x0,a)

−∞, else.

(5.19)
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5.3.2 Decoupling the Two-Point Boundary Value Problem

In this section, we present a method to decouple the two-point boundary value problem

(5.17) through a change-of-basis, which provides of means of efficiently calculating u∗0:N ,

x∗1:N+1, and ρ∗1:N+1. First, we substitute u∗k, which is defined in (5.16), into (5.17) as:[
x∗k+1

ρ∗k

]
=

[
T11,k T12,k

T21,k T T
11,k

][
x∗k
ρ∗k+1

]
+

[
W1,k

W2,k

]
,

[
x∗0

ρ∗N+1

]
=

[
x0

2PN+1

]
, (5.20)

where
T11,k =Ak − 2BkΣ

−1
k ΩT

k , W1,k =ak − 2BkΣ
−1
k Ξk

T12,k =−BkΣ
−1
k B

T
k , W2,k =2Ωk − 4ΩΣ−1

k Ξk

T21,k =2Xk − 4ΩkΣ
−1
k ΩT

k .

(5.21)

Let ρ̃k+1 be the altered costate, which we define as:

ρ̃k+1 =ρ∗k+1 −∆kx
∗
k+1

= (I −∆kT12,k)ρ
∗
k+1 −∆kT11,kx

∗
k −∆kW1,k, (5.22)

where {∆0,∆1, . . . ,∆N} is a series of n × n matrices, and the second equality is derived

using the relation x∗k+1 = T11,kx
∗
k +T12,kρ

∗
k+1 +W1,k in (5.20). We define the final condition

as ρ̃N+1 = 0 by letting ∆N = 2PN+1, i.e.,

ρ̃N+1 = ρ∗N+1 −∆Nx
∗
N+1

= (2PN+1 −∆N)x∗N+1

= 0.

Solving for ρ∗k+1 in equation (5.22), we have:

ρ∗k+1 = (I −∆kT12,k)
−1 (ρ̃k+1 + ∆kT11,kx

∗
k + ∆kW1,k) .

Then, ρ̃k is defined as ρ̃k = ρ∗k −∆k−1x
∗
k, and we use relations in (5.20) to expand ρ̃k as:

ρ̃k =
(
T21,k + T T

11,k (I −∆kT12,k)
−1 ∆kT11,k −∆k−1

)
x∗k

+ T T
11,k (I −∆kT12,k)

−1 ρ̃k+1 + T T
11,k (I −∆kT12,k)

−1 ∆kW1,k +W2,k.
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We force ∆k to evolve backwards according to the following difference equation:

∆k−1 = T21,k + T T
11,k (I −∆kT12,k)

−1 ∆kT11,k, (5.23)

with final condition ∆N = 2PN+1. We decouple the altered costate from the state as:

ρ̃k = T T
11,k (I −∆kT12,k)

−1 ρ̃k+1 + T T
11,k (I −∆kT12,k)

−1 ∆kW1,k +W2,k. (5.24)

Now, we rewrite (5.20) as a time-varying, decoupled linear system as:[
x∗k+1

ρ̃k

]
=

[
T̃11,k T̃12,k

0 T̃ T
11,k

][
x∗k
ρ̃k+1

]
+

[
W̃1,k

W̃2,k

]
,

[
x∗0

ρ̃N+1

]
=

[
x0

0

]
, (5.25)

where

T̃11,k = (I − T12,k∆k)
−1 T11,k, W̃1,k = (I − T12,k∆k)

−1Wk,1

T̃12,k = (I − T12,k∆k)
−1 T12,k, W̃k,2 =T22,k (I −∆kT12,k)

−1 (∆kW1,k) +W2,k.
(5.26)

We can expand the difference equation for ∆k−1 in (5.23) using (5.21) and the Matrix

Inversion Lemma (see Theorem 2.1) as:

∆k−1 =
(
2Xk − 4ΩkΣ

−1
k ΩT

k

)
+
(
AT
k − 2ΩkΣ

−1
k B

T
k

) (
I + ∆kBkΣ

−1
k B

T
k

)−1
∆k

(
Ak − 2BkΣ

−1
k ΩT

k

)
=
(
2Xk − 4ΩkΣ

−1
k ΩT

k

)
+
(
AT
k − 2ΩkΣ

−1
k B

T
k

) (
I −∆kBkΥ

−1BT
k

)
∆k

(
Ak − 2BkΣ

−1
k ΩT

k

)
,

where we let Υk be the following m×m matrix:

Υk =Σk +BT
k ∆kBk. (5.27)
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Expanding the second term in the above equation:

∆k−1 =
(
2Xk − 4ΩkΣ

−1
k ΩT

k

)
+
(
AT
k − 2ΩkΣ

−1
k B

T
k

)
∆k

(
Ak − 2BkΣ

−1
k ΩT

k

)
−AT

k∆kBd

(
Σk +BT

k ∆kBk

)−1
BT
k ∆kAk+2AT

k∆kBk

(
Σk +BT

k ∆kBk

)−1
BT
k ∆kBkΣ

−1
k ΩT

k

+ 2ΩkΣ
−1
k B

T
k ∆kBk

(
Σk +BT

k ∆kBk

)−1
BT
k ∆kAk

− 4ΩkΣ
−1
k B

T
k ∆kBk

(
Σk +BT

k ∆kBk

)−1
BT
k ∆kBkΣ

−1
k ΩT

k ,

and then adding a zero matrix (Σk −Σk = 0) in strategic places results in:

∆k−1 =
(
2Xk − 4ΩkΣ

−1
k ΩT

k

)
+
(
AT
k − 2ΩkΣ

−1
k B

T
k

)
∆k

(
Ak − 2BkΣ

−1
k ΩT

k

)
−AT

j ∆jBk

(
Σj +BT

k ∆jBj

)−1
BT
j ∆jAj

+ 2AT
j ∆jBj

(
Σj +BT

j ∆jBj

)−1 (−Σj + Σj +BT
j ∆jBj

)
Σ−1
j ΩT

j

+ 2ΩjΣ
−1
j

(
−Σj + Σj +BT

j ∆jBj

) (
Σj +BT

j ∆jBj

)−1
BT
j ∆jAj

− 4ΩjΣ
−1
j

(
−Σj + Σj +BT

j ∆jBj

) (
Σj +BT

j ∆jBj

)−1 (−Σj + Σj +BT
j ∆jBj

)
Σ−1
j ΩT

j

Finally, collecting and cancelling terms results in the following:

∆k−1 =AT
k∆kAk −

(
AT
k∆kBk + 2ΩT

k

) (
Σk +BT

k ∆kBk

)−1 (
BT
k ∆kAk + 2Ωk

)
+ 2Xk.

(5.28)

Therefore, the series of n × n matrices {∆0,∆1, . . . ,∆N} evolve according to the above

Riccati difference equation.

5.3.3 Formulating the Dual Gradient and Hessian

Let the performance measure Ĵ ′ρ be:

Ĵ ′ρ(u0:N ,x0:N+1,ν0:N ,ρ1:N+1) = J ′ρ(u0:N ,x0:N+1,λ0:N ,ρ1:N+1)−
N∑
k=0

(
(λLk )TEL − (λUk )TEU

)
,

and then Ĝ(·) is:

Ĝ(ν0:N) = sup
p1:N+1

inf
u0:N , x0:N+1

Ĵ ′ρ(u0:N ,x0:N+1,ν0:N ,ρ1:N+1), (5.29)
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and the ((j − 1)p+ i)th element of the gradient of Ĝ(·) is:

∂Ĝ

∂νij
=
∂Ĵ ′ρ
∂νij

+
N∑
k=1

∂Ĵ ′ρ
∂x∗k

∂x∗k
∂νij

+
N∑
k=0

∂Ĵ ′ρ
∂u∗k

∂u∗k
∂νij

+
N−1∑
k=0

∂Ĵ ′ρ
∂ρ∗k+1

∂ρ∗k+1

∂νij
.

From classic Euler-Lagrange theory [15] and (5.29), we know that x∗k(ν0:N), u∗k(ν0:N), and

ρ∗k(ν0:N) are at their optimums, so it follows that:

∂Ĵ ′ρ
∂x∗k

= 0, ∀k ∈ {1...N},
∂Ĵ ′ρ
∂u∗k

= 0, ∀k ∈ {0...N},
∂Ĵ ′ρ
∂ρ∗k+1

= 0, ∀k ∈ {0...N − 1}.

Then, the ((j − 1)p+ i)th element of the gradient of Ĝ(·) is:

∂Ĝ

∂νij
=
∂Ĵ ′ρ
∂νij

= δj0γ
iEi

0 +

x
∗
j

u∗j

1


T


∂Xj

∂νij

∂Ωj

∂νij

∂Λj

∂νij(
∂Ωj

∂νij

)T
∂Zj
∂νij

∂Ξj
∂νij(

∂Λj

∂νij

)T (
∂Ξj
∂νij

)T
∂Yj
∂νij


x
∗
j

u∗j

1

 ,

where δj0 is the Kronecker delta, and where:

∂Xk

∂νij
=

−(Ci
E,k)

TM i
yy,kC

i
E,k, j = k

0, j 6= k

∂Ωk

∂νik
=

−
(

1
2
(Ci

E,k)
T + (Ci

E,k)
TM i

uy,k + (Ci
E,k)

TM i
yy,kD

i
E,k

)
, j = k

0, j 6= k

∂Λk

∂νij
=

−(Ci
E,k)

TM i
yy,ka

i
E,k, j = k

0, j 6= k

∂Zk

∂νij
=

−
(
(Di

E,k)
T +M i

uu,k +Muy,kD
i
E,k + (Di

E,k)
TM i

yy,kD
i
E,k

)
, j = k

0, j 6= k

∂Ξk

∂νij
=

−
(

1
2
I +M i

uy,k + (Di
E,k)

TM i
yy,k

)
aiE,k, j = k

0, j 6= k

∂Yk
∂νij

=

−(aiE,k)
TM i

yy,ka
i
E,k, j = k.

0, j 6= k
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Note that we can then rewrite ∂Ĝ
∂νij

in terms of variable (yij)
∗ = Ci

E,jx
∗
j +Di

E,ju
∗
j + aiE,j as:

∂Ĝ

∂νij
= δj0γ

iEi
0 − (u∗j)

T (yij)
∗ − µj(u∗j , (yij)∗).

The ((k − 1)p+ h, (j − 1)p+ 1)th element of the Hessian is:

∂2Ĝ

∂νhkν
i
j

= 2

x
∗
j

u∗j

1


T


∂Xj

∂νij

∂Ωj

∂νij(
∂Ωj

∂νij

)T
1
2

∂Σj

∂νij(
∂Λj

∂νij

)T (
∂Ξj
∂νij

)T


∂x∗j
∂νhk
∂u∗j
∂νhk

1

 .

The derivative of the optimal control input u∗j with respect to νhk is:

∂u∗j
∂νhk

=



−Σ−1
j

(
2ΩT

j

∂x∗j
∂νhk

+BT
j

∂ρ∗j+1

∂νhk

)
, k 6= j

Σ−1
j

(
∂Σj

∂νhk

)
Σ−1
j

(
2ΩT

j x
∗
j +BT

j ρ
∗
j+1 + 2Ξj

)
−Σ−1

j

(
2
∂ΩT

j

∂νhk
x∗j + 2ΩT

j

∂x∗j
∂νhk

+BT
j

∂ρ∗j+1

∂νhk
+ 2

∂Ξj
∂νhk

)
, k = j,

.

To solve for
∂x∗j
∂νhk

and
∂ρ∗j
∂νhk

, we take the derivative of (5.20) with respect to νhk , and solve the

resulting two-point boundary value problem:∂x∗j+1

∂νhk
∂ρ∗j
∂νhk

 =

[
T11, T12,j

T21,j T T
11,j

] ∂x∗j
∂νhk
∂ρ∗j+1

∂νhk

+

∂T11,j

∂νhk

∂T12,j

∂νhk
∂T21,j

∂νhk

∂T T11,j

∂νhk

[ x∗j
ρ∗j+1

]
+

∂W1,j

∂νhk
∂W2,j

∂νhk

 ,
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with:

∂T11,j

∂νhk
=

2BjΣ
−1
j

∂Σj

∂νhk
Σ−1
j ΩT

j − 2BjΣ
−1
j

∂ΩT
j

∂νhk
, k = j

0, k 6= j

∂T12,j

∂νhk
=

BjΣ
−1
j

∂Σj

∂νhk
Σ−1
j B

T
j , k = j

0, k 6= j

∂T21,j

∂νhk
=

2
∂Xj

∂νhk
− 4

∂Ωj

∂νhk
Σ−1
j ΩT

j + 4ΩjΣ
−1
j

∂Σj

∂νhk
Σ−1
j ΩT

j − 4ΩjΣ
−1
j

∂ΩT
j

∂νhk
, k = j

0, k 6= j

and:

∂W1,j

∂νhk
=

2BjΣ
−1
j

∂Σj

∂νhk
Σ−1
j Ξj − 2BjΣ

−1
j

∂Ξj
∂νhk

, k = j

0, k 6= j

∂W2,j

∂νhk
=

2
∂Ωj

∂νhk
− 4

∂Ωj

∂νhk
Σ−1
j Ξj + 4ΩjΣ

−1
j

∂Σj

∂νhk
Σ−1
j Ξj − 4ΩjΣ

−1
j

∂Ξj
∂νhk

, k = j.

0, k 6= j

Then, we can decouple this two point boundary value problem by using the same procedure

as described in Section 5.3.2. Let:

ρ̂hj+1,k =
∂ρ∗j+1

∂νhk
−∆j

∂x∗j+1

∂νhk
,

where if ∆j is defined as the backward Riccati equation in (5.23) with final condition ∆N =

2PN+1, then the two-point boundary value problem decouples as:

[∂x∗j+1

∂νhk

ρ̂hj,k

]
=

[
T̃11,j T̃12,j

0 T̃ T
11,j

][ ∂x∗j
∂νhk

ρ̂hj+1,k

]

+

[
(I − T12,j∆j)

−1 0

T̃ T
11,j∆j I

]∂T11,j

∂νhk

∂T12,j

∂νhk
∂T21,j

∂νhk

∂T T11,j

∂νhk

[ x∗j
ρ∗j+1

]
+

∂W1,j

∂νhk
∂W2,j

∂νhk

 ,

where T̃11,j and T̃12,j are defined in (5.26).
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5.4 Evaluating the Duality Gap

Now, we explore one of the most interesting questions in this analysis, which is whether the

dual optimum exhibits a duality gap. Let up be the primal optimal input sequence, and

λdual be the dual optimal Lagrange multiplier sequence. Then, when strong duality holds,

we have that:

up0:N = u∗0:N(λdual0:N ), (5.30)

which implies that the (potentially nonconvex) primal problem is solved via its convex dual

relaxation.

Corollary 5.1. Let H(λ0:N) be defined according to (5.9). Then, the following statements

are equivalent:

1. H(λ0:N) � 0

2. Υk(λ0:N) = Zk + ZT
k − BT

k ∆kBk � 0, ∀k ∈ {0...N}, where ∆k is the solution to

Riccati equation in (5.28) with final value ∆N = 2PN+1.

Proof. The proof is analogous to the proof of Theorem 4.1, where instead we consider whether

J̄ ′(·, ·, ·) has a unique, finite minimum.

Theorem 5.2. If Υk(λ
dual
0:N ) � 0, ∀k ∈ {0...N}, as described in condition 2 of Corollary 5.1,

then the duality gap is zero and (5.30) holds.

Proof. Via Corollary 5.1, H(λdual0:N ) � 0 and then it follows that λdual0:N ∈ int(G(x0,a)). It

is straight-forward to verify that G(λ0:N) is twice differentiable when not on the boundary

of G(x0,a). Then, it is a classical result (see, e.g., [10]) that if a dual function is twice

differentiable at its optimum, the duality gap is zero.

Then, the duality gap can be checked by determining if the minimum singular values of

the sequence Υ0:N(λdual0:N ) are uniformly positive; i.e., if there exists an ε > 0 such that:

Υk(λ
dual
0:N )− εI � 0, ∀k ∈ {0...N}. (5.31)

Note that Υ0:N(·) is also calculated in (5.27) of Section 5.3.2 when decoupling the states

and costates, and then calculating the control inputs. When the dual optimal Lagrange

multipliers λdual0:N are determined, for a small computational cost, we can check the definiteness

of these matrices to gain additional information on the primal optimality of this dual solution.
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Because Υk is an m ×m matrix, for the case with m = 1, Υk reduces to scalar value and

we instead test its positiveness.

It is well-known (see, e.g., [10]) that if λdual0:N ∈ int(G(x0,a)) and there is a nonzero duality

gap, then G(λ0:N) is not differentiable at λdual0:N . From inspection of (5.1), the dual function

G(λ0:N) is differentiable with respect to all λ0:N ∈ G(x0,a). Therefore, if a nonzero duality

gap exists, λdual0:N is on the boundary of G(x0,a), i.e., λdual0:N ∈ ∂G(x0,a).

We can guarantee zero duality gap for any exogenous disturbance or initial condition for

problems with special structures as shown in the Theorem below.

Theorem 5.3. Consider a convex ECOCP, which satisfies Corollary 4.3. Then, if for each

i ∈ {1...p}, either Ei
L = 0 or γi = 1, there is zero duality gap for all initial conditions

x0 ∈ Rn and E0 ∈ RE, and for all exogenous disturbances a ∈ (L2)d.

Proof. From Corollary 4.3, we assume that the upper energy constraints are inactive for all

k ∈ {0...N}, and can therefore be excluded them from this analysis. We also assume that the

system takes no action (i.e., u0 = 0) unless energy is available, so without loss of generality,

let y̌i0 = Ci
E,0x0 + aiE,0 6= 0. To use Slater’s constraint qualification (Theorem 2.9), we must

show that there exists a u0:N ∈ relint(FMd
) that strictly satisfies the lower energy storage

constraints, i.e., Ei
k > Ei

L for all k ∈ {0...N} and all i ∈ {1...p}.
First, let Ei

L = 0. If Ei
0 > 0, then u0:N = 0 strictly satisfies the constraints. If the storage

decay term γi < 1, the energy in the storage system asymptotically approachs zero, however,

because N is finite, Ei
k > 0 for all k ∈ {0...N}. If Ei

0 = 0, the energy at the next time-step

is:

Ei
1 = −u0y

i
0 − µi0(u0,y

i
0)

= −

[
u0

yi0

]T [
M i

uu,0 M i
uy,0 + 1

2
I

(M i
uy,0)T + 1

2
I M i

yy,0

][
u0

yi0

]
.

From Assumption 3 it follows that for all i ∈ {1...p} and each y̌i0 ∈ Rm \ 0 (where yi0 =

y̌i0 +Di
E,0u0), there exists a u0 ∈ Rm such that Ei

1 > 0. Setting the rest of the trajectory

u1:N = 0 strictly satisfies the constraints.

Now, let γi = 1. If Ei
0 > Ei

L, then u0:N = 0 strictly satisfies the constraints. If Ei
0 = Ei

L,

we again invoke Assumption 3 as shown above to guarantee that there exists a u0 ∈ Rm

such that Ei
1 > Ei

L.
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5.5 Example: Piezoelectric Energy Harvester

In this section, we present an example using a piezoelectric energy harvester. The process

of formulating the model for this device, and then discretizing and nondimensionalizing it is

outlined in Section 4.3.1. In this case, we assume there is no transmitter and instead q1(t)

sends power to a resistor bank. Our goal is to maximize the energy generated by this device

(see Section 4.2.2). The associated ECOCP is:

Given: x0, E
1
0 ,A,B,CE,DE, γ

1,

ak, a
1
E,k, µ

1
k(·, ·), ∀k ∈ {0...N},

Minimize: J(u0:N) =
N∑
k=0

uky
1
k + µ1

k(uk, y
1
k)

Domain: u0:N , q
1
0:N

Constraints: cLk (u0:N , q
1
0:N ,x

◦
0:N(u0:N)) 6 0,

cUk (u0:N , q
1
0:N ,x

◦
0:N(u0:N)) 6 0,

q1
k > 0,

∀k ∈ {0...N}.

Let the time step ∆t = 1, number of time steps N = 100, nondimensionalized mechanical

damping dp = 0.005, electromechanical coupling factor θp = 0.1, dielectric leakage coefficient

κp = 0.001, circuit resistance Rc = 0.4, and γ1 = 1 (note that we have suppressed the overbar

to indicate nondimensional factors, and assume all factors are nondimensional). The beam

is excited by a base acceleration a ∼ N (0, 1). Let E1
L = 0, and consider four different energy

storage values: E1
U = {∞, 2, 0.2, 0.02}.

Figure 5.1 shows the trajectories for the energy in storage system E1
k , the control input

uk, and power sent to the resistor bank q1
k for various nondimensional values of E1

U . These

trajectories have been modified for feasibility when necessary. The control input trajectories

u0:N are the same for the E1
U =∞ and E1

U = 2 cases. However, the energy sent to the resistor

bank q1
0:N is nonzero for the E1

U = 2 case to satisfy the upper energy storage constraint, while

for the E1
U = ∞ case, no energy is sent to the resistor bank. Note that the control input

trajectories u0:N differ from the infinite energy storage case for E1
U = 0.2 and E1

U = 0.02.

Because m = 1 for this example, Υ0:N simplifies to a sequence of scalar values. Therefore,

we can verify zero duality gap by checking that each scalar Υk > 0, for all k ∈ {0...N}.
However, due to finite numerical tolerance, we assume that Theorem 5.2 is satisfied if Υk >
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Figure 5.1: The energy in storage system E1
k, the control input u1

k, and energy sent
to the resistor bank q1

k for a piezoelectric energy harvester with various
values of upper energy constraint: E1

U = ∞ (red), E1
U = 2 (blue), E1

U = 0.2
(black), and E1

U = 0.02 (green).
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10−8, for all k ∈ {0...N}. For E1
U = {∞, 2, 0.2}, Υk > 0 at each time step, and we can

conclude that strong duality holds for these cases. However, for the E1
U = 0.02 case, Υ0 is

below the threshold stated above, and therefore, we conclude that it has nonzero duality

gap.

Figure 5.2 plots E1
U versus the saturated primal performance measure, Jsat. If the dual

optimum results in a feasible trajectory, which is the case when strong duality holds, then

Jsat = J . However, if the dual optimum results in an infeasible trajectory, which is the case

when a nonzero duality gap is present, we modify the resulting u∗(λd) so that the constraints

are satisfied.

In Figure 5.2, the blue arrow spans the values of E1
U that have the same optimal solution

as the infinite storage case, as described above with E1
U = 2. The q1

0:N trajectories differ for

values of E1
U in this region in order to satisfy the upper energy constraints. The red arrow

spans the region that results in zero duality gap, meaning that solving the dual problem

results in the optimal solution to the primal problem. The green arrow spans the values

of E1
U that result in nonzero duality gap, and hence the resulting trajectory from the dual

optimization is infeasible. Therefore, we must modify these trajectories for feasibility. The

E1
U = 0.02 case falls within this region, meaning it is the only suboptimal solution of the

four considered cases.

99



. . . . . .

. . .. . .

zero duality gap

same optimal solution

nonzero

duality

gap

E
U
= 0.02

E
U
= 0.2 E

U
= 2 E

U
= ∞

∞

-5

0 0.1 0.2 0.3 0.4 0.5 2

-5.6

-5.4

-5.2

-4.8

E
U

J
sat

1

1
1 1

1

Figure 5.2: Plot of Jsat versus E1
U . The blue, red, and green arrows spans the values of

E1
U that have the same optimal solution as the infinite storage case, result

in zero duality gap, and result in nonzero duality gap, respectively.
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Chapter 6

Implementation via Model Predictive

Control

In this chapter, we first provide an overview of MPC. We then discuss how to implement

the solution from the dual relaxation introduced in Chapter 5 in real-time via MPC. When

the optimal control problem has nonzero duality gap, the solution to the dual relaxation

is infeasible, meaning the primal constraints are not satisfied. Therefore, we introduce an

algorithm to derive a feasible input from the dual relaxation solution. We demonstrate these

techniques on a spherical buoy WEC, with the goal of maximizing generated energy, and a

multi-energy-storage-system vibration suppression system.

6.1 Overview of Model Predictive Control

MPC, which is also referred to as receding horizon control, is an on-line closed-loop iterative

control method [9, 46]. At time k, an open-loop optimal control problem is solved over time

interval {k, ..k+N}, starting from (known) initial condition xk. This optimal control problem

yields a sequence of N+1 control inputs. The first control input (for time k) is implemented.

Then at time k+ 1, the process is repeated over the new interval {k+ 1, ...k+ 1 +N}, with

known initial condition xk+1. Figure 1.6 shows how the system intelligence of a self-powered

system may be structured to enable MPC.

Figure 6.1 depicts the procedure for implementing MPC. In this figure, we assume that

the control input is ZOH, and the performance objective is measured at discretized points.

Let the solid blue lines represent the past control inputs, and the dashed blue lines represent

the N + 1 future control inputs determined from the optimal control problem. The solid red
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lines represent the past objective functions, and the dashed red lines represent the N + 1

predicted objective functions based on the future control inputs.

In Figure 6.1a, the current time-step is k. The control inputs from time-steps k to k + 10

are calculated. In Figure 6.1b, the control input at time k was implemented, and the current

time-step is now k + 1. The control inputs from k + 1 to k + 11 and the corresponding

values of the objective function are calculated. Note that the measured objective function

in Figure 6.1b at time k is different from the predicted objection function in Figure 6.1a at

time-step k. Differences between the predicted and measured objective function could result

from errors in the exogenous disturbance predictions, or from modeling errors. In 6.1c, the

control input at time k+ 1 was implemented, and the current time-step is now k+ 2. Again,

the control inputs from k+2 to k+12 and the corresponding values of the objective function

are calculated as the prediction horizon is shifted forward one time-step.

A benefit of MPC is that it can account for hard and soft constraints, which nearly all

engineering applications require. However, as described above, in MPC, an optimal control

problem is solved every time step ∆t, meaning that either the dynamics of the plant must be

sufficiently slow to accommodate this or the optimal control algorithm sufficiently fast. When

using MPC techniques, the introduction of uncertainty via, for example, poor disturbance

prediction or large modeling errors, may cause MPC algorithms to perform poorly. Therefore,

robustness of MPC algorithms is an ongoing research area [27, 46]. Here we have provided

a brief overview of MPC; however, [24, 46, 57] can be used as references.

In the context of the self-powered system control problem, we implement our control

strategy using MPC because it allows us to strictly enforce the physical constraints of the

energy storage units. However, as mentioned earlier, using MPC requires that the ECOCP

be solved every time step ∆t. We prove in Chapter 4 that the ECOCP is nonconvex in

general, meaning it may be computationally expensive to solve and only local minima can

be ensured. Therefore, we explore the use of the convex dual relaxation in Chapter 5 to

solve the ECOCP, where the global optimum can be found in polynomial time. However,

in general, we cannot guarantee that the solution to the dual relaxation is feasible, and

obviously, MPC requires feasible inputs to satisfy constraints. Therefore, in the following

sections, we formulate an algorithm to modify infeasible trajectories resulting from the dual

relaxation to implement via MPC .

102



k k+1 k+2

k k+1 k+2 k+10

past
control
inputs

past future

measured
objective func.

past future

prediction horizon

future
control
inputs

prediction horizon

predicted
objective func.

k k+1 k+2

k k+1 k+2

past
control
inputs

past future

measured
objective func.

past future

predicted
objective func.

prediction horizon

prediction horizon

future
control
inputs

k k+1 k+2

k k+1 k+2

past
control
inputs

past future

measured
objective func.

past future

prediction horizon

predicted
objective func.

prediction horizon

future
control
inputs

(c)

(b)

(a)

k+10

k+11

k+11

k+12

k+12

Figure 6.1: Diagram depicting model predictive control procedure: (a) prediction hori-
zon starting at time step k, (b) starting at time step k+1, and (c) starting
at time step k + 2.
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6.2 Modifying Infeasible Trajectories

In the case where the ECOCP has nonzero duality gap, the resulting optimal trajectory found

from solving the dual problem {u∗k:k+N(λdualk:k+N), q∗k:k+N(λdualk:k+N)} is infeasible (i.e., violates

the constraints). Let k be the first time step in the ECOCP. In MPC, we only implement the

first time step of the dual optimal trajectory, i.e., {u∗k(λdualk:k+N), q∗k(λ
dual
k:k+N)}. Therefore, we

are specifically interested in modifying these to guarantee feasibility. Recall from Definition

3.7, that F(xk,Ek, N) is the domain of all finite-horizon discrete-time feasible inputs. Now

let Fk(xk,Ek, N) be the set of all inputs at the kth time step {uk, qk} that satisfy the

constraints at time-step k, i.e.,

Fk(xk,Ek, N) =

{
{uk, qk} : cLk (uk, qk,xk) 6 0, cUk (uk, qk,xk) 6 0, and qk > 0

}
,

which we reference as Fk for brevity. If {u∗k(λdualk:k+N), q∗k(λ
dual
k:k+N)} ∈ Fk, then regardless of the

feasibility of the rest of the dual optimal trajectory, we implement {u∗k(λdualk:k+N), q∗k(λ
dual
k:k+N)}

as is. However, if {u∗k(λdualk:k+N), q∗k(λ
dual
k:k+N)} /∈ Fk, then we modify for feasibility.

Given how qk, the energy sent from the storage system, can be treated a Lagrange mul-

tiplier in the dual domain (see Section 5.1.2), it does not violate the constraint qk > 0.

If {u∗k(λdualk:k+N), q∗k(λ
dual
k:k+N)} violates the upper energy storage constraint of the ith storage

unit cU,ik (·, ·, ·) 6 0, the constraint can be satisfied by increasing qik so that cU,ik (·, ·, ·) = 0. If

{u∗k(λdualk:k+N), q∗k(λ
dual
k:k+N)} violates the lower energy storage constraint of the ith storage unit

cL,ik (·, ·, ·) 6 0, modifying the inputs to satisfy this constraint is more complex.

When there is a lower energy storage constraint, we modify uk such that it minimizes the

difference between the (infeasible) dual optimum, under a quadratic performance measure,

such that the lower energy constraints are satisfied for all of the energy storage systems. We

refer to this as the Modification Quadratically Constrained Quadratic Program (MQCQP)

and it has the form:

MQCQP :



Given: xk,Ek,A,B,

Ci
E,D

i
E, γ

i,aiE,k, µ
i
k(·, ·), ∀i ∈ {1...p}

Minimize:
(
û− u∗k(λdualk:k+N)

)T ( p∑
i=1

M i
uu,k

)(
û− u∗k(λdualk:k+N)

)
Domain: û

Constraints: cLk (ûk, 0,xk) 6 0.
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Corollary 6.1. The MQCQP is convex if for all i ∈ {1...p}:[
1
2

(
Di

E,k + (Di
E,k)

T
)

+M i
uu,k M i

uy,k

(M i
uy,k)

T M i
yy,k

]
� 0. (6.1)

Proof. It is trivial to show that the quadratic performance measure is convex. We turn our

attention to the constraint function cL,ik (·, ·, ·) 6 0, which can be written as:

cL,ik (uk, 0,xk) = Ei
L − γiEi

k + (y̌ik)
Tuk

+

[
uk

y̌ik +Di
E,kuk

]T [
1
2

(
Di

E,k + (Di
E,k)

T
)

+M i
uu,k M i

uy,k

(M i
uy,k)

T M i
yy,k

][
uk

y̌ik +Di
E,kuk

]
.

Now, assume (6.1) holds, and then we can write the matrix in the following form:[
1
2

(
Di

E,k + (Di
E,k)

T
)

+M i
uu,k M i

uy,k

(M i
uy,k)

T M i
yy,k

]
= V V T ,

where V ∈ S2m. Then via Theorem 2.3, it follows that cL,ik (uk, 0,xk) 6 0 if and only if:
Ei
L − γiEi

k + (y̌ik)
Tuk

[
uk

y̌ik +Di
E,kuk

]T
V

V T

[
uk

y̌ik +Di
E,kuk

]
−I

 � 0

By inspection, we can see that the above matrix inequality is linear in uk, meaning it is a

convex inequality constraint in uk.

Note that if the mapping u 7→ yi is discrete-time passive, it follows that (Di
E,k+(Di

E,k)
T ) �

0 [38], and then Corollary 6.1 holds. Recall from Section 1.3.1 that for cases with m = 1

or p = 1, the MQCQP can be solved analytically. The below algorithm summaries the

modification algorithm for MPC implementaiton:
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Algorithm 1: MPC Implementation

1 k = 0

2 while 1 do

3 Solve dual problem to obtain {u∗k(λdualk:k+N), q∗k(λ
dual
k:k+N)}

4 modify u = 0

5 for i = 1 to p do

6 if cL,ik (u∗k(λ
dual
k:k+N), q∗k(λ

dual
k:k+N),x∗k(λ

dual
k:k+N)) > 0 then

7 Solve the MQCQP for ûk

8 modify u = 1

9 Exit loop

10 if modify u = 0 then

11 ûk = u∗k(λ
dual
k:k+N)

12 for i = 1 to p do

13 if cU,ik (u∗k(λ
dual
k:k+N), q∗k(λ

dual
k:k+N),x∗k(λ

dual
k:k+N)) > 0 then

14 q̂ik = Ei
k(u

∗
k(λ

dual
k:k+N), q∗k(λ

dual
k:k+N),x∗k(λ

dual
k:k+N))− Ei

U

15 else

16 q̂ik = qi∗k (λdualk:k+N)

17 Implement {ûk, q̂k}
18 k = k+1

Because the trajectory is adjusted from the optimal dual solution, there is no guarantee

of stability. If the problem is in continuous-time, Theorem 3.1 can be used to show that the

adjustment algorithm cannot destabilize the system. However, in discrete-time, the model

allows for inter-time-sample energy violations as discussed in Section 3.2.4, and therefore

stability is not guaranteed. Theoretically, it is possible that the modification algorithm

can destabilize the system. However, we can assume that for small enough sampling times,

destabilization should not be of major concern in practice. Future work will focus on stability

for cases with arbitrarily large sampling times.
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6.3 Example: Spherical Buoy Wave Energy Converter

This example is based off of work in [35] in collaboration with the National Renewable Energy

Laboratory. WECs are devices that convert the oscillatory motion from ocean waves into

electricity [20, 62]. There is increasing awareness from experts in the field of wave energy

conversion that specialized control technology is vitally important to the success of wave

energy power [59]. The control systems of WECs must be developed so that the technology

can operate in a variety of sea states and maximize generated energy while simultaneously

mitigating system damage. Although improvements to WEC mechanical and PTO systems

can increase the economic feasibility of wave power, appropriate controller design has been

shown to significantly increase the harvested energy of WECs [7, 59].

Controller design for WECs requires specialized treatment beyond well-known, standard

control techniques. Because ocean waves are stochastic (i.e., they do not occur at a single

frequency) and are usually modelled via a spectrum that is a function of wind velocity, the

controller must accommodate for changing spectral shapes that are potentially wideband.

Further, mechanical and electrical constraints need to be enforced to avoid device damage,

or possible external constraints from electric grid regulators.

Controllers for WECs are sometimes designed assuming single-frequency waves [19, 21];

however, true sea states are far from narrowband phenomena, and such controllers are con-

sequently suboptimal in realistic applications. Single-frequency WEC controllers can be

extended straightforwardly to the broadband situation by implementing a dynamic feedback

law equal to the complex conjugate transpose of the frequency-dependent impedance matrix

of the WEC. The WEC industry refers to this technique as “complex conjugate control”

[51]; however, this type of control is anticausal, cannot account for system constraints, and

assumes that the PTO system can realize bidirectional power flow solutions.

A more computationally complex solution involves the execution of real-time control al-

gorithms using MPC methods, which can account for system constraints [46]; however, two

distinct complications arise when implementing MPC. First, if constraints are imposed, the

associated optimization required to be solved in real time by an MPC algorithm is generally

a nonconvex problem. Finding solutions for nonconvex problems is inefficient and problem-

atic, and in most scenarios only local minimality can be assured. Second, MPC algorithms

require knowledge of future disturbances, so we require a reliable wave forecasting system.

Because of the interaction and propagation of waves, wave forecasting can be complex and

is an active research area [1, 23].
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Figure 6.2: Spherical buoy wave energy converter

Many other works have used MPC techniques to control WECs. References [16, 30,

42] perform linear MPC, and [42] uses a convex relaxation of the primal cost function by

implementing a sampling delay. References [70] and [58] perform nonlinear MPC while im-

plementing displacement and generator constraints. Reference [13] minimizes tracking error

and controller effort subject to constraints on displacement, velocity, and PTO. However,

none of these methods have used dual optimization techniques. In this section, we imple-

ment MPC by solving the dual problem using techniques from Chapter 5, and if necessary,

we modify infeasible solutions using the algorithm introduced in Section 6.2.

6.3.1 System and Disturbance Model

The WEC system considered in this study consists of a single-body sphere that is constrained

to move only in the heave direction pictured in Figure 6.2. Here, we consider the case with

a single buoy (m = 1) connected to one energy storage system (p = 1). The control input

is the PTO force u(t), the potential variable is the buoy’s heaving velocity v(t), and the

exogenous disturbance is the force from the waves acting on the buoy. Then, the rest of the

components of the model are as follows:

1. Plant: In this example, we use the floating spherical buoy model developed for the

International Energy Agency Offshore Energy Systems Task 10 [76]. The buoy has

radius r = 5 m and mass M = 261.8 × 103 kg. Let Gf (jω) be the transfer function
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from force to buoy velocity:

Gf (ω) =

(
Ca(ω) + jω

(
M +Ma(ω)− Ks

ω2

))−1

,

with added mass, Ma(ω), added damping, Ca(ω), and hydrostatic stiffness coefficient,

Ks. Because of the the spherical shape of the buoy, the force due to buoyancy is

nonlinear with respect to submergence depth. We approximate Ks as dgπr2, where

d = 1000 kg
m3 is the density of water and g = 9.81 m

s2
is the acceleration due to gravity.

We use linear hydrodynamic theory to numerically determine the forces acting on the

buoy via hydrodynamic software (such as WAMIT or ANSYS Aqwa). Let Ga(ω) be the

transfer function from wave amplitude to buoy velocity: Ga(ω) = Gf (ω)Hex(ω), where

Hex(ω) is the transfer function from wave amplitude to force, which is also numerically

determined. This mathematical model is discretized and finite-dimensionalized to a

six-state, LTI system in (4.14). An explanation of the method of discretization and

finite-dimensionalization is out of the scope of this thesis; however, [47, 65, 68, 81] can

be used as references.

2. Transmission Losses: We model the parasitic losses quadratically as a function of

uk as µk = uTkMuuuk, where Muu,k = 8.5× 10−10 s
kg

.

3. Dissipated Power From Energy Storage: Let q(t) be the power being sent from

the WEC to the power grid, which we model as a power bus.

4. Energy Storage System: The decay of the energy in the storage system is fixed at

γ = 0.99 and the lower energy storage bound at EL = 0 MJ . We consider three values

for the upper energy storage limit: EU = {∞, 0.5, 0.25} MJ .

5. Exogenous Disturbance: In this study, we also assume perfect knowledge of future

exogenous disturbances. Future studies could incorporate forecasting of future distur-

bances given present and past information using, for example, a Kalman filter [1, 23].

We assume the buoy sits in an ocean of infinite depth, and irregular waves excite the

buoy, which can be characterized by the Bretschneider spectrum [71] as:

S(f) =
H2
s

4
(1.057fp)

4f−5 exp

(
−5

4

(
fp
f

)4
)
, (6.2)
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where frequency f is in Hz, significant wave height Hs = 1 m, and peak wave period

Tp = 1
fp

= 12 s.

6. PTO Force Constraint: In this example, we consider an additional constraint on

the PTO force, u(t), which is a maximum allowable force of umax = ±500 kN (this

force is of a similar magnitude used in other studies [30, 42]). Note that this constraint

is a convex function of u.

6.3.2 Energy-Constrained Optimal Control Problem Formulation

Here we develop an MPC control scheme to maximize generated energy (see the energy

harvesting problem in Section 4.2.2) subject to constraints on the energy storage and the

maximum allowable control force, umax. Let k be the current time step, and then the

resultant ECOCP is:

Given: x0, E
1
0 ,A,B,C

1
E,D

1
E, γ

1,

ak:k+N , a
1
E,k:k+N , µ

1
j(·), ∀j ∈ {k...k +N}

Minimize: J(uk:k+N) =
k+N∑
j=k

ujy
1
j + µ1

j

Domain: uk:k+N , qk:k+N

Constraints: cLj (uk:k+N , q
1
j ,x

◦
j(uk:k+N ,x0)) 6 0,

cUj (uk:k+N , q
1
j ,x

◦
j(uk:k+N ,x0)) 6 0,

q1
j > 0,

u2
j − u2

max 6 0,

∀j ∈ {k...k +N}.

6.3.3 Incorporating Maximum Input Constraints

To incorporate the maximum force constraint, we need to slightly modify the theory de-

veloped in Chapter 5 to include an additional Lagrange multiplier. First, let λumaxj be the

Lagrange multiplier used to enforce the maximum input constraint at the jth time step,

which, via the KKT conditions, is required to be nonnegative. Recall the definition of J̄ in
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(4.8). Let J̄umax be J̄ with maximum input constraint incorporated, i.e.,

J̄umax = J̄ +
k+N∑
j=k

λumaxj

(
u2
j − u2

max

)
.

Now, recall the formulations of the HessianH(·) in (5.5) and constant term f(·) in (5.7). Let

Humax(λ0:N , λ
umax
0:N ) and fumax(λ0:N , λ

umax
0:N ) be the versions that incorporate the maximum

input constraint, which have the form:

Humax
jk (λ0:N , λ

umax
0:N ) = Hjk(λ0:N) + λumaxj δjk

fumaxjk (λ0:N , λ
umax
0:N ) = fjk(λ0:N)− λumaxj u2

max.

In the dual problem, we now need to optimize over the original Lagrange multipliers in

addition to the new Lagrange multiplier λumax . Alterations to the rest of the theory presented

in Chapter 5 follow analogously.

6.3.4 Results

Let the discrete time step be ∆t = 0.5 s. The prediction horizon is one peak wave period, i.e.,

N = 24, and the MPC algorithm is run for 100 wave periods, for a total time of T = 1200 s.

Figures 6.3 and 6.4 show the MPC results for the energy in the storage system (E), PTO

force (u), buoy displacement (w), generated power (pT ), and power sent to the grid (q).

The average generated power for the EU = {0.25, 0.5, ∞} MJ cases are 83.20 kW ,

85.21 kW , and 85.34 kW , respectively. Although a WEC with EU =∞ would obviously not

be designed in practice, this case gives insight into the optimal energy trajectory without the

upper energy storage constraint, as well as the amount of energy storage needed to prevent

upper energy bound saturation: 3.33 MJ . Note that q = 0 for this case because the system

never runs out of energy storage.

For each time step of the MPC algorithm, the zero duality gap condition is tested by

examining if each of the elements in the sequence Υk:k+N are uniformly positive because

there is one control input (m = 1), so Υk is a scalar value. However, due to finite numerical

tolerance, we assume that Theorem 5.2 is satisfied if Υk:k+N > 10−8. For the EU →∞ and

EU = 0.5MJ cases, zero duality gap is achieved at every time step. For the EU = 0.25MJ

case, zero duality gap is achieved 1979 times out of the total 2400 time steps, meaning the

global optimal solution is implemented in about 82% of the time steps.
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Figure 6.3: The energy in the storage system, E, PTO force, u, buoy displacement, w,
generated power, pT , energy sent to the grid, q, and the red line represents
the wave elevation in meters. (a) EU = 0.25 MJ , (b) EU = 0.5 MJ .
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6.4 Example: Vibration Suppression System

In this section, we present an example using an energy-harvesting active vibration sup-

pression system. See Section 1.1 for background on vibration suppression systems in civil

engineering and aerospace applications. We analyze the three systems in Figure 1.5 with one,

two, and three energy storage systems. The following analysis is not meant to be represen-

tative of any particular structure, but rather demonstrate the use of the algorithm presented

in Section 6.2, and is therefore performed using nondimensionalized units.

6.4.1 System and Disturbance Model

Consider the five degree-of-freedom mass-spring-damper systems pictured in Figure 1.5

with three transducers (m = 3) connected to one, two, or three energy storage systems

(p = {1, 2, 3}). The control inputs are the transducer actions {u1(t), u2(t), u3(t)}, the asso-

ciated potential variables are {v1(t), v2(t), v3(t)}, and the exogenous disturbance is the base

acceleration a(t). The rest of the components of the model are as follows:

1. Plant: The continuous-time dynamics evolve according to (3.1) with system states:

x(t) =
[
z1(t) z2(t) z3(t) z4(t) z5(t) ż1(t) ż2(t) ż3(t) ż4(t) ż5(t)

]T
,

where zi(t) is the ith mass displacement, and żi(t) is the ith mass velocity. The

continuous-time state space matrices are:

Ā =

[
0 I

−M−1
S KS −M−1

S CS

]
, B̄ =

[
0

US

]
, Ḡ =

[
0

ES

]
C̄ =

[
0 US

]
, D̄ = 0,

where MS = I10 is the mass matrix, KS is the stiffness matrix, CS is the damping

matrix, US is the actuator connectivity matrix, and ES is the disturbance matrix.
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These matrices have the following forms:

KS =


2 −1 0 0 0

−1 2 −1 0 0

0 −1 1 0 0

0 0 0 2 −1

0 0 0 −1 1

 , US =


1 −1 0

0 1 0

0 0 0

0 0 1

0 0 0



CS =0.01


2 −1 0 0 0

−1 2 −1 0 0

0 −1 1 0 0

0 0 0 2 −1

0 0 0 −1 1

 , ES =


1

0

0

1

0

 .

This plant model is discretized as described in Section 3.2 with time-step ∆t = 0.5.

2. Transmission Losses: In this example, we use the quadratic overbound of the effi-

ciency model described in Section 3.2.3. We assume that ηj = 0.9, ∀j ∈ {1...m}. The

design parameter is hk,j = 0.4, ∀j ∈ {1...m} and ∀k ∈ Z>0, which added a reasonable

level of damping to the structure, and performs well.

3. Energy Storage Systems: We analyze cases with p ∈ {1, 2, 3}, and we fix T iS = 100

for all i ∈ {1...p}, meaning that energy in the storage system decays about ten times

slower than the dynamics of the plant. We also fix Ei
L = 0 for all i ∈ {1...p}, but vary

Ei
U ∈ {∞, 10, 1, 0.1}.

4. Exogenous Disturbance: The system is excited by a base acceleration a(t) = z̈g(t),

which is characterized as i.i.d. Gaussian with zero mean and unit variance, i.e., a ∼
N (0, 1).

6.4.2 Energy-Constrained Optimal Control Problem Formulation

Our goal is to suppress the vibration of the structures when subjected to a base acceleration

a(t). The Lagrangian represents the sum of the squared accelerations and is of the form:

Lj(uj,xj) =

[
xj

uj

]T [
Q S

ST R

][
xj

uj

]
, (6.3)

115



with matrices:

Q =

[
KT

SKS KT
SCS

CT
SKS CT

SCS

]
, S =

[
−KT

SUS

−CT
SUS

]
, R = UT

SUS.

Let k be the current time step and p ∈ {1, 2, 3} be the number of energy storage units, then

the associated ECOCP is:

Given: x0,E0,A,B,C
i
E,D

i
E, γ

i, aj, a
i
E,j, µ

i
j(·),

∀j ∈ {k...k +N}, ∀i ∈ {1...p}

Minimize: J(uk:k+N ,x
◦
k:k+N(uk:k+N ,x0)) =

k+N∑
j=k

Lj(uj,xj)

Domain: uk:k+N , qk:k+N

Constraints: cLj (uk:k+N , qj,x
◦
j(uk:k+N ,x0)) 6 0,

cUj (uk:k+N , qj,x
◦
j(uk:k+N ,x0)) 6 0,

qj > 0,

∀j ∈ {k...k +N}.

6.4.3 Results

The prediction horizon is N = 50, and the MPC algorithm runs for 1000 horizons. Table

6.1 summarizes the results for each considered case. Let LMPC,j be defined as in (6.3)

after implementing the MPC control inputs at time step j, and then the sum over all 1000

time-steps is the MPC performance measure, i.e.,

JMPC =
1000∑
j=0

LpMPC,j.

Column three of Table 6.1 shows the values of JMPC . The fourth column of Table 6.1

indicates how many of the 1000 optimizations result in zero duality gap via the method in

Section 5.4. The last column shows the number of times the modification algorithm in Section

6.2 is invoked to alter infeasible inputs from the dual relaxation. Note that all three cases

satisfy Corollary 6.1, meaning that the MQCQP is convex. For the case using the system in

Figure 1.5a and E1
U →∞, there is zero duality gap for all trajectory optimizations, but the

modification algorithm is still invoked. When using numerical optimization, the algorithms
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converge within numerical precision of the actual optimum. Therefore, it may be the case

that optimizations with zero duality gap via Theorem 5.2 have slight feasibility violations

in practice. For these situations, modifications are very small. This highlights a benefit to

using Theorem 5.2 to determine strong duality versus checking the trajectory optimization

for primal feasibility.

Case E1
U E2

U E3
U JMPC Nonzero Duality Gap Modifications

Figure 1.5a

∞ · · 11139.6 0 1

1 · · 11184.0 0 0

0.1 · · 11369.5 24 4

0.01 · · 11465.2 104 28

Figure 1.5b

∞ ∞ · 11167.8 0 0

1 1 · 11196.2 0 0

0.1 0.1 · 11503.8 42 7

0.01 0.01 · 11754.5 482 239

Figure 1.5c

∞ ∞ ∞ 11198.0 0 0

1 1 1 11222.3 0 0

0.1 0.1 0.1 11585.3 53 23

0.01 0.01 0.01 12410.8 963 749

Table 6.1: Summary of vibration suppression results for the three considered systems

shown in Figure 1.5 and for various values of energy storage

Figure 6.5 plots the resulting performance measure JMPC for the twelve considered cases

versus the amount of energy storage. For large amounts of energy storage, the three systems

in Figure 1.5 perform similarly. However, for small amounts of energy storage, cases with

fewer storage units perform better. This result emphasizes the advantage of connecting

multiple transducers to a single storage unit: energy harvested by all of the connected

transducers can then be used by any single transducer.

Figures 6.6 – 6.9 show the energy, control input, and energy dissipation trajectories for

the system in Figure 1.5a with E1
U = {∞, 1, 0.1, 0.01}, respectively. Figures 6.10 – 6.13 show

results for the system in Figure 1.5b with two energy storage systems, and Figures 6.14 –

6.17 show results for the system in Figure 1.5c with three energy storage systems. For cases

with infinite energy storage Ei
U → ∞, qi = 0 because the system never runs out of energy
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Figure 6.5: Performance measure (JMPC) versus energy storage amounts (Ei
U) for all

considered cases in Table 6.1, where red circles refer to results using the
system in Figure 1.5a with 1 storage unit, blue circles refer to the system
in Figure 1.5b with 2 storage units, and black circles refer to the system
in Figure 1.5c with 3 storage units

storage, and therefore has no need to dissipate energy. However, qi grows as the energy in

the storage systems decrease. Also note that the energy trajectories for cases with Ei
U = 0.01

repeatedly fill and then exhaust the storage units for the entire timespan.
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Chapter 7

Summary of Contributions and

Future Work

7.1 Summary of Contributions

The main contributions of this dissertation are as follows:

• We develop a general continuous-time model for a self-powered system, which includes

the model for the energy storage subsystem that accounts for transmission losses and

storage decay (see (3.2)). We derive conditions on the model parameters for problem

feasibility (Lemma 3.1), and conditions for system stability (Theorem 3.1).

• We develop a discrete-time model for a general self-powered system from the continuous-

time model, and address issues related to enforcing the energy storage bounds only at

discrete-time points. We introduce a quadratic overbound of the efficiency loss model in

Section 3.2.3, and give conditions on the discrete-time model parameters for feasibility

(Lemma 3.2).

• We derive conditions for a finite quadratic performance measure (Theorem 4.1), and

present the ECOCP, which accounts for the bounds on the energy storage system in

(4.7).

• We show that under special conditions, the upper energy bound is a concave constraint

and the lower energy bound is a convex constraint (Theorem 4.2); however, in gen-

eral, these quadratic constraints are nonconvex. Then, we present conditions for the
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convexity of the ECOCP (Theorem 4.3). For the case with a quadratic performance

measure, the ECOCP is a nonconvex QCQP.

• We formulate the dual relaxation of the ECOCP, derive a closed-form solution for dual

function (Theorem 5.1), and provide conditions for a finite dual function. Then, we

show that the dual function is independent of the energy dissipation term q (Lemma

5.2).

• We present a numerical method to solve the dual relaxation and determine the Hessian

and gradient of the dual function (Section 5.2.1). We also provide an alternative

method using costates, which is a more computationally efficient method to solve the

dual relaxation (Section 5.3).

• We derive an easy-to-check condition on the optimum dual trajectory λdual that guar-

antees zero duality gap (Theorem 5.2). We also show that for specific model parame-

ters, there is zero duality gap for all initial conditions and exogenous disturbances via

Slater’s constraint qualification (Theorem 5.3).

• We present an algorithm to modify control inputs for feasibility and MPC imple-

mentation (Algorithm 1), and derive conditions for the convexity of the associated

optimization, MQCQP (Corollary 6.1).

• We demonstrate Algorithm 1 using a sphere-type WEC buoy with the goal of maxi-

mizing energy generated, and on a mass-spring-damper five degree-of-freedom system

with multiple energy storage systems.

7.2 Future Work

Below we present three areas in which the work presented in this thesis can be extended:

1. Exogenous Disturbance Forecasting: As shown in Figure 1.6, a component of the

system intelligence is a disturbance forecaster, which estimates the N + 1 exogenous

disturbances {âk . . . âk+N} to be fed into the trajectory optimization. In this thesis, we

assume that the exogenous disturbances can be measured exactly. In some situations

this may be a feasible assumption, for example, wave-energy converters commonly

employ up-wave sensors to accurately measure incoming waves. However, in general,

self-powered systems do not have the ability to accurately measure incoming future
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disturbances. Therefore, future work will explore various prediction algorithms (e.g.,

a Kalman filter [4]).

2. Improving Power Quality: Reference the WEC example in Section 6.3, where

Figure 6.3 shows the energy sent to the power grid q. Such poor quality power can

cause frequency fluctuation or voltage deviations. However, as mentioned in Section

1.1, energy storage systems can help improve power quality. Local energy storage

systems can be used to smooth out power fluctuations, store surplus energy, or provide

energy during peak demand. An important extension of the WEC example in Section

6.3 is to incorporate a power smoothing algorithm that can be implemented when

solving the dual problem.

First, we introduce a new variable, pgrid(t) ∈ L2 to account for the power sent from the

ith energy storage system to the grid. Now, we modify the differential equation (3.2)

to account for this new term as:

d

dt
E(t) = − 1

TS
E(t)− u(t)v(t)− µ(t)− q(t)− pgrid(t),

and then the corresponding difference equation is:

Ej+1 =γEj − ujyj − µj − qj −
pgrid,j
χ

.

Now, we formulate our performance measure to maximize the power sent to the grid

over a finite time horizon as:

J(pgrid,k:k+N) = −
k+N∑
j=k

pgrid,j.

We restrict pgrid,j to have a specific form. Figure 7.1 shows a possible structure of pgrid.

Let β ∈ Z>0 be defined such that N+1
β
∈ Z>0, which is the number of time steps over

which we linearly interpolate the power sent to the grid. Variables {σk0 , . . . , σkN
β

} are

the power values over which we optimize to determine the trajectory of pgrid(t). The
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discrete-time power to the grid pgrid,j is then:

pgrid,j =
(σkα+1 − σkα)(j + 1

2
)

β
+ σkα,

∀j ∈ {k + βα...k + β(α + 1)− 1},

∀α ∈ {0...N
β
}.

(7.1)

Therefore, this method restricts the shape of pgrid(t) without incorporating additional
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Lagrange multipliers. The associated ECOCP for the WEC example in Section 6.3 is:

Given: x0, E
1
0 ,A,B,C

1
E,D

1
E, γ

1, β,

ak:k+N , a
1
E,k:k+N , µ

1
j(·), ∀j ∈ {k...k +N}

Minimize: J(pgrid,k:k+N) = −
k+N∑
j=k

pgrid,k

Domain: uk:k+N , qk:k+N σk0:N/β

Constraints: cLj (uk:k+N , q
1
j ,x

◦
j(uk:k+N ,x0), pgrid,j) 6 0,

cUj (uk:k+N , q
1
j ,x

◦
j(uk:k+N ,x0), pgrid,j) 6 0,

q1
j > 0,

u2
j − u2

max 6 0,

pgrid,j defined according to (7.1)

∀j ∈ {k...k +N}.

3. Necessary and Sufficient Conditions for Strong Duality: In Chapter 5, we de-

rive sufficient conditions on the optimal dual trajectory λd that guarantee zero duality

gap (see Theorem 5.2). We also provide necessary and sufficient conditions for zero

duality gap for all exogenous disturbances and initial conditions (see Theorem 5.3).

However, these conditions are quite restrictive and require the original ECOCP to be

convex (because we use Slater’s constraint qualification). We would like to determine

necessary and sufficient conditions for strong duality for a larger class of problems,

and specifically if the optimal control problem is not guaranteed to be convex. As we

discussed in Chapter 5, we know that if the dual optimum does not lie on a boundary,

then the duality gap is zero. Therefore, we are investigating under what conditions we

can guarantee that the dual maximum does not lie on the boundary.

4. Loss Modeling: Throughout this thesis we assume transmission losses are captured

via the quadratic model in (3.22). In Section 3.2.3, we show how the efficiency model

can be overbounded by this quadratic model. However, loss models may not be

quadratic, or a quadratic overbound may not be a good estimate of the losses. Hence,

we would like to be able to incorporate nonlinear loss models into the theory developed

in this thesis.
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