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Abstract 

 

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disorder in which 

the progressive loss of motor neurons results in paralysis and respiratory failure. Though the study 

of ALS is complicated by its heterogeneous biochemical, genetic, and clinical features, 

dysregulation of the RNA-binding protein TDP43 is observed in the vast majority of ALS cases. 

Although TARDBP mutations account for only a small proportion of the disease burden (2-5%), 

cytoplasmic TDP43 mislocalization and accumulation are observed in >90% of individuals with 

ALS. Moreover, mutations in several other ALS-associated genes result in TDP43 pathology. 

TDP43 is an essential protein involved in several RNA processing events, including splicing, 

translation, and degradation, and small changes in its localization and expression level are 

sufficient to disrupt critical cell processes (Chapter 1). As such, accumulating evidence implicates 

TDP43 and TDP43-dependent RNA processing in neurodegenerative disease (Chapter 2), but 

drivers of TDP43 accumulation and mislocalization remain fundamentally unclear. Here, we seek 

to identify phenomena that initiate TDP43 dyshomeostasis and develop techniques to better 

monitor TDP43 metabolism in the context of ALS.  

Much like TDP43 pathology, neuronal hyperexcitability is a conserved feature observed in 

both familial and sporadic ALS. However, its relation to neurodegeneration and TDP43 deposition 

in disease remains unknown. In Chapter 3, we show that hyperexcitability recapitulates TDP43 

pathology by upregulating shortened (s) TDP43 splice isoforms. These truncated isoforms 

accumulate in the cytosol, where they form insoluble inclusions that sequester full-length TDP43 



xv 

 

via preserved N-terminal interactions. Consistent with these findings, sTDP43 overexpression is 

toxic to mammalian neurons, suggesting that neurodegeneration results from complementary gain- 

and loss-of-function mechanisms. In humans and mice, sTDP43 transcripts are enriched in 

vulnerable motor neurons, and we observed a striking accumulation of sTDP43 within neurons 

and glia of ALS patients. These studies uncover a hitherto unknown role of alternative TDP43 

isoforms, and indicate that sTDP43 production may be a key contributor to the susceptibility of 

motor neurons in ALS.  

In Appendix A, we establish a technique to monitor TDP43 metabolism at the endogenous 

level. To do so, we developed induced pluripotent stem cell (iPSC)-derived neurons in which we 

can monitor the synthesis and degradation of native TDP43 in a non-invasive manner. Following 

these measurements, each neuron is tracked over time to determine its time of death via 

longitudinal fluorescence microscopy (Appendix B), enabling us to determine how TDP43 

synthesis and decay rates impact neuronal survival. Future work can utilize this methodology to 

determine if TDP43 metabolism is altered in neurons derived from ALS patients with C9orf72 and 

TARDBP mutations to further elucidate mechanisms of TDP43 dyshomeostasis.  

Chapter 4 concludes the dissertation and describes future studies to better understand 

mechanisms of sTDP43 toxicity and determine if sTDP43 is a viable therapeutic target for ALS. 

Appendix C further explores the identification of novel therapies and the development of a 

medium-throughput screen to identify novel compounds that stop or attenuate neurodegeneration. 

Taken together, this dissertation uncovers a novel disease pathway that may be targeted for 

therapeutic development, and establishes a technique to determine how TDP43 dyshomeostasis 

contributes to neurodegeneration in ALS.  

 



 

1 

 

Chapter 1. Introduction* 

 

1.1 Overview  

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder in which the 

progressive loss of motor neurons results in paralysis and respiratory failure1. The pattern and rate 

of symptom progression varies widely between patients, but ALS is typically fatal within 3-5 years 

of onset. While 90-95% of ALS cases are sporadic and have no known genetic cause, the remaining 

5-10% are associated with heritable mutations in one of over 15 different genes; a list that grows 

steadily longer with technological advances in whole genome sequencing and an increasing trend 

of pooling data between international consortia2,3.  

Despite significant effort, there is currently no effective disease-modifying therapy for 

ALS. Over 60 molecules have been investigated as potential therapeutics, but the vast majority of 

human trials have failed to achieve clinical efficacy4. Only two drugs are approved for the 

treatment of ALS: the first is Riluzole, an anti-glutamatergic agent that extends patient lifespan by 

an average of 2-3 months5, and the second is the anti-oxidative treatment Edaravone, which slows 

disease progression in patients in the earlier stages of disease6,7. However, these drugs do not alter 

disease progression or significantly extend the lifespan of ALS patients. This marked lack of 

progress is potentially due to the clinical and genetic heterogeneity associated with ALS, and as 

                                                 
* A portion of this chapter represents the following manuscript: 

 

Weskamp K, Barmada SJ. (2018). TDP43 and RNA instability in amyotrophic lateral sclerosis. Brain Research. 

https://doi.org/10.1016/j.brainres.2018.01.015 

https://paperpile.com/c/aCWKfz/9z8fL
https://paperpile.com/c/aCWKfz/B4Cb+m4lT
https://paperpile.com/c/aCWKfz/bEbJ
https://paperpile.com/c/aCWKfz/CRhe
https://paperpile.com/c/aCWKfz/PfQA+wjAe
https://doi.org/10.1016/j.brainres.2018.01.015
https://doi.org/10.1016/j.brainres.2018.01.015
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such we aim to identify and understand convergent disease mechanisms common to the majority 

of patients with this disorder.  

It is increasingly clear that RNA dysregulation is a key contributor to ALS pathogenesis. 

Over the past decade, disease-associated mutations have been identified in genes encoding 

multiple RNA-binding proteins participating in all aspects of RNA processing8. Among these is 

TDP43, a nuclear protein integrally involved in RNA metabolism. Although mutations in the gene 

encoding TDP43 (TARDBP) account for only a small proportion of the disease burden (2-5%), 

cytoplasmic TDP43 mislocalization and accumulation are observed in >90% of individuals with 

ALS9. Moreover, mutations in several other ALS-associated genes — including C9orf7210, ANG11, 

TBK112, PFN113, UBQLN214, VCP15, and hnRNPA2/B116 — result in TDP43 pathology. This 

convergence heavily implicates TDP43 and TDP43-dependent RNA processing in ALS 

pathogenesis, and suggests that a better understanding of how it contributes to neurodegeneration 

may reveal targets for more effective therapies.  

  

1.2 TDP43 Pathology in ALS 

 Although TDP43 is a primarily nuclear protein, its clearance from the nucleus and 

accumulation in cytosolic aggregates is observed in >90% of ALS cases17,18. These cytosolic 

inclusions generally appear as either filamentous skeins or compact inclusion bodies19,20 within 

motor neurons and glia in the brain and spinal cord17, and there is some evidence that the spread 

of TDP43 pathology across cortical regions can be used to track ALS progression21. Extensive 

work in patient tissue shows that these inclusions are insoluble, ubiquitinated17, and 

hyperphosphorylated22,23, suggesting that TDP43 undergoes a histopathological transformation in 

disease. Moreover, phosphorylated C-terminal fragments of TDP43 are present within these 

https://paperpile.com/c/aCWKfz/ST5bU
https://paperpile.com/c/aCWKfz/rhKm2
https://paperpile.com/c/aCWKfz/xiNz9
https://paperpile.com/c/aCWKfz/DHk8a
https://paperpile.com/c/aCWKfz/mMt2m
https://paperpile.com/c/aCWKfz/XUsOl
https://paperpile.com/c/aCWKfz/ITOgX
https://paperpile.com/c/aCWKfz/WqUVT
https://paperpile.com/c/aCWKfz/qp8AV
https://paperpile.com/c/aCWKfz/AlbV+ld5O
https://paperpile.com/c/aCWKfz/zbJz+UiK1
https://paperpile.com/c/aCWKfz/AlbV
https://paperpile.com/c/aCWKfz/pOGV
https://paperpile.com/c/aCWKfz/AlbV
https://paperpile.com/c/aCWKfz/r08S+l7lW
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inclusions in the brain, and to a lesser extent in the spinal cord24. Despite thorough characterization 

of this pathology, how or if the mislocalization and accumulation of TDP43 drives ALS 

pathogenesis remains unclear.  

 

1.3 TDP43 Structure  

TDP43 is encoded by the gene TARDBP, and was initially identified as a transcriptional 

repressor of HIV25 prior to its association with ALS in 200617,26. The protein itself consists of 414 

amino acids that encode several functional domains (Figure 1.1). The N-terminus (amino acids 

(aa) 1-102) is involved in TDP43 self-association, and regulates the formation of TDP43 

homodimers27,28 that may be important for normal protein function28. It also contains a nuclear 

localization signal (NLS, aa 82-98) that regulates trafficking between the nucleus and the 

cytoplasm29,30. TDP43 also includes two highly-conserved RNA-recognition motifs, RRM1 (aa 

104-176) and RRM2 (aa 192-262), that widely bind both DNA and RNA with higher specificity 

towards UG/TG-rich sequences31–33. These RRMs regulate several RNA metabolic processes, such 

as mRNA processing, export, and stability31,34,35. The C-terminal region (aa 277-414) encompasses 

a prion-like domain (aa 345-366) and a glycine-rich region (aa 366-414), and serves as a critical 

regulator of protein-protein interactions36,37, alternative splicing34,37,38, and localization30. This 

region is intrinsically disordered and canonically aggregation-prone39, though emerging evidence 

suggests that it is a key regulator of protein solubility and folding in healthy cells40.   

 

1.4 Other TDP43 Isoforms  

 The TARDBP gene is comprised of six exons, and several groups have described alternative 

splicing events across the transcript. To date, nineteen distinct transcripts have been reported41,42. 

https://paperpile.com/c/aCWKfz/9F0w
https://paperpile.com/c/aCWKfz/qfcR
https://paperpile.com/c/aCWKfz/AlbV+D5bQ
https://paperpile.com/c/aCWKfz/xpP2+qKRe
https://paperpile.com/c/aCWKfz/qKRe
https://paperpile.com/c/aCWKfz/CMmY+Re1w
https://paperpile.com/c/aCWKfz/xcQG+bQUX+fgpI
https://paperpile.com/c/aCWKfz/xcQG+6J55+zG85
https://paperpile.com/c/aCWKfz/Q4l3+E7Wd
https://paperpile.com/c/aCWKfz/6J55+sdlP+E7Wd
https://paperpile.com/c/aCWKfz/Re1w
https://paperpile.com/c/aCWKfz/GXBd
https://paperpile.com/c/aCWKfz/uLo4
https://paperpile.com/c/aCWKfz/djFF+W9HU
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The majority arise from splicing events within exon 6 and the 3’ UTR, with some leading to the 

inclusion of a previously unannotated exon 741–44. Though the majority of these isoforms are not 

well characterized, some work has shown that a subset form insoluble, ubiquitinated, cytosolic 

inclusions and recapitulate key features of TDP43 pathology in ALS45,46. However, the relevance 

of these isoforms to disease is, as of yet, poorly understood.  

 

1.5 Mechanisms of TDP43 Autoregulation  

Given that TDP43 recognizes UG-rich sequences present within approximately one third 

of all transcribed genes44,47,48, it is uniquely able to influence the processing of hundreds to 

thousands of transcripts. In keeping with these fundamental functions, the level and localization 

of TDP43 are tightly regulated and critical for cell health. TDP43 knockout mice die early in 

embryogenesis, and partial or conditional knockout animals exhibit neurodegeneration and 

behavioral deficits that correlate with the neuroanatomical pattern of TDP43 ablation49–52. 

Additionally, sustained TDP43 overexpression results in neurodegeneration in primary neuron53, 

mouse54,55, rat56,57, Drosophila58,59, zebrafish60,61, and primate models62,63, providing convincing 

evidence that too little or too much TDP43 is lethal. 

Despite the observed sensitivity of neurons and other cell types to long-term changes in 

TDP43 protein levels, TDP43 expression and localization are dynamically regulated in the short-

term by physical injury and other cellular stressors64–66. This pattern of expression suggests that 

TDP43 may be important for orchestrating the response to acute injury and eventual recovery. 

However, even relatively minor (~2-fold) persistent changes in TDP43 levels are sufficient to drive 

neurodegeneration53,67–69, indicative of a coping response that over time becomes ineffective and 

eventually detrimental to cell health. 

https://paperpile.com/c/aCWKfz/djFF+x0BM+w2tY+W9HU
https://paperpile.com/c/aCWKfz/rfzW+kouz
https://paperpile.com/c/aCWKfz/w2tY+hFgsf+D8pMd
https://paperpile.com/c/aCWKfz/5wDXY+I2qD2+wMMtr+EBipo
https://paperpile.com/c/aCWKfz/p3qxJ
https://paperpile.com/c/aCWKfz/v6E7f+Nhkr1
https://paperpile.com/c/aCWKfz/d1uv4+MDJrr
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Similar to systems employed by related RNA-binding proteins, TDP43 regulates its own 

expression through an intricate negative feedback loop. At high levels, TDP43 recognizes 

sequences within the 3’ untranslated region (UTR) of its own transcript (the TDP43 binding region, 

or TDPBR)43,70, triggering alternative splicing within the 3’ UTR44,47, mRNA destabilization, and 

reduced protein expression43,44,71. Two separate mechanisms may account for this destabilization 

(Figure 1.2).  

In the first, association of TDP43 with the TDPBR induces the removal of two alternative 

introns (6 and 7) within the last exon of the TARDBP mRNA transcript44,72. These splicing events 

create perceived exon-exon junctions (EEJs) with subsequent deposition of exon-junction 

complexes (EJCs), structures composed of eukaryotic initiation factor 4A-III, Magoh, Y14, UPF2 

and UPF3. During the process of translation, scanning ribosomes typically displace EJCs at EEJs 

upstream of a stop codon. Translation is stalled when the ribosome encounters a stop codon, 

allowing association of the SURF complex (SMG1, UPF1, and eRF1 and 2) with the ribosome. 

When an EJC is present >50 nt downstream of the stop codon, factors within the EJC (i.e. UPF2) 

may interact with UPF1 in the SURF complex, triggering UPF1 phosphorylation and nonsense-

mediated mRNA decay (NMD)73,74. In support of this model, knockdown of UPF1 — an essential 

NMD factor74–76 — increased the expression of constructs carrying the TARDBP 3’ UTR, while 

exogenous TDP43 reduced their expression44,77.  

This mechanism of autoregulation by RNA-binding proteins is not unique to TDP43, and 

forms the basis for a cascade labeled regulated unproductive splicing and translation (RUST) that 

is also utilized by the splicing factors PTB and SC3578–82. Like TDP43, these proteins recognize 

sequences present within the 3’ UTR of their respective transcripts, resulting in splicing and EJC 

deposition downstream of the canonical stop codon. This, in turn, causes RNA destabilization via 
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NMD, and an overall reduction in protein levels. An analogous mechanism is responsible for the 

regulation of FUS, a nuclear RNA-binding protein whose cytoplasmic mislocalization and 

accumulation are implicated in ALS, much like TDP4383–86. FUS and TDP43 share basic structural 

and functional elements, including a glycine-rich low complexity domain that harbors ALS-

associated mutations. FUS also binds its own transcript, resulting in exclusion of exon 7 and a shift 

in the reading frame87. This shift uncovers a premature stop codon in exon 8, leading to 

destabilization of the alternatively-spliced FUS mRNA via NMD. Furthermore, disease-associated 

mutations in FUS87 and TARDBP72 may impair effective autoregulation of these RNA-binding 

proteins, resulting in their accumulation and downstream toxicity (see below).  

Nevertheless, alternatively-spliced TARDBP mRNA isoforms and predicted NMD 

substrates have been difficult to identify and measure, and additional studies suggest that TDP43 

autoregulation operates by a separate mechanism. In the second model, TDP43-mediated splicing 

within the TARDBP 3’ UTR removes the primary mRNA polyadenylation site (pA1) present 

within intron 743,88. Transcripts that utilize the remaining polyadenylation sites pA2 and pA4 are 

preferentially retained in the nucleus88 and degraded by the RNA exosome43. Genetic ablation of 

exosome components Rrp6 and Rrp44 is sufficient to increase exogenous TARDBP mRNA levels 

and protein production, implying that the RNA exosome is indeed responsible for degrading the 

overexpressed TARDBP minigene. However, more recent evidence suggests that differential 

polyadenylation cannot fully explain TDP43 autoregulation in this model89. Rather, TDP43-

induced splicing of intron 7 within the TARDBP 3’ UTR destabilizes the transcript, reduces nuclear 

export, and decreases protein production. Artificial mutations that enhance intron 7 splicing 

promote TARDBP destabilization, while cDNA and other transcripts that intrinsically lack intron 

7 escape autoregulation and are constitutively expressed at high levels89. This suggests that 

https://paperpile.com/c/aCWKfz/QT6bW+izkCD+9sqMv+d7SXd
https://paperpile.com/c/aCWKfz/XECh4
https://paperpile.com/c/aCWKfz/XECh4
https://paperpile.com/c/aCWKfz/xGwz5
https://paperpile.com/c/aCWKfz/x0BM+GdJJZ
https://paperpile.com/c/aCWKfz/GdJJZ
https://paperpile.com/c/aCWKfz/x0BM
https://paperpile.com/c/aCWKfz/NTnuO
https://paperpile.com/c/aCWKfz/NTnuO
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spliceosome assembly and intron 7 splicing is a key event in TDP43 autoregulation, but whether 

this process participates in the regulation of endogenous TDP43 levels is unclear, and further 

studies are required to fully elucidate its contribution. 

 

1.6 Disruption of TDP43 Autoregulation in ALS  

Regardless of whether TDP43 mRNA is destabilized by NMD or degraded by the exosome 

following nuclear retention, interruption of this autoregulatory process likely has severe 

consequences for cell health. Five disease-associated mutations have been identified within the 

TARDBP 3’ UTR90, which may block binding of TDP43 to its own transcript and subsequent 

alternative splicing. At least one of these mutations is associated with a steady-state increase in 

TARDBP mRNA levels, supporting the notion of disrupted autoregulation as an underlying factor 

leading to TDP43 accumulation and disease91. The majority of ALS-associated TARDBP 

mutations lie within the carboxy-terminal glycine rich domain of the protein92, and although the 

precise mechanism remains unclear, several studies have suggested that these pathogenic 

mutations enhance cytoplasmic TDP43 mislocalization and aggregation53,69,93,94 and stabilize 

cytoplasmic TDP4395,96. By increasing the proportion of cytoplasmic TDP43, these changes would 

be expected to reduce autoregulation, resulting in elevated TDP43 production. Eventually, this 

vicious cycle may culminate in cytoplasmic TDP43 deposition, nuclear TDP43 clearance and 

neurodegeneration97. 

Mutations in genes other than TARDBP may inhibit TDP43 autoregulation by affecting 

nucleocytoplasmic transport. The most prevalent mutation responsible for ALS, hexanucleotide 

(G4C2) expansions in the C9orf72 gene, may block nuclear protein import through one or more 

related mechanisms: repeat (G4C2)-containing RNA may sequester essential transport factors (i.e. 

https://paperpile.com/c/aCWKfz/WTASI
https://paperpile.com/c/aCWKfz/b1bdx
https://paperpile.com/c/aCWKfz/BrbJJ
https://paperpile.com/c/aCWKfz/p3qxJ+BpyL6+sFyEV+m20l5
https://paperpile.com/c/aCWKfz/YnlLm+CB0zF
https://paperpile.com/c/aCWKfz/efo5v
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RanGAP)98, or dipeptide repeat proteins produced by repeat-associated non-AUG (RAN) 

translation of the repeat RNA might directly clog the nuclear pore99. Additional evidence suggests 

that cytoplasmic protein aggregates may universally impair nucleocytoplasmic transport in 

neurodegenerative conditions100, further facilitating the cytoplasmic deposition of proteins such as 

TDP43 and FUS that typically participate in nucleocytoplasmic shuttling. Because splicing takes 

place within the nucleus, cytoplasmic retention of FUS and TDP43 would interfere with the normal 

autoregulation process, ultimately increasing mRNA stability and protein production. Therefore, 

cytoplasmic sequestration of the proteins or inefficient nuclear import would be sufficient to inhibit 

autoregulation, accelerating the formation of TDP43 or FUS cytoplasmic inclusions that are 

characteristic of ALS97. 

 

1.7 Downstream Consequences of Failed TDP43 Autoregulation: TDP43 Nuclear Exclusion 

and Cytoplasmic Accumulation  

 Disruption of TDP43 autoregulation influences both the protein level and localization of 

TDP43, resulting in cytoplasmic deposition and nuclear clearance characteristic of the majority of 

ALS patients. However, how exactly TDP43 dysfunction contributes to disease pathogenesis 

remains unclear. Here, we will explore 1.) the consequences of disrupted normal protein function 

and 2.) the potential gain of toxic function that occurs in conjunction with TDP43 pathology.  

 

1.7.1 Disrupted TDP43 Autoregulation Interrupts Normal Protein Function  

Given TDP43’s crucial functions in RNA processing, its dysregulation leads to 

abnormalities in alternative mRNA splicing, non-coding RNAs, miRNA biogenesis, and the 

dynamics of RNA-rich granules (Figure 1.3).  

https://paperpile.com/c/aCWKfz/n2fPu
https://paperpile.com/c/aCWKfz/0KKvK
https://paperpile.com/c/aCWKfz/k61xH
https://paperpile.com/c/aCWKfz/efo5v
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1.7.1.1 Alternative Splicing  

Alternative splicing is the differential inclusion or exclusion of exons within mature 

transcripts, enabling the expression of multiple RNA and protein isoforms from a single gene. 

Between 92 and 94% of all mRNAs in the human genome are alternatively spliced101, and the brain 

expresses more alternatively spliced mRNAs than any other organ102,103. Because changes in the 

splicing environment determine which isoforms are produced104,105, alternative splicing can 

regulate gene expression by creating transcripts that are more or less stable. In fact, an estimated 

33% of alternatively-spliced transcripts contain premature termination codons that mark them as 

substrates for NMD106. Thus, NMD is not simply a mechanism for degrading abnormal or mutated 

transcripts, but also represents an active pathway regulating the stability of alternatively-spliced 

transcripts. Alternative splicing therefore represents an effective and rapid means of regulating 

gene expression via changes in RNA stability, without the need to revert to transcription. As 

mentioned above, RUST is an NMD-related mechanism utilized by RNA-binding proteins to 

dynamically and quickly modulate their own expression; signal transduction by inflammatory 

cytokines likewise affects gene expression via changes in splicing and RNA stability107,108.  

In addition to regulating the splicing of its own mRNA, TDP43 is crucial for the alternative 

splicing of hundreds of other transcripts44,47,84,109. It interacts strongly with several splicing 

factors110, and loss of TDP43 causes widespread changes in alternative splicing44,47 including many 

transcripts that are critical for neuronal viability44,84,111. ALS-associated TARDBP mutations can 

likewise alter alternative splicing and subsequent gene expression109,112. 

Alternatively spliced transcripts can also be targeted for decay if they include mutations 

that create novel splice sites. This can lead to the inclusion of unannotated or “cryptic” exons and 

https://paperpile.com/c/aCWKfz/YQro8
https://paperpile.com/c/aCWKfz/QNNAI+xKNy1
https://paperpile.com/c/aCWKfz/LinqZ+OwqAI
https://paperpile.com/c/aCWKfz/gi9xX
https://paperpile.com/c/aCWKfz/hH8wV+Nf58r
https://paperpile.com/c/aCWKfz/w2tY+izkCD+0Lb30+hFgsf
https://paperpile.com/c/aCWKfz/m1Rzm
https://paperpile.com/c/aCWKfz/w2tY+hFgsf
https://paperpile.com/c/aCWKfz/w2tY+izkCD+ie5eb
https://paperpile.com/c/aCWKfz/0Lb30+RuvNf
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the production of faulty transcripts. Recent work suggests that TDP43 actively suppresses 

unannotated exon splicing events113,114. Its depletion results in a widespread increase in cryptic 

exon splicing, and the inclusion of these exons typically leads to NMD115. Many of these events 

are specific to neurons116, suggesting that the disruption of TDP43-mediated cryptic exon 

regulation may directly contribute to neurodegeneration. Furthermore, the unannotated exons 

affected by TDP43 are distinct in murine and human cells113, indicating species-specific 

differences in TDP43 function that may predispose to mechanisms of neurodegeneration unique 

to humans. TDP43 is not the only RNA-binding protein that modulates exon inclusion — RBM17, 

PTBP1 and PTBP2 also repress the inclusion of unannotated exons113,114. Like TDP43, each of 

these factors is essential for neuronal development and their loss results in 

neurodegeneration114,117–119, implying that neurons are particularly susceptible to the abnormal 

inclusion of unannotated exons.  

 

1.7.1.2 Non-Coding RNAs 

 Though attention is often focused on the 1-2% of transcripts that encode protein, the vast 

majority of the genome is transcribed as non-protein-coding RNAs (ncRNAs)120. These transcripts 

are loosely categorized as short or long non-coding RNAs (lncRNAs), and the latter act by 

regulating gene expression in a variety of ways. These include, but are not limited to: the 

sequestration121, competition122, or altered localization of transcription factors123; transcriptional 

coactivation124 or corepression125; alternative mRNA splicing126; mRNA transport and stability127; 

and modulation of translation128. lncRNAs serve crucial functions in development and disease, and 

also help scaffold membraneless organelles such as nuclear speckles and paraspeckles129 that are 

important sites of RNA processing and modification130.  
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https://paperpile.com/c/aCWKfz/4k5sN
https://paperpile.com/c/aCWKfz/26GUn
https://paperpile.com/c/aCWKfz/TCMUs
https://paperpile.com/c/aCWKfz/TCMUs+MTQrX
https://paperpile.com/c/aCWKfz/22HQ6+xaA1o+pPI3r+MTQrX
https://paperpile.com/c/aCWKfz/g7d5w
https://paperpile.com/c/aCWKfz/QgGKR
https://paperpile.com/c/aCWKfz/h6KPs
https://paperpile.com/c/aCWKfz/eqoHx
https://paperpile.com/c/aCWKfz/jmxTO
https://paperpile.com/c/aCWKfz/ftwrv
https://paperpile.com/c/aCWKfz/lKDNR
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 Both TDP43 and FUS recognize lncRNAs47,84,131, including gadd7132, MALAT1133, and 

NEAT1_2134, via UG-rich binding sites47,84. The abundance of many lncRNAs is altered in 

response to TDP43 knockdown in murine models of ALS44 and in human post-mortem tissue47. 

Thus, TDP43 deposition in ALS likely has profound consequences for lncRNA expression and 

function. However, further studies are required to determine how TDP43 pathology influences 

lncRNA-related processes, and whether TDP43-mediated impairment of lncRNA contributes 

significantly to neurodegeneration in ALS. 

 

1.7.1.3 miRNA Biogenesis  

MicroRNAs (miRNAs) are small, non-coding RNAs that base-pair with complementary 

sequences within mRNA transcripts to trigger their decay and/or translational repression. These 

20-25 nt RNAs are produced from an RNA precursor (pri-miRNA) that forms a hairpin loop 

shortly after transcription135,136. The enzyme Drosha then cleaves the hairpin from the rest of the 

transcript137,138, and the resulting molecule (pre-miRNA) is exported to the cytoplasm139. There, 

the enzyme Dicer cuts away the looped end140, leaving a duplex of two short, complementary RNA 

strands. The two strands dissociate and the mature miRNA associates with the RNA-induced 

silencing complex (RISC), which assists in orienting the miRNA with its mRNA target, repressing 

translation of the target transcript and triggering its degradation.  

TDP43 promotes miRNA biogenesis through a direct association with pri-miRNA, pre-

miRNA, and both Drosha and Dicer141. In so doing, TDP43 regulates the formation of key 

miRNAs that are essential for neuronal development, activity and survival141–145. FUS also 

interacts with Drosha and pri-miRNA in neurons, suggesting that it plays a similar role in neuronal 

miRNA biogenesis146. 

https://paperpile.com/c/aCWKfz/izkCD+hFgsf+3iWgS
https://paperpile.com/c/aCWKfz/5fsd2
https://paperpile.com/c/aCWKfz/OSQxo
https://paperpile.com/c/aCWKfz/5wiJ6
https://paperpile.com/c/aCWKfz/hFgsf+izkCD
https://paperpile.com/c/aCWKfz/w2tY
https://paperpile.com/c/aCWKfz/hFgsf
https://paperpile.com/c/aCWKfz/zesZ7+aZFnp
https://paperpile.com/c/aCWKfz/bHA4a+msjqJ
https://paperpile.com/c/aCWKfz/HqF4m
https://paperpile.com/c/aCWKfz/9JpOj
https://paperpile.com/c/aCWKfz/R1Dvj
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https://paperpile.com/c/aCWKfz/xhucs
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 Concordant with TDP43 pathology, the expression of several TDP43-associated miRNAs 

were altered in the CSF of sporadic ALS patients, compared to healthy controls147,148. Similar 

changes in miRNA levels were detected in transgenic mutant SOD1 mouse spinal cord and human 

ALS monocytes, but not fibroblasts from ALS patients149,150. Human neurons carrying TARDBP 

mutations exhibited reduced levels of miR-9 and the immature pri-miRNA precursor pri-miR-9-

2145. Knockdown of endogenous TARDBP in control neurons reproduced these deficits, suggesting 

that TDP43 actively participates in miR-9 biogenesis, and that disease-associated TARDBP 

mutations inhibit this function. One of the predicted targets of miRNAs disrupted in ALS tissues 

is EIF2/AGO4148, a component of RISC that participates in miRNA-mediated RNA degradation151. 

Thus, abnormal miRNA biogenesis triggered by TDP43 dysfunction in ALS may have direct and 

indirect consequences for the maintenance of RNA stability. Further, since each individual miRNA 

can regulate the stability and translation of many downstream mRNA targets, the potential 

implications of even minor abnormalities in miRNA biogenesis are considerable152.  

 

1.7.1.4 Stress Granule Dynamics  

 Cells undergo a wide range of molecular changes in response to environmental stressors, 

including the inhibition of conventional translation153,154 and the formation of stress granules 

(SGs), cytoplasmic ribonucleoprotein particles rich in mRNA, RNA-binding proteins, and stalled 

translation initiation complexes155–157. TDP43 is one of several RNA-binding proteins that localize 

to SGs in response to various conditions158–161. Although it is not essential for SG formation per 

se, changes in TDP43 levels or localization affect SG dynamics. For instance, TARDBP 

knockdown slows SG formation158,161, while expression of ALS-associated mutant TDP43 

accelerates SG formation and results in larger SGs than wild-type TDP43 overexpression159,160. 

https://paperpile.com/c/aCWKfz/JWy9V+7ySb9
https://paperpile.com/c/aCWKfz/ABZTK+RbeHK
https://paperpile.com/c/aCWKfz/L1Tet
https://paperpile.com/c/aCWKfz/7ySb9
https://paperpile.com/c/aCWKfz/flq3H
https://paperpile.com/c/aCWKfz/ZwX0D
https://paperpile.com/c/aCWKfz/b4TUb+UPFf3
https://paperpile.com/c/aCWKfz/3Pbzd+A42ej+3brI2
https://paperpile.com/c/aCWKfz/UNkHT+VHyLi+1rzUe+bS9FE
https://paperpile.com/c/aCWKfz/UNkHT+bS9FE
https://paperpile.com/c/aCWKfz/VHyLi+1rzUe
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Based on its ability to recognize thousands of GU-rich transcripts, it is possible that excess TDP43 

inclusion within SGs enables broad mRNA sequestration, shifting transcripts from actively 

translating polysomes to the relatively inert SGs. Conversely, SG-localized TDP43 may also bind 

to and prevent the degradation of RNAs that would have otherwise been degraded through 

association with components of processing (P)-bodies, including decapping proteins and 

exonucleases. Therefore, cytoplasmic TDP43 accumulation within normal or abnormal SGs in 

ALS might effectively increase mRNA stability without causing a reciprocal increase in mRNA 

translation. Nevertheless, any potential RNA stabilizing effect of TDP43 deposition is likely to be 

outweighed by the substantive TDP43-dependent changes in alternative splicing, unannotated 

exon inclusion, and miRNA biogenesis that collectively act to destabilize RNA.  

 

1.7.1.5 RNA Transport Granules  

 Localized translation of mRNA is a common mechanism for regulating protein expression 

in specific regions of the cell. This is of particular importance in highly compartmentalized cells 

such as neurons, in which local translation is essential for synaptic plasticity162, neurotransmitter 

production163, axon guidance, and recovery from injury164. mRNAs are transported in granules 

comprised primarily of RNA-binding proteins165 that stabilize and translationally repress166,167 

their cargo. TDP43 colocalizes with mRNA and related RNA-binding proteins in transport 

granules that undergo bidirectional, microtubule-dependent transport168,169, suggesting that TDP43 

acts as a neuronal mRNA transport factor170. Disease-associated TARDBP mutations impair the 

motility of TDP43-positive axonal granules168, and the overexpression of TDP43 C-terminal 

fragments sequester components of transport granules such as HuD169. Taken together with 

evidence showing that wild-type or mutant TDP43 overexpression impairs axon outgrowth169, 
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https://paperpile.com/c/aCWKfz/l64Mw
https://paperpile.com/c/aCWKfz/PIEVa
https://paperpile.com/c/aCWKfz/evArA
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https://paperpile.com/c/aCWKfz/PC68Q+gXDgS
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these observations imply that TDP43-dependent dysregulation of mRNA transport and local 

protein synthesis may contribute to axon degeneration in ALS.  

 

1.7.2 TDP43 Inclusions and Gain of Function Toxicity  

 The role of TDP43 aggregates in neurodegeneration is not well understood. In contrast to 

the hypothesis that neurodegeneration in ALS results from the loss of normal TDP43 function, 

others have proposed that cytosolic aggregates gain and exert novel toxic functions. As previously 

described, TDP43 in cytosolic aggregates undergoes several histopathologic changes rendering it 

insoluble, ubiquitinated17, and hyperphosphorylated22,23. Moreover, a prominent species within 

these inclusions are 25-35 kDa TDP43 C-terminal fragments171. The C-terminal domain harbors 

the majority of ALS-associated mutations and phosphorylation sites, and this domain alone is 

highly aggregation prone and sufficient to induce cell death in some contexts93,172. Moreover, there 

is some evidence to suggest that this C-terminal domain is capable of forming amyloid-like fibrils 

that sequester critical cellular components and disrupt their normal function93,173,174.  

Altered aggregation propensity is not limited to the C-terminus; the RRMs play a role in 

protein aggregation175 that is perhaps exacerbated by RNA binding176. The N-terminus also 

promotes TDP43 oligomerization177 and may contribute to the formation of TDP43 

aggregates27,28,178. However, there is limited evidence directly linking inclusions to 

neurodegeneration179. Experimental models have demonstrated that TDP43 aggregates are not 

necessary for TDP43-mediated toxicity180, and although that does not preclude their involvement 

in neuron dysfunction and death, existing evidence suggests that TDP43 mislocalization and 

expression levels are more significant contributors to neurodegeneration in ALS53,69,109.  
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1.8 Summary and Aims of the Dissertation  

ALS is a devastating neurodegenerative disorder, and its heterogeneous biochemical, 

genetic, and clinical features complicate the identification of therapeutic targets. However, the 

cytoplasmic mislocalization and accumulation of TDP43, a nuclear RNA-binding protein 

integrally involved in RNA metabolism, is observed in the vast majority of individuals with ALS. 

TDP43 is an essential protein involved in several RNA processing events, including splicing, 

translation, and degradation. As such, TDP43 levels and localization are tightly regulated, where 

even small perturbations in abundance and localization are sufficient to induce cell death. 

However, the initiating events that drive TDP43 pathology remain unclear, as do the contributions 

of TDP43 dysregulation to ALS pathogenesis. 

The primary goal of my dissertation is to identify and understand convergent mechanisms 

that lead to neurodegeneration in ALS. My central hypothesis is that the dysregulation of TDP43 

leads to neurodegeneration via a combination of TDP43 loss-of-function and gain-of-function 

toxicity. To address this, my dissertation is divided into the following aims: 1.) explore other 

features common to the majority of ALS cases and their relation to TDP43 dysregulation, and 2.) 

identify how changes in TDP43 metabolism contribute to TDP43 pathology. Chapter 2 provides a 

broad examination of RNA metabolism both in the context of healthy cells and neurodegenerative 

disease. Chapter 3 examines how another hallmark feature of ALS, hyperexcitability, drives the 

formation of truncated TDP43 isoforms that recapitulate and perhaps exacerbate TDP43 

pathology, and Appendix A describes progress made in using an induced pluripotent stem cell-

derived neuron model system to track TDP43 synthesis and degradation at the endogenous level 

using longitudinal fluorescence microscopy, which is detailed further in Appendix B. Appendix C 
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describes the establishment of a medium-throughput screening to identify novel therapeutics for 

ALS. Finally, Chapter 4 concludes the dissertation and describes future directions. 
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Figure 1.1. TDP43 structure and function. TDP43 consists of an N-terminus that 

contains a nuclear export sequence (yellow), two RNA-recognition motifs (green) and a 

C-terminus (blue) that encompasses both a prion-like domain and a glycine rich domain. 

In healthy cells (top left) TDP43 is primarily nuclear and plays critical roles in RNA 

processing and metabolism. However, in the majority of ALS cases TDP43 is mislocalized 

from the nucleus to the cytoplasm, where it forms cytoplasmic aggregates (bottom right). 

These aggregates contain several TDP43 species, and may contribute to ALS pathogenesis 

through a gain of toxic TDP43 function, a loss of normal TDP43 function, or a combination 

of the two.    
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Figure 1.2. TDP43 autoregulation. TDP43 may destabilize its own mRNA transcript through 

two distinct mechanisms. In the first (gray arrows), TDP43 protein recognizes the TDP43 binding 

region (TDPBR) within the 3’ UTR of its own transcript, stimulating the removal of alternative 

intron 7 and the primary polyadenylation site (pA1) contained within the intron. Spliced transcripts 

are preferentially retained in the nucleus and targeted for exosome-mediated decay. In the second 

mechanism (black arrows), the removal of introns 6 and/or 7 creates exon-exon junctions (EEJs) 

and the assembly of exon junction complexes (EJCs). The transcript is then exported to the 

cytoplasm. During the first or pioneer round of translation, the ribosome pauses at the stop codon, 

allowing the association of the SURF complex with the ribosome. Factors within the downstream 

EJC interact with UPF1 in the SURF complex, triggering UPF1 phosphorylation and nonsense-

mediated mRNA decay.  
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Figure 1.3. TDP43 deposition impacts RNA stability through several pathways. (A) 

Alternative splicing. Mutations that introduce novel splice sites can lead to the inclusion of 

unannotated or “cryptic” exons (pink box). These faulty transcripts are often targeted by NMD. 

Typically, TDP43 is a strong repressor of these unannotated splicing events, but nuclear exclusion 

prevents TDP43 from performing this function, and abnormal transcripts accumulate. (B) miRNA 

biogenesis. TDP43 promotes several steps of miRNA biogenesis, and regulates the formation of 

key miRNAs that, in turn, control the stability and translation of mRNAs that are essential for 

neuronal survival, growth and development. (C) Stress granule dynamics. TDP43 is one of several 

RNA-binding proteins (blue circles) that localize to SGs (light green) in response to various 

conditions. Because TDP43 recognizes thousands of GU-rich transcripts, cytoplasmic TDP43 

deposition within SGs forces mRNA recruitment to SGs, shifting transcripts from actively 

translating polysomes to inert, though stable, SGs. 
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Chapter 2. RNA Degradation in Neurodegenerative Disease* 

  

2.1 Introduction 

Ribonucleic acid (RNA) homeostasis is dynamically modulated in response to changing 

physiological conditions. Tight regulation of RNA abundance through both transcription and 

degradation determines the amount, timing, and location of protein translation. This balance is of 

particular importance in neurons, which are among the most metabolically active and 

morphologically complex cells in the body. As a result, any disruptions in RNA degradation can 

have dramatic consequences for neuronal health. In this chapter, we will first discuss mechanisms 

of RNA stabilization and decay. We will then explore how the disruption of these pathways can 

lead to neurodegenerative disease. 

 

2.2 Mechanisms to Maintain RNA Stability  

 Following transcription, the newly formed transcript can be stabilized in several ways 

(Figure 2.1). Most RNA that codes for protein, also referred to as coding or messenger RNA 

(mRNA), undergoes several processing steps that prevent degradation, assist in export from the 

nucleus, and aid in translation. Additionally, both coding and non-coding RNA (ncRNA) are 

                                                 
* This chapter represents the following manuscript:  

 

Weskamp K, Barmada SJ. (2018). RNA Degradation in Neurodegenerative Disease. Advances in neurobiology. 

https://doi.org/10.1007/978-3-319-89689-2_5 

https://doi.org/10.1007/978-3-319-89689-2_5
https://doi.org/10.1007/978-3-319-89689-2_5
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stabilized by the adoption of unique secondary structures or sequestration in cytoplasmic 

ribonucleoprotein particles when the cell is under stress. 

 

2.2.1 Polyadenylation 

Polyadenylation refers to the addition of a series of adenosine monophosphates to the 3’ 

end of mRNA transcripts1. This poly(A) tail protects nascent mRNA from enzymatic 

degradation2,3, facilitates nuclear export4, and assists in translation3. Polyadenylation begins when 

a complex of several proteins recognizes a binding site on the mRNA transcript. An enzyme in 

this complex, cleavage/polyadenylation specificity factor (CPSF), cleaves the 3’ end of the 

transcript, and a second component, polyadenylate polymerase, adds sequential adenosine 

monophosphate units to create the poly(A) tail5. As the poly(A) tail grows longer, polyadenylate 

binding protein 2 (PAB2) is recruited, which further increases the affinity of polyadenylate 

polymerase to the RNA6. Additional poly(A)-binding proteins then associate with the tail and 

facilitate nuclear export, stabilization of the RNA, and translation7. 

Many transcripts harbor more than one polyadenylation site. The site that is ultimately 

utilized primarily affects the length of the 3’ untranslated region (UTR), with little direct influence 

on protein translation or function8. However, the 3’UTR may also encode microRNA recognition 

elements9, DNA methylation sites10, or motifs recognized by regulatory RNA-binding 

proteins11,12. Thus, where a poly(A) tail starts can significantly influence the likelihood of 

transcript degradation. Moreover, in some cases alternative poly(A) binding sites occur within the 

coding region, and their usage results in truncation of the translated protein13. Poly(A) tails are 

gradually eroded over time, and transcripts with shorter tails are both less likely to be transcribed 
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and more likely to be degraded14. This process can be accelerated by the binding of microRNA to 

the 3’ UTR or through the removal or degradation of poly(A) binding proteins15.  

 

2.2.2 Methylguanine Cap 

 The majority of coding RNAs undergo a second processing step that involves the addition 

of a methylguanine cap to the 5’ end of the transcript. This cap stabilizes the transcript by 

preventing exonuclease-mediated degradation16–18, and is also required for the translation of most 

mRNAs19,20. Additionally, the 5’ cap assists in splicing21–25, nuclear export24,25, and possibly 

polyadenylation26.  

The capping process is initiated before transcription is complete, and begins when RNA 

triphosphatase removes one of the 5’ terminal phosphate groups27. mRNA guanylyltransferase 

then catalyzes the addition of guanosine triphosphate to the remaining terminal biphosphate to 

create an unusual 5’ to 5’ triphosphate linkage. This guanosine is then methylated by a 

methyltransferase27. The cap binding complex (CBC) binds to the methylated 5’ cap, which is in 

turn recognized by the nuclear pore complex and exported into the cytoplasm28,29. Once there, the 

CBC is replaced by the translation factors eIF4E and eIF4F, which are recognized by other 

translation initiation machinery components, including the ribosome30,31.  

Binding of the CBC and translation factors also stabilize transcripts by blocking the binding 

of decapping enzymes32–34. When these decapping enzymes outcompete the translation factors, 

they hydrolyze the 5’ cap and expose the 5’ monophosphate. The resulting decapped transcripts 

are subject to rapid degradation by 5’ exonucleases35.  
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2.2.3 Secondary Structure  

DNA primarily forms double helices, but the single stranded nature of RNA and its 

propensity to form hydrogen bonds allows it to form more complex structures that can directly 

affect transcript stability. The most common RNA secondary structure is the hairpin loop, created 

when two complementary regions of the same strand base-pair to form a double helix that ends in 

an unpaired loop36. These loops are found in pre-microRNA, transfer RNA (tRNA), and mRNA, 

and their stability depends on several factors, including length, degree of complementarity in the 

stem, and guanine to cytosine base pair content. Hairpin loops stabilize mRNA37–40 and in many 

cases increase translation efficiency39,40. This may occur by blocking exonuclease activity, but the 

precise mechanism remains unclear. Hairpin loops may also act as binding sites for proteins that 

direct mRNA transport and localization41–43. 

The combination of several hairpin loops forms a multiloop; the most abundant example 

of this structure is found in the cloverleaf-shaped tRNAs that assist in protein translation. The 

relative stabilities of multiloops vary based on size, number of loops, and complementarity44. 

Hairpin loops can also form pseudoknots, in which at least two hairpin loops are linked by single 

stranded loops. Pseudoknots are relatively stable, and though little is known about their functional 

significance, they form the catalytic core of some ribozymes45,46 and telomerases47 and may also 

be involved in translation48. Other structures, such as G-quadruplexes and R-loops, are more often 

associated with disease and will be discussed below.  

 

2.2.4 Stress Granules  

Cells undergo a wide range of molecular changes in response to environmental stressors, 

including the inhibition of conventional translation49,50 and the formation of stress granules (SGs), 
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cytoplasmic ribonucleoprotein particles rich in mRNA, RNA-binding proteins, and stalled 

translation initiation complexes51–53. SG coalescence effectively sequesters the attached mRNAs 

and the 40S ribosome subunit54,55, preventing further translation and stabilizing the bound mRNAs. 

Proteins unrelated to the original translation initiation complex are also recruited, and their 

composition helps determine SG dynamics and longevity56. Which proteins participate is often 

dependent on their posttranslational modifications and the specific stressor involved57–61, 

providing a rapid and reversible way for the cell to modulate SG formation and composition. Many 

RNA-binding proteins found in SGs contain low-complexity domains that are inherently flexible; 

the ability of these domains to form reversible homo- and heterotypic interactions with one another 

via their low-complexity domains may be responsible for the dynamics of SG formation and 

dissociation62,63. Additionally, SGs often contain a number proteins that promote RNA stability 

and regulate translation64. Moreover, deadenylation is largely inhibited in stress granules65–67. 

When the stressor has passed, several RNA-binding proteins catalyze SG disassembly68–70, and the 

transcript is either degraded or released to resume translation. These observations suggest that SGs 

serve two basic functions: preventing the translation of unnecessary transcripts during stress, and 

protecting these transcripts from degradation until the stress has subsided.  

 

2.3 Mechanisms of RNA Decay 

The typical life of an mRNA transcript includes a complex sequence of events including 

transcription, capping, adenylation, splicing, and export. When mistakes occur during this process, 

quality control mechanisms exist to recognize and eliminate defective transcripts that may give 

rise to dysfunctional or toxic proteins (Figure 2.1). However, these pathways do more than ensure 

the fidelity of RNA transcripts. They also serve important regulatory roles, enabling rapid 
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modulation of steady-state RNA levels—and therefore protein production—in response to changes 

in the intracellular or extracellular environment.  

 

2.3.1 RNA Degradation Machinery 

There are three major classes of intracellular RNA-degrading enzymes: endonucleases that 

cut RNA internally, 5’ to 3’ exonucleases that degrade RNA from the 5’ end, and 3’ to 5’ 

exonucleases that hydrolyze RNA from the 3’ end. These enzymes may work independently or 

within a complex such as the exosome, a versatile structure for the degradation of immature or 

abnormal RNA. The core of the eukaryotic exosome complex is formed by nine proteins, six of 

which are members of the RNase PH-like family71. These form a ring that is capped by three 

additional proteins with RNA-binding domains72; this structure bears remarkable similarity to the 

26S proteasome73, which consists of a central proteolytic barrel (the 20S core) capped on either 

end by 19S regulatory subunits. The exosome is primarily composed of 3’-5’ exoribonucleases, 

and RNAs are degraded by removing terminal nucleotides from the 3’ end of the transcript. This 

occurs through the cleavage of phosphodiester bonds, either through RNase PH-like protein-

mediated phosphorolytic cleavage or hydrolytic cleavage by proteins associated with the 

exosome74. Several other proteins bind to the exosome to regulate its activity and specificity75–77. 

The exosome also processes small nuclear RNAs, small nucleolar RNAs, and ribosomal RNAs78, 

though how these molecules are targeted to and released from the exosome remains unclear. 

 

2.3.2 Nonsense-mediated Decay  

Occasionally, errors introduced during transcription, insertions, deletions or nonsense 

mutations uncover premature stop codons (PTCs) within the coding sequence of an mRNA. If 

translated, PTC-containing transcripts would encode truncated proteins that may have toxic gain-
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of-function or dominant-negative activities. Nonsense-mediated decay (NMD) is a surveillance 

mechanism that eliminates transcripts containing PTCs, thereby preventing the synthesis of 

proteins that could be detrimental to the cell.  

mRNA transcripts undergo splicing following transcription, during which introns are 

removed and exons are spliced together. The resulting exon exon junctions (EEJs) are occupied 

by a complex of proteins (the exon junction complex, or EJC) that assist in splicing until they are 

displaced by the ribosome during the first, or pioneer, round of translation. If the stop codon is 

downstream or within about 50 nucleotides of the final EJC, the transcript is translated normally. 

According to the EJC model of NMD, a stop codon that occurs upstream of an EJC is recognized 

as a PTC, triggering transcript degradation79,80. When the ribosome stalls at a PTC, the protein 

UPF1, along with the eukaryotic release factors eRF1 and eRF3, form the surveillance complex 

(SURF) and bind adjacent to the PTC. SURF then interacts with two components of the nearby 

EJC, UPF2 and UPF3B81–83. This triggers UPF1 phosphorylation, which causes the complex to 

move along the mRNA, resolving secondary structure and removing adherent proteins that may 

inhibit degradation84,85. Phosphorylated UPF1 also binds to SMG6, an endonuclease that directly 

cleaves the mRNA86,87, as well as SMG5 and SMG7, which trigger deadenylation88, decapping, 

and further degradation89. Additionally, UPF1 may be recruited to transcripts independent of a 

PTC or adjacent EJC, particularly within long 3’ UTRs90. A working theory is that UPF1 

preferentially binds long 3’ UTRs and is phosphorylated via an unknown mechanism, triggering 

transcript decay. However, more work is required to identify the pathway resulting in 

destabilization of transcripts bearing long 3’UTRs.  
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2.3.2.1 Alternative Exon Inclusion and Exclusion  

Though NMD is an important quality control mechanism, it also helps regulate the 

expression of functional mRNA91, predominantly through alternative mRNA splicing. This 

phenomenon is remarkably widespread: NMD-related regulation of transcript abundance is 

involved in cell proliferation92,93, immunity94, stress95, viral response96, and neuronal activity97,98. 

The differential inclusion or exclusion of exons (alternative splicing) enables a single gene to 

encode multiple transcript and protein isoforms, and in many cases alternatively spliced transcripts 

are subject to NMD. Because changes in the splicing environment determine which isoforms are 

produced99,100, alternative splicing can regulate gene expression by creating transcripts that are 

more or less stable. An estimated 33% of alternative transcripts contain PTCs101, and between 12% 

and 45% of alternatively spliced transcripts are estimated to be NMD targets101. Regulated 

unproductive splicing (RUST) of this type regulates RNA abundance in relation to neuronal 

activity levels102, developmental stage, and cell type103. Moreover, there is growing evidence that 

RUST is utilized by several RNA-binding proteins to regulate their own expression 

(autoregulation), particularly components of the splicing machinery104–108. 

 

2.3.2.2 Upstream Open Reading Frames  

Upstream open reading frames (uORFs) are mRNA elements that include a start codon in 

the 5’ UTR that is out-of-frame with the main coding sequence. Because ribosomes bind to the 5’ 

cap of the mRNA and scan for start codons, uORFs can disrupt or interfere with translation of the 

downstream coding sequence109,110. Moreover, any stop codon at the 3’ end of the uORF resembles 

a PTC within the context of the whole transcript. As predicted by the EJC model of NMD, the 
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presence of uORFs correlate with lower expression levels of the downstream ORF111,112, and 

uORF-bearing transcripts are particularly susceptible to degradation by NMD113–115.  

 

2.3.3 Nonstop Decay 

Nonstop decay (NSD) is a surveillance mechanism involved in the detection and 

degradation of mRNA transcripts that lack stop codons77,116 due to premature polyadenylation or 

point mutations that disrupt existing terminal codons. Without a recognizable stop codon, the 

ribosome translates into the poly(A) tail and then stalls, unable to release the mRNA transcript117.  

NSD is activated when Ski7, a component of the exosome complex, binds the empty 

aminoacyl (A) site of the stalled ribosome via its C-terminal domain76,77. This is supported by the 

fact that C-terminal deletions of Ski7 result in impaired NSD but do not affect general exosome 

function116. Additionally, the Ski7 C-terminal domain strongly resembles other proteins that bind 

the ribosome during normal translation, elongation, and termination such as EF1a and eRF3118. 

After binding, Ski7 releases the stalled ribosome and recruits the exosome to rapidly deadenylate 

the transcript77,116,119,120.  

 

2.3.4 No-go Decay 

No-go decay (NGD) is a mechanism that recognizes mRNA transcripts stalled during 

translation121–123 due to damaged RNA, stress124, or strong secondary structure that blocks the 

progress of translation machinery121. NGD is the most recently discovered RNA surveillance 

pathway, and as such little is known about its mechanism. However, evidence suggests that NGD 

may degrade mRNA in a manner that resembles translation termination. Two proteins that promote 
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NGD, Hbs1 and Dom34, strongly resemble eRF1 and eRF3, two factors that catalyze the end of 

translation121,125.  

Analogous to Ski7 in NSD, Hbs1 possesses the same C-terminal domain that allows EF1a, 

eRF3, and Ski7 to bind the empty A site on the stalled ribosome126,127. Dom34 is homologous to 

eRF1 and binds directly to Hbs1126,128. Upon binding, the Dom34/Hbs1 complex triggers the 

release of the nascent peptide and the ribosome is released or degraded. Likewise, the mRNA 

transcript is targeted for endonucleolytic cleavage and the fragments are subsequently degraded 

via the exosome or exonucleases121,125. It is not currently known how the Dom34/Hbs1 complex 

releases the mRNA from the ribosome, but the close relation between Hbs1 and Ski7 suggests that 

ribosome release may occur in the same manner as NSD. Moreover, NGD can occur independently 

of the Dom34/Hbs1 complex; further work is needed to identify the other factors involved.  

Additionally, it remains unclear why some transcripts are targeted by NGD and not others. 

Pausing during translation is a normal occurrence129 and may even serve biological functions130–

132, but only a fraction of transcripts are NGD substrates. Potentially important factors include the 

degree of ribosome stalling and whether or not the A site is empty to allow Dom34/Hbs1 complex 

binding. Further studies are needed to clarify this mechanism.  

 

2.3.5 Adenylate-Uridylate-Rich Elements 

 While some mRNA decay pathways target faulty transcripts, others allow the cell to rapidly 

modulate gene expression in response to intracellular and extracellular stimuli. Several of these 

pathways regulate transcript levels via binding sites within the 3’ UTR, including adenylate-

uridylate-rich elements (AREs), Staufen-mediated decay, microRNAs, and constitutive decay 

elements.  
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AREs are 50-150 nucleotide regions with frequent adenine and uridine bases that generally 

target the mRNA for rapid degradation133,134. The mechanism underlying this pathway is not well 

understood, but several RNA-binding proteins interact with these sites and modulate transcript 

stability. For example, overexpression of hnRNP D, also known as ARE RNA binding protein 1 

(AUF1), destabilizes mRNA containing AREs135,136. Conversely, AUF1 depletion increases both 

ARE-containing mRNA stability and abundance of the corresponding proteins137,138. Similarly, 

ablation of tristetraprolin (TTP), an RNA-binding protein that also recognizes AREs, increases 

mRNA and protein levels in a variety of cell types139–141 and transcripts142–147. 

Though the exact mechanism is unclear, the association of ARE-binding proteins to AREs 

is followed by deadenylation148–151, decapping, and 3’ to 5’ degradation via the exosome152. 

Certain subunits of the exosome bind to AREs directly, and several ARE-binding proteins 

including TTP associate with the exosome in vitro75,153, ensuring rapid and preferential elimination 

of ARE-continuing transcripts. Many ARE-binding proteins are also associated with SGs and P-

bodies (discussed later in this chapter), suggesting that 5’ to 3’ exonuclease-mediated degradation 

may contribute to the turnover of ARE-containing transcripts as well154,155. However, not all ARE-

binding proteins trigger mRNA decay. For example, the Hu family of proteins stabilize bound 

ARE-containing transcripts156–159, suggesting that the effect of AREs on RNA stability depends on 

a combination of factors, including the ARE-binding protein, transcript, and environment.  

 

2.3.6 Staufen-mediated Decay 

 Staufen-mediated decay (SMD) also regulates transcript levels via the 3’ UTR. SMD is 

triggered when Staufen-1 (Stau1) recognizes double stranded RNA structures that form 

sufficiently downstream of the termination codon160,161. Staufen binding sites (SBS) are created by 
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intramolecular hairpin loop formation within the 3’ UTR161, or intermolecular base-pairing of the 

3’ UTR with partially complementary long noncoding RNA162. Upon binding to the SBS, Stau1 

recruits UPF1, which in turn stimulates mRNA decay160, likely in much the same way as in NMD. 

Moreover, given that UPF1 is critical for both SMD and NMD, there may be competition between 

the two pathways based on the availability of UPF1163.  

 

2.3.7 microRNAs 

microRNAs (miRNAs) are small, non-coding RNAs that base-pair with complementary 

sequences within RNA transcripts to trigger their decay and/or translational repression. These 20-

25 nt RNAs are produced from an RNA precursor (pri-miRNA) that forms a hairpin loop shortly 

after transcription164,165. This structure is recognized by the nuclear protein DGCR8, which recruits 

the enzyme Drosha to cleave the hairpin from the rest of the transcript166,167. The resulting molecule 

(pre-miRNA) is then exported to the cytoplasm168 where the enzyme DICER cuts away the looped 

end169, leaving a duplex of two short, complementary RNA strands behind. Though either strand 

can function as a mature miRNA, one is usually degraded170,171. The remaining miRNA associates 

with the RNA-induced silencing complex (RISC), which assists in orienting the miRNA with its 

mRNA target, repressing translation of the target transcript and triggering its degradation.  

The bound miRNA guides RISC to its binding site (miRNA recognition element or MRE) 

on the target transcript, most often within the 3’ UTR, though binding can occur within coding 

regions as well172,173. The degree of miRNA-mRNA complementarity is a major predictor of 

transcript fate174. High degrees of sequence complementarity allow the Argonaute family of 

proteins—components of RISC175—to catalyze RNA decay through an unknown mechanism that 

may involve deadenylation, decapping, or exonucleolytic degradation176,177. In contrast, miRNAs 
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that bind weakly or with less complementarity induce translational repression174 through a 

mechanism that remains unclear. 

 

2.3.8 Constitutive Decay Elements  

In addition to AREs, SBSs, and MREs, structured RNA degradation motifs may directly 

lead to transcript turnover. Constitutive decay elements (CDEs) are stem loop structures located 

within the 3’ UTR that trigger mRNA decay178,179 through recruitment of the RNA-binding protein 

Roquin1179,180. Roquin1 binds to the CDE stem loop structure via two binding sites in its ROQ 

domain180, triggering degradation by recruiting the Ccr4-Caf1-Not deadenylation complex179. A 

transcriptome-wide search of 3’ UTRs in mice revealed several unique CDEs that are frequent and 

highly conserved across vertebrate species. Many, but not all, of these CDEs are Roquin1-

associated179, indicative of potential novel and unexplored pathways responsible for RNA decay. 

 

2.3.9 Histone mRNAs 

 Much like CDE-containing transcripts, histone mRNAs encode highly conserved stem loop 

structures within their 3’ UTRs. These hairpins are essential for the rapid synthesis and degradation 

of histone mRNA during the S phase of the cell cycle, during which the cell undergoes DNA 

replication and chromosome remodeling181. At the end of S phase, histone hairpin loops are 

recognized by stem loop binding protein (SLBP), which recruits the proteins necessary to add a 

short, oligonucleotide tail to histone mRNAs182. The oligonucleotide tail forms a binding site for 

LSM1-7, which triggers degradation via the exosome and endonucleases182. Interestingly, histone 

mRNA decay also requires UPF1 and its interaction with SLBP183, though the exact role of UPF1 

in histone mRNA metabolism remains unclear.  
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2.3.10 Processing Bodies 

 Processing bodies (P-bodies) are dynamic cytoplasmic foci comprised of mRNA and RNA-

binding proteins. While SGs primarily sequester and protect mRNA until it can resume translation, 

P-bodies target associated transcripts for translational repression, decapping, and decay. Although 

P-body assembly is not required for RNA decay184, it may directly compete with translation 

initiation; only transcripts that are not engaged in translation can be recruited to P-bodies185–187, 

and upon translational inhibition P-bodies increase in number185,188. Conversely, a decrease in P-

body components leads to an increase in mRNAs associated with actively-translating 

polysomes189. P-bodies lack translation initiation machinery185,187, and are instead primarily 

composed of proteins associated with translational repression and mRNA decay, including 

decapping enzymes, exonucleases and NMD components190. This suggests that functional 

transcripts undergo active translation before they are recruited to P-bodies. Once transferred, the 

mRNA is no longer translated189,191 and is instead degraded by decapping enzymes192,193 or other 

nucleases. However, mRNAs may also escape P-bodies and resume translation187,194, and regulated 

expression of proteins such as NoBody and MLN51 can drive P-body disassembly195,196. Together, 

these observations indicate that P-bodies are part of a highly dynamic process characterized by 

constant flux between pools of mRNA transcripts that are being actively translated, those that are 

stalled or sequestered in SGs, and those that are being degraded within P-bodies.  

 

2.4 RNA Turnover in Neurodegenerative Disease 

 The regulation of RNA is critical to cell health, and increasing evidence indicates that 

disruption of RNA stability may underlie neurodegenerative disease. Alterations in RNA turnover 
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have been identified in several pathways, including RNA sequestration in stress granules or foci, 

RNA transport, the exosome, alternative splicing, and retrotransposons (Figure 2.2).  

  

2.4.1 RNA Sequestration 

 During times of stress, the cell diverts its energy and resources towards survival and 

recovery. A powerful mechanism to conserve resources is the sequestration of mRNAs in SGs to 

limit the translation of nonessential proteins. Typically, when the stressor passes, SGs dissolve and 

stalled mRNAs are released for translation. However, during prolonged periods of stress or 

disease, SGs sometimes fail to disassemble. This extended sequestration of mRNAs could 

effectively disrupt the delicate balance between SGs, polysomes, and P-bodies, effectively 

interrupting mRNA homeostasis, interfering with protein synthesis and potentially contributing to 

downstream toxicity in neurodegenerative diseases.  

 

2.4.1.1 Disruption of Stress Granule Dynamics  

Of the ~125 proteins identified as components of human SGs, 60% are RNA-binding 

proteins197. This group of proteins is also highly enriched for the low complexity domains that 

facilitate the reversible aggregation of proteins into membraneless organelles such as SGs. The 

mutation or mislocalization of several RNA-binding proteins stabilize SGs, sometimes driving 

them to form irreversible aggregates that sequester mRNA and RNA-binding proteins indefinitely 

and disrupt SG homeostasis. Conversely, though the machinery that drives SG disassembly 

remains unclear, any errors within this pathway may likewise lead to RNA dyshomeostasis and 

subsequent disease. 
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2.4.1.2 RNA-binding Proteins in Stress Granule Dynamics  

TDP43 and FUS are two stress granule components that are integrally involved in 

neurodegenerative disease, particularly amyotrophic lateral sclerosis (ALS) and frontotemporal 

dementia (FTD). Both TDP43 and FUS are primarily nuclear proteins, but their cytoplasmic 

mislocalization198–200 and nuclear exclusion201–203 are characteristic features of ALS and FTD. 

These proteins are capable of nucleocytoplasmic shuttling: in response to various stressors they 

associate with cytoplasmic SGs, but when the stress has passed they return to the nucleus204. ALS-

linked mutations in the genes encoding TDP43 and FUS promote increased association with 

SGs202,205, abnormal SG formation206, and reduced SG dissociation207,208. TDP43 and FUS play 

important roles in alternative splicing and the stress response, and their sequestration impacts the 

processing of several transcripts that are critical for neuronal viability209,210. Likewise, excess 

cytoplasmic TDP43 and FUS may sequester related RNA-binding proteins within SGs, further 

disrupting RNA homeostasis64. Importantly, TDP43- and FUS-related toxicity relies upon the 

ability of these proteins to bind RNA. Deletion of the RNA recognition-motifs in either protein 

greatly reduces toxicity without affecting localization211,212, suggesting that RNA binding, not 

localization, imparts toxicity. Furthermore, these observations indicate that the sequestration of 

mRNAs themselves, not just RNA-binding proteins, is particularly damaging to neurons.  

ALS-linked mutations are also found in other RNA-binding proteins such as Matrin3213, 

hnRNPA1, hnRNPA2/B1214, and TIA1215, all of which associate with SGs. These mutations are 

often centralized within the proteins’ low complexity domains, and evidence indicates that they 

likewise alter SG dynamics, suggesting a link between SG association/dissociation and 

pathogenicity.  
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2.4.1.3 Stress Granule Disassembly 

 Though relatively little is known about SG disassembly, evidence suggests that valosin-

containing protein (VCP) is crucial for this phenomenon. VCP regulates several cellular processes 

including autophagy216, chromatin remodeling217, and membrane trafficking216, as well as SG 

clearance218. VCP accumulates in SGs, and its knockdown results in the persistence of SGs even 

after the stressor has passed218. Moreover, mutations in the gene encoding VCP cause a 

multisystem proteinopathy that includes ALS and FTD219, and the overexpression of mutant VCP 

results in impaired SG disassembly218. Thus, pathogenic mutations in the genes encoding VCP, 

TDP43, and FUS all stabilize SGs, thereby effectively sequestering essential mRNA and RNA-

binding proteins within these organelles. A such, altered SG dynamics and abnormal RNA stability 

may represent a conserved pathway underlying ALS, FTD and related neurodegenerative diseases.  

 

2.4.2 Nucleotide Repeats and RNA Foci 

Microsatellites are repeated tracts of nucleic acids that compose approximately 50% of the 

human genome220. These regions are a source of genomic instability, and expansion mutations that 

increase the number of repeats above a certain threshold can lead to neurodegenerative diseases 

such as Huntington’s disease (HD), myotonic dystrophy (DM), spinocerebellar ataxias, Freidrich’s 

ataxia, fragile X syndrome, fragile X-associated tremor ataxia syndrome (FXTAS), ALS and 

FTD221,222. In most cases, the length of the expanded region is inversely correlated with prognosis 

— higher repeat number results in earlier onset and more severe symptoms. Repeat expansions 

have unique pathological implications— they form unique secondary structures that may disrupt 

translation, sequester RNAs and other proteins into nuclear foci, and serve as a substrate for non-

canonical translation. 
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2.4.2.1 Repeat Expansion Secondary Structure  

 The majority of expansion mutations associated with disease are trinucleotide CNG 

repeats, where N is any nucleotide. Due to the high degree of complementarity, CCG, CAG, CUG, 

and CGG repeats readily form mismatched hairpin loops223 whose stability increase proportionally 

with the number of repeats224. Tetra-, penta-, and hexa-nucleotide repeats also form hairpins225, 

though they appear to be less stable. 

 Repeat expansions with a high percentage of guanine nucleotides can also form G-

quadruplexes. In these structures, four guanine bases associate through Hoogsteen hydrogen 

bonding to form a square guanine tetrad, and two or more tetrads stack to form a G-quadruplex226. 

Whether or not G-quadruplexes exhibit a physiological function remains unknown, but some 

evidence indicates that they participate in transcriptional regulation and/or telomere 

maintenance227. They are also observed in association with cancer, copy number variants, and age-

related disease, specifically ALS and FTD. The most common mutation responsible for inherited 

ALS and FTD consists of a GGGGCC (G4C2) repeat expansion in the first intron of C9orf72228,229. 

Unaffected individuals have 2-8 (G4C2) repeats230, but tracts of > 32 (G4C2) repeats lead to ALS, 

FTD, or both with nearly 100% penetrance by age 80231. These repeats form stable G-

quadruplexes232, which are further stabilized in longer repeat expansions233.  

(G4C2) repeat expansions also form structures known as R-loops at the site of transcription, 

composed of nascently-synthesized RNA hybridized to the complementary DNA strand234,235. The 

unbound DNA strand may also form hairpins or G-quadruplexes, further stabilizing the loop236. In 

addition to C9orf72-related ALS/FTD, R-loops are also observed in fragile X syndrome and 

Freidrich’s ataxia237 characterized by CGG and GAA trinucleotide repeats, respectively. The 
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abundance of R-loops in these disorders depends on the size of the repeat expansion, with higher 

repeat number correlating with more frequent R-loops. These structures may contribute to the 

pathology of expansion diseases in several ways: by blocking translation238, disrupting chromatin 

remodeling239, or promoting genomic instability at the repeat expansion site235. In support of the 

pathogenic effects of R-loops, mutations in the gene encoding senataxin (SETX), a helicase that 

helps resolve R-loops240, cause juvenile ALS (ALS4), while SETX overexpression prevents 

neurodegeneration in ALS models241.  

 

2.4.2.2 RNA Foci  

 In addition to their effects on RNA stability and translation, the propensity of repeat 

expansions to form stable secondary structures contributes to the formation of RNA foci242,243. 

These nuclear inclusions may drive pathogenesis through the sequestration and nuclear retention 

of specific RNA-binding proteins. For example, CUG repeat expansions in DMPK cause myotonic 

dystrophy type 1 (DM1), a neuromuscular disease characterized by progressive muscle loss and 

weakness. This repeat expansion sequesters and disrupts the splicing activity of muscleblind 

(MBNL)244,245, a protein responsible for the processing of several key downstream transcripts246. 

MBNL binds to hairpins that result from repeat expansion mutations in DMPK with high 

affinity245,247, and preventing MBNL sequestration via small molecules that recognize CUG 

hairpin loops restores its splicing activity and helps maintain RNA homeostasis in DM1 models248. 

Additionally, the RNA foci observed in DM1249 and myotonic dystrophy type 2 (DM2)250 

sequester several other RNA-binding proteins, suggesting that global disruption of alternative 

splicing may contribute to DM pathogenesis251. RNA foci are also observed in C9orf72-linked 

ALS/FTD252, where the G4C2 repeat transcripts sequester several splicing factors including 
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hnRNPA1, hnRNPH, and SC35, as well as the RNA-binding protein hnRNPA3 and the mRNA 

export receptor ALYREF253. The sequestration of proteins essential to multiple cellular processes 

by repeat expansion transcripts suggests that these diseases occur, at least in part, through an RNA 

gain of function mechanism.  

 

2.4.2.3 Repeat Associated Non-AUG (RAN) Translation  

 Nucleotide repeats can be translated into polypeptides even if they are not located within a 

traditional open reading frame, via a non-canonical pathway termed repeat associated non-AUG 

(RAN) translation. RAN translation maybe triggered by hairpin loops formed by repeat-containing 

stretches of DNA, which effectively stall ribosome scanning and facilitate translational initiation 

at near-AUG codons254–256. This process occurs in multiple reading frames in both the sense and 

antisense directions, producing several dipeptide repeat-containing proteins (DPRs)254. RAN 

translation products are detected in spinocerebellar ataxia type 8, HD257, DM1254, FXTAS256, and 

C9orf72-associated ALS/FTD258, suggesting that RAN translation is a common phenomenon in 

repeat expansion diseases. In some cases, there appears to be an inverse relationship between RAN 

translation and RNA foci formed by repeat expansions. This observation suggests that the repeat-

expanded RNA may be sequestered in nuclear foci, precluding nuclear export and subsequent 

translation259. This may serve as a coping response to prevent the translation of DPRs; failure of 

this coping response over time may result in increased RAN translation and subsequent 

neurodegeneration260,261. In support of this hypothesis, RNA foci in C9orf72 mutant mice are 

abundant yet rarely associated with neurodegeneration261. RAN peptides may also affect RNA 

stability by disrupting membraneless organelles such as the nucleoli262 and Cajal body263, which 

are responsible for ribosomal RNA264 and spliceosome maturation265, respectively. Lastly, an 
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increase in SGs and a decrease in P-bodies is observed in neurons expressing RAN peptides266; in 

this case, RAN peptides may act similarly to small proteins such as NoBody195 that dissolve P-

bodies, releasing unstable RNAs to be sequestered by SGs. Additional studies are required to 

determine the effect of RAN peptides on RNA stability, P-body dynamics, and global RNA 

homeostasis. 

 

2.4.3 RNA Transport  

The diverse functions of RNA are determined, in part, by its subcellular localization. As a 

result, RNA transport mechanisms are crucial for RNA function, particularly in highly 

compartmentalized and morphologically complex cells such as neurons. Among the most 

important of these mechanisms is nucleocytoplasmic transport, in which RNA transcripts are 

shuttled from the nucleus to the cytoplasm. Several neurodegenerative diseases exhibit deficits in 

nucleocytoplasmic RNA transport, leading to RNA sequestration in the nucleus and widespread 

dysregulation of gene expression. Thus, interruption of nuclear export machinery can have severe 

consequences on neuronal health.  

 

2.4.3.1 Impaired Nuclear Export  

Nuclear mRNA export is triggered by deposition of the highly conserved translation export 

(TREX) complex at the 5’ end of the nascent transcript267. The core of this complex, THO, recruits 

ALYREF and several other nuclear export factors268–271. ALYREF then binds to nuclear export 

factor 1 (NXF1)272, triggering a shift from a conformation with low RNA binding affinity to one 

that readily binds the transcript273,274. NXF1 directs the transcript to the nuclear pore complex 

(NPC), a large multimeric structure that spans the nuclear envelope and enables the transport of 
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molecules into and out of the nucleus. NXF1 facilitates NPC docking and transcript translocation 

via interactions with NPC components containing low complexity domains enriched in 

phenylalanine and glycine residues275.  

 Disruption of this pathway leads to nuclear retention of RNA, and which is then rapidly 

degraded by the nuclear exosome276,277. Interrupting nuclear RNA export can have severe 

consequences for neuronal survival, and mutations in nuclear export components are linked to 

several neurological and neurodevelopmental disorders. Chromosomal translocation and 

inactivation of THOC2, a subunit of the core TREX complex, leads to cognitive impairment, 

cerebellar hypoplasia, and congenital ataxia in humans278. Additionally, missense mutations in 

THOC2 have been implicated in fragile X syndrome279, and mutations in a second THO subunit, 

THOC6, lead to intellectual disabilities280. Moreover, loss of function mutations in Gle1 results in 

ALS281 and fetal motor neuron disease282. Gle1 is a nuclear export mediator located on the 

cytoplasmic face of the nuclear pore that facilitates both the release of the transcript from the 

nuclear pore and its dissociation from export adaptor proteins283, freeing it to undergo translation. 

This process may be specific to mRNAs with poly(A) tails, as depletion of Gle1 results in a nuclear 

accumulation and subsequent degradation of polyadenylated mRNAs284,285. 

Abnormal nucleocytoplasmic transport is also a characteristic finding in models of ALS286–

288, DM1289 and HD290,291. Toxicity in these models can be suppressed by pharmacologic or genetic 

modulation of nuclear transport components, testifying to the broad significance of this pathway 

in disease pathogenesis. Moreover, age is a likely contributor to impaired nuclear import, as aged 

cells display abnormal NPCs and reduced expression of nucleocytoplasmic transport genes292,293; 

the resulting reduced fidelity in nuclear import/export is consistent with the observed age-

dependent risk of nearly every neurodegenerative disease.  
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2.4.3.2 Disruption of the Nuclear Pore  

In addition to disruption of the recruitment of the transcript to the pore, interruption of the 

pore itself can alter nucleocytoplasmic transport. RAN translation of repeat expansion mutations 

produces several DPRs. Some of these DPRs, including arginine-rich dipeptides generated from 

RAN translation of the C9orf72 G4C2 repeat in familial ALS/FTD, clog the nuclear pore and inhibit 

the transport of RNA and other macromolecules into and out of the nucleus294. Again, this 

contributes to the nuclear retention of RNAs that are susceptible to exosome-mediated decay276,277. 

Arginine-containing DPRs are among the most toxic of the dipeptides in ALS/FTD models262,295, 

suggesting that impaired nucleocytoplasmic transport contributes significantly to 

neurodegeneration in these disorders.  

 

2.4.4 The RNA Exosome Complex  

The exosome complex is an RNA degradation mechanism that contributes broadly to RNA 

turnover, surveillance, and processing. This complex works closely with other pathways to 

orchestrate the degradation of immature, abnormal, or misplaced RNA.  

 

2.4.4.1 Exosome-Associated Mutations in Neurodegenerative Disease 

 Due to the importance of the exosome in regulating RNA decay, mutations in this complex 

can have severe implications. Mutations in EXOSC3, the gene encoding the core exosome 

component RRP40, are linked to autosomal recessive pontocerebellar hypoplasia type 1 

(PCH1)296. This progressive neurodegenerative disease is characterized by atrophy of the pons and 

cerebellum and loss of spinal motor neurons, accompanied by developmental delay, muscle 
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atrophy, and difficulty breathing297. 37% of PCH1 patients exhibit EXOSC3 mutations, most of 

which are heterozygous missense mutations297. Disease severity correlates with genotype, as 

patients with homozygous missense mutation fare better and those with a combined missense and 

null mutation fare worse298.  

 Similarly, mutations in a gene encoding a separate exosome component, EXOSC8, result 

in cerebellar hypoplasia (CH)299. This autosomal recessive disorder is also characterized by 

progressive degeneration of the cerebellum, pons, and spinal motor neurons, as well as abnormal 

myelination. Though the mechanism is unclear, an increase in exosome substrates, including ARE-

containing mRNAs encoding myelin proteins, in CH models suggests that impaired exosome 

function may contribute to dysmyelination of the involved tracts and subsequent 

neurodegeneration299.  

 

2.4.5 Alternative Splicing  

Between 92 and 94% of all genes in the human genome are alternatively spliced300, and the 

brain expresses more alternatively spliced genes than any other organ301,302. This suggests that 

alternative splicing is a key regulator of transcript stability and gene expression, and its 

misregulation can have severe effects on neuronal health303.  

 

2.4.5.1 Nonsense-Mediated Decay and Unannotated or “Cryptic” Exon Splicing  

A primary consequence of alternative splicing is RNA destabilization101. As discussed 

above, in many cases alternative splicing may serve to regulate normal transcript levels. This is 

supported by the fact that over one third of RNA transcripts are spliced to include PTCs, and these 

transcripts are likely targeted for degradation via NMD101. Mutations that affect splicing and result 
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in either the inclusion of PTC-encoding exons or a shift the reading frame that uncovers ‘silent’ 

PTCs may destabilize transcripts and lead to disease via gene haploinsufficiency. For example, 

disease-associated missense GRN mutations cause ALS and FTD by altering mRNA splicing, 

triggering NMD of GRN transcripts, and consequent reductions in progranulin protein 

expression304–307. In other cases, mutations that create novel splice sites or the dysregulation of 

splicing factors leads to the inclusion of unannotated or “cryptic” exons and the production of a 

faulty transcripts that are eventually targeted for decay. Several regulatory proteins suppress these 

unannotated exon splicing events, including TDP43. Depletion of TDP43 results in a widespread 

increase in cryptic exon splicing events, and the inclusion of these exons may lead to NMD308,309. 

Many of these events are specific to neurons310, which suggests that the disruption of TDP43-

mediated cryptic exon regulation may contribute to ALS and FTD.  

NMD can be manipulated through the modulation of specific pathway components: 

overexpression of UPF1 and UPF3B stimulate NMD, while UPF1 knockdown or the 

overexpression of UPF3A, an antagonistic paralog of UPF3B that sequesters UPF2, suppress 

NMD311. Consistent with a potential link between NMD and ALS/FTD pathogenesis, 

overexpression of UPF1 or UPF2 prevents FUS- and TDP43-mediated neurodegeneration in 

model systems312. One possibility is that UPF1 overexpression in these models prevents cell death 

by boosting endogenous NMD, thereby enabling the pathway to properly metabolize an 

overabundance of NMD substrates. However, further investigation is required to confirm and 

extend these findings. 

  

https://paperpile.com/c/zilLyQ/dfVJ+S7nu+6vuP+Z0pU
https://paperpile.com/c/zilLyQ/zVPE+2qLp
https://paperpile.com/c/zilLyQ/sp6K
https://paperpile.com/c/zilLyQ/v64O
https://paperpile.com/c/zilLyQ/hAUz


 

55 

 

2.4.6 Retrotransposons 

 Transposable elements (TEs) are mobile genetic elements that constitute a large portion of 

most eukaryotic genomes. Retrotransposons, which encode a reverse transcriptase and an integrase 

that allow them to “copy and paste” themselves from one region to another, represent 

approximately 40% of the human genome313. Though the vast majority of retrotransposons are 

inactive314, some retain the ability to mobilize. Retrotransposition occurs approximately once 

every 10-100 births315, and the insertion of these elements near or within active genes is a 

significant source of genomic instability and cellular toxicity316,317. Though transcription of these 

regions is downregulated318,319, the transcripts that are transcribed are degraded via NMD320 and 

other non-canonical pathways321. Several mechanisms have also evolved to suppress 

retrotransposon expression and prevent the resultant large scale deletions and genomic 

rearrangements322, and the efficiency of these mechanisms declines with age316,323,324. Moreover, 

the elevated expression of retrotransposons correlates with several neurodegenerative disorders325–

327, suggesting that a reduction in retrotransposon repression may contribute to disease 

pathogenesis. 

 

2.4.6.1 Retrotransposons in ALS  

 As previously discussed, TDP43 aggregation and mislocalization play a fundamental role 

in ALS and FTD, and TDP43 serves as a key regulator of alternative splicing for hundreds of 

transcripts. TDP43 also recognizes several TE-derived RNA transcripts328, and this binding is 

reduced in FTD patients coincident with elevated TE expression. This suggests that TDP43 

normally regulates TE expression, and the loss of functional TDP43 in FTD results in TE 

overexpression328. This is further supported by the finding that TEs are derepressed in ALS/FTD 
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models involving TDP43 overexpression or knockdown328,329, suggesting that TE dysregulation 

may contribute to neurodegeneration in ALS and FTD. This may occur through activation of DNA 

damage-mediated programmed cell death due to the large scale deletions and genomic 

rearrangements that result from de-repressed TEs329, and there is some evidence to suggest that 

TDP43 pathology impairs siRNA-mediated gene silencing, an essential system that normally 

protects the genome from retrotransposons329 

Human endogenous retroviruses (HERVs) represent a subclass of retrotransposons 

originating from ancient viral infections that resulted in the integration of viral DNA into the host 

genome. The most recent of the retroviruses to integrate into the human genome is HERV-K330. 

The HERV-K envelope protein is expressed in both cortical and spinal neurons of ALS patients, 

suggesting activation of the retrovirus in disease. Furthermore, ectopic expression of the HERV-

K envelope protein triggers neurodegeneration and motor dysfunction in mice331. Like other 

retrotransposons, HERV-K is regulated by TDP43, suggesting that HERV-K derepression in 

TDP43-deficient cells might contribute to neurodegeneration in ALS331.  

 

2.4.6.2 Retrotransposons in Aging  

 Age is a major risk factor for most neurodegenerative diseases, likely due to a reduced 

ability regulate protein degradation332, oxidative stress333, and DNA damage334. While 

retrotransposons are a significant source of genomic instability, additional evidence suggests that 

they are more destructive in aging brains. The expression and mobility of several TEs increase 

with advanced age316,324; these changes, in turn, are linked to progressive, age-dependent memory 

impairment and shortened lifespan324. Thus, the derepression of retrotransposons during normal 

aging could contribute to the age-related increase in risk for neurodegenerative diseases.  
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2.5 Conclusions and Future Directions 

 Neurodegenerative diseases vary widely in clinical presentation, neuropathology, and 

genetic background. However, it is becoming increasingly clear that alterations in RNA turnover 

are a key contributor to disease pathogenesis. The magnitude and extent of RNA dyshomeostasis 

observed in neurodegenerative disease models strongly suggests a fundamental disruption of one 

or more of the many mechanisms that tightly regulate RNA stability. While compensatory 

pathways may allow cells to cope with subtle changes in SG dynamics, alternative RNA splicing 

or RNA degradation, over time such pathways become less efficient and the ability of the cell to 

maintain RNA homeostasis slowly erodes. Mitotic cells evade toxicity by dilution and division, 

but for long-lived cells such as neurons, the resulting abnormalities eventually lead to cell death. 

Because altered RNA stability results from the disruption of several related but distinct pathways, 

it is unlikely that focusing on single transcripts will result in a cure. Instead, a more complete 

understanding of RNA degradation in both healthy and diseased conditions may highlight common 

mechanisms and key upstream elements that could be rationally targeted for therapeutic 

development. 
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Figures 

 

 

 

 

Figure 2.1. Pathways responsible for RNA homeostasis. RNA stability is promoted by two key 

mechanisms (left). Following transcription, nascent RNA is stabilized by the addition of a 5’ cap 

and poly(A) tail, as well as the formation of secondary structures. Transcripts are also sequestered 

and stabilized in stress granules upon exposure to cellular stress. In contrast, RNA degradation 

pathways target faulty transcripts for removal (right). Transcripts that contain premature stop 

codons are targeted by nonsense-mediated decay. When translation fails to stop or start, the 

associated transcripts are degraded by nonstop decay and no-go decay, respectively. RNA decay 

mechanisms also regulate transcript abundance through several elements located within the 3’ 

UTR, including AU-rich elements, Staufen binding sites, miRNA recognition elements, and 

constitutive decay elements. Lastly, P-bodies sequester and destabilize RNA transcripts. 
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Figure 2.2. Abnormal RNA stability in neurodegenerative disease. Here we compare how 

normal pathways (left column) are disrupted in disease (right column). RNA Sequestration: There 

is constant flux between pools of RNA transcripts that are actively being translated (the polysome), 

those sequestered in stress granules, and those associated with P-bodies. In disease states, 

increased stress granule formation or reduced stress granule dissociation disrupts the equilibrium, 

resulting in fewer transcripts undergoing translation. Repeat Expansions and RNA Foci: 
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Transcripts containing repeat expansions form secondary structures such as hairpin loops and G-

quadruplexes that are often stabilized in nuclear foci, which also sequester RNA-binding proteins 

(green circles). These transcripts also generate proteins via RAN translation that can disrupt 

membraneless organelles involved in RNA splicing and processing. RNA Transport and the 

Exosome: Mutations in THO, Gle1, and other components of the RNA export pathway result in 

nuclear RNA retention and degradation via the exosome complex. Mutations in exosome 

components can inhibit RNA turnover and further disrupt RNA homeostasis. Alternative Splicing: 

Mutations that disrupt splice sites, or dysfunction of splicing regulators such as TDP43, result in 

the inclusion of unannotated or “cryptic” exons (pink). These transcripts are often targeted for 

nonsense-mediated decay. Retrotransposons: These transposable elements insert themselves into 

the genome, often disrupting open reading frames or splice sites. The transcripts that are 

transcribed from these regions are often faulty, and are targeted for RNA decay.  
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Chapter 3. Neuronal Hyperexcitability Drives TDP43 Pathology via the Upregulation of 

Atypical, Shortened TDP43 Splice Isoforms* 

3.1 Introduction 

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder in which the 

progressive loss of motor neurons results in paralysis and respiratory failure1. There is no disease-

modifying therapy for ALS, and its heterogeneous biochemical, genetic, and clinical features 

complicate the identification of therapeutic targets. However, the cytoplasmic mislocalization and 

accumulation of TDP43 (TAR DNA-binding protein of 43 kD), a nuclear RNA-binding protein 

integrally involved in RNA metabolism, is observed in >90% of individuals with ALS2. Moreover, 

while mutations in the gene encoding TDP43 (TARDBP) only account for 2-5% of ALS cases, 

mutations in several other ALS-associated genes including C9orf723, ANG4, TBK15, PFN16, 

UBQLN27, VCP8, and hnRNPA2/B19 result in TDP43 pathology. 

TDP43 is an essential protein involved in several RNA processing events, including 

splicing, translation, and degradation. In keeping with these fundamental functions, TDP43 levels 

and localization are tightly regulated and critical for cell health. TDP43 knockout animals exhibit 

neurodegeneration and behavioral deficits10–13, while TDP43 overexpression results in 

neurodegeneration in primary neuron14,15, mouse16,17, rat18,19, Drosophila20,21, zebrafish22,23, and 

                                                 
* This chapter represents the following manuscript: 

 

Weskamp, K. et al. Neuronal hyperexcitability drives TDP43 pathology by upregulating shortened TDP43 protein 

isoforms. bioRxiv 648477 (2019). https://doi.org/10.1101/648477 

 

https://paperpile.com/c/A7vAMj/nzUk0
https://paperpile.com/c/A7vAMj/O4QHH
https://paperpile.com/c/A7vAMj/XPajJ
https://paperpile.com/c/A7vAMj/MK97t
https://paperpile.com/c/A7vAMj/sJifC
https://paperpile.com/c/A7vAMj/chn8X
https://paperpile.com/c/A7vAMj/RRpb7
https://paperpile.com/c/A7vAMj/3IHGV
https://paperpile.com/c/A7vAMj/Jkycp
https://paperpile.com/c/A7vAMj/wsLq4+rPBrw+5yzQi+3xKEf
https://paperpile.com/c/A7vAMj/xxsWz+D7BWK
https://paperpile.com/c/A7vAMj/jl2tE+nePwc
https://paperpile.com/c/A7vAMj/QgW1U+QRT5P
https://paperpile.com/c/A7vAMj/FSdaT+szRWJ
https://paperpile.com/c/A7vAMj/ADVkC+PAXtt
https://doi.org/10.1101/648477


 

80 

 

primate models24,25. Furthermore, mislocalization of TDP43 to the cytoplasm is sufficient to drive 

cell death14. Taken together, this suggests that even small changes to TDP43 levels and localization 

are highly predictive of neurodegeneration. 

Hyperexcitability, or an increase in neuronal activity, is a second feature observed in both 

familial and sporadic ALS26. Cortical hyperexcitability precedes symptom onset in some cases26, 

and the degree of motor neuron excitability is a strong predictor of disease progression27,28. Such 

hyperexcitability arises from a loss of cortical inhibition26,29–33 in combination with intrinsic 

differences in channel expression, content, and activity within motor neurons themselves26,28,34,35. 

Emphasizing the contribution of hyperexcitability to disease, riluzole — one of two available 

therapies for ALS — is a sodium channel antagonist that partially rescues hyperexcitability36. 

Animal models of ALS recapitulate key features of hyperexcitability37–39, including an increase in 

motor neuron activity that precedes the onset of motor deficits37,39,40 and reduced activity following 

treatment with riluzole41. Hyperexcitability is also observed in iPSC-based ALS models42,43, 

though other reports suggest that it is a transient or developmental phenomenon43,44. 

Despite the prevalence of both TDP43 pathology and hyperexcitability in ALS, the 

relationship between these phenomena remains poorly defined. Here, we utilize an iPSC-derived 

neuron (iNeuron) model system to demonstrate that hyperexcitability drives TDP43 pathology 

characteristic of ALS via the upregulation of atypical, shortened TDP43 isoforms. Using multiple 

model systems and human post-mortem material, we show that these unusual isoforms are 

exported from the nucleus, form insoluble cytoplasmic inclusions, are neurotoxic, and are enriched 

in ALS patient tissue, thereby directly implicating alternative TDP43 isoforms in ALS 

pathogenesis. 
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3.2 Results 

3.2.1 TDP43 is regulated by neuronal activity 

To investigate disease mechanisms related to hyperexcitability in human neurons, we 

established an induced pluripotent stem cell (iPSC) derived neuron (iNeuron) model. Transcription 

activator-like endonucleases (TALENs) specific for the CLYBL safe harbor locus were used to 

introduce the transcription factors Neurogenin 1 and 2 (Ngn1-2) under a doxycycline (dox)-

inducible promoter (Figure 3.1A). Expression of Ngn1-2 is sufficient to drive the rapid 

differentiation of iPSCs into iNeurons that display immunocytochemical and electrophysiological 

properties of glutamatergic, excitatory forebrain-like neurons45–47 (Figure 3.1B). Consistent with 

this, within 2 weeks of dox addition iNeurons adopt a neuronal morphology and stain positive for 

the neuronal markers Vglut1 and Tuj1 (Figure 3.1C). We further validated the maturity of neurons 

differentiated in this manner using an iPSC line that stably expresses the fluorescent calcium 

indicator gCaMP6f in addition to dox-inducible Ngn1-248. Because time-dependent changes in 

gCaMP6f fluorescence correlate with action potentials, we monitored neuronal activity indirectly 

and non-invasively in iNeurons by fluorescence microscopy. Two to three weeks following dox 

addition, iNeurons displayed a low level of spontaneous activity that was significantly increased 

with bath application of the neurotransmitter glutamate or the potassium channel blocker 

tetraethylammonium (TEA; Figure 3.1D-F). Conversely, activity was inhibited by application of 

the sodium channel blocker tetrodotoxin (TTX). Though glutamate dramatically increased 

neuronal activity, it proved to be toxic even at low doses (data not shown). In comparison, 

iNeurons treated with TEA showed a smaller, sustained increase in activity without significant cell 

death (Figure 3.1G). Thus, TEA was utilized in future studies of activity-dependent TDP43 

regulation. 
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To explore a potential connection between hyperexcitability and TDP43 pathology, we 

pharmacologically stimulated or blocked activity in iNeuron cultures and then examined changes 

in TDP43 levels via immunocytochemistry (ICC) using an antibody directed against the N-

terminus. To quantitatively gauge differences in neuronal TDP43, we utilized MAP2 staining to 

generate cellular regions of interest (ROIs), and measured TDP43 immunoreactivity within 

individual neurons. TEA-treated iNeurons showed a significant increase in TDP43 

immunoreactivity while TTX-treated iNeurons exhibited a reduction, suggesting a bidirectional 

relationship between TDP43 abundance and neuronal activity (Figure 3.1H, I). An analogous 

relationship was observed in rodent primary mixed cortical neurons treated with glutamate or the 

GABA receptor antagonist bicuculline (Supplemental Figure 3.1A). However, when we repeated 

these studies using an antibody directed against the TDP43 C-terminus we failed to identify 

significant activity-dependent changes in protein abundance (Figure 3.1J,K). 

These studies also revealed prominent differences in subcellular TDP43 distribution 

identified by each antibody. Immunostaining with N-terminal antibodies revealed punctate, 

cytoplasmic TDP43 superimposed upon nuclear TDP43 in both iNeurons (Figure 3.1H) and rodent 

primary mixed cortical neurons treated with bicuculline (Supplemental Figure 3.1B). However, 

only nuclear TDP43 was detected using C-terminal TDP43 antibodies (Figure 3.1J). A survey of 

commercially available antibodies with known epitopes revealed similar trends in localization: 

antibodies that recognize the TDP43 N-terminus are more likely to display nuclear and 

cytoplasmic staining patterns49–51, while antibodies specific to the C-terminus primarily show 

nuclear TDP4352,53. 

Given the variability in antibody specificity and potential difficulties in reproducing results 

using different antibodies54,55, we validated our findings by fluorescently-labeling native TDP43 
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in iPSCs using CRISPR/Cas9 genome engineering. To minimize off-target effects, we used a dual-

nickase approach56 to fuse the green-fluorescent protein Dendra2 to either the N-terminus (D2-

TDP43) or the C-terminus (TDP43-D2) of endogenous TDP43 in human iPSCs (Figure 3.2A, 

Supplemental Figure 3.2). D2-TDP43 and TDP43-D2 iPSCs were differentiated into iNeurons as 

described before (Figure 3.2B, C), and neuronal activity was pharmacologically stimulated or 

blocked using TEA or TTX, respectively. After 48h, we visualized native Dendra2-labeled TDP43 

by fluorescence microscopy, noting a bidirectional relationship between D2-TDP43 abundance 

and neuronal activity (Figure 3.2D) that was nearly identical to what we observed using anti-

TDP43 antibodies that recognize the N-terminus (Figure 3.1H, I). In comparison, there were no 

significant activity-dependent changes in TDP43-D2 (Figure 3.2E), consistent with our inability 

to detect changes upon staining with antibodies raised against the TDP43 C-terminus (Figure 3.1J, 

K). These data provide convincing evidence for TDP43 species harboring the N- but not the C-

terminus that are regulated by neuronal activity. Additionally, the distinctive TDP43 distribution 

patterns revealed by N- and C-terminal reactive antibodies were reflected by the localization of 

Dendra2-tagged native TDP43: D2-TDP43 appeared both cytoplasmic and nuclear (Figure 3.2B), 

while the distribution of TDP43-D2 was limited to the nucleus (Figure 3.2C). 

Collectively, these results suggest that neuronal activity elicits an increase in cytoplasmic 

TDP43 that lacks a C-terminus. In contrast to what we observed with N-terminal TDP43, there 

was no reciprocal activity-dependent change in C-terminal TDP43 abundance or localization by 

immunocytochemistry, and we failed to observe any differences in C-terminally labeled TDP43-

D2 upon addition of TEA or TTX, arguing against a cleavage event. Previous studies demonstrated 

that neuronal activity regulates the abundance of similar RNA-binding proteins through alternative 
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splicing57,58. We therefore considered the possibility that activity gives rise to distinct TDP43 

isoforms through alternative splicing.  

 

3.2.2 Hyperexcitability drives TARDBP alternative splicing 

Using available RNA-seq data obtained from human cell lines59, we identified two 

alternatively spliced TARDBP isoforms predicted to encode C-terminally truncated or shortened 

(s) TDP43 isoforms (Figure 3.3A). Identical sTDP43 splice isoforms (TDP-S6 and TDP-S7) were 

detected in previous studies of TARDBP splicing60,61. Both sTDP43-specific splice donors are 

located within TARDBP exon 6 and differ by only 9 bp; each utilizes an identical splice acceptor 

within the TARDBP 3’ untranslated region (UTR), thereby eliminating the majority of exon 6 

(Figure 3.3B). We designed primers specific for both sTDP43 splice junctions as well as full-

length (fl) TDP43 utilizing the canonical termination codon within exon 6, and performed qRT-

PCR to examine changes in splice isoform abundance in vehicle-, TEA-, or TTX-treated human 

iNeurons. Both sTDP43 isoforms were not only detectable in iNeurons, but also significantly 

upregulated by TEA-treatment and downregulated by TTX (Figure 3.3C), suggesting that the 

bidirectional change in N-terminal TDP43 observed in TEA- or TTX-treated iNeurons may be due 

to altered expression of sTDP43 transcript isoforms. Transcripts encoding flTDP43 were also 

upregulated by TEA, but not reduced by TTX (Figure 3.3C). Thus, although all TARDBP transcript 

variants increase with neuronal activity, only sTDP43 isoforms demonstrate a bidirectional 

response to neuronal activity and corresponding changes at the protein level, perhaps due to 

selective autoregulation or nuclear retention of flTDP43-encoding transcripts61–63.  

The two sTDP43 transcripts (sTDP43-1 and -2) encode proteins that differ by only 3 amino 

acids, and both lack residues that correspond to the entirety of the glycine rich domain (residues 
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https://paperpile.com/c/A7vAMj/sdAiH
https://paperpile.com/c/A7vAMj/QGsRj+yjSl
https://paperpile.com/c/A7vAMj/yjSl+kLk1+rBpz


 

85 

 

281-414 of flTDP43)64. Usage of the common splice acceptor for sTDP43-1 and -2 located within 

the TARDBP 3’UTR results in the inclusion of a new exon encoding a unique 18-amino acid C-

terminus not found in flTDP43 (Figure 3.3D). These splicing events and the novel C-terminus are 

highly conserved at both the protein (Supplemental Table 1) and transcript (Supplemental Table 

2) levels in humans, non-human primates, and lesser mammals. Despite this, and the previous 

identification of sTDP43 splice variants in human and murine tissues60,61,64,65, their regulation 

remained unknown and unexplored. Our results demonstrate that sTDP43 variants are dynamically 

and bidirectionally regulated by neuronal activity, with neuronal hyperactivity resulting in a 

significant 2-fold upregulation of sTDP43 at the RNA and protein levels. 

 

3.2.3 sTDP43 is cytoplasmically localized due to a putative NES in its C-terminal tail 

To investigate sTDP43 localization, we transfected rodent primary mixed cortical neurons 

with diffusely localized mApple to enable visualization of neuronal cell bodies and processes, as 

well as constructs encoding flTDP43 or sTDP43-1 isoforms fused to an EGFP tag. We then imaged 

cultures by fluorescence microscopy to examine the localization of each isoform. As expected, 

flTDP43 appeared to be primarily nuclear in distribution, but sTDP43 demonstrated prominent 

cytoplasmic deposition (Figure 3.4A). The dramatic difference in sTDP43 localization was 

unanticipated given the presence of an intact nuclear localization signal (NLS) within the sTDP43 

N-terminus (Figure 3.3D), and hinted at the presence of a potential nuclear export signal (NES) 

within the novel sTDP43 C-terminus. 

To explore this possibility, we utilized NetNES1.1, an algorithm that employs neural 

networks and hidden Markov models to predict NES-like motifs from protein primary structure66. 

This analysis uncovered a series of amino acids near the sTDP43 C-terminal pole that could 
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potentially act as an NES (Figure 3.4B). We then tested the function of this putative NES through 

two complementary experiments. First, we altered the putative NES within sTDP43 by site-

directed mutagenesis (TSLKV→GGGGG) and expressed this construct (sTDP43(mNES)) in 

rodent primary neurons (Figure 3.4A). Protein localization was assessed by automated 

microscopy, using scripts that measure fluorescence separately within cytoplasmic and nuclear 

ROIs, and calculate a nuclear-cytoplasmic ratio (NCR) for TDP43 in each transfected neuron14,15. 

While sTDP43 was localized to both the nucleus and cytoplasm, sTDP43(mNES) displayed a 

primarily nuclear distribution, more so even than flTDP43, suggesting that the putative NES is 

necessary for cytoplasmic deposition of sTDP43 (Figure 3.4C). Second, we fused EGFP to the 18-

amino acid tail of sTDP43 (EGFP-tail), or a version of the sTDP43 tail harboring a mutated NES 

(EGFP-tail(mNES)) (Figure 3.4D). For comparison, we also expressed Shuttle-RFP, a construct 

with a strong NES and a weak NLS that exhibits a predominant cytoplasmic distribution67. 

Addition of the sTDP43 tail was sufficient to partially exclude EGFP-tail from the nucleus, but 

this change in distribution was eliminated by mutating the residues making up the putative NES in 

EGFP-tail(mNES) (Figure 3.4E). Lastly, we asked whether sTDP43’s cytoplasmic distribution 

arises from the absence of a nuclear retention signal encoded within the canonical TDP43 C-

terminus68, or the presence of an active NES within the sTDP43 tail. Fusing the sTDP43 tail to 

flTDP43 markedly shifted the distribution of flTDP43 to the cytoplasm (Supplemental Figure 3.3), 

suggesting that sTDP43 localization is dictated primarily by the C-terminal NES, and not the lack 

of a nuclear retention signal. Together, these data indicate that the novel C-terminus of sTDP43 

encodes a functional NES that facilitates cytoplasmic accumulation of sTDP43. 
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3.2.4 sTDP43 overexpression is neurotoxic 

TDP43 mislocalization is a widely observed phenomenon in ALS, and cytoplasmic TDP43 

is a strong predictor of cell death14. Given these data and the largely cytoplasmic localization of 

sTDP43, we surmised that sTDP43 accumulation would be toxic to mammalian neurons. We 

therefore utilized automated microscopy in conjunction with survival analysis to track individual 

neurons prospectively over time and determine their risk of death in an unbiased and high-

throughput manner14,15,59,69,70. Rodent primary mixed cortical neurons were transfected with 

mApple and EGFP-tagged TDP43 isoforms and imaged by fluorescence microscopy at 24h 

intervals for 10d71. Custom scripts were used to automatically generate ROIs corresponding to 

each cell and determine time of death based on rounding of the soma, retraction of neurites, or loss 

of fluorescence (Figure 3.5A). The time of death for individual neurons was used to calculate the 

risk of death in each population relative to a reference group, in this case neurons expressing 

EGFP71,72. In keeping with the results of previous studies, flTDP43 overexpression resulted in a 

significant increase in the risk of death in comparison to EGFP alone (HR=2.22 p<2x10-16). 

sTDP43-1 overexpression elicited a similar increase in the risk of death for transfected neurons 

(HR=1.90 p<2x10-16), suggesting that sTDP43 and flTDP43 display similar toxicities when 

overexpressed in neurons (Figure 3.5B). 

  

3.2.5 sTDP43 alters endogenous TDP43 localization 

TDP43 dimerizes via its N-terminus52,73–79, and because sTDP43 is exported from the 

nucleus and contains an intact N-terminus we questioned whether sTDP43 might bind to and 

sequester endogenous TDP43 within the cytoplasm. To determine if sTDP43 is capable of 

dimerizing with endogenous TDP43, we transfected HEK293T cells with HaloTag-labeled 

https://paperpile.com/c/A7vAMj/xxsWz
https://paperpile.com/c/A7vAMj/2uEJM+N91ns+xxsWz+D7BWK+sdAiH
https://paperpile.com/c/A7vAMj/Nr1RQ
https://paperpile.com/c/A7vAMj/Uy0de+Nr1RQ
https://paperpile.com/c/A7vAMj/fqEN2+CdI14+H1FDg+d679d+JwJr8+uY1Pr+YnvbG+artiU


 

88 

 

sTDP43-1 or flTDP43 and isolated the fusion proteins using HaloLink resin (Figure 3.6A). We 

detected equivalent amounts of endogenous TDP43 in eluates from sTDP43-HaloTag and 

flTDP43-HaloTag, indicating that sTDP43 effectively binds endogenous TDP43 (Figure 3.6B).  

We also examined the interaction between sTDP43 and endogenous TDP43 by ICC. 

HEK293T cells were transfected with EGFP or EGFP-tagged sTDP43, immunostained using a C-

terminal TDP43 antibody that recognizes endogenous TDP43 but not sTDP43, and imaged by 

confocal fluorescence microscopy (Figure 3.6C). HEK293T cells overexpressing EGFP-tagged 

sTDP43 displayed cytoplasmic inclusions that strongly colocalize with endogenous TDP43. 

Moreover, we observed significant reductions in nuclear endogenous TDP43 in association with 

cytoplasmic TDP43 deposition (Figure 3.6D, E), suggesting cytoplasmic sequestration of 

endogenous TDP43 by sTDP43. Rodent primary mixed cortical neurons overexpressing sTDP43-

1 displayed a similar depletion of endogenous TDP43 from the nucleus (Figure 3.6F, G). Thus, 

sTDP43 overexpression results in both cytoplasmic deposition and nuclear clearance of 

endogenous TDP43, recapitulating signature features of ALS pathology and implying that both 

gain- and loss-of-function mechanisms contribute to toxicity. 

In sTDP43-transfected cells, we observed significant variability in degree of TDP43 

nuclear exclusion and cytoplasmic aggregation, which we suspected was due to differences in 

sTDP43 expression on a per-cell basis. Because the abundance of fluorescently-labeled proteins is 

directly proportional to the intensity of the fluorescent tag80, we estimated sTDP43 expression in 

each cell by measuring single-cell EGFP intensity, and separated cells into 5 bins based on EGFP 

intensity and sTDP43 expression level. Upon assessing endogenous TDP43 distribution within 

each bin, we observed a direct relationship between the extent of nuclear TDP43 mislocalization 

and sTDP43 expression (Supplemental Figure 3.4). These results indicate that TDP43 pathology 
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may be more prevalent with upregulation of sTDP43 via neuronal hyperexcitability or other 

mechanisms.  

We failed to observe significant increases in cytoplasmic TDP43 deposition in transfected 

neurons (Figure 3.6H), potentially due to steric inhibition of sTDP43 localization and function by 

fusion with EGFP or HaloTag (Supplemental Figure 3.5). Placing the EGFP tag on the C-terminus 

of sTDP43 partially prevents cytoplasmic localization of sTDP43-EGFP (Supplemental Figure 

3.5A-C), perhaps due to masking of the putative C-terminal NES. Similarly, we found that fusion 

of HaloTag with the N-terminus of sTDP43 significantly inhibits its binding to endogenous TDP43 

(Supplemental Figure 3.5D, E). As such, N-terminal labeling of sTDP43 leaves the NES accessible 

but blocks association with endogenous TDP43, while C-terminal sTDP43 labeling obstructs the 

NES but allows interaction with endogenous TDP43.  

 

3.2.6 sTDP43 lacks canonical functions of flTDP43 

To further examine the possibility that sTDP43 elicits loss-of-function toxicity, we 

assessed the ability of sTDP43 to participate in TDP43-related splicing activity. In keeping with 

TDP43’s function as a splicing repressor, TDP43 effectively blocks the inclusion of cystic fibrosis 

transmembrane conductance regulator (CFTR) exon 9 (Supplemental Figure 3.6A)81,82. In 

HEK293T cells expressing a CFTR minigene reporter, cotransfection with EGFP-flTDP43 

resulted in proficient exon 9 exclusion as measured by PCR. In contrast, EGFP-sTDP43-1 

expression failed to significantly affect exon 9 exclusion (Supplemental Figure 3.6B, C), 

suggesting that without the C-terminus, sTDP43 is incapable of TDP43-specific splicing60,64,65. 

Functional flTDP43 also participates in an autoregulatory feedback loop, in which flTDP43 

recognizes sequences within the TARDBP 3’UTR, triggering alternative splicing and/or 
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polyadenylation and subsequent mRNA degradation83,84. To determine if sTDP43 is able to 

regulate endogenous TDP43 expression via this mechanism, we employed a TDP43 autoregulation 

reporter consisting of an open reading frame (ORF) encoding the fluorescent protein mCherry 

upstream of the TARDBP 3’ UTR (Supplemental Figure 3.7A)69. In rodent primary cortical 

neurons expressing the TDP43 autoregulation reporter, cotransfection with EGFP-tagged flTDP43 

resulted in a decrease in reporter signal, as expected. EGFP-labeled sTDP43-1 displayed more 

subtle effects on reporter fluorescence, suggesting that its ability to autoregulate TDP43 is 

impaired (Supplemental Figure 3.7B, C). Likewise, when expressed in HEK293T cells, sTDP43-

1 exhibited a similarly muted effect on endogenous TDP43 itself at the transcript and protein level 

(Supplemental Figure 3.7D-F), consistent with poor autoregulation. Together, these results 

indicate that sTDP43 lacks many of the canonical functions of TDP43, including its splicing and 

autoregulatory abilities. 

  

3.2.7 sTDP43 colocalizes with markers of stress granules 

Previous studies suggested that sTDP43 associates with protein components of cytoplasmic 

stress granules, including G3BP1 and TIA165. Therefore, we immunostained for G3BP1 and TIA1 

in HEK293T cells overexpressing EGFP-tagged sTDP43-1, before and after application of osmotic 

stress (0.4M sorbitol). Prior to sorbitol treatment, we noted substantial colocalization of sTDP43-

1 with G3BP1 (Supplemental Figure 3.8A) and TIA1 (data not shown) in large cytoplasmic 

deposits; these structures were unique to cells transfected with sTDP43-1, suggesting that sTDP43 

overexpression elicits the formation of irregular structures rich in stress granule components. 

However, when cells were stressed with 0.4M sorbitol we observed the formation of multiple 

small, punctate granules that colocalize with both G3BP1 and TIA1, as well as endogenous TDP43 

https://paperpile.com/c/A7vAMj/rmP1+TYRp
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(Supplemental Figure 3.8B). Moreover, while osmostic stress drives flTDP43 to the cytoplasm, it 

has little effect on sTDP43 localization (Supplemental Figure 3.8C). These data confirm that 

sTDP43 localizes to stress granules, and further imply that sTDP43 production may be sufficient 

for the assembly of cytoplasmic stress granule-like structures even in the absence of stress. 

  

3.2.8 sTDP43 transcripts are enriched in murine and human lumbar motor neurons 

To determine if sTDP43 isoforms are produced in vivo and assess their expression in 

different regions of the central nervous system, we took advantage of a previous study that 

analyzed the transcriptome from murine frontal cortex and lumbar spinal motor neurons isolated 

by laser capture microdissection (Figure 3.7A)85. The most abundant splice isoform in frontal 

cortex homogenate was flTDP43, with predominant use of the conventional termination codon 

within TARDBP exon 6. However, splicing of the TARDBP locus, and in particular exon 6 and the 

3’UTR, was dramatically altered in murine spinal motor neurons. In contrast to what was observed 

in frontal cortex, two splicing events corresponding to sTDP43 variants 1 and 2 were strongly 

favored in spinal motor neurons—these isoforms were upregulated ~12- and 10-fold, respectively, 

in lumbar spinal neurons relative to frontal cortex (Figure 3.7B, C). Further, while an ALS-

associated TARDBP mutation (Q331K) did not affect sTDP43 transcript abundance, we noted an 

age-related increase in sTDP43 mRNA levels in 20-month vs. 5-month old mouse cortices 

(Supplemental Figure 3.9). These data show that sTDP43 isoforms are not only detectable in vivo 

within the murine CNS, but they are also significantly upregulated by age and enriched in spinal 

motor neurons, a cell type selectively targeted in ALS. 

We also examined sTDP43 expression in human spinal neurons utilizing published RNA-

seq data on laser-captured lumbar spinal motor neurons, isolated from control and sporadic (s) 

https://paperpile.com/c/A7vAMj/zZeNL
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ALS patient tissue86. Within this dataset, we identified specific transcripts corresponding to 

flTDP43, sTDP43-1, and sTDP43-2 based on sequence, and characterized the remaining TARDBP 

variants as “other.” Although there was no apparent difference in the abundance of any TARDBP 

transcripts between sALS and control motor neurons, we noted a dramatic enrichment of sTDP43-

1 transcripts in human spinal neurons, in comparison to flTDP43, sTDP43-2, and other TARDBP 

variants (Figure 3.7D, E). Furthermore, and in direct contrast to what we observed in rodent spinal 

neurons, sTDP43-1 was the predominant TARDBP splice isoform detected in human spinal 

neurons. To extend these findings, we also examined available RNA-seq data on spinal cord 

ventral horn homogenate derived from control and sALS patients87, as well as cerebellum and 

frontal cortex derived from controls, sALS, and patients bearing disease-associated mutations in 

C9orf72 (C9ALS)88. Fundamental differences in sample preparation and sequencing methodology 

among each study (Supplemental Figure 3.10A) prevented the direct comparison of sTDP43 

abundance between tissue types. Despite these limitations, it is clear sTDP43-1 but not sTDP43-2 

is expressed in several different regions of the CNS, including but not limited to spinal motor 

neurons, frontal cortex, and cerebellum, though it is not significantly upregulated in sALS or 

C9ALS (Supplemental Figure 3.10B, C).  

 

3.2.9 Endogenously produced sTDP43 is detectable using specific antibodies 

To distinguish natively-produced sTDP43 species, we generated an antibody directed 

against the novel 18-amino acid C-terminus of sTDP43 (Figure 3.3D). This antibody specifically 

recognized EGFP fused to the sTDP43 C-terminus, suggesting that the sTDP43 tail is sufficient 

for immunoreactivity, and the signal was completely abolished by preincubation with the 

immunizing peptide (Supplemental Figure 3.11A). Furthermore, expression of artificial miRNAs 

https://paperpile.com/c/A7vAMj/LWMi
https://paperpile.com/c/A7vAMj/8kM5
https://paperpile.com/c/A7vAMj/BQ5w
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(amiRNAs) targeting TDP43 effectively reduced flTDP43 levels, as expected (Supplemental 

Figure 3.11B, C), and also decreased sTDP43 immunoreactivity (Supplemental Figure 3.11D, E), 

confirming antibody specificity. We further validated the sTDP43 antibody by transfecting 

HEK293T cells with EGFP-tagged sTDP43-1, isolating RIPA- and urea-soluble protein fractions, 

and immunoblotting for sTDP43. In previous studies, overexpressed sTDP43 was highly 

insoluble64; supporting this, we detected EGFP-sTDP43 exclusively in the urea-soluble fraction 

while EGFP-flTDP43 appeared in both RIPA- and urea-soluble fractions (Figure 3.8A). We also 

tested the sTDP43 antibody in human iNeurons treated with TEA or TTX to induce or abolish 

neuronal activity, respectively (Figure 3.8B). In these studies, TEA increased sTDP43 

immunoreactivity, while TTX reduced sTDP43 levels (Figure 3.8C), consistent with activity-

dependent upregulation of N-terminally labeled D2-TDP43 (Figure 3.2) and its detection by 

antibodies specific for the TDP43 N-terminus (Figure 3.1). Notably, sTDP43 antibodies detected 

numerous cytoplasmic puncta in TEA-treated neurons that were less apparent in vehicle- and TTX-

treated cells, and the background nuclear signal was minimal in all cases. Identical sTDP43-

positive cytoplasmic puncta were observed in rodent primary mixed cortical neurons treated with 

bicuculline (Supplemental Figure 3.11F) or glutamate (data not shown). These data indicate that 

sTDP43 antibodies selectively detect truncated, cytoplasmic, and insoluble TDP43 species by 

western blot and ICC, establishing them as useful tools for investigating sTDP43 deposition and 

its potential role in neurodegeneration. 

Based on the observed upregulation of sTDP43 splice isoforms in lumbar spinal neurons, 

we employed our newly-developed sTDP43 antibody for detecting sTDP43 in vivo within murine 

spinal cord sections. As predicted from the RNA-sequencing data, we detected cytoplasmic 

sTDP43 in anterior horn neurons from the lumbar spinal cord, confirming the subcellular 

https://paperpile.com/c/A7vAMj/e3cSI
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distribution of the protein originally noted in vitro (Supplemental Figure 3.12A). We also observed 

strong colocalization of sTDP43 with GFAP-positive astrocytic projections within the spinal white 

matter, indicating astrocytic expression of sTDP43 (Supplemental Figure 3.12B). Subsequent 

studies confirmed that sTDP43 is endogenously produced by human iPSC-derived astrocytes 

(Supplemental Figure 3.13), suggesting that while sTDP43 is enriched within spinal neurons 

(Figure 3.7), it is also synthesized by supporting glia.  

 

3.2.10 sTDP43 pathology is observed in ALS patient tissue 

Given that (a) sTDP43 is endogenously produced at relatively high levels in spinal neurons, 

(b) neuronal hyperexcitability is a conserved feature of ALS, and (c) sTDP43 is upregulated by 

neuronal activity, we suspected that sTDP43 may accumulate in individuals with sALS. To address 

this question, we immunostained human cortex and spinal cord sections from sALS, C9ALS, and 

unaffected control patients using antibodies that recognize the TDP43 N-terminus or our newly-

developed sTDP43 antibodies (Figure 3.8D). As predicted, immunostaining with N-terminal 

TDP43 antibodies showed both a reduction in nuclear signal and the appearance of cytoplasmic 

inclusions selectively in ALS patient tissue. While control tissue exhibited low immunoreactivity 

for sTDP43 in both the cortex and spinal cord, we observed a striking accumulation of sTDP43 

within cytoplasmic deposits in ALS spinal cord and cortex (Figure 3.8E). sTDP43-positive 

inclusions closely colocalized with N-terminally reactive cytoplasmic aggregates but not residual 

nuclear TDP43, suggesting that sTDP43 antibodies specifically label cytoplasmic deposits in ALS 

tissue. In this limited case study, sTDP43 pathology appeared to be conserved between sALS and 

C9ALS, hinting at a conserved process (Supplemental Figure 3.14). We also observed a tight 

correlation between conventional TDP43 pathology (nuclear exclusion and cytoplasmic 
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aggregation) and sTDP43 deposition—in ALS samples, neurons displaying TDP43 nuclear 

exclusion almost always showed cytoplasmic sTDP43 pathology. Additionally, we noted several 

cells from ALS patients that exhibited sTDP43 deposits despite a normal nuclear TDP43 pattern, 

perhaps illustrating an early stage of pathology (Supplemental Figure 3.14B, C). Even so, we 

detected significant heterogeneity in sTDP43 pathology among ALS cases, indicating the presence 

of additional, unknown factors that could impact sTDP43 deposition or immunoreactivity. 

In light of endogenous sTDP43 detected within mouse spinal cord astrocytes 

(Supplemental Figure 3.12B) and human iPSC-derived astrocytes (Supplemental Figure 3.13), we 

asked if sTDP43 pathology might also be present within astrocytes. In sections from controls and 

sALS patients immunostained with sTDP43 antibodies, neurons and glia were identified by co-

staining with NeuN and GFAP antibodies, respectively (Figure 3.8F). Cytoplasmic sTDP43 

accumulations were detected in both NeuN-positive neurons and GFAP-positive astrocytes, 

suggesting that sTDP43 pathology is not limited to neurons. Taken together, these results 

demonstrate that endogenous sTDP43 accumulates within neurons and glia of individuals with 

ALS, supporting a potentially pathogenic contribution of sTDP43 isoforms to ALS pathogenesis. 

 

3.3 Discussion 

In this study, we show that neuronal hyperactivity leads to the selective upregulation of C-

terminally truncated TDP43 isoforms (sTDP43). These isoforms are intrinsically insoluble and 

accumulate within cytoplasmic aggregates by virtue of a NES present within a novel 18-amino 

acid C-terminus. sTDP43 also sequesters endogenous TDP43 within cytoplasmic aggregates and 

induces its clearance from the nucleus, thereby recapitulating signature pathologic changes found 

in the majority of individuals with ALS and implicating complementary gain- and loss-of-function 
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mechanisms in disease pathogenesis. sTDP43 transcripts are enriched in murine motor neurons, a 

cell type that is selectively vulnerable in ALS, and post-mortem samples from individuals with 

ALS show conspicuous accumulations of sTDP43 within affected neurons and glia. These 

observations suggest a fundamental link between neuronal hyperexcitability and TDP43 

pathology, two conserved features characteristic of both familial and sporadic ALS. Moreover, 

they raise the possibility that sTDP43 production and/or its accumulation are heretofore-

unrecognized contributors to neurodegeneration in ALS. 

A series of previous studies demonstrated that alternative splicing of TARDBP gives rise 

to truncated TDP43 isoforms lacking the C-terminus that are highly insoluble when overexpressed 

in heterologous systems49,60,64. Here, we show for the first time that neuronal activity selectively 

upregulates these truncated isoforms, which we collectively labeled sTDP43, despite a 

simultaneous increase in transcripts encoding full-length TDP43. This discrepancy may arise from 

the relative inability of sTDP43 to effectively participate in autoregulation (Supplemental Figure 

3.7), or the presence of unique elements within the flTDP43 3’UTR leading to nuclear mRNA 

retention and/or destabilization61–63,83,84. As such, the activity-dependent and apparently selective 

upregulation of sTDP43, together with the widespread neuronal hyperactivity observed in ALS 

patients, animal models, and human iPSC-derived neurons26,28,34,35,42,43, may be a crucial factor 

driving sTDP43 deposition in ALS tissue. 

In keeping with previous studies65, overexpressed sTDP43 accumulates in the cytoplasm 

where it often forms large, insoluble inclusions. The low-complexity domain (LCD) within the 

TDP43 C-terminus is essential for liquid-phase separation89–92, and has been heavily implicated in 

TDP43 aggregation. Even so, our observations and those of others64,65 show that sTDP43 is 

insoluble and prone to aggregation, despite lacking the LCD. A growing body of evidence suggests 

https://paperpile.com/c/A7vAMj/QGsRj+e3cSI+TaCcK
https://paperpile.com/c/A7vAMj/rmP1+kLk1+rBpz+TYRp+yjSl
https://paperpile.com/c/A7vAMj/2kJsU+O4t4z+VvYGZ+zU7BV+as9P2+lEAA8
https://paperpile.com/c/A7vAMj/sDoFG
https://paperpile.com/c/A7vAMj/yWyIY+ju8Vh+IghHB+AusUE
https://paperpile.com/c/A7vAMj/sDoFG+e3cSI
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that proteins with complex, folded domains such as the TDP43 RNA-recognition motifs (RRMs) 

are highly susceptible to aggregation93. Rather than promoting insolubility, the presence of LCDs 

within these proteins protects against misfolding and aggregation by enabling reversible phase 

transitions during conditions of supersaturation. Thus, LCDs may permit higher local 

concentrations of RRM-containing proteins than would otherwise be possible without misfolding 

and/or aggregation94. In this regard, the absence of the LCD may be directly responsible for the 

enhanced aggregation of sTDP43; indeed, several RNA-binding proteins display similar 

phenotypes upon removal of the LCD, including Pub1, Pab1 and Sup3594–97. 

Using predictive software, we identified a potential NES located within the novel 18-amino 

acid sTDP43 tail, and experimentally confirmed that this segment drives cytoplasmic sTDP43 

localization. This NES appears to be dominant over the functional NLS present within the N-

terminus of sTDP43, either due to a high affinity for nuclear exporters or because of enhanced 

accessibility of the NES at the extreme C-terminus of the protein. The previously annotated TDP43 

NES68,98 exhibits leucine/isoleucine-rich sequences favored by exportin-1 (XPO1), an essential 

mediator of protein nuclear export99. Nevertheless, scant experimental evidence suggests that this 

sequence functions as a true NES. TDP43 and XPO1 do not interact with one another in vitro15,100, 

and unbiased proteomics studies have failed to identify TDP43 as an XPO1 cargo protein101,102. 

Further, TDP43 localization is unaffected by XPO1 inhibition or deletion of the putative NES15. 

In contrast, the NES uncovered within the sTDP43 C-terminal tail is both necessary and sufficient 

for sTDP43 nuclear export, suggesting that it is a bona fide NES. 

sTDP43 lacks the C-terminal glycine rich domain required for splicing activity103; as such, 

sTDP43 is incapable of CFTR minigene splicing or effectively participating in TDP43 

autoregulation, which involves differential splicing of the TARDBP 3’UTR83,84. The C-terminal 

https://paperpile.com/c/A7vAMj/YECEC
https://paperpile.com/c/A7vAMj/Qz89m
https://paperpile.com/c/A7vAMj/2qmqY+VxbSF+Qz89m+NMciz
https://paperpile.com/c/A7vAMj/RJBr+jHzK
https://paperpile.com/c/A7vAMj/1rtX
https://paperpile.com/c/A7vAMj/D7BWK+Zhj2
https://paperpile.com/c/A7vAMj/kQoP+8Q1E
https://paperpile.com/c/A7vAMj/D7BWK
https://paperpile.com/c/A7vAMj/R4pei
https://paperpile.com/c/A7vAMj/rmP1+TYRp
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glycine rich domain is also required for toxicity upon TDP43 overexpression in yeast104. 

Nevertheless, sTDP43 overexpression was still lethal in neurons. We suspect that sTDP43-related 

toxicity arises from a combination of factors, including (a) the NES within the new C-terminal tail 

region provoking cytoplasmic sTDP43 deposition; (b) its interaction with endogenous flTDP43 

via its N-terminus52,73,105; and (c) the presence of intact RNA-recognition motifs that enable 

sTDP43 to bind and potentially sequester cytoplasmic mRNAs. 

sTDP43 isoforms are highly conserved in humans, non-human primates, and lesser 

mammals at the transcript and protein levels. Such evolutionary conservation suggests that these 

isoforms fulfill unknown functions, perhaps involving a compensatory response to chronic 

neuronal hyperactivity or generalized stress. Intriguingly, sTDP43 transcripts are significantly 

enriched in murine motor neurons compared to frontal cortex homogenate, their expression 

increases with age, and sTDP43-1 is the dominant TARDBP species in human lumbar motor 

neurons, raising the possibility that spinal motor neurons accumulate potentially toxic levels of 

sTDP43 in response to aging and hyperexcitability. Future studies are needed to determine whether 

native sTDP43 performs an essential function in motor neurons or other cell types, and if sTDP43 

contributes to the selective vulnerability of motor neurons in ALS106,107. 

By creating a unique antibody that recognizes the novel C-terminus of sTDP43, we 

detected cytoplasmic sTDP43 inclusions selectively within the spinal cord and cortex of ALS 

patients, including individuals with sALS and C9ALS. In addition, the presence of sTDP43 

deposits coincided with nuclear TDP43 exclusion, as predicted by sTDP43 nuclear export and its 

affinity for flTDP43. Although the aggregation-prone108 TDP43 C-terminus forms a core 

component of the cytoplasmic inclusions found in ALS patients109–116, emerging evidence suggests 

that N-terminal TDP43 fragments also contribute to ALS pathogenesis. N-terminal TDP43 

https://paperpile.com/c/A7vAMj/IB3Wj
https://paperpile.com/c/A7vAMj/fqEN2+Ng42N+artiU
https://paperpile.com/c/A7vAMj/Otsu2+f90pS
https://paperpile.com/c/A7vAMj/3C4Ru
https://paperpile.com/c/A7vAMj/NuiLN+nik6M+8oG17+pAbLw+gIvRF+rd8Ax+uvOtk+i89V
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fragments are observed in ALS patient spinal cord117,118, and in keeping with studies of RNA-

binding proteins in yeast, the TDP43 RRMs misfold and aggregate in vitro without the C-terminal 

LCD to maintain solubility65,93,95–97,119–121. Independent of the RRMs, the TDP43 N-terminus 

enhances TDP43 aggregation and toxicity65,79,119,120, potentially adding to sTDP43 insolubility and 

the impact of sTDP43 deposition in affected neurons.  

TDP43-positive cytoplasmic inclusions in ALS are not limited to neurons but are also 

found in astrocytes and oligodendrocytes122–125. Astrocytes help regulate extracellular glutamate 

levels, and their dysfunction in ALS may lead to impaired synaptic glutamate buffering in sporadic 

as well as familial ALS126–131. In addition to detecting endogenous sTDP43 production in cultured 

human astrocytes and murine spinal cord, we noted disease-specific astrocyte sTDP43 pathology 

in sALS patient tissue. Although the effect of sTDP43 accumulation in these cells remains to be 

determined, it is possible that sTDP43-induced astrocyte toxicity triggers a feed-forward 

mechanism in which reduced glutamate buffering results in neuronal hyperactivity, increased 

sTDP43 production, and subsequent neurodegeneration. 

Our work underlines the significance of previously identified TDP43 isoforms and 

highlights a pivotal connection between neuronal hyperexcitability and TDP43 pathology, two 

conserved findings in ALS. Many questions remain, including the function of sTDP43 isoforms, 

the extent and pervasiveness of sTDP43 pathology in ALS, and whether cell type- or species-

specific differences in sTDP43 expression contribute to the selective vulnerability of human motor 

neurons in ALS. Complementary investigations of sTDP43 splicing and its regulation are crucial 

if we are to determine if targeted manipulation of sTDP43 has the potential to prevent or slow 

motor neuron degeneration in ALS. 

 

https://paperpile.com/c/A7vAMj/W9l6O+1SwuQ
https://paperpile.com/c/A7vAMj/f3vhc+sDoFG+lJByR+2qmqY+VxbSF+NMciz+Fjr6d+YECEC
https://paperpile.com/c/A7vAMj/f3vhc+sDoFG+lJByR+YnvbG
https://paperpile.com/c/A7vAMj/GblUj+WzN8t+kLHex+XYxz0
https://paperpile.com/c/A7vAMj/fCooV+Ny3w8+1oNjn+0MsuI+ERtD5+D3bzB
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3.4 Materials and Methods 

3.4.1 Generation and maintenance of iPSCs 

Fibroblasts were reprogrammed into iPSCs via transfection with episomal vectors encoding seven 

reprogramming factors132 and validated as previously described133. All iPSC lines were cultured 

in Essential 8 (E8) media (Gibco A1517001) on plates coated with vitronectin (Gibco A14700) 

diluted 1:100 in Mg2+/Ca2+-free phosphate buffered saline (PBS, Gibco 14190-144). Cells were 

passaged every 5–6d using 0.5 mM EDTA (Sigma E7889) dissolved in PBS followed by gentle 

trituration in E8 media with a P1000 pipette. All lines are verified mycoplasma-free on a monthly 

basis. 

  

3.4.2 Integration of Ngn1/Ngn2 cassette into iPSCs 

iPSCs were split and plated into a vitronectin-coated 6 well plate as described above, at a density 

such that cells were 50-70% confluent in clumps of 2-5 cells at the time of transfection. Following 

plating, cells were incubated overnight in E8 media with ROCK inhibitor (Fisher BDB562822), 

and changed into fresh E8 media the following morning. Thirty minutes prior to transfection (~24h 

after plating or when the density was 50-70%), cells were changed into mTESR-1 media (Cell 

Technologies 85850) and then transfected with 2.5 µg of donor DNA and 1.25 µg of each targeting 

construct (Supplemental Table 3) using Lipofectamine Stem (Invitrogen STEM00003) according 

to the manufacturer’s instructions. The following morning, cells were changed into fresh E8 media. 

Media was changed daily, and cells were screened for red fluorescence. When the partially positive 

colonies reached 100-500 cells, they were carefully scraped/aspirated using a P200 pipet tip and 

transferred to a new vitronectin-coated dish. This process was repeated, enriching the fluorescent 

cells until a 100% fluorescent colony was identified. This was then relocated to a new dish, and 

https://paperpile.com/c/A7vAMj/vlYaS
https://paperpile.com/c/A7vAMj/lsbtN
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expanded for future use. The Ngn1/2 integration cassette and accompanying targeting constructs 

were a gift from M. Ward.  

  

3.4.3 iNeuron differentiation 

Day 0. Induced pluripotent stem cells were washed in PBS and incubated in prewarmed accutase 

(Sigma A6964) at 37°C for 8m. Four volumes of E8 media were added to the plate, and the cells 

were collected and pelleted at 200xg for 5m. The media was aspirated, and the pellet was 

resuspended in 1ml of fresh E8 media. Cells were counted using a hemocytometer, diluted, plated 

at a density of 20,000 cells/ml in E8 media with ROCK inhibitor and incubated at 37°C overnight. 

Day 1. Media was changed to N2 media (1x N2 Supplement (Gibco 17502-048), 1x NEAA 

Supplement (Gibco 11140-050), 10 ng/ml BDNF (Peprotech 450-02), 10 ng/ml NT3 (Peprotech 

450-03), 0.2 µg/ml laminin (Sigma L2020), 2 mg/ml doxycycline (Sigma D3447) in E8 media). 

Day 2. Media was changed to transition media ((1x N2 Supplement, 1x NEAA Supplement, 10 

ng/ml BDNF, 10 ng/ml NT3, 0.2 µg/ml laminin, 2 mg/ml doxycycline in half E8 media, half 

DMEM F12 (Gibco 11320-033)). Day 3. Media was changed into B27 media (1x B27 Supplement 

(Gibco 17504-044), 1x Glutamax Supplement (Gibco 35050-061), 10 ng/ml BDNF, 10 ng/ml 

NT3, 0.2 µg/ml laminin, 2 mg/ml doxycycline, and 1x Culture One (Gibco A33202-01) in 

Neurobasal-A (Gibco 12349-015)). Day 6. An equal volume of B27 media without Culture One 

was added to each well. Day 9-21. All cultures underwent a half-media change every 3d in fresh 

B27 media.  
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3.4.4 Immunocytochemistry 

Neurons were fixed with 4% paraformaldehyde (PFA; Sigma P6148), rinsed with PBS, and 

permeabilized with 0.1% Triton X-100 (Bio-rad 161-0407) in PBS. Neurons were then treated 

with 10 mM glycine (Fisher BP381-1) in PBS, and incubated in a blocking solution (0.1% Triton 

X-100, 2% fetal calf serum (Sigma F4135), and 3% bovine serum albumin (BSA, Fisher BP9703-

100) in PBS) at room temperature for 1h before incubation overnight at 4°C in primary antibody 

diluted in blocking buffer (Supplemental Table 4). Cells were then washed 3x in PBS and 

incubated at room temperature with Alexa Fluor 488 goat anti-rabbit (Life Technologies A11034), 

Alexa Fluor goat anti-mouse 594 (Life Technologies A11032), or Alexa Fluor donkey anti-rabbit 

647 (Life Technologies A31573) secondary antibody diluted 1:5000 in blocking solution for 1h. 

Following 3x washes in PBS containing 1:10000 Hoechst 33258 dye (Invitrogen H3569), neurons 

were imaged via fluorescence microscopy. High resolution images were obtained on a Zeiss LSM 

800 with a 63x NA1.4 Oil/DIS Plan-Apochromat objective. Excitation was accomplished using 

405, 488, 561, and 633 nm lasers. 

  

3.4.5 Modulation of neuronal activity 

Half of the existing media was removed from rodent cortical neurons or mature human iNeurons 

and replaced with fresh media and drug such that the final concentration on the cells was 4 mM 

tetraethylammonium chloride (TEA, Sigma T2265), 2 µM tetrodotoxin citrate (TTX, R&D 

Systems 1078) or 25 mM glutamate (Sigma G1251) alongside a volume-matched vehicle control. 

Cells were incubated at 37° C for 48h, then fixed, imaged, or harvested as needed. 

  

Monitoring calcium transients 
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Mature iNeurons—differentiated as previously described from an iPSC line stably expressing 

gCaMP6f and mCherry48—were imaged for 100ms at 200ms intervals for a total of 100 frames, 

for a cumulative a 20s observation window. One location was imaged per well for 2-30 instances 

over a 6-12h period. Each neuron was identified as a region of interest using mCherry fluorescence, 

and the intensity of gCaMP6f signal was plotted over time. Individual traces were corrected for 

photobleaching, normalized to the median of each imaging period, and filtered for peaks below a 

discrete threshold to aid in spike identification. The number of peaks for each neuron and each 

imaging period was manually counted using a custom-designed graphical user interface. Events 

per second were averaged for each cell and compared across groups. 

  

3.4.6 CRISPR/Cas9 editing of iPSCs 

Oligos complementary to the target region (Supplemental Table 3) were annealed, digested, and 

ligated into the BbsI site in pX335-U6-Chimeric_BB-CBh-hSpCas9n(D10A) (Addgene #42335, 

deposited by Feng Zhang) or pX330S-4 (Addgene #58780, deposited by Feng Zhang) according 

to the protocol available from Addgene. iPSCs stably expressing Ngn1-2 under a dox-inducible 

promoter were split and transfected as described above with pX335 vectors encoding Cas9(D10A) 

and sgRNA pairs targeting sequences flanking the TARDBP start codon for D2-TDP43 or stop 

codon for TDP43-D2. Cells were cotransfected with the appropriate HDR vector encoding the 

Dendra2 open reading frame flanked by 400 bp of sequence homologous to that surrounding the 

TARDBP start codon (D2-TDP43) or stop codon (TDP43-D2) (in pUC-minus(M), synthesized by 

Blue Heron, LLC). Fluorescent cells were selected and successively passaged as described above 

to generate iPSC colonies in which 100% of cells expressed Dendra2-labeled TDP43.  

  

https://paperpile.com/c/A7vAMj/NGyxv


 

104 

 

3.4.7 Longitudinal fluorescence microscopy and automated image analysis 

Neurons were imaged as described previously69,70 using a Nikon Eclipse Ti inverted microscope 

with PerfectFocus3a 20X objective lens and either an Andor iXon3 897 EMCCD camera or Andor 

Zyla4.2 (+) sCMOS camera. A Lambda XL Xenon lamp (Sutter) with 5 mm liquid light guide 

(Sutter) was used to illuminate samples, and custom scripts written in Beanshell for use in 

μManager controlled all stage movements, shutters, and filters. Custom ImageJ/Fiji macros and 

Python scripts were used to identify neurons and draw both cellular and nuclear regions of interest 

(ROIs) based upon size, morphology, and fluorescence intensity. Fluorescence intensity of labeled 

proteins was used to determine protein localization or abundance. Custom Python scripts were 

used to track ROIs over time, and cell death marked a set of criteria that include rounding of the 

soma, loss of fluorescence and degeneration of neuritic processes71. 

  

3.4.8 RNA sequencing 

Raw reads from murine frontal cortex and spinal cord59,85,86, as well as human spinal cord, frontal 

cortex and cerebellum59,85,86, were downloaded from Gene Expression Omnibus (GEO) with the 

SRA Toolkit v2.9.2. Reads were trimmed with TrimGalore v0.6.0 using automatic adapter 

detection and a minimum Phred score of 20. For alignment-free transcript-level quantification, 

trimmed reads were quantified using Salmon v0.13.1 (Patro 2017) and imported into the RStudio 

using txImport v1.12.0 (Soneson 2015) to generate transcript-level summaries134,135. The Ensembl 

genome assemblies and transcript annotations from GRCh38.96 and GRcm38.96 were used as 

human and mouse references, respectively. For alignment-based analysis of mouse datasets, 

trimmed reads were aligned with hisat2 v2.0.5 and raw counts were quantified for unique splice 

https://paperpile.com/c/A7vAMj/2uEJM+N91ns
https://paperpile.com/c/A7vAMj/Nr1RQ
https://paperpile.com/c/A7vAMj/sdAiH+zZeNL+LWMi
https://paperpile.com/c/A7vAMj/sdAiH+zZeNL+LWMi
https://paperpile.com/c/A7vAMj/tNIZ+jbJa
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donor/acceptor combinations present in unique TARDBP isoforms. In each case, splicing events 

were visualized using IG Viewer software (Broad Institute). 

 

3.4.9 qRT-PCR 

RNA was isolated using the RNeasy Mini Kit (Qiagen 74106), and cDNA was reverse transcribed 

from 1 ug of the resultant RNA with the Bio-Rad iScript kit (Bio-Rad 170-8891) in a reaction 

volume of 20 µl. 0.5 µl of cDNA was used for each reaction as a template for quantitative (q)PCR, 

which was performed using Power SYBR Green (Applied Biosystems A25742) using the primers 

listed in Supplemental Table 5. 

  

3.4.10 Plasmids 

Plasmids pGW1-EGFP(1)80, pGW1-TDP43-EGFP136, and pGW1-mApple136 were used both as 

experimental controls and to generate additional constructs (Supplemental Table 6). 

  

To generate pGW1-sTDP43-EGFP, a geneblock comprised of the sTPD43-1 open reading frame 

(ORF) flanked by ApaI and AgeI restriction enzyme sites was generated by Integrated DNA 

Technologies (IDT). This geneblock was digested with ApaI and AgeI and cloned into the 

corresponding sites immediately upstream of the EGFP ORF in pGW1-EGFP(1). 

  

To create pGW1-sTDP43(mNES)-EGFP, the sTDP43 open reading frame was amplified using a 

reverse primer to mutate the putative NES into five sequential glycine resides. The resulting 

amplicon was digested with ApaI and AgeI and cloned into corresponding sites in pGW1-

EGFP(1). 

https://paperpile.com/c/A7vAMj/LeCnc
https://paperpile.com/c/A7vAMj/WSupj
https://paperpile.com/c/A7vAMj/WSupj
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To generate pGW1-EGFP(2), the EGFP open reading frame was PCR amplified from pGW1-

EGFP(1). The resultant amplicon was digested with HindIII and Kpn1 restriction enzymes and 

cloned into the corresponding sites in pGW1-CMV. 

  

To generate pGW1-EGFP-tail, sense and antisense oligomers with the sequence of the 18-amino 

acid tail were generated by IDT, designed such that annealing would result in cohesive ends 

identical to cut KpnI and NheI restriction enzyme sites. The annealed oligo was cloned into 

corresponding sites immediately downstream of the EGFP ORF in pGW1-EGFP(2). 

  

To generate pGW1-EGFP-tail(mNES), sense and antisense oligomers with the sequence of the 18-

amino acid tail in which the putative NES was replaced by 5 glycine residues were generated by 

IDT, designed such that annealing would result in cohesive ends identical to cut KpnI and NheI 

restriction enzyme sites. The annealed oligo was cloned into corresponding sites immediately 

downstream of the EGFP ORF in pGW1-EGFP(2). 

  

To create pGW1-EGFP-TDP43, the TDP43 ORF was PCR amplified from pGW1-TDP43-EGFP. 

The resultant amplicon was digested with KpnI and NheI restriction enzymes and cloned into the 

corresponding sites immediately downstream of the EGFP ORF in pGW1-EGFP(2). 

  

To generate pGW1-EGFP-sTDP43, the sTDP43-1 ORF was PCR amplified from pGW1-sTDP43-

EGFP. The resultant amplicon was digested with KpnI and NheI restriction enzymes and cloned 

into the corresponding sites immediately downstream of the EGFP ORF in pGW1-EGFP(2). 
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To create pGW1-Halo, the HaloTag ORF was PCR amplified from pFN21A HaloTag PUM2 RBD 

R6SYE (a gift from A. Goldstrohm). The resultant amplicon was digested with XbaI and SbfI 

restriction enzymes and cloned into the corresponding sites in pGW1-CMV. 

  

To create pGW1-TDP43-Halo, the TDP43 ORF was PCR amplified from pGW1-TDP43-EGFP. 

The resultant amplicon was digested with NheI and AgeI and cloned into corresponding sites in 

pGW1 to make pGW1-TDP43. The HaloTag ORF was then amplified from pFN21A HaloTag 

PUM2 RBD R6SYE, digested with XbaI and SbfI restriction enzyme sites and cloned into the 

corresponding sites immediately downstream of the TDP43 ORF in pGW1-TDP43. 

  

To generate pGW1-sTDP43-Halo, the sTDP43-1 ORF was PCR amplified from pGW1-sTDP43-

EGFP. The resultant amplicon was digested with AgeI and NheI and cloned into corresponding 

sites immediately upstream of the HaloTag ORF in pGW1-Halo. 

  

To generate the TDP43 autoregulatory reporter136, a 3 kb segment extending from TARDBP exon 

6 to the 3’ UTR was amplified from genomic DNA. The resultant amplicon was digested with 

BsrGI and SfiI and cloned into corresponding sites immediately downstream of the mCherry ORF 

in pCAGGs-mCherry. 

  

Shuttle-RFP (pcDNA3.1-NLS-mCherry-NES) was purchased from Addgene (#72660, donated by 

B. Di Ventura and R. Eils). The CFTR minigene reporter was a gift from Y. Ayala, and pCaggs-

https://paperpile.com/c/A7vAMj/WSupj
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mCherry and pGW1-CMV were gifts from S. Finkbeiner. The shTARDBP and non-targeting 

shRNA constructs were purchased from Dharmacon (V3SH11240-224779127, VSC11712). 

  

All constructs were verified by Sanger sequencing, and described in Supplemental Table 6. 

  

3.4.10 Primary neuron cell culture and transfection 

Cortices from embryonic day (E)19-20 Long-Evans rat embryos were dissected and disassociated, 

and primary neurons were plated at a density of 6x105 cells/ml in 96-well plates, as described 

previously137. At in vitro day (DIV) 4, neurons were transfected with 100 ng pGW1-mApple to 

mark cell bodies and 50-100 ng of an experimental construct using Lipofectamine 2000 (Invitrogen 

52887), as previously described14,71,136. Following transfection, cells were placed in either 

Neurobasal Complete Media (Neurobasal (Gibco 21103-049), 1x B27, 1x Glutamax, 100 units/mL 

Pen Strep (Gibco 15140-122)) or NEUMO photostable medium with SOS (Cell Guidance Systems 

M07-500) and incubated at 37°C in 5% CO2. 

  

3.4.11 Culturing and transfecting HEK293Ts 

Human embryonic kidney (HEK) 293T cells were cultured in DMEM (GIBCO 11995065), 10% 

FBS (Gibco ILT10082147), 1x Glutamax, and 100 units/mL Pen Strep at 37°C in 5% CO2. 

HEK293T cells are originally female in origin, are easily transfected, and have been transformed 

with SV40 T-antigen. HEK293T cells were transfected with Lipofectamine 2000 according to the 

manufacturer’s instructions. 

  

https://paperpile.com/c/A7vAMj/KaVZI
https://paperpile.com/c/A7vAMj/WSupj+xxsWz+Nr1RQ
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3.4.12 Immunoprecipitation using HaloLink 

HEK293T cells were transfected with HaloTagged constructs of interest. Two days after 

transfection, cells were collected in PBS and pelleted at 21,000xg for 5m. The cells were then 

resuspended in 100 µl lysis buffer (50 mM Tris-HCl, 150 mM NaCl, 1% Triton X-100, 0.1% 

sodium deoxycholate). After incubation on ice for 15m, cells were passed through a 27.5 G needle 

and pelleted at 21,000xg for 10m at 4° C. 100 µg of protein was then added to 100 µl of prewashed 

HaloLink resin (Promega G1914), which was prepared by washing and pelleting for 2m at 800xg 

3x in wash buffer (100 mM Tris pH 7.5, 150 mM NaCl, 1 mg/ml BSA, 0.005% IGPAL). Sufficient 

wash buffer was added to ensure an equal volume for all conditions (~400 µl), and samples were 

incubated on a tube rotator for 30m at room temperature. Samples were then pelleted at 800xg for 

2m, saving the supernatant. The beads were then washed 3x in wash buffer, and resuspended in 

elution buffer (1% SDS, 50 mM Tris-HCl pH 7.5) and 10x sample buffer (10% SDS, 20% glycerol, 

0.0025% bromophenol blue, 100 mM EDTA, 1 M DTT, 20 mM Tris, pH 8). Samples were then 

boiled at 95° C for 10m, and loaded onto a 10% SDS-PAGE gel alongside 10 µg of input protein 

and a fixed volume of supernatant to assess binding efficiency. The gel was run at 120 V, and 

samples were then transferred at 100 V at 4°C onto an activated 2 um polyvinylidene difluoride 

(PVDF) membrane (Bio-Rad 1620177), blocked with 3% BSA in 0.2% Tween-20 (Sigma P9614) 

in Tris-buffered saline (TBST) for 1h, and blotted overnight at 4°C with primary antibody in 3% 

BSA in TBST (Supplemental Table 4). The following day, blots were washed in 3x in TBST, 

incubated at room temperature for 1h with donkey anti-mouse 680 RD (Li-Cor 926-68072) and 

donkey anti-rabbit 800 CW (Li-Cor 925-32213) secondary antibodies, both diluted 1:5,000 in 3% 

BSA in TBST. Following treatment with secondary antibody, blots were washed 3x in TBST, 

placed in Tris-buffered saline, and imaged using an Odyssey CLx Imaging System (LI-COR). 
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3.4.13 Differential solubility fractionation 

HEK293T cells were transfected in a 6-well plate with 3 µg of DNA/well using Lipofectamine 

2000 according to the manufacturer’s instructions. Two days after transfection, cells were 

collected in PBS and pelleted at 21,000xg for 5m. Cells were then resuspended in RIPA buffer 

(Thermo Scientific 89900) with protease inhibitors (Roche 11836170001) and incubated on ice for 

15m. Lysates were then sonicated at 80% amplitude with 5s on/5s off for a total of 2m using a 

Fisher Brand Model 505 Sonic Dismembrenator (ThermoFisher). Samples were centrifuged at 

21,000xg for 15m at 4°C, after which the supernatant was removed and saved as the RIPA-soluble 

fraction. The RIPA-insoluble pellet was washed in RIPA once more and resuspended in urea buffer 

(7 M urea, 2 M thiourea, 4% CHAPS, 30 mM Tris, pH 8.5) and incubated on ice for 5m. Samples 

were then centrifuged at 21,000xg for 15m at 4°C, and the supernatant was saved as the RIPA-

insoluble, urea-soluble fraction. The RIPA-soluble samples were quantified and 10-30 µg of 

protein/well was diluted in RIPA buffer with 10x sample buffer. For urea fractions, equal volumes 

of each sample across conditions was diluted in urea buffer and 10x sample buffer. The RIPA-

soluble samples were boiled for 10m before 10-30 µg of all samples were loaded onto a 10% SDS-

PAGE gel with stacking gel and run at 120 V. The blot was then transferred and probed as 

described above. 

  

3.4.14 Immunohistochemistry in human tissue 

Paraffin-embedded human cortex and spinal cord obtained from the University of Michigan Brain 

Bank were cut into 5 μm thick sections and mounted on glass slides. Tissue samples were 

photobleached prior to immunofluorescence138. Briefly, slides were placed on ice, under a 7 Band 

https://paperpile.com/c/A7vAMj/u8HJ
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Spectrum LED Light (HTG Supply 432W HTG-432-3W-7X) at 4°C for 12h. Slides were 

deparaffinized at 65°C for 20m, and rehydrated 5m sequentially in xylene (Fisher X3S-4), 100% 

ethanol (Fisher 3.8L), 95% ethanol, 70% ethanol, 50% ethanol, and PBS. Slides were then 

permeabilized with 0.1% Triton X-100 in PBS, and treated with 10 mM glycine in PBS. They were 

then incubated in a blocking solution (0.1% Triton X-100, 2% fetal calf serum, and 3% BSA in 

PBS) at room temperature for 1h before incubation overnight at 4°C in primary antibody diluted 

in blocking buffer (Supplemental Table 4). Slides were then washed 3x in PBS and incubated at 

room temperature with Alexa Fluor 488 goat anti-rabbit (Life Technologies A11034), Alexa Fluor 

goat anti-mouse 594 (Life Technologies A11032), and/or Alexa Fluor goat anti-chicken 647 (Life 

Technologies A21449) secondary antibody diluted 1:5000 in blocking solution for 1h. Following 

3x washes in PBS containing 1:10,000 Hoechst 33258 dye (Invitrogen H3569), slides were 

mounted in mounting media (Fisher SP15-500) and allowed to dry in the dark overnight before 

being imaged the following day. Images were acquired using a Nikon Microphot-FXA microscope 

(Nikon, 1985) in combination with a 60x oil-immersion objective, a QIClick CCD Camera (Q 

Imaging, 7400-82-A1), and an X-Cite Series 120 light source (Lumen Dynamics). 

 

3.4.15 Statistical analysis 

Statistical analyses were performed in R or Graphpad Prism 7. For primary neuron survival 

analysis, the open-source R survival package was used to determine hazard ratios describing the 

relative survival between conditions through Cox proportional hazards analysis71. Significance 

determined via the two-tailed t-test was used to assess differences between treatment groups for 

neuronal activity and transcript abundance via RT-PCR. The Kolmogorov-Smirnov test was used 

to assess differences between the distribution of TDP43 abundance in neurons under different 

https://paperpile.com/c/A7vAMj/Nr1RQ
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activity conditions. One-way ANOVA with Tukey’s or Dunnett’s post-tests were used to assess 

significant differences among nuclear/cytoplasmic ratios, binding affinity, TDP43 splicing 

activity, and TDP43 autoregulation. Data are shown as mean ± SEM unless otherwise stated. 

 

3.5 Supplemental Materials and Methods  

3.5.1 RNA-sequencing  

We utilized previously described RNA sequencing(seq) data139,140, and determined transcript 

abundance as described above.   

 

3.5.2 TDP43 knockdown in N2A cells 

N2A mouse neuroblastoma cells were cultured in DMEM (GIBCO 11995065), 10% FBS (Gibco 

ILT10082147), 1x Glutamax, and 100 units/mL penicillin/streptomycin at 37°C in 5% CO2. Cells 

were transfected using Lipofectamine 2000 (ThermoFisher) according to the manufacturer’s 

instructions, with artificial microRNAs (amiRNAs) directed against TARDBP or a scrambled 

control141. Transfected N2As were incubated for 72h, harvested, and immunoblotted to verify 

TDP43 knockdown.  

 

3.5.3 Tissue preparation and immunohistochemistry in murine tissue 

Vertebral columns were dissected from 5 month old C57Bl6 J mice, fixed in 4% paraformaldehyde 

(PFA) at 4°C for 48h, washed in phosphate buffered saline (PBS), and dissected to extract the 

spinal cords. The lumbar enlargement was sub-dissected, cryoprotected in 30% sucrose at 4°C, 

embedded in M1 matrix (Thermo Scientific #1310) in a silicone mold, frozen on dry ice, and 

sectioned at a thickness of 16μm onto charged slides (Thermo Scientific J1800AMNZ). Sections 

https://paperpile.com/c/BxE5gX/aQf5+58wL
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were then briefly air dried and stored at -80°C. For immunohistochemistry (IHC), sections were 

washed in distilled water, and blocked and permeabilized in blocking buffer (5% BSA, 0.5% Triton 

X-100, and 5% goat serum (Gibco 16210-064)) for 1h at room temperature. Slides were then 

incubated with primary antibody at 4°C overnight in blocking buffer diluted 2-fold with PBS 

(Supplemental Table 4). Sections were washed 3x for 5m in PBS, then incubated at room 

temperature for 1h with Alexa Fluor goat anti-mouse 488 (Life Technologies AB150113), Alexa 

Fluor donkey anti-goat 647 (Life Technologies AB150131), and Alexa Fluor goat anti-rabbit 568 

(Life Technologies AB175470) secondary antibodies diluted 1:500 in blocking solution. Sections 

were then washed 3x for 5m, counterstained, and mounted with Vectashield Hardset with DAPI 

(Vector Labs H-1500). Images were acquired using Olympus Whole Slide Scanner (VS120) with 

a 40x objective. 

 

3.5.4 Differentiation of iPSC-derived astrocytes   

iPSC-derived astrocyte progenitors were derived, cultured, and expanded as described 

previously142. The glial progenitors were pre-differentiated in Neurobasal Medium containing 1% 

B27 Supplement, 1% NEAA, and 1% PS for 10d on 6-well plates before cryopreservation. Before 

the experiment, batches of pre-differentiated astrocytes were defrosted and plated at 50k per well 

in 8-well Ibidi imaging chambers (Ibidi 80841), and cultured for an additional 6 days in Neurobasal 

Medium containing 1% B27, 1% NEAA, 1% PS, and 20 ng/mL ciliary neurotrophic factor (CNTF, 

Thermo Fisher PHC7015). Astrocytes were then fixed in 4% PFA for 15m and immunostained as 

described above (Supplemental Table 4) using Alexa Fluor goat anti-rabbit 647 (Thermo Fisher 

A-21245) and Alexa Fluor goat anti-mouse IgG1 (Thermo Fisher A-21121) secondary antibodies 

https://paperpile.com/c/BxE5gX/OpuN
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diluted 1:1000 in 3% goat serum in PBS. Imaging was performed on a Leica DMi8 with CooLED 

light source at 63x and analyzed with ImageJ. 

 

3.6 Ethics statement 

All vertebrate animal work was approved by the Committee on the Use and Care of Animals 

(UCUCA) at the University of Michigan and in accordance with the United Kingdom Animals Act 

(1986). All experiments were performed in accordance with UCUCA guidelines. Rats (Rattus 

norvegicus) used for primary neuron collection were housed singly in chambers equipped with 

environmental enrichment. All studies were designed to minimize animal use. Rats were cared for 

by the Unit for Laboratory Animal Medicine at the University of Michigan; all individuals were 

trained and approved in the care and long-term maintenance of rodent colonies, in accordance with 

the NIH-supported Guide for the Care and Use of Laboratory Animals. All personnel handling the 

rats and administering euthanasia were properly trained in accordance with the UM Policy for 

Education and Training of Animal Care and Use Personnel. Euthanasia was fully consistent with 

the recommendations of the Guidelines on Euthanasia of the American Veterinary Medical 

Association. 
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Figure 3.1. Hyperexcitability drives TDP43 accumulation in human 

iNeurons. (A) Schematic of the cassette used to integrate Ngn1 and 

Ngn2 into the CLYBL safe harbor locus under a doxycycline-inducible 

(Tet-on) promoter. CLYBL, targeting sequence; Puro, puromycin 

resistance gene; pA, poly-A tail; P1,P2, promoters; RFP, mCherry; rtTA, 

reverse tetracycline-controlled transactivator; Ngn1,2, Neurogenin1 and 

2; T2A, self-cleaving peptide; TRE, tetracycline response element. (B) 

Timeline depicting the differentiation of iPSCs into forebrain-like 

neurons within 2w of doxycycline addition. (C) The resultant neurons 

are RFP-positive and express the neuronal markers Vglut1 and Tuj1. (D) 

Spontaneous neuronal activity visualized by the Ca2+ reporter gCaMP6f 

at 2w. Activity was pharmacologically modulated with bath application 

of glutamate or TTX. Vehicle n=257, Glutamate n=327, TTX n=403, 

stratified among 3 replicates; ****p<0.0001, one-way ANOVA with 

Dunnett’s post-test. (E) Treatment with TEA significantly increased 

neuronal activity. Vehicle n= 312, TEA n=369, stratified among 3 

replicates, **** p<0.0001, two-tailed t-test. (F) Example traces 

depicting changes in gCaMP6f fluorescence for each condition. (G) Heat 

maps depicting global changes in activity. Each row represents one 

neuron, and each column represents a 20s observation window. Thirty 

intervals were collected over a 12h period. Box color indicates the 

relative firing rate of each cell at each timepoint ranging from low (blue) 

to high (red). (H) N-terminal TDP43 immunoreactivity was increased in 

TEA-treated iNeurons and decreased in TTX-treated iNeurons (TTX), 

indicating a bidirectional relationship between activity and TDP43 

abundance. (I) Density plot depicting the change in TDP43 

immunoreactivity between conditions. Vehicle n=110, TEA n=113, 

TTX n=96, 2 replicates, dashes indicate single neurons, *p<0.01, 

Kolmogorov-Smirnov test. (J) No such relationship was identified when 

TDP43 abundance is detected using an antibody directed against the C-

terminus. (K) Density plot depicting the change in C-terminal TDP43 

immunoreactivity between conditions. Vehicle n=187, TEA n=541, 

TTX n=443, 2 replicates, dashes indicate single neurons, not significant 

by the Kolmogorov-Smirnov test. Scale bars in (C), 50 µm top, 20 µm 

bottom. Scale bars in (H), (J), 20 µm. 
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Figure 3.2. TDP43 species harboring the N- but not the C-terminus are regulated by 

neuronal activity. (A) Strategy for labeling native TDP43 in human iPSC-derived neurons using 

CRISPR/Cas9. Dendra2 (D2, green) was inserted 3’ to the TARDBP start codon (green arrow) or 

5’ to the conventional stop codon (red arrow), enabling fluorescent labeling of the TDP43 N- or 

C-terminus, respectively. In iNeurons, N-terminally tagged TDP43 (B, D2-TDP43) appeared both 

nuclear and cytoplasmic in distribution, while C-terminally tagged TDP43 (C, TDP43-D2) was 

primarily nuclear. (D) Density plot depicting the fluorescence intensity of D2-TDP43 upon 

application of vehicle (n=158), TEA (n=250), or TTX (n=221). (E) Density plot depicting the 

fluorescence intensity of TDP43-D2 with addition of vehicle (n=96), TEA (n=145), or TTX 

(n=98). In (D) and (E), dashes indicate individual neurons from 2 replicates, **p<0.01, 

****p<0.0001, Kolmogorov-Smirnov test. Scale bars in (B) and (C), 20 µm. 
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Figure 3.3. Hyperactivity drives alternative splicing of TARDBP. (A) Sashimi plot depicting 

splicing events for the TARDBP gene, assembled from HEK293T cell RNA-seq data59. Splicing 

events predicted to skip the majority of exon 6—encoding the TDP43 C-terminus—are 

highlighted in black. (B) Schematic of transcripts predicted to result in full-length (fl) TDP43 and 

C-terminally shortened (s) TDP43. Green triangles indicate start codons, red triangles indicate 

stop codons, and PCR primers are color-coded. (C) qRT-PCR of human iNeurons treated with 

TEA or TTX, showing activity dependent upregulation of total and sTDP43 or downregulation 

of sTDP43, respectively. ARC (activity related cytoskeleton associated protein) acts as a positive 

control for activity-dependent gene regulation. PCR products corresponding to each primer pair 

are shown below. Data were combined from 3 replicates, **p<0.01, ***p<0.001, ****p<0.0001, 

two-tailed t-test. (D) Schematic comparing flTDP43 and sTDP43 proteins. Novel sTDP43 C-

terminus is shown in purple; NLS, nuclear localization signal; RRM, RNA-recognition motif; 

GRD, glycine rich domain. 

https://paperpile.com/c/A7vAMj/sdAiH
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Figure 3.4. sTDP43 accumulates within the cytoplasm due to a putative NES. (A) Rat primary 

mixed cortical neurons were transfected with mApple and EGFP-tagged TDP43 isoforms, then 

imaged by fluorescence microscopy. (B) Amino acid sequence of the sTDP43 tail includes a 

putative NES identified through predictive software NetNES 1.1. Light blue, polar; purple, 

positively charged; green, hydrophobic residues. (C) sTDP43-EGFP was significantly more 

cytoplasmic in distribution compared to flTDP43-EGFP, while mutation of the putative NES 

(mNES) restores nuclear localization. EGFP n=481, flTDP43-EGFP n=385, sTDP43-EGFP 

n=456, sTDP43(mNES)-EGFP n=490, stratified among 3 replicates, ****p<0.0001, one-way 

ANOVA with Dunnett’s post-test. (D) Rat primary mixed cortical neurons were transfected with 

EGFP or EGFP fused to either the novel C-terminal tail of sTDP43 or a tail harboring a mutated 

NES (mNES). (E) The C-terminal sTDP43 tail is sufficient to significantly mislocalize EGFP to 

the cytoplasm, and mislocalization depends on the NES. Shuttle-RFP, a construct with a strong 

NES, serves as a positive control for a cytoplasmic protein. EGFP n=2490, Shuttle-RFP n=2073, 

EGFP-tail n=1956, EGFP-tail(mNES) n=2482, stratified among 3 replicates, ****p<0.0001, one-

way ANOVA with Dunnett’s post-test. Scale bars in (A) and (D), 20 µm. 
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Figure 3.5. sTDP43 overexpression is neurotoxic. (A) Example of a single 

neuron expressing mApple and sTDP43-EGFP, tracked by longitudinal 

fluorescence microscopy. Fragmentation of the cell body and loss of 

fluorescence on Day 5 indicates cell death. (B) The risk of death was 

significantly greater in neurons overexpressing sTDP43-EGFP and flTDP43-

EGFP, in comparison to those expressing EGFP alone. EGFP n= 869, 

flTDP43-EGFP n=708, sTDP43-EGFP n=732, stratified among 3 replicates, 

***p<2x10-16, Cox proportional hazards analysis. Scale bar in (A), 20 µm. 
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Figure 3.6. sTDP43 overexpression leads to the cytoplasmic deposition and nuclear clearance 

of endogenous TDP43. (A) HaloTagged flTDP43 or sTDP43 were expressed in HEK293T cells 

and immunoprecipitated with HaloLink. Bound TDP43 was immunoblotted with a C-terminal 

TDP43 antibody. GAPDH served as a loading control. Input, (I); eluate, (E). (B) Quantification of 

data shown in (A), demonstrating the fraction of total TDP43 bound to flTDP43-Halo, sTDP43-

Halo, or Halo alone. Data was combined from 3 replicates, *p<0.05, **p<0.01, one-way ANOVA 

with Dunnett’s post-test. (C) HEK293T cells were transfected with EGFP or EGFP-tagged 

sTDP43, then immunostained using an antibody that recognizes the C-terminus of endogenous 

(Endo) TDP43. Red, nuclear regions of interest (ROIs) determined by DAPI staining. (D) Nuclear, 

endogenous TDP43 is reduced by sTDP43 overexpression in HEK293T cells. EGFP n=1537, 

sTDP43-EGFP n=1997, 3 replicates, ****p<0.0001, two-tailed t-test. (E) Cytoplasmic 

endogenous TDP43 is elevated by sTDP43 overexpression in HEK293T cells. EGFP n=129, 

sTDP43-EGFP n=113, 3 replicates, ****p<0.0001, two-tailed t-test. (F) Primary mixed rat cortical 

neurons were transfected with EGFP or EGFP-tagged sTDP43, then immunostained using a C-

terminal TDP43 antibody. Red, nuclear ROIs determined by DAPI staining. (G) sTDP43 

overexpression resulted in a significant drop in nuclear, endogenous TDP43 in primary neurons 

(EGFP n=395, EGFP-sTDP43 n=323, 3 replicates, ****p<0.0001, two-tailed t-test), but this was 

not accompanied by increases in cytoplasmic, endogenous TDP43 (H) (EGFP=394, EGFP-

sTDP43=323, 3 replicates, ns by two-tailed t-test). Scale bar in (C), (F) 20 µm. 
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Figure 3.7. sTDP43 transcripts are enriched in lumbar motor neurons. (A) Sashimi plots 

depicting TARDBP splicing in murine frontal cortex homogenate (red) or microdissected lumbar 

motor neurons (blue). (B) Both sTDP43-1 and sTDP43-2 splice events are highly enriched in 

lumbar motor neurons compared to frontal cortex homogenate. Graph depicts read counts 

normalized to reads per million for each library (4 replicates, ****p<0.0001 multiple t-test with 

the Holm-Sidak correction). (C) While sTDP43-1 and -2 each comprise ~1% of the total 

TARDBP transcripts in frontal cortex homogenate, they make up 17 and 22% of total TARDBP 

transcripts in lumbar motor neurons, respectively (frontal cortex n=6, lumbar motor neurons n=4, 

*p<0.05, **p<0.01, ***p<0.001, two-way ANOVA with Sidak’s multiple comparison test). (D) 

sTDP43-1 is enriched within lumbar motor neurons microdissected from both control (n=9) and 

sALS (n=13) patient tissue. (E) sTDP43-1 makes up the majority of total TARDBP transcripts in 

both control and sALS patient lumbar motor neurons. 
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Figure 3.8. Endogenous sTDP43 is detectable in vivo by antibodies generated 

against its novel C-terminus. (A) Western blot of EGFP-tagged flTDP43 or 

sTDP43 overexpressed in HEK293T cells, demonstrating the insolubility of 

sTDP43 in RIPA buffer. Black arrowhead, endogenous TDP43; white arrowhead 

EGFP-flTDP43. (B) ICC using sTDP43 antibodies showed increased 

immunoreactivity in TEA-treated iNeurons and decreased immunoreactivity in 

TTX-treated iNeurons. (C) Density plot depicting the change in sTDP43 

immunoreactivity between conditions. Vehicle n=300, TEA n=354, TTX n=333, 

3 replicates, dashes indicate single neurons, * p<0.05, **** p<0.0001, 

Kolmogorov-Smirnov test. (D) IHC comparing the distribution of N-terminal 

TDP43 and sTDP43 in spinal cord and cortex from patients with sporadic (s)ALS 

and controls. (E) Quantification of cells with cytoplasmic sTDP43 in control and 

ALS patient spinal cord (control n=115, ALS n=110, data representative of two 

control and three ALS patients, ****p<0.0001, Fisher’s exact test). (F) IHC 

demonstrating neuronal and glial sTDP43 accumulation in cortex from individuals 

with sALS and controls. Scale bars in (B), (D), and (F) 20 µm. 
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Supplemental Figures 

  

Supplemental Figure 3.1. Multiple drivers of neuronal 

hyperexcitability upregulate N-terminal TDP43. (A) DIV 28 rat 

primary mixed cortical neurons treated with glutamate or bicuculline 

for 48h show an increase in N-terminal TDP43 immunoreactivity 

compared to vehicle-treated controls (Vehicle n=879, 2.5 μM 

bicuculline n=1166, 5 μM bicuculline n=837, 2.5 μM glutamate 

n=1315, 5 μM bicuculline n=1536, data represent two replicates, 

**** p<0.0001, one-way ANOVA with Dunnett’s post-test). (B) 

Representative images of TDP43 staining in vehicle- or bicuculline-

treated neurons. White arrows indicate cytosolic puncta. Scale bar in 

(B), 20 μM.  
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Supplemental Figure 3.2. Validation of Dendra2-tagged iPSC 

lines. iPSCs immunoblotted for both (A) N-terminal and (B) C-

terminal TDP43 indicate that both iPSCs lines are heterozygous for 

the insertion of Dendra2 (white arrow). Black arrow indicates 

untagged TDP43, GAPDH served as a loading control. 
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Supplemental Figure 3.3. The sTDP43 C-terminal tail shifts flTDP43 localization to the 

cytoplasm. (A) Rat primary mixed cortical neurons were transfected with mApple and EGFP-

tagged TDP43 isoforms, then imaged by fluorescence microscopy. (B) Much like EGFP-sTDP43, 

EGFP-flTDP43-tail is significantly more cytosolic than flTDP43-EGFP (EGFP n=303, EGFP-

flTDP43 n=308, EGFP-sTDP43 n=333, EGFP-flTDP43-tail n=256, consistent among 3 replicates, 

**p<0.01, ****p<0.0001, one-way ANOVA with Dunnett’s post-test). Scale bar, 20 µm.  
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Supplemental Figure 3.4. sTDP43 drives endogenous TDP43 mislocalization in a dose-

dependent manner. (A) HEK293T cells were transfected with EGFP or EGFP-tagged sTDP43, 

then immunostained using an antibody that recognizes the C-terminus of endogenous (endo) 

TDP43. Whole cell ROIs were determined by mApple fluorescence, and nuclear ROIs were 

determined by DAPI staining. Cells were sorted into quintiles based on EGFP fluorescence. (B) 

Endo TDP43 signal is comparable between cells overexpressing EGFP and sTDP43-EGFP at the 

whole cell level. However, nuclear endo TDP43 is reduced in a dose-dependent manner in cells 

overexpressing sTDP43-EGFP while cytosolic endo TDP43 increases in a dose-dependent 

manner. (C) Both low (Q1) and high (Q5) expression of sTDP43-EGFP results in a reduction in 

nuclear endo TDP43 (Q1 EGFP n=1117, Q1 sTDP43-EGFP n=638, Q5 EGFP n=1203, Q5 

n=1005, ****p<0.0001, two-tailed t-test). (D) Cytoplasmic endogenous TDP43 is elevated by the 

expression of sTDP43-EGFP in both low (Q1) and high (Q5) expressing cells (Q1 EGFP n=1599, 

Q1 sTDP43-EGFP n=1599, Q5 EGFP n=1419, Q5 sTDP43-EGFP n=1492, ****p<0.0001, two-

tailed t-test). 
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Supplemental Figure 3.5. Position of exogenous protein tags influence sTDP43 localization 

and binding. (A) Fluorescence microscopy of rodent primary mixed cortical neurons or (B) 

HEK293T cells expressing N- or C-terminally tagged sTDP43 (green) as well as the whole cell 

marker mApple (red). (C) Characterization of sTDP43 localization in HEK293T cells expressing 

C- or N-terminally tagged sTDP43 (sTDP43-EGFP n=196, EGFP-sTDP43 n=200). (D) sTDP43 

fused with an N- or C-terminal HaloTag was expressed in HEK293T cells and immunoprecipitated 

with HaloLink resin. Bound, endogenous TDP43 was immunoblotted with a C-terminal TDP43 

antibody. GAPDH served as a loading control. Input, (I); eluate, (E). (E) Quantification of data 

shown in (D), demonstrating the fraction of total TDP43 bound to HaloTag-sTDP43, sTDP43-

HaloTag, or HaloTag alone. Data were combined from 5 replicates, ****p<0.0001, one-way 

ANOVA with Dunnett’s post-test.quantified in (E). Scale bars in (A) 20 µm, (B) 10 µm.   
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Supplemental Figure 3.6. sTDP43 is deficient in splicing activity. (A) Schematic of the CFTR 

minigene reporter. TDP43-mediated splicing of the reporter results in exon 9 exclusion. Arrows 

indicate primers used to amplify the splice junction. (B-C) EGFP-flTDP43, but not EGFP-sTDP43, 

effectively excludes CFTR exon 9 in HEK293T cells overexpressing the reporter (3 replicates, 

*p<0.05, one-way ANOVA, Dunnett’s post-test). 
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Supplemental Figure 3.7. sTDP43 autoregulatory function is impaired. (A) Schematic of the 

TDP43 autoregulation reporter in which the fluorescent protein mCherry is fused to the TARDBP 

3’ UTR. (B) Rodent primary mixed cortical neurons overexpressing EGFP-flTDP43 show a 

significant reduction in reporter signal, consistent with autoregulation, while those overexpressing 

EGFP-sTDP43 do so to a lesser degree (EGFP n=2044, EGFP-flTDP43 n=2375, EGFP-sTDP43 

n=2208, 3 replicates, ****p<0.0001, one-way ANOVA, Dunnett’s post-test). (C) Fluorescence 

microscopy of rodent primary mixed cortical neurons demonstrating reduced reporter fluorescence 

in neurons co-expressing EGFP-flTDP43, in comparison to those co-expressing EGFP or EGFP-

sTDP43. (D) qRT-PCR of HEK293T cells overexpressing EGFP, EGFP-flTDP43, or EGFP-

sTDP43. Endogenous full-length TARDBP transcript was detected using primers that flank the 

stop codon, and transcript levels were normalized to GAPDH. *p<0.05, **p<0.01, one-way 

ANOVA with Dunnett’s post-test. (E) HEK293T cells overexpressing each construct were 

immunoblotted for C-terminal TDP43, with GAPDH serving as a loading control. Results 

quantified in (F) (4 replicates, * p<0.05, one-way ANOVA, Dunnet’s post-test). Scale bar in (C), 

10 µm.  
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Supplemental Figure 3.8. sTDP43 colocalizes with components of stress granules. (A) 

HEK293T cells were transfected with EGFP-tagged sTDP43 and immunostained using antibodies 

against the stress granule marker G3BP1 and endogenous TDP43. (B) Overexpressed sTDP43-

EGFP colocalizes with endogenous TDP43 and stress granule markers G3BP1 and TIA1 in 

HEK293T cells treated with 0.4M sorbitol. (C) Assessment of stress-dependent changes in 

flTDP43 and sTDP43 localization. HEK293T cells were transfected with each construct and then 

stressed with sorbitol as before. The distribution of each protein was characterized as primarily 

nuclear, primarily cytoplasmic, or both for each cell (flTDP43 + vehicle n=216, flTDP43 + sorbitol 

n=219, sTDP43 + vehicle n=200, sTDP43 + sorbitol n=158). Scale bar in (A) 20 µm, scale bar in 

(B), 10 µm.  
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Supplemental Figure 3.9. sTDP43 transcript abundance increases with age. Murine frontal 

cortex collected at 5 (pale blue) or 20 (purple) months of age show both a decrease in flTDP43 

and an increase in sTDP43-1 and -2 transcript abundance with age. This is observed in WT mice 

(A) as well as those that are hetero- (B) and homozygous (C) for TARDBP(Q331K) mutations. 

Graph depicts read counts normalized to reads per million for each library as a fraction of total 

TARDBP (4 replicates, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 multiple t-test with the 

Holm-Sidak correction). 
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Supplemental Figure 3.10. sTDP43 transcripts are present in a variety of tissue types and 

disease states. (A) Summary of previously published RNA-seq studies analyzed for sTDP43. (B) 

sTDP43-1 represents 30% of TARDBP transcripts in spinal cord ventral horn homogenate isolated 

from both control and sALS patients, with the remainder corresponding to flTDP43. (C) Similarly, 

sTDP43-1 makes up 30% of TARDBP transcripts in cerebellum, and 55% of TARDBP transcripts 

in frontal cortex. In each case, sTDP43-2 transcripts were largely undetectable, and there was no 

significant change in transcript isoform abundance in C9ALS or sALS patients compared to 

controls.   
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Supplemental Figure 3.11. Validation of the sTDP43-specific antibody. (A) The 

sTDP43 antibody specifically recognizes EGFP fused to the 18-amino acid C-terminus 

of sTDP43, but not EGFP alone. Preincubation with a peptide corresponding to the 

sTDP43 C-terminal tail abolishes the signal. (B) N2A cells were transiently transfected 

with artificial microRNA (amiRNAs) targeting TDP43, and proteins were separated 

by SDS-PAGE and immunoblotted using antibodies against N-terminal TDP43. Two 

bands were detected, the first at 43 kD corresponding to flTDP43 and the second at 33 

kD corresponding to sTDP43. GAPDH served as a loading control. (C) Compared to 

scrambled amiRNA, cells expressing amiRNA-TDP43 show a ~30% reduction of the 

43kD species and a ~65% reduction of the 33kd species (3 replicates, *p<0.05, 

**p<0.01, two-tailed t-test). (D) Immunoblotting with the sTDP43-specific antibody 

detects a 33 kD band (white arrow), as well as a non-specific band at ~55 kD (asterisk). 

(E) sTDP43 shows a ~40% reduction in cells expressing amiRNA-TDP43 compared 

to scrambled control. (F) DIV 28 rodent primary mixed cortical neurons were treated 

with 5 uM bicuculline for 48h and immunostained for sTDP43. Bicuculline-treated 

neurons show cytosolic sTDP43 inclusions that are absent in vehicle-treated controls. 

Scale bar in (F), 20 μM. 
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Supplemental Figure 3.12. Endogenous sTDP43 is expressed by neurons and glia in 

murine lumbar spinal cord. Immunohistochemistry in murine spinal cord, showing 

colocalization of sTDP43 immunoreactivity (green) with the neuronal marker NeuN (red) 

in the ventral horn (A) and with the astrocytic marker GFAP (B, purple). Scale bars (A) 

and (B), 200 µm. 
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Supplemental Figure 3.13. Endogenous sTDP43 is produced by human iPSC-derived 

astrocytes. (A) Immunocytochemistry using antibodies against flTDP43 (red) and sTDP43 

(green) in astrocytes differentiated from human iPSCs. (B) Reflecting their unique subcellular 

distributions, flTDP43 displays a significantly higher nuclear-cytoplasmic ratio (NCR) than 

sTDP43 (3 replicates, flTDP43 n=136, sTDP43 n=136, ****p<0.0001, two-tailed t-test). Scale bar 

in (A) 10 µm. 
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Supplemental Figure 3.14. Characterization of sTDP43 pathology in ALS-patient tissue. (A) 

Additional information for the control and ALS patient tissue used in these studies. PMI, post-

mortem interval; MSA-P, multiple system atrophy with Parkinsonism; DLB with AD, Dementia 

with Lewy bodies with concurrent Alzheimer’s Disease. (B) Percentage of cells with cytoplasmic 

sTDP43 identified in each control (gray) or ALS (black) patient. Number of cells counted per 

sample is listed below each column. (C) Characterization of sTDP43 localization for each patient. 

These data are further divided based on whether flTDP43 was nuclear (red) or cytoplasmically 

mislocalized (blue).  



 

148 

 

 

 

 

 

 

 

 

 

 

 

  

Supplemental Table 3.1. Amino acid sequence of the sTDP43 C-terminal tail is highly 

conserved. 
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Supplemental Table 3.2. Nucleotide sequence of the sTDP43-1 and -2 splice junctions are 

highly conserved. 
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Supplemental Table 3.3. Constructs and primer sequences used to generate iPSC lines. 
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Supplemental Table 3.4. Primary antibodies.  
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Supplemental Table 3.5. Primers used in RT PCR and CFTR assays.  
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Supplemental Table 3.6. Source and construction of plasmid vectors.  
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Chapter 4. Discussion and Future Directions 

 

4.1 Summary of contribution  

In this dissertation, we establish that TDP43 homeostasis is critical for cell health and plays 

important roles in RNA processing and stability. Given the integral role of TDP43 in RNA 

regulation, Chapter 2 reviews mechanisms that modulate RNA stability and how they are disrupted 

in neurodegenerative disease. In Chapter 3, we relate two cardinal features of ALS, 

hyperexcitability and TDP43 pathology, to describe a novel mechanism of TDP43 dyshomeostasis 

and demonstrate that truncated TDP43 isoforms, sTDP43-1 and -2, recapitulate signature 

pathologic features of ALS. This work offers potential insight into the late-onset, selective 

vulnerability of motor neurons in ALS, and reconciles gain- and loss-of-function mechanisms in 

disease pathogenesis. Further work in Appendix A describes the development of a technique to 

measure TDP43 homeostasis at the endogenous level via longitudinal fluorescence microscopy, a 

methodology further detailed in Appendix B. Despite these significant contributions to the ALS 

field, many questions remain. This chapter outlines outstanding questions and potential strategies 

to move this work forward.  

 

4.2 Hyperexcitability and alternative splicing  

In Chapter 3, we describe activity-dependent TARDBP alternative splicing events that 

result in the inclusion of a small exon encoding a unique 18-amino acid C-terminus. Neuronal 
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activity is a known regulator of alternative splicing1, but further studies are required to determine 

how activity modulates splicing in this context. 

The activity-dependent inclusion of small exons is not unique to sTDP43. Long considered 

to be genetic noise prior to advances in deep genome sequencing and computational methodology2, 

recent transcriptome-wide analyses highlight the biological relevance of small exons <20 amino 

acids in length3. Although inclusion or skipping of these microexons represents only 1% of all 

alternative splicing events, they constitute up to one-third of all conserved neuronally-regulated 

alternative splicing events between humans and mice4,5, and 90% of regulated microexons are 

included at the highest rates in neurons4. Moreover, 80-90% of microexons maintain an open 

reading frame4,5, allowing their inclusion to alter protein function or localization. Taken together, 

these studies suggest that microexon inclusion is a conserved neuronal phenomenon that leads to 

functional changes in proteins throughout the genome5. However, activity-dependent regulation of 

these splicing events is poorly characterized. To date, a small number of RNA-binding proteins 

including RBFOX, PTBP1, and nSR100 are shown to regulate microexon inclusion4–6, but future 

work is required to determine how activity alters these and other regulatory elements relevant to 

microexon splicing.  

Alternative splicing is regulated through a complex system in which the combined effect 

of both cis and trans elements determine differential expression of isoforms depending on tissue-

type, stage of embryonic development, and other external factors7–9. Cis elements include 

enhancers and silencers, or sites where trans-acting elements bind to increase or decrease the 

likelihood that a nearby splice site will be utilized, respectively. Proximity of cis elements to the 

splice site10,11, their accessibility due to RNA structure12, and combinatorial effects all determine 

if splicing occurs. These elements are also highly context dependent, such that an enhancer in one 

https://paperpile.com/c/rNyZUl/W80J
https://paperpile.com/c/rNyZUl/mnJE
https://paperpile.com/c/rNyZUl/99JK
https://paperpile.com/c/rNyZUl/l4kK+oOmB
https://paperpile.com/c/rNyZUl/l4kK
https://paperpile.com/c/rNyZUl/l4kK+oOmB
https://paperpile.com/c/rNyZUl/oOmB
https://paperpile.com/c/rNyZUl/oOmB+l4kK+AXvx
https://paperpile.com/c/rNyZUl/fx5m+Zl3D+GSJU
https://paperpile.com/c/rNyZUl/DCgT+otag
https://paperpile.com/c/rNyZUl/pf4H
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milieu may function as a silencer in another7,13. Intriguingly, some trans-acting splicing regulators 

are, themselves, regulated by neuronal activity. For example, hnRNPA2/B1 is a splicing 

regulator14 that is upregulated in response to neuronal activity through impaired unproductive 

splicing and translation (RUST)15, a process by which a protein regulates its expression through 

alternative splicing and destabilization of its own mRNA transcript16,17. A striking number of 

splicing factors and elements of the splicing machinery are regulated through RUST15,18–23, raising 

the question of whether hyperexcitability drives global changes in trans-acting splicing regulators 

through alternative splicing (Figure 4.1).  

Identification of activity-dependent regulators specific to sTDP43 alternative splicing 

could be explored in two parallel studies. First, the use of RNA-sequencing (RNA-seq) to identify 

trans-acting splicing factors that are differentially up or downregulated in response to neuronal 

activity. Numerous studies have employed this strategy to identify activity-modulated genes, in 

which hyperactivity was induced through chemically induced or electroconvulsive seizures in 

vivo24–27 or pharmacologically in cultured neurons28,29. Though more than 1000 genes are reported 

to be regulated by neuronal activity in this manner1,30, we are interested in regulators specific to 

motor neurons due to their selective vulnerability in ALS and the enrichment of sTDP43-1 and -2 

transcripts in this cell type. As such, any motor neuron-specific changes are likely to be diluted by 

surrounding cell types in vivo, and differentially expressed genes in the cultured hippocampal 

neurons used in most in vitro studies may not be applicable to motor neurons. As such, 

pharmacologically stimulated iPSC-derived motor neuron cultures31 are the ideal model system, 

though primary rodent spinal motor neurons are a viable alternative. RNA-seq comparing both 

differential gene expression and changes in alternative splicing may reveal relevant changes in 

trans regulatory elements, through RUST or some other means. Second, use of predictive 

https://paperpile.com/c/rNyZUl/RvlO+fx5m
https://paperpile.com/c/rNyZUl/Pzj3
https://paperpile.com/c/rNyZUl/1Ecj
https://paperpile.com/c/rNyZUl/ZTRx+vsTA
https://paperpile.com/c/rNyZUl/PyjM+1Ecj+D9n5+95tp+0ICo+peFc+Sm9H
https://paperpile.com/c/rNyZUl/8SmJ+h0n6+u2h3+5Qeh
https://paperpile.com/c/rNyZUl/gHZJ+yfcB
https://paperpile.com/c/rNyZUl/W80J+ScqI
https://paperpile.com/c/rNyZUl/boLr
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software32,33 could identify splice-site adjacent cis-acting regulatory elements within the TARDBP 

transcript. Moreover, this software could be used to further identify elements that resemble known 

binding sites of differentially expressed splicing factors identified via RNA-seq. The disease-

relevance of any activity-dependent regulatory elements identified through these studies could be 

further verified through knockdown or upregulation of trans-acting elements or steric hindrance 

of cis elements in hyperactive cultures to determine if elevated sTDP43 levels are returned to 

baseline.  

Though there are several avenues of study to identify how neuronal activity regulates 

TARDBP alternative splicing through both cis and trans elements, future work should also consider 

the possibility that the alternative splicing events that give rise to sTDP43 are not solely driven by 

activity. Ongoing studies seek to determine if other forms of stress such as hypoxia, osmotic stress, 

heat shock, etc. drive sTDP43 formation. If sTDP43 alternative splicing is, indeed, activity 

dependent, further work should explore sTDP43 pathology in other neurologic disorders that 

display hyperexcitability such as Alzheimer’s Disease34–36, Parkinson’s disease37,38, and 

epilepsy39. In contrast, if alternative splicing at this site is a generalized response to stress, we 

could extend this work to include traumatic brain injury, stroke, and other neurological disorders 

of interest. 

 

4.3 Autoregulation of sTDP43 

As described in Chapter 1, TDP43 is regulated through a negative feedback loop in which 

TDP43 binds the 3’ UTR of its own transcript, triggering alternative splicing within the 3’ 

UTR17,40, mRNA destabilization, and reduced protein expression16,17,41. In Chapter 3 we show that 

sTDP43 is unable to regulate flTDP43 via this mechanism, but it remains unclear if sTDP43 is 

https://paperpile.com/c/rNyZUl/NY1h+pgeu
https://paperpile.com/c/rNyZUl/Y7lf+iUND+E04A
https://paperpile.com/c/rNyZUl/Qn46+Okxk
https://paperpile.com/c/rNyZUl/krz5
https://paperpile.com/c/rNyZUl/4Z6re+vsTA
https://paperpile.com/c/rNyZUl/ZTRx+vsTA+ca4Av
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regulated by the full-length protein. Although previous studies indicate that only the full-length 

TARDBP transcript is subject to autoregulation42, work by Polymenidou et al. describes a TDP43 

isoform highly resembling sTDP43, termed isoform 3, that is significantly upregulated at both the 

transcript and protein level by extended TDP43 overexpression17. The same study shows a robust 

increase in isoform 3 following knockdown of the essential nonsense-mediated decay (NMD) 

component UPF1, suggesting that isoform 3 abundance is regulated by TDP43-mediated 

alternative splicing and subsequent NMD. Though sTDP43 is not a predicted target of NMD due 

to loss of the canonical TDP43 stop codon, additional downstream splicing events would render it 

an NMD substrate.  

 To determine if flTDP43 regulates sTDP43 in a manner similar to isoform 3, sTDP43 levels 

could be examined via qRT-PCR, western blotting, and ICC following overexpression of flTDP43. 

These studies could then be repeated in the absence of UPF1 or other NMD components to 

determine if the sTDP43 transcript is an NMD target. If inhibition of NMD results in elevated 

sTDP43, further characterization of downstream splicing events could be accomplished via 3’ 

Rapid Amplification of cDNA ends (RACE), a technique that utilizes the mRNA poly(A) tail as a 

generic priming site to identify mRNA sequences that result from unknown splicing events within 

the 3’ UTR. RACE performed in the presence and absence of exogenous TDP43 could further 

verify that flTDP43 mediates sTDP43 splicing, as well as identify any downstream splicing events 

that render sTDP43 a target of NMD.  Finally, disruption of any identified downstream splicing 

events through mutagenesis of common splice donors or acceptors to determine if they influence 

sTDP43 levels would conclusively determine whether sTDP43 is an NMD substrate. Together, 

these studies will provide mechanistic insight into the regulation of sTDP43, and may be extended 

to determine how this isoform is dysregulated in the context of ALS.  

https://paperpile.com/c/rNyZUl/qQVa
https://paperpile.com/c/rNyZUl/vsTA
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4.4 Exploration of endogeneous sTDP43 functions 

sTDP43 isoforms are highly conserved in humans, non-human primates, and lesser 

mammals at the transcript and protein levels, and this evolutionary conservation suggests that these 

isoforms could fulfill unknown functions, perhaps involving a compensatory response to chronic 

neuronal hyperactivity or generalized stress. However, further studies are needed to determine 

whether native sTDP43 performs essential functions in motor neurons or other cell types. 

In Chapter 3, we show that sTDP43 transcripts are significantly enriched in murine and 

human lumbar motor neurons and are present at low levels in the murine frontal cortex. We also 

identify sTDP43 pathology in both neurons and astrocytes, indicating that sTDP43 levels vary 

across cell types. To further characterize cell-type specific sTDP43 transcript levels, examination 

of previously published RNA-seq data derived from either post-mortem tissue or iPSC-derived 

cells relevant to ALS (e.g. glia, muscle, von Economo neurons) could reveal the general abundance 

of sTDP43 in various cell and tissue types. However, given that independent RNA-seq studies are 

difficult to compare due to differences in sample preparation and sequencing methodology, parallel 

studies could examine the relative sTDP43 abundance in forebrain-like neurons43, motor 

neurons31, and astrocytes44 derived from the same line of iPSCs. Identification of relative transcript 

and protein abundance via qRT-PCR and immunostaining, respectively, may indicate the 

importance of sTDP43 in each cell type and determine if high sTDP43 transcript levels are specific 

to motor neurons.  

To determine if sTDP43 serves a necessary function in these cell types, CRISPR/Cas9 

genomic engineering could be used to disrupt the splice acceptor common to both sTDP43-1 and 

-2, thereby blocking its formation and creating a sTDP43-null iPSC line. This line could be 

https://paperpile.com/c/rNyZUl/KpPi
https://paperpile.com/c/rNyZUl/boLr
https://paperpile.com/c/rNyZUl/CTNC
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differentiated into forebrain-like neurons, motor neurons, or astrocytes, and subsequent survival 

assays could assess whether the absence of sTDP43 is protective or toxic, shedding light on its 

importance to cell health in each cell type. It is also possible that the generation of sTDP43 is a 

compensatory response to stress, and further survival studies performed in the presence of 

excitotoxic stress or other stressors could determine if sTDP43 formation extends survival. Finally, 

these iPSC lines could be used to probe non-cell autonomous effects of sTDP43, wherein 

cocultures of astrocytes and motor neurons with and without the capacity to generate sTDP43 

could be assayed for health, survival, and sTDP43 or flTDP43 pathology.   

 

4.5 Further exploration of sTDP43-mediated toxicity 

In Chapter 3, we demonstrate that sTDP43 sequesters endogenous TDP43 within 

cytoplasmic aggregates and induces its clearance from the nucleus, thereby recapitulating 

signature pathologic changes found in the majority of individuals with ALS. Consistent with these 

findings, sTDP43 overexpression is toxic to mammalian neurons, suggesting that 

neurodegeneration results from complementary gain- and loss-of-function mechanisms. However, 

further studies are required to characterize sTDP43-mediated toxicity.  

TDP43 is an essential protein involved in several RNA processing events, and small 

changes in the localization and expression level of this protein are sufficient to disrupt critical cell 

processes. As such, cytosolic sequestration and nuclear clearance of TDP43 may contribute to cell 

death through a loss-of-function mechanism. In addition, sTDP43 inclusions may exert a toxic 

function of their own through the recruitment and disruption of other proteins and mRNA 

transcripts. In this manner, sTDP43 may drive neurodegeneration through a gain-of-function 

mechanism comparable to that proposed for C-terminal TDP43 fragments45–47. To assess sTDP43 

https://paperpile.com/c/rNyZUl/ROcGj+PKDmE+n1FxB
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gain- or loss-of-function toxicity in an unbiased manner, ongoing RNA-seq studies aim to compare 

the transcriptome of HEK293T cells overexpressing sTDP43 to flTDP43 overexpression or 

knockdown. Examination of the differentially expressed transcripts and changes in alternative 

splicing will allow us to determine both the individual transcripts and general pathways in which 

sTDP43 expression resembles the accumulation or reduction of flTDP43. Further studies are 

required to determine if restoration of these pathways rescue sTDP43-mediated toxicity. 

Moreover, given that these studies rely on high levels of exogenous protein expression, the disease 

relevance of any dysregulated pathways can be determined through comparison to existing RNA-

seq data sets from iPSCs, iNeurons, and post-mortem ALS patient tissue.  

Though the aforementioned RNA-seq studies are useful in determining ways in which 

sTDP43 contributes to the loss of TDP43 function, they are limited to the generalized effect of 

sTDP43 overexpression that is not necessarily specific to cytosolic sequestration of critical cellular 

components48. To further explore the gain-of-function toxicity associated with sTDP43, I suggest 

two studies to examine a.) proteins, and b.) mRNA transcripts sequestered within these inclusions.  

TDP43 reversibly localizes to stress granules in response to various conditions49–52, and 

forms reversible homo- and heterotypic interactions with other RNA-binding proteins via its low-

complexity domain49,53,54. The loss of this low-complexity domain in sTDP43 may alter the 

dynamics of these protein-protein interactions, leading to irreversible, permissive binding with 

stress granule proteins and other known TDP43 binding partners55. To identify proteins bound in 

sTDP43 inclusions, we could employ a stable isotope labeling with amino acids in culture (SILAC) 

strategy in combination with liquid chromatography and tandem mass spectroscopy (LC-

MS/MS)56,57. To do so, HEK cells overexpressing HaloTagged sTDP43 would be incubated in 

media containing the “heavy” isotopic forms of arginine and lysine for several days to ensure 

https://paperpile.com/c/rNyZUl/fpTC
https://paperpile.com/c/rNyZUl/5R6V+Z3tz+ExmS+dRCv
https://paperpile.com/c/rNyZUl/89Gd7+5R6V+iEVS
https://paperpile.com/c/rNyZUl/ZnQ6
https://paperpile.com/c/rNyZUl/FVKv+PBFZ
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complete incorporation of the isotopic amino acids, while HEK293T cells expressing HaloTag 

alone are incubated in unlabeled “light” media. After sufficient incorporation, both conditions 

would be mixed in equal parts to reduce experimental variability, and sTDP43 would be 

immunoprecipitated along with any bound proteins using HaloLink Resin. Samples would then be 

isolated, digested, and submitted for LC-MS/MS, and any proteins bound to sTDP43-HaloTag at 

a higher rate than HaloTag alone would be identified based on the mass difference due to the 

incorporation of the heavy isotopes, indicated by an increase in the mass to charge ratio (m/z) 

(Figure 4.2A). Mapping these results to known protein sequences58 would reveal specific proteins 

bound by sTDP43. Similar studies by Dammer et al. show the enrichment of stress granule 

components G3BP1, PABPC1, and eIF4A1 in the detergent-insoluble fraction of HEK293T cells 

overexpressing sTDP43 relative to those overexpressing flTDP4359, and we verify their finding 

that exogenous sTDP43 colocalizes with stress granule markers in Chapter 3. Taken together, these 

data suggest that cytosolic sTDP43 may disrupt normal stress granule dynamics, as sTDP43 lacks 

the glycine rich domain that mediates reversible protein-protein interactions required for stress 

granule disassembly49,53,54. As such, these proposed experiments would reveal if stress granule 

components directly interact with cytoplasmic sTDP43 and provide an unbiased means of 

identifying other components within these inclusions. 

In addition to protein, sTDP43 inclusions may bind and sequester mRNA transcripts. 

TDP43 is an RNA-binding protein and recognizes over one third of all transcribed genes in the 

human genome17,40,60,61 through RNA recognition motifs that are intact in sTDP43. Moreover, 

preliminary results show that cytosolic sTDP43 inclusions colocalize with nucleic acid. To 

determine which mRNA transcripts are sequestered in these inclusions, HaloTagged sTDP43 or 

HaloTag alone could be immunoprecipitated from HEK293T cells in conditions that maintain 

https://paperpile.com/c/rNyZUl/12cC
https://paperpile.com/c/rNyZUl/imYw
https://paperpile.com/c/rNyZUl/89Gd7+5R6V+iEVS
https://paperpile.com/c/rNyZUl/vsTA+dlcvN+h6Wn+4Z6re
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protein-RNA interactions. Eluted RNA would be submitted for RNA-sequencing to examine the 

subset of the transcriptome sequestered in these inclusions (Figure 4.2B). If sufficient amounts of 

RNA cannot be isolated using this protocol, we could employ a candidate-based approach to assess 

the enrichment of specific transcripts using qRT-PCR. Finally, to assess the contribution of RNA 

sequestration to neurodegeneration, further work could abolish sTDP43 RNA binding ability to 

determine if that is sufficient to rescue sTDP43-mediated toxicity62. In this manner, these studies 

would thoroughly characterize the protein and mRNA transcripts sequestered in sTP43 cytosolic 

inclusions and assess how sTDP43 contributes to neurodegeneration.  

 

4.6 Modulating sTDP43 as a therapeutic strategy for ALS* 

Given that we detect sTDP43 in ALS patient tissue and sTDP43 overexpression 

significantly increases the risk of neurodegeneration in rat cortical neuron models, future work 

should explore the knockdown or removal of this isoform as a therapeutic strategy for ALS. 

Antisense oligonucleotides (ASOs), or short, single-stranded oligomers that bind to 

complementary RNA sequences, can alter protein expression through a variety of mechanisms, 

including RNase-H recruitment to trigger transcript degradation58,59 or steric inhibition of 

translation machinery60. However, given that tight regulation of TDP43 levels is essential for cell 

health, an ideal therapeutic strategy blocks sTDP43 formation and leaves the TARDBP transcript 

intact. Previous work demonstrates that ASOs complementary to splice sites can modulate splicing 

through the steric inhibition of the spliceosome; ASO-mediated splicing correction was first 

described as a therapeutic strategy in 1993, and has since been used in a variety of contexts 

                                                 
* This therapeutic strategy was first described in grant proposal by Sami Barmada, and subsequent discussions 

informed this section.    

https://paperpile.com/c/rNyZUl/7K2Q
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including diabetes and cancer61–65. Recently, and perhaps most notably, ASOs were determined to 

be remarkably effective in treating children with spinal motor atrophy (SMA) by blocking 

alternative splicing of the gene SMN2 to generate sufficient SMN protein and rescue the muscle 

weakness, limited mobility, and reduced lifespan characteristic of SMA65–68. Although the genetic 

therapeutic targets for SMA are considerably less complicated than those of ALS, we have shown 

that sTDP43 pathology is driven by hyperexcitability displayed by approximately 80% of ALS 

patients69. If sTDP43 pathology is further verified as a common feature in sporadic and heritable 

ALS and sTDP43-mediated toxicity is identified as a common mechanism of disease pathogenesis, 

interruption of its formation could be widely beneficial for a significant number of ALS patients.  

To test this therapeutic strategy, we are working in collaboration with Ionis 

Pharmaceuticals, Inc. to generate ASOs that bind to both splice donors and the shared splice 

acceptor in TARDBP Exon 6 and 3’UTR, respectively. Following identification of ASOs that 

effectively inhibit sTDP43 formation, their effects on survival in rodent primary neuron or iNeuron 

models of ALS can be determined via longitudinal fluorescence microscopy. Initial experiments 

should explore how ASOs alter survival in control neurons to determine if sTDP43 plays a 

functional role in healthy cells or if it is purely pathogenic. Given that a.) sTDP43 is highly 

conserved and b.) its transcript is the dominant TARDBP species in both control and ALS human 

spinal motor neurons, its formation is likely not merely an aberrant process. However, its role, if 

any, in healthy cell function is yet to be determined.  

Following establishment of a reliable survival phenotype in iNeurons derived from ALS 

patients – potentially those with C9orf72 and TARDBP mutations that display initial 

hyperexcitability70,71 – we can assess the effect of ASOs on survival via longitudinal fluorescence 

microscopy. If ASOs effectively rescue toxicity in C9orf72 and TDP43 mutant iNeurons, studies 

https://paperpile.com/c/rNyZUl/GNLZ+aF1Y+VEfb+8mWZ+6nEf
https://paperpile.com/c/rNyZUl/6nEf+NbKY+Uxop+IImL
https://paperpile.com/c/rNyZUl/Lm5D
https://paperpile.com/c/rNyZUl/K08y+05sm


 

165 

 

could be extended to iNeurons derived from sporadic ALS patients or patients with other disease-

associated mutations. Such studies could also extend into ALS animal models to determine if ASO 

treatment extends survival, delays motor deficits, or alters TDP43 pathology.  

 

4.7 Concluding remarks  

 ALS is a devastating neurodegenerative disorder that affects thousands of people each year. 

Despite remarkable progress in understanding the genetics and biology that underlie ALS, there 

are currently no disease-altering therapies available to afflicted patients. In this work, we described 

a novel pathway of TDP43 dyshomeostasis and developed a technology to better study the 

metabolism of this protein in a iPSC-derived neuron model of ALS. However, a great deal of work 

remains, including if and how to exploit this novel pathway to prevent or slow neurodegeneration 

in ALS. Together with the continued work of myself and others, the findings and proposed 

experiments outlined in this dissertation are a step toward the identification of safe, accessible, and 

effective therapies for ALS.  
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Figures 

 

 

 

 

 

 

 

 

 

Figure 4.1. Proposed mechanism for activity-dependent regulation of trans-acting splicing 

factors. (A) In healthy cells, regulated unproductive splicing and translation balances levels of 

various trans-acting activators (green) and repressors (red). The abundance and ratio of these 

factors results in low levels of sTDP43 splicing via binding to enhancers (green lines) and silencers 

(red lines) within the TARDBP transcript. (B) In hyperactive cells, disruption of RUST results in 

unbalanced activator and repressor homeostasis. As a result, the sTDP43 splice site is more heavily 

utilized, leading to sTDP43 pathology.  
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Figure 4.2. Identification of proteins and mRNA transcripts sequestered by sTDP43. (A) To 

examine sTDP43-protein interactions, HEK293T cells transfected with HaloTagged sTDP43 

(green) will be cultured in heavy medium (red), and cells transfected with HaloTag alone will be 

cultured in light medium (pink). Following immunoprecipitation of the sTDP43-protein 

complexes (orange, purple), they will be digested with trypsin and submitted for liquid 

chromatography followed by tandem mass spectroscopy. (B) To identify sTDP43-RNA 

interactions, HEK293T cells overexpressing HaloTagged sTDP43 or HaloTag alone will be 

immunoprecipitated. Bound RNA will eluted and submitted for RNA-seq. 



 

172 

 

Appendix A. Single-cell TDP43 Synthesis and Metabolism in Human iPSC-derived 

Neurons 

 

A.1 Introduction 

 Although TDP43 dysregulation is observed in the majority of ALS patients, the 

mechanisms underlying its accumulation remain unclear. TDP43-positive inclusions in ALS 

patient tissue are highly ubiquitinated1,2, suggesting that protein turnover is impaired in disease. In 

support of this, full-length TDP43 and its truncated 25 kDa and 35 kDa fragments are degraded 

through both the ubiquitin proteasome system (UPS)3–5 and autophagy6–9, and disease-associated 

mutations confer resistance to TDP43 degradation10. Moreover, compounds that enhance TDP43 

turnover mitigate toxicity in primary neurons, suggesting that modulating TDP43 metabolism may 

be a potential therapeutic strategy for ALS11. However, most studies exploring TDP43 degradation 

primarily rely on overexpression models5,11,12, and given that even slight changes in TDP43 levels 

are sufficient to disrupt cell function13, supraphysiologic expression of TDP43 may mask 

phenomena relevant to human disease.  

Here, we established a model system to monitor endogenous TDP43 metabolism in neurons 

differentiated from control and ALS patient-derived induced pluripotent stem cells (iPSCs). Future 

work seeks to utilize this system to determine if TDP43 turnover is altered in patients harboring 

mutations in TARDBP or C9orf72, but this appendix will focus on the development of this 

technology, characterization of its capabilities, its drawbacks, and how we may apply it in the 

future.   

https://paperpile.com/c/EfZqBP/hvy1+iuV3
https://paperpile.com/c/EfZqBP/MoNo+ya0D+UQcu
https://paperpile.com/c/EfZqBP/6pMS+BofC+iYVG+3Jv4
https://paperpile.com/c/EfZqBP/y86g
https://paperpile.com/c/EfZqBP/aXE0
https://paperpile.com/c/EfZqBP/UQcu+AfAE+aXE0
https://paperpile.com/c/EfZqBP/uy8i
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A.2 Results 

 

A.2.1 Labeling native TDP43 in an iNeuron model of ALS   

To investigate TDP43 metabolism in the context of human disease, we established an 

iPSC-derived neuron (iNeuron) model system in which endogenous TDP43 is tagged with 

Dendra2, a photoswitchable protein that irreversibly converts from green to red fluorescence 

following exposure to 405 nm light14. To label native TDP43, we utilized CRISPR/Cas9 genome 

editing to introduce the Dendra2 open reading frame (ORF) into the TARDBP locus of control and 

ALS patient-derived iPSCs (Table A.1). We selected a dual nickase strategy to minimize the risk 

of unintended insertions and deletions15, wherein two single-guide RNAs (sgRNAs) directed 

Cas9(D10A) to induce single-stranded nicks immediately upstream and downstream of the 

TARDBP stop codon. In addition, a vector containing the Dendra2 ORF flanked by 400 bp of 

homologous sequence 5’ and 3’ to the TARDBP stop codon was introduced to facilitate homology 

directed repair (HDR), thereby appending Dendra2 to the C-terminus of TDP43 (Figure A.1A). 

Positive cells were selected based on Dendra2 fluorescence, and unique clones were positively 

selected and enriched by sequential passaging until a homogeneous population was achieved. PCR 

and western blotting confirmed the successful insertion of the Dendra2 ORF upstream of the 

TARDBP stop codon, and further indicated that most lines were heterozygous for the insertion 

(Figure A.1B). Exposing the resultant lines to 405 nm light was sufficient to convert TDP43-

Dendra2 fluorescence from green to red, further confirming the presence and functionality of 

integrated Dendra2 (Figure A.1C).   

Next, to ensure reliable and efficient differentiation of iPSCs into iNeurons, we utilized 

transcription activator-like endonucleases (TALENs) specific for the CLYBL safe harbor locus to 

integrate the transcription factors Neurogenin 1 and 2 (Ngn1-2) under a doxycycline-inducible 

https://paperpile.com/c/EfZqBP/7ipT
https://paperpile.com/c/EfZqBP/4w5v
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promoter (Figure A.1D). Expression of these factors is sufficient to drive the differentiation of 

iPSCs into iNeurons that display immunocytochemical and electrophysiological properties of 

glutamatergic, forebrain-like neurons within 2 weeks, as demonstrated by others and described in 

Chapter 316–18 (Figure A.1E,F).  

 In this manner, we introduced Dendra2 and Ngn1-2 to iPSC lines derived from both healthy 

controls and ALS patients, such that a.) native TDP43 is fluorescently labeled with the 

photoconvertible protein Dendra2, and b.) these lines can be reliably and rapidly differentiated into 

a pure population of forebrain-like neurons.  

 

A.2.2 Tracking TDP43 metabolism and survival at the single-cell level  

We next utilized optical pulse labeling (OPL), a technique that enables non-invasive 

measurements of protein turnover using Dendra211,14. Following a pulse of 405 nm light, we can 

monitor the loss of photoconverted red signal and the return of newly-synthesized green signal to 

follow native TDP43 degradation and synthesis, respectively. To aid in these studies, we utilized 

longitudinal fluorescence microscopy (LFM), a technique that allows us to follow individual cells 

over time19. In this manner, we can determine the rate of TDP43 synthesis and degradation on a 

single-cell level and prospectively relate TDP43 metabolism to neuronal fate.   

For each experiment, we determined baseline TDP43-Dendra2 fluorescence for hundreds 

of Day 14 iNeurons per condition, photoconverted, and monitored the return of the green signal 

and the disappearance of the red signal over the following 24 hours (Figure A.2A). Changes in 

fluorescence level were used to calculate TDP43 half-life and doubling rate for each cell. We 

observed a high degree of intercellular variability across all experiments, but median TDP43 

https://paperpile.com/c/EfZqBP/2E61W+TjTVr+MI5j6
https://paperpile.com/c/EfZqBP/aXE0+7ipT
https://paperpile.com/c/EfZqBP/0eiN
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doubling rate in control iNeurons was determined to be 20.8h (Figure A.2B) and median TDP43 

half-life was 32.6h (Figure A.2C), which is comparable to previous findings20–22.  

Following OPL, we utilized LFM to determine the time of death for each cell to relate 

TDP43 metabolism and survival. We optimized these experiments such that control iNeurons died 

off gradually over the course of 2-3 weeks (Figure A.2D). Although there is no significant 

relationship between control iNeuron survival in steady-state TDP43 levels (Figure A.2E) or 

TDP43 half-life (Figure A.2F), potential relationships may appear when these studies are extended 

to iNeurons harboring mutations in C9orf72 or TARDBP.  

 

A.3 Discussion 

Thus far, we have established a method to monitor native TDP43 metabolism and relate it 

to cell survival in an iNeuron model system. Doing so required considerable intellectual and 

emotional endurance, and I highly recommended that anyone who wishes to utilize this system 

speaks directly to myself or another contributing author to fully understand the challenges 

summarized below.  

The primary challenges were threefold: First, if TDP43 metabolism is altered in ALS, it is 

predicted to be a subtle effect given that relatively minor changes in TDP43 levels are sufficient 

to drive neurodegeneration11,23–25 and the peak age of ALS onset is 50-60 years old26. This, in 

combination with the lengthy and nuanced protocol required for these studies, raises concern that 

technical variation between replicates may mask disease-specific phenomena. This informed our 

decision to differentiate iNeurons via the integration of Ngn1-2, which ensures a homogeneous 

population of iNeurons. We were also rigorous in adhering to a consistent protocol, but 

unavoidable differences in iPSC passage number, age/strength of the lamp used for 

https://paperpile.com/c/EfZqBP/bTwf+9k59+GqlU
https://paperpile.com/c/EfZqBP/tSh97+spMaI+uVDP8+aXE0
https://paperpile.com/c/EfZqBP/lI0H
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photoconversion, minor environmental changes, etc. may significantly contribute to experimental 

variability.  

Second, LFM requires each population of cells to gradually die within a reasonable time 

frame. We found that media changes, light exposure, and cell density are all factors that contribute 

to cell death, and the shearing force of a media change, an extended photoconversion, or low cell 

density are sufficient to kill iNeurons en masse. Conversely, other populations of iNeurons seem 

to survive indefinitely, or die at a rate too slow to compare toxicity between populations. 

Ultimately, we identified a combination of substrate, neuron density, photoconversion time, and 

imaging media that resulted in ~80% cell death within 2 weeks for healthy control iNeurons. 

However, if these conditions are suitable for iNeurons derived from other iPSC lines remains to 

be seen.  

Third is the challenge of properly visualizing both iNeurons and TDP43-Dendra2. 

Identifying and tracking individual neurons over several weeks requires culture conditions in 

which the cells remain adherent and maintain a monolayer. We tested several substrates and 

identified a combination of polyethyleneimine27 and laminin that works in most cases. The correct 

cell density is also critical, as denser plates are far more likely to form clumps, but sparse cultures 

die at accelerated rates. Moreover, we are experiencing ongoing issues with a signal to noise ratio 

when monitoring TDP43 metabolism. Endogenous TDP43 tagged with Dendra2 is dim at steady 

state levels, and only a portion of the fluorescent protein is photoconverted during OPL. However, 

extended exposure to 405 nm light is toxic, so it is critical to strike a balance between 

photoconversion efficiency and phototoxicity. We addressed this by developing an imaging media 

that is both colorless to avoid optical scattering and includes photostable replacements for 

phototoxic media components. Additionally, we performed all OPL experiments on the 

https://paperpile.com/c/EfZqBP/UEwo
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ImageXpress Micro Device that is equipped with a highly sensitive camera. Even so, the low signal 

to noise ratio complicates our ability to reliably detect subtle changes in native TDP43 synthesis 

and degradation. Although regenerating multiple iPSC lines would be a considerable undertaking, 

this issue could potentially be resolved by replacing Dendra2 with a brighter photoconvertible 

protein, such as Kaede28 or mEos229. Finally, visualizing native TDP43 is complicated by the 

presence of autofluorescent material that is often adherent to live cells. Autofluorescence is most 

significant in the red channel, and this material is often brighter than photoconverted TDP43-

Dendra2 itself. Inclusion of any autofluorescent signal can interfere with accurate measurements, 

and it often overlaps the desired ROI. RFP signal also increases in dying cells, with slight changes 

in the focal plane, and as cells become more spherical during their normal migration around the 

plate. These observations further indicate that careful selection of cells and extremely consistent 

experimental practice are required to minimize artifacts and accurately measure TDP43 

metabolism in this model system.  

With this in mind, future studies will focus on boosting the signal to noise ratio to increase 

confidence in our results, as well as the careful characterization of TDP43 synthesis and half-life 

in iNeurons harboring mutations in C9orf72 and TARDBP.  

 

A.4 Materials and Methods 

 

A.4.1 Generation and maintenance of iPSCs 

Fibroblasts were reprogrammed, validated, and maintained as previously described30,31. In 

brief, iPSC lines were cultured in Essential 8 (E8) media (Gibco A1517001) on plates coated with 

vitronectin (Gibco A14700) diluted 1:100 in Mg2+/Ca2+-free phosphate buffered saline (PBS, 

https://paperpile.com/c/EfZqBP/r7eo
https://paperpile.com/c/EfZqBP/wM0c
https://paperpile.com/c/EfZqBP/cMBJL+4zLR
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Gibco 14190-144). Cells were passaged every 5d using 0.5 mM EDTA (Sigma E7889) followed 

by gentle trituration in E8 media with a P1000 pipette. All lines are verified mycoplasma-free on 

a monthly basis. 

 

A.4.2 Tagging native TDP43 with Dendra2 

Endogenous TDP43 was tagged with Dendra2 as described in Chapter 3, where iPSCs 

transfected with pX335 vectors encoding Cas9(D10A) and sgRNA pairs targeting sequences 

flanking the TARDBP stop codon. Cells were co-transfected with an HDR vector encoding the 

Dendra2 open reading frame flanked by 400 bp of sequence homologous to that surrounding the 

TARDBP stop codon (in pUC-minus(M), synthesized by Blue Heron, LLC). To generate isogenic 

TDP43 M337V and A315T mutant lines, the upstream homologous sequence was extended and 

altered to encode the desired TARDBP mutation. Fluorescent cells were selected and successively 

passaged to generate iPSC colonies in which 100% of cells expressed Dendra2-labeled TDP43.  

 

A.4.3 Integration of Ngn1/Ngn2 cassette into iPSCs 

The Ngn1/2 cassette was integrated into iPSC TDP43-Dendra2 lines as described in 

Chapter 3. In short, iPSCs were transfected in mTESR-1 media (Cell Technologies 85850) with 

2.5 µg of donor DNA and 1.25 µg of each targeting construct using Lipofectamine Stem 

(Invitrogen STEM00003) and screened for red fluorescence. Partially positive colonies were 

selected and enriched until a homogeneous population was established.  
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A.4.4 iNeuron differentiation 

The differentiation of iPSCs into iNeurons was performed as described in Chapter 3, with 

the notable exception that cells were plated on Ibidi 96w μ-plates with an optically clear bottom to 

aid in detecting low TDP43 signal (Ibidi 89626) that were coated with 0.2% polyethyleneimine27 

and 10 μg/ml laminin. In short, iPSCs were split at a low density into 96w plates, and differentiated 

with the addition of doxycycline, B27 Supplement, N2 Supplement, BDNF, NT3, and laminin 

over 2 weeks.  

 

A.4.5 Optical pulse labeling  

  Neurons were transferred from differentiation media into imaging media (1x SOS (M09-

50 Cell Guidance Systems), 1x Glutamax Supplement (Gibco 35050-061), 10 ng/ml BDNF, 10 

ng/ml NT3, 0.2 µg/ml laminin, and 2 mg/ml doxycycline in Phenol-free Neurobasal-A (Gibco 

12349-015)), and imaged with an ImageXpress Micro (Molecular Devices) equipped with a 20x 

objective lens. Baseline images were taken in brightfield, the GFP channel (Semrock FITC-3540B-

NTE-ZERO filter), and the RFP channel (Semrock TxRed-4040C-NTE-ZERO filter) prior to 

photoconversion to establish background fluorescence levels. Photoconversion was accomplished 

using a 2s DAPI (Semrock Brightline DAPI-5060-NTE-ZERO filter) exposure, and neurons were 

immediately reimaged in brightfield, GFP, and RFP. Cells were then imaged at 3h intervals in a 

recurring loop for 12h, and again at 24h post-conversion, while maintaining 5% CO2, humidity, 

and a temperature of 37°C.  

 

https://paperpile.com/c/EfZqBP/UEwo
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A.4.6 Longitudinal fluorescence microscopy and image processing 

Neurons were imaged as described previously32,33 and in Chapter 3, using a Nikon Eclipse 

Ti inverted microscope with PerfectFocus3a 20X objective lens and either an Andor iXon3 897 

EMCCD camera or Andor Zyla4.2 (+) sCMOS camera. A Lambda XL Xenon lamp (Sutter) with 

5 mm liquid light guide (Sutter) was used to illuminate samples, and custom scripts written in 

Beanshell for use in μManager controlled all stage movements, shutters, and filters. Brightfield 

images were taken at ~24h intervals for 10-20d following OPL until the majority of cells had died 

or lifted off the plate. Following each experiment, both OPL and LFM images were background 

subtracted (Rolling Ball radius = 40) and stacked such that each cell could be tracked over time19. 

A custom graphical user interface was developed to manually generate a unique ROI for each 

neuron to a.) measure changes in green and red fluorescence and b.) identify the time of death for 

each neuron based on rounding of the soma and degeneration of neuritic processes19.  

 

A.4.7 Data Analysis  

To calculate the TDP43 half-life for each cell, we normalized each timepoint to the cell’s 

pre-conversion fluorescence and subtracted the fluorescent floor using the following equation, 

where “XT” represents the RFP signal at a given time point post-conversion.  

 

          ((Post-conversion - Pre-conversion) - (Post-conversion - XT)) 

Normalized XT  =                 

          (Post-conversion - Pre-conversion)  

 

The fluorescent intensity was then plotted over time, and slope of the resultant line was used to 

calculate TDP43 half-life for each individual cell.   

 

https://paperpile.com/c/EfZqBP/GNfqR+e1DDa
https://paperpile.com/c/EfZqBP/0eiN
https://paperpile.com/c/EfZqBP/0eiN
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Table A.1. Addition information for iPSCs used in these studies.  
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Figure A.1. Establishment of an iNeuron model system to monitor native TDP43 

metabolism. (A) Schematic depicting the insertion of Dendra2 upstream of the TARDBP 

stop codon. (B) Immunoblotting reveals that all lines are heterozygous for the insertion of 

Dendra2, excluding ALS-C9-1, which is homozygous. Black arrow indicates untagged 

TDP43 at 43 kD, white arrow shows the TDP43-Dendra2 fusion protein at 70 kD. (C) 

Successful integration of Dendra2 results in the expression of endogenous green TDP43 

localized to the nucleus (pre). Following a pulse of 405 nm light (blue box), the fluorescence 

is shifted from green to red (post). Image depicts a partially-enriched colony. (D) Schematic 

depicting the insertion of transcription factors Ngn1 and Ngn2 into the CLYBL safe harbor 

locus under a dox-inducible promoter (tetO). (E) Timeline depicting the differentiation of 

iPSCs into forebrain-like neurons within 2w of doxycycline addition. (F) The resultant 

neurons express the neuronal markers Vglut1 and Tuj1. Scale bar in (F), 20 μm.   
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Figure A.2. TDP43 half-life, doubling rate, and survival in control iNeurons. (A) 

Representative images illustrating optical pulse labeling. At baseline, TDP43-Dendra2 fluoresces 

green, but following photoconversion (blue line) a portion of the protein is converted to red. Return 

of the green signal and the degradation of the red signal is evident over time. (B) TDP43 doubling 

rate in control iNeurons is also highly variable (n=343, median doubling rate=15.61h, S.D. 

17.03h). (C) TDP43 half-life in control iNeurons varies widely between individual cells (n=568, 

median half-life=32.57h, S.D. 33.75h). (D) Representative survival curve depicting the rate of cell 

death for control iNeurons over the course of several weeks (gray lines are 95% confidence 

intervals, n=754). Penalized spline analysis did not show a relationship between survival and (E) 

steady-state TDP43 levels (gray lines are 95% confidence intervals, dashes indicate individual 

iNeurons, n=307) or (F) TDP43 half-life (gray lines are 95% confidence intervals, dashes indicate 

individual iNeurons, n=284). Scale bar in (A) 100 μm. 
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Appendix B. Monitoring Neuronal Survival via Longitudinal Fluorescence Microscopy* 

 

B.1 Abstract 

Standard cytotoxicity assays, which require the collection of lysates or fixed cells at 

multiple time points, have limited sensitivity and capacity to assess factors that influence neuronal 

fate. The requirement for static “snapshots” of separate populations of cells precludes the ability 

to discriminate whether an event is a disease driver, a homeostatic response, or merely 

coincidental. Single-cell longitudinal microscopy overcomes these limitations, allowing the 

researcher to determine differences in survival between populations and draw causal relationships 

with enhanced sensitivity. This guide will outline a representative workflow for experiments 

measuring single-cell survival of rat primary cortical neurons expressing a fluorescent protein 

marker. The reader will learn how to achieve high-efficiency transfections, collect and process 

images enabling the prospective tracking of individual cells, and compare the relative survival of 

neuronal populations using Cox proportional hazards analysis. 

 

                                                 
* This appendix represents the following manuscript:  

 

Weskamp K, Nathaniel Safren, Roberto Miguez, Sami Barmada. (2018). Monitoring neuronal survival via single-cell 

longitudinal fluorescence. Journal of Visual Experiments. https://doi.org/10.3791/59036 

https://doi.org/10.3791/59036
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B.2 Introduction 

Abnormal cell death is a driving factor in many diseases, including cancer, 

neurodegeneration, and stroke1. Robust and sensitive assays for cell death are essential to the 

characterization of these disorders, as well as the development of therapeutic strategies for 

https://paperpile.com/c/j1zgZ7/7z5mO
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extending or reducing cellular survival. There are currently dozens of techniques for 

measuring cell death, either directly or through surrogate markers2. For example, cell death can be 

assessed visually with the help of vital dyes that selectively stain dead or living cells3, or by 

monitoring the appearance of specific phospholipids on the plasma membrane4–6. Alternatively, 

measurements of intracellular components or cellular metabolites released into the media upon 

cellular dissolution are frequently used as proxies for cell death7,8. Though these methods provide 

rapid means of assessing cell survival, they are not without caveats. Each technique observes the 

culture as a single population, rendering it impossible to distinguish between individual cells and 

their unique rates of survival. Furthermore, such population-based assays are unable to measure 

factors that may be important for cell death, including cellular morphology, protein expression, or 

localization. In many cases, these assays are limited to discrete time points, and do not allow for 

the continuous observation of cells over time. 

In contrast, longitudinal fluorescence microscopy is a highly flexible system that directly 

and continuously monitors the risk of death on a single-cell basis9. In brief, longitudinal 

fluorescence microscopy involves the transient transfection or transduction of cells with vectors 

encoding fluorescent proteins. A unique fiduciary is then established, and the position of each 

transfected cell in relation to this landmark allows the user to image and track individual cells over 

the course of hours, days, or weeks. When these images are viewed sequentially, cell death is 

marked by characteristic changes in fluorescence, morphology, and fragmentation of the cell body, 

enabling the assignment of a time of death for each cell. The calculated rate of death, determined 

by the hazard function, can then be quantitatively compared between conditions, or related to select 

cellular characteristics using univariate or multivariate Cox proportional hazards analysis10. 

Together, these approaches enable the accurate and objective discrimination of rates of cell death 

https://paperpile.com/c/j1zgZ7/eXn6W
https://paperpile.com/c/j1zgZ7/bkVN9
https://paperpile.com/c/j1zgZ7/ou54A+8T0J4+8hsVu
https://paperpile.com/c/j1zgZ7/7oJUI+Cv96E
https://paperpile.com/c/j1zgZ7/2n9iH
https://paperpile.com/c/j1zgZ7/xkrcv
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among cellular populations, and the identification of variables that significantly predict cell death 

and/or survival (Figure B.1). 

Although this method can be used to monitor survival in any post-mitotic cell type in a 

variety of plating formats, this protocol will describe conditions for transfecting and imaging rat 

cortical neurons cultured in a 96-well plate. 

  

B.3 Protocol 

 

B.3.1 Material preparation 

1. Dissect cortical neurons from embryonic day 19–20 rat pups and culture at 0.5 × 106 cells 

per milliliter on poly-D-lysine coated plates for 4 days in vitro, as described previously11–

14. 

2. Prepare and quantify the plasmid DNA of interest using an endotoxin-free plasmid DNA 

isolation kit. 

3. On in vitro day 4 (DIV4), aliquot, filter sterilize, and incubate the following media at 37 

°C. Volumes listed are sufficient for transfecting one 96w plate.  

● 6 ml Optimem (OM) 

● 25 ml Neurobasal media (NB) 

● 40 ml NBKY (Neurobasal + 1 mM Kynurenic acid + 10 mM MgCl2, adjusted to a 

pH of 7.4) 

● 10 ml NBC (Neurobasal + 1x B27 supplement + 1x Glutamax + 1x Pen Strep) 

  

https://paperpile.com/c/j1zgZ7/4SKJs+WFjOu+bAcxu+DCfBc
https://paperpile.com/c/j1zgZ7/4SKJs+WFjOu+bAcxu+DCfBc
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B.3.2 Transfection of rat cortical neurons  

1. Modify the provided Example Transfection Sheet by adjusting the plate type, plate map, 

number of DNAs, DNA concentration, and number of wells (green boxes). The total DNA 

should sum to 0.2 µg per well, regardless of whether one (e.g. DNA A) or multiple (e.g. 

DNA B and C) DNA constructs are added to each well. 

2. Working from the spreadsheet, combine the appropriate amount of OM and DNA in one 

tube. Combine the appropriate amount of OM and Lipofectamine 2000 in a separate tube. 

3. Incubate at room temperature for 5 minutes. 

4. Combine the DNA and Lipofectamine OM mixtures and incubate at room temperature for 

20 minutes. 

5. During this incubation step, use a multichannel pipette and sterile plastic troughs to wash 

cells 2x with 100 µl per well of NB. Reserve the conditioned media (CM) and store at 37 

°C. For this and following steps, take care to minimize the amount of time neurons are 

exposed to air. 

6. Remove the NB media and replace with 100 µl per well of NBKY. 

7. After 20 minutes have passed, add 50 µl of the lipofectamine/DNA mixture dropwise to 

each well. 

8. Incubate cells with the Lipofectamine/DNA complexes for 20 min at 37 °C. 

9. Rinse 2x with NBKY, and replace with 100 µl of CM and 100 ul of NBC per well. 

10. Incubate the plate at 37 °C overnight, and use a fluorescent microscope to check the 

transfection the next morning. This technique results in an overall transfection efficiency 

of 5 to 10%. 

 

https://www.jove.com/files/ftp_upload/59036/Supplemental_File_1_Example_Transfection_Sheet.xlsx
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B.3.3 Imaging 

1. Place the plate on a fluorescent microscope with a motorized stage, and establish a 

fiduciary (e.g. a mark on the bottom of the plate) that will allow you to align the plate each 

time it is imaged. Save an image of this fiduciary for reference. 

2. Navigate to a field of interest, and note the x-y coordinates relative to the fiduciary.  

3. Focus on fluorescently labeled cells. 

4. Take fluorescent images in the appropriate channel or channels, either manually or in an 

automated manner. By taking several images at regularly-spaced intervals, a montage of 

the well can be assembled during image processing (see below).  

5. Repeat this process as often as required, aligning to the original fiduciary each time. For 

survival analysis, imaging takes place every 6-24 h, depending on the cell type and the 

purpose of the experiment. 

 

B.3.4 Image Processing 

Following image acquisition, a series of processing steps are required prior to image 

analysis. These include, but are not limited to, stitching, stacking, and background subtraction 

(Figure B.1). The goal of these steps is to produce an image stack, or time series, in which cells 

are clearly discernible from their background and easy to follow over multiple time points. A brief 

description of each step, together with a dedicated FIJI macro (Image_Processing), is provided 

below. Annotation within this macro indicates which parameters the user should modify to match 

the particular needs of their analysis, all of which are contained within lines 1-14 of the code. 

Additionally, the raw data or input directory should be formatted as shown in Figure B.2. Once 

https://www.jove.com/files/ftp_upload/59036/Supplemental_File_2_Image_Processing.ijm
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started, Image_Processing will automatically advance through stitching, stacking, and background 

subtraction. 

  

B.3.4.1 Stitching 

If a montage of images is taken, stitching can be performed to create a single, larger image 

for each field of view. For most applications it is preferable to perform stitching prior to stacking. 

If only one image is taken per well, there is no need to perform this step. Before using the 

Image_Processing macro, it is essential to determine the order in which the images were acquired. 

To test this, manually stitch a montage of images in FIJI using Plugins → Stitching → 

Grid/Collection stitching. Adjust the dropdown menus “Type” and “Order” until an accurately 

stitched image is produced. Adjust the “GRID_TYPE” and “STITCH_ORDER” variables in lines 

8 and 9 of the Image_Processing macro to match these selections. 

 

B.3.4.2 Stacking 

Rather than tracking cells over time across separate image files, stacking can be performed 

to align consecutive images into a single time series, analogous to a stop frame animation. With 

successful fiduciary alignment, the individual frames comprising the stacked image should match 

up well. However, if there are noticeable shifts or rotations between frames, image registration is 

needed. The Image_Processing macro automatically performs registration using the FIJI plugin 

“MultiStackReg.” This should help reduce small misalignments between imaging runs. However, 

with significant shifts, manually cropping and realigning images may be required. For stacking to 

run properly, it is critical that the listed time points are contiguous (i.e T1, T2, T3). If the time 

points are not contiguous (i.e T1, T3) the macro will crash. 



 

194 

 

  

B.3.4.3 Background Subtraction (optional) 

One potential issue that may arise during image acquisition is uneven illumination. This 

will result in variations in signal intensity across an image that can confound estimates of 

fluorescence intensity. In these instances, intensity variations can be eliminated by background 

subtraction techniques. These are particularly relevant with low signal to noise ratios, where 

intensity shifts due to uneven illumination can be comparable in magnitude to the signal of the 

fluorophore itself. There are many background subtraction algorithms, several of which have 

associated FIJI plugins. The choice of which algorithm to use depends on the properties of the 

image itself and the signal being measured. Within the FIJI macro Image_Processing, the user is 

given the option to perform “rolling ball” background subtraction on a stacked set of images (line 

14). In this method, a local background is determined for every pixel based on the average intensity 

of a circle surrounding that pixel. This value is then subtracted from the pixel’s initial value. The 

radius of the circle used for local background estimates should be set to at least the diameter of the 

largest foreground object in the image. This radius can be adjusted in line 15 of the 

Image_Processing macro. 

  

B.3.5 Scoring cell death 

Following the processing steps outlined above should yield images that enable the 

assessment of single-cell survival. The criteria for determining cell death are crucial, and may vary 

depending on cell type. Here, we outline a set of criteria that we have established for scoring cell 

death in rat primary cortical neurons, and demonstrate how these criteria can be applied to measure 
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the rate of cell death for a given population. Three main criteria are used in the identification of 

dead neurons (Figure B.3): 

  

1. loss of fluorescence intensity (e.g. Neuron 1 at 69 h)  

2. rounding of the cell body (e.g. Neuron 2 at 188 h) 

3. loss of neurite integrity or blebbing (e.g. Neuron 2 at 188 h)  

  

For accurate comparisons between populations, it is essential that these criteria be applied 

consistently across the entire dataset. Furthermore, individuals scoring cell death should be blinded 

to the experimental groups under investigation to eliminate potential sources of bias. Depending 

on the specific criteria and their generalizability, they may be incorporated into automated 

algorithms for the unbiased assessment of cellular survival13–17. To avoid counting a cell twice, 

use the “point tool” within FIJI to individually label each cell with a number. Pressing “t” after 

each point will add the cell identifier to the ROI (region-of-interest) Manager. The identifiers can 

be visualized by clicking the “labels” and “show all” checkboxes in the ROI Manager. 

In the context of survival analysis and other time-to-event analyses, there are three possible 

outcomes: 

  

1. The event (cell death) has occurred, and the time at which the event occurred is recorded. 

2. The event did not occur during the time frame of observation. These observations are 

censored at the completion of the experiment. 

https://paperpile.com/c/j1zgZ7/bAcxu+DCfBc+i4zot+w81bc+cVynC
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3. The event could not be scored because the cell moved out of the field of view, or was 

obscured by nearby cells. In this case, the cell is censored when it can no longer be 

accurately tracked. 

 

For outcome #1, the precise timing of cell death may be difficult to determine based on the 

imaging interval. For instance, a cell that is alive initially but marked as dead 24 h later may have 

died at any point within that 24-hour period. To be conservative, we recommend recording the 

time of death as the last time a cell can be confidently identified as alive (left censoring).  

For rapid, robust and consistent determinations of cellular survival and death rates, we 

employ the “survival” package in R, an open source statistics program (https://www.rstudio.com). 

Therefore, when recording survival data, it is important to do so in a way that is compatible with 

subsequent survival analysis in R. A representative spreadsheet (Survival_spreadsheet.csv) is 

included that can be used as a template. In this spreadsheet each cell occupies a single row. The 

unique identifier for each cell (ID) consists of its corresponding well and ROI number within that 

well. tp_death is the last time point a cell is observed to be alive, while time_death represents the 

actual time of death in hours. The time of death will necessarily vary depending on the interval 

between imaging time points. Finally, the censored status of each cell is recorded in the last 

column. Here, due to the peculiar way censoring is handled by R, censored cells are marked by 

“0”, while uncensored cells are marked by “1”. Note that all cells that live to the last time point 

are censored, and therefore marked as “0”. 

 

https://www.jove.com/files/ftp_upload/59036/Supplemental_File_3_Survival_spreadsheet.csv
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B.3.6 Performing Cox proportional hazards analysis and visualizing results 

We have included an R script called survival.R that can be used to analyze survival data 

compiled from the above steps. This script allows you to compare the risk of death among 

populations and their statistical significance using Cox proportional hazards analysis (Figure 

B.4A), and also plot results as either a Kaplan Meier curve (Figure B.4B) or a cumulative risk of 

death plot (Figure B.4C). For more information on survival analysis, Cox proportional hazards 

analysis, and the “survival” package in R, we refer the reader to the 1987 paper by Erik 

Christensen10 and https://cran.r-project.org/web/packages/survival/survival.pdf. We will instead 

focus on the interpretation of the Cox summary table and accompanying plots.  

The table generated upon running lines 7 and 8 of the survival.R code provides a summary 

of the Cox proportional hazards analysis. Four particularly important statistics in the table are 

highlighted in Figure B.4A. The number in Box 1 represents the hazard ratio for the group 

“Mutant” relative to “WT”. You may notice that the “WT” group is not listed. This is because the 

“WT” group serves as the reference population— the risk of death observed in all other groups are 

compared to that of the reference population to calculate the hazard ratio. Therefore, hazard ratios 

greater than 1 indicate a faster rate of death in comparison to the reference population, and values 

less than 1 represent a reduced rate of death. In the example provided, mutant cells display a hazard 

ratio of 2.2, meaning that they died 2.2x faster than WT cells. By default, R will arrange the groups 

in alphanumeric order, with the top group serving as the reference population. Placing numbers in 

front of your group names is an easy way to establish the order in which they are evaluated. The 

values in Boxes 2 and 3 represent the p-values and 95% confidence intervals for the hazard ratios, 

respectively, calculated by Cox proportional hazards analysis. In Box 4, the results of the log-rank 

test are reported. This test evaluates whether there is a statistically significant difference in survival 

https://www.jove.com/files/ftp_upload/59036/Supplemental_File_4_survival.R
https://paperpile.com/c/j1zgZ7/xkrcv
https://cran.r-project.org/web/packages/survival/survival.pdf
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among populations being tested, but does not describe which groups are different from the others, 

and does not calculate a magnitude for the observed difference. 

Kaplan Meier curves (Figure B.4B) are widely used in clinical trials for evaluating the 

effects of an intervention on patient survival. For this reason, many researchers are familiar with 

interpreting survival data visualized this way. In the context of single-cell survival, these plots 

depict the fraction of cells alive over time in each group. Rather than plotting cell survival, an 

alternative approach is to depict the rate of cell death in each group via a cumulative risk of death 

plot (Figure B.4C). In most survival studies, the number of events does not follow a linear 

progression; rather, for a given rate of death a greater number of events is observed at earlier times. 

For example, in a population of 100 cells, if 20% of cells die between intervals, then 20 cells will 

die within the first interval, 16 during the second interval, 13 during the third interval, and so on. 

This logarithmic trend is conceptually easier to visualize using cumulative risk of death plots, since 

the y-axis represents the negative log transform of cellular survival. Alternatively, the y-axis of 

the cumulative risk of death plot can also be presented as % cell death, calculated as 1-1/ecumulative 

risk of death. These plots also enable straightforward comparisons of the risk of death between 

populations. The magnitude of the hazard ratio reflects the slope of the cumulative risk of death 

plot for each population, relative to that of the reference group.  

 

B.4 Representative Results 

Using the transfection procedure described here, DIV4 rat cortical neurons were 

transfected with a plasmid encoding the fluorescent protein mApple. 24 h post-transfection, cells 

were imaged by fluorescence microscopy every 24 h for 10 consecutive days. The resultant images 

were organized as indicated in Figure B.2, then stitched, stacked, and scored for cell death (Figure 
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B.1). Figure B.3 shows a time course for 3 representative neurons, two of which die during the 

course of the experiment (Neurons 1 and 2) while the third survives (Neuron 3). Survival data were 

analyzed using the R script provided (survival.R), and the results summarized in Figure B.4. As 

depicted by Kaplan Meier (Figure B.4B) and cumulative risk of death plots (Figure B.4C), mutant 

neurons exhibited a significantly higher risk of death than did WT cells.  

 

B.5 Discussion 

 Here, we demonstrate a method to directly monitor neuronal survival on a single-cell basis. 

In contrast to traditional assays for cell death that are limited to discrete time points and entire 

populations of cells, this method allows for the continuous assessment of a variety of factors such 

as cellular morphology, protein expression, or localization, and can determine how each factor 

influences cellular survival in a prospective manner.  

This highly-flexible system can be modified to fit a wide array of experimental needs. The 

frequency and duration of imaging can be easily adjusted, and any protein of interest can be co-

transfected with the fluorescent marker to model disease states or investigate protein function11-15. 

Though this article describes the optimal procedure for transfecting rat cortical neurons, the 

experimental schema could be applied to any post-mitotic cell type. However, the optimal 

transfection conditions may need to be optimized on a per-cell line basis, and substrates may need 

to be adjusted to prevent cells from clumping or moving too much to reliably track. 

 This assay can also be used to relate a variety of neuronal features to survival. Generation 

of an ROI around the cell body and/or nucleus enables the user to longitudinally monitor cell size 

and morphology, protein expression level and localization, or the formation of subcellular 

structures such as puncta or protein aggregates11–17. Importantly, because each of these factors is 

https://paperpile.com/c/j1zgZ7/bAcxu+4SKJs+i4zot+WFjOu+cVynC+w81bc+DCfBc
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observed in relation to cell death, it is possible to quantitatively determine how well individual 

factors predict cellular survival or death during the given time frame. Protein metabolism and 

cellular pathways may also be assayed by expressing fluorescent reporters that provide real-time 

measurements of underlying cellular physiology (e.g. gCaMP6f to assay activity). By employing 

this powerful approach, factors that drive cellular maintenance, function, and dysfunction can be 

uncovered and studied in detail, thereby inspiring new avenues of inquiry.  
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Figure B.1. Schema for a typical survival experiment. Rat cortical neurons are transfected at 

DIV4 using the procedure outlined in this article. Beginning 24 h post-transfection, cells are 

imaged at regularly spaced intervals in accordance with the specific requirements of the 

experiment. Images are stitched and stacked before cell death is scored, and Cox proportional 

hazard analysis is used to compare the risk of death between populations.  
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Figure B.2. Required file structure. The provided FIJI macro requires that the raw data are 

formatted in a specific way. To utilize Image_Processing, organize the raw data as shown on the 

left. An example experiment and accompanying file structure is shown on the right.  
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Figure B.3. Scoring cell death in transfected rat cortical neurons. Using the methods described 

in this article, rat cortical neurons were transfected with a plasmid encoding the fluorescent protein 

mApple. Cells were then imaged approximately every 24 h, the images were stitched and stacked, 

and cell death scored using the criteria provided. Cell death is indicated for Neuron 1 at 69 h, as 

evidenced by loss of fluorescence. Neuron 2 dies at 188 h, as indicated by fragmentation of the 

processes and rounding of the cell body. Neuron 3 survives for the duration of the experiment. 

Scale bar = 50 µm. 

 

 

  



 

205 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B.4. Interpretation of Cox proportional hazard analysis. (A) The output summary 

includes four important statistics that are highlighted in this figure. Box 1 includes the hazard ratio 

of the experimental group relative to the control group, while box Box 2 and 3 show the p-values 

and 95% confidence interval for each hazard ratio, respectively. Box 4 highlights the results of the 

log-rank test. These data are also depicted via a Kaplan Meier curve (B) and a cumulative risk of 

death plot (C).  
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Appendix C. Establishing a Medium-Throughput Screen in Collaboration with Verge 

Genomics 

  

C.1 Introduction 

 Despite years of effort, therapeutic options for ALS remain limited1. Conventional methods 

of drug development using animal models and immortalized cell systems are widely available, but 

differences in species, cell type, and genetic context complicate the identification of therapeutics 

relevant to human disease2. Though the use of post-mortem patient tissue can avoid these 

shortcomings, it is often difficult to obtain and reflects only the end-stage of disease. Hence, human 

induced pluripotent stem cell (iPSC) models have emerged as an alternative method for drug 

screens. These cells reflect the complicated genetic signature of human patients, including those 

in which the underlying genetic cause is unknown. Moreover, their supply is not limited given that 

iPSCs are dividing cell lines. Finally, iPSCs can be differentiated into multiple relevant cell types, 

allowing for a model system tailored to the subset of cells affected in disease.  

  As iPSC technology has advanced, several research groups and biotech companies have 

explored the use of these cells to screen for novel therapeutics. Among them is Verge Genomics, 

a startup that utilized machine learning and transcriptomics data from C9ORF72 and sporadic ALS 

post-mortem patient tissue, SOD1 mice, and in vitro cell culture data to identify a network of 295 

genes down-regulated in diseased samples. They then identified a library of compounds to 

modulate these novel targets. To screen the efficacy of these compounds, we established a 

https://paperpile.com/c/cIhsgO/gilF
https://paperpile.com/c/cIhsgO/OuXF
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medium-throughput screen in an iPSC-derived motor neuron (iMN) model of ALS for use in 

tandem with our longitudinal fluorescence microscopy platform. Although it would be interesting 

to comment on the mechanisms of these compounds, their identities remained strictly proprietary. 

As such, Appendix C will focus on the establishment of this screen and its potential future 

applications.   

 

C.2 Establishing a longitudinal fluorescence microscopy screen in iPSC-derived motor 

neurons  

 

C.2.1 Utilization and modification of BrainXell motor neuron precursors  

We purchased cells from BrainXell, a company that generates spinal motor neuron 

precursors from patient-derived iPSCs using a proprietary, directed small molecule differentiation 

system3,4. The precursors are cryopreserved at day 28 in vitro, shipped to the user, and can fully 

differentiate into motor neurons expressing Hb9, Isl1, FoxP1, and ChAT within one week of 

plating3,4. We utilized several lines derived from either control or SOD1-ALS patients (Table C.1). 

Although these cells differentiated rapidly and stained positive for both motor neuron and 

panneuronal markers, they formed clumps in culture that made it difficult to track their survival 

over time via longitudinal fluorescence microscopy (Appendix B). However, we eventually 

determined that the omission of Geltrex, a product that mimics the basement membrane matrix, 

aids in the maintenance of a cellular monolayer. We also modified the differentiation timeline to 

accommodate viral transduction, which allowed us to fluorescently label and track individual cells 

throughout the experiment (Figure C.1).  

 

https://paperpile.com/c/cIhsgO/jfvC+aOz3
https://paperpile.com/c/cIhsgO/jfvC+aOz3
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C.2.2 Transduction with a fluorescent marker 

For these studies, we utilized a commercially available lentivirus in which EGFP is driven 

by an eF1α promoter (VectorBuilder, VB170224-1047xty). Initial experiments revealed that this 

virus transduced very efficiently (Figure C.2A), and a multiplicity of infection (MOI) of 1 was 

determined to be sufficient for future studies. The virus was applied to the cells at Day 2 for 12-

16 hours, and expression was evident within 24 hours (Figure C.1).  

 

C.2.3 Longitudinal fluorescence microscopy  

 One week after plating (Day 7), the EGFP-positive neurons were imaged once every ~24 

hours for 10 days as described in Appendix B. Fortunately, and atypically for iNeurons, these cells 

move very little and were easily tracked with our in-house, automated software to determine their 

time of death in an unbiased and high-throughput manner5–9.  

 

C.2.4 Identification of a phenotype  

 Under baseline conditions, in which all lines were maintained in conditioned growth media, 

both the control and disease lines died very slowly, and at remarkably similar rates (Figure C.2B). 

We next sought to identify conditions that would reveal a disease-specific phenotype, including 

the application of glutamate to induce excitotoxicity and the gradual withdrawal of nutrients. 

While glutamate alone had no effect on survival (Figure C.2B), we found that glutamate in 

combination with complete replacement of the media with Hanks’ Balanced Salt Solution (HBSS) 

resulted in the neurons dying gradually over the course of 10 days, as well as a distinguishable 

difference between control and SOD1-ALS cell survival (Figure C.2C). Further studies showed 

that complete media withdrawal into HBSS alone was sufficient to induce reliable cell death, and 

https://paperpile.com/c/cIhsgO/4PsTZ+l7bUK+05yxv+r7jqv+fYdqX
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examination of individual lines revealed that the SOD1-ALS line ND50010 exhibited the most 

robust phenotype (Figure C.2D). As such, ND50010 and the control line ND35660 were selected 

for future studies. 

  

C.2.5 Drug application  

Drugs were typically applied at Day 7 and left on for the duration of the experiment. 

However, the time of drug application and whether or not it was removed varied between 

experiments. Multiple doses of each drug were diluted in HBSS and added directly to the cells via 

a full media change. All studies included a DMSO vehicle control, ideally volume matched to the 

majority of the drugs and never exceeding 0.2% of the well volume. Later, the pan-caspase 

inhibitor Q-Vd-Oph (2 μM) was identified as a positive control and included in future studies 

(Figure C.3A).  

 

C.3 Results  

 While the identity of these drugs remains proprietary, we tested over a hundred different 

compounds identified by Verge Genomics as potential therapies for ALS. Though most proved to 

be toxic or ineffective at rescuing disease-associated toxicity, VRG106 showed a modest reduction 

in hazard ratio, though it was not consistent between experiments (Figure C.3B). For future work, 

modifications to this assay or different drugs and targets are required to identify novel therapeutics 

for the treatment of ALS.  
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Figures  

 

 

 

 

 

 

Cell Line Name Sex Age Genotype Diagnosis 

CS809CTR-Tn1 F 48 Control N/A 

CS201iCTR-

NTn4 

F 56 Control N/A 

ND35660 F 50 Isogenic Control, 

SOD1 D90D 

N/A 

ND39030 F 50 SOD1 D90A ALS, lower-limb 

ND35671 F 65 SOD1 A4V ALS, lower-limb 

ND50010 F 44 SOD1 A4V Asymptomatic 

Table C.1. Details on the gender, age, and genotype of patient-derived iPSCs utilized in these 

studies.  
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Figure C.1. Differentiation timeline. 

Comparison of the differentiation timeline 

described by BrainXell (left) versus the 

modifications made for the purposes of our 

screen (right). 
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Figure C.2. Identification of a survival phenotype in SOD1-ALS iMNs. (A) To determine the 

MOI needed to fluorescently label the majority of cells, Day 2 iMNs were transduced with different 

amounts of virus. A MOI of 1 was sufficient to label >90% of plated cells. (B) Longitudinal 

fluorescence microscopy was used to track the relative survival of control or SOD1-ALS lines 

treated with various doses of glutamate. Over 10 days, there was remarkably little cell death even 

in the presence of an excitotoxic agent. (C) Glutamate in combination with complete replacement 

of culture media with HBSS resulted in gradual cell death over 10 days and revealed a disease-

specific increase in the risk of death in SOD1-ALS lines. (D) The relative survival of individual 

control (gray) and SOD1-ALS (red) lines in either conditioned media diluted 1:10 in HBSS or 

complete nutrient withdrawal. Scale bar in (A), 50 μM. 
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Figure C.3. Example plots for various compounds. (A) Treatment with the pan-caspase inhibitor 

Q-Vd-Oph significantly and consistently reduces cell death in SOD1-ALS iMNs compared to 

vehicle. (B) Example plots depicting the effects of compounds VRG004, VRG0006, and 

VRG0077. While some compounds show modest reduction in hazard ratio, these results are often 

difficult to reproduce.   

 


