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ABSTRACT

In observational studies, treatment is often evaluated through its impact on survival time. How-

ever, when treatment initiation is time-dependent, existing methods are either inapplicable or yield

treatment effect parameters with unsatisfactory interpretation. In this dissertation we propose

methodology that evaluates the effect of time-dependent treatments in the context of survival func-

tions.

In Chapter II, we estimate the average treatment effect among the treated (ATT) in the setting

where the covariates remain constant over time. Since the counterfactual absence-of-treatment

experience is not observable for treated patients, we match (using prognostic scores) to similar yet-

untreated subjects to mimic this counterfactual experience. Novel components of the work include

the emphasis on big data sets; use of personalized nonparametric survival function estimators; and

the fact that, through grouping, survival curves (as opposed to patients) are ultimately matched.

In Chapter III, we propose alternative methods for the same general data structure as Chapter

II. It is assumed that the data set is much smaller, implying different techniques to leverage the

matching. Like Chapter II, methods proposed in Chapter III are applied to kidney transplant data.

In Chapter IV, we extend our method to the setting where adjustment covariates are time-dependent.

As a generalization of Chapter II, methods in Chapter IV use matching and in addition, they in-

corporate the partly conditional model for the pretreatment death hazard to adjust for the time-

dependent variables. Patients were matched on their residual survival time. Methods were then

applied to the deceased donor liver transplant data to quantify the transplant effect.

vi



CHAPTER I

Introduction

In observational studies, treatments are often evaluated by their perceived impact

on survival time. However, when treatment initiation is time-dependent, existing

methods are either inapplicable or yield treatment effect parameters with unsatisfac-

tory interpretations. In medical studies with a time-to-event response, the treatment

effect is usually measured by the hazard ratio (HR). We consider the setting wherein

treatment can be represented as a non-reversible binary (0/1) indicator function. In

this dissertation, we propose methodology that evaluates the effect of time-dependent

treatments in the context of survival functions.

In Chapter II, we consider a time-dependent treatment scenario where the adjust-

ment covariates remain constant over time; the effect of the treatment is quantified

by the average treatment effect among the treated (ATT). Since treatment is ini-

tiated after the start of follow-up, the ideal comparison is between a subject that

receives treatment at time s and the same subject under the scenario where the treat-

ment does not exist. Since the counterfactual absence-of-treatment experience is not

observable in practice for patients who receive treatment, our goal is to use other

‘similar’ subjects to mimic the treated subject’s counterfactual absence-of-treatment

experience. We use a conditional prognostic (risk) score to identify subjects with a

1
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similar death rate in the absence of treatment. Subjects that remain untreated at

time s are then matched to the subject treated at time s if their prognostic score

is within a given distance from the score of the treated subject. We then obtain

the post-treatment survival function for the treated patient by using the matched

patients. Finally, we estimated the post-treatment survival function for treated pa-

tients through properly weighted survival curves. The methods in Chapter II are

applied to data from Scientific Registry of Transplant Recipients to estimate the

effect of deceased-donor kidney transplantation (KT) on survival among waitlisted

end-stage renal disease (ESRD) patients.

In Chapter III, we also estimate the ATT of a time-dependent treatment, but

under somewhat different conditions. The proposed method in Chapter II essentially

estimates a survival curve for each matched set of yet-untreated patients, as such, this

method requires a very large sample size. When the sample size is not big enough,

the number of matched patients may not be sufficient to obtain sufficiently-precise

individualized survival curves for each treated patient. In Chapter III, we proposed

to use the conditional survival based on shared absence-of-treatment survival curves

to obtain the post-treatment survival for treated patients, instead of matching .

Similar to the matching method, we need to first obtain the pre-treatment prognostic

score; but, instead of matching, we group patients based on the prognostic score. If

we group patients finely enough, within each group patients would have very close

pretreatment hazard, such that patients in the same group should have very similar

marginal treatment-free survival probability. Finally, we estimate the post-treatment

survival by the marginal survival probability of the corresponding group of patients,

using the connection between marginal and conditional survival probability. Unlike

Chapter II, this method does not require big data and is computationally efficient.
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For the real- data application, we are intending to apply the proposed method on

the same SRTR data, as in Chapter II, but within Region, on the center-level data.

The purpose is to compare ATT for kidney transplantation between different centers

in Region 10. The motivation of using the center-level data is to demonstrate the

advantage of the methods in data sets that are not large.

In Chapter IV, we extend the method from Chapter II to a more complex set-

ting. In the previous setting, there were no time-dependent adjustment covariates.

However, many medical studies feature important time-dependent covariates that

affect both the survival time and treatment assignment. For example, in liver trans-

plantation, there are several time-dependent variables related to health status that

determines eligibility of receiving a transplant (the ‘treatment’ of interest). In such

scenarios, we should take these variables into account. Here, we propose to modify

the matching method proposed in Chapter II. In particular, matching is based on a

prognostic score derived from a partly conditional model; the score reflects residual

survival probability (i.e., after the index patient’s treated time). The partly condi-

tional model for pretreatment survival, explicitly accounts for the information from

the time-dependent adjustment covariates. The methods in Chapter IV are then

applied to the SRTR data to evaluate the effect for deceased donor liver transplan-

tation.

In summary, the proposed methods all deal with time-dependent treatment prob-

lems. Methods in Chapter II and Chapter III do not account for time-dependent

adjustment covariates; each has various advantage over the other. Methods in Chap-

ter IV was generalized from Chapter II and intended for more complex data with

time-dependent adjusted covariates.



CHAPTER II

Matching Methods for Evaluating the Effect of A
Time-dependent Treatment on the Survival Function

2.1 Introduction

Treatments are often evaluated through their perceived impact on survival time.

In medical studies with a time-to-event response, the treatment effect is usually

measured by the hazard ratio. We consider the setting wherein treatment can be

represented as a non-reversible binary (0/1) indicator function. This set-up has a

long history in survival analysis, dating back to the seminal analysis of the Stanford

heart transplant data [6]. When treatment is assigned at baseline, estimation of the

treated and untreated survival functions is straightforward. In the setting of our

interest, treatment is time-dependent and not randomized. Specifically, each patient

begins follow-up untreated with some patients eventually receiving treatment at some

time point after baseline. We will use the average treatment effect among the treated

(ATT) to quantify the treatment effect.

Our motivating example involves kidney transplantation. End-stage renal disease

patients typically begin renal replacement therapy on dialysis, with some later re-

ceiving a kidney transplant. Usually, the referral for transplantation is not random,

such that only medically suitable patients will be waitlisted for transplantation. Our

goal is to estimate the effect of deceased-donor kidney transplantation compared

4
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to dialysis (‘untreated’) with respect to the survival function and corresponding re-

stricted mean survival time (RMST; i.e, area under the survival curve out to a fixed

point). In our case, the ATT will be expressed as the difference between the aver-

age post-treatment survival function and the average survival function that would

have been observed (among the transplanted patients) had, contrary to fact, kidney

transplantation been unavailable. This counterfactual experience is unobservable in

practice, however.

A number of methods have been proposed for estimating the effect of a time-

dependent treatment. The most frequently used method is Cox regression with a

time-dependent treatment indicator. The output of such a model is typically the haz-

ard ratio (HR) comparing the treated versus untreated mortality hazards. However,

investigators are often more interested in a contrast between treated and untreated

survival functions, as opposed to the HR. The difference in survival functions is gener-

ally more interpretable than a HR, which is an instantaneous treatment effect, which

requires proportional hazards to be meaningful. A non-parametric contrast between

survival functions does not have the restriction of assuming proportionality between

the pre- and post-treatment hazards. In addition to standard Cox regression, var-

ious models have been proposed in the arena. However, most existing methods do

not express the treatment effect specifically in terms of survival functions. Marginal

structural models [27, 12, 13] and their history-adjusted versions [23] estimate av-

erage causal effect (ACE) of treatment through a so-called causal HR. Structural

nested failure time models [28, 21, 14] often use the accelerated failure time model

to measure the treatment effect, such that the causal effect is estimated in terms of

a ratio of mean survival times.

In order to compare each treated patient with their unobserved treatment-free



6

experience, in this report we will use prognostic score matching. Specifically, for

a patient receiving treatment at time T , we select matches from patients currently

alive, uncensored and untreated as of time T . The selected matches are intended

to be very similar to the treated patients in terms of pre-treatment prognosis, such

that their resulting untreated follow-up reflects what would have been observed for

the treated patient in the absence of treatment. Here we will consider one-to-many

matching since we want to construct a survival function for each set of matched

patients. After obtaining patient-specific treatment-absent survival curves, the final

treatment-absent survival curve is estimated through appropriate reweighting and

averaging patient-level survival curves. To obtain the ATT, we need to estimate the

restricted mean survival time for both the treatment and treatment-absent groups.

For the treated group, we will use the analog of the treament-absent side.

The remainder of this chapter proceeds as follows. In Section 2, we introduce the

notation and proposed methods. Section 3 presents simulation studies to demon-

strate the performance of the treatment effect estimator in finite sample sizes and

in various settings. An application to kidney transplantation is described in Sec-

tion 4 using data from Scientific Registry of Transplant Recipients (SRTR). Some

concluding remarks are offered in Section 5.

2.2 Proposed Methods

2.2.1 Notation and Set-up

We define the parameter of interest in the causal inference framework. Typically,

this framework hypothesizes the setting wherein each individual has two potential

outcomes, corresponding to the two possible treatment regimes (e.g., treated and

untreated). In the counterfactual world, let D1
i (Ti) denote the potential death time

(measured from 0) if patient i is treated at Ti. The counterfactual quantity D0
i (Ti) de-
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notes the potential death time if, contrary to fact, patient i never received treatment.

By definition, both D1
i (Ti) and D0

i (Ti) are greater than Ti and the counterfactuals

are meaningfully defined only for individuals that receive treatment. Let Zi be the

covariate vector, which is assumed not dependent on time. We assume that D0
i (Ti)

and D1
i (Ti) are conditionally independent given Ti and the observed covariates Zi,

known as the strong ignorability assumption [31].

Next, we define notation for the observed data. Let Di denote death time for

subject i. The obsevation time for subject i is denoted by Ui = Di ∧ Ci, with

a ∧ b = min {a, b}. The death indicator is given by ∆i = I (Di < Ci). The at-risk

indicator is defined as Yi (t) = I (Ui ≥ t) and the treatment indicator is defined by

∆T
i = I (Ti < Ui). We also define Y 1

i (t) = I(Ui ≥ Ti+t), which equals 1 when subject

i is at risk at time t and has already initiated treatment. Correspondingly, we define

the post-treatment counting process increment, dN1
i (t) = Y 1

i (t) dNi (Ti + t).

Since the treatment decision depends on Zi, and since some untreated patients

may never be eligible for treatment, the ATT may be a more desirable treatment

effect than the ACE in our setting. Our objective is hence to estimate the average

treatment effect among the treated. For patient i, let D̃1
i (Ti) denote the potential

remaining survival time following treatment assignment at Ti, such that D̃1
i (Ti) =

[D1
i (Ti) − Ti]+. Conversley, let D̃0

i (Ti) denote the potential remaining survival time

if the patient never receives treatment such that D̃0
i (Ti) = [D0

i (Ti) − Ti]+. The

post-treatment survival function of our interest can then be defined as,

Sji (t) = P
{
D̃j
i (Ti) > t|Ti,Zi,

}
, j = 0, 1

and the subject-specific treatment effect can be defined as

δi(t) = S1
i (t)− S0

i (t).
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Hence, the average causal treatment effect among treated is given by

δ(t) = S1(t)− S0(t),

where S1(t) and S0(t) are average survival functions,

Sj(t) = E
{
Sji (t)

}
,

with the expectation being with respect to the distribution of {T,Z|T < D}; i.e.,

the joint distribution of (T,Z) among patients with T < D. To avoid identifiability

issues, we need to have some restrictions pertaining to follow-up time. Specifically,

if we let τC be the maximum censoring time, then our inference is restricted to

T ∈ [0, τT ] with S1(t) estimable on t ∈ [0, τ1] for τT + τ1 ≤ τC .

We also define the restricted mean survival time on [0, L] with L < τ1 for both

groups as µ0(L) =
∫ L
0
S0(u)du and µ1(L) =

∫ L
0
S1(u)du, so that the difference in

restricted mean life is denoted as ∆(L) = µ1(L)−µ0(L). Note that ∆(L) =
∫ L
0
δ(t)dt.

Our proposed method will use the risk class of each individual for each of the

post-treatment and treatment-absent period, rather than use (Ti,Zi) explicitly. We

therefore define:

S1(t|Ti, Zi) = S1(t|G1
i , Ti)

S0(t|Ti, Zi) = S0(t|G0
i , Ti),

where G1
i and G0

i are the post-treatment and treatment-absent risk classes for treated

individual i. Hence, instead of estimating δ(t) = E {δi(t|Ti, Zi)}, we are instead

estimating the very closely related quantity δ(t) = E {δi(t|G1
i , G

0
i , Ti)}.

2.2.2 Estimation of S1(t)

Since Tk is subject to right censoring by Ck, the uncensored Tk represent a biased

sample of shorter values of time-to-treatment. A method that explicitly accounts
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for censoring is required here so that the resulting nonparametric estimator of S1(t)

represents an appropriate average over the {T,Z|T < D}. Such an average should,

naturally, not depend on the C distribution.

We use the Inverse Probability of Censoring Weighting (IPCW; [28]) to remedy

the issue of dependent censoring. Specifically, for patient i, the weight is given by

wi =
∆T
i

P (C > Ti|Ti,Z)
.

For untreated patients ∆T
i = 0 such that wi = 0. To estimate P (C > Ti|Ti,Z), we

assume the following Cox model for censoring,

λCi (t) = λC0 (t) exp
{
β

′

CZi

}
,

which can be fiited using standard partial likelihood ([5]). To estimate S1(t), we

focus on the prognostic score which is based on the hazard of death at time t given

treated at time Ti,

λ1i (t|Ti,Zi) = lim
dt→0

1

dt
P (t ≤ D1

i (Ti) < t+ dt|Zi, Ti, Ti < Di),

for which we assume the following post-treatment hazard model,

λ1i (t|Ti,Zi) = h
{
λ10(t), β

′

1Zi + βT
′g(Ti)

}
,(2.1)

such that λ1i (t|Ti,Zi) presents a semi-parametric function of h; e.g., Cox model ([5]),

additive hazards model ([1]), etc. Note that β1 is a vector of unknown parameters

and g(•) is a vector of functions such that the effect of T is parametrized; and λ10(t)

is the baseline hazard for post-treatment death.

For every treated patient we obtain the prognostic score β
′
1Zi +βTg(Ti) for post-

treatment death. Then we group patients based on (2.1), which can be done by

simply building grids or using empirical quantiles. Suppose eventually we have K
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groups of treated patients. Patients in the same group have similar prognostic scores,

such that we have approximately homogeneity with respect to post-treatment death

risk within each group k. In order to estimate S1(t), we employ the weighted survival

function

Ŝ1 (t) =

[
K∑
k=1

nk∑
i=1

wki

]−1
×

K∑
k=1

nk∑
i=1

wkiŜ
1
ki (t) ,

where wki = wiG
1
ik and G1

ik = I(patient i is in group k), with Ŝ1
ki (t) being the

estimated survival probability for the ith patient in group k. Here, the Ŝ1
ki(t) can

be based on Kaplan-Meier or Nelson-Aalen methods. Since patients in each group l

have approximate homogeneity with respect to post-treatment death risk, Ŝ1
ki (t) is

the same across all patients in group k. Therefore we, have

Ŝ1 (t) =

[
K∑
k=1

nk∑
i=1

wki

]−1
×

K∑
k=1

(
nk∑
i=1

wki

)
Ŝ1
k (t) ,

where Ŝ1
k (t) is the estimated survival probability for group k. After rearranging the

terms we have:

Ŝ1 (t) =

[
n∑
i=1

wi

]−1
×

n∑
i=1

wi

K∑
k=1

G1
ikŜ

1
k (t) .

2.2.3 Estimation of S0(t)

In this section, we will introduce a nonparametric estimator for S0(t). We begin

by defining some additional notation. Specifically, let Y 0
i (t) = I(Ui ∧ Ti ≥ t), an

indicator for being at risk and untreated as of time t, and define the following counting

process increment, dN0
i (t) = Y 0

i (t)dNi(t).

Since in practice we do not observe data to estimate P {D0(T ) > t|Z, T, T < D},

the basic idea is to first obtain a pertinent estimator Ŝ0
i (t) for each treated patient

with Ŝ0(t) then defined as an appropriately weighted average of Ŝ0
i (t) across all
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treated patients. As an analog to S1(t), we propose to use the following estimator,

Ŝ0 (t) =

(
n∑
i=1

wi

)−1 n∑
i=1

wiŜ
0
i (t) ,

where wi is inherited from each corresponding treated patient and hence has the

same definition as in Section 2.2.2.

Next, we will describe a method for estimating S0
i (t), which involves matching

methods to choose proper substitutions from the alive, uncensored and not-yet-

treated patients.

2.2.4 Matching Method

The basic idea of the matching method is to match not-yet-treated and at-risk

patients with similar pre-treatment hazard to each treated patient. Before matching,

we first calculate the pre-treatment prognostic score, which reflects the treatment-

free death hazard. The prognostic score is obtained through the working model,

λ0i (t|Zi) = λ00 (t) exp
{
β

′

0Zi

}
.

We compare treated patient, k, and a potential control, `, with respect to treatment-

free prognostic score through the difference in linear predictor

ψ`:k ≡ β
′

0(Z` − Zk).

Patient ` is a suitable match to treated patient k to the extent that ψ`:k is close

to 0. To avoid inappropriate matches, we add the restriction that ψ`:k needs to be

within a caliper, |ψ`:k| ≤ ε ,where ε is a predefined small number. Note that if we

use different models (e.g., additive hazards model) to obtain the prognostic score,

then the criteria to select matched patients is identical as the one for proportional

hazards model; i.e., the difference in linear predictors.
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By matching ‘qualified’ patients to each treated patients, we will obtain matched

sets for each of treated patient. Within each matched set, patients have approxi-

mate homogeneity with respect to pre-treatment death hazard and can be viewed

as the counterfactual cases corresponding to the treated patient to which they were

matched. Using the matched patients, we can estimate the survival probability

S0
i (t) for each treated patient i by using non-parametric estimators (Kaplan-Meier

or Nelson-Aalen).

2.2.5 Variance Estimator for Ŝ1(t)

In this subsection we first present heuristic argument regarding the asymptotic

behavior of Ŝ1(t). Asymptotic properties for matching-derived estimators are noto-

riously complex and difficult to establish. In order to maintain the original focus

of the dissertation, we therefore provide arguments that lead to a reasonably (if

not tightly) defensible variance estimator. As n goes to ∞, we let the number of

groups K go to ∞ as well, but at a slower rate than n such that the the number

of individuals in each group will also go to ∞. This being the case, individuals in

the same group can be viewed as identical with respect to pre-treatment death haz-

ard. If there is no censoring, by the definition of S1(t), Ŝ1(t) = n−1
∑K

k=1 nkŜ
1
k(t)/n.

When K → ∞, Ŝ1(t) = n−1
∑n

i=1 S
1
i (t) , by Uniform Weak Law of Large Numbers

(UWLLN), Ŝ1(t)→ S1(t) in probability for all S1(t).

When there is no censoring , wk�

{∑K
k=1wk�

}−1
can be viewed as a density function

corresponding to a certain function of (T,Z) given prognostic score β
′
PZi + βTTi

falling in kth interval. We denote this density as fφ(k) = wk�

{∑K
k=1wk�

}−1
. As

n → ∞, K → ∞, such that each interval of the prognostic score will be close to

a value on the domain. Thus, we can re-write fφ(k) as fφ(x) with x ∈ (−∞,∞).
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Therefore we have

(2.2) Ŝ1(t) =

∫ ∞
−∞

fφ(x)Ŝ1
x(t)dx =

∫ ∞
−∞

Ŝ1
x(t)dFφ(x),

where Fφ is the CDF of φ.

In order to derive the asymptotic distribution of Ŝ1(t) we need to define an addi-

tional set of notation. Let Yik(t) = G1
ikYi(t), dM

1
ik(t) = G1

ik {dNi(t)− Yi(t)dΛ1
k(t)}.

We also define ρ = E(∆T
i ) which can be estimated by n−1

∑n
i=1 ∆T

i . We then have

n1/2ρ1/2
{

Λ̂1
k(t)− Λ1

k(t)
}

= n1/2ρ1/2
n∑
i=1

ϕ1
ik(t),

where Λ̂1
j(t) is the estimator of post-treatment cumulated hazard function for group

k, and ϕ1
ik(t) =

∫ t
0
π−1(u)dM1

ik(u), where π(u) = P (U ≥ u). Under mild regu-

larity conditions, {ϕ1
1k(t), . . . , ϕ

1
nk(t)} are independent and identically distributed

mean 0 variates. As a result, n1/2
{

Λ̂1
k(t)− Λ1

k(t)
}

would be expected to converge

to asymptotically to a mean-zero Normal distribution with variance E [ϕ1
1k(t)

2] by

the Multivariate Central Limit Theorem. By applying the Functional Delta Method,

we obtain that n1/2
{
Ŝ1
k(t)− S1

k(t)
}

is also asymptotically mean-zero Normal with

variance estimator,

σ̂2
k(t) = n−1

n∑
i=1

{
Ŝ1(t)ϕ̂1

ik(t)
}2

,

where ϕ̂1
ik(t) =

∫ t
0
π̂−1(u)dM̂1

ik(u) and dM̂1
ik(u) = Gik {dN1

i (u)− Y 1
ik(u)dΛ1(u)} .

As discussed above, Ŝ1(t) will converge in probability to its limiting value S1(t) =∫∞
−∞ S

1
x(t)dFφ(x), where we define S1(t) =

∑K
k=1 fφ(k)S1

k(t).
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Next, we consider the asymptotic distribution of Ŝ1(t). We can write,

Ŝ1(t)− S1(t) =
K∑
k=1

fφ(k)
{
Ŝ1
k(t)− S1

k(t)
}

=
K∑
k=1

fφ(k)

{
−

nT∑
i=1

Sk(t)ϕ
1
ik(t)

}

=−
K∑
k=1

fφ(k)S1
k(t)

n∑
i=1

ϕ1
ik(t)

=−
n∑
i=1

K∑
k=1

fφ(k)S1
k(t)ϕ

1
ik(t)

=−
n∑
i=1

ϕ1
i•(t),

where ϕ1
i•(t) =

∑K
k=1 fφ(k)S1

k(t)ϕ
1
ik(t). Since ϕ1

i•(t) are also independent and mean-

zero, n1/2
{
Ŝ1(t)− S1(t)

}
converges in distribution to a zero-mean Normal with a

variance that can be consistently estimated by

σ̂2
1 = n−1

n∑
i=1

(ϕ̂1
i•)

2,

where we define

ϕ̂i•(t) =
K∑
k=1

fφ(k)Ŝ1
k(t)ϕ̂

1
ik(t).

2.2.6 Variance Estimator for Ŝ0(t)

As long as Ŝ0
i (t) is an consistent estimator (e.g. Kaplan-Meier or Nelson-Aalen es-

timator) for S0
i (t), Ŝ

0(t) be a weighted average of constant estimators and, therefore,

should converge in probability to S0(t), where S0(t) is defined as

S0(t) =

∫ ∞
−∞

fφ(x)S0
x(t)dx =

∫ ∞
−∞

S0
x(t)dFφ(x),(2.3)

with fφ(x) defined as in the previous section. A discretized version of (4.10) can be

expressed as S0(t) =
∑K

k=1 fφ(k)S0
k(t), where fφ(k) = wk•.
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Next we derive the limiting distribution for Ŝ0(t), we start with the limiting

distribution for Ŝ0
i (t).

For the matching method, we need to first define several new quantities. Let G0
ik =

I(G0
i = k). Consistently we define Y 0

ik = G0
ikY

0
i (t) and dM0

ik(t) = G0
ik {dN0

i (t)− Y 0
i (t)dΛ0(t)}.

Similar to the process for Ŝ1
k(t), analogous arguments leads to

n1/2
{
Ŝ0
k(t)− S0

k(t)
}

= −n1/2

n∑
i=1

S0
k(t)ϕ

0
ik(t)

asymptotically. Different from the treatment side where each subject k can appear

only once, a given subject i in the treatment-free side can be matched to sevreal

treated patients. As such, the asymptotically independent terms with respect to the

treatment-free side are given by

ϕ0
ik(t) =

∫ t

0

π−10 (u)dM0
ik(u),

such that n1/2
{
Ŝ0
k(t)− S0

k(t)
}

converges in distribution to a zero-mean Normal with

a variance that can be consistently estimated by

(σ̂0
k)

2(t) = n−1
n∑
i=1

{
Ŝ0
k(t)ϕ̂

0
ik

}2

,

where we define ϕ̂0
ik =

∫ t
0
π̂−1(u)dM̂0

ik(u) with dM̂0
ik(u) = G0

ik

{
dN0

i (u)− Y 0
i (u)dΛ̂0(u)

}
.

Similar to Ŝ1(t), Ŝ0(t)−S0(t) = −
∑n

i=1 ϕ
0
i• with ϕ0

i•(t) =
∑nT

k=1 fφ(k)S0
k(t)ϕ

0
ik(t).

Therefore n1/2
{
Ŝ0(t)− S0(t)

}
should then be asymptotically mean-zero Normal

with variance estimator,

σ̂2
0(t) = n−1

n∑
i=1

(ϕ̂0
i•)

2

where we define ϕ̂0
i•(t) =

∑nT

k=1 fφ(k)Ŝ0
k(t)ϕ̂

0
ik(t).

For the matching method, combining the results above, we can represent n1/2
{
δ̂(t)− δ(t)

}
=

n1/2
∑n

i=1 {ϕ1
i•(t)− ϕ0

i•(t)}, where {ϕ1
i•(t)− ϕ0

i•(t)} components are independent and
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identically distributed with mean 0. Note that the representation above accounts for

the possibility that patients may contribute follow-up on both the S0(t) and S1(t)

sides. The quantity n1/2
{
δ̂(t)− δ(t)

}
should converge asymptotically to a Normal

variate with mean 0 and a variance that can be consistently estimated by

σ̂2
δ (t) = n−1

n∑
i=1

{
ϕ1
i•(t)− ϕ0

i•(t)
}2
.

For computational convenience, we propose to use the bootstrap method to com-

pute the asymptotic variance, as the point estimators are fast to compute. We

evaluate the performance of bootstrap in the next section.

2.3 Simulation Studies

We conducted simulations to demonstrate the properties of the proposed method

in finite samples. The treatment time T was generated from an exponential distribu-

tion with hazard λT0 exp {βT1Z1 + βT2Z2} while treatment-free death times D0 were

generated as exponential with hazard λD0 exp {βD1Z1 + βD2Z2}. Here both Z1 and

Z2 are confounders, affecting both T and D0. Censoring times C were generated

from an exponential distribution with hazard λC0 exp {βC1Z1 + βC2Z2}. Times be-

tween treatment and death (D1− T )+ were generated from exponential distribution

with rate λ10 exp {β10Z1 + β11Z2 + β12T} , where we set λ10 = aλD0 , β10 = βD1 and

β11 = βD2, for various values as given below. Baseline covariates Z1 and Z2 were each

generated from a Uniform(-1, 1) distributions. if we denote the actual realized death

time as D, then for treated patients D = D1 = T + (D1 − T )+ and for untreated

patients D = D0. There were n = 2500 subjects in all simulation configurations,

with each data configuration replicated 500 times. To obtain the standard deviation

we generate 25 bootstrap data sets for each replicate.

In practice, we observe the minimum of T , D0 and C. In simulations, however, we
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always observe T , D0, (D1 − T )+ and C for all patients. True values of S1(t), S0(t),

δ(t) and ∆(L) were obtained using Monte-Carlo on these counterfactuals. Naturally,

for the purpose of computing Ŝ0(t), only [(D ∧ C ∧ T ), ND(D ∧ C ∧ T )] were used;

similarly, only [(D ∧C − T )+, N
D(D ∧C)] were used for subjects with (D ∧C > T )

for the purpose of computing Ŝ1(t). Hence, δ̂(t) and ∆̂(L) were, for each replicate,

only based on data that would in reality be observed.

After generating the data, prognostic scores representing pre-treatment history

were obtained from model λ0i (t|Zi) = λ00 exp {β00Z1 + exp β01Z2}. Subjects are

matched if | log(ψ`:k)| ≤ 0.05. For all simulations configurations we set τT = 10.

In the first set of simulations, we examine the bias, empirical standard devia-

tion and bootstrap standard error (BSE) of the proposed estimators with various

treatment effect under light censoring with λC0 = 0.015, where approximately 15%

of individuals get censored. We also compute 95% empirical coverage probability

(CP). We vary a from 0.8, 1 and 1.2 to change the treatment effect from mod-

erate, null to negative. The remaining parameters are set equal across the three

scenarios: λD0 = 0.05, λT0 = 0.03, βD1 = βT1 = βC1 = log 2, β12 = log 3/500 and

βD2 = βT2 = βC2 = log 3.

In the second set of simulations, we examine the properties of the proposed esti-

mators under moderate censoring. The parameter setting is same as the first set of

simulations except the censoring parameter was changed to λC0 = 0.02, which results

in approximately 30% censoring.

Results for the first and second set of simulations are shown in Table 2.1 and

Table 2.2, respectively. In both tables, the absolute bias of Ŝ1(t) Ŝ0(t) and δ̂(t)

range from 0.001 to 0.015. The biases of µ̂0(15), µ̂1(15) and ∆̂(15) were somewhat

bit larger but, considering the scale of these quantities, was still negligible. The
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BSE is generally close to the ESD, such that the empirical coverage probability was

around 0.95, except for S0(15). The estimation of S0(t) is more sensitive to the

censoring percentage the S1(t). The censoring percentage did not appear to effect

the results of Ŝ1(t), but the bias of Ŝ0(t) becomes more pronounced with larger

censoring percentages.

2.4 Application

We applied our proposed methods to estimate the effect of deceased-donor kidney

transplantation (KT) (j = 1) on survival in the absence of KT (j = 0) among wait-

listed end-stage renal disease patients. Data were obtained from Scientific Registry

of Transplant Recipients. The SRTR data system includes data on all donors, wait-

listed candidates, and transplant recipients in the United States, as submitted by

the members of the Organ Procurement and Transplantation Network (OPTN), and

has been described elsewhere. The Health Resources and Services Administration

(HRSA), U.S. Department of Health and Human Services provides oversight to the

activities of the OPTN and SRTR contractors.

The study population included n = 112, 901 patients aged ≥ 18 and listed be-

tween 01/01/2003 and 12/31/2013. Follow-up time begins at the date when patients

got listed and ends at earliest of death, loss to follow-up, or the end of the ob-

servation period (12/31/2013). Adjustment covariates for the λ0i (t) model included

height, weight, years on dialysis (prior to waitlisting), calender year of listing, al-

bumin, diabetes, hypertension, panel reactive antibiotics (PRA), age, angina, blood

type, symptomatic peripheral vascular disease (PVD), race, gender, calendar year of

transplant and Kidney Donor Risk Index (KDRI) [26].

In this application, we set τT and τ1 to 3 years and 5 years, respectively. A total
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Table 2.1: Simulation results for light censoring. ESD=empirical standard deviation;
BSE=bootstrapped standard error (based on 25 bootstrap samples); CP=empirical cov-
erage probability

Setting t Quantity True BIAS ESD BSE CP

Moderate 5 S1(t) 0.731 -0.002 0.022 0.021 0.93
treatment 10 0.554 -0.002 0.026 0.025 0.94

effect 15 0.431 0.001 0.025 0.025 0.95
5 S0(t) 0.678 0.004 0.013 0.014 0.98
10 0.486 0.008 0.018 0.018 0.93
15 0.364 0.012 0.020 0.020 0.88
5 δ(t) 0.054 -0.006 0.024 0.024 0.97
10 0.068 -0.010 0.029 0.028 0.92
15 0.067 -0.011 0.029 0.029 0.93
15 µ0(t) 9.096 0.086 0.198 0.200 0.92
15 µ1(t) 9.911 -0.019 0.271 0.263 0.94
15 ∆(t) 0.815 -0.105 0.300 0300 0.93

Null 5 S1(t) 0.680 -0.002 0.023 0.022 0.96
treatment 10 0.487 -0.001 0.026 0.025 0.93

effect 15 0.365 0.002 0.024 0.024 0.95
5 S0(t) 0.678 0.004 0.013 0.014 0.98
10 0.486 0.008 0.018 0.018 0.93
15 0.364 0.013 0.020 0.020 0.88
5 δ(t) 0.003 -0.006 0.024 0.024 0.96
10 0.001 -0.009 0.028 0.028 0.95
15 0.001 -0.010 0.028 0.029 0.93
15 µ0(t) 9.112 0.086 0.198 0.200 0.92
15 µ1(t) 9.123 -0.014 0.272 0.269 0.94
15 ∆(t) 0.011 -0.100 0.295 0.301 0.94

Negative 5 S1(t) 0.635 -0.003 0.024 0.023 0.96
treatment 10 0.431 -0.000 0.024 0.024 0.97

effect 15 0.310 0.004 0.023 0.023 0.94
5 S0(t) 0.678 0.004 0.013 0.014 0.99
10 0.486 0.008 0.018 0.018 0.93
15 0.364 0.012 0.020 0.020 0.88
5 δ(t) -0.043 -0.007 0.024 0.025 0.95
10 -0.055 -0.008 0.027 0.028 0.94
15 -0.054 -0.007 0.028 0.028 0.94
15 µ0(t) 9.108 0.086 0.198 0.200 0.92
15 µ1(t) 8.442 -0.008 0.269 0.266 0.94
15 ∆(t) -0.666 -0.094 0.291 0.300 0.95
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Table 2.2: Simulation results for moderate censoring. ESD=empirical standard deviation;
BSE=bootstrapped standard error (based on 25 bootstrap samples); CP=empirical cov-
erage probability

Setting t Quantity True BIAS ESD BSE CP
Moderate 5 S1(t) 0.731 -0.002 0.022 0.022 0.92
treatment 10 0.554 -0.001 0.024 0.025 0.95

effect 15 0.431 0.006 0.025 0.025 0.94
5 S0(t) 0.678 0.005 0.013 0.015 0.99
10 0.486 0.010 0.019 0.019 0.95
15 0.364 0.016 0.021 0.021 0.89
5 δ(t) 0.054 -0.007 0.025 0.025 0.97
10 0.068 -0.010 0.030 0.030 0.95
15 0.067 -0.011 0.030 0.031 0.93
15 µ0(t) 9.101 0.112 0.202 0.213 0.92
15 µ1(t) 9.908 0.004 0.262 0.269 0.92
15 ∆(t) 0.807 -0.108 0.313 0319 0.93

Null 5 S1(t) 0.680 -0.002 0.024 0.023 0.95
treatment 10 0.487 0.000 0.027 0.025 0.93

effect 15 0.365 0.006 0.025 0.025 0.94
5 S0(t) 0.678 0.005 0.013 0.014 0.99
10 0.486 0.001 0.019 0.019 0.95
15 0.364 0.015 0.021 0.021 0.86
5 δ(t) 0.003 -0.007 0.025 0.025 0.96
10 0.001 -0.010 0.030 0.030 0.93
15 0.001 -0.010 0.029 0.031 0.94
15 µ0(t) 9.107 0.106 0.204 0.211 0.91
15 µ1(t) 9.120 0.000 0.282 0.274 0.93
15 ∆(t) 0.013 -0.106 0.310 0.315 0.93

Negative 5 S1(t) 0.635 -0.004 0.024 0.024 0.96
treatment 10 0.431 0.001 0.025 0.025 0.96

effect 15 0.310 0.008 0.024 0.024 0.93
5 S0(t) 0.678 0.005 0.013 0.014 0.99
10 0.486 0.009 0.019 0.019 0.95
15 0.364 0.015 0.021 0.021 0.86
5 δ(t) -0.043 -0.008 0.026 0.026 0.96
10 -0.055 -0.008 0.028 0.029 0.94
15 -0.054 -0.007 0.029 0.030 0.95
15 µ0(t) 9.111 0.106 0.204 0.211 0.92
15 µ1(t) 8.437 0.008 0.276 0.275 0.95
15 ∆(t) -0.664 -0.098 0.304 0.315 0.94
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Figure 2.1: Analysis of SRTR Data (n=112,901) for 5-year post-transplant survival.

of 37,724 patients received KT (33.4%) and 41,453 deaths were observed. We set the

caliper width of prognostic score matching ε = 0.02.

The estimated survival curves on [0,5] year interval of the two groups are presented

in Figure 1, as well as the corresponding confidence band. We also magnify S1(t)

and S0(t) on the [0,1] year interval in Figure 2 such that the crossing of the survival

curves become more apparent.

Table 3 shows the estimates of S1(t), the average survival probability from the

time of transplant among patients received transplantation, and S0(t) intended to

represent the survival probability to which the transplanted patients would have been

observed in the absence of transplantation, and δ̂(t) = Ŝ1(t) − Ŝ0(t) and ∆̂(5) =
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Figure 2.2: Analysis of SRTR Data (n=112,901) for 1-year post-transplant survival.
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Table 2.3: Analysis of SRTR data (n=112,901): Evaluation of the effect on survival (and RMST)
of kidney transplantation.

t (year) Quantity Estimate BSE
1 S1(t) 0.943 0.001
3 0.875 0.002
5 0.793 0.002
1 S0(t) 0.924 0.001
3 0.762 0.002
5 0.616 0.002
1 δ(t) 0.018 0.001
3 0.113 0.002
5 0.176 0.003
5 µ1(t) 1625 days 2.387
5 µ0(t) 1468 days 2.280
5 ∆(t) 157 days 3.277

∫ 5

0
δ̂(t)dt. All quantities are estimated at 1, 3, 5 years with their corresponding

bootstrap standard error. We also presented the restricted mean lifetime at 5 years

for both groups µ0(t), µ1(t) and their contrast ∆(t). Based on the test of δ(t), there

are significant difference in survival probability between the two groups at all three

time points. Deceased donor kidney transplantation is significantly beneficial for

survival as the restricted mean survival time for transplant patients is approximately

5 months longer than that of matched waitlisted patients.

2.5 Discussion

In this report, we proposed methods to estimate the average causal effect among

the treated of a time-dependent treatment. In particular, the proposed treatment

effect contrasts post-treatment survival with the survival function that would apply

to treated patients had they, contrary to fact, not received treatment. To estimate

the survival of treated patients in the absence of treatment, we proposed a matching

method to create a group of patients that is considered as counterfactual version for

each treated patient and then properly average over survival functions. Heuristic

argument towards establishing asymptotic variances were provided. For computa-
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tional conveniences, a bootstrap method is employed to estimate the standard error.

The proposed methods were shown through simulations to work well in finite sample

sizes.

The proposed method is non-parametric in the sense that the assumed models

only contribute to the prognostic score used for matching. For the treatment effect,

we target directly at survival function and restricted mean lifetime, which is more

flexible compared to a hazard ratio. Due to the nature of non-parametric estimation,

the proposed methods do not require that pre- and post-treatment hazards are pro-

portional or have any particular relationship to each other. In addition, our methods

can handle big data sets, since the number of survival function estimators to average

over increases much slower than total sample size.

Another similar matching method is proposed by [18] where they first match pa-

tients and then pool the strata together. This method relies heavily on IPCW, which,

in conjunction with the required data augmentation, makes the method computa-

tionally burdensome in large data sets. Compared to [18], the proposed methods

only needs inverse weighting probability on each treatment time, (i.e. not a time-

dependent weight) which speeds up computing time considerably in big-data settings.

There are several existing methods related to those proposed. However, these

methods either do not target at the survival function, or do not estimate average

treatment effect among the treated. Structural nested failure time model assumed

g-estimation [29] measures the ratios of mean survival time and marginal structural

models [27] usually targets the hazard ratio. The time-dependent propensity score

matching proposed by Lu et al. [22]. also targets the hazard ratio. Obtaining survival

function from these methods is either difficult or impossible. In contrasting the

proposed method with time-dependent propensity score matching method or other
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sequential stratification method [32, 33], the proposed method also has advantage

in big datasets as rather than combining matched subjects and computing suvrival

function, we are estimating tons of survival functions with small sample size and

then combining them.

The proposed method makes use of the prognostic score to match yet-untreated

patients to each treated patient. As mentioned above, another viable alternative

would be propensity socre matching, i.e., matching on the probability of receiving

treatment [22]. A propensity score measures the patient-specific rate of treatment

assignment, given the covariates. Our goal, however,was to create a comparison

group that mirrored the treatment-free experience of a subject treated at time s. It

was therefore necessary to ensure that the event trajectories up until s were the same

between treated and control subjects, a property that the propensity score does not

preserve.

Due to the nature of matching method, proposed methods have the advantages of

handling covariates higher dimensions with greater robustness towards model mis-

specification. On the other hand, matching also relies on several assumptions such as

no unmeasured confounding and overlapping support between treated and untreated

groups. In the process of matching, caliper width is subject to change from data to

data. We need to ensure every treated subject has a sufficient number of matched

subjects and that the matched sets contain only subjects that are sufficiently similar.

One limitation of the proposed method is we only considered time-constant co-

variates, but in practice it is possible that time-dependent covariates exist which

may lead to violations of the ignorability assumption and bias the treatment effect.

There are very few existing methods [9] can estimate time-dependent treatment ef-

fect with time-dependent covariates, but these methods are usually hard to obtain
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survival functions and rely more on model assumptions. Although in the context

of kidney transplantation the issue of unmeasured time-dependent confounding may

not be so severe, time-dependent variables are common in other data applications,

for example, liver transplantation data where the rank on waiting list in the U.S. can

change dynamically depending on a patient’s health conditions. Moreover, as health

care systems become increasingly digitalized, longitudinal information will be more

available in increasing number of registry databases. Therefore a meaningful further

step will be to investigating estimating the same treatment effect in the presence of

time-dependent covariates. This challenge is addressed in Chapter IV.



CHAPTER III

Semiparametric Survival Methods for Evaluating the Effect
of A Time-dependent Treatment on the Survival Function

3.1 Introduction

We will present this method under the same framework of Method 1, as the

two methods target similar settings. We still consider kidney transplantation as a

motivating example. Our goal is to estimate the effect of kidney transplantation

compared to dialysis (“untreated”) with respect to the survival function and corre-

sponding restricted mean survival time (RMST; i.e, area under the survival curve out

to a fixed point). In our case, the ATT will represent the difference between the av-

erage post-treatment survival function and the average survival function that would

have been observed (among the transplanted patients) had, contrary to fact, kidney

transplantation been unavailable. This counterfactual experience is unobservable in

practice.

Methods proposed in Chapter II used matching to estimate the survival proba-

bility in the absence of treatment, among treated patients. Since treatment-absent

survival curves are essentially estimated, individually for each treated patient, the

methods will work best on big data sets. For smaller data sets, the estimation of

the matched-set-specific survival curves may be imprecise due to a smaller number

of available matches. In this chapter, we consider a conditional survival method that

27



28

targets the same causal estimand as in Chapter II, but is applicable to much smaller

sample sizes.

There have been a number of methods proposed for estimating the effect of a

time-dependent treatment effect. The most widely used quantity to measure the

effect size is the hazard ratio (HR). However, investigators are often more interested

in a contrast between treated and untreated survival functions as opposed to HR.

Moreover, a non-parametric contrast between survival functions does not have the

restriction of assuming proportionality between the pre- and post-treatment hazard

functions. In addition to standard Cox regression, various pertinent methods have

been proposed. However, most existing method do not express the treatment effect

specifically in terms of the survival function. Marginal Structural Models [27, 12, 13]

and their history-adjusted versions [23] estimate the average causal effect (ACE) of

treatment through the HR. Structural Nested Failure Time models [28, 21, 14] often

use the accelerated failure time model as a basis for estimating the treatment effect,

such that the causal effect is estimated in terms of a ratio of mean survival times.

In order to compare each treated patient with their unobserved treatment-free

experience, in this chapter we will use a conditional survival method. By grouping

the pre-treatment prognostic score for every patient, we obtain the corresponding

‘similar’ group of patients for each treated patient. Therefore the treatment-absent

survival curves can be estimated by conditional method on the group of qualified

patients. For the treated side, we will continue to use the method proposed in

Chapter II. The ATT will be defined in terms of the integral of the difference in two

survival curves, as in Chapter II.
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3.2 Methods

3.2.1 Notation

The notation for the set up om Chapter III will be the same as that of Chapter

II. We define the parameter of interest in the causal inference framework. In the

counterfactual world, let D1
i (Ti) denote the potential death time (measured from 0)

if patient i is treated at Ti. The counterfactual quantity D0
i (Ti) denotes the potential

death time if, contrary to fact, patient i never received treatment. By definition, both

D1
i (Ti) and D0

i (Ti) are greater than Ti and the counterfactuals are meaningfully

defined only for individuals that receive treatment. Let Zi be the covariate vector,

which is assumed to not be dependent on time. We assume that D0
i (Ti) and D1

i (Ti)

are conditionally independent given Ti and the observed covariates Zi, known as the

strong ignorability assumption [31].

Next, we define notation for the observed data. Let Di denote death time for

subject i. The obsevation time is denoted by Ui = Di ∧ Ci, with a ∧ b = min {a, b}.

The death indicator is given by ∆i = I (Di < Ci). The at-risk indicator is defined as

Yi (t) = I (Ui ≥ t) and the treatment indicator is defined by ∆T
i = I (Ti < Ui). We

also define Y 1
i (t) = I (Ui ≥ t, T < t), which equals 1 when subject i is at risk at time

t and has already initiated treatment. Correspondingly, we define the post-treatment

counting process increment, dN1
i (t) = Y 1

i (t) dNi (t).

Our target is to estimate the average treatment effect among the treated (ATT).

For patient i, let D̃1
i (Ti) denote the potential remaining survival time following treat-

ment assignment at Ti, such that D̃1
i (Ti) = [D1

i (Ti) − Ti]+. Conversely, let D̃0
i (Ti)

denote the potential remaining survival time if the patient never receives treatment

such that D̃0
i (Ti) = [D0

i (Ti) − Ti]+. The post-treatment survival functions of our
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interest can then be defined as,

Sji (t) = P
{
D̃j
i (Ti) > t|Ti,Zi,

}
, j = 0, 1

and the subject-specific treatment effect can be defined as

δi(t) = S1
i (t)− S0

i (t).

Hence, the average causal treatment effect among treated is given by

δ(t) = S1(t)− S0(t),

where S1(t) and S0(t) are average survival functions,

Sj(t) = E
{
Sji (t)

}
,

with the expectation being with respect to the distribution of {T,Z|T < D}; i.e.,

the joint distribution of (T,Z) among patients with T < D. To avoid identifiability

issues, we need to have some restrictions pertaining to follow-up time. Specifically,

if we let τC be the maximum censoring time, then our inference is restricted to

T ∈ [0, τT ] with S1(t) estimable on t ∈ [0, τ1] for τT + τ1 ≤ τC .

We also define the restricted mean survival time on [0, L] with L < τ1 as µj(L) =∫ L
0
Sj(u)du for j = 0, 1, so that the difference in restricted mean life is denoted as

∆(L) = µ1(L)− µ0(L); note that ∆(L) =
∫ L
0
δ(t)dt.

Since our proposed method is using the risk class of each individual in both post-

treatment and treatment-absent period, rather than use (Ti,Zi) explicitly, we define:

S1(t|Ti, Zi) = S1(t|G1
i , Ti)

S0(t|Ti, Zi) = S0(t|G0
i , Ti),

where G1
i and G0

i are the post-treatment and treatment-absent risk classes for treated

individual i. Hence, instead of estimating δ(t) = E {δi(t|Ti, Zi)}, we are instead

estimating the very closely related quantity δ(t) = E {δi(t|G1
i , G

0
i , Ti)}.
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3.2.2 Estimation of S1(t)

We will use the same estimation process for S1(t) as shown in Chapter II. Since Tk

is subject to right censoring by Ck, the uncensored Tk represent a biased sample of

shorter values of time-to-treatment. A method that explicitly accounts for censoring

is required here so that the resulting nonparametric estimator of S1(t) represents an

appropriate average over the {T,Z|T < D}. Such an average should, naturally, not

depend on the C distribution.

We use the Inverse Probability of Censoring Weighting (IPCW; Robins and Rot-

nitzky, 1992) to remedy the issue of dependent censoring. Specifically, the weight of

patient i is given by

wi =
∆T
i

P (C > Ti|Ti,Z)
.

For a untreated patient, such that wi = 0. To estimate P (C > Ti|Ti,Z), we assume

the following Cox model for censoring,

λCi (t) = λC0 (t) exp {β′CZi} ,

which can be fiited using standard partial likelihood [5]. To estimate S1(t), we focus

on the prognostic score which is based on the hazard of death at time t given treated

at time Ti,

λ1i (t|Ti,Zi) = lim
dt→0

1

dt
P (t ≤ D1

i (Ti) < t+ dt|Zi, Ti, Ti < Di),

for which we assume the following post-treatment hazard model,

λ1i (t|Ti,Zi) = h
{
λ10(t), β

′

1Zi + βT
′g(Ti)

}
,(3.1)

such that λ1i (t|Ti,Zi) presents a semi-parametric function of h; e.g., Cox model [5],

additive hazards model [1], etc. Note that β1 is a vector of unknown parameters and
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g(•) is a vector of functions such that the effect of T is parametrized; and λ10(t) is

the baseline hazard for post-treatment death. For each treated patient, we obtain

the prognostic score β
′
1Zi + βTg(Ti) for post-treatment death. Then we group pa-

tients based on (3.1), which can be done by simply building grids or using empirical

quantiles. Suppose eventually we have K groups of treated patients. Patients in

the same group have similar prognostic scores, such that we have approximate ho-

mogeneity with respect to post-treatment death risk within each k grouping. WE

propose estimating S1(t) through the following weighted survival function,

Ŝ1 (t) =

[
K∑
k=1

nk∑
i=1

wki

]−1
×

K∑
k=1

nk∑
i=1

wkiŜ
1
ki (t) ,

where wki = wiG
1
ik and G1

ik = I(patient i is in group k), with Ŝ1
ki (t) being the

estimated survival probability for the ith patient in group k. Here, the Ŝ1
ki(t) can

be based on Kaplan-Meier or Nelson-Aalen methods. Since patients in each group

l have homogeneity on death risk, Ŝ1
ki (t) is the same across all patients in group k.

Therefore we, have

Ŝ1 (t) =

[
K∑
k=1

nk∑
i=1

wki

]−1
×

K∑
k=1

(
nk∑
i=1

wki

)
Ŝ1
k (t) ,

where Ŝ1
k (t) is the estimated survival probability for group k. After rearranging the

terms we have:

Ŝ1 (t) =

[
n∑
i=1

wi

]−1
×

n∑
i=1

wi

K∑
k=1

G1
ikŜ

1
k (t) .

3.2.3 Estimation of S0(t)

In this section, we will introduce a nonparametric estimator for S0(t). We begin

by defining some additional notation. Specifically, let Y 0
i (t) = I(Ui ∧ Ti ≥ t), an

indicator for being at risk and untreated as of time t, and define the following counting

process increment, dN0
i (t) = Y 0

i (t)dNi(t).
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Since in practice we do not observe data to estimate P {D0(T ) > t|Z, T, T < D},

the basic idea is to first obtain a pertinent estimator Ŝ0
i (t) for each treated patient,

Ŝ0(t) then being an appropriately weighted average of Ŝ0
i (t) across i = 1, . . . nT . As

an analog to S1(t), we propose to use the following estimator,

Ŝ0 (t) =

(
n∑
i=1

wi

)−1 n∑
i=1

wiŜ
0
i (t) ,(3.2)

where wi is inherited from each corresponding treated patient.

Similar to the matching method described in Chapter II, we need to first obtain the

pre-treatment prognostic score as in Section 2.2.4 but instead of matching we apply

conditional survival function. We first calculate the pre-treatment prognostic score,

which reflects the treatment-free death hazard. The prognostic score is obtained

through the model,

λ0i (t|Zi) = h
{
λ00(t), β

′

0Zi

}
.

As covariates are time-constant, we will define prognostic score classes which is also

time-constant. If we group patients finely enough, within each group patients would

have very close pre-treatment hazard. Therefore for patients in the same group, they

should have similar treatment-free survival probability P (D0 > t). Suppose we have

K groups of prognostic score classes and treated patient i is included in group k,

then

S0
ki(t; s) =

S0
ki(s+ t)

S0
ki(s)

,

where S(t; s) is the survival probability of living t time units more after living s units

already. As discussed above, in this case we can use S0
k(t) as an estimator for S0

ki(t).

Here we choose Nelson-Aalen estimator for S0
k(t), then S0

ki(t; s) can be estimated by

Ŝ0
ki(t; s) = exp

{
−Λ̂0

k(t; s)
}
,(3.3)
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where we define Λ̂0
k(t; s) = Λ̂0

k(t+ s)− Λ̂0
k(s) and Λ̂0

k(t) is the Nelson-Aalen estimator

for the cumulative hazard function for group k.

As we are interested in estimating the post-treatment survival probability in the

absence of treatment, naturally we only need to substitute s by Ti in formula (3.3).

To be consistent with equation (3.2), let

Ŝ0
i (t) =

K∑
k=1

G0
kiŜ

0
ki(t;Ti),

where G0
ki = 1 if patient i is group k, otherwise 0. We have the final version of

equation (3.2),

Ŝ0 (t) =

(
n∑
i=1

wi

)−1 n∑
i=1

wi

K∑
k=1

G0
kiŜ

0
ki(t;Ti).

3.2.4 Vaiance Estimator for Ŝ1(t)

In this subsection we aim to heuristically derive a variance estimator for Ŝ1(t).

Technical details of the arguments are omitted, in keeping withe the emphasis of the

work.

As n goes to infinity, we let the number of groups K goes to infinity as well

but at a slower rate than n such that the the number of individuals in each group

will also go to infinity. This being the case, individuals in the same group can

be viewed as identical with respect to pre-treatment death hazard. If there is no

censoring, by the definition of S1(t), Ŝ1(t) = n−1
∑K

k=1 nkŜ
1
k(t)/n. When K → ∞,

Ŝ1(t) = n−1
∑n

i=1 S
1
i (t) , by UWLLN, Ŝ1(t)→ S1(t) in probability for all S1(t).

When there is no censoring , wk�

{∑K
k=1wk�

}−1
can be viewed as a density function

of certain function of (T,Z) given prognostic score β
′
PZi+βTTi falling in kth interval.

We denote this density as fφ(k) = wk�

{∑K
k=1wk�

}−1
. As n → ∞, K → ∞, such

that each interval of the prognostic score will be close to a value on the domain.
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Thus we can re-write fφ(k) as fφ(x) with x ∈ (−∞,∞). Therefore we have

(3.4) Ŝ1(t) =

∫ ∞
−∞

fφ(x)Ŝ1
x(t)dx =

∫ ∞
−∞

Ŝ1
x(t)dFφ(x),

where Fφ is the CDF of φ.

In order to derive the asymptotic distribution of Ŝ1(t) we need to define an addi-

tional set of notation. Let Yik(t) = G1
ikYi(t), dM

1
ik(t) = G1

ik {dNi(t)− Yi(t)dΛ1
k(t)}.

We also define ρ = ∆T
i which can be estimated by n−1

∑n
i=1 ∆T

i . We then have

n1/2ρ1/2
{

Λ̂1
k(t)− Λ1

k(t)
}

= n1/2ρ1/2
n∑
i=1

ϕ1
ik(t),

where Λ̂1
j(t) is the estimator of post-treatment cumulated hazard function for group

k, and ϕ1
ik(t) =

∫ t
0
π−1(u)dM1

ik(u), where π(u) = P (U ≥ u). Under mild regu-

larity conditions, {ϕ1
1k(t), . . . , ϕ

1
nk(t)} are independent and identically distributed

mean 0 variates. As a result, n1/2
{

Λ̂1
k(t)− Λ1

k(t)
}

converges to asymptotically to

a mean-zero normal distribution with variance E [ϕ1
1k(t)

2] by the Multivariate Cen-

tral Limit Theorem. By applying the Functional Delta Method, we obtain that

n1/2
{
Ŝ1
k(t)− S1

k(t)
}

is also asymptotically mean-zero Normal with variance estima-

tor,

σ̂2
k(t) = n−1

n∑
i=1

{
Ŝ1(t)ϕ̂1

ik(t)
}2

,

where ϕ̂1
ik(t) =

∫ t
0
π̂−1(u)dM̂1

ik(u) and dM̂1
ik(u) = Gik {dN1

i (u)− Y 1
ik(u)dΛ1(u)}

As we discussed above, Ŝ1(t) will converge in probability to its limiting value

S1(t) =
∫∞
−∞ S

1
x(t)dFφ(x), in discretized case we define S(t) =

∑K
k=1 fφ(k)S1

k(t).
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Next, we consider the asymptotic distribution of Ŝ1(t). We can write,

Ŝ1(t)− S1(t) =
K∑
k=1

fφ(k)
{
Ŝ1
k(t)− S1

k(t)
}

=
K∑
k=1

fφ(k)

{
−

nT∑
i=1

Sk(t)ϕ
1
ik(t)

}

=−
K∑
k=1

fφ(k)S1
k(t)

n∑
i=1

ϕ1
ik(t)

=−
n∑
i=1

K∑
k=1

fφ(k)S1
k(t)ϕ

1
ik(t)

=−
n∑
i=1

ϕ1
i•(t),

where ϕ1
i•(t) =

∑K
k=1 fφ(k)S1

k(t)ϕ
1
ik(t). Since ϕ1

i•(t) are also independent and mean-

zero, n1/2
{
Ŝ1(t)− S1(t)

}
converges in distribution to a zero-mean Normal with a

variance that can be consistently estimated by

σ̂2
1 = n−1

n∑
i=1

(ϕ̂1
i•)

2,

where we define

ϕ̂i•(t) =
K∑
k=1

fφ(k)Ŝ1
k(t)ϕ̂

1
ik(t).

3.2.5 Variance Estimator for Ŝ0(t)

Since Ŝ0(t) is an analog to Ŝ1(t), as long as Ŝ0
i (t) is an consistent estimator for

S0
i (t), Ŝ

0(t) will converge in probability to S0(t), where S0(t) is defined as

S0(t) =

∫ ∞
−∞

fφ(x)S0
x(t)dx =

∫ ∞
−∞

S0
x(t)dFφ(x),(3.5)

where fφ(x) has the same definition as in previous section. Note that when (3.5) is

discretized, we have0 S0(t) =
∑nT

k=1 fφ(k)S0
k(t), where fφ(k) = wk•.

Next we derive the limiting distribution for Ŝ0(t). We start with the limiting distri-

bution for Ŝ0
i (t). We first define Y 0

ki(t) = G0
kiY

0
i (t), dM0

ki(t) = G0
ki {dN0

i (t)− Y 0
i (t)dΛ0(t)}.
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Suppose in total we have grouped patients into K risk groups. Then, for the jth

treated patient:

n1/2
{

Λ̂0
j(t;Tj)− Λ0

j(t;Tj)
}

= n1/2

n∑
i=1

K∑
k=1

G0
kjϕ

0
ki(t;Tj)

where ϕ0
ki(t;Tj) =

∫ t+Tj
Tj

π−1(u)dM0
ki(u).

Analogous to Ŝ1
k(t), similar arguments lead to

n1/2
{
Ŝ0
j (t)− S0

j (t)
}

= n1/2

n∑
i=1

S0
j (t)

K∑
k=1

G0
kjϕ

0
ki(t;Tj)

and n1/2
{
Ŝ0
j (t)− S0

j (t)
}

converges in distribution to a zero-mean normal with a

variance estimator given by

(σ0
j )

2(t) = n−1
n∑
i=1

{
Ŝ0
j (t)

K∑
k=1

G0
kjϕ̂

0
ki(t;Tj)

}2

where ϕ̂0
ki(t;Tj) =

∫ t+Tj
Tj

π̂−1(u)dM̂0
ki(u) and dM̂0

ki(u) = G0
ki

{
dN0

i (u)− Y 0
i (u)dΛ̂0(u)

}
.

Following arguments similar to Section 3.2.4, for Ŝ1(t), Ŝ0(t)−S0(t) = −
∑n

i=1 ϕ
0
i•(t),

where

ϕ0
i• =

nT∑
j=1

fφ(j)S0
j (t)

K∑
k=1

G0
kjϕ

0
ki(t;Tj).

Thus, by the independence across the ϕi• and using central limit theorem, we have

n1/2(Ŝ0(t)− S0(t)), should converge to a mean zero normal with variance estimator

σ̂2
0(t) = n−1

n∑
i=1

(ϕ̂i•)
2,

where ϕ̂i• =
∑nT

j=1 fφ(j)Ŝ0
j (t)

∑K
k=1G

0
kjϕ̂

0
ki(t;Tj).

Combining the results above, we can represent

n1/2
{
δ̂(t)− δ(t)

}
= n1/2

{
ϕ1
i•(t)− ϕ0

i•(t)
}
,

where ϕ1
i•(t) − ϕ0

i•(t) components are independent and identically distributed with

mean 0. Note that the development above accounts for the possibility that pa-

tients may contribute follow-up to both the Ŝ0(t) and Ŝ1(t) sides. The quantity
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n1/2
{
δ̂(t)− δ(t)

}
should converge asymptotically to a Normal variate with mean 0

and a variance that can be consistently estimated by

σ̂2
δ (t) = n−1

{
ϕ1
i•(t)− ϕ0

i•(t)
}2
.

3.3 Simulation Study

Simulation was used to assess the performance of the proposed methods in mod-

erate sized samples. The treatment time T was generated from an exponential dis-

tribution with hazard λT0 exp {βT1Z1 + βT2Z2} while treatment-free death times D0

were generated as exonential with hazard λD0 exp {βD1Z1 + βD2Z2}. Here both Z1

and Z2 are confounders that affects both T and D0. Censoring times C were gener-

ated from an exponential distribution with hazard λC0 exp {βC1Z1 + βC2Z2}. Times

between treatment and death (D1 − T )+ were generated from exponential distribu-

tion with rate λ10 exp {β10Z1 + β11Z2 + β12T} , where we set λ10 = aλD0, β10 = βD1

and β11 = βD2. Baseline covariates Z1 and Z2 were generated from a Uniform(-1,1).

We denote the actual death times as D, for treated patients D = D1 = T+(D1−T )+

and for untreated patients D = D0. There were n = 2500 subjects in all simulation

configurations, with each data configuration replicated 500 times. To estimate the

standard errors, we bootstrap 25 datasets for per replicate.

In practice, we observe the minimum of T , D0 and C. In simulations, however, we

always observe T , D0, (D1 − T )+ and C for all patients. True values of S1(t), S0(t),

δ(t) and ∆(L) were obtained using monte-carlo on these counterfactuals. Naturally,

for the purpose of computing Ŝ0(t), only [(D ∧ C ∧ T ), ND(D ∧ C ∧ T )] were used;

similarly, only [(D ∧C − T )+, N
D(D ∧C)] were used for subjects with (D ∧C > T )

for the purpose of computing Ŝ1(t). Hence, δ̂(t) and ∆̂(L) were, for each replicate,

only based on data that would in reality be observed.
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After generating the data, prognostic scores representing pre-treatment history

were obtained from model the λ0i (t|Zi) = λ00(t) exp {β00Z1 + exp β01Z2}. Patients

are grouped by half deciles of prognostic score. For all simulations configurations we

set τT = 10.

In the first set of simulations, we examine the bias, empirical standard deviation

(ESD) and bootstrap standard error (BSE) of the proposed estimators under various

treatment effects and in the presence of light censoring with λC0 = 0.015, where

around 15% of individuals get censored. We vary a from 0.8, 1 and 1.2 to change the

treatment effect from moderate, null to negative. The remaining parameters are set

equal across the three scenarios: λD0 = 0.05, λT0 = 0.03, βD1 = βT1 = βC1 = log 2,

β12 = log 3/500 and βD2 = βT2 = βC2 = log 3.

In the second set of simulations, we examine the properties of the proposed es-

timators under moderate censoring. The parameter setting is same as the first set

of simulations except for me change the censoring parameter to λC0 = 0.02, which

results in approximately 30% censoring.

Results for the first and second set of simulations are shown in Table 3.1 and Table

3.2, respectively. In both tables, the absolute bias of Ŝ1(t) Ŝ0(t) and δ̂(t) range from

0.001 to 0.015. The bias of µ̂0, µ̂1 and ∆ is little bit larger, but is still negligible

considering the scale of these quantities the bias. The BSEs are generally close to

ESDs. The empirical coverage probability (CP) is around 0.95, except for S0(15).

The estimation of S0(t) is more sensitive to censoring percentage, as the censoring

percentage does not effect the results of S1(t) but the bias of S0(t) becomes more

pronounced with larger censoring percentage.
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Table 3.1: Simulation: Light censoring
Setting t Quantity True BIAS ESD BSE CP

Moderate effect 5 S1(t) 0.731 -0.001 0.022 0.021 0.93
10 0.554 -0.001 0.025 0.025 0.94
15 0.431 0.002 0.025 0.025 0.95
5 S0(t) 0.678 0.002 0.013 0.014 0.99
10 0.486 0.004 0.019 0.019 0.97
15 0.364 0.007 0.020 0.021 0.93
5 δ(t) 0.054 -0.003 0.024 0.024 0.97
10 0.068 -0.005 0.030 0.029 0.95
15 0.067 -0.005 0.030 0.030 0.94
15 µ0(t) 9.10 0.044 0.205 0.210 0.94
15 µ1(t) 9.91 -0.013 0.271 0.263 0.94
15 ∆(t) 0.81 -0.057 0.310 0305 0.94

Null effect 5 S1(t) 0.680 -0.002 0.023 0.022 0.94
10 0.487 -0.001 0.025 0.024 0.94
15 0.365 0.002 0.024 0.024 0.95
5 S0(t) 0.678 0.002 0.013 0.014 0.99
10 0.486 0.004 0.019 0.019 0.97
15 0.364 0.007 0.021 0.021 0.93
5 δ(t) 0.003 -0.004 0.025 0.025 0.96
10 0.001 -0.004 0.029 0.029 0.94
15 0.001 -0.004 0.029 0.029 0.93
15 µ0(t) 9.11 0.044 0.205 0.210 0.94
15 µ1(t) 9.12 -0.008 0.272 0.265 0.94
15 ∆(t) 0.02 -0.052 0.305 0.305 0.93

Negative effect 5 S1(t) 0.635 -0.003 0.024 0.023 0.95
10 0.431 -0.000 0.024 0.024 0.96
15 0.310 0.005 0.023 0.023 0.93
5 S0(t) 0.678 0.002 0.013 0.014 0.99
10 0.486 0.004 0.019 0.020 0.97
15 0.364 0.007 0.021 0.021 0.93
5 δ(t) -0.043 -0.005 0.025 0.025 0.96
10 -0.055 -0.004 0.028 0.028 0.95
15 -0.054 -0.002 0.029 0.029 0.93
15 µ0(t) 9.11 0.044 0.205 0.210 0.94
15 µ1(t) 8.44 -0.002 0.272 0.266 0.94
15 ∆(t) -0.661 -0.046 0.303 0.303 0.93
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Table 3.2: Simulation: Moderate censoring
Setting t Quantity True BIAS ESD BSE CP

Moderate effect 5 S1(t) 0.731 -0.001 0.023 0.022 0.93
10 0.554 -0.001 0.027 0.026 0.94
15 0.431 0.005 0.026 0.026 0.94
5 S0(t) 0.678 0.003 0.014 0.015 0.99
10 0.486 0.005 0.020 0.021 0.97
15 0.364 0.009 0.022 0.023 0.93
5 δ(t) 0.054 -0.004 0.026 0.025 0.98
10 0.068 -0.005 0.031 0.031 0.95
15 0.067 -0.005 0.031 0.033 0.95
15 µ0(t) 9.10 0.056 0.213 0.225 0.94
15 µ1(t) 9.91 -0.004 0.282 0.272 0.93
15 ∆(t) 0.81 -0.059 0.323 0.326 0.94

Null effect 5 S1(t) 0.680 -0.002 0.024 0.023 0.95
10 0.487 0.001 0.027 0.025 0.94
15 0.365 0.006 0.026 0.025 0.94
5 S0(t) 0.678 0.003 0.014 0.015 0.99
10 0.486 0.005 0.019 0.021 0.97
15 0.364 0.009 0.022 0.023 0.93
5 δ(t) 0.003 -0.005 0.026 0.026 0.97
10 0.001 -0.004 0.031 0.030 0.95
15 0.001 -0.003 0.031 0.032 0.94
15 µ0(t) 9.11 0.056 0.213 0.224 0.94
15 µ1(t) 9.12 0.006 0.286 0.274 0.93
15 ∆(t) 0.01 -0.049 0.324 0.325 0.94

Negative effect 5 S1(t) 0.635 -0.003 0.025 0.024 0.95
10 0.431 0.002 0.026 0.025 0.96
15 0.310 0.008 0.024 0.024 0.93
5 S0(t) 0.678 0.003 0.014 0.015 0.99
10 0.486 0.005 0.020 0.021 0.97
15 0.364 0.009 0.022 0.023 0.93
5 δ(t) -0.043 -0.006 0.026 0.026 0.97
10 -0.055 -0.003 0.029 0.030 0.95
15 -0.054 -0.001 0.030 0.031 0.95
15 µ0(t) 9.11 0.056 0.213 0.215 0.93
15 µ1(t) 8.44 0.013 0.276 0.275 0.94
15 ∆(t) -0.661 -0.043 0.318 0.323 0.95
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3.4 Application

We applied our proposed methods in order to estimate the effect of deceased-

donor kidney transplantation (KT) (j = 1) on survival in the absence of KT (j = 0)

among waitlisted end-stage renal disease patients. Data were obtained from Scientific

Registry of Transplant Recipients. The SRTR data system includes data on all

donors, wait-listed candidates, and transplant recipients in the United States, as

submitted by the members of the Organ Procurement and Transplantation Network

(OPTN), and has been described elsewhere. The Health Resources and Services

Administration (HRSA), U.S. Department of Health and Human Services provides

oversight to the activities of the OPTN and SRTR contractors. Different from the

application in Chapter II, here we focus on emphasizing the power the proposed

method on smaller data sets. Instead of using the entire population, we only apply

our methods on patients within Region 10. In Region 10, there are 6 centers in total,

our goal is to compare the treatment effect of KT between different centers within

Region 10.

The study population included n = 7, 209 patients aged ≥ 18 and listed between

01/01/2003 and 12/31/2013 in Region 10. The sample size varies from 274 to 2059

from center to center. Follow-up time begins at the date when patients got listed

and ends at earliest of death, loss to follow-up, or the end of the observation period

(12/31/2013). Adjustment covariates for the λ0i (t) model included height, weight,

years on dialysis (prior to waitlisting), calender year of listing, albumin, diabetes, hy-

pertension, panel reactive antibiotics (PRA), age, angina, blood type, symptomatic

peripheral vascular disease (PVD), race, gender, calendar year of transplant and

Kidney Donor Risk Index (KDRI) [26].
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In this application, we set τT and τ1 to 3 years and 5 years, respectively. A total

of 3,267 patients received KT (45%) and 2,835 deaths were observed. We set the

caliper width of prognostic score matching ε = 0.02.

The estimated post-treatment and treatment-free survival curves on [0,5] year

interval of each center are presented in Figure 1 and Figure 2, respectively. The

thicker curve in figures represent the survival of the overall population.

Table 3 shows the estimates of S1(t), the average survival probability from the

time of transplant among patients received transplantation, and S0(t) intended to

represent the survival probability to which the transplanted patients would have been

observed in the absence of transplantation, and δ̂(t) = Ŝ1(t) − Ŝ0(t) and ∆̂(5) =∫ 5

0
δ̂(t)dt. All quantities are estimated at 1, 3, 5 years for each center. We also

presented the restricted mean lifetime at 5 years for both groups (µ0(t), µ1(t)) and

their contrast (∆(t)). The benefit of kidney transplantation varies from 133 days to

227 days in 5-year post-treatment survival restricted mean survival time.

Table 4 shows the tests results for the RMST of treated and treatment-free group

of each center, where µ̄1 and µ̄0 are the restricted mean survival time in the overall

population. Based on the test of ∆(t), there are significant difference between the all

the centers and the overall population except for center with ID=472. Centers 220,

470, 471 and 480 each have a significant better treatment effect than the average

while center 330 has worse treatment effect than the average.

3.5 Discussion

In this chapter, we proposed methods to estimate the average causal effect among

the treated of a time-dependent treatment. In particular, the proposed treatment

effect contrasts the post-treatment survival function that applied to treated patients
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Figure 3.1: 5-year post-transplant survival by center

Table 3.3: Analysis of Region 10 data (n=6,273): Evaluation of the effect on survival (and RMST)
of kidney transplantation

t(years) Quantity C220 C330 C470 C471 C472 C480
1 S1(t) 0.955 0.917 0.928 0.942 0.912 0.944
3 0.923 0.872 0.909 0.903 0.843 0.915
5 0.903 0.800 0.894 0.865 0.799 0.852
1 S0(t) 0.910 0.897 0.916 0.908 0.874 0.917
3 0.822 0.785 0.829 0.800 0.758 0.838
5 0.744 0.677 0.739 0.704 0.646 0.764
1 δ(t) 0.044 0.020 0.013 0.035 0.038 0.027
3 0.101 0.087 0.080 0.103 0.085 0.077
5 0.159 0.124 0.155 0.160 0.152 0.088
5 µ1(t)(days) 1668 1515 1636 1606 1505 1607
5 µ0(t)(days) 1441 1342 1434 1398 1299 1473
5 ∆(t)(days) 227 173 202 209 206 133
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Figure 3.2: 5-year survival for waitlisted patients by center

Table 3.4: Analysis of Region 10 data (n=6,273) by center on 5-year survival
Quantity C220 C330 C470 C471 C472 C480
µ1 − µ̄1 79.84* -78.33* 46.34* 19.30* -81.12* 9.33*

(1.96) (1.93) (1.99) (2.64) (4.60) (2.89)
µ0 − µ̄0 36.01* -65.46* 25.48* 0.68 -75.41* 72.24*

(2.59) (1.90) (1.70) (4.53) (6.62) (3.16)
∆− ∆̄ 43.83* -12.87* 20.86* 18.61* -5.70 -62.91*

(3.18) (2.58) (2.75) (5.23) (6.34) (4.22)
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had they, contrary to fact, not received treatment. The estimation of treated survival

probability is carried out in the same way as described in Chapter II. To estimate

the survival of treated patients in the absence of treatment, we proposed a semipara-

metric method based on the conditional survival probability. Specifically, we group

patients based on their pre-treatment prognostic score and then obtain the individ-

ual conditional survival function based on marginal survival probability estimated

from the corresponding prognostic group. The limiting distribution and asymptotic

variances were derived. For computational conveniences, a bootstrap method is em-

ployed to estimate the standard error. The proposed methods were proved through

simulations to work well even in small datasets.

Similar to methods proposed in Chapter II, this method is also non-parametric

since the assumed model only contribute to the prognostic score used for grouping,

which relaxes the assumption of proportionality between pre- and post-treatment

hazards. To quantify the treatment effect, we use the difference in survival functions

and restricted mean survival time. Compared to what was proposed in Chapter

II, the method of conditional survival probability does not rely on big data sets

anymore. To illustrate this strength, we applied the proposed method to center-

level SRTR data. We obtained the center-specific survival curves in Region 10 and

compare them to that of the overall population. According to our results, the benefit

of transplantation (difference in RMST) for 5-year survival varies from 133 days to

227 days. Among all 6 centers, center 200 has the greatest treatment effect as it has

the longest expected 5-year post-tranplant survival and a relative long treatment-free

survival as well. Center 472 has both relative low treatment-free survival and post-

treatment survival but has second best treatment effect. Therefore when evaluating

the benefit of transplant of each center, treatment-free survival can be an important
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factor. In this case, it is more appropriate to use δ as a major evaluation criteria.

For a specific center, ∆ represents the contrasts of restricted mean survival time

between treated and untreated group and eliminates some confounding factors such

as patients quality.



CHAPTER IV

Matching Methods for Evaluating the Effect of A
Time-dependent Treatment on the Survival Function in the

Presence of Time-dependent Covariates

4.1 Introduction

In many clinical and epidemiology settings, data are available on various longi-

tudinal covariates, collected for each patient as the study unfolds over time. In the

case in which all covariates are collected at baseline (time 0), methods proposed in

Chapter II and Chapter III are valid for estimating the effect of a time-dependent

treatment. However, in some studies (e.g., liver transplantation), several important

time-dependent predictors are collected, such as Model for End-stage Liver Disease

(MELD) score. The proposed method is in fact motivated by the end-stage liver dis-

ease (ESLD) setting. In the United States, chronic end-stage liver disease patients

are sequenced on the waitlist in decreasing order of MELD score, which is a very

strong predictor of pretransplant mortality. Transplantation generally results in the

dependent censoring of pretransplant death, since MELD scores predict both wait-

list mortality and transplant rates. Patients may also be removed from the waitlist

(or made temporally inactive) and hence ineligible to receive a transplant. Ignoring

these important time-dependent variables when estimating the treatment effect will

generally lead to a biased estimate of the effect on survival of liver transplantation.

48
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Several methods for estimating the effect of a time-dependent treatment in the

presence of time-dependent covariates have been proposed in the literature. Various

authors have proposed methods based on partly conditional modeling (Zheng and

Heagerty, 2005; Gong and Schaubel, 2013) method and the closely related concept

of landmark analysis (Feurer et al., 1992; van Houwelingen, 2007; van Houwelingen

and Putter, 2012; Parast, Tian and Cai, 2014), although only Feurer et al (1992)

explicitly considered treatment effects. Gong and Schaubel (2016) proposed to use

partly conditional hazard regression to model each of pretreatment and posttreat-

ment survival, then estimate the treatment effect nonparametrically. A disadvantage

of Gong & Schaubel (2016) is its reliance on the correct specification of several semi-

parametric models.

In this chapter, methods from Chapter II are extended to the setting in which data

are available on time-dependent covariates. The objective is to estimate the treat-

ment effect on survival in a way that appropriately incorporates the time-dependent

factors. In contrast to the methods listed in the proceeding paragraph, the proposed

methods in this chapter use prognostic score matching in place of the projection of

fitted survival curves from the model.

The remainder of the chapter proceeds as follows. In Section 2 the notation and

proposed models are introduced. Section 3 lays out our estimation methods. Section

4 presents the numerical evaluation of the methods. Section 5 shows the real data

application of the methods.

4.2 Methods

4.2.1 Notation

We first define the parameter of interest in the causal inference framework. Typi-

cally, this framework considers the setting wherein each individual has two potential
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outcomes, corresponding to the two possible treatment regimes (e.g., treated and

untreated). In the counterfactual world, let D1
i (Ti) denote the potential death time

(measured from time 0) if patient i is treated at Ti. The counterfactual quantity

D0
i (Ti) denotes the potential death time if, contrary to fact, patient i never received

treatment. By definition, both D1
i (Ti) and D0

i (Ti) are greater than Ti and the coun-

terfactuals are meaningfully defined only for individuals that receive treatment.

Next, we define notation for the observed data. Let Di denote death time for

subject i. The obsevation time is denoted by Ui = Di ∧ Ci, with a ∧ b = min {a, b}.

The death indicator is given by ∆i = I (Di < Ci). The at-risk indicator is defined as

Yi (t) = I (Ui ≥ t) and the treatment indicator is defined by ∆T
i = I (Ti < Ui). We

also define Y 1
i (t) = I (Ui ≥ t, T < t), which equals 1 when subject i is at risk at time

t and has already initiated treatment. Correspondingly, we define the post-treatment

counting process increment, dN1
i (t) = Y 1

i (t) dNi (t).

Due to complexity in our new covariates setting, we need to define notation ad-

ditional to those aforementioned. The covariate vector, which contains some time-

varying variables, is denoted by Zi(s). The patient’s covariate history up to time

s is given by Hi(s) = {Zi(u); 0 ≤ u < s}. We assume that D0
i (Ti) and D1

i (Ti) are

conditionally independent given Ti and the observed covariates Hi(Ti), known as

the strong ignorability assumption [31]. For a patient with treatment time Ti = s,

we are interested in the average difference between (D1
i − s)+ and (D0

i − s)+ given

[Hi(s), Ti = s].

Analogous to the setup in Chapter II, for a patient initiating treatment at time

T = s, there are two death times of interest; the post-treatment residual death time

D̃1(s) = (D1(s) − s)+ and residual death time that would have observed in the

absence of treatment D̃0(s) = (D0(s)− s)+. At time of treatment T = s, we observe
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H(s). Conditional on [H(s), T = s], we contrast the following survival functions:

S1(t; s|H(s), T = s) = P
{
D̃1(s) > t|H(s), T = s

}
S0(t; s|H(s), T = s) = P

{
D̃0(s) > t|H(s), T = s

}
.

For fixed L > 0, restricted mean survival times (RMST) are given by

µ1(L; s|H(s), T = s) =

∫ L

0

S1(t; s|H(s), T = s)dt

µ0(L; s|H(s), T = s) =

∫ L

0

S0(t; s|H(s), T = s)dt.

The contrast in survival function δ is defined as

δ(t; s|H(s), T = s) = S1(t; s|H(s), T = s)− S0(t; s|H(s), T = s),

while a contrast in RMST is defined as

∆(L; s|H(s), T = s) = µ1(L; s|H(s), T = s)− µ0(L; s|H(s), T = s).

Average survival functions are then defined as

S1(t) = E[S1(t;T |H(T ), T )]

S0(t) = E[S0(t;T |H(T ), T )]

where, in both cases, the expectation is taken with respect to the joint distribution

of [H(T ), T ]. Correspondingly, average RMST are given by:

µ1(L) = E[µ1(L; s|H(s), T = s)] =

∫ L

0

S1(t)dt

µ0(L) = E[µ0(L; s|H(s), T = s)] =

∫ L

0

S0(t)dt.

The ATT can be then defined in terms of mean difference in survival probability as

δ(t) = E[δ(t;T |H(T ), T )] = S1(t)− S0(t)
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and, in terms of mean difference in RMST, by

∆(L) = E[∆(L|H(T ), T )] = µ1(L)− µ0(L) =

∫ L

0

δ(t)dt.

Since in our proposed methods, we are using the risk class of each treated patients

instead of using (H(T ), T ) explicitly, S1(t) and S0(t) can also be represented as

S1(t) = E[S1(t;T |G1
i (Ti))]

S0(t) = E[S0(t;T |G0
i (Ti))],

where G1
i (Ti) and G0

i (Ti) are the risk class index for posttreatment and treatment-

absent survival for patient i, respectively. Hence, instead of estimating δ(t) =

E {δi(t|H(Ti), Ti)}, we are instead estimating the very closely related quantity δ(t) =

E {δi(t|Gi(Ti))}, where Gi(Ti) = [G0
i (Ti), G

1
i (Ti)]

′.

Next, we will describe the proposed methods for estimating δ(t) and ∆(L).

4.2.2 Estimation of S1(t)

Our proposal for estimating S1(t) is an extension of that proposed in Chapter

II. The presence of time-dependent predictors motivates us to build a new post-

treatment prognostic score model. Let λ1(t; s|H(s), T = s) denote the conditional

post-treatment hazard function corresponding to S1(t; s|H(s), T = s). We assume

the following model,

λ1(t; s|H(s), Ti = s) = h
{
λ10(t),β

′

1Zi1(s) + β′2g(s)
}
,(4.1)

where the covariate Zi1(s) is chosen to summarize the pre-treatment history and is

fixed at treatment time Ti = s and λ10(t) is the baseline hazard function. We take

the linear predictor
{
β

′
1Zi1(s) + βTg(s)

}
from (4.1) as a prognostic score for each

treated patient with respect to post-treatment survival. The next step is to group
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treated patients based on this post-treatment prognostic score by simply building

grids or using quantiles, as described in Chapter II.

In the absence of censoring, we could average with respect to the empirical distri-

bution of {Ti,Hi(Ti)}. In our case, treatment times are subject to right censoring,

therefore this averaging generally depends on the Ci distribution. This implies inverse

weighting the observed treatment times using wi, such that the inverse weighted dis-

tribution reflects data which would have been obtained in the absence of censoring.

To estimate wi, we assume the following proportional hazards model for Ci,

λCi (t) = λC0 (t) exp
{
β

′

CZi(0)
}
,(4.2)

where we assume Ci is administrative censoring and only dependent on baseline

covariates. Observed data used to fit model 4.2 include {Ui, I(Ci < Di),Zi(0)}, with

βC and cumulated hazard ΛC
0 (t) estimated through unweighted Cox regression. The

weight is given by

wi =
∆T
i

P (C > Ti|Ti,Zi(0))
.(4.3)

Suppose there are K groups after building grids. We set Ŝ1
k(t) be the estimator

for post-treatment survival function for the kth group, which can be estimated by

the Nelson-Aalen method. We define the group indicator G1
ik = I(patient i is in

group k), with the proposed estimator of S1(t) given by

Ŝ1 (t) =

[
n∑
i=1

wi

]−1
×

n∑
i=1

wi

K∑
k=1

G1
ikŜ

1
k (t) .(4.4)

4.2.3 Estimation of S0(t)

In this section, we will introduce a semiparametric estimator for S0(t). Since in

practice we do not observe (D0(T )− T )+ for patients with T < D, the basic idea is
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to first obtain a pertinent estimator Ŝ0
i (t) for each treated patient based on ‘similar’

matched patients, then compute Ŝ0(t) as an appropriately weighted average of the

Ŝ0
i (t), i = 1, . . . n. As an analog to S1(t), we propose to use the following estimator,

Ŝ0 (t) =

(
n∑
i=1

wi

)−1 n∑
i=1

wiŜ
0
i (t) ,

where wi is inherited from each corresponding treated patient and hence has the

same definition as in Section 4.2.2.

We begin by describing the assumed hazard model for survival in the absence of

treatment. We let λ0(t; s|H(s), T = s) denote the hazard function corresponding to

S0(t; s|H(s), T = s), for which we assume the following model

λ0i (t; s|Hi(s)) = λ00 (t) exp
{
β

′

0Zi0(s)
}
,(4.5)

where Zi0(s) is chosen such that λ0(t; s|Hi(s)) = λ0(t; s|Zi0(s)). Model (4.5) is a

partly conditional model in the sense that it conditions on the information which

is “frozen” at time s while hazard at time s + t is of interest. Here, we propose to

estimate β0 by stratifying the model based on calender time cross-sections (Gong and

Schaubel, 2013). To begin, we choose a set of K calender dates {CS1, . . . , CSK}. For

calendar date CSk, we select cross section of treatment-eligible patients who were

not treated. For patient i, follow-up time as of calender date CSk is denoted by sik.

Therefore, a patient selected into cross-section CSk must, as follow-up time sik be:

alive, uncensored and untreated at sik. Following Gong and Schaubel (2013), we

estimate β0 through the following stratified model

λ0k(t; s|Hi(sik)) = λ00k(t) exp
{
β

′

0Zi0(sik)
}
,(4.6)

where β0 is the same parameter as in model (4.5).
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We compare treated patient,i, and a potential control, k, with respect to treatment-

free prognostic score through the difference in prognostic score:

ψi:k(Ti) =
{
β

′

0Zi0(Ti)− β
′

0Zk0(Ti)
}
.

Patient k can be considered a suitable match for treated patient i if ψi:k(Ti)

falls into a small caliper, ψi:k(Ti) ∈ [−ε, ε],where ε is a predefined small number.

Note that if we use different models (e.g., additive hazards model[19]) to obtain the

prognostic score, then the criteria to select matched patients is identical as the one for

proportional hazard models. To be matched to treated patient i, a control patient

needs to be both not-yet-treated and at-risk, in addition to being prognostically

similar to patient i with respect to residual death time hazard.

By matching qualified patients, we obtain matched sets corresponding to each

treated patient. Within each matched set, patients have approximate homogeneity

with respect to pre-treatment death risk and can be viewed as the counterfactual

cases corresponding to that specific treated patient. Using the selected matching

patients, we can estimate the survival probability S0
i (t) for each treated patient i.

To estimate Ŝ0
i (t), unlike the analog on treated side, survival in the absence of

treatment for treated patient i is subject to dependent censoring. For a matched

patient k for treated patient i, we anticipate that Hk(Ti + t) would be predictive of

both the treatment hazard and pre-treatment death hazard at time (Ti+t). However,

in the matching process, we only conditioned on Hk(Ti). For matched patient k,

(D0
k − Ti)+ can be either censored by (Ck − Ti)+ or (Tk − Ti)+, and both represent

violations of independent censoring. As we assume censoring only dependent on

baseline covariates as in model (4.2), we will only consider the dependent censoring

caused by treatment assignment. The potential bias due to such dependent censoring

can be corrected through a variant of Inverse Probability of Censoring Weighting
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(IPCW; Robins and Rotnitzky, 1992). For this propose, we fit the following treatment

model:

λTi (t|Hi(t)) = λT0 (t) exp
{
β

′

TZi(t)
}
.(4.7)

We define Ỹ 0
i:k(t) = Y 0

k (Ti + t) and Ñ0
i:k = dN0

k (Ti + t) and Ii:k being the indicator for

not-yet-treated patient k matched to patient i. The weight of patient k is given by

w0
i:k(t) =

Ii:kỸ
0
i:k(t)

P (Tk > Ti + t|Tk > Ti, Ti,Zk)

= Ii:kỸ
0
i:k(t) exp

{
ΛT
k (Ti + t)− ΛT

k (Ti)
}
,

where ΛT
k (t) =

∫ t
0
λT0 (u) exp

{
β

′
TZk(u)

}
du. The quantity w0

i:k(t) can be thought of

as the inverse of the conditional probability of remaining untreated and uncensored

at time (Ti + t), given that the subject was untreated and treatment-eligible at time

Ti. Our proposed estimator of S0
i (t) is given by Ŝ0

i (t) = exp
{
−Λ̂0

i (t)
}

, where

Λ̂0
i (t) =

n∑
k=1

∫ t

0

{
n∑
k=1

w0
i:k(u)

}−1
w0
i:k(u)dÑ0

i:k(u)(4.8)

Note that, in the treated group, every treated patient is unique but in the untreated

group, the same patient can appear in multiple matched sets.

4.2.4 Variance Estimator for Ŝ1(t)

We now provide heuristic arguments leading to a variance estimator for S1(t).

As n goes to∞, we let the number of groups K goes to∞ as well but at a slower

rate than n such that the the number of individuals in each group will also go to

infinity. As we assume post-treatment survival only depends on the variables at time

of treatment, individuals in the same group can be viewed as identical with respect

to conditional post-treatment death hazard, corresponding to S1(t; s|H(s), T = s).

If there is no censoring, by the definition of S1(t), Ŝ1(t) = n−1
∑K

k=1 nkŜ
1
k(t). When
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K → ∞, Ŝ1(t) = n−1
∑n

i=1 S
1
i (t) , by the Uniform Weak Law of Large Number

(UWLLN), Ŝ1(t)→ S1(t) in probability for all S1(t).

When there is no censoring , wk�

{∑K
k=1wk�

}−1
can be viewed as a density function

of a certain function of (T,Z) given prognostic score β
′
1Zi(Ti)+β′2g(Ti) falling in kth

interval. We denote this density as fφ(k) = wk�

{∑K
k=1wk�

}−1
. As n→∞, K →∞,

such that each interval of the prognostic score will be close to a value on the domain.

Thus we can re-write fφ(k) as fφ(x) with x ∈ (−∞,∞). Therefore we have

(4.9) Ŝ1(t) =

∫ ∞
−∞

fφ(x)Ŝ1
x(t)dx =

∫ ∞
−∞

Ŝ1
x(t)dFφ(x),

where Fφ is the CDF of φ.

In order to study the asymptotic distribution of Ŝ1(t), we need to define an addi-

tional set of notation. Let Yik(t) = G1
ikYi(t), dM

1
ik(t) = G1

ik {dNi(t)− Yi(t)dΛ1
k(t)}.

We also define ρ = E(∆T
i ) which can be estimated by n−1

∑n
i=1 ∆T

i . We then have

n1/2ρ1/2
{

Λ̂1
k(t)− Λ1

k(t)
}

= n1/2ρ1/2
n∑
i=1

ϕ1
ik(t),

where Λ̂1
j(t) is the estimator of post-treatment cumulated hazard function for group

k, and ϕ1
ik(t) =

∫ t
0
π−1(u)dM1

ik(u), where π(u) = P (U ≥ u). Under mild regu-

larity conditions, {ϕ1
1k(t), . . . , ϕ

1
nk(t)} are independent and identically distributed

mean 0 variates. As a result, n1/2
{

Λ̂1
k(t)− Λ1

k(t)
}

converges to asymptotically to

a mean-zero normal distribution with variance E [ϕ1
1k(t)

2] by the Multivariate Cen-

tral Limit Theorem. By applying the Functional Delta Method, we obtain that

n1/2
{
Ŝ1
k(t)− S1

k(t)
}

is also asymptotically mean-zero Normal with variance estima-

tor,

σ̂2
k(t) = n−1

n∑
i=1

{
Ŝ1(t)ϕ̂1

ik(t)
}2

,

where ϕ̂1
ik(t) =

∫ t
0
π̂−1(u)dM̂1

ik(u) and dM̂1
ik(u) = Gik {dN1

i (u)− Y 1
ik(u)dΛ1(u)}
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As discussed above, Ŝ1(t) should converge in probability to its limiting value

S1(t) =
∫∞
−∞ S

1
x(t)dFφ(x), in the discretized case we define S(t) =

∑K
k=1 fφ(k)S1

k(t).

Next, we consider the asymptotic distribution of Ŝ1(t). We can write,

Ŝ1(t)− S1(t) =
K∑
k=1

fφ(k)
{
Ŝ1
k(t)− S1

k(t)
}

=
K∑
k=1

fφ(k)

{
−

nT∑
i=1

Sk(t)ϕ
1
ik(t)

}

=−
K∑
k=1

fφ(k)S1
k(t)

n∑
i=1

ϕ1
ik(t)

=−
n∑
i=1

K∑
k=1

fφ(k)S1
k(t)ϕ

1
ik(t)

=−
n∑
i=1

ϕ1
i•(t),

where ϕ1
i•(t) =

∑K
k=1 fφ(k)S1

k(t)ϕ
1
ik(t). Since ϕ1

i•(t) are also independent and mean-

zero, n1/2
{
Ŝ1(t)− S1(t)

}
converges in distribution to a zero-mean Normal with a

variance that can be consistently estimated by

σ̂2
1 = n−1

n∑
i=1

(ϕ̂1
i•)

2,

where we define

ϕ̂i•(t) =
K∑
k=1

fφ(k)Ŝ1
k(t)ϕ̂

1
ik(t).

4.2.5 Variance Estimator for Ŝ0(t)

As long as Ŝ0
i (t) = exp

{
−Λ̂0

i (t)
}

is an consistent estimator for S0
i (t), Ŝ

0(t) will

converge in probability to

S0(t) =

∫ ∞
−∞

fφ(x)S0
x(t)dx =

∫ ∞
−∞

S0
x(t)dFφ(x),(4.10)

with fφ(x) defined as in the previous section. A discretized version of (4.10) can be

expressed as S0(t) =
∑K

k=1 fφ(k)S0
k(t), where fφ(k) = wk•.
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By using the matching on the treatment-free prognostic score, qualified patients

selected should have identical treatment-free death hazard to the specific treated

patient. We use a variant of IPCW to remedy the issue of dependent censoring for

not-yet-treated patients, such that Λ̂0
i (t) is IPCW-adjusted Nelson-Aalen estimator

for Λ0
i (t).

Next we derive the limiting distribution for Ŝ0(t). We start with the limiting

distribution for Ŝ0
i (t). Let G0

ik = I(G0
i = k). Correspondingly we define Y 0

ik =

G0
ikY

0
i (t) and dM0

ik(t) = G0
ik {dN0

i (t)− Y 0
i (t)dΛ0(t)}. Similar to the process for Ŝ1

k(t),

analogous arguments lead to

n1/2
{
Ŝ0
k(t)− S0

k(t)
}

= −n1/2

n∑
i=1

S0
k(t)ϕ

0
ik(t)

asymptotically. Different from the treatment side, where each subject k can appear

only once, a given subject i in the treatment-free side can be matched to sevreal

treated patients. As such, the asymptotically independent terms with respect to the

treatment-free side are given by

ϕ0
ik(t) =

∫ t

0

π−1(u)dM0
ik(u),

such that n1/2
{
Ŝ0
k(t)− S0

k(t)
}

converges in distribution to a zero-mean Normal with

a variance that can be consistently estimated by

(σ̂0
k)

2(t) = n−1
n∑
i=1

{
Ŝ0
k(t)ϕ̂

0
ik

}2

,

where we define ϕ̂0
ik =

∫ t
0
π̂−1(u)dM̂0

ik(u) with dM̂0
ik(u) = G0

ik

{
dN0

i (u)− Y 0
i (u)dΛ̂0(u)

}
.

Similar to Ŝ1(t), Ŝ0(t)−S0(t) = −
∑n

i=1 ϕ
0
i• with ϕ0

i•(t) =
∑nT

k=1 fφ(k)S0
k(t)ϕ

0
ik(t).

Therefore n1/2
{
Ŝ0(t)− S0(t)

}
is asymptotically mean-zero Normal with variance

estimator,

σ̂2
0(t) = n−1

n∑
i=1

(ϕ̂0
i•)

2,
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where we define ϕ̂0
i•(t) =

∑nT

k=1 fφ(k)Ŝ0
k(t)ϕ̂

0
ik(t).

Combining the results above, we can represent

n1/2
{
δ̂(t)− δ(t)

}
= n1/2

n∑
i=1

{
ϕ1
i•(t)− ϕ0

i•(t)
}
,

where ϕ1
i•(t) − ϕ0

i•(t) components are independent and identically distributed with

mean 0. Note that the grouping of combinations by subject implicitly accounts for

the possibility that patients may contribute follow-up on both the S0(t) and S1(t)

sides. The quantity n1/2
{
δ̂(t)− δ(t)

}
converges asymptotically to a Normal variate

with mean 0 and a variance that can be consistently estimated by

σ̂2
δ (t) = n−1

n∑
i=1

{
ϕ1
i•(t)− ϕ0

i•(t)
}2
.

For computational convenience, we propose to use the bootstrap method to com-

pute the asymptotic variance, as the point estimators are fast to compute. We

evaluate the performance of bootstrap in the next section.

4.3 Simulation

Simulations were conducted to evaluate the proposed methods in finite samples.

The treatment time T was generated from an exponential distribution with hazard

λT0 exp {βT1Z1 + βT2Z2 + βT3Z3(t) + βT4Z4(t)} while treatment-free death times D0

were generated as exponential with hazard λD0 exp {βD1Z1 + βD2Z2 + βD3Z3(t) + βD4Z4(t)}.

Here, Z1, Z2, Z3 and Z4 are confounders that affect both T and D0. Censoring times

C were generated from an exponential distribution with hazard λC0 exp {βC1Z1 + βC2Z2}.

Times between treatment and death (D1−T )+ were generated from exponential dis-

tribution with rate λ10 exp {β10Z1 + β11Z2 + β12Z3(T ) + β13Z4(T ) + β15T} , where

we set β10 = βD1 , β11 = βD2,β13 = βD3 and β14 = βD4. Baseline covariates Z1

and Z2 were generated from a Uniform(-1,1). Baseline Z3 and Z4 were generated
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by Uniform (0,1) and Uniform (-0.5, 1.5), respectively. Z3 and Z4 have increments

that follow Uniform (0,1) and Uniform (-0.5, 1.5) respectively at each time unit. We

denote the actual death times as D, for treated patients D = D1 = T + (D1 − T )+

and for untreated patients D = D0. There were n = 5000 subjects in all simulation

configurations, with each data configuration replicated 500 times. To obtain the es-

timated standard error we bootstrap 25 datasets for each run. The bootstrap sample

size is 2500 to reduce computation time ([2],[3]), with the subsequent standard error

estimator approximately re-scaled.

In practice, we observe the minimum of T , D0 and C. In simulations, however, we

always observe T , D0, (D1 − T )+ and C for all patients. True values of S1(t), S0(t),

δ(t) and ∆(L) were obtained using monte-carlo on these counterfactuals. Naturally,

for the purpose of computing Ŝ0(t), only [(D ∧ C ∧ T ), ND(D ∧ C ∧ T )] were used;

similarly, only [(D ∧C − T )+, N
D(D ∧C)] were used for subjects with (D ∧C > T )

for the purpose of computing Ŝ1(t). Hence, δ̂(t) and ∆̂(L) were, for each replicate,

only based on data that would in reality be observed.

After generating the data, the partly conditional model,

λ0i (t; s|Hi(s)) = λ00(t) exp {β00Z1 + β01Z2 + β02Z3(s) + β03Z4(s)} ,

was fitted to obtain the treatment-free prognostic score. To fit the conditional model,

we generated a random variable that follows Uniform (0,25) for every individual as

their listing calender time and set cross section CS = {5, 10, 15, 20, 15}. For post-

treatment survival, the model

λ1i (t; s|H(s), Ti = s) = λ10 exp {β10Z1 + β11Z2 + β12Z3(s) + β13Z4(s) + β15s}

was fitted to obtain the post-treatment prognostic score. The estimator of ΛT (t) was
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calculated from a fully time-dependent Cox model,

λTi (t|Hi(t)) = λT0 exp {βT1Z1 + βT2Z2 + βT3Z3(t) + βT4Z4(t)} .

The caliper width ε for matching was set to 0.05. In estimating S1(t), patients are

grouped by half deciles of prognostic score. For all simulations configurations we set

τT = 10.

In the first set of simulations, we examine the bias, empirical standard deviation

and bootstrap standard deviation of the proposed estimators with various treatment

effect under light censoring with λC0 = 0.015, where around 15% of individuals get

censored. We set λ0D = 0.15, 0.25 for moderate and negative treatment effect. The

remaining parameters are set equal across the three scenarios: λT0 = 0.01, βD1 =

βT1 = βC1 = log 2, β14 = log(3)/100, βD2 = βT2 = βC2 = log 3,βD3 = βT3 = log 3/10,

βD4 = βT4 = log 2/10 and λ10 = 0.02.

In the second set of simulations, we examine the properties of the proposed esti-

mators under moderate censoring. The parameter setting is same as the first set of

simulations, except for the change in the censoring parameter to λC0 = 0.02, which

results in approximately 30% censoring.

Results for the first and second set of simulations are shown in Table 4.1 and Table

4.2, respectively. In both tables, the absolute bias of S1(t) S0(t) and δ(t) range from

0.001 to 0.017. The bias of µ0, µ1 and ∆ is slightly larger, but considering the scale

of these quantities, the bias is still negligible. The bootstrap standard error (BSE)

was generally close to empirical standard deviation (ESD). The coverage probability

is around 0.95, except for S0(15). Some degree of under-coverage is observed, but

not in unacceptable amounts. The estimation of S0(t) is more sensitive to censoring

percentage, as the censoring percentage does not affect the results of S1(t) very much,

while the bias of Ŝ0(t) becomes more pronounced with larger censoring percentage.
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Table 4.1: Simulation results: Light censoring

Setting t Quantity True BIAS ESD BSE CP

Moderate 3 S1(t) 0.819 0.002 0.014 0.014 0.94
treatment 6 0.682 0.001 0.019 0.017 0.94

effect 10 0.547 -0.001 0.021 0.019 0.93
3 S0(t) 0.771 0.005 0.006 0.006 0.93
6 0.572 0.008 0.010 0.009 0.91
10 0.360 0.014 0.011 0.011 0.86
3 δ(t) 0.048 0.004 0.014 0.014 0.97
6 0.111 0.008 0.020 0.018 0.92
10 0.187 0.015 0.022 0.020 0.90
10 µ0(t) 7.411 0.089 0.075 0.069 0.90
10 µ1(t) 6.508 0.009 0.134 0.126 0.92
10 ∆(t) 0.904 0.080 0.142 0.134 0.91

Negative 3 S1(t) 0.800 0.002 0.013 0.014 0.92
treatment 6 0.656 0.002 0.018 0.017 0.93

effect 10 0.517 -0.001 0.019 0.019 0.92
3 S0(t) 0.838 0.004 0.005 0.006 0.93
6 0.679 0.008 0.009 0.009 0.93
10 0.484 0.016 0.011 0.011 0.86
3 δ(t) -0.037 0.002 0.014 0.014 0.97
6 -0.022 0.007 0.019 0.018 0.92
10 0.033 0.014 0.021 0.020 0.90
10 µ0(t) 7.356 0.078 0.069 0.069 0.90
10 µ1(t) 7.197 0.015 0.127 0.123 0.93
10 ∆(t) -0.159 0.063 0.137 0.132 0.91



64

Table 4.2: Simulation results: Moderate censoring

Setting t Quantity True BIAS ESD BSE CP

Moderate 3 S1(t) 0.819 0.001 0.014 0.014 0.94
treatment 6 0.682 0.001 0.018 0.017 0.94

effect 10 0.547 0.002 0.019 0.019 0.93
3 S0(t) 0.771 0.006 0.007 0.006 0.93
6 0.572 0.009 0.010 0.009 0.91
10 0.360 0.017 0.011 0.011 0.87
3 δ(t) 0.048 0.006 0.014 0.014 0.96
6 0.111 0.008 0.018 0.018 0.92
10 0.187 0.015 0.019 0.020 0.90
10 µ0(t) 7.411 0.092 0.078 0.069 0.91
10 µ1(t) 6.508 0.011 0.123 0.126 0.92
10 ∆(t) 0.904 0.081 0.136 0.134 0.91

Negative 3 S1(t) 0.800 0.000 0.013 0.014 0.92
treatment 6 0.656 -0.002 0.017 0.017 0.93

effect 10 0.517 -0.001 0.019 0.019 0.92
3 S0(t) 0.838 0.004 0.006 0.006 0.93
6 0.679 0.008 0.009 0.009 0.91
10 0.484 0.016 0.012 0.011 0.86
3 δ(t) -0.037 0.004 0.013 0.014 0.97
6 -0.022 0.010 0.017 0.018 0.92
10 0.033 0.017 0.019 0.020 0.90
10 µ0(t) 7.356 0.063 0.071 0.067 0.90
10 µ1(t) 7.197 -0.010 0.117 0.123 0.93
10 ∆(t) -0.159 0.073 0.122 0.132 0.91
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4.4 Analysis of Liver Transplant Data

We applied our proposed methods in real data to estimate the effect of deceased-

donor liver transplantation (LT) (j = 1) on survival compared to the absence of LT

(j = 0) among waitlisted patients, by Model for End-stage Liver Disease (MELD)

score. Data were obtained from Scientific Registry of Transplant Recipients. The

SRTR data system includes data on all donors, wait-listed candidates, and transplant

recipients in the United States, as submitted by the members of the Organ Procure-

ment and Transplantation Network (OPTN), and has been described elsewhere. The

Health Resources and Services Administration (HRSA), U.S. Department of Health

and Human Services provides oversight to the activities of the OPTN and SRTR

contractors.

The study population included n = 108, 236 patients aged ≥ 18 and listed be-

tween 01/01/2005 and 12/31/2016, of which 58,941 received deceased donor liver

transplant. We excluded patients who were Status 1 (acute liver failure) or pre-

viously transplanted. Follow-up time begins at the date when the patient got

listed and ends at earliest of death, loss to follow-up, or the end of the observa-

tion period (12/31/2016). Cross-section dates are chosen by every 2 years, which

leads to 1/1/2007, 1/1/2009, 1/1/2011/, 1/1/2013 and 1/1/2015. The transplant

hazard model, λTi (t|Hi(t)) = λT0 (t) exp
{
β

′
TZi(t)

}
, was adjusted by age, gender,

race/ethnicity, diagnosis, body mass index, blood type, albumin, dialysis, diabetes,

ascites, hepatic encephalopathy, allocation MELD score, serum sodium, interna-

tional normalized ratio.The pre-transplant model for λ0i (t) is adjusted by age, gender,

race/ethnicity, diagnosis, body mass index, blood type, albumin, dialysis, diabetes,

ascites, hepatic encephalopathy, lab MELD score, serum sodium, serum creatinine,
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serum bilirubin, international normalized ratio and time on wait-list. In the post-

transplant model, λ1(t; s|H(s), Ti = s) = λ10(t) exp
{
β

′
1Zi1(s) + β′2g(s)

}
, Zi1(s) in-

clude treatment time Ti, age, gender, race/ethnicity, diagnosis, body mass index,

blood type, albumin, dialysis, diabetes, ascites, hepatic encephalopathy, lab MELD

score, serum sodium, serum creatinine, serum bilirubin and international normalized

ratio.

In this application, we set τT and τ1 to 3 years and 5 years, respectively. A total

of 58,941 patients received LT (54.45%) and 41,055 deaths were observed. We set

the caliper width of prognostic score matching ε = 0.01.

We show the results for lower MELD score groups. The estimated survival curves

on [0,5] year interval of the two groups are presented in Figure 4.1, by MELD score

category. Note that the MELD score categories refer to MELD at transplant. Within

a MELD category, Ŝ1(t) can be interpreted as the average survival probability, with t

representing residual time post-transplant. Analogously, Ŝ0(t) is the average survival

that would have resulted in the absence of liver transplantation, among patients who

received a liver transplant. The survival curve of transplant group remain similar

across different MELD score groups. The survival for the waitlist group decreases

strongly with the increase of MELD score.

In Table 4.3, we list estimates of difference in survival probability, δ̂(t) for t =

1, 3, 5, as well as ∆̂(5), the difference in 5-year restricted mean residual survival time.

MELD 12-14 group gains the most benefit from the transplantation (∆(5) = 0.864

year) which was caused by the low survival probability in this MELD group. All the

groups have significant transplant effect on 5-year survival.
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Figure 4.1: Analysis of SRTR data: estimated survival curves

Table 4.3: Analysis of SRTR data: estimating the effect of liver transplantation on the transplanted
(with 95% confidence interval in parentheses), by MELD score at transplant

MELD Score δ̂(1) δ̂(3) δ̂(5) ∆̂(5) (year)
6-8 0.007 0.072 0.156 0.294

(0.000,0.014) (0.061, 0.083) (0.140, 0.172) (0.254, 0.336)
9-11 0.026 0.143 0.237 0.557

(0.018, 0.033) (0.130, 0.156) (0.222, 0.252) (0.509, 0.606)
12-14 0.065 0.223 0.309 0.864

(0.057, 0.073) (0.213, 0.233) (0.296, 0.322) (0.824, 0.904)
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4.5 Discussion

In this chapter, we proposed methods to estimate the average causal effect among

the treated of a time-dependent treatment with the presence of time-dependent vari-

ables. In particular, the proposed treatment effect contrasts the post-treatment sur-

vival with the survival function that applied to treated patients had they, contrary

to fact, not received treatment. To estimate the survival of treated patients in the

absence of treatment, we proposed a matching method to create a group of patients

that is considered as counterfactual version for each treated patient and then prop-

erly average over the survival functions. The limiting distribution and asymptotic

variances were derived. For computational conveniences, a bootstrap method is em-

ployed to estimate the standard error. The proposed methods were shown through

simulations to work well in finite sample sizes. The proposed methods were applied

to quantify the survival benefit of deceased donor liver transplantation among the

transplanted, by Model for End-stage Liver Disease (MELD) score.

Chapter IV is a generalization from Chapter II in the presence of time-dependent

variables and, as such inherits some basic characteristics of the methods in Chapter

II. The proposed method is non-parametric in the sense that the assumed models

only contribute to the prognostic score used for matching. For the treatment effect,

we target directly at survival function and restricted mean lifetime, which is more

flexible compared to a hazard ratio. Due to the nature of non-parametric estima-

tion, the proposed methods do not require that pre- and post-treatment hazards are

proportional or have any particular relationship to each other. With the presence

of time-varying variables, we incorporate the partly conditional model as a working

model for the pretreatment survival.
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The results from SRTR show that higher MELD score groups benefit more from

the transplantation, which is intuitive because higher MELD score usually indicate

higher death mortality. Transplantation in higher mortality groups will bring patients

larger difference in mean survival time, but it does not necessarily suggest patients

not to get transplanted until their MELD score gets higher.

There are now many methods available for evaluating a time-dependent treat-

ments. Marginal Structural Models (MSM; [12],[13]) are not well-suited to our setup

due to the potential for treatment to interact with timevarying covariates. Struc-

tural Nested Failure Time Models (SNFTMs;[27],[14]) are an alternative. These

methods either do not target at survival functions or do not estimate average treat-

ment effect among the treated. Gong and Schaubel (2017) proposed methods that

use partly conditional modeling to estimate the treatment effect. Compared to Gong

and Schaubel (2017), the proposed methods only use the partly conditional model

to obtain the prognostic score instead of using them as treatment effect. However,

Gong and Schaubel (2017) rely more heavily on correct specification of the model.

Due to the nature of matching, the proposed methods have the advantages of

handling covariates of higher dimensions, and greater robustness towards model mis-

specification. On the other hand, matching also relies on several assumptions such as

no unmeasured confounding and overlapping support between treated and untreated

groups. In the process of matching, caliper width is subject to change depending

on the application at hand. One needs to ensure that every treated subject gets a

sufficient number of matched subjects while ensuring that the matched sets consist

only of patients similar enough to the index treated subject.
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