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ABSTRACT

Accessible locations in a metropolitan region afford individuals who occupy them

greater convenience to interact with activities distributed across the region. This con-

venience may translate into a range of economic benefits: reduced time-plus-money

spending on travel to reach desirable destinations (termed here travel-cost savings),

welfare gains resulting from enhanced social and economic interactions, consumer

satisfaction due to a greater choice of activities to engage with, and so on. Yet many

urban researchers have either implicitly or explicitly equated the benefits afforded by

accessible locations to travel-cost savings (TCS), excluding other forms of benefits

from their purview. An exclusive focus on TCS underestimates the value of accessi-

bility and in many policy contexts constitutes a conceptual barrier that impedes the

promotion of accessibility-based planning practice and policymaking. For instance,

observations of excess commuting are frequently used as evidence refuting the merits

of job-housing balance strategies.

This three-paper dissertation challenges this TCS-based view of accessibility ben-

efits. In the first paper, I trace the origin of TCS-based view of accessibility to classic

urban economic theories and review its application in residential location studies. In

order to test the hypothesis that individuals value accessibility beyond the benefit of

travel-cost savings, I develop residential location choice models for two U.S. regions

(Puget Sound and Southeast Michigan) to examine if transit accessibility remains

a significant predictor of residential location choice after controlling for all possible

travel-cost savings associated with it. The results do not support a TCS-based view
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of accessibility benefits. Considering that only a small fraction of Americans regu-

larly use transit, I conclude that it is probably the option value of transit access that

attracts people to transit-accessible neighborhoods.

Building on the idea that individuals value accessibility beyond the benefit of

TCS, the second paper critiques the common practice of using VMT reduction as

the main empirical measure to represent the transportation benefits of accessibility-

enhancing compact-development strategies. I argue that VMT-reduction measures

blur the impact that compact development has on the utility that people receive

from their environment because compactness can shape personal VMT in opposite

directions: a desire for TCS would make people reduce their VMT consumption, but

people can end up traveling more if they make more trips and/or travel to more re-

mote destinations in order to gain greater destination utility. I test these ideas by

fitting trip-frequency models in the Puget Sound region and in the Southeast Michigan

region. Empirical analysis supports my hypothesis by suggesting that compact de-

velopment has countervailing effects on driving. I thus conclude that VMT-reduction

measures underrepresent the transportation benefits of compact development.

To facilitate accessibility-based planning policy implementation, the third paper

empirically evaluates the relative importance of walkability, transit accessibility, and

auto accessibility in residential location choice across three U.S. regions (Puget Sound,

Southeast Michigan, and Atlanta). I find that, in general, transit accessibility is a

more important determinant of resident location choice than walkability and auto

accessibility. The results further suggest that the preferred behavior of households

can be different from their actual choice because of housing supply constraints. This

implies that if the conditions of housing supply change, estimates of accessibility

preferences may change accordingly. This finding challenges the standard practice of

land-use and transportation modeling which forecasts future land-use patterns based

on presumed stability of historical or present estimates of accessibility preferences.
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CHAPTER I

Introduction

Caught in a built environment where housing is distant from jobs and other essen-

tial services, many people living in U.S. cities often find it challenging to conveniently

get to the destinations they value. If lacking access to a car, individuals can only

reach a very constrained set of destinations using alternative travel modes, which

means that they would have a limited choice of employment opportunities, shopping

places, and healthcare services. As a result, travelers living in U.S. cities are in gen-

eral more car-dependent and consume more gasoline than their counterparts living in

European and Australian cities (Newman and Kenworthy, 1989; Giuliano and Dar-

gay, 2006). This is largely because the land-use and transportation planning policy

and practice in the U.S. have traditionally focused on promoting mobility rather than

accessibility. Mobility refers to the ease of travel whereas accessibility refers to the

ease to reach destinations or the potential to interact with opportunities/activities

distributed across space (Hansen, 1959). A focus on mobility fails to adequately

consider the opportunities/activities that motivate individuals to travel in the first

place, and as a result, mobility-based planning often makes people travel faster but

makes them more disconnected from essential destinations such as jobs and shopping

destinations (Levine et al., 2012).

In recent years, there has been a growing recognition within the academic com-

1



munity that planning policies and practices should be oriented toward accessibil-

ity instead of mobility (Cervero, 1997; Martens, 2016; Levine et al., 2019). On the

policy and practice side, however, much less progress has been made to implement

accessibility-based planning ideas (Handy, 2005; Boisjoly and El-Geneidy, 2017; Prof-

fitt et al., 2019). Commonly recognized factors that inhibit implementation includes

confusion on definitions and measurements, constraints due to governance structure,

and institutional barriers due to legacy and professional norms. Levine et al. (2019)

further discussed some conceptual impediments that have held back policymakers and

practitioners from sharing the accessibility perspective and adopting accessibility-

informed policy and practice. In brief, they refuted misconceptions on what accessi-

bility is, ought to be, and what would count as evidence to evaluate accessibility.

Building on previous accessibility research and in particular the Levine et al. work,

this dissertation aims to further clear the way for accessibility-based planning practice

and policymaking. A main focus of the dissertation addresses a misconception that

equates the benefits of accessibility to travel-cost savings (TCS), which is termed

here a TCS-based view of accessibility benefits. A TCS-based view of accessibility

benefits is present in a variety of policy contexts, as reflected by the use of empirical

measures that represent the benefits resulting from accessibility-promoting land-use

and transportation policies. For example, in the residential location choice context,

scholars often view commuting-cost savings as the main benefit that households can

gain from living at locations near job centers. When evaluating the desirability of

transportation investments, analysts usually measure travel-time savings to represent

the benefits associated with these projects. In built-environment and travel-behavior

studies, researchers consider the amount of reduction in vehicle miles traveled (VMT)

as the main criterion to determine the travel benefits of compact-development policies.

Savings in commuting costs, savings in travel time, and reduction in VMT are all

essentially measures of travel-cost savings.
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A TCS-based view of accessibility benefits ignores the fact that accessibility gains

often translate into non-TCS benefits. Locations of higher accessibility afford individ-

uals who occupy them a greater convenience/potential to interact with activities (e.g.,

people and services) distributed across space. This convenience may translate into

a range of economic benefits: reduced time-plus-money spending on travel to reach

desirable destinations (termed here travel-cost savings), welfare gains resulting from

more social and economic interactions (e.g., greater participation in out-of-home ac-

tivities), welfare gains associated with the flexibility to change trip destinations (e.g.,

travelling to more remote but more desirable destinations), and consumer satisfaction

due to a greater choice of activities to engage with. These non-TCS aspects of acces-

sibility benefits are jointly termed here destination-utility gains for convenience, since

they all arise from interacting with or the ability to choose from spatially-distributed

destinations (more accurately, the people and activities located at these destinations).

Some recent urban trends have provided empirical support for the importance

of destination-utility gains. First, there is a rise of reverse-commuting (individu-

als work at suburban locations but live in central cities) in recent decades (Glaeser

et al., 2001), which means that many people bear longer commutes to enjoy the

enhanced social and economic interactions available in central cities (Jacobs, 1970).

Besides, the gap between home values (on a per-square-foot-basis) in urban and sub-

urban areas of the U.S. has widened dramatically over the past two decades (Fuller,

2016). Related, property prices in areas surrounding transit-oriented development

have increased significantly in many cities, often causing low-income households to

be displaced (Dawkins and Moeckel, 2016; Chapple and Loukaitou-Sideris, 2019). All

of these empirical observations indicate a growing consumer demand for places of

higher accessibility, but they cannot be reasonably accounted for by a TCS-based

view of accessibility benefits.

There are at least two reasons why these recent trends must not be driven solely
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by individual desires for travel-cost savings, but rather by individual preferences for

other benefits such as destination-utility gains. First of all, the rent premium com-

manded by locations of higher accessibility is often so high that makes it unlikely to

be completely compensated by travel-cost savings. For example, an analysis of the

median sales prices for single-family homes in suburban areas along Metro-North Rail-

roads New Haven line suggests that homeowners pay tens of thousands dollars more

for each less minute of rail travel time to the Grand Central Station(Kolomatsky,

2016). It is hard to believe that this high price premium completely results from

the potential time-plus-money savings associated with rail commuting or rail use in

general. Second, researchers often find that higher-income households with good car

access like to move into transit-rich areas, but good transit access does not lead to a

significant impact on car ownership (Chapple and Loukaitou-Sideris, 2019) or mode

switch (Chatman, 2013).

When applied for land-use and transportation policy evaluation, a TCS-based view

of transportation benefits underestimates the value of accessibility and hence weakens

the policy importance of accessibility-enhancing strategies such as job-housing bal-

ance, transit-oriented development, and smart growth. For example, in a standard

cost-benefit analysis of transportation investments, the main benefits measured are

travel-time savings; and the size of travel-time savings often becomes the most impor-

tant factor shaping the decisions on whether or not and how much to invest (Bristow

and Nellthorp, 2000). If a transit investment project results in little travel-time sav-

ings but significant destination-utility gains, however, this TCS-based cost-benefit

analysis would suggest this project to be much less cost-effective than it actually is.

Moreover, viewing commuting-cost savings as the primary benefit of living close to

employment centers, researchers often use observations of excess commuting (i.e., the

difference between the observed amount of commuting and a theoretical minimum

amount of commuting suggested by a given job-housing relationship) as evidence re-
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futing the merits of job-housing balance strategies (Giuliano and Small, 1993; Yang,

2008). However, this interpretation would erroneously undermine the merits of job-

housing balance policy, as long as excess commuting is at least partially driven by

individual desire to get destination-utility gains from locations of higher accessibility.

In this dissertation, I focus on two major literature where a TCS-based view of

accessibility benefits has largely taken hold. First is the residential location literature

from which a TCS-based view of accessibility benefits originated. Robert Murray

Haig (1929) first formulated the idea that accessible locations allow households to

save travel costs and these savings would be consequently capitalized into land rents

as a result of land competition, and this idea was later adopted by the classic ur-

ban economics model developed by Alonso (1964). In the Alonso model, households

deciding where to live are assumed to make a trade-off between housing costs and

commuting costs, as locations of higher accessibility allow households to reduce com-

muting costs but charges a higher land price. In recent decades, there have been many

extensions to these classic models. In particular, researchers have incorporated more

comprehensive accessibility measures that can account for both TCS and non-TCS

benefits in residential location choice models; however, as I will discuss in detail in

chapter two, these researchers rarely recognized that these measures pick up non-TCS

forms of accessibility benefits. As a result, a TCS-based view of accessibility benefits

still dominate the resident location choice literature and the related studies on excess

commuting and location affordability.

The second literature that I focus on is the built-environment and travel-behavior

studies. These studies usually apply measures of vehicle-miles-traveled (VMT) re-

duction (e.g., decreases in VMT, in car ownership, in the probability of driving,

and in car-trip frequency) to evaluate the travel benefits of accessibility-promoting

compact-development strategies. The estimated amount of VMT reduction resulting

from compact development, usually based on a statistical analysis of the association
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between built-environment variables and travel outcomes, subsequently becomes the

main criterion to judge the transportation merits of compact-development strategies.

Since VMT reduction can be considered as a type of TCS measure, these studies

have essentially adopted an implicit TCS-based view of accessibility benefits. How-

ever, these studies have largely failed to consider that compact-development policies

also lead to destination-utility gains as individuals react to these policies by making

more trips and by traveling to more remote destinations.

Besides advancing the theoretical understanding of accessibility’s economic ben-

efits, this dissertation aims to facilitate accessibility-based planning policy imple-

mentation. Although existing accessibility research is extensive, with contributors

from a variety of disciplines such as urban planning, geography, and transportation

engineering, the existing knowledge on the relative importance of different types of

accessibility (walkability, transit accessibility, and auto accessibility) is very limited.

The absence of such knowledge leads to confusions among transportation profes-

sionals as to which different type of accessibility to prioritize when the funding for

transportation improvement is constrained. In addition, walkability, transit accessi-

bility, and auto accessibility are often highly correlated at a given location; therefore,

when accessibility shapes an outcome, policymakers often cannot discern the effect

comes from which type of accessibility, which inhibits the design of clear and tar-

geted policies. To address these problems requires empirical studies that distinguish

the independent effect of walkability, transit accessibility, and auto accessibility on

individual residential-location and/or travel outcomes.

Furthermore, the current practice of land-use and transportation modeling may

impede accessibility promotion as a result of methodological limitations. For exam-

ple, the standard practice of land-use and transportation planning relies on analyzing

current or historic data on household behavior to first estimate their preferences and

then to apply these preference estimates for forecasting future land-use patterns (of-
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ten 20-40 years). A presumption made in the process is that household preferences

for accessibility and other goods or services (e.g., school quality) will remain constant

over the forecasting period. This assumption will only be true if the market condi-

tions (e.g., demand for and supply of accessible neighborhoods) of the study region

remain unchanged. In reality, however, driven by rising demand for accessible neigh-

borhoods (especially among the millennials and empty nesters), there is a growing

call to reverse the exclusionary single-family zoning practice that has led to an under-

supply of walkable and transit-accessible neighborhoods in most U.S. metropolitan

regions (Levine, 2006). As a result, the assumption that household preferences for

accessibility will remain stable over a 20-40 years period of time is not likely to hold

true.

This three-paper dissertation addresses the issues raised above that are impeding

the promotion of accessibility-based planning practice and policymaking. These pa-

pers examine a misconception on the concept of accessibility and its economic benefits,

a fallacy in the use of vehicle-miles-traveled as the main criterion for accessibility eval-

uation, and the problematic practice of extrapolating current accessibility-preference

estimates into the future. In each paper, I raise theoretical arguments and subse-

quently design an empirical test to verify them. The empirical analysis not only

serves the purpose of hypothesis testing but also seeks to generate novel empirical ev-

idence that can guide the design and implementation of accessibility-based planning

strategies. Toward this goal, I fit statistical models for multiple U.S. regions rather

than a single region to enhance the robustness of study findings and their transfer-

ability to other places. Besides, the differences in model outputs across regions can

shed light on the importance of local context in shaping statistical results.

My empirical analysis examines three U.S. regions, including Atlanta, Puget

Sound, and Southeast Michigan. These regions are selected not only because of

my familiarity with them but also because they have distinctive metropolitan forms
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which result in great variations in the supply of accessible neighborhoods. Atlanta

region has long been regarded as a sprawling region dominated by low-density, and

auto-dependent development, and only in recent years, it has started to promote more

mixed-use, transit-oriented development. With the city of Seattle serving as a strong

urban core, Puget Sound excels Atlanta and Southeast Michigan in walkability and

transit accessibility. Consequently, the use of non-driving travel modes is much more

popular in Puget Sound than the other two regions.1 Finally, the Southeast Michigan

region is a slowly growing Midwest region with a declining central city (the city of

Detroit). While it is less sprawled out than the Atlanta region and some parts of it

(e.g., downtown Detroit and downtown Ann Arbor) are well served by public transit,

most neighborhoods are not walkable. The existence of these variations allows me to

fully explore how transferable the study findings are how regional differences shape

model outputs.

The three papers are summarized as follows. In the first paper, I trace the origin

of a TCS-based view of accessibility to early location theory formulated by Robert

Murray Haig (1926) and the classic urban economic models developed by Alonso

(1964), Muth (1969), and Mills (1972). I review the use of different accessibility mea-

sures in residential location studies and the explicit or implicit TCS-based view of

accessibility benefits adopted by these studies. In order to test the hypothesis that

individuals value accessibility beyond the benefit of travel-cost savings, I develop resi-

dential location choice models in the Puget Sound region and the Southeast Michigan

region to examine if transit accessibility remains a significant predictor of residential

location choice once all possible travel-cost savings are controlled for. Results of the

residential location choice models refute a TCS-based view of accessibility benefits.

Considering that only a small fraction of Americans regularly use transit, I conclude

1The conclusion is reached by examining the most recent regional household travel survey data
of these regions. For example, the proportion of trips made by walking and transit in Puget Sound
is 10% and 5.5% respectively. These numbers are 7% and 3.1% in the Atlanta region, and 7% and
3% in Southeast Michigan.
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that it is probably the option value of transit access that attracts people to live at

places of high transit accessibility.

Building on the idea that individuals value accessibility beyond the benefit of

TCS, the second paper critiques the standard practice of applying measures of vehicle-

miles-traveled (VMT) reduction as the main criterion to evaluate the travel benefits

of compact-development strategies in built-environment and travel-behavior studies.

I argue that compact development often induces additional car travel by generating

more trips and by expanding individual activity space, which result in greater con-

sumer welfare and can sometimes advance equity goals. I further fit trip frequency

and car-trip frequency models in the Puget Sound region and Southeast Michigan re-

gion to test this hypothesis. Results show that transit accessibility (the main measure

of compact development examined here) is positively associated with trip frequency

(by all modes) in both regions. Besides, while the association between transit accessi-

bility and car-trip frequency is negative in Puget Sound, this association is positive in

Southeast Michigan. These results imply that compact-development strategies have

countervailing effects on car use (a mode-switch effect that reduces car trips and a trip-

generation effect that increases car trips), and whether or not these policies reduce

car-trip frequency depends on if the mode-switch effect outweighs the trip-generation

effect. It follows that a VMT-reduction-based land-use and transportation policy

evaluation is problematic because measures of VMT reduction underrepresent the

transportation benefits of compact development.

To facilitate accessibility-based planning policy implementation, the third paper

empirically evaluates the relative importance of three types of accessibility (walka-

bility, transit accessibility, and auto accessibility) in residential location choice. Two

major findings can be inferred from the model outputs in three U.S. regions (Puget

Sound, Southeast Michigan, and Atlanta). First, transit accessibility is a more impor-

tant determinant of resident location choice than walkability and auto accessibility.
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Second, location accessibility plays an important role in residential location choice,

but its impact is modest compared to other factors such as commuting cost and hous-

ing affordability. In addition, comparing the results across the three study regions

suggests that the preferred behavior of households can be different from their actual

choice because of housing supply constraints. This implies that if the conditions of

housing supply change, estimates of accessibility preferences may change accordingly.

This finding challenges the standard practice of land-use and transportation model-

ing which forecasts future (often 20-40 years) land-use patterns based on presumed

stability of historical or present estimates of accessibility preferences.
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CHAPTER II

Is the Value of Accessibility Beyond Travel Cost

Savings? An Empirical Examination in the

Residential Location Context

2.1 Introduction

Accessibility describes the potential from a location to interact with opportunities

(e.g., people and activities) distributed across space (Hansen, 1959). As an essential

indicator of locational advantage, accessibility was considered as a major force shaping

urban land value (Hurd, 1903), regional economy (Haig, 1926), and urban land-use

patterns (Alonso, 1964) in the fundamental theories of urban and regional studies.

Recognizing its importance, some scholars even argue that accessibility is the most

important feature that cities or central areas of a region provide to location seekers

(Haig, 1926; Webber, 1964; Lynch, 1981; Ewing, 1997; Glaeser and Gottlieb, 2009).

1 Recently, in a think piece commissioned by the Brookings Institution to inform

1The pioneer location theorist and regional economists Robert Haig asserted that “the essential
quality which the [urban] center possesses is physical proximity, or accessibility, to all parts of the
area (Haig, 1926, pp.420).” Similarly, urban theorist Melvin Webber (1964, pp.169) suggested that
“the unique commodity that the city offers to location seekers is accessibility.” Urban designer
Kevin Lynch (1981, pp.187) wrote the following: “Cities may have first been built for symbolic
reasons and later for defense, but it soon appeared that one of their special advantages was the
improved access they afforded.” In a debate on compact versus sprawled metropolitan form, Ewing
(1997, pp.109) argued that “the most important indicator [of sprawl] is poor accessibility.” Urban
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metropolitan policy, Duranton and Guerra (2016) argue that accessibility should be

placed at the center of the study of urban development.

The theoretical importance of accessibility is verified by numerous empirical stud-

ies. With contributors from a variety of disciplines such as urban planning, geography,

engineering, and economics, decades of accessibility research have repeatedly verified

the continuing influence that accessibility has on urban development and major so-

cioeconomic outcomes. For example, a large number of empirical studies have shown

that accessibility increases, especially gains in transit accessibility, would have a sig-

nificant positive impact on property value (Adair et al., 2000; Bowes and Ihlanfeldt,

2001; Debrezion et al., 2007; Osland and Thorsen, 2008; Du et al., 2012; Li et al.,

2015; Lin and Cheng, 2016). Besides, researchers have accumulated a vast amount

of evidence linking accessibility to a diverse range of important socioeconomic bene-

fits such as reduced car use (Ewing and Cervero, 2001), enhanced economic growth

and labor productivity (Chatman and Noland, 2014), increased employment prospect

and upward mobility (Chetty et al., 2014; Ewing et al., 2016), and increased social

interaction (Brown and Cropper, 2001).

Though thousands of pages have been written about accessibility, what eco-

nomic benefits it offers to individuals is still largely unclear. Early location theo-

rists and urban economists have assumed the value of accessibility nothing more than

transportation-cost savings (TCS), which I term as a TCS-based view of accessibil-

ity benefits in this paper. Robert Murray Haig (1926, pp. 421) first articulated a

TCS-based view of accessibility benefits when describing the relationships between

accessibility, transportation costs, and land rent: “Rent appears to be the charge

which the owner of a relatively accessible site can impose because of the saving in

transportation costs which the use of this site makes possible.” This idea was adopted

by Alonso (1964), Mills (1972), and Muth (1969), which constitute the fundamental

economists Edward Glaeser and Gottlieb claimed that “cities are ultimately nothing more than
proximity (Glaeser and Gottlieb, 2009, pp.984).”
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theory of urban economics and residential-location models. In these models, house-

holds are assumed to bid for locations based on a consideration of the trade-off be-

tween commuting costs and housing costs, as more accessible sites allow households

to reduce commute costs but charge a higher housing price.

The Alonso (1964), Mills (1972), and Muth (1969) models are building blocks of

modern urban economics theory, which have a significant influence on contemporary

academic discussions and policymaking. As I will discuss further below, although

there have been many criticisms of these models in recent decades, the core idea un-

derlying these models that land rent arises from the TCS associated with accessibility

gains has remained untouched (e.g. Ahlfeldt, 2011).2 A TCS-based view of acces-

sibility benefits and its logical extension that there is a direct trade-off relationship

between transportation costs and housing costs are still widely applied. For exam-

ple, when examining residential location choice, researchers often treat households

preference for job accessibility as equivalent to a desire to reduce commuting costs

(Hamilton and Röell, 1982; Paleti et al., 2013; Van Ommeren, 2018). Similarly, the

recent literature on location affordability assumes that when households move from

a less accessible place of residence to a more accessible one, their travel expenditure

must decrease (Haas et al., 2016); this notion has informed the development of the

Location Affordability Index by the US Department of Housing and Urban Develop-

ment and Department of Transportation, which may inform these agencies where to

allocate funding on public housing and public transit.

Yet many studies have shown empirical evidence that calls the TCS-based view

of accessibility results into question. Researchers often find lower-than-expected or

2In a study that examines “if Alsonso was right,” Ahlfeldt (2011) empirically tested two major
assumptions made by Alonso’s urban rent theory. One is its simplifying assumption of a perfectly
monocentric city, and the other is the assumption that residential land values arise from a tradeoff of
accessibility and commuting cost. While the results rejected the appropriateness of a monocentric-
city assumption, Ahlfeldt (2011, pp.335) concluded the following regarding the second assumption:
”Our results can therefore well be interpreted in support of Alonsos urban rent theory whose essence
is that land values arise from a tradeoff between transport costs and accessibility.”
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even no travel-cost savings when comparing the travel behavior or transportation

expenditure of different households enjoying varying levels of accessibility (Hanson

and Schwab, 1987; Metz, 2008, 2010; Smart and Klein, 2018a). For example, Metz

(2010) reported that after over a hundred billion pounds in road investments over

twenty years, which must have resulted in great accessibility gains, British travelers

barely experienced any travel-time savings.3 Related, in a rare longitudinal study

(data are from 2003 to 2013) that examines the transportation-expense change of

nearly 11,000 US families moving to neighborhoods with greater transit accessibility,

Smart and Klein (2018a) found that families did not experience reductions in their

transportation expenses.

Besides, as I have discussed in the introduction chapter, a TCS-based view of

accessibility benefits cannot reasonably account for some recent urban trends. These

trends include a rapid increase in out-commuting trips in recent decades (Glaeser

et al., 2001), the widening gap between the per-square-foot home value in urban ar-

eas and suburban areas (Fuller, 2016), and the movement of high-income, car-owning

households into areas with high transit accessibility (Chapple and Loukaitou-Sideris,

2019). In all of these cases, the economic actors involved pay a price premium to

enjoy a higher level of accessibility, but they do not experience travel-cost savings at

all or the associated TCS are not enough to offset this price premium; therefore, the

price premium of accessibility must have be compensated by other forms of acces-

sibility benefits rather than TCS. It follows that a mere focus on the TCS aspects

of accessibility benefits underestimates the value of accessibility, and if applied for

accessibility-based policy evaluation it would consequently weaken the policy impor-

tance of these policies.

3There can be two explanations for this observation. One is that average travel time would have
been higher without the road investments and the other is that people take the benefit of investment
in the form of accessing to desirable destinations at further distances rather than travel-time savings.
Metz (2008) argued that the first explanation did not hold since average travel time had a steady
trend despite large variations in road investments by year.
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This paper argues that accessibility has value beyond travel-cost savings. I em-

pirically test this hypothesis in the residential location context, i.e., examining the

significance of non-TCS aspects of accessibility benefits (which will be termed as

destination-utility gains as I discuss further below) in a residential location choice

model. The rest of the paper is organized as follows. The next section reviews the

concept of accessibility, its economic value, and the application of different accessi-

bility measurements in residential-location studies. The third section discusses the

empirical analysis, which includes the modeling framework, data, and measurements

used in this study. In the fourth section, I present and interpret the model out-

puts. The fifth section discusses the implications of this study for location theory

and land-use and transportation planning. The last section concludes.

2.2 A review of the accessibility concept and its application

to residential location studies

2.2.1 The concept of accessibility and its economic value

Accessibility is commonly defined as the ease of reaching destinations (Dalvi and

Martin, 1976) or the potential to interact with opportunities (Hansen, 1959). Acces-

sibility is jointly determined by two components: a land-use component that denotes

the spatial distribution of destinations, and a transportation component that deter-

mines the ease of reaching each destination. Accessibility improvements can thus

come from either land-use policies such as new urbanism, mixed-use development,

and job-housing balance or transportation policies such as travel-demand manage-

ment and transit investments. In economic terms, an accessibility improvement can

be defined as a decrease in the time-plus-money cost of travel to potential destinations

or an increase in the value of destinations that can be reached for a given investment

of time and money (Levine et al., 2019). When accessibility increases translate into
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the former, the associated economic benefits are essentially travel-cost savings; and if

accessibility increases translate into the latter, I term the associated economic benefits

as destination-utility gains here.

Destination utility arises from interacting with or the ability to choose from spa-

tially distributed opportunities, and so it contains two types of economic value—the

interaction value and the choice value. The interaction value refers to the utility that

individuals gain from the act of interacting with people and opportunities available at

the reachable destinations. Normally individuals can gain a higher level utility from

more interactions, which means that people are usually better off when they choose

to make more trips. Also, each destination conveys a distinctive degree of utility; and

if an individual choose a more remote destination rather than a closer alternative, it

suggests that the more remote destination produces a higher level of utility. Thus a

pursuit for interaction value can lead to more spending on travel, offsetting the po-

tential travel-cost savings associated with accessibility increases.4 It should be noted

that besides interactions resulting from purposeful trips, which are the focus of most

transportation studies, individuals also gain great value from random or the so-called

non-market interactions (Jacobs, 1970; Glaeser et al., 2000). Random interactions

mean the type of human interactions that are spontaneous, unplanned, and usually

unrecorded (by existing authoritative data sources). The consumer welfare associated

with random interactions is difficult to quantify, but it is an indispensable component

of accessibility benefits. In fact, there is a growing understanding among economists

that cities thrive because they cultivate random interactions that facilitate knowl-

edge transfer and idea generation (Duranton and Puga, 2004; Rosenthal and Strange,

2004).

The choice value is the welfare gains that individuals derived from the freedom of

choice, that is, being able to choose among a range of potential destinations. More

4I further explore the idea that destination-utility gains and travel-cost savings are associated
with travel-behavior changes in opposite directions in the next chapter.
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choices usually mean a larger degree of freedom and hence a higher level of utility.

More concretely, having more choices of destinations allow individuals to not only

freely choose the most desirable option at a given time, but also to enjoy diversity and

flexibility (Levine et al., 2019). While the value of choice is not directly observable, it

can be estimated; and one approach to do so is the “logsum” method which is based

upon a random-utility choice modeling framework (De Jong et al., 2007). Several

researchers have applied this method to estimate the option value of accessibility,

such as the option value of transit access (Laird et al., 2009) and the choice value of

mode-destination accessibility to job opportunities (Niemeier, 1997).

Both travel-cost savings and destination-utility gains can result from improve-

ments to either the land-use patterns or the transport network. For example, for a

low-income woman working at an employment center, potential savings in commuting

cost to her can come from either a land-use policy that allows more affordable hous-

ing units to be built around her workplace (Levine, 1998) or a transport policy that

leads to high-quality transit services from her home to her workplace. Likewise, gains

in destination utility for a given individual can come from land-use strategies which

bring more valuable destinations with his reach or transportation improvements that

allow him to travel to a wider geographic area and hence to reach a greater range of

destinations.

Nevertheless, most land-use and transportation studies focus on travel-cost savings

only when evaluating accessibility-promoting land-use and transportation strategies.

And only a handful of studies recognize the non-TCS aspects of accessibility benefits

(e.g., Metz, 2008; Van Wee et al., 2011; Geurs et al., 2010; Merlin, 2015; Levine et al.,

2019). In a paper titled “The Myth of Travel Time Savings,” Metz (2008) first argued

that in the long run, travelers take the benefit of transportation improvements in the

form of additional access to more distant destinations rather than travel-time savings.

Geurs et al. (2010) further developed a “logsum” approach based on discrete-choice
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modeling to account for accessibility benefits in three forms: travel-cost savings,

destination utility gained from additional trip production, and destination utility

gained from visiting different and more desirable destinations. In a think piece,

Van Wee et al. (2011) argued that if land-use changes did not lead to travel-behavior

changes (or if the impact is smaller than theoretically possible), then it must be that

travelers have converted potential travel-cost savings into other kinds of accessibility

benefits. Merlin (2015) argued that a primary benefit of compact development is to

facilitate the participation of out-of-home nonwork activities and empirically verified

this idea using a national travel data set. Finally, Levine et al. (2019) detailed a list

of “invisible” accessibility benefits that are unrelated to travel-cost savings, including

choice, variety, flexibility, competition, and spillovers.

The need to move beyond a TCS-based view of accessibility benefits is logically

compelled by a basic principle of transportation that views travel demand as derived

from the need to interact with destinations (Bonavia, 1936); that is to say, individuals

usually travel to get to places rather than to enjoy movement. Under this notion, any

economic value associated with accessibility arises from the need for interaction, and

it is for the purpose of interacting with opportunities distributed across space that

individuals are willing to pay a travel cost to overcome the spatial friction between

places. It follows that that travel-cost savings should be viewed as subsidiary to the

destination-utility aspects of accessibility benefits, since no TCS would exist in the

absence of travel driven by the pursuit of destination utility.

Furthermore, the short-run TCS benefits resulting from accessibility improvements

are often converted into destination-utility benefits in the long run. For example,

while transportation improvements such as the construction of a new highway help

drivers travel faster and save the time cost of travel, over time these TCS often end

up translating into gains in destination utility. The process may work like this: 1)

the transportation improvements first allow individuals to spare some money and
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travel budget used for travel; 2) instead of keeping the savings, travelers decide to

spend the “spared” travel budget (TCS) in order to visit more desirable but further-

away destinations or to make more trips that they previously cannot complete due to

travel-budget constraints;5 3) At the end, little to no TCS exist because individuals

travel more and travel to more distant destinations, which means that the initial TCS

were converted into gains in destination utility (Van Wee et al., 2011).

2.2.2 Accessibility measures viewed in terms of the economic benefits

they capture

I now discuss the commonly used accessibility measures in land-use and trans-

portation studies from the perspective of whether and how they adequately capture

both the TCS and destination-utility gains of accessibility benefits. Commonly used

accessibility measures can be classified into four categories: distance-based, cumula-

tive opportunities, gravity-based, and utility-based (Handy and Niemeier, 1997; Geurs

and Van Wee, 2004).

Distance-based accessibility measures represent the distance from a location to

a predetermined (or a set of) destination(s) that individuals would like to interact

with. Note that the term “distance” here refers to the spatial impedance between

places in general, which in practice may be measured by the general cost of travel,

physical distance, or travel time. Commonly used indicators include commuting cost

(i.e., distance to one’s workplace), distance to the city center, distance to transit

stops, and distance to important landmarks (i.e., a historic site) or natural amenities

(e.g., a park). By predetermining the destination(s) that individuals would like to

5There are two pieces of empirical evidence to support this proposition. First is the finding
on constant travel-travel budget, which means that the average time people spend on travel is
quite stable all over the world and across different years (Tanner, 1961; Downes and Morrell, 1981;
Mokhtarian and Chen, 2004). This suggests that individuals on average allocate a fixed amount of
their time to travel regardless of the level of accessibility they enjoy. Second is the “induced travel”
literature, which findings that reductions in the generalized cost of travel often induce people to
travel more (Cervero and Hansen, 2002; Noland and Lem, 2002). The next chapter engages with
this topic further.
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interact with, distance-based measures essentially assume away the destination-utility

differences across locations of varying distances to this destination. Under this view,

the accessibility differences between locations are merely in distances (i.e., travel

costs) to the destination considered. Therefore, distance-based accessibility measures

essentially represent a TCS-based view of accessibility benefits.

A distance-based accessibility measure is applicable for accessibility evaluation

only if the destination considered is indispensable and irreplaceable, since individuals

may decide not to interact with this destination at all or they may choose an alterna-

tive destination if the distance to it is too large. That is to say, for a given destination,

locations closer to it tend to gain a higher level of destination utility from it, since

the probability of interaction tends to decrease with distance increases. By assuming

away such destination-utility differences, distance-based measures underrepresent the

benefits of accessible sites. Therefore, distance-based measures are only applicable

to describe accessibility to a limited set of opportunities/activities (e.g., someone’s

family members), since most destinations (such as dining places, shopping malls, or

even employment opportunities) are to some extent dispensable and/or replaceable.

Cumulative-opportunity measures count the number of opportunities (e.g., jobs)

reachable from a location within a given time or distance threshold. These measures

can, but inaccurately, capture both TCS and destination-utility gains. When indi-

viduals have a greater choice of destinations to interact with and choose from, they

can derive a higher level of utility from them; and people are more likely to take

shorter trips when more opportunities are available at nearby destinations, which

means that the potential TCS benefits are also captured. However, since destina-

tions beyond the specified time or limit are not considered, cumulative-opportunity

measures are inherently incomplete indicators of accessibility. Moreover, by counting

potential opportunities equally regardless of their relative distance to the reference lo-

cation, these measures ignore that fact when destinations are closer, individuals tend
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to gain a higher level of utility from them. Thus like the distance-based measures,

cumulative-opportunity measures inaccurately represent the destination-utility gains

from accessibility improvements.

A logical extension to the cumulative-opportunity measures is the gravity-based

potential-opportunity measure proposed by Hansen (1959), which sums up potential

opportunities across space but weights down the importance of opportunities at more

distant locations. Gravity-based measures overcome the problems associated with

cumulative-opportunity measures identified above, thus they are in general regarded

as theoretically sound measures of accessibility.6 Empirical studies that examine the

influence of accessibility on residential-location choice and travel behavior have also

verified that operationalizing accessibility with gravity-based measures often leads to

better model performance (see, e.g., Thill and Kim, 2005; Lee et al., 2010; Barak-

lianos et al., 2018). These results can be interpreted as suggesting that gravity-based

measures can better represent the full range of accessibility benefits.

Finally, utility-based measures conceive accessibility as the utility that individuals

can derive from accessing to spatially distributed opportunities (Ben-Akiva and Ler-

man, 1979). A common utility-based accessibility measure is the “logsum” obtained

from a random-utility choice model, which means the expected utility that individuals

can derive from a choice when choosing among a set of alternatives. In theory, these

measures are able to capture both travel-cost savings and destination-utility gains.

For example, Geurs et al. (2010) applied this measure to evaluate the whole range of

travel benefits resulting from accessibility-promoting land-use and transport policies,

6Related, Harris (1954) made a distinction between a market-potential measure and an
aggregate-transport-cost measure when measuring accessibility to regional markets. Similar to the
Hansen (1959) gravity-based accessibility measure that gives a lighter weight to potential destina-
tions that are further away, Harris’s market potential measure presupposes a declining market with
distance. In fact, both measures were adopted from the population potential concept developed by
Stewart (1948), which is “an abstract index of the intensity of possible contact with markets (Harris,
1954, p. 321).” On the other hand, the aggregate-transport-cost measure sums up the distances from
a location to all potential markets and thus is analogous to a distance-based accessibility measure. In
recent regional economics and economic geography literature, the market potential measure receives
much wider application (Bartelme, 2015).
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including travel-cost savings, welfare gains from destination change, and welfare gains

from taking more trips.

2.2.3 A TCS-view of accessibility benefits in residential location studies

Either explicitly or implicitly, researchers have in general adopted a TCS-based

view of accessibility benefits in the residential-location literature. As mentioned

above, this view is a legacy of the classic urban economics models developed by

Alonso (1964), Muth (1969), and Mills (1972). These models assumed a city that sits

on a featureless plain where all activities happen at the center (i.e., the assumption

of a monocentric city). In addition, households only needed to travel to the city

center in order to work, and so the benefit of living at a location closer to the city

center (i.e., a more accessible location) was merely the savings in commuting costs.

Under a competitive land market, the amount of commuting-cost savings that a piece

of accessible land provides would be the price that a household is willing to bid on

it, and so any commuting-cost savings resulting from accessibility will eventually be

capitalized into land rents. Starting from a TCS-based view of accessibility benefits,

these models have elegantly established a theoretical trade-off relationship between

transportation and housing costs.

The simplistic assumptions made by the classic residential-location choice models

have been subject to numerous attacks, especially the assumption of a monocentric

city and the assumption that households only consider commuting and housing costs

when deciding where to live (Anas, 1982; Brueckner et al., 1987).7 Nevertheless,

to my knowledge, no studies have explicitly challenged the theoretical connections

between accessibility, transportation costs, and land value (housing cost) established

7These criticisms have led to extensions to these models which sought to increase their realism.
As the discrete choice modeling framework gains increasing popularity, however, recent advances in
this area feature with the development and refinement of choice-based models (Eliasson and Matts-
son, 2000; Pagliara et al., 2010) instead of the bid-rent model formulated by Alonso (1964), Muth
(1969), and Mills (1972). Martinez (1992) demonstrated that the two approaches are equivalent in
perfectly competitive land markets.
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by these models. More specifically, the idea that the value of accessibility will be

captured by land/housing price has been tested by numerous empirical studies, and

these studies generally found that accessibility has a positive and significant impact

on property value (Knight and Trygg, 1977; Adair et al., 2000; Bowes and Ihlanfeldt,

2001; Armstrong and Rodriguez, 2006; Debrezion et al., 2007; Osland and Thorsen,

2008; Du et al., 2012; Li et al., 2015; Lin and Cheng, 2016). On the other hand,

the assumption that the economic value of accessibility is equivalent to travel-cost

savings has simply been taken for granted by most researchers.

Based on how researchers define and operationalize the concept of accessibility,

existing studies on residential location can be grouped into two categories. The first

group of studies holds an explicit TCS-based view of accessibility benefits. They

often use the term accessibility and savings in transportation costs (especially com-

muting costs) interchangeably like (Alonso, 1960) did,8 and measure accessibility

with only distance-based measures, including commuting cost and distance to key

point-of-interest destinations such as central business center (Kain, 1962), shopping

destinations (Burns and Golob, 1976; Chatman and Voorhoeve, 2010), and trans-

portation facilitates (Habib and Miller, 2009).9 For example, in their study of how

households make trade-offs between accessibility, living space, and other neighbor-

hood amenities, Kim et al. (2005) stated: “accessibility variables such as travel time

to work, travel cost to work and travel time to supermarket are included to assess the

impacts of transport on the intention to move (p. 1628).” Some of these studies may

not define the concept of accessibility at all, since they simply assumed that savings in

commuting cost is the primary transportation benefit provided by a central location

(Wheaton, 1977; White, 1977; Timmermans et al., 1992; Sermons and Koppelman,

8Alonso (1960, p. 150) noted: “one encounters, as well, a negative good(distance) with positive
costs (commuting costs); or, conversely, a positive good (accessibility) with negative costs (savings
in commuting cost).”

9The term ”only” is used here because some studies have included both distance-based measures
and potential-based measures which also capture the non-TCS aspects of accessibility benefits.
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2001; Ng, 2008).

A subgroup of these studies engages with the topic of “excess” (also called “waste-

ful”) commuting (Hamilton and Röell, 1982; White, 1988), which refers to the esti-

mated difference between the observed amount of commuting and a theoretical min-

imum amount of commuting under a certain job-housing distribution (i.e., a type of

urban spatial structure). These studies are particularly relevant to my study because

of the land-use and transport policy implications underlying the analysis of this phe-

nomenon. While commuting behavior in itself is a subject of major research interest

(Cervero and Wu, 1997; Shen, 2000), studies on excess commuting often interpret the

amount of excess commuting as indicating the strength of the land-use and transport

connection (Giuliano, 1995; Peng, 1997; Yang, 2008). A large amount of excess com-

muting was frequently cited as evidence suggesting that accessibility/transportation

is no longer a major factor in residential location choice as classic urban economics

theory assumed and that transportation policies would be ineffective to shape location

decisions (Gordon et al., 1989; Giuliano, 1995). If accessibility benefits are beyond

savings in commuting (travel) costs, however, these interpretations would wrongly

undermine the rationale for accessibility-promoting land-use and transportation poli-

cies.

The second group of residential-location studies uses more comprehensive ac-

cessibility measures discussed above that can capture both travel-cost savings and

destination-utility gains, such as the gravity-based and utility-based measures (Elias-

son and Mattsson, 2000; Ben-Akiva and Bowman, 1998; Srour et al., 2002; Zondag

and Pieters, 2005; Lee et al., 2010; Baraklianos et al., 2018). However, these studies

do not challenge a TCS-based view of accessibility benefits. As Levine et al. (2019)

argued, the use of accessibility indicators in these studies are purely positive (for the

purpose of predicting location choice); and researchers rarely engage with theoretical

discussions on what economic benefits do accessibility offer, let alone the implications
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of such knowledge on land-use and transportation policy and practice. This line of

work can be said to be originated from Walter Hansen. In his seminal piece, Hansen

(1959) first proposed the potential-based definition of the accessibility concept, oper-

ationalized it with a gravity-model accessibility measure, and applied it to develop a

residential land-use model. Hansens definition of accessibility represents a conceptual

shift from the first group of studies that used only distance-based measures toward a

measure that captures the potential to reach destinations. The concept of potential

implies that the value of accessibility is not only in travel-cost savings but also in

welfare gains from the capacity to interact with more potential opportunities.

Yet this theoretical implication is barely recognized by the existing literature.

After all, like most work in the field of computer-aided modeling and simulation of

urban systems (Lowry, 1964; Putman; Pagliara et al., 2010), this group of studies

in general are primarily interested in practical applications rather than theoretical

discussions of urban processes. In fact, one may infer an implicit TCS-based view

of accessibility benefits from some studies. For example, some scholars considered

a gravity-based accessibility measure as an aggregate travel-cost measure (Ahlfeldt,

2011),10 thus essentially neglecting the destination-utility gains picked up by this

measure.

2.3 Empirical analysis

2.3.1 Conceptual framework

To test the hypothesis that accessibility has value beyond travel-cost savings, I fit

a model that differentiates the influences of TCS and non-TCS aspects of accessibil-

ity benefits on household residential location choice. I focus on transit accessibility

10Ahlfeldt (2011, pp.328) wrote:“If Alonso was right in the basic idea that commuting costs, and
hence access to employment opportunities, (solely) shape the spatial structure of urban land values.”
Hence an equivalence of commuting costs and access to employment opportunities was implied here.
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here, since previous studies have verified a significant impact of transit accessibil-

ity on residential location choice, especially among lower-income car-less households

(Glaeser et al., 2008; Hu, 2017; de Palma et al., 2007). This influence is further

supported by two relevance pieces of empirical evidence. First, the property price

of housing units located at transit-adjacent areas is often higher than other areas

(Debrezion et al., 2007; Bartholomew and Ewing, 2011). Also, when asked about

neighborhood/housing preferences, respondents often list transit access as one of the

important factors that they consider (Urban Land Institute, 2015; Canadian Home

Builders Association, 2015). Moreover, since it is difficult to directly measure the

non-TCS aspects (i.e., destination-utility gains) of accessibility benefits, I adopt the

following empirical strategy to distinguish the influence of destination-utility gains

from that of TCS on residential location choice.

The basic idea is to examine if transit accessibility still maintains an independent

and significant impact on household residential choice once all possible TCS (i.e.,,

TCS from commuting trips and nonwork trips) associated it are controlled for. I first

fit a benchmark model with a transit-accessibility measure that captures both TCS

and non-TCS aspects of accessibility benefits and then fit a comparison model that

additionally control for all possible TCS associated with transit accessibility.11 The

coefficient estimate of the transit accessibility is expected to be positive and significant

in the benchmark model. In the comparison model, the coefficient estimate of the

transit-accessibility measure indicates if non-TCS aspects of accessibility benefits play

a significant role in residential location choice. If these accessibility variables are not

significant but TCS measures are, then the results lead support to a TCS-based view

of accessibility benefits. By contrast, if accessibility variables that can account for

non-TCS benefits turn out to be positively significant, it provides empirical evidence

11Potential TCS associated with transit accessibility includes commuting-cost savings and TCS
for non-work trips. In order to examine the relative influence of the two components of TCS on
residential location choice, I fit two comparison models rather than one.

26



to support the idea that households are often motivated by the non-TCS aspects of

accessibility benefits when deciding where to live; in other words, this finding would

reject a TCS-based view of accessibility benefits that is commonly assumed by the

existing literature.

2.3.2 Modeling framework

I applied a commonly used multinomial logit model to study household residential

location choice (McFadden, 1978). In this model, households were assumed to choose

a residence by weighing the available alternatives (i.e., residential locations) based

on a set of important attributes, which usually include housing cost, housing and

neighborhood characteristics, accessibility variables, and local services. In the process,

households would make necessary trade-offs between costs and desirable attributes,

and decide on a residence that maximizes their utility.

Following the standard random utility model formulation, a household i will choose

residence j if the utility Uij of choosing j is the maximum among all choices: Uij=

Max[Ui1,Ui2,,Uij]. The the utility Uij provided by location j to individual i includes

a systematic component Vij and a random component εij. The former can be cap-

tured by a vector of observed attributes, and the latter is random noise that is often

assumed to follow a Gumbel distribution. The probability of household i choosing

location(zone) j thus can be expressed as:

Pij = exp(Vij)/
∑
j

exp(Vij). (2.1)

The systematic component of the residential location choice model Vij can be

described as:

Vij = f(Aj,Tj,Cj,Sj,Nj,Hi, nj), (2.2)

where:
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Aj is the transit accessibility measured at location j;

Tij is a vector of travel-cost savings variables which measures the expected travel-

cost savings household i can gain from location j;

Cj is a vector of housing affordability variables measured at location j;

Sj is a vector of local-services variables measured at location j;

Nj is a vector of neighborhood-environment variables which measure the built

environment and socioeconomic characteristics of location j;

Hi is a vector of household-related variables that measures the demographic and

socioeconomic characteristics of household i;

nj is a size-correction term that corrects for the fact that when a zone with more

housing units would have a higher probability of being selected than a zone with less

(Lerman, 1975).

Note that Hi, which do not vary across alternatives, can not enter into the model

directly and so these variables were interacted with TAZ-level variables. For example,

I have interacted a school-quality variable with a dummy variable which indicates if

a household is a high-income household with children to test if higher-income house-

holds with children are more likely to live in neighborhoods with better schools.

2.3.3 Data

I built residential location choices for two US regions–Puget Sound and South-

east Michigan. The main data sources used were the Puget Sound Regional Coun-

cil (PSRC) 2014-2015 regional household travel survey and the Southeast Michigan

Council of Government (SEMCOG) 2015 regional household travel survey. The mod-

els were built at the traffic analysis zone (TAZ) level instead of the housing-unit level,

since the home location of sampled households was reported at the TAZ level in the

data. Also, I did not have information regarding which non-chosen housing locations

were considered by each sampled household when they decided where to live, and so
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based on some decision rules I constructed a non-chosen alternative choice set for each

household and randomly sampled 29 alternatives from it in the final model. More

details regarding this procedure can be found in chapter four of this dissertation.

It should be noted that neither of the household travel surveys sampled a statisti-

cally representative population from their respective region. To correct this sampling

bias, a common approach is to apply sample weights, i,e, assigning each population

group (e.g., segmented by place of residence or income levels) a weight which equals

to the ratio of the probability of this population group being randomly selected to

the share of this population group in the household travel survey. Nonetheless, spec-

ifying sample weights in a residential location choice model with a large alternative

choice set is challenging since there is no available software or open-source packages

for this purpose. I thus constructed a more statistically representative sub-sample

by performing a geographically stratified (at the Census County Subdivision level)

sampling procedure on the original survey sample, that is, for each region I drew a

total of 1,200 observations (a sub-sample) from the full survey sample by sampling

in proportion to each Census County Subdivision’s share of households in the region.

Although this procedure does not fully address the sampling bias issue, it corrects for

over- and under-sampling in certain County Subdivisions.

Besides the regional household travel survey data, PSRC and SEMCOG also

kindly provided me with the skim matrix which contains the estimated travel time for

each origin-destination zone pair, which was used to calculate the accessibility and

travel-cost savings indicators. Other data used to construct the model database in-

clude Census Transportation Planning Products (CTPP), American Community Sur-

vey (ACS), and Longitudinal Employer-Household Dynamics (LEHD), school quality

data extract from the GreatSchools.org API, Walk Score data extracted from the

Walk Score.com API, and crime-rate data (for Southeast Michigan but not the other

two regions). Table 2.2 describes the independent variables specified in this study
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and their data sources, and Table 2.2 presents their mean and standard deviation.

Table 2.1: Description of independent variables and data sources

Variable code Level of
measure

Variable description Data source

Main variable of interest

TransitAccess Zonal Transit accessibility index (first
principle component derived from
transit accessibility to jobs and to
nonwork destinations)

LEHD, skim matrix

Travel-cost-savings variables

AutoTT Household
and zonal

Sum of the commute time by auto
from each household worker’s work
TAZ to a given TAZ.

Regional household
travel survey, skim
matrix

TransitTT Household
and zonal

Sum of the commute time by transit
from each household worker’s work
TAZ to a given TAZ.

Regional household
travel survey, skim
matrix

PredHHVMT Household
and zonal

Predicted household vehicle miles
traveled for nonwork trips at a given
TAZ

Regional household
travel survey

Housing-affordability variables

HsgCost HHInc Household
and zonal

Median value (for owners) or median
rent (for renters) at a given TAZ
divided by household income

ACS, regional
household travel
survey

Local service related variables

SchoolQual Zonal GreatSchools school rating score at a
given TAZ

Greatschools.org API

SchoolQual HInc
Household
and zonal

GreatSchools school rating score at a
given TAZ interacted with
high-income household with children

Greatschools.org API,
CTPP

Crime rate Zonal Number of crimes per 10,000 people at
a given TAZ

SEMCOG

Neighborhood-environment-related variables

PopDen Zonal Population density in a given TAZ CTPP

PopDen HighInc Household
and zonal

Population density in TAZ interacted
with high-income household

Regional household
travel survey, CTPP

SinFamChd Household
and zonal

Percent of single-family property in a
given TAZ interacted with household
with children

Regional household
travel survey, CTPP

MHH-
Size HHSize

Household
and zonal

Absolute difference between median
household size in a given TAZ and
household size

Regional household
travel survey, CTPP

MHHInc HHInc Household
and zonal

Absolute difference between median
household income in a given TAZ and
household income

Regional household
travel survey, CTPP

Size correction term

LogHsgUnits Zonal The natural logarithm of the number
of housing units of the household’s
chosen tenure in a given TAZ

CTPP

30



Table 2.2: Mean and standard deviation of independent variables

Variable code Sample Puget Sound Southeast Michigan

Mean Stardard Mean Stardard

deviation deviation

Main variable of interest

TransitAccess Chosen TAZs 0.42 1.21 -0.08 0.89

Non-chosen TAZs -0.06 0.83 -0.09 0.63

Travel-cost-savings variables

AutoTT Chosen TAZs 27.24 26.94 20.47 26.96

Non-chosen TAZs 67.07 58.65 36.7 45.07

TransitTT Chosen TAZs 69.93 83.73 214.16 394.4

Non-chosen TAZs 143.99 142.83 311 456.26

PredHHVMT Chosen TAZs 19.24 31.99 14.29 16.76

Non-chosen TAZs 22.05 33.70 14.87 18.54

Housing-affordability variables

HsgCost HHInc (Owners) Chosen TAZs 8.55 15.2 5.65 6.98

Non-chosen TAZs 7.19 14.27 5.32 8.6

HsgCost HHInc (Renters) Chosen TAZs 0.36 0.62 0.61 0.91

Non-chosen TAZs 0.33 0.66 0.5 0.77

Local service related variables

SchoolQual Chosen TAZs 5.86 2.12 5.64 2.11

Non-chosen TAZs 5.68 2.02 5.39 2.19

SchoolQual HInc Chosen TAZs 0.45 1.73 0.73 2.16

Non-chosen TAZs 0.38 1.52 0.58 1.83

CrimeRate Chosen TAZs 3.25 0.31

Non-chosen TAZs 3.29 0.3

Neighborhood environment related variables

PopDen Chosen TAZs 5004.44 6785.83 3299.65 2834.62

Non-chosen TAZs 2572.85 3799.75 3150.26 2767.97

PopDen HighInc Chosen TAZs 1405.71 4470.99 590.4 1408.72

Non-chosen TAZs 714.13 2281.80 807.42 1923.49

SinFamChd Chosen TAZs 0.11 0.25 0.21 0.37

Non-chosen TAZs 0.12 0.27 0.2 0.35

MHHSize HHSize Chosen TAZs 0.7 0.79 0.91 0.8

Non-chosen TAZs 0.83 0.8 0.99 0.91

MHHInc HHInc (1000s) Chosen TAZs 4.23 4.37 3.23 2.9

Non-chosen TAZs 4.81 4.46 4.67 3.81

Size correction term

LogHsgUnits (Owner-occupied) Chosen TAZs 276.98 269.89 721.55 460.47

Non-chosen TAZs 274.35 235.84 553.13 387.59

LogHsgUnits (Renter-occupied) Chosen TAZs 410.95 366.27 285.69 324.81

Non-chosen TAZs 184.69 208.45 252.5 285.19
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2.3.4 Accessibility and travel-cost savings measurements

The main variables of interest in this study is a transit-accessibility indicator,

which was computed from the procedure described below.12 Figure 2.1 and Figure

2.2 show the transit accessibility across TAZs in the Puget Sound region and Southeast

Michigan region respectively. I used a common form of the gravity model such that

the amount of interaction between an origin zone i and a destination j is positively

related to the number of opportunities at the destination zone but is inversely related

to the travel cost (time) between the zones. The accessibility to opportunity type n

by transit for location i is expressed as

Ain =
∑
j

Ojnexp(−βTij), (2.3)

where:

Ain is the accessibility index to opportunity type n by transit for location i ;

Ojn is the attractiveness factor for opportunity type n based on the number of

these opportunities in destination zone j;

exp denotes the base of the natural logarithm;

β is the impedance factor that measures the friction of distance, a higher value

of which makes distant opportunities contribute to the accessibility index to a lesser

degree;

Tij is the travel time by transit in minutes between zone i and j—if transit service

is unavailable between zone i and j, the travel time is set to be infinite.

12Although I also computed an auto-accessibility indicator in a different study context, it is not
included in this study because it had a negative sign in the residential location choice model, possibly
because the locations of high auto accessibility often are associated with large degrees of negative
externalities (e.g., such as high crime rates and high levels of noise) that were accounted for by
the model. This means that the coefficient on the auto-accessibility variable does not only capture
household valuation for accessibility benefits but also their inclination to avoid undesirable places.
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Map 2.1: Transit accessibility (principle component score) in Puget Sound

Map 2.2: Transit accessibility (principle component score) in Southeast Michigan
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In the existing literature, researchers have often used accessibility to jobs as a

rough measure of the overall accessibility of a location (Handy and Niemeier, 1997;

Boarnet and Wang, 2019). In recent years, however, researchers have started to

pay more attention to nonwork accessibility (Grengs, 2015). After all, travelers in

the United States made more than three-quarters of their trips for nonwork pur-

poses in 2009 and 2017 according to the two recent national household travel sur-

veys (McGuckin and Fucci, 2018). In theory, therefore, transit accessibility to both

employment opportunities and to nonwork destinations are expected to play an im-

portant role in household residential location choice. In this study, I used all jobs to

indicate employment opportunities and retail and services jobs to indicate nonwork

destinations. Retail jobs refer to jobs in North American Industry Classification Sys-

tem sector (NAICS) 44-45 (Retail Trade), and services jobs refer to jobs in NAICS

sector 54 (Professional, Scientific, and Technical Services), 56 (Administrative and

Support and Waste Management and Remediation Services), 61 (Educational Ser-

vices), 62 (Health Care and Social Assistance), and 81 (Other Services). In addition,

the value of the impedance factor β was specified to be 0.1 and 0.3 respectively for em-

ployment opportunities and nonwork destinations, respectively, which were adopted

from the estimates in Grengs (2015). To get an aggregate transit accessibility index,

I further performed principal component analysis on the two obtained accessibility

measures and extracted the first principal component. This principal-component vari-

able (coded as TransitAccess here) thus represents the overall transit accessibility of

a TAZ.

Now I discuss the TCS variables examined in this study. There are two main types

of travel-cost savings that a household can gain from transit accessibility—the savings

in commuting costs and the savings in travel costs to nonwork destinations.13 Ideally,

13In addition, when provided with higher transit accessibility, some households may reduce the
number of cars they own or not own a car at all, which means that transit accessibility can also
result in potential savings in vehicle-ownership costs. I have attempted to control for these potential
savings in my residential location choice models. I fitted a household-vehicle count model(with
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both the generalized cost of travel (i.e., the time plus money cost of travel) should

be measured, but for simplicity I only considered the time cost for commuting trips

and applied home-based nonwork-trip vehicle miles traveled (VMT) to represent the

travel costs to nonwork. These measures are close proxies for the generalized cost of

travel because the time cost of travel, money cost of travel, and trip distance (which

makes up VMT) are usually highly correlated.

Since the household travel survey data provided information regarding the work-

place of each household worker, the commuting time from each alternative home

location (i.e. TAZ) to the workplace of each worker can be directly computed from

the skim matrix. If there were more than one workers in a household, their commut-

ing times were summed up. Moreover, in this study I examined two travel modes (i.e.,

personal vehicle or transit) for commuting trips, and so I constructed two commuting-

time-related variables. The two variables were coded as AutoTT and TransitTT.

Accurately estimating the total home-based nonwork-trip VMT is challenging.

First of all, there are important household-specific destinations (e.g., the locations

of family members or friends) that a modeler does not know. These destinations

cannot be taken into account in my model. Second, each household has different

nonwork travel needs—in terms of the nonwork destinations they hope to visit and the

desired trip frequency, but these preferences are difficult to be captured by a nonwork-

travel costs indicator. Without fully addressing these issues, I estimated home-based

independent variables similar to the nonwork-trip VMT model) which allowed me to predict the
expected household-vehicle count (this variable will be referred to as PredCarCount) at a given
TAZ. Nevertheless, adding this variable into the residential location choice models resulted in a
positive and highly significant coefficient estimate, which means that households often ended up
living in more car-dependent neighborhoods (i.e., TAZs with greater values of predicted household-
vehicle count) than less car-dependent ones. This result can be explained by two plausible reasons.
First is the omitted variable bias problem. That is, there are desirable attributes associated with car-
dependent neighborhoods unaccounted for in my models, which made the estimate of PredCarCount
have an upward bias. Second, some households may have made the decision on vehicle ownership in
conjunction with or even before the decision of where to live, which means that the choice of vehicle
ownership is better modeled jointly with the residential location choice rather than being modeled
as a predictor of it. However, implementing such a joint choice model with thousands of alternative
residential zones is technically challenging. Thus while recognizing it as a limitation, I have not
modeled potential savings in vehicle-ownership costs in this study.
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nonwork-trip VMT for each household at a given TAZ (coded as PredHHVMT ) with

the following procedure.

2.3.5 Estimating nonwork-trip travel costs

I used a Tobit regression model here to estimate home-based nonwork-trip VMT. A

Tobit regression model, rather than an ordinary least squares model, was used because

a significant proportion (around 30%) of households had zero nonwork-travel VMT on

the travel date recorded by the household travel survey (i.e., the sample data was left-

censored). Also, following (Boarnet and Wang, 2019), I considered households with a

nonwork VMT higher than 200 as outliers and excluded them from the final sample.

Two vectors of variables were specified in the model, including a vector of household

characteristics such as household income, household size, vehicle access, and number

of workers, and a vector of accessibility indicators such as auto accessibility to all jobs

and auto accessibility to service jobs. Since the accessibility indicators for a specific

travel mode (car/transit) are highly correlated, the coefficient estimates for each

variable are not reliable and should not be interpreted as indicating an independent

effect on non-work travel VMT. I included the separate transit-accessibility variables

(i.e., transit accessibility to all jobs, service, and shopping jobs) rather than the first

principal component derived from them in order to reduce the correlation between the

estimated nonwork-trip VMT and the transit-accessibility indicator in the residential

location choice model.

The model outputs for the two nonwork-trip VMT models are shown in Table 2.3.

The estimated model coefficients were then applied to predict the nonwork-trip VMT

for each household at the 29 non-chosen TAZs. Since the household characteristics

were constant but the accessibility variables varied across different TAZs, the differ-

ences in the predicted nonwork-trip VMT indicate the differences in the amount of

nonwork trip costs that each household is expected to pay at each TAZ. For some
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households, the predicted nonwork-trip VMT at some non-chosen TAZs was negative,

which is unrealistic; I thus converted the predicted negative values into zero instead.

Table 2.3: Tobit regression model for predicting home-based nonwork-travel VMT

Variable Puget Sound Southeast Michigan

Coef. z-value Coef. z-value

Intercept 1 -22.07 -5.37*** 3.27 2.66***

Intercept 2 3.62
177.59***

2.96
346.26***

Number of adults 16.12 9.41*** 4.24 12.98***

Number of workers -5.51 -3.77*** -1.35 -4.10***

Number of children 9.27 8.89*** -0.81 -3.55***

Home Owner 1.36 0.69 -1.53 -4.77**

Household income above 50k 5.04 1.82* 3.44 5.08***

Household income between 50k and 75k 4.05 1.38 5.07 7.10***

Household income bewteeen 75k and 100k 6.36 2.13** 4.40 5.56***

Household income above 100k 6.17 2.13** 6.46 8.74***

Vehicle per adult 15.91 9.61*** 3.29 9.55***

Retired household 7.16 2.85** 3.85 5.96***

Householder age below 40, no children -2.63 -1.33 -3.27 -4.45***

Accessibility to all jobs by auto -0.05 -0.99 -0.01 -1.69*

Accessibility to all jobs by transit -0.20 -1.19 -0.13 -0.58

Accessibility to shopping jobs by auto 0.93 0.17 -0.62 -0.86

Accessibility to shopping jobs by transit -16.27 -0.58 26.55 0.75

Accessibility to service jobs by auto 0.22 0.13 0.00 -0.01

Accessibility to service jobs by transit 4.05 1.10 -11.50 -0.64

Walk Score -0.07 -1.79* -0.05 -3.73***

Observations (N) 2609 10857

Log-likelihood -9345.84 -39079.29

Note: *Significant at the 0.1 level, **Significant at the 0.05 level, ***Significant at the 0.01 level

2.4 Results

2.4.1 Estimation and model fit

I estimated three models for each of the two regions with almost identifiable sets of

independent variables except differences in the TCS variables. The first model was a
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benchmark model that does not include any TCS variables. The second model added

two commuting-cost variables—aggregate commuting time by auto and aggregate

commute time by transit.14 The third model further added the predicted nonwork-

trip VMT variable. Jointly, these models show if transit accessibility maintains an

independent effect on residential location choice after controlling for TCS. If the

hypothesis that households value accessibility benefits beyond the benefit of TCS hold

true, the coefficient estimates on transit accessibility would be positively significant

in all three models (more significant in the first model than the other two since it

also captures the savings in commuting costs). In addition, similar model outputs

across the two regions would enhance the transferability of study findings, given the

differences in the regional contexts between the Puget Sound region and the Southeast

Michigan region.

The McFadden’s adjusted pseudo-R-square, shown at the bottom of the tables,

was within the range of 0.2 and 0.3 across the six models, which indicate satisfactory

model fit.15 I focus on the coefficient estimates in the following discussion. I first

briefly discuss the control variables and then examine the transit accessibility and

travel-cost savings variables.

14If no transit service is available between the workplace of a worker and an alternative home
location, the value of commuting time by transit is set to be 999.

15The McFaddens pseudo-R-square is a measure of the likelihood improvement offered by the
full model compared to an intercept-only model, and values between 0.2 and 0.4 are often taken to
represent good model fit (McFadden, 1979).
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Table 2.4: Residential location choice models in the Puget Sound region

Variable code Model 1 Model 2 Model 3

Coef. z-value Coef. z-value Coef. z-value

Transportation-related
variables

TransAccess 0.27 10.28*** 0.09 2.90*** 0.08 2.40***

AutoTT -0.06 -18.15*** -0.62 -18.19***

TransitTT -0.00 -0.65 -0.00 -0.59

PredictVMT -0.02 -0.72

Housing-affordability indicators

HsgCost HHInc -0.12 -2.32** -0.29 -5.21*** -0.29 -5.19***

Local service related indicators

SchoolQual 0.06 3.98*** 0.04 2.24** 0.04 2.23**

SchoolQual HInc 0.13 2.01** 0.12 1.65* 0.12 1.64

Neighborhood environment related indicators

PopDen 0.31 9.51*** 0.12 3.45*** 0.11 3.01***

PopDen HighInc 0.20 3.34*** 0.05 0.78 0.05 0.74

SinFamChd 0.01 0.04 0.55 1.76* 0.57 1.83*

MHHSize HHSize -0.37 -5.67*** -0.40 -5.67*** -0.40 -5.67***

MHHInc HHInc -0.12 -7.13*** -0.08 -4.98*** -0.08 -4.99***

Size correction term

LogHsgUnits 0.97 21.11*** 1.04 20.45*** 1.03 20.35***

Observations (N) 1200 1200 1200

Log-likelihood at
convergence

-3399.48 -2676.39 -2676.13

Log-likelihood (Null Model) -4081.44 -4081.44 -4081.44

Adjusted pseudo R-sqaure 0.17 0.34 0.34

Note: *Significant at the 0.1 level, **Significant at the 0.05 level, ***Significant at the 0.01 level
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Table 2.5: Residential location choice models in the Southeast Michigan region

Variable code Model 1 Model 2 Model 3

Coef. z-value Coef. z-value Coef. z-value

Transportation-related variables

TransAccess 0.11 2.80*** 0.09 1.96** 0.08 1.73*

AutoTT -0.05 -18.74*** -0.05 -18.88***

TransitTT -0.01 -4.70*** -0.02 -5.21***

PredictVMT 0.20 6.88***

Housing-affordability indicators

HsgCost HHInc -0.12 -2.43*** -0.17 -3.10*** -0.15 -2.73***

Local service related indicators

SchoolQual 0.01 0.66 0.01 0.54 0.01 0.34

SchoolQual HInc 0.10 1.86 0.09 1.50 0.09 1.54

CrimeRate -0.02 -6.31*** -0.03 -9.25*** -0.02 -5.85***

Neighborhood environment related indicators

PopDen 0.01 0.42 -0.09 -2.47*** -0.01 -0.14

PopDen HighInc -0.04 -0.83 -0.19 -3.10*** -0.19 -3.04***

SinFamChd 0.38 1.46 0.47 1.69 0.42 1.50

MHHSize HHSize -0.08 -1.28 -0.08 -1.33 -0.08 -1.26

MHHInc HHInc -0.21 -14.50*** -0.22 -14.25*** -0.22 -13.95***

Size correction term

LogHsgUnits 0.87 15.45*** 0.97 16.27*** 0.94 15.61***

Observations (N) 1200 1200 1200

Log-likelihood at
convergence

-3655.40 -3065.31 -3033.08

Log-likelihood (Null Model) -4081.44 -4081.44 -4081.44

Adjusted pseudo R-sqaure 0.10 0.25 0.25

Note: *Significant at the 0.1 level, **Significant at the 0.05 level, ***Significant at the 0.01 level
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2.4.2 Control variables

Within each region, the coefficient estimates on most variables—except the transit-

accessibility variable—barely differed across the three models, which is consistent

with expectation. After all, the TCS variables are only expected to be correlated

with transit accessibility but not other variables. Generally speaking, these coeffi-

cient estimates are reasonable and consistent with the existing evidence. First of all,

most coefficients had the expected signs. The housing affordability indicator, Hsg-

Cost HHInc, was negative and significant at the 0.05 level across all twelve models.

This suggests that households are less likely to choose a zone which is less afford-

able to them. The school-quality variables, SchoolQual and SchoolQual HInc, were

positive in most models (except that SchoolQual was negative in the Southeast Michi-

gan models), which indicate that households, particularly the high-income ones with

children, prefer to live in places with access to good schools.

A crime-rate variable was incorporated into the Southeast Michigan-region models

(crime data were not available to me for Puget Sound), and it is negative and highly

significant. This finding confirms the conventional wisdom that safety is a major

consideration in housing decisions. The degree to which failing to include the crime

variable into the Puget Sound models biases the estimates of transit accessibility

depends on its correlation with crime rate. Since crime has a negative impact on

household residential location choice, the coefficient estimate of transit accessibility

is likely to have a downward bias if transit accessibility is positively correlated with

crime rate; and the coefficient estimate of accessibility would have an upward bias if

the correlation is negative.

Next are the neighborhood-environment related variables. In the Southeast Michi-

gan models, PopDen and PopDen HighInc were negatively associated with residential

location choice, which reflects the preference for low-density living among the house-

holds living in these regions (Myers and Gearin, 2001). By contrast, PopDen was
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positive and highly significant in the Puget Sound models. SinFamChd had a posi-

tive coefficient across all models, confirming the conventional wisdom that households

with children tend to have a stronger preference for single-family homes. Moreover,

as suggested by the negative signs on MHHSize HHSize and MHHInc HHInc, there

is strong neighborhood sorting by household characteristics and household income.

Finally, the coefficient on the size correction term, LogHsgUnits, was reasonably

close to unity and highly significant across all twelve models. Theoretically, this

variable should have a coefficient of one if all units of a particular type in a given

zone are truly homogeneous, a necessary condition underlying the assumption that a

zonal-level choice model can result in parameter estimates consistent with a housing-

unit level model (Lerman, 1975). Therefore, these coefficient estimates validated the

modeling of residential location choice at the TAZ level with a multinomial logit

model.

2.4.3 Accessibility and TCS variables

The transit-accessibility variable was positive and significant at the 0.05 level in

all models except model 3 in the Southeast Michigan region (but it is statistically sig-

nificant at the 0.1 level), which suggests that transit accessibility is a highly desirable

attribute for households making residential decisions. The fact that transit acces-

sibility remained to be significant when commuting costs and nonwork-travel VMT

were controlled for suggests that households prefer accessibility beyond the benefit of

travel-cost savings. As I have discussed above, a higher level of transit accessibility

(i.e., an increase in the number of potential destinations reachable by transit) can,

in theory, result in not only travel-cost savings but also destination-utility gains. It

allows individuals to derive more interaction value by facilitating more transit trips

and enabling transit trips to more remote but more desirable destinations (e.g., a

distant supermarket that offers cheaper and higher quality products), and it allows
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people to gain a higher level of choice value by granting them greater freedom of desti-

nation choices. The empirical results presented here thus verified that these non-TCS

aspects (i.e. destination-utility gains) of accessibility benefits exist and matter for

household residential location choice.

There are two alternative interpretations to these findings which should be ad-

dressed. First, one may argue that the significant influence of transit accessibility on

residential location choice does not come from transit accessibility itself but rather

from the urbanist environment (e.g., high population density, the concentration of

apartment building, and high walkability) that it is highly correlated with.16 Amer-

ican households’ preference for denser and walkable neighborhoods in recent years

has been well documented by the literature (Audirac, 1999; Myers and Gearin, 2001;

Levine and Frank, 2007). This concern is partially addressed by the fact that I have

controlled for population density in my models.17 In addition, I have fitted additional

models that replaced the two population-density variables with a Walk Score variable

and an interactive variable between Walk Score and a dummy variable indicating

high-income households (results not presented), which did not lead to changes of

sign or significance in the transit accessibility variable. Finally, adding both the two

population-density variables and the two Walk Score variables into the model (results

not shown) caused no major changes to the coefficient estimate of transit accessibility

except that it became insignificant at the 0.05 level for the third model in the Puget

Sound region.

Moreover, one may argue that households prefer housing units with higher transit

accessibility because they see the investment value of these properties, not because

they value transit accessibility itself. For example, recent research has shown that

16In Puget Sound, the correlation coefficient between transit accessibility and Walk Score (at
the TAZ level) is 0.457, and the correlation coefficient between transit accessibility and population
density is 0.383; in Southeast Michigan, these coefficients are 0.471 and 0.327, respectively.

17Since population density and Walk Score is highly correlated in both regions (the correlation
coefficient is greater than 0.7), I only included population density in the models.
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transit access not only leads to a price premium (Debrezion et al., 2007), but also

makes housing value more resilient in economic downturns (Dong, 2015; Zhang et al.,

2018; Welch et al., 2018). A consideration for property-value growth or resilience

may indeed explain some households’ preference of transit-accessible neighborhoods,

but it does not rule out that possibility that many households value the economic

benefits that they can directly derive from transit accessibility. Although only a

small proportion of Americans households use transit a primary travel mode,18 a

much larger proportion of them use transit at least occasionally (Oram and Stark,

1996; Krizek and El-Geneidy, 2007). Some studies have shown that households derive

substantive option value from transit access even though they do not use transit

frequently (Roson, 2001; Laird et al., 2009).

Comparing the coefficient estimates on transit accessibility across the three models

for the same region generate further insights. The significance level (magnitude of

z-value) of transit accessibility was higher in the first model than that in the second

model, which indicates that the transit-accessibility variable captures some effects

from commuting-cost savings. Both commuting-cost variables (commuting time by

auto and commuting time by transit) were negative, which means that households

prefer to live in places that reduce commuting cost.19

Surprisingly, the predicted nonwork-travel VMT either was insignificant (in Model

3 of the Puget Sound region) or even had a positive sign (in Model 3 of the Southeast

Michigan region). I have tested alternative specifications for the Tobit regression

models used to predict the nonwork-travel VMT, but they did not result in significant

18According to the recent regional household travel survey data used in this study, transit only
accounted for 5 percent and 3 percent of all weekday trips in Puget Sound and Southeast Michigan
respectively.

19In fact, the commuting-cost variables were much more significant (value of z-value is much
larger) than the transit-accessibility variable. This is because the commuting-cost variables (i.e. the
aggregate commuting costs of household workers from their workplaces to the alternative home loca-
tions) are essentially people-based accessibility variables whereas the transit-accessibility variable is
place-based. In a residential location choice model where the unit of analysis essentially a household,
it is natural that people-based accessibility variables have more predictive power than place-based
accessibility variables.
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changes. This means that households did not think of reducing nonwork-travel VMT

as a major consideration when they decided where to live. Similar findings can be

found in (Srour et al., 2002; Chen et al., 2008), and Levine et al. (2019) argued that

these findings may be explained by the greater flexibility in choosing where and when

to travel in meeting nonwork-travel needs and by the inability of some households to

opt into high nonwork-accessibility locations. Another plausible contributing factor

is the omitted variable bias problem; that is, there are desirable features (e.g., more

open space) associated with more car-dependent neighborhoods unaccounted for in

my models, which led to an upward bias for the coefficient estimate of PredHHVMT.

2.5 Conclusion

Following the fundamental assumption made by classic urban-economics theory,

urban analysts have either implicitly or explicitly equated the value of accessibility

to transportation-cost savings. In this paper, I make the argument that this TCS-

based view of accessibility benefits ignores the non-TCS accessibility benefits (i.e.,

destination-utility gains). Destination-utility gains stem from interaction value and

choice value; the former refers to consumer welfare resulting from making more inter-

actions and from interacting with different and more desirable destinations and the

latter refers to personal utility derived from the freedom to choose from a wider range

of destinations. Results of an empirical analysis, which is based on data collected from

the Puget Sound and Southeast Michigan region, support this argument by showing

that transit accessibility remains to be a significant determinant of residential location

choice after controlling for all possible TCS associated with it.

A major limitation of the empirical work presented here is that I did not con-

trol for the potential reductions in vehicle-ownership costs associated with transit

accessibility in my residential location choice models. When living at transit-rich

neighborhoods, some households, especially the lower-income ones, may reduce the
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number of cars they own or not own a car at all. As I discussed in detail in a footnote

(footnote thirteen), a more proper empirical strategy to address this issue is to fit

a joint choice model of residential location choice and vehicle ownership. Moreover,

the empirical approach presented here is only one of the possible approaches to inves-

tigate if accessibility benefits are beyond TCS. Future research may consider fitting

a hedonic price model to examine if the price premium commanded by accessibility

completely arises from TCS or examining if households derive greater satisfaction

from living in more accessible neighborhoods. In addition, I have used cross-sectional

data here due to practical limitations. A longitudinal dataset which records individual

travel behavior, preferences, and attitudes before and after experiencing significant

accessibility gains could greatly enrich the research on the destination-utility gains

aspects of accessibility benefits.

This study provides a recent empirical evaluation of the classic urban economics

theory developed by Alonso (1964), Muth (1969), and Mills (1972). Here I distinguish

between the idea that accessibility (transportation) plays a major role in shaping

residential location choice and a simplifying assumption that equates the value of

accessibility to travel-cost savings. The results confirm the former, a finding consistent

with many previous studies (e.g., Lee et al., 2010; Hu, 2017; Baraklianos et al., 2018).

The main innovation of this study is that it empirically examined the latter and

resulted in evidence to refute it. Furthermore, results of this study challenge the

commonly held notion that there is a direct trade-off relationship between housing and

transportation costs, which is contingent on a TCS-based view of accessibility benefits.

Since households often value accessibility beyond the benefit of TCS, as the empirical

results of this study show, this trade-off relationship no longer holds. This is because

both TCS and destination-utility-gains aspects of accessibility benefits are expected

to be capitalized into housing prices (Debrezion et al., 2007; Bartholomew and Ewing,

2011), which means that the housing-cost increases resulting from accessibility gains
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would be greater than the associated TCS benefits.

Findings of this study have important implications for land-use and transporta-

tion planning practice and policymaking. In the existing literature, the desirabil-

ity/effectiveness of accessibility-promoting strategies is usually evaluated on the basis

of travel-cost savings (e.g., commuting-cost reduction, or reduced transportation ex-

penditure, or lower vehicle miles traveled) brought by these policies. When a signifi-

cant amount of TCS is absent, such evidence is often interpreted as suggesting that

the transportation benefits of accessibility-promoting policies are over-exaggerated

(Crane, 1996a) or that accessibility is not an important factor in household res-

idential location choice (Giuliano, 1995; Smart and Klein, 2018a). However, this

study has shown that measures of TCS neglect accessibility benefits in the form

of destination-utility gains, which means a TCS-based policy evaluation underesti-

mates the value of accessibility and hence without basis weakens the importance

of accessibility-promoting land-use and transport policies. Joining some European

scholars who argued for an accessibility-based cost-benefit analysis (Geurs et al.,

2010; Martens and Di Ciommo, 2017), I thus call for a shift from a TCS-based to an

accessibility-based land-use and transportation policy evaluation.
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CHAPTER III

Beyond VMT Reduction: Toward a Behavioral

Understanding of the Built Environment and

Travel Behavior Relationship

3.1 Introduction

A large and growing number of studies in the planning literature examine the

relationship between the built environment and travel behavior (Cervero and Kock-

elman, 1997; Ewing and Cervero, 2001, 2010; Stevens, 2017). The main focus of

these studies is to examine whether and how much compact development can reduce

car use. Empirical evidence showing that compact development significantly reduces

driving is interpreted as supporting the application of land-use and transportation

policies that promote compact development as effective measures to reduce driving

(Zhang, 2004). Such evidence also supports the promotion of compact development—

as opposed to the prevailing pattern of low-density, auto-oriented growth—as a major

planning goal. On the other hand, when empirical evidence suggests that auto travel

is not reduced as a result of compact-development strategies, researchers question the

use of compact-development strategies to reduce vehicle miles traveled (VMT) and

traffic congestion (Salomon and Mokhtarian, 1998; Stevens, 2017). Some researchers

further interpret such evidence as suggesting a lack of transportation benefits from
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compact-development policies (Crane, 1996a) or suggesting that travel impacts are

not relevant when considering among alternative land-use planning policies (Gordon

and Richardson, 1997).

Implicit in these interpretations is a notion that views only a reduction in VMT as

a positive travel impact of compact-development, which I term as a VMT-reduction-

based view of transportation benefits in this study. Under this view, compact de-

velopment results in transportation benefits only if it leads to a reduction in VMT

and decreases in VMT’s contributing factors such as car-trip frequency, probability of

driving, and car-trip length. In other words, if a compact-development strategy does

not reduce VMT, it is viewed as not having any transportation benefit. As I will dis-

cuss below, this view nonetheless ignores other forms of travel benefits (termed here as

destination-utility gains), which are often associated with additional travel that may

be induced by compact development. Consequently, representing the transportation

benefits of compact-development policies with measures of VMT reduction would

lead to a significant underestimate. In cases where a compact-development policy

leads to substantive destination-utility gains but little VMT reduction (i.e., the po-

tential VMT-reduction was overwhelmed by induced travel), a VMT-reduction-based

evaluation would unfairly weaken the importance of this policy.

When compact development policies lead to little to no VMT reduction, it is pos-

sible that the potential VMT reduction from compact development was overwhelmed

by its trip-inducing effect. That is, these policies can shapes car travel in opposite

directions, i.e., it causes both a reduction in car use in some cases (e.g., individuals

take shorter trips than before since destinations are closer) and an increase in driv-

ing in other cases (e.g., individuals take more car trips than before since the cost of

each trip is lower), which results in a small net effect. When individuals drive less

in response to compact development, they get the time-plus-money savings in travel

costs associated with any reduced VMT. When individuals respond to accessibility
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increases (i.e., lower cost of travel to potential destinations) by driving more, the

associated travel costs must have been compensated by the resulting trip benefits

(termed here as destination-utility gains).

Van Wee et al. (2011) elaborates on these ideas by imagining an “intervention”

that shrinks a certain region to 25% of its original size. If all travelers keep their

original travel patterns, there would be a 50% reduction in their travel expenses and

a 50% reduction in VMT. However, basic economic principles suggest a reduction in

the generalized cost of travel (to valuable destinations) would induce individuals to

travel more, which means at least some travelers would react to the intervention by

making more trips or traveling to more remote but more desirable destinations (e.g.,

a more remote job with a better pay). The resulting destination-utility gains from

the additional travel must be no less than the costs associated with it, otherwise,

individuals would not make the additional travel in the first place. In the end, the

net effect of the hypothesized intervention on VMT is uncertain, but the reduction,

if any, is would be less than the theoretical maximum (50%).

The hypothetical case presented by van Wee suggests that compact develop-

ment can result in travel-cost savings that are associated with VMT reduction but

also destination-utility gains that are associated with induced travel, but the latter

is rarely recognized by the existing built-environment and travel-behavior studies.

While induced travel from compact development has long been recognized by the ex-

isting literature (e.g., Crane, 1996a; Crane, 1996b), few researchers have considered

the destination-utility gains associated with it. Since reduced driving can result in a

range of benefits such as greenhouse-gas emission reduction, less energy consumption,

and traffic congestion relief, emphasizing VMT reduction as a major policy goal is un-

derstandable. Nevertheless, VMT reduction is not the only transportation goal, and it

should not be regarded as a measure of transportation benefits since the core purpose

of transportation is not to reduce VMT but to provide accessibility (Merlin, 2015;
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Levine et al., 2019). The destination-utility aspects of accessibility benefits should

not be ignored when evaluating accessibility-enhancing land-use and transportation

policies.

The van Wee hypothetical case further suggests that VMT can be a misleading

indicator of the built-environment and travel-behavior relationship. When compact

development leads to accessibility increases (i.e., reducing the cost of travel to poten-

tial destinations), it can have two countervailing effects on VMT. It reduces VMT

consumption when the resulting accessibility gains translate into travel-cost savings,

and it induces additional car travel if a seek for destination-utility gains makes indi-

viduals take more trips and switch to more remote but more desirable destinations.

Therefore, individual behavioral responses that lead to either increases or decreases

in VMT may both indicate a gain in travel benefits from compact development. To

accurately measure the travel benefits of compact-development strategies, one must

decompose VMT changes into VMT decreases associated with travel-cost savings

and VMT increases associated with destination-utility gains. Therefore, the com-

mon practice of using a net VMT change measure to indicate the travel impacts of

compact development in the built-environment and travel-behavior studies greatly

underestimates its actual travel benefits.

This study criticizes the VMT-reduction-based view of transportation benefits in

the built-environment and travel-behavior literature. I make the case here that al-

though induced travel leads to higher VMT consumption, they result in accessibility

gains that can promote consumer welfare and can sometimes advance equity goals. To

gain a comprehensive understanding of the travel impacts of compact development, I

further propose a behavioral framework of built-environment and travel-behavior in-

teraction that describes the mechanisms through which compact development shapes

travel outcomes. I discuss the behavioral motivations underlying different travel de-

cisions and demonstrate that changes of observed travel-behavior outcomes in either
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direction (e.g., an increase or decrease in trip length) may indicate a gain in trans-

portation benefits offered by compact development. To augment these theoretical

discussions, I further design an empirical strategy to test the idea that compact de-

velopment has countervailing effects on car travel. I use household travel survey data

in the Puget Sound and Southeast Michigan region to conduct the empirical analysis.

The results support my arguments by showing the following: 1) transit accessi-

bility (measure of compact development used in this study) is positively associated

with trip frequency by all modes in both regions; 2) transit accessibility is positively

associated with car-trip frequency in the Southeast Michigan model but it is nega-

tively associated with car-trip frequency in the Puget Sound Region. These findings

suggest that compact development has countervailing effects on car trips, including a

trip-generation effect that increases driving and a modal-shift (from driving to alter-

native travel modes) effect that reduces driving, and whether or not car-trip frequency

decreases depends on if the latter outweighs the former.

3.2 Literature review

3.2.1 Empirical studies of the built-environment and travel-behavior re-

lationship

Studying the influences of the built environment (also termed as land use) on

travel-behavior started in the 1980s and emerged as a popular research topic in

the planning literature in the 1990s (Boarnet, 2011). The motivation behind these

studies was mainly to reduce the prevailing low-density, and auto-oriented develop-

ment patterns and the excessive auto use associated with them. Following Cervero

and Kockelman (1997), researchers often described the land-use variables with a list

of “D-variables,” including density, diversity, design, destination accessibility, dis-

tance to transit, and so on; and the commonly examined travel-behavior variables
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included VMT, mode choice, trip frequency, and trip length (Ewing and Cervero,

2010). Among the travel-behavior outcome variables, VMT attracts the most policy

interest since it is the aggregate measure of auto travel that is directly related to traffic

safety, air quality, energy use, and other social harms associated with auto use. Also,

many other outcome variables such as auto ownership, mode choice, trip frequency,

and trip length can be considered as contributing factors to VMT. Consequently,

policy debates surrounding the built-environment and travel-behavior relationship

usually center on whether and how much built-environment factors affect VMT.

Recent work in this literature focuses on answering if the association between the

built environment and travel is causal and on estimating the magnitude of the causal

effect. On the “correlation versus causation” question, the problem of residential se-

lection has attracted great attention (Mokhtarian and Cao, 2008; Cao et al., 2009).

Residential sorting refers to the fact that individuals who prefer certain travel modes

are more likely to live in the type of neighborhoods that support such travel pref-

erences; hence, the significant travel-behavior difference across neighborhoods may

not reflect the “treatment effect” of compact development, but rather the inherent

preference differences among the residents. As a result, it is commonly believed that

statistical models must control for residential-sorting effects in order to produce an

accurate estimate of the influence of built-environment characteristics on travel.

With only a few exceptions (Chatman, 2009; Lin et al., 2017), most studies found

that failing to control for residential sorting would lead to a overestimate of the

treatment effect of built-environment variables on travel. Notably, however, some re-

searchers have questioned the policy relevance of the residential-sorting issue (Levine,

1998; Næss, 2009; Chatman, 2014). In their view, estimating the independent, causal

effect of the built environment on travel addresses the wrong policy question (what

would be the impact of built-environment changes on a randomly selected group of in-

dividuals?) in the first place. In reality, most land-use interventions are likely to affect
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travel-behavior changes on a self-selected group (those who are more favorable of the

changes) instead of a random group of individuals. Therefore, both residential-choice

and travel changes should be considered as policy effects of land-use interventions,

and controlling for residential self-selection would lead to an underestimate of these

effects.

Several review studies sought to synthesize the empirical studies of the built-

environment and travel-behavior connection with a single elasticity measure (Ewing

and Cervero, 2001, 2010; Stevens, 2017). Notably, a recent meta-regression analysis

of the built-environment and travel-behavior relationship found that the elasticity of

VMT with respect to density (the most commonly used measure of compact devel-

opment) was -0.22 (Stevens, 2017). This study triggered a heated debate on whether

or not an elasticity value of -0.22 is sufficient to warrant policies to promote com-

pact development (see responses from various scholars on the Stevens study in the

2017 Spring and Summer issues of the Journal of the American Planning Associa-

tion). While this finding made Stevens conclude that compact development has a

small influence on driving, a position shared with authors of two responses (Manville,

2017; Knaap et al., 2017), other scholars interpreted the same result as suggesting

substantive travel benefits from compact development (Ewing and Cervero, 2017;

Handy, 2017; Nelson, 2017). Implied in this debate is an assumption that views

only a reduction—not any increases—in driving as a desirable impact of compact

development on travel, and I will examine this assumption in detail below.

3.2.2 A VMT-reduction-based view of transportation benefits

This implicit VMT-reduction-based view of transportation benefits is reflected in

the use of empirical criterion to evaluate the transportation benefits resulting from

land-use and transportation strategies. Most existing built-environment and travel-

behavior studies adopt the following empirical approach: travel-behavior outcome
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variables such as VMT, mode choice, trip frequency, and trip length are regressed on

a list of built environment variables while controlling for a list of demographic and

socioeconomic variables and occasionally some travel-related attitudinal variables.

The functional form of the statistical model usually takes the following form:

y = β0 + β1 ∗ X + β2 ∗ Z + ε, (3.1)

where y is the travel-behavior outcome variable, X is a vector of built-environment

variables, Z is a vector of control variables, the β terms are coefficients to be estimated

(β1 is the main focus), and ε is the error term. Here, the estimates (sign, statistical

significance, and magnitude) of β1 are usually interpreted as indicating the travel

impacts of land-use and transportation strategies that promote compact development,

which consequently serve as the main empirical criterion to evaluate the desirability

of these policies.

Consider the case where y is VMT or its contributing factors such as car ownership,

probability of driving, car-trip frequency, and car-trip length and X is a vector of built-

environment variables (e.g., transit accessibility) that measure compactness. Under a

VMT-reduction-based view of transportation benefits, to establish scientific evidence

of positive travel impacts from compact-development policies requires the estimates

of β1 to be both negative and statistically significant. In addition, a larger magnitude

of the estimated coefficients is considered as signaling more transportation benefits

from compact development. By contrast, if the coefficient estimates of β1 are positive

or are negative but statistically insignificant, researchers usually interpret such results

as suggesting a lack of significant positive impacts of compact development on travel.

These assumptions are widely shared among researchers who study the relation-

ship between the built environment and travel behavior. For example, based on the

model results that suggested job accessibility had no significant correlation with em-
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ployment status and commuting distance, Hu (2017) concluded that living in places

of higher job accessibility had no economic benefits for the lowest-income, long-term

residents in Los Angeles. The 2017 Stevens study and the debate on it provide another

illustration of these assumptions. As discussed above, the main focus of the debate

on Stevens (2017) centered on whether an elasticity of -0.22 (the elasticity of VMT

with respect to population density) sufficiently warrants land use and transportation

policies that promote compact development. If the magnitude of this elasticity were

estimated to be larger than one (a threshold commonly used to determine if the re-

lationship should be called as elastic or inelastic), Stevens would be most likely to

label the travel benefits of compact development as substantive rather than “small.”

A VMT-reduction-based evaluation of compact-development policies would be

valid if compact development affects driving in one direction only, that is, compact

development only leads to a reduction but not an increase in driving. If this is

the case, the magnitude and statistical significance of the β1 coefficient would be

a clear and direct indicator of the impact of compact development on driving and

the resulting travel benefits. On the other hand, if compact development also induces

additional car travel, the β1 coefficient would be a measure of compact development’s

net effect on driving-related outcomes rather than a measure of its VMT-reducing

effect only. In theory, compact development would indeed make people take more car

trips since it lowers the price of car travel to reach potential destinations, although

finding the empirical evidence to show this car-trip-generation effect is challenging

because car-trip frequency is an outcome of not only this effect but also a modal-

shift effect (i.e., compact development tends to make alternative modes to driving

more feasible and attractive). The existing literature has shown that accessibility is

positively associated trip frequency by all travel modes (Hanson and Schwab, 1987;

Ewing and Cervero, 2001; Ding et al., 2016; Cordera et al., 2017), but few studies have

empirically examined if accessibility-promoting compact-development policies have a
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car-trip-generation effect.

A handful of researchers have recognized that compact development may induce

additional travel by car, suggesting that individuals may respond to compact devel-

opment by taking more car trips and traveling to more remote destinations (Crane,

1996a; Crane, 1996b; Handy, 2017). In particular, Crane (1996a, 1996b) applied

microeconomic theory to provide a detailed explanation of why and how accessibil-

ity improvements (i.e., lower distance to access destinations) resulting from land-use

policies can lead to more car trips. Nevertheless, like most contributors to the built-

environment and travel-behavior literature, these scholars did not consider travel

responses that lead to additional car travel as positive travel impacts of accessibility-

promoting compact-development strategies.1 For example, in their critiques of the

Stevens study, several scholars have pointed out that compact development has addi-

tional benefits beyond those associated with reduced driving, such as increased transit

use, reduced energy consumption, and stronger economic vitality (Ewing and Cervero,

2017; Knapp et al., 2017). These additional benefits, however, can be considered as

ancillary benefits associated with reduced driving. Moreover, since these researchers

did not recognize that there are potential travel benefits associated with induced

car travel from compact development due to lower cost of reaching destinations, a

VMT-reduction-based view of transportation benefits is still implied.

3.2.3 Induced travel and destination-utility gains

I now present empirical evidence that challenges the VMT-reduction-based view

of transportation benefits. Specifically, I review empirical evidence on induced travel,

which supports the notion that when compact development leads to little to no VMT

1For example, Crane (1996b) proposed a utility-maximizing framework for individual travel,
where the consumer welfare was a function of the number of trips taken by each mode. Thus, it is
implied that if land-use strategies increase car trips, there would be gains in individual consumer
welfare. However, writing at a time when transit- and pedestrian-oriented design were often proposed
as strategies to reduce auto use, Crane only considered VMT reduction—while ignoring potential
gains in consumer welfare—as the transportation benefits from these strategies.
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reduction, it is often not because compact development has no travel impacts but

because the potential VMT reduction from it is overwhelmed by induced travel. I

further argue that induced travel associated with compact development should be

interpreted as signaling gains in transportation benefits for the affected population.

Induced travel, especially induced travel resulting from transportation invest-

ments, is a well-studied topic in the literature. The theory behind induced travel

is intuitive: When transportation investments (e.g., highway expansions) reduce the

generalized (time plus money) cost of travel (to potential destinations), individuals

are likely to respond by traveling more. Recent reviews of induced travel associated

with road investments have found strong evidence that new transportation capacity

generated by these investments would induce additional VMT (Cervero and Hansen,

2002; Noland and Lem, 2002). VMT increases can result from both short-run be-

havioral changes such as a switch to driving from other travel modes, longer trips,

increases in trip frequency and long-run effects such as increases in household auto

ownership levels and longer trips resulting from residential and employment relocation

(Hills, 1996).

Like road investments, compact-development development strategies such as infill

development and transit-oriented development that lead to accessibility gains (i.e.,

lowered cost of traveling to destinations) can also induce additional travel. Some

studies examined the travel-inducing effect of land-use changes, but the outcome

of interest is primarily trip frequency or household trip-generation rate rather than

VMT. Ewing and Cervero (2001) summarized early work on this topic and concluded

that the empirical evidence on the correlation between trip frequency and the built

environment was mixed (Hanson and Schwab, 1987; Ewing et al., 1996; Thill and

Kim, 2005). More recent work on this topic often showed a significant and positive

association between accessibility and trip frequency (Merlin, 2015; Ding et al., 2016;

Cordera et al., 2017). Some related studies discussed the association between urban
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spatial structure and trip distances—particularly commuting distance, and they sug-

gested that while compact-development strategies may reduce trip length in the short

run, in the long run such reduction tend to disappear due to household/business re-

location (Gordon and Richardson, 1994; Giuliano and Small, 1993). These long-run

effects can be considered as induced travel.

The theoretical foundation for induced travel and its associated benefits is the

basic principle in transportation that views travel as a derived demand (Bonavia,

1936), which means that travel is usually taken to reach destinations rather than

to enjoy travel per se. The derived-demand nature of travel suggests that travel

is inherently a cost, and so if a trip is taken, the cost associated with it must be

compensated by the utility that individuals gain from interacting with the destination.

Consider van Wee’s hypothetical case that I described in the introduction again.

When compact development leads to lower cost of traveling to potential destinations,

individuals can potentially drive less; for example, shrinking a region to 25% of its

original size can potentially lead to a 50% reduction in the travel of this region’s

residents. If the observed VMT reduction is less than this theoretical maximum (50%

of the original VMT consumption), it indicates that a lowered cost of access has made

some travelers drive more frequently and/or drive to more remote destinations; and

the destination-utility gains associated with the additional driving must outweigh the

time and money costs associated it.2 An example of trip-frequency increases due to

compact-development strategies is that infill development brings a new movie theater

that makes nearby residents increase movie-viewing trips. Related, the opening of

a wholesale store (e.g., Walmart) can attract away customers who used to frequent

nearby local stores.

Therefore, when compact-development policies induce additional travel by car,

2Here I reach the same conclusion as van Wee (2011) did, but the underlying reasoning process
is different. van Wee reached his conclusion by applying the theory of constant travel-time budget
(Van Wee et al., 2006), and I mainly replied on the idea that travel by nature is a derived demand.
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individuals must have gained travel benefits in other forms (i.e., destination-utility

gains) that can compensate for the time-plus-money costs associated with the induced

car travel. But these destination-utility gains are largely unrecognized. Considering

the various environmental harms (e.g., degrading air quality and contributing to cli-

mate change) associated with driving, it is understandable that researchers tend to

hold a negative view on any induced travel by car. Nevertheless, since the purpose

of transportation is first and foremost to facilitate individual access to resources and

opportunities rather than to reduce driving, VMT reduction should not be regarded

as the only goal of transportation and land use planning (Merlin, 2015; Levine et al.,

2019). Many policies (such as highway expansion to rural areas) result in significant

travel benefits in the form of destination-utility gains for the affected population but

simultaneously lead to VMT increases (Levine et al., 2019). And providing car access

to the poor would contribute to aggregate VMT consumption, but car access can

bring to them higher employment prospects and better options of social services.

Induced travel from compact development can also serve social-equity goals. Find-

ings of a recent study on auto use of the poor and transit-oriented development implied

the equity dimension of induced travel: While low-income families drove significantly

more when being displaced from rail-station areas, their auto use did not change

much (plausibly due to induced auto travel) when moving to these areas (Chatman

et al., 2017). Moreover, studies of travel behavior consistently found that low-income

households drove less than higher-income ones (Pucher and Renne, 2003; Blumenberg

and Pierce, 2012), which is as much by constraint as by choice. For example, em-

pirical studies on activity space showed that lower-income households have a smaller

size of activity space compared to other income groups (Hanson, 1982; Manaugh and

El-Geneidy, 2012; Chen and Akar, 2016). While a smaller activity-space size means

less driving, it is also associated with a higher level of social exclusion and segregation

(Schönfelder and Axhausen, 2003; Wong and Shaw, 2011). If compact development
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expands the destination choice of low-income population and makes them drive more

(to interact with valuable destinations), it results in gains in social welfare at the

expense of VMT increases.

3.3 Toward a behavioral understanding of the built-environment

and travel-behavior interaction

The above analysis suggests that compact development can result in at least two

distinct forms of travel benefits: travel-cost savings associated with reduced driving

and destination-utility gains associated induced travel. Given that the two forms of

travel benefits shape driving in opposite directions, the relationship between compact

development and VMT is not a straightforward one. Rather, it depends on the

complex interactions of many factors. To unravel these interactions, I propose a

behavioral framework of the built-environment and travel-behavior that describes the

mechanisms through which compact development shapes travel behavior (see Figure

3.1).

This framework is mainly informed by two insights from the existing literature.

First, the microeconomic foundation for the built-environment and travel-behavior

connection lies in the idea that the built environment can alter the price of travel

to potential destinations (Boarnet and Crane, 2001). Second, travel is derived from

the demand for interacting with destinations (Bonavia, 1936), and so it is through

shaping the demand for accessing destinations (the decision of which destination to

interact with and at what frequency) that built-environment changes influence travel

behavior.

In this framework, compact development affects travel behavior by first reducing

the cost of travel to potential destinations. A lower price of travel to potential destina-

tions would lead to changes in individual travel decisions (i.e., trip generation, mode
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Figure 3.1: A behavioral framework of how compact development shapes travel

choice, and destination choice) that first affect car-trip frequency and car-trip length

and consequently VMT. How exactly these linkages play out is primarily determined

by individual preferences for the two distinctive types of travel benefits: travel-cost

savings and destination-utility gains. A desire for travel-cost savings would make

individuals react to compact-development strategies by switching to cheaper travel

modes (i.e., non-driving modes) and by choosing closer destinations brought by these

strategies. By contrast, a preference for destination-utility gains would make individ-

uals react to compact development by taking additional trips (by all travel modes)

and traveling to more desirable but more remote destinations (these destinations were

not chosen before because of travel time or money constraints).

Consequently, compact-development policies would have two countervailing effects

on driving-related travel outcomes (i.e., car-trip frequency and car-trip length). Indi-

viduals who value travel-cost savings are likely to reduce car-trip frequency and length,

whereas people who prefer destination-utility gains may increase them. In a given

empirical study, the observed changes in VMT or car-trip frequency/length is thus a

product of the two countervailing effects. Either effect results in travel benefits for
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the impacted population—for example, car-trip generation leads to destination-utility

gains whereas a modal shift from driving to alternative modes indicates travel-cost

savings; therefore, to fully measure the transportation benefits of compact develop-

ment one needs to decompose the two countervailing effects from observed travel-

behavior changes and to sum up the respective benefits associated with them. Using

observed travel-behavior changes to indicate the transportation benefits of compact-

development policies would lead to a significant underestimate. This is equivalent

to the mathematical case where the correct answer is to sum up the absolute values

of two numbers with opposite signs but the student summed up the two numbers

directly.

The above analysis raises doubt on the common empirical approach adopted by

the built-environment and travel-behavior literature to examine the travel impacts

of land-use and transportation policies. Notably, the fact that compact develop-

ment can change travel-behavior outcomes in both directions suggests that the beta

coefficients (i.e., the β1 discussed above) which indicate the association between a

built-environment variable and driving-related travel outcome have no simple inter-

pretation. The interpretation facilitated by a VMT-reduction-based view of travel

benefits is problematic because small and insignificant estimates of β1 do not neces-

sarily mean that the examined compact-development policies have no travel impacts.

In many cases, these policies could have resulted in substantive decreases in VMT but

the potential VMT reduction was overwhelmed by induced travel. The β1 blurs the

impact that compactness has on the utility people receive from their environment.

In sum, the behavioral framework proposed here sheds light on the mechanisms

underlying the built-environment and travel-behavior relationship by showing how

and why compact development shape travel. To gain a comprehensive understanding

of the travel impacts of compact-development strategies thus requires researchers to

carefully examine the behavioral motivations behind individual travel changes. They
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should examine how much the accessibility gains resulting from compact-development

strategies translate into travel-cost savings versus destination-utility gains. A plau-

sible empirical method for this purpose is the “logsum” consumer-welfare evaluation

approach, which is based on the random-utility discrete-choice modeling technique

(Niemeier, 1997; De Jong et al., 2007; Geurs et al., 2010).3

3.4 Empirical analysis

To strengthen the theoretical arguments raised above, I further conducted an

empirical analysis of the built-environment and travel-behavior relationship. The

main purpose of this empirical analysis is to test the idea that compact development

has countervailing effects on car travel, that is, it can lead to both a reduction and an

increase in driving. An ideal empirical approach to achieve this purpose would be a

longitudinal study that collects information on the before-and-after travel behavior of

individuals who are affected by accessibility-promoting compact-development policies.

Ideally, this longitudinal study should also collect information on individual travel

preferences, needs, and constraints that can shed light on the behavioral motivations

behind each individual’s travel-behavior changes.

Faced with some practical constraints, however, I implemented the following em-

pirical strategy. First, since I have no access to a longitudinal sample that records

the before-and-after travel-behavior information, I used cross-sectional datasets in-

stead, i.e., the regional household travel survey data from the Southeast Michigan

region and the Puget Sound region. Moreover, since a comprehensive evaluation of

the compact development and VMT connection involves too many intermediate steps,

3Logsum is a measure of consumer surplus in the context of a random utility choice model. It
means the expected utility that individuals can derive from a choice when choosing among a set of
alternatives, which has been proposed as a measure of accessibility (Ben-Akiva and Lerman, 1979).
Since the logsum measure can link different choices such as the travel-mode and destination choice,
it has been widely applied to the practice of integrated land-use and transport modeling (Eliasson
and Mattsson, 2000; Yao and Morikawa, 2005).
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for convenience I focus on how compact development shapes nonwork trip frequency

(i.e., all nonwork trips and nonwork trips by car) only. Empirical evidence that shows

compact development induces additional car trips and also promotes a shift from driv-

ing to alternative modes would be sufficient to substantiate the main ideas raised in

this paper. Finally, for simplicity I examined the relationship between nonwork trip

frequency and one built-environment characteristic (transit accessibility) only.

3.4.1 Conceptual framework

I developed two sets of statistical models: a nonwork trip-generation model that

estimates if transit accessibility is associated with more personal nonwork trips (i.e.,

sum of trips by all travel modes), and a nonwork car-trip-generation model that

estimates if transit accessibility is associated with more nonwork trips by car. These

models can be expressed as following:

AllNonworkTrips = a1 + b1 ∗ TransitAccessibility + c1 ∗ Controls+ ε1, (3.2)

NonworkTripsByCar = a2 + b2 ∗ TransitAccessibility + c2 ∗ Controls+ ε2. (3.3)

Here, b1 indicates the trip-generation (for all travel modes) effect of transit acces-

sibility, and b2 indicates the net effect of car-trip increases due to trip generation and

car-trip decreases due to modal shift.

The two models do not measure the car-trip-inducing and car-trip-reducing effects

directly, but when considered together, their model outputs can shed light on if

these effects exist and the relative strength of them. For example, if the model

outputs show that both b1 and b2 are positive and significant, it means that higher

transit accessibility generates additional car trips and that this trip-generation effect

outweighs the modal-shift effect. If b1 are positive and significant but b2 are negative

and significant, it means that higher transit accessibility generates additional car

65



trips but this trip-generation effect is smaller in magnitude compared to the modal-

shift effect. If b2 are not significantly different from zero, it means that the two

countervailing effects have counteracted each other, which makes the net effect on

car-trip frequency very small. On the other hand, if b1 is negative or if it is not

significantly different from zero, it means that transit accessibility does not induce

travel This finding would not support my hypothesis.

3.4.2 Data

The main data sources included the 2015 Southeast Michigan Council of Govern-

ment (SEMCOG) regional household travel survey data collected by SEMCOG and

the 2014-2015 Puget Sound regional household travel survey data collected by Puget

Sound Regional Council (PSRC). The travel-survey data were used to construct the

demographic and socioeconomic control variables, together with the travel-behavior

outcome variables (all personal nonwork trips and personal nonwork trips by car).

The unit of analysis is thus an individual, and I only analyze data on adults. SEM-

COG and PSRC also kindly provided the skim matrix, which contains the estimated

travel time for each origin-destination zone-pair. I also obtained employment statis-

tics from the Longitudinal Employer-Household Dynamics (LEHD) data, which is

available from the US Census Bureau website. The skim matrix and the LEHD data

were used to calculate the transit-accessibility measure.

In this study, transit accessibility is defined as the potential to interact with op-

portunities distributed across the region via the transit mode. I calculated transit

accessibility at the traffic analysis zone level, using a common form of the gravity

model developed by Hansen (1959). This gravity-model measure of accessibility as-

sumes that the amount of interaction between an origin zone i and a destination j

is positively related to the number of opportunities at the destination zone but is

inversely related to the travel cost (time) between the zones. The accessibility to
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opportunity type n by car for location i can thus expressed as

Ain =
∑
j

Ojnexp(−βTij), (3.4)

where:

Ain is the accessibility index to opportunity type n by car for location i ;

Ojn is the attractiveness factor for opportunity type n based on the number of

these opportunities in destination zone j;

exp denotes the base of the natural logarithm;

β is the impedance factor that measures the friction of distance, a higher value

of which makes distant opportunities contribute to the accessibility index to a lesser

degree;

Tij is the travel time by car in minutes between location i and j.

I used the total number of jobs to indicate the number of opportunities located

at a destination zone, a common practice for accessibility measurement. Table 3.1

presents the description and the descriptive statistics of the variables examined in the

models.
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Table 3.1: Descriptive profile of the dependent and independent variables

Variable code Description Puget Sound Southeast Michigan

Mean Standard Mean Standard

deviation deviation

Dependent variables

NonWkAllTrip Total personal trips (by all modes)
taken on survey day

0.65 0.83 0.77 0.42

NonWkCarTrip Total personal car trips taken on
survey day

0.58 0.78 0.55 0.5

Independent variables

TransitAcc Transit accessibility index (first
principle component derived from
transit accessibility to all jobs, and
shoping and service destinations)

0.07 0.84 0.03 0.69

Employed Dummy variable that indicates if a
person is currently employed
(including self-employed)

0.56 0.5 0.6 0.49

College Dummy variable that indicates if a
person has a bachelor degree or above

0.52 0.5 0.47 0.5

LowInc Dummy variable that indicates if a
household’s annual income is $25,000
or less

0.1 0.31 0.13 0.34

HighInc Dummy variable that indicates if a
household’s annual income is
$100,000 or above

0.39 0.49 0.33 0.47

Age35 Dummy variable that indicates if a
person’s age is 35 or below

0.4 0.49 0.22 0.41

Age65 Dummy variable that indicates if a
person’s age is 65 or above

0.16 0.37 0.21 0.41

Female Dummy variable that indicates if a
person is a female

0.51 0.5 0.52 0.5

Own Dummy variable that indicates if a
household lives in an owner-occupied
housing unit

0.65 0.48 0.83 0.38

SingleFamily Dummy variable that indicates if a
household lives on single-family
housing

0.61 0.49

VehPerAdult The number of vehicles in a
household divided by its number of
adults

0.93 0.5 1.08 0.54

DriverLicense Dummy variable that indicates if a
person has a driver’s license

0.79 0.41 0.93 0.25
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Table 3.2: Trip frequency and Car-trip frequency models in Puget Sound

Variable code NonWkAllTrip NonWkCarTrip

Coefficient z-value Coefficient z-value

Main variables of interest

TransitAcc 0.01 2.51*** -0.01 -2.06**

Control variables

Constant -0.31 -5.81*** -0.98 -15.54***

Employed -0.19 -7.29*** -0.21 -6.84***

College 0.08 3.24*** -0.01 -0.50

LowInc -0.01 -0.35 -0.10 -2.19**

HighInc -0.01 -0.43 0.02 0.79

Age35 0.02 0.65 -0.02 -0.51

Age65 -0.03 -0.99 0.03 0.84

Female 0.03 1.60 0.08 3.22***

SingleFamily -0.01 -0.47 0.14 4.74***

VehPerAdult 0.04 1.59 0.23 9.62***

DriverLicense 0.01 0.43 0.25 5.96***

Observations (N) 12643 12643

Log-likelihood at convergence -12251.90 -10931.60

Log-likelihood (Null Model) -12292.50 -11114.08

Note: *Significant at the 0.1 level, **Significant at the 0.05 level, ***Significant at the 0.01 level
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Table 3.3: Trip frequency and Car-trip frequency models in Southeast Michigan

Variable code NonWkAllTrip NonWkCarTrip

Coefficient z-value Coefficient z-value

Main variables of interest

TransitAcc 0.03 3.68*** 0.02 2.18**

Control variables

Constant -0.95 -8.51*** -1.48 -12.24***

Employed -0.66 -31.03*** -0.65 -28.80***

College 0.14 7.60*** 0.12 6.09***

LowInc 0.09 3.17*** 0.01 0.38

HighInc -0.08 -3.83*** -0.09 -4.12***

Age35 -0.40 -14.44*** -0.35 -12.04***

Age65 0.25 11.45*** 0.30 12.81***

Female 0.05 2.63*** 0.07 3.96***

Own -0.02 -0.74 0.12 3.69***

VehPerAdult 0.06 3.69**** 0.10 5.68***

DriverLicense 0.39 9.36*** 0.79 14.48***

Observations (N) 20120 20120

Log-likelihood at convergence -20284.89 -19028.29

Log-likelihood (Null Model) -21631.74 -20391.85

Note: *Significant at the 0.1 level, **Significant at the 0.05 level, ***Significant at the 0.01 level

3.4.3 Model outputs

Since the model outcomes (trip frequency) are count variables, I applied a negative

binomial model for estimation. To ensure consistency and to enhance the robustness

of model results, I specified models with an almost identical functional form for the

two study regions.4 Table ?? and Table ?? presents the model outputs for the two

study regions respectively.

I now discuss the coefficient estimates, and I report statistical significance at the

4The only difference is in one control variable. I used a dummy variable that indicates if a person
lives in a single-family housing unit for the models in the Puget Sound region but a dummy variable
that indicates if a person lives in an owner-occupied housing unit for the models in the Southeast
Michigan region. The SEMCOG data have no information on what type of housing unit (i.e., if it
is a single-family unit) a respondent lives in. The two dummy variables are often highly correlated
and so the coefficient estimates on them are likely to be close.
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0.05 level. On transit accessibility, the main variable of interest in this study, I ob-

tained the following results. First, the coefficient estimate was positive and significant

in the nonwork trip frequency model (i.e., b1 in Equation 3.3) for both regions. There-

fore, as I have hypothesized, transit accessibility indeed has a trip-generation effect.

Second, in the nonwork car-trip frequency model, while the coefficient estimate ((i.e.,

b2 in Equation 3.3)) was positive and significant for the Southeast Michigan region, it

was negative and significant for the Puget Sound region. Considered together with the

coefficient estimate of b1, this means that the modal-shift effect—a shift from driving

to alternative mode—outweighed the car-trip-generation effect for Puget Sound, yet

for Southeast Michigan it was the other way around.

The fact that Puget Sound has a much stronger modal-shift effect from transit-

accessibility increases than Southeast Michigan is not surprising. First, at locations

of high transit accessibility, parking is likely to be more expensive and constrained in

Puget Sound (especially within the city of Seattle) than that in Southeast Michigan.

This makes driving become a less attractive option. Moreover, alternative modes to

driving are more available and feasible in Puget Sound than in Southeast Michigan.

The traffic analysis zones (TAZ) in Puget Sound have a mean Walk Score of 38, and

the mean Walk Score of TAZs in Southeast Michigan is 27. Also, the transit services

are better in Puget Sound. For example, the AllTransit perform score rankings de-

veloped by the Center for Neighborhood Technology ranked the Puget Sound region

at the 30th place and the Southeast Michigan region at the 129th place, respectively,

among all U.S. metropolitan planning organizations.5

These results thus verify that idea that accessibility-promoting compact-development

policies shape auto use in both directions. In addition to the potential VMT-reduction

effect which has been the main focus of research efforts in the current literature, these

policies also induce additional car trips. In the end, whether or not a policy results

5These rankings are available at https://alltransit.cnt.org/rankings/.
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in a reduction in VMT depends on if its VMT-reduction effect is greater than the

travel-inducing effect. The finding that the association between transit accessibility

and nonwork car-trip frequency is negative in the Puget Sound model but is positive

in the Southeast Michigan model illustrates this point.

I now briefly discuss the coefficient estimates on the control variables, and I focus

on statistically significant (at the 0.05 level) variables only. I first discuss the South-

east Michigan models and compare the results with those of the Puget Sounds models,

and I go through the nonwork-trip frequency model first and then the nonwork-car-

trip frequency model. Everything else being equal, individuals who are female, 65

years old or above, college educated, and poor (i.e., having an annual household in-

come below $25,000) took more nonwork trips. Moreover, having better access to a

personal vehicle and having a driver’s license were positively associated with nonwork-

trip frequency. By contrast, being employed, having an annual household income of

$100,000 or above, and being 35 years old or younger had a negative correlation with

the number of nonwork trips that an individual took.

The coefficient estimates for the nonwork-trip frequency and nonwork-car-trip

frequency largely agreed with each other with two exceptions. First, while people

from low-income households, on average, took more nonwork trips, they did not take

more nonwork trips by car. This suggests that the nonwork-travel needs of the poor

are often fulfilled by non-driving modes, a finding consistent with results from the

national household travel survey (Pucher and Renne, 2003; Blumenberg and Pierce,

2012). In addition, while people living in an owner-occupied unit did not seem to

make more nonwork-trips, they tend to make more nonwork trips by car. This is

likely because neighborhoods filled with single-family, owner-occupied housing units

often lack access to public transit and are less walkable.

Results of the Puget Sound models were in general consistent with those of the

Southeast Michigan models. In both the nonwork-trip frequency and nonwork-car-trip
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frequency models, there was not a single variable which had opposite signs and were

at the same time statistically significant across the two regions. However, many of the

significant variables in the Southeast Michigan models were insignificant in the Puget

Sound models. For example, only two control variables (excluding the constant term)

were significant in the nonwork-trip frequency model for Puget Sound, compared to

nine significant variables in the Southeast Michigan model. In addition, the following

dummy variables that were significant in the nonwork-car-trip frequency model for

Southeast Michigan turned out to be insignificant in the Puget Sound region: being

college-educated, having an annual household income of $100,000 or above, and is

aged no more than 35 years or no less than 65 years.

3.5 Conclusion

Empirical studies on the built-environment and travel-behavior relationship seek

to inform two different but interrelated policy questions. One is if compact-development

policies such as smart growth and transit-oriented development can be used as an ef-

fective environmental policy tool to reduce driving, and the other is if planners can

justify the promotion of these policies on the basis of their transportation merits.

Underlying the second policy question is a notion that equates the transportation

benefits of compact development to VMT reduction, a view termed here as a VMT-

reduction-based view of transportation benefits.

This paper argues against this VMT-reduction-based view in the context of compact-

development policy evaluation. I make the case that accessibility increases resulting

from compact development may not only reduce driving but also induce additional

car travel and that both directions of influence are associated with travel benefits for

the affected population. My arguments are grounded on two basic theories. One is

the basic economic principle which suggests that the consumer demand for an elastic

good rises as its price declines; that is, as compact development lowers the cost of

73



travel to potential destinations, it tends to make people travel more. The other is the

idea that travel is in general derived from the demand to reach destinations, which

means that travel is usually a cost that individuals pay to gain the utility of inter-

acting with desirable destinations. Thus when compact development induces people

to make additional travel by car, the associated time-plus-money costs must be com-

pensated by the resulting destination-utility gains. These theoretical arguments are

corroborated with an empirical analysis that examines the relationship between tran-

sit accessibility and nonwork trip frequency (by all modes and by car) in two U.S.

regions.

This study highlights the fact that compact-development strategies often lead to

transportation benefits in the form of destination-utility gains. I argue that when

measuring the transportation benefits of compact-development strategies, planners

should quantify both the potential travel-cost savings associated with less driving

and the potential destination-utility gains resulting from induced travel. Very few

contributors to the built-environment and travel-behavior studies have recognized

travel benefits in the form of destination-utility gains. The van Wee (2011) theoretical

piece discussed above is one of the exceptions. And to my knowledge Merlin (2015)

is the only published empirical study which was motivated by the idea that compact-

development policies have benefits beyond TCS reduction, and Merlin examined if

compact development promotes nonwork out-of-home activity participation.

More broadly, this study suggests that there are potential tensions between the

fundamental aims of the planning profession (Campbell, 1996). When compact-

development policies induce additional car travel, the resulting destination-utility

gains can enhance consumer welfare and even advance equity goals (e.g., when low-

income people expand activity space). Nevertheless, increases in driving, regardless

of the sources, result in environmental harms. Therefore, when compact-development

policies induce travel and thus lead to travel benefits in the form of destination-utility
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gains, it is essentially promoting the goals of economic efficiency and social equity at

the expense of environmental protection. How to navigate these tensions and develop

policy policies is challenging, just like when planners face the dilemma of whether or

not to support car-ownership subsidies to the poor (Grengs, 2010; Blumenberg and

Pierce, 2017; Smart and Klein, 2018b). Ideally, planners can develop policies that can

serve multiple aims, that it, policies that lead to both reductions in personal VMT

and gains in destination utility for the impacted population. The empirical results

from the Southeast Michigan region and the Puget Sound region suggest that plan-

ners should in particular advocate compact-development strategies that can promote

the use of non-driving modes.

75



CHAPTER IV

Preference versus Constraint: The Role of

Walkability, Transit Accessibility, and Auto

Accessibility in Residential Location Choice

4.1 Introduction

Accessibility, commonly defined as the potential (from a location) to interact with

opportunities/activities distributed across space, is the fundamental service that a

transportation and land use system provides to people. As a central indicator of

locational advantage and a major performance measure of the land use and transport

systems, accessibility has become a fundamental topic in a variety of fields such

as urban planning, geography, economics, sociology, and transportation engineering.

Numerous studies in the planning literature have provided theoretical arguments and

empirical evidence to establish accessibility as a major planning goal (Wachs and

Kumagai, 1973; Handy, 2005; Grengs, 2015; Martens, 2016; Levine et al., 2019).

How to properly define and measure accessibility is a challenging topic that

researchers revisit time after time (Ingram, 1971; Morris et al., 1979; Handy and

Niemeier, 1997; Miller, 1999; Geurs and Van Wee, 2004; Páez et al., 2012; Grengs,

2015; Cascetta et al., 2016). Depending on the study purpose, researchers have devel-

oped different types of measures at various levels of complexity, ranging from a simple
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distance-based measure (e.g., distance to a transit stop) to more comprehensive and

sophisticated measures such as gravity-based potential measures and utility-based

logsum measures (Geurs and Van Wee, 2004). When measuring accessibility, a ma-

jor distinction that analysts frequently make is the level of accessibility by different

travel modes, such as walkability (accessibility by walking), transit accessibility, and

auto accessibility. This distinction is made to mainly serve two purposes: first, to

guide the investment decisions of a specific type of transportation infrastructure by

identifying the spatial disparity of accessibility levels supported by a given travel

mode; second, to identify the accessibility gap between individuals with access to a

car and carless individuals, that is, to gauge the disparity between auto accessibility

and transit accessibility (Grengs, 2010).

Nonetheless, researchers have generally overlooked another important issue: How

individuals value different types of accessibility (i.e., walkability, transit accessibility,

and auto accessibility) differently? Walkability, transit accessibility, and auto acces-

sibility can bring both similar and different benefits to a household. A higher level

of any type of accessibility may result in two similar benefits: it can help a house-

hold reduce travel cost (when the destination to be reached is given) and/or increase

choice (when the destination is unknown or whether or not to make the trip or not is

undecided in the first place). For example, a higher level job accessibility—more jobs

reachable within a given period of time by a travel mode—may not only reduce the

commute cost of household workers but also provide a higher chance of finding em-

ployment for unemployed household members (Ihlanfeldt and Sjoquist, 1991). On the

other hand, walkability, transit accessibility, and auto accessibility can also provide

distinctive benefits. For example, more walkable neighborhoods often encourage in-

dividuals to exercise more and thus bring health-related benefits (Frank et al., 2006).

Transit accessibility provides the benefit of option value, which means that individu-

als can have the future option to travel by transit even if they are not using it now
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(Roson, 2001; Laird et al., 2009). Auto accessibility, by allowing households access to

a larger quantity and variety of destinations than transit accessibility and walkability,

often means a higher degree of personal freedom (Martens, 2016).

From a policy and practice perspective, assessing the relative value of each type

of accessibility matters for at least three reasons. First, it can shed light on the

debates on transportation funding allocation and guide transportation spending by

incorporating the preferences (“opinions”) of the general public. In the U.S., there

is a long-standing debate on the fair allocation of transportation funding between

highways/roads versus transit; and in everyday transportation investments decision-

making, policymakers and transportation planners often need to decide if they should

invest to improve pedestrian/cycling facilities or public transit. In the absence of

information regarding what type of accessibility that local residents prefer (and hence

without an accessibility-based evaluation procedure informed by such knowledge),

these decisions are often made on the basis of a conventional cost-benefit analysis

that is under increasing criticism (Geurs et al., 2010; Martens and Di Ciommo, 2017).

Second, understanding the varying degree to which individuals value different

types of accessibility can help isolate their independent effects. At a given location,

its walkability, transit accessibility, and auto accessibility are usually highly correlated

since they all share the land use component (i.e., the destinations reachable from a

location are fixed). Therefore, when accessibility shapes an outcome, one often cannot

discern the effect comes from which type of accessibility, which inhibits the design of

clear and targeted policies. Consider the case of transit-oriented development, a major

accessibility-promoting policy. While the conventional wisdom is that housing built in

transit-oriented development attracts residents to use transit and thus allow them to

reduce car use and transportation spending, recent empirical evidence suggests that

households were often drawn to transit-oriented development, not because of transit

accessibility (Chatman and Noland, 2014; Smart and Klein, 2018a) but rather other
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location attributes such as walkability (Urban Land Institute, 2015; Canadian Home

Builders Association, 2015). These findings suggest that in many cases, planners

should prioritize their efforts in promoting pedestrian-oriented development instead

of transit-oriented development, especially when the latter requires much more public

funding investments. Therefore, a better understanding of what types of accessibility

individuals prefer can lead to clearer and more desirable policymaking.

Third, the valuation of different types of accessibility contributes to a thin body

of literature regarding accessibility evaluation. Existing accessibility studies have

mostly examined accessibility with objective measures (i.e., measures that do not

take into account individual-specific evaluation of accessibility benefits).1, with much

less attention paid to understand how individuals perceive and value accessibility.

Two exceptions include the use of utility-based logsum approach for accessibility

appraisal (De Jong et al., 2007; Niemeier, 1997; Geurs et al., 2010) and the com-

parison between individuals’ perceived accessibility and the objective accessibility

they actually received (Scott et al., 2007) Notably, studies in the latter category

generally found that large discrepancies exist between individuals’ perceived accessi-

bility and objective accessibility they actually received (Curl et al., 2015; Ryan et al.,

2016; Lättman et al., 2018). This finding highlights the importance of conducting

more accessibility evaluation research in order to validate the findings derived from

objective-accessibility-based studies and to refine the path of accessibility research.

Local context is likely to play an important role in the evaluation of different

types of accessibility. Basic economic theory suggests that the relative value (price)

of a product depends on the demand and supply for it, and there is no exception of

such rule to accessibility. A higher level of preference/demand for a certain type of

accessibility would drive its value (price) up, as well as a shortage of supply for this

1This is understandable because land use/transportation systems are not built to satisfy individ-
ual travel needs at specific times, but to provide a capacity that can satisfy the aggregate demand
for interaction among all individuals
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type of accessibility. Residents living in different regions may prefer/demand acces-

sibility at a varying degree, and the supply of walkability (walkable neighborhoods),

transit accessibility (housing units with good access to destinations via transit), and

auto accessibility (housing units with good access to destinations via cars) can vary

significantly across regions. Therefore, the findings on accessibility evaluation are

most likely to be context-dependent, and yet the existing knowledge regarding how

context matters in this regard is very limited in the literature because most studies

focus on one study area only.

In most U.S. cities/regions, walkable neighborhoods are scarce, transit accessibility

is also in short supply but to a less degree than walkability, and auto accessibility is

relatively high across most locations given the ubiquity of highways and public roads.

This is a general statement, and there are large variations in accessibility across

many U.S. regions (Levine et al., 2012; Owen et al., 2015). For instance, one usually

believes that the Puget Sound region excels the Atlanta region in walkability and

transit accessibility. The existence of these variations means that an inter-regional

comparison of accessibility evaluation can not only validate some existing findings

but also shed light on how regional differences shape the study findings.

In light of the above analysis, this study presents a multi-region study on how

households value walkability, transit accessibility, and auto accessibility in residential

location choice. Three regions were studied, including Atlanta, Puget Sound, and

Southeast Michigan. Each of these regions is a typical example of a type of U.S.

regions distinguished by their economic structure and urban form/structure. The

Atlanta region is a booming Southern region featured with sprawling low-density, and

auto-dependent development, and only in recent years it has started to emphasize

more on mixed-use, transit-oriented development (notably the development of the

BeltLine). With the prosperous city of Seattle serving as the urban core, Puget

Sound is a monocentric-city region with a diverse housing stock. It is consist of
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housing units ranging from very low accessibility (in rural areas) to high levels of

accessibility in all dimensions (at central locations). Finally, the Southeast Michigan

region is a slowly growing Midwest region with a declining central city—the city of

Detroit. While it is less sprawled out than the Atlanta region and some parts of it are

well served by public transit (central parts of Southeast Michigan and the Ann Arbor

area), most neighborhoods are not very walkable. The study results thus can have a

higher degree of generalizability, and examining the similarities and differences across

regions can generate further insights on how regional context matters for accessibility

evaluation.

I built residential location choice models (multinomial logit models) for these three

regions, focusing on examining how households value walkability, transit accessibility,

and auto accessibility in the decision process by interpreting the coefficient estimates

on these variables. The control variables include housing affordability, school quality,

and other neighborhood characteristics such as population density, median household

income, median household size, and racial compositions. The approach presented in

this study is only one of the possible methods to evaluate the importance of acces-

sibility and its various dimensions. Two other commonly used approaches include a

logsum method for accessibility appraisal as demonstrated by Geurs et al. (2010) and

a hedonic price modeling approach that assesses the contribution of accessibility to

the property price.

The main findings that can be inferred from the model outputs are: 1) Walkability

is a major consideration in residential location choice for Puget Sound households but

not for Atlanta and Southeast Michigan households, possibly because of the adequate

supply of walkable neighborhoods in Puget Sound and a dearth of them in the other

two regions; 2) Transit accessibility is an important determinant of household resi-

dential choice across all three regions; 3) Auto accessibility does not appear to have a

significant impact on household residential location choice; 4) Overall, location acces-
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sibility plays an important role in residential location choice, although its impact is

modest compared to other factors such as commuting cost and housing affordability.

4.2 Literature review

4.2.1 The definition and measurement of accessibility

Accessibility is a widely used term in the literature that may convey a variety of

meanings, and so it is helpful to clearly define it first. This study views accessibility

to be the defining indicator that distinguishes compact development from sprawled

growth, which measures the extent to which the land-use and transport systems of a lo-

cation enable individuals to interact with potential destinations or activities (Hansen,

1959). To measure this multifaceted concept, the most comprehensive measurement

should include four essential components: a land use component that reflects the value

of spatially distributed opportunities, a transportation component that describes the

impedance from an origin to reach a destination via a specific travel mode, an in-

dividual component that reflects the attributes of a particular person’s ability and

willingness to take advantage of the potential opportunities, and a temporal compo-

nent that reflects temporal constraints such as individual’s schedule constraint or the

availability of opportunities at different times of the day (Geurs and Van Wee, 2004).

Given the focus of specific studies, however, researchers have only emphasized a subset

of these components; for example, when the focus is on long-term transportation and

land use planning, the most commonly used accessibility measures—a cumulative-

opportunity measure or a gravity-based measure (Hansen, 1959)—generally ignore

the individual and temporal component (Handy and Niemeier, 1997; Levine et al.,

2019).

A narrow definition of accessibility, which equates accessibility to (savings in)

commuting cost, has prevailed the residential location choice literature. This notion of
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accessibility originates from classical residential location models developed by Alonso

(1964), Muth (1969), Mills (1972), which simplifies the process of housing decisions

into a trade-off between housing cost and commuting cost. The underlying factor

for this trade-off relationship is accessibility: more accessible locations can allow

households to save commuting cost, which would in turn capitalize into the site rent

that households need to pay. Since accessibility itself is invisible and site rent is

influenced by a host of factors besides accessibility, the differences in commuting cost

are commonly used to indicate the accessibility differentials across locations.

This commuting-cost-based view of accessibility is commonly—arguably even more

frequently than the definition used in this study—applied in planning and policy dis-

cussions. For example, when predicting how changes in gas costs or transportation

technologies would affect residential location patterns, researchers usually examine the

intermediate changes in commute costs instead of gravity-based accessibility measures

(e.g., Evans, 1973; Zhang and Guhathakurta, 2018). Moreover, the phenomenon of

“excess commuting,” which indicates the differences between the observed amount of

commuting and a theoretical minimum amount of commuting suggested by a given

job-housing relationship (Hamilton and Röell, 1982; White, 1988), is often interpreted

as indicating a weakening role of commuting (and hence accessibility) in location de-

cisions (Giuliano and Small, 1993; Yang, 2008).

Nonetheless, since there are other destinations or activities that a household would

want to interact with besides the workplace of its household members, savings in

commuting-cost is an incomplete measure of accessibility. This suggests that a mere

focus on commuting cost may undermine the role of accessibility in location decisions

and hence the policy importance of transportation and land use planning. Beside

commuting-cost reduction, other aspects of accessibility benefits may include reduced

transportation cost to nonwork destinations, freedom of choice, option value (e.g., of

having access to transit), and spillover effects (Martens, 2016; Levine et al., 2019).
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While these additional benefits are often invisible and hard to quantify, in theory,

they may be captured by potential-based accessibility measures such as cumulative

opportunities or gravity-based measures (Hansen, 1959); and the empirical sound-

ness of these measures have been verified by studies on a variety of subjects such

as employment growth, housing price, and labor productivity (Chatman and Noland,

2014; Giuliano et al., 2012; Osland and Thorsen, 2008). These additional accessibility

benefits (beyond commuting-cost reduction) can be revealed with positive and signifi-

cant coefficient estimates on the potential-based accessibility measures in a residential

location choice model that also includes commuting cost as an independent variable.

4.2.2 Place-based versus people-based accessibility measures in residen-

tial location choice models

In the previous section, I argue that potential-based accessibility measures are

more comprehensive than commuting cost in capturing the accessibility of a loca-

tion. However, in residential location choice models, analysts often (unexpected)

found that commuting cost had much higher explanatory power than potential-based

accessibility measures (see, e.g., Lee et al., 2010; Srour et al., 2002). In fact, in

some cases, researchers found that while some potential-based accessibility measures

(especially auto accessibility measures) had insignificant or even negative coefficient

estimates, commuting cost was highly significant in the same model (e.g., Zolfaghari

et al., 2012).2 Therefore, studies that used commuting cost or other household-specific

accessibility measures (e.g., distance to social contacts) tended to conclude that ac-

cessibility played a significant role in household residential decisions whereas studies

that used potential-based accessibility measures often concluded that accessibility

played a minor role.

2Previous research usually interpreted this finding as suggesting that accessibility was trumped
by other considerations when people decided where to live or that there were high levels of negative
externalities associated with locations of high (auto) accessibility.
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This debate can be explained by an analysis of the influence of place-based and

people-based accessibility in residential location choice models. Here, place-based

accessibility refers to the level of accessibility to all potential destinations whereas

people-based accessibility indicates the level of accessibility to household-specific des-

tinations (e.g., the workplace of a household member). Potential-based accessibility

measures are place-based, and commuting cost and other household-specific acces-

sibility measures such as distance to social contacts are people-based. For a given

household, the level of accessibility it actually receives (i.e., people-based accessibil-

ity) at a location can be very low even though the level of place-based accessibility at

this location is quite high. For example, while the downtown provides a very high of

accessibility to all potential employment opportunities (i.e., place-based accessibility

is high), it also incurs very high commuting costs for a household whose members

work at the airport (i.e., people-based accessibility is low).

For a given household that is choosing where to live, it usually seeks to maxi-

mize the accessibility to a limited set of destinations that matter to itself (e.g., the

workplace of a household worker and family and friends) rather than to maximize the

accessibility to all potential destinations. Therefore, in a residential location choice

model in which the unit of analysis is a household, it is natural that people-based ac-

cessibility measures such as commute cost, distance to social contacts (Guidon et al.,

2019), and utility-based measures (Lee et al., 2010) can explain household choice

better than place-based accessibility measures (Guo and Bhat, 2007; Chen et al.,

2008).

In practical applications of residential location choices, both people-based and

place-based accessibility measures may be included in the model to account for the

impact of different dimensions of accessibility. If a higher model fit is the goal, the

modeler should try his best to take into account the accessibility to all important

destinations matter to each household to construct a set of people-based accessibility
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measures. Besides, since the analyst can never know all the important destinations

to a given household, including some place-based accessibility measures may help

capture the impacts of accessibility to other potential destinations that were not ac-

commodated by people-based accessibility measures. Another factor that influences

the inclusion of place-based versus people-based accessibility measures in residential

location choice models is policy relevance. In the context of land use and transporta-

tion planning, place-based accessibility can be viewed as the direct policy outcome as

it measures the overall performance of the land use/transportation system, whereas

people-based accessibility is the indirect outcome for a particular individual. In prac-

tice, researchers often examine place-based accessibility when studying land-use and

transportation policies (Grengs et al., 2010), and they analyze people-based accessi-

bility when the key concern is transport justice (Martens, 2016).

4.2.3 Household preference for different types of accessibility in residen-

tial location choice model

Households may be drawn into “compact” neighborhoods (as oppose to low-

density, auto-oriented bedroom communities) because of the different types of accessi-

bility they provide. For example, a multi-worker household may have a preference for

neighborhoods with high auto accessibility in order to reduce the aggregate commute

time for all households, a carless household may strongly prefer to live at a place

with high transit accessibility, and a senior household may particularly like walkable

neighborhoods. Often, a compact neighborhood excels in all three dimensions of ac-

cessibility, but it is not always the case. For example, in many suburban locations

where auto accessibility is relatively low compared to places closer to the central city,

they provide relatively high transit walkability and accessibility.3

A clear understanding of household preferences for different types of accessibility

3In the metro Southeast Michigan context, many neighborhoods in the city of Ann Arbor,
Michigan fits into this description.
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can help guide land-use and transport policymaking and planning practices. A recent

study on the impact of transit-oriented development on travel behavior illustrates

this point (Chatman, 2013). The common assumption on rail-based transit-oriented

development is that individuals move in there to take advantage of the accessibility

provided by the rail infrastructure. Somewhat surprisingly, however, Chatman (2013)

finds that household auto ownership and auto travel were mainly explained by local

and subregional density (i.e. walkability and job accessibility by bus) rather than rail

access. This finding suggests the need for planners to broaden efforts to develop dense

and mixed-use neighborhoods at locations beyond areas adjacent to rail stations. In

the current study context, Chatman’s study implies that efforts to promote transit

accessibility for individuals who actually prefer walkability would be misguided and

ineffective. In addition, even if households prefer all types of accessibility, there is a

practical need to understand the relative importance of each to help planners prioritize

their efforts.

The existing studies regarding household preferences for different types of accessi-

bility can be grouped into two broad categories. One body of literature examines how

accessibility impacts property values, and these studies typically apply a hedonic-price

modeling approach. The main relevant insights from these studies can be summarized

as follows: 1) Accessibility is in general found to have a positive and significant effect

on property (land or housing) values (Debrezion et al., 2007; Bartholomew and Ewing,

2011; Pivo and Fisher, 2011; Song and Knaap, 2003; Osland and Thorsen, 2008); 2)

The impacts of transit walkability and accessibility appears to be stronger than auto

accessibility, which may result from the fact that public roads are much more ubiq-

uitous than transit services and pedestrian-oriented infrastructure (Lin and Cheng,

2016); 3) The magnitude of accessibility’s impact on property values varies with cer-

tain contextual factors such as distance to the central business zone and neighborhood

composition in terms of property types, socioeconomic status, and physical-design
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characteristics, which means that there are significant intraurban sub-market effects

(Adair et al., 2000; Bartholomew and Ewing, 2011; Li et al., 2015; Du et al., 2012).

The second body of literature examines the role of accessibility in residential lo-

cation choice. By shedding light on how different factors of a housing unit shape

household preferences for it, this literature can be viewed as providing the theoretical

foundation for the relationships discovered in a hedonic price model. The study ap-

proach commonly applied by this body of work is discrete choice modeling or attitude

surveys that ask respondents to report/rank their preference for different attributes

of a housing unit or residential neighborhood. Besides confirming some findings of the

hedonic-price studies, this literature generates several additional valuable insights: 1)

while accessibility is commonly found to be a significant factor in residential choice,

its importance is secondary to dwelling-unit attributes and socioeconomic and de-

mographic characteristics (Zondag and Pieters, 2005; Lee et al., 2010); 2) There

is great preference heterogeneity for accessibility, for example, lower-income people

tend to have a stronger preference for transit accessibility (Liao et al., 2015; Hu and

Wang, 2017); 3) There is significant unmet demand for compact neighborhoods (in

terms of high walkability and transit accessibility) in many U.S. metropolitan regions

(Levine and Frank, 2007; Frank et al., 2019). Nonetheless, existing studies have barely

touched on the issue of how individuals value auto accessibility, transit accessibility,

and walkability differently.

4.2.4 Differences in stated preference versus revealed behavior

Studies that examine household preferences in residential location choice are ei-

ther based on revealed-behavior (often called revealed-preference) data or stated-

preference data. The former reflects true market behavior whereas the latter are

assertions of preference or responses to hypothetical situations. Revealed-preference

data are commonly believed to have high reliability and validity, but they are only
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suitable for short-term forecasting with small departures from the current state of

affairs (Louviere et al., 2000); on the other hand, despite the potential bias of stated-

preference data, they may be more suitable for long-term predictions with structural

shifts in the current market conditions.

Significant discrepancies exist in empirical studies that use stated-preference data

versus revealed-preference data to examine household preferences for accessibility.

Discrete-choice models that are based on stated-preference data consistently showed

that accessibility has a strongly significant and positive effect on residential loca-

tion choice (Kim et al., 2005; de D. Ortuzar et al., 2000). This finding is consis-

tent with the responses to attitude surveys, as survey respondents often reported

accessibility factors to have a high priority in their housing decisions (e.g., Myers

and Gearin, 2001; Chatman, 2009). By contrast, while some discrete-choice models

that examine the actual residential location choice of households reported similar

results (Lee et al., 2010), other revealed-preference studies estimated accessibility

variables to be marginally significant (Ben-Akiva and Bowman, 1998) or even to have

a negative sign (Guo and Bhat, 2007; Zolfaghari et al., 2012; van de Vyvere et al.,

1998). Among the different types of accessibility, it appears that the coefficient es-

timates for transit-accessibility measures are in general significant and positive but

those for auto-accessibility measures are mixed; and to my knowledge no residential

location choice models have incorporated comprehensive walkability measures (i.e.,

cumulative-opportunity or gravity-based measure that considers both the land use

and transport systems).

These discrepancies may result from two possible sources. First, it may be the

effect of real-life constraints on revealed preferences. In the process of actual housing

consumption, it is common that individuals’ preference for accessibility was trumped

by other household priorities due to the lack of choice. For example, in a housing

market where compact neighborhoods are scarce, households whose first priority is
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school quality (but second priority is accessibility) often have to live in a low-density,

auto-oriented neighborhood to pursue good schools (Levine et al., 2005). In stated

preference surveys, however, survey respondents may not recognize the real-life choice

constraint. Related, the ubiquity of accessibility may also explain the difference. For

instance, although people think auto accessibility to be important, it can not end

up being a determining factor since the ubiquity of road infrastructure in the U.S.

facilitates high levels of auto accessibility at almost all locations. These explanations

imply that the regional context, particularly in terms of the diversity of choice of-

fered by its housing stock, are likely to shape individuals’ housing choice behavior

(i.e., revealed preference for accessibility) to a large degree. Therefore, comparing

residential location choices across different regions can shed light on how altering

land use and transportation planning practices would impact results on the valuation

of accessibility in household residential decisions.

4.3 Modeling framework

The state-of-art method for residential location choice modeling is the logit-family

of models, which is built on the random-utility maximizing theory (Anas, 1982).

Households are assumed to choose a residential location by weighing the attributes of

each available alternative, such as housing cost, dwelling characteristics, accessibility,

school quality, and neighborhood characteristics, and by choosing the alternative

that maximizes utility. Theoretically, this process can be modeled by constructing

an household-specific choice set for each household (to ensure that only housing units

considered by each household are modeled) and specifying a random utility function

for each alternative (i.e., each alternative can have its own utility function).

However, there are several practical challenges to a modeler that result in several

compromises to this ideal approach. First, often the residential location choice is

modeled at a zone level instead of a housing-unit level because the available home-
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location information for the studied population is often at a zone level only. For

example, the household regional travel survey data released to the public often report

respondents’ home location at the level of traffic analysis zone, census tract, or block

group. This means that one can only use aggregate-level housing characteristics

such as median home value and median lot size to represent individual housing-unit

features such as its sale price and lot size in the modeling process. As long as the

housing units within a zone is reasonably homogeneous, however, Lerman (1975) have

demonstrated that one can still obtain consistent estimates of parameters describing

how households perceive the dwelling units themselves.

Second, since modelers usually do not know which housing units (zones) that

a particular household had considered or which criteria that it applied to screen

out possible housing units (zones), the modelers had to arbitrarily decide a credible

non-chosen alternative choice set for each household. The common practice is to

set up a choice-set pruning procedure based on plausible affordability criteria and

behavioral rules. For example, one can assume that a low-income household would

not be able to afford an expensive neighborhood and that one is only willing to

commute within a certain distance or time threshold (Lerman, 1975; Levine, 1998).

Deciding these pruning rules is an empirical question that lacks clear answers in the

literature (Zolfaghari et al., 2012), and so researchers often set up rules based on

common sense or observed data patterns. In the process, it is unavoidable that some

feasible alternatives would be eliminated whereas some infeasible ones would remain.

In the context of a multinomial logit model, however, it is believed that it is better to

exclude feasible alternatives from the final choice set than to include infeasible ones

into it (Lerman, 1975).

Finally, a sampling of the available alternatives (i.e., results of a choice set prun-

ing process) is usually applied in order to reduce the computational burden of model

estimation. Since the number of housing units (zones) that each household can pos-
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sibly choose from can be extremely large (thousands or even millions), modeling the

choice probability for each available alternative is a formidable task. To circumvent

this issue, one can estimate a choice model with a random sample of the non-chosen

alternatives as the coefficient estimates would be consistent with those obtained from

a model with the full choice set (McFadden, 1978).

Carefully conducting a choice-set pruning procedure represents the best efforts

that a modeler can do to build a realistic residential location choice model. In practice,

however, the non-chosen alternative choice set specified for each household is still most

likely to be different from the actual residential location choice set that it evaluates

when it decides where to live. This is because the decision process of every household is

likely to be very different, but the modeler usually has little information regarding the

unique considerations of each household and how it prioritizes these considerations.

The resulting non-chosen alternative choice set constructed from a modeler-defined

pruning procedure is thus usually much larger than the actual choice set that each

household evaluates, since in practice households often face (or set up on their own)

more constraints than what the modeler assumes. For example, while a modeler may

assume that a rural household has considered the possibility of living in a walkable

neighborhood in the central city, in reality, this may not be true if the scarcity of

walkable neighborhoods in the region precludes walkability from the consideration of

this household.

The differences between the modeler-defined alternative choice set versus the ac-

tual alternative choice set have implications for the coefficient estimates—or to state

more precisely, the appropriate interpretations of these coefficients—in a residential

location choice model. In the existing literature, the coefficients of a residential loca-

tion choice model are often interpreted as reflecting household preferences. However,

since the modeler-defined choice set often contains infeasible alternatives (i.e., alter-

natives that a given household cannot choose in reality due to constraints introduced
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by the market conditions or household-specific situations) for many households, the

estimated coefficients are likely to be a product of both household preferences and

market constraints; therefore, desirable attributes such as accessibility tend to have

a downward bias in their coefficient estimates when market or individual constraints

exclude accessible neighborhoods from the actual choice set of household residential

location decisions. This is especially true for U.S. regions that have a undersupply in

walkable and transit-accessible neighborhoods (Levine et al., 2005).

4.4 Model specification, data, and measurement

4.4.1 Model specification

This study applies the commonly used multinomial logit model to examine house-

hold residential location choice at a traffic analysis zone (TAZ) level (McFadden,

1978). There are a total of 2024, 2811, and 3700 TAZs in the Atlanta, Southeast

Michigan, and Puget Sound region, respectively. In a multinomial logit model, the

utility a TAZ j for a household i Uij is assumed to be made of a systematic compo-

nent Vij and a random component εij. The former is a function of observed attributes

whereas the latter is an unobserved error term which is assumed to be identically and

independently distributed across alternatives and across observations following a type

I extreme distribution. Under these assumptions, it can be deduced that the proba-

bility of a TAZ j being chosen by household i is:

Pij = exp(Vij)/
∑
j

exp(Vij). (4.1)

This systematic utility component Vij can be modeled as

Vij = f(Aj,Cj,Sj,Nj,Hi, nj), (4.2)
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where:

Aj is a vector of accessibility variables measured at TAZ j;

Tij is a vector of travel-cost savings variables which measures the expected travel-

cost savings household i can gain from TAZ j;

Cj is a vector of housing affordability variables measured at TAZ j;

Sj is a vector of local-services variables measured at TAZ j;

Nj is a vector of neighborhood-environment variables which measure the built

environment and socioeconomic characteristics of TAZ j;

Hi is a vector of household-related variables that measures the demographic and

socioeconomic characteristics of household i;

nj is a size-correction term that corrects for the fact that a TAZ with more housing

units would have a higher probability of being selected than a TAZ with fewer units

(Lerman, 1975).

Note that Hi, which do not vary across alternatives, can not enter into the model

directly and so these variables were interacted with other location variables. For

example, I have interacted a school-quality variable with a dummy variable which

indicates if a household is a high-income household with children to test if higher-

income households with children are more likely to live in neighborhoods with better

schools. Most residential location choice models that model household choice at a zone

level are variations of this function form, but the exact list of independent variables

may differ across studies in accordance to data availability and research focus. Table

?? presents the independent variables specified in this study.

Moreover, as discussed above, the modeler needs to construct a credible non-

chosen alternative choice set for each household (i.e., conduct a choice-set pruning

procedure). In this study, the following decision rules were applied to exclude alter-

natives from a given household’ choice set:
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1) Delete TAZs with less than five housing units of the household’s chosen tenure;

2) Delete TAZs with less than five housing units of the household’s chosen prop-

erty type (i.e., single-family property versus other types of properties);

3) Delete TAZs that would require the household’s female worker to drive more

than 60 minutes for a one-way work trip;

4) If the household has children, delete TAZs for which the proportion of house-

holds with children is smaller than 1%;

5) If the household resides in a TAZ where the proportion of households of a cer-

tain race is above 95%, delete TAZs for which the proportion of households of that

race is below 5%.

Performing this procedure excluded some TAZs (e.g., TAZs with no residential

units) from the choice set of all sample households, and so only a total of 2018,

2612, and 3596 TAZs in the Atlanta, Southeast Michigan, and Puget Sound region,

respectively, were retained for further analysis. Also, applying these decision rules

may eliminate some feasible alternatives from a household’s choice, but this would not

affect the properties of the parameter estimates in a multinomial logit model thanks

to its independence of the irrelevant alternative property (McFadden, 1978). Also,

a small number of observations may have selected an alternative that violates these

rules. These observations were deleted to avoid the logical inconsistency of having

households choose an alternative which is deemed unavailable. Since the number of

alternatives (thousands of TAZs) in each household’s choice set was still formidably

large, I randomly sampled 29 alternatives from this subset of feasible alternatives in

order to reduce the computational burden.

4.4.2 The data

This study builds residential location choices for three US regions–Atlanta, Puget

Sound, and Southeast Michigan. The main data source used is the recent regional
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household travel survey data collected by the local metropolitan planning organiza-

tions, i.e., Atlanta Regional Commission (ARC) 2011 survey, Puget Sound Regional

Council (PSRC) 2014-2015 survey, and Southeast Michigan Council of Government

(SEMCOG) 2015 survey. These metropolitan planning organizations also kindly pro-

vided me with the skim matrix which contains the estimated travel time for each

origin-destination zone-pair, which was used to calculate the auto and transit ac-

cessibility measures. Other input data used to construct the model database include

census data—Census Transportation Planning Products (CTPP), American Commu-

nity Survey (ACS), and Longitudinal Employer-Household Dynamics (LEHD), school

quality data extract from the GreatSchools.org API, Walk Score data extracted from

the Walk Score.com API, and crime-rate data (obtained from Southeast Michigan

Council of Government but not the other two regions).

It should be noted that none of the household travel surveys sampled a statisti-

cally representative population from their respective region. To correct this sampling

bias, a common approach is to apply sample weights, i,e, assigning each population

group (e.g., segmented by place of residence or income levels) a weight which equals

to the ratio of the probability of it being randomly selected to the share of this pop-

ulation group in the household travel survey. Nonetheless, specifying sample weights

in a residential location choice model with a large alternative choice set is challenging

since there is no available software or open-source packages for this purpose. I thus

constructed a more statistically representative sub-sample by performing a geograph-

ically stratified (at the Census County Subdivision level) sampling procedure on the

original survey sample, that is, for each region I drew a total of 1,200 observations (a

sub-sample) from the full survey sample by sampling in proportion to each Census

County Subdivision’s share of households in the region. Although this procedure does

not fully address the sampling bias issue, it corrects for over- and under-sampling in

certain County Subdivisions.
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Essential information extracted from these regional household travel surveys in-

cludes the following: a household’s home address, the work address of each household

worker, basic socioeconomic characteristics of the household (i.e., household income,

housing tenure, household size, and life-stage status).4 The CTPP data are special

tabulations of American Community Survey (ACS) data at the TAZ level, based on

which I constructed the following variables: number of housing units, median house-

hold income, median household size, proportion of households with children, propor-

tion of single-family properties, proportion of non-single-family properties, proportion

of rental properties, proportion of owner properties, and proportion of households in

each of the following racial/ethnic categories: White, Black, Hispanic, Asian, and

other. Since the CTPP data does not contain information regarding median home

value, median rent, and number of owner-occupied/rental units, these variables were

constructed based on the ACS 5-year estimates data; and to convert the ACS data

from the census block-groups level to the TAZ level, an area-weighted average ap-

proach (i.e., proportional allocation based on area size) was used. A similar con-

version was made on the LEHD data since LEHD summarizes employment data by

industry at the census block level instead of at the TAZ level.

GreatSchools.org kindly provided me with an API key to query their school-rating

data for each K-12 school in the United States. The GreatSchools summary rating for

each school, which ranges from 1 to 10, takes into account five factors, including test

scores, student or academic progress, college readiness, equity (relative performance of

disadvantaged students), and student enrollment in advanced courses.5 To construct

4Unlike ARC and PSRC, SEMCOG did not collect the home- and work-location information from
the survey respondents. Therefore, I estimated this information based on the following procedure.
The TAZ at which the majority of the household members reported to start their day was assumed
to be the home location. In addition, the destination TAZ at which a household worker reported to
arrive for a “Work at fixed work location” trip was assumed to be the work location; If a worker has
multiple jobs, the job that he worked for the longest hours was assumed to be the primary job and
the TAZ where this job locates was assumed to be the work location.

5A more detailed description of the school-rating calculation methodology can be found at
https://www.greatschools.org/gk/summary-rating/. Official data sources—including the overall
school index constructed by the Michigan Department of Education, the school achievement in-
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a school-quality variable for each TAZ, I first decided which school district that each

TAZ (its centroid) belongs to and then assigned the GreatSchools rating of the nearest

public school within that school district to the TAZ. I obtained the Walk Score for

each TAZ (its centroid) using the Walk Score API. Walk Score ranges from 0 to 100,

which measures the potential from a location to reach nine categories of amenities

such as grocery stores, restaurants/bars, and coffee shops by walking. The calculation

of Walk Score only accounts for destinations within a 30-minute walk (1.5 miles), and

a distance-decay function is applied to give destinations closer to the location of

interest a higher weigh.6

Table 4.1 presents a description of the independent variables used in this study

and their data sources. The ARC 2011 survey, PSRC 2014-2015 survey, SEMCOG

2015 survey collected valid data from a total of 6789, 10278, 12394 households in

total.7 After removing incomplete responses, I randomly sampled 1200 households

from the remaining sample to fit the residential location choice models. I did not use

the full sample because of computational limitations, and using a subset of the full

sample shall not affect the parameter estimates. I performed data processing in R

and fit the multinomial location choice model using the choicemodels Python library

developed by the UrbanSim team (Waddell, 2002). Table 4.2 shows the mean and

the standard deviation of the independent variables.

dex data generated by the Washington State Board of Education, and the Georgia school grades
report data available at the Governor Office of Student Achievement—were also evaluated but these
school-quality data did not result in better parameter estimates on the school-quality related vari-
ables.

6A more detailed description of the Walk Score methodology can be found at
https://www.walkscore.com/methodology.shtml

7The PSRC 2014-2015 survey was administrated in two waves, one in 2014 and the other in
2015, resulting in a total of 8340 responses. However, the 2015 sample contains 2850 households
who also participated in the 2014 survey, and so the total number of households surveyed was 6789.
For the panel sample—households who responded to the survey twice, I used their responses in 2015
for this study.
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Table 4.1: Description of independent variables and data sources

Variable code Level of
measure

Variable description Data source

Transportation-related variables

Walkability Zonal The Walkscore (0-100) of the centroid
of a given TAZ

Walkscore.com API

TransitAccess Zonal Transit accessibility index (first
principle component derived from
transit accessibility to employment
and to nonwork destinations)

LEHD, skim matrix

AutoAcc Zonal Auto accessibility index (first principle
component derived from auto
accessibility to all jobs, and shopping
and service destinations)

LEHD, skim matrix

AutoTT Household
and zonal

Sum of the auto commute time from
each household worker’s work TAZ to
a given TAZ

Regional household
travel survey, skim
matrix

Housing-affordability variables

HsgCost HHInc Household
and zonal

Median value (for owners) or median
rent (for renters) at a given TAZ
divided by household income

ACS, regional
household travel
survey

Local-service-related variables

SchoolQual Zonal Average school rating of a given TAZ Greatschools.org API

SchoolQual HInc
Household
and zonal

Average school rating of a given TAZ
interacted with high-income household
with children

Greatschools.org API,
CTPP

Crime rate Zonal Number of crimes per 10,000 people at
a given TAZ

SEMCOG

Neighborhood-environment variables

PopDen Zonal Population density in a given TAZ CTPP

PopDen HighInc Household
and zonal

Population density in a given TAZ
interacted with high-income household

Regional household
travel survey, CTPP

SinFamChd Household
and zonal

Percent of single-family property in a
given TAZ interacted with household
with children

Regional household
travel survey, CTPP

MHH-
Size HHSize

Household
and zonal

Absolute difference between median
household size in a given TAZ and
household size

Regional household
travel survey, CTPP

MHHInc HHInc Household
and zonal

Absolute difference between median
household income in a given TAZ and
household income

Regional household
travel survey, CTPP

Size correction term

LogHsgUnits Zonal The natural logarithm of the number
of housing units of the household’s
chosen tenure in a given TAZ

CTPP
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Table 4.2: Mean and standard deviation of the independent variables

Variable code Sample Atlanta Puget Sound Southeast Michigan

Mean Standard Mean Standard Mean Standard

deviation deviation deviation

Transportation-related variables

Walkability Chosen TAZs 14.40 20.41 61.31 32.45 23.48 22.90

Non-chosen TAZs 14.01 19.21 37.79 30.90 25.82 22.74

TransitAccess Chosen TAZs -0.03 0.80 0.42 1.21 -0.08 0.89

Non-chosen TAZs -0.12 0.83 -0.06 0.83 -0.09 0.63

AutoAccess Chosen TAZs -0.09 0.92 0.72 1.32 -0.19 0.96

Non-chosen TAZs -0.15 0.83 -0.02 0.95 -0.07 0.88

CommuteTT Chosen TAZs 41.78 41.03 27.24 26.94 20.47 26.96

Non-chosen TAZs 80.09 75.05 67.07 58.65 36.70 45.07

Housing-affordability variables

HsgCost HHInc Chosen TAZs 8.93 16.56 8.55 15.2 5.65 6.98

(Owners) Non-chosen TAZs 7.71 19.34 7.19 14.27 5.32 8.60

HsgCost HHInc Chosen TAZs 0.68 1.13 0.36 0.62 0.61 0.91

(Renters) Non-chosen TAZs 0.53 1.06 0.33 0.66 0.50 0.77

Local-service-related variables

SchoolQual Chosen TAZs 5.89 2.19 5.86 2.12 5.64 2.11

Non-chosen TAZs 5.79 2.05 5.68 2.02 5.39 2.19

SchoolQual HInc Chosen TAZs 1.04 2.58 0.45 1.73 0.73 2.16

Non-chosen TAZs 0.91 2.28 0.38 1.52 0.58 1.83

CrimeRate Chosen TAZs 3.25 0.31

Non-chosen TAZs 3.29 0.30

Neighborhood-environment variables

PopDen Chosen TAZs 1797.40 2251.17 5004.44 6785.83 3299.65 2834.62

Non-chosen TAZs 1927.25 2871.15 2572.85 3799.75 3150.26 2767.97

PopDen HighInc Chosen TAZs 527.61 1473.10 1405.71 4470.99 590.40 1408.72

Non-chosen TAZs 533.45 1680.09 714.13 2281.08 807.42 1923.49

SinFamChd Chosen TAZs 0.29 0.41 0.11 0.25 0.21 0.37

Non-chosen TAZs 0.27 0.39 0.12 0.27 0.20 0.35

MHHSize HHSize Chosen TAZs 1.03 0.95 0.70 0.79 0.91 0.80

Non-chosen TAZs 1.10 0.97 0.83 0.80 0.99 0.91

MHHInc HHInc
(1000s)

Chosen TAZs 3.92 3.19 4.23 4.37 3.23 2.90

Non-chosen TAZs 4.75 3.75 4.81 4.46 4.67 3.81

WkPctWt Chosen TAZs 0.53 0.38

Non-chosen TAZs 0.47 0.37

BkPctBk Chosen TAZs 0.14 0.30

Non-chosen TAZs 0.08 0.21

AsPctAs Chosen TAZs 0.00 0.02

Non-chosen TAZs 0.00 0.02

HpPctHp Chosen TAZs 0.00 0.02

Non-chosen TAZs 0.00 0.02

Size correction term

LogHsgUnits Chosen TAZs 1095.83 663.65 276.98 269.89 721.55 460.47

(Owner-occupied) Non-chosen TAZs 798.34 571.43 274.35 235.84 553.13 387.59

LogHsgUnits Chosen TAZs 574.02 614.98 410.95 366.27 285.69 324.81

(Renter-occupied) Non-chosen TAZs 439.64 470.01 184.69 208.45 252.5 285.19
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4.4.3 Accessibility measurements

The main variables of interest in this study are walkability, transit accessibility,

and auto accessibility. Broadly defined, there are four commonly used categories

of accessibility measures: 1) proximity-based measures, including proximity to key

destinations such as urban cores and proximity to transportation infrastructure such

as transit stops; 2) cumulative opportunities measures, which estimate the quan-

tity of opportunities reachable within a predefined threshold; 3) gravity-based mea-

sures, which is very similar to the cumulative opportunities measure except that a

distance-decay function is specified to weight down the contribution of more distant

opportunities; 4) utility-based measures, which can be obtained from random utility

choice models to represent the welfare benefits that people derive from access to op-

portunities. The first three are location-based measures whereas the fourth one is a

person-based measure. Among the three location-based measures, the gravity-based

measures are usually believed to be more comprehensive and conceptually appeal-

ing (Geurs and Van Wee, 2004; Handy and Niemeier, 1997). In addition, empirical

studies have verified the usefulness of the gravity-based accessibility measures in pre-

dicting a variety of socioeconomic outcomes such as housing value (Ahlfeldt, 2011),

travel behavior (Kockelman, 1997), labor productivity (Chatman and Noland, 2014).

Therefore, this study measures accessibility with a gravity-model approach.

I used a common form of the gravity model such that the amount of interaction

between an origin zone i and a destination j is positively related to the number of

opportunities at the destination zone but is inversely related to the travel cost (time)

between the zones. The accessibility to opportunity type n by travel mode m for

location i is expressed as

Aimn =
∑
j

Ojnexp(−βTij), (4.3)
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where:

Aimn is the accessibility index to opportunity type n by travel mode m for location

i ;

Ojn is the the attractiveness factor for opportunity type n based on the number

of these opportunities in destination zone j;

exp denotes the base of the natural logarithm;

β is the impedance factor that measures the friction of distance, a higher value

of which makes distant opportunities contribute to the accessibility index to a lesser

degree;

Tij is the travel time in minutes between zone i and j.

Assuming that employment to be a coarse indicator of overall activity, researchers

have often used accessibility to jobs as a measure of the overall accessibility of a

location (Handy and Niemeier, 1997; Boarnet and Wang, 2019). In recent years,

however, researchers have started to pay more attention to nonwork accessibility

(Grengs, 2015). After all, travelers in the United States made more than three-

quarters of their trips for nonwork purposes in 2009 and 2017 according to the two

recent national household travel surveys (McGuckin and Fucci, 2018). In theory,

therefore, nonwork accessibility is expected to play an important role in household

residential location choice.8 In this study, I use accessibility to retail and services

jobs to indicate nonwork accessibility. Retail jobs refer to jobs in North American

Industry Classification System sector (NAICS) 44-45 (Retail Trade), and services jobs

refer to jobs in NAICS sector 54 (Professional, Scientific, and Technical Services), 56

(Administrative and Support and Waste Management and Remediation Services),

61 (Educational Services), 62 (Health Care and Social Assistance), and 81 (Other

8The empirical evidence regarding how nonwork accessibility influences is nonetheless mixed.
Some studies have found a significant impact (e.g., Lee et al., 2010; Kim et al., 2005; Chen et al.,
2008) whereas others found an insignificant influence (e.g., Srour et al., 2002). In general, researchers
have found that job accessibility has a larger effect on residential location decisions than nonwork
accessibility, and Levine et al. (2019) provides an interpretation on this issue.

102



Services).

By taking into account both work and nonwork accessibility, this study uses more

comprehensive (in terms of the range of destinations considered) accessibility mea-

sures than most previous residential location studies. The calculation of the auto

accessibility and transit accessibility of a TAZ takes two same steps. First, I applied

equation 4.3 to calculate accessibility to work opportunities (all jobs) to nonwork

opportunities (retail and services jobs). The value of the impedance factor β was

specified to be 0.1 and 0.3 respectively for work and nonwork opportunities, which

were adopted from the estimates in Grengs (2015). Second, I performed principal

component analysis on the two obtained accessibility measures and extracted the first

principal component. This principal-component variable thus represents the overall

auto/transit accessibility of a TAZ.

I was not able to calculate the walkability of a TAZ with the same procedure,

because I did not have the data regarding the walk time for each origin-destination

pair. Two alternative secondary data sources were thus considered: one is the Walk

Score data from walkscore.com, and the other is the “Access Across America: Walking

2014” data published by the Accessibility Observatory at the University of Minnesota.

The latter source was rejected because it does not cover all member counties of the

ARC, PSRC, and SECMOG.

4.5 Results

4.5.1 Estimation and model fit

I estimated three models for each of the three regions, which include the same set

of independent variables except a different accessibility measure (walkability vs. tran-

sit accessibility vs. auto accessibility). I estimated three separate model instead of

one model that includes all three accessibility measures because they are highly corre-
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lated, which means that there would be multicollinearity if they are all included in the

same model. Table 4.3, Table 4.4, and Table 4.5 present the correlation coefficients

of the three accessibility measures across the three regions. Jointly, the three mod-

els help decide if accessibility maintains an independent effect on residential location

choice after controlling for commuting cost and if households value walkability, tran-

sit accessibility, and auto accessibility differently. In addition, to facilitate regional

comparisons, the models in each region were estimated with a nearly identical set

of independent variables to minimize the impacts of unobserved factors (i.e., model

output differences resulting from omitted variable bias). The model outputs were

presented in Table 4.6, Table 4.7, and Table 4.8.

Table 4.3: Correlation of accessibility indicators in Atlanta

Walkability Transit accessibility Auto accessibility

Walkability 1 0.694 0.766

Transit accessibility 1 0.666

Auto accessibility 1

Table 4.4: Correlation of accessibility indicators in Southeast Michigan

Walkability Transit accessibility Auto accessibility

Walkability 1 0.471 0.646

Transit accessibility 1 0.565

Auto accessibility 1

Table 4.5: Correlation coefficients of the accessibility variables in Puget Sound

Walkability Transit accessibility Auto accessibility

Walkability 1 0.457 0.663

Transit accessibility 1 0.623

Auto accessibility 1
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Table 4.6: Residential location models in the Atlanta region

Variable code Model 1 Model 2 Model 3

Coefficient z-value Coefficient z-value Coefficient z-value

Transportation-related variables

Walkability 0.06 1.64

TransitAccess 0.09 2.86***

AutoAccess -0.15 -2.94***

CommuteTT -4.02 -29.56*** -4.00 -29.48*** -4.11 -29.40***

Housing-affordability variables

HsgCost HHInc -0.76 -7.14*** -0.76 -7.26*** -0.66 -6.06***

Local-service-related variables

SchoolQual 0.07 1.78* 0.08 1.91* 0.04 1.06

SchoolQual HInc 0.18 1.57 0.18 1.58 0.18 1.57

Neighborhood-environment variables

PopDen -0.32 -6.11*** -0.32 -6.48*** -0.20 -3.46***

PopDen HighInc -0.06 -0.23 -0.06 -0.24 -0.06 -0.24

SinFamChd 0.25 2.44*** 0.25 2.45*** 0.17 1.68*

MHHSize HHSize -0.29 -4.89*** -0.30 -4.93*** -0.30 -4.94***

MHHInc HHInc -0.46 -8.55*** -0.47 -8.57*** -0.46 -8.49***

WtPctWt 0.52 7.06*** 0.50 6.78*** 0.56 7.49***

BkPctBk 0.40 8.57*** 0.40 8.52*** 0.39 8.11***

AsPctAs 0.05 1.03 0.05 1.05 0.05 1.06

HpPctHp -0.04 -0.93 -0.04 -0.92 -0.04 -0.85

Size correction term

LogHsgUnits 1.07 16.24*** 1.07 16.36*** 1.03 15.52***

Observations (N) 1200 1200 1200

Log-likelihood at convergence -2810.22 -2807.77 -2807.01

Log-likelihood (Null Model) -4080.44 -4079.44 -4081.44

Adjusted pseudo R-square 0.31 0.31 0.31

Note: *Significant at the 0.1 level, **Significant at the 0.05 level, ***Significant at the 0.01 level
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Table 4.7: Residential location choice models in the Southeast Michigan region

Variable code Model 1 Model 2 Model 3

Coefficient z-value Coefficient z-value Coefficient z-value

Transportation-related variables

Walkability 0.02 0.04

TransitAccess 0.09 3.80***

AutoAccess -0.29 -5.32***

CommuteTT -2.89 -23.93*** -2.88 -23.90*** -2.97 -24.20***

Housing-affordability variables

HsgCost HHInc -0.24 -2.31** -0.20 -1.89* -0.23 -2.21**

Local-service-related variables

SchoolQual -0.05 -1.13 -0.07 -1.56 -0.03 -0.61

SchoolQual HInc 0.23 2.27** 0.24 2.32** 0.23 2.28**

CrimeRate -0.43 -8.61*** -0.45 -9.37*** -0.28 -5.02***

Neighborhood-environment variables

PopDen -0.14 -2.54*** -0.14 -2.87*** -0.05 -0.92

PopDen HighInc -0.54 -2.61*** -0.53 -2.56*** -0.54 -2.59***

SinFamChd 0.11 1.09 0.11 1.17 0.09 0.09

MHHSize HHSize -0.05 -0.87 -0.05 -0.83 -0.05 -0.88

MHHInc HHInc -0.77 -13.72*** -0.77 -13.72*** -0.78 -13.83***

Size correction term

LogHsgUnits 0.95 16.22*** 0.94 16.21*** 0.92 15.74***

Observations (N) 1200 1200 1200

Log-likelihood at convergence -3160.42 -3154.86 -3145.57

Log-likelihood (Null Model) -4081.44 -4081.44 -4081.44

Adjusted pseudo R-square 0.22 0.22 0.23

Note: *Significant at the 0.1 level, **Significant at the 0.05 level, ***Significant at the 0.01 level
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Table 4.8: Residential location choice models in the Puget Sound region

Variable code Model 1 Model 2 Model 3

Coefficient z-value Coefficient z-value Coefficient z-value

Transportation-related variables

Walkability 0.33 6.41***

TransitAccess 0.06 2.59***

AutoAccess -0.07 -1.94*

CommuteTT -3.32 -25.30*** -3.39 -25.80*** -3.48 -25.72***

Housing-affordability variables

HsgCost HHInc -0.74 -5.15*** -0.83 -5.46*** -0.96 -6.72***

Local-service-related variables

SchoolQual 0.04 1.12 0.05 1.44 0.05 1.57

SchoolQual HInc 0.17 1.65* 0.16 1.52 0.16 1.52

Neighborhood-environment variables

PopDen 0.05 0.81 0.27 5.23*** 0.33 5.93***

PopDen HighInc 0.02 0.08 0.08 0.28 0.04 0.14

SinFamChd 0.14 1.63 0.09 1.03 0.07 0.81

MHHSize HHSize -0.32 -5.69*** -0.35 -6.16*** -0.36 -6.33***

MHHInc HHInc -0.39 -5.44*** -0.39 -5.36*** -0.38 -5.15***

Size correction term

LogHsgUnits 1.03 20.52*** 1.06 20.87*** 1.08 21.62***

Observations (N) 1200 1200 1200

Log-likelihood at convergence -2714.71 -2734.02 -2733.49

Log-likelihood (Null Model) -4081.44 -4081.44 -4081.44

Adjusted pseudo R-sqaure 0.33 0.33 0.33

Note: *Significant at the 0.1 level, **Significant at the 0.05 level, ***Significant at the 0.01 level

The McFadden’s adjusted pseudo-R-square, shown at the bottom of the tables, is

within the range of 0.2 and 0.3 across the twelve models. The McFaddens pseudo-R-

square is a measure of the likelihood improvement offered by the full model compared

to an intercept-only model, and values between 0.2 and 0.4 are often taken to represent

good model fit (McFadden, 1979).

I focus on the coefficient estimates in the following sections. Note that given the

nature of the models estimated (i.e., generic coefficients were specific for all house-

holds in a given region), the results should be interpreted as applying to a hypothetical
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average regional household rather than specific population groups. That is to say,

when a policy intervention (e.g., expansion of transit services) leads to changes in a

given variable (transit accessibility), the coefficients show the potential impacts on a

random group of households in the region rather than on a specific group of house-

holds. In practice, however, due to the existence of preference heterogeneity specific

population groups are more likely to respond to policy changes than a random group

of households; for example, individuals who have a stronger preference for transit ac-

cessibility are more likely to move into newly built transit-oriented development areas.

Therefore, the actual policy effects are likely to be larger than what the estimated

coefficients indicate.

Also, the estimated coefficients here were not regular coefficients butX-standardized

coefficients. They were obtained by fitting multinomial logit models on standardized

input data, i.e., each variable except LogHsgUnits was standardized by subtracting

its mean from each of its values and then dividing these new values by the standard

deviation of the variable. Like the standardized coefficients in regression analysis,

these X-standardized coefficients allow the modeler to directly assess the strength

of the effect of each independent variable on the choice outcome, and the variable

with the largest coefficient has the strongest influence. There is a notable difference

between regular standardized coefficients and the X-standardized coefficients used

here. Regular standardized coefficients were derived by standardizing both the X

and y variables. In logit models, however, only the X variables were standardized

because y, the utility of an alternative, is a latent utility variable unobserved to the

modeler. If one is only interested in the rank order of the magnitude of the effects

of the independent variables on the utility, however, X-standardization is sufficient

(Menard, 2004)
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4.5.2 Control variables

In this section, I discuss the sign and statistical significance (at the 0.05 level) of

the coefficient estimates for the control variables (non-accessibility variables). Within

each region, the coefficient estimates barely differ across the three models that in-

cluded a different location-accessibility measure. Generally speaking, these coefficient

estimates are reasonable and consistent with the existing theoretical and empirical

evidence.

First of all, the coefficient of CommuteTT was negative and highly significant in

all twelve models, indicating a strong impact of commute time on housing decisions.

This finding was not new, since almost all previous studies on residential location

choice found the same (e.g., Lee et al., 2010; Levine, 1998). However, by estimating

residential location choice models with an identical model structure across three U.S.

regions with distinctive urban structures, my study confirms with robust empirical

evidence that CommuteTT remains a top consideration in household residential deci-

sions. In fact, the magnitude of the CommuteTT coefficient was the largest among all

independent variables, a finding similar to previous studies that used regional house-

hold travel survey data to examine the relative importance of different factors (Liu,

2012; Lee et al., 2010).

The housing affordability indicator, HsgCost HHInc, was negative and significant

at the 0.05 level across all twelve models. This suggests that households are less

likely to choose a zone which is less affordable to them. The school-quality vari-

ables, SchoolQual and SchoolQual HInc, were positive in most models (except that

SchoolQual was negative in the Southeast Michigan models), which indicate that

households, particularly the high-income ones with children, prefer to live in places

with access to good schools.

A crime-rate variable was incorporated into the Southeast Michigan-region models

(crime data were not available to me for Atlanta and Puget Sound), and it is negative
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and highly significant. This finding confirms the conventional wisdom that safety

is a major consideration in housing decisions. Failing to include the crime variable

into the Atlanta and Puget Sound models would likely bias the estimates of other

independent variables that are correlated with crime rate. Since crime has a negative

impact on household residential location choice and accessibility variables are likely

to be positively correlated with crime rate, the coefficient estimates of CompactAcc,

Walkability, TransitAcc, AutoAccess in the Atlanta and Puget Sound models are likely

to have a downward bias.

Next are the neighborhood-environment related variables. In the Southeast Michi-

gan and Atlanta models, PopDen and PopDen HighInc were negatively associated

with residential location choice, which reflects the preference for low-density living

among the households living in these regions (Myers and Gearin, 2001). By contrast,

PopDen was positive and highly significant in the Puget Sound models. SinFam-

Chd had a positive coefficient across all models, confirming the conventional wisdom

that households with children tend to have a stronger preference for single-family

homes. Moreover, as suggested by the negative signs on MHHSize HHSize and MH-

HInc HHInc, there is strong neighborhood sorting by household characteristics and

household income.

Several race-related variables were specified in the Atlanta models but not the

Southeast Michigan and Puget Sound models because the ARC survey collected the

race information of the household members but the other two household surveys

did not. WtPctWt, BkPctBk, and AsPctAs had a positive sign, which suggests that

Whites, Blacks, and Asians tend to sort into neighborhoods of the same race. By con-

trast, HpPctHp had a negative but insignificant sign, meaning that Hispanics were

more likely to disperse into mixed-race neighborhoods. I also tested a model specifi-

cation without these race variables, and the coefficient estimates on the accessibility-

related variables did not change much. Therefore, while race-based sorting plays an
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important role in residential decisions, without accounting for it may not create a

serious omitted variable bias problem for estimating the impact of accessibility on

residential location choice.

Finally, the coefficient on the size correction term, LogHsgUnits, was reasonably

close to unity and highly significant across all twelve models. Theoretically, this

variable should have a coefficient of one if all units of a particular type in a given

zone are truly homogeneous, a necessary condition underlying the assumption that a

zonal-level choice model can result in parameter estimates consistent with a housing-

unit level model (Lerman, 1975). Therefore, these coefficient estimates validated the

modeling of residential location choice at the TAZ level with a multinomial logit

model.

4.5.3 Accessibility variables

I now focus on the accessibility-related variables, which are the main variables of

interest. I mainly examine the sign and statistical significance (at the 0.05 level) of

their coefficients. I also compare the magnitude of the (X-standardized) coefficients

on accessibility variables with the control variables in order to assess their relative

influence on residential location choice.

Walkability

Two possible reasons may account for the difference in the coefficient estimates

of Walkability across regions. One is that households living in the Puget Sound re-

gion have a stronger preference for walkability than households in the Atlanta and

Southeast Michigan region. The other is that there is a great scarcity of walkable

neighborhoods (housing units) in Atlanta and Southeast Michigan; that is, if walka-

bility is a rare ”commodity”, most households simply do not or cannot actively seek

for it. The first argument attributes the results on Walkability to household pref-

erences whereas the second attributes them to the constraints they face, and both
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preferences and constraints may explain individual choice outcomes.

Which of these two arguments is true have important implications on land use

and transportation policies. If the empirical evidence better supports the first argu-

ment, it means that compact-development efforts are less justifiable in the Atlanta

and Southeast Michigan region than in the Puget Sound region. To the least, the

implementation of compact-development initiatives is likely to face more oppositions

from the Atlanta and Southeast Michigan region residents than from the Puget Sound

Region residents. If the second argument is true, however, it suggests that the re-

vealed behavior (in terms of matching the preferences for walkability) in the Atlanta

and Southeast Michigan region may be the preferred behavior. That is to say, due

to the lack of choice, households in the Atlanta and Southeast Michigan region often

had to choose a residence with a lower level of accessibility than what they prefer. It

follows from this reasoning that compact development is warranted to expand choice

for households in the Atlanta and Southeast Michigan region (Levine et al., 2005).

Whether the regional differences in walkability’s coefficient estimates result from

household preference differences or market constraints is an empirical question. My

review of the relevant literature leads me to conclude that market constraints probably

play a greater role. My conclusion is based on the following observations. First, in a

study that compares the fit between people’s transportation and land-use preferences

(i.e., preferences for compact neighborhoods) and actual neighborhoods across the

Atlanta and Boston metropolitan areas, the researchers found that Boston allowed a

much closer fit than did Atlanta (Levine et al., 2005). They showed that Atlantans in-

deed have a relatively weaker preference for compact neighborhoods than Bostonians.

However, the difference in preferences is far from enough to explain why Atlantans

were much more likely to end up living in low-density, auto-dependent neighborhoods

than Bostonians, which suggests that the scarcity of compact development plays a

major role (Levine et al., 2005).

112



Table 4.9 presents the distribution of TAZs and housing units in terms of their

walkability level across three regions. These statistics clearly show that there is a

great scarcity of walkable neighborhoods—more accurately, a scarcity of housing units

locating in walkable neighborhoods—in the Atlanta and Southeast Michigan region

compared to the Puget Sound region. Only 3.2% and 4.3% of the housing units in

the Atlanta and Southeast Michigan region, respectively, were in the “very walkable”

category, compared to a 14.8% in the Puget Sound region. By contrast, 90.7% and

80.4% of housing units in the Atlanta and Southeast Michigan region respective were

in car-dependent neighborhoods, whereas only 72.2% of housing units in the Puget

Sound region were. Alarmingly, a large majority of housing units were built in car-

dependent neighborhoods, although surveys frequently report that only a minority

of American households prefer such neighborhoods (Levine et al., 2005; Frank et al.,

2019; Myers and Gearin, 2001).

Another piece of empirical evidence that leads support for the “market constraint”

view is the studies on how walkability affect property values. To my knowledge, almost

all of these studies found that walkability provided a significant boost to land and

property prices (Li et al., 2015; Bartholomew and Ewing, 2011; Pivo and Fisher,

2011). These studies were conducted in different cities, suggesting that walkability is

a desirable neighborhood attribute among the general population. This is evident in

the two regions themselves: in the Atlanta region, the redevelopment of the Beltline

that turns the surrounding areas into walkable and transit-accessible neighborhoods

has led to rapid property price increases (Immergluck and Balan, 2018); and in the

Southeast region, some walkable neighborhoods in downtown and midtown Southeast

Michigan have attracted many new businesses and residents in recent years (Riley,

2018).

The fact that walkability had a positively significant coefficient in almost all

hedonic-price regression models whereas it was insignificant in two of the three res-
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Table 4.9: The distribution of walkability (across TAZs and housing units) in the
three regions

Atlanta Southeast Michigan Puget Sound

TAZ Housing units TAZ Housing units TAZ Housing units

Very walkable 4.5% 3.2% 5.6% 4.3% 21.3% 14.8%

Somewhat walkable 5.9% 6.2% 12.9% 15.3% 15.5% 13.0%

Car dependent 89.7% 90.7% 81.4% 80.4% 63.2% 72.2%

Note: Walk Score ranges from 0 to 100. A Walk Score of 70 and above is defined as very walkable,
50 to 69 is somewhat walkable, and 49 and below is car-dependent.

idential location choice models is a subject that needs further study. I provide two

possible explanations here. One explanation is that the walkable neighborhoods in

the Puget Sound region are more desirable compared to the walkable neighborhoods

in the Atlanta and Southeast Michigan regions (see Figures 4.1, 4.2, and 4.3). This

can result from two factors. First, walkable neighborhoods in the Puget Sound re-

gion (mostly in the city of Seattle) are better designed (in terms of aesthetics and

pedestrian friendliness) than walkable neighborhoods in the Atlanta region (mostly

in downtown and midtown Atlanta) and in the Southeast Michigan region (mostly in

downtown and mid-town Southeast Michigan). Second, in the Atlanta and Southeast

Michigan region, housing quality is negatively associated with walkability (suburban

housing units are in general of better quality than urban housing units in these two

regions). Since housing quality is expected to be positively associated with residential

location choice and my models did not control for it, there is likely to be a downward

bias for the coefficient estimate on walkability.

The second explanation is that the alternative choice set that the modeler arbi-

trarily constructed for each household may not be the actual choice set considered

by that household. If neighborhoods of high walkability were included in the choice

set of households that in reality only considered auto-dependent neighborhoods when

deciding where to live, the coefficient estimates on walkability are likely to be biased

downward (Lerman, 1975). Given the scarcity of walkable neighborhoods in the At-

lanta region and the Southeast Michigan region, one can expect that walkability is
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Map 4.1: The WalkScore of TAZs in the Atlanta region

Map 4.2: The WalkScore of TAZs in the Southeast Michigan region
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Map 4.3: The WalkScore of TAZs in the Puget Sound region

considered by a small minority of households in their housing choice; however, neigh-

borhoods of high walkability were inevitably included into the choice set of most

households in the two regions since I had no information on if a household considered

walkability or not.

Transit accessibility

The estimated coefficients on transit accessibility were positive and statistically

significant at the 0.05 level in models across the three regions. While I am more

inclined to view this established relationship between transit accessibility and housing

choice as causal, there is also reason to believe that it is a pure correlation. The

“correlation” case can be supported by two main arguments. First, the data used

in my study are cross-sectional rather than longitudinal. Results of a cross-sectional

study are highly subjective to omitted variable bias and are commonly believed to be
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insufficient to determine causal relationships. Second, there can be a reverse causality

issue. Transit lines and stops are usually located at high-density places to achieve the

goal of serving more people, that is to say, transit infrastructure (and hence transit

accessibility) may come after housing choice.

However, the case for “transit accessibility causing residential location choice” is

corroborated by two further pieces of empirical evidence. First, in surveys of residen-

tial preferences, households frequently indicated that transit access was an important

consideration (Chatman, 2009). People may value good transit access not only for

the actual use of the service but also for the opportunities it offers for unexpected

future use (Roson, 2001). Second, hedonic-price models generally estimate a positive

and significant impact of transit accessibility on property values. Scholarly inquiry

into how transit accessibility impacts land value and housing prices has existed for

decades, and the empirical evidence accumulated so far largely support the notion

that transit accessibility has a sizeable impact on property values (Mulley et al., 2016;

Knight and Trygg, 1977). For example, Armstrong and Rodriguez (2006) found that

properties located in municipalities with commuter rail stations were valued about

10% higher than properties in municipalities without a commuter rail station.

Auto accessibility

Auto accessibility had a negative coefficient in models across all three regions.

While a negative coefficient on auto accessibility was unexpected, previous studies

frequently reported the same (see, e.g., Guo and Bhat, 2007; Zolfaghari et al., 2012;

van de Vyvere et al., 1998). Previous studies often interpreted the negative sign as

suggesting that most people in the study area lived in neighborhoods of low auto

accessibility or that neighborhoods of high auto accessibility were often associated

with high levels of negative externalities (e.g., noise and traffic). Besides these reasons,

this may result from the fact that public roads are ubiquitous in U.S. metropolitan
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regions and so the level of auto accessibility is sufficiently high at most locations. In

this context, households with cars would be indifferent to the variation in the level of

auto accessibility across locations. For households without cars, they are likely to be

even more indifferent since they cannot take advantage of auto accessibility anyway.

It should be noted that in separate models where I excluded the commute cost

variable (results not shown here), the coefficient on auto accessibility became positive

and statistically significant at the 0.05 level. This finding supports the construction

of more housing units at locations of high auto accessibility, in order to allow house-

holds that wish to cut commute costs to have more housing options (Levine, 1998).

Relative influence of accessibility on residential location choice

As discussed above, comparing the magnitude of the estimated X-standardized

coefficients can shed light on the relative influence of each variable on the choice

outcome. Across all three models, CommuteTT had the largest coefficient, suggesting

a very strong influence of commuting time on residential location choice. By contrast,

the magnitude of other accessibility indicators (i.e., overall accessibility, walkability,

transit accessibility, and auto accessibility) was relatively small, which ranked almost

at the bottom when compared with all other independent variables in terms of their

relative influence on residential location choice. One exception is the relative influence

of walkability in the Puget Sound region model, which ranked at the third place.

These findings are largely consistent with the results in several other resident location

choice studies that examined the relative influence of each independent variable on

the choice outcome (Lee et al., 2010; Liu, 2012).

4.6 Implication and discussion

These findings have important implications for land use and transportation plan-

ning practice and policymaking. First, the different impacts of walkability, transit
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accessibility, and auto accessibility on residential location choice shed light on the

design of land use and transportation policies to promote accessibility. In addition,

the differences in model results across regions reveal that accessibility evaluation is

highly dependent on the regional context. Finally, the study calls into question the

existing long-term land use and travel models that are calibrated based on revealed

location- and travel-choice behavior, since revealed behavior is shaped by the existing

choice constraints and it can be different from preferred behavior.

4.6.1 The design of accessibility-promoting policies

The finding that transit accessibility exerts a significant influence on residential

location choice suggests that transit accessibility is a highly desirable attribute among

many households across U.S. regions. This finding explains the increases in housing

price in areas adjacent to transit infrastructure (Bowes and Ihlanfeldt, 2001) and

also provides empirical support for the planning practice of promoting more transit-

oriented developments in order to meet the market demand (Levine et al., 2005). In

addition, since transit accessibility is the only type of accessibility that has a positive

and significant coefficient across all three regional models, policies that promote tran-

sit accessibility are more likely to have a significant influence on residential patterns

than measures that promote walkability and auto accessibility. However, one should

not interpret this finding as suggesting that local residents are more supportive of

policies that promote transit accessibility than policies that promote walkability and

auto accessibility, since my models examine how households react to the level of dif-

ferent types of accessibility already available at different locations rather than how

they react to proposals to enhance accessibility. Such policy proposals usually come

with a cost and thus requires a different cost-benefit analysis in order to assess their

relative merits and disadvantages (Levine et al., 2018).

After controlling for commuting cost, households across all three regions do not
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value auto accessibility in residential location choice (in fact, auto accessibility has a

negative coefficient). As I discussed above, this finding is not surprising: The com-

parative advantage and the relative attractiveness of a location depend on if it offers

a much higher level of accessibility than other locations; and in many U.S. regions

where there is almost ubiquitous road access across all locations, it is reasonable for

the locational advantage of central locations in auto accessibility to be perceived as

unimportant. This suggests that road investments are likely to have a relatively small

influence on location patterns in an environment of ubiquitous road access. On the

other hand, the finding that commuting cost is a highly significant factor across all

models provides empirical support for policy measures (e.g., job-housing balance) that

seek to reduce commuting cost. This contradicts an earlier claim which asserts that

commuting cost plays a decreasing role on household residential decisions and that

the land-use and transport link is weakening (Giuliano and Small, 1993; Giuliano,

1995).

The limited influence of auto accessibility on residential location choice should

nonetheless not be interpreted as suggesting that auto accessibility is not an important

and desirable location attribute. Beyond shaping location choice and development

patterns, land use and transportation planning policies and practices that promote

auto accessibility can result in other desirable social outcomes such as reduced vehicle

miles travelled (Ewing and Cervero, 2001), higher economic growth (Banister and

Berechman, 2001), and better employment prospects (Ihlanfeldt and Sjoquist, 1991).

When planning for the future, promoting auto accessibility—as opposed to promoting

automobility—should still be a fundamental planning goal (Martens, 2016; Levine

et al., 2019). A region that is experiencing decreasing auto accessibility would have

a lower level of attractiveness to potential future comers and lose in competitiveness

compared to other regions.
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4.6.2 The importance of regional context in accessibility evaluation

A comparison of the similarities and differences of the model outputs across re-

gions can generate valuable insights on how regional context influences accessibility

evaluation in residential location choice modeling. Since the models specified in this

study have almost identical sets of independent variables and the measurement of

accessibility indicators (and most other variables) are the same, this study provides

robust empirical evidence (by ruling out the influences of model specification and

measurement) to understand how regional context matters. Nonetheless, I also bring

into discussion findings from other studies in order to have a more comprehensive

understanding of the generalizability of findings in this study.

The finding that transit accessibility has a significant impact on residential loca-

tion choice across all three regions is also consistent with most previous studies (e.g.,

Olaru et al., 2011; Hu and Wang, 2017).9. This means that one can comfortably

generalize this finding to other locations. Regarding auto accessibility, this study

shows that it has a negative coefficient in the models of all three regions, which indi-

cate a limited influence of auto accessibility on household location decisions. While

this finding is not uncommon, this finding contrasts with many other studies that

reported a positive and significant impact of auto accessibility on residential location

choice (e.g., Lee et al., 2010; Srour et al., 2002) While this difference may result from

differences in model specifications and measurements, regional context is also likely

to play a role. The regions studied here are all large U.S. metropolitan regions with

an extensive built-out area that is full of self-contained suburbs and an extensive road

network that well connects the region. This means that a household with access to

personal vehicles can enjoy a very high level of auto accessibility (accessibility to over

millions of job with an hour drive) at most locations. Since the marginal benefit that

9It should be noted, however, most previous studies use a distance-based accessibility (e.g.,
distance to transit stop) rather than the more comprehensive gravity-based accessibility measure
used here.
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a household gains from additional accessibility increases at a high level of accessibility

is likely to be low (due to a decreasing marginal utility of accessibility), a household

may place little value on locations with higher auto accessibility. If the study area is

a smaller region with a much lower level of overall auto accessibility, it is likely that

households would value locations of higher auto accessibility more.

An intriguing finding of this study is that walkability was highly significant in the

Puget Sound region model but not significant in the Atlanta and Southeast Michigan

region. As I discussed above, this is most likely because there is a great under-supply

of walkable neighborhoods, particular walkable neighborhoods with better housing

quality and urban design, in the Atlanta and Southeast Michigan region. This under-

supply results in a lack of choice, causing most households living in these two regions

to be unlikely to consider walkability as an important factor when deciding where

to live. To my knowledge, walkability has not been incorporated into the residential

location choice models of previous studies, although existing residential preference

surveys often show that many residents view walkability to be important (Schwanen

and Mokhtarian, 2004; Urban Land Institute, 2015; Canadian Home Builders As-

sociation, 2015; Frank et al., 2019). Therefore, my study fills an important gap in

understanding the role of walkability in residential location choice modeling.

The findings on walkability in this study is consistent with another important

study that examines the degree to which residents in Boston and Atlanta are able

to translate their residential preference for walkable and transit-accessible neighbor-

hoods into their actual residence choice (Levine et al., 2005). In this study, Jonathan

Levine and his co-authors found that Boston—by providing a greater range of neigh-

borhood types—allowed a closer fit between household neighborhood preference and

the actual neighborhood choice than Atlanta. The major improvement of my study

to the Levine et al. study is that my residential choice models control for a range

of other factors such as housing affordability, local services, and neighborhood char-
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acteristics, which greatly mitigates the omitted-variable-bias concern associated with

the model specified in the Levine et al. study. Together with the Levine et al. study,

my study highlights the importance of regional supply factors in shaping residential

location decisions and the valuation of accessibility in the process. From a policy

perspective, findings of both studies suggest the need for increasing the supply of

walkable and transit-accessible neighborhoods—for example, through the relaxation

of zoning regulations (Levine, 2006)—to allow households to have more choice in

housing decisions.

4.6.3 A need to incorporate “preferred” behavior in integrated land use

and transport modeling

The residential location choice models implemented in this study are standard

models used in an integrated land use and transportation modeling procedure (Wad-

dell, 2002), which was conducted by metropolitan planning agencies to guide land

use/transportation investments and decisions. In the process, residential location

choice models are used to predict the distribution of population growth, usually in

the next twenty or thirty years, in different parts of the region. As is the case in this

study, the main data source for residential location modeling is the regional household

travel survey.

Results of my study point to a potential issue with the current standard practice.

The issue is that residential location choice prediction is only based on the revealed

behavior of regional households, which is necessarily constrained by the existing mar-

ket and individual constraints and thus may not be the preferred behavior (Handy and

Niemeier, 1997). As I have discussed above, the coefficient estimates on walkability—

for the Atlanta and Southeast Michigan region—do not indicate that residents in the

Atlanta and Southeast Michigan region do not value walkable neighborhoods, but

rather suggest that they are not able to choose walkable neighborhoods due to the
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lack of choice. These households may well consider moving to a more walkable neigh-

borhood if more walkable neighborhoods with better schools and local services are

built in the future and thus bring a greater diversity of choice.

However, a standard application of the residential location choice models in the

Atlanta and Southeast Michigan regions, which assumes that the model outputs re-

flect the preferences of future residents, would signal to planners and policymakers

that households in the two regions do not value walkability and thus the provision

of walkable neighborhoods is unwarranted. Also, since the outputs of a residential

location choice model are inputs the subsequent travel-demand models, an under-

prediction of population growth in walkable neighborhoods would lead the modelers

to predict less nonmotorized trips. When the predicted future travel is used to guide

transportation investments and decisions, more resources are likely to be diverted to

motorized travel at the expense of undermining nonmotorized travel. This practice

thus constitutes another form of the “predict and provide” approach in transportation

planning that has been widely criticized in recent decades (Kenworthy, 2012).

Therefore, I argue that residential location choices with prediction purposes (e.g.,

when performing as a component of integrated land use-transport model systems)

should incorporate both information regarding the preferred behavior of households

and also their revealed behavior at present. One possible approach to achieve this can

be adding some stated-preference questions in the existing regional household travel

surveys, and incorporate such information into the land use and transport modeling

procedure. Research on joint modeling of revealed-preference and stated-preference

data has been ongoing for decades, which has been widely applied in travel modeling

(e.g., Ben-Akiva and Morikawa, 1990) but much less so in location choice modeling.
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4.7 Conclusion

In recent years, there are two major debates in the planning literature related

to accessibility: one is the debate on the desirability of compact development ver-

sus sprawled growth (Ewing, 1997; Gordon and Richardson, 1997), and the other

is accessibility-based versus mobility-based transportation and land use planning

(Cervero, 1997; Salomon and Mokhtarian, 1998; Levine et al., 2019). These nor-

mative debates are still ongoing but the scale is gradually shifting toward the di-

rection of accessibility, with accessibility and its corresponding policies gaining more

and more support among researchers and making inroads into planning practices

(Boisjoly and El-Geneidy, 2017; Proffitt et al., 2019). A much less discussed and

less well-understood topic, however, is how to plan for accessibility; specifically, little

knowledge is available regarding which types of accessibility to prioritize when plan-

ners and policymakers establish the goals of transportation and land use planning.

This study fills this gap by examining how regional households value walkabil-

ity, transit accessibility, and auto accessibility differently in their residential location

choice. To further evaluate the generalizability of study findings and to investigate

how regional context matters for accessibility valuation in household residential deci-

sions, I fit residential location choice models for random samples of households living

in three U.S. regions, namely, the Atlanta region, the Puget Sound region, and the

Southeast Michigan region. Since accessibility is a “good” with many proven benefits,

in theory, they should all have a positive influence on household residential location

choice. The model outputs only partially confirm this notion. The results show that

transit accessibility has a significant influence on household residential location choice

across all regions. Walkability is an important determinant of residential location for

the Puget Sound households, but not for the Atlanta and Southeast Michigan house-

holds. Somewhat surprisingly, auto accessibility, perhaps the type of accessibility

mostly discussed and measured among the three, appears to have little influence on
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residential location decisions.

The valuation of accessibility in residential location choice is jointly determined

by two major factors: the preferences of local residents (i.e., demand factor), and

the supply of different types of accessibility in the regional housing stock. However,

previous studies on residential location choice have generally interpreted the model

outputs as an indication of resident preferences while ignoring the potential influences

of the supply factors. That is to say, if the coefficient of an accessibility indicator

is statistically insignificant, it would be interpreted as suggesting that residents do

not have a strong preference for it when deciding where to live. The findings of my

study suggest that this interpretation can be erroneous. I argue that the insignificant

coefficients on walkability in the Atlanta and Southeast Michigan models are more re-

flective of the scarcity of walkable neighborhoods in these two regions rather than the

fact that households in the two regions do not value walkability as much as households

in the Puget Sound region. Likewise, the limited influence of auto accessibility on res-

idential decisions across all three regions is better interpreted as suggesting that the

ubiquity of road access evens out the accessibility differences across locations instead

of suggesting that auto accessibility are not important.

My study also has important implications for land-use and transportation plan-

ning practice and policymaking. First of all, it appears that for U.S. regions, policy

measures that promote transit accessibility are more likely to shape residential lo-

cation outcomes than measures that promote walkability and auto accessibility. In

fact, new road investments are likely to have a minimal influence on residential lo-

cation patterns considering an environment of ubiquitous road access in major U.S.

metropolitan regions. These findings are supported by the model outputs in all three

regions, which ensure a high degree of generalizability to other large metropolitan

regions. The results on auto accessibility are less transferable to smaller regions,

however, because the absolute level of auto accessibility is lower (accessibility is likely
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to be valued more at a lower absolute level due to decreasing return in utility) and

the road infrastructure is likely to be less pervasive. Moreover, the fact that walka-

bility has a varying degree of influence on household residential decisions across the

three regions highlights the importance of regional context in accessibility valuation.

Whereas households in the Puget Sound region can enjoy a better fit between their

residential preferences for walkability and actual neighborhood choice, the scarcity

of walkable neighborhoods in the Atlanta and Southeast Michigan region often force

households in the two regions to live in less walkable neighborhoods in order to satisfy

other needs such as good schools and good municipal services. This finding suggests

the need for increasing the supply of walkable neighborhoods (such as by relaxing

zoning regulations) to expand the choice of walkability-preferring households.

Finally, this study call for a need to incorporate information regarding the “pre-

ferred behavior” of households into land use and transportation modeling. The ex-

istence of market constraints means that people’s actual choice may not be their

desired choice, and so there is often a disparity between revealed behavior and pre-

ferred behavior. This means that a sole reliance on revealed-behavior data for land

use and transportation modeling, whose outputs are consequently used to guide land

use and transportation planning, can lead to future scenarios that reinforce the status

quo, which are most likely to be very different from the preferred scenario of local

residents. Eliciting information regarding households’ preferred behavior and incor-

porating it into the process of land use and transportation planning can thus lead to

better policy prescriptions and planning outcomes.
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CHAPTER V

Conclusion

Access is a basic human need. People need access to other people: to family

and relatives, to friends, to potential mates, to business partners, and to a variety

of casual acquaintances. They also need access to activities, goods, services, and

natural amenities, such as to job opportunities, food, medical services, and parks or

other recreational sites.

These needs in turn shape individual residential location and travel decisions.

When people decide where to live, an important factor they consider is the level of

accessibility a location offers, that is, the convenience/potential from it to reach desir-

able destinations (i.e., people and opportunities) distributed across space. Everything

else being equal, individuals in general would prefer a site that offers a higher level of

accessibility to work and nonwork destinations because it provides them more choices

when making travel decisions. By determining the price of travel from a location

to potential destinations (Boarnet and Crane, 2001), accessibility shapes individual

travel decisions regarding how many trips to take, which destinations to visit, and

which travel modes to use and at what frequency.

Land-use and transportation planning shapes the spatial distribution of people

and activities (i.e., land-use patterns) and the ease of travel between them (i.e., the

transport system), the two major components of accessibility.1 Thus to enhance indi-

1Geurs and Van Wee (2004) decomposed accessibility into four components: land use, trans-
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vidual residential and travel satisfaction, an intuitive approach is to promote land-use

and transportation planning policy and practice that can enhance accessibility. Ac-

cessibility improvements can come from either land-use policies such as new urbanism,

mixed-use development, and job-housing balance that promote the proximity between

origins and destinations or transportation policies such as travel-demand management

and rail investments that promote travel speed (Grengs et al., 2010; Levine et al.,

2012). Nevertheless, proximity-enhancing policies such as job-housing balance and

transit-oriented development (often jointly referred to as “compact development” or

“smart growth”) have been heatedly debated in recent decades.

Up until the early 2000s, a major focus of the debate is whether compact-development

policies are justifiable on the basis of free-market principles. While critics of compact

development assert that the prevailing low-density, auto-dependent development pat-

terns (urban sprawl) across the U.S. is a result of market forces and an expression

of consumer preferences (Gordon and Richardson, 2001, 1997; Glaeser and Kahn,

2004), supporters argue that urban sprawl results from both market failures (Ewing,

1997; Brueckner, 2000) and planning failures (Levine, 2006). Major market failures

associated with urban growth include a failure to account for the benefits of open

space, a failure to account for the social costs of driving, and a failure to make new

development pay for the infrastructure costs it generates (Brueckner, 2000). And

the planning failure lies in the inadequate supply of walkable and transit-friendly

neighborhoods that households prefer due to the pervasive single-family, exclusionary

zoning practices (Levine and Inam, 2004; Levine et al., 2005; Levine, 2006). The

debate on compactness-versus-sprawl has cooled down in recent years, with a grow-

portation, temporal, and individual. The temporal component distinguishes accessibility by time
of the day or day of the week (Miller, 1991; Kwan, 1998; Miller, 1999), which can be captured by
the land-use and transport components if the “operating” hours of activities (e.g., business hours of
stores) and transportation services (e.g.. operating hours of transit services) are accounted for. The
individual component further accounts for individual preferences, needs, and constraints; however,
the focus of this dissertation is on location accessibility (i.e., place-based accessibility) instead of
people-based accessibility.
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ing majority of scholars recognize the inefficiency, environmental harms, and social

inequality associated with sprawl (Anderson et al., 1996; Johnson, 2001; Owen et al.,

2004; Clifton et al., 2008).

More recent debates on accessibility-promoting land-use and transportation poli-

cies center on if these policies are effective tools to achieve planning goals such as

reducing car use (Ewing and Cervero, 2010; Stevens, 2017) and whether or not acces-

sibility remains to be an important locational factor in an era of declining transport

costs (Glaeser and Kohlhase, 2004). Naturally, evidence showing that accessibility

significantly affects travel behavior (e.g., reduce driving or promote the use of non-

motorized modes) and shapes locational decisions supports these policies, whereas

the absence of significance influences undermines the rationale for accessibility-based

planning policymaking and practice. The existing empirical evidence on these top-

ics is extensive but mixed. While many researchers have argued that accessibility-

promoting compact-development policies can reduce car use (Cervero and Kockelman,

1997; Ewing and Cervero, 2001, 2010) and that accessibility is a main determinant of

residential location choice (Lee et al., 2010; Hu and Wang, 2017; Baraklianos et al.,

2018), other scholars have questioned the merits of accessibility-promoting policies;

they argue that these policies do not necessarily reduce driving and traffic congestion

(Crane, 1996a,b; Salomon and Mokhtarian, 1998; Mokhtarian and Salomon, 2001) or

that accessibility is playing a declining role in shaping household residential decisions

(Giuliano, 1995).

The capacity of research to support or reject the merits of accessibility is greatly

influenced by the empirical measures of accessibility benefits. In both the residential-

location choice and travel-behavior studies, researchers have mainly relied on mea-

sures of travel-cost savings (TCS) to represent the benefits of accessibility. In the

residential location choice context, the measures are commuting-cost savings or re-

duced household travel expenditure; and in the travel-behavior context, they are
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reduced vehicle-mile-traveled (VMT) reduction or decreases in the contributing fac-

tors of VMT such as trip frequency, trip length, or the probability of driving. In other

words, these studies have applied TCS as the main criterion to evaluate accessibility-

enhancing land-use and transportation policies. And researchers have often cited the

absence of significance TCS to question the merits and importance of these policies

(Hamilton and Röell, 1982; Giuliano, 1995; Crane, 1996b; Stevens, 2017; Smart and

Klein, 2018a).

In this dissertation, I have argued that a TCS-based accessibility policy evaluation

ignores the non-TCS aspects (i.e., destination-utility gains) of accessibility benefits,

which underestimates the value of accessibility and hence without basis weaken the

policy importance of accessibility-promoting strategies. This argument is supported

by both theoretical reasoning and empirical evidence. Based on data collected from

the Puget Sound and Southeast Michigan region, I find that transit accessibility re-

mains to have a significant impact on residential location choice after controlling

for all TCS associated with, which I interpret as suggesting that individuals de-

rive destination-utility gains (mainly option value) from transit access. A search for

destination-utility gains often motivates individuals to make more trips and/or to

travel to more remote (and more desirable) destinations, which in turn induces addi-

tional car travel; this travel-inducing effect was verified by the trip-frequency models

estimated in the Southeast Michigan region, which show that transit accessibility was

positively associated with car-trip frequency.

In fact, that the economic value of accessibility is beyond travel-cost savings has

long been recognized by a branch of the urban and regional economics literature that

concerns agglomeration economies, which refers to the positive externalities that in-

dividuals and firms gain from accessing to nearby individuals and firms (Marshall,

1890). While the classic urban and regional economics theories such as the firm-

location theory (Weber, 1909), central place theory (Christaller, 1933; Lösch, 1940),
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and regional economy (Isard, 1956) were all built on transportation costs, in re-

cent decades economists have increasingly relied on the concept of agglomeration

economies to explain the concentration of activities in metropolitan areas and urban

centers (Fujita and Ogawa, 1982; Lucas Jr et al., 2001; Glaeser, 2010). The main

mechanisms of agglomeration economies include labor pooling, input sharing, and

knowledge spillovers (Duranton and Puga, 2004).

The theory of agglomeration economies is well known, but its connection with

accessibility research is not well understood.2 Existing research tends to examine

agglomeration economies at the city-level or regional-level, without distinguishing

the intraurban differences (Duranton and Puga, 2004; Rosenthal and Strange, 2004).

In recent years, however, a limited number of studies have sought to incorporate a

consideration of the production externalities available at different locations into the

modeling of urban spatial structure (Fujita and Ogawa, 1982; Imai, 1982; Lucas Jr

et al., 2001; Allen et al., 2015), and the location-production functions applied in these

studies can be essentially thought as a type of accessibility measure. This means that

accessibility can also be thought of as an indicator of agglomeration economies. By

establishing this connection in this dissertation, I not only add theoretical depth

to the argument that accessibility has benefits beyond travel-cost savings but also

bridges two large and disconnected bodies of literature—land-use and transportation

research and agglomeration economies.

A marriage between two bodies of literature generates valuable insights for ur-

ban research and policymaking. For example, the fact that agglomeration economies

operate in the form of production externalities provides a rationale for government in-

tervention to promote overall regional accessibility. For example, as Anas et al. (1998)

suggests, the inability of economic actors to internalize agglomeration economies can

prevent the free market to form optimal urban spatial structure, which thus opens

2Exceptions include a few recent studies have empirically established the link between accessi-
bility and labor productivity (Chatman and Voorhoeve, 2010; Melo et al., 2017).
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the door for government interventions such as assisting sub-center formation by pro-

viding infrastructure or relaxing the land-use regulations. This is in line with what

land-use and transportation planners have argued for—establishing accessibility as a

central goal of social policymaking (Wachs and Kumagai, 1973; Cervero, 1997; Levine

et al., 2019). Notably, this efficiency-based rationale (i.e., addressing externalities)

adds further theoretical underpinning to the promotion of accessibility as a major

planning goal.

My dissertation also opens the door for a new direction of accessibility research

to investigate the nature and magnitude of destination-utility gains. The empirical

work presented here is tentative and preliminary steps to verify its existence and its

influence on residential location and travel decisions. As I have discussed in the body

of the work, an ideal empirical approach to destination-utility gains requires the use

of longitudinal data that records the behavioral changes of individuals who experi-

ence accessibility gains. I have resorted to cross-sectional data here due to resource

constraints, which is a major limitation of my work. Future work should address this

limitation. In addition, future work should examine how different population groups

value travel-cost savings and destination-utility gains differently, which can generate

insights which population groups to target when specific policy goals are set. For

example, an understanding of which population groups have a stronger preference for

destination-utility gains can inform policymakers with VMT-reduction goals to avoid

targeting areas with large concentrations of these population groups.

On planning policy and practice, findings of this dissertation highlight the need

to shift from a TCS-based to an accessibility-based land-use and transportation

policy evaluation. Until now, the destination-utility aspects of accessibility have

rarely been discussed or even mentioned in planning-related discussions, whether it

is an infill-development project or a transit-investment proposal. To better promote

accessibility-based planning strategies, planners should stress to policymakers and
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the general public the various forms of destination-utility gains, such as the choice

value derived from greater flexibility and variety, enhanced social and economic in-

teractions, and the associated spillover effects such as knowledge transfer and social

learning. These arguments would be further strengthened if the regional household

travel survey incorporates questions regarding individual preference for various forms

of destination-utility gains and if empirical indicators of these destination-utility gains

are incorporated into the land-use and transportation plans developed by metropoli-

tan planning organizations.

Moreover, standard tools of transportation planning, such as traffic-impact anal-

ysis and level-of-service modeling, are based strictly in a mobility paradigm. An

expanded accessibility view as outlined here highlights the urgency of shifting from

mobility to accessibility as the basis for prospective and retrospective planning evalu-

ation. While a shift in the evaluative tools does not equate to changes in the physical

environment, such a shift can remove impediments to on-the-ground accessibility-

based planning implementation. As I have noted in chapter two, the recent integrated

land-use and transport models have already modeled accessibility with more compre-

hensive measures (e.g., gravity-based and utility-based measures) that can capture

both the TCS and destination-utility gains. By elaborating on the different types

of economic benefits picked up by these measures, My dissertation thus provides a

theoretical underpinning to the accessibility modeling approach in these models.

My dissertation further contributes to planning practice by identifying a major

methodological flaw in existing land-use and transportation modeling and simulation

work. When metropolitan planning organizations calibrate regional land-use and

transportation models to forest future land-use patterns, they usually rely on current

or historical data on household travel and residential location behavior to estimate

household preference for accessibility. These preference estimates are then directly

applied to the forecasting models. Chapter 4 of the dissertation shows that such
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practice is problematic because households’ revealed behavior, which these preference

estimates are derived from, is often different from their “preferred behavior” because

of the existence of supply constraints. These constraints prevent them from express-

ing their true preferences, which implies that solely relying on revealed behavior for

land-use and transportation modeling can exaggerate the problematic “predict-and-

provide” transportation-modeling approach that has been heavily criticized in the

literature (Owens, 1995; Banister). Therefore, I argue that land-use and transport

models with predictive purposes should incorporate information regarding the pre-

ferred behavior of households.

Written at a time when fully automated vehicles will soon (at least according

to optimistic predictions) pour into our streets, this dissertation sheds light on the

question of how autonomous vehicles will shape individual residential-location and

travel patterns. Autonomous vehicles free people from driving and allow them to

work, entertain, or rest in the car, which means that the disutility associated with in-

vehicle travel time would decrease significantly. That is to say, autonomous vehicles

will lead to substantive reductions in the time cost of travel perceived by travelers. As

the time-plus-money cost of travel declines, individual travel and residential-location

decisions are likely to be less driven by travel-cost savings than the competing factors

(e.g., neighborhood quality in the context of residential location choice). Thus under

a TCS-based view of accessibility benefits, geographical proximity between people and

activities would become less important in an era of autonomous vehicles; individuals

are likely to live further away from their jobs and would be more willing to take long

trips. It follows that autonomous vehicles would lead to further suburban sprawl and

greater VTM consumption.

While I do not negate these potential impacts, I stress here the existence and

importance of destination-utility gains, another form of accessibility benefits that

can hold people and activities together in an era of autonomous vehicles. While
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autonomous vehicles are expected to reduce the TCS associated with proximity, they

are less likely to reduce the interaction value (a component of destination-utility gains

as I described in chapter two) brought by it. Holding the transport network constant,

greater proximity to spatially distributed opportunities (i.e., people and activities)

leads to more interactions within a given amount of time. Any additional minute

spent on travel, in either an autonomous vehicle or a regular car, means lost time

and potential opportunity for meaningful interactions. Therefore, if people live too

far away from work or take longer trips, they would be able to make fewer trips

(purposeful interactions) in a given day; and if people are far away from other people

and activities, they are less likely to gain from random interactions, i,e,, knowledge

spillovers (Jaffe et al., 1993) and social learning (Glaeser, 1999). Therefore, under

emerging technologies, as with the transportation and communication technologies of

the past, it remains important for us to build cities and regions that facilitate better

accessibility.
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