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ABSTRACT 
 

Covalent organic frameworks (COFs) are an emerging class of cross-linked porous 

crystalline polymers constructed exclusively from rigid building blocks linked together by 

covalent interactions.  Compared to conventional nanoporous materials, COFs possess a unique 

and highly desirable combination of attributes that are conducive to a variety of applications.  

Three-dimensional (3D) COFs are, in general, characterized by superior internal surface areas and 

pore sizes than their two-dimensional (2D) counterparts, and these two attributes are vital for many 

applications such as gas separation, gas storage, and catalysis.  Unfortunately, 3D COFs are also 

significantly more difficult to construct, and the synthesis, application, and fundamental 

understanding of 3D COFs lag those of 2D COFs as a result.  Thus, improving synthetic 

accessibility, practical utility, and basic understanding of 3D COFs is vital for realizing their full 

potential as controllable crystalline nanoporous materials. 

This dissertation details the design and execution of an improved synthetic method to 

afford the archetypal imine-linked 3D COF-300, catalyzed by Lewis acidic scandium triflate 

(Sc(OTf)3), that allows the reduction of reaction temperature from 120°C to room temperature.  A 

systematic investigation of temperature, catalyst loading, and water content as reaction variables 

elucidates the contribution of each factor towards the reaction equilibrium and facilitates 

identification of reaction conditions that result in the most crystalline framework formation, which 

is determined by powder X-ray diffraction (PXRD).  Fourier transform infrared spectroscopy 



 xxiv 

(FTIR) and Brunauer–Emmett–Teller (BET) surface area measurements confirm that COFs 

obtained via Sc(OTf)3 possess comparable properties as those produced by the conventional 

solvothermal method. 

In addition, the synthesis of several functionalized aldehyde monomers is conducted 

utilizing a range of chemistries, and they were subsequently employed for functionalized COF-

300 synthesis to embed reactive sites into the COF backbone for post-synthetic modification 

(PSM).  The functionalized COFs are consistently amorphous despite systematic variations in 

reaction conditions under both solvothermal and Sc(OTf)3 catalyzed regimes, and decreasing ratios 

of functionalized to unfunctionalized aldehydes corresponded to increasingly crystalline 

frameworks.  Steric hindrance is likely the culprit preventing rearrangement into crystalline 

structures.  Lastly, the reduction of imine bonds in COF-300 to amides, multiphase synthesis of 

COF-300, and high-pressure transformation of COF-300 are explored as alternative methods of 

synthesis and functionalization. 

The combination of these findings provides valuable insight into the imine formation and 

exchange process and tuning the equilibrium through reaction parameter adjustments, unlocking 

new synthetic possibilities in the field of 3D COFs via the utilization of a much more effective 

catalyst.  In addition, the limitation of functionalized 3D COF syntheses due to steric hindrance is 

established and will inform future design efforts. 
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Chapter 1  
Introduction 

1.1  Original Publication Information 

Ma, X. & Scott, T. F. Approaches and challenges in the synthesis of three-dimensional covalent-

organic frameworks. Communications Chemistry 1, 98 (2018). 

Modifications have been made to the original document to adapt the content to this 

dissertation. 

1.2  Covalent Organic Frameworks 

Nanoporous materials have received tremendous interest in recent years owing to their 

specific and exceptional attributes, notably permanent porosity and large and accessible internal 

surface areas1–5.  Conventional nanoporous materials that find wide usage as adsorbents and 

heterogeneous catalysts and catalyst supports, such as zeolites and activated carbon, are based on 

inorganic building blocks; nevertheless, research interest in nanoporous materials bearing organic 

components has expanded rapidly1,5,6 owing to the exquisite structural and functional control such 

components provide and flexibility they afford for materials design specifically tailored towards 

the intended application5.  A large number of such nanoporous organic polymers have been 

fabricated in recent years, including polymers of intrinsic microporosity (PIMs)5,6, porous polymer 

networks (PPNs)7, and conjugated microporous polymers (CMPs)8–10.  These materials are 

uniformly amorphous and composed of multifunctional building blocks linked by covalent bonds, 
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and many studies have demonstrated their synthesis and utility7,11–13.  Unfortunately, the 

amorphous nature of these materials can yield significant pore size dispersities, inhibiting their 

utilization in certain applications such as size- and shape-based gas separation and 

storage2,11.Crystallinity, in contrast, is characterized by ordered structure and uniform porosity, 

ideal attributes for gas separation and storage, catalysis, and optoelectronic devices2,14.  Metal-

organic frameworks (MOFs) is one such class of crystalline nanoporous materials that has been 

extensively investigated.  MOFs are constructed from metal ions or clusters linked by organic 

ligands through coordination bonds, thus possessing both the chemical and structural tunability of 

the organic ligands, the coordination possibilities of various metal ions, and the uniform porosity 

and high surface area of a crystalline nanoporous material3,15–17.  Examples of this class of 

materials necessarily contain a large amount of potentially toxic or reactive metal centers, and their 

relatively weak coordination bonds exhibit varying stability under high humidity and temperature, 

conditions ubiquitous in industrial applications18–21. 

A particularly exciting development in this field was the landmark synthesis of covalent-

organic frameworks (COFs) by Yaghi and co-workers in 200522.  In this seminal work, two COFs 

were synthesized from the self-condensation of 1,4-benzenediboronic acid (COF-1) or co-

condensation with hexahydroxy triphenylene (COF-5), establishing the first class of crystalline 

nanoporous organic frameworks linked exclusively by covalent bonds.  Although the strength of 

covalent bonds contributes to significantly improved stability, the general irreversibility of 

kinetically controlled reactions prevents the molecular rearrangement necessary to form a 

crystalline structure.  Fortunately, the addition products of several covalent bond-forming reactions 

are known to either revert to the constituent reactants or rearrange under specific reaction 

conditions.  These ‘dynamic’ covalent reactions, utilizing reversible covalent bonds which can be 
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formed and broken rapidly under appropriate conditions, are capable of obtaining thermodynamic 

equilibrium as opposed to kinetically-controlled chemistries, thereby ensuring a mechanism for 

error-correction and facilitating the assembly of the most stable covalent structure, equivalent to 

conventional self-assembly with non-covalent, intermolecular interactions19.  In contrast with the 

aforementioned amorphous nanoporous polymers and MOFs, COFs offer a unique combination of 

chemical modularity and structural diversity, crystallinity, high surface area, tunable pore size, 

thermal stability, and low density3,11,14,23. 

1.3  Two-dimensional versus Three-dimensional COFs 

Based on the dimensionality of the covalent connectivity, COFs can be classified as either 

two-dimensional (2D) COFs or three-dimensional (3D) COFs.  Two dimensional COFs are 

fabricated from planar building blocks, and the framework is restricted to 2D sheets, which can 

then be stacked to form a layered eclipsed structure through π-orbital overlap, generating ordered, 

one-dimensional channels that are well-suited for charge transport1,3.  In contrast, 3D COFs are 

synthesized from aplanar (typically tetrahedral) building blocks to form highly porous networks 

which are similar in structure to MOFs and have been found to possess exceptionally high surface 

areas (>5,000 m2/g) and low densities (<0.13 g/cm3)24, making them attractive synthetic targets.  

Indeed, although studies examining 3D COF applications remain sparse, several simulation and 

experimental studies have assessed the gas storage capacity of 3D COFs and predicted or 

empirically demonstrated performance equal to or exceeding the best-performing MOFs owing to 

their exceptional porosity, surface area, and low density25–30.  In addition, the promising 

performance of 3D COFs as superb adsorbents has also been shown31.  Despite the attractive 

attributes of 3D COFs, research efforts have predominantly focused on their more synthetically-

accessible 2D counterparts.  The first synthesis of 3D COFs, reported in 2007 again by Yaghi and 
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co-workers, brought a new dimension to the field32.  There have since been many reports 

describing new 2D COF structures33,34, novel synthetic strategies such as microwave synthesis35, 

flow synthesis36–38, and vapor-assisted synthesis39,40, and construction and modification of 2D 

COFs towards applications including catalysis41,42, membrane fabrication43, and gas storage44.  In 

comparison, there have been only a handful of new 3D COF structures reported, and little beyond 

structural explorations and preliminary applications.  This dissertation focuses on the more 

synthetically-challenging 3D COFs, whose superior inherent properties are quite appealing for a 

variety of applications, and the lack of research progress in recent years leave much room for 

investigation.  

1.4  3D COF Linkages 

Whereas a variety of dynamic covalent bond-forming reactions have been employed for 

the synthesis of 2D COFs, only a few have been utilized for constructing 3D structures.  

Consequently, the linkages that govern 3D COFs can be generally categorized as boron–oxygen 

linkages, imine linkages, and other linkage types.  A list of linkage chemistries that have been 

reported to date for 3D COFs is shown in Figure 1.1. 
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Figure 1.1. Reported synthetic approaches and accompanying linkages used to generate 3D 
COFs.  a) Reported B-O linkages, including boroxine ring, boronate ester ring, borosilicate 
cage, and spiroborate linkage.  b) the imine linkage.  c) Other reported linkages, including 
trans-azodioxy linkage, triazine linkage, polyimide linkage, and reversible Si-O linkage. 

 

1.4.1 Boron-oxygen Linkages 

Most early 3D COF structures were formed utilizing boron-oxygen (B–O) linkages.  The 

first 3D COFs, COF-102, COF-103, COF-105, and COF-108, were synthesized from the self-

condensation of boronic acids into boroxine rings and co-condensation with catechol into boronate 

ester rings (Figure 1.2a-b).  These syntheses were performed under solvothermal conditions from 

suspensions of precursors in a mixture of mesitylene/dioxane, resulting in the lowest density 

crystals known at the time (COF-108, 0.17 g/cm3) and Brunauer-Emmett-Teller (BET) surface 

areas (COF-103, 4210 m2/g) far exceeding those of porous carbons, silicates, 2D COFs, and PIMs, 

and comparable to some of the highest reported for MOFs (MOF-177, 4500 m2/g)32.  Although 



 6 

rapid microwave synthesis and purification was later successfully demonstrated for both 2D and 

3D boroxine and boronate ester linked COFs, this approach has not received significant further 

study for 3D COFs, and the solvothermal approach has emerged as the prevalent method for 3D 

COF synthesis32,45.  In addition to boroxine and boronate ester linkages, a borosilicate cage was 

also utilized as a linkage for the synthesis of COF-202 (Figure 1.2c)46. 

The exceptionally low densities and high surface areas of these 3D COFs makes them 

highly promising gas storage candidates.  Indeed, grand canonical Monte Carlo (GCMC) 

simulations on H2 binding for 2D and 3D COFs containing B–O linkages, which was confirmed 

experimentally for COF-105, predicted that 3D COFs outperform 2D COFs in hydrogen storage 

capacity by a factor of 2.5-3, attributable to higher surface area and free volume in the three-

dimensional variants26.  3D COFs were also expected to significantly outperform the best-

performing MOFs in H2 gravimetric uptake owing to reduced densities and comparable volumetric 

storage capacity, while doping with lithium ions was anticipated to further increase storage 

capacity26–28.  Subsequent experimental investigation of the H2 storage capacity of these COFs 

confirmed that these 3D COFs demonstrate best-in-class H2 saturation uptake (72.4 mg/g for COF-

102), far exceeding 2D COFs (39.2 mg/g for COF-10) and comparable to MOFs (72.4 mg/g for 

MOF-5) at 77 K.  The same study also showed that 3D COFs perform remarkably in the storage 

of methane and carbon dioxide, comparing favorably to other nanoporous materials including 

zeolites and MOFs, and that larger intrinsic surface area (or pore volume) generally correlate to 

higher uptake capacity for these gases30.  Further theoretical studies predicted that COF-102 and 

COF-103 outperform other 2D and 3D COFs and the benchmark MOF-177 in volumetric uptake 

and delivery amount of methane at high pressure25; however, 3D COFs were predicted to exhibit 

only average hydrogen storage capacity compared to other MOFs, and required the introduction 
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of stronger H2 interaction sites in the COF material for improved performance29,47.  In addition to 

small gas molecules, the organometallic host-guest chemistry of COF-102 was also examined by 

infiltration of metallocenes, and similarities between MOFs and COFs as hosts for organometallics 

was demonstrated48. 

More recently, metalation of a 3D COF containing B–O linkage was also demonstrated 

utilizing dehydrobenzoannulene (DBA), a planar triangular macrocycle that can complex with low 

oxidation state transition metals, as a building block.  The synthesized DBA-3D-COF 1 (Figure 

1.2d) possesses the highest BET surface area (5083 m2/g) and lowest density (0.13 g/cm3) reported 

to date for a COF, and subsequent metalation of the COF with nickel resulted in retention of 

crystallinity and minimal reduction in surface area and pore volume24.  In addition, a 3D, γ-

cyclodextrin-based COF (CD-COF) was synthesized utilizing a unique tetrakis(spiroborate) 

linkage, marking the first instance of a 3D anionic COF constructed from flexible aliphatic 

building blocks (Figure 1.3a)49.   
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Figure 1.2. Precursors and structures of 3D COFs containing B–O linkages.  a) Building 
blocks employed for B–O linked 3D COF construction.  b) Synthetic pathway of COF-102, 
COF-103, COF-105, and COF-108, the first reported 3D COFs, based on boroxine and 
boronate ester linkages32.  c) Synthetic pathway of COF-202, the only 3D COF based on a 
borosilicate cage linkage46.  d) Synthetic approach for DBA-3D-COF, utilizing a planar 
triangular catechol-functionalized macrocycle and boronate ester linkage to metalate Ni and 
obtain Ni-DBA-3D-COF24. 
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Figure 1.3. Synthetic scheme for 3D COFs constructed from flexible aliphatic cyclodextrin.  
a) Synthetic pathway of 3D anionic CD-COF, the first 3D COF constructed from γ-
cyclodextrin utilizing a unique B-O based spiroborate linkage49.  b) Synthetic pathway of 3D 
β-CD-COF constructed from β-cyclodextrin and imine linkage50. 
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1.4.2 Imine Linkages 

Although many of the early 3D COFs relied on B–O linkages, these linkages suffer from 

poor hydrolytic and oxidative stability, limiting their practical utility, and there has been a notable 

trend away from such linkages towards more robust nitrogen-containing linkage chemistries for 

COF design and synthesis51.  Imine linkages, synthesized from multi-functional, amine- and 

aldehyde-bearing precursors, currently dominate the field of 3D COFs owing to their excellent 

thermal and chemical stability.  Owing to these factors, imine-linked 3D COFs are of particular 

interest to this dissertation and are the sole focus of this research. 

The first imine-linked 3D COF, COF-300, was reported by Yaghi and coworkers in 2009, 

and is synthesized from tetrakis-(4-aminophenyl)methane (TAPM) and terephthalaldehyde 

(Figure 1.4b).  COF-300 possesses a 5-fold interpenetrated diamond structure (dia-c5 topology), 

is stable up to 490°C, and is insoluble in water and common organic solvents52.  It was later 

reported that by first aging the reaction mixture prior to synthesis, an interpenetration isomer dia-

c7 COF-300 possessing a seven-fold interpenetrated diamond structure, was obtained53.  The two 

isomers exhibited identical covalent bonding at the atomic level and thermal stability but were 

structurally different as revealed by X-ray diffractometry.  Ma et al. recently reported the 

construction of single crystal COF-300 by employing a large excess of aniline as a nucleation 

inhibitor to prevent immediate precipitation of amorphous networks and increase the reversibility 

of imine bond formation and dissociation54.  They showed that crystal size could be controlled by 

adjusting aniline concentration and were able to obtain single COF-300 crystals of up to 100 µm 

in size after 30-40 days.  Single-crystal X-ray diffraction (SCXRD) characterization allowed the 

resolution of ambiguity in the interpenetration and revealed that COF-300 exhibits a sevenfold 

interpenetrated structure, and that previous assessment of five-fold interpenetration was owing to 
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structural contortion.  SCXRD measurements also revealed that hydration of COF-300 led to 

structural distortion and a drastic 34% reduction in unit-cell volume, which may be attributed to 

hydrogen bonding between water molecules and the imine bonds.  The authors also synthesized 

COF-303, an analog of COF-300 with a reversed imine condensation between a tetratopic 

aldehyde and diamine, and demonstrated that the switch in imine bond direction was not 

differentiable by conventional powder X-ray diffraction (PXRD), but could be detected by 

SCXRD54.  COF-300 has also been utilized in conjunction with the zirconium-carboxylate-based 

MOF UiO-66 to fabricate a composite laminate where a COF-300 layer was grown on top of a 

prefabricated UiO-66 membrane.  These composite membranes demonstrated excellent H2 

permeability as well as a highly enhanced H2/CO2 selectivity, far surpassing that of the parent 

UiO-66 membrane55.  Additionally, layer-by-layer synthesis of COF-300/silica composites was 

recently demonstrated to afford particles with potential utility as a chromatographic stationary 

phase56.  Yaghi and coworkers also reported COF-320, essentially an extended version of COF-

300 constructed from a biphenyl dialdehyde linker, and determined its single-crystal structure 

using 3D rotation electron diffraction (Figure 1.4c)57.  COF-320 was later utilized for the 

encapsulation of a common ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) 

imide, in its pores58. 

Since the first report on COF-300, TAPM has been utilized as the tetrahedral amine 

building block of choice for a range of new 3D COF structures.  The first instance of a dynamic 

3D COF, LZU-301, was synthesized from condensation of TAPM with (3,3′-bipyridine)-6,6′-

dicarbaldehyde (Figure 1.4d).  As the bipyridine analog of COF-320, LZU-301 exhibits symmetry 

breaking and lattice expansion upon THF solvation, which the authors attributed to the 

conformation change of the –C=N– bond, serving as a ‘molecular pedal’ in the crystal structure59.  
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Lin et al. synthesized a pyrene-based 3D COF by condensing TAPM with 1,3,6,8-tetrakis(4-

formylphenyl)pyrene (Figure 1.4e), resulting in a novel structure that featured selective adsorption 

of CO2 over N2 and emitted yellow-green luminescence, marking the first report of a fluorescent 

3D COF60.  Two porphyrin-based 3D COFs, 3D-Por-COF and 3D-CuPor-COF, were synthesized 

from the condensation of TAPM with porphyrin-based tetraaldehydes (Figure 1.4f) and exhibited 

photocatalytic activity towards the generation of highly reactive singlet oxygen under visible light 

irradiation61.  A 3D chiral COF, CCOF-5, was synthesized by condensation of TAPM with a chiral 

tetraaldehyde, which subsequently underwent imine oxidation to afford an amide-linked 

framework, CCOF-6, that retained the crystallinity and permanent porosity of the parent COF 

(Figure 1.4g).  Although both CCOF-5 and CCOF-6 could be used as chiral stationary phases (CSP) 

for high performance liquid chromatography (HPLC), CCOF-6 exhibited superior resolution 

performance in addition to improved acid and base stability compared to CCOF-562. 
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Figure 1.4. Building blocks and synthetic schemes for imine-linked 3D COFs constructed 
from tetrakis-(4-aminophenyl)methane (TAPM, 5).  a) Aldehyde building blocks employed 
alongside TAPM for synthesis of imine-linked 3D COFs.  Synthetic pathway of b) COF-300, 
the first imine-linked 3D COF52, c) COF-32057, d) LZU-301, the first 3D COF exhibiting 
dynamic behavior59, e) 3D-Py-COF, the first pyrene-based and first fluorescent 3D COF60, f) 
porphyrin-based 3D-Por-COF and 3D-CuPor-COF61, and g) chiral COFs CCOF-5 and 
CCOF-662. 
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An alternative tetrahedral amine commonly used for 3D COF synthesis is 1,3,5,7-

tetraaminoadamantane (TAA).  Li et al. co-condensed TAA with the heterobifunctional 4-

formylphenylboronic acid and its fluorinated derivative to obtain DL-COF-1 and DL-COF-2, 

respectively (Figure 1.5a), the first 3D COFs to feature dual linkages (imine and boroxine).  The 

bifunctional catalytic capabilities of these two COFs were then demonstrated through acid-base 

catalyzed one-pot cascade reactions utilizing acidic sites supplied by the boroxine ring and basic 

sites from the imine bond63.  While the hydrolytic and oxidative stability of the imine linkage is 

higher compared to B–O linkages found in earlier 3D COFs, they can be further improved by enol-

keto tautomerization without affecting the COF structure.  This was demonstrated by the Yan 

group, who reported the first instance of a 3D β-ketoenamine COF, BF-COF-2, in addition to the 

imine-linked BF-COF-1 (Figure 1.5b-c).  These COFs were strongly alkaline owing to the high 

pKa of the alkyl amine building blocks (TAA) employed, and the excellent catalytic activity and 

size selectivity of these COFs for the Knoevenagel condensation reaction was shown64.  Recently, 

an alternative adamantane-based tetrahedral amine, 1,3,5,7-tetrakis(4-aminophenyl)-adamantane 

(TAPA), was employed for 3D COF synthesis, undergoing reaction with terephthalaldehyde to 

form COF-DL229 (Figure 1.5d).  In comparison with COF-300, COF-DL229 possesses higher 

BET surface area (1762 m2/g vs. 1360 m2/g) owing to the more extended radiating arms of TAPA 

compared with TAPM.  Additionally, COF-DL229 achieved an exceptional iodine uptake capacity 

of 82.4 wt% in iodine vapor adsorption experiments while simultaneously exhibiting retentiveness 

and quick release capabilities.  The authors also noted that the exclusively organic skeleton of 

COFs in general are ‘soft’ and observed reduced crystallinity and iodine uptake in recycled COF-

DL229, attributed to local structural deformation to fit solid iodine within the pores upon 

adsorption31. 
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Figure 1.5. Imine-linked 3D COFs synthesized from adamantane-containing tetraamines.  a) 
Synthetic approach for DL-COF-1 and DL-COF-2 from 1,3,5,7-tetraaminoadamantane 
(TAA) featuring both imine and boroxine ring linkages63.  b) Synthetic pathway of based 
functionalized BF-COF-1 and BF-COF-2 from TAA64.  c) Enol-keto tautomerization of BF-
COF-2, which retains crystallinity and structural integrity64.  d) Synthetic pathway of COF-
DL229 from 1,3,5,7-tetrakis(4-aminophenyl)-adamantane31. 
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Utilizing imine chemistry, Yaghi’s group fabricated the first woven COF, COF-505, by 

employing an aldehyde-functionalized derivative of the copper bis-phenanthroline complex 

(Figure 1.6a).  They weaved helical organic threads that complexed to Cu(I) ions as points of 

registry and demonstrated that the structure and topology of COF-505 was retained through 

demetalation and remetalation, although the demetalated COF-505 did exhibit reduced 

crystallinity65.  This work was followed by the synthesis of woven COF-112 from a homogeneous 

solution, utilizing the gradual in situ deprotection of tert-butyloxycarbonyl- (Boc) protected amine 

groups to facilitate the formation of nuclei directly from solution and direct growth into crystalline 

frameworks and avoid precipitation of amorphous insoluble intermediates, while conventional 

heterogeneous one-pot synthesis resulted in only amorphous materials (Figure 1.6b).  Synthesis of 

a prototype 2D imine COF, LZU-1, utilizing the same protected amine species under rapid 

microwave heating resulted in nanocrystals with a surface area (729 m2/g) more than 1.5 times that 

of the original report (457 m2/g), and the fabrication of LZU-1 thin films on silicon substrates was 

also demonstrated through homogeneous synthesis66.  An imine-linked 3D COF based on β-

cyclodextrin (β-CD-COF) was also synthesized (Figure 1.3b)50. 
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Figure 1.6. Synthetic schemes for woven COFs.  a) Synthetic scheme of woven COF-505 65.  
b) Synthetic approach of woven COF-112 utilizing in situ deprotection of Boc-protected 
amine monomer to avoid precipitation of amorphous intermediates and to form crystalline 
frameworks66. 

 

Recently, Guan et al. demonstrated the fast ionothermal synthesis of 3D COFs under 

ambient temperature and pressure, synthesizing three 3D ionic liquid-containing COFs (3D-IL-

COFs) from tetrakis(4-formylphenyl)methane (TFPM) and diamines instead of the more prevalent 

tetraamine and dialdehyde combination (Figure 1.7).  By utilizing the ionic liquid 1-butyl-3-

methylimidazolium bis((trifluoromethyl)sulfonyl)imide as both solvent and catalyst for the imine 

formation reaction, the authors were able to synthesize crystalline solids at ambient temperature 

and pressure within 12 hours, significantly faster than the 3-7 days required for the conventional 
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solvothermal method.  The ionic liquid can be reused without activity loss, and the 3D-IL-COFs 

were determined to contain 8-12% ionic liquid in their pores, which contributed to the high 

adsorption selectivity for CO2/N2 and CO2/CH467.  This works presents an exciting new stage in 

3D COF synthesis, and will be discussed in greater detail in Section 1.6  

 

 

Figure 1.7. Synthetic scheme 3D COFs obtained through ionothermal synthesis.  3D-IL-
COFs 1-3 were synthesized from tetrakis-(4-formylphenyl)methane and aromatic diamines 
of varying lengths under ambient temperature and pressure using ionothermal reaction 
conditions 67. 

 

1.4.3 Other Linkages 

In addition to the B–O and imine linkages, a handful of other linkages have also been 

utilized for constructing 3D COFs (Figure 1.8).  Beaudoin et al. reported COFs constructed using 

reversible self-addition polymerizations of nitroso groups to form trans-azodioxy linkages, 

resulting in covalent nitroso polymer networks NPN-1, NPN-2, and NPN-3 (Figure 1.8a)68.  Ren 

et al. reported the first 3D covalent triazine framework (CTF), a class of porous polymers related 
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to COFs, which exhibited reasonable BET surface area (1152 m2/g) but was not crystalline Figure 

1.8b)69.  The Yan group synthesized two polyimide COFs, PI-COF-4 and PI-COF-5, by 

condensation of TAA and TAPM with pyromellitic dianhydride (Figure 1.8c).  These PI-COFs 

possessed high BET surface area (2430 m2/g for PI-COF-4 and 1876 m2/g for PI-COF-5) and pore 

widths (13 Å and 10 Å respectively) and were thus examined for controlled drug delivery.  The 

authors found that in vitro release rate of drugs in COFs was directly related to pore size and 

geometry, and that the two drug-loaded PI-COFs exhibited good release control, achieving ca. 95% 

release of initial loading after about 6 days, compared to the typical 2-hour biological half-life.  

This marked the first time COFs were utilized for drug delivery70.  Yahiaoui et al. recently reported 

the first synthesis of a three-coordinated anionic 3D COF, based on novel reversible Si–O 

chemistry and resulting in a topology that had not been previously reported for 3D COFs (Figure 

1.8d).  This work also marked the first instance of a 3D COF that did not require tetrahedral 

building blocks71.  Several other linkages, including hydrazones, azines, and imides, have been 

utilized for the synthesis of 2D COFs, but have yet to be explored for 3D COFs51.  Compared to 

the imine linkage, these alternative linkages have seen limited utility for 3D COFs and are therefore 

not explored in this dissertation. 
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Figure 1.8. Synthesis schemes for 3D COFs based on alternative linkages.  a) Construction 
of nitroso polymer frameworks NPN-1, NPN-2, and NPN-3, which were polymerized 
utilizing trans-azodioxy linkage to obtain a large number of uniform single crystals68.  b) 
Synthetic pathway of the first 3D covalent triazine framework, a class of amorphous porous 
polymers related to COFs69.  c) Synthesis of the first polyimide 3D COFs, PI-COF-4 and PI-
COF-5, from 1,3,5,7-tetraaminoadamantane and tetrakis-(4-aminophenyl)methane , 
respectively, and pyromellitic dianhydride as a linear linker70.  d) Synthetic approach of the 
first three-coordinated 3D COF, SiCOF-5, utilizing tetramethoxysilane (TMOS) and 
2,3,6,7,10,11-hexahydroxytriphenylene (HHTP) and reversible Si–O covalent interactions 71. 
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1.5  Functionalization and Modification of 3D COFs 

The organic nature of COFs affords facile chemical tunability, leading to immense 

structural and functional diversity compared to their inorganic counterparts.  As such, modification 

and functionalization of the COF structure becomes a crucial step towards tailored applications 

and is a focus of this dissertation.  Excluding the use of different monomers or alternative linkages, 

post-synthetic modification (PSM) is the most common approach to COF functionalization.  A 

common PSM method is embedding reactive functionalities into constituent monomers and 

applying subsequent chemistry to those groups upon completion of the initial COF synthesis.  

Using this approach, Dichtel and coworkers carried out a series of interior functionalization studies 

on COF-102.  Utilizing a monomer-truncation strategy, they co-condensed the tetrahedral boronic 

acid building block of COF-102 with a truncated version in which one of the four arylboronic acid 

groups was replaced with a dodecyl or allyl group, obtaining internally-functionalized COF 

structures with the truncated moieties distributed throughout the material that retains the 

crystallinity and high surface area of COF-102 (Figure 1.9a)72.  The introduced allyl group was 

subject to post-synthetic functionalization using thiol–ene chemistry, achieving full conversion of 

the allyl group while retaining crystallinity and permanent porosity (Figure 1.9b)73.  Dichtel and 

coworkers also explored the functionalization of COF-102 utilizing the monofunctional 

tolylboronic acid instead of the trigonal truncated monomers of the previous studies (Figure 1.9c), 

and found that COF-102-tolyl crystallized even in the presence of up to 36 equivalents of 

tolylboronic acid relative to the tetra-boronic acid and demonstrated incorporation of up to 36 mol% 

of tolylboronic acid into the framework while maintaining crystallinity and porosity, which the 

authors postulated as a fundamental limit for the COF-102 structure74.  In comparison, PSM of 

imine-linked 3D COFs has been scarce.  The demonstrated the synthesis of a carboxylated, imine-
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linked 3D-COOH-COF by performing PSM on a 3D hydroxy-functionalized COF by Lu et al. 

(Figure 1.9d)75 is the only example of embedding reactive functionalities into the backbone of an 

imine-linked 3D COF.  The many works in the PSM of imine-linked 2D COFs utilizing this 

method suggests significant potential for the similar functionalization of 3D COFs, which is 

explored in-depth in this dissertation.  Aside from embedding reactive groups, an alternative PSM 

technique for imine-linked COFs is the direct modification of the imine bond.  For example, Han 

et al. converted their imine-linked 3D COF CCOF-5 into an amide-linked CCOF-6 by oxidation 

of the imine bonds, achieving enhanced chemical stability compared to its predecessor (Figure 

1.4g)62.  Reversible enol-keto tautomerization has also been shown by the Yan group in the 

conversion between BF-COF-1 and BF-COF-2 (Figure 1.5c)64. 
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Figure 1.9. Synthetic schemes for the internal functionalization of model framework COF-
102.  a) Functional group incorporation into COF framework through the use of a truncated 
version of the tetrahedral boronic acid building block72.  b) Post-synthetic functionalization 
of a reactive allyl group, initially introduced by a truncated monomer, via the radical-
mediated thiol–ene addition reaction73.  c) Functionalization using monofunctional 
tolylboronic acid74.  d) Preparation of 3D carboxy-functionalized 3D-COOH-COF through 
post-synthetic modification of hydroxy-functionalized 3D-OH-COF75. 
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Several other chemistries have been employed for PSM of 2D COFs, including copper(I)-

catalyzed azide-alkyne cycloaddition76,77, acylation of phenol groups44, and the ring-opening of 

succinic anhydride with phenol groups to form carboxylic acids78; these chemistries are wholly 

transferrable to 3D COFs.  Some alternative PSM techniques have also been implemented in 2D 

COFs.  For example, Chen et al. highlighted the ability to lock 2D COF networks with hydrogen 

bonds by introducing hydroxy groups into the terephthalaldehyde linker, which subsequently form 

hydrogen bonds with imine-centered nitrogen atoms79.  Structural modification of COFs has also 

been achieved through induction of cis-trans isomerization to facilitate a reversible conformation 

change.  Zhang et al. demonstrated this concept utilizing the trans-cis photoisomerization of 

azobenzene, using an azobenzene diboronic acid to produce a boronate ester-linked 2D Azo-COF 

that underwent photoisomerization under 365 nm UV irradiation80.  The dynamic behavior of the 

3D LZU-301, highlighted in the previous section, can be similarly attributed to an imine bond 

conformation change59.  An important consideration for applying PSM to 3D COFs is the reaction 

site accessibility within the pores.  Modification of internal structure of 3D frameworks requires 

ready access of reactant species to internal functionalization sites, which may impose additional 

barriers for the translation of 2D COF PSM techniques to their three-dimensional counterparts.  In 

contrast, PSM techniques developed for 3D MOFs, such as the introduction of polymerizable 

methacrylamide functionalities into MOF UiO-6616 or the removal of photolabile o-nitrobenzyl 

pendant groups81, could be more readily implemented in 3D COFs.   
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1.6  Challenges in 3D COF Development 

1.6.1 Disparity between 2D and 3D Frameworks 

Although there have been notable advances in the field of 3D COFs, progress persistently 

lags that of 2D COFs.  For example, several dynamic covalent linkages that have been employed 

for synthesizing 2D COFs, such as hydrazones and azines, have yet to see similar utilization for 

3D COFs51.  Moreover, compared to the more abundant and systematic studies on the synthesis, 

modification, and application of 2D COFs, the current research in 3D COFs revolves around the 

synthesis and characterization of novel structures and preliminary applications that arise from the 

unique traits of each structure.  This discrepancy is one of the key motivations in the exclusive 

focus on 3D COFs in this dissertation. 

1.6.2 Addressing the Crystallization Problem 

A major factor behind this COF development disparity is the so-called ‘crystallization 

problem’, originating from the inherent conflict between the use of robust covalent bonds to form 

stable crystalline frameworks, which necessitates the formation of reversible or rearrangeable 

linkages to facilitate error-correction, and the tendency of covalent bonds to form irreversible 

interactions82.  Even in these dynamic covalent bond-forming reactions, the kinetic trapping of 

amorphous networks often occurs owing to the bulkiness and rigidity of the monomeric precursors 

impeding proximity between reactive groups, precluding further network rearrangement into the 

desired crystalline framework.  Indeed, in contrast to 2D COFs where reaction sites are readily 

accessed and van der Waals interactions from π-orbital overlap provide additional driving force 

outside of covalent bonds towards the stacked layer structure, the synthesis of 3D COFs relies 

solely on inaccessible covalent interactions for the rearrangement of its rigid building blocks62.  
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Nevertheless, as the synthesis of contemporary 3D COFs have relied primarily on boronic acid 

and imine condensation reactions, the formation of stoichiometric quantities of water provides a 

convenient factor in the mediation of the reaction equilibrium, which can be accomplished by 

using water immiscible solvents or controlling reactor pressure82. 

To date, the synthesis of 3D COFs has primarily been performed under heating, commonly 

at 120°C but even at temperatures of up to 160°C70, either via the predominant solvothermal 

approach for extended periods or under rapid microwave heating, providing additional energy for 

covalent bond rearrangement as well as the necessary mobility for the COF building blocks to 

achieve the desired connectivity.  This is essentially a ‘brute force’ method to overcome the 

crystallization problem, and these reaction conditions impose limitations on the utility of 3D COFs.  

Reactions that proceed over multiple days may be too slow for industrial relevance, and heating to 

high temperatures reduces functional group compatibility and precludes certain applications such 

as the encapsulation of folded biomacromolecules.  The development of milder conditions capable 

of rapidly yielding crystalline materials will be key to unlocking the potential of 3D COFs for a 

broader range of applications, and researchers have just begun to explore various means of 

overcoming the crystallization problem outside extended heating. 

In the case of imine-linked COFs, a mechanistic study of the 2D TAPB-PDA COF has 

revealed that the amine and aldehyde monomers very quickly precipitate into amorphous networks, 

which then slowly rearrange into crystalline networks after extended heating, demonstrating imine 

exchange as the rate limiting step in COF formation83.  An acid catalyst, commonly acetic acid, is 

often employed to promote imine formation and exchange19; however, acetic acid is a relatively 

inefficient catalyst for transamination84.  Lewis acidic rare earth metal triflates are promising 

alternative catalysts owing to their effectiveness in mediating imine exchange reactions, tolerance 
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of both aqueous and organic environments, and functional group compatibility84.  These metal 

triflates, particularly scandium triflate (Sc(OTf)3), have recently been shown to catalyze the 

formation of crystalline 2D imine-linked COFs at room temperature in as little as 10 minutes while 

yielding improved material properties such as BET surface area (2175 m2/g vs. <1000 m2/g from 

the solvothermal method)84.  Although similar studies have yet to be described for 3D COFs, the 

utilization of improved catalysts, such as metal triflates, for network rearrangement is a promising 

approach towards milder reaction conditions.  Of course, the reduced driving force for 3D COF 

network formation suggests that the directly applicability of conditions identified for the 2D 

TAPB-PDA COF (2% Sc(OTf)3 loading, 10 minutes at room temperature)84 is unlikely, and some 

combination of elevated temperature, extended reaction duration, and higher catalyst loading may 

be required to induce formation of a crystalline, imine-based 3D network.  Interestingly, whereas 

low rare earth metal triflate concentrations catalyze imine rearrangement reactions, at raised 

concentrations these compounds no longer act catalytically and instead affect the reaction 

equilibrium to favor the precursor reactants85, an attribute likely to find synthetic utility in 

mediating framework crystallinity and post-synthetic modification. 

Notably, the room temperature synthesis of 3D COFs has recently been demonstrated.  

Guan et al. employed ionothermal synthesis to obtain highly crystalline, imine-linked 3D COFs in 

as little as three minutes at ambient temperature and pressure utilizing an ionic liquid as both 

solvent and catalyst67.  Although these results hold promise, several aspects of this approach 

remain subject to optimization.  The 3D-IL-COFs synthesized in this study contained 8-12% ionic 

liquid in their pores, potentially contributing to their relatively low internal surface areas.  For 

example, 3D-IL-COF-1 exhibited a BET surface area of 517 m2/g67, whereas COF-300, whose 

structure differed from 3D-IL-COF-1 only by the directionality of the imine bonds, offered a BET 
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surface area of 1360 m2/g52, suggesting that this ionothermal synthetic approach may compromise 

the internal surface area of 3D COFs, one of their most important characteristics.  Moreover, 

applications of 3D COFs invariably revolve around host-guest interactions within the pores, and 

the apparent retention of ILs presents an additional complication in the compatibility of the guest 

species.  Finally, the applicability of this approach to generic imine-based frameworks still needs 

to be demonstrated.  Whereas the three 3D-IL-COFs synthesized in this paper possessed similar 

structures, differing only by the number of the phenyl rings in the linear diamine linker67, further 

investigation is necessary to determine the breadth of ionothermal synthesis utility.  In a separate 

study, Ma et al. also demonstrated the ability to synthesize single crystalline COF-300 at room 

temperature by utilizing aniline as a nucleation inhibitor and extending the reaction duration to 30-

40 days and elucidated greater insight into the COF structure through single crystal analysis54.  

Unfortunately, the extended reaction times required by this strategy would likely curtail adoption 

of the resultant 3D COFs for industrial applications. 

The lack of control over the rapid precipitation of amorphous intermediates during COF 

synthesis can lead to kinetic trapping of said intermediates, preventing the rearrangement 

necessary to form a crystalline structure.  Limiting the concentration of available monomers in the 

reaction through controlled addition of reactants or through in situ deprotection or generation or 

reactant species can contribute to reaction rate control, mediating the rate of crystal nucleation and 

growth, and ultimately overcoming kinetic trapping.  The Dichtel group reported the successful 

growth of the first discrete colloidal 2D boronate ester-linked COF-5 particles via gradual 

monomer addition, whereas faster addition led predominantly to the formation of new particles 

with smaller crystalline domains86.  Similarly, Yuan et al. demonstrated the use of heterogeneous 

SiO2 seeds coated with a thin layer of amorphous Schiff-base polymer from which the imine-linked 
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2D COF-LZU1 network was grown, suppressing the rapid precipitation of amorphous materials 

and promoting crystallization.  The frameworks were obtained in significantly shorter timeframe 

than conventional solvothermal methods and exhibited high crystallinity and surface area after the 

SiO2 particles were etched away87.  Additionally, interfacial crystallization, multiple 

demonstrations of which have been reported for 2D COFs88,89, may be applicable to 3D COFs.  

For example, Li et al. demonstrated a novel approach to yield high-quality 2D COF nanosheets at 

the interface of two miscible organic solvents, each of which contained one of the two constituent 

monomers in solution, by adding a low-density solvent interlayer as a buffer between the two main 

solvent layers90.  Alternatively, in situ deprotection can also control monomer release rate and 

precipitation, an approach that even enables the use of precursor monomers bearing multiple, 

covalently coreactive functional group types.  In situ deprotection of catechol was previously 

reported for the incorporation of insoluble and unstable building blocks in boronate ester COF 

synthesis91, and in situ deprotection of certain reactant functional groups can curtail the 

condensation reaction rate and hence mediate the rate of precipitation to avoid kinetic trapping92.  

Yaghi’s group recently applied this concept to woven 3D COFs, employing in situ deprotection of 

Boc protected amine monomers to slow down the initial imine condensation and synthesize the 

woven COF-112 homogeneously without the precipitation of amorphous intermediates, using 

trifluoroacetic acid (TFA) as a dual-role catalyst.  This approach also afforded greater control over 

COF morphology, allowing the synthesis of uniform nanocrystals and thin films based on 2D 

imine-linked COF LZU-166.  Similarly, Yahiaoui et al. utilized the in situ generation of silicon 

source tetramethoxysilane (TMOS) by gradual disproportionation of methyltrimethoxysilane to 

synthesize SiCOF-5, while direct condensation of constituent monomers HHTP and TMOS did 

not yield a crystalline framework71.  Establishing more precise control over the monomer 
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availability in the reaction system, either through slow addition, heterogeneous nucleation, or in 

situ deprotection or generation of constituent species, will likely prove indispensable to circumvent 

kinetic trapping for a broad range of 3D COF syntheses. 

 

1.6.3 Deficient Systematic Understanding 

Another notable issue that has plagued the COF community is the fragmentary 

understanding of both their inherent structure and the contributions of COF synthetic conditions, 

particularly for 3D COFs.  To date, most 3D COF synthetic efforts have yielded amorphous or 

polycrystalline products, and their crystalline morphologies have been determined by PXRD; 

however, elucidation of the precise structure, including atomic positions, interpenetration, and pore 

guest arrangement, has proven challenging.  This dilemma may be resolved by the construction of 

single crystals of 3D COFs, enabling a more definitive understanding of their structure via 

SCXRD54.  Beaudoin et al. synthesized monocrystalline COFs by utilizing reversible, self-addition 

polymerization of tetrahedral nitroso compounds to afford diamondoid azodioxy networks which 

were then subject to SCXRD characterization, enabling elucidation of the location and bonding of 

essentially every atom68.  Ma et al. further demonstrated the characterization utility of single 

crystalline COFs by employing single crystals of COF-300 to resolve prior ambiguity regarding 

their degree of interpenetration as well as structural distortion upon hydration54.  These reports 

represent an important direction in the field of 3D COFs, and continued emphasis on single 

crystalline 3D COF synthesis will enable definitive resolution of their structures. 

The influence of 3D COF synthetic conditions remains poorly understood.  Duncan et al. 

conducted a study on the kinetic and thermodynamic factors in imine-linked 3D COF synthesis, 

and found that acetic acid is a crucial component of the reaction, acting as both a catalyst and a 
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co-solvent19.  In addition, they evaluated the suitability of a range of organic solvents for synthesis 

and reported that DMF and THF were the most suitable solvents for obtaining highly cross-linked 

materials, although the polymer networks they obtained remained amorphous19.  Dichtel’s 

mechanistic study of the crystallization process of 2D imine-linked COFs provided the first real 

insight into the synthetic process, and successfully elucidated the mechanism of rapid amorphous 

precipitation followed by gradual rearrangement into crystalline structures.  In addition, the crucial 

role of acetic acid and water in inducing crystallinity and maintaining high yields was shown83.  Li 

et al. used a kinetic Monte Carlo model to describe the nucleation and growth of 2D COF-5 from 

solution which agrees with experimentally measured growth kinetics and showed that nucleation 

and growth processes could be described by the same model, which could lead to informed 2D 

COF syntheses and improved control over nucleation and growth93.  Similar insight into 3D COF 

synthesis would offer improved understanding and control of the crystallization process. 

Other than the aforementioned reaction conditions, additional factors affecting the 

synthesis of 3D COFs need further elucidation.  For example, whereas COF-300 is typically 

synthesized from a suspension of starting materials, homogeneous starting conditions were 

reported to yield the best results in a boronate ester 3D COF synthesis24,52.  A controlled variable 

study comparing 3D COF synthesis from a suspension or homogeneous solution would inform the 

influence of these initial conditions.  Additionally, COF-300 synthesis has required freeze-pump-

thaw degassing and subsequent reaction vessel flame sealing prior to heating52, where raised 

pressure through sealing the reaction vessel has been touted as key to obtaining a crystalline solid82.  

This methodology has been universally adopted for 3D COFs synthesized by the solvothermal 

method; however, overpressure has proven unnecessary for the synthesis of COFs containing B–

O linkages, as an open reaction vessel with a reflux condenser attached for collecting water 
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achieved similar results as a sealed reaction vessel in microwave synthesis45.  Since water plays a 

similar role in mediating the reaction equilibrium in both boronic acid condensation and imine 

condensation, one might conclude that a sealed reaction vessel serves as a convenient method for 

retaining water in the system, but it is not the only way of doing so.  Even if the use of a sealed 

reaction vessel is desired, degassing is potentially unnecessary.  Again, controlled variable 

experiments comparing 3D COF synthesis from a degassed and pressurized versus simply a sealed 

reaction system, are required to assess this hypothesis, and if confirmed these findings can 

contribute to simplification of the established 3D COF synthetic process. 

 

1.6.4 Limited Topologies and Building Blocks 

A second reason behind the disparity of studies on 2D and 3D COFs is the limited variety 

of available molecular building blocks and consequent network topologies60,71.  Compared to 2D 

COFs, which can be constructed from a variety of ditopic and tritopic linkers, 3D COFs have, with 

the recent exception of the three-coordinated SiCOF-5 with srs topology, utilized tetrahedral 

building blocks and adopted a topology belonging to one of five nets (dia, bor, ctn, rra, or pts) 

49,60,71.  The chemical diversity of these building blocks is similarly limited, as many 3D COFs 

based on B–O linkages have been synthesized from tetra(4-dihydroxyborylphenyl)methane, and 

the majority of imine-linked 3D COFs employed TAPM and TAA as precursors82. 

From a geometry perspective, tetrahedral nodes are the most direct method of sustaining 

an infinite 3D cross-linked network.  Though employing a non-planar tritopic linker would also 

result in a non-planar structure, growth in the z-direction may be finite and would not necessarily 

assemble into a true 3D framework.  Employing higher functionality linkers would conceivably 

yield 3D frameworks with higher degrees of cross-linking; however, limited functional group 
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accessibility, steric hindrance, and kinetic trapping, which, as discussed earlier, are already present 

when utilizing tetratopic linkers, would become increasingly prevalent and further impede the 

synthetic accessibility of crystalline structures.  As such, tetratopic linkers are ubiquitously 

employed as the most straightforward way to sustain an infinite 3D cross-linked network around 

a tetrahedral node, while avoiding increased steric hindrance and kinetic trapping from monomers 

with higher order functionalities.  This limit in topology and building block diversity has limited 

the number of attainable 3D COF structures, and novel building block structures must be 

discovered in addition to employing different linkages and COF structure modifications to access 

increased compositional and structural complexity. 

 

1.6.5 Controlling Network Interpenetration 

Interpenetration, where the empty space described by the crystalline framework 

accommodates one or more additional networks94 and which can adversely affect pore volume and 

impact internal surface area95, is another aspect of 3D COFs that requires improved understanding 

and synthetic control.  Whereas interpenetration in 3D COFs has typically been determined by 

structural modeling and unit cell indexing and is reported as an inherent characteristic, efforts to 

better understand, characterize, and even modify degrees of interpenetration have been recently 

reported.  For example, the synthesis of an interpenetration isomer was reported for COF-300, 

representing a preliminary attempt towards modifying the extent of interpenetration in a 3D COF53.  

More sophisticated approaches to control COF interpenetration might be derived from techniques 

successfully implemented in MOF syntheses, such as temperature and monomer concentration 

control96, organic bond structure alteration95, rational design of organic building blocks97, and 

incorporation of space-filling, photolabile protecting groups that could be post-synthetically 
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cleaved81.  These techniques inform the potential for reducing or preventing interpenetration in 3D 

COFs and could conceivably be translated to 3D COF synthetic approaches to fully realize their 

potential as crystalline, controllably porous materials. 

 

1.7  Overview of Subsequent Chapters 

This dissertation details attempts to develop improved 3D COF synthetic methods, 

establish alternative approaches to synthesis, modify 3D COFs for potential applications, and gain 

systematic and fundamental understanding of 3D COF synthesis.  These efforts address the most 

pressing challenges in 3D COF development today highlighted in Section 1.6 .  The remaining 

chapters of this dissertation are organized as follows: 

Chapter 2 discusses the synthesis of tetrahedral monomers crucial for imine-linked 3D 

COF construction and the novel degassing solution developed for easier COF fabrication.  This 

improved procedure was applied to the synthesis of two previously reported COFs and a new 

framework.  The insight and synthetic improvements from this chapter and the COF-300 

synthesized informs the COF syntheses and modifications in subsequent chapters and serves as 

the foundation for further investigation.  

Chapter 3 features the development of a novel synthetic method for imine-linked 3D COFs 

utilizing a new catalyst, the Lewis acidic rare earth metal triflate scandium triflate, which allows 

the successful synthesis of crystalline COF-300 at room temperature.  A systematic investigation 

of how different synthetic parameters impact reaction equilibrium and product crystallinity 

provides much-needed fundamental understanding of the COF synthetic process.  Additionally, 
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in-situ deprotection of acetyl groups in COF-300 synthesis employing scandium triflate as a dual-

role catalyst and the ionothermal synthesis of COF-300 is explored. 

Chapter 4 details the efforts to synthesize four different functionalized aldehyde linkers 

utilizing three different chemistries and subsequent COF syntheses utilizing these linkers to embed 

reaction functionalities into the COF backbone.  A systematic investigation of reaction conditions 

is conducted to induce the formation of crystalline functionalized COFs utilizing both the 

solvothermal approach and the scandium triflate catalyzed approach highlighted in Chapter 3. 

Chapter 5 describes three alternative approaches to the synthesis and modification of COF-

300, namely post-synthetic reduction of imine bonds for further functionalization, multiphase 

synthesis, and high-pressure processing.   

Chapter 6 provides an overall summary and conclusion for this dissertation, as well as 

suggestions for future work.
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Chapter 2  
Synthesis of Tetrahedral Monomers and Imine-linked 3D COFs 

2.1  Abstract 

Tetra-functional amine and aldehyde monomers derived from tetraphenylmethane are 

successfully synthesized and characterized by 1H-NMR, 13C-NMR, and mass spectrometry.  The 

synthetic procedure for producing 3D imine-linked COFs is adapted from published procedure, 

and an innovative reaction setup is employed to improve the usability and safety of the degas and 

reaction process by removing the need for flame sealing and breaking the glass tubes post 

synthesis.  Crystalline COF-300 and COF-320 are successfully synthesized using this adapted 

procedure and characterized via PXRD, FTIR, and SEM, and the synthesis and characterization of 

a novel COF structure, the tetraamine-tetraaldehyde COF, is explored.  The synthesis of 3D COFs 

is a complex and opaque process, and the insights gained from these processes are invaluable for 

improving the consistency and reproducibility of subsequent COF syntheses. In addition, COF-

300, as an archetypal 3D imine-linked COF, serves as the basis of further investigation of 3D COF 

synthesis and modification of COF structure, which are detailed in the later chapters. 

 

2.2  Introduction  

Compared to two-dimensional (2D) COFs, three-dimensional (3D) COFs in general 

possess superior attributes including higher internal surface areas, greater porosity, and lower 
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density, which provide great appeal for applications such as gas storage, adsorption, and catalysis1.  

Despite the many attractive traits of 3D COFs, investigations into the structural diversity and 

potential applications of these 3D frameworks remain sparse in comparison to those of their 2D 

counterparts, whose synthetic accessibility is greatly aided by the π-orbital overlap between the 

stacking 2D layers that provides additional driving force towards forming an ordered crystalline 

structure.  As such, greater research effort in 3D COFs is needed to unlock the full potential of 

their highly appealing attributes1.  

While early research efforts on 3D COFs revolved around structures based on boron-

oxygen linkages, the research focus in the field has shifted firmly to imine-linked structures in the 

past five years.  Compared to B-O linkages such as boroxine rings and boronate ester rings, the 

imine bond exhibits much greater stability towards hydrolysis and oxidation, and there has been a 

notable trend away from B-O linkages towards the more robust imine linkage in the overall COF 

field2.  COF-300 was the first reported imine-linked 3D COF3 and remains the archetypal, most 

structurally simple, and most studied4–7 imine-linked 3D COF.  As such, synthesis of tetrakis(4-

aminophenyl)methane (TAPM), the tetrahedral amine monomer that constitutes COF-300, and 

subsequent synthesis of COF-300 itself utilizing TAPM and terephthalaldehyde is carried out to 

serve as a framework for improved understanding of the COF synthetic process, which is quite 

difficult and unpredictable compared to conventional monomer or polymer synthesis and governed 

by empirical approaches rather than theoretical or mechanistic studies.  In addition, COF-300 could 

serve as an excellent representative platform through which further investigations into synthetic 

improvements, modification, and functionalization of 3D imine-linked COFs could be conducted.  

Once tetrakis(4-aminophenyl)methane is successfully synthesized, it can also be used to synthesize 

the structurally similar COF-320, which differs from COF-300 by the length of the linear 
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dialdehyde linker, employing 4-4’-biphenyldicarboxyaldehyde instead of terephthalaldehyde.  

Lastly, a tetrahedral aldehyde monomer, tetrakis(4-formylphenyl)methane, is synthesized and used 

alongside tetrakis(4-aminophenyl)methane to explore the synthesis of a novel tetraamine-

tetraaldehyde COF. 

 

2.3  Experimental  

2.3.1 General Experimental Procedure 

All chemicals and reagents, unless specified, were purchased from commercial sources, 

including Fisher Scientific, Sigma-Aldrich, Alfa Aesar, and Oakwood Chemicals, and used as 

received without any further purification.  1H NMR spectra were recorded on a Varian Inova 500 

instrument (500 MHz).  13C NMR spectra were recorded on a Varian MR400 instrument (400 

MHz).  Chemical shifts were measured in d (ppm) relative to residual solvent signals as internal 

standards (CDCl3: 7.24 for 1H, 77.23 for 13C; d6-DMSO: 2.49 for 1H).  Electronic Impact (EI) mass 

spectrometry spectra were collected on a Micromass AutoSpec Ultima Magnetic Sector Mass 

Spectrometer.  Powder X-ray Diffraction (PXRD) spectra were collected using a Rigaku 600 

Miniflex XRD instrument and a 5mm zero background sample holder.  Fourier Transform Infrared 

(FTIR) spectroscopy was performed on a Thermo Scientific Nicolet 6700 FTIR spectrometer 

equipped with a Spectra-Tech diffusive reflectance unit.  Scanning Electron Microscopy (SEM) 

images were collected using a Philips XL 30 SEM instrument. 
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2.3.2 Monomer Synthesis 

 

 
Scheme 2.1. Synthesis of tetraphenylmethane (1). Reagents and conditions: a) aniline, 190°C; 
b) 2N HCl/MeOH, reflux; c) H2SO4/EtOH, isoamylnitrite, -10°C; d) 50% H3PO2, reflux.8  

Tetraphenylmethane (1). This synthesis procedure was adapted from a published approach8.  

Chlorotriphenylmethane (10 g, 35.9 mmol) and aniline (8.5 mL, 93.3 mmol) were mixed and 

heated to 190°C for 15 min under rigorous stirring.  After cooling to room temperature, the violet 

solids were ground to powder and re-dissolved in a mixture of 2N aqueous hydrochloric acid 

solution (40 ml) and methanol (60 ml).  The solution was heated to 80°C for 30 min.  After cooling 

to room temperature, the resulting violet solid was filtered, washed with water, and dried in vacuo.  

After drying, the solid was dissolved in ethanol (130 ml) and concentrated aqueous sulfuric acid 

solution (20 ml) and cooled to -10°C.  15 ml of isoamylnitrite was added to dropwise, and the 

mixture was stirred for 30 minutes.  Then, 30 ml of 50% hypophosphorous acid was added 

dropwise at -10°C, and the reaction was subsequently heated to 50°C for 2 h.  An olive color solid 

was collected by filtration, washed with dimethylformamide (100 ml), water (100 ml), and ethanol 

(100 ml) to yield compound 1 as an olive color solid (9.85 g, 90% yield).   

Characterization data: 1H NMR (CDCl3, δ ppm): 7.16-7.26 (m, 20 H, Ar). 

13C NMR (CDCl3, δ ppm): 65.0 (1C, Cq(Ar)4), 125.9 (4C, Cp-Ar), 127.5 (8C, Cm-Ar), 131.2 (8C, 

Co-Ar), 146.8 (4C, Cq-Ar).  

m/z (70 eV, EI+): 320 (M+), 243 (M+-C6H5), 165 (C13H9+). 
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Figure 2.1. 1H NMR spectrum of tetraphenylmethane. 
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Figure 2.2. 13C NMR spectrum of tetraphenylmethane.  
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Figure 2.3. EI mass spectra of tetraphenylmethane. 

 

 
Scheme 2.2. Synthesis of tetrakis(4-aminophenyl)methane (3). Reagents and conditions: a) 
fuming nitric acid, Ac2O/AcOH, AcOH, -5°C; b) Raney Ni, N2H4·H2O, reflux. 

 

Tetrakis-(4-nitrophenyl)methane (2). The synthesis procedure for compound 2 was adapted 

from a published approach9.  Compound 1 (4.8g, 15.0 mmol) was slowly added to fuming nitric 
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acid (25 ml) stirred rigorously in a salt/ice bath of ~-5°C.  Then, a mixture of acetic anhydride and 

glacial acetic acid (1:2, 25 ml) was added slowly to the mixture.  After stirring at -5°C for 15 min, 

glacial acetic acid (80 ml) was added, and the suspension was further stirred for 5 min.  The mixture 

was filtered on a glass frit, washed with acetic acid (2 x 100 ml), methanol (2 x 100 ml), and chilled 

tetrahydrofuran (2 x 50 ml) and dried in vacuo to afford a cream color solid (3.2 g, 43% yield). 

Characterization data: 1H NMR (d6-DMSO, δ ppm): 8.21 (d, 8H, Ar), 7.58 (d, 8H, Ar). 

13C NMR (d6-DMSO, δ ppm): 65.7 (1C, Cq(Ar)4), 124.2 (8C, Cm-Ar), 131.9 (8C, Co-Ar), 146.5 

(4C, Cq-Ar), 151.5 (4C, Cp-Ar). 

 

Figure 2.4. 1H NMR spectrum of tetrakis(4-nitrophenyl)methane. 
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Figure 2.5. 13C NMR spectrum of tetrakis(4-nitrophenyl)methane. 

 

Tetrakis(4-aminophenyl)methane (3). The synthesis procedure for compound 3 was adapted 

from a published approach9.  Compound 2 (1.5 g, 3 mmol) was dissolved in tetrahydrofuran (100 

ml), and Raney nickel (10 g) was added to the solution while stirring under nitrogen.  Hydrazine 

monohydrate (2 g, 0.04 mol) was slowly added via syringe, and the mixture was refluxed for 4 h.  

The mixture was filtered while hot and washed with ethanol.  The filtrate was dried in vacuo.  The 

crude product was subsequently washed with ethanol (50 ml) and dried in vacuo to afford 3 as a 

white solid (0.92 g, 81% yield). 

Characterization data: 1H NMR (d6-DMSO, δ ppm): 6.67 (d, 8H, Ar), 6.39 (d, 8H, Ar), 4.84 (s, 

8H, -NH2). 



 55 

13C NMR (d6-DMSO, δ ppm): 61.6 (1C, Cq(Ar)4), 113.0 (8C, Cm-Ar), 131.5 (8C, Co-Ar), 136.3 

(4C, Cp-Ar), 146.1 (4C, Cq-Ar). 

 

 

Figure 2.6. 1H NMR spectrum of tetrakis(4-aminophenyl)methane. 
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Figure 2.7. 13C NMR spectrum of tetrakis(4-aminophenyl)methane. 

 

 
Scheme 2.3. Synthesis of tetrakis(4-formylphenyl)methane (5). Reagents and conditions: (a) 
Br2, EtOH, -78°C; b) anhydrous THF, n-BuLi, anhydrous DMF, -78°C.  

 

Tetrakis(4-bromophenyl)methane (4). The synthesis procedure for compound 4 was adapted 

from a published approach8.  Compound 1 (5 g, 15.6 mmol) was deposited in a 250 ml three-neck 
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round bottom flask equipped with magnetic stirrer and outlet adapter connected to a sodium 

hydroxide quenching solution.  Neat bromine (8.8 ml, 172 mmol) was added dropwise while 

stirring continuously.  The dark orange slurry was stirred for an additional 20 min, cooled to -78°C, 

and diluted with ethanol (100 ml).  The reaction mixture was allowed to warm to room temperature 

overnight.  The precipitated solid was isolated by filtration and washed with saturated aqueous 

sodium metabisulfite solution and water.  The solid was boiled in a mixture of ethanol and 

chloroform (1:1 v/v, 200 ml) for 10 min and cooled to room temperature.  The mixture was filtered 

and dried in vacuo to afford compound 4 as a yellow solid (8.9 g, 90% yield). 

Characterization data: 1H NMR (CDCl3, δ ppm): 7.39 (d, 8H, Ar), 7.00 (d, 8H, Ar). 

13C NMR (CDCl3, δ ppm): 63.6 (1C, Cq(Ar)4), 120.8 (4C, Cp-Ar), 131.1 (8C, Cm-Ar), 132.3 (8C, 

Co-Ar), 144.4 (4C, Cq-Ar).  

m/z (70 eV, EI+): 636 (M+), 557 (M+-Br), 479 (M+-Br2), 400 (M+-Br3), 321 (M+-Br4). 
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Figure 2.8. 1H NMR spectrum of tetrakis(4-bromophenyl)methane. 
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Figure 2.9. 13C NMR spectrum of tetrakis(4-bromophenyl)methane. 
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Figure 2.10. EI mass spectrum of tetrakis(4-bromophenyl)methane. 

 

Tetrakis(4-formylphenyl)methane (5). Compound 4 (4 g, 6.3 mmol) was added to an oven-dried 

and septum-sealed 500 ml two-neck round bottom flask equipped with magnetic stirrer.  The flask 

was purged with an argon balloon equipped with drying tube to remove air and moisture.  

Anhydrous tetrahydrofuran (200 ml) was added by syringe, and the solution was cooled to -78°C.  

n-Butyllithium (25 ml, 62.5 mmol) was added dropwise, and the reaction was stirred for 30 min at 

-78°C.  Anhydrous dimethylformamide (10 ml, 129 mmol) was added, and the mixture was 

allowed to warm up to room temperature overnight.  The reaction was quenched with 1M aqueous 

hydrochloric acid solution (100 ml) and extracted with ethyl acetate.  The organic layer was 

washed with water, dried over magnesium sulfate, filtered, and dried in vacuo. 

Characterization data: 1H NMR (CDCl3, δ ppm): 9.96 (s, 4H, -CHO), 7.88 (d, 8H, Ar), 7.50 (d, 

8H, Ar). 
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Figure 2.11. 1H NMR spectrum of tetrakis(4-formylphenyl)methane.  

 

 

Scheme 2.4. Synthesis of [1,1':4',1''-terphenyl]-4,4''-dicarbaldehyde.  Reagents and 
conditions: (a) anhydrous THF, n-BuLi, anhydrous DMF, -78°C.  

 

[1,1':4',1''-terphenyl]-4,4''-dicarbaldehyde (5). 4,4''-dibromo-1,1':4',1''-terphenyl (0.5 g, 1.29 

mmol) was added to an oven-dried and septum-sealed 250 ml two-neck round bottom flask 

equipped with magnetic stirrer.  The flask was purged with an Ar balloon equipped with drying 
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tube to remove air and moisture.  Anhydrous tetrahydrofuran (100 ml) was added by syringe, and 

the solution was cooled to -78°C.  n-Butyllithium (5 ml, 12.5 mmol) was added dropwise, and the 

reaction was stirred for 30 min at -78°C.  Anhydrous dimethylformamide (2 ml, 25.8 mmol) was 

added, and the mixture was allowed to warm up to room temperature overnight.  The reaction was 

quenched with 1 M aqueous hydrochloric acid solution (20 ml) and extracted with ethyl acetate.  

The organic layer was washed with water, dried over magnesium sulfate, filtered, and dried in 

vacuo. 

 

 

Figure 2.12. 1H NMR spectrum of [1,1':4',1''-terphenyl]-4,4''-dicarbaldehyde. 
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2.3.3 Imine-linked 3D COF Synthesis 

 

Scheme 2.5.  Synthesis of COF-300 (8).  Reagents and conditions: a) 1,4-dioxane, AcOH (aq), 
120°C, 72 h. 

 

COF-300 (8). The synthesis procedure for 8 was adapted from a published approach3.  A 48 ml 

“glass bomb” heavy wall pressure vessel was charged with compound 3 (40 mg. 0.105 mmol), 

terephthalaldehyde (28.2 mg, 0.210 mmol), 1,4-dioxane (2 ml) and 3 M aqueous acetic acid 

solution (0.4 ml).  The bomb reactor was sealed with an upside-down septum and degassed at 77 

K through three freeze-pump-thaw cycles and backfilled with nitrogen.  After degassing, the 

septum was quickly removed and replaced by the threaded cap with O-ring to seal the vessel, and 

the reactor was heated to 120°C for 72 h.  The solids were filtered, washed with 1,4-dioxane and 

tetrahydrofuran, and immersed in tetrahydrofuran for 24 h, during which the solvent was 

exchanged for fresh tetrahydrofuran several times.  The solids were then isolated by filtration and 

dried in vacuo to afford 8 as a yellow solid.  



 64 

 

Scheme 2.6. Synthesis of COF-320 (9).  Reagents and conditions: a) 1,4-dioxane, AcOH (aq), 
120°C, 72 h. 

 

COF-320 (9). The synthesis procedure for 9 was adapted from a published approach10.  A 48 ml 

“glass bomb” heavy wall pressure vessel was charged with compound 3 (40 mg. 0.105 mmol), 4,4-

biphenyldicarbaldehyde (37.4 mg, 0.178 mmol), 1,4-dioxane (2 ml) and 3M aqueous acetic acid 

solution (0.4 ml).  The bomb reactor was sealed with an upside-down septum and degassed at 77 

K through three freeze-pump-thaw cycles and backfilled with nitrogen.  After degassing, the 

septum was quickly removed and replaced by the threaded cap with O-ring to seal the vessel, and 

the reactor was heated to 120°C for 72 h.  The solids were filtered, washed with 1,4-dioxane and 

tetrahydrofuran, and immersed in tetrahydrofuran for 24 h, during which the solvent was 

exchanged for fresh tetrahydrofuran several times.  The solids were then isolated by filtration and 

dried in vacuo to afford 9 as a yellow solid.  
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Scheme 2.7. Synthesis of tetraamine-tetraaldehyde COF (10).  Reagents and conditions: a) 
1,4-dioxane, AcOH (aq), 120°C, 72 h. 

 

Tetraamine-tetraaldehyde COF (10).  The synthesis procedure for 9 was adapted from published 

approaches for COF-300 and COF-3203,10.  A 48 ml “glass bomb” heavy wall pressure vessel was 

charged with compound 3 (40 mg. 0.105 mmol), compound 5 (45.4 mg, 0.105mmol), 1,4-dioxane 

(2 ml) and 3M aqueous acetic acid solution (0.4 ml).  The bomb reactor was sealed with an upside-

down septum and degassed at 77 K through three freeze-pump-thaw cycles and backfilled with 

nitrogen.  After degassing, the septum was quickly removed and replaced by the threaded cap with 

O-ring to seal the vessel, and the reactor was heated to 120°C for 72 h.  The solids were filtered, 

washed with 1,4-dioxane and tetrahydrofuran, and immersed in tetrahydrofuran for 24 h, during 
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which the solvent was exchanged for fresh tetrahydrofuran several times.  The solids were then 

isolated by filtration and dried in vacuo to afford 10 as a yellow solid. 

 

2.4  Results and Discussion 

2.4.1 Monomer Synthesis 

The synthesis of compound 1, the common precursor for all tetrahedral monomers 

subsequently employed for COF synthesis, was the first step of monomer synthesis.  This synthesis 

procedure (see Scheme 2.1) began with a neat reaction between chlorotriphenylmethane and 

aniline at an elevated temperature of 190°C, which presented two unique challenges.  First, a 

temperature of 190°C was difficult to achieve using an oil bath.  The mineral oil baths commonly 

used for heating reactions start to degrade beyond 120°C, and as the reaction was heated to higher 

temperatures, the increasing temperature gradient between the reaction and ambient air caused 

increased heat loss and a stagnation of reaction temperature at approximately 180°C.  This was 

resolved by using silicone oil, which is stable up to 250°C, and wrapping aluminum foil around 

the entire reaction setup, including reaction vessel and oil bath, to provide improved insulation 

against heat loss.  Second, the neat reaction between chlorotriphenylmethane and aniline caused 

the reaction mixture to agglomerate into a large purple solid slab at the bottom of the round bottom 

flask became irremovable from said flask, which necessitated chiseling the slab into pieces small 

enough to be removed through the neck of the flask and grinding them into powder before re-

dissolving in hydrochloric acid and methanol for the subsequent reaction.  These adaptations also 

allowed the reaction to be scaled up, and compound 1 was successfully synthesized at up to 50 g 

scale at ~90% yield.   
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Synthesis of compound 2 initially resulted in yields of lower than 20% following the 

original procedure of adding fuming nitric acid slowly to compound 1.  After numerous 

optimization studies, it was discovered that reversing the order of addition and adding compound 

1 slowly to fuming nitric acid provided a modest increase in yield, up to 43% (see Scheme 2.2).  

Tetrahydrofuran also forms an inclusion compound with compound 29, and even washing with 

tetrahydrofuran chilled to below -10°C resulted in non-negligible product loss leading to reduced 

yield.  Unfortunately, removing the tetrahydrofuran wash produced an impure product that led to 

impurities in the subsequent formation of amine 3 and caused reduced crystallinity in COFs 8 and 

9, and no alternative effective purification procedure was discovered, so the chilled 

tetrahydrofuran wash step remained part of the purification procedure for the preparation of 2.  The 

conversion of 2 into amine 3 sometimes produced product exhibiting a brown or pink tinge, so an 

additional ethanol wash step was incorporated to remove those colored impurities. 

The bromination of compound 1 to form tetrabromine 4 was a relatively straightforward 

reaction.  The conversion of bromine 4 to aldehyde 5, however, was inconsistent (see Scheme 2.3).  

n-Butyllithium is a difficult catalyst to employ and any amount of moisture in the system would 

significantly reduce its effectiveness.  In addition, incomplete conversion of all four bromines often 

occurred, causing low yield and necessitating separation by column chromatography.  After 

several syntheses, only a small amount of aldehyde 5 was obtained for the synthesis of tetraamine-

tetraaldehyde COF 10. 

The synthesis of [1,1':4',1''-terphenyl]-4,4''-dicarbaldehyde (6), as shown in Scheme 2.4, 

was conducted following the same procedure as the conversion of bromine 4 to aldehyde 5.  

Unfortunately, after several attempts the desired product was not obtained in significant quantity 

or high purity.  As shown by the NMR spectrum in Figure 2.12, while an aldehyde peak is observed 
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at a chemical shift of 10.09, there is an abundance of unidentifiable peaks in the 7.0-8.0 region 

commonly associated with aromatic protons, as well as throughout the 0 to 4.0 region commonly 

associated with aliphatic protons.  This is a convincing indicator that the reaction did not proceed 

as expected, given that the structure of aldehyde 6 does not contain any aliphatic protons.  After 

several attempts, a pure product could not be obtained in any quantity, and the corresponding 

terphenyl imine-linked 3D COF was not synthesized. 

 

2.4.2 COF-300 Synthesis and Characterization 

COF-300 (8) was synthesized by making certain adaptations to the common solvothermal 

approach reported in literature3.  In published procedures, the reaction was conducted in a pyrex 

tube, which was charged with reactants, catalyst, and solvent, degassed via three freeze-thaw-

pump degas cycles, flame sealed using a blow torch to reduce the length of the tube and seal the 

top with melted glass, and then heated to 120°C for three days.  There were two main issues with 

this approach: 1) pyrex tubes are not designed for vacuum degassing and lacked suitable adapters 

for vacuum line attachment; and 2) flame sealing the pyrex tubes increases the difficulty of 

removing the contents from the tubes post reaction, and both using a blow torch for flame sealing 

and smashing the tubes to remove the product could present safety hazards.  In addition, this 

approach renders the tube single-use, which is not environment-friendly and quite wasteful.  As 

such, an alternative reaction setup for COF synthesis that would allow easy removal of product 

and straightforward degassing procedures was sought.  A Schlenk tube was initially considered 

due to its great compatibility with vacuum lines, but its very narrow neck restricted the removal of 

product post reaction.  Heavy wall glass pressure vessel, or glass “bomb reactors”, were selected 

due to its screw-on cap with an O-ring that facilitated ease of sealing and product removal.  There 
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was no method to carry out the degassing procedure through the plastic cap, so an alternative 

solution was developed.  Instead of the plastic cap, the reactor was sealed with an upside-down 

rubber septum, which fit snugly over the neck of the vessel, after adding all reaction components.  

The reactor could then be vacuum degassed using a syringe and needle attached to the vacuum line 

and pumped using a balloon with a syringe and needle attached.  Argon gas was used in place of 

nitrogen, which, possessing a larger density than air, remained in the vessel and insulated the 

contents of the reactor from air as the septum was quickly removed and replaced with the screw-

on cap, thus achieving freeze-thaw-pump degassing of the reactor while maintaining an air-free 

environment in the vessel conducive to product removal post synthesis.  

The synthesis of COF-300 was carried out according to Scheme 2.5, and successful 

synthesis was confirmed by several characterization methods.  FTIR spectroscopy of the product 

confirmed the disappearance of the amine peak (3395 cm-1) and the aldehyde peak (1720 cm-1) 

and the appearance of what could be attributed as characteristic imine stretching at 1616 cm-1 and 

1196 cm-1 compared to the starting materials, amine 3 and terephalaldehyde (Figure 2.13).  Powder 

X-ray diffraction (PXRD) results show a crystalline structure, with diffraction peaks in agreement 

with previously published results (Figure 2.14);3 in addition, no diffraction peaks from starting 

materials were observed in the PXRD spectrum of COF-300 (Figure 2.15).  SEM images were 

taken, showing oblong rice-shaped crystals (Figure 2.16).  Combined, these spectra confirm the 

successful synthesis of crystalline COF-300.  In addition, optimization studies found that neither 

extending the reaction duration (Figure 2.17) nor scaling the reaction up seven-fold (Figure 2.18) 

result in observable changes in crystallinity. 
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Figure 2.13. FTIR spectrum of COF-300 compared to starting materials tetrakis(4-
aminophenyl)methane (3) and terephthalaldehyde. 
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Figure 2.14. PXRD spectrum of COF-300 compared to literature reference spectrum3.  
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Figure 2.15. PXRD spectrum of COF-300 compared to starting materials tetrakis(4-
aminophenyl)methane (3) and terephthalaldehyde. 

 

 

Figure 2.16. SEM images of COF-300 particles.  
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Figure 2.17. PXRD spectra comparison of COF-300 heated over five days and the literature 
standard of three days. 
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Figure 2.18.  PXRD spectra comparison of COF-300 synthesized at 40 mg and 280 mg scales 
by starting material tetrakis(4-aminophenyl)methane. 

 

2.4.3 COF-320 Synthesis and Characterization 

The synthesis of COF-320 (9) was carried out according to Scheme 2.6 utilizing the same 

reaction setup employed for COF-300, and successful synthesis was confirmed by several 

characterization methods.  FTIR spectroscopy confirmed the disappearance of the amine peak 

(3395 cm-1) and the aldehyde peak (1698 cm-1) and the appearance of the characteristic imine 

stretching at 1623 cm-1 and 1202 cm-1 compared to the starting materials, amine 3 and 4,4’-

biphenyldicarboxaldehyde (Figure 2.19).  PXRD results show a mostly crystalline structure, 

indicating some amount of amorphous materials; in addition, no diffraction peaks from starting 
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materials were observed in the PXRD spectrum of COF-320 (Figure 2.20).  SEM images were 

taken, showing oblong rice-shaped crystals (Figure 2.21); however, compared to the images of 

COF-300 in Figure 2.16, these crystals are more aggregated and less clearly defined, again 

indicating a moderate degree of crystallinity and a mixture of crystalline and amorphous elements.  

Combined, these spectra confirm the successful synthesis of moderately crystalline COF-320. 

 

 

Figure 2.19. FTIR spectrum of COF-320 compared to starting materials tetrakis(4-
aminophenyl)methane (3) and 4,4’-biphenylcarboxyaldehyde. 
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Figure 2.20. PXRD spectrum of COF-320 compared to starting materials tetrakis(4-
aminophenyl)methane (3) and 4,4’-biphenylcarboxyaldehyde. 

 

 

Figure 2.21. SEM images of COF-320 particles.  
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2.4.4 Tetraamine-tetraaldehyde COF Synthesis and Characterization 

The synthesis of a novel tetraamine-tetraaldehyde COF (10) was carried out using amine 3 

and aldehyde 5 according to Scheme 2.7 following the previously established reaction setup for 

COF-300 and COF-320.  After several attempts, a somewhat crystalline material was obtained, as 

revealed by PXRD (Figure 2.22).  The broad peaks and raised baseline indicate a slight degree of 

crystallinity with the presence of some amorphous materials, which, combined with the difficulty 

of synthesizing precursor aldehyde 5 consistently at high purity and acceptable yield, rendered the 

prospect of optimizing the crystallinity of the COF structure through iterative investigation 

impractical.  As such, the tetraamine-tetraaldehyde COF structure was not pursued further in this 

dissertation research. 

 

Figure 2.22. PXRD spectrum of tetraamine-tetraaldehyde COF. 
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2.5  Conclusions 

Archetypal 3D imine-linked COFs COF-300 and COF-320 were selected as the framework 

for further investigation and structural alteration.  Their common precursor amine monomer 

tetrakis(4-aminophenyl)methane was successfully synthesized and characterized via 1H-NMR, 

13C-NMR, and mass spectrometry, and adaptation of the common solvothermal reaction 

procedures for COF synthesis from literature reduced complexity and improved usability of the 

operations.  Utilizing tetrakis(4-aminophenyl)methane and the improved reaction setup, crystalline 

COF-300 and COF-320 were successfully synthesized and confirmed by FTIR and XRD and 

imaged by SEM.  Additionally, the tetraaldehyde analog of tetrakis(4-aminophenyl)methane, 

tetrakis(4-formylphenyl)methane, was also synthesized and characterized, and synthesis of a novel 

3D tetraamine-tetraaldehyde COF was explored, resulting in a network possessing low 

crystallinity.  The improved procedures and successful synthesis of COF-300 will serve as a vital 

foundation for subsequent investigation and modification, which are detailed in the following 

chapters. 
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Chapter 3  
Low Temperature Synthesis of Imine-linked 3D COFs Utilizing Scandium 

Triflate 

3.1  Abstract 

The synthesis of three-dimensional covalent organic frameworks (COFs) has consistently 

presented a challenge for investigators.  Conventionally, the solvothermal method of extended 

heating at high temperatures exceeding 100°C in the presence of acetic acid is employed, 

precluding certain temperature-sensitive applications.  In this chapter, an improved synthetic 

procedure for a representative 3D imine-linked COF, COF-300, utilizing Lewis acidic scandium 

triflate as the catalyst is described and the set of reaction conditions that allow the formation of a 

crystalline framework at room temperature is identified through systematic investigation of 

reaction parameters on framework crystallinity.  In-situ deprotection of functional groups is 

investigated as an alternative method of synthesis to overcome kinetic trapping.  Additionally, the 

ionothermal synthesis of COF-300 is explored.  The synthetic methods and reaction conditions 

identified in this chapter can be widely adopted for the easier synthesis of imine-linked 3D COFs, 

and the valuable insight into the roles of various reaction parameters will contribute to the 

improved understanding of the COF synthetic process. 
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3.2  Introduction  

Formation of the stable crystalline frameworks characteristic of COFs requires the usage 

of reversible covalent bonds to facilitate rearrangement and self-assembly; however, the tendency 

of covalent bonds to form irreversible interactions due to their stability significantly increases 

synthetic difficulty.  Even in dynamic covalent-bond forming reactions, amorphous networks will 

frequently become kinetically trapped owing to the bulkiness and rigidity of the constituent species 

which limits proximity of reactant functional groups.  Whereas two-dimensional (2D) COFs 

benefit from the additional driving force of π-orbital overlap between adjacent stacked sheets, 

three-dimensional (3D) COFs are constructed solely by covalent interactions and thus experience 

a vastly higher degree of kinetic trapping, contributing to significant synthetic challenges1.  As 

such, several novel 2D COF synthesis techniques have been reported, including flow synthesis2 

and ambient temperature one-pot synthesis3, whereas 3D COF synthesis is still dominated by 

solvothermal synthesis that requires heating at high temperatures in excess of 100°C for 3-5 days.  

For imine-linked 3D COFs, which have attracted increasing research interest over recent years 

compared to the earlier boron-based structures4, acetic acid is also employed to catalyze imine 

hydrolysis and exchange.  Two recent reports of ambient temperature imine-linked 3D COF 

synthesis, an ionothermal synthesis that resulted in low surface area and irremovable ionic liquid 

within the framework pores5 and the utilization of a nucleation inhibitor to slowly fabricate imine-

linked 3D COF single crystals at ambient temperature over 30-80 days6, suggest the potential for 

reducing reaction temperature; however, solvothermal synthesis remains the default method for 

imine-linked 3D COFs.  As such, there is a need for the development of a general and robust imine-

linked 3D COF synthesis procedure that does not require reaction temperatures in excess of 100°C, 

a reaction duration on the order of months, or compromise the inherent properties of the COF.   
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Despite the prevalence of acetic acid as the catalyst of choice for solvothermal imine-linked 

COF synthesis, acetic acid is relatively inefficient at catalyzing imine exchange and subsequent 

rearrangement of amorphous networks, which is the rate limiting step in the formation of a 

crystalline framework7.  In comparison, Lewis acidic rare earth metal triflates are promising as 

alternative catalysts owing to their effectiveness in mediating imine exchange reactions, tolerance 

of aqueous and organic environments, and functional group compatibility.  Scandium triflate 

(Sc(OTf)3), in particular, has been demonstrated as an effective catalyst for  imine-linked 2D COF 

synthesis, achieving a crystalline framework in 10 minutes at room temperature3.  This method has 

since been validated and utilized for the synthesis of other imine-linked 2D COFs8 and has 

significantly reduced their synthetic difficulty and temperature requirement.  Thus, the application 

of this technique to imine-linked 3D COFs holds significant appeal. 

Another promising approach for mediating reaction kinetics and equilibrium and 

overcoming kinetic trapping is in situ deprotection.  Protection of reactive functional groups limits 

the availability of said group for the reaction, which throttles the rate of reaction to the rate of 

deprotection and shifts the reaction equilibrium towards the monomers due to the low 

concentration of the deprotected reactant.  Specifically, acetyl protection of aldehydes and 

subsequent deprotection is extremely suitable for imine chemistry owing to the ability of Sc(OTf)3 

to serve as a dual role catalyst and catalyze both the deprotection of the acetyl protecting groups 

and facilitate the imine formation and exchange reactions, which was previously demonstrated for 

the self-assembly of amine- and aldehyde-bearing oligomers9.  2-(Trimethylsilyl)ethoxycarbonyl 

(Teoc) protection of amines is another option whose effectiveness has been demonstrated9.  

In this chapter, acetyl protection of aldehydes and Teoc protection of amines and 

subsequent utilization of protected species in COF-300 synthesis was investigated.  The room 
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temperature synthesis of COF-300 employing Sc(OTf)3 as the catalyst was demonstrated, and a 

systematic analysis of the impact of reaction parameters on framework crystallinity and reaction 

equilibrium was conducted, providing much needed fundamental understanding of the synthetic 

process.  Additionally, the ionothermal synthesis method was applied to COF-300 to evaluate the 

universality of this approach. 

 

3.3  Experimental  

3.3.1 General Experimental Procedure 

All chemicals and reagents, unless specified, were purchased from commercial sources, 

including Fisher Scientific, Sigma-Aldrich, Alfa Aesar, and Oakwood Chemicals, and used as 

received without any further purification.  1H NMR spectra were recorded on a Varian Inova 500 

instrument (500 MHz).  13C NMR spectra were recorded on a Varian MR400 instrument (400 

MHz).  Chemical shifts were measured in d (ppm) relative to residual solvent signals as internal 

standards (CDCl3: 7.24 for 1H, 77.23 for 13C; d6-DMSO: 2.49 for 1H).  Powder X-ray Diffraction 

(PXRD) spectra were collected using a Rigaku 600 Miniflex XRD instrument and a 5 mm zero 

background sample holder.  Fourier Transform Infrared (FTIR) spectroscopy was performed on a 

Thermo Scientific Nicolet 6700 FTIR spectrometer equipped with a Spectra-Tech diffusive 

reflectance unit.  Nitrogen adsorption-desorption isotherms were collected on a Micromeritics 

ASAP 2020 instrument.  Synthesis of tetrakis(4-aminophenyl)methane, the common amine 

precursor utilized for the synthesis of COF-300 in this chapter, was conducted according to the 

procedures detailed in Chapter 2, Section 2.3.2.   
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3.3.2 Solvothermal Synthesis of COF-300 

 

Scheme 3.1.  Solvothermal synthesis of COF-300 (1).  Reagents and conditions: a) 1,4-dioxane, 
AcOH (aq), 120°C, 72 h.   

 

Solvothermal synthesis of COF-300 (1). The synthesis procedure for compound 1 was adapted 

from a published approach10.  A 48 ml “glass bomb” heavy wall pressure vessel was charged with 

tetrakis(4-aminophenyl)methane (40 mg. 0.105 mmol), terephthalaldehyde (28.2 mg, 0.210 mmol), 

1,4-dioxane (2 ml) and 3 M aqueous acetic acid solution (0.4 ml).  The reactor was capped, sealed, 

and heated to 120°C for 72 hours to yield a yellow powder, which was isolated by centrifugation 

and immersed and washed with tetrahydrofuran to remove residual solvent and guest.  This was 

repeated several times until the solvent became colorless.  The product was then immersed in 

tetrahydrofuran overnight, isolated by centrifugation, and dried in vacuo to afford 1 as a yellow 

solid. 
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3.3.3 In-situ Deprotection and Synthesis of COF-300 

3.3.3.1 Acetyl Protection and Deprotection 

 

Scheme 3.2. Acetyl protection (2) and deprotection (3) of terephthalaldehyde.  Reagents and 
conditions: a) ethylene glycol, PTSA, toluene, reflux; b) Sc(OTf)3, H2O, THF. 

 

Acetyl protected terephthalaldehyde (2).  Terephthalaldehyde (4.96 g, 0.037 mol), ethylene 

glycol (8.2 ml, 0.15 mol), toluene p-sulfonic acid (4 mg, 0.023 mol), and toluene (40 ml) were 

mixed together and refluxed overnight using a Dean-Stark trap to facilitate azeotropic distillation.  

The mixture was quenched with 5% aqueous sodium bicarbonate solution (8 ml), extracted with 

toluene, washed with di-ionized water, and dried over magnesium sulfate.  The solvent was 

removed under reduced pressure and the product was dried in vacuo and recrystallized in hexanes 

to afford 3 as a white crystal.  

Characterization data: 1H NMR (CDCl3, δ ppm): 7.51 (s, 4H, Ar), 5.85 (s, 2H, -CH-O2-), 4.09 (m, 

8H, -O-CH2-CH2-O-). 
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Figure 3.1. 1H NMR spectrum of acetyl protected terephthalaldehyde. 

 

Deprotection of acetyl protected terephthalaldehyde (3).  Compound 2 (23 mg, 0.103 mmol), 

scandium triflate (10 mg, 0.021 mmol), water (0.1 ml), and tetrahydrofuran (5 ml) were stirred at 

room temperature overnight.  The resultant mixture was analyzed by mass electrospray ionization 

spectrometry to assess the degree of deprotection. 

m/z (ESI+): 135 [M+H]+, 157 [M+Na]+. 
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Figure 3.2.  ESI mass spectrometry of the deprotection of acetyl protected 
terephthalaldehyde.   

 

 

Scheme 3.3. In-situ acetyl deprotection and synthesis of COF-300 (4).  Reagents and 
conditions: a) 1,4-dioxane, Sc(OTf)3, H2O, 70°C, 72 h.  

 

In-situ Deprotection Synthesis of COF-300 (4). A 48 ml “glass bomb” heavy wall pressure 

vessel was charged with tetrakis(4-aminophenyl)methane (40 mg. 0.105 mmol), compound 2 (46.7 

mg, 0.210 mmol), 1,4-dioxane (5 ml) and 84 µl of scandium triflate stock solution (0.2 M in 

acetonitrile, 0.0168 mmol, 0.04 equiv. per amine).  The reactor was capped, sealed, and heated to 

70°C for 72 hours to yield a yellow powder, which was isolated by centrifugation and immersed 

and washed with tetrahydrofuran to remove residual solvent and guest.  This was repeated several 
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times until the solvent became colorless.  The product was then immersed in tetrahydrofuran 

overnight, isolated by centrifugation, and dried in vacuo to afford 4 as a yellow solid.   

 

3.3.3.2 2-(Trimethylsilyl)ethoxycarbonyl Protection 

 

 

Scheme 3.4. 2-(Trimethylsilyl)ethoxycarbonyl protection of tetrakis(4-
aminophenyl)methane (5).  Reagents and conditions: a) Teoc, DMF, 60°C. 

 

2-(Trimethylsilyl)ethoxycarbonyl-protected tetrakis(4-aminophenyl)methane (5).  

Tetrakis(4-aminophenyl)methane (100 mg, 0.526 mmol), 1-[2-(trimethylsilyl)ethoxy 

carbonyloxy]pyrrolidin-2,5-dione (409 mg, 3.15 mmol), and dimethylformamide (30 ml) were 

mixed and heated to 60°C overnight.  The product was filtered and dried in vacuo to afford 

compound 5.  

Characterization data: 1H NMR (CDCl3, δ ppm): 7.51 (s, 4H, Ar), 5.85 (s, 2H, -CH-O2-), 4.09 (m, 

8H, -O-CH2-CH2-O-). 
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Figure 3.3. 1H NMR spectrum of 2-(trimethylsilyl)ethoxycarbonyl-protected tetrakis(4-
aminophenyl)methane. 
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3.3.4 Scandium Triflate Catalyzed Synthesis of COF-300 

 

Scheme 3.5. Scandium triflate catalyzed synthesis of COF-300 (1).  Reagents and conditions: 
a) 1,4-dioxane, Sc(OTf)3, H2O, RT, 144 h.  

 

Scandium triflate catalyzed synthesis of COF-300 (1). A 48 ml “glass bomb” heavy wall 

pressure vessel was charged with tetrakis(4-aminophenyl)methane (40 mg. 0.105 mmol), 

terephthalaldehyde (28.2 mg, 0.210 mmol), 1,4-dioxane (5 ml), water (0.4 ml, 53 equiv. per amine) 

and scandium triflate stock solution (84 µl, 0.2 M in acetonitrile, 0.0168 mmol, 0.04 equiv. per 

amine).  The reactor was capped, sealed, and either heated to 30°C, 50°C, or 70°C for 72 hours or 

left at room temperature for 144 hours to yield a yellow powder, which was isolated by 

centrifugation and immersed first in THF and then in methanol to remove residual solvent and 

guest.  The immersions were carried out overnight, and the solvent was replaced by fresh solvent 

several times during the process.  The yellow powder was then dried at 0.3 torr and 150°C for 24 

h. 

 



 92 

3.3.5 Ionothermal Synthesis of COF-300 

 

Scheme 3.6. Ionothermal synthesis of COF-300 (1).  Reagents and conditions: a) 
[BMIm][NTf2], 48 h. 

 

Ionothermal synthesis of COF-300 (1).  Tetrakis(4-aminophenyl)methane (20 mg, 0.0525 mmol), 

terephthalaldehyde (14.1 mg, 0.105 mmol), and ionic liquid [BMIm][NTf2] (100 µl) were mixed 

together at room temperature for 48 h.  The mixture was washed using acetone and ethanol to 

remove the ionic liquid.  The product was isolated by centrifugation, washed with 1:1 

acetonitrile/water, and dried via lyophilization to afford 1 as a yellow powder. 
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3.4  Results and Discussion 

Initial attempts at Sc(OTf)3 catalyzed COF-300 synthesis utilized the optimal reaction 

conditions previously identified for 2D imine-linked TAPB-PDA COF (0.02 equivalent Sc(OTf)3, 

10 minutes, room temperature)3 in 1,4-dioxane, a proven organic solvent for COF-300 synthesis10, 

which resulted in immediate precipitation and gelling of yellow amorphous frameworks that 

remained amorphous after one week.  This suggested that the amorphous precipitates were 

kinetically trapped and unable to rearrange into the desired crystalline structure, either due to 

insufficient mobility or a shift in the forward direction of the imine formation equilibrium, 

reducing the reversibility of the imine bond and the ability to undergo transimination and imine 

metathesis.  As such, establishing a suitable balance in the reaction equilibrium that would 

facilitate imine hydrolysis and subsequent imine exchange was necessary to overcoming kinetic 

trapping. 

 

3.4.1 In situ Deprotection and Synthesis of COF-300 

3.4.1.1 In-situ Acetyl Deprotection 

As described in Section 3.2 in-situ acetyl protection and subsequent deprotection of 

aldehyde groups is particularly well-suited for Sc(OTf)3 catalyzed imine chemistry.  For imine-

linked COF synthesis specifically, protecting the aldehyde groups and subsequently deprotecting 

them in situ, which is a much slower process than imine formation, would limit the concentration 

of the aldehyde reactant and shift the reaction equilibrium in the reverse direction towards the 

starting materials, providing needed driving force for imine exchange and bond rearrangement.  

Additionally, the slow deprotection of the aldehydes would also decrease the rate of imine 
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formation and provide increased opportunity for rearrangement before approaching the kinetically 

trapped regime. 

Protection and deprotection reactions were first conducted on terephthalaldehyde (TA) as 

model reactions to assess the feasibility of this reaction design, following Scheme 3.2.  The 

protection reaction proceeded smoothly and provided analytically pure compound 2, as indicated 

by the 1H NMR spectrum in Figure 3.1.  The deprotection reaction produced similarly clean results.  

As shown in the mass spectrometry in Figure 3.2, the two prominent peaks (135 [M+H]+, 157 

[M+Na]+.) both correspond to the completely deprotected species 3.  Next, 2 was mixed with 

tetrakis(4-aminophenyl)methane (TAPM), and in the absence of Sc(OTf)3 the imine formation was 

unable to proceed due to the acetyl protection group, as indicated by the ESI mass spectrometry in 

Figure 3.4, which shows only the two peaks assigned to the starting materials TAPM (380 [M]+) 

and 2 (222 [M]+).  

 

 

Figure 3.4. ESI mass spectrum of in-situ deprotection and synthesis of COF-300 without 
Sc(OTf)3. 
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As the deprotection of TA proceeded smoothly at room temperature, experimentation on 

the synthesis of COF-300 utilizing in-situ deprotection of acetyl began at room temperature, and 

trials were conducted over an array of Sc(OTf)3 loading and water content, two factors that affect 

the effectiveness of deprotection9.  A summary of the room temperature reactions conducted can 

be found in Table 3.1.  

 

Table 3.1. Initial room temperature experiments conducted at varying Sc(OTf)3 loading and 
water content to explore feasibility of in-situ acetyl deprotection and synthesis of COF-300. 

Sc(OTf)3 Loading (equiv. per amine) Water Content (equiv. per amine) 
0.02 40 
0.02 53 
0.02 265 
0.02 529 
0.02 992 
0.04 2116 
0.05 529 
0.05 1058 
0.05 1587 
0.05 2116 
0.08 529 
0.08 2116 
0.1 2116 

0.12 2116 
0.15 2116 
0.15 4233 
0.2 40 
0.2 198 
0.2 397 
0.2 992 
0.2 2116 

0.25 2116 
0.3 2116 

0.35 2116 
0.4 2116 
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Unfortunately, under no combination of conditions was a crystalline product obtained.  To 

drive the deprotection further towards completion and facilitate imine formation, the reaction 

temperature was increased to 70°C, a temperature that has been demonstrated to drive deprotection 

and imine formation9.  A summary of the syntheses conducted at 70°C and varying Sc(OTf)3 

loading and water content can be found in Table 3.2. 

 

Table 3.2. Reactions conducted at 70°C and varying Sc(OTf)3 loading and water content to 
explore feasibility of in-situ acetyl deprotection and synthesis of COF-300. 

Sc(OTf)3 Loading (equiv. per amine) Water Content (equiv. per amine) 
0.002 59 
0.002 227 
0.005 59 
0.005 227 
0.01 59 
0.01 227 
0.02 11 
0.02 16 
0.02 29 
0.02 33 
0.02 40 
0.02 51 
0.02 59 
0.02 66 
0.02 88 
0.02 113 
0.02 132 
0.02 176 
0.02 198 
0.02 227 
0.02 265 
0.02 353 
0.02 529 
0.04 11 
0.04 59 
0.04 66 
0.04 113 
0.04 132 
0.04 227 
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0.04 353 
0.04 529 
0.05 11 
0.05 16 
0.05 33 
0.05 51 
0.05 59 
0.05 198 
0.05 340 
0.06 11 
0.06 59 
0.06 59 
0.06 59 
0.06 59 
0.06 132 
0.06 227 
0.06 529 
0.08 227 
0.1 11 
0.1 28 
0.1 59 
0.1 132 
0.1 198 
0.1 227 
0.1 340 
0.1 353 
0.1 529 
0.1 567 
0.1 680 
0.1 794 
0.12 227 
0.15 340 
0.2 198 
0.2 340 
0.2 397 

 

Elevation of reaction temperature to 70°C was successful in facilitating the formation of 

crystalline frameworks, shown by the PXRD spectrum in Figure 3.5.  However, even under the 

best-case scenario shown, the crystallinity of the in-situ deprotected COF-300 did not match that 

synthesized from the solvothermal method.  As such, it was concluded the acetyl protection and 
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in-situ deprotection of aldehydes was not a viable alternative to the solvothermal method for COF 

synthesis. 

 

 

Figure 3.5. PXRD spectrum of COF-300 synthesized utilizing in-situ acetyl protection 
compared to that of COF-300 synthesized via the solvothermal method. 

 

3.4.1.2 Teoc Protection of Amines 

Aside from the acetyl protection of aldehydes, the 2-(trimethylsilyl)ethoxycarbonyl (Teoc) 

protection of the amine groups in TAPM was also explored as an alternative towards in-situ 

deprotection and was conducted following Scheme 3.4.  As indicated by the 1H NMR spectrum of 

the product in Figure 3.3, compound 5 was isolated in high purity.  However, the yield and 

reproducibility were exceedingly low.  Given that TAPM was the product of a four-step synthesis, 
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an additional inefficient reaction step would have been impractical for an extended systematic 

COF synthesis investigation similar to that of acetyl protection and deprotection.  Additionally, 

the inability of the acetyl deprotection products to match the crystallinity of that of the 

solvothermal products further reduced confidence in the feasibility of this approach, and in situ 

Teoc deprotection was not further pursued. 

 

3.4.2 Scandium Triflate Catalyzed COF-300 Synthesis 

Given the difficulties experienced with in situ deprotection, research efforts shifted towards 

straight synthesis of COF-300 utilizing Sc(OTf)3.  As observed in preliminary attempts, the 

reaction became kinetically trapped easily under the more effective catalytic effects of Sc(OTf)3.  

Therefore, a delicate balance in the reaction equilibrium was needed, such that both the forward 

direction of imine formation and the reverse direction of imine hydrolysis could proceed.  Sc(OTf)3 

was an effective catalyst for imine formation, so the focus of the investigation would be providing 

enough driving force in the reverse direction to break the imine bonds and allow rearrangement of 

constituent species through imine exchange reactions into the desired crystalline structure.  

Additional mobility would also be helpful in overcoming kinetic trapping.  To that end, the main 

factors which influence mobility or reaction equilibrium, reaction temperature, water content, 

catalyst loading, and degassing were systematically investigated to facilitate formation of 

crystalline frameworks and optimization of reaction conditions.   

Conventional solvothermal synthesis procedure for COF-300 requires the freeze-thaw-

pump degassing of the reaction vessel prior to synthesis10; However, the components of the imine-

linked COF synthesis are not sensitive to air, and overpressure has proven unnecessary for COF 

synthesis1.  A comparison of two syntheses at identical reaction conditions, one with degassing 



 100 

and one without, confirms that degassing does not contribute to any noticeable difference in the 

crystallinity of the product, as confirmed by PXRD and is shown in Figure 3.6. 

 

 

Figure 3.6. Comparison of PXRD spectrum of a degassed COF-300 sample to one without 
degassing. 

 

To provide additional mobility to constituent species, syntheses were initially performed 

at 70°C, which has been demonstrated as a suitable temperature for Sc(OTf)3 catalyzed imine-

based dynamic covalent assembly9, for 72 hours.  The Lewis acidic Sc(OTf)3 catalyzes both imine 

hydrolysis and transimination, imparting reversibility and rearrangeability to the imine bond, and 

as such it is reasonable to expect an optimal catalyst loading that finds the balance in reaction 

equilibrium between imine bond formation and rearrangement.  Catalyst loading was varied 
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independently over a range of conditions, and highest degree of crystallinity, as characterized by 

PXRD, was obtained at 0.02 equiv. Sc(OTf)3 per amine (Figure 3.7).  Similarly, COFs possessing 

excellent crystallinity could be obtained at 0.04 equiv. Sc(OTf)3 at 50°C and 30°C (Figure 3.8 and 

Figure 3.9).  The reaction was then conducted at room temperature, and no crystallinity was 

observed after 72 hours.  Extending the reaction duration to 144 hours, however, did result in 

crystalline products at certain catalyst loading conditions, indicating that lack of additional 

mobility provided by heating can be compensated by extending the reaction duration.  At room 

temperature, 0.04 equiv. Sc(OTf)3 resulted in the most crystalline structure, and increasing or 

decreasing the amount of catalyst resulted in diminished crystallinity owing to shifts in reaction 

equilibrium beyond the optimal point, as shown by the PXRD spectra in Figure 3.10.  A summary 

of every trial conducted can be found in Table 3.3. 
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Figure 3.7. PXRD spectra of COF-300 synthesized at 70°C and 53 equiv. water per amine 
utilizing a range of Sc(OTf)3 loading. 
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Figure 3.8. PXRD spectra of COF-300 synthesized at 50°C and 53 equiv. water per amine 
utilizing a range of Sc(OTf)3 loading. 
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Figure 3.9. PXRD spectra of COF-300 synthesized at 30°C and 53 equiv. water per amine 
utilizing a range of Sc(OTf)3 loading. 
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Figure 3.10. PXRD spectra of COF-300 synthesized at room temperature and 53 equiv. water 
per amine utilizing a range of Sc(OTf)3 loading. 
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Table 3.3. Summary of Sc(OTf)3 catalyzed COF-300 syntheses. 

Temperature 
(°C) 

Sc(OTf)3 Loading (equiv. 
per amine) 

Water Content 
(equiv. per amine) 

70 0.005 53 
70 0.01 53 
70 0.02 53 
70 0.04 53 
70 0.06 53 
70 0.005 132 
70 0.01 132 
70 0.02 132 
50 0.02 53 
50 0.04 53 
50 0.06 53 
50 0.08 53 
50 0.1 53 
30 0.04 53 
30 0.06 53 
30 0.08 53 

RT[a] 0.02 53 
RT 0.04 53 
RT 0.06 53 
RT 0.08 53 
RT 0.1 53 
RT 0.12 53 
RT 0.2 53 
RT 0.3 53 
RT 0.04 0 
RT 0.04 26 
RT 0.04 53 
RT 0.04 79 
RT 0.04 106 

 

The role of water in this system is to mediate the reaction equilibrium, driving the imine 

formation equilibrium towards imine hydrolysis and providing improved imine bond reversibility, 

and a range of water contents were tested at each temperature to determine the optimal condition.  

The presence of water proved to be crucial, as no crystalline frameworks were obtained in the 
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absence of water at any combination of temperature and catalyst loading.  An excess of water, 

however, shifted the reaction equilibrium too far and likewise resulted in amorphous products.  At 

every temperature, 53 equiv. water per amine was identified as the optimal condition, providing 

the XRD spectrum with the sharpest and most well-defined peaks.  The comparison of PXRD 

spectra for samples synthesized utilizing different water content at room temperature is shown in 

Figure 3.11. 

 

 

Figure 3.11. PXRD spectra of COF-300 synthesized at room temperature and 0.04 equiv. 
Sc(OTf)3 per amine and a range of water content. 

 

As the optimal catalyst loading and water content have been identified at each temperature, 

a comparison of the most crystalline COF sample obtained at each temperature was conducted to 
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elucidate the effects of temperature.  A summary of the reaction conditions is shown in Table 3.4, 

and their corresponding PXRD spectra are shown in Figure 3.12.  The extreme similarity of the 

spectra indicate that elevated temperature is not a necessary component of obtaining crystallinity 

but is rather a way to provide additional mobility to the constituent species and overcome kinetic 

trapping.  The significantly higher effectiveness of Sc(OTf)3 in catalyzing imine formation and 

exchange compared to that of acetic acid in the predominant solvothermal method leads to a lower 

degree of kinetic trapping, and allows for the reduction of reaction temperature from 120°C to 

much lower temperatures.  At room temperature, the kinetics of the Sc(OTF)3 catalyzed synthesis 

is much slower than the heated reactions, requiring twice the reaction duration to obtain a 

crystalline structure, but the system is not completely kinetically trapped.  The excellent efficacy 

of Sc(OTf)3 and extended reaction duration provide sufficient driving force for rearrangement and 

eliminates the need for elevated temperatures.  

 

Table 3.4. Summary of optimal Sc(OTf)3 catalyzed COF-300 synthesis conditions at different 
temperatures. 

Temperature Catalyst Loading 
(equiv. per amine) 

Water Content (equiv. 
per amine) 

Reaction Duration 
(hours) 

RT 0.04 53 144 
30°C 0.04 53 72 
50°C 0.04 53 72 
70°C 0.02 53 72 
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Figure 3.12. Comparison of PXRD spectra of COF-300 synthesized using Sc(OTf)3 at each 
temperature at the optimal Sc(OTf)3 loading and water content.   

 

COF-300 synthesized utilizing Sc(OTf)3 was further characterized by FTIR and solid-state 

13CP-TOSS NMR, and the resultant spectra are in good agreement with those of COF-300 

synthesized from the conventional solvothermal method (Figure 3.13 and Figure 3.14).  The PXRD 

spectra, shown in Figure 3.15, are essentially identical.   
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Figure 3.13. Comparison of FTIR spectrum of COF-300 synthesized using Sc(OTf)3 
compared to that synthesized via the solvothermal method and that of an amorphous sample. 
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Figure 3.14. 13CP-TOSS NMR spectrum of COF-300 synthesized using Sc(OTf)3. 
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Figure 3.15. Comparison of PXRD spectrum of COF-300 synthesized using Sc(OTf)3 
compared to that synthesized via the solvothermal method and that of an amorphous sample. 

 

N2 adsorption-desorption isotherms were measured for COF-300 synthesized utilizing the 

solvothermal method and the Sc(OTf)3 catalyzed method.  The solvothermal isotherm (Figure 3.16) 

exhibits a lower degree of hysteresis than that originally reported for COF-30010.  The isotherms 

for samples synthesized utilizing Sc(OTf)3 (Figure 3.17 and Figure 3.18) exhibit a step-like 

behavior at P/P0 < 0.1 which has similarly been observed in other reports on COF-30011,12, and 

this phenomenon has been attributed to changes in pore structure during the adsorption-desorption 

process11, possibly due to “guest-induced structural transformation and/or reorientation of the 

guest packing under increased pressure” 13.  The Brunauer-Emmett-Teller (BET) surface area was 

calculated in the range of 0.005< P/P0 < 0.065 for the solvothermal sample, 0.12 < P/P0 < 0.22 for 
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the room temperature Sc(OTf)3 sample, and 0.05 < P/P0 < 0.095 for the 50°C Sc(OTf)3 sample to 

be 896 m2/g, 982 m2/g, and 907 m2/g, respectively.  These surface area values are very similar and 

fall within the range of reported BET surface area values of 756 – 1360 m2/g for COF-30010–12.  

 

 

Figure 3.16. N2 adsorption-desorption isotherms of COF-300 synthesized utilizing the 
solvothermal method. 
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Figure 3.17. N2 adsorption-desorption isotherms of COF-300 synthesized utilizing Sc(OTf)3 
at 50°C. 
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Figure 3.18. N2 adsorption-desorption isotherms of COF-300 synthesized utilizing Sc(OTf)3 
at room temperature. 

 

3.4.3 Ionothermal Synthesis of COF-300 

Ionothermal synthesis of COF-300 was attempted following the procedures shown in 

Scheme 3.6.  The product was characterized by PXRD and FTIR and compared to the spectra of 

COF-300 samples synthesized via the solvothermal method and Sc(OTf)3 method as well as the 

reactants, as found in Figure 3.19 and Figure 3.20, respectively.  The PXRD spectra of the ionic 

liquid catalyzed sample matches poorly with those of the two other COF-300 synthesis methods.  

Instead, many peaks match those found in the spectrum of TAPM, suggesting the presence of said 

reactants remained after the synthesis.  Similarly, the FTIR spectrum of the ionic liquid catalyzed 
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sample exhibits a much stronger aldehyde stretching peak at 1700 cm-1 than those found in the 

Sc(OTf)3 catalyzed and solvothermal spectra and comparable to that in the TA spectrum, 

indicating the presence of significant unreacted aldehyde functional groups in the structure.  These 

two observations combined suggest that the reported success of the ionothermal synthesis method 

for imine-linked 3D COFs could not be replicated. 

 

 

Figure 3.19. Comparison of PXRD spectra of COF-300 synthesized using the solvothermal 
method, Sc(OTf)3 catalyzed method, and the ionothermal method with the reactants 
tetrakis(4-aminophenyl)methane and terephthalaldehyde. 
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Figure 3.20. Comparison of FTIR spectra of COF-300 synthesized using the solvothermal 
method, Sc(OTf)3 catalyzed method, and the ionothermal method with the reactants 
tetrakis(4-aminophenyl)methane and terephthalaldehyde. 

 

3.5  Conclusions 

COF-300 was synthesized at room temperature utilizing Sc(OTf)3 as the catalyst, 

demonstrating the first room temperature synthesis of a 3D COF utilizing rare earth metal triflate.  

Water was demonstrated to be crucial for obtaining a crystalline framework, and crystallinity at 

ambient temperature was optimized by adjusting water content and catalyst loading, with 53 equiv. 

water per amine and 0.04 Sc(OTf)3 per amine providing the most crystalline framework.  

Degassing of reaction vessel prior to synthesis was shown to be unnecessary, removing a time-

consuming step from the COF synthesis procedure.  Acetyl protection and subsequent in situ 
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deprotection of aldehyde groups was demonstrated to produce COFs with reduced crystallinity 

compared to conventional methods. Additionally, the ionothermal synthesis of imine-linked 3D 

COFs could not be reproduced.  The synthesis procedures and reaction conditions identified in this 

chapter can be generalized to other imine-linked 3D COFs, and the insights obtained into different 

reaction parameters will contribute to improved understanding of 3D COF synthesis. 
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Chapter 4  
Synthesis of Functionalized Imine-linked 3D COFs 

4.1  Abstract 

Despite recent advances in 2D COF modification, investigation into the functionalization 

of imine-linked 3D COFs remains scarce.  In this chapter, four different chemistries were pursued 

and evaluated for the synthesis of functionalized aldehyde linkers, and three different 

functionalized terephthalaldehyde species featuring dimethoxy, dihydroxy, and dibromide pendant 

groups were obtained.  The functionalized aldehydes were employed for functionalized COF-300 

synthesis utilizing both the conventional solvothermal approach and the Sc(OTf)3 catalyzed 

approach described in Chapter 3.  A systematic investigation of a wide range of reaction conditions 

was unsuccessful in producing crystalline frameworks with all three monomers, suggesting that 

steric hindrance rather than electronic hindrance was the root cause behind the inability to 

rearrange into crystalline structures. 

 

4.2  Introduction 

The chemical tunability and structural diversity of COFs, afforded by their organic nature, 

is one of their biggest strengths compared to other nanoporous materials1.  Compared to 2D COFs, 

the diversity of 3D COFs is restricted by limited topologies and building blocks; therefore, 

modification and functionalization of existing 3D COF structure is crucial for producing tailored 
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structures and functionalities for applications2.  The most common method for COF 

functionalization, post-synthetic modification (PSM), seeks to alter chemical features on the COF 

backbone, often adding reactive functionalities that would facilitate the intended application.  

However, the backbone of 3D COFs such as COF-300 lack the reactive sites needed for easy 

modification.  As such, PSM usually involves embedding such reactive sites into the constituent 

monomers of the COF and applying necessary chemistry to said sites after the COF structure has 

been assembled.2  Several such modifications have been carried out on the boron-oxygen linked 

COF-1023–5, but only one instance has been reported for imine-linked 3D COFs, a demonstration 

of the carboxylation of hydroxy groups in a functionalized 3D COF6.  Thus, further investigation 

into the synthesis of functionalized imine-linked 3D COFs and PSM of the embedded pendant 

groups in those COFs is vital for unlocking the full diversity of potential 3D COF applications. 

Many reactive groups could be employed for monomer functionalization if they do not 

interfere with or participate in the imine chemistry.  Hydroxy groups are well-suited for this 

purpose, as they do not interact with amines or aldehydes in any way and can be readily converted 

into a wide range of other functionalities.  Figure 4.1 highlights a few examples of possible 

conversions and corresponding applications. 
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Figure 4.1. Sample conversion of hydroxy groups into long alkyl chains for pore size 
adjustment for size- and shape-based applications such as gas separation, into amines for 
CO2 adsorption and capture, and into vinyl ether for photo-polymerization. 

 

Aside from structural modification, another challenge that faces 3D COFs is 

interpenetration, where the empty space described by the crystalline framework accommodates 

one or more additional networks16 and which can adversely affect pore volume and impact internal 

surface area17.  Many 3D COFs reported to date have exhibited varying degrees of interpenetration, 

resulting in significant reductions in pore size and volume.  Thus, establishing control over and 

reducing or preventing interpenetration in 3D COFs is key to fully realizing their potential as 

crystalline, controllably porous materials. 

Whereas interpenetration in 3D COFs has typically been determined by structural modeling 

and unit cell indexing and is reported as an inherent characteristic, efforts to better understand, 

characterize, and even modify degrees of interpenetration have been recently reported.  For 
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example, the synthesis of an interpenetration isomer was reported for COF-300, representing a 

preliminary attempt towards modifying the extent of interpenetration in a 3D COF18.  More 

sophisticated approaches to control COF interpenetration might be derived from techniques 

successfully implemented in MOF syntheses, such as temperature and monomer concentration 

control19, organic bond structure alteration17, rational design of organic building blocks20, and 

incorporation of space-filling protecting groups that could be post-synthetically cleaved21, owing 

to their structural similarity.  Of these, the usage of space-filling protecting groups affords the 

highest degree of tunability and control and would allow alteration of the degree of interpenetration 

by adjusting the size of the protecting groups.   

There are a number of criteria governing the protecting group selection of these hydroxy 

moieties: 1) the protecting group should be of suitable size, large enough to fill space and prevent 

interpenetration and not too bulky as to hinder network formation; 2) the protection reaction must 

proceed to completion so that all hydroxy functionalities are protected and free space within the 

pores of the COF network is minimized; 3) the protected hydroxy group must not cleave under 

COF synthesis conditions, which could be either Lewis acidic24 or weakly acidic at elevated 

temperatures of 120°C25; 4) deprotection would ideally proceed under non-acidic conditions, so 

the protection groups could be post-synthetically removed to clear the pores and increase pore 

volume.   

In this chapter, four different chemistries are employed for the synthesis of functionalized 

aldehyde linkers containing vinyl ether, methoxy, hydroxy, and bromide functionalities.  These 

functionalized aldehydes were utilized for 3D COF synthesis with tetrakis(4-

aminophenyl)methane (TAPM) and the crystallinity of the product frameworks were characterized 

by powder X-ray diffraction.  A systematic investigation of reaction conditions was conducted to 



 125 

improve framework crystallinity.  Additionally, the tert-butyldimethylsilyl (TBDMS) group was 

identified as the most promising for protecting hydroxy groups.  The protection reaction using 

TBDMS chloride proceeds readily to 90%+ completion, and the TBDMS protection group can be 

removed using fluorinated compounds such as tetra-n-butylammonium fluoride (TBAF) at 

ambient temperature instead of the acidic conditions required to remove many other protection 

groups26.  The protection of the hydroxy-functionalized aldehyde monomer was explored. 

 

4.3  Experimental  

4.3.1 General Experimental Procedure 

All chemicals and reagents, unless specified, were purchased from commercial sources, 

including Fisher Scientific, Sigma-Aldrich, Alfa Aesar, and Oakwood Chemicals, and used as 

received without any further purification.  1H NMR spectra were recorded on a Varian Inova 500 

instrument (500 MHz).  13C NMR spectra were recorded on a Varian MR400 instrument (400 

MHz).  Chemical shifts were measured in d (ppm) relative to residual solvent signals as internal 

standards (CDCl3: 7.24 for 1H, 77.23 for 13C; d6-DMSO: 2.49 for 1H).  Powder X-ray Diffraction 

(PXRD) spectra were collected using a Rigaku 600 Miniflex XRD instrument and a 5 mm zero 

background sample holder.   
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4.3.2 Monomer Synthesis 

4.3.2.1 Truncated Aldehyde 

 
Scheme 4.1. 4,4',4''-((allyloxy)methanetriyl)tribenzaldehyde (2) and 4,4',4''-(but-3-ene-1,1,1-
triyl)tribenzaldehyde (3).  Reagents and conditions: a) n-BuLi/THF, (EtO)2CO; b) 
NaH/Toluene, allyl bromide; c) n-BuLi/THF, DMF, -78°C; d) HCO2H, 100°C; e) 
NAHDMS/THF, allyl bromide.  

 

Tris(4-bromophenyl)methanol (1).  1,4-dibromobenzene (13.05 g, 55.3 mmol) was dissolved in 

anhydrous tetrahydrofuran (200 ml) in an oven-dried 500 ml 3-neck round bottom flask, which 

was then purged with N2 equipped with a drying tube to remove air and moisture.  The solution 

was cooled to -78°C, and n-butyllithium (30 ml, 2.5 M in hexanes, 75 mmol) was added dropwise.  

The solution was stirred at -78°C for 3 h.  Meanwhile, diethyl carbonate (1.5 ml, 12.4 mmol) was 

sealed in a separate 50 ml round bottom flask and diluted with 4.5 ml of tetrahydrofuran.  The 

flask was purged with N2 to remove air and moisture, cooled to -78°C, and the mixture was added 

dropwise to the solution in the larger flask.  The reaction mixture was warmed to room temperature, 

stirred for 6 h, and quenched with sat. ammonium chloride solution (75 ml).  The mixture was 

extracted with ethyl acetate, washed with brine solution, dried over magnesium sulfate, and then 
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dried in vacuo.  The product was isolated by column chromatography in a 1:3 

dichloromethane/hexanes solvent system.  

Characterization data: 1H NMR (CDCl3, δ ppm): 7.47 (d, 6H, Ar), 7.15 (d, 6H, Ar), 2.69 (s, 1H, -

OH). 

 

 

Figure 4.2. 1H NMR spectrum of tris(4-bromophenyl)methanol.  

 

4,4',4''-((allyloxy)methanetriyl)tris(bromobenzene) (2).  Compound 1 (0.5 g, 1.0 mmol) was 

mixed with sodium hydride (0.24 g, 10.0 mmol), allyl bromide (1.0 ml, 11.6 mmol) and toluene 

(200 ml) in a 500 ml round bottom flask equipped with a magnetic stir bar.  The reaction mixture 

was heated at 115°C for 48 h, during which time toluene and ally bromide were periodically 
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replenished.  The solids were filtered out, and the filtrate was dried in vacuo to remove allyl 

bromide and solvent.  The crude product was isolated by column chromatography (19:1 hexanes 

to ethyl acetate) to obtain compound 2.  

Characterization data: 1H NMR (DMSO-d6, δ ppm): 7.57 (d, 6H, Ar), 7.31 (d, 6H, Ar), 5.91 (tt, 

1H, -OCH2-CH=CH2), 5.41 (dd, 1H, -OCH2-CH=CH2), 5.37 (dd, 1H, -OCH2-CH=CH2), 3.50 (d, 

2H, OCH2-CH=CH2). 

`

 

Figure 4.3. 1H NMR spectrum of 4,4',4''-((allyloxy)methanetriyl)tris(bromobenzene). 
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4,4',4''-((allyloxy)methanetriyl)tribenzaldehyde (3).  Compound 2 (133 mg, 0.25 mmol) was 

added to an oven-dried two-neck 100 ml round bottom flask equipped with magnetic stir bar and 

sealed.  The flask was purged with an argon balloon equipped with a drying tube to remove air and 

moisture.  Anhydrous tetrahydrofuran (10 ml) was added by syringe.  The solution was cooled to 

-78°C, and n-butyllithium (0.5 ml, 2.5 M in hexanes, 1.25 mmol) was added dropwise using a 

syringe pump.  The solution was stirred at -78°C for 1 h, and anhydrous dimethylformamide (0.9 

ml, 11.6 mmol) was added by syringe.  The reaction was warmed to room temperature, stirred 

overnight, and quenched with 1M aqueous hydrochloric acid solution (100 ml).  The mixture was 

extracted with ethyl acetate, washed with brine solution, dried over magnesium sulfate, and then 

dried in vacuo.   

Characterization data: 1H NMR (DMSO-d6, δ ppm): 9.55 (d, 3H, -CHO), 7.55 (m, 6H, Ar), 7.36 

(m, 6H, Ar), 5.91 (tt, 1H, -OCH2-CH=CH2), 5.41 (dd, 1H, -OCH2-CH=CH2), 5.38 (dd, 1H, -OCH2-

CH=CH2), 3.51 (d, 2H, OCH2-CH=CH2). 
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Figure 4.4. 1H NMR spectrum of 4,4',4''-((allyloxy)methanetriyl)tribenzaldehyde. 

 

4,4',4''-(but-3-ene-1,1,1-triyl)tribenzaldehyde (4).  Unfortunately, due to the low yield and 

difficulty of attaining complete conversion and extreme complexity of the column chromatography 

purifications in the synthesis of 1 and its subsequent conversion into 2 and 3, the synthesis of 4, 

which follows a similar reaction pathway as that of compound 3, was not further explored. 
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Scheme 4.2. Synthesis of 4,4',4''-(chloromethanetriyl)tris(bromobenzene) (5).  Reagents and 
conditions: a) Br2, EtOH, -78°C. 

4,4',4''-(chloromethanetriyl)tris(bromobenzene) (5).  Chlorotriphenylmethane (5.0 g, 17.9 

mmol) was added to an oven-dried three-neck 500 ml round bottom flask equipped with magnetic 

stir bar and one neck connected to a sodium hydroxide quenching solution.  Neat bromine (10 ml, 

195 mmol) was added dropwise while stirred, and the mixture was stirred for 20 min.  The mixture 

was cooled to -78°C, diluted with ethanol (100 ml), warmed to room temperature while stirring 

overnight, and quenched with sodium metabisulfite solution.  The precipitates were filtered, 

dissolved in dichloromethane, washed with water, and dried over magnesium sulfate.  A variety 

of solvent systems (3:1, 4:1, and 9:1 hexanes/ethyl acetate and 3:1 hexanes/dichloromethane) were 

evaluated for product isolation by column chromatography, but despite multiple attempts 

compound 5 could not be isolated.   

 

4.3.2.2 Functionalized Dialdehyde Monomers 

 
Scheme 4.3. Synthesis of 2-((allyloxy)methyl)terephthalaldehyde (8). Reagents and 
conditions: a) DIBAL, anhydrous DCM; b) NaH, toluene, allyl bromide; c) anhydrous THF, 
n-BuLi, anhydrous DMF. 
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(2,5-dibromophenyl)methanol (6).  Methyl 2,5-dibromobenzoate (4.4 g, 15.0 mmol) was added 

to an oven-dried 250 ml round bottom flask equipped with a magnetic stir bar and sealed.  

Anhydrous dichloromethane (30 ml) was added by syringe, and the solution was cooled to 0°C.  

Diisobutylaluminium hydride (DIBAL, 30 ml, 0.17 mol) was added slowly via a syringe pump.  

The mixture was gradually warmed to room temperature and stirred overnight.  The solution was 

then cooled to 0°C and quenched by slowly adding 15% aqueous citric acid solution.  The product 

was extracted with dichloromethane and brine to induce separation, washed with brine, dried over 

magnesium sulfate and filtered.  The filtrate was dried in vacuo to afford compound 6 as an 

analytically pure solid.  

Characterization data: 1H NMR (CDCl3, δ ppm): 7.67 (d, 1H, Ar), 7.41 (d, 1H, Ar), 7.31 (dd, 1H, 

Ar), 4.74 (d, 2H, -CH2-OH), 2.05 (t, 1H, -OH). 
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Figure 4.5. 1H NMR spectrum of (2,5-dibromophenyl)methanol. 

  

2-((allyloxy)methyl)-1,4-dibromobenzene (7).  Compound 4 (1.0 g, 3.76 mmol), sodium hydride 

(0.9 g, 37.5 mmol), allyl bromide (3.5 ml, 40.2 mmol), and toluene (150 ml) were mixed together 

in a 250 ml round bottom flask equipped with a magnetic stir bar.  The reaction mixture was heated 

to 65°C and stirred overnight.  The mixture was filtered, and the filtrate was dried in vacuo to 

afford compound 7. 

Characterization data: 1H NMR (CDCl3, δ ppm): 7.67 (d, 1H, Ar), 7.38 (d, 1H, Ar), 7.25 (dd, 1H, 

Ar), 6.00 (tt, 1H, -OCH2-CH=CH2), 5.39 (dd, 1H, -OCH2-CH=CH2), 5.28 (dd, 1H, -OCH2-

CH=CH2), 4.53 (s, 2H, -CH2-O-), 4.14 (d, 2H, -O-CH2-CH=CH2). 
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Figure 4.6. 1H NMR spectrum of 2-((allyloxy)methyl)-1,4-dibromobenzene. 

 

2-((allyloxy)methyl)terephalaldehyde (8).  Compound 5 (0.3 g, 0.98 mmol) was added to an 

oven-dried two-neck 500 ml round bottom flask equipped with magnetic stir bar and sealed.  The 

flask was purged with an argon balloon equipped with a drying tube to remove air and moisture.  

Anhydrous tetrahydrofuran (30 ml) was added by syringe.  The solution was cooled to -78°C, and 

n-butyllithium (2 ml, 2.5 M in hexanes, 5 mmol) was added dropwise using a syringe pump.  The 

solution was stirred at -78°C for 30 min, and anhydrous dimethylformamide (1 ml, 12.9 mmol) 

was added by syringe.  The reaction was warmed to room temperature, stirred overnight, and 

quenched with 1 M aqueous hydrochloric acid solution (100 ml).  The mixture was extracted with 

ethyl acetate, washed with brine solution, dried over magnesium sulfate, and dried in vacuo.  
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Despite many attempts, the reaction consistently yielded multiple products which would not be 

separated to obtain compound 8.   

 

 

Figure 4.7. 1H NMR spectrum of 2-((allyloxy)methyl)terephalaldehyde. 

 

 

Scheme 4.4. Synthesis of 2,5-dihydroxyterephalaldehyde (11). Reagents and conditions: a) 
HCl (aq), 1,4-dioxane, CH2O, HCl (g) b); (CH2)6N4/anhydrous CHCl3, H2O/HCl (aq) c) 
AcOH, HBr. 
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1,4-bis(chloromethyl)-2,5-dimethoxybenzene (9).  The synthesis procedures for 9 were adapted 

from a published approach7.  1,4-dimethoxybenzene (69.35 g, 0.50 mol), 1,4-dioxane (400 ml), 

and aqueous hydrochloric acid solution (37%, 65 ml) were mixed together in a 2L three-neck round 

bottom flask.  Three equal portions of aqueous formaldehyde solution (37%; 100.5 ml, 1.35 mol) 

were added at intervals of 30 min with stirring at 0°C.  During this time, aqueous hydrochloric 

acid solution was added dropwise to a separate 2L two-neck round bottom flask containing 

anhydrous calcium chloride powder to generate a consistent stream of hydrochloric acid gas, which 

was continuously bubbled into the reaction mixture in the three-neck flask and out into a quenching 

aqueous sodium bicarbonate solution.  After the formaldehyde portions have been added, the 

reaction was stirred for 1 h at room temperature, and more aqueous hydrochloric acid solution was 

added (37%, 195 ml).  The resulting solution was cooled to ~5°C overnight, and the white 

precipitate was collected in a glass frit and washed with chilled di-ionized water, recrystallized in 

acetone, and dried in vacuo to afford 9 as an analytically pure white solid. 

Characterization data: 1H NMR (CDCl3, δ ppm): 6.94 (s, 2H, Ar), 4.65 (s, 4H, -CH2Cl), 3.88 (s, 

6H, -OCH3). 
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Figure 4.8. 1H NMR spectrum of 1,4-bis(chloromethyl)-2,5-dimethoxybenzene. 

 

2,5-dimethoxyterephthalaldehyde (10).  The synthesis procedures for 10 were adapted from a 

published approach7.  Compound 9 (10.00 g, 0.04 mol) and hexamethylenetetramine (11.2 g, 0.08 

mol) were dissolved in anhydrous chloroform (150 ml) in an oven-dried and septum-sealed 500 

ml two-neck round bottom flask equipped with magnetic stirrer.  The flask was purged with an 

argon balloon equipped with drying tube to remove air and moisture.  The reaction was heated to 

reflux for 3 h and cooled to 5°C.  The cream-colored solids were filtered with a glass frit, re-

dissolved in di-ionized water (130 ml) and heated to reflux for 2 h.  After cooling to room 

temperature, aqueous hydrochloric acid solution (37%, 5 ml) was added, inducing the formation 

of yellow precipitates, which were collected on a glass frit.  The aqueous filtrate was extracted 
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with chloroform, dried over magnesium sulfate, and evaporated to dryness in vacuo to yield a 

second crop of crude product.  The crude product was purified via flash column chromatography 

(2:1 dichloromethane/ethyl acetate) and recrystallized in 1:1 dichloromethane/hexanes to obtain 

10 as an analytically pure yellow needle-shaped crystals. 

Characterization data: 1H NMR (CDCl3, δ ppm): 10.52 (s, 2H, -CHO), 7.47 (s, 2H, Ar), 3.96 (s, 

6H, -OCH3). 

 

Figure 4.9. 1H NMR spectrum of 2,5-dimethoxyterephthalaldehyde.  

 

2,5-dihydroxyterephthalaldehyde (11).  The synthesis procedures for 11 were adapted from a 

published approach7.  Compound 10 (3.71 g, 0.02 mol), glacial acetic acid (99.5%, 190 ml), and 

aqueous hydrobromic acid (48%, 160 ml) were mixed together and heated to reflux for 14 h.  Some 
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black particles formed during the reflux and were filtered out and washed with chloroform.  The 

filtrate was extracted with chloroform and water.  The aqueous layer was extracted repeatedly until 

the organic layer became clear and colorless.  The organic layers were combined, evaporated to 

dryness under vacuum, and dried in vacuo to afford 11 as an analytically pure orange solid.  

Characterization data: 1H NMR (CDCl3, δ ppm): 10.31 (s, 2H, -CHO), 7.88 (s, 2H, -OH), 7.22 (s, 

2H, Ar). 

 

 

Figure 4.10. 1H NMR spectrum of 2,5-dihydroxyterephthalaldehyde.  
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Scheme 4.5. Synthesis of 2,5-dibromoterephthalaldehyde (12).  Reagents and conditions: a) 
NBS, H2SO4, 60°C, 3 h. 

2,5-dibromoterephthalaldehyde (12).  The synthesis of compound 12 was conducted following 

established procedure8.  N-bromosuccinimide was purified by recrystallization in water prior to 

use in this reaction.  Terephthalaldehyde (4 g, 30.0 mmol) was dissolved in concentrated sulfuric 

acid (40 ml) and heated to 60°C.  N-bromosuccinimide (11.5 g, 65.0 mmol) was added portionwise 

over 15 minutes.  The reaction mixture was heated at 60°C for 3 h.  The solution was poured onto 

ice and the white precipitate was filtered off, dissolved in dichloromethane, and extracted with 

saturated sodium bicarbonate aqueous solution and brine.  The organic layer was dried over sodium 

sulfate and the solvent was removed at reduced pressure.  The crude product was recrystallized in 

ethyl acetate to obtain 12 as cream-colored crystals.  

Characterization data: 1H NMR (CDCl3, δ ppm): 10.36 (s, 2H, -CHO), 8.17 (s, 2H, Ar). 
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Figure 4.11. 1H NMR spectrum of 2,5-dibromoterephthalaldehyde. 
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4.3.2.3 TBDMS Protection 

 

Scheme 4.6. Synthesis of ((propane-2,2-diylbis(4,1-phenylene))bis(oxy))bis(tert-
butyldimethylsilane) (13) as model TBDMS protection reaction.  Reagents and conditions: a) 
imidazole, DMF, 70°C, overnight. 

 

((propane-2,2-diylbis(4,1-phenylene))bis(oxy))bis(tert-butyldimethylsilane) (13). 4,4'-

(propane-2,2-diyl)diphenol (20 mg, 0.175 mmol), tert-butyldimethylsilyl chloride (31.7  mg, 0.210 

mmol), imidazole (29.8 mg, 0.438 mmol), and dimethylformamide (10 ml) were mixed together 

and heated to 70°C overnight.  The mixture was then diluted with a large amount of di-ionized 

water and extracted with 1:1 hexanes/ethyl acetate mixture.  The organic layer was washed with 

brine solution, dried over magnesium sulfate, filtered, evaporated to dryness under reduced 

pressure, and dried in vacuo to afford compound 13. 

Characterization data: 1H NMR (CDCl3, δ ppm): 7.06 (d, 4H, Ar), 6.71 (d, 4H, Ar), 1.62 (s, 6H, -

-CH-(CH3)2), 0.98 (s, 18H, -Si(CH2)2-C(CH3)3), 0.19 (s, 12H, -Si(CH2)2-). 
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Figure 4.12. 1H NMR of((propane-2,2-diylbis(4,1-phenylene))bis(oxy))bis(tert-
butyldimethylsilane). 

 

 

Scheme 4.7. Synthesis of 2,5-bis((tert-butyldimethylsilyl)oxy)terephthalaldehyde (14) 
through TBDMS protection.  Reagents and conditions: a) imidazole, DMF, 100°C, overnight. 

 

2,5-bis((tert-butyldimethylsilyl)oxy)terephthalaldehyde (14).  2,5-dihydroxyterephthal-

aldehyde (50 mg, 0.301 mmol), tert-butyldimethylsilyl chloride (136.1 mg, 0.903 mmol), 
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imidazole (102.45 mg, 1.505 mmol), and dimethylformamide (25 ml) were mixed together and 

heated to 100°C overnight.  The mixture was then diluted with large amount of de-ionized water 

and extracted with 1:1 hexanes/ethyl acetate mixture.  The organic layer was washed with brine 

solution, dried over magnesium sulfate, filtered, evaporated to dryness under reduced pressure, 

and dried in vacuo. 

 

Figure 4.13. 1H NMR of 2,5-bis((tert-butyldimethylsilyl)oxy)terephthalaldehyde. 
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4.3.3 Synthesis of Functionalized COFs 

 

Scheme 4.8. Synthesis of dimethoxy-functionalized COF-300 (15).  Reagents and conditions: 
a) 1,4-dioxane, AcOH (aq), 120°C, 72 h; b) 1,4-dioxane, Sc(OTf)3, H2O, 70°C, 72 h. 

 

Solvothermal synthesis of dimethoxy-functionalized COF-300 (15).  The synthesis procedure 

for compound 15 was adapted from the published approach for COF-300 refined in Chapters 2 and 

39.  A 48 ml “glass bomb” heavy wall pressure vessel was charged with tetrakis(4-

aminophenyl)methane (20 mg. 0.053 mmol), compound 10 (20.4 mg, 0.105 mmol), 1,4-dioxane 

(1 ml) and 3 M aqueous acetic acid solution (0.2 ml).  The bomb reactor was sealed and heated to 

120°C for 72 h.  The solids were filtered, washed with 1,4-dioxane and tetrahydrofuran, and 

immersed in tetrahydrofuran for 24 h, during which the solvent was exchanged for fresh 

tetrahydrofuran several times.  The solids were then isolated by filtration and dried in vacuo to 

afford 15 as an orange solid.  

 

Scandium triflate catalyzed synthesis of dimethoxy-functionalized COF-300 (15).  A 48 ml 

“glass bomb” heavy wall pressure vessel was charged with tetrakis(4-aminophenyl)methane (20 
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mg. 0.053 mmol), compound 10 (20.4 mg, 0.105 mmol), 1,4-dioxane (2.5 ml) and 42 µl of 

scandium triflate stock solution (0.2 M in acetonitrile, 0.084 mmol, 0.04 equiv. per amine).  The 

reactor was capped, sealed, and heated to 50°C for 72 hours to yield a yellow powder, which was 

isolated by centrifugation and immersed and washed with tetrahydrofuran to remove residual 

solvent and guest.  This was repeated several times until the solvent became colorless.  The product 

was then washed with acetonitrile and water and lyophilized to give 15 as a yellow powder.  

 

 

Scheme 4.9. Synthesis of dihydroxy-functionalized COF-300 (16).  Reagents and conditions: 
a) 1,4-dioxane, AcOH (aq), 120°C, 72 h; b) 1,4-dioxane, Sc(OTf)3, H2O, 70°C, 72 h. 

 

Solvothermal synthesis of dihydroxy-functionalized COF-300 (16).  The synthesis procedure 

for compound 14 was adapted from the published approach for COF-300 refined in Chapters 2 and 

39.  A 48 ml “glass bomb” heavy wall pressure vessel was charged with tetrakis(4-

aminophenyl)methane (20 mg. 0.053 mmol), compound 11 (17.5 mg, 0.105 mmol), 1,4-dioxane 

(1 ml) and 3 M aqueous acetic acid solution (0.2 ml).  The bomb reactor was sealed and heated to 

120°C for 72 h.  The solids were filtered, washed with 1,4-dioxane and tetrahydrofuran, and 

immersed in tetrahydrofuran for 24 h, during which the solvent was exchanged for fresh 
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tetrahydrofuran several times.  The solids were then isolated by filtration and dried in vacuo to 

afford 16 as a yellow solid.  

 

Scandium triflate catalyzed synthesis of dihydroxy-functionalized COF-300 (16).  A 48 ml 

“glass bomb” heavy wall pressure vessel was charged with tetrakis(4-aminophenyl)methane (20 

mg. 0.053 mmol), compound 11 (17.5 mg, 0.105 mmol), 1,4-dioxane (2.5 ml) and 42 µl of 

scandium triflate stock solution (0.2 M in acetonitrile, 0.084 mmol, 0.04 equiv. per amine).  The 

reactor was capped, sealed, and heated to 50°C for 72 hours to yield a yellow powder, which was 

isolated by centrifugation and immersed and washed with tetrahydrofuran to remove residual 

solvent and guest.  This was repeated several times until the solvent became colorless.  The product 

was then washed with acetonitrile and water and lyophilized to give 16 as a yellow powder.  

 

 

Scheme 4.10. Synthesis of dibromo-functionalized COF-300 (17).  Reagents and conditions: 
a) 1,4-dioxane, Sc(OTf)3, H2O, 50°C, 72 h. 

 

Dibromo-functionalized COF-300 (17).  A 48 ml “glass bomb” heavy wall pressure vessel was 

charged with tetrakis(4-aminophenyl)methane (20 mg. 0.053 mmol), compound 10 (30.7mg, 0.105 
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mmol), 1,4-dioxane (2.5 ml) and 42 µl of scandium triflate stock solution (0.2 M in acetonitrile, 

0.084 mmol, 0.04 equiv. per amine).  The reactor was capped, sealed, and heated to 50°C for 72 

hours to yield a yellow powder, which was isolated by centrifugation and immersed and washed 

with tetrahydrofuran to remove residual solvent and guest.  This was repeated several times until 

the solvent became colorless.  The product was then washed with acetonitrile and water and 

lyophilized to give 17 as a yellow powder.  
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4.4  Results and Discussion 

4.4.1 Monomer Synthesis 

4.4.1.1 Truncated Aldehyde Linker 

The first synthesis attempt of a functionalized aldehyde linker, as shown in Scheme 2.1, 

was designed to produce a truncated tetrahedral aldehyde monomer as inspired by earlier work 

producing truncated tetrahedral boronic acid monomers for COF synthesis3.  Compared to the 

tetrakis(4-formylphenyl)methane synthesized in Chapter 2, the products of this synthetic pathway, 

aldehydes 3 and 4 contain one fewer phenyl ring attached to the central carbon, which is replaced 

by a vinyl ether and an alkenyl group, respectively.  Specifically, research efforts were focused on 

producing aldehyde 3, as it required one fewer reaction step and should be similarly suitable for 

functionalized COF synthesis compared to aldehyde 4.  In the first step of this pathway, the 

conversion of 1,4-dibromobenzene to compound 1, n-BuLi was employed to cleave exactly one of 

the two bromines attached to the starting materials, and subsequently exactly three of these 

bromobenzene radicals needed to attach to the central carbon in diethyl carbonate to form 

compound 1.  In addition, as observed in the synthesis of tetrakis(4-formylphenyl)methane 

synthesized in Chapter 2, the consistency of n-BuLi as a catalyst for the cleavage of bromines is 

poor.  As such, the reproducibility of this reaction was quite low, and even when the correct product 

was formed, it was mixed with multiple side products that exhibited similar solubility and 

chromatographic mobility characteristics that rendered separation extremely difficult.  

Nevertheless, small amounts of analytically pure compound 1 were obtained through meticulous 

purification utilizing column chromatography, as shown by the 1H NMR spectrum in Figure 2.1, 

while greater quantities of said product could not be separated from the side products despite 

repeated efforts.  
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The second step of this pathway, in which the hydroxy group in compound 1 was converted 

into the vinyl ether group in compound 2, was much more consistent and effective than the first 

step, owing to the efficacy and consistency of sodium hydride as a catalyst.  Though column 

chromatography was needed for purification, compound 2 was separated from the side products 

easily and was obtained in good yield and high purity, as shown by the 1H NMR spectrum in Figure 

4.3. 

The final and most crucial step of this synthesis was the cleavage of the three aryl bromides 

and substitution by aldehyde groups to produce aldehyde 3 utilizing n-BuLi.  This reaction was 

similar to the conversion of tetrakis(4-bromophenyl)methane to tetrakis(4-formylphenyl)methane 

shown in Chapter 2, and the results were similarly comparable.  Although a relatively pure fraction 

of aldehyde 3 was obtained through many repeated attempts at synthesis and purification by 

column chromatography, as shown by the 1H NMR spectrum in Figure 4.4, the inconsistencies and 

difficulties associated with n-BuLi reduced the yield and reproducibility to a degree at which it 

was infeasible to utilize the product for synthesis of functionalized COFs, which require vastly 

higher quantities of the functionalized aldehyde monomer than what could be obtained from many 

repeated syntheses, and the low reproducibility would have increased the required synthetic efforts 

to insurmountable levels.  Ultimately, this truncated aldehyde linker was not utilized for 

functionalized COF synthesis, and the parallel pathway towards aldehyde 4 was not further 

pursued due to anticipation of similar difficulties. 

To assess the possibility of reduced dependence on the inconsistent n-BuLi chemistry, an 

alternative method of synthesizing a truncated bromide linker 5 by directly brominating 

chlorotriphenylmethane, which was utilized for monomer synthesis in Chapter 2, as shown in 

Scheme 4.2.  Unlike the bromination of tetraphenylmethane in Chapter 2, however, the asymmetry 



 151 

and more complex molecular structure of chlorotriphenylmethane compared to 

tetraphenylmethane rendered this approach unsuccessful, and compound 5 could not be isolated. 

 

4.4.1.2 Functionalized Dialdehyde Monomers 

The cleavage of multiple bromides from complex aromatic structures utilizing n-BuLi had 

proven challenging in both the synthesis of tetrakis(4-formylphenyl)methane and the truncated 

aldehyde linker; however, n-BuLi chemistry was still the most common and widely adopted 

method for synthesizing aldehydes.  As such, a synthesis pathway for obtaining a functionalized 

dialdehyde linker containing only one phenyl ring was designed and is shown in Scheme 2.2.  

Compared to prior aldehyde syntheses, the structure of the product was simpler and retained the 

desired vinyl ether functionality and only a single step required n-BuLi to cleave two bromides off 

the same phenyl ring.  The first two reactions in the sequence relied on proven, simple, and 

consistent chemistries to convert the methyl ester group in the starting material to a vinyl ether 

group in compound 7, and were completed without major issues, as evidenced by the clean 1H 

NMR spectra of compounds 6 and 7 in Figure 4.5 and Figure 4.6, respectively.  Unfortunately, the 

third and final reaction, the cleavage of bromides and substitution by aldehydes, was even more 

unsuccessful than the final reaction in the truncated aldehyde synthesis.  Despite repeated attempts, 

aldehyde 8 could not be isolated in any quantity, and the 1H NMR spectrum of the fraction that 

bore the closest resemblance to the desired product is shown in Figure 4.7.  Two distinct aldehyde 

peaks can be observed at chemical shifts of 9.99 and 9.73, but the remainder of the spectrum is 

filled with peaks that do not match with either compound 7 or the product.  Additional attempts to 

convert the bromides in starting material methyl 2,5-dibromobenzoate, compounds 6 and 7, and 

1,4-dibromobenzene to aldehyde groups were all similar unsuccessful.  One possible cause for the 
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consistent inability to convert dihalides into dialdehydes could be the electronic structure of the 

phenyl ring.  Aldehydes are stronger electron withdrawing functionalities than halides, and thus 

exert a stronger deactivation effect on the phenyl ring.  As such, once the first bromide is replaced 

by an aldehyde, the second bromide becomes less reactive due to this change in reactivity.   

Owing to the multitude of difficulties encountered in n-BuLi chemistry, it was highly 

desirable to design a reaction pathway that could produce a functionalized aldehyde linker without 

employing said chemistry.  An extensive literature search provided the pathway shown in Scheme 

4.4, which utilizes a Sommelet reaction to convert methyl chlorides into aldehyde groups, 

circumventing the need for n-BuLi10.  The chloromethylation of 1,4-dibromobenzene was the first 

step and required the constant flow of hydrochloric acid gas through the reaction vessel for the 

duration of the reaction to ensure high yield and conversion rate.  A constant source of hydrochloric 

acid gas was not readily available, so a two-stage reaction setup was designed to generate the 

hydrochloric acid gas as the reaction proceeded.  As shown in Figure 4.14, concentrated aqueous 

hydrochloric acid solution was slowly added to anhydrous calcium chloride powder, which 

absorbed the water and released the hydrochloric acid gas.  The gas was subsequently bubbled into 

the reaction mixture, providing the constant flow required by the reaction.  An outlet from the main 

reaction vessel connected to a sodium carbonate solution to neutralize and quench the extraneous 

hydrochloric acid gas flowing through the system.  This two-stage reactor facilitated the synthesis 

of analytically pure 9, as shown by the 1H NMR spectrum in Figure 4.8, with 90%+ yield.  
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Figure 4.14. Schematic and photograph of the reaction setup for the in-situ generation of 
HCl gas and synthesis of 1,4-bis(chloromethyl)-2,5-dimethoxybenzene. 

 

The conversion of the methyl chloride in compound 9 into the aldehydes in compound 10 

through the Sommelet reaction had been reported to result in low yield (32%)11.  An improved 

procedure was reported to increase the yield to 70%7, but following said procedures consistently 

resulted in yields much lower than 70%.  Attempts to improve the reaction procedures by repeating 

the reflux in water before isolation of the product, as well as adding another portion of hydrochloric 

acid solution to and refluxing the aqueous layer obtained from liquid-liquid extraction, yielded 

additional crops of crude product from which 10 was obtained, though the overall yield was still 

lower than 70%.  Analytically pure 10, as proven by the 1H NMR spectrum in Figure 4.9, was 

isolated by a simple flash column, a marked departure from the complexity and difficulty of 

purification of prior aldehyde products obtained from n-BuLi chemistry. 

Compound 10 is a dimethoxy-functionalized terephthalaldehyde (DMTA) and fits the 

requirements for utilization in functionalized COF synthesis; nevertheless, the two methoxy 

groups were further converted to hydroxy groups, which could then be modified into a wide array 
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of functionalities.  Analytically pure compound 11, the product of this reaction, was also isolated 

without issue, as shown by the 1H NMR spectrum in Figure 4.10.  This reaction produced 

dihydroxy-functionalized terephthalaldehyde (DHTA), which would also be employed for 

functionalized COF synthesis in Section 4.3.3. 

In comparison to the methoxy and hydroxy groups, which were difficult to introduce but 

could be readily post-synthetically modified to many different functionalities, bromide groups 

were much easier to attach.  As shown in Scheme 4.5, the synthesis of 2,5-

dibromoterephthalaldehyde (DBTA, compound 12) is a relatively straightforward one-pot reaction 

starting from the commercially available terephthalaldehyde.  N-bromosuccinimide was 

recrystallized for purification purposes prior to use, and recrystallization of the crude product 

resulted in analytically pure 12, the 1H NMR of which is displayed in Figure 4.11.  DBTA would 

also be utilized for functionalized COF synthesis in Section 4.3.3. 

 

4.4.1.3 TBDMS Protection of DHTA 

In order to establish interpenetration control over COF-300 using the space-filling tert-

butyldimethylsilyl (TBDMS) protecting group, a model protection reaction was first conducted on 

commercially available 4,4'-(propane-2,2-diyl)diphenol following Scheme 4.6.  While some 

impurities are present, as evidenced by the unidentified peaks in the 1H NMR spectrum (Figure 

4.12), protection of the hydroxy groups were successful, as every peak in the expected product 

was matched to their respective peaks.  Subsequently, the same procedures for TBDMS protection 

were applied to DHTA in preparation for establishing interpenetration control following Scheme 

4.7.  Unfortunately, the same reaction procedures did not result in the successful protection of 

DHTA.  As displayed in the 1H NMR spectrum of the protection product in Figure 4.13, the two 
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prominent peaks which appeared at chemical shifts of 0.19 and 0.98 in the spectrum of the model 

protection product and were assigned to the tert-butyl and methyl groups in the TBDMS were 

conspicuously absent.   Multiple attempts to modify the reaction conditions did not produce 

tangible improvements, and protection of functional groups and subsequent application of 

interpenetration control was not further pursued. 

4.4.2 Functionalized COF-300 Synthesis 

4.4.2.1 Dimethoxy-functionalized COF-300 Synthesis 

The synthesis of functionalized COF-300 was attempted first utilizing DMTA in place of 

terephthalaldehyde (TA).  The synthesis was first conducted following the solvothermal method 

and the reaction conditions conventionally used for COF-300 synthesis, namely 120°C and 3 M 

acetic acid.  These conditions, which have been confirmed to produce crystalline COF-300, 

reliably gave amorphous products when utilizing DMTA.  Adjustment of reaction temperature and 

acetic acid concentration (shown in Table 4.1) were carried out, but under no set of conditions was 

crystalline COF obtained.  Representative XRD spectra of samples synthesized by the 

solvothermal method are shown in Figure 4.15. 

 

Table 4.1. Summary of different reaction conditions attempted for the solvothermal 
synthesis of dimethoxy-functionalized COF-300. 

Temperature (°C) Acetic Acid Aqueous Solution Concentration (M) 
120 3 
120 6 
120 9 
160 9 
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Figure 4.15. PXRD spectra of dimethoxy-functionalized COF-300 synthesized using 3 M 
acetic acid and the solvothermal method at different temperatures.  

 

The dimethoxy-functionalized COF synthesis was then attempted utilizing scandium 

triflate (Sc(OTf)3), which was demonstrated as a more effective catalyst then acetic acid for imine-

linked COF synthesis in Chapter 3.  Initial synthesis attempts using the optimal reaction conditions 

identified for COF-300 in Chapter 3 yielded amorphous products, so similar to the reaction 

condition optimization in Chapter 3, reaction temperatures, catalyst loading, and water content 

were varied independently to identify a set of conditions that facilitates the formation of crystalline 

dimethoxy-functionalized COF-300.  A summary of the reaction conditions attempted is shown in 

Table 4.2.  Unlike the results of Chapter 3, however, here no combination of reaction conditions 

even revealed a hint of crystallinity that could be observed by PXRD.  Representative PXRD 
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spectra of Sc(OTf)3 catalyzed dimethoxy-functionalized COF-300 synthesis carried out at a range 

of water content and catalyst loading are shown in Figure 4.16 and Figure 4.17, respectively. 

 

Table 4.2. Summary of reaction conditions attempted for the Sc(OTf)3  catalyzed synthesis 
of dimethoxy-functionalized COF-300.  

Temperature 
(°C) 

Sc(OTf)3 Loading 
(equiv. per amine) 

Water Content 
(equiv. per amine) 

50 0.04 0 
50 0.04 13 
50 0.04 26 
50 0.04 40 
50 0.04 53 
50 0.04 79 
50 0.04 106 
50 0.06 53 
50 0.08 53 
70 0.02 53 
70 0.04 53 
70 0.06 53 
70 0.08 53 
70 0.10 53 
RT 0.04 53 
RT 0.06 53 
RT 0.08 53 
RT 0.10 53 
RT 0.12 53 
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Figure 4.16. PXRD spectra of dimethoxy-functionalized COF-300 synthesized using 0.04 
equiv. Sc(OTf)3 at 50°C and a range of water content. 
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Figure 4.17. PXRD spectra of dimethoxy-functionalized COF-300 synthesized using 
Sc(OTf)3 at 70°C and a range of catalyst loading. 

 

Compared to the synthesis of COF-300, the sole difference in the synthesis of dimethoxy-

functionalized COF-300 is the presence of methoxy groups attached to TA.  As such, this 

difference is likely the cause of the amorphous products.  To confirm the validity of this hypothesis, 

COF synthesis was carried out employing a range of ratios of DMTA/TA, and the crystallinity of 

the products were characterized by PXRD and displayed in Figure 4.18.  At 100% TA, the product 

is simply COF-300, and as expected the spectrum is characterized by sharp and narrow peaks and 

a flat baseline, indicative of a crystalline structure.  As the percentage of DMTA was increased to 

60% in increments of 20%, a steady decrease in crystallinity could be observed as a function of 

the increase in DMTA.  At 80% DMTA, the product was completely amorphous, with no signs of 
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any peaks throughout the spectrum.  Overall, the correlation between increased amounts of DMTA 

and decreased crystallinity is clear and supports the hypothesis that the change in structure 

compared to TA was the cause of the loss of crystallinity. 

 

 

Figure 4.18. A comparison of XRD spectra of dimethoxy-functionalized COF-300 
synthesized employing a range of ratios of dimethoxy-functionalized terephthalaldehyde to 
unfunctionalized terephthalaldehyde.  

 

4.4.2.2 Dihydroxy-functionalized COF-300 Synthesis 

Although dimethoxy-functionalized COF-300 could not be obtained in a crystalline state, 

there was another functionalized aldehyde monomer, DHTA, that could be employed for 

functionalized COF synthesis.  Thus, the synthesis of dihydroxy-functionalized COF-300 was 
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investigated in a similar fashion, first utilizing the solvothermal method at different reaction 

temperatures and acetic acid concentrations, as shown in Table 4.3, and subsequently using 

Sc(OTf)3 as the catalyst over an array of reaction temperatures, catalyst loading, and water content, 

the summary of which can be found in Table 4.4.  The product crystallinity was characterized by 

PXRD, and once again every trial employing both synthetic methods produced amorphous 

material.  Representative PXRD spectra of a comparison between the solvothermal method and 

the Sc(OTf)3 method, a range of Sc(OTf)3 loading, and a range of water content in the Sc(OTf)3 

catalyzed regime are shown in Figure 4.19, Figure 4.20, and Figure 4.21 respectively. 

 

Table 4.3. Summary of different reaction conditions attempted for the solvothermal 
synthesis of dihydroxy-functionalized COF-300. 

Temperature (°C) Acetic Acid Aqueous Solution Concentration (M) 
120 3 
120 6 
120 9 
160 9 

 

Table 4.4. Summary of reaction conditions attempted for the Sc(OTf)3  catalyzed synthesis 
of dihydroxy-functionalized COF-300. 

Temperature 
(°C) 

Sc(OTf)3 Loading 
(equiv. per amine) 

Water Content 
(equiv. per amine) 

50 0.04 26 
50 0.04 53 
50 0.04 106 
50 0.06 53 
50 0.08 53 
70 0.04 53 
70 0.06 53 
70 0.08 53 
RT 0.04 53 
RT 0.06 53 
RT 0.08 53 
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Figure 4.19. PXRD comparison of dihydroxy-functionalized COF-300 synthesized via the 
solvothermal method and the Sc(OTf)3 method. 
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Figure 4.20. PXRD spectra of dihydroxy-functionalized COF-300 synthesized using Sc(OTf)3 
at 50°C, 53 equiv. water, and a range of catalyst loading. 
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Figure 4.21. PXRD spectra of dihydroxy-functionalized COF-300 synthesized using 0.04 
equiv. Sc(OTf)3 at 50°C and a range of water content. 

 

COF syntheses employing a range of ratios of DHTA/TA were conducted, and the 

crystallinity of the products were characterized by PXRD and shown in Figure 4.22.   Similar to 

what was observed for dimethoxy-functionalized COF-300, crystallinity of the product clearly 

decreases as the percentage of DHTA increases, and at 80% DHTA the product becomes 

completely amorphous.  This not only supports the hypothesis that the change in structure 

compared to TA is the cause of the loss of crystallinity, but also reveals that the loss of crystallinity 

was not due to the presence of a specific functional group, but rather some common feature of both 

the methoxy and hydroxy functionalities. 
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Figure 4.22. A comparison of XRD spectra of dihydroxy-functionalized COF-300 synthesized 
employing a range of ratios of dihydroxy-functionalized terephthalaldehyde to 
unfunctionalized terephthalaldehyde.  

 

There are two potential explanations for this lack of crystallinity.  The first is the alteration 

in the electronic structure of the ring.  Both methoxy and hydroxy groups are strong electron 

donating groups and appending two methoxy or hydroxy groups to TA could have caused 

significant enough change to the reactivity of the two aldehydes on the same phenyl ring.  The 

second possibility is reduced reaction site accessibility.  Both methoxy and hydroxy groups are 

reasonably bulky, and these pendant groups could have sterically hindered the ability of the amines 

on tetrakis(4-aminophenyl)methane to access and react with the aldehydes located on the same 

ring, a concern exacerbated by the inherent tendency of 3D COFs to become kinetically trapped 

during synthesis due to lack of mobility and already bulky monomers.  A combination of the two 
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factors is likely the cause for the inability to rearrange into a crystalline structure, but to gain some 

insight into which factor plays a more significant role, DBTA was employed for functionalized 

COF synthesis.  In contrast with the strong electron donating effects of methoxy and hydroxy 

groups, bromides are weakly electron withdrawing and would exert a smaller and opposite effect 

on the reactivity of the aldehyde groups, which would allow for the assessment of the significance 

of electronic effects.  As shown in Scheme 4.10, the synthesis was conducted utilizing Sc(OTf)3 

over a range of catalyst loading.  PXRD characterization of the products show that they were 

consistently amorphous at each reaction condition attempted.  Given that appending strong 

electron donating methoxy and hydroxy groups and weak electron withdrawing bromide groups 

to the phenyl ring resulted in comparable lack of product crystallinity, insufficient reaction site 

accessibility and steric hindrance was likely the key culprit in the inability of the constituent 

species to rearrange into an ordered crystalline structure. 
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Figure 4.23. PXRD spectra of dibromo-functionalized COF-300 synthesized using 53 equiv. 
water and a range of Sc(OTf)3 loading at 50°C.  

 

4.5  Conclusions 

Four different approaches to synthesizing functionalized aldehyde monomers for 

functionalized imine-linked 3D COF synthesis were explored.  Two of the pathways were 

dependent on n-BuLi chemistry to introduce aldehyde functionalities, which has repeated proven 

to result in low yield, multiple side products, extremely difficult separation procedures, and low 

reproducibility.  An alternative approach utilizing a Sommelet reaction was established and 

successfully produced two functionalized aldehyde linkers, DMTA and DHTA.  Lastly, the one-

pot conversion of commercially available TA to DBTA was successfully demonstrated, providing 
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a third monomer for functionalized COF synthesis.  Both the solvothermal and the Sc(OTf)3 

catalyzed approaches were investigated for dimethoxy- and dihydroxy-functionalized COF-300, 

and despite testing a wide array of reaction conditions under both synthetic regimes, the products 

were consistently amorphous.  Employing different ratio of DMTA/TA and DHTA/TA for 

functionalized COF synthesis revealed that product crystallinity decreased as the ratio of the 

functionalized monomers increased, and at 80% DMTA or DHTA the product became completely 

amorphous, indicating that these functional pendant groups were responsible for the lack of 

crystallinity.  The synthesis of dibromo-functionalized COF-300 was conducted using DBTA, and 

again amorphous materials were obtained, suggesting that reaction site accessibility and steric 

hindrance, rather than the electron donating effects of the methoxy and hydroxy groups or the 

electron withdrawing effects of the bromide groups, resulted in the inability of the amorphous 

products to rearrange into a crystalline framework. 
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Chapter 5  
Alternative Approaches to the Modification and Synthesis of 3D Imine-linked 

COFs 

5.1  Abstract 

This chapter details three alternative approaches to the modification and synthesis of 3D 

imine-linked COFs.  Post-synthetic reduction of imine bonds to secondary amines employing 

sodium triacetoxyborohydride was explored.  Multi-phase synthesis of COF-300 utilizing dual-

phasic and tri-phasic interfacial synthesis as well as in situ aqueous extraction of scandium triflate 

was investigated.  Additionally, the high-pressure transformation of COF powder possessing low 

to no crystallinity via pellet pressing is found to result in pellets that exhibit improved crystallinity, 

and the impact of pressing conditions as well as synthesis conditions on pellet crystallinity was 

evaluated.   

 

5.2  Introduction  

A major issue that plagues 3D COFs is the relative narrow range of synthesis and 

functionalization techniques.  Synthetic methods are largely limited to the conventional 

solvothermal approach, despite recent demonstrations of ionothermal synthesis1, room 

temperature single crystal synthesis2, and scandium triflate (Sc(OTf)3) catalyzed synthesis as 

demonstrated in Chapter 3.  Examples of functionalization of 3D COFs, particularly those 
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constructed from imine linkages, remains sparse, and post-synthetic modification by embedding 

reactive functionalities into constituent monomers is the predominant method employed3.  In this 

regard, 3D COFs lag 2D COFs significantly, and developing alternative methods of synthesis and 

modification is key to advancing the field of 3D COFs. 

One modification method that was demonstrated in an imine-linked 2D COF was the 

reduction of the imine bonds to amides, which was found to alter the properties of the COF4.  This 

methodology should be wholly transferrable to imine-linked 3D COFs, and the amides could serve 

as an interface for further modification.  One example would be reaction with methacrylic 

anhydride to introduce double bonds, as shown in Figure 5.1.  The double bonds can then be 

utilized for a variety of applications, such as photopolymerization.  

 

Scheme 5.1. Functionalization of amides within the pores of COF-300 utilizing methacrylic 
anhydride. 

 

Many of the novel synthesis procedures that have been developed for 2D COFs, such as 

microwave synthesis5, flow synthesis6–8, and vapor-assisted synthesis9,10, are still awaiting 

adaptation to 3D COFs.  In particular, the Sc(OTf)3 catalyzed interfacial synthesis of an imine-

linked 2D COF was recently demonstrated11.  Interfacial synthesis could serve as a method to 



 173 

control or limit the availability of Sc(OTf)3 or monomers, slow reaction kinetics, and mediate the 

reaction equilibrium to avoid kinetic trapping and overcome the “crystallization problem”3.  

Similarly, aqueous extraction of excess Sc(OTf)3 from the reaction system could serve a similar 

function of limiting catalyst availability, a method that has been demonstrated for peptoid synthesis 

in this lab.  In addition, one of the key contributors to the “crystallization problem” is the lack of 

additional strong driving forces.  Compared to 2D COFs, whose self-assembly into crystalline 

structures is facilitated in part by the π-orbital overlap of stacking sheets, 3D COFs rely on only 

covalent interactions for rearrangement12,13.  As such, the application of additional driving forces 

for forming ordered structures such as high pressure has the potential for facilitating increased 

crystallinity. 

In this chapter, the reduction of imine bonds to amides in COF-300 is characterized.  The 

interfacial Sc(OTf)3 catalyzed synthesis of COF-300 is investigated in several different solvent 

systems and a number of different configurations.  The aqueous extraction of excess Sc(OTf)3 

from the COF-300 synthetic system is explored as an alternative to interfacial synthesis.  Lastly, 

the high-pressure processing of COF-300 and its corresponding impact on framework crystallinity 

is assessed. 

 

5.3  Experimental  

5.3.1 General Experimental Procedure 

All chemicals and reagents, unless specified, were purchased from commercial sources, 

including Fisher Scientific, Sigma-Aldrich, Alfa Aesar, and Oakwood Chemicals, and used as 

received without any further purification.  1H NMR spectra were recorded on a Varian Inova 500 
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instrument (500 MHz).  13C NMR spectra were recorded on a Varian MR400 instrument (400 

MHz).  Chemical shifts were measured in d (ppm) relative to residual solvent signals as internal 

standards (CDCl3: 7.24 for 1H, 77.23 for 13C; d6-DMSO: 2.49 for 1H).  X-ray Diffraction (XRD) 

spectra were collected using a Rigaku 600 Miniflex XRD instrument and a 5mm zero background 

sample holder.   

 

5.3.2 Reduction and Functionalization of Imine Bonds 

 

Scheme 5.2. Reduction of imine bonds in COF-300 (1). Reagents and conditions: a) 
NaBH(OAc)3, THF, 50°C. 

 

Reduced COF-300 (1).  Sodium triacetoxyborohydride (1.12 g, 5.25 mmol) was dissolved in 

tetrahydrofuran (50 ml), and COF-300 (75 mg, 0.525 mmol imine bonds) was added.  The mixture 

was stirred at 50°C for 48 h.  The reaction was quenched with saturated aqueous sodium 

bicarbonate solution (15 ml).  The solids were isolated by filtration, washed with saturated aqueous 

sodium bicarbonate solution and water, and dried in vacuo to afford reduced COF 1. 
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5.3.3 Multiphase Synthesis of COF-300 

5.3.3.1 Synthesis of COF-300 in Different Solvents 

 

Scheme 5.3. Synthesis of COF-300 (2) in different solvents.  Reagents and conditions: a) 
Sc(OTf)3, H2O, toluene/CHCl3/DCM. 

 

COF-300 (2).  A 48 ml “glass bomb” heavy wall pressure vessel was charged with tetrakis(4-

aminophenyl)methane (20 mg. 0.053 mmol), terephthalaldehyde (14.1 mg, 0.105 mmol), one of 

toluene/chloroform/dichloromethane (2.5 ml) and 42 µl of scandium triflate stock solution (0.2 M 

in acetonitrile, 0.084 mmol, 0.04 equiv. per amine).  The reactor was capped, sealed, and left at 

room temperature for 144 h to yield a yellow powder, which was isolated by centrifugation and 

immersed and washed with tetrahydrofuran to remove residual solvent and guest.  This was 

repeated several times until the solvent became colorless.  The product was then washed with 

acetonitrile and water and lyophilized to give 2 as a yellow powder.  
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5.3.3.2 Interfacial Synthesis of COF-300 

 

Scheme 5.4. Interfacial synthesis of COF-300 (2).  Reagents and conditions: a) Sc(OTf)3, H2O, 
EA. 

 

Interfacial synthesis of COF-300 (2).  Tetrakis(4-aminophenyl)methane (10 mg, 0.026 mmol) 

and terephthalaldehyde (7.05 mg, 0.053 mmol) were dissolved in 15 ml ethyl acetate by heating 

to 60°C and rigorous stirring.  The solution was gently deposited on top of aqueous Sc(OTf)3 

solution (0.03 M, 3 ml) in a 20 ml scintillation vial.  The reaction was left at room temperature for 

7 days to obtain a thin yellow layer at the interface of the two phases.  
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5.3.3.3 COF-300 Synthesis Utilizing Extraction of Scandium Triflate 

 

Scheme 5.5. Synthesis of COF-300 (2) utilizing extraction of Sc(OTf)3.  Reagents and 
conditions: a) MeCN/CHCl3, Sc(OTf)3, H2O, 50°C. 

 

Synthesis of COF-300 (2) utilizing extraction of Sc(OTf)3.  Tetrakis(4-aminophenyl)methane 

(10 mg, 0.026 mmol) was dissolved in chloroform (15 ml) by heating and stirring.  To the solution, 

terephthalaldehyde (7.05 mg, 0.053 mmol), scandium triflate (51.7 mg, 0.105 mmol), and 

acetonitrile (15 ml) were added, and the solution was stirred at 50°C for two hours.  The reaction 

was extracted with water to remove the scandium triflate, transferred to a “glass bomb” heavy wall 

pressure vessel and sealed, and subsequently heated to 50°C overnight.  The reaction was extracted 

with water (150 ml) and brine solution (50 ml), and the yellow powder was isolated by 

centrifugation, washed with chloroform and acetonitrile, and dried by lyophilization. 
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5.3.4 High Pressure Transformation of COF-300 

 

Scheme 5.6. Synthesis of COF-300 (2) for high pressure transformation. Reagents and 
conditions: a) Sc(OTf)3, H2O, 1,4-dioxane. 

 

Synthesis of COF-300 (2) for high pressure transformation.  A 48 ml “glass bomb” heavy wall 

pressure vessel was charged with tetrakis(4-aminophenyl)methane (80 mg. 0.21 mmol), 

terephthalaldehyde (56.4 mg, 0.42 mmol), 1,4-dioxane (10 ml), water (1.2 m, 79 equiv. per amine) 

and 168 µl of scandium triflate stock solution (0.2M in acetonitrile, 0.0336 mmol, 0.04 equiv. per 

amine).  The reactor was capped, sealed, and heated to 50°C for 72 hours to yield a yellow powder.  

The solvent was removed under reduced pressure to give 2 with low crystallinity containing 

Sc(OTf)3. 

 

High pressure transformation of COF-300.  The previously synthesized low crystallinity COF-

300 containing Sc(OTf)3 was placed in a pellet press.  The powder was pressed at high pressures 

up to 10 metric tons, and elevated temperatures of 150°C were applied to certain samples.  The 

high pressure was maintained for between 30 min and 5 days to obtain COF-300 pellets.  
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5.4  Results and Discussion 

5.4.1 Reduction and Functionalization of Imine Bonds 

The reduction of imine bonds in COF-300 was conducted utilizing sodium 

triacetoxyborohydride, a common imine reduction agent, following the procedures outlined in 

Scheme 5.2.  FTIR characterization of the product, shown in Figure 5.1, revealed that reduction of 

imine bonds in COF-300, as the FTIR spectrum of the reduced COF-300 remains identical to that 

of the precursor COF-300.  A second attempt at this reduction of the product from the first 

reduction reaction again did not produce tangible changes in the observed functional groups by 

FTIR.  As such, this functionalization approach was not pursued further. 

 

Figure 5.1. Comparison of FTIR spectra of normal COF-300, reduced COF-300, and twice-
reduced COF-300. 
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5.4.2 Multiphase Synthesis of COF-300 

5.4.2.1 Solubility and Synthesis Testing 

For interfacial imine-linked 3D COF synthesis, there were two major considerations for 

solvent selection: 1) solubility of tetrakis(4-aminophenyl)methane (TAPM), whose bulky nature 

rendered its solubility poor in many common organic solvents; 2) immiscibility with water, 

necessary for the phase separation in interfacial synthesis.  The miscibility with water of common 

organic solvents is mostly known, so the focus of the solvent screening process revolved around 

TAPM solubility, which was tested for every available organic solvent.  The results are shown in 

Table 5.1.  As expected, the general solubility of TAPM is quite poor and most of the solvents 

could not dissolve even a small quantity of TAPM.  1,4-dioxane, which is the solvent of choice of 

the synthesis of COF-300 and many other imine-linked 3D COFs, and acetonitrile were able to 

dissolve TAPM after rigorous mixing and leaving overnight.  Unfortunately, 1,4-dioxane and 

acetonitrile are both miscible with water.  Chloroform and ethyl acetate dissolved a small amount 

of TAPM upon heating and possess poor miscibility with water.  No other solvents could dissolve 

TAPM to an observable extent.  As such, chloroform and ethyl acetate were selected for further 

interfacial experimentation.   

 

 

 

 

 

 

 



 181 

Table 5.1. Solubility of tetrakis(4-aminophenyl)methane in common organic solvents. 

Solvent Dissolved? 
1,4-dioxane Overnight 
Acetonitrile Overnight 

Chlorobenzene No 
Chloroform Heated 

Dichloromethane No 
Diethyl ether No 
Ethyl acetate Heated 

Hexanes No 
Mesitylene  No 

Toluene No 
 

5.4.2.2 Interfacial Synthesis 

Chloroform and ethyl acetate were determined to be suitable candidates for interfacial 

synthesis owing to their low miscibility with water and ability to dissolve some TAPM at elevated 

temperatures.  In addition, since the effectiveness of the 4:1 v/v 1,4-dioxane/mesitylene mixture 

was demonstrated for the interfacial synthesis of imine-linked 2D COFs11, this solvent system was 

also employed for interfacial synthesis of 3D COFs.  A summary of the solvent systems deemed 

suitable for interfacial synthesis is shown in Table 5.2. 

 

Table 5.2. Solvent systems selected for interfacial synthesis and their water miscibility. 

Solvent System Water Miscibility 
1,4-Dioxane/Mesitylene (4:1) Partial 

Ethyl acetate Poor 
Chloroform Poor 

 

For each solvent system, a simple dual-phase system in which TAPM and TA were 

dissolved in the organic phase and the scandium triflate (Sc(OTf)3) was dissolved in the aqueous 
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phase would be conducive for interfacial synthesis, as illustrated in Figure 5.2.  The monomer 

solutions were concentrated to increase availability at the interface, and Sc(OTf)3 concentration 

was varied across a range of values.  In addition, each interfacial synthesis was conducted in two 

approaches, a static approach in which the heavier phase was added first, and the lighter phase 

gently layered on top, and a phase diffusion approach in which the heavier phase was added second 

and slowly diffused through the lighter phase to reach the bottom to assess the impact of forming 

the interface more gradually.  Summaries of static and phase diffusion dual-phase interfacial 

syntheses can be found in Table 5.3 and Table 5.4, respectively.  Additionally, several heated 

interfacial syntheses were carried out utilizing the ethyl acetate system to assess the impact of 

elevated temperatures, as summarized in Table 5.5.  All syntheses were conducted for a minimum 

of one week and were conducted at room temperature except those listed in Table 5.5. 

 

 

Figure 5.2. Illustration of dual-phase interfacial COF-300 synthesis setups utilizing a) 
chloroform; b) ethyl acetate, and c) dioxane/mesitylene as the organic phase.  
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Table 5.3. Summary of static dual-phase interfacial syntheses of COF-300. 

Solvent 
Sc(OTf)3 (aq) 
Concentration 

(mM) 

Water 
Volume 

(ml) 

Moles of 
Sc(OTf)3 

Sc(OTf)3 
Amount 

(equiv. per 
amine) 

Observation 

Ethyl acetate 5 3 1.5E-05 0.143 Yellow sheet  
Ethyl acetate 10 3 3.0E-05 0.285 Yellow sheet 
Ethyl acetate 20 3 6.0E-05 0.571 Yellow sheet 
Ethyl acetate 30 3 9.0E-05 0.856 Yellow sheet 
Ethyl acetate 50 3 1.5E-04 1.427 Yellow sheet 
Ethyl acetate 80 3 2.4E-04 2.283 Yellow sheet 
Ethyl acetate 100 3 3.0E-04 2.854 Yellow sheet 
Chloroform 10 3 3.0E-05 0.285 Yellow sheet 
Chloroform 30 3 9.0E-05 0.856 Yellow sheet 
Chloroform 50 3 1.5E-04 1.427 Yellow sheet 
Chloroform 80 3 2.4E-04 2.283 Yellow sheet 

Dioxane/Mesitylene 0.3 0.375 1.1E-07 0.001 Gelling in 
aqueous phase 

Dioxane/Mesitylene 1.4 0.375 5.3E-07 0.005 Gelling in 
aqueous phase 

Dioxane/Mesitylene 2.8 0.375 1.1E-06 0.010 Gelling in 
aqueous phase 

Dioxane/Mesitylene 5.6 0.375 2.1E-06 0.020 Gelling in 
aqueous phase 

Dioxane/Mesitylene 11.2 0.375 4.2E-06 0.040 Gelling in both 
phases 

Dioxane/Mesitylene 16.8 0.375 6.3E-06 0.060 Gelling in both 
phases 

Dioxane/Mesitylene 0.0 3 1.1E-07 0.001 Nothing 
Dioxane/Mesitylene 0.2 3 5.3E-07 0.005 Yellow sheet 
Dioxane/Mesitylene 0.7 3 2.1E-06 0.020 Yellow sheet 
Dioxane/Mesitylene 2.1 3 6.3E-06 0.060 Yellow sheet 
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Table 5.4. Summary of dual phase interfacial syntheses of COF-300 utilizing phase diffusion. 

Solvent 
Sc(OTf)3 (aq) 
Concentration 

(mM) 

Water 
Volume 

(ml) 

Moles of 
Sc(OTf)3 

Sc(OTf)3 
Amount 

(equiv. per 
amine) 

Observation 

Ethyl acetate 5 3 1.50E-05 0.143 Yellow sheet 
Ethyl acetate 10 3 3.00E-05 0.285 Yellow sheet 
Ethyl acetate 20 3 6.00E-05 0.571 Yellow sheet 

Ethyl acetate 30 3 9.00E-05 0.856 
Black sheet that 

collapsed 

Ethyl acetate 50 3 1.50E-04 1.427 
Black sheet that 

collapsed 

Ethyl acetate 80 3 2.40E-04 2.283 
Black sheet that 

collapsed 
Dioxane/Mesitylene 0.3 0.375 1.05E-07 0.001 Yellow sheet 
Dioxane/Mesitylene 1.4 0.375 5.26E-07 0.005 Yellow sheet 
Dioxane/Mesitylene 5.6 0.375 2.10E-06 0.020 Yellow sheet 
Dioxane/Mesitylene 16.8 0.375 6.31E-06 0.060 Yellow sheet 

 

Table 5.5. Summary of heated dual-phase interfacial syntheses of COF-300. 

Solvent Sc(OTf)3 (aq) 
Concentration (mM) 

Water 
Volume (ml) 

Moles of 
Sc(OTf)3 

Sc(OTf)3 Amount 
(equiv. per amine) 

Ethyl acetate 5 6 0.00003 0.04 
Ethyl acetate 10 6 0.00006 0.07 
Ethyl acetate 20 6 0.00012 0.14 

 

For all of the syntheses listed in Table 5.3-Table 5.5, the trials which produced gelling or 

a thin sheet at the interface were characterized by XRD, and unfortunately these products were 

consistently amorphous across the entire range of solvents, Sc(OTf)3 concentrations, and 

temperatures.  The representative XRD spectra shown for the ethyl acetate system in Figure 5.3 

and for the chloroform system in Figure 5.4, are completely flat, with not even a hint of a peak.  

Additionally, many of the trials in dioxane/mesitylene resulted in gelling in the aqueous phase or 

both phases, attributable to the miscibility between the aqueous and organic phases that provided 
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ample availability of water and Sc(OTf)3 throughout the organic phase, thus satisfying all of the 

reaction conditions necessary for imine-linked network formation away from the interface.  This 

was in stark contrast to the literature report for interfacial synthesis of 2D COFs, which stated that 

a crystalline COF thin film formed cleanly the interface between these two phases11.   

 

 

Figure 5.3. Representative XRD spectra of COF-300 interfacially-synthesized employing 
ethyl acetate as the organic layer in a dual-phase system.  
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Figure 5.4. Representative XRD spectra of COF-300 interfacially-synthesized employing 
chloroform as the organic layer in a dual-phase system.  

 

To better utilize the the relatively high solubility of TAPM in dioxane and circumvent the 

lack of clearly defined interface, a tri-phase system was designed, as shown in Figure 5.5, the first 

organic layer consisted of TAPM dissolved in a 4:1 v/v dioxane/mesitylene mixture, and the 

second organic layer was a solution of TA in chloroform.  A thin aqueous layer containing 

Sc(OTf)3 separated the two organic layers, forming a tri-phase system in which the expected 

mixing of dioxane/mesitylene and water would lead to the presence of all necessary reaction 

components (TAPM, TA, Sc(OTf)3, and water) at the water-chloroform interface.  The trials were 

performed at room temperature across a range of Sc(OTf)3 concentrations and several different 

aqueous layer thicknessesfor one week, as summarized in Table 5.6.  A yellow sheet at the water-
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chloroform interface was obtained in all syntheses, but as highlighted by the representative XRD 

spectra in Figure 5.6, the products were once again consistently amorphous. 

 

 

Figure 5.5. Illustration of tri-phase interfacial COF-300 synthesis setup. 

 

Table 5.6. Summary of tri-phase interfacial syntheses of COF-300. 

Sc(OTf)3 (aq) 
Concentration 

(mM) 

Water 
Volume (ml) 

Moles of 
Sc(OTf)3 

Sc(OTf)3 Amount 
(equiv. per 

amine) 
Observation 

1.1 0.1 1.05E-07 0.001 Yellow sheet 
5.3 0.1 5.26E-07 0.005 Yellow sheet 

21.0 0.1 2.10E-06 0.020 Yellow sheet 
63.1 0.1 6.31E-06 0.060 Yellow sheet 
1.8 0.3 5.26E-07 0.005 Yellow sheet 
0.5 1 5.26E-07 0.005 Yellow sheet 
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Figure 5.6. Representative XRD spectra of COF-300 interfacially-synthesized employing the 
tri-phase system.  

 

5.4.2.3 Scandium Triflate Extraction 

Extraction of Sc(OTf)3 from COF-300 synthesis was initially performed utilizing 

chloroform, which is more hydrophobic than ethyl acetate, following the procedures outlined in 

Scheme 5.5, which yielded only amorphous material.  It was hypothesized that the high 

hydrophobicity of chloroform was a hindrance rather than a boon, resulting in insufficient water 

content, which was identified as a crucial component of imine-linked 3D COF synthesis in Chapter 

3.  In contrast, ethyl acetate is partially miscible with water, and could be a promising alternative 

to provide sufficient water after the extraction.  Utilizing the ternary phase diagram in Figure 5.7, 

an extraction system for ethyl acetate was designed such that the solvent system would separate 
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into two heterogeneous phases, one water phase rich to be extracted away and one water poor 

phase to remain as the reaction solvent.  Unfortunately, several attempted reliably produced 

amorphous products, as shown by the representative XRD spectra in Figure 5.8. 

 

 

Figure 5.7. Ternary phase diagram for ethyl acetate/acetonitrile/water and 
chloroform/acetonitrile/water systems at 20°C14.  
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Figure 5.8. Representative XRD spectra of COF-300 synthesized via the extraction of 
Sc(OTf)3. 

 

5.4.3 High Pressure Transformation of COF-300 

COF samples with low or no observed crystallinity were prepared following the procedures 

outlined in Scheme 5.6, and subsequently subject to an array of pressures, temperatures, and 

processing durations on a pellet press.  The crystallinity of the obtained pellets was characterized 

by XRD and compared to the spectrum of COF-300 in Figure 5.9.  The application of high-pressure 

processing revealed peaks of varying height and width, but consistently at angles matching those 

of the peaks in the COF-300 spectrum, suggesting that some extent of crystallinity had been 

introduced into these pellets. 
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Figure 5.9. XRD spectra of COF pellets processed at various conditions compared to COF-
300. 

 

As the pellets characterized in Figure 5.9 were processed at quite different conditions but 

produced XRD spectra that exhibited similar peak positions, it was unclear whether pressing 

conditions exerted an impact on the crystallinity of the pellet.  The similarity of the two spectra in  

Figure 5.10 and Figure 5.11, which show comparison of the same COF samples processed at 

different pressing conditions, suggest that varying pressure, temperature, and/or pressing duration 

exerts no effect on the crystallinity of the obtained COF pellet. 
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Figure 5.10. Comparison of XRD spectra of the same COF sample pressed at 5 metric tons 
of pressure for 30 minutes and overnight. 
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Figure 5.11. Comparison of XRD spectra of the same COF sample pressed at 2 metric tons 
of pressure and 150°C for 5 days and 10 metric tons of pressure and room temperature for 
2 hours. 

 

Additionally, the reversibility of the observed crystallinity changes was investigated by 

repeatedly pressing and grinding up the same COF sample, and the crystallinity of the pellets and 

powders were characterized by XRD and are shown in Figure 5.12.  The crystallinity imbued by 

pressing the powder into a pellet was not permanent and grinding the pellet into powder reverted 

it completely to its original amorphous state.  The results of a second cycle of pellet pressing and 

grinding produced results consistent with the first cycle.  The only literature report of pellet 

pressing of COFs was focused on 2D COFs and found that directional orientation of the 2D COF 

pellets relative to the X-ray beam affected the XRD spectra15.  The authors also conducted a single 
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trial on a 3D COF, and found that pressing a crystalline 3D COF removed all traces of crystallinity, 

which is directly opposite what has been observed here.  Nevertheless, the reversibility of the 

crystallinity changes displayed in Figure 5.12 suggest the possibility that the pellet pressing may 

be imparting some form of directional or orientational change in the structure of the COF pellet 

compared to the powder that is conducive for showing up in XRD characterization. 

 

 

Figure 5.12. Comparison of XRD spectra of the same COF sample pressed into pellet and 
ground up repeatedly. 

 

As described in the Experimental Procedures, the COF powders utilized for pellet press 

processing retained their the Sc(OTf)3 during post-synthesis work-up as a means to imbue 

additional driving forces for rearrangement during pellet pressing.  As such, the amount of 
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Sc(OTf)3 could also influence the crystallinity of the pellets.  COF samples synthesized with 

different Sc(OTf)3 loading were subject to pellet pressing, and the XRD spectra of the obtained 

pellets are shown in Figure 5.13.  There does not seem to be an obvious correlation between 

Sc(OTf)3 loading and the shape of the resultant XRD spectrum. 

 

Figure 5.13. Comparison of XRD spectra of COF-300 pellets pressed from amorphous 
powder containing different amounts of Sc(OTf)3. 

 

5.5  Conclusions 

The reduction of the imine bonds in COF-300 to secondary amines was explored as an 

alternative method of functionalizing COF-300, but unfortunately the successful reduction of the 

imine bonds could not be confirmed by FTIR after repeated reduction reactions.  The multiphase 
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synthesis of COF-300 was extensively investigated as an alternative synthetic method.  Dual-phase 

interfacial syntheses utilizing chloroform, ethyl acetate, and dioxane/mesitylene as well as a 

dioxane/mesitylene-water-chloroform tri-phase system were attempted, and extraction of 

Sc(OTf)3 was also shown.  Unfortunately, all of these efforts ultimately led to amorphous products 

with no hint of crystallinity.   

The high-pressure transformation of amorphous frameworks by pellet pressing was also 

investigated, and it was found that varying the pressure, temperature, and duration at which the 

pressing occurred did not impact pellet crystallinity, and that pellet pressing and grinding the pellet 

into powder was a reversible process.  As such, it was theorized that pellet pressing imparted some 

form of orientation change in the pellet compared to the powder that revealed crystalline peaks in 

the XRD spectra.  In addition, the effect of Sc(OTf)3 loading in the amorphous powder on 

crystallinity of the pellet was assessed, and no direct correlation between the two factors was 

observed. 
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Chapter 6  
Concluding Remarks and Future Directions 

6.1  Summary of Research 

Three-dimensional (3D) covalent organic frameworks (COFs) possess huge potential for a 

variety of applications due to their unique combination of crystalline and organic traits compared 

to conventional nanoporous materials such as zeolites and exceptionally high internal surface areas 

and pore sizes compared to two-dimensional (2D) COFs1.  Unfortunately, the challenges in 3D 

COF development, namely the “crystallization problem”, deficient systematic understanding, 

limited diversity in synthetic approaches, and dearth of functionalization and application have 

significantly hindered the progress in the field compared to that of 2D COFs.  Therefore, this 

dissertation focused on addressing these hurdles through the development of a novel synthetic 

method utilizing an alternative catalyst addressed the crystallization problem and improved 

fundamental understanding of COF synthesis, investigation of functionalization and modification 

of 3D COFs for future applications, and exploration of alternative methods of synthesis and 

modification. 

The synthesis of 3D COFs has been an opaque process since such the first reports of such 

structures2,3, and subsequent investigations of 3D COFs mostly followed the solvothermal 

approach from these earlier reports that were mostly established empirically with no deeper 

insights into the mechanisms, kinetics, or equilibrium of the reactions.  In Chapter 2, tetrakis(4-

aminophenyl)methane (TAPM), the amine monomer that many imine-linked 3D COFs are 
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constructed from, as well as tetrakis(4-formylphenyl)methane (TFPM), the tetra-aldehyde analog 

of TAPM, were successfully synthesized.  An improved degassing procedure was developed for 

solvothermal synthesis that allowed simple degassing, vessel sealing, and product retrieval without 

destroying the reaction vessel utilizing heavy wall glass pressure vessels and reverse septum 

sealing.  Utilizing this technique, the solvothermal syntheses of COF-300 and COF-320 were 

successfully conducted, providing frameworks with comparable characteristics as those reported, 

which was confirmed by powder X-ray diffraction (PXRD), Fourier transform infrared 

spectroscopy (FTIR), and scanning electron microscopy (SEM) characterization3,4.  The synthesis 

of a novel COF constructed from TAPM and TFPM was explored.  COF-300, as an archetypal 

imine-linked 3D COF, would serve as the platform of subsequent synthesis and functionalization 

studies in later chapters.  The insights gained and difficulties encountered from solvothermal 

synthesis informed later efforts to develop alternative methods of synthesis.  

3D COFs suffer extensively from the “crystallization problem”, which states that the 

constituent species of the system quickly react and form strong covalent bonds owing to fast 

kinetics and lack the driving force towards bond breakage and mobility for rearrangement 

necessary to self-assemble into the desired crystalline structure5.  In addition, little fundamental 

understanding has been offered for the synthesis of 3D COFs.  In Chapter 3, an alternative method 

of synthesis for imine-linked 3D COF-300 was developed utilizing scandium triflate (Sc(OTf3), a 

significantly more effective catalyst for imine formation and exchange than the acetic acid that 

was used in solvothermal synthesis.  A systematic investigation of relevant reaction parameters 

temperature, Sc(OTf)3 loading, and water content identified the ideal combination of reaction 

conditions at each temperature for optimal product crystallinity, demonstrated the capability of 

synthesizing highly crystalline COF-300 at room temperature, and elucidated the role of these 
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parameters on the reaction equilibrium and product crystallinity.  In addition, the degassing 

procedure in the established solvothermal synthesis method was demonstrated to be wholly 

unnecessary.  The Sc(OTf)3 catalyzed synthesis method and insights gained in this chapter will 

serve to inform future studies in the space of imine-linked 3D COFs. 

One advantage COFs offer over conventional nanoporous materials is chemical tunability 

and structural diversity.  As the entire structure is an organic polymer, chemistry can be applied to 

the COF structure to modify its properties and characteristics according to the intended application.  

The most common method of alteration is post-synthetic modification (PSM) of the COF backbone 

to introduce desired features; however, the backbones of most COFs such as COF-300 lack the 

reactive sites needed to easily conduct PSM.  As such, embedding these reactive sites into the 

constituent monomers prior to COF synthesis has found practical utility in 2D COFs6–8, but has 

not seen extensive investigation in 3D COFs.  In Chapter 4, the synthesis of several functionalized 

aldehyde monomers was conducted utilizing a variety of chemistries.  n-Butyllithium (n-BuLi) 

chemistry proved impractical for this purpose, whereas a Sommelet reaction and bromination 

utilizing N-bromosuccinimide produced functionalized terephthalaldehyde monomers containing 

methoxy, hydroxy, and bromide functionalities.  These monomers were subsequently employed 

for functionalized COF-300 synthesis utilizing both the solvothermal and the Sc(OTf)3 catalyzed 

methods.  Unfortunately, no combination of reaction conditions and functionalized aldehyde was 

able to produce a crystalline framework.  Additionally, the protection of the hydroxy groups in 

2,5-dihydroxyterephthalaldehyde (DHTA) with the bulky tertbutyldimethylsilyl (TBDMS) 

protecting group was conducted to explore the reduction of interpenetration within the COF pores, 

but unfortunately the protection reaction did not proceed as anticipated.  The likely culprit 

responsible for the difficulties in assembling a crystalline framework and protecting the hydroxy 
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groups was the additional steric hindrance from the presence of pendant groups on the same phenyl 

ring.  

Compared to 2D COFs, which have been synthesized via a range of new methods such as 

microwave synthesis9, flow synthesis10–12, and vapor-assisted synthesis13,14, 3D COF syntheses 

have been limited to more conventional chemistry.  Therefore, expanding the 3D COF synthesis 

portfolio was imperative in advancing progress in the field to match its 2D counterpart.  In Chapter 

5, three alternative methods of synthesis and functionalization were explored.  The post-synthetic 

reduction of imines to amides in COF-300 was attempted, though FTIR analysis did not reveal any 

change in the imine functionalities present in COF-300.  The multiphase Sc(OTf)3 synthesis of 

COF-300 was investigated.  Four different organic solvents or solvent systems for interfacial 

synthesis were employed based on solubility and water miscibility, and a variety of conditions 

were examined.  Although thin films were obtained at the interface in many trials, they were 

consistently amorphous.  The extraction of excess Sc(OTf)3 from ethyl acetate and chloroform was 

performed as an alternative multi-phase synthesis method, but the product was once again 

amorphous.  Lastly, high pressure was applied to COF powder which were amorphous or 

moderately crystalline utilizing a pellet press, and the resultant pellets exhibited PXRD features 

that resembled peaks to various extents that were not previously present and matched well with 

the peak positions of COF-300.  This emergent crystallinity was reversible and disappeared when 

the pellet was ground into powder.  Additionally, there were no observable trends in the shapes of 

PXRD spectra of the pellets as a function of alterations in the pressing conditions or COF synthesis 

conditions. 

In conclusion, this dissertation has attempted to address the most pressing challenges facing 

3D COFs today.  The development of the Sc(OTf)3 catalyzed synthesis, which allows the synthesis 
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of COF-300 at room temperature, provides a much needed alternative to the conventional 

solvothermal method and unlocks potential applications which were not possible at reaction 

temperatures of 120°C.  The insights into how reaction parameters impact the equilibrium and 

framework crystallinity improves the fundamental understanding of 3D COF synthesis that is 

currently lacking, and this method should find broad applicability in the realm of imine-linked 3D 

COFs.  Subsequent attempts at synthesizing functionalized 3D COFs and alternative synthesis and 

modification methods, although unsuccessful, will as a baseline for future investigation.   

 

6.2  Future Work 

The research in this dissertation has advanced the progress of the field of 3D COFs and 

revealed new opportunities for investigation.  These potential future directions are briefly 

discussed in this section. 

In Chapter 2, the synthesis of imine-linked 3D COFs COF-300 and COF-320 were 

synthesized according to literature procedure, and improved degassing procedures were developed 

for the solvothermal synthesis method, establishing the imine-linked COFs that would be used for 

the subsequent chapters.  Aside from the imine linkage, there are several linkages that have been 

utilized for 2D COF construction that have yet to see similar usage for 3D COFs.  One such linkage 

is the azine linkage, which is formed by the reaction of a hydrazine with an aldehyde.  As the 

chemistry bears similarities to imine chemistry, the solvothermal approach utilizing acetic acid has 

been demonstrated to be conducive for crystalline 2D framework formation15.  A proposed 

pathway for synthesizing two variations of the hydrazine analog of TAPM can be found in Scheme 

6.1.  These tetra-hydrazines can subsequently be employed for the synthesis of the first azine-
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linked 3D COF, as shown in Scheme 6.2, and would propel the field of 3D COFs towards parity 

with 2D COFs. 

 

 

Scheme 6.1. Synthesis pathway for tetra-hydrazine monomers.  Reagents and condition: a) 
AlCl3/(COCl)2; b) heat; c) CH3OH; d) hydrazine hydrate, EtOH, reflux. 
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Scheme 6.2. Synthesis of azine-linked 3D COF utilizing tetra-hydrazine monomers.  

 

 

The Sc(OTf)3 catalyzed synthesis method for imine-linked 3D COFs developed in Chapter 

3 is a significant achievement, but its effectiveness has only been demonstrated for COF-300.  

Further investigation should be conducted into its utility for other imine-linked 3D COFs such as 

COF-320 to demonstrate its general applicability to all imine-linked 3D COFs.  Additionally, this 

method should be more than just an alternative to solvothermal synthesis.  The significantly higher 

effective of Sc(OTf)3 compared to acetic acid may enable the synthesis of bulkier and more 

complex frameworks such as the tetraamine-tetraaldehyde COF briefly explored in Chapter 2, 

which previously suffered from kinetic trapping.  Elevated temperatures can be applied in 

conjunction with Sc(OTf)3 to facilitate more difficult syntheses. 

The synthesis of functionalized COF-300 in Chapter 4 was largely unsuccessful owing to 

steric hindrance of bulky pendant groups, which were uniformly attached to the same phenyl ring 

as the two aldehyde groups.  As such, extension of the linear aldehyde linker by adding an 

additional phenyl ring may ameliorate the steric hindrance enough to overcome the kinetic trapping 

observed in Chapter 4.  This was demonstrated in the only example of post-synthetic modification 

of a 3D COF, which utilized a biphenyl diamine linker with a single hydroxy group attached to 

each phenyl ring16.  Although the tert-butyldimethylsilyl (TBDMS) protection of the hydroxy 

groups was unsuccessful, the concept of interpenetration control is vital to fully realizing the 

potential of 3D COFs as crystalline, controllably porous materials.  Similar protection of a more 

extended linker may prove more successful due to reduced steric and electronic hindrance.  In 

addition, the extension of the linear linker would allow for the incorporation of bulkier protecting 

groups, such as the photolabile group shown in Scheme 6.3.  This group can be photolytically 
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cleaved post synthesis and its effectiveness in eliminating metal-organic framework (MOF) 

interpenetration has been demonstrated17.  More sophisticated approaches to control COF 

interpenetration might also be derived from techniques successfully implemented in MOF 

syntheses, such as temperature and monomer concentration control18, organic bond structure 

alteration19, and rational design of organic building blocks20. 

 

 

Scheme 6.3. Protection of hydroxy groups in extended aldehyde linker with photolabile 
protecting group.  
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