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Abstract 

 

 Biomimetic synthetic high-density lipoproteins (sHDLs) are nanoparticles that mimic the 

physical, chemical, and biological activity of endogenous HDL. A number of sHDL products have 

been investigated for the treatment of cardiovascular diseases (CVD) for the past three decades. 

sHDL is composed of apolipoprotein A-I (apoA-I) or apoA-I mimetic peptide complexed with 

phospholipids to form a discoidal nanoparticle. Infusions of sHDL in animals and humans have 

been shown to increase circulating HDL levels, improve plasma cholesterol efflux capacity, inhibit 

inflammation, and improve endothelial function. Phospholipid composition of sHDL appears to 

have a significant impact on its function by defining the plasma stability of and cholesterol and 

LPS binding to the nanoparticle.  Thus, we proposed to optimize sHDL phospholipid composition 

to tailor nanoparticle functionality toward a specific therapeutic indication, such as atherosclerosis 

and sepsis. 

 In the first chapter, we optimized sHDL for the treatment of sepsis by comparing different 

fluidities of sHDL based on various fatty acid chain lengths and saturation of phospholipid 

compositions (POPC, DMPC, DPPC, and DSPC). We hypothesized that sHDL with a fluid liquid 

crystalline phase would improve anti-inflammatory activities by accelerating the efflux of 

exogenous molecules and improving accessibility to phospholipids for potential signal 

transductions compared to sHDL in a rigid gel phase. We demonstrated that treating cells with 

22A-DMPC, sHDL with a fluid liquid crystalline phase, resulted in the most effective inhibition 

of NF-κB signaling, TLR4 signaling through regulation of TLR4 recruitment into lipid rafts, and 
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upregulation of activating transcription factor 3 (ATF-3) expression in vitro. Furthermore, 22A-

DMPC effectively reduced mortality and protected organs in mice challenged with lethal doses of 

lipopolysaccharide (LPS) in a model of sepsis. In conclusion, we demonstrated that differences in 

sHDL phospholipid composition can impact sHDL’s anti-inflammatory signaling and the 

effectiveness of sepsis therapy. 

 In the second study, we determined how phospholipid and peptide components of sHDL 

impacted the nanoparticle’s pharmacokinetic and pharmacodynamic properties. We synthesized 

two different sets of sHDL with either identical phospholipids with variable peptide sequences of 

different plasma stability or identical peptide sequences with variable fatty acid chain length and 

saturation. We observed that proteolytically stabilized 22A-P-sHDL increased nanoparticle half-

life by 2-fold compared to less stable 22A-sHDL. Nevertheless, increased half-life did not translate 

to higher cholesterol mobilization. In contrast, varying phospholipids significantly impacted the 

nanoparticle’s pharmacokinetic profile whereby 22A-DSPC sHDL resulted in the longest half-life 

(6.0 h) compared to 22A-POPC sHDL (1.0 h). In addition, due to its increased half-life, 22A-

DSPC sHDL notably impacted the nanoparticle’s cholesterol mobilization capability, resulting in 

a 6.5-fold increase compared to 22A-POPC sHDL. Thus, we observed that the phospholipid 

component of sHDL plays a critical role in cholesterol mobilization in vivo. 

 In the final study, we formulated a new biomimetic nanomicelle called MiNano that is 

structurally similar to sHDL with a hydrophobic core, a hydrophilic exterior, and a particle size of 

12 – 14 nm. We discovered that MiNano resulted in a similar functionality to sHDL, but with much 

more efficient suppression of the inflammatory response in vitro. Also, MiNano displayed robust 

inhibition of inflammatory cytokines in an LPS-induced endotoxin mice model. 
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 In summary, this thesis thoroughly investigates the importance of the phospholipid 

component of sHDL and MiNano in the regulation of inflammation and cholesterol mobilization, 

allowing us to optimize nanoparticle composition for the treatment of sepsis and atherosclerosis.
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Chapter 1 

Introduction 

 

1.1. High-Density Lipoprotein 

 High-density lipoprotein (HDL) or generally known as “good” cholesterol is the smallest 

and densest plasma lipoprotein that circulates the body through the blood to mainly absorb 

cholesterol and carries back to the liver for elimination or recycling to extrahepatic tissues. This 

role is known as reverse cholesterol transport (RCT) which is one of the well-established protective 

mechanism of HDL in atherosclerosis as HDL accepts effluxed cholesterol from overloaded 

macrophages within the plaques and remove it from circulation (1). Likewise, HDL can also act 

as an anti-inflammatory agent. HDL preferentially binds to and neutralizes circulating endotoxin, 

returning it to the liver for elimination (2,3). HDL also promotes cellular membrane cholesterol 

depletion, compromising lipid raft integrity and leading to reduced TLR4 expression on the cell 

surface (4). Furthermore, HDL induces activating transcription factor 3 (ATF3) to suppress the 

expression of TLR-induced pro-inflammatory cytokines (5–7). 

 In several clinical investigations, profound changes in the concentration and composition 

of HDL have been established such as in cardiovascular diseases (CVD), sepsis, and systemic 

lupus erythematosus (SLE). Low levels of plasma HDL are observed in CVD patients (8–10), 

sepsis patients (11–13), and SLE patients (14–19). In addition, the plasma HDL level shows an 

inverse correlation with a clinical endpoint of diseases. Therefore, HDL has been investigated as 
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a promising potential therapy against CVD and sepsis, especially synthetic HDL (sHDL) due to 

ease of manufacture. 

 

1.2. Structure and Composition of HDL 

 HDL is constantly remodeled in the bloodstream through interactions with other 

lipoproteins, enzymes, and contact with target cells, resulting in significant particle heterogeneity. 

HDL consists of a core of hydrophobic lipids, including cholesteryl esters and triglycerides, and a 

surface monolayer containing phospholipid, free cholesterol, and apolipoproteins. The newly 

synthesized HDL (nascent HDL) is characterized in a discoidal shape with small unilamellar 

bilayers surrounded by apoA-I monomers, range from 8 – 10 nm in diameter, and 4.4 nm in 

thickness (20–22). Two discoidal models have been proposed as shown in Figure 1.1. One is 

called the ‘belt’ model which apoA-I forms continuous amphipathic -helices that are parallel to 

the plane of the disc (23) and other is called ‘picket-fence’ model which amphipathic -helical 

repeats of apoA-I form tandem anti-parallel helixes that are perpendicular to the plane of the disc 

(24). 

 

 

Figure 1.1. Models of discoidal high-density lipoprotein. Possible orientations of amphipathic 

helixes relative to the edge of discoidal micelles formed between apolipoproteins and 

phospholipids. Left, belt model; right, picket fence model (25) 
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 HDL consists of a core of nonpolar polar lipid including cholesteryl ester (CE) and 

triglyceride (TG), surrounded by a surface monolayer of a phospholipid, free cholesterol, and 

apolipoproteins. Apolipoprotein A-I (apoA-I) is the most abundant protein associated with HDL, 

comprising 70% of the total HDL protein content (21). ApoA-I is a 28.1 kDa, highly α-helical and 

amphipathic scaffold protein consisting of 243 amino acids that interact with lipids to ultimately 

define the size and shape of HDL species (21). The amphipathic characteristic of apoA-I allows 

solubilization of lipoprotein complex and to interact with both hydrophobic and hydrophilic 

molecules. Therefore, it allows HDL to associate numerous metabolic processes that require 

interaction with other proteins and receptors, as well as transport and exchange of lipids, hormones, 

CE, and TG. 

 In addition to proteins, lipid species are another key component in HDL that provide the 

overall structure of HDL and serve as a substrate for many receptors and enzymes associated with 

HDL and its metabolic properties. More than half of the total HDL mass is accounted for by lipid 

components, the majority being phospholipids – accounting for 40-60% of the total lipid mass (26). 

Of these phospholipids, phosphatidylcholines (PC) are known to be the largest population of HDL 

lipids making up 33 – 45% of total lipids. These lipids play a critical role in particle stability, 

cholesterol efflux from macrophages, the ability to interact with lecithin cholesterol 

acyltransferase (LCAT), and cholesterol elimination (27–32).  

 HDL can be classified into different sub-populations using various techniques. An 

overview of HDL classification is summarized in Table 1.1 based on the publication of Rosenson 

et al. (33). Briefly, the use of density gradient ultracentrifugation and nondenaturing gradient gel 

electrophoresis can distinguish HDL subpopulations on the basis of density and size, respectively; 

from smallest to largest, HDL3c, HDL3b, HDL3a, HDL2a, and HDL2b (33). ApoA-I containing 
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HDL subpopulations can also be defined on the basis of size and charge: pre-β-1 HDL (very small, 

discoidal HDL with apoA-I and phospholipid), α-4 HDL (very small, discoidal HDL with apoA-

I, phospholipid, and free cholesterol), α-3 HDL (small, spherical HDL with apoA-I, apoA-II 

phospholipid, free cholesterol, cholesteryl ester, and triglyceride), α-2 HDL (medium-sized, 

spherical HDL with same constituents as α-3 HDL), and α-1 HDL (very large, spherical HDL with 

same constituents as α-3 HDL but nearly no apoA-II) (33). Using more sophisticated techniques, 

such as nuclear magnetic resonance (NMR), 26 different HDL subpopulations have been identified, 

but they are simply described as small, medium, and large due to limited measurement precision 

(33). Recently, an NMR-based clinical analyzer called the Vantera® was developed to measure 

total HDL particle number in clinical laboratory settings (34). 

 

Table 1.1. Classification of HDL. 

Separation Analytical Method Very Small Small Medium Large Very Large 

Density 

Ultracentrifugation 
Classification HDL3 HDL2 

Range (F1.2) 0 - 3.5 3.5 - 9 

Density gradient 

ultracentrifugation 

Classification HDL3c HDL3b HDL3a HDL2a HDL2b 

Range (g/mL) 1.15 - 1.17 1.13 - 1.15 1.11 - 1.13 1.09 - 1.11 1.06 - 1.09 

Size 

Nondenaturing 

gradient gel 

electrophoresis 

Classification HDL3c HDL3b HDL3a HDL2a HDL2b 

Range (nm) 7.2 - 7.8 7.8 - 8.2 8.2 - 8.8 8.8 - 9.7 9.7 - 12.9 

2-D gel 

electrophoresis 

Classification pre-β-1 α-4 α-3 α-2 α-1 

Range (nm) 5.0 - 6.0 7.0 -7.5 8.5 -8.5 9.0 - 9.4 10.8 - 11.2 

NMR 
Classification Small Medium Large 

Range (nm) 7.3 - 8.2 8.2 - 9.4 9.4 - 14 
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1.3. Biosynthesis of HDL 

 Biosynthesis of HDL initiates with apoA-I which is synthesized from hepatocytes and 

enterocytes of the liver and small intestine, respectively. ApoA-I is secreted in a lipid-poor form 

but readily sequesters phospholipids and free cholesterol. Acquisition of these molecular 

components results in nascent HDL that is wrapped with two antiparallel molecules of apoA-I in 

a belt-like fashion around a solubilized central core of phospholipid oriented as a bilayer (35–37). 

Nascent HDL is the smallest HDL which is mainly interdigitated in about 160 phospholipids 

present in the core of the disc (25). Nascent HDL is then matured through the interaction of apoA-

I with ATP binding cassette receptor A1 (ABCA1), a transmembrane protein that mediates the 

transfer of phospholipids and free cholesterol to apoA-I. Free cholesterol transferred to HDL 

becomes esterified by LCAT. CE is then driven into the lipid bilayer, generating a core of 

hydrophobic CE surrounded by a monolayer of phospholipids. The transfer of CE into the core 

leads to the size increase of HDL that changes the disc-like structure into a maturing spherical 

structure while creating a gradient enabling more free cholesterol to move onto the particle surface. 

As HDL matures, it can interact with ATP-binding cassette receptor G1 (ABCG1) and scavenger 

receptor type B-1 (SR-BI) that participates in cellular cholesterol flux to HDL. Overall, the above 

processes increase the size of HDL and contribute to the heterogeneity of HDL (Figure 1.2). 

 

 

Figure 1.2. Schematic representation of maturation of HDL (38). 
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1.4. Biological Functions of HDL 

 HDL has been recognized with many biological functions including antioxidant, anti-

inflammatory, endothelial cell maintenance functions, and RCT. For the purpose of the project, 

we specifically focused on RCT and the anti-inflammatory functions of HDL. 

 

1.4.1. Reverse Cholesterol Transport 

 RCT allows translocating excess cholesterol and other lipids from lipid-laden macrophages 

in atherosclerotic lesions to the liver for elimination (Figure 1.3). This process is initiated by 

nascent HDL through interactions between apoA-I associated with HDL and ABCA1 on the 

peripheral cells (39). Free cholesterol and phospholipids are transferred from cells to nascent HDL, 

forming mature HDL particles (39). HDL further matures by esterifying cholesterol to CE by 

LCAT. LCAT catalyzes the esterification of free cholesterol associated with HDL and increases 

its hydrophobicity to maintain the concentration gradient of free cholesterol between cells and 

plasma to prevent net efflux of cholesterol from reaching equilibrium. The CE is then translocated 

within the hydrophobic core of HDL. Mature HDL particles can further remove cholesterol from 

peripheral cells through ABCG1 and SR-B1 (40,41). Cholesterol-rich HDL particles are then 

trafficked to the liver, delivering cholesterol cargo to hepatocytes through SR-BI in the apoA-I-

dependent process. Finally, cholesterol is incorporated into bile and excreted in the feces. HDL 

can also transfer CE to low-density lipoprotein (LDL) in exchange for TG, a process favored by 

cholesteryl ester transfer protein (CETP). Cholesterol-loaded LDL is then taken up by hepatocytes 

through the LDL receptor, promoting reverse cholesterol transport. Removal of excess cholesterol 

from macrophages in the artery wall is recognized to be the key process of HDL for protection 

against atherosclerosis and improvement of cardiovascular outcomes (42). 
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Figure 1.3. Reverse Cholesterol Transport pathway. 1) Formation of discoidal nascent HDL, 2) 

Formation of cholesterol esters by LCAT,3) transfer of CE and TG between HDL and LDL/VLDL, 

4) Delivery of cholesterol to the liver, and 5) Excretion of cholesterol into the bile (43). 

 

 

1.4.2. Anti-inflammatory Function 

 HDL exerts an array of anti-inflammatory activities through a number of mechanisms. 

HDL preferentially binds to and neutralizes circulating endotoxin, returning it to the liver for 

elimination (2,3). HDL also reduced TLR4 recruitment into lipid raft via cellular membrane 

cholesterol depletion (4). Furthermore, HDL induces activating transcription factor 3 (ATF3), a 

transcriptional modulator that act as a negative feedback on TLR signaling by inactivation target 

genes through reduction of histone acetylation, to modulate the TLR-induced pro-inflammatory 

cytokines, however, the exact mechanism remains unclear (5–7). 

 Microbial products such as lipopolysaccharides (LPS), an endotoxin component presented 

on the outer membrane of Gram-negative bacteria, are capable of triggering the inflammatory 
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response via Toll-like receptor 4 (TLR4) mediated recognition (44–46). Numerous studies have 

shown that HDL particles have the capability to bind and neutralize LPS in plasma, reducing the 

availability and the chance of LPS to bind TLR4. Although numbers of studies showed that LPS 

can also bind to and are neutralized by VLDL (47–51), LDL (48–52), HDL (48–52), apoA-I (53), 

apoB (53), and apoE (54), binding properties of HDL showed to be the most potent. During the 

transfer of LPS into lipoproteins, LPS-binding protein plays a critical role as it binds to LPS and 

it is associated with apoA-I containing particles that may explain the preferential binding of LPS 

to HDL (55,56). The mechanism of the neutralizing LPS is likely to occur due to the ability of 

HDL to absorb LPS in its phospholipid surface (Figure 1.4) (57–59). HDL could also facilitate 

the release of LPS that is already bound to macrophages to reduce macrophage activation (60). In 

addition, HDL promotes LPS neutralization and clearance by acting with the high-affinity HDL 

receptor, SR-BI (61–63). In the absence of either SR-BI or HDL in mice, the ability and capability 

to neutralize LPS in LPS- or cecal ligation and puncture (CLP)-induced model was critically 

impaired (61,62,64). These findings suggest that HDL can neutralize LPS and promote LPS 

clearance via SR-BI-mediated LPS uptake that would be a potentially more efficient and effective 

strategy for LPS clearance in comparison to neutralization via anti-LPS monoclonal antibodies. 

 

Figure 1.4. Structural model of LPS binding and neutralization by HDL. HDL can absorb LPS via 

the insertion of membrane-anchoring (Lipid A) domain of LPS into the phospholipid layer of 

discoidal HDL (59). 
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 The primary barrier of macrophage activation is a physical binding of LPS where HDL 

scavenge LPS and prevent LPS-induced cytokine release. Nevertheless, numerous researches 

explained that HDL can also play as a pivotal modulator of the inflammatory response in 

macrophages. Lipid raft is a domain of plasma membrane of cells containing glycosphingolipids 

and protein receptors. The key difference between lipid raft and the plasma membrane is that it 

has a special lipid composition that is rich in cholesterol, sphingomyelin, and glycolipids (65). Of 

these, cholesterol is found to be 3 to 5 fold the amount of the surrounding bilayer (66). Whenever 

LPS is treated in macrophages, it has been reported that TLR4 is recruited to lipid raft faction and 

subsequently inducing tumor necrosis factor-alpha (TNF-α) (67). Therefore, as HDL promotes the 

efflux of cholesterol from macrophages via the process of RCT, it is believed that subsequent TLR 

activation might be inhibited via changes to lipid raft cholesterol content and reducing the TLR 

recruitment (4,67).  

 In addition, a recent study showed HDL can upregulate the expression of transcriptional 

regulator named activating transcription factor 3 (ATF3) (5). Activation of ATF3 leads to 

recruitment of histone deacetylase 1 to the promoter region of pro-inflammatory cytokine gene 

and assists in deacetylating to limit transcriptional binding (68,69). In addition, a recent study 

demonstrated that ATF3 can directly interact with the p65 subunit of nuclear factor kappa-light-

chain-enhancer of activated B cells (NF-κB) to attenuate the NF-κB activity, thus, modulate the 

inflammatory response, rather than via indirect histone deacetylase 1 pathway (70). ATF3 has been 

recently identified as an HDL-inducible negative regulator of macrophage activation. A study 

revealed that HDL can inhibit the ability of TLRs to induce the expression of pro-inflammatory 

cytokines on the transcriptional level and it was fully dependent on expression of ATF3 both in 

vitro and in vivo (5).  
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1.5. Sepsis 

1.5.1. Introduction 

 Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to 

infection (71). Sepsis is known to be the second most frequent cause of mortality in non-coronary 

intensive care units (ICU) which mortality rate accounts as much as 50% and the tenth overall 

cause of death in high-income countries (72,73). Sepsis is responsible for over 1,000,000 cases 

and more than 250,000 deaths in the United States annually (74,75). Moreover, sepsis represents 

a significant economic burden which total hospital cost in 2011 was over $20 billion (76). Globally, 

sepsis is estimated to account for 19 million cases per year, however, true incidences are presumed 

to be far higher (77). Sepsis affects all ages, sex, and race. Infants and elderly people are more 

vulnerable than other age groups, males than females, and blacks than whites (78,79). Despite its 

worldwide importance, public awareness of sepsis is very poor and reported incidences is keep 

increasing (75,80,81). 

 Sepsis can occur as a result of community-acquired and healthcare-associated infections. 

Among various causes, pneumonia is the most common cause responsible for about 50% of all 

cases. Intra-abdominal and urinary tract infections rank second and third respectively (82–85). A 

recent study from 14,000 ICU patients in 75 countries, Gram-negative bacteria were isolated in 

62% of patients, Gram-positive bacteria in 47%, and fungi in 19% (85). The most common Gram-

positive isolates are Staphylococcus aureus and Streptococcus pneumoniae whereas Escherichia 

coli, Klebsiella species, Pseudomonas aeruginosa are the most frequently isolated Gram-negative 

bacteria in sepsis (84,86). 

 The clinical features of patients with sepsis are varied depending upon the initial site of 

infection, type of organisms, and health status of patients. However, most patients typically exhibit 
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signs and symptoms such as fever, anorexia, tachycardia, systemic hypotension, low calculated 

systemic vascular resistance, abnormal sensorium, leukocytosis, thrombocytopenia, impaired 

blood coagulation, and elevated blood lactate concentration (87). Many times, the function of key 

organs such as heart, lung, kidney, and liver is impaired. 

 

1.5.2. Pathophysiology 

 The pathophysiology of sepsis is extraordinarily complex and still remains poorly 

understood due to multiple subsequent and concurrent processes involving both excessive 

inflammation and immune suppression. Immune cells exhibit receptors known as pattern-

recognition receptors (PRRs) that recognize invading bacteria, danger or harmful signals to the 

body, and activate immune response (88–90). PRRs can recognize conserved motifs expressed by 

microorganisms which are known as pathogen-associated molecular patterns (PAMPs) such as 

LPS. In the presence of microbial infection, PAMPs induce up-regulation of inflammatory gene 

transcription and rapid initiation of innate host defense responses by engaging with key receptors 

known as TLRs, a subfamily of PRRs, on the cell surface or intracellular within monocytes, 

macrophages, and polymorphonuclear leukocytes (PMNLs) as well as many other cell types, 

including pulmonary epithelial cells and vascular endothelial cells (87). PRRs can additionally 

recognize endogenous danger signals of intracellular proteins or mediators released from dying or 

injured cells during inflammatory stress. These proteins, called alarmins or danger-associated 

molecular patterns (DAMPs) such as heat shock proteins, fibrinogen, S100 proteins, hyaluronic 

acid, and high-mobility group box-1 protein (HMGB1), cause further amplification of the pro-

inflammatory response through TLRs resulting in a positive-feedback loop promoting further 

amplification of dysregulated systemic inflammatory response (91–93). Thus, TLRs have emerged 
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as an essential receptor for the recognition of PAMPs and DAMPs, early detection of pathogens, 

and initiation of the innate immune response. 

 In the setting of sepsis, TLR4 mediated recognition of LPS is thought to be an important 

trigger of the inflammatory response in sepsis (Figure 1.5) (44–46). LPS binds to LPS-binding 

protein in serum and becomes solubilized (94). LPS is then transferred to an extrinsic 

glycosylphosphatidylinositol-anchored membrane protein on leukocytes called a cluster of 

differentiation 14 (CD14) (95). CD14 transfers LPS to an extracellular protein known as myeloid 

differentiation protein-2 (MD2), which binds to TLR4 to form the TLR4-MD2 receptor complex 

and triggers LPS recognition (95). LPS-MD2-TLR4 complex recruits cytoplasmic adaptor 

molecules via interaction with the Toll-interleukin-1 receptor (TIR) domains (45). Once TLR4 is 

activated via LPS recognition, TLR4-mediated signaling can further proceed through two major 

routes: the myeloid differentiation primary response gene 88 (MyD88) dependent and the TIR-

domain-containing adapter-inducing interferon-β (TRIF)-dependent pathway (also known as the 

MyD88-independent pathway). MyD88-dependent pathway induces the activation of NF-κB and 

mitogen-activated protein kinase (MAPK) genes leading to the release of pro-inflammatory 

cytokines while TRIF-dependent pathway activates Type-1 interferon-inducible genes followed 

by NF-κB production (96).  

 Once immune cells are activated due to the engagement of PAMP and PRR, they secrete a 

variety of mediators, including cytokines, chemokines, nitric oxide (NO), and reactive oxygen 

species (ROS) (87). For example, activated NF-κB induces the transcription of cytokines such as 

TNF-α and interleukin-1β (IL-1β), both of which are capable of activating target cells, promoting 

the production of more inflammatory mediators, and causing both direct and indirect host injury 
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(97). IL-6, IL-10, IL-8, IL-12, interferon-γ (INF-γ), and granulocyte-colony stimulating factor (G-

CSF) also play crucial roles in regulating the septic host response (97). 

 These cytokines (TNF-α and IL-1β in particular) increase the activity of inducible nitric 

oxide synthase (iNOS), which up-regulates the expression of inducible NO, a potent vasodilator, 

in endothelial cells. These vasoactive mediators cause vasodilation and septic shock. Moreover, 

TNF-α, IL-1β, INF-γ, and HMGB1 can activate endothelial cells by inducing adhesion molecules 

and injuring endothelial cells by inducing neutrophils, monocytes, macrophages, and platelets to 

bind to endothelium. These effector cells release mediators such as proteases, oxidants, 

prostaglandins, and leukotrienes. The major roles of the endothelium are selective permeability, 

vasoregulation, and provision of an anticoagulant surface. However, the release of proteases, 

oxidants, prostaglandins, and leukotrienes injure endothelial cells, leading to increased 

permeability, further vasodilation, alteration of the procoagulant–anticoagulant balance, and 

activation of the coagulation cascade. 

 

 

Figure 1.5. Schematic representation of inflammatory response to sepsis (98). 
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 Another critical aspect of sepsis is the alteration of the procoagulant and anticoagulant 

balance, including induction of procoagulant factors and suppression of anticoagulant factors. 

Sepsis activates coagulation by upregulating the expression of tissue factor from endothelial cells. 

Activation of the coagulation cascade leads to a formation of thrombin-α that converts fibrinogen 

into fibrin. Platelets bind to fibrin and promote adherence to endothelial cells forming 

microvascular thrombi. Microvascular thrombi can release mediators and cause a microvascular 

obstruction which further amplifies the injury. Activation of the coagulation cascade caused by 

sepsis subsequently leads to increased levels of disseminated intravascular coagulation and 

multiple organ dysfunction. 

 

1.5.3. Current Therapeutic Approaches and Limitations 

 One of the greatest disappointments during the past few decades is a failure to show 

significant benefits to patients with sepsis regardless of the advanced understanding and research 

in the pathogenesis of sepsis. In 1982, the first clinical trial in patients with septic shock was 

initiated with polyclonal antibodies that were directed against LPS. Since then, over 80 Phase II 

and III randomized controlled trials of pharmacological agents for sepsis have been conducted. 

Unfortunately, nearly all of these clinical trials have failed to provide efficacy. 

 One of the earliest sepsis drug development efforts began in 1982. Based on studies that 

showed passive immunization of mice with LPS-specific antibodies can protect the animals against 

lethality caused by injection of either LPS or viable Gram-negative bacteria (99), Ziegler and 

colleagues (100) conducted a clinical trial with a polyclonal antibody that was directed against 

LPS from the J5 mutant strain of Escherichia coli which have yielded positive result. However, a 

larger study has not shown to provide any therapeutic benefits, thus targeting of LPS has been 
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abandoned (101). The failure of this drug in clinical trials could be attributed to the apparent 

inability of the antibodies to inhibit LPS-induced cytokine production in human monocytes in vitro 

(102,103) and the fact that it partially sequesters LPS, thus only delaying rather than facilitating 

LPS clearance (104). 

 Eritoran (E5564) (105) and TAK-242 (106) are TLR4 antagonists developed based on a 

mechanism that LPS-mediated activation of immune cells requires interaction between LPS and 

TLR4. Anti-TNF agents such as afelimomab (107), a F(ab’)2 fragment of a murine TNF-specific 

monoclonal anti-body, and IL-1 receptor antagonist (IL-1RA) such as anakinra (recombinant 

human IL-1RA) (108), were also developed owing to a pathophysiology that TNF and IL-1β are 

key alarm-phase cytokines that are secreted early in the inflammatory response. Although their 

initial clinical results displayed improved survival, all have failed to validate such results in their 

later clinical trials (87,109,110). In a different approach, Eli Lilly developed Xigris (drotrecogin 

alfa (activated)), a recombinant human form of activated protein C, to inhibit excessive activation 

coagulation system in order to improve survival in sepsis. Likewise, the initial Phase III trial 

yielded a positive result (111) which led to regulatory approval in North America and Europe. 

However, subsequent clinical results were disappointing (84,112,113) thus the product was 

withdrawn from the market in 2012. Furthermore, drugs such as filgrastim and sargramostim – to 

enhance the immune response, and 546C88 – to inhibit NOS (114), have been failed to show any 

significant benefit in sepsis (87). 

 There are numerous reasons for the inability to develop successful treatments for sepsis. 

One of the main concerns is that heterogeneous groups of patients are enrolled for clinical trials. 

Over the past few decades, systemic inflammatory response syndrome (SIRS) criteria were 

extensively used as a basis for the enrollment of participants for clinical trials which were often 
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difficult to distinguish from sepsis and SIRS thus resulting in a heterogeneous set of patients. 

Therefore, recent international consensus recommended using Sequential Organ Failure 

Assessment (SOFA) scoring system instead of SIRS scoring system to clinically define sepsis 

patients (71). Another reason for failure is that some drug compounds are found not to be 

biologically active. For example, two LPS-specific monoclonal antibodies, HA-1A and E5, 

completely lack to show efficacy to neutralize the pro-inflammatory effect of LPS in Phase III 

clinical trials. 

 As of today, the only drug that shows a positive effect is a relatively low dose of 

hydrocortisone (200 mg per day up to 7 days) (115). Because it has been broadly used for 

treatments involving excessive inflammation such as asthma or rheumatoid arthritis, it has been 

investigated as well as in sepsis. Nevertheless, the use of hydrocortisone is only supported by meta-

analysis, whereas the two largest studies had conflicting results and other clinical trials are 

currently ongoing (74). 

 

1.5.4. HDL Alteration in Sepsis 

 Profound changes in the concentration and composition of HDL have been established in 

patients with sepsis (11,116–118). Multiple studies revealed that a marked decline in serum HDL 

levels was observed during infection and inflammation (11,116,117,119,120). Patients with sepsis 

had reductions in HDL-cholesterol (HDL-C) levels of 40 – 70% compared to healthy subjects and 

inflammation induced major changes in HDL levels and composition (11–13). Mediators of 

inflammation such as TNF-α and IL-6 induce expression of serum amyloid A (SAA) (121) and 

group IIA secretory phospholipase A2 (sPLA2-IIA) (122), which dramatically alter HDL 

apolipoprotein content and levels, respectively. During infection and inflammation, acute-phase 
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SAA in the plasma associated with HDL displacing apoA-I and becoming the predominant 

apolipoprotein of HDL (acute-phase HDL) resulting in a reduction in normal HDL but not total 

HDL (11). Also, SAA can stimulate the catabolism of HDL (121) and can activate sPLA2-IIA to 

modify the role of HDL (123). In addition, cytokines have been shown to reduce the synthesis and 

secretion of apolipoproteins in liver cells in vitro which would result in low apoA-I during 

inflammation (124). Moreover, a study suggest that a decreased activity of LCAT during 

inflammation may contribute to decreased level of HDL-C due to impaired CE formation and HDL 

maturation (125). Further, a low level of HDL-C upon the initiation of sepsis significantly 

contributed to an increase in mortality and clinical outcomes (12).  

 

1.6. Synthetic HDL 

1.6.1. ApoA-I Mimetic Peptides 

 Native HDL displays complex synthesis and remodeling pathways that result in a 

significant structural variability between individual particles which leads to a myriad of different 

HDL functions. Therefore, isolation and purification of this native HDL from human plasma under 

current good manufacturing practice (cGMP) is very costly and laborious for laboratories and 

pharmaceutical uses. Moreover, safety concerns and manufacturing issues cannot be overlooked. 

To address these issues, various recombinant apoA-I proteins and apoA-I mimetic peptides have 

been developed over the past few years. These are designed to be homologous to the native apoA-

I and optimized to maximize the different functional outcomes as described in Table 1.2. HDL 

complexed with such apoA-I mimetic peptides are known as reconstituted HDL (rHDL) or 

synthetic HDL (sHDL) systems which mimic in vivo characteristics of native HDL can be 

manufactured at a large scale. sHDL can facilitate clinical development of HDL-based therapeutics 
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cost-effectively with promising peptides and lipids that have been well documented in numerous 

clinical trials (126,127). sHDL is composed of apoA-I mimetic peptides to form HDL and mimics 

the physical, chemical, and biological activity of HDL. ApoA-I mimetic peptides are reported to 

be cost-effective and easy to be scaled up and quality controlled. Most apoA-I mimetics peptides 

are 18 to 22 amino acids long and designed based on sequences homologous to the native protein 

(128). Similar to endogenous apoA-I, the structure of mimetic peptides is the amphipathic α-

helices. Based on in vivo and in vitro studies, apoA-I mimetic peptides showed abilities to bind to 

phospholipids and associate with native HDL particles (128,129). Moreover, mimetic peptides 

reproduced the effect of native HDL in terms of cholesterol efflux (130,131), interaction with HDL 

receptors (ABCA1, ABCG1, and SR-BI) (130), interaction with HDL-associated enzymes (LCAT) 

(129,132,133), and binding to LPS (8,134). 

 

Table 1.2. Mimetic apoA-I peptides: Sequences and clinical applications. 

Peptide Sequence Company Optimized Functional Output Ref 

ESP24218 
P-V-L-D-L-F-R-E-L-L-N-E-L-L-E-A-
L-K-Q-K-L-K 

Esperion 

• Lipid binding 

• LCAT activation 

• RCT 

(135) 

D4F 
Ac-D-W-F-K-A-F-Y-D-K-V-A-E-K-F-
K-E-A-F-NH2 

Novartis 
• Same as L4F Chemical 

stability 
(136) 

L4F 
Ac-D-W-F-K-A-F-Y-D-K-V-A-E-K-F-
K-E-A-F-NH2 

Novartis 

• RCT 

• Lipid binding 

• Inflammation reduction 

(137) 

Reverse 
4F 

K-L-K-Q-K-L-A-E-L-L-E-N-L-L-E-R-
F-L-D-L-V-Inp 
Ac-F-A-E-K-F-K-E-A-V-K-D-Y-F-A-
K-F-W-D-NH2 

Kos 
pharmaceuticals 

• Lipid binding 

• Cholesterol mobilization 
(138) 

5A 
D-W-L-K-A-F-Y-D-K-V-A-E-K-L-K-
E-A-F-P-D-W-A-K-A-A-Y-D-K-A-A-
E-K-A-K-E-A-A 

KineMed Inc. 

• ABCA1 activation 

• Low hemolysis 

• Lipid binding 

(131) 

18A 
Ac-E-W-L-E-A-F-Y-K-K-V-L-E-K-L-
K-E-L-F-NH2 

N/A • RCT (139) 

ATI-5261 
Ac-E-V-R-S-K-L-E-E-W-F-A-A-F-R-
E-F-A-E-E-F-L-A-R-L-K-S-NH2 

Roche 
• Anti-oxidant properties 

• Promote ABCA1 dependent 
cholesterol efflux 

(140) 
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1.6.2. Method of Synthesis 

 Traditionally, the preparation of synthetic HDL in the laboratory setting was done by using 

a cholate dialysis method. It uses the plasma-purified human apoA-I which is then reconstituted 

with phospholipids and cholesterol to synthesize reconstituted HDL (rHDL) (141). Unfortunately, 

several drawbacks exist in the cholate dialysis method. It requires the addition of detergents that 

may result in incomplete detergent removal during the later stage of synthesis, is time-consuming, 

has the possibility of endotoxin contamination of ApoA-I, and leads to particle heterogeneity. 

Sonication of peptide and lipid mixture is another HDL synthesis method, but this also displayed 

similar drawbacks resulting in highly heterogeneous particles (141). A patented technique called 

co-lyophilization from Esperion Therapeutics, can, however, conveniently prepare sHDL without 

the previously described concerns (141). Concisely, the process involves co-dissolving peptide 

and lipid constituents in an organic solvent, freeze-drying, and subsequent hydration with an 

isotonic, neutral buffer that can be easily scaled up and results in high homogeneous sHDL 

particles. 

 

1.6.3. sHDL as Potential Therapeutics in sepsis 

 Accordingly, several studies have been conducted to investigate the protective ability of 

administered rHDL against endotoxemia (Table 1.3). To further investigate whether low HDL 

levels promote septic death, apoA-I-null mice were used to mimic a model of low circulating HDL. 

As a result, a deficiency in HDL caused greater susceptibility to CLP-induced septic death with 

attenuated LPS neutralization and LPS clearance, whereas overexpression of apoA-I resulted in 

improved survival rate in both CLP and LPS-induced sepsis models (64,142). It is worth noting 

that HDL, rather than lipid alone, serves more efficacious in septic shock (59).  
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 Bacterial infections are the major cause of sepsis. in vivo studies revealed binding of LPS 

to lipoproteins protected animals from LPS-induced fever and hypotension, as well as the infusion 

of rHDL suppressed the inflammatory response to injected LPS in humans and animals (143,144). 

Also, transgenic mice having twice the amount of HDL in plasma compared to wild-type mice 

displayed significantly decreased levels of TNF-α and lethality induced by LPS (59). Subsequently, 

study found that the administration of rHDL to blood from healthy volunteers inhibited TNF- α 

stimulation from LPS ex vivo (145).  

 As sepsis is almost invariably associated with altered coagulation, frequently leading to 

DIC, several studies addressed the mechanism by which that HDL exhibited protective mechanism 

against altered coagulation. Administration of rHDL resulted in downregulation of tissue factor 

expression (146) and inhibition of platelet aggregation (147). Infusion of rHDL in a rabbit model 

of atherosclerosis showed increased expression of thrombomodulin, a coagulant factor supporting 

the activation of protein C and suppression of thrombin generation, in atherosclerotic lesion (148). 

In addition, rHDL has been shown to attenuate MOD (149), hemorrhagic shock (150), and 

ischemia-reperfusion injury (151,152). Furthermore, while patients with sepsis continuously have 

reduced HDL-C levels, one study revealed that a direct infusion of sHDL showed a successful 

elevation of the plasma HDL in vivo (153). 

 

Table 1.3. Experimental HDL therapies in animal models of sepsis and their outcomes (154). 

HDL 
Dose & 

Administration 
Sepsis Model Main Findings Ref. 

18A:Egg PC 
(1:2 wt/wt) 
sHDL 

80 mg/kg; 
prophylactic tail vein 
IV infusion 

Swiss Webster mice; 
LPS (salmonella) 10 
mg/kg; IP injection; 
within 15 min of HDL 

3-4 fold increase in 48-hour survival rate vs 
control (p<0.05) 

(59) 

L-4F Peptide 
25 mg/kg, IP, 
concurrently with LPS 

Sprague-Dawley rats; 
10 mg/kg LPS; IP 
injection 

Reduction in VCAM-1 expression in excised 
aortae 

(134) 

4F Peptide 
10 mg/kg; IP injection 
post-LPS challenge 

Sprague-Dawley rats; 
LPS 10 mg/kg or 30 
mg/kg; IP injection 

10 mg/kg LPS: 4F slowed LPS plasma 
clearance; reduced hypotension at 6 hr; 
30 mg/kg LPS: 4F increased plasma HDL 
levels; increased 24-hr survival 

(155) 



21 

 

4F Peptide 
10 mg/kg, IP, 6 hours 
post-CLP 

Sprague-Dawley rats; 
CLP 

Reduced IL-6; restored CO, right atrial 
pressure, and plasma volume; improved 2-day 
survival rate; reversed sepsis-induced 
changes in lipoprotein profile 

(156) 

4F Peptide 
10 mg/kg; IP injection 
6 hr post-CLP 

Wistar Rats; CLP 

Restored renal, hepatic, and cardiac 
functions; reduced renal tubule damage; 
restored expression levels of Slit2, Robo4, 
and eNOS; increased plasma HDL; improved 
4-day survival; no change in MAP 

(157) 

D-4F Peptide 
20 µg daily for 9 days; 
IP injection 

C57BL/6J mice; nasally 
inoculated with 105 
PFU influenza virus 
A/WSN/33 

Prevented lymphoid hyperplasia; increased 
PON activity; prevented drop in core body 
temperature; suppressed plasma IL-6 levels; 
increased plasma HDL and inhibited 
lipoprotein alteration; reduced viral titers by > 
50% at all-time points 

(133) 

ApoA1 
10 mg/kg; IP injection 
1 hr post-LPS 
challenge 

Wistar rats; LPS 1 
mg/kg (TNF analysis) 
or 5 mg/kg (survival 
study); IP injection 

Reduced plasma TNF-α levels in rats given 1 
mg/kg LPS; increased 5-day survival rate from 
0 to 90% in rats given 5 mg/kg LPS 

(158) 

ApoA1, human 
plasma purified 

100 mg/kg; IV infusion 
post-LPS challenge 

Balb/c mice; LPS 5 
mg/kg; IP injection 

Increased both survival rate and average 
survival time over 3 days 

(159) 

ApoA1 Milano 
ApoA1:Soy PC 
(1:3.35 mol/mol) 
rHDL 

40 mg/kg; 
prophylactic IV 
injection 

Wistar rats; 400 EU/kg 
Gram-negative 
bacterial endotoxin; IV 
injection 
 

Increase in HDL-C; improved renal and 
hepatic function; inhibition of cytokines TNF-α, 
IL-1β, IL-6; reduced expression of ICAM-1 

(160) 

ApoA1:Soy PC 
(1:200 mol/mol) 
rHDL 

75 mg/kg ApoA1; 
prophylactic 
continuous IV infusion 
over 25 min 

NZW rabbits; LPS 25 
µg/kg continuous IV 
infusion over 6 hr; start 
20 min post-rHDL 
treatment 

Complete inhibition of TNF-α; prevented LPS-
induced hypotension; reduced metabolic 
acidosis; no significant effect on serum LPS 
levels 

(161) 

ApoA1:Egg PC 
(1:2 w/w) 
rHDL 

500 mg/kg ApoA1; IV 
infusion at 0.1 g/kg/hr; 
split into 3 doses: 0.3, 
0.1, and 0.1 g/kg 
administered at 0.5, 8, 
and 16 hr post-
infection, respectively 

2-year old Beagles 
surgically implanted 
with E. coli-infected 
fibrin clot 

Reduced plasma endotoxin levels; decreased 
plasma TNF-α; decreased liver function; 
decreased 2-day survival and average 
survival time 
 

(162) 

CSL-111 
ApoA1:Soy PC 
(1:150 mol/mol) 
rHDL 

75 mg/kg ApoA1; 
a) Prophylactic IV 
infusion over 40 min 
b) Treatment by IV 
infusion over 20 min, 
1 hr post-bacterial 
challenge 

NZW Rabbits 
1) Gram (-) Sepsis: 4 x 
109 CFU/kg E. coli; IV 
infusion over 2 hr 
2) Gram (+) Sepsis: 2 x 
109 CFU/kg; IV infusion 
over 2 hr 

1. a) Prophylactic rHDL: reduced plasma LPS 
and TNF-α; reduction in metabolic acidosis; 
no effect on hypotension or blood bacterial 
levels 
1. b) rHDL Treatment: reduction in LPS after 4 
hours; reduced metabolic acidosis and 
creatinine; no effect on blood bacterial counts 
or TNF-α; no effect on hypotension 
2. No effect in Gram (+) sepsis 

(163) 

CSL-111 
ApoA1:Soy PC 
(1:150 mol/mol) 
rHDL 

25 mg/kg or 50 mg/kg 
ApoA1; Prophylactic 
IV infusion over 40 
min 

NZW rabbits; LPS 10 
µg/kg; continuous IV 
infusion over 2 hr; start 
15 min post-rHDL 
completion 

Reduced TNF-α levels and increased TNF-α 
clearance for both rHDL doses; rHDL 50 
mg/kg reduced hypotension at t=3-4 hr; no 
effect on plasma LPS levels; no effect on 
blood leukocyte count 

(164) 

CSL-111 
ApoA1:Soy PC 
(1:150 mol/mol) 
rHDL 

40 mg/kg; 
prophylactic IV 
infusion over 4 hr 

Healthy male 
volunteers (20-28 yrs); 
Endotoxin 4 ng/kg IV 
bolus; given 3.5 hrs 
post-rHDL start 

Elevated HDL levels; reduced endotoxin-
induced clinical symptoms, i.e. chills, myalgia, 
backache, nausea, and vomiting; reduced 
plasma cytokine levels of TNF-α, IL-6, and IL-
8; inhibited early leukopenia, monopenia, and 
neutropenia; reduced monocyte CD14 
expression 

(144) 
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1.7. Research Scope 

 The promising anti-inflammatory activities of HDL and correlation between HDL-C levels 

and outcomes in various diseases (i.e. sepsis and CVD) motivated many nonclinical and clinical 

investigations implementing rHDL or sHDL. While a significant emphasis has been put on 

investigating the protein or peptide composition of HDL such as apoA-I, apoA-I mutants, and 

mimetic peptides, the importance of the phospholipid component of HDL has been neglected. In 

addition, many developments of rHDL or sHDL have been focused on maximizing cholesterol 

efflux capacity while other functional aspects, such as anti-inflammatory activities, have been 

overlooked. 

 Lipids are a key component in HDL that provide the overall structure of HDL and serve as 

a substrate for many receptors and enzymes associated with HDL. The phospholipid composition 

of HDL can potentially have an impact on the size, net charge, rigidity, functionality, 

pharmacokinetics, and pharmacodynamics properties of sHDL (153). Therefore, the work 

presented here will demonstrate the impact of phospholipids on sHDL, particularly focusing on 

anti-inflammatory activities. 

 

1.8. Thesis Overview 

 The overall goal of this thesis is to investigate the impact of phospholipid composition of 

sHDL on its anti-inflammatory activities and reverse cholesterol transport. This study can provide 

a potential approach to improve the specific functionality of sHDL for a disease-specific 

therapeutic strategy by altering the phospholipid composition. 

 In chapter 2 of this thesis, we studied how sHDL phospholipid composition can influence 

the protective mechanisms against sepsis. We discuss the clinical relationship between plasma 



23 

 

HDL levels and septic mortality, and therefore why HDL therapy would be a potential therapeutic 

strategy against sepsis. We designed multiple formulations of sHDL by varying phospholipid 

compositions and extensively investigated these in vitro and in vivo to validate the anti-

inflammatory activities of each sHDL formulation and to understand the key mechanistic 

contributions of sHDL in a laboratory sepsis model. We demonstrated the optimal composition of 

sHDL to maximize the therapeutic effect in sepsis. 

 In chapter 3, we investigated how sHDL phospholipid composition can impact 

pharmacokinetic and pharmacodynamic profiles. sHDL has been proposed as a treatment of CVD. 

Significant research has been performed to optimized apoA-I mimetic peptides to improve the 

cholesterol efflux capacity and LCAT activation both in vitro and in vivo, however, the majority 

of studies were optimized as “naked” peptide and only a few studies were investigated in rHDL or 

sHDL. In addition, a few studies examined the effect of phospholipid composition on the activity 

of sHDL in vitro, yet in vivo effects have not been evaluated. Therefore, we systematically 

evaluated the effect of both peptide sequence and phospholipid composition of sHDL to observe 

the impact on cholesterol mobilization and cholesterol esterification in vitro and in vivo. 

 In chapter 4, we designed a new nano-mimetic sHDL known as nano-micelle (MiNano) to 

overcome the limitation of HDL therapeutics that may arise in the near future. Since the majority 

of HDL therapeutics that are in clinical trials heavily depend on human plasma purified apoA-I, 

problems may arise when the protein reaches its supply limitation due to human blood supply as 

well as expensive and laborious manufacturing and purification processes. Therefore, we 

investigated MiNano that mimics the structure of sHDL with small particle size and a hydrophobic 

core and hydrophilic exterior, but without any functional protein such as apoA-I. We compared 

biological functions of MiNano to sHDL, including the capability to efflux cholesterol from 
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macrophages and anti-inflammatory abilities in vitro and in vivo, as well as observed the 

effectiveness in animal models of atherosclerosis. 

 Finally, in chapter 5, we draw the final conclusions of the thesis work and discuss future 

studies. Chapter 2 will be submitted to Journal of Lipid Research, Chapter 3 is submitted in Journal 

of Pharmacology and Experimental Therapeutics, and Chapter 4 will be submitted for publication 

once the manuscript is completed. Each research chapter is written in manuscript format.
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Chapter 2 

Phospholipid Composition of Synthetic HDL Influence the Protection Against 

Lipopolysaccharide-Induced Inflammation 

 

2.1. Abstract 

 Sepsis is a major health issue and there is no Food and Drug Administration (FDA) 

approved drugs. Recent studies suggest that reconstituted HDL (rHDL) is a potentially effective 

therapy for sepsis. While most of the studies focus on proteins or peptides, in this study, we 

hypothesize that changes in the phospholipid components in rHDL improve the therapeutic effect. 

To test our hypothesis, we synthesized different fluidity of rHDL by complexing a 22-amino acid 

peptide and different phosphatidylcholines (22A-1-palmitoyl-2-oleoyl-glycero-3phosphocholine, 

22A-POPC; 22A-1,2-dimyristoyl-sn-glycero-3-phosphocholine, 22A-DMPC; 22A-1,2-

dipalmitoyl-sn-glycero-3-phosphocholine, 22A-DPPC; 22A-1,2-distearoyl-sn-glycero-3-

phosphocholine, 22A-DSPC) and examined their effects in vitro and in the LPS-induced 

endotoxemia model. We found that, among four rHDLs, fluid liquid crystalline phase 22A-DMPC 

most effectively suppresses NF-κB signaling, TLR4 signaling through regulating TLR4 

recruitment into lipid rafts, and promotes activating transcription factor 3 (ATF-3) expression 

which significantly attenuated inflammatory activity. Consistent with the regulation of 

inflammatory signaling, 22A-DMPC most effectively improved mortality and protected organs in 

mice challenged with lethal doses of LPS. In conclusion, we demonstrate that changes in 

phospholipid composition markedly improve its capability of suppression of inflammatory 
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signaling and efficacy of sepsis therapy. 22A-DMPC displayed the best therapeutic effects against 

LPS-induced sepsis via multifaceted mechanisms including LPS neutralization, reduced TLR4 

recruitment into lipid raft, and ATF3 promotion. 

 

2.2. Introduction 

 Sepsis, a life-threatening organ dysfunction caused by a dysregulated host response to 

infection, remains a major health challenge and is responsible for high morbidity, mortality, and 

cost. This is, at least in part, a consequence of a limited understandings of the extremely complex 

mechanisms that regulate the inflammatory response. Numerous advances have been made in anti-

inflammatory and anti-microbial treatments, yet, no effective treatments for sepsis have been yet 

commercially available. Lipopolysaccharides (LPS), an endotoxin component present on the outer 

membrane of Gram-negative bacteria, is recognized as the most potent initiator of inflammation, 

capable of inducing sepsis (71). LPS can trigger the inflammatory response in sepsis via Toll-like 

receptor 4 (TLR4) mediated recognition (44–46). Upon LPS-induced TLR4 activation, TLR4-

mediated signaling activates the nuclear factor kappa-light-chain-enhancer of activated B cells 

(NF-κB) leading to the release of pro-inflammatory mediators (96) causing a severe immune 

response, potentially leading to septic shock and multiple organ dysfunction. 

 HDL is the smallest and densest of the plasma lipoproteins consisting of apolipoprotein A-

I (apoA-I) and phospholipids. HDL exerts a number of physiological functions, including 

cholesterol mobilization via reverse cholesterol transport. Additionally, HDL exerts an array of 

anti-inflammatory activities through a number of mechanisms. HDL preferentially binds to and 

neutralizes circulating endotoxin, returning it to the liver for elimination (2,3). HDL also reduces 

TLR4 recruitment into lipid raft via cellular membrane cholesterol depletion (4). Furthermore, 
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HDL induces activating transcription factor 3 (ATF3) expression to modulate TLR-induced pro-

inflammatory cytokines (5–7).  

 Profound changes in the concentration and composition of HDL have been established in 

patients with sepsis (11,116–118). Multiple studies revealed that a marked decline in serum HDL 

levels was observed during infection and inflammation (11,116,117,119,120). Patients with sepsis 

have reductions in HDL-cholesterol (HDL-C) levels of 40 – 70% compared to healthy subjects 

and inflammation induced major changes in HDL composition (11–13). Further, a low level of 

HDL-C upon initiation of sepsis are associated with an increase in mortality and clinical outcomes 

(12, Morin unpublished work 2019). 

 The promising anti-inflammatory properties of HDL and inverse correlation between 

HDL-C level and mortality in sepsis fueled many nonclinical and clinical investigations assessing 

the role of HDL in sepsis via administration of reconstituted HDL (rHDL) (154). A majority of 

these studies utilized HDL protein or peptide, as the efficacy of naked apoA-I, apoA-I mutant, and 

apoA-I mimetic peptides have been reported (134,155–160). Nevertheless, the importance of HDL 

phospholipid composition has been largely neglected despite its role in intracellular signaling and 

receptor interactions (165). For instance, HDL sequesters LPS within its phospholipid layer to 

promote LPS neutralization and anti-inflammatory activity (57–59). Moreover, the protective 

mechanisms of HDL in sepsis remain poorly understood and treatment of sepsis via HDL infusion 

has yet to garner significant attention despite the important relationship between HDL and sepsis.  

 In this study, we investigated the impact of phospholipid on the anti-inflammatory 

activities of HDL. Several studies emphasized the importance of the physical state of phospholipid 

on HDL that can potentially impact the functionality in cholesterol efflux but not in anti-

inflammatory activities. Notably, liquid crystalline unsaturated phospholipids promote more 
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efficient cholesterol acceptor than gel phase saturated phospholipids due to more fluid liquid 

crystalline lipids are capable of greater exogenous lipid molecule (e.g. cholesterol) insertion in 

contrast to relatively rigid gel phase phospholipids (31). To this extent, we hypothesize that HDL 

with a fluid liquid crystalline lipid phase would also result in enhanced anti-inflammatory activities 

by accelerating the efflux of exogenous molecules (e.g. LPS and cholesterol) and accessibility to 

phospholipid.  

 To investigate our hypothesis, we prepared rHDLs by complexing apoA-I mimetic peptide, 

22A, with different phosphatidylcholines (PC). 22A peptide was chosen as it retains the biological 

activity of endogenous apolipoprotein A-I and has shown favorable safety and pharmacokinetics 

in human clinical trials (127,166). PC is the largest class of phospholipids, comprising 33 – 45% 

of total HDL lipid mass (26) and is recognized to contribute to the potent anti-inflammatory effect 

of HDL (165). Thus, we selected PC as our HDL phospholipid composition with variations in fatty 

acid chain length and saturation to produce different fluidity of PC phase on rHDL due to distinct 

phase transition temperature (Tm) of each phospholipid (1-palmitoyl-2-oleoyl-phosphatidylcholine, 

POPC; 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine, DMPC; 1,2-dipalmitoyl-sn-glycero-3-

phosphatidylcholine, DPPC; and 1,2-distearoyl-sn-glycero-3-phosphatidylcholine, DSPC) and 

examined the impact of fluidity of rHDL on its anti-inflammatory activities against LPS-induced 

inflammation in vitro and in vivo.  

 Here, we demonstrated that changes in phospholipid composition of rHDL significantly 

enhance the anti-inflammatory activities due to different fluidity of rHDL. Fluid liquid crystalline 

phase rHDLs, particularly 22A-DMPC, most effectively modulated NF-κB signaling and pro-

inflammatory mediators via TLR4 signaling as compared to rigid gel phase rHDL. Interestingly, 

only 22A-DMPC further reduced TLR4 recruitment into lipid rafts and promoted ATF3 expression 
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which significantly modulated inflammatory activity with rHDL pre-treatment. Accordingly, 22A-

DMPC improved mortality and protected organs from inflammatory injury in mice challenged 

with a lethal dose of LPS. 

 

2.3. Materials and Methods 

2.3.1. Animals and reagents 

 7 – 9 week old male and female C57BL/6 mice were purchased from Jackson Laboratories. 

All protocols were approved by the Institutional Animal Care & Use Committee (IACUC) at the 

University of Michigan, Ann Arbor.  

 22A (PVLDLFRELLNELLEALKQKLK) peptide was synthesized by GenScript 

(Piscataway, NJ) and purity was approximately 85% as determined by HPLC. 1-palmitoyl-2-

oleoyl-glycero-3phosphocholine (POPC), 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 

1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), and 1,2-distearoyl-sn-glycero-3-

phosphocholine (DSPC) were purchased from Nippon Oil and Fat (Osaka, Japan). LPS conjugated 

with Alexa Fluor™ 488 was purchased from Thermo Fisher Scientific (Waltham, MA). All LPS 

(from E. coli O111:B4) were purchased from Sigma Aldrich (St. Louis, MO). LPS purified by ion-

exchange chromatography (L3024) was used throughout the entire experiment, except for the 

survival study in which LPS purified by phenol extraction (L2630) was used. Alexa Fluor 488-

conjugated anti-mouse TLR4 (Clone: UT41) and Alexa Fluor 488-conjugated cholera toxin 

subunit B (CT-B) were obtained from Thermo Fisher Scientific (Waltham, MA). ATF-3 Antibody 

(C-19) (sc-188, 1:800 dilution) was purchased from Santa Cruz Biotechnology (Dallas, TX). 

GAPDH (D16H11) XP® Rabbit Monoclonal Antibody (5174, 1:4000 dilution) and Anti-rabbit 
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IgG, HRP-linked Antibody (7074, 1:5000 dilution) were purchased from Cell Signaling 

Technologies (Danvers, MA). 

 

2.3.2. Cell culture 

 RAW 264.7 and J774A.1 macrophages were cultured in Dulbecco’s Modified Eagle 

Medium (DMEM) containing 10% fetal bovine serum (FBS), 1% Penicillin-Streptomycin (10,000 

U/mL), and 100 μg/mL Normocin™. HEK-Blue™ hTLR4, which stably expresses CD14, MD2, 

NF-κB reporter and human TLR4, was purchased from InvivoGen (San Diego, CA) and grown in 

DMEM containing 10% FBS. HEK-Blue hTLR4 express the secreted embryonic alkaline 

phosphatase (SEAP) reporter gene under the control of the NF-κB promotor, which enables the 

quantification of cell activation by measuring SEAP activity in medium containing specific 

enzyme substrates. All cell lines were cultured at 37 °C in a humidified 5% CO2 incubator. 

 

2.3.3. Preparation of rHDL 

 rHDL were prepared via co-lyophilization procedure that we have previously developed in 

our lab (153). Briefly, 22A (PVLDLFRELLNELLEALKQKLK) and phosphatidylcholines (POPC, 

DMPC, DPPC, or DSPC) were mixed at 1:2 weight ratio in acetic acid. The resulting solution was 

then flash frozen in liquid nitrogen and placed on a freeze-dryer for at least 2 days to remove 

organic solvents. The lyophilized powder was rehydrated with phosphate buffered saline (PBS) 

and thermal-cycled above and below the transition temperature of each phospholipid to facilitate 

peptide-lipid binding. Finally, the pH of rHDL solutions was adjusted to 7.4 using NaOH and 

filtered with a 0.2 µm sterile filter. All rHDL concentrations are expressed in terms of 22A peptide 

concentration. 
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2.3.4. Characterization of rHDL 

 The quality of the resulting rHDL was analyzed by the following analytical techniques. 

The purity of rHDL was determined by gel permeation chromatography (GPC), with UV detection 

at 220 nm, using a Tosoh TSKgel G3000SWxl column (King of Prussia, PA). The particle size of 

rHDL was determined by dynamic light scattering (DLS) on Malvern Zetasizer Nano ZSP 

(Westborough, MA) and the volume intensity average values were reported. The morphology of 

rHDL was assessed by transmission electron microscopy (TEM). rHDL samples were loaded on a 

carbon film-coated 400 mesh copper grid from Electron Microscopy Sciences (Hatfield, PA) that 

were negatively stained with 1% (w/v) uranyl formate and dried before TEM observation. All 

specimens were imaged with 100kV Morgagni TEM equipped with a Gatan Orius CCD. Transition 

temperature (Tm) of rHDL was analyzed by two state modeling using TA Nano Differential 

Scanning Calorimetry (DSC) (New Castle, DE).  

 

2.3.5. Analysis of fluorescent-LPS binding to rHDL 

 LPS conjugated with Alexa Fluor™ 488 (10 µg/mL) was pre-incubated for 1 h at 37 °C, 

then mixed with different formulations of rHDL (1 mg/mL) and incubated for 1 hour at 37 °C. 

Samples were centrifugated at 15000 rpm for 10 min. 25 µL of samples were injected into the 

Shimazu Nexera-I LC 2040d Plus system connected with RF-20A prominence fluorescence 

detector (Kyoto, Japan) and separated with a Tosoh Bioscience TSKgel G3000Wxl (7.8 mm X 30 

cm, 5 µm). PBS (pH 7.4) was chosen for the mobile phase with a flow rate of 0.5 mL/min. The 

signal was detected at 220 nm and at an excitation wavelength of 495 nm and an emission 

wavelength of 519 nm. 
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2.3.6. Analysis of LPS-induced NF-κB expression 

 The HEK-Blue cell system from InvivoGen was used to analyze the neutralization of the 

LPS-induced inflammatory response. HEK-Blue hTLR4 cells stably express reporter-linked 

human TLR4, CD14, MD2, and NF-κB that are designed for studying the stimulation of human 

TLR4. Briefly, HEK-Blue hTLR4 cells were cultured in DMEM containing 10% low endotoxin 

FBS and selective antibiotics according to the manufacturer’s instructions. The growth medium 

was discarded, and cells were resuspended in the HEK-Blue Detection medium. Cells were seeded 

at 25,000 cells per well. Cells were treated with various formulations of rHDL at a peptide 

concentration of 10, 30, or 100 μg/mL in a presence or an absence of 2 ng/ml of LPS. The cells 

were then incubated for 18 h. LPS binding to TLR4 results in the induction of NF-κB reporter 

expression, causing the HEK-Blue detection medium to turn blue. The blue color was quantified 

by measuring absorption at 650 nm using a SpectraMax M3 plate reader from Molecular Devices 

(San Jose, CA). 

 

2.3.7. In vitro analysis of pro-inflammatory mediators 

 RAW 264.7 cells were plated in 96-well microplate at a density of 5 x 104 cells/well and 

incubated until reaching 80% confluency. Cells were washed with PBS and different formulations 

of rHDL were added at peptide concentrations of 10, 30, or 100 μg/mL for 18 h followed by 

stimulation with LPS. To quantify the concentration of inflammatory cytokines including TNF-α, 

IL-6, and MCP-1, samples were prepared BD Cytometric Bead Array Mouse Inflammation Kit 

(San Jose, CA) per manufacturer’s instruction. Then, prepared samples were analyzed with flow 

cytometry, Beckman Coulter CytoFLEX (Brea, CA). 
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2.3.8. Cellular cholesterol efflux analysis 

 RAW 264.7 were plated in 24-well plate at a density of 1 x 105 cells/well and incubated 

for 24 h. Cells were washed with PBS once and labeled with 1 µCi of [3H] cholesterol/mL for 24 

h in the growth medium. Cells were then washed with PBS and different formulations of rHDL 

were added at peptide concentrations of 10, 30, or 100 µg/mL in DMEM containing 0.2 mg/mL of 

fatty acid-free bovine serum albumin (BSA). After 18 h of incubation, media were collected, and 

cells lysed in 0.5 mL of 0.1% SDS and 0.1 N NaOH. Radioactive counts in media and cell fractions 

were measured by liquid scintillation counting using Perkin Elmer Tri-Carb 2910TR (Waltham, 

MA) and percent cholesterol efflux was reported by dividing the media count by the sum of the 

media and cell counts. 

 

2.3.9. Analysis of lipid raft and TLR4 recruitment 

 J774A.1 were plated in 24-well microplate at a density of 5 x 104 cells/well and incubated 

until reaching 80% confluency. Cells were treated with either PBS or different formulations of 

rHDL at a peptide concentration of 100 μg/mL for 18 h. The control group was treated with 10 

mM methyl-β-cyclodextrin for 30 min. Cells were washed with ice-cold PBS containing 2% FBS. 

Then, cells were incubated with 8 μg/mL Alexa Fluor 594-conjugated CT-B for 15 minutes and 2 

μg /mL Alexa Fluor 488-conjugated anti-TLR4 for 30 minutes to label lipid raft and TLR4, 

respectively. Labeled cells were washed with ice-cold PBS containing 2% FBS and the percentage 

distribution of lipid raft and TLR4 were reported with the mean fluorescence intensity determined 

by MoFlo Astrios from Beckman Coulter. 
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2.3.10. RNA isolation and RT-PCR 

 RAW 264.7 cells were plated in a 6-well microplate at a density of 4×105 cells/well and 

incubated until reaching 80% confluency. Cells were then washed with PBS and different 

formulations of rHDL were added at peptide concentrations of 100 µg/mL for 1, 2, or 4 h. Cells 

were lysed and RNA was isolated using GeneJET RNA purification kit from Thermo Fisher 

Scientific. Approximately 1 μg of extracted RNA from each sample was transcribed to cDNA 

using SuperScript III First-Strand Synthesis System from Invitrogen. cDNA amplification was 

measured by quantitative real-time PCR on a StepOnePlus™ real-time PCR System from Applied 

Biosystems (Waltham, MA). TaqMan assays from Applied Biosystems were used to measure the 

following: Gapdh Mm99999915_g1; Atf3 Mm00476033_m1. Gene expression was determined 

using the Ct method using Gapdh as the housekeeping control. 

 

2.3.11. Cell lysis and immunoblotting: 

 RAW 264.7 cells were plated in 6-well microplates at 5 x 105 cells/well and incubated until 

reaching 80% confluency. Cells were then washed with PBS and different formulations of rHDL 

were added at peptide concentrations of 100 µg/mL for 18 h. Cells were washed with ice-cold 1x 

PBS twice and lysed on ice for 30 min with 1x RIPA buffer (25mM Tris-HCl pH 7.6, 150mM 

NaCl, 1% NP-40, 1% sodium deoxycholate, 0.1% SDS) supplemented with cOmplete™ EDTA-

free protease inhibitor cocktail and PhosSTOP from Roche (Indianapolis, IN). Lysates were 

clarified by centrifugation at 12,000 RPM for 10 min at 4°C and measured protein concentration 

by BCA assay. An equal amount of protein per sample was loaded on 4 – 15% pre-casted SDS-

PAGE gels from Bio-Rad (Hercules, CA) with Tris/glycine/SDS buffer and proteins were 

transferred onto PVDF membranes. Membranes were blocked in 5% (wt/vol) BSA in Tris-buffered 
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saline with Tween-20 (TBS-T) for 1 h at room temperature and incubated 18 h at 4°C with specific 

primary antibodies diluted in BSA. Membranes were then washed with TBS-T, incubated with 

secondary antibodies for 1 h, and washed with TBS-T. Images were acquired on Protein Simple 

FluorChem M imaging system (San Jose, CA).  

 

2.3.12. Analysis of NF-κB expression and pro-inflammatory mediators from rHDL pre-

treatment 

 Depending on the experiments, either HEK-Blue cells or RAW 264.7 cells were plated in 

96-well microplate at a density of 25,000 or 5 x 104 cells/well, respectively, and incubated until 

reaching 80% confluency. Cells were washed with PBS and different formulations of rHDL were 

added at peptide concentrations of 10, 30, or 100 μg/mL for 18 h. After 18 h incubation, rHDL 

was completely removed and cells were washed with PBS. Cells were then challenged with LPS 

(2 ng/mL) for 18 h again. The quantification of NF-κB expression and pro-inflammatory cytokines 

were obtained as described previously. 

 

2.3.13. Co-incubation of rHDL and LPS in vivo 

 Female C57BL/6 mice were randomly assigned to six groups; Vehicle (PBS control group), 

LPS, 22A-POPC, 22A-DMPC, 22A-DPPC, and 22A-DSPC, containing five mice each. Different 

formulations of rHDL were pre-incubated with LPS for 30 minutes at 37°C prior to injection. The 

mixtures were then administered via intraperitoneal injection (i.p.) with a final concentration of 10 

mg/kg of rHDL and 0.05 mg/kg of LPS. All blood samples were collected from the jugular vein 

in heparinized BD centrifuge tubes (Franklin Lakes, NJ) at 2 h post-administration. Serum samples 
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were separated immediately by centrifugation at 14,000 rpm for 10 minutes at 4°C and stored at -

80°C until further analysis.  

 

2.3.14. Effect of rHDL infusion on the endotoxemia mice 

 Female C57BL/6 mice were randomly assigned to six groups; Vehicle, LPS, 22A-POPC, 

22A-DMPC, 22A-DPPC, and 22A-DSPC, containing ten mice each. Different formulations of 

rHDL were administered at a dose of 10 mg/kg via intravenous injection (i.v.). Subsequently, LPS 

(0.05 mg/kg, i.p.) was administered. Vehicle group was dosed with PBS (i.v.) then PBS (i.p.). The 

LPS control group was dosed with PBS (i.v.) followed by LPS (0.05 mg/kg, i.p.). All blood 

samples were collected from the jugular vein in heparinized BD centrifuge tubes (Franklin Lakes, 

NJ) at 2 h post-LPS challenge. Serum samples were separated immediately by centrifugation at 

14,000 rpm for 10 minutes at 4°C and stored at -80°C until further analysis.  

 

2.3.15. In vivo analysis of pro-Inflammatory mediators 

 The concentrations of inflammatory mediators, TNF-α, IL-6, and MCP-1 in the serum of 

LPS co-incubation study were quantified using eBioscience Ready-Set-Go ELISA (San Diego, 

CA) per manufacturer's instruction. The concentration of inflammatory mediators of TNF-α, IL-6, 

and MCP-1 in the serum of endotoxemia model was quantified using BD Cytometric Bead Array 

Mouse Inflammation Kit per manufacturer’s instruction and analyzed. on Beckman Coulter 

CytoFLEX Flow Cytometer 
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2.3.16. Survival determination 

 Male C57BL/6 were randomly assigned into three groups, containing ten mice each; 

Vehicle, LPS, and 22A-DMPC. The vehicle group received PBS (i.p. and i.v.). The LPS group 

was first received LPS (10 mg/kg, i.p.). Once the anal temperature increased 0.5°C from LPS 

(approximately 15 min), PBS (i.v.) was administered. The 22A-DMPC group was first received 

LPS (10 mg/kg, i.p.). Again, once the anal temperature increased 0.5°C from LPS (approximately 

15 min), 22A-DMPC (10 mg/kg, i.v.) was administered. The mice were then observed for mortality 

every 6 h and survival rates were recorded. Their lungs and livers were isolated collected for 

histological evaluation. 

 

2.3.17. Tissue preparation 

 Tissues were fixed in 10% neutral buffered formalin for a minimum of 24 h. Histology 

preparation was performed by the Unit for Laboratory Animal Medicine In Vivo Animal Core at 

the University of Michigan. Briefly, tissues were cassetted and processed to paraffin on an 

automated processor, TissueTek VIP 6 from Sakura (Torrance, CA). Tissues were embedded in 

paraffin, sectioned at 4 µm thickness on a rotary microtome, and mounted on glass slides. Slides 

were stained with hematoxylin and eosin on an automated histostainer and coverslipped. 

 

2.3.18. Histology evaluation and images 

 Histological sections were evaluated using light microscopy at magnifications ranging 

from 20x to 600x by a board-certified veterinary pathologist using an Olympus BX45 light 

microscope (Tokyo, Japan) Corporation). The evaluation was performed without knowledge of the 

experimental groups. Representative images were taken after histology analysis using an Olympus 
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DP73 microscope-mounted camera with associated software, Olympus cellSens v 1.18 (Tokyo, 

Japan). Images were processed into figures using Adobe Photoshop CC v 19.0. Image processing 

was confined to global adjustments of white balance, brightness, contrast, and sharpness that did 

not affect image interpretation. Histology was assessed based on standardized 

nomenclature/criteria for rodent hepatobiliary lesions (167) and literature descriptions of relevant 

histology in LPS challenge experiments (168–171). 

 

2.3.19. Lethal-endotoxemia model optimization 

 Male C57BL/6 were randomly assigned into three groups, containing ten mice each, to 

determine the appropriate concentration of LPS for inducing lethal endotoxemia via a single i.p. 

injection of LPS (5 mg/kg, 10 mg/kg, and 20 mg/kg). The mice were then observed for mortality 

every 6 h for 4 days, and survival rates were recorded. 

 

2.3.20. 22A-DSPC treatment survival determination 

 Male C57BL/6 were randomly assigned into three groups, containing ten mice each; 

Vehicle, LPS, and 22A-DSPC. The vehicle group received PBS (i.p. and i.v.). The LPS group was 

first received LPS (10 mg/kg, i.p.). Once the anal temperature increased 0.5°C from LPS 

(approximately 15 min), PBS (i.v.) was administered. The 22A-DSPC group was first received 

LPS (10 mg/kg, i.p.). Again, once the anal temperature increased 0.5°C from LPS (approximately 

15 min), 22A-DSPC (10 mg/kg, i.v.) was administered. The mice were then observed for mortality 

every 6 h and survival rates were recorded. Their lungs and livers were collected for histological 

evaluation. 
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2.3.21. Statistical analysis 

 Statistical differences were compared with Student’s t-test for comparing two groups or 

with one-way analysis of variance (ANOVA) with Tuckey’s post-hoc test for comparing multiple 

groups. All samples were performed in triplicate unless noted otherwise. P < 0.05 was considered 

statistically significant. The Chi-square test was used to compare survival rates. Statistical analysis 

was performed using GraphPad Prism 7 (La Jolla, CA). Measurements are presented as means ± 

standard error of the mean unless indicated otherwise. 

 

2.4. Results 

2.4.1. Preparation and characterization of rHDL 

 rHDL were prepared by complexing apoA-I mimetic peptide, 22A, with various PCs 

(POPC, DMPC, DPPC, or DSPC) using a co-lyophilization procedure. Based on preliminary 

studies, the optimal weight ratio of peptide to phospholipid to result in homogenous preβ-like HDL 

is at 1:2 wt/wt peptide to phospholipid (172). To validate the morphology and confirm the preβ-

like discoidal shape, each rHDL formulation was observed with TEM (Figure 2.1A). 22A-DMPC, 

22A-DPPC, and 22A-DSPC were observed with typical discoidal morphology and were uniform 

in size. In contrast, 22A-POPC displayed heterogeneity in both size distribution and morphology. 

This is plausibly owing to the presence of liposomal impurities. These characteristics were further 

confirmed with DLS. We observed that the average diameters for 22A-POPC (13.7 ± 0.2 nm), 

22A-DMPC (9.7 ± 0.2 nm), 22A-DPPC (11.2 ± 0.3 nm), and 22A-DSPC (12.2 ± 0.3 nm) were all 

within range of previously reported rHDL sizes (172,173) (Table 2.1). Analysis via GPC verified 

the observed size differences and the purity of rHDL (Figure 2.1C). All rHDL formulations 

resulted in a similar retention time of approximately 8 min (Table 2.1), with 22A-POPC exhibiting 
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a broader peak, indicating a more heterogeneous size distribution. The small peaks appearing at 

approximately 11 min represent free 22A peptide, accounting for less than 2% and considered 

negligible for all formulations. 

 

 

Figure 2.1. Characterization of rHDL. A: Transmission electron microscopy image of different 

sHDL. B: Size distribution profile of different rHDL analyzed by dynamic light scattering. C: Size 

distribution and purity profile of different rHDL via gel permeation chromatography. 

 

 

 Next, the Tm of each rHDL formulation was evaluated, as shown in Table 2.1. POPC is 

composed of 16:0/18:1 fatty acids, in which the unsaturated fatty acid causes a significantly low 

Tm (-3.3 ± 0.5°C) (174). When complexed with 22A, 22A-POPC had a observed Tm value of 0.5 ± 

0.5°C. Similarly, DMPC is composed of 14:0/14:0 (Tm: 24.5°C) (175), DPPC is composed of 

16:0/16:0 (Tm: 41.6°C) (175), and DSPC is composed of 18:0/18:0 (Tm: 54.5°C) (175). Once 

complexed with 22A to form rHDL, we observed rHDL Tm values of 27.0 ± 0.0°C, 45.4 ± 0.4°C, 

and 57.8 ± 1.3°C, respectively. A slight temperature rises from PC to rHDL is observed, possibly 

due to the addition of 22A peptide adding rigidity to the phospholipids. Based on Tm of each rHDL, 

22A-POPC and 22A-DMPC are preferentially at the fluid and mobile liquid crystalline phase, 
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while 22A-DPPC and 22A-DSPC are at rigid and constrained gel phase at physiological 

temperature (37°C).  

 We further assessed the cytotoxicity of rHDL in multiple cell lines and none of the 

formulations exhibited cytotoxicity at concentrations up to 100 µg/mL (Supplemental Figure 2.1). 

Taken together, our results indicate the successful production of non-cytotoxic rHDL with preβ-

like morphology and size. 

 

Table 2.1. Characterization Summary of rHDL.  

rHDL Formulation RT (min) Particle Size (nm) Purity (%) rHDL Tm (°C) 

22A-POPC 7.9 13.7 ± 0.2 99.3 ± 0.1 0.5 ± 0.5 

22A-DMPC 8.2 9.7 ± 0.2 99.2 ± 0.1 27.0 ± 0.0 

22A-DPPC 7.8 11.2 ± 0.3 98.0 ± 0.8 45.4 ± 0.4 

22A-DSPC 7.7 12.2 ± 0.3 99.2 ± 0.0 57.8 ± 1.3 

The particle size of rHDL nanoparticles was analyzed by DLS; RT and purity were analyzed by 

GPC; and Tm of rHDL was analyzed by DSC (mean ± STD). RT: Retention Time, Tm: transition 

temperature 

 

 

2.4.2. rHDL binding and neutralization of LPS 

 HDL can directly neutralize the TLR4-mediated inflammatory cascade by sequestering 

LPS in its phospholipid layer (57–59). To investigate whether rHDL made from different 

phospholipids could successfully neutralize LPS, a TLR4 ligand, by direct interaction, we analyzed 

the size-exclusion profile of rHDL after incubation with fluorescent LPS. As expected, all 

formulations of rHDL promoted a shift of LPS-Alexa 488 to rHDL molecular weight fraction, 

demonstrating successful binding of LPS to rHDL. (Figure 2.2). 
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Figure 2.2. Absorbance profiles of fluorescent-LPS bound to rHDL. Fluorescent-LPS (10 µg/mL) 

and different formulations of rHDL (1 mg/mL) were mixed and incubated for 1 hour at 37 °C and 

the rHDL-LPS mixture was analyzed by HPLC with fluorescence detector. The blue dashed area 

represents the area in which rHDL present in UV absorbance. 

 

 

2.4.3. Effect of rHDL lipids against LPS-induced inflammation in vitro 

 We next sought to evaluate how the ability of rHDL to sequester LPS could be translated 

to inhibition of inflammatory response, as TLR4 mediated recognition of LPS is thought to be one 

of the key triggers of the inflammatory response (45,46). To understand which formulations of 

rHDL most effectively modulate TLR4-mediated signaling, the HEK-Blue cell system was used 

to quantify the activity of NF-κB. HEK-blue hTLR4 cells were incubated with different rHDL at 

various concentrations (10, 30, and 100 µg/mL) in the presence of LPS (2 ng/mL). 22A-POPC and 
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22A-DMPC displayed significant concentration-dependent inhibition of NF-κB (P < 0.001) and 

inhibited NF-κB at all tested concentrations, 22A-DPPC inhibited activity at concentrations of 30 

µg/mL and greater, and 22A-DSPC had no effect (Figure 2.3A). When comparing the two most 

potent inhibitors, 22A-POPC and 22A-DMPC, 22A-DMPC showed enhanced inhibition at all 

concentrations (P < 0.001). 

 We further examined the downstream TLR4-mediated inflammatory response by 

evaluating pro-inflammatory cytokine production. To do this, macrophages were incubated with 

rHDL at various concentrations in the presence or absence of LPS (2 ng/mL). Concentrations of 

TNF-α, IL-6, and MCP-1 in the media were quantified. 22A-POPC, 22A-DMPC, and 22A-DPPC 

effectively reduced LPS-induced pro-inflammatory mediators compared to controls (P < 0.001) 

and to 22A-DSPC (#P < 0.05) (Figure 2.3B-D). Here, we observed that fluid liquid crystalline 

phase 22A-DMPC resulted in the greatest inhibition of NF-κB activity and pro-inflammatory 

cytokine production. 22A-DPPC, although in the rigid gel phase, decreased the inflammatory 

response at the highest concentration as Tm is near physiological temperature, while 22-DSPC 

showed the least effective in LPS-induced inflammatory response modulation due to its limited 

fluidity making incorporating LPS into its phospholipid layer difficult. 
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Figure 2.3. Modulation of inflammatory response with different rHDL treatment. A: Activation of 

NF-kB of HEK-BLUE hTLR4 cells with treatment of different formulations and concentrations of 

rHDL in a presence of LPS (2 ng/mL). B-D: Concentration of TNF-α (B), IL-6 (C), and MCP-1 

(D) of macrophages with treatment of different formulations and concentrations of rHDL in a 

presence of LPS (2 ng/mL). *P<0.05, **P < 0.01, ***P < 0.001 compared with LPS group; #P < 

0.05 compared with 22A-DSPC group 

 

 

2.4.4. Effect of rHDL on TLR4 recruitment into lipid raft via cholesterol efflux 

 Lipid raft plays an important role in LPS-induced cellular activation. HDL promotes 

cholesterol efflux from macrophages via reverse cholesterol transport, compromising the integrity 

of lipid rafts as cholesterol is depleted leading to reduced lipid raft and TLR4 recruitment into lipid 

raft (4). First, to demonstrate whether rHDL could efflux cholesterol from macrophages, we 

incubated different rHDL (100 µg/mL) with [3H]-cholesterol-loaded macrophages. 22A-DMPC 
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(61.8 ± 2.7%) exhibited the greatest cholesterol efflux, followed by 22A-POPC (57.2 ± 0.9%), 

22A-DPPC (38.1 ± 1.4%), and 22A-DSPC (37.5 ± 1.9%) (Figure 2.4A). Given these results, we 

then examined the impact of rHDL-mediated cholesterol efflux on the alteration of lipid raft and 

TLR4 surface expression. Intriguingly, despite the significant cholesterol efflux observed from all 

rHDLs, none markedly reduced the lipid raft content, where only 22A-DMPC non-significantly 

reduced the lipid raft (90.1 ± 3.1%) (Figure 2.4B). However, minimal reduction of lipid rafts of 

22A-DMPC was capable of a significant decrease of TLR4 recruitment on the cell surface (85.1 ± 

4.5%) (Figure 2.4C). Overall, these results indicate that only 22A-DMPC was capable of 

inhibiting TLR4 recruitment into lipid raft via cellular membrane cholesterol depletion. 

 

 

Figure 2.4. Disruption of lipid raft content and TLR-4 with rHDL. A: Relative quantification of 

cholesterol efflux from radio-labeled cholesterol-loaded macrophages with different formulations 

of rHDL (100 µg/mL) to the non-treated control group. Percentage cholesterol efflux from radio-

labeled cholesterol-loaded macrophages was reported by liquid scintillation counting (n= 4, mean 

± SEM). B-C: Relative measurement of lipid raft content of macrophages (B) and TLR4 expression 

(C) with different formulations of rHDL (100 µg/mL) to the non-treated control group. The 

percentage of lipid raft content and TLR4 expression was reported by the mean fluorescence 

intensity from flow cytometry. ns: not significant, *P<0.05, **P < 0.01, ***P < 0.001 compared 

with LPS group; #P < 0.05 compared with 22A-DSPC group 
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2.4.5. Effect of rHDL on ATF3 expression 

 ATF3 is a negative regulator of macrophage activation, acting as a negative-feedback 

system upon TLR4 activation to limit the excess production of pro-inflammatory cytokines 

(176,177). A few studies have shown that HDL can regulate the expression of TLR-induced pro-

inflammatory cytokines on the transcriptional level via the transcriptional repressor ATF3 (5–7). 

To examine the ability of rHDL to promote ATF3 expression, we incubated macrophages with 

rHDL (100 µg/mL) and determined the mRNA and protein expression of ATF3. Notably, only 

22A-DMPC induced Atf3 mRNA expression significantly, increasing 5-fold in the first 1 h up to 

21-fold after 4 h of incubation (P < 0.001), while 22A-POPC, 22A-DPPC, or 22A-DSPC had no 

effect (Figure 2.5 A). ATF3 protein expression was also examined by incubating macrophages 

with different rHDL for 18 h. Likewise, only 22A-DMPC induced prominent protein expression 

of ATF3, whereas expression was undetectable for the control group and other rHDL formulations 

(Figure 2.5B). 

 

 

Figure 2.5. The expression of ATF3 mRNA and protein with rHDL. A: Kinetics of ATF3 mRNA 

expression in macrophages with different formulations of rHDL (100 μg/mL) (n=9 ± SEM). B: 

ATF3 protein expression in macrophages by immunoblot with different formulations of rHDL (100 

μg/mL) followed by 18 h incubation. ***P < 0.001 
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2.4.6. Pre-treatment of rHDL against LPS-induced inflammation in vitro 

 Previous assessments revealed that among the different formulations of rHDL, only 22A-

DMPC reduced TLR4 recruitment and promoted ATF3 expression. Here, we further demonstrated 

how these mechanisms can be elucidated to modulate the inflammatory response. Macrophages 

were incubated with different rHDL at various concentrations (10, 30, and 100 µg/mL). After 18 

h incubation, rHDL was completely removed then cells were challenged with LPS (2 ng/mL) for 

18 h again. When NF-κB expression was quantified from HEK-Blue hTLR4 cells, only 22A-

DMPC showed significant inhibition in NF-κB expression in a dosage-dependent manner (P < 

0.001) (Figure 2.6A). Similarly, when pro-inflammatory cytokines were measured from 

macrophages, again, only 22A-DMPC significantly altered TNF-α and IL-6 levels (P < 0.001) 

(Figure 2.6B-C). This study confirms that rHDL can promote anti-inflammatory activities not 

only through physical binding to LPS, but also through compromising lipid raft integrity to 

decrease TLR4 expression and promote ATF3 expression. 

 

 

Figure 2.6. Attenuation of inflammatory response with pretreatment of rHDL. A: Activation of 

NF-kB of HEK-BLUE hTLR4 cells. Cells were stimulated with 2 ng/mL of LPS after washing out 

the 18 h pre-treatment of different formulations and concentrations. B-D: Concentration of TNF-

α (B), IL-6 (C), and MCP-1 (D) of macrophages. Macrophages were initially incubated with 

different formulations and concentrations of rHDL for 18 h, then rHDL were completely removed 

and stimulated with LPS (2 ng/mL). *P<0.05, **P < 0.01, ***P < 0.001 

L P S 1 0 3 0 1 0 0

0 .0

0 .2

0 .4

0 .6

0 .8

s H D L  C o n c e n t r a t io n  ( g / m L )

N
F

-
B

 a
c

ti
v

a
ti

o
n

 (
A

6
5

0
)

* * * * * * * *
* * *

2 2 A -P O P C 2 2 A -D M P C

2 2 A -D P P C 2 2 A -D S P C

L P S 1 0 3 0 1 0 0

0

5

1 0

1 5

2 0

s H D L  C o n c e n t r a t io n  ( g / m L )

T
N

F
-

 (
n

g
/

m
L

)

*

* * * * * *

2 2 A -P O P C 2 2 A -D M P C

2 2 A -D P P C 2 2 A -D S P C

L P S 1 0 3 0 1 0 0

0

2 0 0

4 0 0

6 0 0

8 0 0

s H D L  C o n c e n t r a t io n  ( g / m L )

IL
-6

 (
p

g
/

m
L

)

* *
* * *

* * *

2 2 A -P O P C 2 2 A -D M P C

2 2 A -D P P C 2 2 A -D S P C

A B C



48 

 

2.4.7. Effect of rHDL on LPS neutralization in vivo 

 We examined whether LPS neutralization by rHDL effectively translates to modulation of 

the inflammatory response in vivo by administering pre-mixed LPS and rHDL solutions. Briefly, 

each rHDL was incubated with LPS for 30 min at 37°C and the mixture of each rHDL (10 mg/kg) 

and LPS (0.05 mg/kg) was administered to mice. When pro-inflammatory mediators including 

TNF-α, IL-6, and MCP-1 were analyzed at 2 h post-administration, all formulations of rHDL 

surprisingly suppressed their secretion (P < 0.001), however, no statistical differences were 

identified between the different rHDL formulations (Figure 2.7). This study strongly suggests that 

rHDL can effectively neutralize LPS-induced inflammatory activity by direct interaction. 

 

 

Figure 2.7. Serum cytokine levels post LPS-only or LPS-rHDL mixture administration. A-C: The 

LPS was incubated in the absence or presence of different formulations of rHDL for 30 min at 

37°C. Experimental groups were with LPS-rHDL mixtures at 10 mg/kg of rHDL and 0.05 mg/kg 

of LPS. Blood was collected at 2 h post-administration and the concentrations of TNF-α (A), IL-6 

(B), and MCP-1 (C) were measured (n=5). ns: not significant, ***P < 0.001 
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2.4.8. Effect of rHDL on LPS-induced endotoxemia mice 

 The ability of rHDL to elicit anti-inflammatory effect in vivo was examined in a murine 

endotoxemia model. Mice were initially administered with LPS (0.05 mg/kg) followed by different 

formulations of rHDL (10 mg/kg). 2 h post-LPS challenge, 22A-DMPC and 22A-DSPC caused a 

significant inhibition of TNF-α and IL-6 (P < 0.01 and P < 0.001, respectively), while 22A-DPPC 

resulted in a slight reduction of IL-6 (P < 0.05) and 22A-POPC had no effect (Figure 2.8A-B). In 

addition, 22A-DMPC and 22A-DSPC attenuated levels of MCP-1, although they were not 

statistically significant (Figure 2.8C). This study indicated that 22A-DMPC and 22A-DSPC were 

the only formulations able to effectively attenuate the inflammatory response in endotoxemia mice. 

 

 

Figure 2.8. Serum cytokine levels post rHDL administration from the endotoxemia model. A-C: 

Different formulation of rHDL was administered via intravenous injection at 10 mg/kg. 

Subsequently, LPS was challenged via intraperitoneal injection at 0.05 mg/kg. Blood was collected 

at 2 h post-administration and the levels of TNF-α (A), IL-6 (B), and MCP-1 (C) were measured 

(n=10). ns: not significant, *P<0.05, **P < 0.01, ***P < 0.001 

 

 

2.4.8. Effect of rHDL on lethal endotoxemia and organ injury 

 We further hypothesized that rHDL, especially 22A-DMPC, could improve the survival 

rate and protect organ injury from lethal endotoxemia, as it was observed to promote exceptional 
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anti-inflammatory activities in vitro and in mild endotoxemia mice. Once we determined the 

appropriate concentration of LPS for lethal endotoxemia (Supplemental Figure 2.2), mice were 

administered with a lethal endotoxin concentration of LPS (10 mg/kg). After the anal temperature 

had risen 0.5°c, mice were administered 22A-DMPC (10 mg/kg), and their survival was monitored 

for 4 days. As shown in Figure 2.9 and Table 2.2, the survival in the 22A-DMPC treatment group 

drastically improved from 30% to 90% compared to the LPS-only group (P < 0.01). Additionally, 

the mean survival time in the 22A-DMPC treatment group prolonged dramatically from 53.4 ± 9.3 

h to 93.6 ± 2.4 h relative to LPS-only treated animals (P < 0.001). There were no statistical 

differences observed between the 22A-DMPC group and the vehicle group. 

 

 

Figure 2.9. The effect of 22A-DMPC treatment on LPS-induced lethality in mice. Mice were first 

challenged with LPS at 10 mg/kg (i.p.). After the anal temperature had risen 0.5°C (approximately 

15 min), mice were administered PBS or 22A-DMPC at 10 mg/kg (i.v.). Survival was then 

monitored every 6 h for 96 h. Data show survival proportions (%) (n=10). **P < 0.01 
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Table 2.2. The treatment effect of 22A-DMPC rHDL in lethal endotoxemia mice. 

Group (n=10) Survival rate (%) Survival time (h) 

LPS 30** 53.4 ± 9.3*** 

22A-DMPC 90** 93.6 ± 2.4*** 

**P > 0.01, ***P > 0.001 

 

 

 We further compared the relative severity of LPS-induced pulmonary and liver pathology 

in the rHDL treatment group and LPS group. As shown in Figure 2.10 (liver), Figure 2.11 (lung), 

and Table 2.3, the 22A-DMPC treatment group showed no alterations, no inflammatory 

infiltrations, and displayed similar pathology to the negative control group. In contrast, positive 

LPS controls had the greatest histological changes in both liver and lung, consisting of 

inflammatory cell infiltration in the liver and lung, hepatocyte degeneration, hepatic glycogen 

depletion, and hepatic extramedullary hematopoiesis of the myeloid lineage. These findings 

evidently indicate that rHDL, particularly 22A-DMPC, could protect endotoxemia mice from 

death and organ injury. 

 

 

Figure 2.10. Representative histologic images of the liver. A: Negative control group with normal 

levels of glycogen storage (evident as irregularly vacuolated hepatocytes) and no inflammatory 

infiltration. B: 22A-DMPC treatment group with the same appearance as control. C: LPS group 

with diffuse glycogen depletion (no hepatocyte vacuolation) and inflammatory cell infiltration 

within sinusoids and central venules (arrows). Original magnification 400x. Bars 20 µm. 
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Figure 2.11. Representative histologic images of the lung at low magnification overview (large 

image) and at higher magnification (insets). A: Normal lung in control showing open alveolar 

spaces separated by thin, delicate alveolar septae without interstitial expansion. B: Normal lung 

in the 22A-DMPC treatment group. C: Low level inflammatory cell infiltration evidenced as 

neutrophil emigration from pulmonary venules (arrowheads) and multifocal expansion of the 

interstitium by neutrophils and macrophages (arrows) (C). Original magnifications 100x (large 

image) and 400x (insets). Bars 100 µm (large image) and 20 µm (insets). 

 

 

Table 2.3. Histology evaluation. 

Tissue Finding 
Severity scores of representative animals 

Control 22A-DMPC LPS 

Liver 

Infiltration, neutrophilic and macrophagic, 
sinusoidal 

0 0 1 

Glycogen depletion 0 0 3 

Lung 
Infiltration, neutrophilic and macrophagic, 
interstitial and perivascular 

0 1 2 

Severity scores: 0 (not present); 1 (mild: few small foci or minimal density); 2 (moderate: multiple 

small foci or moderate density); 3 (severe: multiple larger or coalescing foci or regionally intense) 

 

 

2.5. Discussion 

 In the present study, we extensively investigated how changes of phospholipids in rHDL 

can impact the anti-inflammatory activities in LPS-induced inflammation. We used PC that varies 
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in fatty acid chain length and saturation in the synthesis of rHDL, to display a unique fluidity of 

rHDL. The fluidity of the rHDL is known to be increased with the degree of the unsaturated fatty 

acid moieties (58). To this extent, HDL containing polyunsaturated saturated fatty acids (PUFA) 

would exhibit more fluid PC phase and result in enhanced anti-inflammatory activities by 

accelerating the efflux of cell-derived pro-inflammatory lipids, LPS, and cholesterol. However, 

our studies demonstrated that the rHDL with Tm closer to physiological temperature, 22A-DMPC 

resulted in the most enhanced anti-inflammatory activity in various mechanisms including LPS 

neutralization, cholesterol efflux, reduced TLR4 recruitment, and induced ATF3 expression to 

promote the greatest anti-inflammatory from fluid and mobile 22A-DMPC. 

 We first analyzed NF-κB, pro-inflammatory mediators quantify the capability of each 

rHDL to neutralize LPS and modulate inflammatory signaling cascade. 22A-DMPC notably 

suppressed NF-kB expression and pro-inflammatory mediators followed by 22A-POPC, 22A-

DPPC, and 22A-DSPC (Figure 2.3). According to PUFA residues (26,178), 22A-POPC exhibits 

the greatest fluidity and expected to result in the greatest LPS neutralization, nevertheless, 22A-

DMPC led to the greatest LPS neutralization. When 22A-DMPC, 22A-DPPC, and 22A-DSPC are 

compared, the LPS neutralization capability was correlated to the fatty acid chain length of PC as 

it affected the fluidity of rHDL. However, LPS neutralization capability between 22A-POPC and 

22A-DMPC did not follow the degree of the fluidity and the difference could be potentially 

explained by the stability of rHDL. We believe that heterogeneous size distribution in 22A-POPC 

is possibly due to the presence of liposomal impurities. The difficulty of synthesizing pure 22A-

POPC was described previously and was attributed to fluidity and instability of phospholipid 

membrane at room temperature which is above POPC Tm (179). In addition, the presence of an 

unsaturated fatty acid chain could result in phospholipid oxidation and oxidized HDL has been 
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reported with less fluidity (180,181). The instability and reduced fluidity of 22A-POPC would 

have caused reduced LPS neutralization capability. 22A-DMPC, in contrast, exhibits fluid liquid 

crystalline phase yet is relatively stable at physiological temperature since its Tm was close to 

physiological temperature. Biophysical characterizations should be further investigated to validate 

the fluidity of each rHDL through changes in fluorescence polarization anisotropy and how the 

fluidity influences the interaction with LPS. 

 Next, we sought to explore the disruption of lipid raft integrity, thereby decreasing TLR4 

on the surface of the cell as TLR4 presentation is localized within lipid rafts. Numerous studies 

have reported differences in cholesterol efflux capability for PCs of different saturation and fatty 

acid chain length. For example, saturated long-chain phospholipids such as DPPC and DSPC have 

higher cholesterol efflux capabilities and higher physical binding affinity to cholesterols than 

POPC (30,31,182,183). Our result was marginally in discordance with previous reports, as we 

focused on the fluidity of rHDL rather than physical cholesterol binding affinity. Analogous to our 

LPS binding results, we observed the greatest cholesterol efflux capacity from 22A-DMPC 

followed by 22A-POPC, and the least capacity from 22A-DPPC and 22A-DSPC based on its 

fluidity to efflux cholesterol.  

 Despite the significant cholesterol depletion observed with 22A-DMPC, it did not notably 

reduce the lipid raft content. Nevertheless, the modest lipid raft reduction was sufficient to result 

in a significant decrease of TLR4 recruitment on the cell surface (Figure 2.4). Murphy et al. 

performed a similar study examining the change in human monocyte lipid raft content, however, 

they observed a dramatic reduction of lipid raft content with apoA-I treatment (184). Several past 

studies reported that reduction of lipid raft cholesterol occurs through ABCA1 which is a key 

transporter that primarily interacts with apoA-I to efflux cholesterol from macrophages (4,185). 
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Therefore, one explanation for why the high cholesterol efflux from 22A-DMPC did not translate 

to a dramatic decrease in lipid rafts is that 22A-DMPC was initiating cholesterol efflux through 

another transporter, such as ATP-binding cassette transporter G1 (ABCG1), scavenger receptor B 

type I (SR-BI), or by passive diffusion. ABCG1 transporters interact with mature HDL to efflux 

cholesterol while SR-BI transporter is located in the caveolar region of macrophage and promotes 

bidirectional cholesterol efflux. Validation of 22A-DMPC or other rHDL transporter-specific 

efflux in macrophages would explain the relative minimal lipid raft disruption compared to the 

dramatic observed cholesterol efflux capacity. 

 We also showed stimulation of ATF3 expression by rHDL, consistent with initial reports 

by De Nardo et al. (5), and further demonstrated that the expression of ATF3 is critically dependent 

on rHDL phospholipid composition. Activation of ATF3 leads to recruitment of histone 

deacetylase 1 to the promoter region of pro-inflammatory cytokine gene and assists in 

deacetylating to limit transcriptional binding (68,69). In addition, a recent study demonstrated that 

ATF3 can directly interact with the p65 subunit of NF-κB to attenuate the NF-κB activity, thus, 

modulate the inflammatory response, rather than via indirect histone deacetylase 1 pathway (70). 

We demonstrated that 22A-DMPC induced prominent expression of ATF3 mRNA and protein 

while other rHDLs had no effect (Figure 2.5). Several studies also explored how structural 

differences in HDL can impact ATF3 expression. Didchenko et al. confirmed the finding that large 

rHDL has a reduced ability to induce ATF3 and smaller rHDL have a strong ability to induce both 

anti-inflammatory phenotypes and ATF-3 expression in macrophages (186). Similarly, Wang et 

al. found that various apoA-I cysteine mutants of rHDL can cause altered ATF3 expression, as 

amino acid mutations can influence the ATF3 pathway in macrophages (6). The mechanism by 

which HDL activates ATF3 is still unclear, but it is well-recognized as a key inflammatory 
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modulator of HDL. We propose that rHDL phospholipid composition and fluidity of rHDL can 

also influence the ATF3 pathway in macrophages causing altered expression of ATF3. 

 Interestingly, we were surprised by the results from our in vivo endotoxemia model (0.05 

mg/kg LPS) with rHDL administration (10 mg/kg). While we expected to see enhanced 

suppression of inflammatory response from the 22A-DMPC group due to its promising results in 

vitro, we did not expect that the 22A-DSPC group would also show a prominent suppression of 

the inflammatory response (Figure 2.8). In vitro 22A-DSPC was the least effective among all 

rHDL treatments, and we believe that 22A-DSPC efficacy in the endotoxemia model owes to its 

exceptional half-life. The half-life of 22A-DSPC was nearly 2-fold longer than 22A-DMPC, 

observed from a pharmacokinetic study (in revision, JPET), which may have allowed for greater 

exposure and neutralization of LPS (187). A credible explanation is that rHDL is known to be 

dissociated and remodeled upon administration in vivo (173,188), thus, 22A-DSPC favorably 

remodeled at a slower rate due to its rigid gel phase phospholipid compared to the fluid liquid 

crystalline phase phospholipid of 22A-DMPC (in revision, JPET). Nevertheless, the prolonged 

circulation of 22A-DSPC did not translate to a decrease in LPS-induced inflammation or an 

increase in survival following lethal doses of LPS (Supplemental Figure 2.3). Conversely, the 

efficacy of 22A-DMPC was further demonstrated in a lethal endotoxemia model which increased 

the survival rate and time (Table 2.2) along with the prevention of inflammation-induced organ 

injury (Table 2.3).  

 In 1993, Levine et al. reported that rHDL (80 mg/kg) composed with 18A peptide and egg 

PC could improve the survival rate 3- to 4-fold in endotoxemia mice (10 mg/kg LPS) and suggested 

the simple leaflet insertion model for neutralization of LPS by phospholipid on the surface of HDL 

(59). Imai et al. found that administration of apoA-I (10 mg/kg) 2 h post-LPS injection (1 mg/kg 
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LPS) reduces plasma TNF- and increased the survival rate in endotoxemia rats (5 mg/kg). 

Similarly, Yan et al. demonstrated the administration of apoA-I (100 mg/kg) to endotoxemia mice 

(5 mg/kg LPS) significantly lowered mortality (159). Zhang et al. used rHDL (40 mg/kg) 

complexed with apoA-I Milano, a mutant apoA-I, with soy PC as a treatment in endotoxemia rats 

(400 EU/kg gram-negative bacteria endotoxin) and observed improvements in renal and hepatic 

functions as well as a reduction in pro-inflammatory cytokines (160). In addition, Wang et al. 

compared the anti-inflammatory effect of rHDL containing different apoA-I cysteine mutants in 

endotoxemia mice, suggesting the cysteine mutation can impact LPS neutralization capability 

(189). The results from our study are consistent with these previous findings, with rHDL exerting 

efficacy against LPS-induce endotoxemia by inhibiting pro-inflammatory mediators and 

improving the survival rate in endotoxemic mice. Moreover, we proposed the importance of rHDL 

phospholipid composition which influences the mechanisms of anti-inflammatory activities in 

LPS-induced inflammation. 

 In conclusion, for the first time, we demonstrate that phospholipid composition drastically 

alters the anti-inflammatory effect of rHDL on LPS-induced inflammation both in vitro and in vivo. 

Our data suggest that fluidity of rHDL due to structural variances of phospholipids critically 

determines the anti-inflammatory effect by promoting different anti-inflammatory mechanisms. In 

this study, 22A-DMPC exhibited the most fluid yet stable rHDL at physiological temperature, 

displaying the greatest anti-inflammatory activities through multiple mechanisms including LPS 

neutralization, disruption of lipid raft integrity, and activation of ATF3 in vitro but also protected 

mice against mortality and organ injury from lethal endotoxemia. Therefore, we suggest that 22A-

DMPC may be a potential therapeutic effect against LPS-induced sepsis. 

2.6. Supplemental Information 
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Figure 2.12. Cell viability with rHDL treatment. A-C: Viability of Raw 264.7 (A), J774A.1 (B), 

HEK-Blue hTLR4 (C) cells with incubation of different formulations and concentrations rHDL for 

18 h. 

 

 

 

Figure 2.13. Survival rate (%) of mice challenged with LPS of different doses. Mice were injected 

with 5, 10, or 20 mg/kg of LPS (i.p.) without any treatment with 22A-sHDL (A). Mice were divided 

into control, LPS (10 mg/kg) only and LPS (10 mg/kg) + 22A-DMPC (10 mg/kg) treatment groups. 

After the anal temperature had risen 0.5°c, mice were either treated with saline or 22A-DMPC 

(B). Survival was then monitored every 6 hr for 4 days. Data show survival proportions (%) (n=10). 

**P < 0.01 
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Figure 2.14. The effect of 22A-DSPC treatment on LPS-induced lethality in mice. Mice were 

challenged with LPS via at 10 mg/kg (i.p.). After the anal temperature had risen 0.5°C 

(approximately 15 min), mice were administered in the absence or presence of 22A-DSPC at 10 

mg/kg (i.v.). Survival was then monitored every 6 h for 96 h. Data show survival proportions (%) 

(n=10). **P < 0.01 
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Chapter 3 

Phospholipid Component Defines Pharmacokinetic and Pharmacodynamic Properties of 

Synthetic High-Density Lipoproteins 

 

3.1. Abstract 

 Synthetic high-density lipoprotein (sHDL) nanoparticles composed of apolipoprotein A-I 

(ApoA-I) mimetic peptide and phospholipids have been shown to reduce atherosclerosis in animal 

models. Cholesterol is mobilized from atheroma macrophages by sHDL into the blood 

compartment and delivered to the liver for elimination. Historically, sHDL drug discovery efforts 

were focused on optimizing peptide sequences for interaction with cholesterol cellular transporters 

rather than understanding how both sHDL components, peptide and lipid, influence its 

pharmacokinetics (PK) and pharmacodynamic (PD) profiles. We designed two sets of sHDL 

having either identical phospholipid but variable peptide sequences with different plasma stability, 

or identical peptide and phospholipids with variable fatty acid chain length and saturation. We 

found that sHDL prepared with proteolytically stable 22A-P peptide had 2-fold longer circulation 

half-time relative to the less stable 22A peptide. Yet, longer half-life did not translate into any 

improvement in cholesterol mobilization. In contrast, sHDL with variable phospholipid 

compositions showed significant differences in phospholipid PK, with distearoyl 

phosphatidylcholine-based sHDL demonstrating the longest half-life of 6.0 h relative to 1.0 h for 

palmitoyl-oleoyl phosphatidylcholine-based sHDL. This increase in half-life corresponded to a 

~6.5-fold increase in the area under the curve for the mobilized cholesterol. Therefore, the 
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phospholipid component in sHDL plays a major role in cholesterol mobilization in vivo and should 

not be overlooked in the design of future sHDL. 

 

3.2. Introduction 

 Reverse cholesterol transport (RCT) is a mechanism of cholesterol removal from the 

periphery to the liver for elimination. This transport starts when lipid-poor apolipoprotein A-I 

(ApoA-I) facilitates extracellular efflux of phospholipids and cholesterol through the 

transmembrane ATP-binding cassette transporter A1 (ABCA1) resulting in the formation of pre-

β high-density lipoprotein (HDL) particles. Then, pre-β HDLs interact with lecithin:cholesterol 

acyltransferase (LCAT), an enzyme responsible for cholesterol esterification, leading to the 

formation of larger mature HDLs. Mature HDLs can either deliver esterified cholesterol (EC) 

cargo directly to the liver for elimination through scavenger receptor class B type I (SR-BI) or 

transfer EC to LDL by interaction with cholesterol ester transfer protein (CETP) for the elimination 

by the liver following LDL receptor-mediated uptake.  

 The idea of using reconstituted (rHDL) or synthetic (sHDL) HDL for the treatment of 

cardiovascular disease has been prominent in the past 20 years, with several therapies reaching 

clinical trials (190–193). While some clinical trials for rHDL products were successful 

(190,191,193), others failed (194,195). A 17,400-patient Phase III trial (AEGIS-II) is currently 

ongoing for CSL-112 to show a possible reduction of major adverse cardiovascular events in 

subjects with the acute coronary syndrome (193). The two most advanced sHDL products, CSL-

112 and CER-001, both contain ApoA-I but differ in their lipid composition. CSL-112 is prepared 

from unsaturated soybean phosphatidylcholine while CER-001 is composed of primarily saturated 

sphingomyelin (195). Recently, we have shown that the type of phospholipid used in sHDL 
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preparation is critical for its anti-inflammatory and anti-atherosclerotic properties (188). Several 

other studies had examined the effects of phospholipid composition on the ability of sHDL to 

efflux cholesterol and interact with LCAT in vitro (31,196,197), yet the impact of phospholipid 

chain length and saturation on sHDL pharmacodynamics in vivo has not been systematically 

examined.  

 In contrast, a significant body of research had been performed to develop short peptides 

(2F (18A), D-4F, L-4F, 5A, 22A, and ATI-5261) as cost-efficient, safe and easily scalable 

alternatives to a full-length ApoA-I (128,130,139,166,198–201). These ApoA-I mimetic peptides 

have been optimized with the goal to improve several properties such as ABCA1 mediated 

cholesterol efflux, the ability to activate LCAT and facilitate cholesterol esterification, enhance 

anti-oxidant properties, improve chemical stability and reduce hemolytic side-effects 

(43,131,140,199). Most ApoA-I mimetics were optimized as “naked” or lipid-free peptides in vitro 

and in vivo and only a few studies examined the pharmacological activity of peptide-based sHDL 

(131,172). 

 Thus, we decided to systematically evaluate the effect of both peptide sequence and 

phospholipid composition of sHDL on nanoparticle’s ability to mobilize and esterify cholesterol 

in vitro and in vivo. For our studies, we used the first ApoA-I mimetic peptide (22A) that reached 

clinical trials as part of the sHDL product called ETC-642 (127,166). ETC-642 contained 22A 

ApoA-I mimetic peptide, which was optimized for its ability to bind phospholipids and activate 

LCAT (135,199). While ETC-642 successfully completed single and multiple-dose trials in 

dyslipidemia patients, it was recently discovered by us that 22A peptide undergoes rapid 

hydrolysis in plasma to form the 21A peptide, which lacks the C-terminal lysine, a residue 

potentially important for LCAT activation (172,202). We hypothesized that the addition of a 
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proline moiety after the labile lysine (22A-P) would be able to protect 22A from proteolysis and 

result in longer circulation time while retaining LCAT activity in vivo. Thus, we prepared a set of 

sHDL particles using 22A, 21A, and 22A-P peptides while keeping lipid composition constant. 

 The second set of sHDL was prepared by varying only the phospholipid component and 

keeping the peptide component, 22A, constant. We used phospholipids with different chain length 

and saturation including 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), 1,2-

dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1,2-dipalmitoyl-sn-glycero-3-

phosphocholine (DPPC) or 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) known for their 

differences in cholesterol binding affinity and LCAT interaction (182,203,204). Phospholipids 

with longer, saturated fatty acid chains such as DPPC and DSPC have a higher affinity for 

cholesterol binding and higher physical stability due to their high transition temperatures (Tm) of 

41°C and 55°C, respectively (182,183,205). In contrast, unsaturated phospholipids like POPC 

(Tm= -2°C) and those with shorter fatty acid chains like DMPC (Tm = 23°C) form fluid bilayers at 

physiological temperature facilitating LCAT-sHDL binding. The unsaturated fatty acids are 

superior substrates for LCAT esterification activity (203,206). By comparing two sets of sHDL 

with varying peptide and lipid components side by side, we expected to be able to elucidate the 

relative contribution of both components to cholesterol efflux and engagement of LCAT in vitro 

as well as the overall pharmacokinetic and pharmacodynamic behavior of sHDL in vivo. 

 

3.3. Materials and Methods 

3.3.1. Materials 

 22A (PVLDLFRELLNELLEALKQKLK), 21A (PVLDLFRELLNELLEALKQKL), and 

22AP (PVLDLFRELLNELLEALKQKLKP) were synthesized by Genscript (Piscataway, NJ), 
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using solid-phase Fmoc (9-fluorenylmethyl carbamate) protection chemistry and purified with 

reverse phase chromatography (>95% pure). 5A peptide (DWLKAFYDKVAEKLKEAF-P-

DWAKAAYDKAAEKAKEAA) was obtained from Bachem Americas Inc (Torrance, CA). 

Phospholipids including 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1,2-dipalmitoyl-

sn-glycero-3-phosphocholine (DPPC), 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), and 

1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) were purchased from NOF America 

Corporation. Ergosta-5,7,9(11), 22-tetraen-3β-ol (dehydroergosterol, DHE), cholesterol oxidase 

was obtained from Sigma-Aldrich (St. Louis, MO). Cholesterol (1,2-3H(N)] was purchased from 

Perkin Elmer. Anti-human ApoA-I horseradish peroxidase-conjugated (HRP) antibody (1:1000 

dilution) was purchased from Meridian Life Science (Memphis, TN). Recombinant human lecithin 

cholesterol acyl transferase (LCAT) was kindly provided by MedImmune (Gaithersburg, MD). All 

other materials were obtained from commercial sources. 

 

3.3.2. Preparation and characterization of synthetic high-density lipoproteins 

 sHDL composed of a peptide (22A, 21A, or 22A-P) and phospholipid (DMPC, POPC, 

DPPC, or DSPC) were prepared by a co-lyophilization procedure (188). Briefly, peptide and 

phospholipids were dissolved in glacial acetic acid, mixed at 1:2 w/w ratio of peptide:lipid, and 

lyophilized overnight. The powder was hydrated with PBS pH 7.4 to make 10 mg/mL sHDL and 

cycled between 55°C (10 min) and room temperature (10 min) to facilitate sHDL formation. The 

resulting sHDL complexes were analyzed by gel permeation chromatography for purity at 1 

mg/mL using 7.8 mm x 30 cm Tosoh TSK gel G3000SWxl column (Tosoh Bioscience, King of 

Prussia, PA) with UV detection at 220 nm. The HDL hydrodynamic diameters were determined 

by dynamic light scattering (DLS) using a Zetasizer Nano ZSP, Malvern Instruments 
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(Westborough, MA). The volume intensity average values were reported. The α-helical content of 

free and lipid-bound peptide was determined by Jasco J715 (Jasco, Easton, MD) circular dichroism 

(CD) spectropolarimeter. Samples at 0.1 mg/mL concentration in 10 mM phosphate buffer (pH 

7.4) or buffer alone were loaded into a quartz cuvette (d = 0.2-cm path length), and CD spectra 

from 190 to 260 nm were recorded at 37°C. Buffer spectra were subtracted from each peptide or 

sHDL sample. Data analysis was conducted using CDPro analysis software and the percent helical 

content for each sample was calculated via CONTIN analysis method with the reference Soluble–

Membrane Protein 56 Data Base (207).  

 

3.3.3. Generation of helical wheel peptide models and calculation of lipid binding parameters 

 Helical wheel plots of 22A, 21A, and 22A-P peptides were created by Helixator 

(http://tcdb.org/progs/helical_wheel.php). This program displayed a peptide sequence looking 

down the axis of the alpha helix with aliphatic residues shown as blue circles. The hydrophobic 

momentum of 22A, 21A, and 22A-P peptides was calculated using the 3D Hydrophobic Moment 

Vector Calculator (http://www.ibg.kit.edu/HM/) (208). The helix stability (ΔGhel), transfer energy 

from water to membrane (ΔGtrans), and parameters of spatial positions in membranes (tilt angle and 

membrane penetration depth) for each ApoA-I-mimetic peptide were calculated by the Folding of 

Membrane-Associated Peptide (FMAP) server (209) and the Positioning of Proteins in Membranes 

(PPM) server (210).  

 

3.3.4. Cholesterol efflux assay in vitro 

 Cholesterol efflux studies were performed, as described by Remaley et al. (211). Briefly, 

RAW 264.7, BHK-Mock and BHK stably transfected with human ABCA1 cDNA cell lines were 

http://tcdb.org/progs/helical_wheel.php)
http://www.ibg.kit.edu/HM/)
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labeled for 24 h with 1 µCi/mL of [3H] cholesterol in minimum Dulbecco’s modified Eagle’s 

medium (DMEM), containing 0.2 mg/ml of fatty acid-free bovine serum albumin (BSA). Then, 

BHK-MOCK and BHK-ABCA1 cell lines were treated with 10 nM mifepristone for 18 h to 

selectively induce the expression of ABCA1 cholesterol transporter for BHK-ABCA1. ABCA1 

transporter was not selectively induced in RAW 264.7 cell line. Following the radiolabeling or 

induction step, peptides (22A, 21A or 22A-P) or sHDL (21A-DMPC, 22A-P-DMPC, 22A-DMPC, 

22A-POPC, 22A-DPPC or 22A-DSPC) were added at 0.01, 0.03 and 0.1 mg/mL concentration 

using DMEM-BSA media. After 18 h of incubation with cholesterol acceptors, media were 

collected and cells were lysed in 0.5 ml of 0.1% SDS and 0.1 N NaOH for 2 h. Radioactive counts 

in media and cell fractions were measured by liquid scintillation counting (Tri-Carb 2910 TR, 

PerkinElmer), and percent cholesterol efflux was calculated by dividing media counts by the sum 

of media and cell counts.  

 

3.3.5. Phospholipid lipolysis by LCAT 

 The rate of phospholipid (POPC, DMPC, DPPC or DSPC) lipolysis was evaluated by 

incubating 15 g/mL of rhLCAT with 0.1 mg/mL of sHDL (based on total lipid concentration) in 

0.1 M sodium phosphate buffer pH 7.4 for 0, 5, 15, 30, 60, 90, and 120 min. The LCAT-sHDL 

reaction aliquots were collected into methanol (1:5 v/v) and vortexed to stop the lipolysis reaction 

at each time point. The amount of POPC, DMPC, DPPC or DSPC remaining at each time point 

was measured by Waters UPLC-MS equipped with QDa Mass Detector (Milford, MA). 

Chromatographic separation was achieved on Acquity BEH300 1.7 m HILIC 2.1 x 50 mm 

column with gradient elution at 0.65 mL/min: mobile phase A (H2O/0.1% formic acid), mobile 

phase B (acetonitrile/0.1% formic acid) and mobile phase C (100 mM ammonium formate) as 
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follows: 0-0.7 min (5-17% A, 90-78% B, and 5-5% C), 0.7-0.71 min (17-5% A, 78-90% B, and 5-

5% C), and 0.71-3 min (17-5% A, 78-90% B, and 5-5% C). Mass spectra were acquired in the 

positive ion mode with the mass range set at m/z 150-1250 and POPC was detected at 760.7 amu, 

DMPC at 678.7 amu, DPPC at 734.7 amu, and DSPC at 790.7 amu. Data analysis was performed 

with Waters Empower software. The plot of POPC, DMPC, DPPC or DSPC area under the curve 

over time was generated for each sHDL sample. The rate of LCAT lipolysis (k) was calculated 

from the linear slope of the log10 (concentration) versus time.  

 

3.3.6. Cholesterol esterification by LCAT assay 

 Two different sets of sHDL containing dehydroergosterol (DHE) was prepared via the thin-

film method. Briefly, the first set was made from POPC, DPPC and DHE combined at a 4.5:4.5:1 

molar ratio in chloroform and then mixed with peptide (22A, 21A or 22A-P) at 2:1 lipid:peptide 

weight ratio in methanol/water (4:3 v/v). The second set was prepared from POPC, DMPC, DPPC 

or DSPC and DHE at a 9:1 molar ratio then mixed with 22A peptide at 2:1 lipid:peptide weight 

ratio in methanol/water (4:3 v/v). The solvent was removed under nitrogen flow at room 

temperature and then in a vacuum oven overnight. The lipid film was hydrated with 20 mM 

phosphate buffer containing 1mM EDTA (pH 7.4) followed by 5 min water bath sonication at 

room temperature and probe sonication (2 min × 50 w) to obtain clear DHE-sHDL. The final DHE 

concentration in peptide-DHE-sHDL was 0.5 mM. The LCAT assay was adapted from Homan et 

al. (212) and performed in 384-well black polystyrene plates in triplicate. Briefly, 8 μL of different 

concentrations (0, 5, 10, 20, 40, 60, and 100 μM) of DHE-sHDL (substrates) in assay buffer (PBS 

containing 1 mM EDTA, 5 mM β-mercaptoethanol, and 60 µM albumin, pH 7.4) preheated to 

37°C were incubated with 8 μL of 5 μg/mL LCAT in dilution buffer (PBS with 1 mM EDTA and 
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60 µM albumin, pH 7.4) preheated to 37°C in triplicates. The plates were incubated at 37°C with 

gentle shaking (80 rpm/min) for different lengths of time (0, 10, and 20 min). Reactions were 

stopped by adding 4 μL of stop solution (3.75 U/mL cholesterol oxidase) in PBS containing 1mM 

EDTA and 7% Triton X-100. Then, the plates were incubated at 37°C with shaking (80 rpm/min) 

for another 1 h to quench the fluorescence of unesterified DHE. The fluorescence was measured 

at an excitation wavelength of 325 nm and an emission wavelength of 425 nm using the plate-

reader (SynergyTM NEO HTS Multi-Mode Microplate Reader, Bio-Tek). A standard curve was 

made by plotting the fluorescence of serially diluted DHE-containing sHDL mixed with LCAT 

and using stop solution without COx versus the concentration (μM) of DHE. To calculate the 

concentration (μM) of DHE ester for each reaction, the background fluorescence (0 μM of DHE) 

was subtracted from all fluorescence measurements and then divided by the slope 

(fluorescence/μM) of the above standard curve. To calculate Vmax and Km, the concentrations (μM) 

of DHE ester at different time points were plotted against time (h), and the initial velocity (V0, μM 

DHE-ester/h) was the slope of the linear range of DHE-ester concentration versus time. The Vmax 

and Km were obtained by plotting V0 versus DHE concentration and then analyzed by GraphPad 

Prism 7 (nonlinear regression, Michaelis-Menten model). 

 

3.3.7. Plasma peptide stability 

 The in vitro stability of 22A, 21A, and 22A-P peptides was assessed by the addition of 2.5 

µL of 10 mg/mL of a peptide to 97.5 µL of fresh rat plasma (K2 EDTA, Innovative Research Inc). 

Immediately after the addition of peptide to plasma, 10 µL of serum was removed to serve as a 

baseline and stored at -20 C. Samples were incubated at 37°C for 24 hours with shaking at 240 

rpm. To determine peptide concentration at 0 and 24 h post plasma incubation, 10 µL of plasma 
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containing a peptide or working standard (0-100 µg/mL) was mixed with 2 µL of 2.4 mg/mL 

internal standard (5A peptide) and 38 µL of H2O. Methanol (200 µL) was added to precipitate 

plasma proteins. The mixture was vortexed for 10 s, centrifuged at 12,000 rpm for 10 min and the 

supernatant was collected for LC-MS analysis. Samples were mixed (1:1 v/v) with LC-MS mobile 

phase (80:20 v/v H2O:acetonitrile, 0.1% formic acid) and analyzed on Waters Acquity UPLC 

equipped with QDa System (Milford, MA) using Acquity UPLC BEH C18 1.7 μM column for 

separation. The mobile phase consisted of (A) water containing 0.1% v/v formic acid and (B) 

methanol containing 0.1% v/v formic acid. The mobile phase was delivered at 0.3 mL/min using 

a gradient elution of 20% to 80% B during 0-1.5 min, and 80% to 20% B during 1.5-3.5 min. Mass 

spectra were acquired in the positive ion mode with the mass range set at m/z 150-1250. Data 

analysis was performed on Waters Empower software. The concentration of 22A, 21A or 22A-P 

peptide in each sample was determined from the standard curve.  

 

3.3.8. Peptide pharmacokinetics, cholesterol mobilization, and esterification in vivo 

 Healthy male Sprague-Dawley rats (8 weeks old) were purchased from Charles River 

Breeding Laboratories (Portage, MI) and were fed a standard rodent chow diet. To examine the 

impact of peptide composition on sHDL PK/PD properties, animals were randomly assigned to 

two groups (n = 4/group) for 22A-POPC/DPPC and 22A-P- POPC/DPPC administration. To 

examine the impact of lipid composition on sHDL PK/PD, animals were randomly assigned to 

four groups (n = 3/group) for 22A-POPC, 22A-DMPC, 22A-DPPC, and 22A-DSPC administration. 

All sHDL particle was prepared at 1:2 w/w peptide to phospholipid ratios, sterile filtered and 

characterized by DLS and gel permeation chromatography for size and purity prior to animal 

dosing. All animals were fasted overnight before sHDL dosing at 50 mg/kg (based on peptide 
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concentration) via tail vein injection. At each time point (pre-dose, 0.25, 0.5, 1, 2, 4, 8, and 24 h) 

blood samples (~0.3 mL) were collected from the jugular vein to heparinized BD tubes (Franklin 

Lakes, NJ) and centrifuged at 10,000 rpm for 10 min at 4C. The obtained serum samples were 

stored at -20C for further analysis.  

 The levels of plasma phospholipids (PL), total cholesterol (TC) and free cholesterol (FC) 

were determined enzymatically (Wako Chemicals, Richmond, VA) using a plate reader 

(SynergyTM NEO HTS Multi-Mode Microplate Reader, Bio-Tek). Esterified cholesterol levels 

(EC) were calculated as the difference between TC and FC levels at each time point. Briefly, serum 

samples were diluted with PBS for TC and FC detection, or with MilliQ water for PL detection. 

Defined amounts of standards or diluted samples were transferred to 96-well plates (50 μL, 60 μL 

and 20 μL for TC, FC and PL analyses, respectively), and assay reagents were added per 

manufacturer’s instructions. The plates were gently shaken using an orbital shaker and incubated 

at 37˚C for 5 minutes. The UV absorbance at 600 nm was measured by a Molecular Devices 

SpectraMax M3 plate reader (Sunnyvale, CA). Pharmacokinetic parameters were also obtained by 

non-compartmental analysis. The pharmacodynamic effect in each rat was determined as the area 

under the total effect curve (AUEC) using trapezoidal rule. Secondary pharmacodynamic 

endpoints, maximal effect (Emax) and time to Emax (Tmax,E) were also analyzed to compare 

pharmacodynamic effects. 

 Peptide (22A or 22A-P) concentration in serum was determined by LC-MS. The 10 µL 

serum aliquots were combined with 10 µL of 2.4 mg/mL of internal standard (5A peptide) and 

then mixed with 40 µL ddH2O. Working standard solutions (0-100 µg/mL) of 22A and 22A-P 

were prepared as described above for plasma samples with the exception of using blank rat serum. 

Plasma proteins were precipitated by adding 180 μL of methanol. After 5 minutes, the mixture was 
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centrifuged (12000 rpm × 10 min, 4°C) and 100 µL of the supernatant was used for analysis. Each 

sample was analyzed by LC-MS as described above in the plasma peptide stability section. 

Pharmacokinetic parameters such as maximum serum concentration (Cmax), the area under the 

serum concentration-time curve (AUC), elimination rate constant (K), elimination half-life (T1/2), 

total clearance (CL), and volume of distribution (Vd) were obtained by non-compartmental analysis. 

 

3.3.9. Remodeling of sHDL particles in the plasma 

 Remodeling of endogenous lipoproteins in human plasma was assessed by incubation with 

sHDL. Various sHDL (22A-POPC, 22A-DMPC, 22A-DPPC, 22A-DSPC, 21A-sHDL, 22A-sHDL, 

and 22A-P-sHDL) at 1 mg/mL concentration were incubated at 37°C for 1 h with shaking at 300 

rpm. The sub-classes of HDL were separated by size and charge by one-dimensional native 

polyacrylamide gel electrophoresis (PAGE) and visualized by Western Blot using anti-ApoA-I 

antibody. Briefly, samples were subjected to electrophoresis using Tris-borate-EDTA (TBE) 

gradient (4 – 20%) acrylamide mini-gels. For each well, 10 μL of human plasma incubated with 

or without sHDL was mixed with 10 μL of 2X TBE sample buffer, and 6 μL of the resulting 

mixtures were loaded per well. Gels were run at 200V. Proteins were transferred to polyvinylidene 

difluoride membrane (PVDF) and incubated overnight with the anti-human ApoA-I-HRP 

conjugated antibody. Proteins were visualized with the enhanced chemiluminescent substrate on 

Protein Simple FluorChem M imaging system (San Jose, CA). 

 

3.3.10. Statistical analysis 

 Significance of difference was determined by Student’s t-test for comparing two groups or 

by one-way analysis of variance (ANOVA) with Dunnett’s post-hoc test for comparing multiple 
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groups with 22A peptide or 22A-DMPC as the control. All samples were performed in triplicate 

and error bars were reported as a standard mean error (SEM) unless noted otherwise. P < 0.05 was 

considered statistically significant.  

 

3.4. Results 

3.4.1. Design of ApoA-I peptides with improved plasma stability 

 Helical wheel plots for 22A, 22A-P, and 21A were generated to assess the amphipathic 

nature of each peptide. The hydrophobic amino acids clustered on one side of the helix suggested 

an amphipathic orientation of each peptide (Table 3.1). The 3D hydrophobic moment vector 

calculations were performed to predict and compare the interactions of each peptide with lipid 

membranes. It was determined that the hydrophobic moment vectors were almost identical with 

an average of 10.3  0.7 A*kT/e. Additionally, we used an online server to determine the helix 

stability (Ghel), transfer energy from water to membrane (Gtrans), and orientation of each peptide 

in the membrane (penetration depth, D). Again, we did not find large differences in any of the 

aforementioned parameters, suggesting that the absence of the terminal lysine in 21A or the 

addition of proline in 22A-P did not change the physical properties of these peptides compared to 

22A. Next, we compared the plasma stability of 22A, 22A-P, and 21A as well as their abilities to 

bind lipid and form sHDL particles. We found that while 22A degrades in plasma with only 48% 

of intact peptide remaining after 24 h incubation at 37°C, both 22A-P and 21A are significantly 

more stable with 89 and 97% of intact peptide remaining, respectively. These results suggest that 

the plasma stability of 22A peptide can be greatly improved by the addition of a bulky proline, 

while computed lipid binding properties remained relatively unchanged.  
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Table 3.1. Biophysical characterization of peptides. 

Peptide name 22A 21A 22A-P 

Sequence 
PVLDLFRELLNELLEALK

QKLK 

PVLDLFRELLNELLEAL

KQKL 

PVLDLFRELLNELLEAL

KQKLKP 

Helical wheel 

plota 

 

 

 

 

 

 

 

 

 

 

 

 
Hydrophobic 

moment vector 

(A*kT/e)b 

11.1 
10.0  9.9 

Ghel (kcal/mol)c -19.8 -19.4 -19.8 

Gtran (kcal/mol)c -14.7 -13.4 -14.7 

D (Å)c 11.8 ± 3.6 8.1 ± 4.6 11.8 ± 3.6 

Helical content of 

lipid-free peptide 

(%)d 

76.6 79.0 76.5 

Helical content of 

lipid-bound 

peptide (%)d 

93.9 90.9 81.6 

Peptide plasma 

stability (%)e 
48.4 ± 10.6 96.8 ± 5.4 89.3 ± 12.5 

aHelical wheel plots were generated using the online tool called Helixator where hydrophobic 

amino acids were highlighted in blue. bHydrophobic moments were calculated by the 3D 

Hydrophobic Moment Vector Calculator. cHelix stability (∆Ghel), transfer energy from water to 

membrane (∆Gtran), and tilt angle in membranes were predicted by FMAP server for 22A, 21A, 

and 22A-P peptide sequences; dHelical content of lipid-free and lipid-bound peptides was 

determined by circular dichroism; ePeptide stability in rat plasma was determined by LC-MS 

shown as percent remaining peptide following 24 h incubation at 37°C (n=3, mean  standard 

deviation). 

 

 

3.4.2. Preparation and characterization of sHDL particles 

 We next evaluated the ability of 21A, 22A, and 22A-P peptide to form homogeneous sHDL 

particles. Synthetic HDL particles were prepared by combining 22A, 21A or 22A-P peptide with 
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DMPC at 1:2 w/w peptide:lipid ratio, which was previously used in ETC-642 formulation resulting 

in the formation of homogeneous sHDL particles with approximately 10 nm size (43,172). All 

three peptides formed homogeneous sHDL particles with average diameters of approximately 10 

nm and a narrow polydispersity index of 0.17 ± 0.04 as determined by DLS (Figure 3.1A). Purity 

and homogeneity of sHDL size distribution were evaluated by gel permeation chromatography 

(Figure 3.1B). All three sHDL were over 98% pure, and negligible levels of the free peptide (<2%) 

were observed at the retention time of ~11 min (Supplemental Table 1). The binding of a peptide 

to phospholipid was also confirmed by increased helicity of 22A, 21A and 22A-P in sHDL 

particles (94, 91 and 82%) relative to the free peptide (77, 79 and 77%) as measured by CD. 

 We also altered the phospholipid composition of 22A sHDL to study its impact in vitro and 

in vivo. We chose four lipids with different physical properties such as transition temperature (Tm) 

and affinity for cholesterol (DSPC>DPPC>DMPC>POPC) (182,183,205). The sHDL complexes 

were formed by combining 22A peptide with individual lipids at 1:2 w/w ratio using the co-

lyophilization method. All were highly homogeneous with an average hydrodynamic diameter 

ranging between 8.3 to 10.5 nm, low polydispersity index and gel permeation chromatography 

purity greater than 95% (Figure 3.1C-D). The purity, size, and polydispersity levels of sHDL are 

summarized in Supplemental Table 1. The DMPC, DPPC and DSPC-based sHDL had smaller 

hydrodynamic diameters, higher GPC purities, and sharper GPC peaks relative to 22A-POPC. The 

presence of free peptide (<1%, retention time ~11.3 min) and liposome impurities (<2%, retention 

time ~5.5 min) were observed for 22A-POPC, which also had the largest average particle size and 

broadest size distribution. Because POPC has the lowest Tm of -2 °C, it exists in a fluid gel state 

at room temperature, which likely impacts 22A-POPC stability.  
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Figure 3.1. Size distribution and purity of sHDL prepared with various peptide (A, B) and 

phospholipid (C, D) compositions. The size was determined by dynamic light scattering (DLS) (A, 

C) and purity was determined by gel permeation chromatography (GPC) (B, D). 

 

 

3.4.3. Lipid composition of sHDL impacts macrophage cholesterol efflux  

 We next examined how the C-terminal modifications in 22A-P and 21A impact cholesterol 

efflux abilities relative to 22A, either as free peptides or reconstituted into sHDL. Radioactive 

cholesterol was loaded into BHK cell line stably transfected with human ABCA1 transporter and 

peptides were incubated with the cells at 0, 0.01, 0.03, and 0.1 mg/mL. The same experiment was 

repeated using the control BHK-Mock cell line to assess cholesterol efflux by passive diffusion. 

Then, the non-specific cholesterol efflux values were subtracted from the data obtained for each 

peptide with ABCA1 transfected cells to reveal receptor-specific cholesterol efflux (Figure 3.2A). 

All three peptides exhibited concentration-depended cholesterol efflux with only minor differences 
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(< 5%) observed, indicating that modifications at the C terminal end of 22A did not affect lipid 

binding and ABCA1 transporter interaction. Then, the three peptide sequences were assembled 

into sHDL and their abilities to efflux cholesterol from macrophages were examined in RAW 

264.7 cell line (Figure 3.2B). Similar to free peptide, we observed concentration-dependent 

cholesterol efflux with only minor differences (< 5%) at concentrations tested. 

 To explore the impact of the phospholipid component of sHDL on macrophage cholesterol 

efflux, 22A-POPC, 22A-DMPC, 22A-DPPC, and 22-DSPC were incubated with RAW 264.7 cells. 

Saturated long chain length phospholipids such as DPPC and DSPC have higher physical binding 

affinity to cholesterol relative to POPC and DMPC (182,183). However, the transition temperature 

of POPC and DMPC is below 37°C, thus the phospholipid bilayer is in liquid crystal state at 

physiological temperature facilitating cholesterol partitioning in these sHDL particles at the cell 

culture conditions (31). As expected, we observed greater cholesterol efflux to POPC and DMPC-

based sHDL relative to DPPC and DSPC-based sHDL likely due to differences in lipid fluidity at 

37°C (Figure 3.2C). Whereas 22A-DPPC and 22A-DSPC did not have any significant differences 

in cholesterol efflux as concentration increased, 22A-POPC and 22A-DMPC show sHDL 

concentration-dependent increase in cholesterol efflux. Interestingly, 22A-DMPC showed the 

most effective cholesterol efflux capability from as low as 36% at 0.01 mg/mL to as high as 61.8% 

at 0.1 mg/mL concentration. Membrane transporters such as ABCG1/G4 and SR-BI are known to 

play a major role in cholesterol efflux to HDL rather than lipid-free protein and may contribute to 

the differences seen between sHDL in our study (213,214). Taken together, the phospholipid 

composition of sHDL appears to play a significant role in cholesterol efflux from macrophages in 

cell culture. 
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Figure 3.2. Effect of peptides and sHDL on cholesterol efflux. Free peptides (22A , 21A, 22A-P) 

were used to efflux cholesterol from BHK cells stably transfected with ABCA1 transporter (A) and 

sHDL (22A-DMPC, 21A-DMPC, 22A-P-DMPC and 22A-POPC, 22A-DMPC, 22A-DPPC, 22A-

DSPC) were utilized to efflux cholesterol from RAW 264.7 macrophage cells (B, C) at 0.01, 0.03, 

and 0.1 mg/mL for 18 hrs. The contribution of ABCA1 transporter was determined by subtracting 

efflux values of Mock-transfected cell line from ABCA1-transfected cell line (n=3, mean  SEM). 

Statistical differences were compared to 22A peptide or 22A-DMPC with one-way ANOVA 

analysis with Dunnett’s post-hoc test. P < 0.05 was considered statistically significant *P < 0.05, 
**P < 0.01, ***P < 0.001 

 

 

3.4.4. Peptide and lipid composition both impact sHDL interaction with LCAT  

 Following cholesterol efflux from macrophages, sHDL particles interact in plasma with 

LCAT (215). It is expected that both lipid and peptide composition of sHDL will have an effect 

on LCAT interaction. The fluidity of HDL lipid membrane determines the ease of LCAT binding 

to HDL particles (216). It has been shown that LCAT interaction with ApoA-I is critical for LCAT 

activation, especially for the facilitation of acyltransferase activity (217). Whereas some ApoA-I 

mimetic peptides have similar LCAT activation ability to full-length ApoA-I, others fail to 

facilitate EC formation (199,218,219). The presence of positively charged clusters on the C-

terminus and presence of hydrophobic amino acids at positions 3, 6, 9 and 10, and net peptide 

charge of zero are believed to be critical to the high LCAT activation ability of 22A (199,220). To 

examine how modification of 22A and lipid composition of sHDL impact phospholipase A2 
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activity of LCAT, sHDL were co-incubated with enzyme and the kinetics of reduction of 

phospholipid concentration was monitored by LC-MS. We found that small changes in 22A 

sequence had only a limited impact on phospholipase A2 activity (lipolysis) activity (Figure 3.3A), 

indicating that LCAT activation by a C-terminal positive cluster on the peptide might not be critical 

for lipase activity. In contrast, the sHDL lipid composition had profound effect on LCAT-catalyzed 

phospholipid lipolysis with the rates of 0.08, 0.08, 0.01, and 0.0 h-1 for 22A-POPC, 22A-DMPC, 

2A-DPPC and 22A-DSPC, respectively. DSPC and DPPC, phospholipids with Tm values above 

37°C, had minimal lipolysis likely due to poor LCAT binding to sHDL and, thus, presumably 

difficulty in the accessibility of substrate for the enzymatic reaction.  

 Next, we assessed the impact of peptide and lipid composition of sHDL on LCAT 

acyltransferase activity by incorporating a fluorescent cholesterol analog called dehydroergosterol 

and measuring the rate of sterol esterification by LCAT. Changes in C-terminus of 22A peptide 

had a significant effect on the acyltransferase activity with a 2.6-fold decrease in kcat upon the loss 

of lysine for 21A (Figure 3.3C). The rate was only decreased by 30% for 22A-P-HDL. When 

22A-sHDL was complexed with different compositions of phospholipids, acyltransferase activity 

of LCAT was the highest for 22A-POPC sHDL (Figure 3.3D). Sterol esterification was only 

limited for 22A-DMPC sHDL, while no activity was detected for 22A-DPPC and 22A-DSPC. This 

trend was similar to the differences in phospholipase A2 activity observed for sHDL prepared with 

different lipids (POPC ≥ DMPC > DPPC > DSPC), following their general trends in Tm and 

membrane fluidity.  

 



79 

 

 

Figure 3.3. Effect of peptide and phospholipid composition in sHDL on LCAT lipolysis and 

esterification rates. (A, B) The rate of sHDL lipolysis was determined by incubating sHDL (0.1 

mg/mL) prepared with variable peptide composition (22A-DMPC, 21A-DMPC, 22A-P-DMPC) or 

variable phospholipid composition (22A-POPC, 22A-DMPC, 22A-DPPC, 22A-DSPC) with 

human rhLCAT (15 g/mL) at 37 C for 0, 5, 15, 30, 60, 90, and 120 min. The concentration of 

phospholipid at each time point was determined by LC-MS and the rate of lipolysis calculated 

from the slope of the concentration of the starting material versus time. LCAT esterification 

activity was measured for sHDL containing fluorescent cholesterol analog, dehydroergosterol 

(DHE) (C, D). The initial reaction rates (V0) are plotted as a function of DHE concentration and 

the data were fitted into the Michaelis-Menten kinetic equation to calculate Vmax and Km (n=3, 

mean  SEM). Statistical differences were compared to 22A peptide or 22A-DMPC with the one-

way ANOVA analysis with Dunnett’s post-hoc test. P < 0.05 was considered statistically 

significant *P < 0.05, **P < 0.01, ***P < 0.001 

 

 

3.4.5. Increase in peptide plasma half-life has no impact on cholesterol mobilization in vivo 

 To evaluate whether in vitro peptide stability data correlates with in vivo peptide 

pharmacokinetics and cholesterol mobilization, we injected healthy Sprague Dawley rats with 

22A-POPC-DPPC or 22A-P-POPC-DPPC sHDL at 50 mg/kg based on peptide concentration in 
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sHDL. Animal blood samples were collected before sHDL administration and at 0.25, 0.5, 1, 2, 4, 

8, and 24 h post-dose. The peptide concentrations in rat serum were determined using LC-MS 

(Figure 3.4A). The noted stability of 22A-P when incubated with rat plasma translated well to in 

vivo settings with an increase in peptide circulation half-life and exposure (T1/2 = 4.2 h and AUC 

= 17.2 mg*h/dL) compared to 22A (T1/2 = 2.1 h and AUC = 5.5 mg*h/dL) (Table 3.2). We expected 

that these significant PK differences between two peptides would translate into increased 

cholesterol mobilization by sHDL in vivo. Additionally, we anticipated that levels of esterified 

cholesterol would be different between two formulations in vivo based on clear differences in 

LCAT-catalyzed esterification between 22A-sHDL and 22A-P-sHDL in vitro. However, we saw 

no differences in cholesterol mobilization and esterification profiles between 22A-sHDL and 22A-

P-sHDL in vivo as quantified by enzymatic assay of rat serum samples (Figure 3.4C-D, Table 

3.2). Finally, if the sHDL particle stayed intact upon in vivo administration, we would expect to 

see longer circulation half-life for total phospholipids with 22A-P-sHDL relative to 22A-sHDL. 

To test this hypothesis, we determined phospholipid concentrations in plasma pre- and post-sHDL 

administration by an enzymatic assay. We observed no differences in phospholipid PK parameters 

between 22A-sHDL and 22A-P-sHDL except for T1/2 in which 22A-P-sHDL (1.3 h) showed 

significantly decreased T1/2 compared to 22A-sHDL (1.8 h) (Figure 3.4B, Table 3.2). Altogether, 

these results suggest that the apparent differences in 22A-P and 22A stabilities in plasma and 

LCAT activation abilities had not resulted in measurable differences in cholesterol mobilization 

and esterification in vivo.  
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Figure 3.4. Pharmacokinetic analysis of 22A and 22A-P peptides (A) or total phospholipids (B) 

in rat serum. Pharmacodynamic assessment of free cholesterol (C) and esterified cholesterol (D) 

mobilization in rat serum. Healthy male Sprague-Dawley rats were given a single tail vein 

injection of 50 mg/kg (based on peptide) of 22A-POPC-DPPC or 22A-P-POPC-DPPC and blood 

samples were collected at pre-dose and 0.25, 0.5, 1, 2, 4, 8, and 24 h after sHDL administration. 

Serum concentrations of peptides were determined by LC-MS while concentrations of 

phospholipids, free cholesterol, and esterified cholesterol were measured enzymatically (n=3). 

Statistical difference was compared with the two-tailed Student’s t-test. P < 0.05 was considered 

statistically significant *P < 0.05, **P < 0.01, ***P < 0.001 
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Table 3.2. Pharmacokinetic and pharmacodynamic parameters (%CV) of peptide, total 

phospholipids (PL), free cholesterol (FC), and esterified cholesterol (EC) after 50 mg/kg doses of 

22A-sHDL and 22A-P-sHDL treatments.  

 

Data were shown as mean with CV%. *P<0.05, **P < 0.01, ***P < 0.001. AUC: the area under 

the curve. K: elimination rate constant. T1/2: the half-life of elimination. CL: total clearance. Vd: 

volume of distribution. Tmax,E: time at which the Emax is observed. Emax: the maximum plasma 

concentration of different cholesterol species. AUEC: the area under the effect curve. 

 

 

3.4.6. Lipid composition of sHDL impacts cholesterol mobilization in vivo 

 To investigate the contribution of phospholipid composition of sHDL on cholesterol 

mobilization and esterification profiles in vivo, we administered 22A-POPC, 22A-DMPC, 22A-

DPPC, and 22A-DSPC sHDL to healthy Sprague Dawley rats. Based on cholesterol efflux from 

RAW 264.7 cells and LCAT-catalyzed esterification results in vitro we were expecting to see 

higher cholesterol mobilization and esterification for POPC and DMPC-based sHDL in vivo. 

 

 

 Parameters 
Groups 

22A-sHDL 22A-P-sHDL 

Peptide 

AUC (mg*h/dL) 5.5 (22.0) 17.2 (10.6)*** 

K (h-1) 0.3 (25.8) 0.2 (12.0) 

T ½ (h) 2.1 (22.4) 4.2 (10.8)** 

CL (dL/h) 2.3 (21.8) 0.7 (10.9)** 

Vd (dL) 6.9 (7.7) 4.4 (6.2)** 

PL 

AUC (mg*h/dL) 424.4 (15.7) 371.8 (23.5) 

K (h-1) 0.4 (23.8) 0.5 (16.0) 

T ½ (h) 1.8 (18.8) 1.3 (11.4)* 

CL (dL/h) 0.1 (7.7) 0.1 (7.0) 

Vd (dL) 0.1 (21.4) 0.1 (2.1) 

FC 

Tmax,E (h) 0.5 (0.0) 0.8 (33.3) 

Emax (mg/dL) 46.7 (5.8) 44.4 (13.0) 

AUEC (mg*h/dL) 158.0 (19.1) 175.3 (28.5) 

EC 
Tmax,E (h) 0.42 (24.5) 0.4 (33.3) 

Emax (mg/dL) 51.3 (31.8) 42.2 (37.3) 

AUEC (mg*h/dL) 166.8 (12.8) 164.4 (31.8) 
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However, the results of in vivo administration of 50 mg/kg of sHDL were reversed with 22A-

DSPC showed significantly higher free cholesterol mobilization to the plasma compartment 

represented by the area under the effect curve (AUEC) AUEC22A-DSPC = 540 mg*h/dL compared to 

three other sHDL formulations with lower AUEC22A-POPC = 80 mg*h/dL, AUEC22A-DMPC = 130 

mg*h/dL, and AUEC22A-DPPC = 220 mg*h/dL (Figure 3.5, Table 3.3). Although the Cmax of plasma 

EC was higher for DMPC-based sHDL, DSPC-based sHDL administration resulted in higher EC 

concentration at later time points and 3.5-fold greater AUEC values relative to DMPC-based sHDL 

(Figure 3.5D, Table 3.3). The differences between in vitro and in vivo results could be attributed 

to differences in lipid Tm affecting the in vivo circulation time. Our in vivo data supports this 

hypothesis where phospholipids with higher transition temperatures such as DSPC (Tm = 55°C) 

showed greater half-life and slower clearance than other phospholipids (Figure 3.5B). 

Interestingly, the 22A peptide kinetics such as plasma half-life after administration of sHDL in 

rats did not follow phospholipid kinetics similar to the differences in PK parameters between lipid 

and peptide obtained with 22A- and 22A-P-sHDL. The half-life of 22A after the 22A-DSPC 

infusion was nearly identical to 22A-DMPC, 22A-POPC, and 22A-DPPC formulations (3.3 h, 3.0 

h, 3.3 h, and 3.3 h, respectively) (Table 3.3). Taken together, these results suggest that the ability 

of sHDL to mobilize cholesterol is strongly dependent on phospholipid composition and 

pharmacokinetics.  
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Figure 3.5. Pharmacokinetic analysis of 22A (A) and total phospholipids (B) in rat serum. 

Pharmacodynamic assessment of free cholesterol (C) and esterified cholesterol (D) mobilization 

in rat serum. Healthy male Sprague-Dawley rats were given a single tail vein injection of 50 mg/kg 

(based on peptide) of 22A-POPC, 22A-DMPC, 22A-DPPC, or 22A-DSPC and blood samples were 

collected at pre-dose and 0.25, 0.5, 1, 2, 4, 8, and 24 h after sHDL administration. Serum 

concentrations of peptides were determined by LC-MS while concentrations of phospholipids, free 

cholesterol, and esterified cholesterol were measured enzymatically (n=3). Statistical differences 

for 22A-phospholipid were compared to 22A-DMPC with one-way ANOVA analysis with 

Dunnett’s post-hoc test. P < 0.05 was considered statistically significant. P < 0.05, **P < 0.01, 
***P < 0.001 
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Table 3.3. Pharmacokinetic and pharmacodynamic parameters (%CV) of 22A peptide, total 

phospholipids (PL), free cholesterol (FC), and esterified cholesterol (EC) after 50 mg/kg doses of 

22A-POPC, 22A-DMPC, 22A-DPPC, and 22A-DSPC sHDL treatments. 

 

Data were shown as mean with CV%. *P<0.05, **P < 0.01, ***P < 0.001. AUC: the area under 

the curve. K: elimination rate constant. T1/2: the half-life of elimination. CL: total clearance. Vd: 

volume of distribution. Tmax,E: time at which the Emax is observed. Emax: the maximum plasma 

concentration of different cholesterol species. AUEC: the area under the effect curve. 

 

 

3.4.7. Remodeling of endogenous HDL in human plasma  

 To assess how different compositions of sHDL facilitate the remodeling of endogenous 

lipoproteins, all sHDL particles were incubated with human plasma for 1 hour at 1 mg/mL peptide 

concentration. The HDL sub-fractions were separated by size using 1D native PAGE 

electrophoresis and visualized by Western Blot using anti-ApoA-I antibodies (Figure 3.6). 

Compared to human plasma control incubated with PBS, incubation of plasma with 22A-sHDL, 

 
 

 Parameters 
Groups 

22A-POPC 22A-DMPC 22A-DPPC 22A-DSPC 

Peptide 

AUC (mg*h/dL) 3.6 (8.6)** 6.6 (10.0) 4.6 (15.2)* 6.9 (17.7) 

K (h-1) 0.2 (6.0) 0.2 (1.7) 0.2 (2.4) 0.2 (4.0) 

T ½ (h) 3.3 (6.2) 3.0 (1.8) 3.3 (2.4) 3.3 (4.2) 

CL (dL/h) 5.6 (11.8)** 3.2 (13.9) 4.6 (17.4) 2.9 (25.2) 

Vd (dL) 27.1 (16.7)** 14.0 (15.5) 21.9 (19.0) 13.7 (29.1) 

PL 

AUC (mg*h/dL) 371.6 (29.0) 703.2 (23.2) 934.9 (22.8) 2396 (21.1)*** 

K (h-1) 0.7 (10.6)*** 0.2 (4.4) 0.3 (16.8) 0.0 (12.6)** 

T ½ (h) 1.0 (9.8)*** 3.3 (4.4) 2.2 (18.6)* 6.0 (12.4)*** 

CL (dL/h) 0.1 (22.2) 0.1 (23.3) 0.0 (27.7)*** 0.0 (27.3)*** 

Vd (dL) 0.2 (29.8) 0.3 (23.3) 0.2 (45.9) 0.1 (16.0)* 

FC 

Tmax,E (h) 0.7 (35.4) 0.4 (28.3) 0.7 (35.4) 1.3 (35.4)* 

Emax (mg/dL) 25.8 (36.8) 37.6 (19.8) 44.8 (5.1) 51.5 (15.3) 

AUEC (mg*h/dL) 79.4 (33.9) 126.5 (10.0) 215.0 (20.9) 536.4 (19.1)*** 

EC 

Tmax,E (h) 0.5 (70.7) 0.8 (28.3) 0.9 (84.3) 6.7 (28.3)** 

Emax (mg/dL) 7.7 (65.2) 28.2 (30.3) 24.9 (13.7) 20.6 (24.7) 

AUEC (mg*h/dL) 84.8 (65.3) 93.3 (41.9) 98.9 (31.6) 334.7 (18.0)** 
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21A-sHDL, and 22A-P-sHDL resulted in the remodeling of endogenous HDL indicated by a 

diminished signal for the large -HDL and increased levels of lipid-poor ApoA-I. The effect of 

the phospholipid composition of sHDL on endogenous HDL remodeling was more prominent. 

Incubation of plasma with 22A-POPC resulted in a shift of HDL size from large -HDL to smaller 

pre-β HDL. Incubation with 22A-DMPC showed the formation of even smaller pre-β HDL 

particles with a band of lipid-free ApoA-I. In contrast, plasma incubation with 22A-DSPC 

displayed very limited HDL remodeling, likely due to the rigidity of the DSPC lipid membrane 

and thus reduced the insertion of endogenous ApoA-I. The 22A-DPPC incubation with plasma 

resulted in some reduction of -HDL levels and formation of a predominant band of lipid-free 

ApoA-I. Overall, the extent of HDL remodeling was significantly affected by the phospholipid 

composition of sHDL. The sHDL prepared with high Tm phospholipids (22A-DPPC and 22A-

DSPC) exhibited higher plasma stability and less remodeling.  

 

 

Figure 3.6. Effect of sHDL incubation with human plasma on endogenous HDL remodeling. 

Various compositions of sHDL were incubated in human plasma at 1 mg/mL for 1 h at 37°C. 

Lipoproteins were separated by 1-D native page electrophoresis and visualized by western blot 

using anti-apoA-I antibody. 
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3.5. Discussion 

 Our previous studies have shown that upon intravenous administration of sHDL, 22A 

peptide becomes rapidly hydrolyzed into 21A due to the loss of terminal lysine (172). The addition 

of the C-terminal proline after the labile lysine in 22A afforded a resistant to proteolysis peptide 

as shown by incubation of 22A-P with rat plasma. The new peptide was successfully formulated 

into sHDL and dosed into rats. We expected to see longer circulation time and corresponding 

greater in vivo cholesterol mobilization for 22A-P-sHDL. As predicted in vitro, the half-life of 

22A-P in animals was extended from 2.1 to 4.2 hours and AUC for 22A-P is nearly 3-fold higher. 

However, the longer circulation time of 22A-P in vivo did not translate into a higher cholesterol 

mobilization profile by 22A-P-sHDL compared to 22A-sHDL. Furthermore, the AUC of the 

phospholipid component of 22A-P-sHDL and 22A-sHDL were also not affected by the extension 

of the peptide half-life. When sHDL particles prepared with the same peptide 22A and different 

phospholipids (POPC, DMPC, DPPC, or DSPC) were administered to rats the peptide half-life 

was similar for all four formulations (3.2  0.1 h). However, the phospholipid half-life varied 

dramatically with DSPC circulating for 6.0 h compared to 1.0 - 3.3 h for other lipids. The trend of 

phospholipid circulation time for each sHDL formulation in animal serum was similar to that of 

cholesterol mobilization (22A-DSPC> 22A-DPPC, 22A-DMPC> 22A-POPC). Moreover, these 

findings are further supported by our HDL remodeling results, showing only limited interaction of 

22A-DSPC with endogenous HDL, which could extend circulation half-life. The limited 

remodeling by endogenous lipoproteins is likely due to the difficulty of protein insertion in the gel 

membrane of DSPC (Tm of 55 °C, above physiological temperature) as was observed in vitro for 

22A-DSPC interaction with LCAT. Altogether, the data suggest that the pharmacokinetics of 

peptide and lipid components in sHDL are not interdependent and original infused sHDL particles 
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may dissociate or become remodeled upon administration in vivo. In addition, the phospholipid 

rather than peptide component in sHDL has a major impact on the ability to mobilize cholesterol 

in vivo. However, it is important to note that the peptide sequence modifications performed by us 

were rather minor. It has been shown that different sequences of ApoA-I mimetic peptides have 

measurable differences in cholesterol efflux in vitro and variable in vivo performance 

(130,131,139,140).  

 Several other groups reported on the discordance between the PK of protein and 

phospholipid components of HDL in vivo. Xu et al. investigated the fate of ApoA-I protein and 

phospholipid after in vivo administration of HDL in an attempt to interrogate the validity of the 

reverse cholesterol transport pathway (221). The investigators used ABCA1-derived ApoA-I-HDL 

with radiolabeled components and reported that phospholipids and ApoA-I enter different 

pathways for clearance in mice. The authors suggested that after the administration of radiolabeled 

ApoA-I-HDL, phospholipids were rapidly cleared by the liver and also transferred to LDL while 

ApoA-I fused with endogenous HDL and circulated longer. CSL-112, the ApoA-I-soybean 

phosphatidylcholine sHDL product undergoing phase III clinical trial, is believed to undergo 

remodeling in human plasma with the generation of lipid-poor ApoA-I that is important for 

cholesterol efflux (222). Another sHDL product in clinical development, CER-001, composed 

from ApoA-I and primarily sphingomyelin, have shown differences, specifically longer half-life 

for phospholipid (~46 h) relatively to ApoA-I (~10 h) (223,224). We also found that incorporation 

of polyethylene glycol-modified lipids in ApoA-I peptide-based sHDL extended circulation time 

for lipids and prolonged the duration of mobilized cholesterol circulation but had not altered 

ApoA-I peptide PK (173). Therefore, peptide and lipid components of sHDL may both contribute 
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to cholesterol mobilization, however not as intact nanoparticles, but rather as separate entities via 

different mechanisms. 

 The phospholipid composition also impacted the ease of sHDL preparation, purity, and 

size of the resulting nanoparticles and their stability in vitro and in vivo. The sHDL prepared with 

DSPC, DPPC, and DMPC showed relatively similar narrow size distributions and high purities 

while sHDL prepared with POPC appeared to be more heterogeneous with larger average particle 

sizes and a presence of liposomal impurities. This relative difficulty of forming pure POPC-based 

sHDL particles has been reported previously and was attributed to the fluidity and instability of 

the POPC membrane at room temperature, which was well above the phospholipids Tm (179). The 

sHDL prepared with saturated lipids appeared to be more homogeneous and pure but required 

heating particles above lipid Tm during preparation to facilitate ApoA-I peptide-lipid binding. In 

addition, the presence of unsaturated double bonds in lipids such as POPC could result in 

phospholipid oxidation, although this phenomenon was not investigated in this study.  

 Interestingly, we also observed a discordance between in vitro and in vivo results for sHDL 

prepared with different phospholipids and peptides. The in vitro trends for higher cholesterol efflux 

and superior ability to activate LCAT for 22A-POPC and 22A-DMPC did not translate into higher 

cholesterol mobilization and esterification in vivo. The free cholesterol mobilization and 

circulation time appear to be closely following the circulation time of phospholipids, with the 

longer circulating saturated DSPC exhibiting higher Cmax for FC mobilization and AUEC. Thus, 

the ease of cholesterol incorporation in unsaturated 22A-POPC becomes of limited significance in 

vivo due to the rapid elimination of POPC. The esterification seems to follow the same trend, as 

faster LCAT-catalyzed lipolysis and sterol esterification did not translate to greater Cmax and AUEC 

for EC in vivo. However, it is important to point out that the actual rate of EC formation and LCAT 
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activation in vivo was not directly measured in this study and will require additional experiments 

as described by Turner et al. (225). The stability of 22A-P is greatly improved in vivo relative to 

22A, however phospholipid PK appeared to be unchanged and cholesterol mobilization follows 

phospholipid PK. One of the explanations for this may be that both 22A and 22A-P are capable of 

forming sHDL in vitro and maintaining sHDL stability in vivo, as the structures of all three 

peptides used by us are very similar. It is also important to point out that other groups had seen 

discordance between showing some structure-activity relationship for ApoA-I peptides in vitro 

and seeing no statistical differences in their pharmacological effects in vivo (226).  

 Our data support the complexity of RCT and highlights that both ApoA-I protein/peptide 

and lipid components of sHDL contribute to the RCT pathway. The study also highlights that the 

phospholipid composition of sHDL is the driving force for cholesterol mobilization in vivo and we 

plan to further examine if higher cholesterol mobilization for sHDL composed of saturated lipids 

will lead to greater anti-atherosclerosis effect in a murine model of the disease. 

 

3.6. Supplemental Information 

Table 3.4. Characterization of sHDL particles prepared with different peptides and phospholipids. 

Name 
Particle Size 

(nm)a 

Retention Time 

(min)b 

Purity 

(%)c 

Impurity (%)c 

Free Peptide Liposome 

22A-DMPC 10.1 ± 3.3 8.0 98.5 1.1 0.4 

21A-DMPC 9.9 ± 3.4 7.8 99.4 0.6 0.0 

22A-P-DMPC 10.5 ± 3.6 7.6 98.2 1.8 0.0 

22A-POPC 10.4 ± 3.9 8.2 98.0 0.9 1.1 

22A-DMPC 8.3 ± 1.9 8.1 99.1 0.9 0.0 

22A-DPPC 9.2 ± 2.3 8.0 98.8 0.9 0.3 

22A-DSPC 9.9 ± 2.5 7.8 99.2 0.8 0.0 

aParticle size of sHDL measured by DLS; bRetention time of sHDL particle measured by GPC; 
cPurity and impurity of sHDL determined by the area under the curve from GPC. 



91 

 

Chapter 4 

MiNano Mimicking High-Density Lipoproteins Reverses Atherosclerosis and Prevents 

Inflammatory Response in Animals 

 

4.1. Abstract  

 Over decades, reconstituted high-density lipoprotein (rHDL or sHDL) therapy has shown 

promising results of atheroma volume reduction in patients with cardiovascular diseases (CDV). 

We speculate, in the near future, that an exponential amount of human plasma purified 

apolipoprotein A-I (apoA-I) or recombinant apoA-I will be required for commercialization of 

rHDL or sHDL therapy due to the high prevalence of CVD. Nevertheless, purification of such 

apoA-I is highly difficult and costs a great amount of money. Here, we formulated a nano-micelle 

called MiNano that is a structural nano-mimetic of sHDL with a small particle size (12-14 nm) 

and a hydrophobic core and hydrophilic exterior. It showed similar biological functionality to 

sHDL including cholesterol efflux capability from macrophages and cholesterol elimination to 

hepatocytes. Interestingly, MiNano inhibited inflammatory cytokines, as much as 14-fold greater, 

compared to sHDL. In addition, MiNano exhibited a 2-fold increased cholesterol mobilization 

compared to sHDL. Moreover, MiNano showed successful inflammatory cytokine inhibition in a 

lipopolysaccharide-induced endotoxin mice model. MiNano also led to an atheroma reduction of 

up to 40% in an atherosclerosis mice model. In summary, a novel nano-micelle, MiNano, resulted 

in a structural and functional mimetic of sHDL and had a successful effect against various diseased 

mice models. Because of its composition and preparation simplicity, we propose MiNano could 
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be a promising sHDL alternative in treatment against atherosclerosis and other inflammatory-

related diseases. 

 

4.2. Introduction 

 Cardiovascular disease (CVD) is the leading cause of death in the United States (227). 

Imbalance of metabolism and vascular inflammation induces accumulation of cholesterol loaded 

macrophages in the sub-intimal space and further forms lipid-rich vulnerable plaques in the arteries 

that could be ruptured and lead to cardiovascular infarct and death (228–230). The majority of 

therapeutics against CVD target the suppression of cholesterol synthesis and absorption to prevent 

new plaque. However, there are no therapeutics yet to reduce the existing atheroma burden 

(231,232). 

 High-density lipoprotein (HDL) is the smallest and densest of the plasma lipoproteins 

consisting of apolipoprotein A-I (apoA-I) and phospholipids. HDL has an average diameter of 8 – 

12 nm with a hydrophilic exterior to promote plasma circulation and a hydrophobic interior to 

facilitate cholesterol sequestration (233). HDL exerts a number of physiological functions, such as 

reverse cholesterol transport in which excess cholesterol is effluxed from lipid-laden macrophages, 

mobilization of effluxed cholesterol into blood circulation, and trafficking of cholesterol to the 

liver for elimination via the mechanism known as the reverse cholesterol transport (RCT) (234).  

 Its small particle size allows HDL to translocate at the endothelial layer into the core of the 

atheroma to interact with macrophages to efflux cholesterol (235). However, the number of 

functional HDL particles in individuals with CVD is observed in low levels and the capability to 

efflux cholesterol is reduced (236). Therefore, reconstituted or synthetic HDL (rHDL or sHDL) 

products have been developed and clinically tested for their abilities to reduce atheroma burden. 
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sHDL is generally complexed by using purified human apoA-I or recombinant apoA-I with 

commercially available phospholipids.  

 In general, patients with CVD who are on rHDL/sHDL therapy require 5 to 6 weekly 

dosages to reduce plaques (237,238). CSL-112, for example, showed a significant decrease in 

mortality, myocardial infarction, and stroke, which led to a phase III clinical trial with 17,400 

patients (239). CSL-112 requires a 40 mg/kg dose to achieve clinical efficacy, which is calculated 

as approximately 20 g of human plasma purified apoA-I per therapy. Based on the conservative 

estimates of patients needing annual treatment, at least 20 tons of apoA-I protein is required. In 

addition, such recombinant manufacturing processes for apoA-I is very costly due to several 

factors; hydrophobic nature of this protein, relatively low expression levels of apoA-I, and multiple 

purification steps for removal of protein-bound hydrophobic impurities. Therefore, there is a 

speculation in which a plasma purified version of apoA-I will likely result in a shortage of plasma 

supply due to high market needs in the future. 

 Nanomaterials have been shown to mimic the structures and functions of human proteins 

(240). Nanoparticles are similar to globular proteins in terms of their size, charge, and shape. 

Nanoparticles can be also coated with organic functional groups to function as protein mimetics. 

For these reasons, several groups proposed nanotechnology-based functional mimetics of sHDL 

(241–244). For example, one group developed the HDL biomimetic on a gold nanoparticle core 

with a functionalized surface via attachment of phospholipids and apoA-I proteins (241,245). 

Another group developed a poly(lactic-co-glycolic) acid (PLGA) core functionalized with lipids 

and apoA-I mimetic peptides (243,246). Such HDL nano-mimetics can accumulate in 

atherosclerosis plaques and achieve a similar cholesterol efflux capacity as HDL (247).  
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 In this study, we aimed to create a synthetic nanoparticle that mimics the structural and 

functional properties of sHDL intending to meet two main requirements; 1) display an endogenous 

HDL particle size of 10 – 12 nm in diameter to allow endothelial layer penetration and cholesterol 

efflux from macrophage and 2) exhibit amphipathic nature of HDL with a hydrophilic exterior for 

long circulation time and a hydrophobic core with the ability to expand in size to allow for 

cholesterol sequestration in the nanoparticle core. To achieve these requirements, we have 

formulated phosphatidylcholine (PC) with polyethylene-glycol modified PC (PEG-PC) to 

complex nanoparticles with fatty acids tails in the hydrophobic interior, and hydrophilic phosphate 

head groups and PEG on the exterior at the target particle size of 10 to 15 nm. We further narrowed 

down our formulations to two HDL biomimetics with different sizes (MiNano-12 and MiNano-14) 

to compare with sHDL complexed with PC and apoA-I mimetic peptides. This particular sHDL 

was previously investigated in single and multiple-dose clinical studies known as ETC-642 which 

has been well established for its safety and efficacy (127,166). We found that a novel HDL 

biomimetic nano-micelle (MiNano) showed a 14-fold improved inhibition against LPS-induced 

pro-inflammatory mediators, a 2-fold higher cholesterol mobilization capacity in vivo, and a 2-

fold superior anti-atherogenic effect in an ApoE-/- murine model of the disease. 

 

4.3. Materials and Methods 

4.3.1. Materials 

 ApoA-I mimetic peptides 22A (PVLDLFRELLNELLEALKQKLK) were synthesized by 

Genscript (Piscataway, NJ). The peptide purities were determined to be over 95% by reverse phase 

HPLC. 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and N-(Carbonyl-

methoxypolyethyleneglycol 2000)-1,2-distearoyl-sn-glycero-3-phosphoethanolamine (DSPE-

PEG2k) were purchased from NOF Corporation (White Plains, NY). Bodipy-labeled cholesterol 
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was purchased from Avanti Polar Lipids, Inc. (Alabaster, AL). Lipopolysaccharide (LPS) (E. coli 

O111:B4) was purchased from Sigma Aldrich (St. Louis, MO). All other materials were obtained 

from commercial sources. 

 

4.3.2. Preparation of sHDL and MiNano 

 All investigated particles were prepared using a co-lyophilization method. Briefly, to 

prepare sHDL, 22A peptide and DPPC were dissolved in glacial acetic acid at a molar ratio of 

0.14:1. Micellar nanoparticles (MiNanos) were prepared by dissolving DPPC and DSPE-PEG2000 

in glacial acetic acid at the molar ratios of 1:0.065, 1:0.131, 1:0.262, 1:0.523, 1:1.05 and 1:2.09. 

After freeze-drying for over 24 hours, PBS (pH = 7.4) was added to hydrate the powders to a final 

lipid concentration of 27.24 mM. The mixture was vortexed briefly, heated to 50°C for 10 min. 

and cooled to 25°C for 10 min. This cycle was repeated three times. sHDL particle and MiNano 

concentrations are expressed in terms of total lipid concentration throughout this work. 

 sHDL and MiNano particles loaded with DiR fluorescent dye or bodipy-labeled cholesterol 

were prepared by a freeze-drying method and by dissolving DiR or labeled cholesterol in glacial 

acidic acid together with all other components. The final concentration of bodipy-cholesterol after 

hydration of the lyophilized powder was 30 μg/mL. 

 

4.3.3. Characterization of sHDL and MiNano 

 The particle size distribution of sHDL and MiNano was determined by dynamic light 

scattering (DLS) using a Zetasizer Nano ZSP, Malvern Instruments (Westborough, MA) at a 

concentration of 2.7 μM. The average size and polydispersity index with standard deviation were 

reported. The particle morphology was assessed by transmission electron microscopy (TEM). The 
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diluted sample solution was deposited on a carbon film-coated 400 mesh copper grid and dried for 

1 minute. Samples were then negatively stained with 1% (w/v) uranyl formate, and the grid was 

dried before TEM observation. All specimens were imaged on a 100kV Morgagni TEM equipped 

with a Gatan Orius CCD. 

 

4.3.4. Cholesterol efflux evaluation 

 RAW 264.7 cells were grown in DMEM medium supplemented with 10% FBS, penicillin 

(100 units/ml) and streptomycin sulfate (100 mg/ml) in a humidified 5% CO2 atmosphere. 1 x 105 

cells were then seeded into 24-well plates and grown for 24 h. Cells were washed with PBS (pH 

7.4) once at room temperature and labeled with cholesterol for 24 h in DMEM/BSA/antibiotic 

media (0.5 mL) containing 1 μCi of [3H] cholesterol/mL of media. Subsequently, labeled cells 

were washed twice with PBS (pH 7.4) to remove [3H] cholesterol that was not taken up by the 

cells. Tritium-labeled cholesterol was effluxed from cells for 18 h, using various lipid complexes 

at different concentrations in duplicate. Finally, all cell media (0.5 mL) was removed into separate 

Eppendorf tubes and centrifuged at 10,000 rpm for 5 min. The remained cells were lysed with a 

0.1% SDS / 0.1M NaOH solution for 2 h. Radioactive counts of media and cell fractions were 

measured separately using a Perkin Elmer liquid scintillation counter. Percent cholesterol effluxed 

from cells was calculated by dividing media counts by the total sum of media and cell counts and 

then multiplying this number by 100%. 

 

4.3.5. Liver cell uptake of cholesterol form sHDL and MiNano 

 The uptake of bodipy-labeled cholesterol loaded in either sHDL or MiNano by HepG2 

cells was visualized by confocal laser scanning microscopy and quantified by flow cytometry. 

Briefly, liver hepatocellular carcinoma (HepG2) cells were cultured in Dulbecco’s Modified Eagle 
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Medium with 10% FBS and 1% Pen Strep Glutamine and maintained in an incubator at 37°C and 

5% CO2. On day 0, 1 x 104 to 1 x 105 cells were seeded in a MatTek 35 mm petri dish in DMEM. 

The next day, the media was aspirated and cells were washed with PBS (pH 7.4). Fresh media 

containing sHDL or MiNano loaded with bodipy-labeled cholesterol was added at a final lipid 

concentration of 272.4 μM. After incubation at 37 °C for 2 h, cells were washed twice with PBS 

(pH 7.4) followed by fixation with 4% paraformaldehyde in PBS for 15 min at room temperature. 

1% Triton-X solution was then added to the dish for 15 min and washed twice with PBS (pH 7.4). 

 Finally, the cell nuclei were stained with DAPI. The nuclei and bodipy fluorescence images 

were acquired on a Nikon A-1 Spectral Confocal microscope system (Nikon Corporation, Tokyo), 

with an excitation wavelength of 495 nm for bodipy. Quantification of the cellular fluorescent 

signal was performed using a cell sorter (Beckman Coulter FC500 5-colour analyzer) at an 

excitation wavelength of 495 nm. 

 

4.3.6. Anti-inflammation effect of sHDL and MiNano in vitro 

 To evaluate the anti-inflammatory effect of sHDL and MiNano, RAW 264.7 macrophage 

cells were seeded in a 96-well plate on the first day. After a 24 h incubation, cytokine release from 

macrophage cells was stimulated by the addition of 2 ng/mL lipopolysaccharides (LPS). 

Subsequently, nanoparticles were added to the media immediately after the LPS at a 27.2 uM lipid 

concentration and incubated for 16 h. The level of pro-inflammatory cytokines, TNF-α and IL-6, 

in the media were measured with an ELISA kit (Thermo Fisher Scientific, Waltham, MA). HEK-

Blue cells purchased from InvivoGen (San Diego, CA) were cultured in DMEM containing 10% 

low endotoxin FBS and selective antibiotics according to the manufacturer’s instructions. The 

growth medium was discarded, and cells were resuspended in HEK-Blue Detection medium. Cells 
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were seeded at 25,000 cells per well. The cells were treated with sHDL or MiNano at 0.082 mM 

in the presence or absence of 2 ng/ml of LPS and incubated for 18 hours. LPS binding to TLR4 

results in the activation of NF-κB reporter gene expression, causing the HEK-Blue detection 

medium to turn blue. The blue color was quantified by measuring absorption at 650 nm using a 

SpectraMax M3 plate reader from Molecular Devices (San Jose, CA). 

 

4.3.7. Pharmacokinetics and pharmacodynamics evaluation in rats 

 The sHDL and MiNano were prepared at a final lipid concentration of 54.48 μM in PBS 

(pH 7.4). Eight male Sprague-Dawley rats were randomly assigned to two groups of four rats each, 

sHDL and MiNano-12 (DPPC: DSPE2k = 1:2.09). All rats were fasted overnight before dosing 

and received different formulations at a dose of 136 μmol/kg based on lipids concentration via tail 

vein injection. Blood samples of approximately 0.3 mL were collected from the jugular vein in 

heparinized BD centrifuge tubes (BD, Franklin Lakes, NJ) at pre-dose and 0.25, 0.5, 1, 2, 4, 8, 24 

and 48 h after dosing. Serum samples were separated immediately by centrifugation at 10,000 rpm 

for 10 minutes at 4°C and stored at -20°C until further analysis. 

 

4.3.8. Quantification of serum lipids 

 The levels of serum phospholipids (PL), total cholesterol (TC), and unesterified or free 

cholesterol (FC) were determined by enzymatic analyses using commercially available kits (Wako 

Chemicals, Richmond, VA). Cholesterol ester levels (CE) were calculated as the difference 

between TC and FC levels at each time point. Briefly, serum samples were diluted with PBS (pH 

7.4) for TC and FC detection, or with Milli Q water for PL detection. Defined amounts of standards 

or diluted samples were transferred to 96-well plates (50 μL, 60 μL and 20 μL for TC, FC and PL 
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analyses, respectively), and assay reagents were added per manufacturer’s instructions. The UV 

absorbance at 600 nm was measured using a Synergy NEO HTS Multi-Mode Microplate Reader 

(Bio-Tek). 

 

4.3.9. Pharmacokinetics and pharmacodynamic analyses 

 A non-compartmental analysis (NCA) was performed to derive basic pharmacokinetic 

parameters for phospholipid serum concentrations versus time profiles using Phoenix© 

WinNonlin® Version 7.3 (Pharsight Corporation, Mountain View, CA). Serum concentrations of 

phospholipids, total cholesterol, free cholesterol and cholesterol esters versus time were plotted. 

The pharmacokinetic parameters of phospholipids were calculated and the pharmacodynamic 

effect in each rat was determined as the area under the total effect curve (AUEC) from dosing time 

point to 48 hours after dosing. Secondary pharmacodynamic endpoints (maximal effect [Emax] 

and time to Emax [Tmax, E]) were also analyzed to compare pharmacodynamic effects. The 

coefficient of variation was calculated for each parameter. 

 

4.3.10. Cholesterol distribution among lipoproteins 

 Distribution of mobilized cholesterol between VLDL, LDL and HDL lipoprotein fractions 

following nanoparticle administration and exchange of cholesterol between lipoprotein throughout 

the 48 h elimination process was monitored via lipoprotein analysis. Briefly, rat serum lipoproteins 

were separated by size using a Waters HPLC system equipped with a Superose 6, 10/300 GL 

column (GE Healthcare, Piscataway, NJ). Cholesterol distribution among VLDL, LDL, and HDL 

lipoprotein fractions was determined by post-column enzymatic reactions. Rat serum collected 

prior to nanoparticle dosing and 0.5, 4, 24, and 48 h post-injection was analyzed. Serum aliquots 
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(50 μL) were injected and eluted with a 154 mM sodium chloride/0.02% sodium azide solution at 

0.8 mL/min. The post-column reaction was used to determine cholesterol concentration as 

described in our previous published work (172). 

 

4.3.11. Anti-inflammation effect of sHDL and MiNano in vivo 

 The anti-inflammatory effects of sHDL and MiNano were compared in a murine 

endotoxemia model. 7 to 8 week old male C57BL/6 mice were purchased from Jackson 

Laboratories and randomly divided into four groups, containing 5 mice each: a) PBS, b) LPS, c) 

LPS and sHDL, and d) LPS and MiNano-12. In the first study, 0.05 mg/kg of LPS was mixed with 

either sHDL or MiNano-12 and dosed to mice by intraperitoneal (IP) injection. LPS alone and 

PBS injections were used as controls. In the second study, 0.05 mg/kg of LPS was dosed initially 

by intraperitoneal injection. Subsequently, different formulations were dosed at 27.2 μmol/kg 

(based on the phospholipids concentration) by tail vein injection. All blood samples were collected 

from the jugular vein in heparinized BD centrifuge tubes (Franklin Lakes, NJ) at 2 h after LPS 

dosing. Serum samples were separated immediately by centrifugation at 14,000 rpm for 10 min at 

4°C and stored at -80°C until further analysis. The concentration of TNF-α in the serum were 

quantified using ELISA (Thermo Fisher Scientific, Waltham, MA) per manufacturer’s instruction. 

 

4.3.12. Bio-distribution and accumulation of particles in plaque area in mice 

 To monitor whether sHDL and MiNano particles could accumulate in the atheroma, ApoE-

/- (knockout) mice were fed a high-fat high-cholesterol diet (21% fat, 34% sucrose, and 0.2% 

cholesterol; Harlan, T.D. 88137) for 6 weeks to develop atherosclerotic lesions. DiR fluorescent 

dye was incorporated into sHDL and MiNano for tracking. The final DiR concentration was 20 
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μg/ml. The accumulation of sHDL or MiNano in plaque was evaluated by intravenous 

administration of DiR-labelled particles at a DiR level of 100 μg/kg after 12-weeks of feeding. 

Aortas were isolated for imaging purposes at 72 h after dosing using an IVIS Spectrum Imaging 

System (Caliper, Fullerton, CA). 

 

4.3.13. Anti-atherosclerotic efficacy study 

 Eight-week-old male ApoE knockout mice purchased from the Jackson Laboratories were 

fed a high-fat high-cholesterol diet (21% fat, 34% sucrose, and 0.2% cholesterol; Harlan, T.D. 

88137) for 6 weeks to develop atherosclerotic lesions. Mice were then randomized into three 

groups and received an intravenous injection twice a week (Tuesday and Friday) of either sHDL 

or MiNano at a lipid dose of 136 μmol/kg or an equivalent volume (200 μl) of PBS as a control 

for another 6 weeks under the same feeding diet. At 72 h after the last treatment, the whole blood 

of mice was collected for serum clinical chemistry analysis, and the left ventricle of the heart was 

perfused with PBS, followed by a fixative solution (4% paraformaldehyde in PBS). The liver was 

collected and kept in formalin for histological evaluation. To quantify the extent of the 

atherosclerotic lesions in the aortic root, the atherosclerotic lesions in the aortic sinus region were 

examined at three locations, each separated by 80 μm. The largest plaque of the three valve leaflets 

was used for morphological analysis. The lipid-burden plaque areas at the aortic sinus were 

determined by Verhoeff's staining. The macrophage cells in plaques were stained using a galectin-

3 antibody (Mac-2; SANTA CRUZ Biotechnology, Santa Cruz, CA). To compare the effect of 

different groups, the area of stained lipid and macrophage were calculated using Image J. 
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4.3.14. Analysis of serum clinical chemistry and liver histology 

 As described in section 4.3.13, whole blood of ApoE knockout mice was collected at 72 h 

after the last treatment and serum were separated by centrifuge at 14,000 rpm for 10 min. Serum 

triglyceride, alanine aminotransferase (ALT) activity, and aspartate aminotransferase (AST) 

activity were measured using kits (TR0100, MAK052, MAK055, Sigma-Aldrich, St. Louis, MO). 

Liver tissue was collected and fixed in 4% formalin after perfusion of the animals. Then the liver 

tissue was routinely processed and embedded in paraffin. 8 μm thick sections were cut and stained 

with hematoxylin and eosin (H&E) for histopathological examination. All sections were 

investigated using a light microscope. 

 

4.3.15. Lipogenesis study in mice 

 Normal C57BL/6 mice were divided into three groups (5 animals per group), including a 

PBS control, sHDL and MiNano-12 group. sHDL or MiNano-12 was given at the lipid dose level 

of 136 μmol/kg through intravenous administration. At 24 hours post-injection, mice were 

euthanized by CO2 inhalation. After perfusion using PBS, liver tissues were collected and kept at 

-80 °C. Total RNA was purified from the liver tissues with TRIzol Reagent (Life technologies. 

Corp.), followed by reverse transcription with a SuperScript III kit (Invitrogen). qPCR was carried 

out with iQ SYBR Green Supermix (Bio-Rad). Cholesterol biogenesis related gene expression 

including Srebp2 and Hmgcr was determined. 

 

4.3.16. Statistical Analysis 

 For comparisons and analyses between two groups, the significance of differences between 

data points, calculated pharmacokinetic and pharmacodynamic parameters were determined by the 
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two-tailed unpaired Student's t-test. For comparisons among three groups or more, one-way 

ANOVA analysis was performed followed by Tukey’s test. Data are presented as mean ± SEM. A 

p-value < 0.05 was considered statistically significant. 

 

4.4. Results 

4.4.1. Preparation and characterization of nanoparticles 

 We prepared the model sHDL nanoparticles using 22A and DPPC combined at a 1:2 w/w 

(1:7.15 mol/mol) ratio of peptide to lipid. This composition was based on the composition of ETC-

642, a peptide-based sHDL that has been previously tested in clinical trials in dyslipidemic patients 

(127,166). The average diameter of sHDL was determined to be 9.2 ± 0.3 nm by dynamic light 

scattering (DLS) (Table 4.1, Figure 4.1A), similar to the reported sHDL size (172). To match the 

size of the nano-micelles (MiNano) with sHDL, we combined increasing amounts of pegylated 

phospholipid (DPSE-PEG2000) with DPPC. We then prepared six MiNano and their compositions 

and sizes are summarized in Table 4.1. The average particle size of the micelles decreased 

gradually with an increase in DSPE-PEG-2000 to DPPC ratio. We selected two micelles having a 

similar size to sHDL, 14 and 12 nm, and low polydisperse for further investigation and named 

them MiNano-14 and MiNano-12, respectively. We further characterized the nanoparticle 

morphology using transmission electron microscopy (TEM) (Figure 4.1B). In agreement with our 

DLS findings, the TEM images showed homogeneous size distribution for all three nanoparticles. 
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Table 4.1. Characterization of sHDL and MiNano particles. 

Formulation (molar ratio) Particle size (nm) PDI 

22A: DPPC (0.14:1) 9.2 ± 0.3 0.16 ± 0.09 

DPPC: DSPE-PEG2k (1:0.0654) 699 ± 51 0.40 ± 0.01 

DPPC: DSPE-PEG2k (1:0.131) 403 ± 4.4 0.34 ± 0.03 

DPPC: DSPE-PEG2k (1:0.262) 30.9 ± 1.0 0.13 ± 0.01 

DPPC: DSPE-PEG2k (1:0.523) 27.8 ± 2.3 0.18 ± 0.01 

DPPC: DSPE-PEG2k (1:1.05) 14.2 ± 0.4 0.20 ± 0.01 

DPPC: DSPE-PEG2k (1:2.09) 12.2 ± 0.2 0.12 ± 0.01 

 

 

 

 

 

Figure 4.1. Characterization of sHDL and MiNano. Particle size distribution determined by 

dynamic light scattering (A) and TEM (B). 

 

 

4.4.2. Cholesterol efflux capacity of sHDL and MiNano 

 Cholesterol filled macrophage-derived foam cells in the arterial wall are the hallmark of 

atherosclerosis. The removal of excess cholesterol from macrophage cells is important for the 

reverse cholesterol transport process and reduction of plaque area (236). We evaluated the ability 

of sHDL and MiNano to facilitate cholesterol efflux using RAW 264.7 macrophages. All 
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nanoparticles showed a significant ability to efflux cholesterol from the cellular membrane of 

macrophages (Fig. 4.2A). As the concentration of nanoparticles increased, the amount of effluxed 

cholesterol also increased and reached saturation at 70 to 80 µM lipid concentrations for all 

nanoparticles. At low concentrations, sHDL had a slightly higher cholesterol efflux capacity 

relative to the MiNano, while all three groups achieved a similar plateau at high concentrations. 

Taken together, the MiNano have similar cholesterol efflux ability in vitro compared to sHDL. 

 

 

Figure 4.2. Comparison of in vitro potency of MiNano and sHDL. Cholesterol efflux from RAW 

264.7 macrophages (A). Cholesterol uptake kinetics by HepG2 cells following incubation with 

bodipy-labeled cholesterol-loaded sHDL or MiNano imaged with confocal microscopy (B) and 

quantified by flow cytometry (C). Panel B shows the channel overlay, with nuclei in blue and 

bodipy-cholesterol in green. Release of inflammatory cytokines TNF-α (D) and IL-6 (E) after 

incubation of sHDL or MiNano with RAW 264.7 macrophages for 16 h with pre-treatment of LPS. 

LPS-induced NF-kB activation in HEK-blue hTLR4 cells reduced by the addition of sHDL and 

MiNano (F). *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001, ns: no significant difference. 
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4.4.3. Cholesterol uptake by liver cells in sHDL and MiNano 

 After cholesterol is effluxed from peripheral tissues by sHDL, it is taken up by scavenger 

receptors on hepatocytes, metabolized and excreted into the bile (248). To evaluate cholesterol 

uptake by hepatocytes, sHDL and MiNano were loaded with bodipy-labeled cholesterol and 

incubated with HepG2 cells for various time intervals. The kinetics of cellular uptake of bodipy-

cholesterol was visualized using confocal imaging and quantified by flow cytometry (Figure. 

4.2B-C). The fluorescence of bodipy appeared to distribute throughout the cellular membranes 

and cytosol for all groups. When bodipy-cholesterol uptake by HepG2 cells was quantified using 

flow cytometry and compared among different formulations, there were no significant differences 

observed between the sHDL and MiNano. Thus, we conclude that similar to the delivery of 

cholesterol by sHDL, cholesterol can be taken up by hepatocytes when delivered by MiNano. 

 

4.4.4. In vitro anti-inflammation effect of sHDL and MiNano 

 The anti-inflammatory properties of sHDL and MiNano were evaluated in RAW 264.7 

macrophages. We induced an inflammatory response by the addition of endotoxin (LPS) to 

stimulate the release of pro-inflammation cytokines such as TNF-α and IL-6 (249). Either sHDL 

or MiNano was added to cell culture media and we determined cytokine levels to assess the 

abilities of the nanoparticles to inhibit the inflammatory response (Figure 4.2D-E). Both sHDL 

and MiNano showed a significant inhibitory effect on the secretion of TNF-α due to their abilities 

to physically bind and neutralize LPS and possibly disrupt toll-like receptor 4 (TLR4) recruitment 

by altering the lipid raft microenvironment through cholesterol efflux (250). Compared to sHDL, 
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the MiNano had a 4 to 14-fold higher cytokine release inhibitory effect. The difference between 

the effects of sHDL and MiNano is potentially due to differences in their LPS binding capacity.  

 Next, NF-κB activation was measured using HEK-Blue hTLR4 cells. As shown in Figure 

4.2F, both sHDL and MiNano suppressed the activation of NF-κB by inhibiting LPS interaction 

with TLR-4. MiNano-12 exhibited similar activity to sHDL and appeared to be superior to 

MiNano-14 as measured by this assay. 

 

4.4.5. Pharmacokinetic characterization of sHDL and MiNano 

 We selected MiNano-12 for further evaluation in vivo based on our in vitro results, showing 

that MiNano-12 exhibited a higher anti-inflammation efficacy and smaller particle size compared 

to other micelles analyzed. We compared the pharmacokinetics of sHDL and MiNano-12 and the 

nanoparticles’ abilities to efflux cholesterol from the peripheral cells into the blood compartment 

in the Sprague Dawley rat. Both nanoparticles were administered at a 136 μM of phospholipids/kg 

dose by an intravenous bolus administration. This phospholipid dose was equivalent to a 50 mg/kg 

dose of apoA-I peptide, the typical dose used in preclinical models (153,172). We measured the 

serum concentrations of the phospholipid components of sHDL and MiNano-12 and evaluated the 

pharmacokinetic parameters (Figure 4.3A, Table 4.2). 

 The PK behavior of sHDL phospholipids was significantly different from that of MiNano-

12. Though there was no significant difference between the peak concentration Cmax of 

phospholipids in sHDL and MiNano-12, the peak time of MiNano-12 appeared much later than 

that of sHDL, at 8 h after administration. The later Cmax for MiNano relative to sHDL may be due 

to differences in the biodistribution of the two nanoparticles (251). In addition, MiNano-12 had a 

longer lipid serum half-life in vivo with a value of 16 h compared to 1.7 h for sHDL. The AUC 

increased nearly 10-fold from 1063 mg*h/dL for sHDL to 10620 mg*h/dL for MiNano-12 
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resulting from the slower clearance. Thus, packaged in MiNano, phospholipids appear to have a 

longer residence time in vivo, which might result in the ability to efflux and eliminate more 

cholesterol per injected dose. 

 

 

Figure 4.3. Comparison of sHDL and MiNano-12 pharmacokinetics and pharmacodynamics in 

the rat. Pharmacokinetics of phospholipids after IV bolus administration of 136 µmol/kg of sHDL 

or MiNano-12 in the Sprague Dawley rat. Changes in plasma lipids were measured by choline 

oxidase assay (A); Distribution of mobilized cholesterol among VLDL, LDL, and HDL lipoprotein 

fractions following administration of sHDL (B) and MiNano-12s (C). Mobilization of cholesterol 

from peripheral tissues into the blood compartment. The change in levels of total cholesterol (TC) 

(D), free cholesterol (FC) (E) and cholesterol ester (CE) (F) in rat serum were determined using 

commercially available kits. *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001, ns: no significant 

difference. 
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Table 4.2. Pharmacokinetic parameters (%CV) of phospholipids after administration of sHDL and 

MiNano-12. 

Parameter 
Groups 

sHDL MiNano-12 

Cmax 
a (mg/dL) 383.9 (24.3) 481.8 (36.4) 

Tmax
b (h) 0.38 (33.3) 8.0 (0.00) **** 

AUCc (mg*h/dL) 1603 (26.0) 10620 (31.3) ** 

K10
d (h-1) 0.4776 (41.8) 0.04885 (37.6) ** 

T1/2
e (h) 1.686 (34.7) 16.07 (32.1) ** 

CLf (dL/h) 0.018 (26.9) 0.0027 (30.0) *** 

VSS
g (dL) 0.0404 (26.1) 0.0649 (51.8) 

aCmax: the maximum plasma concentration of peptide; bAUC: the area under the curve in a plot of 

concentration of peptide against time; cK10: elimination rate constant; dT1/2: the half-life of 

elimination; eCL: total clearance for peptide; fVss: volume of distribution for peptide at steady 

state. Data were shown as mean with CV%. *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001, ns: 

no significant difference compared with sHDL group. 

 

 

4.4.6. in vivo pharmacodynamics of sHDL and MiNano 

To examine the impact of increased circulation time of MiNano relative to sHDL on a 

pharmacological response, we determined the changes in cholesterol metabolism biomarkers 

following the administration of nanoparticles to normal SD rats by IV infusion. sHDL has been 

reported to facilitate cholesterol removal from peripheral tissues through RCT, thus, transient 

increase in serum cholesterol levels reflects cholesterol efflux induced by the administration of 

nanoparticles followed by its elimination by the liver. The levels of plasma total cholesterol (TC), 

free cholesterol (FC) and cholesterol ester (CE) were measured as shown in Figure 4.3D-F. 

Pharmacodynamic parameters were calculated and summarized in Table 4.3. The typical 

pharmacological response following sHDL infusion is the rapid mobilization of free cholesterol 

into the plasma compartment, followed by a rise in cholesterol ester due to esterification by 

lecithin-cholesterol acyltransferase (LCAT) and subsequent elimination of cholesterol by the liver. 
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These expected effects were observed for sHDL infusions with a maximum FC mobilization of 75 

mg/dL at 0.5 h followed by a peak in CE (46 mg/dL) at 4 h, and elimination of all mobilized 

cholesterol by 24 h post-dosing. In line with the improvements in PK, MiNano-12 exhibited greater 

cholesterol mobilization and a longer pharmacodynamic effect relative to sHDL with a peak time 

of 7 h after infusion and maximum free cholesterol increase of 166 mg/dL. The area under the 

effect curve increased over 10-fold from 422 mg*h/dL (sHDL) to 4387 mg*h/dL (for MiNano-

12). We observed a similar trend for the total cholesterol and cholesterol ester levels with 

significantly higher Emax and AUEC values for MiNano-12. However, cholesterol increase in both 

groups was transient, and the cholesterol levels returned back to baseline after 24 h for sHDL and 

48 h for MiNano-12 along with the elimination. Hence, the longer lipid circulation time for 

MiNano-12 resulted in greater levels of mobilized cholesterol and a longer duration of the effect, 

which, in turn, should lead to a higher amount of cholesterol eliminated from the body and superior 

anti-atherosclerotic effect of MiNano relative to sHDL. 

 

Table 4.3. Pharmacodynamic parameters (%CV) of total cholesterol (TC), free cholesterol (FC) 

and cholesterol ester (CE) after administration of sHDL and MiNano-12. 

 Parameter sHDL MiNano-12 

TC 

Tmax,E
a (h) 0.75 (33.3) 6.0 (33.3)** 

Emax
b(mg/dL) 114.9 (22.0) 237.9 (16.4)** 

AUECc (mg*h/dL) 562.8 (22.4) 6607 (24.1)*** 

FC 

Tmax,E (h) 0.56 (48.4) 7.0 (24.7)*** 

Emax (mg/dL) 74.6 (23.2) 165.9 (20.5) ** 

AUEC (mg*h/dL) 421.7 (31.6) 4387 (28.9)*** 

CE 

Tmax,E (h) 1.2 (68.8) 15 (60.7)* 

Emax (mg/dL) 46.4 (37.2) 84.7 (17.8)* 

AUEC (mg*h/dL) 372.9 (18.6) 2220 (14.7)**** 
 

aTmax: time at which the Emax is observed. bEmax: the maximum plasma concentration of different 

cholesterol species. cAUEC: the area under the effect curve. Data were shown as mean CV%. 

*P<0.05, **P<0.01, ***P<0.001, ****P<0.0001, ns: no significant difference compared with 

sHDL group. 
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4.4.7. Distribution of mobilized cholesterol and lipoprotein remodeling in vivo 

 To investigate in greater detail the mechanism of cholesterol mobilization and elimination 

following administration of sHDL and MiNano, we determined the relative distribution of 

mobilized cholesterol in HDL, low-density lipoprotein (LDL), and very low-density lipoprotein 

(VLDL) fractions by HPLC. The positions of HDL, LDL, and VLDL sized particles containing 

cholesterol are labeled in Figure 4.3B-C. The infusion of sHDL caused a rapid mobilization of 

cholesterol in the HDL fraction, with the maximum increase at 0.5 h post-dose (blue line). The 

increase in HDL was accompanied by a small increase in VLDL, and cholesterol returned to 

baseline levels by 24 h post-dose. The cholesterol profile changes were different when MiNano-

12 was administered. Because MiNano-12 is slightly larger in size than sHDL, the mobilized 

cholesterol appeared to elute between the HDL and LDL fractions at 0.5 and 4 h post-dose. The 

increase in VLDL appeared to be higher for MiNano-12 relative to sHDL. It is possible that DSPE-

PEG caused inhibition of lipoprotein lipase or stimulation of liver lipogenesis, which both lead to 

the transient increase in VLDL. However, for both formulations, cholesterol increases were 

transient. The cholesterol level and its relative lipoprotein distribution returned to pre-dose levels, 

indicating completion of the RCT process triggered by administered sHDL and MiNano-12. 

 

4.4.8. In vivo anti-inflammation effect of sHDL and MiNano 

 To further examine the functional similarities of MiNano and sHDL, we examined their 

abilities to inhibit inflammatory cytokine release in a mouse endotoxemia model. In clinical trials, 

co-administration of endotoxin mixed with sHDL in healthy subjects resulted in reduced 

inflammatory cytokine release, control of blood pressure and a marked decrease in the severity of 

clinical symptoms relative to the administration of endotoxin alone (144). To simulate this study, 
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we co-administered normal C57BL/6 mice with 0.05 mg/kg of LPS and either sHDL or MiNano-

12. When mice were co-administered with sHDL or MiNano-12, significant suppression of TNF-

α was observed (Figure 4.4A). 

 To simulate a more realistic scenario of infection-induced sepsis and nanoparticle treatment, 

we next dosed C57BL/6 mice with LPS by intraperitoneal injection, while sHDL and MiNano-12 

were administered subsequently by IV bolus at a 27.2 μmol/kg dose as a rescue treatment. 2 h post-

dose, we collected whole blood and isolated serum to quantify cytokines levels. Both sHDL and 

MiNano-12 exhibited notable inhibition of TNF-α and IL-6 (Figure 4.4B). Taken together, 

MiNano-12 exhibits anti-inflammatory functions of sHDL in vivo. 
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Figure 4.4. Pharmacological effects of MiNano-12 and sHDL in murine models of inflammation 

and atherosclerosis. The serum concentration of TNF-α in C57BL/6 mice at 2 h after co-

administration of sHDL or MiNano-12 (27.2 µmol/kg) with LPS (0.05 mg/kg) by IP route (A) and 

administration of LPS by IP followed by administration of sHDL or MiNano-12 by IV at the same 

doses (B). (n=5/group; *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001, ns: no significant 

difference) Accumulation of DiR-labelled sHDL or MiNano-12 particles in plaque in ApoE-/- mice 

fed a high-fat diet for 12 weeks (C). Effect of sHDL and MiNano-12 on atherosclerosis regression 

in ApoE-/- mice. Aortas were dissected and plaque areas were visualized by Verhoeff's staining 

(D) and macrophages in aorta sections were visualized by Mac-2 stain (E). Representative lesion 

images and corresponding quantitative analyses of the aortic root cross-sections are shown. 

(n=12/group; *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001, ns: no significant difference) 
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4.4.9. Accumulation of sHDL and MiNano in atherosclerotic plaque 

 We examined the ability of MiNano and sHDL to accumulate in the atheroma of ApoE-/- 

mice that were fed a high-fat diet for 12 weeks to develop atherosclerosis. MiNano-12 and sHDL 

were fluorescently labeled by incorporation of DiR dye and dosed by intravenous administration 

at a 100 μg/kg DiR dose corresponding to a 136 μmole/kg lipid dose. At 72 h post-dose, the entire 

aorta was isolated for IVIS imaging (Figure 4.4C). Both sHDL and MiNano-12 successfully 

accumulated in the heart and plaque area, enabling the potential interaction between sHDL and 

MiNano-12 with macrophages for cholesterol efflux. The accumulation of both particles can last 

at least three days after administration due to the hydrophobicity of the particles and the specific 

distribution can potentially reduce the side effects caused by systemic treatment. 

 

4.4.10. Anti-atherosclerosis efficacy of sHDL and MiNano 

 The ability of sHDL and MiNano to reduce the atherosclerotic burden was evaluated in 

ApoE-/- mice. ApoE-/- mice were placed on a high-fat diet for 6 weeks to develop atherosclerosis 

and were randomly divided into three groups for treatment with either PBS, sHDL or MiNano-12 

for 6 weeks. We dosed the mice intravenously twice weekly at a dose level of 136 μmol/kg. 

Following the conclusion of treatment regimens, animals were euthanized and aortic roots were 

excised for plaque area analysis by Verhoeff's staining (Figure 4.4D) and Mac-2 macrophage 

staining (Figure 4.4E). 

 Compared to PBS control groups, the atheroma area was reduced significantly following 

the 6-week treatment of either sHDL or MiNano-12. There was a 21% reduction in plaque area 

following sHDL administration and a 40% reduction for MiNano-12 compared to the non-

treatment group (Figure. 4.4D). MiNano-12 exhibited a greater anti-atherosclerotic potency in the 
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ApoE-/- murine model that is consistent with a higher efflux capacity in vivo. The Mac-2 staining 

signal represents the macrophages infiltration in the aorta root area, which is a biomarker for 

inflammation and plaque formation (252,253). sHDL treatment did not show a significant 

influence on the Mac-2 positive macrophage area, while the MiNano-12 group showed a 36% 

reduction of macrophage positive plaque burden compared to PBS control. By inhibiting the 

macrophage infiltration into the arterial wall, the induction of an early atherosclerotic lesion 

development can be prevented (254). Taken together, MiNano resulted in a significant reduction 

in atherosclerotic burden and prevented atherogenesis in a murine model of the disease. 

 

4.4.11. Safety evaluation after treatment with sHDL and MiNano 

 We next studied the potential side effects and liver toxicity caused by sHDL or MiNano 

administration in ApoE-/- mice. H&E staining of liver tissues indicated no obvious damage to liver 

tissues when either sHDL or MiNano-12 were administered (Figure 4.5A). Plasma AST or ALT 

levels determined 72 h following the last dose were similar for all groups indicating no reduction 

in liver function (Figure 4.5C-D). In addition, plasma triglycerides levels were identical among 

the nanoparticle groups (Figure 4.5E). Then, we assessed the effect of sHDL or MiNano in 

C57BL/6 mice at a dose level of 136 μmol/kg (Figure 4.5B). At 24 h after intravenous 

administration of nanoparticles, cholesterol biosynthesis-related gene expression was examined. 

Srebp2 expression was not changed while Hmgcr expression in the liver was slightly down-

regulated in the MiNano-12 group. The elevation of plasma AST, ALT and triglyceride levels are 

hallmarks of sHDL nanoparticle toxicity resulting from the need for the liver to metabolize large 

quantities of mobilized cholesterol. The sHDL used in ApoE-/- study was found to be safe in 

dyslipidemic patients at a similar dose level (~ 11.4 μmol/kg peptide) and safe in non-human 
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primates at 2-fold higher doses (43,255). Since no significant liver enzymes and triglyceride 

elevation had been observed for sHDL or MiNano-12 at the therapeutic dosage, we expect that 

MiNano-12 will have a comparable safety to that of sHDL in humans. 

 

 

Figure 4.5. Safety comparison between sHDL and MiNano-12. H&E staining of liver tissues after 

a 6-week treatment of either PBS, sHDL or MiNano -12 in ApoE-/- mice (scale bar 300 µm) (A). 

The expression of genes involved in cholesterol biogenesis in the liver at 24 h after administration 

of sHDL or MiNano-12 at 136 µmol/kg in wildtype mice (B) (n= 5/group). The serum 

concentration of ALT (C), AST (D) and triglyceride (E) after a 6-week treatment with either PBS, 

sHDL, or MiNano-12s in ApoE-/- mice (n=12/group). 

 

 

4.5. Discussion 

 In this study, we successfully established a MiNano system that mimics sHDL in structure 

and biological functions. The size of MiNano-12 was similar to sHDL, with a hydrophobic core 

and hydrophilic outer membrane, and exhibited similar cholesterol efflux capability (Figure 4.2A), 
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cellular uptake by liver cells (Figure 4.2 B-C), and anti-inflammation effect in macrophages 

(Figure 4.2 D-F) compare to sHDL. Despite the high similarity in vitro, the biological function of 

MiNano-12 was significantly different in vivo. MiNano-12 led to a greater extent of cholesterol 

mobilization and a longer duration of cholesterol elevation relative to sHDL (Figure 4.3) due to 

the longer circulation of MiNano-12 in vivo. In our therapeutic experiment, both sHDL and 

MiNano-12 achieved a significant reduction of plaque burden with a 6-week treatment of 

atheroma-bearing ApoE-/- mice. Surprisingly, MiNano-12 showed greater anti-atherosclerosis 

efficacy with a 40% atheroma area reduction compared to 21% for sHDL. Following a 6-week 

treatment, no histological changes in the liver or toxicities were observed, indicating the safeness 

of MiNano-12 at the therapeutic dosage (Figure 4.5). Thus, MiNano-12 appears to function just 

like sHDL in vivo, regardless of its simplicity, providing an easy manufacturing and economical 

alternative to sHDL, as MiNano can be prepared without the expensive recombinant apoA-I 

proteins or peptides. 

 Recently, there has been a major challenge in HDL therapeutics with cholesterol ester 

transfer protein (CETP) inhibitors in large phase III clinical trials (256,257). CETP inhibitors block 

cholesterol transfer from HDL to LDL, therefore, reducing the levels of LDL. and increasing the 

levels of HDL. Nevertheless, it only increased the circulating HDL cholesterol levels instead of 

increasing the functional HDL levels, which resulted in an accumulation of larger cholesterol-

loaded HDLs that have limited capability for additional cholesterol efflux. In contrast, CVD 

patients administered with cholesterol-free sHDL have shown a rapid efflux of cholesterol from 

peripheral tissues with drastic reductions in atheroma volume (190,191,223). Furthermore, a 

17,400-patient Phase 3 trial (AEGIS-II) is currently ongoing for an sHDL therapeutic to show a 

possible reduction of major adverse cardiovascular events in subjects with the acute coronary 



118 

 

syndrome (239). In addition, sHDL therapeutics have potential against other systemic 

inflammatory diseases such as sepsis, lupus and rheumatoid arthritis (144,258,259), therefore, we 

believe that MiNano may also have high potential beyond cardiovascular applications. 

 The potential of biomimetic HDL has been proposed from multiple investigations. For 

example, a biodegradable HDL-NP platform, synthesized with PLGA, cholesteryl oleate, a 

phospholipid with triphenylphosphonium, and apoA-I mimetic peptide 4F, was developed by 

Marrach et al. to detect vulnerable plaques by targeting the collapse of mitochondrial membrane 

potential that occurs during apoptosis (246). In addition, incorporation of quantum dots into a 

PLGA matrix allowed imaging purposes. Sanchez-Gaytan et al. developed a hybrid polymer/HDL 

nanoparticle composed of a lipid/apolipoprotein coating that encapsulates a PLGA core which 

elicited some key properties of endogenous HDL such as preferential uptake by macrophages and 

effective cholesterol efflux capacity (243). The presence of a PLGA core also enabled sustained 

release and atheroma targeting delivery, further showing the ability to accumulate in 

atherosclerotic plaques and co-localization with atheroma macrophages in an ApoE-/- mouse 

model. HDL nanoparticles with Au NP core-shell structure developed by Thaxton et al. showed a 

similar size and mimicked the general composition of endogenous HDL exhibiting physical 

binding of cholesterol and cellular cholesterol efflux in vitro (241,247). The design of such 

nanoparticles allowed the Au NP core to serve as a size- and shape-controlling scaffold for 

constructing an HDL-like particle by surface attachment of phospholipids and apoA-I. While such 

biomimetic HDL nanoparticles have demonstrated promising ability to target and accumulate in 

the atheroma with some local anti-inflammatory effects (10,144), to the best of our knowledge, 

none could reduce atheroma in diseases bearing animals and compare its efficacy directly with 

sHDL. Moreover, these nanoparticles displayed a larger particle size and density compared to 
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endogenous HDL which may alter the biodistribution, receptor interaction, and hepatic uptake of 

mobilized cholesterol. 

 While the tendency in the field to increase the complexity of nanomedicine designs grows, 

we approach to design simple HDL mimetic nano-micelle where this simplicity could reduce the 

manufacturing and the quality control labors, as well as the cost. MiNano involves only PC and 

PEG-PC which are approved excipients for parenteral administration. We also observed that the 

pegylation of PC significantly results in reduced size of nanoparticles reaching the target size of 

12 nm with the capability to efflux cholesterol and exert anti-inflammatory activities. Therefore, 

we believe the manufacturing of MiNano can be established under quality scrutiny required for 

producing clinical-grade material. Similarly, we found several drugs with a simple design are 

currently in clinical trials against CVD and inflammatory disease. ETC-588, for example, is a type 

of blank liposome composed of naturally occurring phospholipids that upon infusion into humans 

would remain in the circulation to serve as a “sponge” for cholesterol and is able to show clinical 

efficacy in ischemia patients in Phase II trials (260). A phospholipid emulsion, GR270773, that 

was developed as a treatment against sepsis showed effective scavenger against the endotoxin, 

lipopolysaccharides (261). Moreover, sHDL showed promising results in binding to endotoxins 

and inhibiting inflammatory responses in humans while also rapidly regressing atheroma in CVD 

patients (144,192). As our simple structure of MiNano has shown to be effective in endotoxin 

neutralization and cholesterol mobilization compared to sHDL, we believe MiNano would likely 

serve as an exciting alternative to sHDL.
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Chapter 5 

Conclusion and Perspectives 

 

 The work presented in this thesis highlights the importance of the phospholipid 

composition of sHDL that has not been focused on previously. Many research studies and clinical 

trials of sHDL utilized proteins or peptides against both sepsis and atherosclerosis. Recent studies 

have acknowledged the importance of phospholipid composition, such as its role inducing 

intracellular signaling and receptor interactions (165). Therefore, we investigated how 

phospholipid composition can impact the biological functions of sHDL and further influence its 

therapeutic applications in various disease models including sepsis and atherosclerosis. 

 In chapter 2, we examined how phospholipid composition impacts the anti-inflammatory 

properties of sHDL with a goal to optimize nanoparticles for the treatment of sepsis. We selected 

phospholipids with various fatty acid chain lengths and saturations to formulate different fluidities 

of phospholipid phases on sHDL based on distinct phase transition temperatures of each 

phospholipid. The characteristics of each phospholipid led to sHDL forming into either a liquid 

crystalline phase or a gel phase. Among the different formulations of sHDL, we showed that the 

relatively stable and fluid phospholipid phase of 22A-DMPC elicited multi-faceted anti-

inflammatory mechanisms including effectively suppressing NF-κB signaling and TLR4 signaling 

through regulation of TLR4 recruitment into lipid rafts and inducing ATF-3. Furthermore, single 

low-dose administration of sHDL remarkedly improved survival and reduced organ damage in 

mice treated with lethal doses of LPS. Here, we showed how altering phospholipid composition 
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could ultimately change the anti-inflammatory activities of sHDL. In the future, we would like to 

take further steps to validate biophysical characterization and further confirm the relationship 

between the fluidity of sHDL and LPS neutralization. We also found that the specific phospholipid 

composition of sHDL can affect the circulation half-life. In the future, it would be worthwhile to 

investigate mixtures of phospholipids to improve both anti-inflammatory activity and circulation 

half-life in order to maximize the therapeutic efficacy and to use more clinically relevant disease 

models such as CLP models. The CLP model causes polymicrobial infection via allowing the 

release of fecal material into the peritoneal cavity to induce exacerbated immune response which 

achieves the clinically relevant human condition. The CLP mice model, like in humans, is observed 

with the early hyperdynamic phases that progresses to the late hypodynamic phase along with a 

similar cytokine profile in human with sepsis. 

 In chapter 3, we systematically observed the effect of both peptide sequence and 

phospholipid composition in sHDL on the nanoparticle’s ability to mobilize and esterify 

cholesterol in vitro and in vivo. We designed two sets of sHDL with either identical phospholipids 

and variable peptide sequences with different plasma stabilities or identical peptide sequences with 

variable fatty acid chain lengths and saturation. We observed that phospholipid composition rather 

than peptide composition in sHDL greatly influenced both the pharmacokinetic and 

pharmacodynamic profiles of the nanoparticle. Initially, we expected to observe an increase in 

circulation half-life and cholesterol mobilization with proteolytically stable 22A-P sHDL; however, 

increased circulation half-life did not translate to increased cholesterol mobilization in vivo. In 

contrast, 22A-DSPC sHDL greatly increased the circulation half-life and cholesterol mobilization 

compared to other phospholipids in sHDL. We further confirmed this finding through HDL 

remodeling experiments, which illustrated limited remodeling and interaction between 22A-DSPC 
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and endogenous HDL, leading to low protein insertion into the rigid gel phase of 22A-DSPC. We 

observed that a relatively fluid liquid crystalline phase sHDL undergoes rapid remodeling by 

endogenous HDL while rigid gel phase sHDL does not undergo remodeling. It is necessary to 

investigate whether more saturated and rigid phospholipid sHDL could lead to greater circulation 

half-life, cholesterol mobilization, and therapeutic effect in the animal models of atherosclerosis. 

 Finally, in chapter 4, we investigated an alternative therapeutic strategy with a novel nano-

micelle called MiNano that could potentially mimic the biological functions of sHDL and reverse 

cholesterol transport, overcoming the limitation of apoA-I or recombinant apoA-I. We were able 

to formulate MiNano with structural and functional similarities to sHDL with a small particle size 

(12 – 14 nm) and a hydrophobic core and hydrophilic exterior. We validated their similar 

capabilities of reverse cholesterol transport and anti-inflammatory activities in vitro. Interestingly, 

in vivo, MiNano resulted in a significant improvement in circulation and cholesterol mobilization 

compared to sHDL. In therapeutic studies, MiNano led to 40% atheroma area reduction and 

marked inflammatory cytokine reductions in the atherosclerosis model and inflammatory model, 

respectively. Based on our previous findings that different phospholipid compositions could 

influence the biological function of sHDL, we believe MiNano can also be optimized for various 

disease models by altering the phospholipid composition of MiNano. For example, we could 

formulate MiNano with DMPC to increase the potential anti-inflammatory activities or with DSPC 

to increase the circulation half-life. In summary, we believe MiNano to be a potential treatment 

option for other inflammatory diseases such as sepsis, SLE, and rheumatoid arthritis. 

 In conclusion, the work of this thesis gives rise to new insights on the importance of the 

phospholipid composition of sHDL and its biomimetic MiNano. Different phospholipids can alter 

the biological function of sHDL, and we have verified that phospholipids critically impact the 
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pharmacokinetic and pharmacodynamic profiles of the nanoparticle. In addition, we have shown 

that, with phospholipids alone, we could synthesize a more cost-effective MiNano to mimic sHDL. 

We hope that the new insights provided in this thesis can further expand, benefit, and improve 

sHDL to be widely used in various disease indications.
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