
Geofencing for Small Unmanned Aircraft Systems
in Complex Low Altitude Airspace

by

Mia N. Stevens

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Robotics)

in The University of Michigan
2019

Doctoral Committee:

Professor Ella M. Atkins, Chair
Professor Jessy W. Grizzle
Professor Benjamin Kuipers
Assistant Professor Dimitra Panagou

Mia Stevens

minist@umich.edu

ORCID iD: 0000-0002-2892-0162

c© Mia Stevens 2019

TABLE OF CONTENTS

LIST OF FIGURES . v

LIST OF TABLES . x

LIST OF ALGORITHMS . xi

LIST OF ABBREVIATIONS . xii

LIST OF SYMBOLS . xiii

ABSTRACT . xvii

CHAPTER

I. Introduction . 1

1.1 Motivation . 1
1.1.1 What is geofencing? 1
1.1.2 Flying Within a Geofence 3

1.2 Airspace Background . 3
1.3 Problem Statement . 4
1.4 Research Approach . 6
1.5 Contributions and Innovations 7
1.6 Outline . 8
1.7 Publications . 8

II. Geofencing System . 10

2.1 Introduction . 10
2.2 Geofence Definition . 11

2.2.1 Geofence Permanence 12
2.2.2 Geofence Permissions Function 14

2.3 UTM Concept of Operations 14
2.4 UTM Geofence Request Management 16

2.4.1 Temporal Periods 16

ii

2.4.2 Permission Constraints 20
2.4.3 Geofence Removal 22

2.5 Vertical Geofence Sets . 22
2.6 Horizontal Geofence Boundary Set Operations 26
2.7 Utility Inspection Case Study 30
2.8 Discussion . 35

III. Boundary Check . 36

3.1 Introduction . 36
3.2 Problem Statement . 37
3.3 Horizontal Geofence Violation Detection Algorithms 39

3.3.1 Grid-based Algorithms 39
3.3.2 Decomposition Algorithms 41
3.3.3 Ray Casting . 41

3.4 Triangle Weight Characterization with Adjacency 42
3.4.1 Bounding Box Definition 43
3.4.2 Polygon Division . 46
3.4.3 Triangle Occupancy Check 48
3.4.4 Adjacency Graph 50

3.5 Results . 50
3.6 Discussion . 53
3.7 Summary . 55

IV. Layered Boundaries . 56

4.1 Introduction . 56
4.2 Safety Layer Offset Distance Specification 58
4.3 Geofence Layer Generation 62

4.3.1 Boundary Smoothing 62
4.3.2 Scaled Layer Generation 65
4.3.3 Cross-Check . 69
4.3.4 Smoothing Selection 73

4.4 Results . 74
4.5 Summary and Future Work 81

V. System Simulation . 82

5.1 UTM Geofence Request . 83
5.2 UAS Pre-Flight Geofence Management 84

5.2.1 Geofence Layer Generation 84
5.2.2 Triangulation of Geofence Layers 85

5.3 UAS Geofence Processes During Flight 86
5.4 Discussion . 88

iii

VI. Conclusions and Future Work 90

6.1 Conclusions . 90
6.2 Future Work . 91

APPENDIX . 93
A.1 Shared Control . 94
A.2 Return to Launch . 95
A.3 Local Loiter . 95

BIBLIOGRAPHY . 97

iv

LIST OF FIGURES

Figure

1.1 Example geofences in Upper New York Bay, New York City. 2
1.1a Static geofences. 2
1.1b Static and dynamic geofences. 2

2.1 Geofence data structure. 13
2.2 Temporal periods example with G1 in blue. 20
2.3 Temporal periods example with G1 in blue and the newly requested

geofence Gr in green. 21
2.4 Temporal periods example with the first requested geofence in blue

and the second requested geofence in green. 21
2.5 Example altitude partitioning. 25

2.5a Full requested geofence, GR, in green. 25
2.5b Deconflicted geofences, resulting in three approved

geofences. 25
2.6 Adding to the simple example in Figure 2.5 to demonstrate altitude

partitioning and combining of requested geofence sets. 25
2.6a Newly requested geofence on right in cyan. 25
2.6b Requested geofence set vertically partitioned. 25
2.6c Deconflicted requested geofence set with combined

vertical partitions. 25
2.7 Example set operations on simple polygons. 28

2.7a Union: Vc = Va ∪Vb 28
2.7b Intersect: Vc = Va ∩Vb 28
2.7c Difference: Vc = Va −Vb 28
2.7d Symmetric Difference: Vc = Va ⊕Vb 28

2.8 Power line inspection case study geofence polygon definitions. 31
2.9 Temporal periods after the power line inspection geofence is requested

and approved. 32
2.9a Power line inspection geofence is requested. 32
2.9b Power line inspection geofence is approved. 32

2.10 Power line inspection geofence (yellow and orange) deconflicted from
existing UAS Traffic Management (UTM) approved geofence set (blue
and green) for relevant temporal periods. 32

2.10a Temporal period P3. 32

v

2.10b Temporal period P4. 32
2.10c Temporal period P5. 32

2.11 A potential flight path through the deconflicted inspection geofence
is shown with a dashed line. 33

2.12 Example right to left flight path across temporal periods for the power
line inspection geofence. 34

2.13 Example left to right flight path across temporal periods for the power
line inspection geofence. 34

3.1 Examples of valid and invalid (unacceptable) horizontal geofence
boundary specifications using the same vertex list with good (left)
and bad (right) orderings. 38

3.1a Acceptable horizontal geofence boundary. 38
3.1b Unacceptable horizontal geofence boundary. 38

3.2 Geofence violation detection algorithm for a single keep-in geofence
and a known number of keep-out geofences. 40

3.3 Example polygon with ray directed along the y-axis for the Ray Cast-
ing algorithm. 41

3.4 Ray Casting algorithm. 42
3.5 Triangle Weight Characterization with Adjacency (TWCA) algorithm. 44
3.6 Example urban keep-in geofence located over Upper Bay, Hudson

River, and East River with bounding box with keep-out geofences
surrounding the contained islands. 46

3.6a Urban geofence example with a keep-in geofence
(green) and three keep-out geofences (red). 46

3.6b Keep-in geofence (black) with bounding box (red). . 46
3.7 Example geofence and bounding box divided into monotone polygons

and then triangles. 47
3.7a Geofence and bounding box divided into monotone

polygons. 47
3.7b Geofence and bounding box divided into triangles. . 47

3.8 Division of the motion plane into seven sub-regions based on the signs
of distance weights wi1 , wi2 , and wi3 50

3.9 Average time per boundary violation check for each of 25 randomly
generated geofences with 3 to 50 vertices for a total of 1, 200 random
geofences. 51

3.9a Calculation time averaged over 10 positions sampled
along 100 flight paths from the origin to a random
waypoint. 51

3.9b Calculation time averaged over 100 positions sampled
along 100 flight paths from the origin to a random
waypoint. 51

3.10 Maximum percentage of triangles explored before locating the trian-
gle containing the vehicle is shown in green. 52

vi

3.10a Maximum and average percentage of triangles ex-
plored for cases with vehicle position sampled 10 times
on 100 flight paths from the origin to a random way-
point. 52

3.10b Maximum and average percentage of triangles ex-
plored for cases with vehicle position sampled 100
times on 100 flight paths from the origin to a way-
point. 52

3.11 Examples of rural and urban environments that might be operational
areas for Unmanned Aircraft Systems (UAS) with geofences in the
future. 54

3.11a Bemus Point, NY. 54
3.11b Salt Lake City, UT. 54
3.11c New York, NY. 54

4.1 Examples of layered geofencing. 57
4.1a Keep-in geofence layers. 57
4.1b Keep-out geofence layers. 57

4.2 Fixed wing maximum rate turns, ω = 0.4 radians per second, with
Va = 25 meters per second and Easterly wind, Vw = 20 meters per
second. 61

4.2a Fixed wing maximum rate turn in wind, beginning
aligned with the wind at the origin. 61

4.2b Fixed wing flight with maximum rate turns to respect
original geofence (black). 61

4.3 Example of uniform and directional buffers for a square keep-out
geofence. 61

4.4 Smoothed geofence example, showing smoothing for both inward and
outward scaling. 63

4.5 Example of angular smoothing (option 4) versus edge smoothing (op-
tion 5). 65

4.5a Designed geofence. 65
4.5b Randomly generated geofence. 65

4.6 Diagram of geofence layer scaling with flatten vertices. 66
4.7 Area added by using Flatten Vertices algorithm. 70
4.8 Examples of a layered geofence with a narrow passage. 70

4.8a Scaled boundaries. 70
4.8b Scaled boundaries with cross-check algorithm. . . . 70

4.9 Examples of a layered geofence with a narrow passage. 71
4.9a Scaled boundaries. 71
4.9b Scaled boundaries with cross-check algorithm. . . . 71

4.10 Breakdown of two steps within cross-check. 73
4.10a Polygon sectioned by intersection points. 73
4.10b Sub-polygons separated by intersection points. . . . 73

4.11 Inward scaling success percentages. 75
4.11a Combined scaling and flattening algorithm only. . . 75

vii

4.11b All algorithm set-ups. 75
4.12 Outward scaling success percentages. 76

4.12a Combined scaling and flattening algorithm only. . . 76
4.12b All algorithm set-ups. 76

4.13 Example of a geofence with 10 vertices without an inward or outward
scaling solution. 77

4.13a Full geofence with failed scaling. 77
4.13b Zoomed view of failed scaled vertices with red lines

connecting scaled vertices with the original vertices. 77
4.14 Inward successes by setup and buffer distances. 78
4.15 Outward successes by setup and buffer distances. 78
4.16 To calculate the area difference, the area of the shaded region, which

is the blue minus the green, is divided by the area of the entire blue
polygon. 79

4.17 Inward area difference results. 79
4.17a δu = −1 . 79
4.17b δu = −2 . 79
4.17c δu = −5 . 79
4.17d δu = −10 . 79

4.18 Outward area difference results. 80
4.18a δu = 1 . 80
4.18b δu = 2 . 80
4.18c δu = 5 . 80
4.18d δu = 10 . 80

5.1 Example approved and requested geofences. 82
5.1a Initial geofence approved by UTM, active from t =

2.75 to t = 6.5 hours. 82
5.1b Second requested geofence GR, active from t = 1.25

to t = 5.167 hours. 82
5.2 Plots show the active approved geofences for each temporal period. 84

5.2a From P2 → t = 1.25 to P3 → t = 2.75 hours, the un-
modified requested geofence is the only active geofence. 84

5.2b From P3 → t = 2.75 to P4 → t = 5.167 hours, the ac-
tive approved geofences are the original geofence and
the two new deconflicted geofence volumes available
for the requesting UAS. 84

5.2c From P4 → t = 5.167 to P5 → t = 6.5 hours, the orig-
inal approved geofence is the only active approved
geofence. 84

5.3 Geofence with calculated “override” and “warning” layers. 85
5.3a Lower altitude geofence layers. 85
5.3b Upper altitude geofence layers. 85

5.4 Layered and triangularized requested geofence set. 86
5.4a Triangularization of lower altitude geofence. 86
5.4b Triangularization of upper altitude geofence. 86

viii

5.5 Plots of two geofence guidance responses to boundary violations. . . 88
5.5a Local loiter. 88
5.5b Return to launch without path planning resulting in

boundary violation. 88
5.5c Return to launch with boundary following path plan-

ning. 88

ix

LIST OF TABLES

Table

4.1 Smoothing options applied to each randomly generated geofence. . . 66
4.2 Independent variables for the Monte Carlo simulation. 74
5.1 Simulated UAS properties used to compute layering distances. . . . 85

x

LIST OF ALGORITHMS

Algorithm

2.1 Insertion of Requested Static Geofence Set into UTM System 17
2.2 Insertion of Requested Durational Geofence Set into UTM System . 18
2.3 Bound Start and End Times of Geofence Set to UTM System Tem-

poral Constraints . 19
2.4 Geofence Spatial Deconflict . 19
2.5 Requested Geofence Removal . 23
2.6 Vertical Partitioning for Requested Geofence Set 24
2.7 Combine Vertical Partitions for Requested Geofence Set 26
2.8 Horizontal Boundary Deconflict of Requested Geofence and Existing

UTM Approved Geofences . 29
2.9 Union of Horizontal Geofence Boundaries 30
3.10 PointInPolygon() - Ray Casting 43
3.11 PointInPolygon() - Triangle Weight Characterization with Adjacency 45
4.12 Cross-Check Algorithm . 72

A. Geofence Guidance Modes . 94
A.13 Calculate shared control for position control and a rectangular ge-

ofence area . 95

xi

LIST OF ABBREVIATIONS

AGL Above Ground Level

ATC Air Traffic Control

CONOPS Concept of Operations

FAA Federal Aviation Administration

GIS Geographical Information Systems

LL Local Loiter

MAV micro-air vehicle

MSL Mean Sea Level

NFZ No Fly Zone

RTL Return to Launch

SC Shared Control

TFR Temporary Flight Restriction

TWCA Triangle Weight Characterization with Adjacency

UAS Unmanned Aircraft Systems

UAM Urban Air Mobility

UTM UAS Traffic Management

xii

LIST OF SYMBOLS

Chapter 2

(φi, λi, zi, ti) ith home position can be represented as longitude, latitude,
pairs or locally-referenced Cartesian coordiantes (xi, yi), altitude
above Mean Sea Level (MSL), and activation time

(xi, yi) ith vertex in v[] defined relative to the local origin h

GR requested durational geofence set

GRS requested static geofence set

GUD set of UTM approve dynamic geofences for a specific temporal
period

GUS set of UTM approved static geofences

P set of temporal periods that exist within the UTM system tem-
poral horizon

V = {V1, . . . , Vk} set of closed polygons, each of corresponding to the horizontal
boundary of a geofence

Z ground level information (MSL)

g geofence data structure

m,h[] number of home positions and list of home positions of a geofence
g

N number of temporal periods within temporal horizon, N ≥ 1

n, v[] number of vertices and list of vertices in the horizontal geofence
boundary

P = {t,GU} temporal period

xiii

Pi → GU temporal period Pi set of approved geofences

Pi → t temporal period Pi start time

th rolling temporal horizon of UTM system

tl minimum time resolution of temporal periods

ts, te start and end time of all geofences in requested geofence set,
ts < te

tmax time constant representing a functional infinite time in the future

U active UAS list, contains list of active UAS for each active ge-
ofence within a specific temporal period

UR list of UAS requesting access to an existing UTM approved ge-
ofence

zf , zc vertical geofence minimum and maximum limits relative to the
local origin

zl minimum altitude resolution above Mean Sea Level (MSL)

Chapter 3

∆ = [∆x,∆y] bounding box offset constant

δt time interval of geofence system UAS state monitoring

g = [gi, go] geofence set with one keep-in geofene gi and any number of keep-
out geofence go

r = (x, y, z) current UAS position

r infinite ray generated for Ray Casting

τ number of triangles generated by triangulating a geofence p and
the area between p and its bounding box

τb number of triangles generated by triangulating the area between
the bounding box and the geofence boundary

τe number of triangles explored

τg number of triangles generated by triangulating a geofence p

p vertex list defining the horizontal polygon of a geofence

v number of unique vertices in geofence horizontal polygon

xiv

w distance weights used for checking if a specified position is within
a triangle

Chapter 4

(x̃, ỹ) displacement of an original vertex along the xy-axes due to the
uniform buffer δu and directional buffer (δd, φd)

(x̃d, ỹd) displacement of an original vertex along the xy-axes due to the
directional buffer (δd, φd)

(x̃u, ỹu) displacement of an original vertex along the xy-axes due to the
uniform buffer δu

(x, y) vertex coordinates relative to a local origin(
x(t), y(t)

)
position as a function of time

δd directional buffer distance

δu uniform buffer distance

ẋ(t) velocity, first time derivative of x(t)

ω maximum turn rate magnitude

vivj geofence edge connecting vertices vi and vj

φ angle from vi to angular bisector of θ relative to the positive
x-axis

φ+ angle of edge from vi to vi+1 relative to the positive x-axis

φ− angle of edge from vi to vi−1 relative to the positive x-axis

φd directional buffer angle

ψ angle of arc for comparison with flatten corners

θ internal angle of vertex vi

a maximum acceleration or deceleration

ac area of section of geofence made available by using arc instead
of flatten corners

af area of section of geofence made available by using flatten corners

d+ square of the length of the next edge adjusted for directional
buffer

xv

d− square of the length of the previous edge adjusted for directional
buffer

du square of the edge length adjustment for the uniform buffer

dmin square of the minimum edge length of previous and next edges
adjusted for directional and uniform buffers

h distance from an original vertex to the corresponding scaled ver-
tex

i list of intersection points of scaled polygon p

m slope of the line perpendicular to the angular bisector of θ

n number of vertices in geofence

o original polygon vertex list that is scaled

p scaled polygon vertex list

q list of closed polygons formed from subsections s

r radius of the arc for comparison with flatten corners

s subsections of scaled polygon p, separated by intersection points
i

t time

Va airspeed

vi vertex i of a geofence polygon with xy-coordinates relative to a
local origin

Vw wind speed

xvi

ABSTRACT

As small unmanned aircraft systems (UAS) are utilized in an increasingly wide variety

of commercial and civil applications, safety of flight within low altitude airspace can

be improved through use of electronic geofence systems to partition the airspace. A

geofence is defined as a volume of airspace with specific temporal, spatial, and permis-

sion constraints. This thesis develops geofencing as a tool for individual UAS and for

managing airspace utilization through UAS Traffic Management (UTM). Permissions

constraints determine which UAS may fly within each geofence. As a safety system,

geofencing aims to keep the UAS within the airspace sectors (keep-in geofences) it

has permission to access. Similarly, geofencing prevents the UAS from entering the

airspace sectors it does not have permission to access (keep-out geofences). This the-

sis offers three specific contributions to geofencing. First, a methodology is developed

to enable the UTM system to build and manage the set of active geofences, ensur-

ing a maximum of one geofence per volume of airspace at any given time. Spatial

priority of geofences within the UTM system is awarded in order of request, with

always active (static) geofences having top priority. Unlike static geofences, dynamic

geofences appear and disappear at user-specified times and are spatially and tempo-

rally deconflicted to maximize authorized airspace volume. Polygon set operations

are used to deconflict the horizontal boundaries of newly requested geofence sets from

the existing UTM approved geofence set. Second, a Triangle Weight Characterization

with Adjacency (TWCA) algorithm is developed to efficiently determine whether a

UAS is within a given geofence independent of the complexity of its boundary. This

algorithm enables the UAS geofence module to quickly check whether the UAS is

violating a geofence boundary by decomposing the horizontal boundary into triangles

and tracking the occupied triangle over time through an adjacency graph. To test

the performance of TWCA against the industry standard of Ray Casting, the run-

time per query is calculated for randomly generated geofences and flight paths. The

run-time of Ray Casting scales linearly with the number of geofence vertices while

xvii

the average run-time of TWCA is constant independent of number of vertices. This

time independence from geofence complexity is managed by a pre-processing step that

enables real-time operation of this algorithm. Third, to enable the UAS operator or

geofence automation to intervene prior to a boundary violation, the geofence polygons

are scaled to provide warning and override cues. This boundary layering algorithm

utilizes a uniform and a directional buffer distance to scale keep-in geofences inward

and keep-out geofences outward. The layering algorithm is designed to handle arbi-

trary nonconvex polygons, with special cases identified and analyzed through Monte

Carlo simulation. Multiple layering techniques are utilized in parallel to increase the

likelihood of finding a scaled boundary solution. The statistical results show that the

likelihood of success for inward and outward scaling decreases as buffer magnitude

increases. The contributions of this thesis are combined to form a full system simu-

lation, from the request of a new geofence and access to an existing geofence through

the prevention of the boundary violation by the UAS.

xviii

CHAPTER I

Introduction

1.1 Motivation

Unmanned Aircraft Systems (UAS) have the potential to revolutionize our abil-

ity to carry payloads ranging from consumer packages and cameras to agricultural

chemicals and scientific sensor packages at low energy and cost due to platform size,

advanced technology, and system versatility. The low-altitude small UAS sector has

tremendous growth potential for public agencies such as law enforcement and private

companies supporting package delivery, entertainment, agriculture, news gathering,

etc, in addition to being valuable for education and research.

The number of UAS in the airspace is projected to grow exponentially in the

coming years. As the number of UAS increases, the airspace will become increasingly

crowded, quickly surpassing the capacity of the current Air Traffic Control (ATC)

system. Unlike traditional manned aircraft, the majority of UAS are not confined to

airport-based takeoffs and landings, which further complicates their incorporation into

the ATC system. The alternative to handling UAS in the same manner as manned

aviation is the development of the UAS Traffic Management (UTM) system. UTM is

being developed by NASA and collaborators [1, 2, 3, 4] specifically to manage UAS

traffic from 0 to 400 feet Above Ground Level (AGL). Geofencing is a key component

to its safe deployment.

1.1.1 What is geofencing?

Geofencing is the division of the airspace into volumes where specific UAS are

or are not allowed to operate for specified time periods. From the perspective of a

single UAS, a geofence is a volume of airspace that it has permission to fly within for

a specified time period. An active geofence system overrides the nominal UAS guid-

1

ance and control system to ensure that the geofence boundaries are respected. From

the UTM system perspective, geofences can be used to designate No Fly Zone (NFZ),

Temporary Flight Restriction (TFR), and volumes of occupied airspace. Occupied

airspace has manned or unmanned traffic currently actively flying within it or sched-

uled to fly within it.

For example, consider the Upper New York Bay area shown in Figure 1.1a. Most

of the land surrounding the waterway is densely populated, so over the water is the

safest place for UAS to operate. To enforce the safest flight option, a geofence is

constructed to contain the airspace above the bay, visualized as the green boundary

and shading. Any UAS with permission to fly over the bay can utilize the green keep-

in geofence to contain the flight within the allowed area. However, there are three

islands located within the geofence boundaries which UAS are not allowed to fly over

due to safety concerns, so additional keep-out geofences are constructed where no

UAS have permission to enter, shown in red. All UAS flying over the waterway must

respect the boundaries of one keep-in geofence (green) and three keep-out geofences

(red).

(a) Static geofences. (b) Static and dynamic geofences.

Figure 1.1: Example geofences in Upper New York Bay, New York City.

These example geofences would be permanent or static geofences. Additional

temporary or dynamic geofences will be defined to manage air traffic and reserve

volumes of airspace for specific purposes and finite durations. Figure 1.1b shows the

addition of a dynamic geofence that might be assigned for an emergency helicopter.

To clear the airspace for this manned aircraft, the UTM system accepts the new

geofence with highest priority, splits the keep-in geofence into two keep-in geofences,

and pushes the updated data to all UAS in the impacted airspace volume.

2

1.1.2 Flying Within a Geofence

For an individual UAS, geofencing serves as a method of reserving airspace and

as a safety system. If a UAS operator wants to fly over a public park, taking pictures

of the scenery, they likely do not have a specific flight path. Instead, their flight is

naturally defined by the area they want to fly over and when they want to fly there.

The user might define their geofence with a maximum altitude, the boundaries of

the park, and when they intend to fly. This information can be sent to the UTM

system to reserve that airspace for that UAS. This information can also be used to

ensure that the UAS does not leave the geofence. The user can then fly their UAS as

desired, and the geofence will only impact the flight if the UAS is at risk of violating

the boundary. When the UAS approaches the boundary, the geofence system will

take control and fly the UAS to a safe position before returning control to the user.

1.2 Airspace Background

The previous section introduced the ideas of reserving airspace for private and

commercial usage, respecting permanent keep-out geofences, and prioritizing certain

flights over others. These ideas are all components of the question: who has a right to

use any specific volume of airspace? A 1946 United States Supreme Court case, United

States v. Causby [5] ruled that an owner of private property has the right to own and

control the airspace necessary for enjoyment of the land. This layer of airspace just

above the ground was referred to as immediate reaches airspace [6, 7]. The altitude

cited in the decision was the lower bound of navigable airspace, set by the Civil

Aeronautics Authority, a precursor to the Federal Aviation Administration (FAA).

Navigable airspace referred to where aircraft could fly safely, which was set at 500

feet AGL during the day and 1000 feet AGL during the night or over populated areas.

The United States Congress later extended the U.S. v. Causby ruling to include the

takeoff and landing paths of manned aircraft in the definition of navigable airspace

[8, 9, 6]. Immediate reaches airspace referred to everything below navigable airspace.

The growing popularity of UAS has changed the management of airspace because

the majority of small UAS fly close to the ground. In order to regulate the flights of

UAS, the FAA has stated that their authority now extends to the ground, including

immediate reaches airspace. This authority is in direct conflict with the U.S. v.

Causby ruling, but has only to-date been locally challenged with conflicting outcomes.

Regardless of airspace ownership claims, current FAA policy restricts flights of UAS to

within immediate reaches airspace, below where manned aircraft fly [10, 7, 11, 12, 13].

3

A small UAS now must continuously maintain line of sight and obtain permission

from the property owner to operate from that property, temporarily offering some

connection between property owner and small UAS operation. However, once UAS

are routinely authorized to fly beyond line of sight, this connection will be tenuous

at best. UTM is designed to manage air-traffic within the low altitude airspace that

the FAA has allocated to UAS and geofencing is a key component [3]. UTM with

geofencing can be adapted to cases with or without immediate airspace distinction.

Whether UTM represents a sustainable segregation of airspace remains to be seen.

Given that the stance of the FAA may continue to be challenged by the U.S. v. Causby

ruling and by the need for local law enforcement to maintain safety and order, then

there are three possible airspace allocations that may emerge. The first possible out-

come is that the U.S. v. Causby ruling is upheld. This outcome would require UTM

traffic fly above immediate reaches airspace, resulting in a corresponding increase in

the minimum flight altitude of manned air traffic for segregated operations. The sec-

ond possible outcome is a limited upholding of the U.S. v. Causby ruling whereby

private landowners have the option to designate the airspace immediately above their

land as a keep-out geofence for UTM traffic. In this outcome, immediate reaches

airspace would be a mixture of open and restricted airspace. The third possible out-

come is the overturning of U.S. v. Causby. This final outcome would preserve the

current stance of the FAA: that all immediate reaches airspace is available for UTM

traffic usage. This outcome would also call into question the rights of land owners to

construct new structures on their property, to grow trees, and to use their property

for activities such as flying kites.

The geofence system presented in this thesis does not make assumptions about the

allocation or regulation of the airspace. Any airspace restrictions can be represented

as static keep-out geofences, thus allowing the geofence system to respect regulations

without requiring modification to the system setup.

1.3 Problem Statement

Commercially-available geofence systems and geofencing-related research efforts

are limited. The majority of work focuses on geofence boundaries defined as cylin-

drical or convex polygons, which are sufficient for missions in unpopulated airspace

but may be inefficient for UAS traffic management in densely populated areas. These

geofences do not allow for the presence of obstacles and other vehicles within the ge-

ofence per the above illustration. There has also been little work done to address cases

4

of multiple geofences defined for the same airspace volume or operating on different

time scales.

The main focus of this thesis is to formally design a geofence system suitable for

individual UAS operations and for UTM airspace coordination. As the basis for this

system, a geofence definition is proposed that allows for non-convex boundaries and

specific UAS permission functions. This definition informs individual UAS of the

spatial and temporal barriers of the geofence and of whether other UAS share the

airspace volume.

The geofence is proposed as a basis for UTM traffic coordination. Before this

can happen, UTM must be able to manage all of the geofences requested by users.

UTM must maintain a database of approved and requested geofences to assure only

compatible traffic, e.g., capable of detecting and avoiding each other or all flying at

the same speed, is approved to share a common airspace volume. Requested geofences

sometimes must be modified to prevent spatial and temporal overlap with existing

UTM approved geofences. A geofence priority scheme is required to arbitrate multiple

requests for the same airspace. Horizontal geofence boundaries may be more complex

than the rectangles typically proposed to capture land use and airspace constraints.

While most geofence work focuses on two-dimensional airspace, UAS will be operating

in three-dimensional airspace requiring either consideration of geofence boundaries

as general polyhedra or partitioning geofences into multiple altitude zones. Once

geofencing capabilities have been developed the transition to practice will require

extensive evaluation and community involvement.

From the UAS perspective, the geofence systems must activate to prevent bound-

ary violations and successfully return the UAS to a safe location. These functions

must be capable of handling any simple polygon or three-dimensional geofence set.

To prevent boundary violations the geofence system must warn the user and override

any guidance that is driving the UAS too close to the boundary.

The algorithms and equations presented throughout this thesis are written with

the assumption of real numbers. In both the simulation and flight testing of this

geofence system, special attention must be given to the transition from real numbers

to floating-point numbers [14]. This attention will better enable the accurate and

reliable implementation of this system.

5

1.4 Research Approach

The geofence is designed as a safety system for individual UAS and as a method for

UAS Traffic Management (UTM). For the UTM system, procedures and algorithms

are developed to manage and approve geofence requests. Geometric properties are

used to develop a formal geofence definition and algorithms for managing spatially and

temporally overlapping geofences. Within the UTM system, approved and requested

geofences are organized based on the start and end times of the geofences. Within

each time period, the geofence spatial boundaries are modified to enforce the rule

that a maximum of one geofence may occupy the same volume of airspace at a time.

The potentially modified geofences are returned to the UAS for usage in flight.

For individual UAS, algorithms are designed to detect, anticipate, and prevent

geofence boundary violations. The Triangle Weight Characterization with Adja-

cency (TWCA) method is developed to quickly detect a horizontal geofence boundary

violation. Monte Carlo simulation is used to compare TWCA with the industry stan-

dard of Ray Casting and shows that the computation time of TWCA is constant,

independent of the complexity of the geofence boundary. Geofence boundary layers

are calculated to trigger a response prior to violation of the original geofence bound-

ary. The distance between the geofence layers is calculated based on the physical

characteristics of the UAS and the airspace. Monte Carlo simulation is used to com-

pare the success rates of multiple methodologies for the generation of the geofence

layers. A simulation is designed to demonstrate how each of the geofence system com-

ponents work together to form a unified system for both UTM system management

and individual UAS usage.

This thesis presents results from two perspectives: UTM level geofence manage-

ment and individual UAS geofence boundary management. The primary responsibil-

ity of the UTM system is to handle all geofence related requests from all users. This

requires that UTM build and maintain a geofence database of deconflicted geofence

boundaries. The primary responsibility of a UAS geofencing system is to maintain

updated boundary constraints and assure the UAS satisfies them. This thesis presents

end-to-end simulations each beginning with a geofence request that conflicts with an

existing UTM approved geofence. The requested geofence is modified by UTM to

eliminate the overlap and return a valid geofence to the UAS. The updated geofence

is scaled to generate a warning and override boundary layer. Each boundary layer

is triangularized with TWCA to allow for fast violation checking during flight. In

flight, when the UAS enters the area between the override layer and the original

6

geofence boundary, the geofence system overrides the nominal guidance system to

prevent violation of the originally defined geofence boundary.

1.5 Contributions and Innovations

Specific contributions of this thesis are:

• Definition and simulation-based validation of algorithms for geofence polygon

set operations.

• Development of a method to test and benchmark geofence boundary viola-

tion detection algorithms Triangle Weight Characterization with Adjacency

(TWCA) and Ray Casting.

• Definition of an algorithm to automatically scale a geofence inward or outward

to minimize usable area loss from reflex angle vertices while maintaining a simple

polygon horizontal boundary.

• Simulation and flight testing of an onboard UAS geofence system prototype

with three distinct geofence guidance methods.

Specific innovations of this thesis are:

• The first formal definition of a UAS-centric geofence. This definition includes

the four-dimensional spatial and temporal boundaries of the geofence, as well

as a function describing the UAS permitted to operate within its boundaries.

• A design for a four dimensional (i.e., time and 3D position) UAS Traffic Man-

agement (UTM) database of approved and requested geofences, created using

temporal and spatial deconfliction methodologies.

• A novel computationally-efficient algorithm for real-time geofence boundary vi-

olation detection. The proposed Triangle Weight Characterization with Adja-

cency (TWCA) algorithm combines polygon triangularization, occupancy test-

ing, and graph theory algorithms.

• Application of polygon offset algorithms to geofence boundaries that return

only the valid (accessible) portions of scaled geofence boundaries. The number

of geofence boundaries and vertices per boundary may differ from the original

geofence boundary.

7

• A geofence guidance method Local Loiter (LL) to automatically move the UAS

away from the geofence boundary when a violation is predicted. Existing meth-

ods flight terminate or return home, neither of which is a safe choice in a complex

urban environment.

1.6 Outline

The remainder of Chapter I outlines the other chapters of this thesis and lists pub-

lications. Chapter II introduces a formal definition of a geofence and the discussion

of the geofence system from an individual UAS and its associated geofences to UTM

system-level algorithms required to manage and communicate multiple geofences over

a local region, i.e., an Urban Air Mobility (UAM) airspace sector. To handle multi-

ple requested geofences, set union and difference operators are used to combine and

separate overlapping geofences.

Chapter III discusses the existing and proposed algorithms for geofence boundary

violation detection. Monte Carlo simulation is used to demonstrate the improved

run-time of the proposed algorithm over the industry standard. Chapter IV presents

a methodology for generating geofence layers projected inward and outward from the

original geofence boundary to warn the operator of an imminent geofence violation

and to take control of (override) the nominal UAS control system to prevent violation

of the geofence.

Chapter V presents simulations utilizing randomly generated geofences to demon-

strate the combination of the algorithms introduced in the preceding chapters func-

tioning together as a full system. Chapter VI summarizes the presented work and

future directions of research to be pursued.

1.7 Publications

Conference

• Romano, M., P. Kuevor, D. Lukacs, O. Marshall, M. Stevens, H. Rastgoftar,

J. Cutler, and E. Atkins. “Experimental Evaluation of Continuum Deforma-

tion with a Five Quadrotor Team.” Proceedings of 2019 American Control

Conference, Philadelphia, Pennsylvania, USA. 2019.

• Stevens, M.N., and E.M. Atkins. “Layered Geofences in Complex Airspace

Environments.” Proceedings of the 18th Aviation Technology Integration, and

8

Operations Conference, Atlanta, Georgia, USA. 2018. https://doi.org/10.

2514/6.2018-3348

• Stevens, M.N., and E.M. Atkins. “Geofencing in Immediate Reaches Airspace

for Unmanned Aircraft System Traffic Management.” Proceedings of the 2018

AIAA SciTech Forum, Gaylord Palms, Kissimmee, Florida, USA. 2018. https:

//doi.org/10.2514/6.2018-2140

• Stevens, M.N., H. Rastgoftar, and E.M. Atkins. “Specification and Evalua-

tion of Geofence Boundary Violation Detection Algorithms.” Proceedings of

the 2017 International Conference on Unmanned Aircraft Systems, Miami, FL,

USA. 2017. https://doi.org/10.1109/ICUAS.2017.7991472

• Stevens, M.N., and E.M. Atkins. “Multi-Mode Guidance for an Independent

Multicopter Geofencing System.” Proceedings of the 16th Aviation Technology

Integration, and Operations Conference, Washington, DC, USA. 2016. https:

//doi.org/10.2514/6.2016-3150

• Stevens, M.N, B. Coloe, and E.M. Atkins. “Platform-Independent Geofenc-

ing for Low Altitude UAS Operations.” Proceedings of the 15th Aviation

Technology Integration, and Operations Conference, Dallas, TX, USA. 2015.

https://doi.org/10.2514/6.2015-3329

Journal

• Stevens, M.N., and E.M. Atkins. “Generating Airspace Geofence Boundary

Layers in Wind.” Journal of Aerospace Information Systems. Submitted and

under review.

• Stevens, M.N., H. Rastgoftar, and E.M. Atkins. “Geofence Boundary Vi-

olation Detection in 3D using Triangle Weight Characterization with Adja-

cency.” Journal of Intelligent & Robotics Systems, 95(1), 239-250. 2019.

https://doi.org/10.1007/s10846-018-0930-5

9

https://doi.org/10.2514/6.2018-3348
https://doi.org/10.2514/6.2018-3348
https://doi.org/10.2514/6.2018-2140
https://doi.org/10.2514/6.2018-2140
https://doi.org/10.1109/ICUAS.2017.7991472
https://doi.org/10.2514/6.2016-3150
https://doi.org/10.2514/6.2016-3150
https://doi.org/10.2514/6.2015-3329
https://doi.org/10.1007/s10846-018-0930-5

CHAPTER II

Geofencing System

2.1 Introduction

Small Unmanned Aircraft Systems (UAS) are valuable tools for private citizens,

companies, researchers, the government, law enforcement, and emergency services.

They are great for providing an overhead view of a situation through low altitude

photography and for moving small packages and payloads across the airspace. To

coordinate the movement of these UAS with various operators and missions, a UAS

Traffic Management (UTM) system is used. Within UTM, geofencing systems provide

a method for allocating and tracking airspace usage. In the context of UAS and UTM,

the term geofencing is used to describe virtual three dimensional “fenced boundaries”

that define where a UAS may operate. Each geofence volume is designated as a

keep-in geofence or a keep-out geofence. As the terms suggest, a keep-in geofence is a

volume in which the UAS has permission to fly, and a keep-out geofence is a volume

in which the UAS does not have permission to fly. Each geofence has a temporal

designation of static or dynamic. Static geofences represent unchanging boundaries

such as international borders, buildings, utility poles and lines, and airport final

approach and initial departure corridors. Dynamic geofences have the potential to

vary over time, such as regions with Temporary Flight Restrictions (TFRs), geofences

surrounding specific aircraft, and time dependent flight volume reservations such as

the airspace immediately over a public park event.

Substantial work has been done to define and realize geofencing systems for small

UAS [15, 16, 17, 18]. Static geofences over critical areas, e.g., airports and stadi-

ums, are offered in popular autopilot systems [19, 20, 21]. This chapter formalizes a

comprehensive geofencing definition and applies set theory operations over geofence

volumes to assure geofence requests are deconflicted over time as will be required in

a national UTM system. A formal geofence definition is presented in Section 2.2 and

10

our previous work [22]. Each geofence request has spatial, temporal, and permissions

specifications. Assuming the user requesting the new geofence is allowed to create

geofences either through Federal Aviation Administration (FAA) licensing or another

approval system, then the new geofence is deconflicted with pre-existing geofences.

The presented UTM geofence approval logic gives higher priority to static geofences

than to dynamic geofences, which are then prioritized in this work based on the order

in which new geofence requests are received. Each geofence request is checked against

approved geofences that overlap temporally and spatially.

Within the UTM system, approved geofences are sorted temporally and processed

spatially to have non-overlapping boundaries. This procedure ensures that at any

point in time, any volume of airspace is allocated to exactly zero or one geofence. To

enforce spatial separation of active geofences, the three dimensional geofence bound-

aries could be combined and deconflicted using set operations, such as those defined

in Constructive Solid Geometry [23, 24, 25]. However, in this work, the tradition

of vertically partitioned airspace is built upon. Polygon set union and difference

operators are used to combine and separate geofences in the horizontal plane only

to reasonably manage real-time computational overhead. This chapter explores the

theory and implementation of a UTM geofence management system and related al-

gorithms. To our knowledge this is the first manuscript offering a three-dimensional

polyhedral geofence deconfliction capability needed for UTM.

The next section introduces a formal definition of a geofence. Section 2.3 presents

high-level Concept of Operations (CONOPS) to motivate UTM management of multi-

ple geofences. Section 2.4 presents algorithms and methodologies for handling tempo-

ral and permissions components of the geofencing system. Section 2.5 describes how

geofence altitude constraints are managed while Section 2.6 applies polygon union

and difference operators to deconflict geofence horizontal boundaries. Section 2.7

presents a case study of the geofencing UTM system and Section 2.8 summarizes this

chapter.

2.2 Geofence Definition

This section formalizes the definition a geofence and associated terms to support

the design of a common framework capable of being managed within UTM. Key

designations are provided to specify the length of time a geofence is active along

with three dimensional spatial constraints. Operating permissions are included in

geofence specification, enabling UAS access based on property type or vehicle risk as

11

in Reference [26]. Geofence data is assumed available through UTM. Each geofence-

equipped UAS would contact UTM to update its geofence data prior to flight; given

our order of request received priority scheme, in-flight updates would not be required,

though in practice UTM could issue new geofence constraints in real-time to UAS

traffic as needed (e.g., an emergency vehicle requesting passing through previously-

geofenced airspace).

Definition 2.2.1. A geofence g = {n, v[], zf , zc,m, h[], add_ids()} is a volume

defined by a list of n vertices on the horizontal plane v = [(x1, y1), (x2, y2), . . . , (xn, yn)]

where n ≥ 3, and an altitude floor zf and ceiling zc. The volume is defined relative to

a set of home locations hi = (φi, λi, zi, ti) = (xi, yi, zi, ti), where h[] is a list of length

m ≥ 2. Lateral home positions can be represented as latitude, longitude pairs (φi, λi)

or locally-referenced Cartesian coordinates (xi, yi). zi is the altitude of the home

location above Mean Sea Level (MSL). ti is the activation time for home location i

for 1 ≤ i < m. tm is the deactivation time for geofence g. Permission to enter and

operate within geofence g is dictated by the add_ids() function.

Geofence boundaries are defined relative to a home (i.e., geofence centroid) lo-

cation with a vertical floor zf , ceiling zc, and a list of vertices v = [v1, · · · , vn] for

each vi = (xi, yi), i ∈ [1, n] where n is the number of vertices. The vertices define a

closed simple polygon with straight non-intersecting edges parallel to the horizontal

plane. There is no convexity requirement on the polygon. The polygon is extruded

to the vertical limits of the geofence to construct the geofence volume. The hori-

zontal vertices and vertical limits are constant relative to a sequence of two or more

home locations defined in set h[]. Figure 2.1 illustrates a data structure for storing

a geofence object.

For the examples presented throughout this thesis, home locations are defined

relative to a local Cartesian frame. This choice enables the included plots of geofence

boundaries to have simple axis ranges. When the geofence system is used for actual

UAS flight coordination, the home locations will be defined as latitude and longitude

pairs. The geofence system functions the same, regardless of which home location

definition is used.

2.2.1 Geofence Permanence

With the geofence data structure proposed in Figure 2.1, the geofence boundaries

relative to the home location are constant, but the home location can vary. The

home location set h[] is used to differentiate between geofences that are always

12

struct geofence:

horizontal vertices = n

horizontal vertices = v[]

(x1, y1)

...

(xn, yn)

vertical limits = (zf , zc)

home locations = m

home locations = h[]

(φ1, λ1, z1, t1)

...

(φm, λm, zm, tm)

add_ids()

Figure 2.1: Geofence data structure. Blue boxes are variables that define the geofence
polygon relative to a home or centroid position. Green boxes are variables that define
the position of the home position over time. The grey box defines the permissions
function for the geofence. Note this figure illustrates home positions as latitude,
longitude coordinates; a local Cartesian ground frame could also be referenced for a
particular UTM community or region.

active (static), only active for a specified time period (durational), or move through

space over time (trajectile).

A static geofence is always active and the boundaries do not change. This type

of geofence is used for physical objects such as buildings and utility poles, and for

permanent airspace partitions such as airport runway final approach and initial depar-

ture paths. For a static geofence, the number of home locations is m = 2; the spatial

home location (φ, λ, z) is the same for both entries h1 and h2. For the temporal home

terms, t1 is set to the time of the most recent geofence data update and t2 is set to

a time tmax. Theoretically, the constant tmax is infinite to indicate that the geofence

is always active. However, because this definition is implemented in software, tmax is

set to a time far in the future, a practical “infinite”.

A dynamic geofence is a geofence that is active for a specific time frame, and the

home location can move over time. Stationary flight volumes that are only active

13

for specific time periods are called durational geofences. Flight volumes that move

through space over time are called trajectile geofences. For a durational geofence,

as with a static geofence, m = 2 and the home location is constant. Unlike a static

geofence, t1 is the time, past or future, when the geofence activates while t2 is the

future time when the geofence terminates. Durational geofences can be used for

temporary aerobatics boxes, isolating sports stadiums on game days, and covering

concerts in public parks. Trajectile geofences track the flight path of a single aircraft

or a swarm of aircraft, such as for package delivery. As with durational geofences,

the trajectile geofence starts at time t1 and terminates at time tm. Consecutive home

locations hi and hi+1 allow the home location h to move as a continuous function of

time via linear interpolation over time interval ti to ti+1. Trajectile geofences can be

approximated by a series of durational geofences in UTM. Note that this manuscript

focuses on static and durational geofences; comprehensive consideration of trajectile

geofences is beyond the scope of this work.

2.2.2 Geofence Permissions Function

The final term of the geofence definition is the permissions function, add_ids().

The permissions function specifies the conditions under which a UAS may fly within

a geofence. A geofence that no UAS has permission to fly within could represent a

No Fly Zone (NFZ) or TFR or an obstacle such as a building or power line. Other

permissions functions can list one or more specific UAS user identification numbers,

a maximum capacity number, a flight characteristic or safety system requirement, or

any number of other distinguishing features. The permissions function controls the

occupancy of the geofence, which is important information for the safe flight of UAS

within the geofence. Within the context of UTM, the permissions function is used to

determine if a request to access an existing geofence should be approved. In practice,

if a region or section of airspace has rules about how its usage is or can be restricted,

then the permissions function would need to be compatible for the geofence to be

approved.

2.3 UTM Concept of Operations

An implementation of a geofence system on a single UAS consists of the UAS hav-

ing permissive usage of a volume of airspace with horizontal and vertical boundaries

containing the planned flight trajectory. The geofence system prevents the UAS from

crossing the boundaries of the geofence. This is accomplished by detecting when a

14

boundary violation is about to occur and modifying or overriding the nominal UAS

guidance to prevent the violation [17, 27, 28, 29].

As defined above, a geofence is a volume of airspace with spatial, temporal, and

permissions constraints. This enables portions of the airspace to be separated from the

rest of the airspace and allocated to specific vehicles for specific time periods. In the

simplest case, geofencing is requested by a hobbyist reserving the air immediately over

their back yard for a special event or to practice flying their small UAS. The hobbyist

defines the horizontal boundary of the geofence to correspond to their property lines,

with an altitude floor at ground level and an altitude ceiling at 400 feet. The hobbyist

is interested in flying for the next hour and a half, so they send a geofence request to

the UTM system with the chosen temporal and spatial constraints. The permissions

constraint that the hobbyist chooses is to only allow their UAS within the space, so no

other UAS will be allowed to enter the geofence. When the UTM system determines

that no other geofences exist in the desired volume during the requested time frame,

the hobbyist is granted their exclusive geofence for 1.5 hours of flying. The UTM

approve geofence is loaded onto the UAS of the hobbyist, where it monitors the

position of the UAS within the geofence and prevents it from exiting the approved

geofence.

If a section of the hobbyist’s property is within the static geofence of an airport,

then the requested geofence boundaries must be modified to exclude the overlapping

section. If the airport is only operational during certain hours of the day, then its

permissions function may allow the hobbyist to utilize the airport geofence outside

the operational hours. In this case, the hobbyist would request the creation of the

geofence aligned with their property lines and request access to the airport geofence

for the desired time frame.

As a contrasting CONOPS, consider a utility company that wants to inspect a

section of their power lines. The company requests a durational geofence encompass-

ing a section of the power lines for the desired time frame with only the company UAS

allowed. Unfortunately for the utility company, two other durational geofences were

requested and approved before the geofence for the inspection was requested, making

it impossible to access the entire section of power lines at the same time. The util-

ity company receives from the UTM system the resulting versions of the requested

geofence that no longer conflicts with the higher priority geofences. The planned

methodology of the inspection needs to be adjusted to access each section when it is

not occupied by the geofences with higher time-of-request based priority.

15

2.4 UTM Geofence Request Management

A request to the UTM system is for one of three operations: the creation of a

set of requested geofences, access to an existing set of geofences, or the deletion of a

set of existing geofences. When the UTM system receives a geofence set request, the

requested geofence must be temporally and spatially separated from existing UTM

approved geofences to ensure that each volume of airspace is occupied by zero or

one geofence(s) at any point in time. Section 2.4.1 introduces the algorithms used

to create temporal periods and enforce the separation of geofences. If the received

request is for access to a set of existing geofences, then the permissions functions

of the geofences within the set are used to handle the request, as in Section 2.4.2.

Finally, Section 2.4.3 handles requests for the removal of geofences from the set of

UTM approved geofences.

2.4.1 Temporal Periods

The UTM system maintains a record of existing and approved geofences organized

temporally. The system has a rolling temporal horizon th, assumed here to be 24

hours into the future. The temporal horizon is divided into periods differentiated by

temporal events. Temporal events are dynamic geofence start times and end times.

Each period P = {t,GU}, where t is the period start time and GU is the set of

approved geofences active at time t. The end time of a period Pj is the start time of

Pj+1. If Pj+1 does not exist, then the period Pj continues until Pj+1 is created. The

set of periods is P = {P1, . . . , PN}, where N ≥ 1 is the number of existing periods.

To bound the number of periods in a given time span, a minimum time resolution

tl is enforced. For example, let time resolution of tl = 5 minutes be enforced, so there

is a maximum of 12 periods per hour, 1 ≤ N ≤ 288 for th = 24 hours. Each geofence

starts and ends on a minute divisible by tl. This temporal resolution bound prevents

the creation of periods that exist for seconds or milliseconds at a time. For static

geofences this policy has no impact on the function of the geofence. For durational

geofences, the start time of the geofence is rounded down to the previous time bound,

and the end time is rounded up to the next time bound. If static geofences are

approved, then they are contained in the initial period P1 and every subsequent

temporal period Pj.

When a static geofence set is requested, the existing UTM approved static ge-

ofence set GUS has priority over the requested static geofence set GRS, and the GRS

has priority over all durational geofences GUD. Algorithm 2.1 shows the process

16

of spatially deconflicting the existing and requested geofences to reflect the relative

priority of each geofence.

Algorithm 2.1 Insertion of Requested Static Geofence Set into UTM System

Input: GRS is the requested static geofence set,
P = {P1, . . . , PN} is the set of temporal periods in the database

Output: P is updated to include approved GR

1: Let GUS designate the set of existing UTM approved static geofences.
2: Deconflict GRS from GUS using Algorithm 2.4:

GRS = spatial-deconflict(GRS,GUS).
3: for all Pj ∈ P do
4: Insert GRS at the end of the static geofences of Pj.
5: Deconflict the durational geofences of Pj, Pj → GUD from GRS using Algorithm

2.4: Pj → GUD = spatial-deconflict(Pj → GUD,GRS).
6: end for

When a requested durational geofence set GR is received each member of the set

is required to have a shared start time ts and end time te, where ts < te, and its

insertion into the UTM system is handled by Algorithm 2.2. The algorithm for a re-

quested duration geofence set does not distinguish between the UTM-approved static

and dynamic geofences because all existing geofences have priority over a requested

durational geofence set. The first step is to bound the start and end times of GR to

the temporal horizon th and resolution tl of the system using Algorithm 2.3. The sec-

ond step is to loop over the existing temporal periods to identify the period with the

same start time as GR. If the start time of GR is between existing temporal periods

Pj−1 and Pj, then a copy of Pj−1 is created with the same start time as GR. The third

step calls for GR to be spatially deconflicted from the UTM approved geofence set in

all temporal periods over which GR exists. The methodology to spatially deconflict

two sets of geofences is explained in Sections 2.5 and 2.6. If the end time of GR is

between existing temporal periods Pj and Pj+1, then a copy of Pj is created with

Pj → t = te. Temporal period Pj → t = te is the first period to not include GR.

For each temporal period Pj during which GR is requested, GR is spatially de-

conflicted from the previously-approved geofences Pj → GU . Consider the simple

case of an empty UTM geofence system that receives and approves a request for a

durational geofence. Initially, the system has no approved geofences, so there exists

an initial period P1 = {0, {∅}} with P1 → t = 0 representing the time when the

system was turned on and P1 → GU = {∅}. Then, a durational geofence GR is

requested with start and end times tRs = 2.75 hours and tRe = 6.5 hours. When GR

is approved, it becomes G1 and the system contains three periods: the original empty

17

Algorithm 2.2 Insertion of Requested Durational Geofence Set into UTM System

Input: GR is the requested geofence set,
P = {P1, . . . , PN} is the set of temporal periods in the database

Output: P is updated to include approved GR

1: Initialize temporal period index: j = 0.
2: Bound the start and end times of GR using Algorithm 2.3:

GR = bound-times(GR).
3: [ts, te] are the start and end times of GR.
{Find the first temporal period that will contain GR:}

4: while j ≤ N do
5: Increment temporal period index: j = j + 1.
6: if j ≤ N and Pj → t = ts then
7: Break. A new temporal period is not needed for GR start time.
8: else if j = N + 1 or Pj → t > ts then
9: Duplicate Pj−1 to create a temporal period at GR start time:

P = {P1, . . . , Pj−1, Pj−1, Pj, . . . , PN}, N = N + 1.
10: Modify new Pj start time to GR start time: Pj → t = ts.
11: Break.
12: end if
13: end while
{For each temporal period Pj ∈ [ts, te), spatially deconflict GR from Pj → GU :}

14: while j ≤ N do
15: if Pj → t = te then
16: Break. Pj is the first temporal period after GR ends, so the loop ends.
17: else if (j < N and Pj+1 → t > te) or j = N then
18: Duplicate Pj to create a temporal period at GR end time:

P = {P1, . . . , Pj, Pj, Pj+1, . . . , PN}, N = N + 1.
19: Modify new Pj+1 start time to GR end time: Pj+1 → t = te.
20: end if
21: Call Algorithm 2.4 to spatially deconflict GR with Pj → GU :

ĜR = spatial-deconflict(GR, Pj → GU).

22: Insert the deconflicted geofence set ĜR at the end of Pj → GU .
23: Increment temporal period index: j = j + 1.
24: end while

18

Algorithm 2.3 Bound Start and End Times of Geofence Set to UTM System Tem-
poral Constraints

Input: GR is the requested geofence set, each member has the same start and end
times

Output: GR is the requested geofence set with UTM system compliant time con-
straints

1: UTM system temporal constraints: t0 is the start time of the current temporal
period, tl is the temporal resolution, and th is the temporal horizon.

2: [ts, te] are the start and end times of GR.
{Adjust the GR start time:}

3: if ts < t0 then
4: GR begins in the past, set to current system lower bound: ts = t0.
5: else if ts%tl 6= 0 then
6: Round ts down to the nearest allowed time: ts = ts − ts%tl.
7: end if
{Adjust the GR end time:}

8: if te > t0 + th then
9: GR ends beyond the temporal horizon, set to current system upper bound:

te = t0 + th.
10: else if te%tl 6= 0 then
11: Round te up to the nearest allowed time: te = te + tl − (te%tl)
12: end if
13: Set start and end times of all geofences of GR to [ts, te].

Algorithm 2.4 Geofence Spatial Deconflict

Input: GR is the requested geofence set
GU = {GU1, . . . , GUN} is a list of geofences with higher priority than GR

Output: GR is the updated and approved requested geofence set
1: Vertically partition requested geofence set with vertical resolution zl:

GR = vertical-partition(GR,zl).
2: Deconflict the partitioned requested geofence set from the UTM approved ge-

ofences that overlap vertically and horizontally:
GR = spatial-deconflict(GR,GU).

3: Recombine the vertical partitions: GR = undo-vertical-partition(GR).

19

period P1 = {0, {∅}}, the period that begins when G1 begins P2 = {2.75, {GU1}}, and

the period that begins when G1 ends P3 = {6.5, {∅}}. Figure 2.2 shows the periods

stored in the system once GR is approved and becomes G1.

Figure 2.2: Temporal periods example with G1 in blue.

Now, the system described above receives a new durational geofence request GR.

Figure 2.3 shows the newly requested geofence GR with a start time of tRs = 1.25

hours and an end time of tRe = 5.167 hours. The start and end times of GR do

not coincide with the existing temporal periods, so to approve GR the UTM system

creates two new temporal periods, as seen in Figure 2.4. For the new P2, P2 → t =

1.25 and GR, now G2 = P2 → GU1, is the only geofence active. The new P3 begins at

the start time of the first requested geofence, G1 = P3 → GU1, and because P3 → GU1

was already approved, GR can only be added as P3 → GU2 once it has been spatially

deconflicted from P3 → GU1 using Algorithm 2.4. As can be seen in Figure 2.4, the

horizontal boundaries of GR in P2 and P3 are different. Then, the new P4 again

contains only P4 → GU1, and P5 contains no active approved geofences.

2.4.2 Permission Constraints

Each geofence definition includes a permissions function, add_ids(). This func-

tion sets which UAS can and cannot fly within this particular geofence region. It could

be a specific UAS identification number, a set of ID numbers (e.g., for a cooperative

team), or something more complex such all UAS meeting an equipage requirement or

vehicle performance constraint. The actual extent of customization and enforcement

of geofence permission limits will depend on future regulations created regarding the

reservation and utilization of low-altitude airspace by individuals, companies, and

public agencies.

20

Figure 2.3: Temporal periods example with G1 in blue and the newly requested
geofence Gr in green.

Figure 2.4: Temporal periods example with the first requested geofence in blue and
the second requested geofence in green.

21

While the granting of access to specific geofences is managed by the individual

add_ids() functions, the UTM system tracks the identification numbers of each UAS

that has been granted access to active geofences. A UAS may be included in the list

of active UAS for multiple geofences concurrently as inclusion in the list is based on

permissions granted rather than current UAS position.

This work assumes a one-to-one mapping of geofences to users. In future work,

this condition will be relaxed with special consideration given to specifications that

can be included in the permissions function and that can exploit the temporal nature

of UAS missions. The operation of a UAS may not match the time span of the

geofence or geofences that it occupies, so the active UAS must be tracked for each

geofence over time. This temporal occupancy tracking is beyond the scope of the

work presented here.

2.4.3 Geofence Removal

When the UTM system receives a request to remove a geofence that has been

approved, a series of checks and processing steps must be taken. First, the associated

active UAS list must be empty; otherwise the removal request is denied since a ge-

ofence cannot be removed if it is in use by even one UAS. Second, for each geofence

approved for the relevant temporal period with lower priority than the removed ge-

ofence, the original boundary of each geofence must be spatially deconflicted again

without the removed geofence to restore as much airspace availability to remaining

geofences as possible. Algorithm 2.5 summarizes this process.

2.5 Vertical Geofence Sets

A key aspect of UAS integration into low altitude airspace is the vertical separation

of vehicles and geofences. The geofence definition features constant minimum altitude

zf and maximum altitude zc limits as vertical boundaries relative to the home altitude

z. To prevent the creation of hundreds of unique altitude layers, a minimum vertical

resolution zl is introduced. In this case, the altitude limits and home are multiples of

zl = 5 relative to mean sea level. For each geofence in the requested geofence set GR,

Algorithm 2.6 begins by modifying the vertical limits of the requested geofence GRj

to conform to the vertical resolution zl. A “close to ground” warning is issued if the

geofence floor zj + zjf is less than zl from ground level. It is assumed that the ground

level information (MSL), Z, is available to the UTM system for the warning to be

generated. Once Algorithm 2.6 enforces the altitude range resolution, the requested

22

Algorithm 2.5 Requested Geofence Removal

Input: GR is the geofence requested for removal
P = {P1, . . . , PN} is the set of UTM temporal periods

Output: P is the set of periods with GR removed
1: [ts, te] are the start and end times of GR.
2: Let Ps be the period corresponding to the start time of GR: Ps → t = ts.
3: Let Pe be the period corresponding to the end time of GR: Pe → t = te.
{Loop over periods Ps to Pe−1:}

4: for all temporal periods Pj, where j ∈ [s, e) do
5: Let m and n be the indices of the first and last geofences derived from GR in

Pj → GU .
6: Set GA as the ordered list of the requested geofence sets with lower priority

than GR in Pj → {GU(n+1), . . .}.
7: Redefine Pj → GU as the geofences with higher priority than GR:

Pj → GU = Pj → {GU1, . . . , GU(m−1)}.
8: for all geofences Gi ∈ GA do
9: Call Algorithm 2.3 to spatially deconflict Gi with Pj → GU :

Ĝi = spatial-deconflict(Gi, Pj → GU).

10: Insert the deconflicted geofence set Ĝi at the end of Pj → GU .
11: end for
12: end for
13: if Pe−2 → GU = Pe−1 → GU then
14: Remove redundant temporal period Pe−1:

P = {P1, . . . , Pe−2, Pe, . . . , PN}, N = N − 1.
15: end if
16: if Ps−1 → GU = Ps → GU then
17: Remove redundant temporal period Ps:

P = {P1, . . . , Ps−1, Ps+1, . . . , PN}, N = N − 1.
18: end if

23

geofence is partitioned vertically into geofences with altitude ranges equal to zl. The

resulting requested geofences can then be deconflicted in the horizontal plane using

Algorithm 2.8 in the next section.

Algorithm 2.6 Vertical Partitioning for Requested Geofence Set

Input: GR the requested geofence set
Z ground level altitude information for horizontal area of GR in MSL

Output: GR the requested geofence set partitioned with compliant altitude limits
1: UTM limits resolution of geofence altitude floors and ceilings to: zl = 5 MSL.
2: for all GRj ∈ GR do
3: Enforce altitude resolution limit for requested geofence floor and ceiling:

zRjf = zRjf −
(
(zRj + zRjf)%zl

)
, zRjc = zRjc + zl −

(
(zRj + zRjc)%zl

)
.

4: if GR altitude floor zRj + zRjf is less than zl meters above ground level: zRj +
zRjf −max (Z) < zl then

5: Issue “close to ground” warning.
6: end if
7: if (zRjc − zRjf)/zl > 1 then
8: Remove GRj from GR to replace it with copies each spanning an altitude

range of zl.
9: for i = 1 : (zRjc − zRjf)/zl do

10: Redefine altitude limits of GRj to span i-th altitude range: zRjf = zRjf +
zl(i− 1) and zRjc + zli.

11: Insert i-th version of GRj with altitude range zl into GR.
12: end for
13: end if
14: end for

In Figure 2.5a, the green geofence, GR, is the requested geofence, and the blue

geofence, GU , is an existing approved geofence. Let the vertical limits of GR be 5

and 15, and of GU be 10 and 15. The requested geofence set returned by Algorithm

2.6 is GR = {GR1, GR2}. Then, the requested geofence set is horizontally decon-

flicted from the set of UTM approved geofences GU with overlapping vertical ranges.

Deconflicting GR1 from GU results in the dark green geofence seen in Figure 2.5b.

The upper light green geofence is the horizontally deconflicted geofence, with vertical

range 10 to 15. The updated requested geofence set GR does not conflict vertically

or horizontally with GU .

Continuing this example, a new geofence GR is requested as shown in Figure 2.6a.

As discussed above, the first step is to partition the requested geofence using Algo-

rithm 2.6, which results in the updated requested geofence set GR = {GR1, . . . , GR5}
per Figure 2.6b. The requested geofence set is numbered from bottom to top. The

requested geofence set and the UTM approved geofence set are passed into Algo-

24

(a) Full requested geofence, GR, in
green.

(b) Deconflicted geofences, resulting
in three approved geofences.

Figure 2.5: Example altitude partitioning. UTM approved geofence in blue. Re-
quested geofences in green. Upper requested geofence deconflicted vertically and
horizontally with existing geofence.

(a) Newly requested
geofence on right in cyan.

(b) Requested geofence set
vertically partitioned.

(c) Deconflicted requested
geofence set with combined
vertical partitions.

Figure 2.6: Adding to the simple example in Figure 2.5 to demonstrate altitude
partitioning and combining of requested geofence sets.

25

rithm 2.8 to spatially deconflict the requested geofence set from the UTM approved

geofence set. The returned requested geofence set no longer overlaps spatially with

the UTM approved geofence set. The updated GR2 and GR3 are copies of the same

geofence occupying two adjacent altitude ranges. Similarly, GR1, GR4, and GR5 are

the same geofence at different altitudes, but GR1 is not adjacent to the other two.

These matched altitude adjacent geofences can be combined to reduce the number of

geofences in the requested geofence set without losing any additional flight volume by

using Algorithm 2.7. Algorithm 2.7 assumes that the order of geofences within the

input geofence set are listed from minimum to maximum altitude, which is consistent

with the order output by Algorithm 2.6. The end results is GR = {GR1, GR2, GR3},
which is approved by UTM, and added to the end of the set of UTM approved ge-

ofences GU as geofences {GU4, GU5, GU6}.

Algorithm 2.7 Combine Vertical Partitions for Requested Geofence Set

Input: GP the geofence set to be vertically simplified
Output: GS the vertically simplified geofence set

1: Initialize the return geofence set as empty and the boolean flag to false: GS = ∅,
same = false.
{Loop over all geofences in the input and output sets:}

2: for all GPi ∈ GP do
3: for all GSj ∈ GS do
4: if horizontal boundaries of GPi are the same as GSj and zPif = zSjc then
5: Update boolean flag to show horizontally matched vertically adjacent ge-

ofences: same = true.
6: Extend GSj altitude ceiling to equal GPi altitude ceiling: zSjc = zPic.
7: Break to progress to next member of GP .
8: else
9: Update boolean flag to show that geofences GPi and GSj should not be

vertically combined: same = false.
10: end if
11: end for
12: if same is false then
13: GPi cannot vertically combine with any member of GS. Insert GPi into GS.
14: end if
15: end for

2.6 Horizontal Geofence Boundary Set Operations

To maximize the usable airspace, each vertical partition of the requested geofence

set is horizontally deconflicted with the existing UTM approved geofence set. The

26

horizontal geofence boundary definition utilized here has no convexity requirement

and no maximum number of vertices. This flexibility enables the creation of mission

driven geofences and maximizes usable airspace. To enforce the design requirement

that any volume of airspace is occupied by a maximum of one geofence at a time,

the horizontal boundaries of overlapping geofences are modified using polygon set

operations. The following section develops the usage of difference and union operators

on horizontal geofence boundaries, represented here as polygons, to satisfy this UTM

system requirement.

Set operation methods of two-dimensional polygons were developed for a variety

of applications including for the automatic detection of crossed wires on circuit boards

and for the design and rendering of computer graphics [30, 31, 32, 33]. The methods

begin by scanning the edges of the two input polygons for intersection points. Each

intersection point is added as a vertex for both polygons and the four newly created

edges replace the original two edges. Each original and newly created edge is checked

for inclusion in the result polygons, and the included edges are combined to create

closed geofence polygon(s) output from that set operation. Inclusion of an edge in

the result polygons is dependent on which set operation is used. Figure 2.7 shows the

result of applying polygon set operations to two randomly generated polygons. The

intersection points between the polygons are indicated with black circles.

For general set theory, the basic set operations are union, intersection, difference,

and symmetric difference (XOR). Within the context of geofencing, a “polygon set”

V = {V1, . . . , Vk} refers to all closed geofence polygons inside a finite flight region

(e.g., UTM sector). Each member of a polygon set is the horizontal boundary of

a geofence, defined by the list of vertices relative to a shared local Cartesian frame.

Given two polygon sets with one or more entries Va and Vb:

• Union: Vc = Va∪Vb, results in the polygon set containing the area within Va,

Vb, or both Va and Vb (Figure 2.7a)

• Intersection: Vc = Va ∩ Vb, results in the polygon set containing the area

within both Va and Vb (Figure 2.7b)

• Difference: Vc = Va −Vb, results in the polygon set containing the area of Va

that is not contained within Vb (Figure 2.7c)

• Symmetric Difference (XOR): Vc = Va ⊕ Vb, results in the polygon set con-

taining the area within Va or Vb, but not area contained by both Va and Vb

(Figure 2.7d)

27

(a) Union: Vc = Va ∪Vb (b) Intersect: Vc = Va ∩Vb

(c) Difference: Vc = Va −Vb

(d) Symmetric Difference: Vc =
Va ⊕Vb

Figure 2.7: Example set operations on simple polygons. Polygon Va in blue, polygon
Vb in green, resulting the polygon set Vc shaded.

Note that while the above definitions are general for polygon sets of any finite size

greater than zero, the examples in Figure 2.7 illustrate the operations over polygon

sets with one polygon each.

Within the context of geofencing with UTM, the set operations used are union and

difference. When the creation of a new geofence is requested, the difference operator

is used to deconflict the requested horizontal geofence set VR from the list of UTM

approved geofences VU with a shared altitude range within a given temporal period.

If the temporal period is empty, VU = {∅}, or no geofences in VU share an altitude

range with VR, then the requested horizontal geofence set is not modified. If VU

is not empty, each member of VU is subtracted from the requested geofence set as

shown in Algorithm 2.8. As the algorithm iterates over all approved UTM geofences,

the local copy of the requested geofence set is modified to contain the deconflicted

requested geofence set.

The union operator is used when the set of geofences approved for a UAS flight

contains more than one horizontal geofence boundary within a temporal period with

a shared altitude range. The UAS is prevented from crossing geofence boundaries

during flight except for adjacent altitude boundaries with shared horizontal regions,

28

Algorithm 2.8 Horizontal Boundary Deconflict of Requested Geofence and Existing
UTM Approved Geofences

Input: GR is the vertically partitioned requested geofence set
GU is the set of UTM approved geofences for a specific temporal period

Output: GR the deconflicted requested geofence set
1: if GU = ∅ then
2: return GR = GR without modification.
3: end if
4: Convert horizontal boundaries of GR and GU to shared local Cartesian frame as

VR and VU , respectively.
{Loop over each approved geofence polygon:}

5: for all VU ∈ VU do
6: Create empty set to hold the requested geofence set that has been deconflicted

from VU : Vc = ∅.
{Loop over each requested geofence:}

7: for all VR ∈ VR do
8: if VR overlaps vertically with VU : zRf ≥ zUf and zRc ≤ zUc then
9: Subtract approved geofence from requested geofence: Vd = VR − VU .

10: Insert Vd into Vc.
11: else
12: Vertical range of VR and VU is not shared. Insert unchanged VR into Vc.
13: end if
14: end for
15: Update VR to the set deconflicted from VU : VR = Vc.
16: end for
17: Convert resulting VR from shared local Cartesian frame to its original frame and

update GR with deconflicted vertices.

29

so taking the union of the approved geofence set removes any unnecessary geofence

edges, maximizing the reachable airspace within the geofence set. Algorithm 2.9

describes the process of using the union operator to minimize the number of distinct

horizontal boundary polygons in the set. The set union operator is associative and

commutative, so the order of union of the approved geofence set does not impact the

result.

Algorithm 2.9 Union of Horizontal Geofence Boundaries

Input: Va the approved geofence set for a specific UAS flight with same temporal
period and same altitude limits

Output: Vc the union of Va

1: Initialize the union set: Vc = ∅.
{Loop over each approved geofence and each union set geofence:}

2: for all Va ∈ Va do
3: for all Vc ∈ Vc do
4: Union approved geofence Va with union set geofence Vc: Vb = Va ∪ Vc.
5: if union results in exactly one polygon: Vb = {Vb1} then
6: Remove Vc from Vc.
7: Update polygon Va: Va = Vb1.
8: end if
9: end for

10: Insert Va into Vc.
11: end for

2.7 Utility Inspection Case Study

The geofence management algorithms introduced above have been implemented

in MATLAB. This section shows how UTM-based geofence management would be

applied to the second CONOPS presented in Section 2.3, UAS power line inspection.

While many utility inspections will be rural, suppose an inspection UAS asks to pass

through a region with moderate to high UAS airspace demand. Suppose a power

line inspection geofence GR is requested, but two durational geofences G1 and G2

have already been approved in the same region. For this case study, suppose geofence

altitude resolution zl = 1 and there is a unique mapping between UAS and geofence

boundaries so that the power line inspection UAS does not have permission to enter

G1 or G2. Figure 2.8 defines the original requested geofence GR for this case study

and two existing geofences G1 and G2 per Definition 1. As shown, geofence polygon

vertices and altitude limits are specified with respect to a polyhedron centroid des-

ignated in h with respect to a ground reference frame. Each durational geofence has

30

two entries (m = 2) in h with the same centroid but different time entries indicating

geofence activation time ti and deactivation time tm. Geofence values for this case

study are specified in kilometers (distance) and hours (time).

GR = {n, v, zf , zc,m, h[]}, n = 5, zf = −0.1, zc = 0.1,m = 2,
v = [(−10,−1), (−10, 1), (10, 1), (10,−1), (−10,−1)],

h = [(10.0, 1.0, 0.1, 3), (10.0, 1.0, 0.1, 6)].

G1 = {n, v, zf , zc,m, h[]}, n = 5, zf = −0.15, zc = 0.15,m = 2,
v = [(0.125,−4.333), (−3.875, 3.667), (1.125, 3.667),

(3.125,−4.333), (0.125,−4.333)],
h = [(6.875, 1.333, 0.15, 2), (6.875, 1.333, 0.15, 5)].

G2 = {n, v, zf , zc,m, h[]}, n = 7, zf = −0.05, zc = 0.05,m = 2,
v = [(−3.444,−2.37), (0.556, 2.63), (2.556, 3.63),

(0.556, 0.63), (2.556, 0.63),
(1.556,−1.37), (−3.444,−2.37)],

h = [(16.444, 0.37, 0.05, 4), (16.444, 0.37, 0.05, 7)].

Figure 2.8: Power line inspection case study geofence polygon definitions.

Horizontal boundaries of these geofences are shown in Figure 2.9a. The requested

geofence permissions function only allows for UAS associated with the inspection to

use GR. When the utility company requests its durational geofence GR, Algorithm

2.2 is called to create the two new temporal periods shown in Figure 2.9. The three

temporal periods, (P3, P4, P5), containing GR are each separately spatially decon-

flicted from the set of UTM approved geofences in each period.

Figure 2.10 shows the three-dimensional boundaries of the deconflicted geofences

for each temporal period in which GR is active. In Figures 2.10b and 2.10c, the

deconflicted requested geofence set is drawn with yellow and orange boundaries. The

orange boundaries are used for the portion of GR that lies in the altitude partition

above the geofence G2. In Figure 2.9b, the altitude layer of GR that exists above G2

causes the two geofence sets to appear to be in conflict, while the three-dimensional

figures show that spatial separation was achieved. To utilize the timeline plots to

visually confirm spatial and temporal deconflicts, a separate timeline figure needs to

be generated for each altitude partition. Alternatively, a three-dimensional plot per

temporal period can be used to visually confirm and show the spatial and temporal

separation of the geofence sets.

During periods P3, GR is split into two unconnected geofences by G1, so transi-

tioning between the two geofences can only be achieved by landing in one then taking

31

(a) Power line inspection geofence is requested.

(b) Power line inspection geofence is approved.

Figure 2.9: Temporal periods after the power line inspection geofence is requested
and approved.

(a) Temporal period P3. (b) Temporal period P4. (c) Temporal period P5.

Figure 2.10: Power line inspection geofence (yellow and orange) deconflicted from
existing UTM approved geofence set (blue and green) for relevant temporal periods.

32

off in the other. This is an operational restriction that does not exist in P5. The

requested geofence GR is a set of three geofences in P5: two yellow volumes with the

altitude range 0 to 1 and one orange volume with the altitude 1 to 2. The lower

altitude bound of the orange geofence is equal to the upper altitude bound of the

yellow geofences, so a UAS with permission to fly within these three geofences can

use the orange geofence to fly between the two disjoint yellow geofences. Figure 2.11

shows an example flight path between the different geofences within the deconflicted

requested geofence set of both P4 and P5.

Figure 2.11: A potential flight path through the deconflicted inspection geofence is
shown with a dashed line. Transition between vertically adjacent approved geofences
allows for the UAS to use the upper altitude geofence (orange) to move between
separate lower altitude geofences (yellow).

If the power line inspection of the entire original requested boundary was intended

to all take place during a single hour, then the UAS could take off around the start

time of P5 and proceed in the decreasing x-direction. The UAS would need to use a

flight path similar to the one shown in Figure 2.11 to fly from one yellow section to

the other.

Alternatively, if the intention is to use the entire three hour window to fly along

the requested geofence at low altitude, then the UAS could begin at a maximum

x-value position of the geofence and follow the flight path shown in Figure 2.12. The

mission plan would be to spend P3 completing the inspection of the airspace to be

occupied by G2 in P4, from x = 20 to x = 15. Then, during P4, the mission shifts to

survey the area between G1 and G2, from x = 15 to x = 9. Finally, once G1 expires

at the start of P5, the half of the geofence with lower x-values is inspected, from x = 9

to x = 0.

If there is some other mission restriction, such as the inspection must begin at

x = 0 and remain active for the entire three hour time block, then the inspection

mission would benefit from being rescheduled for a time when G1 is not present. In

the case where the mission must be completed beginning from x = 0 despite the

presence of G1, then the flight path might resemble the one shown in Figure 2.13.

33

Figure 2.12: Example right to left flight path across temporal periods for the power
line inspection geofence.

If the utility company finds that their inspection missions are frequently negatively

Figure 2.13: Example left to right flight path across temporal periods for the power
line inspection geofence.

impacted by geofences like G1 and G2, then it could be beneficial for the company

to request a static geofence for power line inspection. Defining the entire inspection

geofence as static would allow inspection flights anytime anywhere but would result in

restrictions to other users even when the utility company had no intention to fly. The

rules and regulations addressing where and under which situations static geofences

are approved and awarded must be developed before users are given the option of

defining a static geofence set.

34

2.8 Discussion

This chapter introduced a formal geofence definition and a methodology to manage

geofences in a future UTM system. Geofence management is achieved by spatially and

temporally deconflicting geofences as they are requested and by tracking active UAS

within the airspace on a per geofence basis. This method ensures that all airspace

volumes are either free or allocated to a unique geofence at all times.

The algorithms presented in this work focus on a simple and flexible implementa-

tion of the UTM system rather than maximizing the efficiency of the implementation.

As the UTM system exists in “the cloud” with the computational resources of such

systems, any redundancy in the geofence deconfliction algorithms are assumed to not

have a problematic impact on the usability of the system.

35

CHAPTER III

Boundary Check

3.1 Introduction

Unmanned Aircraft Systems (UAS) continue to proliferate and can now be op-

erated commercially within line-of-sight through the Federal Aviation Administra-

tion (FAA) Part 107 rules [10] and beyond-line-of-sight with Part 107.31 waiver.

UAS applications range from last-mile package deliveries to agricultural and infras-

tructure inspection to disaster relief support. Hobbyist flight is also commonplace.

A micro-air vehicle (MAV) or very small UAS (< 250 grams) may pose little risk to

people or property, but such a vehicle has limited range and cannot carry payload

beyond a small camera. Even small UAS can pose a safety risk through fast-spinning

propeller cuts and direct impact. NASA is working with industry and academic part-

ners to develop a UAS Traffic Management (UTM) system of which a key component

is electronic geofencing [3].

Geofences assign each UAS an empty flight volume in which they are authorized

to operate. The geofence can also be used as a mechanism to assure a low-flying

UAS only operates low over a property with landowner permission. A geofence can

be classified as a keep-in (inclusion) geofence or a keep-out (exclusion) geofence.

The keep-in geofence defines a bounded flight volume for the UAS, while the keep-

out geofence defines general volumes to avoid as well as cut-outs within a keep-in

geofence. A keep-out geofence marks a no fly zone for the UAS. Public properties

such as national monuments and private properties such as a backyard pool may be

protected by low altitude keep-out geofences.

Given defined geofence boundaries, the geofencing system consists of two logic

units: the detection of geofence violations and the response to a geofence violation.

There are many possible responses to a geofence violation including but not limited

to alerting the pilot, cutting the aircraft power, or an alternative guidance scheme

36

designed to respect the geofence boundaries [17]. To prevent the vehicle from violat-

ing the geofence boundaries, the geofence system must activate before the boundary

is crossed. The activation point can be represented as a stopping distance calcu-

lated based on the vehicle flight characteristics and the current wind speeds, which

can be used to shift the geofence boundaries. The design of these shifted geofence

boundaries is discussed in other works [28, 34], which can then be analyzed using the

methods presented in this chapter. This chapter focuses on the detection of geofence

violations through the application of the Triangle Weight Characterization with Ad-

jacency (TWCA) algorithm [35, 36, 37, 38]. TWCA is compared to the Ray Casting

algorithm [39, 40, 41], a common solution to this type of problem, as a baseline for

algorithm analysis.

This chapter contributes a survey of algorithms applicable to the geofence bound-

ary violation detection problem. General geofence boundaries may be non-convex,

and multiple geofences can potentially overlap causing intersecting boundaries. This

chapter also contributes a methodology for benchmarking geofence boundary viola-

tion detection strategies. These benchmarking techniques are applied to compare

Ray Casting and TWCA. This is the first work to our knowledge that evaluates and

compares multiple geofencing boundary detection strategies.

Section 3.2 states geofence characteristics and assumptions made in the proposed

geofence violation detection framework. Section 3.3 discusses methods commonly

applied to solve problems similar to the detection of horizontal geofence boundary

violations. Section 3.4 presents the Triangle Weight Characterization with Adja-

cency (TWCA) algorithm, while Section 3.5 presents results of introducing randomly-

generated UAS flight paths through randomly generated geofence boundaries to com-

pare TWCA with a traditional Ray Casting approach to boundary violation detec-

tion. Section 3.6 discusses the application of geofencing with TWCA in real-world

environments and areas for future work, followed by a brief conclusion in Section 3.7.

3.2 Problem Statement

The static UAS geofence proposed in this work has the following characteristics:

• A geofence consists of exactly one surrounding keep-in boundary and any num-

ber of interior keep-out boundaries.

• Geofence boundaries remain unchanged for the duration of a flight, i.e., the

geofence volume is static.

37

• Each geofence boundary is a polyhedron with vertical and horizontal bound-

aries.

• The polyhedron is formed by extruding a horizontal plane polygon vertically.

Geofence vertical boundaries are specified as altitude ceiling and floor Above

Ground Level (AGL) or above Mean Sea Level (MSL). Note that buildings

and terrain with variable elevations can be modeled with multiple keep-out

polyhedra.

• The horizontal geofence boundary is a polygon that is not self-intersecting as

shown in Figure 3.1. Each horizontal geofence boundary is specified as a list

of vertices in a local ENU (East-North-Up) or local NED (North-East-Down)

format, in clockwise or counterclockwise order around the polygon boundary.

• The vehicle is powered on, initialized, and launched from a position within the

keep-in geofence polyhedron and outside all keep-out geofence polyhedra.

• The geofencing system monitors vehicle state at regular interval δt.

-15 -10 -5 0 5 10 15

-15

-10

-5

0

5

10

15

(a) Acceptable horizontal
geofence boundary.

-15 -10 -5 0 5 10 15

-15

-10

-5

0

5

10

15

(b) Unacceptable horizon-
tal geofence boundary.

Figure 3.1: Examples of valid and invalid (unacceptable) horizontal geofence bound-
ary specifications using the same vertex list with good (left) and bad (right) orderings.

This work assumes the internal representations of the geofence boundaries are

expressed in meters relative to a locally defined origin point, the launch point of

the aircraft. Two subcategories of geofences are utilized: keep-in (inclusion) and

keep-out (exclusion). A keep-in geofence defines the volume in which the aircraft is

allowed to operate. A keep-out geofence defines a volume in which the aircraft is

not allowed to operate, either due to permissions or physical barriers. A geofence

38

violation occurs when the UAS is outside the keep-in geofence or inside a keep-out

geofence. The Figure 3.2 flow chart details the procedure utilized by the geofencing

system to detect geofence violations. The inputs to the system are the current UAS

position r = (x, y, z) and the geofence g. The geofence is defined as g = [gi, go] where

gi is the keep-in geofence polyhedron and go = {go,1, ..., go,n} is the set of keep-out

geofence polyhedra. go,j is the jth of n keep-out geofence polyhedra. The altitude

limits of a geofence g are denoted by zgi/go,j . The horizontal geofence polygon vertices

are denoted by coordinate pairs (xgi/go,j , ygi/go,j) listed in either clockwise or counter-

clockwise order around the polygon.

For each vehicle state update, three checks are performed for the keep-in geofence

and for each keep-out geofence. The first check determines if the vehicle is within the

altitude limits of the geofence. The second check determines if the vehicle is within

the bounding box of each geofence. Each bounding box is defined as a rectangle or-

thogonal to the global axes that contains the original horizontal geofence polygon.[42]

Vehicle position inside or outside the bounding box is determined using four inequal-

ity tests. If the vehicle is outside the bounding box, then it is outside the geofence. If

the vehicle is inside the bounding box, then the third check determines if the vehicle

is within the horizontal geofence boundary. The third check is an application of the

point-in-polygon problem.[43]

3.3 Horizontal Geofence Violation Detection Algorithms

A point-in-polygon algorithm can be applied to determine whether a geofence hor-

izontal boundary is violated. The point-in-polygon problem is commonly discussed

in the fields of computer graphics, computational geometry, and Geographical Infor-

mation Systems (GIS). Point-in-polygon algorithms are benchmarked based on the

complexity of a single position query. Surveys and explanations of point-in-polygon

solutions can be found in an article by Nordbeck and Rystedt,[44] a survey by Huang

and Shih,[42] and a book by Preparata and Shamos.[43]

3.3.1 Grid-based Algorithms

There are two primary types of grid-based point-in-polygon algorithms. The first

method simplifies the polygon boundaries to lie along a grid such that each grid

square can be designated as inside the polygon or outside the polygon. The run-

time complexity of this algorithm is linear in the number of grid squares.[44, 45]

The second method overlays the polygon boundaries on a grid then analyzes each

39

Define keep-in geofence
and keep-out geofences

g = [gi, go]

Current position
r = (x, y, z)

Altitude Check
min zgi ≤ z ≤ max zgi

Bounding Box Check
minxgi ≤ x ≤ maxxgi

min ygi ≤ y ≤ max ygi

Lateral Boundary Check
PointInPolygon((x, y),gi)

Altitude Check
min zgo,j ≤ z ≤ max zgo,j

Bounding Box Check
minxgo,j ≤ x ≤ maxxgo,j

min ygo,j ≤ y ≤ max ygo,j

Lateral Boundary Check
PointInPolygon((x, y),go,j)

For each keep-out geofence j:

Geofence violated.

Geofence violation response.

Yes

Yes

Yes

Yes

Yes

No

No

No

No

No

No

Yes

Figure 3.2: Geofence violation detection algorithm for a single keep-in geofence and
a known number of keep-out geofences.

40

position of interest with respect to the occupied grid section. The complexity of

these algorithms depends on the size of the grid squares and the number of polygon

edges.[45, 46, 47]

3.3.2 Decomposition Algorithms

Decomposition divides the polygon into subcomponents that are less complex to

simplify the point-in-polygon inclusion check. Three decomposition methods are com-

monly utilized: Wedge, Swath, and convex decomposition. The Wedge method, only

applicable to convex polygons, divides the polygon into triangles by connecting an

interior point to each of the polygon vertices. There are the same number of triangles

as number of original polygon vertices. This algorithm has a run-time complexity

of O(logN).[43, 42] The Swath method divides the polygon into horizontal swaths

where the maximum and minimum y-values are designated by successive polygon

vertices when the vertices are ordered by y-value. Each swath contains a subset of

relevant polygon edges. The step to find the swath containing a position of interest

has complexity O(logN) when searched for using a balanced binary tree.[48] Convex

decomposition has a run-time complexity of O(logN).[49]

3.3.3 Ray Casting

The Ray Casting algorithm determines whether or not the position of interest, r, is

inside a given polygon, p, by projecting an infinite ray from r. In this implementation,

each ray is cast in the positive y-direction (Figure 3.3). If an infinite ray intersects an

odd number of polygon edges, then r is contained in p; otherwise r is outside of p. If

the ray intersects a vertex of p, then that intersection is tallied as count = count+1/2

instead of count = count+ 1 to prevent double counting.[40]

Figure 3.3: Example polygon with ray directed along the y-axis for the Ray Casting
algorithm[39].

41

An outline of the Ray Casting algorithm is shown in Algorithm 3.10. The algo-

rithm is based on the formulation presented by Narkawicz and Hagen.[39] The Ray

Casting algorithm iterates over all edges of p and does not have an initialization step.

The complexity of the algorithm is O(N), and if the geofence boundaries change

from one time step to the next, code execution and results of the Ray Casting algo-

rithm are not impacted. Ray Casting with a bounding box is used as the baseline for

comparison with TWCA.

Given position
(r) and geofence

polygon (p)

s is an infinite
ray in the

+y direction,
originating at r

#intersects = 0

Does s
intersect e?

Increment
#intersects

Last edge?
Is #intersects

even?

r is outside p r is inside p

For each edge e of p:

Yes

Even

Odd

No No

Yes

Figure 3.4: Ray Casting algorithm. Green boxes indicate end states. The algorithm
for Ray Casting is presented in [39].

3.4 Triangle Weight Characterization with Adjacency

The point-in-polygon algorithm being proposed by this chapter for application

in geofence systems is Triangle Weight Characterization with Adjacency (TWCA).

This algorithm is closely related to the Wedge algorithm.[43, 42] Both algorithms

divide the polygon into triangles then search the triangles for the one containing

42

Algorithm 3.10 PointInPolygon() - Ray Casting

Input: r is the position of interest
p is a simple polygon

Output: true if p contains r, otherwise false
1: count = 0
2: s is an infinite ray in the +y direction, originating at r
3: for all edges e in p do
4: if s intersects a vertex of e then
5: count = count+ 1/2
6: else if s intersects e then
7: count = count+ 1
8: end if
9: end for

10: if count is odd then
11: return true
12: else
13: return false
14: end if

the position of interest. Unlike the Wedge algorithm, TWCA is designed to handle

non-convex polygons and multiple trajectory-based inquiries. TWCA contains an

initialization step and a run-time step as shown in Algorithm 3.11. The initialization

step must be executed for all keep-in and keep-out geofences when the system first

activates. If there are any changes to any of the geofence boundaries after the original

initialization, each keep-in or keep-out geofence that is changed must be initialized

again.

For a keep-in geofence, TWCA initialization constructs a second polygon formed

by the bounding box and the original geofence boundary (see Figure 3.6b). Then,

TWCA divides both polygons into triangles and generates an adjacency graph that

spans both polygons. Prior to takeoff, the triangles are searched in random ordering

to locate the vehicle. After takeoff, the triangle search for the vehicle begins at

the previously-occupied triangle, and searches the adjacency graph in a breadth-first

search with a visited list. A geofence boundary is violated when the vehicle is outside

the bounding box or inside a triangle located between the geofence and the bounding

box.

3.4.1 Bounding Box Definition

The bounding box completely contains its horizontal geofence. For a keep-in

geofence gi, the bounding box is defined with x-values of (minxgi−∆x,maxxgi +∆x)

43

Given position
of interest (r)
and geofence
polygon (p)

Divide p into
y-monotone

polygons

Divide each
y-monotone poly-
gon into triangles

Is r within triangle?

Last triangle?

r is outside p r is inside p

For each triangle of p:

No

Yes

No Yes

Figure 3.5: Triangle Weight Characterization with Adjacency (TWCA) algorithm
[38, 37, 35]. Blue highlighting indicates initialization. Green boxes indicate end
states.

44

Algorithm 3.11 PointInPolygon() - Triangle Weight Characterization with Adja-
cency

Input: r is the position of interest
p is a simple polygon

Output: true if p contains r, otherwise false
Initialization:

1: Divide p into m y-monotone polygons
2: for all y-monotone polygons M in p do
3: Divide polygon M into n triangles
4: end for

Run-Time:

5: for all N triangles in p do
6: if N contains r then
7: return true
8: end if
9: end for

10: return false

and y-values of (min ygi −∆y,max ygi + ∆y). The value of ∆ can either scale relative

to the size of the geofence or be a constant value. The value of ∆ does not impact

the activation of the geofence. Computational cost is highest when transitioning

into the bounding box, comparable to the cost of Ray Casting for that geofence

boundary check. This chapter uses ∆ = 0.2 ∗ (maxxgi − minxgi ,max ygi − min ygi)

based on illustration considerations. The value of ∆ could be optimized based on

the expected vehicle flight trajectory given communication between autopilot and

geofencing systems. To divide the space between the bounding box and the geofence

into triangles, the bounding box needs to be joined to a copy of the geofence boundary.

The bottom left corner of the bounding box is the joining point to the geofence

boundary through the vertex with the minimum x-value. If multiple geofence vertices

have the minimum x-value, the vertex with the minimum y-value within the set of

minimum x-value vertices is selected. To avoid issues in polygon division steps, a

temporary shift is applied before division and removed afterwards. This shift is

introduced to separate the co-located vertices of the bounding box polygon that is

passed to the polygon division steps and has no impact on the geofence violation

detection.

Inclusion of a bounding box in TWCA is important to reduce expected run-time

complexity of the algorithm. In cases where the position of interest is outside the

bounding box, no triangles need to be checked. When the position of interest is

within the bounding box, it is within a triangle. Being within a triangle does not

45

(a) Urban geofence example with a
keep-in geofence (green) and three
keep-out geofences (red).

-4 -3 -2 -1 0 1 2 3 4

X [km]

-3

-2

-1

0

1

2

3

4

Y
 [
k
m

]

(b) Keep-in geofence (black) with bound-
ing box (red).

Figure 3.6: Example urban keep-in geofence located over Upper Bay, Hudson River,
and East River with bounding box with keep-out geofences surrounding the contained
islands.

guarantee that the position of interest is not violating the geofence boundary, but

each triangle is marked as inside or outside the geofence boundary when it is created.

If the position of interest is known to be within a triangle, then the containing triangle

can be found from the adjacency graph.

3.4.2 Polygon Division

To divide an arbitrary geofence boundary into non-intersecting triangles, we im-

plement the triangulation method described in Garey et al. [37] which relies on the

regularization algorithm presented by Lee and Preparata [38]. To visualize the sub-

division of an arbitrary polygon, TWCA is applied to the polygon shown in Figure

3.6. TWCA initialization consists of two steps: divide the polygon into monotone

polygons [38], and subdivide each monotone polygon into triangles [37]. Each of these

steps is executed with respect to the y-axis but would also work if applied to the x-

axis. Unlike the Wedge method, these methods do not create any additional vertices.

There are other methods available to divide simple polygons into triangles without

creating additional vertices, but those methods are not explored here.

46

3.4.2.1 Polygon to Monotone Polygons

A y-monotone polygon is defined as a polygon for which all lines parallel to the

x-axis intersect a maximum of two edges of the polygon. To divide a polygon into

monotone polygons, we iterate through the vertices from highest to lowest y-value,

then from lowest to highest y-value, adding edges between vertices to create monotone

polygons. Vertices with equivalent y-values are iterated over from left to right [38].

The original algorithm creates new edges between existing vertices both inside and

outside the original polygon, but geofencing is only interested in the area of the

original polygon. Thus, edges added that are outside the original polygon are ignored.

An edge is determined to be outside the original polygon when the order of the edge

vertices of the newly-defined polygon is opposite the order of the original polygon

vertices, i.e., clockwise versus counterclockwise. Because some of the newly-generated

edges are ignored, this algorithm is executed for each newly created polygon until

no new edges are added. This ensures that the polygons being returned are all

y-monotone. In Figure 3.7a, the original polygon has been divided into three y-

monotone polygons and the bounding box polygon has been divided into five y-

monotone polygons.

-4 -3 -2 -1 0 1 2 3 4

X [km]

-3

-2

-1

0

1

2

3

4

Y
 [
k
m

]

(a) Geofence and bounding box divided
into monotone polygons.

-4 -3 -2 -1 0 1 2 3 4

X [km]

-3

-2

-1

0

1

2

3

4

Y
 [
k
m

]

(b) Geofence and bounding box divided
into triangles.

Figure 3.7: Example geofence and bounding box divided into monotone polygons and
then triangles.

3.4.2.2 Monotone Polygon Conversion to Triangles

For each monotone polygon, the vertices are iterated over from highest to lowest y-

value, iteratively adding edges to create triangles. Because the polygons are already

47

y-monotone, all created edges are inside the polygon and therefore kept. For the

example geofence, this algorithm is run eight times, once for each monotone polygon.

Figure 3.7b illustrates the TWCA triangles with black lines for the geofence triangles

and red lines for the bounding box triangles.

Any geofence represented by a simple polygon with v vertices can be divided into

τg = v − 2 triangles using this process. For the case of TWCA, both the original

polygon and the bounding box must be divided into triangles. The bounding box

consists of the original v vertices, the 4 vertices of the bounding box rectangle, and

2 vertices to connect the two sets of vertices. This results in the space between the

geofence and the bounding box being divided into τb = (v+4+2)−2 = v+4 triangles.

The total number of triangles to be considered is τ = (v − 2) + (v + 4) = 2 ∗ (v + 1)

triangles.

3.4.3 Triangle Occupancy Check

To determine if the launch position or any subsequent position, r, is inside the

geofence polygon, we check if r is inside each triangle. Let vertices of the ith triangular

cell be located at ri1 = (xi1 , yi1), ri2 = (xi2 , yi2), and ri3 = (xi3 , yi3). Because a triangle

is a 2 − D convex hull, positions of the ith triangular cell satisfy the following rank

condition:

Rank
[
ri2 − ri1 ri3 − ri1

]
=

[
xi2 − xi1 xi3 − xi1
yi2 − yi1 yi3 − yi1

]
= 2. (3.1)

Therefore, position of an arbitrary point r = (x, y) in the motion plane can be

uniquely expanded as

r =ri1 + wi2 (ri2 − ri1) + wi3 (ri3 − ri1)

= (1− wi2 − wi3) ri1 + wi2ri2 + wi3ri3 .
(3.2)

Setting wi1 = (1− wi2 − wi3), Eq. (3.2) can be rewritten as

r =
3∑

k=1

wikrik (3.3)

where

48

3∑
k=1

wik = 1. (3.4)

Considering Eqs. (3.3) and (3.4), distance weights wi1 , wi2 , and wi3 are obtained

from xi1 xi2 xi3

yi1 yi2 yi3

1 1 1


wi1

wi2

wi3

 =

xy
1

 . (3.5)

The distance weights satisfying (3.5) can expressed as follows:

wi1(x, y) =
(xi3 − xi2) (y − yi2)− (yi3 − yi2) (x− xi2)

(xi3 − xi2) (yi1 − yi2)− (yi3 − yi2) (xi1 − xi2)

wi2(x, y) =
(xi1 − xi3) (y − yi3)− (yi1 − yi3) (x− xi3)

(xi1 − xi3) (yi2 − yi3)− (yi1 − yi3) (xi2 − xi3)

wi3(x, y) =
(xi2 − xi1) (y − yi1)− (yi2 − yi1) (x− xi1)

(xi2 − xi1) (yi3 − yi1)− (yi2 − yi1) (xi3 − xi1)

. (3.6)

wik(x, y) = c (k = 1, 2, 3 and c is a constant) is a line parallel to a triangle side

not passing through ik. As examples, wi1 = c is a line parallel to triangle side i2− i3,
wi2 = c is a line parallel to triangle side i3 − i1, and wi3 = c is a line parallel to

triangle side i1− i2. Also, wik(xij , yij) = δk,j, where δk,j is the Kronecker delta defined

as follows:

δk,j =

1 j = k

0 j 6= k
. (3.7)

In Figure 3.8, the x− y motion plane can be divided into seven sub-regions based

on the signs of distance weights wi1 , wi2 , wi3 . As shown, distance weights are all

positive inside the ith triangular cell.

If the distance weights of one of the triangles are all positive for the position of

interest, then the position of interest is within the polygon.

Remark: If a geofence area is sufficiently large, it may not be approximated by

a planar surface. For this case, the geofence domain can be considered as a spherical

surface with longitude φ and latitude λ. The proposed TWCA method can still be

applied for boundary violation checking over a spherical surface. By substituting x,

xi1 , xi2 , xi3 , y, yi1 , yi2 , yi3 by φ, φi1 , φi2 , φi3 , λ, λi1 , λi2 , λi3 , weights wi1(φ, λ), wi2(φ, λ),

49

Figure 3.8: Division of the motion plane into seven sub-regions based on the signs of
distance weights wi1 , wi2 , and wi3 .

and wi3(φ, λ) can be obtained from Equation (3.6). Similar to a planar representation,

the UAS is enclosed by the ith sector over the spherical geofence surface if wi1(φ, λ),

wi2(φ, λ), and wi3(φ, λ) are all positive.

3.4.4 Adjacency Graph

The adjacency graph can be stored as an adjacency matrix, multiply linked list, or

an array. A multiply linked list is typically preferred for low-level languages such as

C++. However, an array is used in this work because case studies were implemented

in MATLAB. Adjacent triangles are defined as triangles that share a common side.

To efficiently search for an occupied triangle, each search is initialized at the triangle

occupied at the prior time step. If that triangle is no longer occupied, a Breadth First

Search is executed with a “visited” list that eliminates the possibility of checking the

same triangle more than once.

3.5 Results

To evaluate TWCA performance, it is compared against Ray Casting with a

bounding box using MATLAB on a laptop running Windows 10. Embedded UAS

applications would require these algorithms to be compiled in a language such as C

so the execution times will be lower. The relative performance trends presented here

are expected to translate to embedded codes. Trial geofences are randomly generated

such that test cases are 25 instances of geofences with 3 to 50 vertices for a total of

1, 200 geofences. Geofence vertices have a maximum possible magnitude of 50 meters

in the x and y directions. Each geofence is tested with 100 simulated flight paths from

50

the origin (0, 0) to a randomly generated end position. The flight path end positions

have a maximum possible magnitude of 50 meters in the x and y directions. Two

sampling intervals of the flight path are tested: 10 positions along the flight path

and 100 positions along the flight path. State sampling frequency can therefore be

analyzed given that the adjacency graph search complexity depends on number of

triangle passages taken from the previously-occupied triangle.

0 5 10 15 20 25 30 35 40 45 50

of Vertices

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
im

e
 [
s
]

10
-4

(a) Calculation time averaged over 10
positions sampled along 100 flight paths
from the origin to a random waypoint.
(Mean time of 1000 sampled positions per
geofence.)

0 5 10 15 20 25 30 35 40 45 50

of Vertices

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
im

e
 [
s
]

10
-4

(b) Calculation time averaged over 100
positions sampled along 100 flight paths
from the origin to a random waypoint.
(Mean time of 10, 000 sampled positions
per geofence.)

Figure 3.9: Average time per boundary violation check for each of 25 randomly
generated geofences with 3 to 50 vertices for a total of 1, 200 random geofences. Ray
Casting results are shown in red. TWCA results are shown in blue. Note that sporadic
inconsistencies in the data are likely due to a background process on the computer
and not relevant to the results illustrated for geofences of size 23 to 25 vertices.

Figure 3.9 shows the average time for a position of interest query for each of the

1, 200 randomly generated geofences. TWCA queries are shown in blue, while Ray

Casting query times are shown in red. Figure 3.9a and Figure 3.9b show the results

when the position is sampled 10 times and sampled 100 times along each of the 100

flight paths respectively. The frequency of position samples along the flight path does

not impact execution time of the Ray Casting algorithm because Ray Casting does

not utilize any information from prior states during execution. However, the Ray

Casting execution time is seen to scale linearly with the number of vertices in the

geofence.

The frequency of position samples strongly impacts the expected execution time

of TWCA. By sampling the position of the vehicle at a higher frequency, the average

51

0 5 10 15 20 25 30 35 40 45 50

of Vertices

0

10

20

30

40

50

60

70

80

90

100

%
 o

f
T

ri
a
n
g
le

s
 C

h
e
c
k
e
d

(a) Maximum and average percentage of
triangles explored for cases with vehicle
position sampled 10 times on 100 flight
paths from the origin to a random way-
point.

0 5 10 15 20 25 30 35 40 45 50

of Vertices

0

10

20

30

40

50

60

70

80

90

100

%
 o

f
T

ri
a
n
g
le

s
 C

h
e
c
k
e
d

(b) Maximum and average percentage of
triangles explored for cases with vehicle
position sampled 100 times on 100 flight
paths from the origin to a waypoint.

Figure 3.10: Maximum percentage of triangles explored before locating the triangle
containing the vehicle is shown in green. One maximum is reported for each set of
25 geofences with the same number of vertices and each position sampled for each
flight path explored. Average percentage of triangles explored before locating triangle
containing vehicle is shown in black. The average percentage of triangles is reported
for each of the 1, 200 geofences. The average is over each of the position samples for
each of the explored flight paths.

52

execution time of TWCA is shown to be independent of the number of geofence

vertices rather than increasing linearly as in Ray Casting. This result is expected

because as the time between vehicle position estimates increases, the likelihood that

the vehicle has moved multiple triangles away from the previously occupied triangle

increases as well.

Figure 3.10 displays results in terms of the percentage of triangles explored: τe/τ

where τ is the total number of triangles and τe is the number of triangles explored.

The black data points present the percentage of triangles explored for each geofence

averaged over each position sample in each flight path. Both plots in Figure 3.10 show

that as the number of geofence vertices increases, the percentage of triangles explored

for each position update decreases. This trend is also present in the worst-case sce-

narios for TWCA. The green data points in Figure 3.10 are the highest percentage

of triangles checked for each number of geofence vertices. This data shows that the

inverse relation between the number of geofence vertices and the percentage of tri-

angles checked is still present in the worst observed cases. Although the trends are

observable in both plots, the trends are more pronounced in Figure 3.10b than in

Figure 3.10a. As discussed above, this reflects that TWCA executes with a time

complexity independent of the complexity of the geofence by leveraging knowledge of

the triangle occupied at the previous time step.

3.6 Discussion

With a geofence boundary violation detection algorithm like TWCA that has an

expected execution time independent of the complexity of its borders, it becomes

possible to form the geofence based on data from a mapping database. The usage

of a mapping database would reduce pre-flight pilot workload of manually entering

geofence data.

In the near future, geofences generated using property maps could enable flights

over areas such as private property and public parks. Figure 3.11a shows the outline

of a privately owned campsite in a sparsely populated area. If the campsite owners

want to photograph the campsite from a UAS, they might want to utilize a geofence

to prevent flights over the adjacent properties and the public roads. They might also

choose to manually define keep-out geofences around the campers and trees to preserve

the privacy of their guests and prevent collisions. In the not too distant future, as

UAS operate in increasingly populated areas, similar geofences could be automatically

generated for suburban and urban flight volumes. The keep-in geofences might be

53

created encompassing parks or multiple blocks or entire city regions, while keep-out

geofences might be used to denote buildings.

In a city aligned with the Earth coordinate axes such as Salt Lake City (Figure

3.11b), the bounding box buffer distance ∆ could be defined as a value that minimized

overlap between keep-out geofences or that minimized the instances of being within

a keep-out geofence bounding box. These optimizations become more complicated as

the geofence becomes less regular. Consider the section of Manhattan in New York

City shown in Figure 3.11c. The city blocks are at a consistent angle to the cardinal

axes; this inefficiency can be eliminated by applying a yaw (heading) transformation

to the local map (ground) coordinate axes. In general, the coordinate axis orientation

can be optimized to maximize the flight area not covered by a keep-out geofence

bounding box.

(a) Bemus Point, NY. (b) Salt Lake City, UT. (c) New York, NY.

Figure 3.11: Examples of rural and urban environments that might be operational
areas for UAS with geofences in the future. Generated using Google Maps at www.

google.com/maps/ and OpenStreetMap at www.openstreetmap.org.

In an urban environment, there are obstacles to be avoided other than other air-

craft, including buildings, power lines, and street lights. The issue is further compli-

cated by the existence of urban canyons, where GPS is denied due to the surrounding

buildings. In these areas, even if every obstacle were designated a keep-out geofence,

accumulated state estimation error might make it impossible for the geofence to guar-

antee a collision free flight. In these cases, the addition of a sense and avoid system

could enable safe flight through a geofenced region without relying on a potentially

inaccurate state estimate. The inclusion of a sense and avoid system in addition to a

geofencing system is critical to safe flight.

When operating at higher altitudes, in shared airspace with manned aircraft,

large UAS can still benefit from geofencing. The keep-in geofence ensures that the

UAS does not exit its designated flight boundary, and keep-out geofences can ensure

separation from buildings, terrain, and ultimately other aircraft operating in fixed

54

www.google.com/maps/
www.google.com/maps/
www.openstreetmap.org

regions / bounding boxes.

3.7 Summary

This chapter has presented an efficient methodology for defining a static geofence

for an Unmanned Aircraft Systems (UAS) containing both keep-in (inclusion) ge-

ofences and keep-out (exclusion) geofences. This chapter developed Triangle Weight

Characterization with Adjacency (TWCA) to detect horizontal geofence boundary

violations with an execution time complexity that is independent from the number

of vertices used to define the geofence. Case studies showed that TWCA on average

has better performance than Ray Casting, particularly when geofence polyhedra are

complex, with a large number of vertices.

55

CHAPTER IV

Layered Boundaries

4.1 Introduction

The proliferation of Unmanned Aircraft Systems (UAS) for commercial and recre-

ational applications is driving the need for increasingly capable UAS Traffic Manage-

ment (UTM) and safety systems. A key component of UTM is the usage of assured

geofence systems onboard each UAS [50]. An assured geofence system modifies or

overrides the nominal UAS autopilot to prevent the UAS from leaving its permitted

airspace volume [17]. Each operating UAS contains geofence definitions partitioning

the airspace into usable regions (keep-in geofences) and no-fly zones (keep-out ge-

ofences). Each geofence is spatially defined by a minimum and maximum altitude

and a boundary polygon in the horizontal plane. This chapter assumes vertical limits

are constant across a horizontal geofence polygon. A simple geofence boundary poly-

gon has straight edges connecting (x, y) vertices specified in a local ground-referenced

Cartesian frame [22].

For a given flight, a UAS takes off from within a keep-in geofence, and the geofence

system monitors UAS position with respect to all keep-in and keep-out geofence

boundaries [51]. In [52], airspace availability is defined as free, usable, and unusable.

Free airspace is not yet occupied by any UAS thus is available to host a new keep-

in geofence upon request. Unusable airspace cannot be accessed by any UAS thus

would be mapped as a permanent keep-out geofence. Usable airspace might already

host geofence(s) known to UTM that are accessible to new UAS with compatible

permissions and unusable (keep-out) to new UAS with incompatible permissions.

This work assumes that each UAS with geofencing capability will fly within a

single keep-in geofence and remain clear of any number of keep-out geofences. The

assumption of a single keep-in geofence for a particular UAS flight is not restrictive

because all keep-in geofences must overlap or be adjacent to be reachable, and as such

56

could be represented as a single equivalent geofence rather than as a set of distinct

but connected keep-in geofence polygons. This chapter’s primary contribution is a

general methodology for generating scaled layers for each geofence boundary. The

scaled boundaries are defined based on a uniform buffer distance δu and a direction

buffer distance δd with angle φd. As described below, buffer distance values are

calculated to provide sufficient time and space for the UAS to avoid violating the

original geofence boundaries. Section 4.2 describes the calculation of buffer values

from UAS performance considerations such as minimum turn radius and stopping

distance, and additional factors such as steady average wind and other factors (e.g.,

sensor noise) with potential to introduce trajectory tracking error.

For a given flight, each geofence is augmented with at least two scaled layers,

consistent with the evolving NASA SAFEGUARD system [29, 34]. The most-scaled

layer warns the nominal UAS guidance system and the pilot of an anticipated geofence

violation. The least-scaled layer activates the geofence system override guidance

to automatically prevent violation of the original geofence boundary. If geofence

guidance is ineffective due to a system failure or unexpected external factor, causing

a violation of the original geofence boundary, then guidance and control authority is

released to an emergency flight planner (e.g., [53]). For a keep-in geofence the layers

are scaled inward, δu < 0, while for a keep-out geofence the layers are scaled outward,

δu > 0. Both cases are illustrated in Figure 4.1.

-40 -30 -20 -10 0 10 20 30 40 50 60

X

-40

-30

-20

-10

0

10

20

30

Y

Original

Scaled - Override

Scaled - Warn

(a) Keep-in geofence layers.

-40 -30 -20 -10 0 10 20 30 40 50 60

X

-40

-30

-20

-10

0

10

20

30

Y

Original

Scaled - Override

Scaled - Warn

(b) Keep-out geofence layers.

Figure 4.1: Examples of layered geofencing. Original geofence boundaries are black.
Warning layers are green. Override layers are blue.

This chapter contributes a methodology to automatically scale any polygon con-

sisting of straight non-self-intersecting edges and to utilize results in a layered geofenc-

ing system. To our knowledge, this work offers the first geofence layering algorithm

capable of handling arbitrary polygon geometries and accounting for steady wind.

57

Presented methods and results focus on the generation of inward and outward scal-

ing computations for a single (override) layer relative to the original boundary. The

second (warning) layer is generated by executing the same algorithm a second time

with potentially different buffer scaling values. Below, Section 4.2 first describes

how buffer distances between geofence layers are selected. Section 4.3 presents the

mathematics and methods to automatically generate the geofence layers. Layering

is applied in Section 4.4 to generate numerical results used to statistically analyze

layering success and analyze the impact of geofence polygon design choices in layer

generation mathematics. Section 4.5 presents conclusions and proposes directions for

future work.

4.2 Safety Layer Offset Distance Specification

Geofence layers are offset from the original geofence boundary by a uniform buffer

distance δu and a directional buffer (δd, φd). We define two useful geofence layers in

this chapter: an override layer and a warning layer. Upon override, a geofence safety

controller must decelerate a hover-capable UAS to a stop before reaching the boundary

or else command a fixed-wing UAS to turn back from the boundary before reaching

it. This section describes criteria by which geofence override layer offsets might be

defined. A larger offset from the original boundary would be prescribed to issue a

warning signal before override occurs, though calculation of warning layer distance (or

time) will require human subject experiments beyond the scope of this chapter. We

define override geofence layering buffers to prevent the UAS from violating the original

geofence boundary. Calculation of these buffers is presented first for hover capable

UAS then for UAS with a minimum turning radius. The presented calculations

presume constant altitude flight in which two-dimensional (horizontal plane) geofence

polygons are defined.

For hover capable UAS, vehicle dynamics are modeled as a point mass with a

maximum acceleration value [54, 55, 56]. The maximum acceleration enforces the

physical constraint of a maximum thrust for the UAS. The calculation of how far the

UAS will travel when commanded to stop (hover) with no wind is calculated using

the physics-based distance formula Vat − 1/2at2, where Va is current airspeed (e.g.,

nominal UAS cruise speed), a is maximum constant deceleration, and t is the time

required to come to a stop. Stopping time assuming constant acceleration is t = Va/a

58

such that

δu = Vat−
1

2
at2

= Va(Va/a)− 1

2
a(Va/a)2

=
V 2
a

2a
.

(4.1)

This is a conservative estimate given that aerodynamic drag will contribute to addi-

tional deceleration. We define this result δu as the uniform buffer distance required

for a hover-capable UAS to stop from Va when headed directly toward the bound-

ary, the worst case. Below we also define a directional buffer offset distance δd to

account for steady wind and any other directional offset values useful to include in

geofence layering. Directional buffer angle φd is set based on steady wind direction

in this work. We assume an ENU (East-North-Up) coordinate convention supporting

top-down geofence polygon illustrations with x axis pointing to right of page, y axis

pointing to top of page, and z axis pointing out of the page. With ENU convention,

a Northerly wind blowing North to South has φd = 270◦, for example.

For UAS with a nonzero minimum turn radius, the uniform buffer distance δu is

set to the expected turn radius. Given UAS turn rate ω, the uniform buffer δu is set

to airspeed Va divided by maximum turn rate magnitude ω:

δu =
Va
ω

(4.2)

To calculate the directional buffer, consider the displacement of a fixed wing vehicle

with Easterly wind (φd = 0◦), initial vehicle heading along the x-axis, positive (left)

turn rate ω, and initial location such that the un-blown turning circle center is at the

ground frame origin: [
x(t)

y(t)

]
=

[
Va

ω
sin(ωt) + Vwt

−Va

ω
cos(ωt)

]
(4.3)

Above, Vw is the wind magnitude and t is time [57, 58, 59]. Wind magnitude must be

less than airspeed, else the UAS will travel backward initially. Note that assuming

that the initial vehicle heading and wind are both aligned with the x-axis does not

limit the analysis because the equations are being used only for generating the worst-

case directional boundary magnitude δd. Figure 4.2a shows the path of a fixed wing

aircraft in a continuous maximum rate turn in persistent wind. The values in this

example are based on the Aerosonde UAS Simulink model: the airspeed Va = 25

59

meters per second, the windspeed Vw = 20 meters per second, and the turn rate

ω = 0.4 radians per second [60]. To calculate δd, take the derivative of x(t) and solve

for t.

ẋ(t) = 0 = Va cos(ωt) + Vw (4.4)

t =
1

ω
arccos

(−Vw
Va

)
(4.5)

When the UAS is traveling with the wind, δd is set to reflect the distance traveled

forward while executing a turn-back maneuver. The magnitude of δd is calculated by

combining Equations 4.3 and 4.5.

δu + δd =
Va
ω

sin(ωt) + Vwt

=
Va
ω

sin

(
ω

(
1

ω
arccos

(−Vw
Va

)))
+ Vw

(
1

ω
arccos

(−Vw
Va

))
=
Va
ω

sin

(
arccos

(−Vw
Va

))
+
Vw
ω

arccos
(−Vw
Va

)
δu + δd =

Va
ω

√
1− V 2

w

V 2
a

+
Vw
ω

arccos
(−Vw
Va

)
(4.6)

Equation 4.6 provides the magnitude of δd based on airspeed, wind speed, and turn

rate. The angle of the directional buffer φd is set based on the angle of the wind.

Figure 4.2b shows an original geofence boundary in black, with an override boundary

in blue and a warning boundary in green that have been scaled using both the uniform

and directional buffers. The geofence commanded turn-back maneuver is triggered

when the override boundary is crossed. On the left side of the shown flight path, the

turn lies adjacent to the original boundary because all available distance is required to

complete the turn. Conversely, on the right side of the figure, the turn barely extends

passed the override boundary because the wind assists the maneuver, allowing it to

be completed over a shorted distance.

The calculated values of δu, δd, and φd can be used to generate scaled layers of the

geofence. The uniform buffer δu is the minimum distance between the scaled layer

and the original geofence boundary. The directional buffer δd is only applied in one

direction φd. For a pictorial representation of a layered keep-out geofence, see Figure

4.3.

An algebraic-geometric procedure similar to that presented above has been previ-

ously described in Ref. [61]. Ref. [61] assumes a single rectangular keep-in geofence

and that a nominal controller will respect reasonable geofence boundaries. Our work

60

-1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0

X [km]

-0.3

-0.2

-0.1

0

0.1

0.2

Y
 [
k
m

]

(a) Fixed wing maximum rate turn
in wind, beginning aligned with the
wind at the origin.

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

X [km]

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Y
 [

k
m

]

(b) Fixed wing flight with maximum
rate turns to respect original ge-
ofence (black).

Figure 4.2: Fixed wing maximum rate turns, ω = 0.4 radians per second, with Va = 25
meters per second and Easterly wind, Vw = 20 meters per second.

-20 -10 0 10 20

X

-25

-20

-15

-10

-5

0

5

10

15

20

25

Y

Figure 4.3: Example of uniform and directional buffers for a square keep-out geofence.
Circles have radius δu = 5. The dotted circles are centered at the vertices of the
original black geofence, and the solid circles are offset by δd = 2.5, φd = 0. The blue
scaled boundary lies tangent to the buffer circles but does not cross them.

61

generalizes geofence geometry to any simple polygon that can reflect land use, commu-

nity preference, and airspace restrictions as well as UAS mission requirements. Layers

do not assume the nominal controller will always work but instead offer warning and

override cues to increase assurance that geofence constraints will be met.

Ref. [61] complements this chapter with an in-depth multicopter UAS trajectory

tracking error analysis based on representative UAS speeds, proportional-integral-

derivative (PID) controller response behaviors, and wind disturbances. The authors

conclude that a horizontal deviation error of 15 meters and vertical geofence deviation

error of 5 meters would be sufficient when wrapping a prescribed flight plan with a

geofence ”box” through which a multicopter UAS would fly. Without loss of gener-

ality, layering case studies presented in this chapter abstract away from specific UAS

type by presenting results over a series of geofence polygon layering cases randomly

generated in a dimensionless flight region for a variety of relative layer thicknesses.

The main purpose of this section, therefore, was to describe how the subsequent anal-

ysis connects with UAS type-specific computations necessary to prescribe layering

distances in practice.

4.3 Geofence Layer Generation

The scaling of a geofence boundary is a multi-step process. The first step is an

optional “smoothing” step to remove edges that are anticipated to be too short to be

included in the scaled layer. The second step generates the scaled layer by shifting

the edges while maintaining the slope of the edge and placing the vertices at the

intersection points of the shifted edges. This step also “flattens” any original vertices

with an angle greater than π in the direction of scaling. A vertex is flattened by

adding an edge perpendicular to the angular bisector of the vertex. Figure 4.3 shows

the flattening of all four of the original vertices. The third step is “cross-check,” which

checks the scaled layer for intersection points with itself and for any points that are

not the required distance from the original geofence. Cross-check returns only closed

polygons that respect the uniform and directional buffers.Throughout this section,

the symbols ± and ∓ are used to indicate that an equation is executed for the prior

and the next vertices, respectively.

4.3.1 Boundary Smoothing

Without minimum edge length constraints or convexity requirements, the pro-

posed scaling methodology can generate invalid geofence layers due to unexpected

62

geometries. To eliminate components of the original geofence that will cause invalid

scaled layers, the geofence is conservatively “smoothed” by examining edge length and

vertex angles and removing select vertices based on that information. The smoothing

is conservative because it is biased towards further restricting the reachable flight vol-

ume. Figure 4.4 shows an example of a randomly generated geofence with 17 vertices

smoothed for both inward and outward scaling. This smoothing is applied prior to

the scaling of the boundary.

-40 -20 0 20 40 60

X

-40

-30

-20

-10

0

10

20

30

40
Y

Inward Smoothed

Outward Smoothed

Original

Figure 4.4: Smoothed geofence example, showing smoothing for both inward and
outward scaling. Original geofence has 17 vertices, δu = 5, δd = δu.

To determine if a vertex vi is a candidate for smoothing, a vertex angle condition

and an adjacent edge length condition must be met. The vertex angle condition is

met by first calculating the angles of the adjacent edges vi−1vi and vi+1vi:

φ± = arctan
yi±1 − yi
xi±1 − xi

(4.7)

The vertices of the geofence are assumed to be listed in clockwise order. The magni-

tude of the internal angle of vertex vi angle is:

θ = φ+ − φ− (4.8)

If the angle of the vertex in the direction of smoothing is less than π, (θ < π ∧ δu <
0)∨(2∗π−θ < π∧δu > 0), then the vertex is considered for removal during smoothing.

This condition assures smoothing is conservative.

If the vertex condition is met, then the edge condition is checked. The edge

condition compares the length of the adjacent edges to the uniform and directional

63

buffers. First, the squared length between adjacent edges is calculated.

d± = (xi − xi±1)
2 + (yi − yi±1)

2 (4.9)

Next, the directional buffer is considered in each adjacent edge based on the relative

angles.

d± =



d± − δ2d if δu sinφ∓ cosφd > 0 ∧ δu cosφ∓ sinφd > 0

d± − (δd cosφd)
2 if δu sinφ∓ cosφd > 0

d± − (δd sinφd)
2 if δu cosφ∓ sinφd > 0

d± otherwise

(4.10)

Then, the square of edge length reduction due to the uniform buffer is calculated

based on the internal angle of the vertex.

du = 2
δ2u

sin2 θ
(4.11)

The squared predicted final edge lengths are determined by subtracting these values.

dmin = min(d− − du, d+ − du) (4.12)

If dmin is less than zero, then the edge condition is met and the vertex is a candidate

for smoothing removal.

If more than one vertex qualifies for potential smoothing, then a methodology for

selecting the order of vertex removal is required. This work considers two method-

ologies for selecting the next vertex to be removed for smoothing: angular magnitude

and edge overlap. Angular smoothing removes the vertices with the most extreme

angles, min(θ) for δu < 0 and min(2π − θ) for δu > 0, first. Edge smoothing removes

the vertices with the most negative resulting edge length, min(dmin), first. Figure 4.5

shows two geofences scaled inward and outward using both smoothing methods.

Once the chosen vertex is removed, the remaining vertices are considered for re-

moval. The vertices of the polygon are checked after each vertex removal because the

smoothing of one vertex changes the measurement of its two adjacent vertices which

may change their qualifications for smoothing. Geofence smoothing is complete when

no remaining vertices qualify for removal or when there are fewer than three vertices

remaining. If fewer than three vertices are remaining, then a valid smoothing has not

been found for that geofence boundary and the chosen buffer values. If the geofence

64

smoothing is invalid, then the geofence or the buffer values need to be redefined. Once

a valid smoothing is achieved, the smoothed geofence can be utilized in place of the

original geofence.

-20 -15 -10 -5 0 5 10 15 20

X

-10

-5

0

5

10

15

20

Y

1

Original

Inward - 1

Outward - 1

Inward - 4

Outward - 4

Inward - 5

Outward - 5

(a) Designed geofence. Angular smooth-
ing and edge smoothing generated the
same outward scaling, so no distinction
is seen.

-30 -20 -10 0 10 20 30 40

X

-40

-30

-20

-10

0

10

20

Y 1

Original

Inward - 1

Outward - 1

Inward - 4

Outward - 4

Inward - 5

Outward - 5

(b) Randomly generated geofence.

Figure 4.5: Example of angular smoothing (option 4) versus edge smoothing (option
5). Vertices are iterated through in clockwise order, beginning at the vertex marked
as 1.

Figure 4.5 shows two geofences in black that have been smoothed then scaled.

These examples were chosen to show differences in results for angular smoothing

versus edge smoothing. The example of scaling without smoothing (option 1) from

Figure 4.5a is an invalid scaling solution while both smoothing solutions generate

valid inward and outward scaled polygons. All six scaled polygons in Figure 4.5b are

valid solutions. The smoothing algorithms consider the vertices in a clockwise order

starting from the first vertex in the queue, denoted in Figure 4.5. In cases where

multiple vertices are equally suited for removal, the vertex earlier in the queue is

removed first. The removal of a vertex changes the selection criteria of its adjacent

vertices, so changing which vertex is the “first vertex” can result in different final

geofences. Angular and edge smoothing are compared with and without inclusion

of the directional buffer in the results section. Table 4.1 lists examined smoothing

configurations and the numbers used to refer to them in plots.

4.3.2 Scaled Layer Generation

The scaled geofence layer is generated by looping over the vertices of the polygon,

with or without smoothing, in a clockwise manner. Based on the slopes of the edges

65

Table 4.1: Smoothing options applied to each randomly generated geofence.

Option Definition

1 No smoothing
2 Angular smoothing, assume δd = 0
3 Edge smoothing, assume δd = 0
4 Angular smoothing
5 Edge smoothing

and the buffer values, the line equation for each new edge is calculated to be parallel

to the original edge. The vertices of the scaled layer are located at the intersection

points of the new edges.

To begin the scaling process, the angle of a given vertex vi is calculated as follows.

First, the angles of the edges vi−1vi and vi+1vi are computed from:

φ± = arctan
yi±1 − yi
xi±1 − xi

(4.13)

Therefore, the magnitude of the internal angle of vertex vi is:

θ = (φ+ − φ−) (4.14)

Figure 4.6 depicts θ for the black original geofence boundary. The angle of the bisector

Figure 4.6: Diagram of geofence layer scaling with flatten vertices. Original geofence
in solid black. Solid blue layer for δu = 2, δd = 1.5, φd = 0◦ with vertex flattened.

66

of the vertex angle θ in the global frame is denoted as φ.

φ =
1

2
θ + φ− (4.15)

Without a directional buffer, by definition the minimum distance from the original

edge to the new edge is the uniform buffer distance δu. At vertex vi, a right triangle is

formed using the original vertex, the nearest point on the scaled edge, and the scaled

vertex, shown in green in Figure 4.6. Thus, the distance from the original vertex to

the layered vertex along 1
2
θ is h, shown as the vertical green and black dotted line in

Figure 4.6.

h =
∣∣∣ δu
sin(θ/2)

∣∣∣ (4.16)

In Figure 4.6, the layer generated without wind consists of the solid blue line of the

left and dotted blue line on the right. The displacement of the vertex along the x

and y axes is calculated below. [
x̃u

ỹu

]
=
−δu
|δu|

[
cosφ

sinφ

]
h (4.17)

To incorporate wind and other factors with a direction-specific component, a di-

rectional buffer is applied as a magnitude δd and direction φd.[
x̃d

ỹd

]
=

[
cosφd

sinφd

]
δd (4.18)

The directional buffer is only applied to the edges whose uniform layering displace-

ment coincides with the angle of the directional buffer.

x̃ =

x̃u + x̃d if δu sin(φ−)x̃d > 0

x̃u otherwise
(4.19)

ỹ =

ỹu + ỹd if − δu cos(φ−)ỹd > 0

ỹu otherwise
(4.20)

The (x̃, ỹ) displacement values are added to the vertex vi to calculate a point on the

layered edge corresponding to the edge vi−1vi. Then, with a point on each scaled layer

edge and the slope of each edge, the line equation for each new edge is known, and

the vertices of the new edges are placed at the intersection points of adjacent layer

67

edges.

4.3.2.1 Flatten Vertices

To reduce the loss of usable (keep-in) airspace due to scaling vertices with angles

measuring greater than π in the direction of scaling, a “flattening” edge is utilized.

The process of vertex flattening occurs concurrently with the generation of the scaled

boundary. Once θ, as shown in Figure 4.6, is calculated using Equation 4.14 for the

edge scaling, if (θ > π and δu < 0) or if (θ < π and δu > 0), then a new edge is added

to flatten the vertex vi. The slope of the new edge is set perpendicular to the angular

bisector of vertex vi:

m = tan
(
φ− 3π

2

)
(4.21)

For the example vertex in Figure 4.6, the slope of the new edge is m = 0. To generate

the point on the new edge, the displacement of the vertex for the uniform buffer is

recalculated: [
x̃u

ỹu

]
= δu

[
cos(φ+ π)

sin(φ+ π)

]
(4.22)

The directional buffer displacement equations are unchanged (Equation 4.18):

x̃ =

x̃u + x̃d if x̃ux̃d > 0

x̃u otherwise
(4.23)

ỹ =

ỹu + ỹd if ỹuỹd > 0

ỹu otherwise
(4.24)

These displacements are added to vertex vi, which is replaced in the scaled layer by two

vertices to form the new edge. In Figure 4.6, the scaled vertex without flatten vertices

is denoted by the empty blue circle, while the modified vertex position
(
vi + (x̃, ỹ)

)
is denoted by the solid blue circle. Information about the new edge is inserted into

the ordered list of scaled polygon edges, and its vertices are placed at the intersection

points with its adjacent edges similarly to the method used previously to scale vertices.

The horizontal solid blue edge in Figure 4.6 is the new edge created by flatten vertices.

The flattening of vertices frees flight area af , which is a function of the scaling

magnitude δu and the angle of the vertex θ (see two shaded triangles in Figure 4.6).

The area of a generic triangle is 1/2(base)(height). The (height) of the triangles is

h− δu because the distance from the original vertex to the scaled vertex is defined as

68

h and the minimum distance the flattened edge can be from the original vertex is δu.

By trigonometry, the (base) is defined as (h− δu) tan(θ/2). Thus, the area regained

by flatten corners in cases with δd = 0 is:

af = 2
(1

2
(base)(height)

)
(4.25)

= (h− δu)2 tan(θ/2) (4.26)

= δ2u

(1

sin(θ/2)
− 1
)2

tan(θ/2) (4.27)

Vertex flattening replaces single vertices with two vertices. The maximum usable

area would be achieved by replacing the vertex with an arc. This arc is a sector of a

circle with radius r = δu, with its center at the original vertex. The area of the arc is
1
2
r2ψ, where r = δu is the arc radius and ψ = 2 ∗ (π/2− θ/2) is the angle of the arc.

To compute the reclaimed area, the area of the arc is subtracted from two times the

area of the triangle outlined in green in Figure 4.6. The area of the green outlined

triangle is 1
2
(base)(height), where (base)= δu and (height)= δu/ tan(θ/2). Thus, the

area reclaimed using an arc is given by:

ac = 2
(1

2
δu

δu
tan(θ/2)

)
− 1

2
δ2u(π − θ) (4.28)

= δ2u

(1

tan(θ/2)
− 1

2

(
π − θ

))
(4.29)

The difference between these two methods is seen in Figure 4.7 as the difference

between the solid and dotted lines of each color. The solid lines are the results

of the two-vertex implementation, while the dotted lines are the results of the arc

implementation. The graph plots the total area reclaimed by flattening the corners

as a function of scaling distance δu, and each curve represents a selected value of θ. As

the angle of the vertex decreases and as scaling distance increases, the benefits of the

addition of this algorithm increase. The difference between the two implementations

also increases as the total saved area increases, but this difference is small compared

to the total reclaimed area.

4.3.3 Cross-Check

Cross-check is the process of verifying that the entire scaled layer or that sections of

the scaled layer form a closed simple polygon or polygons and respect the uniform and

directional buffers. This procedure is motivated by cases like those seen in Figures 4.8

69

0 1 2 3 4 5

u

0

50

100

150

200

250

A
re

a

 = 10
°
, flat

 = 30
°
, flat

 = 120
°
, flat

 = 10
°
, arc

 = 30
°
, arc

 = 120
°
, arc

Figure 4.7: Area added by using Flatten Vertices algorithm.

and 4.9, namely original geofence polygons with narrow passages and other geometric

characteristics that create multiple disjoint geofence areas as a result of scaling. The

black original polygon in Figure 4.8 is comprised of two larger flight areas connected

by a narrow passage. When the uniform buffer is applied without cross-check, the

invalid result is seen in Figure 4.8a. The scaled boundaries intersect both the original

boundaries and the scaled boundary. Figure 4.8b is achieved by applying cross-check.

The result in Figure 4.9 is the original geofence from Figure 4.8, but with a slightly

wider connecting channel. Here, the channel is wide enough that a UAS could pass

through while only violating the “warning boundary,” unlike in the previous case

where the geofence would intervene to prevent flight through the narrow channel.

-20 -15 -10 -5 0 5 10 15 20 25

X

-15

-10

-5

0

5

10

15

20

Y

Original

Scaled - Override

Scaled - Warn

(a) Scaled boundaries.

-20 -15 -10 -5 0 5 10 15 20 25

X

-10

-5

0

5

10

15

20

Y

Original

Scaled - Override

Scaled - Warn

(b) Scaled boundaries with
cross-check algorithm.

Figure 4.8: Examples of a layered geofence with a narrow passage. The disjoint scaled
geofence regions indicate that it is not possible to traverse the narrow passage while
maintaining the desired distance from the geofence boundary.

70

-20 -15 -10 -5 0 5 10 15 20 25

X

-10

-5

0

5

10

15

20

Y

Original

Scaled - Override

Scaled - Warn

(a) Scaled boundaries.

-20 -15 -10 -5 0 5 10 15 20 25

X

-10

-5

0

5

10

15

20

Y

Original

Scaled - Override

Scaled - Warn

(b) Scaled boundaries with
cross-check algorithm.

Figure 4.9: Examples of a layered geofence with a narrow passage. The disjoint scaled
geofence regions indicate that it is not possible to traverse the narrow passage while
maintaining the desired distance from the geofence boundary, but the larger traverse
region supports UAS transit with warning but no override (blue).

Algorithm 4.12 details cross-check, which takes as inputs the original geofence

polygon o, the scaled layer polygon p to be checked for edge intersections, the uniform

buffer δu, and the directional buffer δd and φd. The output of the algorithm is a list

of the vertices for the valid polygon or polygons that pass cross-check. For Figure

4.8b, the outputs of cross-check are two triangles for the override boundary and two

triangles for the warning boundary. For Figure 4.9b, the outputs of cross-check are

an octagon for the override boundary and two triangles for the warning boundary.

Cross-check begins by separating the scaled polygon p into subsections s based

on self-intersection points i, as seen in Figure 4.10a which has five subsections that

are created by the two intersection points and the connection of the first and last

vertices. Each intersection point has four edges associated with it, two entering the

intersection point and two exiting the intersection point. The entering and exiting

edges are originally paired to match the vertex order of the scaled polygon p, but

to form the desired closed polygons q, the exit edges of the pairs are swapped. By

swapping the exit edge pairs and their associated polygon subsections, as referenced

in Line 10 of Algorithm 4.12, closed simple polygons are formed, as seen in Figure

4.10b. Once formed, each closed polygon q is compared to the original geofence o

to check that the uniform buffer δu and the direction buffer δd at angle φd are not

violated. Any polygons included in q that are in violation of the buffer distances,

such as the center polygon of Figure 4.10b, are removed from q. Cross-check returns

only those polygons that are at least the minimum required buffer distances from the

original geofence.

71

Algorithm 4.12 Cross-Check Algorithm

Input: o original polygon, p scaled polygon, δu uniform buffer, δd directional buffer
magnitude, φd directional buffer direction

Output: q list of valid closed polygons
1: Loop over the edges of p to find all intersection points i:
2: for all Edges ej in p do
3: for all Edges ek in p do
4: if ej intersects ek at a point that is not a vertex of both edges then
5: Add intersection point to intersection list i.
6: end if
7: end for
8: end for
9: Divide the vertex list of polygon p into subsections s defined by intersection points
i (Figure 4.10a).

10: Recombine the subsections s to create the new closed polygons q by connecting
subsections that share an intersection point and vertex order but are not adjacent.
(Figure 4.10b).

11: Eliminate scaled polygons from q that are less than the required buffer distance
from the original polygon o:

12: for all Closed polygons qj in q do
13: if qj intersects o then
14: Eliminate qj from q.
15: else if Any vertex of qj is less than the buffer distances from any edge of o

then
16: Eliminate qj from q.
17: else if Any vertex of o is less than the buffer distances from any edge of qj

then
18: Eliminate qj from q.
19: end if
20: end for
21: Return the remaining scaled polygons q.

72

-20 -15 -10 -5 0 5 10 15 20

X

-15

-10

-5

0

5

10

15

Y

(a) Polygon sectioned by inter-
section points.

-20 -15 -10 -5 0 5 10 15 20

X

-15

-10

-5

0

5

10

15

Y

(b) Sub-polygons separated by
intersection points.

Figure 4.10: Breakdown of two steps within cross-check. Each color represents a
separate section of the original polygon. The blue and green sections of the left
diagram are separate because they are the beginning and end of the vertex list.
This distinction is removed when the sections are combined to form the new closed
polygons.

A “well-constructed” geofence should not need cross-check because narrow pas-

sages and other odd geometries are not likely to be the normal operating conditions of

UAS. However, for the cases where these geometries are forced by the environment,

e.g., a narrow passage through an urban corridor, cross-check enables the selection

of the usable areas while maintaining the necessary safe distance from the original

geofence boundary.

The cross-check algorithm presented here is sufficient but not unique. For example,

other existing algorithms can locate edge intersections and that form closed polygons

from distinct sections. When geofence boundaries are defined in pre-flight efficiency

is secondary to accuracy. However, if a geofence requires update in-flight, time and

resources are of critical importance per the discussion in [62]. The complexity of this

cross-check algorithm is polynomial in the number of scaled polygon vertices, which

is suitable for in-flight usage.

4.3.4 Smoothing Selection

Each of the above algorithms contributes to generating a scaled version of the

original geofence. If the output from cross-check contains at least one polygon then

scaling buffer magnitudes are feasible to use with the original geofence specifica-

tion. This set of algorithms is deterministic, but variance in the final flight area can

be introduced by changing the smoothing algorithm, by separating the scaling and

flattening algorithm into two steps, and by changing the cross-check algorithm. The

73

majority of manually-defined geofences are not expected to show this variance because

most UAS flights in the near future are expected to occur in large open uncluttered

environments. However, for flights within a cluttered environment such as a set of

urban city blocks with a variety of airspace usability constraints, this variability is an

important tool. Each smoothing and cross-check option has the potential to return a

unique result, so it is recommended that the results from multiple algorithm choices

for the same geofence be calculated. Then, the layer that maximizes usable flight

area can be selected as the best solution. For a keep-in geofence being scaled inward,

the solution with the maximum area is used. For a keep-out geofence being scaled

outward, the solution with the minimum area is used.

4.4 Results

To test the methodologies described above, a Monte Carlo generator of geofence

boundaries was implemented. Geofence boundaries in the form of simple polygons

are randomly generated with vertex xy-values within the range [−50, 50], then ro-

tated about the origin by a randomly generated angular magnitude. Test variables

are shown in Table 4.2 Geofences boundaries are randomly generated without a di-

Table 4.2: Independent variables for the Monte Carlo simulation.

Variable Symbol Values

Number of vertices n 3, . . . , 27
Uniform buffer magnitude δu 1, 2, 5, 10

Directional buffer magnitude δd 0, δu/2, δu

rectional bias, so the directional buffer angle φd is set to zero for all tests without

loss of generality. For each combination of variables, 10, 000 random geofences are

generated for a total of 3 ∗ 106 (three million) randomly generated geofences. Each

geofence is tested for both inward and outward layering with the five smoothing set-

ups listed in Table 4.1, so each geofence has 10 layering results associated with it.

The scaling and flattening methods are executed as described in Section 4.3, and the

cross-check algorithm from Section 4.3.3 is implemented. Geofence generation and

layering (scaling) operations are written in MATLAB with the following procedure:

1. Generate random geofence with n vertices. Set δu and δd.

2. Run each smoothing scheme (Option 1-5) for inward (δu < 0) and outward

(δu > 0) scaling.

74

3. Scale and flatten corners of each smoothed polygon.

4. Cross-check to eliminate any polygons that do not respect δu and δd.

5. Select the smoothing scheme that maximizes the flight area.

If cross-check returns no valid polygons, the geofence is scaled again using separate

scaling and vertex flattening processes [28]. If neither scaling methodology results in

valid cross-checked polygons, then the case is considered a failure.

The first metric of success considered is the percentage of cases for which at least

one smoothing setup resulted in a valid scaled layer. Figures 4.11 and 4.12 show

these success percentage for both inward and outward scaling. The low percentage of

0 5 10 15 20 25 30

Number of Vertices

0

10

20

30

40

50

60

70

80

90

100

P
e
rc

e
n
ta

g
e
 o

f
C

a
s
e
s

Percentage of Cases with Solutions by Buffer Size

u
 = 1

u
 = 2

u
 = 5

u
 = 10

(a) Combined scaling and flattening algo-
rithm only.

0 5 10 15 20 25 30

Number of Vertices

0

10

20

30

40

50

60

70

80

90

100

P
e
rc

e
n
ta

g
e
 o

f
C

a
s
e
s

Percentage of Cases with Solutions by Buffer Size

u
 = 1

u
 = 2

u
 = 5

u
 = 10

(b) All algorithm set-ups.

Figure 4.11: Inward scaling success percentages. Each line represents a different
uniform buffer value.

inward scaling successes for geofences with few (3 − 6) vertices is mainly due to the

randomly generated geofences having insufficient size to allow for the required buffer

distances. This explanation is supported by both the increase in success percentage as

the uniform buffer distance decreases and the high percentages of success for outward

scaling of geofences with few vertices (see Figure 4.12). The success of outward scaling

for the set of geofences decreases as the number of vertices increases. This trend is

largely due to the total possible area of the geofence being held constant while the

number of vertices increases, which increases the likelihood of short edges and large

vertex angles in the direction of scaling.

To illustrate characteristics of geofence polygons difficult to scale, Figure 4.13

shows an example of a geofence with 10 vertices for which no solution was found.

Solid and dotted red lines are used in Figure 4.13b to connect the scaled vertices

75

0 5 10 15 20 25 30

Number of Vertices

0

10

20

30

40

50

60

70

80

90

100

P
e
rc

e
n
ta

g
e
 o

f
C

a
s
e
s

Percentage of Cases with Solutions by Buffer Size

u
 = 1

u
 = 2

u
 = 5

u
 = 10

(a) Combined scaling and flattening algo-
rithm only.

0 5 10 15 20 25 30

Number of Vertices

0

10

20

30

40

50

60

70

80

90

100

P
e
rc

e
n
ta

g
e
 o

f
C

a
s
e
s

Percentage of Cases with Solutions by Buffer Size

u
 = 1

u
 = 2

u
 = 5

u
 = 10

(b) All algorithm set-ups.

Figure 4.12: Outward scaling success percentages. Each line represents a different
uniform buffer value.

with the original vertices. A correct scaling of the original geofence should flatten the

vertices connected by the dotted lines, but in the shown failed scaling, the direction

of the edge between the red lines is reversed, causing the vertices connected to the

solid lines to be flattened. The resulting flattened vertices are marked with asterisks

on both scaled layers. The scaling of this geofence failed because the scaled vertices

connected to the dotted red line are not the required uniform buffer distance δu from

the original geofence. For both the inward and outward scaled polygons, the solid

red lines cross the dotted red lines. This shows that the left-to-right ordering of

the vertices has changed from the original polygon, which is how the buffer distance

is violated without changing the slope of any of the edges. At least one of the

vertices attached to the reversed edge needs to be removed during smoothing to

enable successful scaling. Neither angular smoothing nor edge smoothing as presented

above selected the highlighted vertices for removal, suggesting further improvements

to smoothing methods as future work.

For high numbers of vertices, a decrease in performance is shown in Figures 4.11a

and 4.12a, which use the scaling and vertex flattening methodology presented above.

This trend is not present in Figures 4.11b and 4.12b, which show success using both

the combined methodology and the method that separates the scaling and vertex

flattening methodology into two processes [28]. Unlike the combined method, the

separate scaling and vertex flattening methodology does not take wind into account

for vertex flattening. The consideration of wind results in slightly more area being

made available than when it is not, resulting in the combined methodology being

preferred except for cases when it fails to find a solution.

76

-60 -40 -20 0 20 40 60

X

-40

-30

-20

-10

0

10

20

30

40

50

Y

Original

Inward

Outward

(a) Full geofence with failed scaling.

-40 -35 -30 -25 -20 -15 -10

X

-20

-15

-10

-5

0

5

Y

(b) Zoomed view of failed scaled vertices
with red lines connecting scaled vertices
with the original vertices.

Figure 4.13: Example of a geofence with 10 vertices without an inward or outward
scaling solution. The presented smoothing algorithms did not detect the need to
smooth the failed sections leading to failed scaling.

Figures 4.14 and 4.15 break down the success rates of each smoothing option

for each tested uniform buffer magnitude and directional buffer magnitude. In most

plots, there is not a visible distinction between smoothing options 2−5, while method

1 which does not use smoothing is consistently worse than the other options. The

plots also show that the higher the directional buffer magnitude, the lower the success

percentages.

From all solved cases, the final area of the resulting polygons can be calculated to

evaluate each smoothing option in maximizing keep-in polygon area (minimizing keep-

out polygon area). This scaled area metric compares scaled areas of two smoothed

polygons. Results are reported as the percentage of the area unique to one solution.

To do this, the Boolean difference operator is used to subtract the second result from

the first, the area of which is divided by the area of the first result. This calculation

provides the ratio of area contained by the first result but not the second, and can

be seen as the shaded region in Figure 4.16. This calculation is carried out for each

pairwise smoothing option permutation for every randomly generated geofence. The

results were then averaged for each set of geofences with the same number of vertices

for inward and outward cases. In Figures 4.17 and 4.18, the area difference metric

is shown comparing the results of the layers generated with smoothing options 1, 4,

and 5.

The smoothed layer results for outward shifts are shown with dashed lines and

consistently encompass greater unique area than the layer without smoothing shown

77

5 10 15 20 25

Number of Vertices

0

20

40

60

80

100

P
e

rc
e

n
t

o
f

S
u

c
c
e

s
s
e

s

Inward Uniform Buffer: 1

Alg 1,
d
 = 0

Alg 1,
d
 =

u
/2

Alg 1,
d
 =

u

Alg 2,
d
 = 0

Alg 2,
d
 =

u
/2

Alg 2,
d
 =

u

Alg 3,
d
 = 0

Alg 3,
d
 =

u
/2

Alg 3,
d
 =

u

Alg 4,
d
 = 0

Alg 4,
d
 =

u
/2

Alg 4,
d
 =

u

Alg 5,
d
 = 0

Alg 5,
d
 =

u
/2

Alg 5,
d
 =

u

5 10 15 20 25

Number of Vertices

0

20

40

60

80

100

P
e

rc
e

n
t

o
f

S
u

c
c
e

s
s
e

s

Inward Uniform Buffer: 2

Alg 1,
d
 = 0

Alg 1,
d
 =

u
/2

Alg 1,
d
 =

u

Alg 2,
d
 = 0

Alg 2,
d
 =

u
/2

Alg 2,
d
 =

u

Alg 3,
d
 = 0

Alg 3,
d
 =

u
/2

Alg 3,
d
 =

u

Alg 4,
d
 = 0

Alg 4,
d
 =

u
/2

Alg 4,
d
 =

u

Alg 5,
d
 = 0

Alg 5,
d
 =

u
/2

Alg 5,
d
 =

u

5 10 15 20 25

Number of Vertices

0

20

40

60

80

100

P
e

rc
e

n
t

o
f

S
u

c
c
e

s
s
e

s

Inward Uniform Buffer: 5

Alg 1,
d
 = 0

Alg 1,
d
 =

u
/2

Alg 1,
d
 =

u

Alg 2,
d
 = 0

Alg 2,
d
 =

u
/2

Alg 2,
d
 =

u

Alg 3,
d
 = 0

Alg 3,
d
 =

u
/2

Alg 3,
d
 =

u

Alg 4,
d
 = 0

Alg 4,
d
 =

u
/2

Alg 4,
d
 =

u

Alg 5,
d
 = 0

Alg 5,
d
 =

u
/2

Alg 5,
d
 =

u

5 10 15 20 25

Number of Vertices

0

20

40

60

80

100

P
e

rc
e

n
t

o
f

S
u

c
c
e

s
s
e

s

Inward Uniform Buffer: 10

Alg 1,
d
 = 0

Alg 1,
d
 =

u
/2

Alg 1,
d
 =

u

Alg 2,
d
 = 0

Alg 2,
d
 =

u
/2

Alg 2,
d
 =

u

Alg 3,
d
 = 0

Alg 3,
d
 =

u
/2

Alg 3,
d
 =

u

Alg 4,
d
 = 0

Alg 4,
d
 =

u
/2

Alg 4,
d
 =

u

Alg 5,
d
 = 0

Alg 5,
d
 =

u
/2

Alg 5,
d
 =

u

Figure 4.14: Inward successes by setup and buffer distances.

5 10 15 20 25

Number of Vertices

0

20

40

60

80

100

P
e

rc
e

n
t

o
f

S
u

c
c
e

s
s
e

s

Outward Uniform Buffer: 1

Alg 1,
d
 = 0

Alg 1,
d
 =

u
/2

Alg 1,
d
 =

u

Alg 2,
d
 = 0

Alg 2,
d
 =

u
/2

Alg 2,
d
 =

u

Alg 3,
d
 = 0

Alg 3,
d
 =

u
/2

Alg 3,
d
 =

u

Alg 4,
d
 = 0

Alg 4,
d
 =

u
/2

Alg 4,
d
 =

u

Alg 5,
d
 = 0

Alg 5,
d
 =

u
/2

Alg 5,
d
 =

u

5 10 15 20 25

Number of Vertices

0

20

40

60

80

100

P
e

rc
e

n
t

o
f

S
u

c
c
e

s
s
e

s

Outward Uniform Buffer: 2

Alg 1,
d
 = 0

Alg 1,
d
 =

u
/2

Alg 1,
d
 =

u

Alg 2,
d
 = 0

Alg 2,
d
 =

u
/2

Alg 2,
d
 =

u

Alg 3,
d
 = 0

Alg 3,
d
 =

u
/2

Alg 3,
d
 =

u

Alg 4,
d
 = 0

Alg 4,
d
 =

u
/2

Alg 4,
d
 =

u

Alg 5,
d
 = 0

Alg 5,
d
 =

u
/2

Alg 5,
d
 =

u

5 10 15 20 25

Number of Vertices

0

20

40

60

80

100

P
e

rc
e

n
t

o
f

S
u

c
c
e

s
s
e

s

Outward Uniform Buffer: 5

Alg 1,
d
 = 0

Alg 1,
d
 =

u
/2

Alg 1,
d
 =

u

Alg 2,
d
 = 0

Alg 2,
d
 =

u
/2

Alg 2,
d
 =

u

Alg 3,
d
 = 0

Alg 3,
d
 =

u
/2

Alg 3,
d
 =

u

Alg 4,
d
 = 0

Alg 4,
d
 =

u
/2

Alg 4,
d
 =

u

Alg 5,
d
 = 0

Alg 5,
d
 =

u
/2

Alg 5,
d
 =

u

5 10 15 20 25

Number of Vertices

0

20

40

60

80

100

P
e

rc
e

n
t

o
f

S
u

c
c
e

s
s
e

s

Outward Uniform Buffer: 10

Alg 1,
d
 = 0

Alg 1,
d
 =

u
/2

Alg 1,
d
 =

u

Alg 2,
d
 = 0

Alg 2,
d
 =

u
/2

Alg 2,
d
 =

u

Alg 3,
d
 = 0

Alg 3,
d
 =

u
/2

Alg 3,
d
 =

u

Alg 4,
d
 = 0

Alg 4,
d
 =

u
/2

Alg 4,
d
 =

u

Alg 5,
d
 = 0

Alg 5,
d
 =

u
/2

Alg 5,
d
 =

u

Figure 4.15: Outward successes by setup and buffer distances.

78

Figure 4.16: To calculate the area difference, the area of the shaded region, which is
the blue minus the green, is divided by the area of the entire blue polygon.

5 10 15 20 25

Number of Vertices

0

1

2

3

4

5

6

7

8

A
v
e
ra

g
e
 o

f
A

re
a
 D

if
fe

re
n
c
e

Inward - 1/4/5 comparison -
u
 = 1

(1-4)/1

(1-5)/1

(4-1)/4

(5-1)/5

(a) δu = −1

5 10 15 20 25

Number of Vertices

0

5

10

15

20

25

30

A
v
e
ra

g
e
 o

f
A

re
a
 D

if
fe

re
n
c
e

Inward - 1/4/5 comparison -
u
 = 2

(1-4)/1

(1-5)/1

(4-1)/4

(5-1)/5

(b) δu = −2

5 10 15 20 25

Number of Vertices

0

10

20

30

40

50

60

70

A
v
e
ra

g
e
 o

f
A

re
a
 D

if
fe

re
n
c
e

Inward - 1/4/5 comparison -
u
 = 5

(1-4)/1

(1-5)/1

(4-1)/4

(5-1)/5

(c) δu = −5

5 10 15 20 25

Number of Vertices

0

10

20

30

40

50

60

70

80

A
v
e
ra

g
e
 o

f
A

re
a
 D

if
fe

re
n
c
e

Inward - 1/4/5 comparison -
u
 = 10

(1-4)/1

(1-5)/1

(4-1)/4

(5-1)/5

(d) δu = −10

Figure 4.17: Inward area difference results. Note that the range of the percentage
area difference is unique to each plot.

79

5 10 15 20 25

Number of Vertices

0

0.05

0.1

0.15

0.2

0.25

A
v
e
ra

g
e
 o

f
A

re
a
 D

if
fe

re
n
c
e

Outward - 1/4/5 comparison -
u
 = 1

(1-4)/1

(1-5)/1

(4-1)/4

(5-1)/5

(a) δu = 1

5 10 15 20 25

Number of Vertices

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
v
e
ra

g
e
 o

f
A

re
a
 D

if
fe

re
n
c
e

Outward - 1/4/5 comparison -
u
 = 2

(1-4)/1

(1-5)/1

(4-1)/4

(5-1)/5

(b) δu = 2

5 10 15 20 25

Number of Vertices

0

2

4

6

8

10

12

14

16

18

A
v
e
ra

g
e
 o

f
A

re
a
 D

if
fe

re
n
c
e

Outward - 1/4/5 comparison -
u
 = 5

(1-4)/1

(1-5)/1

(4-1)/4

(5-1)/5

(c) δu = 5

5 10 15 20 25

Number of Vertices

0

10

20

30

40

50

60

70

80

90

A
v
e
ra

g
e
 o

f
A

re
a
 D

if
fe

re
n
c
e

Outward - 1/4/5 comparison -
u
 = 10

(1-4)/1

(1-5)/1

(4-1)/4

(5-1)/5

(d) δu = 10

Figure 4.18: Outward area difference results. Note that the range of the percentage
area difference is unique to each plot.

80

with the solid lines. This is an expected behavior because smoothing is a conservative

process and for outward scaling this results in greater contained area.

The results for inward scaling in Figure 4.17 initially show less area contained

by the smoothed results, which is again expected. However, as the number of ver-

tices increases, the area of the smoothed layers surpasses that of the layers without

smoothing. This result shows that smoothing the boundary prior to scaling enables

more of the original geofence to be scaled without encountering anomalies that would

require more complicated scaling and cross-check functions.

4.5 Summary and Future Work

This chapter proposed an algorithm for generating scaled layers for horizontal non-

convex geofence boundaries. The layer design incorporates a uniform buffer distance

and a directional buffer distance. The process of generating the layers is done through

smoothing the geofence boundary to simplify the polygon, then projecting the edges

parallel to their original counterparts. The vertices that connect the projected edges

are flattened to reduce the area impact from vertices with angles greater than π. Once

the layers are generated, the areas that do not respect buffer distances are removed,

leaving only the usable geofence portions. Monte Carlo simulations are used to test

the success rate of the layer generation, and the results are reported, showing that

this system works for the majority of geofence boundaries.

The success rates of this set-up for randomly generated geofences when consid-

ering multiple smoothing methodologies suggest future work focusing on improved

smoothing methods. The development of new smoothing methods to add to the

presented angular smoothing and edge smoothing would likely improve the results.

Another area for future work is in adding adaptability to the smoothing methods.

The smoothing methods presented above use hard-coded qualifications for removal,

but as seen in Figure 4.13, these conditions do not work for all polygons. Greater

success rates would likely be achieved if the removal conditions were automatically

varied based on whether a successful solution was found.

81

CHAPTER V

System Simulation

This chapter presents a simulated geofence system end-to-end case study con-

sidered from both Unmanned Aircraft Systems (UAS) and UAS Traffic Manage-

ment (UTM) perspectives. The selected case was first introduced in Chapter II,

where the UTM system initially contains a single approved geofence with a triangu-

lar horizontal boundary, shown in Figure 5.1a. This chapter follows the request and

usage of the geofence with the rectangular horizontal boundary, shown in Figure 5.1b.

(a) Initial geofence approved by UTM, ac-
tive from t = 2.75 to t = 6.5 hours.

(b) Second requested geofence GR, active
from t = 1.25 to t = 5.167 hours.

Figure 5.1: Example approved and requested geofences.

The next section summarizes the UTM geofence request and deconfliction pro-

cesses as introduced in Chapter II. In Section 5.2, the deconflicted requested geofence

set is returned to the UAS, where each member of the geofence set is layered then

triangularized using the methodologies introduced in Chapter IV and Chapter III,

respectively. Section 5.3 introduces the geofence guidance modes used during flight.

The last section of this chapter discusses results.

82

5.1 UTM Geofence Request

Prior to flight, a UAS must request permission to operate within a specific volume

of airspace by sending a geofence request to the UTM system. This request is either

to access an existing geofence or to create a new geofence. For this case study, a new

geofence GR is requested as shown in Figure 5.1b. Geofence GR start and end times

are ts = 1.25 and te = 5.167 hours, respectively.

Prior to the GR request, a single UTM-approved geofence exists as shown in

Figure 5.1a and is active between times t = 2.75 and t = 6.5 hours. UTM represents

this one approved durational geofence using three temporal periods:

P = {P1, P2, P3} (5.1)

P1 = {t = 0,GU = ∅}, (5.2)

P2 = {t = 2.75,GU = GU1}, (5.3)

P3 = {t = 6.5,GU = ∅}. (5.4)

When UTM receives the request for GR, Algorithm 2.2 is used to temporally and

spatially deconflict GR from the existing UTM geofence. The temporal bounds of GR

do not align with the existing period start times of the UTM system, so two additional

periods are generated. The first and last temporal periods, P1 and P5, do not have

any active geofences. The middle three temporal periods are shown in Figure 5.2.

Temporal period P2 (Figure 5.2a) contains only the unchanged requested geofence

boundaries, and P4 (Figure 5.2c) contains only the original approved geofence. In P3,

the requested geofence and approved geofence overlap spatially. To spatially deconflict

the geofence volumes in P3, the requested geofence is partitioned into two altitude

bands. The lower altitude partition of GR is not modified because it does not conflict

with the approved geofence. The upper altitude partition of GR is redefined as the

result of the requested geofence minus the approved geofence. Thus, the requested

geofence set returned to the UAS consists of the original requested geofence volume

for P2 and two new geofence volumes excluding the existing geofence volume during

P3.

From the UTM perspective, the UAS is now permitted to operate within the

returned requested geofence set. The communication channel between the UAS and

UTM database remains available during flight to ensure that the UAS is aware of any

modifications to its geofence set. A geofence set may be modified after UTM approval

in the case of emergency or other high-priority air vehicle passage or if a new static

83

(a) From P2 → t = 1.25 to
P3 → t = 2.75 hours, the
unmodified requested
geofence is the only active
geofence.

(b) From P3 → t =
2.75 to P4 → t = 5.167
hours, the active approved
geofences are the original
geofence and the two new
deconflicted geofence vol-
umes available for the re-
questing UAS.

(c) From P4 → t = 5.167
to P5 → t = 6.5 hours, the
original approved geofence
is the only active approved
geofence.

Figure 5.2: Plots show the active approved geofences for each temporal period. The
original approved geofence is shown in blue. Deconflicted requested geofences are
shown in shades of green.

geofence is approved after the UAS receives its geofence set clearance.

5.2 UAS Pre-Flight Geofence Management

Once the requested geofence set is deconflicted, the resulting geofence set is re-

turned the UAS. Onboard the UAS system prior to takeoff, each member of the

geofence set is layered and triangulated as described in Chapters III and IV. The

approved requested geofence set consists of the entire requested geofence volume for

temporal period P2 and the two deconflicted geofences for temporal period P3. The

layering and triangulation results are shown for the two geofences active during P3.

The horizontal boundaries of the P2 geofence are the same as the lower altitude ge-

ofence of P3, so the P2 results are not shown. Note that the UAS would have the

option to join (union) horizontally adjacent geofences to facilitate transition between

accessible boundaries before layering and triangulation are performed.

5.2.1 Geofence Layer Generation

As introduced in Chapter IV, the approved geofence boundaries are scaled to

generate “warning” and “override” boundaries based on the dynamics of the UAS.

84

In Figure 5.3, the warning layers begin at the innermost green edges and the override

layers begin at the innermost blue edges for both horizontal geofence boundaries.

This example does not have a persistent wind, Vw = 0, so the plotted directional

buffer is δd = 0 km and the uniform buffer is δu = 0.5 km.

(a) Lower altitude geofence layers. (b) Upper altitude geofence layers.

Figure 5.3: Geofences with calculated “override” and “warning” layers. Boundaries
approved by UTM are in black; override boundaries are in blue; warning boundaries
in green.

Table 5.1 shows parameter values governing geofence layer buffer distances for

three example UAS. The second column shows values for a quadrotor built by

SkySpecs, a company based in Ann Arbor, Michigan, and the third column shows

values for a fixed-wing Aerosonde UAS [60]. Data for a third ”fake” UAS is shown in

the table with values facilitating visualization of layers in case study plots. Note that

buffer distances required for the Skyspecs and Aerosonde are a factor of 1000 and 8

smaller, respectively, than the δu shown for the fake UAS. Case study layers shown

in Figure 5.3 are therefore more conservative than those real UAS can utilize.

Table 5.1: Simulated UAS properties used to compute layering distances.

UAS Name Fake SkySpecs Aerosonde

Hover-Capable yes yes no
Airspeed Va 20 m/s 2 m/s 25 m/s

Accel a (turn rate ω) 0.4 m/s2 4 m/s2 (0.4 rad/s)

Uniform Buffer δu 500 m 0.5 m 62.5 m

5.2.2 Triangulation of Geofence Layers

Once the layers of the horizontal geofence boundaries are generated, the next

step before flight is the triangulation presented in Chapter III. In this step, the area

85

contained within each geofence layer and the bounding box of the geofence are divided

into triangles. The triangles are used in the Triangle Weight Characterization with

Adjacency (TWCA) algorithm to track the position of the UAS relative to the original

geofence boundary and its layers. The resulting triangles are shown in Figure 5.4.

When the geofence system is initialized with the first UAS position prior to take-

off, the triangles are randomly searched to locate the UAS. Once the occupied triangle

is located, all subsequent searches are executed in a breadth-first order through the

triangle adjacency graph using the previously-occupied triangle as the search tree

root node.

(a) Triangularization of lower alti-
tude geofence.

(b) Triangularization of upper alti-
tude geofence.

Figure 5.4: Layered and triangularized requested geofence set. The bounding box
and the calculated triangles are shown in red. The approved geofence boundary is
shown in black. The override boundary is shown in blue, and the warning boundary
is shown in green.

When the geofence set has multiple altitude partitions with different horizon-

tal boundaries, the UAS position is tracked in all altitude partitions, not just the

currently occupied partition. To simplify the position tracking across all altitude

partitions, the same bounding box used for all altitude partitions. This choice of

bounding box ensures that if the UAS is occupying a triangle in a single altitude

partition, it is occupying a triangle in all altitude partitions. This enables the UAS

to transition between vertically adjacent geofences if the UAS is not in violation of

the horizontal boundaries of its current altitude band or the adjacent altitude band.

5.3 UAS Geofence Processes During Flight

While the UAS is in flight, the position of the UAS in the TWCA trianglular mesh

is updated at a rate comparable to that of UAS autopilot outputs. While the UAS

86

is in the inner non-shaded triangles of the keep-in geofence (Figure 5.4), the geofence

only tracks the position of the UAS. If the UAS crosses the warning layer and is

occupying one of the triangles shaded in green, then a geofence boundary warning

is issued. The geofence warning is intended to alert the autopilot or pilot regarding

proximity of the UAS to the override boundary.

When the UAS crosses the override boundary and occupies a blue triangle (Figure

5.4), then a geofence violation is imminent and one of three geofence override guid-

ance modes are used to return the UAS to a safe geofence region (green or non-shaded

triangle). Three geofence guidance modes are simulated: Shared Control (SC), Local

Loiter (LL), and Return to Launch (RTL). Control authority is not returned to the

nominal UAS pilot/autopilot until the chosen guidance mode has completed the re-

quired flight maneuver such that the UAS is again in a safe geofence region. Appendix

A describes the geofence guidance modes adopted for this work.

When an override boundary is crossed by a hover-capable UAS while using SC

geofence guidance mode, the geofence system first flies the UAS until it is between the

override and warning boundaries. Then, SC modifies nominal control commands to

eliminate the components of the commands that would fly the UAS closer to or across

the original geofence boundary. This sharing of control continues until the nominal

controller commands the UAS to move away from the override boundary, at which

point full control is returned to the nominal authority. For a UAS not capable of hover,

the SC guidance mode executes the shortest distance turn to fly the UAS to the area

between the override and warning boundaries. Then, the geofence system maintains

a flight path that follows the override boundary, relinquishing control authority of the

UAS once the nominal controller commands the UAS to fly farther from the override

boundary [16, 17].

When a geofence override boundary is crossed while using the LL geofence guid-

ance mode, the hover-capable UAS is commanded to fly to the nearest point on the

warning boundary and hover. Once the UAS is hovering, control authority is returned

to the nominal controller [16, 17]. This behavior is shown in Figure 5.5a. For a UAS

that is not capable of hover, the LL guidance mode commands the shortest available

flight path to the nearest point on the geofence warning boundary. Control authority

is returned to the nominal controller once the warning boundary is crossed.

When a geofence boundary is encountered while using the RTL geofence mode,

the geofence system commands a flight path to return the UAS to above the launch

location or some other user-defined waypoint. The loiter location for RTL must not be

in violation of the geofence or in the warning or override layers. In the case of a hover-

87

-1 0 1 2 3 4 5 6 7 8 9

X [km]

-1

0

1

2

3

4

5

6

7

Y
 [

k
m

]

(a) Local loiter.

-1 0 1 2 3 4 5 6 7 8 9

X [km]

-1

0

1

2

3

4

5

6

7

Y
 [

k
m

]

(b) Return to launch with-
out path planning resulting
in boundary violation.

-1 0 1 2 3 4 5 6 7 8 9

X [km]

-1

0

1

2

3

4

5

6

7

Y
 [

k
m

]

(c) Return to launch with
boundary following path
planning.

Figure 5.5: Plots of two geofence guidance responses to boundary violations. Dashed
lines indicate the original paths, with circles indicating waypoints. Geofence guidance
paths are solid lines. The launch location is indicated with a black circle. Two
different case study paths and geofence guidance solutions are shown, branching at
the upper waypoint in the original dashed path.

capable UAS, control authority is returned to the nominal controller once the UAS is

hovering above the launch location. For a UAS that is not capable of hover, control

authority is returned to the nominal controller once the UAS has entered a loiter

pattern around the launch location [16, 17]. The simplest implementation of RTL

commands a shortest distance straight flight path to the launch location. However,

this can cause more extreme boundary violations than what triggered the geofence

guidance response, as shown in Figure 5.5b. To correct this issue, a simple path

planner such as Tangent Bug, Wall Following, or Visibility Graph can be used [63,

64, 65]. Such a computationally-tractable guidance method with obstacle avoidance

commands a shortest distance path to the nearest point on the warning boundary

“virtual wall”, follows this boundary until the launch point is “visible”, then follows

a straight/direct path to the launch location (shown in Figure 5.5 with a black circle).

Figure 5.5c shows the paths of two RTL examples with this path planning update.

5.4 Discussion

This chapter has presented a case study combining work from the previous chap-

ters into a single geofence system. A geofence request is sent to a UTM database

containing only one approved geofence. The requested geofence is added to the UTM

database as three deconflicted geofences showing approved flight regions in two time

periods. These three geofences are passed back to the requesting UAS. The UAS gen-

erates boundary layers for each geofence and triangularizes horizontal areas to enable

88

the UAS to check at each autopilot command update whether warning or action is

required to prevent a geofence violation. Three geofence guidance modes can prevent

a boundary violation by temporarily overriding the nominal UAS guidance system.

89

CHAPTER VI

Conclusions and Future Work

6.1 Conclusions

This thesis formally defines geofencing for Unmanned Aircraft Systems (UAS) and

develops algorithms supporting geofence usage in the complex low altitude airspace

expected for operations in urban and suburban environments. The onboard geofence

system tracks the position of a UAS relative to its geofence boundaries. When the

UAS is in danger of violating these boundaries, geofence guidance overrides the nomi-

nal autopilot to prevent the violation. Each UAS or UAS operator requests geofenced

airspace prior to flight in negotiation with a UAS Traffic Management (UTM) sys-

tem that maintains a database of requested and approved geofences to assure only

compatible UAS share a geofenced airspace region.

The contributions of this work are: (i) the application of polygon set operations

to geofencing, (ii) a method to test and benchmark geofence boundary violation al-

gorithms, (iii) an algorithm to automatically scale geofence boundaries, and (iv) sim-

ulation and flight testing of geofence guidance modes. The innovations of this work

are: (i) the first formal UAS-centric geofence definition, (ii) a UTM geofence system

that utilizes temporal and spatial deconfliction methods, (iii) a computationally ef-

ficient boundary violation detection algorithm, (iv) application of polygon layering

algorithms to indicate the accessible regions of a geofence, and (v) Local Loiter (LL)

and boundary-avoiding Return to Launch (RTL) guidance modes.

The definitions and algorithms for geofence systems presented in this work serve

as an initial solution for the application of geofencing to UAS operating near other

aircraft in low-altitude airspace. The presented geofence definition is designed to sup-

port use cases currently discussed within the UTM community on both the individual

UAS and UTM levels. The presented boundary violation detection, geofence layering,

and UTM geofence deconfliction algorithms all leverage work from the computational

90

geometry, graphics, and computer science communities. The simulation case study in

Chapter V shows how a geofence system might function from both individual UAS

and UTM perspectives.

6.2 Future Work

The topic of geofencing for UAS in complex low altitude airspace offers several

directions for future work. First, geofence request and deconfliction logic should be

extended to include trajectile geofences. The current implementation can handle tra-

jectile geofences as a series of durational geofences, but there has been no verification

that a contiguous flight path exists through durational geofences approximating the

trajectile geofence. If a trajectile geofence check fails, then the UTM system should

return information needed for the trajectile geofence to be successfully modified. This

required information could take the form of alternate trajectile geofences or specific

information on what caused the requested geofence(s) to be rejected.

Next, the calculation of buffer distances for the generation of geofence layers should

be extended. The presented equations incorporate simple dynamics of the UAS and

steady wind. These buffer distance calculations should be extended to include factors

such as sensor models, additional autopilot controller characteristics, and unsteady

wind models. The inclusion of additional buffer factors would increase the accuracy

of geofence warning and override activation actions.

Another area for future work is in the improvement of the polygon smoothing

methodologies. While the presented methods find a solution in the majority of cases,

there are cases that were not successfully solved. If a solution is not found, it would

currently fall to the user to redefine the geofence boundaries until a solution was

found. Improved smoothing algorithms would increase the percentage of solvable

cases. Algorithms to automatically propose modified geofence boundaries could also

be developed to help a user understand and fix the problem.

To better validate and verify geofence boundary deconfliction in a UTM system,

randomly and manually defined geofences presented here should be combined with

existing land use databases and maps. Such data is essential to test geofence manage-

ment because in the future it is likely that specific mission-based geofence boundaries

will align with property boundaries, roadway boundaries, and other terrain features

for low-altitude small UAS operations. For example, UAS tasked with delivering

packages in a neighborhood may be required to fly over roadways until the final des-

tination is reached to minimize annoyance, or a real estate agent photographing a

91

house may only fly over the property associated with that house. Each of these ex-

amples would benefit from the automatic generation of geofence boundaries based on

property and land usage maps, and such protocols would not create a patchwork so

long as the necessary maps are standardized nationwide and accessible to all UAS

operators in each UTM region.

As geofencing transitions from simulation to large-scale implementation, attention

must be paid to the hand-off of control from nominal UAS guidance to geofence guid-

ance and vice versa. This transition of control authority determines the usability of

the enforced geofence system. Similarly, hand-off between nominal or geofence guid-

ance in case of anomaly or emergency must also be robustly managed. The geofence

system is designed to keep a properly functioning UAS within its boundaries. If the

UAS experiences a system or hardware failure, then the geofence system might also

not be able to function properly, at which point emergency handling by pilot/auton-

omy requires authority to maneuver and land the UAS as safely as possible.

As UAS flights become more common and appreciable low altitude UAS traffic

data becomes available, analysis should be completed for insights into appropriate

temporal and altitude partition resolutions for geofence management and other dy-

namic traffic management decisions. These values are likely to vary based on the type

of overlying airspace, population density, terrain complexity, the types of missions be-

ing flown, and the density of UAS in a region. These parameters must be updated

based on real usage data to ensure that the airspace is utilized to the desired extent

without the UTM system becoming overly complicated.

Finally the geofencing system as a whole needs to be implemented on diverse UAS

platforms and extensively flown. Flight tests will serve to validate the design choices

made thus far and to highlight directions for further study that may not be obvious

through simulation. First, these flights should be conducted with single hover-capable

and fixed wing vehicles to test onboard algorithms for geofencing activation, guidance,

and control. Then, multiple vehicles with diverse characteristics and missions should

be flown in proximity to test UTM geofence management. Long-term flight experi-

ence will provide insight into operational challenges and statistical performance data

leading to convergence toward community-wide geofencing standards. The research

in this thesis began focused on flight testing but moved into simulation to develop

the necessary underlying algorithmic support for geofencing. The algorithmic contri-

butions of this work combined with ongoing work of other researchers must inform

flight testing and in turn standards. Anything less will be a “patchwork of geofencing

technologies” with potential for ambiguity and unpredictable response.

92

APPENDIX

93

APPENDIX A

Geofence Guidance Modes

In pursuit of a geofence system that pilots are likely to use and that can be com-

pared/contrasted over time, we define three distinct operational modes for a geofence

system: shared control, return to launch (RTL), and local loiter (LL). The shared

control mode boundary response is similar to the DJI geofence boundary response:

the command components that would result in a boundary breach are ignored while

the other command components are used without modification [21]. The RTL mode

is similar to the behavior implemented by Ardupilot, where the vehicle returns to the

launch position (or another waypoint) after a geofence boundary violation [19]. The

LL mode is a variation on the RTL mode; after a geofence boundary violation, the

vehicle moves a set minimum distance from all geofence boundaries before returning

control to the pilot. Each operating behavior or mode has distinct rules for enforcing

the geofence boundaries, and certain modes may be better suited than others for a

given flight objective.

The mode of operation of the geofence is assumed constant throughout the flight.

As the system progresses, it might make sense to allow manual or automatic switching

between modes based on sensor data accuracy, wind conditions, or other factors.

A.1 Shared Control

When using shared control, the original pilot/autopilot commands for motion are

modified to eliminate components of the commands that would result in a geofence

boundary breach. For a hover capable UAS, the components of commands that would

result in a fence breach are modified to be executed within the geofence boundaries,

the limit conditions result in the system maintaining a hover state. Algorithm A.13

94

summarizes the procedure for calculating the shared control commands for a sys-

tem using position control. The advantage of this geofence mode is that the pilot’s

commands are minimally changed from the default commands. The disadvantage of

shared control is that without a clear ground station indication that the geofence is

active, the pilot could overcompensate for the geofence blocking a direction of travel,

which might then make the UAS appear unresponsiveness to pilot commands.

Algorithm A.13 Calculate shared control for position control and a rectangular
geofence area

Output: xp ∈ bounds
xp ⇐ Position control pilot commands
bounds⇐ Rectangular geofence corners
for all xp do

if xp < min bounds then
xp ⇐ min bounds

else if xp > max bounds then
xp ⇐ max bounds

end if
end for

A.2 Return to Launch

An imminent geofence breach for a hover-capable vehicle with RTL engaged can

transition to hover, then fly directly to the launch location, where it can hover until

the pilot reasserts control of the system. The advantages of the RTL geofence mode

is that the activation of the geofence system is clear, and the aircraft is returned to a

central location so assertion of control by the pilot can be simple. The disadvantage

of this mode is that in large flight areas, a return to home could consume a significant

amount of time and onboard energy. RTL mode impacts the default flight path

enough to justify providing the pilot with the capability to turn the geofence system

off and on to interrupt the command sequence.

A.3 Local Loiter

The local loiter (LL) geofence mode is designed to appear as though the vehicle is

bouncing off of the geofence boundary. LL commands the vehicle to fly a minimum

distance from all geofence boundaries before returning control to the pilot. For a

95

hover capable vehicle, an LL response results in the vehicle halting, then flying per-

pendicular to the fence for a specified distance, then hovering until the pilot retakes

control. The specified distance, dLL, from the geofence boundary is currently set to

one tenth the minimum distance from the home waypoint to the geofence boundary.

This method for calculating this distance will become better defined based on further

simulation and flight tests.

Within the simulation, each geofence boundary is defined as a straight line be-

tween two waypoints, (xb,1, yb,1) and (xb,2, yb,2). The geofence boundary that has been

violated is whichever has the minimum distance, d, from the boundary to the current

vehicle position. Once the violated boundary has been identified, the point on the

boundary that is closest to the current aircraft position is calculated by Eq. A.2.

d =
|a ∗ x̂+ b ∗ ŷ + c|√

a2 + b2
(A.1)

(xb, yb) =
(b(b ∗ x̂− a ∗ ŷ)− ac

a2 + b2
,
a(−b ∗ x̂+ a ∗ ŷ)− bc

a2 + b2

)
(A.2)

where: a = yb,2 − yb,1
b = −xb,2 + xb,1

c = xb,2 ∗ yb,1 − yb,2 ∗ xb,1
Using (xb, yb), we calculate the slope, m, and y-intercept, B, for the line perpendicular

to the violated boundary. With these values, it is possible to find the local loiter

waypoint, (xLL, yLL), using Eq. A.5 and A.6.

m =
−xb,2 + xb,1
yb,2 − yb,1

(A.3)

B = yb −m ∗ xb (A.4)

xLL = xb ±
√

dLL
1 +m2

(A.5)

yLL = m ∗ xLL +B (A.6)

The advantages of LL mode are that it is clear when the geofence system takes

control of the aircraft and the geofence control duration is relatively short compared

to RTL mode.

96

BIBLIOGRAPHY

97

BIBLIOGRAPHY

[1] Federal Aviation Administration, “Unmanned Aircraft Systems (UAS) Traffic
Management (UTM) Concept of Operations,” 2018.

[2] Prevot, T., Rios, J., Kopardekar, P., Robinson III, J. E., Johnson, M., and Jung,
J., “UAS Traffic Management (UTM) Concept of Operations to Safely Enable
Low Altitude Flight Operations,” 16th AIAA Aviation Technology, Integration,
and Operations Conference, June 2016, pp. 1–16.

[3] Kopardekar, P. H., “Unmanned Aircraft Systems Traffic Management (UTM)
Safely Enabling UAS Operations in Low-Altitude Airspace,” 2017.

[4] Association, G. U., “UAS Traffic Management Architecture,” Global UTM As-
sociation, April 2017.

[5] “United States v. Causby,” https://supreme.justia.com/cases/federal/

us/328/256/, 1946, Accessed: 2019-09-10.

[6] Cahoon, C., “Low Altitude Airspace: A Property Rights No-Man’s Land,” J.
Air L. & Com., Vol. 56, 1990, pp. 157.

[7] Giboney, P., “Don’t Ground Me Bro-Private Ownership of Airspace and How It
Invalidates the FAA’s Blanket Prohibition on Low Altitude Commercial Drone
Operations,” Fla. L. Rev., Vol. 67, 2015, pp. 2149.

[8] “49 U.S. Code Section 40103. Sovereignty and use of airspace,” https://www.

law.cornell.edu/uscode/text/49/40103, 1994, Accessed: 2019-09-15.

[9] “49 U.S. Code Section 40102. Definitions,” https://www.law.cornell.edu/

uscode/text/49/40102#a_32, 1994, Accessed: 2019-09-15.

[10] Government, U. S., “Operation and Certification of Small Unmanned Aircraft
Systems,” Title 14 Code of Federal Regulations, Part 107 , 2016.

[11] Pomeroy, C. J., “All Your Right Are Belong to Us,” Nw. J. Tech. & Intell. Prop.,
Vol. 13, 2015, pp. i.

[12] Maher, K., “Flying Under the Radar: Low-Altitude Local Drone Use and the
Reentry of Property Rights,” Duke L. & Tech. Rev., Vol. 15, 2017, pp. 102.

98

https://supreme.justia.com/cases/federal/us/328/256/
https://supreme.justia.com/cases/federal/us/328/256/
https://www.law.cornell.edu/uscode/text/49/40103
https://www.law.cornell.edu/uscode/text/49/40103
https://www.law.cornell.edu/uscode/text/49/40102#a_32
https://www.law.cornell.edu/uscode/text/49/40102#a_32

[13] Huffman, M. G., “Honey, There’s a Drone on the Lawn: Assessing the Supreme
Court’s Unspoken Perspective on the Future of Drones in the Commercial In-
dustry,” Wake Forest J. Bus. & Intell. Prop. L., Vol. 18, 2017, pp. 143.

[14] Titolo, L., Muñoz, C. A., Feliú, M. A., and Moscato, M. M., “Eliminating unsta-
ble tests in floating-point programs,” International Symposium on Logic-Based
Program Synthesis and Transformation, Springer, 2018, pp. 169–183.

[15] Hayhurst, K. J., Maddalon, J. M., Neogi, N. A., and Verstynen, H. A., “A Case
Study for Assured Containment,” 2015 International Conference on Unmanned
Aircraft Systems (ICUAS), 2015, pp. 260–269.

[16] Steven, M., Coloe, B. B. T., Atkins, E. E. M., Stevens, M. N., Coloe, B. B. T.,
and Atkins, E. E. M., “Platform-Independent Geofencing for Low Altitude UAS
Operations,” 15th AIAA Aviation Technology, Integration, and Operations Con-
ference, 2015, p. 3329.

[17] Stevens, M. N. and Atkins, E. M., “Multi-Mode Guidance for an Independent
Multicopter Geofencing System,” 16th AIAA Aviation Technology, Integration,
and Operations Conference, June 2016, p. 3150.

[18] Zhu, G. and Wei, P., “Low-Altitude UAS Traffic Coordination with Dynamic
Geofencing,” 16th AIAA Aviation Technology, Integration, and Operations Con-
ference, No. June, 2016, p. 3453.

[19] “Ardupilot Website Homepage,” http://ardupilot.org/ardupilot/, 2019,
Accessed: 2019-08-19.

[20] “DJI Mavic Pro User’s Manual,” https://dl.djicdn.com/downloads/mavic/

Mavic%20Pro%20User%20Manual%20V2.0-.pdf, 2017, Accessed: 2019-08-19.

[21] “DJI Fly Safe GeoZone Map,” https://www.dji.com/flysafe/geo-map, 2019,
Accessed: 2019-08-19.

[22] Stevens, M. N. and Atkins, E. M., “Geofencing in Immediate Reaches
Airspace for Unmanned Aircraft System Traffic Management,” AIAA Informa-
tion Systems-AIAA Infotech at Aerospace, 2018 , Vol. i, January 2018, pp. 1–11.

[23] Requicha, A. G., “Representations for rigid solids: Theory, methods, and sys-
tems,” ACM Computing Surveys (CSUR), Vol. 12, No. 4, 1980, pp. 437–464.

[24] Mostajabodaveh, S., Dietrich, A., Gierlinger, T., Michel, F., and Stork, A.,
“CSG Ray Tracing Revisited: Interactive Rendering of Massive Models Made
of Non-planar Higher Order Primitives.” VISIGRAPP (1: GRAPP), 2017, pp.
258–265.

[25] Pauly, M., Keiser, R., Kobbelt, L. P., and Gross, M., “Shape modeling with
point-sampled geometry,” ACM Transactions on Graphics (TOG), Vol. 22,
ACM, 2003, pp. 641–650.

99

http://ardupilot.org/ardupilot/
https://dl.djicdn.com/downloads/mavic/Mavic%20Pro%20User%20Manual%20V2.0-.pdf
https://dl.djicdn.com/downloads/mavic/Mavic%20Pro%20User%20Manual%20V2.0-.pdf
https://www.dji.com/flysafe/geo-map

[26] Atkins, E. M. and Donato, P. F. A. D., “Low-Altitude Rural to Urban Unmanned
Aircraft System Operations,” Encyclopedia of Aerospace Engineering , 2016.

[27] Stevens, M. N., Rastgoftar, H., and Atkins, E. M., “Geofence Boundary Viola-
tion Detection in 3D Using Triangle Weight Characterization with Adjacency,”
Journal of Intelligent and Robotic Systems , 2018.

[28] Stevens, M. N. and Atkins, E. M., “Layered Geofences in Complex Airspace
Environments,” 18th AIAA Aviation Technology, Integration, and Operations
Conference, 2018, pp. 6–8.

[29] Dill, E. T., Young, S. D., and Hayhurst, K. J., “SAFEGUARD: An Assured
Safety Net Technology for UAS,” AIAA/IEEE Digital Avionics Systems Confer-
ence - Proceedings , Vol. 2016-Decem, No. c, 2016, pp. 1–10.

[30] Shamos, M. I. and Hoey, D., “Geometric Intersection Problems,” 17th Annual
Symposium on Foundations of Computer Science (sfcs 1976), 1976, pp. 208–215.

[31] Martinez, F., Ogayar, C., Jiménez, J. R., and Rueda, A. J., “A simple algorithm
for Boolean operations on polygons,” Advances in Engineering Software, Vol. 64,
2013, pp. 11–19.

[32] Bentley, J. L. and Ottmann, T. A., “Algorithms for reporting and counting
geometric intersections,” IEEE Transactions on computers , 1979, pp. 643–647.

[33] Mart́ınez, F., Rueda, A. J., and Feito, F. R., “A new algorithm for computing
Boolean operations on polygons,” Computers & Geosciences , Vol. 35, No. 6,
2009, pp. 1177–1185.

[34] Gilabert, R. V., Dill, E. T., Hayhurst, K. J., and Young, S. D., “SAFEGUARD:
Progress and test results for a reliable independent on-board safety net for UAS,”
2017 IEEE/AIAA 36th Digital Avionics Systems Conference (DASC), IEEE,
2017, pp. 1–9.

[35] Rastgoftar, H., Continuum deformation of multi-agent systems , Springer, 2016.

[36] Rastgoftar, H. and Jayasuriya, S., “Evolution of Multi-Agent Systems as Con-
tinua,” Journal of Dynamic Systems, Measurement, and Control , Vol. 136, No. 4,
2014, pp. 41014.

[37] Garey, M. R., Johnson, D. S., Preparata, F. P., and Tarjan, R. E., “TRIAN-
GULATING A SIMPLE POLYGON,” Information Processing Letters , Vol. 7,
No. 4, 1978, pp. 2–6.

[38] Lee, D.-T. and Preparata, F. P., “Location of a point in a planar subdivision and
its applications,” SIAM Journal on computing , Vol. 6, No. 3, 1977, pp. 594–606.

100

[39] Narkawicz, A. and Hagen, G., “Algorithms for Collision Detection Between a
Point and a Moving Polygon, with Applications to Aircraft Weather Avoidance,”
16th AIAA Aviation Technology, Integration, and Operations Conference, 2016,
p. 3598.

[40] Alciatore, D. G. and Miranda, R., “A winding number and point-in-polygon al-
gorithm,” Glaxo Virtual Anatomy Project Research Report, Department of Me-
chanical Engineering, Colorado State University , 1995.

[41] Hormann, K. and Agathos, A., “The point in polygon problem for arbitrary
polygons,” Computational Geometry , Vol. 20, No. 3, 2001, pp. 131–144.

[42] Huang, C.-W. and Shih, T.-Y., “On the complexity of point-in-polygon algo-
rithms,” Computers & Geosciences , Vol. 23, No. 1, 1997, pp. 109–118.

[43] Preparata, F. P. and Shamos, M. I., “Introduction,” Computational Geometry ,
Springer, 1985, pp. 1–35.

[44] Nordbeck, S. and Rystedt, B., “Computer cartography point-in-polygon pro-
grams,” BIT Numerical Mathematics , Vol. 7, No. 1, 1967, pp. 39–64.

[45] Žalik, B. and Kolingerova, I., “A cell-based point-in-polygon algorithm suit-
able for large sets of points,” Computers & Geosciences , Vol. 27, No. 10, 2001,
pp. 1135–1145.

[46] Li, J. and Wang, W., “Point-in-polygon tests by determining grid center points
in advance,” Signal and Information Processing Association Annual Summit and
Conference (APSIPA), 2013 Asia-Pacific, IEEE, 2013, pp. 1–7.

[47] Yang, S., Yong, J.-H. H., Sun, J., Gu, H., and Paul, J.-C. C., “A point-in-polygon
method based on a quasi-closest point,” Computers & Geosciences , Vol. 36,
No. 2, 2010, pp. 205–213.

[48] Salomon, K. B., “An efficient point-in-polygon algorithm,” Computers & Geo-
sciences , Vol. 4, No. 2, 1978, pp. 173–178.

[49] Li, J., Wang, W., and Wu, E., “Point-in-polygon tests by convex decomposition,”
Computers & Graphics , Vol. 31, No. 4, 2007, pp. 636–648.

[50] Kopardekar, P., Rios, J., Prevot, T., Johnson, M., Jung, J., and Robinson, J. E.,
“Unmanned aircraft system traffic management (UTM) concept of operations,”
16th AIAA Aviation Technology, Integration, and Operations Conference [2], pp.
1–16, pp. 1–16.

[51] Stevens, M. N., Rastgoftar, H., and Atkins, E. M., “Specification and Evalua-
tion of Geofence Boundary Violation Detection Algorithms,” 2017 International
Conference on Unmanned Aircraft Systems, ICUAS 2017 , 2017, pp. 1588–1596.

101

[52] Cho, J. and Yoon, Y., “How to assess the capacity of urban airspace: A topo-
logical approach using keep-in and keep-out geofence,” Transportation Research
Part C: Emerging Technologies , Vol. 92, 2018, pp. 137–149.

[53] Di Donato, P. F. and Atkins, E. M., “Exploring Non-Aviation Information
Sources for Aircraft Emergency Landing Planning,” AIAA Infotech @ Aerospace,
, No. January, 2016, pp. 1–11.

[54] Gonzalez-Rocha, J., Woolsey, C. A., Sultan, C., and De Wekker, S. F., “Model-
based Wind profiling in the Lower Atmosphere with Multirotor UAS,” AIAA
Scitech 2019 Forum, 2019, p. 1598.

[55] Stepanyan, V., Krishnakumar, K. S., and Ippolito, C. A., “Coordinated Turn
Trajectory Generation and Tracking Control for Multirotors Operating in Urban
Environment,” AIAA Scitech 2019 Forum, 2019, p. 0957.

[56] Galway, D., Etele, J., and Fusina, G., “Modeling of urban wind field effects on
unmanned rotorcraft flight,” Journal of Aircraft , Vol. 48, No. 5, 2011, pp. 1613–
1620.

[57] Techy, L. and Woolsey, C. A., “Minimum-time path planning for unmanned aerial
vehicles in steady uniform winds,” Journal of guidance, control, and dynamics ,
Vol. 32, No. 6, 2009, pp. 1736–1746.

[58] Di Donato, P. F. and Atkins, E. M., “Three-dimensional dubins path generation
and following for a uas glider,” 2017 International Conference on Unmanned
Aircraft Systems (ICUAS), IEEE, 2017, pp. 294–303.

[59] Coombes, M., Chen, W.-H., and Render, P., “Reachability analysis of landing
sites for forced landing of a UAS in wind using trochoidal turn paths,” 2015
International Conference on Unmanned Aircraft Systems (ICUAS), IEEE, 2015,
pp. 62–71.

[60] Osborne, J. and Rysdyk, R., “Waypoint guidance for small UAVs in wind,”
Infotech@ Aerospace, 2005, p. 6951.

[61] D’Souza, S., Ishihara, A., Nikaido, B., and Hasseeb, H., “Feasibility of vary-
ing geo-fence around an unmanned aircraft operation based on vehicle perfor-
mance and wind,” 2016 IEEE/AIAA 35th Digital Avionics Systems Conference
(DASC), IEEE, 2016, pp. 1–10.

[62] Chen, X. and McMains, S., “Polygon Offsetting by Computing Winding Num-
bers,” IDETC/CIE , 2005, pp. 565–575.

[63] Laubach, S. L. and Burdick, J. W., “An autonomous sensor-based path-planner
for planetary microrovers,” Proceedings 1999 IEEE International Conference on
Robotics and Automation (Cat. No. 99CH36288C), Vol. 1, IEEE, 1999, pp. 347–
354.

102

[64] Guibas, L. J., Motwani, R., and Raghavan, P., “The robot localization problem,”
SIAM Journal on Computing , Vol. 26, No. 4, 1997, pp. 1120–1138.

[65] Latombe, J.-C., Robot motion planning , Vol. 124, Springer Science & Business
Media, 2012.

103

	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ALGORITHMS
	LIST OF ABBREVIATIONS
	LIST OF SYMBOLS
	ABSTRACT
	Introduction
	Motivation
	What is geofencing?
	Flying Within a Geofence

	Airspace Background
	Problem Statement
	Research Approach
	Contributions and Innovations
	Outline
	Publications

	Geofencing System
	Introduction
	Geofence Definition
	Geofence Permanence
	Geofence Permissions Function

	UTM Concept of Operations
	UTM Geofence Request Management
	Temporal Periods
	Permission Constraints
	Geofence Removal

	Vertical Geofence Sets
	Horizontal Geofence Boundary Set Operations
	Utility Inspection Case Study
	Discussion

	Boundary Check
	Introduction
	Problem Statement
	Horizontal Geofence Violation Detection Algorithms
	Grid-based Algorithms
	Decomposition Algorithms
	Ray Casting

	Triangle Weight Characterization with Adjacency
	Bounding Box Definition
	Polygon Division
	Polygon to Monotone Polygons
	Monotone Polygon Conversion to Triangles

	Triangle Occupancy Check
	Adjacency Graph

	Results
	Discussion
	Summary

	Layered Boundaries
	Introduction
	Safety Layer Offset Distance Specification
	Geofence Layer Generation
	Boundary Smoothing
	Scaled Layer Generation
	Flatten Vertices

	Cross-Check
	Smoothing Selection

	Results
	Summary and Future Work

	System Simulation
	UTM Geofence Request
	UAS Pre-Flight Geofence Management
	Geofence Layer Generation
	Triangulation of Geofence Layers

	UAS Geofence Processes During Flight
	Discussion

	Conclusions and Future Work
	Conclusions
	Future Work
	APPENDIX
	Shared Control
	Return to Launch
	Local Loiter

	BIBLIOGRAPHY

