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ABSTRACT

Recent years have seen a massive increase in the number of publicly available

spatial and spatio-temporal datasets. With these data comes a set of practical

challenges, especially when researchers use spatial statistical models to generate

predictions or synthesize datasets with differing spatial resolutions. At the basis

of these models lies the notion of spatial scale which, for a stationary and isotropic

covariance, is quantified through a range parameter which captures the distance

at which observations are considered independent in space. In this dissertation,

we propose a set of statistical methods to investigate issues related to the scale of

spatial data, with the goal of providing a better characterization of the dependence

structure of a spatial process. These methods are used to generate improved pre-

dictions and to generate estimates at the needed spatial resolution. Furthermore,

several methods are developed to account for the sampling mechanism of the data,

whether they are derived through surveys or from non-probabilistic samples such

as electronic health records (EHRs).

In Chapter 2, building upon the Multi-resolution Approximation (M-RA) for

large spatial data (Katzfuss, 2017), and leveraging the relationship between levels

xviii



of the M-RA and the scale of a spatial process, we develop a Bayesian hierarchical

model that explores and accommodates non-stationarity in spatial processes. In

contrast to several existing tests for global non-stationarity, our model can detect

regions of local stationarity through the specification of a mixture of multivariate

normal priors on the basis function weights of the M-RA. Furthermore, our model

outperforms other standard spatial statistical models in terms of out-of-sample

prediction.

In Chapter 3, we present a model for disaggregating to a fine spatio-temporal

resolution estimates of proportions derived from the American Community Survey

(ACS). We envision that disaggregated estimates will be better proxies of neigh-

borhood exposure than the ACS estimates, which are resolved at either a fine

spatial resolution and coarse temporal scale, or at a coarse spatial resolution and

fine temporal scale. By characterizing the data as an aggregation of an underlying

point-referenced process, we disaggregate the ACS estimates to the 1-year census

tract resolution. Crucial to our methodological development is the incorporation

of the surveys design effect. A secondary development is a spatio-temporal version

of the M-RA.

In Chapter 4, we extend the disaggregation model of the previous chapter to

accommodate estimates of count-valued characteristics. This chapter contains a

comparison to the model of Bradley et al. (2016b) (the BWH model), which ad-

dresses a similar problem for purely spatial data. In addition to accommodating

spatio-temporal data, our model differs from the BWH model by incorporating the

survey design effect into the model specification. We find that our model outper-

xix



forms the BWH model in terms of prediction accuracy and coverage probability.

In Chapter 5, we address the issue of sampling bias in EHR data, which can

arise in studies of the association between disease and exposure when both the

outcome variable and the exposure process are related to the process determining

sample selection. Our method jointly models EHR and publicly available data

to approximate sampling probabilities, which are then used to derive sampling

weights. We show via simulation studies that we can recover data generating

sampling probabilities and reduce bias compared to a naive analysis. To illustrate

the utility of our model with clinical data, we present an analysis of smoking and

lung cancer using subjects in the Michigan Genomics Initiative.

xx



CHAPTER I

Introduction

With the widespread availability of geographical information systems (GIS),

recent decades have witnessed a tremendous increase in the number of epidemi-

ological studies investigating the effect on population health of individuals’ so-

cial and physical environment. Environmental data for these types of studies are

often gathered by leveraging multiple sources, each reporting data at different

geographic, or spatial, resolutions. In addition, locations at which environmental

data are collected rarely correspond directly to the residential locations of subjects

in the study, thus requiring prediction of environmental exposures at unobserved

locations. Because physical and social environmental data vary spatially, it is com-

mon practice to use spatial statistical methods to model these data, characterize

their spatial dependence, generate predictions at unsampled locations, or provide

estimates at the desired spatial resolution.

At the basis of spatial statistics is the concept that spatial dependence between

random variables corresponding to different locations or areal units can be captured

through a covariance function that depends on their geographical positioning; in

1
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some cases (i.e. for stationary and isotropic covariance functions), it is simply a

function of the separation or proximity between locations/areal units. In the case

of point-referenced data and stationary covariance functions, separation between

locations is quantified through their distance and the angle between locations.

On the other hand, for areal data whose spatial dependence is characterized as

stationary, the correlation depends on whether areal units are adjacent or not,

that is, whether they share a common boundary or not. Closely related to the

notion of covariance function/spatial dependence of a spatial process is the concept

of scale of a spatial process or range of the covariance function, which indicates

the distance at which sites or areal units can be considered independent. In most

models used to analyze spatial data, the scale/range is assumed to be a global

property of the spatial process and thus it is postulated to not vary spatially.

However, when dealing with point-referenced data, the assumption that the co-

variance function depends only on the distance between points and admits a global

range, i.e. the assumption that the covariance function is stationary, might be an

unrealistic one which does not represent the true, complex dependence structure

of the process. This might be true particularly for geophysical processes, such

as air pollution, temperature, etc., which are affected by external factors such as

topography, weather, and urbanicity.

The overarching theme of this dissertation is to propose statistical methods to

investigate issues related to the scale of spatial processes and spatial fields with the

goal of providing a better characterization of their dependence structure. These

methods will in turn be used to generate improved predictions of a point-referenced
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spatial process at unsampled sites and generate estimates of areal-level data at the

needed spatial resolution. In terms of application, the motivation for this work is

to infer upon environmental and social factors that affect health at the scale of

interest for epidemiological analyses.

1.1 Introduction to spatial statistical models

The following section provides a brief overview of topics in spatial statistics

that are relevant to the projects presented in Chapters II through V. Specifically,

we will quickly introduce statistical models for both point-referenced and areal

data, and, in the case of point-referenced data, we will show how these models

can be extended to accommodate for data over time. In addition, we present

an introduction to spatial point process models. For the interested reader, more

details on these topics can be found in Banerjee et al. (2004), Cressie (1993),

Cressie and Wikle (2011), Gelfand et al. (2010), and Waller and Gotway (2004).

1.1.1 Point-referenced spatial data

Spatial data for which the geographical coordinates of the observation locations

(e.g. latitude and longitude, or Easting and Northing) are available are typically

referred to as point-referenced or geostatistical data. For this type of data, obser-

vation locations are assumed to be fixed and belonging to a continuous domain

S ⊂ Rd with d typically equal to 2 or 3. The common notation adopted for a

point-referenced datum is y(s) to explicitly indicate that the observation of a ran-

dom variable Y was obtained at location s in S. The classical modeling approach
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used for point-referenced data decomposes y(s), s ∈ S, into the sum of 3 terms:

(1.1) y(s) = µ(s) + w(s) + ε(s) ε(s)
iid∼ N(0, τ 2)

In (1.1), µ(s) represents the mean of the random variable Y (s) and it accounts

for the large-scale spatial trend in the spatial process {Y (s) : s ∈ S}; typically,

µ(s) is modeled to be a function of covariates X(s), e.g. µ(s) = h (X(s),β).

The second term in (1.1), w(s), accounts for the small-scale spatial variation in

the spatial process {Y (s) : s ∈ S} not accounted for by the mean function µ(s).

Following nomenclature used in longitudinal data analysis, w(s) is also deemed

as a spatial random effect, and represents the deviation from the overall mean of

the process, µ(s), associated with location s ∈ S. Finally, {ε(s) : s ∈ S} is an

independent error process, independent of {w(s) : s ∈ S}, that accounts, among

others, for measurement error. The variance τ 2 of ε(s) is interpreted as the non-

spatial variability in the spatial process Y (s) and is often referred to as nugget

effect in the geostatistical literature.

For spatial data that, marginally, at each location, can be thought of as following

a Gaussian distribution, the spatial random field {w(s), s ∈ S} is modeled as a

mean-zero Gaussian process. That is, w(s), s ∈ S, is a stochastic process indexed

by location, for which all finite-dimensional realizations are distributed according

to a multivariate normal distribution. As a multivariate normal distribution is

completely specified by its mean and covariance matrix, the mean-zero Gaussian

process w(s), s ∈ S, is completely determined once the covariance function

C(s, s′) := Cov (w(s), w(s′))
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is defined for each pair of points s, s′ ∈ S.

A simplifying assumption that is often used for covariance functions is to assume

that they depend only on the distance between the two locations, that is, only on

d(s, s′). In this case, the covariance function is called stationary and isotropic and

the spatial process is named a stationary, isotropic spatial process, more precisely a

second-order stationary, isotropic spatial process if the mean of the spatial process

is constant in space. In routine spatial statistical analysis of continuous point-

referenced data, w(s) in (1.1), is taken to be a mean-zero, second order stationary,

isotropic Gaussian process.

Several parametric models exist for isotropic covariance functions: spherical,

exponential, Gaussian, Matèrn, etc. (for more details, please refer to Banerjee

et al. (2004), Cressie (1993), etc.); here we just present the exponential and Matèrn

covariance function for illustration. The exponential covariance function states

that the covariance between a spatial process at two locations s and s′ decays

exponentially with distance. On the other hand, the Matèrn covariance function

is a general covariance function that admits many other parametric covariance

functions as special cases, and expresses the covariance between the spatial process

at locations s and s′ as the product of a power function of the distance between

the two sites times the modified Bessel function of the second kind, Kν , applied

to the distance between the two locations. The mathematical expressions for the
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Figure 1.1: Examples of covariance functions for varying values of the parameters: σ2, φ, and ν.

exponential and the Matèrn covariance functions are respectively:

C(s, s′) = σ2 exp

(
−d(s, s′)

φ

)
(1.2)

C(s, s′) = σ2 · 1

2ν−1Γ(ν)
·
(
d(s, s′)

φ

)ν
· Kν

(
d(s, s′)

φ

)
(1.3)

where d(s, s′) denotes the distance between s and s′. Figure 1.1 shows examples

of the two covariance functions in (1.2) and (1.3) for different choices of σ2, φ and

ν as the distance between sites varies.

As shown in (1.2) and (1.3), most isotropic covariance function models depend

on two parameters: σ2, also called the marginal variance of the spatial process

w(s), s ∈ S, or the spatial variance of Y (s), s ∈ S, and represents the part of the

variation in Y (s), s ∈ S, not accounted for by µ(s) (in contrast with τ 2); and φ, also

called the range parameter, which provides information on the scale of the spatial

process/range of the spatial correlation, that is, the minimum distance at which

two sites can be deemed independent or practically independent (e.g. correlation
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equal to 0.05). As shown in (1.3), the Matèrn covariance function depends also

on an additional parameter, ν, called the smoothness parameter which controls

the smoothness of the realizations of the spatial process w(s), s ∈ S. The larger

ν, the more continuously differentiable the spatial process is. Specific values of ν

in (1.3) lead to other particular parametric covariance functions: ν = 0.5 in (1.3)

yields the exponential covariance function, while for ν →∞ the Matèrn covariance

function becomes the Gaussian covariance function.

Inference for geostatistical data typically consists of fitting model (1.1), or a

slight variant of (1.1), to observations y(s1), y(s2), . . . , y(sn) of a spatial process

{Y (s) : s ∈ S} at a finite number of locations s1, s2, . . . , sn to obtain estimates of

the mean parameters β, and the covariance parameters σ2, φ, potentially ν, and

τ 2. For observations at n locations, both maximum likelihood estimation and

Bayesian inference via Markov Chain Monte Carlo (MCMC) algorithms require

O(n3) operations, making inference computationally intensive for large datasets.

Several methods have been proposed in the spatial statistical literature to ease

the computational burden associated with fitting a spatial statistical model as

(1.1). Among these, a modeling strategy that has been revisited and extended

in different fashions is the approximation introduced by Vecchia (1988). Having

observations at n locations and decomposing the joint distribution f(y(s1), y(s2),

. . . , y(sn)) of y(s1), y(s2), . . . , y(sn) into the product of a univariate marginal dis-

tribution - say, f(y(s1)) - times n− 1 conditional distributions, Vecchia (1988) ex-

ploited the concept of range of a covariance function to simplify the conditioning set

in each of the n−1 conditional distributions. Thus, for example, rather than using
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the conditional distribution f(y(sn−k)|y(s1), y(s2), . . . , y(sn−k−1)) in the expression

of the joint distribution f(y(s1), y(s2), . . . , y(sn)), Vecchia (1988) replaced it with

f (y(sn−k)|y(sn−k−1), y(sn−k−2), . . . , y(sn−k−l)), where {sn−k−1 , sn−k−2, . . . , sn−k−l}

denotes the set of observation locations that are within a certain distance of sn−k.

Recently, Katzfuss and Guinness (2017) have demonstrated that many of the cur-

rently used, computationally efficient methods for large-dimension, spatial data are

special cases of the Vecchia approximation. Examples include the nearest-neighbor

Gaussian process (NNGP) (Datta et al., 2016), independent blocks (Stein, 2008),

and the Multi-resolution Approximation (M-RA) (Katzfuss, 2017), for which we

provide an extension in Chapter II.

1.1.2 Areal unit data

A different type of spatial data often encountered in several applications, in-

cluding epidemiology, medicine (imaging), archaeology, atmospheric sciences, etc.

is areal data. In this case, the data are measurements that refer to bounded

subsets of the spatial domain S ⊂ Rd (e.g. counties, zip-codes, census tracts,

pixels/voxels, grid cells, etc.). Besides the name areal data, sometimes this type

of data is referred to as discrete spatial variation data to highlight the difference

with geostatistical data that represent data with continuous spatial variation.

Because with areal data it is not possible to associate an observation to a point

with precise geographical coordinates, the spatial dependence of a discrete spatial

random field is not described through a function that depends on the distance be-

tween areal units. Rather, the common approach employed to model these data is
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to exploit the notion of adjacency, and assume that random variables that refer to

areal units that are adjacent - for example, share a common border - are more sim-

ilar and correlated than random variables that pertain to non-adjacent areal units.

Specifically, let A1, A2, . . . , An denote non-overlapping subsets of S ⊂ Rd and let

y(A1), y(A2), . . . , y(An) indicate the corresponding observations; examples include

average income over counties in a state, output by an air quality model over regular

grid cells covering the US, etc.. If marginally it is appropriate to assume that each

random variable follows a normal distribution, a classical approach to model the

realization {y(A1), y(A2), . . . , y(An)} of the random field {Y (Ai) : i = 1, . . . , n} is

to specify a Bayesian hierarchical model where the first stage is given by:

(1.4) y(Ai) = µ(Ai) + ϕ(Ai) + ε(Ai) ε(Ai)
iid∼ N(0, τ 2

ε ), i = 1, ..., n

with µ(Ai) expected value of the random variable Y (Ai) over areal unit Ai, ϕ(Ai)

random effect relative to areal unit Ai and ε(Ai), white noise or error at areal unit

Ai. As for point-referenced data, ϕ(Ai) and ε(Ai), i = 1, . . . , n, are assumed to

be independent for each Ai, i = 1, . . . , n. In turn, the mean µ(Ai), i = 1, ..., n

is usually modeled as a function of spatially-varying covariates and it is meant

to capture the large scale trend in the observations, while ϕ(Ai), i = 1, ..., n is

assumed to capture any residual spatial variability in the data not accounted for

by the covariates. In some applications, it is not uncommon to use a constant

mean µ, that is, assume that µ(Ai) ≡ µ for every Ai, i = 1, . . . , n.

To account for spatial dependence in the data, the Bayesian hierarchical model

should provide a joint prior distribution for ϕ(A1), ϕ(A2), . . . , ϕ(An). In his sem-
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inal paper, Besag (1974) showed that for a particular class of (improper) multi-

variate distribution, specifying a joint prior distribution was equivalent to spec-

ifying the set of full conditionals, thus introducing the Conditionally AutoRe-

gressive (CAR) prior, which provides an elegant and intuitive model to capture

spatial dependence in areal data. Specifically, if ϕ(A−i) denotes the set of spa-

tial random effects relative to all other areal units except areal unit Ai, i.e.

ϕ(A−i) = {ϕ(A1), ϕ(A2), . . . , ϕ(Ai−1), ϕ(Ai+1), . . . , ϕ(An)}, the CAR prior of Be-

sag (1974) states that the conditional distribution of ϕ(Ai) given ϕ(A−i) is:

(1.5) ϕ(Ai)|ϕ(A−i), τ
2
ϕ ∼ N

(∑
j wijϕ(Aj)

wi+
,
τ 2
ϕ

wi+

)
i = 1, . . . , n

where wi+ :=
∑

j wij. The wij in (1.5) are weights that encode the spatial depen-

dence between areal units in S; they are subject to certain conditions to ensure

that the joint distribution implied by (1.5) admits a symmetric and non-negative

definite covariance matrix. In the CAR model, Besag (1974) used the following

specification for the wij’s:

wij =


1 if Ai and Aj share a boundary

0 otherwise

(1.6)

Under such choice for the wij’s, the CAR prior of Besag (1974) implies that:

conditionally on the other areal units, the spatial random effect ϕ(Ai) at areal

unit Ai follows a normal distribution with mean equal to the average of the spa-

tial random effects at the neighboring areal units, while the variance is inversely

proportional to the number of neighbors of areal unit Ai.



11

An application in spatial epidemiology where areal data are encountered very

frequently and CAR models are routinely utilized is that of disease mapping. The

goal of disease mapping is to estimate the spatially-varying risk of a disease given

observations on the number of people being affected or deceased by the disease

over areal units. Although generated with an epidemiological application in mind,

disease mapping models can be used also for general applications, even in cases

where the observations do not refer to a disease. In general, let y(Ai) denote a

count relative to areal unit Ai (i.e. number of deaths or disease occurrences in Ai),

the classical disease mapping for these data specifies a Poisson likelihood, e.g.:

(1.7) y(Ai)|λ(Ai)
ind∼ Poisson (E(Ai)λ(Ai)) , i = 1, ..., n

Here, E(Ai) denotes the expected number of cases in areal unit Ai, which can

be obtained via internal or external standardization (Banerjee et al., 2004), while

λ(Ai) denotes the relative risk of disease in unit Ai. At the second stage of the

disease mapping model, a function of the relative risk λ(Ai) is expressed as a linear

combination of covariates and a random effect, e.g.:

(1.8) log (λ(Ai)) = X(Ai)β + ϕ(Ai)

where X(Ai)β quantifies the influence of the covariates X(Ai) on the relative risk,

β denotes the vector of regression coefficients which includes an intercept term,

while ϕ(Ai) denotes the spatial random effect for unit Ai. To account for spatial

dependence in the observed counts, and thus in the relative risks, the spatial

random effects, {ϕ(Ai) : i = 1, . . . , n}, are provided with the CAR prior in (1.5).

While computationally convenient to fit, a drawback of this model is that any
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overdispersion in the observed data is incorrectly modeled as spatial dependence

(Riebler et al., 2016). To address this issue, Besag et al. (1991) slightly revised

(1.8) and proposed a model, now commonly referred to as the BYM model, that

adds to the spatial random effect ϕ(Ai) an independent random effect term ξ(Ai),

e.g.

(1.9) log (λ(Ai)) = X(Ai)β + ϕ(Ai) + ξ(Ai), i = 1, ..., n

with ξ(Ai)
iid∼ N(0, τ 2

ξ ), thus, decomposing the variance of the log relative risks into

the sum of an independent overdispersion term and a structured spatial dependence

term.

Although widely adopted in spatial epidemiology, it is important to note that

in the BYM model the two sets of spatial random effects, {ϕ(Ai) : i = 1, . . . , n}

and {ξ(Ai) : i = 1, . . . , n} are not identifiable.

1.1.3 Spatio-temporal statistical models

If spatial data are collected over time, the spatial modeling approaches pre-

sented previously have to be extended to allow for more complex modeling frame-

works and to account for a potential temporal dependence. In this review, we

will focus only on models for data that can be thought as continuous in space

and discrete in time, that is, realizations of a time-series of spatial Gaussian pro-

cesses. For this type of data, the spatial and temporal dependence is commonly

accommodated via dynamic spatio-temporal models, which are an extension to the

spatial setting of classic first order autoregressive (AR(1)) models, commonly used

in time series analysis (Hamilton, 1994). In an AR(1) model, if {yt : t = 1, . . . , T}
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denotes a realization of a stochastic process {Yt : t = 1, . . . , T} at time t, the data

are modeled as:

(1.10) yt = αyt−1 + vt vt
iid∼ N(0, (1− α2)τ 2

v ) t = 1, . . . , T

with α parameter that captures the autocorrelation in the time series, νt innovation

term, and y0 ∼ N(0, τ 2
v ). The formulation in (1.10) yields several distributional

results, including for t = 1, . . . , T :

yt|yt−1, ..., y0 ∼ N(αyt−1, (1− α2)τ 2
v ) and

Cov(yt+k, yt) = αkτ 2
v(1.11)

This modeling framework has been recently used also for spatio-temporal data

(see Cressie and Wikle (2011), Katzfuss and Hammerling (2017)). In particular,

building on the representation of spatial data via basis functions (see Banerjee

et al. (2004), Cressie (1993), Cressie and Wikle (2011), Gelfand et al. (2010)),

recent papers have expressed spatio-temporal data using basis functions that do

not vary in time, but whose basis function weights are provided with a dynamic

vector autoregressive structure, similar in spirit to (1.10).

An alternative to the basis-function representation of spatio-temporal data is

provided by Gelfand et al. (2005), who propose a Bayesian hierarchical model for

this type of data. This modeling approach can be seen as the combination of

(1.1) and (1.10) in the context of spatially-varying regression coefficient models

(Gelfand et al., 2003). More specifically, let y(s, t) denote an observation collected

at location s at time t, then, the hierarchical dynamic spatio-temporal model of
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Gelfand et al. (2005) is given for t = 1, . . . , T by:

y(s, t) = X(s, t)β(s, t) + ε(s, t), ε(s, t)
iid∼ N(0, τ 2

ε )

β(s, t) = βt + β̃(s, t)

βt = αβt−1 + ηt, ηt
iid∼ N(0,Ση)

β̃(s, t) = α̃β̃(s, t− 1) + w(s, t)(1.12)

where X(s, t) denote spatially and temporally-varying covariates and β(s, t) indi-

cate p spatially and temporally-varying regression coefficients including an inter-

cept term. Equation (1.12) decomposes the p regression coefficients β(s, t) into

the sum of a purely temporal regression coefficient and a spatio-temporal compo-

nent, which can be thought as a random deviation from the global, temporally-

varying regression coefficient βt. In turn, each of the components evolve in time

according to a dynamic model, with innovations ηt, t = 1, . . . , T , and w(s, t),

s ∈ S; t = 1, . . . , T , respectively, independent replicates of a multivariate normal

random vector and of a Gaussian process.

1.1.4 Spatial point processes

In the models presented above, space, either in the form of points where ob-

servations are collected, or in the form of areal units for which data are reported,

is not random. Now, we present models for data for which the location where an

event occurs is random. Such type of stochastic processes are called spatial point

processes (van Lieshout, 2000). Examples of spatial point processes are encoun-

tered in ecology, brain imaging, geology, astronomy, etc. In some cases, besides

the location of the event, we also have additional random quantities associated
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with an event. In this case, the point process is called a marked point process.

The marks, or the additional attributes of the event, may be either numeric or

categorical. Interested readers may refer to van Lieshout (2000) and Gelfand et al.

(2010) for more thorough introductions to spatial point processes.

A spatial point process is a stochastic mechanism that generates a countable

(either finite of infinite) set of points on a spatial domain in Rd (Gelfand et al.,

2010). More specifically, a spatial point process defined on the spatial domain

S ⊂ Rd is a mapping from the Borel σ-algebra B of subsets of S to Rd, such that

∀B ∈ B, N(B) is an integer-valued random variable that represents the number of

events falling in B (Gelfand et al., 2010). A spatial point process is characterized

through the intensity function, λ(s), defined for each s ∈ S as:

λ(s) = lim
|∆s|→0

E(N(∆s))

|∆s|

where ∆s ∈ B denotes a region containing s. Given λ(s), for any B ∈

B, E(N(B)) ≡
∫

s∈B λ(s)ds. More colloquially, the larger the intensity function

λ(s) at s, the higher the chance that location s hosts an event.

The building block of many models for spatial point processes is the Poisson

point-process, defined by the following two conditions:

1. For any B ∈ B, N(B) is a Poisson random variable with mean µ(B) =∫
s∈B λ(s)ds.

2. For any integer n and for any B ∈ B, with 0 < µ(B) < ∞, conditional on

N(B) = n, the events are located independently and uniformly over B.

When λ(s) ≡ λ ∀s ∈ S, that is, the intensity is constant over space, the Poisson
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point process is referred to as a homogeneous Poisson process, while if λ(s) varies

in space, the process is called an inhomogeneous Poisson process. In an inhomo-

geneous Poisson process, it might be of interest to understand how the intensity

function varies as a function of covariates. Hence it is customary to write the

following model for λ(s), g(λ(s)) = h(X,β), where g(·) denotes a link function,

typically the log function, and h(X,β) may be a linear function of covariates with

parameters β.

Recently, spatial point processes have been incorporated in geostatistical mod-

els to account for what is called preferential sampling, that is the stochastic de-

pendence between the spatial point process that governs where observations are

collected and the spatial process of the response field. The idea of preferential

sampling was introduced by Diggle et al. (2010), who modeled the sampling mech-

anism, specifically the sampling locations, using a log Gaussian Cox Process (a

highly popular model for spatial point processes). Then, the responses, condi-

tioned on the locations, were modeled through the classical geostatistical model

in (1.1), with the two models sharing a common spatial random effect. Through

simulation studies, Diggle et al. (2010) have shown that such modeling strategy

leads to an unbiased estimation of the Gaussian process parameters, and a sub-

stantial reduction in bias for out-of-sample predictions. This modeling paradigm

ties closely to the field of survey statistics, in which weighting by the inverse prob-

ability of selection into a survey is often used in order to correct for sampling

bias.
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1.2 Introduction to survey methods

Survey methodology is one of the most mature and widely studied branches

of statistical science. Surveys are used to gather information about a sample of

individuals, often with the goal of inferring about a larger population. Designing

and conducting a sampling survey requires multiple phases, including the a priori

steps of wording the survey instrument and selecting a sample, as well as the a

posteriori steps of correcting for bias in the gathered sample through weighting,

imputation, or other statistical methods. Due to the subject matter of this dis-

sertation, we will forego discussion of survey wording and instead provide a brief

introduction to survey coverage and sampling, as well as forms of bias and their

correction through weighting. There is a wealth of literature available to interested

readers, including Groves et al. (2009), Fowler (2014), and de Leeuw et al. (2008).

Surveys are almost always conducted with a larger target population in mind.

The sampling frame of the survey consists of any members of the target population

who have a non-zero probability of being selected for the survey (Fowler, 2014;

de Leeuw et al., 2008). Sampling frames can range from a comprehensive or

nearly comprehensive list of the target population, such as telephone records, to

samples that are gathered mainly through convenience, such as hospital patients

who consent to having their electronic health records used for research purposes.

The quality of a survey can be tied directly to the quality of the sampling frame

and the process by which it is obtained. More specifically, Fowler (2014) states

that sampling frames should be evaluated based on three factors. The first of these
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is comprehensiveness, or how well the sampling frame covers the true population.

de Leeuw et al. (2008) note that a common form of error in sampling surveys is

under coverage, meaning that the sampling frame does not include all units in the

target population. The second factor for evaluating a sampling frame is whether

or not the probability of selection for each sampled unit can be computed. The

third factor is efficiency, which refers to the rate at which members of the target

population can be found within the sampling frame.

After one defines a sampling frame, it is necessary to select a sample. The

“prototypical” (Fowler, 2014) sampling technique upon which standard statistical

methods are based is simple random sampling, in which elements of the sampling

frame are sampled with equal probability and without replacement. While ap-

pealing for their simplicity, simple random samples can, by random chance, yield

samples that differ from the target population and/or fail to adequately represent

subgroups of the target population. This is especially true when limited resources

necessitate a relatively small sample. This issue can be curtailed through stratifi-

cation, in which the sampling frame is partitioned into disjoint groups or strata, for

example based on a characteristic or residential location. A sample is then drawn

from each stratum, possibly with differential sampling probabilities, thereby en-

suring that each stratum is represented within the sample (Fowler, 2014).

When simple random or stratified random sampling are infeasible, perhaps due

to size of the target population or its geographic dispersion, researchers will often

instead use cluster sampling. In cluster sampling, the sample is constructed from

large primary sampling units (PSUs) and, potentially, smaller secondary sampling
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units from within those units. In contrast to stratified random sampling, PSUs

do not form a partition of the domain, rather they are often naturally occurring

subgroups in the target population (de Leeuw et al., 2008), for example cities,

regions, or sub-populations that are readily available to researchers. With cluster

sampling, within-unit variability tends to be low, whereas between-unit variability

tends to be high (compared to, for example, a stratified random sample). Due

to high within-cluster variability, cluster samples tend to have higher overall vari-

ability compared to a simple random or stratified random sample. This increased

variability in a cluster sample can be quantified by the design effect (Kish, 1995),

defined as the ratio of the design-based variance (i.e. the variance of the estimator

that accounts for the survey design) divided by the variance of the estimator under

simple random sampling.

The previously mentioned sampling techniques can alleviate certain practical

and statistical pitfalls that arise in sampling surveys, particularly due to selection

bias. Nevertheless, standard statistical techniques are rarely appropriate for survey

data. This may be due to other forms of bias such as differential response rates,

or deficiencies in the sampling technique. In the case of item non-response, one

can impute missing values (see Little and Rubin (2002) for details). Alternatively,

weighting is a commonly applied technique to reduce survey bias. The process

of weighting introduces a new variable, often denoted wi for survey datum i, i =

1, ..., n. Whenever the probability of selection can be quantified, the weight wi

is typically defined as the inverse of the selection probability for survey datum i,

and can then be interpreted as the number of individuals in the target population
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represented by datum i. Inverse probability weighting can produce estimators with

very high variance, particularly when the sampling probabilities are themselves

highly variable. The procedure of weight trimming (Little, 1991; Elliott, 2009)

aims to curtail this problem by capping the survey weights at a certain fixed value,

with the value of the weight cap determined so to yield a bias-variance trade-off

in the estimator.

1.3 Dissertation summary

This dissertation is organized as follows. In Chapter II we extend the multi-

resolution approximation of Katzfuss (2017) to explore characteristics of the spatial

dependence of the spatial process that underlies the observed data. By decom-

posing the spatial random effect (see Section 1.1.1) into a linear combination of

appropriately chosen basis functions, and by specifying a priori a mixture prior

on the basis function weights, we can examine the posterior distribution of the

basis function weights to detect inhomogeneities in the range of the spatial cor-

relation function. Through numerous simulations and an analysis of Soil Organic

Carbon, we demonstrate the utility of our model not only for its intended purpose

as an exploratory tool to investigate the spatial scale of the process, but also as

a non-stationary geostatistical modeling framework whose predictive performance

matches or exceeds that of existing methodologies.

In Chapter III, we propose a method for spatio-temporal disaggregation of esti-

mates of proportions over areal units derived from multi-year sampling surveys. A

crucial contribution of our modeling framework is the incorporation of the survey’s
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design effect into the modeling framework, which allows to properly propagate the

survey variance during inference. We examine the capability of our model through

simulations and we illustrate its use on estimates of community characteristics

derived from the American Community Survey (ACS). Specifically, we present

disaggregations at the census tract level and at the yearly time scale of the ACS

estimates for the proportion of families in poverty and the proportion of people

who identify as Black/African-American in Michigan.

In Chapter IV, using a similar approach to Chapter III, we develop a modeling

framework to disaggregate estimates of counts derived from multi-year sampling

surveys. In addition to incorporating the design effect in our model to properly

propagate the design-based variance, we introduce a flexible, spatio-temporal zero-

inflation term to handle the excess number of zero counts. In this chapter, in

addition to a simulation and a data analysis of the number of births in Michigan,

we quantify the gain of our model compared to a spatio-temporal extension of the

model of Bradley et al. (2016b), which does not explicitly account for the survey

design. In addition, we derive metrics for Michigan hospitals, namely, the number

of births and number of births per bed, that we posit will correlate with demand

and available resources.

Chapter V presents a modeling framework to correct for sampling bias in Elec-

tronic Health Records (EHRs) data from the University of Michigan Hospital Sys-

tem. Specifically, inspired by the work of Diggle et al. (2010) on preferential sam-

pling, we introduce a spatial point process to account for potential oversampling

in the EHR data, and we derive an estimate of the association between incident
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lung cancer and smoking for the state of Michigan. Furthermore, we present a

simulation study assessing the bias that would result from failing to account for

preferential sampling.

Finally, Chapter VI concludes the dissertation with a discussion of future re-

search directions.



CHAPTER II

Identifying Regions of Non-stationarity in Spatial
Processes via Multi-resolution Approximation and

Mixture Priors

2.1 Introduction

In a typical spatial statistical analysis that uses a parametric modeling frame-

work, a practitioner is faced with selecting a model for the covariance function,

determining a priori whether the spatial process is stationary, i.e. the spatial de-

pendence in the data is just a function of the separation between sites, potentially

even simply a function of the distance between locations, or whether the process

is non-stationary.

Lack of stationarity can be ascribed to various reasons, such as, for example,

inhomogeneities in the strength of the spatial correlation, which can have a long

range in some subregions of the spatial domain and a shorter one in others. Even

though tests to assess whether a process is stationary (Bandyopadhyay and Subba

Rao, 2017; Jun and Genton, 2012), isotropic (Guan et al., 2004) or symmetric (Li

et al., 2008; Weller and Hoeting, 2016) have been proposed in the literature, to

our knowledge the question of how to determine regions characterized by a similar

23
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range in the spatial correlation has not yet been fully addressed. The goal of this

chapter is to fill this gap. Specifically, we propose a statistical modeling approach

that can handle processes with a constant, non-varying spatial correlation range as

well as processes whose spatial dependence range varies over the spatial domain.

In the latter case, our model allows one to identify regions with inhomogeneities

in the effective range, that is, in the minimum distance at which the correlation

between two sites is equal to 0.05 (Banerjee et al., 2004). Identifying such regions

has important consequences from an application standpoint, a sampling design

perspective, as well as from an inferential and computational efficiency point of

view, as we elaborate in Section 2.4.

The decomposition of a spatial domain in areas with similar spatial dependence

is one of the classical modeling approaches used to construct non-stationary covari-

ance functions (Sampson, 2010); see, for example, the smoothing and kernel-based

models for non-stationary spatial processes of Fuentes (2001); Fuentes and Smith

(2001); Kim et al. (2005); Nott and Dunsmuir (2002), the piece-wise Gaussian pro-

cess of Kim et al. (2005); Pope et al. (2018), or the tree-based Gaussian process

model of Gramacy and Lee (2008); Konomi et al. (2014), where a spatial process is

assumed to be globally non-stationary but locally stationary. Our model coheres

with this literature for non-stationary spatial processes while breaking with previ-

ous approaches in that it provides an alternative, computationally less challenging

way to determine the regions of local stationarity.

Within the literature for globally non-stationary, locally stationary spatial pro-

cesses, three main approaches are commonly employed to partition the domain



25

into subregions: Voronoi tessellations as in the Bayesian hierarchical models of

Kim et al. (2005) and Pope et al. (2018); treed partitioning processes as imple-

mented in the Bayesian CART models of Chipman et al. (1998) and Denison et al.

(1998), or in the treed Gaussian process (TGP) model of Gramacy and Lee (2008)

(see also Konomi et al. (2014)); and model selection as in Fuentes (2001), where

a global non-stationary model is fit to the data multiple times using different par-

tition schemes. The final partition of the spatial domain is determined based on

model-fitting criteria such as BIC or AIC. Recent work by Risser et al. (2018)

leverages information in the covariates in order to define the domain segmenta-

tion. Although these approaches generate segmentations of the spatial domain,

the Markov chain Monte Carlo algorithms associated with either the TGP or the

Bayesian hierarchical model of Kim et al. (2005) are computationally demanding.

In contrast, the statistical modeling framework that we propose here does not re-

quire specifying a priori the maximum number of possible segments and it keeps

computation rather feasible.

Falling in the tradition of basis function expansions approaches (Nychka et al.,

2002; Johannesson et al., 2007; Banerjee et al., 2008; Matsuo et al., 2011; Ny-

chka et al., 2016), the M-RA model of Katzfuss (2017) alleviates computation

by providing an approximation to the original covariance function of a Gaussian

spatial process via a linear combination of basis functions obtained by recursively

implementing a predictive process approximation.

Katzfuss (2017) noted that in the M-RA modeling framework, the magnitude

of the basis function weights at each level is related to the strength of the spatial
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dependence in the data. Exploiting this intuition, we propose a modification of

the M-RA model that allows basis functions weights to be shrunk towards zero.

We achieve this by specifying as a prior distribution for the basis function weights

a mixture of normal distributions with one of the mixture components having

mean zero and covariance matrix shrunk near zero. Examining the behavior of

the basis function weights over space will provide us with information on whether

the spatial dependence of the spatial process has the same strength across the

domain. Because of the prior specification on the basis function weights, we call

our approach the mixture M-RA. We show via simulation experiments that our

modeling framework is flexible enough to accommodate both stationary and non-

stationary data, and does not require a practitioner to choose a priori the form of

the covariance function to use in a spatial data analysis.

The remainder of this chapter is organized as follows: in Section 2.2 we review

the M-RA model and we present our modification of the M-RA approach to allow

for the identification of regions of range parameter inhomogeneity. Section 2.3

presents applications of our model to simulated data as well as an application to

Soil Organic Carbon. Finally Section 2.4 offers a discussion on limitations and

future extensions of the proposed model.

2.2 Methods

2.2.1 The Multi-Resolution Approximation (M-RA)

This section offers a brief review of the Multi-Resolution Approximation (M-

RA) approach of Katzfuss (2017). Interested readers are referred to Katzfuss
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(2017) and Katzfuss and Hammerling (2017) for additional details. In the follow-

ing, we adopt a notation that is slightly different from that used by Katzfuss (2017)

and Katzfuss and Hammerling (2017), particularly with respect to the subscripts

used to index domain partitions and levels.

Let y(s), s ∈ S denote a spatial process in S observed at locations s1, s2, . . . , sn.

Using a geostatistical modeling approach (Banerjee et al., 2004; Cressie, 1993), we

express y(s) as

(2.1) y(s) = µ(s) + w(s) + ε(s) ε(s),
iid∼ N(0, τ 2),

where µ(s) denotes the mean, or large scale spatial trend in y(s), w(s) indicates

spatial random effect, and ε(s) denotes an independent error process, independent

of w(s). Without loss of generality, we take µ(s) to be constant in space, e.g.

µ(s) ≡ µ. We will often refer to (2.1) as a Kriging model, using the expression

Bayesian Kriging model if (2.1) is fit within a Bayesian framework.

In (2.1), the spatial process w(s) is taken to be a mean-zero Gaussian process

with covariance function Cw(s, s′;θ), where θ represents a vector of covariance

parameters that, in the case of a stationary, isotropic covariance function, includes

the marginal variance (σ2) and the range parameter (φ). Our θ does not include

a nugget effect (τ 2) since that part of variability in the data is already accounted

for by the term ε(s). In the case Cw(s, s′;θ) is the Matérn covariance function

(Banerjee et al., 2004; Cressie, 1993), θ also includes a smoothness parameter ν.

Using the M-RA framework, the spatial process w(s) can be approximated by

w̃M(s) defined as w̃M(s) = B(s)η, with B(s) matrix of basis functions up to level

M evaluated at s, and η set of basis function weights. Replacing w(s) with w̃M(s)
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into (2.1) leads to the M-RA model

(2.2) y(s) ≈ µ+ w̃M(s) + ε(s) = µ+ B(s)η + ε(s), ε(s)
iid∼ N(0, τ 2),

which provides great computational efficiency for large dimensional spatial data

as illustrated in Katzfuss (2017).

The basis functions B(s) are defined by recursively partitioning the spatial

domain, introducing a new set of knots within each new partition and using a

predictive process approximation each time. More precisely, at level 0, r knots are

placed on the entire domain. No particular placement of the r knots is suggested,

although placing them on an equidistant grid is probably the most convenient and

easy-to-implement choice. We indicate with Q(0) the set of r knots introduced at

level 0. Using this first set of knots Q(0), the original process w(s) is approximated

using the predictive process τ0(s) := E
[
w(s)|w(Q(0))

]
, where w(Q(0)) denotes the

r-dimensional realization of the spatial process w(s) at the knot locations. After

this first initial approximation at level 0, at level 1, the spatial domain is subdivided

into J non-overlapping subregions, and r knots are placed in each new subregion

(see Figure 2.1 for an illustration of the knots’ placement). We indicate with Q(1)

the set of J ·r knots introduced at level 1. The knots in Q(1) are in turn used to

construct the predictive process approximation τ1(s) to the remainder process δ1(s)

obtained at level 0 and defined as δ1(s) := [w(s) − τ0(s)], where [·] superimposes

independence across subregions. We note that J and r do not need to be equal at

each level, but it is assumed for convenience of notation. In addition, the knots

do not need to lay on a grid at each level: Katzfuss (2017) uses the observation
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locations as knots in the final level of the M-RA. This procedure of partitioning,

introducing knots, and approximating the remainder term δm(s) with its predictive

process approximation τm(s) is repeated M times leading to the following M -level

M-RA approximation wM(·) to w(s):

(2.3) wM(s) = τ0(s) + τ1(s) + . . .+ τM−1(s) + δM(s) ≡ w̃M(s) + δM(s), s ∈ S,

with δM(s) remainder at level M .

By construction, the individual terms in (2.3) are mutually independent pro-

cesses. It is also important to note that in the M-RA framework, the remainder

processes, δ1(s), δ2(s), . . ., δM(s), are independent across subregions at the corre-

sponding level, e.g. δ1(s) is independent across the J subregions introduced at level

1. This leads to a convenient block-diagonal covariance matrix structure for the

basis function weights which contributes to the computational savings associated

with the M-RA.

As at each level m, the predictive process τm(s) can be rewritten as a basis

function expansion (see Banerjee et al. (2008)), it follows that

(2.4) w̃M(s) =
M∑
m=0

Jm∑
j=1

bm,j(s)ηm,j,

where the sum is taken over partitions and levels (see Katzfuss (2017) for more

details). In (2.4), bm,j(s) denotes the set of basis functions corresponding to the

j-th partition and the m-th level evaluated at s, while ηm,j is the r-dimensional

vector of basis function weights in the j-th partition of the m-th level. They are

defined as follows: let Q(m,j) denote the set of r knots in the j-th partition at the

m-th level, m = 0, ...,M, j = 1, ..., Jm, with Q(m) =
⋃Jm

j=1Q(m,j), then the basis
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functions and the prior covariance of the basis function weights are defined by the

following recursive formulas: for any s1, s2 ∈ S,

v0(s1, s2) = Cw(s1, s2;θ)

vm+1(s1, s2) =


0, if s1 and s2 are in different regions at resolution m

vm(s1, s2)− bm,j(s1)′Km,jbm,j(s2), otherwise

K−1
m,j = vm(Q(m,j),Q(m,j))

bm,j(s) = vm(s,Q(m,j)),(2.5)

where for every m and j, Km,j is a r × r covariance matrix, and

(2.6) ηm,j ∼ Nr(0,Km,j).

Replacing (2.4) into (2.2) yields

(2.7) y(s) ≈ µ+
M∑
m=0

Jm∑
j=1

bm,j(s)ηm,j + ε(s), ε(s)
iid∼ N(0, τ 2).

2.2.2 Illustration

Figure 2.1 illustrates the knots’ placement for the M-RA models. While using

a fine grid for the knots location could work well in many applications, a more

general placement of the knots may be desired in some applications where we

expect regions of local stationarity to display more irregular patterns. An example

of such a procedure is provided in Appendix A.1.

We now illustrate the relationship between the strength of the spatial depen-

dence in a spatial process w(s) and the number of levels needed in an M-RA to

obtain a good approximation. Figure 2.2 and Figure 2.3 show this for w1(s) and
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(a) Knot placement at level 0.
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(b) Partition and knot placement at level
1.
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(c) Partition and knot placement at level
2.

Figure 2.1: Illustration of the M-RA domain partitioning and knot placement at: (a) level 0; (b)
level 1; and (c) level 2, respectively. Here: r = 16 and J = 4.
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w2(s), realizations of mean-zero stationary Gaussian processes with Matérn corre-

lation function with covariance parameters σ2 = 1, ν = 1 and φ = 0.1, and σ2 = 1,

ν = 1 and φ = 1.0, respectively.

The key point of this illustration is that, when a spatial process is characterized

by more rapidly decaying spatial dependence, a higher resolution approximation is

required in order to capture fine spatial dependence. This concept is emphasized in

Figure 2.2 (c)–(f), in which it is clear that the M-RA improves with each additional

level. Alternatively, when a spatial process has slowly decaying spatial dependence,

a low resolution approximation is sufficient, as illustrated in Figure 2.3 (c)–(f). We

posit that this reasoning can be applied to a single non-stationary spatial process

that is characterized by inhomogeneous rates of spatial decay. Specifically, regions

of the domain with slowly decaying spatial dependence will require a lower-level

approximation than regions with rapidly decaying spatial dependence.

2.2.3 The mixture M-RA

To allow for the possibility that a spatial process is characterized by a spatial

correlation with a different range parameter in different subregions, we propose to

slightly change the prior distribution on the basis function weights. Specifically,

rather than placing a multivariate normal prior on them, as in the M-RA model,

we provide them with a prior that allows them to be shrunk to zero from a level

m̃ onward in certain subregions, if needed. Various alternatives are possible to

shrink the basis function weights to 0: we could use a spike and slab prior on

the basis function weights (Mitchell and Beauchamp, 1988; Ishwaran and Rao,
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(b) Simulated w1(s).
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(c) Estimated ŵM (s), M = 0.
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(d) Estimated ŵM (s), M = 1.
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(e) Estimated ŵM (s), M = 2.
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(f) Estimated ŵM (s), M = 3.

Figure 2.2: (a) Matérn correlation function with parameters σ2 = 1, ν = 1 and φ = 0.1 used to
simulate the mean-zero Gaussian process w1(s). (b) Simulated w1(s). (c)-(d)-(e)-(f)
Estimated ŵM (s) obtained by using an M-RA approximation with: (c) M = 0, (d)
M = 1, (e) M = 2 and (f) M = 3. In each case, the number of subregions used was
J = 4. Mean squared error defined as average of (ŵM (si)−w1(si))

2 as si varies in a
set of 756 points on the 1-unit square, are, respectively, (c) 0.42; (d) 0.16; (e) 0.05;
and (f) 0.01 for the 4 M-RA approximations.
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(b) Simulated w1(s).
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(c) Estimated ŵM (s), M = 0.
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(d) Estimated ŵM (s), M = 1.
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(e) Estimated ŵM (s), M = 2.
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(f) Estimated ŵM (s), M = 3.

Figure 2.3: (a) Matérn correlation function with parameters σ2 = 1, ν = 1 and φ = 1.0 used to
simulate the mean-zero Gaussian process w2(s). (b) Simulated w2(s). (c)-(d)-(e)-(f)
Estimated ŵM (s) obtained by using an M-RA approximation with: (c) M = 0, (d)
M = 1, (e) M = 2 and (f) M = 3. In each case, the number of subregions used was
J = 4. Mean squared error, defined as average of (ŵM (si)− w2(si))

2 as si varies in
a set of 756 points on the 1-unit square, respectively, (c) 0.009; (d) 0.002; (e) 0.0006;
and (f) 0.0001 for the 4 M-RA approximations.
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2005), we could specify nonlocal priors (Johnson and Rossell, 2012), or employ

some of the Bayesian methods for variable selection (in this case, leading to basis

function weights selection), such as stochastic search variable selection (George and

McCulloch, 1993, 1997), or empirical Bayes variable selection (George and Foster,

2000). For computational convenience, but mostly because we want to retain the

hierarchical structure of the basis function weights and be able to shrink to 0 all

the basis function weights nested within a given subregion and level, we elect to use

the method proposed by Narisetty and He (2014) for Bayesian variable selection.

Thus, we place mixture priors on the basis function weights ηm,j. Specifically,

using the prior distribution in (2.6) as a starting point, we specify the following

mixture prior:

(2.8) ηm,j ∼ pmNr(0,Km,j) + (1− pm)Nr(0,Km,j/L),

where L is a fixed large constant. The parameter 0 ≤ pm ≤ 1 in (2.8) indicates

the probability that ηm,j is not shrunk to 0 and thus it is active. We call this

model the mixture M-RA. In fitting the mixture M-RA model to data, we keep L

fixed and we determine its value via cross-validation. In future implementations, L

could be seen an additional parameter in the model, for which a prior distribution

may be considered.

Continuous Gaussian spike and slab priors are commonly used in Bayesian hi-

erarchical modeling to induce appropriate shrinkage while retaining efficient Gibbs

sampling algorithms for computation (George and McCulloch, 1993; Ishwaran and

Rao, 2005). However, one distinction that our prior specification on the ηm,j’s has
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in comparison with the commonly used spike and slab Gaussian priors is that the

covariance matrix of both the spike and slab is proportional to Km,j instead of

the identity matrix. This is to reflect the dependence structure in the coefficients

ηm,j.

The grouping-preservation characteristic of our model specification can be seen

in the following Bayesian hierarchical formulation. Let Zm,j, for m = 1, . . . ,M ,

j = 1, . . . , Jm denote binary latent variables, then our model could be re-expressed

as:

y(s) = µ(s) +
∑M

m=0

∑Jm

j=1 bm,jηm,j + ε(s) ε(s)
iid∼ N(0, τ 2)

ηm,j | Zm,j = 1 ∼ Nr(0,Km,j)

ηm,j | Zm,j = 0 ∼ Nr(0,Km,j/L)

Zm,j = 1 | (Zm−1,j∗ = 1, pm) ∼ Bernoulli(pm)(2.9)

pm = ρm

ρ ∼ Beta(αρ, βρ)

P (Zm,j = 1 | Zm−1,j∗ = 0) = 0,(2.10)

where j∗ is the partition in level m−1 that contains the j-th partition at the m-th

level.

In (2.9), pm represents the probability that a set of basis function weights in the

m-th level belongs to the first component of the mixture prior. Since we expect

that for m = 0, all set of weights will belong to the first mixture component,

whereas at higher level they are more likely to mix into the second component of

the mixture prior, we set pm to be equal to ρm. A more general framework will
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define pm = ρcm with a positive parameter c to be estimated. To set the weights at

a given level to be zero if the weights in the previous level are zero, we add (2.10)

to our model specification. We note that by expressing w̃M(s) for each s ∈ S as∑M
m=0

∑Jm

j=1 bm,j(s)ηm,j with the basis function bm,j(s) defined as in (2.5) and the

weights ηm,j distributed as in (2.8), the mixture M-RA model, as the M-RA model

itself, defines a valid non-stationary Gaussian process (proof not included here).

We complete the specification of our model by providing priors to all the re-

maining model parameters. Choosing a stationary Matérn covariance function for

Cw(s, s′;θ), the covariance parameter θ is given by (σ2, φ, ν)′. We place Inverse

Gamma priors on the residual variance, or nugget effect, τ 2, and on the marginal

variance σ2 of w(s). We choose hyperparameters ατ2 , βτ2 and ασ2 , βσ2 , corre-

sponding to the shape and rate parameter, respectively, so that the priors on τ 2

and σ2 are both weakly informative. Conversely, we specify a vague Gamma prior

on the range parameter φ (p(φ) ∝ 1/φ), while we place a Uniform prior on the

interval (0, 2) on the smoothness parameter ν. Finally, assuming µ(s) ≡ µ, we

place a vague mean-zero Normal prior on µ. In situations where µ(s) is modeled

as a linear function of (spatial) covariates, the regression coefficients β are given

similar, flat prior distributions.

2.2.4 Posterior inference

We fit our model within a Bayesian framework, approximating the posterior

distribution using a Markov Chain Monte Carlo (MCMC) algorithm. The algo-

rithm includes Gibbs sampling steps to generate posterior samples for the constant
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mean µ, the basis function weights, ηm,j, the nugget effect, τ 2, and the auxiliary

binary variables Zm,j. Metropolis-Hastings steps are used to generate posterior

samples of the parameter ρ that defines the probabilities pm, and of the covariance

parameters σ2, φ and ν. Specifically, to sample ρ we use a uniform proposal distri-

bution bounded between 0 and 1 and centered at its current value in the MCMC

algorithm. Similarly, we use uniform proposals to sample φ and ν, with the pro-

posals being adaptively adjusted every 100 iterations until burn-in to achieve an

acceptance rate of approximately 25%.

Although in the current implementation of the mixture M-RA we do not place

a prior on L, we determine its value within the MCMC algorithm. Specifically,

we start the MCMC algorithm with a large value for L for which we expect few

no basis function to be drawn from the shrinkage prior. We typically use 1,000 as

initial value for L based on the results obtained in Simulation Study 1, discussed

in Section 2.3. We monitor the behavior of the basis function weights, decreasing

the value of L every 1,000 iterations until we observe mixing of the basis func-

tion weights into the shrinkage prior. We continue monitoring the basis function

weights, continuing to decrease the value of L in the burn-in until we do not see

further significant changes in the proportion of basis function weights being shrunk

to zero. We then keep L fixed for the rest of the MCMC iterations.

We implement our MCMC algorithm using R Version 3.4.1, incorporating the

Rcpp package (Eddelbuettel and François, 2011) to increase speed. To compute the

basis functions and covariance of the basis function weights we use code adapted

from the supplementary material of Katzfuss (2017). Convergence of the chains
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is determined by visually inspecting trace plots and marginal posterior density

plots, and numerically by calculating Geweke’s (Geweke, 1992) and Raftery Lewis’

diagnostics (Raftery and Lewis, 1992) for every parameter.

2.3 Results

We now present results of the application of the mixture M-RA model to sim-

ulated data and observations of log Soil Organic Carbon in the conterminous US

(CONUS).

2.3.1 Simulation results

To gain a better understanding of the mixture M-RA model, we designed mul-

tiple simulation studies. Here we report and discuss results for four simulation

studies, with additional results and simulations available in the Supplementary

Material:

1. Simulation study 1 : data were generated according to the M-RA model in

(2.7) with some basis function weights ηm,j set equal to 0;

2. Simulation study 2 : data were generated on the unit square and non-stationarity

was obtained by introducing two mean-zero stationary spatial processes with

different spatial correlation ranges, each operating on one half of the square;

3. Simulation study 3 : data were generated as in Simulation Study 2 except

that the mean function µ(s) depended on a spatially varying covariate x(s);

and

4. Simulation study 4 : data are generated with non-stationarity characterized by

regions with four different spatial correlation ranges, with regions determined
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via a latent spatial process. Such a data generation mechanism allows for

more irregular regions of non-stationarity.

In addition, a fifth simulation is presented in Appendix A.3, which fits the

mixture M-RA to randomly generated spatial data.

The goals of the simulation studies can be summarized as:

• to understand the role of L in the estimation of the basis function weights,

and the magnitude of L needed to allow shrinkage to zero of the basis function

weights, when a process is truly locally stationary (simulation study 1);

• to evaluate whether the mixture M-RA model can identify regions of local

stationarity if they indeed exist, even in case of model mis-specification (sim-

ulation study 2, 3, 4, and 5 (Appendix A.3);

• to study how accounting for or ignoring non-stationarity in the residual de-

pendence structure affects inference of the regression coefficients (simulation

study 3 and 4);

• to compare the out-of-sample predictive performance of a non-stationary and

a stationary model when data are realization of a non-stationary process

(simulation study 2, 3, and 4); and

• to test our model in a setting where data deviates from our modeling frame-

work. That is, data that are a realization of a spatial process characterized

by more than two rates of spatial decay, and regions of non-stationarity have

highly irregular shapes (simulation study 4).

For each simulation study, we generated multiple replicates − 50 for simulation
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study 1 and 30 for simulation studies 2, 3, and 4 − and results are averaged across

the multiple realizations, unless otherwise noted. Posterior inference was based on

samples yielded from an MCMC algorithm whose convergence was assessed using

Geweke’s (Geweke, 1992) and Raftery and Lewis’ diagnostics (Raftery and Lewis,

1992). For the first, we tested whether the last 10% and 50% of each Markov

chain post burn-in had significantly different means (p = 0.05, significance level);

for the latter, we confirmed that the number of posterior samples employed for

inference was greater than the number of iterations required to infer upon the

2.5th percentile of each parameter within an accuracy of 0.01.

Simulation study 1

For this study, data were generated at n = 756 random locations in S=[0,1]

× [0,1] 50 times according to (2.7), where µ = 0 and τ 2 = 0.05. Basis functions

weights were drawn either from the distribution in (2.6) with covariance matrix im-

plied by a stationary Matérn covariance function with θ = (σ2, φ, ν)′ = (1, 0.1, 1.0),

M = 3, J = 4 and r = 9, or were set equal to 0. Figure 2.4(a) shows the regions

with zero basis function weights.

To each of the 50 datasets, we fit our mixture M-RA model in (2.10) using

M = 3, J = 4 and r = 16. As the goal of this simulation study is to determine

whether our model is capable to identify regions with different strength of spatial

dependence, in fitting the mixture M-RA model we did not estimate θ, rather we

kept it fixed at its true value. However we varied the values of L and we used six

different ones: L =10, 25, 50, 100, 200, and 10,000.

Table 2.1 presents summary statistics pertaining to the recovery of the basis
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function weights averaged across levels, partitions, and the 50 simulations. As

the table indicates, the true values of the basis function weights are contained

in the 95% credible intervals with a frequency that is close to the nominal level,

at times slightly over. The accuracy with which the basis function weights are

estimated varies depending on the magnitude of the basis function weights. While

on average across simulations, the average relative absolute error is around 0.40,

when L = 100, the average relative absolute error of basis function weights whose

true absolute value is less than 0.5 is 1.54. Meanwhile, for basis function weights

whose true absolute value is greater than or equal than 0.5, is significantly smaller

and equal to 0.28.

In terms of mixing into the shrinkage prior, when L=10,000 the zero-valued

basis function weights do not mix into the shrinkage prior and we obtain a larger

average MAE and MSE for those basis function weights. On the other hand,

L=100 guarantees that the basis function weights mix into the shrinkage prior

and they can be recovered with greater accuracy.

Simulation studies 2 and 3

For both simulation studies, data were generated at n = 1, 012 random locations

in S = [0, 1]× [0, 1] according to the following model:

y(s) = µ(s) + I(sx < 0.5)w1(s) + I(sx ≥ 0.5)w2(s) + ε(s)(2.11)

ε(s)
iid∼ N(0, τ 2),

where sx indicates the first coordinate of the two-dimensional vector of geograph-

ical coordinates for point s (e.g. longitude or Easting). In (2.11), τ 2 was set equal
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Avg. Avg. Avg. Avg.
Avg. Avg. Avg. Avg. rel. rel. rel. covg. of

ηm,j L E [Zm,j |y] MAE MSE bias MAE bias MSE 95% CI

10 0.476 1.214 5.379 -0.021 NA NA NA 0.912
25 0.518 1.227 5.394 -0.019 NA NA NA 0.925
50 0.536 1.244 5.415 -0.017 NA NA NA 0.926

All 100 0.600 1.341 5.453 -0.023 NA NA NA 0.935
200 0.828 1.607 5.952 -0.023 NA NA NA 0.930

1,000 0.884 1.661 6.029 -0.022 NA NA NA 0.930
10,000 1.000 1.687 6.131 -0.024 NA NA NA 0.921

10 0.000 0.041 0.003 -0.000 NA NA NA 0.999
25 0.001 0.041 0.003 -0.000 NA NA NA 0.999
50 0.025 0.062 0.009 -0.000 NA NA NA 1.000

= 0 100 0.152 0.302 0.377 -0.005 NA NA NA 0.999
200 0.634 0.874 1.535 -0.008 NA NA NA 0.999

1,000 0.754 0.912 1.719 -0.009 NA NA NA 0.999
10,000 1.000 1.043 1.909 -0.010 NA NA NA 0.998

10 0.904 2.356 10.914 -0.033 0.491 −0.010 0.519 0.831
25 0.978 2.301 10.493 -0.032 0.476 −0.008 0.491 0.866
50 0.991 2.295 10.221 -0.032 0.401 −0.008 0.494 0.861

6= 0 100 0.999 2.264 9.966 -0.039 0.440 −0.011 0.481 0.927
200 1.000 2.258 9.879 -0.037 0.488 −0.011 0.507 0.949

1,000 1.000 2.259 9.887 -0.036 0.489 −0.011 0.507 0.950
10,000 1.000 2.260 9.884 -0.037 0.450 −0.011 0.503 0.949

Table 2.1: Simulation study 1. Average posterior means of the Zm,j , average Mean Absolute
Error (Avg. MAE), average Mean Squared Error (Avg. MSE), average bias, average
relative MSE, and average empirical coverage (covg.) of the 95% credible interval (CI)
for the basis function weights, averaged across levels, subregions, and the 50 simulated
datasets. Summary statistics are presented overall, and stratified based on whether
the true basis function weights are equal to zero or not.
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(b) Realization of y(s) generated under (2.7).

Figure 2.4: Simulation study 1: (a) locations of knots with zero-valued basis function weights
at levels 2 and 3; (b) a realization of y(s) generated according to (2.7), with µ = 0,
τ2 = 0.05, σ2 = 1.0, ν = 1, φ = 0.1 and basis function weights at levels 2 and 3 set
equal to zero as indicated in (a).

to 0.05, and w1(s) and w2(s) were taken to be two stationary Gaussian processes

with Matérn covariance functions with parameters σ2 = 1, ν = 1, and φ equal to

1.0 and 0.01, respectively. For the 30 realizations of simulation study 2, µ(s) ≡ 0,

∀s ∈ S, while in simulation study 3, µ(s) ≡ β0 + β1x(s) with β0 = 2, β1 = 3, and

x(s) spatially-varying covariate, realization of a stationary Gaussian process with

mean equal to 1 and Matérn covariance with parameters σ2 = 0.5, ν = 0.5 and

φ = 0.2. In simulation study 3, x(s) was generated only once and kept constant

across the 30 realizations of y(s).

From each simulated dataset, we selected data at random from 756 locations.

To these values, we fit (i) the mixture M-RA model with a stationary Matérn

covariance function to define the basis functions, M = 3, J = 4, and r = 16, and

L determined via tuning, and kept equal to 100 in the post burn-in iterations;
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and (ii) a Bayesian Kriging model with a stationary Matérn covariance function.

The out-of-sample predictive performance of the two models was evaluated from

predictions at 256 hold-out sites.

Table 2.2 reports the out-of-sample predictive performance of the mixture M-

RA model and the stationary Bayesian Kriging model, fitted to the 30 replicates

of a mean-zero non-stationary spatial process generated under simulation study

2. As the table indicates, the mixture M-RA performs slightly better than the

stationary model, even though the improvement is rather minimal.

Table 2.3 evaluates whether, in simulation study 3, including the spatially-

varying covariate x(s), on which the mean trend function µ(s) of the spatial pro-

cess depends on improves the out-of-sample predictive performance of the model

fitted to the data regardless of whether the residual spatial covariance structure is

allowed to be non-stationary (mixture M-RA model) or incorrectly specified as sta-

tionary (stationary Bayesian Kriging model). The table also investigates whether

the out-of-sample predictive performance of the mixture M-RA and the station-

ary Bayesian Kriging model are affected by the exclusion of the spatially-varying

covariate x(s). As the results indicate, the inclusion of the spatially-varying covari-

ate improves the predictive performance; nonetheless regardless of the inclusion or

exclusion of the spatially-varying covariate, correctly specifying the non-stationary

nature of the residual spatial dependence structure yields predictive intervals that

have empirical coverage close to nominal. In this simulation setting, a stationary

model yields posterior predictive distributions that are always underdispersive,

and more so if the spatially-varying covariate is not included in the model.
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Figure 2.5: Simulation study 2. (a) One of the 30 realizations of y(s) generated according to
(2.11), with µ(s) ≡ 0, ∀s ∈ S = [0, 1]× [0, 1], τ2 = 0.05, and w1(s) and w2(s) mean-
zero stationary Gaussian processes with Matérn covariance function with parameters,
σ2

1 = 1.0, ν1 = 1, φ1 = 0.01 and σ2
2 = 1.0, ν2 = 1, and φ2 = 1.0, respectively.

(b) Histograms of posterior means of basis function weights ηm,j in the third level
(m = 3) of the mixture M-RA, grouped by values of φ, the range parameter. (c)
Posterior mean of the latent binary variables Zm,j at the third level.
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Average Standard deviation Average empirical
Model MSPE of MSPE coverage 95% PI

Mixture M-RA 0.51 0.06 93.4%
Stationary

Bayesian Kriging 0.55 0.07 92.7%

Table 2.2: Simulation study 2. Average Mean Squared Prediction Error (MSPE), standard de-
viation of the Mean Squared Prediction Errors, and average empirical coverage of the
95% prediction intervals for the mixture M-RA model and the stationary Bayesian
Kriging model. The summary statistics are averaged over the 30 simulations.

Average Average
coverage of Average SD coverage

Model Bias β1 95% CI for β1 MSPE of MSPE 95% PI
Mixture M-RA with x(s) −0.017 93.3% 0.53 0.08 92.6%

Stationary Bayesian
Kriging with x(s) −0.012 60.0% 0.51 0.08 70.1%

Mixture M-RA without x(s) NA NA 0.93 0.09 94.0%
Stationary Bayesian
Kriging without x(s) NA NA 1.39 0.11 32.0 %

Table 2.3: Simulation study 3. Results averaged across 30 simulations: bias of the posterior
mean of β1; empirical probability that a 95% credible interval covers the true value
for β1; average Mean Squared Prediction Error (MSPE); standard deviation of MSPE;
and empirical coverage of the 95% prediction intervals.

Figure 2.6 evaluates whether the mixture M-RA model correctly identifies the

two regions of non-stationarity when data are generated according to (11), with

µ(s) ≡ β0 +β1x(s), β0 = 2, β1 = 3, and x(s) spatially-varying covariate, simulated

as described in Section 3.1.2. Specifically, Figure 2.6 presents, for two of the 30

simulated datasets, the posterior mean of the latent binary variables Zm,j for m = 3

indicating which basis function weights are likely to be shrunk to zero at the third

level.

Inspecting the results for simulation study 2, we observe that the basis function

weights ηm,j mix into the two priors at different rates in the two halves of the

spatial domain: in the part of the domain where φ = 1.0, the average posterior

mean of the binary latent variables Zm,j at the third level (m = 3), averaged
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(a) Posterior mean of Z3,j for simulation 1 of 30
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(b) Posterior mean of Z3,j for simulation 2 of 30

Figure 2.6: Simulation study 3. Posterior mean of the latent binary variables Zm,j at the third
level for two of the 30 simulations.

across the 30 simulations, is 0.296, while in the region where φ = 0.01, it is 0.968.

In simulation study 3, we observe that ignoring non-stationarity in the residual

spatial dependence structure does not have consequences in terms of point inference

for β1 as both the approaches result in similar levels of bias (bias of -0.017 for

mixture M-RA and -0.012 for stationary Bayesian Kriging). However, it leads to

an underestimation of the variability of the estimate: the 95% CI’s for Bayesian

Kriging are too short and do not provide the nominal coverage (actual coverage

of 60.0%), which is instead achieved by the 95% CI’s for β1 of the mixture M-RA

model (having an actual coverage of 93.3 %).
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Quartile of v(s) Data Generation wi(s) covariance parameters
1st quartile y(s) = w1(s) + ε(s) σ2 = 1, φ = 1, ν = 1
2nd quartile y(s) = w2(s) + ε(s) σ2 = 1, φ = 0.5, ν = 1
3rd quartile y(s) = w3(s) + ε(s) σ2 = 1, φ = 0.1, ν = 1
4th quartile y(s) = w4(s) + ε(s) σ2 = 1, φ = 0.01, ν = 1

Table 2.4: Simulation study 4. Data generation mechanism used to generate 30 realization of a
non-stationary spatial process y(s) in the unit square S.

Simulation study 4

In simulation study 4, the main objective is to determine whether the mixture

M-RA model is able to detect regions of non-stationarity when the spatial process is

strongly non-stationary and the regions of local stationarity are irregular. For this

purpose we have generated two sets of simulations, each made of 30 replicates, with

the only difference among the two being that one set is characterized by regions

of local stationarity with more close-to-rectangular boundaries.

To generate realizations of a mean-zero locally stationary spatial process with

irregular boundaries, we first simulated a mean-zero stationary Gaussian process

v(s) with an exponential covariance function and covariance parameters σ2 =

1, φ = 1 and then we truncate it using its quartiles to define four regions of

non-stationarity. We then generated 30 realizations of a non-stationary spatial

process at 1,374 locations in the unit square according to the data generation

mechanism presented in Table 2.4, with wi(s), i = 1, . . . , 4 mean-zero stationary

Gaussian processes with Matérn covariance function and parameters as displayed

in Table 2.4.

Figure 2.7 panels (a)-(d) show the four regions of non-stationarity, a realization

of the four spatial processes w1(s), w2(s), w3(s), and w4(s), and their correlation
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Figure 2.7: Simulation study 4, first set. (a) Latent process v(s) used to identify the four regions
of non-stationarity. (b) Regions on non-stationarity, displayed in 4 different colors.
(c) A realization of w1(s), w2(s), w3(s), w4(s) in the four regions of local stationarity.
(d) Correlation functions of w1(s), w2(s), w3(s), w4(s).

Quartile Spatial Range E(Z2,j |y) E(Z3,j |y) E(Z4,j |y)
1st quartile φ = 1 0.45 0.40 0.23
2nd quartile φ = 0.5 0.83 0.70 0.33
3rd quartile φ = 0.1 0.93 0.85 0.45
4th quartile φ = 0.01 0.94 0.93 0.85

Table 2.5: Simulation study 4, first setting. Average posterior expectation of the latent binary
variables Zm,j for m = 2, 3, 4 in the four regions of non-stationarity averaged across
the 30 simulations.

functions.

For each simulated dataset, we used data from 1,124 randomly selected loca-

tions and fitted a mixture M-RA model with M = 4, J = 4, and r=16, Matérn

covariance function for the basis functions, and L determined via tuning during

the burn-in period (kept equal to 100 post burn-in). Knowing a priori of the

irregularity of the regions of non-stationarity, in lieu of an equidistant grid, at

the highest multi-resolution level, we have used the observation locations as knots

locations, following the procedure of Katzfuss (2017).

Table 2.5 presents the posterior probability that a basis function weight at levels

2, 3, and 4 is drawn from the shrinkage prior distribution averaged across parti-
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Figure 2.8: Simulation study 4, first set. (a) Regions of non-stationarity. (b)-(d) Average
E(Z2,j |y), E(Z3,j |y), and E(Z4,j |y), averaged across the 30 simulations.

tions and simulations, while Figure 2.8 presents a plot of the posterior mean of

the latent binary variables Zm,j averaged across the 30 simulations. Even though

not perfectly identified, we can see that in the region where the spatial correla-

tion persists at large distances (φ = 1), the basis function weights have a higher

probability of being drawn from the shrinkage prior. Furthermore, the region with

the second slowest rate of decay in the spatial correlation has the second highest

probability of shrinkage, and so on, with least pronounced shrinkage at level 2,

and most pronounced at level 4.

As we acknowledge that the regions in Figure 2.7(b) may still be considered

somewhat rectangular, we have generated a second realization of v(s), presented

in Figure 2.9, which yields more volatile sub-regions. Using these newly identified

regions of local stationarity, we have produced 30 simulated datasets for w(s)

using the data generation mechanism described in Table 2.4. Table 2.6 presents

the posterior mean of the latent binary variables at levels m = 2, 3 and 4 for this

new set of simulated datasets. As the table indicates, the mixture M-RA model

struggled more to identify the regions of local stationarity than in the previous



52

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x−coordinate

y−
co

or
di

na
te

−0.8

−0.6

−0.4

−0.2

0.0

0.2

(a) Latent process v(s).

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x−coordinate

y−
co

or
di

na
te

1

2

3

4

(b) Regions of non-
stationarity.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x−coordinate

y−
co

or
di

na
te

−3

−2

−1

0

1

2

(c) w1(s)-w4(s)

Figure 2.9: Simulation study 4, second set. Data generation example: (a) Latent variable v(s).
(b) Regions formed by truncating v(s). (c) Spatial random effect w(s).

Quartile Spatial Range E(Z2,j |y) E(Z3,j |y) E(Z4,j |y)
1st quartile φ = 1 0.50 0.42 0.37
2nd quartile φ = 0.5 0.75 0.66 0.49
3rd quartile φ = 0.1 0.90 0.84 0.81
4th quartile φ = 0.01 0.99 0.93 0.89

Table 2.6: Simulation study 4, second set. Average posterior expectation of the latent binary
variables Zm,j for m = 2, 3, 4 in the four regions of non-stationarity averaged across
the 30 simulations.

simulated set of realizations generated under simulation study 4. However, we

observe the same gradient effect in Figure 2.8 as we previously observed, and the

rates of shrinkage are still consistent with our intuition.

Reporting results only for the first set of 30 simulated datasets generated in

simulation study 4, Table 2.7 summarizes the out-of-sample predictive perfor-

mance, averaged across the 30 simulations, of the mixture M-RA and the station-

ary Bayesian Kriging model in terms of average Mean Squared Predictive Error

(MSPE), average empirical coverage of the 95% Predictive Intervals (PI), and av-

erage length of the 95% Predictive Intervals. As the table indicates, despite the

strong non-stationarity in the spatial process, there is little difference in predic-

tive performance between the mixture M-RA and the stationary Bayesian Kriging
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Figure 2.10: Simulation study 4, second set. (a) Regions of non-stationarity. (b)-(d) Average
E(Z2,j |y), E(Z3,j |y), and E(Z4,j |y), averaged across the 30 simulations.

model, with the stationary Bayesian Kriging model yielding a slightly lower MSPE.

On the other hand, the mixture M-RA achieved a higher, closer to nominal level,

empirical coverage. These results are not unexpected, as several papers in the

spatial statistical literature (Risser et al., 2018; Fuglstad et al., 2015; Neto et al.,

2014; Schmidt et al., 2011; Paciorek and Schervish, 2006) have indicated that non-

stationary spatial models do not yield point predictions that are extremely different

from those obtained using stationary models. The largest difference between the

two class of models lies in the prediction variances and the spatial patterning of

those variances. To illustrate this point, Figure 2.11 shows posterior predictive

standard deviations at 40,000 locations on the unit square for the mixture M-RA

and the stationary Bayesian Kriging model for a data set generated using the pro-

cedure of the first set of simulations in simulation study 4. As the figure illustrates,

the posterior predictive standard deviations are quite constant over space under

the stationary Bayesian Kriging model with lower prediction uncertainty only at

the sites with data. On the other hand, the posterior predictive standard devi-

ation surface for the non-stationary mixture M-RA model shows greater spatial
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Average Average SD Average empirical coverage Average length
Model MSPE of predictions of 95% PI of 95% PI

Mixture M-RA 0.395 0.629 0.964 2.466
Stationary

Bayesian Kriging 0.386 0.596 0.929 2.336

Table 2.7: Simulation study 4, first set. Summary of the out-of-sample predictive performance
averaged across 30 simulations for the mixture M-RA model and the stationary
Bayesian Kriging model: average Mean Squared Predictive Error (MSPE), average
standard deviation (SD) of the out-of-sample predictions, average empirical coverage
of the 95% predictive intervals (PI), and average length of the 95% predictive intervals.
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(a) Posterior predictive SD: Mixture M-RA.
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(b) Posterior predictive SD: Kriging.

Figure 2.11: Simulation study 4, first set. (a) Posterior predictive standard deviations of pre-
dicted values at 40,000 locations on the unit-square for the mixture M-RA model.
(b) Posterior predictive standard deviations for predictions obtained using the sta-
tionary Bayesian Kriging model. In each panel, circles or dots indicate the 1,124
locations with observation values used for model fitting.

variability. We have noticed such behavior for the stationary Bayesian Kriging

model also in the analysis of log SOC in the main manuscript (see Figure 4(c)).

We view these results as highly encouraging that our modeling framework has

utility for non-stationary spatial data that (1) exhibit non-stationarity that can be

characterized by more than just two range parameters and (2) have non-rectangular

regions of non-stationarity. These results prompted us to consider how the model

would perform if we did not impose the somewhat informative and hierarchical

prior distributions on the basis function weights in (2.8). Thus, we re-run the above



55

simulation study for the first set of 30 simulated datasets generated in simulation

study 4 with the following prior distribution on the basis function weights, now

denoted as η := {ηl}l=1,...,
∑M
m=0 J

m×r:

ηl
iid∼ pN(0, τ 2

η ) + (1− p)N(0, τ 2
η /L), l = 1, ...,

M∑
m=0

Jm × r(2.12)

ηl | Zl = 1 ∼ Nr(0, τ
2
η )

ηl | Zl = 0 ∼ Nr(0, τ
2
η /L)

Zl = 1
iid∼ Bernoulli(p)

p ∼ Beta(1, 1)

τ 2
η ∼ IG(1, 1),

where L is once again a large constant that shrinks the variance of ηl toward

zero. Under this prior construction, we impose no dependence a priori on the

basis function weights, nor do we impose that the basis function weights at higher

levels are more likely to mix into the shrinkage prior. Furthermore, there is no

hierarchical structure to the shrinkage of the basis function weights. This can be

viewed as a highly simplified version of the mixture M-RA, in which we place a

more traditional Bayesian spike and slab prior distribution on the basis function

weights.

Under this prior construction, we find that the mixing of the basis function

weights was highly uninformative of the range of the spatial process. The average

posterior mean of the latent binary variables Zl in the region characterized by the

most rapidly decaying spatial dependence is 0.49, whereas in the region character-
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(a) Regions of non-stationarity.
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Figure 2.12: Simulation study 4, first set, under the modeling framework in (2.12) that specifies
a mixture of univariate normal prior distributions on the basis function weights. (a)
Regions of non-stationarity. (b) E(Z4,j |y), averaged across the 30 simulations.

ized by the most slowly decaying spatial dependence, the average posterior mean

of Zl is 0.40. Figure 2.12 presents a plot of the average over 30 simulations of the

posterior means of the latent binary variables Zl, which display a great degree of

heterogeneity over space, in contrast to Figures 2.8 and 2.10. Despite this, the

predictive performance of the model under this more simple prior construction

was competitive with the other models in Table 2.7, with an average posterior pre-

dictive mean of 0.391. The results pertaining to the mixing of the basis function

weights suggest that the mixture M-RA performs well as an exploratory tool when

the active basis function weights maintain the same the prior construction of the

M-RA of Katzfuss (2017).

2.3.2 Analysis of Soil Organic Carbon in Continental US

Soils contain a massive proportion of the Earth system’s carbon (Lefèvre et al.,

2017): soil organic carbon (SOC), the carbon stored within soil organic matter
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(e.g. within plant or animal residual matter), contains more carbon within the

first meters below surface than the atmosphere and terrestrial vegetation com-

bined. Because of this, SOC plays a key role in the global carbon cycle: human

activity can transform soils into either a net sink for carbon in the atmosphere,

thus contributing to climate change mitigation efforts, or alternatively into a net

source of greenhouse gases, contributing to climate change. In addition, SOC is an

indicator of soil quality, which greatly influences food productivity (Lefèvre et al.,

2017), making SOC a key indicator of the Earth ecosystem and human inhabitants’

well being. Because of this, as per recommendation of the Intergovernmental Panel

on Climate Change, SOC should be carefully monitored (Lefèvre et al., 2017).

To better understand SOC dynamics, the National Resource Conservation Ser-

vice (NRCS) began the Rapid Carbon Assessment (RaCA) project in 2010, in

which SOC stocks, that is the amount of SOC in a volume of soil, were measured

at tens of thousands of fixed locations throughout the CONUS. As collection of

SOC data is costly and time consuming (Sleutel et al., 2003; Goidts and Wesemael,

2007), there is a great interest in understanding spatial variability of (log) SOC for

data collection purposes as well as for generating maps of estimated (log) SOC. In

the past, spatial models used for the analysis of (log) SOC assumed second-order

stationarity (Mishra et al., 2009). Risser et al. (2018) effectively demonstrated that

this assumption was inappropriate, and introduced a covariate-driven domain seg-

mentation non-stationary spatial statistical model for prediction of log SOC. In

this section, we use the mixture M-RA to examine the spatial dependence struc-

ture of log SOC in the CONUS with the goal of gaining useful insights that could
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inform future sampling campaigns of (log) SOC. Unlike Risser et al. (2018), we

incorporate information on land use/cover, drainage class (categorical variables),

and elevation (a continuous variable) in the model for the mean function µ(s),

instead of using them to partition the spatial domain. The former two covariates

were selected based on the paper by Risser et al. (2018), while the latter was chosen

due to its use in an analysis of SOC by Mishra et al. (2009).

For our analysis, we use 1-meter measurements of SOC collected at 20,087 loca-

tions in the CONUS for which information on land use/cover, drainage class, and

elevation was also available. Figure 2.13 presents a plot of the 20,087 measurements

of log SOC. Exploratory analysis for these data in Figure 2.14 indicated extreme

right skewness in raw SOC, which can be remedied using a log transformation,

as well as a strong non-stationarity highlighted by the empirical semi-variograms

within each of the 48 conterminous US states. The variograms are fit to the resid-

uals from linear models that regress log(SOC) on elevation, land use/land class,

and drainage class. They provide empirical evidence that the underlying process

is non-stationary.

We present a similar exploratory analysis in Figure 2.15, which displays six sep-

arate sub-regions for which empirical-semi variograms are fit, again to the residu-

als of linear models that regress log(SOC) on elevation, land use/land class, and

drainage class. We construct confidence intervals around these variograms by fit-

ting the model to bootstrap samples of the data. This results further confirm the

assumption of stationarity is untenable, and that a non-stationary spatial statis-

tical model would be more appropriate for these data.
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Figure 2.13: Soil Organic Carbon (SOC) exploratory analysis: (a) Measurements of log SOC;
(b) land use/land class; (c) drainage class; (d) elevation.
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Figure 2.14: SOC exploratory analysis: (a) Histogram of SOC; (b) histogram of log(SOC); (c)
fitted semi-variograms for each of the 48 conterminous states. Semi-variograms are
fit to the residuals of a linear model regressing log SOC on elevation, land use/land
cover, and drainage class.
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Figure 2.15: SOC Exploratory analysis: (a) map of regions for variogram analysis (b) fitted
semi-variograms for 6 sub-regions of the CONUS with confidence bands. Semi-
variograms are fit to the residuals of a linear model regressing log SOC on elevation,
land use/land cover, and drainage class.
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We model log SOC as in (2.10), with µ(s) a linear function of land use/land

cover, drainage class and elevation, a stationary Matérn covariance function to

define the basis functions, and M , J , and r set equal to 4, 4 and 16, respectively.

We run the MCMC algorithm for 10,000 iterations, keeping L=100 after burn-

in, assessing convergence via Geweke’s (Geweke, 1992) and Raftery and Lewis’

(Raftery and Lewis, 1992) diagnostics.

After discarding the first 5,000 iterations for burn-in, we derive posterior infer-

ence and generated predictions of log SOC at 2,000 hold-out sites according to the

posterior predictive distribution. We evaluate the out-of-sample predictive perfor-

mance of our model and compare it to that of a stationary Bayesian Kriging model

that we fit using a predictive process approximation (Banerjee et al., 2008) due to

the large size of the dataset. As another benchmark, we utilize the convolution-

based non-stationary model of Risser and Calder (2017), which we select among

all the non-stationary models proposed in the literature partly because statistical

software to implement it is readily available. To assess the impact of the covariates

on predictions of SOC, we also fit the three models without covariates in the mean

function µ(s).

Figure 2.16 plots the posterior means of the latent binary variables Zm,j at their

respective knots locations. The regions in which the basis function weights are

shrunk to zero are expected to contain observations whose residual spatial correla-

tion decays more slowly. To validate this, using land use/land cover, drainage class,

and elevation as covariates, we fit a likelihood-based spatial statistical model to log

SOC in the two regions denoted in Figure 2.16 (a): Region 1, further West, which
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contains knots corresponding to basis function weights shrunk towards zero and

Region 2, southeast of Region 1, in which basis function weights remain “active”

in the model. Figure 2.16 (b) shows the estimated Matérn correlation function in

the two regions. Consistent with our intuition, Region 1, in which basis function

weights are shrunk towards zero, exhibits more slowly decaying spatial correlation

than Region 2, in which the basis function weights are active in the model.

Figure 2.17 presents maps of the predicted log SOC at observation sites along

with the corresponding posterior predictive standard deviations as yielded by the

mixture M-RA and the stationary Bayesian Kriging model. As noted by Fuglstad

et al. (2015) and references therein, using a non-stationary covariance function

when modeling a spatial process provides pronounced differences particularly in

terms of prediction uncertainty. As Figure 2.17 (c) and (d) illustrate, posterior

predictive standard deviations are typically larger and more spatially homogeneous

under the stationary Bayesian Kriging model than under the mixture M-RA. Fig-

ure 2.17(c) also identifies regions where the residual spatial correlation in log SOC

persists at long distances. This is particularly useful for planning future SOC data

collection campaigns: more sampling efforts should be concentrated in regions with

large prediction uncertainty and where the spatial correlation has a short effective

range. Based on Figure 2.17(c), more intensive SOC monitoring should occur in

Western Texas, Eastern Montana-Wyoming/Western North and South Dakota,

and Northern Mississippi/Alabama/Georgia, among others.

Table 2.8 presents results on the out-of-sample predictive performance of the

various models. As the table shows, the mixture M-RA models with and without
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Figure 2.16: SOC analysis. (a) Posterior means of Zm,j at the highest level (m=4). Magenta-
pink regions are ones in which the basis function weights at level 4 were shrunk
towards zero. Regions with no posterior means of Zm,j are regions where no SOC
observations are collected and thus no knots were placed in those locations, as per
Katzfuss (2017) recommendation. (b) Estimated Maérn correlation functions in the
selected subregions. Results indicate that the residuals in the region in which basis
function weights are shrunk towards zero have spatial correlation with slower rates
of decay.

covariates outperform the predictive process models across all predictive perfor-

mance criteria. Comparing the two mixture M-RA models, we find only a moder-

ate drop in predictive performance when covariates are excluded from the model.

While it is preferable to have covariate information whenever possible, the results

are reassuring to researchers who wish to make predictions of log SOC at locations

where covariates, as well as SOC, are unobserved.

Our model has similar predictive accuracy to the model of Risser and Calder

(2017), indicating that our model has utility beyond just identifying regions of

non-stationarity: it is a viable non-stationary spatial statistical model in its own

right. This is further supported by examining the performance of the stationary

Bayesian Kriging model, which has worse prediction accuracy than both our model
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(a) Predicted log SOC: mixture M-RA.
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(b) Predicted log SOC: Kriging.
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Longitude
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ud
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●

●

●

●

●

SD log(SOC)

<0.66
0.66−0.67
0.67−0.68
0.68−0.70
0.70−0.85
0.85−1.00
>1.00

E(Z_m,j < 0.5)

(c) PPSD: mixture M-RA.
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(d) PPSD: Kriging.

Figure 2.17: Soil Organic Carbon (SOC) analysis: (a)-(b) Predicted log SOC as yielded (a) by
the mixture M-RA model and (b) by the stationary Bayesian Kriging model . (c)-(d)
Posterior predictive standard deviation as yielded (c) by the mixture M-RA model
and (d) by the stationary Bayesian Kriging model. In (c) the blue lines delineate
regions where the posterior mean of the Zm,j ’s at the highest level, m=4, is less
than 0.5. We identify these as regions of local stationarity.
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Coverage
Model MSPE Rel. MSPE 95% PI

Mixture M-RA with covariates 0.42 0.10 0.951
Mixture M-RA without covariates 0.46 0.11 0.957

Non-stationary convolution
model with covariates 0.46 0.11 0.951

Non-stationary convolution
model without covariates 0.50 0.13 0.940

Stationary Bayesian
Kriging model with covariates 0.60 0.16 0.937

Stationary Bayesian
Kriging model without covariates 0.64 0.18 0.920

Table 2.8: SOC analysis. Assessment of out-of-sample predictive performance of the various
models reported in terms of Mean Squared Prediction Error (MSPE), Relative Mean
Squared Prediction Error (Rel. MSPE), and empirical coverage of 95% prediction
intervals.

and that of Risser and Calder (2017).

In terms of computation time, while a direct comparison between the mixture

M-RA and the model of Risser and Calder (2017) is not possible due to the fact

that latter is not implemented in a fully Bayesian inferential framework, compared

to the predictive process our model took approximately 3.07 times less per MCMC

iteration. Like the M-RA modeling framework itself, the mixture M-RA model is

amenable to parallel computing (see Katzfuss and Hammerling (2017) for parallel

inference with the M-RA), which will render the mixture M-RA model faster to

implement even with massive spatial datasets.

Finally, we present MCMC convergence diagnostics (Geweke’s diagnostics and

Raftery and Lewis’ diagnostics) for the covariance parameters of the Matérn co-

variance function used to define the basis functions in the mixture M-RA model

fitted to the log SOC data (Table 2.9). On the other hand, Table 2.10 provides

a comparison of the mixture M-RA model and the stationary Bayesian Kriging
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model based on the Posterior Predictive Loss, one of the most common criteria

for model selection used in the book by Daniels and Hogan (2008). The PPL for

both models, is defined by Gelfand and Ghosh (1998) as:

(2.13) Lk(yrep, a; y) = L(yrep, a) + kL(y, a)

with yrep a new replicate of the data drawn from the distribution of the data

likelihood and L(·) a loss function. In (2.13) k and a are constants, with the latter

chosen to minimize the expected loss with respect to the posterior predictive dis-

tribution (Daniels and Hogan, 2008; Gelfand and Ghosh, 1998). Following Finley

and Banerjee (2013), who use PPL as a model selection criteria in a geostatistical

setting, we take L(·) to be the squared error loss function (i.e. the squared dif-

ference between the predicted value and true value at held-out locations). In this

setting, it can be shown that the PPL takes the form:

n∑
i=1

σ2
i +

k

k + 1

n∑
i=1

(µi − yi)2

where µi and σ2
i denote, respectively, the posterior predictive mean and stan-

dard deviation of yrep,i. Table 2.10 tabulates values of the posterior predictive

loss for the mixture M-RA model and for the stationary Bayesian Kriging model

applied to log SOC for different values of k, as suggested in Gelfand and Ghosh

(1998).
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Parameter Geweke’s diagnostic Raftery and Lewis’ diagnostic
σ2 0.71 3,305
φ -1.23 4,116
ν 1.09 4,329

Table 2.9: Geweke’s and Raftery and Lewis’ diagnostics for covariance function parameters in
the log SOC analysis. The Raftery and Lewis’ diagnostic reports the required sample
size to infer upon the 2.5th posterior percentile of the corresponding parameter with
an accuracy of 0.01.

PPL PPL Stationary
k Mixture M-RA Bayesian Kriging
1 11,629.31 23,911.64
3 13,415.44 28,065.90
9 14,187.12 30,558.45
∞ 15,201.57 32,220.15

Table 2.10: Posterior predictive loss (PPL) comparing the mixture M-RA to the stationary
Bayesian Kriging model in the analysis of Soil Organic Carbon.

2.4 Discussion

Analysis of a spatial process often involves as a first step the selection of a

covariance function for the process. In applications, stationary covariance func-

tions are often used, even though the assumption of stationarity might not be

warranted for the data. In this chapter, we have proposed a modeling frame-

work that is flexible enough to accommodate both stationary and non-stationary

spatial data, when the non-stationarity in the dependence structure is due to in-

homogeneities in the range of the spatial correlation. Application of our model to

both stationary (result presented in the Appendix A.3) and non-stationary data

have shown that our model has an out-of-sample predictive performance that is

comparable to that of a stationary model when the data are indeed a realization

of a stationary Gaussian process, and that of a non-stationary model when the

data are indeed non-stationary. In addition, inference from our model allows one
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to identify regions of local stationarity.

While tests for non-stationarity, isotropy and symmetry of the covariance func-

tion of a spatial process have been proposed in the literature (Guan et al., 2004; Li

et al., 2008; Jun and Genton, 2012; Bandyopadhyay and Subba Rao, 2017; Weller

and Hoeting, 2016), in the case of a locally stationary process, none of these meth-

ods allow for easy detection of regions of local stationarity. Determining whether

there exist regions in the spatial domain where a spatial process displays varying

strength of spatial dependence is extremely important for various reasons. From a

sampling design perspective, knowing that in different regions the spatial process

is characterized by a different range parameter, could lead to a differential strat-

egy when collecting observations or when placing monitoring devices, as we have

discussed in the analysis of SOC in Section 2.3.2. From a computational point of

view, the decomposition of the spatial domain in regions of local stationarity can

lead to computational savings as a spatial model can be fit to data within each

region individually. Our model also allows one to determine the number of M-RA

levels needed to approximate the covariance structure in the data, a question that

is often only addressed empirically.

There are multiple ways in which our model could be extended and improved.

First, for now we have only been considering Gaussian spatial processes: it would

be interesting, and potentially not too difficult, to extend the mixture M-RA mod-

eling framework to non-Gaussian spatial data. In its current form, our model only

accommodates non-stationarity due to inhomogeneities in the range of the corre-

lation function; extensions of this work could be geared towards accommodating
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other types of non-stationarity. The use of an anisotropic spatial covariance func-

tion could also be explored. The prior specification on the M-RA basis function

weights involves a mixture of two normal priors, with one of the two normal distri-

butions introducing an additional parameter, the shrinkage parameter L. In our

implementation, L is tuned through cross-validation. A further avenue of research

could be to investigate how to provide a prior on L and infer upon it using the

data.


