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Abstract 
 

Minerals are a key constituent of ore deposits that are the source of metals and non-metals 

required for our global society to function. In this dissertation, I use field and laboratory methods 

to understand the processes that lead to the formation of iron oxide - apatite deposits — an 

important source of iron — and as a tool for discovering new ore deposits. The analytical methods 

used include backscattered electron (BSE) imaging, cathodoluminescence (CL) imaging, and 

energy dispersive X-ray spectroscopy (EDS) element mapping, as well as electron probe micro-

analysis (EPMA) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS).  

Chapter 2 describes an investigation of the chemistry of apatite from the Los Colorados 

iron - oxide apatite deposit, in Chile, that tested existing ore genesis hypotheses. My work indicates 

that apatite grains in the deposit contain distinct domains with chemistries that show statistically 

significant differences. The major, minor, and trace element chemistry of the apatite grains are 

consistent with growth from silicate melt and magmatic-hydrothermal fluid. The data are 

supportive of ore formation via magmatic/magmatic-hydrothermal fluids, according to a new 

model developed at the University of Michigan.      

In Chapter 3, I investigated the chemistry of magnetite and apatite from outcrop and drill 

core samples from five of the seven ore bodies at the El Laco iron - oxide apatite deposit, in Chile. 

Magnetite grains in the deepest samples have chemistries and textures consistent with growth of 

magnetite from a silicate melt, whereas the chemistries and textures of magnetite from the shallow 

samples and outcrops indicate growth of magnetite from magmatic-hydrothermal fluid. Apatite 

grains have major, minor, and trace element chemistry consistent with growth from a silicate melt 
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or a magmatic-hydrothermal fluid. Magnetite and apatite grains contain mineral inclusions that 

preserve evidence for re-equilibration with hydrothermal fluids. Together, the data suggest that the 

ore bodies at El Laco formed via shallow emplacement and venting of magmatic-hydrothermal 

fluid suspensions that contained igneous magnetite microlites.  

In Chapter 4, I test the hypothesis that magnetite in stream sediment can be used as a tool 

for exploration in covered terrains, such as Guyana, located in the Guiana Shield. Similarities in 

the chemistries and textures of magnetite from outcrops and detrital grains in the same catchment 

indicate that the detrital grains can be used to gain insight about geological processes/sources in 

the catchments. However, the data also indicate changes in chemistry and loss of texture related to 

weathering and transport. Specifically, the concentrations of Mg, Ni, Cr, Ti, and Mn in magnetite 

are preserved in grains transported < 1.5 km in streams, whereas the concentrations of V and Al 

are preserved for transport distances up to 5 km. In order to test the hypothesis, I developed a new 

model that predicts the ore deposit sources of magnetite grains collected in streams in Guyana, 

using the compositions of magnetite from nickel-copper-platinum group element (Ni-Cu-PGE), 

orogenic gold, volcanogenic massive sulfide (VMS), iron oxide - copper - gold (IOCG), and 

porphyry copper deposits. The results indicate prospectivity for orogenic gold and Ni-Cu-PGE 

deposits in the sampled catchments. Additionally, sulfides present in detrital grains in the sampled 

catchments support the ore deposit source(s) inferred from magnetite geochemistry. This work 

demonstrates the utility of detrital magnetite geochemistry as a tool for exploration in covered 

terrains. 
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Chapter 1  
Introduction 

 

My dissertation focuses on advancing society’s understanding of mineral deposits—

regions in the Earth’s crust where the concentration of one or more elements is anomalously higher 

than average crustal concentrations. Mineral deposits that contain anomalous concentrations of 

minerals that can be removed from the Earth’s crust in an economically feasible way are 

considered ore deposits. For minerals to be considered ore, they must be present in large 

amounts/tonnage, at high grades (i.e., the ratio of the mineral/element of interest to other minerals 

should be low), and be easily accessible/mineable (Mungall, 2013). Our global society is heavily 

dependent on the extraction of base (iron, copper, manganese, zinc), precious (gold, platinum), 

and strategic (rare earth elements) metals to sustain the lifestyles, including continual supplies of 

electricity, potable water, and technological advancements, that humans in developed countries 

are accustomed to, and that those in developing countries aspire to. Without mining, we would be 

unable to construct and power our homes, drive our cars, cook our food, or maintain global 

communication. Critical advances in technology, health care, and research in many fields would 

also not be possible if the metals and non-metals hosted in ore deposits were not readily available.  

The current global mining industry is a huge business that is fueled by society’s demand. 

In 2018, the estimated value of nonfuel minerals produced in mines in the United States was 

approximately $82 billion (USGS, 2019). As a global society, we mine metals and non-metals on 

all continents except Antarctica. However, due to our long history of mining, many mining districts 

globally are becoming mature, and the extraction of ore is becoming difficult and expensive. For 
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instance, mines such as Chuquicamata, Chile, Bingham Canyon, Utah, USA, and the Kiruna mine, 

Sweden have been operating for over 100 years (Ossandón et al., 2001; Emel and Huber, 2011; 

Granås, 2012). While these mines have been able to sustain mine lives of greater than 100 years, 

this is not the case of all mines. In fact, such extensive mine lives are very rare, and it is becoming 

increasingly difficult to discover new ore deposits that contain enough ore to warrant the 

construction of new mines. Globally, there have been fluctuations in the amount of money spent 

on exploration for all commodities since the start of the 20th century; however, the general trend 

in expenditure on exploration is a downward one (Paterson, 2003). For specific commodities, such 

as gold, Schodde (2011) reports that there has been an overall decrease in the discovery of gold 

deposits with endowments that exceed 1 million ounces despite increased cost of exploration.  

Economic geology is the branch of geology focused on understanding the geological 

processes that result in the formation of ore deposits. This field is interdisciplinary in nature and 

utilizes knowledge from petrology, geochemistry, geophysics, and structural geology to better 

understand how metals and non-metals are transferred from their sources to the Earth’s crust, 

where they form mineral/ore deposits. Understanding the process that led to the formation of an 

ore deposit in one location provides insights that can be used to explore for and discover the same 

type of ore deposit in another region where similar geological processes might have occurred. The 

research that is conducted by economic geologists is, therefore, integral to ensuring increased 

success in discovering ore deposits in areas where exploration has been done before, or in new 

areas where there has been limited exploration.  

1.1     Mineral Geochemistry 

Minerals are the building blocks of rocks, and are key constituents in ore deposits. They 

are defined as inorganic substances with fixed chemical composition and chemical structure (Deer 
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et al., 1992). While it is true that minerals have specific stoichiometric chemistries, imposed by 

the constraints of their atomic-scale structure, many researchers have shown that elements that are 

not structural components of a mineral can substitute in as minor or trace components 

(Goldschmidt, 1937; Onuma et al., 1968; Jensen, 1973; Philpotts, 1978; Smyth and Bish, 1988). 

To first order, an element can substitute for another element in the crystal lattice of a mineral 

provided that the elements have similar size (i.e., the ionic radii of the elements are within 15% of 

each other), or charge (Goldschmidt, 1937). Coupled substitution, where two elements substitute 

into the crystal lattice of a mineral is also common as a mechanism to balance charge so that the 

overall structure maintains charge-neutral.  

The substitution of elements into the crystal lattice of a mineral depends not only on cation 

size and charge constraints, but also critically on the distribution (i.e., partitioning) of elements 

between the mineral and the fluid and/or melt from which it is growing. The partitioning of an 

element between a mineral and a fluid is a direct consequence of thermodynamics and kinetics, 

and thus varies depending on element and mineral type and is largely controlled by the composition 

of the fluid, temperature, oxygen fugacity, and competition from the growth of other minerals 

(Candela and Piccoli, 1995; Blundy and Wood, 2003). Through many years of research 

geochemists have developed an understanding of how particular elements behave during 

geological processes, and this has led to the use of minor and trace element compositions of rocks 

and minerals to gain insights about geological processes (McIntire, 1963; Irvine, 1965; Hanson, 

1978, 1980). More recently, researchers have noticed the utility of particular minerals as tracers of 

geological processes (e.g. apatite and magnetite in the case of ore-deposits). For instance, Konecke 

(2019) showed that sulfur in apatite is a useful proxy for understanding redox and degassing 

processes in magmatic environments. Dare et al. (2012) showed that the concentrations of minor 
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and trace elements in magnetite (i.e., Ti, V, Cr, Ni) that crystallizes from a fractionating sulfide 

liquid reflect the composition of the sulfide liquid. In this dissertation, I investigate the chemistry 

of apatite and magnetite to gain insight into the ore forming processes in iron – oxide apatite 

deposits.  

1.2     Apatite Geochemistry as a Tool for Invesitgating Ore Forming Processes 

Apatite is a common phosphate mineral in many geological environments and has the 

chemical formula A10(XO4)3(Z)2. Owing to its crystal structure, more than 40 elements can 

substitute into the apatite structure, apart from the most common structural components of Ca, P, 

F, Cl, and OH. (Piccoli and Candela, 2002; Harlov, 2015; Hughes and Rakovan, 2015; Webster 

and Piccoli, 2015). Of the three endmembers, fluorapatite (Ca10(PO4)3(F)2) is the most common 

variety reported in terrestrial and extra-terrestrial environments (Piccoli and Candela, 2002); 

however, chlorapatite (Ca10(PO4)3(Cl)2), has been reported in some environments (Boudreau et 

al., 1995; Marks et al., 2012). In addition to F, Cl, and OH, apatite incorporates redox sensitive 

elements (e.g., S, Fe, Mn, and C), and other elements (e.g., rare earth elements (REEs) and Sr) 

which can be used to gain insights about the pressure, temperature, and oxygen and sulfur fugacity 

conditions when apatite crystallized (Konecke et al., 2017a,b). Additionally, the chemistry of 

apatite has been shown to vary depending on the ore deposit environment in which it crystallizes 

(Belousova et al., 2002; Bouzari et al., 2016; Mao et al., 2016).  

Apatite is a common phase in Kiruna-type iron-oxide apatite (IOA) deposits, which are an 

important source of iron and a potential source of rare earth elements, which can be concentrated 

in apatite in these deposits. Though IOA deposits have been mined since the 1800s, the ore forming 

processes for these deposits remain heavily debated. The ore in IOA deposits typically contains 

greater than 90% magnetite with minor apatite and actinolite, and ore bodies are typically present 
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in crustal scale faults (Sillitoe, 2003). There are six ore genesis hypotheses for IOA deposits that 

generally propose magmatic or hydrothermal origin for these deposits. The ore genesis hypotheses 

include: (1) precipitation of ore minerals from basinal brines (Barton and Johnson, 1996, 2004; 

Rhodes and Oreskes, 1999; Rhodes et al., 1999; Barton, 2013), or (2) metamorphic aqueous fluids 

(Williams, 1994; de Jong et al., 1998); (3) replacement of volcanic and hypabyssal rocks by 

magmatic-hydrothermal fluids (Sillitoe and Burrows, 2003); (4) precipitation of ore minerals from 

immiscible Fe-rich magma (Nyström and Henríquez, 1994; Naslund et al., 2002; Tornos et al., 

2016; Velasco et al., 2016; Broughm et al., 2017); (5) precipitation from orthomagmatic fluid 

(Weis, 2013;  Jonsson et al., 2013; Hofstra et al., 2016), and (6) precipitation from 

magmatic/magmatic-hydrothermal fluid suspensions (Knipping et al., 2015a). This dissertation 

work aims to provide a better understanding of the ore forming processes for archetype IOA 

deposits, to ultimately inform future exploration for this class of deposits.  

Los Colorados is one of seven IOA deposits which contain greater than 100 million tons 

of iron ore located in the Chilean Iron Belt (CIB). The CIB is a 1000 km long nearly continuous 

volcanic belt that is located along the Chilean coast and contains approximately 50 IOA deposits, 

in addition to iron oxide copper gold (IOCG) deposits. Magnetite from the ore bodies at Los 

Colorados were the focus of the study of Knipping et al. (2015 a), which highlighted the usefulness 

of geochemistry for elucidating IOA ore forming processes. This study focused on using the major, 

minor, and trace element chemistry of magnetite, which constitutes the majority of the ore deposit 

in order to constrain deposit formation. They also used the Fe, O, and H stable isotope signatures 

of magnetite to further fingerprint the source of the ore forming fluid and proposed a model that 

explains the geochemical and geological observations for this deposit. According to the model of 

Knipping et al. (2015a), (1) magnetite crystallizes as a liquidus phase during the cooling of a 
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magma with intermediate composition and causes exsolution of a volatile phase — this magnetite 

is enriched in trace elements, e.g., Ti, V, Al, Mn, (2) fluid bubbles nucleate on magnetite microlites 

as the melt attains volatile saturation, giving rise to a magnetite-fluid suspension which sweeps 

through the cooling magma body and scavenges fluid mobile elements from the magma —

magnetite growing from this hydrothermal fluid has chemistry different to that which crystallized 

earlier from the magma, (3) the fluid suspension ascends through the crust along regional crustal 

scale faults during regional extension to give rise to an ore body.  

In Chapter 2, I investigate the chemistry of apatite from the Los Colorados IOA deposit. 

The apatite grains investigated are intimately intergrown with the magnetite investigated by 

Knipping et al. (2015), thus the goal of this project is to use the chemistry of apatite to test the ore 

genesis hypothesis of Knipping et al. (2015), in addition to the existing hypotheses. I used 

backscattered electron imaging, cathodoluminescence imaging, and energy dispersive X-ray 

spectroscopy (EDS) element mapping to investigate apatite grains prior to quantitatively 

determining the major, minor, and trace element chemistry of the grains using electron-probe 

micro-analyses (EPMA) and laser ablation inductively coupled plasma mass spectrometry (LA-

ICP-MS). Imaging analyses revealed that individual apatite grains contained distinct domains 

within them, and that monazite and thorite were present as inclusions in some grains. Additionally, 

quantitative analyses determined that the concentrations of major (F and Cl), minor, and trace (Sr, 

Mn, REEs) elements are distinct within these individual domains in apatite grains. Specifically, 

the concentration of F was high in the inner domains of grains, while the concentration of Cl, Sr, 

and Mn were higher in the outer domains of individual apatite grains. Statistical analyses reveal 

statistically significant chemical variability within the domains in individual apatite grains, 

refuting hypotheses involving growth of apatite from a single fluid. Knipping et al. (2015) found 
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that the magnetite grains at Los Colorados were chemically zoned, and have cores with chemistry 

similar to magnetite which grows from a silicate melt (e.g., elevated Ti, V, Al, Mn content), and 

rims which have chemistry similar to magnetite which grows from a magmatic hydrothermal fluid. 

The statistically distinct chemical compositions of apatite from Los Colorados are consistent with 

the growth of the inner domains of apatite from a silicate melt and growth of the outer domains of 

apatite from a magmatic-hydrothermal fluid. The investigation of the chemistry of apatite from the 

Los Colorados IOA deposits, therefore, supports ore genesis of this deposit and other IOA deposits 

according to the magmatic/magmatic-hydrothermal flotation model of Knipping et al. (2015). This 

chapter is published in Mineralium Deposita 2019, 1-14.  

1.3     Magnetite Geochemistry as a tool for Investigating Ore Forming Processes 

Magnetite is an iron oxide mineral with the chemical formula Fe3O4. Like apatite, 

magnetite is present in a variety of geologic and ore deposit environments, including igneous, 

sedimentary, and metamorphic rocks, as well as IOA, iron oxide copper gold (IOCG), porphyry 

copper gold, nickel copper platinum group element (Ni-Cu-PGE), volcanogenic massive sulfide 

(VMS), sedimentary exhalative (SEDEX), banded iron formation (BIF), and skarn deposits 

(Dupuis and Beaudoin, 2011). Magnetite is a spinel group mineral and forms solid solutions with 

other spinel group minerals, including, ulvöspinel, chromite, hercynite, jacobsite, and coulsonite 

due to substitutions of Ti, Cr, Al, Mn, and V, for Fe in the magnetite structure (Deer, 1992). This 

trace element substitution is controlled by temperature, oxygen, and sulfur fugacity, and fluid 

composition (Nadoll et al., 2014). Grigsby (1990) showed that the chemistry of detrital magnetite 

is useful as a tool for determining petrogenesis. More recently, Dupuis and Beaudoin (2011) and 

Nadoll et al. (2014) showed that the chemistry of magnetite can be used to discriminate magnetite 

from a variety of igneous and hydrothermal ore deposits.  
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The debate regarding ore genesis of IOA deposits can be thought of as a debate surrounding 

the nature of the fluids that form them. The basinal brines, metamorphic fluid, and the metasomatic 

replacement hypotheses argue that the ore fluids are hydrothermal in nature. However, there is 

disagreement about the source — and by extension the temperature — of the hydrothermal fluids 

(Barton and Johnson, 1996, 2004; Williams, 1994; de Jong et al., 1998; Rhodes and Oreskes, 1999; 

Rhodes et al., 1999; Sillitoe and Burrows, 2003; Barton, 2013). The orthomagmatic and 

immiscible iron rich melt hypotheses argue that the ore forming fluids are purely 

igneous/magmatic but there is disagreement about how the fluid gives rise to the formation of the 

ore bodies (Henriquez and Martin, 1978; Nystrom and Henriquez, 1994; Naslund et al., 1997; 

1998; 2002; Weis, 2013; Jonsson et al., 2013; Hofstra et al., 2016). The magmatic/magmatic-

hydrothermal hypothesis argues that the ore forming fluid is a magmatic-hydrothermal fluid that 

contains igneous magnetite microlites that exsolve from a cooling silicate melt (Knipping et al., 

2015a). Since the chemical signatures of magnetite reflect the temperature at which magnetite 

crystallized, investigations of the chemistry of magnetite from IOA deposits will provide insights 

about the nature and temperature of the ore forming fluids (Nadoll et al., 2014).  

The various IOA ore genesis hypotheses are usually supported by field evidence, and the 

El Laco IOA deposit has been used by the proponents of most hypotheses to explain the various 

models. El Laco is the youngest and best preserved IOA deposit and has been intensively studied 

since it was first described as a “magnetite flow” by Park (1961). Of the IOA ore genesis 

hypotheses, those proposed for El Laco are (1) precipitation from an immiscible iron rich melt 

(Nystrom and Henriquez, 1994; Naslund et al., 2002; Tornos, 2016), (2) metasomatic replacement 

of the andesite host rock by a hydrothermal fluid (Sillitoe and Burrows, 2002; Dare et al., 2015), 

(3) precipitation from basinal brines (Rhodes and Oreskes, 1992; Barton, 2013), and (4) 
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precipitation from magnetite-bearing fluid suspensions mobilised during volcanic edifice collapse 

(Ovalle et al., 2018). For proponents of the magmatic liquid immiscibility hypothesis, the strongest 

lines of evidence for ore genesis according to this model are: (1) the unequivocally volcanic 

textures preserved in the ore bodies (i.e., pahoehoe and aa flow surfaces, abundant gas escape 

tubes, coarse, spherulitic, and dendritic magnetite crystals, razor-sharp chilled contacts; vesicular 

textures with open vesicles; friable, pyroclastic ore material, including iron oxide ash) (Henriquez 

and Martin, 1978; Nystrom and Henriquez, 1994; Naslund et al., 1997; 1998; 2002); (2) the 

igneous δ18O isotopic signatures of the iron oxide ores (Rhodes et al. 1999; Naslund et al. 2002; 

Nystrom et al., 2002); (3) the high (>700 °C) homogenization temperatures of fluid inclusions 

hosted in multiple phases from multiple ore bodies at the deposit (Sheets et al., 1997; Rhodes et 

al., 1999; Rhodes and Oreskes, 1999; Broman et al., 1999); (4) the igneous chemical signatures of 

minerals, e.g., pyroxene, apatite, and  magnetite, and the rare earth element signatures of these 

minerals (Nystrom and Henriquez, 1994; Rhodes et al., 1999; Naslund, 2002); and (5) the presence 

of melt inclusions containing immiscible iron oxide and silicate melts in the host andesite (Velasco 

et al., 2016). Proponents of the hydrothermal replacement model highlight: (1) layers of magnetite 

which mimic the morphology of andesite flow layers in the deposit; (2) porous textures in 

magnetite, which resemble andesite breccia fragments that were partially or completely replaced 

by magnetite; (3) the observed replacement of diopside by magnetite and apatite; (4) evidence of 

hydrothermal activity during mineralization, including: coarse grained magnetite octahedra 

encrustations, magnetite veins containing drusy quartz, brecciation, geyser-like magnetite terraces, 

and fumarole-like tube structures; (5) the trace element chemistry of magnetite, which is consistent 

with that of magnetite which forms from magmatic-hydrothermal fluids (Dare et al., 2015), as 

evidence for ore genesis via metasomatic replacement of the host rocks by a hydrothermal ore 
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fluid. The main line of evidence for the involvement of basinal brines in ore genesis at El Laco is 

the heavy δ18O isotopic signatures of the iron oxide ores that can be explained by an ore fluid that 

has interacted with buried evaporite deposits or a closed-basin fluid that has undergone significant 

evaporation (Rhodes et al., 1999). Interestingly, although the El Laco deposit comprises 7 

individual ore bodies, most of the aforementioned studies are focused on samples from just two of 

them, thus, the understanding of these studies are biased. Attaining a holistic understanding of the 

ore forming processes at El Laco is important as it will likely allow the economic geology 

community to achieve consensus about the formation of IOA deposits.  

1.4     Using Magnetite and Apatite Geochemistry to Elucidate Ore Genesis at the El Laco IOA 

Deposit 

In Chapter 3, I investigate the chemistry of minerals from the enigmatic El Laco IOA 

deposit to test the IOA ore forming hypotheses. This study is different from previous studies at the 

deposit in that I assess the major, minor, and trace element chemistry of magnetite from surface to 

depth at two ore bodies, in addition to assessing the major, minor, and trace element chemistry of 

magnetite and apatite from surface samples at three other ore bodies. Lastly, Childress (2019) 

determined the stable Fe, O, H isotopic signatures of aliquots of the same samples. The data 

produced by BSE imaging, EDS elemental mapping, cathodoluminescence imaging (for apatite), 

EPMA, and LA-ICP-MS in this study indicate that magnetite in the deep roots of the ore deposit 

has chemistry and textures consistent with growth from a silicate melt, and magnetite from surface 

outcrops has chemistry and textures consistent with growth from a magmatic-hydrothermal fluid. 

Apatite grains in the ore bodies have chemistry consistent with growth from a magmatic 

hydrothermal fluid. Together, the data for magnetite and apatite are consistent with ore genesis at 
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El Laco via precipitation from magnetite-fluid suspensions, according to Ovalle et al. (2018). This 

chapter is accepted for publication in Economic Geology pending revisions. 

1.5     Magnetite Geochemistry as a Tool for Exploration 

 A desired outcome of my doctoral education was to do research that directly benefits the 

mining industry in my home country Guyana. Guyana is located in the Guiana Shield, a 

Precambrian geologic province located in northern South America. The geology of the Guiana 

Shield is similar to that of other Precambrian Shields, e.g, the Birimian Shield in West Africa, 

however, it is underexplored in comparison (Delor et al., 2003). The underexplored nature of this 

region coupled with the similarities in geology between this Shield and the Birimian Shield, where 

large amounts of gold and other deposit types have been discovered, provide motivation for 

targeted exploration for gold and other commodities in this region. Exploration in the Shield is 

hampered by limited road accessibility, the thick forest cover and weathering profile, and lack of 

outcrops, but the use of geochemical and geophysical exploration strategies have led to the 

discovery of greater than 100 million ounces of gold in this region (Bardoux et al., 2018). During 

geochemical surveys, heavy mineral concentrates which contain magnetite, ilmenite, and other 

phases are routinely collected. Previous studies highlight the general utility of magnetite 

geochemistry as a tool for investigating petrogenesis and ore deposit potential, motivating potential 

application of this technique in the Guiana Shield (Grigsby, 1990; Dupuis and Beaudoin, 2011; 

Nadoll et al., 2014).  

An important finding of my study in Chapter 3 was that magnetite from a single ore deposit 

plots in multiple fields on some discriminant diagrams, and that the existing discriminant diagrams, 

e.g. Al+Mn versus Ti+V (Nadoll et al., 2014) successfully indicate the temperature of formation 

of magnetite, rather than identify the ore deposit source of magnetite grains. However, there have 
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been many recent studies which highlight the utility of using statistical analyses, in addition to a 

larger number of trace and minor elements, to identify magnetite from different ore deposit 

environments (Makvandi et al., 2016; Pisiak et al., 2017; Dmitrijeva et al., 2018; Huang et al., 

2019a, b).  

 In Chapter 4, I test the hypothesis that the chemistry of detrital magnetite can be used as a 

tool for exploration in covered terrains. Due to the limited success of existing discriminant 

diagrams (especially when applied to samples of unknown origin), I develop a new model that 

uses the chemistry of magnetite obtained via EPMA to predict the ore deposit source(s) (i.e., Ni-

Cu-PGE, orogenic gold, VMS, IOCG, and porphyry copper deposits) of magnetite samples 

collected during exploration campaigns. This new discriminant model more successfully identifies 

magnetite from Ni-Cu-PGE, VMS, IOCG, and porphyry copper deposits than existing 

geochemical discriminant methods and allows identification of orogenic gold deposits which is 

not possible using existing discriminant diagrams. 

As a first application, I use the model on outcrop and detrital stream sediment samples 

collected in catchments throughout the greenstone belts of Guyana. Backscattered electron 

imaging of the grains reveal textural similarities between the grains from outcrops and detrital 

samples, indicating that the detrital grains are sourced from the outcrops in the catchments and 

thus are useful for obtaining insight into the geology of the sampled catchments. Textural analyses 

also indicated that textures can be lost due to weathering and transport by streams. Geochemical 

data for magnetite were obtained via EPMA and comparison of the data for grains from outcrop 

and stream sediment samples indicate that the concentrations of measured elements are higher in 

outcrop samples as compared to detrital grains. The concentrations of Mg, Ni, Cr, Ti, and Mn 

decrease rapidly as grains are weathered and transported by streams. Further analyses indicate that 
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chemical signatures of the aforementioned elements are lost when grains are transported to 

distances greater than 1.5 km away from the source outcrop, but that the concentrations of V and 

Al in grains are preserved for transport distances up to 5 km. Application of the model to the data 

for samples from Guyana indicate the detrital grains are sourced from orogenic gold deposits and 

also indicate the potential for Ni-Cu-PGE deposits in some catchments. Additionally, the presence 

of sulfide inclusions in magnetite or other detrital phases in the sampled catchments support the 

ore deposit source inferred from the model for the sampled catchments.  
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2.1     Abstract 

Apatite grains from the Los Colorados iron oxide – apatite (IOA) deposit, the largest IOA 

deposit in the Chilean Iron Belt (CIB), exhibit significant intracrystalline spatial variability with 

respect to the concentrations of F, Cl, and OH and trace elements. Statistical interrogation of the 

compositional data indicates that individual apatite grains contain spatially discrete F-rich and Cl-

rich domains. The chemical composition of the F-rich domains is consistent with apatite growth 

from silicate melts, whereas the chemical composition of the Cl-rich domains is consistent with 

apatite growth from a magmatic-hydrothermal fluid that cooled as it percolated outward from the 

Los Colorados fault — the structural control for emplacement of the ore body — into the 

surrounding brecciated diorite and andesite host rocks.  

Apatite in the deposit is intimately intergrown with magnetite and actinolite for which trace 

element, Fe, H and O stable isotope data indicate a combined magmatic/ magmatic-hydrothermal 

genesis for the deposit. The compositional data for apatite are consistent with a genetic model 

wherein F-rich apatite cores crystallized with magnetite from silicate melt, followed by exsolution 
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of a magmatic-hydrothermal fluid during decompression of the parent magma. Experimental 

studies demonstrate that magmatic-hydrothermal volatile phase bubbles preferentially nucleate 

and grow on the surfaces of apatite and magnetite microlites during decompression of a magma 

body. Continued degassing of the melt results in the volatile phase sweeping up apatite and 

magnetite microlites, and forming a magnetite-apatite-fluid suspension that is buoyant in the 

magma chamber, and ascends from the source magma along faults during regional extension. 

Halite-saturated fluid inclusions in magnetite, which is paragenetically equivalent to apatite at Los 

Colorados, indicate that the magmatic-hydrothermal fluid was a brine, which allows this fluid to 

efficiently scavenge Cl, P, rare earth elements, and other fluid-compatible elements from the 

silicate melt. During ascent, the XCl/XF ratio of apatite increases as it grows from the evolving Cl-

rich magmatic-hydrothermal fluid during decompression and cooling.  

2.2     Introduction 

Kiruna-type iron oxide – apatite (IOA) deposits are an important source of iron (Fe), and 

are potential rare earth element (REE) resources owing to light REE-enrichment of apatite in many 

deposits (Frietsch 1978; Hitzman et al. 1992; Barton 2013). IOA deposits and their Cu- and Au- 

rich counterparts, the iron oxide – copper – gold (IOCG) deposits, are spatially and temporally 

related to one another in many districts, and have been suggested to be cogenetic end-members of 

iron-rich ore systems (Hitzman et al. 1992; Davidson and Large 1994; Frietsch and Perdahl 1995; 

Sillitoe 2003; Pirajno and Bagas 2008; Groves et al. 2010; Knipping et al. 2015a, b; Reich et al. 

2016; Barra et al. 2017; Simon et al. 2018). IOA deposits are dominated by magnetite (50 – 90 

modal %) with apatite and actinolite comprising the bulk of the remainder of the ore (Frietsch and 

Perdahl 1995), whereas IOCG deposits are dominated modally by magnetite and (specular) 
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hematite in addition to chalcopyrite, pyrite, bornite, and gangue minerals such as K-feldspar, 

biotite and sericite, among others (Sillitoe 2003; Williams et al. 2005; Barton 2013).  

There is no accepted genetic model for the formation of IOA deposits. Working hypotheses 

that explain the formation of IOA deposits include (i) magmatic-hydrothermal replacement of 

volcanic and hypabyssal rocks (Sillitoe and Burrows 2002); (ii) precipitation from basinal brines 

(Barton and Johnson 1996, 2004; Rhodes and Oreskes 1999; Rhodes et al. 1999; Barton 2013) or 

(iii) metamorphic aqueous fluids (Williams 1994; de Jong et al. 1998); (iv) formation from Fe-

oxide rich immiscible magma (Nyström and Henríquez 1994; Naslund et al. 2002; Tornos et al. 

2016; Velasco et al. 2016; Broughm et al. 2017); (v) precipitation from orthomagmatic fluid (Weis 

2013; Jonsson et al. 2013; Hofstra et al. 2016; Westhues et al. 2016, 2017a, b); or (vi) formation 

by precipitation from a magmatic/magmatic-hydrothermal fluid suspension (Knipping et al. 

2015a; Simon et al. 2018).  

Here, we focus on the chemistry of apatite from the Los Colorados IOA deposit in the 

Chilean Iron Belt (CIB). Several studies focused exclusively on magnetite, actinolite and pyrite 

from Los Colorados (Knipping et al. 2015a, b; Bilenker et al. 2016; Reich et al. 2016). Those 

studies used the trace element chemistry of magnetite and pyrite, the Fe, H, and O stable isotope 

compositions of magnetite, and the O and H stable isotope signatures of actinolite to develop a 

new magmatic/magmatic-hydrothermal model to explain the origin of the Los Colorados deposit. 

The new genetic model proposed by Knipping et al. (2015a) for IOA deposits invokes 

crystallization of magnetite microlites from a silicate melt, and the formation of a magmatic 

magnetite-fluid suspension that transports magnetite from the source magma into the overlying 

crust via pre-existing fault structures that are reactivated by crustal extension. Textural 

observations of samples from Los Colorados indicate that apatite is paragenetically equivalent to 
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magnetite and actinolite. Thus, the chemistry of apatite in the deposit should be consistent with 

the genetic model proposed by Knipping et al. (2015a).  

Apatite is a ubiquitous phase in IOA deposits, and is a common accessory mineral in 

terrestrial and extraterrestrial environments. Apatite (Ca10(PO4)6(F,Cl,OH)2) can structurally 

accommodate nearly half of the elements in the periodic table (Piccoli and Candela 2002; Harlov 

2015; Hughes and Rakovan 2015; Webster and Piccoli 2015), and the observed systematic 

variation of the halogen and trace element chemistry of apatite, as a function of P-T-X conditions 

at the time of apatite crystallization, or re-equilibration during metasomatism, allows the chemistry 

of apatite to be used to assess the chemical evolution of geologic systems (Streck and Dilles 1998; 

Belousova et al. 2002; Parat et al. 2011; Mao et al. 2016; Bouzari et al. 2016; Konecke et al. 2017a, 

b; Webster et al. 2017). In this study, we combine cathodoluminescence (CL) imaging, energy 

dispersive X-ray spectroscopy (EDS) element mapping, electron probe micro-analyses (EPMA), 

and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to investigate the 

chemistry of apatite from the Los Colorados IOA deposit. The systematic variation of halogen and 

trace element compositions of apatite are shown to be consistent with the flotation model proposed 

by Knipping et al. (2015a), and provide evidence that apatite, along with magnetite, record a 

transition from magmatic to magmatic-hydrothermal conditions during ore genesis. 

2.3     Geological Setting 

Los Colorados is the largest IOA deposit in the 1000 km-long CIB, which hosts ~50 IOA 

deposits, including seven that contain >100 million tons (Mt) of high grade Fe ore (Fig. 2.1A). The 

regional geology and the tectonic history of the CIB are described in detail by Pichon (1980), 

Oyarzún and Frutos (1984), and Oyarzún et al. (2003). Los Colorados formed during the 

Cretaceous (~110 Ma) and is located ~35 km north of Vallenar, Chile (Fig. 2.1A; Pichon 1980; 
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Oyarzún and Frutos 1984). Los Colorados has proven resources of ~900 Mt of ore with an average 

grade of 34.6% Fe (CAP Annual Report 2015). At Los Colorados, high grade magnetite ore was 

mined from three ore bodies, which are hosted in the diorite and andesite of the Punta del Cobre 

Formation (Pincheira et al. 1990). The main ore bodies at Los Colorados are the western ore body, 

which is ~900 m long and ~280 m wide, and the eastern ore body, which is ~780 m long and ~50 

m wide (Fig. 2.1B). The western and eastern ore bodies are tabular, sub-parallel and sub-vertical, 

and contain ≥90 modal % magnetite with lesser amounts of apatite, actinolite, and pyrite. The ore 

grades of the western and eastern ore bodies are 65-60% Fe, and 62-57% Fe, respectively. The 

emplacement of the ore bodies was structurally controlled by the district-scale Los Colorados fault, 

which is part of the Atacama Fault System (Pichon 1980; Oyazún and Frutos 1984; Reich et al. 

2016). The third ore body at Los Colorados consists of lower-grade disseminated and veinlet 

magnetite (up to 5 modal %), pyrite (up to 5 modal %), and sparse chalcopyrite (Fig. 2.1B; Reich 

et al. 2016). Previous studies report moderate argillic alteration in the diorite, and lack of potassic 

and sodic alteration in the ore bodies (Knipping et al. 2015a, b; Reich et al. 2016). 

2.4     Analytical Methods and Data Analysis 

2.4.1     Sample Selection 

A total of 43 apatite grains were studied from drill core LC-04, collected at a depth of 99.5 

m from the surface in the tabular, western ore body, and one sample collected in the pit from 

freshly blasted (disaggregated) material on the eastern edge of the western ore body (Fig. 2.1B). 

This latter zone showed a gradation from the massive ore body into the magnetite breccia body, 

i.e., a halo composed of magnetite intergrown with centimeter-scale crystals of actinolite and 

apatite (Fig. 2.1B). The compositions of magnetite, actinolite, and pyrite in these samples are 

described in detail in Knipping et al. (2015a, b), Bilenker et al. (2016), and Reich et al. (2016), 
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respectively. Apatite grains in thin sections and epoxy mounts were analyzed. The apatite grains 

mounted in epoxy were obtained by separating apatite from magnetite and actinolite following 

standard mineral separation protocols.  

2.4.2     Element mapping and cathodoluminescence imaging 

The apatite grains were investigated by using a combination of back-scattered electron 

(BSE) imaging, energy-dispersive X-ray spectroscopy (EDS) element mapping, and 

cathodoluminescence (CL) imaging. Qualitative elemental EDS maps of apatite grains were made 

by using a JEOL JSM – 7800 FLV Field Emission Scanning Electron Microscope (FE-SEM). An 

accelerating voltage of 20 kV was used to generate EDS maps of Ca, P, Cl, and F. A Gatan 

ChromaCL2 CL imaging detector on the FE-SEM was used to obtain CL images of apatite grains. 

A 20 kV accelerating voltage was used to generate the CL images. 

2.4.3     Electron probe micro-analysis (EPMA) 

Concentrations of Ca, P, F, Cl, S, Si, Na, Mg, and Al in apatite grains were measured via 

wavelength-dispersive X-ray spectrometry (WDS) by using a Cameca SX100 electron probe 

micro-analyzer (EPMA). Line transects and spot analyses were performed on apatite grains in thin 

sections and on individual grains in epoxy mounts. EDS element maps and CL images were used 

to guide the EPMA analyses. WDS measurements were made by using an excitation voltage of 15 

keV, a beam current of 10 nA, and a beam diameter of 2 μm. Synthetic fluorapatite and chlorapatite 

grains (cf. Schettler et al. 2011) were used as the primary standards for Ca Kα, Cl Kα, F Kα, P Kα, 

and natural silicates and an anhydrite sample were used as the primary standards for Na Kα, Si 

Kα, Mg Kα, Al Kα and S Kα (Table 2A-1). Major elements in apatite (Ca, P, Cl, F) were analyzed 

first in the analytical sequence as suggested by Goldoff et al. (2012). A counting time of 20 s was 

used for major elements (Ca, P, F, Cl), and a counting time of 30 s was used for minor elements 
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(Na, S, Si, Mg, Al) following the analytical protocol of Pyle et al. (2002). The hydroxide (OH) 

content of apatite for each individual spot analysis was calculated by mass balance using the 

quantitatively determined F and Cl concentrations, and the constraint that the halogen site in apatite 

is occupied by XF + XCl + XOH = 1 (Hughes and Rakovan 2015). We used the spreadsheet of 

Ketcham et al. (2015) to calculate OH concentrations in apatite.  

2.4.4     Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) analyses 

The concentrations of Ti, V, Mn, Ni, Sc, Sn, W, Cu, Zn, Sr, Ba, Zr, Cr, Ge, As, Th, U, Pb, 

Y, and all rare earth elements (REEs) except Pm were measured by using a Photon Machines 193 

nm short-pulse-width Analyte Excite ArF excimer laser ablation system attached to an Agilent 

7900 fast scanning inductively coupled plasma quadrupole mass spectrometer (ICP-QMS). The 

LA-ICP-MS analyses were performed along the same transects, but slightly offset, within apatite 

grains that were previously analyzed by EPMA. The analyses were performed by using a laser 

beam with an energy of 4.1 mJ/ pulse, for a calculated fluence of 2.54 J/cm2. Beam diameters of 

15 μm and 20 μm, respectively, were used for spot analyses of apatite grains in the epoxy mounts 

and thin sections. There were 800 laser pulses at a frequency of 20 Hz during each analysis, and 

each individual analysis consisted of first measuring the gas background for 30 s followed by 

ablation of apatite for 40 s. The Ca concentration of apatite, which was previously quantified by 

using EPMA, was used as the internal standard for LA-ICP-MS calibration, and the NIST-610 

reference glass was used as the bracketing external calibration standard. The NIST-610 glass was 

analyzed periodically as an unknown during the analytical session to evaluate the accuracy of the 

analyses. The concentrations of the elements analyzed and their associated limits of detection were 

determined by using the SILLS software package (Guillong et al. 2008), which calculates the 

detection limit following Pettke et al. (2012).  Each LA-ICP-MS transient signal was evaluated for 
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the presence of inclusions, and only inclusion-free signals were processed. The concentrations of 

all elements measured in the NIST-610 standard glass, when treated as an unknown, agree within 

analytical error with the concentrations reported by Jochum et al. (2011). 

2.5     Results 

2.5.1     Element mapping and cathodoluminescence imaging 

Representative BSE, EDS Kα maps, and CL images for apatite grains from Los Colorados 

are presented in Fig. 2.2, and Figs. 2A.1, and 2A.2. The BSE images reveal the presence of apatite-

hosted inclusions that EDS point analyses indicate are monazite ([Ce,La,Nd]PO4) and ThSiO4 

(Figs. 2A.3, 2A.4). The EDS element maps indicate that Ca and P are homogeneously distributed 

in the apatite grains (Figs. 2A.1C and 2A.D, 2A.2C and 2A.2D). Additionally, the EDS maps 

reveal variability in the distribution of Cl within individual apatite grains (Fig. 2.2B; Figs. 2A.1E, 

2A.2E). The EDS maps do not provide insight about the distribution of F owing to the high limit 

of detection for F on the EDS detector.  

The CL images indicate chemical heterogeneities that manifest as variability in 

luminescence color and intensity within individual apatite grains (Fig. 2.2C; Figs. 2A.1B, 2A.2B). 

The variations observed in the CL images correlate with the variations in Cl distribution revealed 

in the EDS elemental maps (Figs. 2.2B and C; Figs. 2A.1B and 2A.1E, and 2A.2B and 2A.2E). In 

all apatite grains from the pit sample (Fig. 2A.1), the brightest luminescence is observed in the 

regions of apatite with low Cl concentration. On the contrary, in most grains from the drill core, 

the brightest luminescence is observed in regions of apatite grains that are enriched in Cl (Fig. 

2A.2). However, there are also apatite grains from the drill core samples where, as observed for 

the pit samples, the brightest luminescence is observed in Cl-poor regions of apatite (Fig. 2.2B and 

C).  
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2.5.2     Major, minor, and trace element concentrations of apatite 

A total of 285 spot analyses were performed by using both EPMA and LA-ICP-MS. The 

number of individual spot analyses per apatite grain ranged from 1 on small grains, to as many as 

20 on large grains. Compositional data for all apatite grains are reported in Table 2A2. The average 

concentrations (±1σ) of CaO and P2O5 for all apatite grains are 54.5 ± 0.6 wt% and 41.6 ± 0.8 wt%, 

respectively. The concentration of Cl in apatite grains ranges from 0.40 to 4.03 wt% (XCl = 0.12 

to 1.16) for the pit sample, 0.80 to 5.76 wt% (XCl = 0.02 to 1.68) for drill core sample LC-04-

99.5A, and 0.82 to 5.52 wt% (XCl = 0.24 to 1.64) for drill core sample LC-04-99.5B. The average 

concentrations of Cl in the cores and rims, respectively, of apatite grains are 1.44 wt% (XCl = 0.46), 

and 3.15 wt% (XCl = 0.88) for the pit samples, and 1.79 wt% (XCl = 0.57) and 3.86 wt% (XCl = 

1.12) for the drill core samples. The concentration of F in apatite grains ranges from below 

detection limit (BDL) to 2.3 wt% (XF = BDL to 1.62) for the pit sample, BDL to 2.6 wt% (XF = 

BDL to 1.40) for drill core sample LC-04-99.5A sample, and BDL to 2.51 wt% (XF = BDL to 

1.34) for drill core sample LC-04-99.5B. The average F concentrations in the cores and rims, 

respectively, of the apatite grains are 1.60 wt% (XF = 0.79) and 0.29 wt% (XF = 0.19) for the pit 

sample, and 1.24 wt% (XF = 0.55) and 0.34 wt% (XF = 0.18) for the drill core sample. Fluorine 

concentrations were below detection limit for many of the analyses of apatite grains (Table 2A2). 

Calculated OH concentrations in apatite grains range from 0.18 to 1.94 wt% (XOH = 0.12 to 1.28) 

for the pit sample, 0.09 to 1.52 wt% (XOH =0.14 to 1.76) for drill core sample LC-04-99.5A, and 

0.22 to 1.27 wt% (XOH = 0.26 to 1.52) for drill core sample LC-04-99.5B.  The average calculated 

OH concentrations in the cores and rims, respectively, of the apatite grains are 0.53 wt% (XOH = 

0.74), and 0.75 wt% (XOH = 0.93) for the pit samples, and 0.71 wt% (XOH = 0.89) and 0.70 wt% 
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(XOH = 0.70) for the drill core samples. The concentrations of F and Cl are negatively correlated 

(Figs. 2.3A, B), whereas the relationship between calculated OH and Cl is unclear (Fig. 2A.5). 

The variations in Cl, F, and calculated OH concentrations found in apatite grains were also 

observed within individual apatite grains (Fig. 2.4A). This is consistent with the Cl Kα EDS maps 

(Fig. 2.2B; Figs. 2A.1E, 2E). For instance, the XCl/XF ratio for the apatite grain in Fig. 2.2, which 

corresponds to the red circles in Fig. 2.4A, varies across the apatite grain. From top left to bottom 

right on the transect shown in Fig. 2.2, the XCl/XF ratio varies from 4.62 to 5.14, decreases to 0.54 

and 0.23, followed by an increase to 2.92, then decreases to 0.21, and finally increases to 3.16 and 

4.54 as the transect reaches the edge of the apatite grain. 

The concentrations of Na2O, MgO, Al2O3, S, and SiO2 in apatite are generally low, and are 

similar among apatite grains from the pit and drill core samples (Table 2A2). The concentrations 

of the following trace elements are consistently above the limit of detection: As, Mn, Sr, Ti, V, Y, 

La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu (Table 2A2). The concentrations of 

Ho, Eu, Tm, Yb, and Lu are similar in apatite grains from all three samples (Table 2A2). Chondrite-

normalized mean concentrations of REEs in apatite from the pit and drill core samples indicate 

enrichment of light rare earth elements (LREEs) compared to heavy rare earth elements (HREEs) 

(Fig. 2.5). The concentrations of Sc, Zr, Ni, Cu, Co, Zn, Sn, Ba, W, Th, Pb, and U were consistently 

close to, or below the limit of detection (Table 2A2). The concentration of Ge was above the limit 

of detection for some of the apatite grains from the drill core samples (BDL - 31ppm), but below 

the limit of detection for apatite grains from the pit sample.  

2.5.3     Data Analysis 

We customized analysis scripts in the Python programming language to quantitatively 

assess the observed spatial variability of F and Cl concentrations and all measured trace elements 
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within individual apatite grains (Appendix 2.1). Specifically, Gaussian interpolation was utilized 

to smooth the maps and better highlight the observed variability of Cl intensity within the apatite 

grains. Histograms of the smoothed Cl maps reveal three statistically distinct domains within 

apatite grains: a F-rich (Cl-poor) domain, a Cl-rich (F-poor) domain, and a domain consisting of 

intermediate Cl that exists between the F-rich and Cl-rich domains (Figs. 2.6A, B, C). Spatially, 

F-rich domains are located away from apatite grain boundaries; we refer to these domains as apatite 

cores (Figs. 2.6D, E, F; 2.4C). The Cl-rich domains are located in the outer region of apatite grains 

and proximal to cracks within grains; we refer to these domains as apatite rims (Figs. 2.6D, E, F; 

2.4D). The third population of domains exists spatially between the Cl-rich rims and the F-rich 

cores of apatite grains; we refer to these domains as boundary regions. The data analysis did not 

reveal whether the boundary zones belonged to the core or rim domains, most likely because the 

smoothing required to average over the high spatial variability of Cl concentrations along the core-

rim boundary would necessarily involve averaging over both core and rim pixels in the Cl Kα EDS 

maps (Fig. 2 6D, E, F).  

The concentrations of representative major, minor, and trace elements in apatite cores, 

rims, and boundary zones are plotted against Cl in Fig. 2.3 and Fig.2A.7. The figures indicate that 

the elemental concentrations for the drill core samples are similar; thus, we combined the results 

for these two samples for the rest of the statistical analyses (Appendix 2.1). The statistical analyses 

of the minor and trace element chemistry reveal significant differences (p<0.05) between the mean 

concentrations in the cores and rims for many minor and trace elements in apatite grains for the 

pit samples (including Sr, Ce, Nd, Y, V, Mn, and As) (Fig. 2A.8A). On the contrary, the mean 

concentrations in the core and rim for many minor and trace elements in apatite grains from the 

drill core samples are statistically indistinguishable, except for Mn, which shows a difference at 
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the p=0.038 level (Fig. 2A.8).  Comparison of the distribution of elements in the cores of apatite 

from the pit and drill core samples shows that F-rich cores of apatite from the drill core are 

significantly elevated in nearly every minor and trace element examined (except for Si and S), 

including Sr, Ce, Nd, Lu, Y, V, Ti, Na, Mn, and As (Fig. 2.7). The Levene test for variance in 

elemental concentrations in the core and rim of apatite grains indicates that for the pit sample, the 

variance for all elements, except Ti, is statistically indistinguishable, while the variance for all 

elements, except As, is statistically indistinguishable for the drill core sample (Table 2A3).  

2.6     Discussion 

2.6.1     Halogen concentrations in apatite and the causes of variability 

In igneous systems where apatite is commonly a near-liquidus phase, it is well documented 

that apatite is initially enriched in F owing to the high apatite/melt partition coefficient for F 

relative to Cl (Harlov 2015; Webster and Piccoli 2015). During progressive crystallization of the 

melt, the F/Cl ratio of the melt decreases owing to the crystallization of apatite, and results in 

progressive Cl enrichment of apatite.  This is not what we observe for apatite grains from Los 

Colorados, where F-rich apatite cores are statistically distinct from Cl-rich rims, such that, there is 

no continual core to rim gradation from F-rich to Cl-rich apatite. In Fig. 2.4B, the F-Cl-OH 

concentrations of apatite grains from Los Colorados are plotted with fields from Boudreau et al. 

(1995) that represent the F-Cl-OH compositions of apatite grains from mafic igneous systems. 

Those authors report that apatite analyses that plot closer to the F apex of the F-Cl-OH ternary 

diagram represent apatite grown from unfractionated silicate melt at near-liquidus temperatures, 

whereas analyses that plot closer to the Cl apex represent apatite grown from, or re-equilibrated 

with, a Cl-bearing magmatic-hydrothermal fluid (Brown and Peckett 1977; Boudreau et al. 1986; 

Boudreau 1993; Piccoli and Candela 2002; Boudreau and Simon 2007; Webster and Piccoli 2015). 
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The F-Cl-OH compositions of some apatite grains from Los Colorados plot in the field for apatite 

that crystallized from, and grew in equilibrium with, a mafic silicate melt (e.g., Munni Munni, 

Duluth, Great Dyke), whereas other apatite analyses plot in the field for apatite that grew in the 

presence of a Cl-bearing magmatic-hydrothermal fluid (e.g., Stillwater and Bushveld below major 

PGE zones) (Fig. 2.4B). The statistically distinct F-rich cores (Fig. 2.4C) and Cl-rich rims (Fig. 

2.4D) observed in all apatite grains from Los Colorados are consistent with initial growth of apatite 

from a silicate melt followed by growth from a Cl-rich magmatic-hydrothermal fluid. This explains 

the absence of a gradual change of F/Cl ratio from the F-rich domains to the Cl-rich domains, and 

is consistent with the core-to-rim chemistry of paragenetically equivalent magnetite, as discussed 

below and by Knipping et al. (2015a, b). 

2.6.2     Trace and minor element concentrations in apatite  

Generally, the concentrations of trace elements are higher in the core of apatite grains from 

the drill core relative to the core of apatite grains from the pit sample (Table 2A2; Fig. 2.7). The 

most plausible explanation for the compositional differences is the temperature of the mineralizing 

fluid, which was hotter during formation of the massive magnetite eastern ore body (Fig. 1B). This 

is consistent with published concentrations of [Mg+Mn] vs [(Si+Al)/(Mg+Mn)] that decrease 

systematically in paragenetically equivalent magnetite as one moves from the massive magnetite 

eastern ore body, the source of the drill core sample, into the disseminated mineralization in the 

brecciated host rock, the source of the pit sample (Knipping et al. 2015a, b; Deditius et al. 2018). 

Further, comparison of magnetite chemistry at Los Colorados with that from the global study of 

Nadoll et al. (2014) indicates that the temperature of mineralization was higher for the massive 

magnetite ore body than the disseminated mineralization in the host rock. The only direct 

constraint on the temperature of mineralization is provided by O-isotope thermometry for 
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paragenetically equivalent magnetite and actinolite, intergrown with apatite, from the drill core 

sample, and indicates a minimum temperature of 640 °C for mineralization of the massive 

magnetite ore body (Bilenker et al. 2016). Finally, the chemistry of disseminated pyrite in the 

brecciated ore body east of the main massive magnetite ore body also indicates a cooler 

temperature for the magmatic-hydrothermal fluid as it percolated from the massive magnetite ore 

zone to into the host rocks (Reich et al. 2016).   

The concentrations of Mn and REEs in apatite are consistent with the CL images presented 

in Fig. 2.2, and Figs. 2A.1, and 2. Cathodoluminescence in apatite is the result of trace element 

substitutions into the apatite structure (Waychunas 2002). The intensity and perceived color of the 

luminescence are caused by the presence of specific ions or groups of ions, most commonly Mn2+, 

which causes yellow luminescence, and REE3+ which causes violet-blue luminescence (Götze et 

al. 2001; Waychunas 2002; Kempe and Götze 2002; Götze 2012). Variations in the concentrations 

of Mn2+ and REE3+ at the ppm level cause observable changes in the CL intensity (Gros et al. 

2016). The LA-ICP-MS data for apatite from Los Colorados indicate that the CL activators Mn2+ 

and REE3+ are present in apatite, and the concentrations of these CL activators correlate spatially 

with CL intensity. In apatite grains from the pit sample, the cores, which exhibit bright 

luminescence, are enriched in REEs (La, Ce, Nd, Dy, Yb) relative to the rims, which are enriched 

in Mn, and exhibit darker luminescence (Figs. 2A.1B; 8A). The luminescence for samples from 

the drill core is more complex; for some grains the core exhibits bright luminescence, while for 

others, the rim exhibits bright luminescence (Fig. 2.2C; Fig. 2A.2B). The data indicate that for 

apatite grains from the drill core, the rims are depleted in Mn relative to the cores, and the 

concentrations of the REEs (Ce, Lu, Dy, La, Yb and Nd) are similar in both the cores and the rims 

(Fig. 2A.8B). The differences in the color and intensity of the luminescence for the apatite grains 
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at Los Colorados, in addition to the spatial variability of halogens, therefore, indicate differences 

in the chemistry of the fluids from which the individual domains of apatite grew.  

Fluid mobile elements such as Sr, Mn, and As are enriched in the rim of the apatite grains 

from the pit samples (Table 2A2; Fig. 2A.8A). The ability of Cl-bearing hydrothermal fluids to 

transport Sr, Mn, and As is well documented by field and experimental studies (Reed et al. 2000; 

Williams-Jones and Heinrich 2005; Simon et al. 2007). The concentration of S is also marginally 

higher in the Cl-rich rim, compared to the Cl-poor core, of apatite grains from both the pit and drill 

core samples (Table 2A2; Fig. 2A.8). The higher S contents in the Cl-rich rims is consistent with 

incorporation of sulfate in the apatite structure (Konecke et al. 2017a).  

2.6.3     Comparison to apatite from other IOA deposits and igneous rocks 

The chemistry of apatite from Los Colorados is consistent with data for other IOA deposits 

in the Chilean Iron Belt. Treloar and Colley (1996) report that most apatite grains from the Mina 

Carmen and Fresia deposits exhibit zonation from F-rich core to Cl-rich rim. Rojas et al. (2018) 

report that apatite in the deeper zones of the El Romeral deposit is F-rich, whereas hydroxyapatite 

is present at shallow levels. The Cl contents of both the fluorapatite and hydroxyapatite are low 

(<0.5 wt%); however, the Cl content of the hydroxyapatite is higher (up to 0.24 wt%) than that for 

the fluorapatite (0.1-0.13 wt%). Naslund et al. (2002) report that apatite from the El Laco IOA 

deposit in northern Chile is F-rich, which is consistent with data for the Cerro de Mercado IOA 

deposit, Durango, Mexico (Young 1969), IOA deposits in the Kiruna district, Sweden (Frietsch 

1978; Harlov et al. 2002a; Jonsson et al. 2016), IOA deposits in the Bafq district, Iran (Torab and 

Lehman 2007;  Bonyadi et al. 2011), and the Pea Ridge IOA deposit in Missouri, USA (Harlov et 

al. 2016).  
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The trace element concentrations for apatite from Los Colorados are also similar to those 

reported for other IOA deposits. For example, in Fig. 2.8, the concentrations of V vs. Sr and Mn 

vs. Yb, in apatite from Los Colorados, are plotted along with data for apatite from the Aoshan 

(China), Great Bear (Canada), and Durango/ Cerro de Mercado (Mexico) IOA deposits (Mao et 

al. 2016). The trace element data for all of these deposits overlap, although generally apatite from 

Los Colorados exhibit a larger spread of concentrations. The concentrations of REEs in apatite 

from Los Colorados are similar to those reported for apatite grains from Carmen and Fresia in the 

CIB (Treloar and Colley 1996; Konecke et al. 2017a), and apatite grains from Fresia have cores 

that are enriched in LREEs, specifically Ce, La, and Nd (Treloar and Colley 1996), consistent with 

the core of apatite grains from the pit sample at Los Colorados (Table 2A.2; Fig. 2A.8A). The 

concentrations of REEs in apatite at Los Colorados are, on average, lower than those reported for 

apatite grains from IOA deposits in the Kiruna, Great Bear, Grängesberg and Bafq districts, and 

the Pea Ridge IOA deposit (Harlov et al. 2002a; Torab and Lehmann 2007; Jonsson et al. 2016; 

Mao et al. 2016; Harlov et al. 2016).  

The trace element compositions of the F-rich domains (cores) and Cl-rich domains (rims) 

of apatite from Los Colorados are compared in Figs. 2A.9 and 10 with the global compilation of 

apatite trace element data reported by Piccoli and Candela (2002). The Mn-Na-Ca compositions 

of apatite cores from Los Colorados overlap apatite from mafic (Fig. 2.A9-A), and a subset of the 

apatite compositions from felsic rocks, although the spread of compositions for felsic rocks is 

larger than that for apatite from Los Colorados. The rims of apatite from Los Colorados also 

overlap the compositions of apatite from mafic and felsic rocks in Mn-Na-Ca space (Fig. 2A.9B). 

Similarly, the concentrations of Si, S, and P in apatite cores and rims from Los Colorados overlap 

apatite from felsic rocks (Fig. 2A.10).  
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2.6.4     Formation of REE-phosphate ([REE]PO4) AND ThSiO4 inclusions in apatite 

At Los Colorados, monazite inclusions are present within apatite at the boundary of F-rich 

and Cl-rich domains, whereas ThSiO4 inclusions are observed on grain boundaries of apatite and 

actinolite. These observations are consistent with studies of IOA deposits in the Durango, Kiruna, 

and Bafq districts (Harlov et al. 2002a; Torab and Lehman 2007; Bonyadi et al. 2011), the Carmen 

IOA deposit in Chile (Konecke et al. 2017a), and the Olympic Dam IOCG deposit, Australia 

(Krneta et al. 2016). Knipping et al (2015a, b) reported that the hydrothermal fluid at Los 

Colorados was a Na-K-Fe-rich brine, which based on the experimental results of Harlov and 

Förster (2003) eliminates coupled dissolution–reprecipitation reactions as a plausible explanation 

for the growth of monazite and ThSiO4 inclusions in apatite. We suggest that monazite and 

ThSiO4 inclusions formed as a result of local supersaturation of the fluid, and that nucleation of 

monazite and ThSiO4 on grain boundaries that were overgrown by Cl-enriched apatite that grew 

from the cooling hydrothermal fluid. 

2.6.5     Genesis of the Los Colorados mineral deposit 

The chemistry of apatite from Los Colorados is consistent with the magmatic flotation 

model proposed by Knipping et al. (2015a) for the Los Colorados IOA deposit. Trace element data  

(Ti, V, Mn, and Al concentrations) and δ56Fe and δ18O stable isotope data for magnetite (Knipping 

et al. 2015a; Bilenker et al. 2016), as well as δD for magnetite and actinolite from the ore bodies 

at Los Colorados (Bilenker et al. 2016), trace element data for disseminated pyrite (Reich et al. 

2016) trace element data for late-stage, disseminated magnetite in the brecciated diorite and 

andesite host rocks (Deditius et al. 2018) indicate that the mineralizing fluid at Los Colorados was 

sourced from a silicate magma of mafic to intermediate composition, and that the chemistry of 

magnetite and pyrite record growth of these phases from a cooling magmatic-hydrothermal fluid.  
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The model presented by Knipping et al. (2015a) invokes crystallization of magnetite 

microlites from an intermediate silicate melt, resulting in magnetite that is enriched in trace 

elements such as Ti, V, Al, and Mn, consistent with the chemistry of magnetite cores at Los 

Colorados. During decompression of a magnetite-saturated, volatile-undersaturated silicate 

magma, if the melt reaches volatile saturation, owing to the decreasing water solubility as a 

function of decreasing pressure, aqueous bubbles nucleate preferentially on the surface of 

magnetite crystals (Hurwitz and Navon 1994; Gualda and Ghiorso 2007). Continued degassing 

results in the formation of a magnetite-fluid suspension, wherein the magnetite crystal chemistry 

is dictated by partitioning of elements between magnetite and the magmatic-hydrothermal fluid. 

This results in progressively lower concentrations of trace elements such as Ti, V, Al, and Mn in 

magnetite, as recorded in magnetite rims at Los Colorados. The presence of halite-saturated fluid 

inclusions in magnetite from Los Colorados, which, in conjunction with the progressive core-to-

rim depletion of fluid-compatible trace elements, is interpreted as evidence that magnetite rims 

grew from a cooling magmatic-hydrothermal fluid. The magnetite-fluid suspension has a lower 

bulk density than the surrounding magma and can ascend from the source magma along pre-

existing faults that are opened during regional extension (Edmonds 2015; Knipping et al. 2015a).  

Igneous apatite microlites are also preferential nucleation sites for a magmatic-

hydrothermal fluid that exsolves from a silicate melt during decompression. Hurwitz and Navon 

(1994) performed experiments to assess nucleation of aqueous fluid from an apatite- and 

magnetite-bearing silicate melt during decompression from an initial pressure of 150 MPa. They 

report that for decompression of <10 MPa, only magnetite microlites are wetted by the exsolving 

volatile phase. However, for decompression >10 MPa, aqueous bubbles nucleated preferentially 

on apatite as well as magnetite microlites. Considering that apatite is commonly a near-liquidus 
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phase in silicate magmas (Watson and Capobianco 1981; Boudreau and Kruger 1990; Piccoli and 

Candela 2002), we suggest that the F-rich domains in apatite at Los Colorados record 

crystallization of F-rich apatite from a silicate melt. Considering that apatite (3.17 g/cm3) is less 

dense than magnetite (5.1 g/cm3), and that apatite is a modally minor, albeit ubiquitous, phase in 

IOA deposits, the addition of a small amount of apatite does not change the results presented by 

Knipping et al. (2015a). Those authors cited experiments by Matveev and Ballhaus (2002) and 

Mungall et al. (2015) as evidence for flotation of ore minerals by such a process. 

We suggest that igneous apatite microlites were enveloped by magmatic-hydrothermal 

fluid and became part of the fluid suspension that also contained magnetite, which is comparable 

to the “sweeping” process described by Edmonds et al. (2014). The magmatic-hydrothermal fluid 

exsolving from the silicate melt is expected to be Cl-rich owing to the strong partitioning of Cl 

between the silicate melt and aqueous fluid, and likely had a composition dominated by dissolved 

FeCl2, NaC, KCl and CaCl2 (Webster and Mandeville 2007). The magmatic-hydrothermal fluid 

would effectively scavenge P, and other fluid-compatible elements (e.g., Mn, Sr, As, LREEs) from 

the silicate melt, with reported brine/melt partition coefficients for P ranging from 2 to 6 (Zajacz 

et al. 2008). As the suspension coalesces, regional extension causes a sudden destabilization of the 

magma body, which results in rapid transport (5–20 m/s) of the suspension through hydraulic 

fractures in a ductile crystal-mush regime (Hersum et al. 2005; Hautmann et al. 2014). During 

ascent of the fluid suspension, apatite continues to grow from the Cl-rich magmatic-hydrothermal 

fluid owing to decreases in pressure and temperature. This explains the statistically distinct F-rich 

and Cl-rich domains within apatite from Los Colorados. The monazite and thorite/ huttonite 

inclusions \likely formed via supersaturation on grain boundaries as the Cl-rich apatite grew from 

the cooling ore fluid. 
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2.7     Conclusions 

Apatite grains from the Los Colorados IOA deposit contain statistically distinct F-rich and 

Cl-rich domains that are not the result of crystallization from a single fluid. The F-rich domains 

have halogen and trace element compositions consistent with apatite that grew from a mafic to 

intermediate silicate melt, whereas the Cl-rich domains have halogen and trace element 

compositions consistent with apatite growth in the presence of a magmatic-hydrothermal fluid.  

Apatite that grew in the hotter part of the mineralizing system is systematically enriched in trace 

elements compared to apatite from the cooler part of the system. The abundances of Cl and other 

fluid compatible elements (e.g., Sr, Mn, As) are enriched in apatite rims. Apatite contains 

inclusions of monazite and ThSiO4, which likely formed by supersaturation on grain boundaries 

during mineralization. The chemistry of apatite from Los Colorados is consistent with a genetic 

model wherein the F-rich domains of apatite record growth of apatite microlites from a silicate 

melt, and the Cl-rich domains record growth of apatite from a magmatic-hydrothermal fluid during 

ascent of a magnetite-apatite-fluid suspension through the Los Colorados fault. 
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Figure 2.1: (A) Location of the Los Colorados iron oxide – apatite (IOA) deposit and the Chilean Iron Belt (inset). The major structures 
of the Atacama Fault System are highlighted in the map (modified from Knipping et al. 2015a). (B) Plan view of the Los Colorados 
IOA deposit (modified from Reich et al. 2016).  
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Figure 2.2: (A) Backscattered electron (BSE) image of a representative apatite grain from drill 
core LC-04 (sample 04-99.5B in Knipping et al., 2015a, b) taken from the western massive 
magnetite ore body. The spots identified on the grain indicate the electron probe micro-analyzer 
(EPMA) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) analysis 
locations. (B) EDS map of the distribution of Cl in the apatite grain reveals variations in the 
distribution of Cl. (C) Cathodoluminescence (CL) images of the same apatite grain reveal 
variations in luminescence in different regions of the grain. (Comparison of (B) and (C) indicates 
that the areas of bright luminescence correspond to the areas of low Cl concentration. Note that 
the image in B is a false color image. 
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Figure 2.3: The concentrations of F, Sr and Ce versus the concentration of Cl for apatite from the pit (A, C, E) and drill core B (B, D, 
F) samples, respectively. Each spot represents an individual EPMA and LA-ICP-MS analysis. 
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Figure 2.4: (A) Ternary plot showing significant intracrystalline variability of F, Cl, and 
calculated OH based on individual spot analyses among all apatite grains analyzed from Los 
Colorados. The figure contains two layers of data. The first layer contains data for all apatite grains 
analyzed, while the second layer, contains data for representative apatite grains from the three 
samples (those presented in Figs. 2, and Figs. 2.A1, and 2). (B) Measured concentrations of F, Cl, 
and calculated OH are compared with the fields representing the range of compositions for apatite 
grains from mafic layered intrusions worldwide (fields after Boudreau et al. 1995). (C) and (D) 
are ternary plots comparing the distribution of F, Cl, and OH in the cores and rims, respectively, 
of all apatite grains from Los Colorados. It is evident from the plots that spot analyses plot in 
different fields. Further, the composition of the cores and rims of the apatite grains are resolved in 
F-Cl-OH space. For example, analyses of cores from apatite grains from all three samples plot in 
regions where XCl < 0.5, such as Munni Munni and Duluth, while analyses from apatite grain rims 
plot in Cl rich regions such as the ‘Stillwater & Bushveld apatite below major PGE - bearing zones’ 
and on the Cl-OH join of the ternaries. 
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Figure 2.5: Average chondrite normalized (Sun and McDonough 1989) rare earth element (REE) patterns for all apatite grains from Los 
Colorados.  
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Figure 2.6: (A, B, C) Histograms of measured Cl intensity in representative apatite grains from each sample show two distinct 
populations. The x-axis represents pixel intensity and the y-axis represents the absolute number of pixels. The histograms depict the 
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pixel intensity distributions in the corresponding smoothed EDS Cl Kα maps (D, E, F). Color in the maps corresponds to Cl abundance. 
The bimodal Cl intensity distributions indicate the presence of Cl-rich (rim) and Cl-poor (core) populations, which are seen in the 
chemical maps to correspond to spatially coherent domains, separated by a boundary zone with intermediate values. The dots on the 
smoothed Cl Kα maps indicate the location of EPMA and LA-ICP-MS spot analyses.   See Appendix 2.1 for details.
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Figure 2.7: Comparison of minor and trace element abundances in the cores of apatite from the drill core and pit samples. The 
concentration distributions are statistically distinguishable (p << 0.05, shown in bold) for nearly every element reported, except for S 
and Si. The statistically significant difference in elemental concentrations in the cores of apatite from the pit and drill core samples most 
plausibly reflects differences in the temperature of the fluids from which these apatite grew or reequilibrated. The enrichment of elements 
in the cores of apatite from the drill core sample obtained from the massive magnetite ore body is consistent with growth of these apatite 
grains from a higher temperature fluid relative to the (disseminated) apatite grains in the brecciated host rock from which the pit sample 
was collected.
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Figure 2.8: The concentrations of (A) V vs. Sr, and (B) Mn vs. Yb in apatite from Los Colorados and other IOA deposits (Aoshan, 
Great Bear, and Durango). Data for comparison taken from Mao et al. 2016. 
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3.1     Abstract  

The textures of outcrop and near-surface exposures of the massive magnetite ore bodies (> 

90 vol% magnetite) at the Plio-Pleistocene El Laco iron oxide - apatite (IOA) deposit in northern 

Chile are similar to basaltic lava flows and have compositions that overlap high-temperature and 

low-temperature hydrothermal magnetite. Existing models — liquid immiscibility and complete 

metasomatic replacement of andesitic lava flows — attempt to explain the genesis of the ore bodies 

by entirely igneous or entirely hydrothermal processes. Importantly, those models were developed 

by studying only near-surface and outcrop samples. Here, we present the results of a 

comprehensive study of samples from outcrop and drill core that require a new model for the 

evolution of the El Laco ore deposit. Backscattered electron (BSE) imaging, electron probe 

microanalysis (EPMA) and laser ablation inductively coupled plasma mass spectrometry (LA-

ICP-MS) were used to investigate the textural and compositional variability of magnetite and
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apatite from surface and drill core samples in order to obtain a holistic understanding of textures 

and compositions laterally and vertically through the ore bodies.  Magnetite was analyzed from 39 

surface samples from five ore bodies (Cristales Grandes, Rodados Negros, San Vicente Alto, Laco 

Norte, and Laco Sur) and 47 drill core samples from three ore bodies (Laco Norte, Laco Sur, and 

Extensión Laco Sur). The geochemistry of apatite from 8 surface samples from three ore bodies 

(Cristales Grandes, Rodados Negros, and Laco Sur) was investigated. Minor and trace element 

compositions of magnetite in these samples are similar to magnetite from igneous rocks and 

magmatic-hydrothermal systems. Magnetite grains from deeper zones of the ore bodies contain >1 

wt% titanium, as well as ilmenite exsolution lamellae and interstitial ilmenite. The concentrations 

of trace elements (e.g., Mn, Al, Ti, V) in magnetite from surface outcrops and intermediate to 

shallow depths, e.g. 0 - 100 m, are consistent with growth from a cooling magmatic-hydrothermal 

fluid. The ilmenite exsolution lamellae, interstitial ilmenite, and igneous-like trace element 

concentrations in magnetite from the deeper parts of the ore bodies are consistent with primary 

crystallization of magnetite–ulvöspinelss from a silicate melt. The systematic decrease of trace 

element concentrations in magnetite from intermediate to shallow depths are consistent with 

progressive growth of magnetite from a cooling magmatic-hydrothermal fluid. Apatite grains from 

surface outcrops are F-rich (typically >3 wt%) and have compositions that overlap igneous and 

magmatic-hydrothermal apatite. Magnetite and apatite grains contain mineral inclusions (e.g., 

monazite and thorite). Magnetite grains commonly meet at triple junctions, which preserves 

evidence for reequilibration of the ore minerals with hydrothermal fluid during or after 

mineralization. The data presented here are consistent with genesis of the El Laco ore bodies via 

shallow emplacement and eruption of magnetite-bearing magmatic-hydrothermal fluid 

suspensions that were mobilized by decompression-induced collapse of the volcanic edifice.  
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3.2     Introduction 

Kiruna-type iron oxide - apatite (IOA) deposits are an important source of iron, and a 

potentially important source of rare earth elements (REE). IOA deposits are found in districts 

globally and are commonly hosted in volcanic and plutonic rocks in convergent margins and rift-

related environments (Williams et al., 2005; Groves et al., 2010; Barton, 2014; Simon et al., 2018). 

El Laco, the youngest known and best-preserved IOA deposit, is one of the most enigmatic ore 

deposits on Earth. It has perplexed geologists since Park (1961) first described textures of the ore 

bodies as resembling a magnetite “flow”.  

Currently, there are three hypotheses for the formation of the El Laco ore bodies. One 

hypothesis invokes crystallization of magnetite from erupted H2O-saturated, Cl-, S-, F-rich iron 

oxide magma that formed as a result of liquid immiscibility (Nyström and Henríquez, 1994; 

Naslund et al., 2002; Naranjo et al., 2010; Tornos et al., 2016; Velasco et al., 2016; Broughm et 

al., 2017; Xie et al., 2019). A second hypothesis invokes complete, texture-preserving replacement 

of andesitic volcanic and hypabyssal rocks by magnetite that precipitated from a hydrothermal 

fluid (Rhodes and Oreskes, 1995; Rhodes and Oreskes, 1999; Rhodes et al., 1999; Sillitoe and 

Burrows, 2002; Dare et al., 2015). A third, hybrid hypothesis invokes early crystallization of 

magnetite microlites from a silicate melt followed by exsolution of a magmatic volatile phase that 

attaches to the microlites forming a magnetite-rich suspension. This suspension ascends and is 

later injected into the crust and vented to the surface owing to collapse of the volcanic edifice 

(Ovalle et al., 2018). This third hypothesized process results in the formation of large breccia 

bodies at depth and massive magnetite bodies at shallow levels that exhibit igneous and 

hydrothermal textural and geochemical features, respectively.  
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 In this study, we have attempted to distinguish among these alternative models by 

evaluating textural and chemical characteristics of magnetite — the primary ore mineral — and 

apatite — a common gangue mineral — at El Laco. Magnetite samples investigated in the study 

came from surface outcrops at Cristales Grandes (CG), Rodados Negros (RN), San Vicente Alto 

(SVA), Laco Norte (LN), and Laco Sur (LS), and from drill cores from the Laco Norte (LN), Laco 

Sur (LS), and Extensión Laco Sur ore bodies. This study is the second one to incorporate samples 

from depth at El Laco (Ovalle et al., 2018). Apatite samples used in this study came from outcrop 

samples at Cristales Grandes (CG), Rodados Negros (RN), and Laco Sur (LS). The geochemistry 

and textures of magnetite and apatite reveal that the ore bodies formed by a combination of 

magmatic and magmatic-hydrothermal processes that is consistent with the hybrid 

magmatic/magmatic-hydrothermal model proposed by Ovalle et al. (2018). 

3.3     Geological Background 

The El Laco volcanic complex (ELVC) and associated IOA deposit are located east of the 

active volcanic arc in the Central Andes along the western South American continental margin 

(Fig. 3.1A; Nyström and Henríquez, 1994; Rhodes and Oreskes, 1995; Naslund et al., 2002; 

Sillitoe and Burrows, 2002; Tornos et al., 2016; 2017; Ovalle et al., 2018). The volcanic host rocks 

and the ore bodies of the ELVC have yielded ages ranging from 5.3 ± 1.9 Ma to 1.6 ± 0.5 Ma (K-

Ar), and 2.1 ± 0.1 Ma (apatite fission track), respectively (Maksaev et al., 1988; Naranjo et al., 

2010). The volcanic rocks in the ELVC are andesitic to dacitic in composition with the ore bodies 

distributed around the Pico Laco volcanic edifice (Fig. 3.1B; Naslund et al., 2002; Tornos et al., 

2016; Ovalle et al., 2018). The El Laco ore deposit consists of seven individual ore bodies with a 

total estimated resource endowment of ~734 million tons (Mt) at an average grade of ~49% Fe 

(CAP Mineria, 2016).  
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Magnetite is the dominant iron oxide in the El Laco deposit, with modal abundances >90 

vol%, and apatite, scapolite, and diopside are modally minor phases (Nyström and Henriquez, 

1994; Rhodes and Oreskes, 1995; Rhodes and Oreskes, 1999; Rhodes et al., 1999; Naslund et al., 

2002; Ovalle et al., 2018). Magnetite is locally altered to hematite and goethite in the upper 40 to 

50 m of the ore bodies (Ovalle et al., 2018). The ore bodies have distinct morphologies and have 

been classified as: (1) flows with feeder dikes (Laco Norte, Laco Sur, San Vicente Alto), (2) dome-

like intrusions (San Vicente Bajo), and (3) dikes (Cristales Grandes, Rodados Negros) (Nyström 

and Henriquez, 1994). The massive magnetite ore bodies with flow morphology in outcrops 

contain what appear to be gas escape tubes, and the magnetite contains unfilled vesicles, are coarse 

grained, and have spherulitic and dendritic textures. Logging of drill cores from Laco Sur and Laco 

Norte indicate that the outcropping massive magnetite ore bodies transition to breccia bodies at 

depths greater than 40 m (Ovalle et al., 2018). Razor-sharp chilled contacts are observed between 

the massive magnetite and the host andesite and friable pyroclastic ore material, including iron 

oxide ash, is observed near the ore bodies (Henriquez and Martin, 1978; Nyström and Henriquez, 

1994; Naslund et al., 1997; 1998; 2002; Mungall et al., 2018; Ovalle et al., 2018; Xie et al., 2019). 

The host andesite along the margins of the massive magnetite ore bodies contains metasomatic 

aureoles, which are characterized by an alteration assemblage containing pyroxene, magnetite, 

quartz, and scapolite (Vivallo et al., 1994; Naslund et al., 2002; Velasco et al., 2016). The alteration 

assemblages observed in the host rocks below the flow-like ore bodies include clays (illite, 

smectite), pyrophyllite, quartz, feldspar, and magnetite veinlets without pyroxene fringes (Broman 

et al., 1999; Naslund et al. 2002). The open spaces in the extrusive ore bodies contain alteration 

assemblages of quartz, tridymite, amorphous silica, hematite, Na-rich alunite, iron phosphates, 

labradorite, sanidine, and rutile (Naslund et al., 2002). The host rocks are also overprinted by post-
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mineralization low temperature hydrothermal alteration that is manifested as silicification 

(characterized by quartz, tridymite, cristobalite, alunite, jarosite, K-feldspar, anatase, iron 

phosphates, iron sulphates), advanced argillic alteration (characterized by quartz, alunite, kaolinite, 

gypsum, cristobalite, smectite, bassanite, pyrite, pyrophyllite), and the formation of fumarolic 

deposits (characterized by gypsum, alunite, jarosite, native sulfur, cristobalite, tridymite, calcite) 

(Vivallo et al., 1994; Broman et al., 1999; Naslund et al., 2002; Sillitoe and Burrows, 2002). 

3.4     Sample Selection and Methodology 

We collected magnetite-rich ore samples from outcrops at the Cristales Grandes (CG), 

Rodados Negros (RN), San Vicente Alto (SVA), Laco Norte (LN), and Laco Sur (LS) ore bodies, 

and drill core samples at Laco Norte, Laco Sur, and Extensión Laco Sur (Fig. 3.1B). We analysed 

magnetite grains from outcrop samples and representative drill core samples. We studied apatite 

grains collected from outcrop at Cristales Grandes, Rodados Negros, and Laco Sur. Outcrop 

magnetite samples were examined by using an optical microscope and then crushed and separated 

into two aliquots: one aliquot was used in this study, and the second in a separate study that 

measured Fe, H, and O stable isotope concentrations (Childress, 2019). For this study, a 

combination of thin and thick sections and grain mounts were prepared for detailed petrographic 

inspection and micro-textural observations of magnetite and apatite grains. 

3.4.1     Imaging and Electron Probe Micro-Analyses 

3.4.1.1     Magnetite 

Magnetite grains from outcrop samples at the five ore bodies (Cristales Grandes, Rodados 

Negros, San Vicente Alto, Laco Norte, Laco Sur) were characterized by back-scattered electron 

(BSE) imaging and energy-dispersive X-ray spectrometry (EDS) elemental mapping by using the 
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JEOL JSM – 7800FLV Field-Emission Scanning Electron Microscope (FE-SEM) at the University 

of Michigan Electron Microbeam Analysis Laboratory (EMAL) with an accelerating voltage of 

15kV and a medium beam current. Drill core samples were characterized by using a Model FEI 

Quanta 250 SEM at Universidad de Chile with an accelerating voltage of 12.5 kV. Quantitative 

compositional analyses of all magnetite grains were performed by using the EMAL Cameca 

SX100 electron probe micro-analyzer (EPMA) in wavelength-dispersive X-ray spectrometry 

(WDS) mode. The concentrations of Fe, Ti, V, Mn, Ca, P, Mg, Cr, Al, and Si were measured by 

using an accelerating voltage of 20 keV, a beam current of 30 nA, and a focused electron beam. 

The counting times and standards used are presented in Table 3.A1. Vanadium measurements were 

corrected for the spectral overlap of the V Kα X-ray line by the Ti Kβ. A total of 1917 individual 

EPMA spot analyses were conducted on representative iron oxide grains from the outcrop and drill 

core samples collected at the 5 ore bodies. These EPMA data are presented in the electronic 

supplementary materials of Ovalle et al. (2018).   

3.4.1.2     Apatite 

The apatite grains from the three ore bodies (Cristales Grandes, Rodados Negros, Laco 

Sur) were investigated by using a combination of BSE and cathodoluminescence (CL) imaging, 

and EDS element mapping, by using an accelerating voltage of 20 kV on the FE-SEM in EMAL. 

Quantitative compositional analyses were made by using the EMAL EPMA and the Cameca 

SX100 EPMA at the American Museum of Natural History in New York. Line transects and spot 

analyses were performed on apatite grains in thin section (Laco Sur) and epoxy mounts (Cristales 

Grandes and Rodados Negros), and the measurements were made by using an excitation voltage 

of 15 keV, a beam current of 10 nA, and a spot size of 2-10 μm. The standards, counting times, 

and analytical conditions are presented in Table 3.A2. Calcium, P, Cl, and F were analyzed first in 
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the analytical sequence as suggested by Goldoff et al. (2012) to mitigate elemental migration 

during the analyses. The hydroxide (OH) content of apatite for individual spot analyses was 

calculated using the mass balance method of Ketcham et al. (2015), which uses the measured Cl 

and F concentrations and the assumption that the halogen site in apatite is occupied by XF + XCl + 

XOH = 1. 

3.4.2     LA-ICP-MS ANALYSES 

Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) analyses of 

magnetite and apatite were performed by using a Thermo Scientific iCapQ quadrupole inductively 

coupled plasma mass spectrometer (ICP-MS), coupled with a 193 nm ArF excimer laser at the 

Andean Geothermal Center of Excellence (CEGA) laboratory at Universidad de Chile. The LA-ICP-

MS analyses were performed along the same transects that were previously analyzed by EPMA in 

order to obtain trace element chemistry to complement the major and minor element chemistry 

obtained via EPMA. The concentrations of the elements analyzed, and their associated limits of 

detection were determined by using the Iolite software package (Paton et al., 2011) based on 

Longerich et al. (1996). Each LA-ICP-MS transient signal was evaluated for the presence of 

inclusions, and only inclusion-free signals were considered. 

3.4.2.1     Magnetite 

The concentrations of Na, Mg, Al, Si, P, S, K, Ca, Sc, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Ga, 

Ge, As, Se, Kr, Rb, Sr, Y, Zr, Nb, Mo, Ag, Cd, Sn, Sb, Te, Ba, Hf, Ta, Au, Pb, Th, U, and rare 

earth elements (REEs; La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) were measured 

in magnetite from outcrop and drill core samples from the five ore bodies. Additionally, tungsten 

was measured in magnetite grains from the drill core samples. A beam diameter of 40 μm was 

used to conduct spot analyses. The iron concentrations previously quantified by using EPMA were 
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used as the internal standard for LA-ICP-MS calibration, and the analyses of the samples were 

bracketed at the start and end of each run by pairs of analyses of the GSE-1G (Jochum et al., 2005) 

reference glass. A pair of analyses on the NIST-610 or GSE-1D reference glasses were done prior 

to the spot analyses, and after the initial pair of analyses of the GSE-1G reference glass, to evaluate 

the accuracy of the analyses (Jochum et al., 2005, 2011). Details of the analytical protocol are 

presented in Appendix – 3.1. 

3.4.2.2     Apatite 

The concentrations of Na, Mg, Al, Si, P, S, Cl, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ge, 

As, Rb, Sr, Y, Zr, Nb, Mo, Xe, Ba, Hf, Ta, W, Os, Pb, Th, U, and REEs (La, Ce, Pr, Nd, Sm, Eu, 

Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) were measured in apatite from Cristales Grandes and Rodados 

Negros. No LA-ICP-MS analyses were performed on apatite from Laco Sur because the grains 

were too small to analyze. A beam diameter of 30 μm was utilized for the analyses. Calcium 

concentrations previously quantified by using EPMA were used as the internal standard for LA-

ICP-MS calibration. The NIST-610 reference glass was used as the bracketing external calibration 

standard, and the Durango apatite (Chew et al., 2016) was measured twice prior to the analysis of 

the samples and after the initial analyses of the NIST-610 (Jochum et al., 2011) glass during each 

run to evaluate the accuracy of the analyses. Details of the analytical conditions are presented in 

Appendix – 3.1. 

3.5     Results 

3.5.1     Magnetite textures and associated minerals 

BSE imaging of surface samples revealed the presence of magnetite with differing minor 

and trace element compositions and the presence of martite/hematite and goethite in some samples 

(Fig. 3.2). Light gray magnetite in the BSE images in samples from Cristales Grandes (magnetite 



63 

S1) contains nano-inclusions, whereas nano-inclusions were not observed in light gray magnetite 

(magnetite S2) from other ore bodies (Fig. 3.2B, C, D, E, F, G, H). In BSE images from all ore 

bodies, we observe magnetite A, which is a darker shade of gray compared to magnetite S1 and 

S2 (Fig. 3.2F, H). Hematite was observed in samples from Cristales Grandes, San Vicente Alto, 

Laco Sur, and Laco Norte (Fig. 3.2A, C, G), but not in samples from Rodados Negros. Goethite 

was identified in surface samples from all ore bodies except Cristales Grandes and Rodados 

Negros (Fig. 3.2C, G, H). Magnetite grains in surface samples from all ore bodies commonly meet 

at triple junctions and contain mineral inclusions (Fig. 3.2H). Apatite occurs as inclusions and/or 

within fractures in magnetite from Cristales Grandes, Rodados Negros, Laco Sur, and Laco Norte 

(Fig. 3.2D). Pyroxene is present as intergrowths in magnetite grains from Cristales Grandes, 

Rodados Negros, and San Vicente Alto (Fig. 3.2A). Monazite is present as inclusions and/or within 

fractures in magnetite grains from San Vicente Alto, Laco Norte, and Laco Sur (Fig. 3.2B, D). 

Quartz and an iron phosphate phase, which appear to be the result of the alteration of apatite, are 

present as inclusions in some magnetite grains from San Vicente Alto and Laco Norte (Fig. 3.2B). 

Thorite is present as inclusions in some magnetite grains from Laco Norte (Fig. 3.2C). A Nb-rich 

oxide phase with a composition similar to columbite is present as inclusions within one magnetite 

sample from Laco Sur (Fig. 3.2F). Magnetite in surface samples contain visible microporosity.  

 Textures observed by BSE imaging of samples from drill core at Laco Norte and Laco Sur 

are described in detail by Ovalle et al. (2018) and shown here in Fig. 3.2. In ore samples from the 

deepest zones (>152 m) at Laco Sur, Extensión Laco Sur, and Laco Norte, we observe 

agglomerates of titanomagnetite grains that range in size from 100 - 300 µm and contain well-

developed trellis- and sandwich-textured ilmenite exsolution lamellae (magnetite-α) (Fig. 3.2I), 

and euhedral magnetite grains with inclusion-rich cores, surrounded by inclusion-free rims 
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(magnetite-β) (Fig. 3.2M). Magnetite grains from the deepest samples at Laco Sur contain more 

ilmenite exsolution lamellae than samples from Laco Norte (Fig. 3.2P). In samples from 

intermediate depths (66 m - 144 m), we observe magnetite grains up to 500 µm in size that each 

have an inclusion-free microcrystalline core (magnetite-X) surrounded by alternating layers of 

inclusion-rich and inclusion-poor magnetite (magnetite-Y) (Fig. 3.2J). In the upper 65 m of the 

deposit we observe agglomerates of euhedral magnetite grains (magnetite-Z) that are weakly to 

moderately oxidized to hematite/martite along rims and in fractures (Fig. 3.2N). Magnetite grains 

from the upper 65 m of drill core also contain visibly abundant microporosity. Magnetite in surface 

samples from Laco Sur and Laco Norte are replaced by hematite and minor goethite, whereas 

samples at depth show little or no alteration. Rare scapolite inclusions are observed in magnetite 

from the deep zones at Laco Sur and Laco Norte. Thorite inclusions are observed in magnetite at 

intermediate depths at Laco Sur and Laco Norte (Fig. 3.2K), and clinopyroxene inclusions are 

observed in magnetite at all depths in the drill cores from Laco Sur and Laco Norte.  

3.5.2     Magnetite chemistry 

Major, minor, and trace element compositions for magnetite from all samples are presented 

in Table 3.A2 and average, minimum and maximum values in Table 3.1. The concentrations of 

Au, Ag, Cu, As, Rb, Cd, Sb, Pb, W, Se, Kr, Te, and S were below the limit of detection for many 

analyses. The light gray magnetite (magnetite S1 and S2) observed in BSE images of outcrop 

samples from all ore bodies has average measured Fe concentrations ranging from 69 to 71 wt%, 

and notably have higher concentrations of minor and trace elements compared to hematite and 

goethite. The gray magnetite phase (magnetite A) in samples from Cristales Grandes, Rodados 

Negros, and Laco Sur has average measured Fe concentrations ranging from 69.0 wt% to 69.5 

wt%, and generally has higher silica content than magnetite S1 or S2. The average major and minor 
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element compositions for magnetite from the drill core and surface samples at Laco Sur and Laco 

Norte were previously reported by Ovalle et al. (2018). The measured concentrations of minor and 

trace elements in magnetite from outcrops and drill cores are presented in Table 3.1, and Ti, V, Al, 

Mn, Sn, and Ga concentrations are plotted in Fig. 3.3. The concentrations of Ti, V, Al, Mn, Ga, 

and Sn decrease progressively in magnetite from Cristales Grandes to Rodados Negros to San 

Vicente Alto, whereas the concentration of Ni increases (Fig. 3.3 and Fig. 3.A1). The 

concentrations of Ni, Ti, V, Mn, Co, Ga, and Al in magnetite from Laco Norte generally increase 

with increasing depth in the deposit, whereas the concentration of Sn moderately increases with 

increasing depth. At Laco Sur, the concentrations of Ti, Zn, Al, Cr, Ga, Ni, and V increase from 

surface to depth.  

In Figs. 3.4, 3.5, and 3.A2, we present comparisons of the average concentrations of minor 

and trace elements normalized to bulk continental crust (cf. Rudnick and Gao, 2003) for magnetite 

sampled from outcrop and drill core along with compositional data from Dare et al. (2014) for 

magnetite from Kiruna-type deposits, including El Laco, and magmatic (i.e., intermediate to felsic 

igneous rocks), magmatic-hydrothermal (i.e., porphyry), and low-temperature hydrothermal (i.e., 

banded iron formations and skarns) environments. Magnetite from magmatic, magmatic-

hydrothermal, and low-temperature hydrothermal environments form from fluids with 

temperatures >500 °C, between 300 – 500 °C, and between 200 – 300 °C, respectively (Nadoll et 

al., 2014). The compositions of magnetite from outcrop and drill core samples overlap the fields 

for magnetite from igneous rocks, magmatic-hydrothermal temperature environments, and Kiruna-

type ore deposits. There is minimal overlap between the El Laco samples and low temperature 

hydrothermal magnetite. We highlight that the Ti concentrations of magnetite that contain ilmenite 
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exsolution lamellae (Fig. 3.2I, P) are lower than the original Ti content of magnetite owing to the 

partitioning of Ti into exsolved ilmenite lamellae, which is discussed below. 

In Fig. 3.6, the concentrations of [Al+Mn] and [Ti+V] in magnetite from the surface (A) 

and drill core samples (B) are plotted on the magnetite discriminant diagram of Nadoll et al. (2014). 

Also plotted on Fig. 3.6 are the [Al+Mn] and [Ti+V] concentrations of magnetite from the El Laco 

andesite host (cf. Dare et al., 2015). Colored contours represent the temperatures of crystallization 

of magnetite reported by Nadoll et al. (2014). The concentrations of Al, Mn, Ti, and V are highest 

in magnetite from the host andesite and decrease progressively among the surface samples from 

Cristales Grandes to Rodados Negros to San Vicente Alto (Fig. 3.6A). The [Ti+V] content of 

magnetite from the deepest drill core samples from Laco Sur is similar to igneous magnetite from 

iron-titanium-vanadium (Fe-Ti,V) deposits and trends toward the composition of magnetite from 

the El Laco andesite host, although the drill core samples have lower [Al+Mn] contents (Fig.3. 

6B). Importantly, the original concentrations of Al, Mn, Ti, and V in magnetite would have been 

higher prior to the unmixing of the original magnetite-ulvöspinelss during post-mineralization 

cooling that resulted in the oxy-exsolution of ilmenite lamellae (Buddington and Lindsley, 1964). 

For all magnetite samples from the drill core, [Al+Mn] and [Ti+V] contents decrease from depth 

to surface (Fig. 3.6D).  

3.5.3     Apatite textures and associated minerals 

The apatite grains from Cristales Grandes, Rodados Negros, and Laco Sur are almost 

homogeneous in color in BSE images, except for a few grains from Cristales Grandes which 

exhibit growth zones of lighter color (Fig. 3.7A, C, E). Generally, the apatite in samples from all 

three ore bodies contains varying amounts of microporosity, fractures, and inclusions (Fig. 3.7A, 

C, E). The EDS element maps of the apatite grains indicate homogeneous distribution of Ca and 
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P. The EDS maps indicate a heterogeneous distribution of sulfur in apatite from Laco Sur where 

the concentrations of sulfur are higher near grain boundaries and proximal to cracks within grains 

(Fig. 3.7G). Variations in cathodoluminescence intensity were observed in apatite grains from all 

samples. At Cristales Grandes, most of the apatite grains display purple luminescence, while the 

areas with lighter color in BSE display dark blue luminescence; oscillatory growth zoning is 

observed in CL images in some grains from this ore body (Fig. 3.7B). Apatite grains from Rodados 

Negros display mauve luminescence, while the highly porous regions of the grains display orange 

luminescence (Fig. 3.7D). The apatite from Laco Sur displays purple or blue luminescence in the 

inner portions of the grains, whereas the grain boundaries and areas proximal to cracks, which 

have higher S contents, display dark or minimal luminescence (Fig. 3.7F). Growth zoning is not 

observed in the apatite grains from Rodados Negros and Laco Sur. Monazite is present as 

inclusions and in cracks and on grain boundaries in apatite grains from Cristales Grandes and 

Rodados Negros; these inclusions are more common in the mottled/porous regions of apatite grains 

from Rodados Negros (Fig. 3.7A, C). Small euhedral magnetite grains are observed within 

agglomerates of apatite from Laco Sur (Fig. 3.7E). 

3.5.4     Apatite chemistry 

The major, minor, and trace element compositions for apatite from all samples are 

presented in Table 3A2 and the minimum, maximum, and average compositions are presented in 

Table 3.2. The concentrations of Ti, Sc, Cr, Co, Cu, Zn, Nb, Mo, Xe, W, and Os were below the 

limit of detection for the majority of the analyses. Apatite from Cristales Grandes and Laco Sur is 

fluorapatite (Fig. 3.8). Apatite from Rodados Negros exhibits a larger range of F and Cl 

concentrations, with the porous/mottled regions in apatite grains containing higher concentrations 

of Cl (up to ~2.1 wt%) compared to visually homogeneous portions of the apatite grains that 
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contain lower Cl concentrations (~1.1 wt%). For apatite from Cristales Grandes, regions with 

purple luminescence have higher concentrations of Na, V, Fe, Th, and total REEs, while the 

regions with blue luminescence have higher concentrations of Si. The regions of mauve 

luminescence in apatite at Rodados Negros have higher concentrations of F, calculated OH, Th, 

and total REEs, while the regions of orange luminescence have higher Fe and Cl contents. For the 

apatite from Laco Sur, the regions with dark luminescence have higher average sulfur (8089 ppm) 

and iron contents than the regions with purple/blue luminescence. 

3.6     Discussion 

3.6.1     Magnetite minor and trace element compositions 

Magnetite has inverse spinel structure with tetrahedral and octahedral sites that 

accommodate ferric iron, and ferric and ferrous iron, respectively. The two cation sites in 

magnetite allow it to incorporate a wide range of cations that substitute for ferric and ferrous iron 

based on charge and size considerations (Dupuis and Beaudoin, 2011; Nadoll et al., 2014). 

Comprehensive investigations of the minor and trace element composition of magnetite from 

mineral systems in which the temperature of magnetite crystallization is inferred from the 

homogenization temperatures of fluid inclusions hosted in paragenetically equivalent phases, such 

as quartz and calcite, were used by Nadoll et al. (2014) to propose a discriminant diagram that 

distinguishes magnetite from different ore deposits based on minor and trace element chemistry. 

This discriminant diagram allows the chemical composition of magnetite to be used to approximate 

its temperature of crystallization. Generally, the minor and trace element contents of magnetite 

decrease as the temperature of the parent fluid (i.e., silicate melts and hydrothermal fluids) 

decrease (Nadoll et al., 2014). The use of the discriminant diagram of Nadoll et al. (2014) and 

comparisons of our data to that from other studies that investigate magnetite chemistry from 
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different environments (e.g., Dupuis and Beaudoin, 2011; Dare et al., 2014; Knipping et al., 2015b; 

Wen et al., 2017) allow us to gain insights about the evolution of the temperatures of the ore fluids 

that can then be linked to genetic processes for understanding ore genesis.  

3.6.2     Surface to depth chemical variability of magnetite 

The concentrations of minor and trace elements in magnetite decrease systematically from 

depth to surface for drill core samples from Laco Norte and Laco Sur (Fig. 3.6D). In surface 

samples, Ti concentrations are highest at Cristales Grandes and progressively decrease in samples 

from Rodados Negros to San Vicente Alto (Figs. 3.3A and 3.6). The average Ti concentrations in 

surface samples at Laco Sur and Laco Norte are 200 - 300 ppm and are generally consistent with 

published studies that focused on surface samples from El Laco (e.g., Nyström and Henriquez, 

1994; Dare et al., 2015; Velasco et al., 2016; Broughm et al., 2017; Ovalle et al., 2018). However, 

the data reported here indicate that magnetite A and S1 from Cristales Grandes have average Ti 

concentrations of ~1000 ppm and ~4000 ppm, and range up to ~7300 ppm; these values are much 

higher than those found in previous studies. The Ti concentrations reported here for magnetite 

from Cristales Grandes are consistent with Ovalle et al. (2018) who reported Ti concentrations 

>0.5 wt% in magnetite samples from deeper levels of Laco Sur and Laco Norte. Those authors 

report that the Ti concentrations in surface samples from Laco Sur and Laco Norte are low, i.e., 

<0.1 wt%, but that magnetite at depths >100 m in those ore bodies contains as much as >1 wt% Ti 

and also contain ilmenite exsolution lamellae. The presence of exsolved ilmenite, which can result 

from oxy-exsolution during cooling (Buddington and Lindsley, 1964), indicates that the original 

concentration of Ti in magnetite was higher than the values reported by Ovalle et al. (2018). We 

highlight that the Ti concentrations measured by LA-ICP-MS in the current study are in good 

agreement with the Ti concentrations determined by EPMA (Ovalle et al., 2018) (Fig. 3.A3).  
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Generally, the concentrations of V, Mg Al, Mn, Cr, and Ga in magnetite from surface 

samples are highest at Cristales Grandes and decrease progressively in samples from Rodados 

Negros and San Vicente Alto, following the same trend described above for Ti (Fig. 3.3; Fig. 

3.A1). The concentrations of Mn and Zn in magnetite are highest at Rodados Negros and are 

progressively lower in samples from Cristales Grandes and San Vicente Alto (Fig. 3.3; Fig. 3.A1). 

For the drill core samples, the concentrations of Ti, V, Al, Mn, Ga, and Cr at Laco Sur and Laco 

Norte decrease systematically from depth to surface (Fig. 3.3; Fig. 3.A1). The Ti and Al 

concentrations of magnetite from Cristales Grandes and the drill core samples from deep (150 - 

200 m) and intermediate (65 - 145 m) depths are consistent with concentrations reported by Nadoll 

et al. (2014) for magnetite from igneous and high temperature magmatic-hydrothermal 

environments (Fig. 3.6). The V, Mn, and Cr concentrations of magnetite from all El Laco ore 

bodies at all depths are similar to concentrations reported by Nadoll et al. (2014) for igneous and 

magmatic-hydrothermal magnetite, although the Cr content in magnetite from El Laco is generally 

low (Figs. 3.3, 3.A1). The presence of Ti-enriched magnetite in the deeper parts of the ore bodies 

(Fig. 3.2) and the systematic decrease of minor and trace element concentrations in magnetite from 

the ore bodies (Fig. 3.6) suggest that both igneous and magmatic-hydrothermal processes played 

a role in forming the El Laco ore deposit. 

3.6.3     Comparisons of El Laco magnetite geochemistry to magnetite from other environments 

The compositions of magnetite at El Laco are compared in Figures 3.4, 3.5, and 3.A2 with 

magnetite compositions from other Kiruna-type deposits, igneous rocks, and magnetite that grew 

from high-temperature and low-temperature hydrothermal fluids on the multi-element plots 

proposed by Dare et al. (2014). The compositional field for magmatic magnetite comprises data 

for magnetite that crystallized from silicate melts of intermediate and felsic compositions (Dare et 
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al., 2014). The field for low-temperature hydrothermal magnetite comprises data for magnetite 

from banded iron formations (BIFs), and Fe-rich skarns, whereas the field for high-temperature 

hydrothermal magnetite comprises data for magnetite from iron oxide copper gold (IOCG) and 

porphyry Cu deposits (Dare et al., 2014). The compositional field for Kiruna-type magnetite 

comprises data for magnetite from the El Laco, El Romeral, and Kiirunavaara IOA deposits. The 

magnetite compositions reported here are most consistent with magnetite formed in magmatic-

hydrothermal environments. There is also considerable overlap with the data for igneous magnetite 

(Figs. 3.4 and 3.5, Fig. 3.A2). The continental-crust normalized concentrations of all plotted 

elements overlap the field for high-temperature hydrothermal environments, except for Si, Ca, Y, 

Mg, P, Zr, Hf, and Ge that are slightly elevated, and Ga and Ti that are slightly depleted, relative 

to the published data. The crust-normalized concentrations of all plotted elements overlap the field 

for igneous magnetite except for Si, Ca, Y, P, and Ge that are elevated in some samples, and Al, 

Ga, Mn, Ti, and Zn that are slightly depleted in some samples relative to published data. As 

expected, the geochemical data for surface samples from Cristales Grandes, Rodados Negros, and 

San Vicente Alto, and surface and drill core samples from Laco Sur and Laco Norte overlap the 

signature for magnetite from Kiruna-type deposits. The continental-crust-normalized 

concentrations of Zr, Hf, and Ge determined in the present study are elevated relative to data 

reported by Dare et al. (2014), whereas the concentration of Ga in samples from San Vicente Alto 

is slightly lower than that reported by those authors. We note that the overlap between the trace 

element signature for magnetite from outcrop and drill core samples reported in this study, and 

that for magmatic-hydrothermal and magmatic magnetite is consistent with magmatic and high-

temperature hydrothermal fluids having played a role in IOA ore genesis.  
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The [Al+Mn] and [Ti+V] data for magnetite from the five ore bodies investigated are 

compared in Fig. 3.6 with data for magnetite from the andesite host rocks (cf. Dare et al., 2015) 

and magnetite from a variety of different ore forming environments (Nadoll et al., 2014). 

Magnetite data for Cristales Grandes, Rodados Negros, and the shallow massive magnetite body 

at Laco Sur plot in the Kiruna field (Fig. 3.6A). Magnetite data from surface samples of all ore 

bodies plot in the IOCG field (Fig. 3.6A). Data for surface samples at Rodados Negros, Laco Sur, 

and Laco Norte plot in the BIF field, and a few data for magnetite from Cristales Grandes, Rodados 

Negros, and the deep samples at Laco Sur and Laco Norte plot in the Skarn field. Magnetite from 

the deep levels of Laco Norte and the deep- and intermediate-levels of Laco Sur (Fig. 3.6B) plot 

in the igneous Fe-Ti/V field, and some samples from Laco Sur have [Ti+V] contents that overlap 

magnetite from the El Laco andesite host rocks (Fig. 3.6B). Data for magnetite from Cristales 

Grandes, Rodados Negros, intermediate depths of Laco Norte, and all depths of Laco Sur plot in 

the porphyry field. Our data for magnetite from the same ore bodies plot in fields for different ore 

deposit types. This result highlights that this discriminant diagram does not successfully identify 

magnetite from these ore deposits. Rather, the comparisons in Fig. 3.6 reveal differences of 

[Al+Mn] and [Ti+V] among different ore bodies at El Laco as well as systematic decreases of 

these elements among samples within individual ore bodies that can be used to infer differences in 

temperature within and among the ore bodies. The compositions of magnetite from the dike-like 

ore bodies at Cristales Grandes and Rodados Negros and from the flow-like ore bodies (San 

Vicente Alto, Laco Sur, and Laco Norte) record crystallization at temperatures >500 °C, 300 - 500 

°C, and 200 - 300 °C , respectively  (Fig. 3.6C, D; Nadoll et al., 2014). The temperatures inferred 

from magnetite chemistry for Rodados Negros are consistent with homogenization temperatures 

of fluid inclusions hosted in apatite from that ore body (cf. Broman et al., 1999). Overall, the 
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considerable overlap for all samples in [Al+Mn] and [Ti+V] space is consistent with magnetite 

that grew from a cooling magmatic-hydrothermal fluid.  

In Fig. 3.9, the V and Ti contents of magnetite grains from the ore bodies and andesite host 

(cf. Broughm et al., 2017) at El Laco and the Láscar dacite (cf. Broughm et al., 2017) are plotted 

along with fields that define the range of V and Ti in magnetite from magmatic and hydrothermal 

environments (cf. Knipping et al., 2015b). The Ti content of magnetite is strongly controlled by 

temperature, while the V content is controlled by oxygen fugacity (Lindsley, 1991; Nielsen et al., 

1994; Toplis and Carroll, 1995; Balan et al., 2006; Bordage et al., 2011). Nadoll et al. (2014) 

showed that the concentrations of both Ti and V in magnetite decrease with decreasing magnetite 

crystallization temperature. The V and Ti contents of magnetite from deep and intermediate depths 

at Laco Sur and Laco Norte, in addition to data for some surface samples from Cristales Grandes 

and Rodados Negros plot in the field for igneous magnetite (Fig. 3.9). The V and Ti contents of 

surface samples from Cristales Grandes, Rodados Negros, San Vicente Alto, Laco Norte, and Laco 

Sur, in addition to data for massive magnetite collected 35 m below surface at Laco Sur, plot in 

the area where the igneous and hydrothermal fields overlap (Fig. 3.9). A few data points for 

magnetite from San Vicente Alto plot in the field for hydrothermal magnetite, and some data from 

surface samples from all ore bodies plot outside the fields in the low Ti region of the plot (Fig. 

3.9). The distribution of data for samples from the five ore bodies is similar to that reported by 

Broughm et al. (2017) who found an almost identical spread of V and Ti concentrations at El Laco. 

Notably, the data reported here demonstrate that magnetite in the deeper levels of Laco Sur, 

Extensión Laco Sur, and Laco Norte has Ti concentrations that overlap those for igneous magnetite 

from the El Laco andesite host and nearby Láscar dacite (Fig. 3.9B; Broughm et al., 2017).  
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Nadoll et al. (2014) reported that Ti, V, Al, Sn, and Ga concentrations are highest in 

igneous magnetite and decrease systematically in magnetite that forms in hydrothermal systems as 

a function of decreasing temperature. Salazar et al. (2019) also report that the V and Ga 

concentrations in magnetite from the Cerro Negro Norte IOA deposit in the Chilean Iron Belt 

display a cooling trend from magmatic to hydrothermal conditions. In Fig. 3.10, the concentrations 

of Ti, V, Al, and Sn are each plotted against Ga. The data for the El Laco ore bodies indicate 

decreasing Ti, V, Al, and Ga concentrations in surface samples from Cristales Grandes, to Rodados 

Negros to San Vicente Alto (Fig. 3.10). The concentrations of Ga in drill core samples from Laco 

Sur and Laco Norte decrease from depth to surface, while the Sn concentrations have an average 

value of ~10 ppm (Fig. 3.10D). However, a subset of the data for the surface samples from Laco 

Norte and Laco Sur, and deep drill core samples from Laco Sur has increased Sn content similar 

to that observed in hydrothermal magnetite from the Mg-Skarn ore at the Santa Rita deposit and 

in igneous magnetite from the Henderson Climax-type Mo deposit as reported by Nadoll et al. 

(2014). Those authors suggested that the high Sn contents of magnetite from Santa Rita and 

Henderson are controlled by fluid composition during fluid-host rock interactions. The high Sn 

content in the magnetite at Laco Sur and Laco Norte is, therefore, either the result of ore fluid 

composition or fluid-rock interactions. Further, the magnetite with the high Sn content (~100 ppm) 

at Laco Sur also contains the highest concentrations of Nb (average value of ~580 ppm), Th (455 

ppm), and U (~253 ppm), as well as Nb-rich oxide inclusions in the magnetite grains. We 

hypothesize that the high Sn (and Nb) concentrations with corresponding low Ga concentrations 

reflect metasomatic alteration after ore emplacement, since these magnetite grains also contain 

elevated levels of Th, U, and REEs, which can be liberated during metasomatic reactions with 

apatite and hydrothermal fluids (Harlov et al., 2002). The trace element concentrations in 
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magnetite from the El Laco ore bodies are consistent with growth of magnetite from a cooling 

magmatic-hydrothermal fluid as it ascended through the crust. 

Wen et al. (2017) proposed a new plot for discriminating between magmatic and 

hydrothermal magnetite that considers the hydrothermal re-equilibration of igneous magnetite. 

Those authors found that plotting the V/Ti ratio versus the Fe content of magnetite allows for the 

discrimination of magmatic magnetite, magmatic magnetite that has re-equilibrated with a 

hydrothermal fluid, and purely hydrothermal magnetite. In Fig. 3.11, we compare our data for 

magnetite from the five ore bodies and host andesite (Dare et al., 2015) at El Laco, the discriminant 

fields of Wen et al. (2017) (lines), and (colored) fields representing igneous, magmatic-

hydrothermal, and low-temperature hydrothermal magnetite based on data from Nadoll et al. 

(2014). Data for magnetite from surface samples from all ore bodies, and from the deep, 

intermediate, and shallow zones of the drill cores plot in the field for re-equilibrated magnetite. 

Data from all surface samples and all levels of the drill cores plot in the field for hydrothermal 

magnetite defined by Wen et al. (2017). The vast majority of the data from the El Laco ore bodies 

plot in the overlapping region of the fields for igneous and magmatic-hydrothermal magnetite from 

Nadoll et al. (2014) that we superposed on the Wen et al. (2017) plot. The deepest samples from 

the drill cores plot in the field for igneous magnetite from Nadoll et al. (2014), and no data plot in 

the field for low temperature hydrothermal magnetite. Similar to Wen et al. (2017), we observe 

textural and chemical evidence for re-equilibration of igneous magnetite with magmatic-

hydrothermal fluid, and growth of magnetite from magmatic-hydrothermal fluids. Magnetite at 

depth in drill core contains ilmenite exsolution lamellae surrounded by magnetite with no 

exsolution lamellae (Fig. 3.2I) or inclusion-rich magnetite cores surrounded by inclusion-poor rims 

(Fig. 3.2J). Magnetite grains from surface samples terminate at triple junctions (Figs. 3.2H, I), 
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consistent with re-equilibration of magnetite with magmatic-hydrothermal fluid. Overall, the 

compositions of magnetite from El Laco plotted on the V/Ti vs. Fe diagram of Wen et al. (2017), 

with the fields for data from Nadoll et al. (2014), are consistent with magmatic-hydrothermal fluids 

being responsible for formation of the ore bodies.  

3.6.4     Insights for ore-forming processes from El Laco apatite chemistry 

Apatite —Ca10(PO4)6(F,Cl,OH)2 — is a common accessory mineral in many terrestrial and 

extraterrestrial geologic environments. Apatite is able to incorporate nearly one-third of the 

elements in the periodic table into its structure, including the essential structural constituents F, 

OH, and Cl, as well as trace elements such as S, REEs, and Fe (Hughes and Rakovan, 2015). Trace 

element abundances in apatite have been used as petrogenetic indicators to gain insights into the 

evolution of geologic systems (Streck and Dilles, 1998; Belousova et al., 2002; Piccoli and 

Candela, 2002; Parat et al., 2011; Harlov, 2015; Hughes and Rakovan, 2015; Webster and Piccoli, 

2015; Bouzari et al., 2016; Mao et al., 2016; Konecke et al., 2017a, b). Prior to this study, there 

was a scarcity of published geochemical data for apatite from the El Laco ore bodies. 

Generally, the apatite grains from Laco Sur, Cristales Grandes, and Rodados Negros are 

fluorapatite with lesser amounts of Cl and OH (Fig. 3.8). Our data are consistent with Dare et al. 

(2015) who report that apatite contains, on average, ~2 wt% F. The analyses of some apatite grains 

from Laco Sur yielded fluorine concentrations greater than the pure, end-member stoichiometric 

concentration for end-member fluorapatite (3.77 wt%). This is not an analytical artifact 

considering the reproducibility of the standards and strict adherence to the analytical protocol of 

Stromer et al. (1993) and Goldoff et al. (2012). We highlight that high F concentrations (> 3.77 

wt%) have also been reported for apatite from Kiruna-type deposits in the Kiruna and Grängesberg 

districts in Sweden and the Pea Ridge IOA deposit, USA (Harlov et al., 2002a; Jonsson et al., 
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2013; Harlov et al., 2016) (Fig. 3.8). Apatite from Laco Sur, Cristales Grandes, and Rodados 

Negros cluster near the fluorine end of the F-Cl join and overlap with apatite compositions from 

mafic igneous rocks and their evolved ore deposits (Marks et al., 2012; Rojas et al., 2018). 

The El Laco apatite data overlap data for apatite from other IOA deposits, including 

Kiirunavaara (Sweden), Pea Ridge (USA), Cerro de Mercado (Durango, Mexico), deposits in the 

Bafq district (Iran), the Carmen deposit in the Chilean Iron Belt, and hydrothermal apatite (Harlov 

et al., 2002; Torab and Lehman, 2007; Marks et al., 2012; Harlov et al., 2016; Mao et al., 2016; 

Palma et al. 2019). Some apatite grains from Rodados Negros (highlighted by the orange ellipse 

in Fig. 3.8) contain Cl-enriched domains that are shifted towards the chlorine end of the F-Cl join, 

consistent with halogen chemistry reported for apatite from the Los Colorados (La Cruz et al., 

2019) and Fresia IOA deposits (Palma et al., 2019) in the Chilean Iron Belt. Broman et al. (1999) 

report that apatite-hosted fluid inclusions from Rodados Negros contain up to 60 wt% NaCl 

equivalent, thus the Cl-enrichment in grains from Rodados Negros, likely reflect growth from, or 

re-equilibration with this Cl-rich, F-poor fluid. The composition of apatite from hydrothermal 

environments exhibits a wide range of F, Cl, and OH concentrations that reflect the composition 

of the hydrothermal fluid from which apatite precipitates, the temperature of mineralization, and 

the preference for the anions  (F >> Cl > OH) in the apatite structure (cf. Boudreau et al., 1995; 

Barth and Dorais, 2000; Belousova et al., 2002; Patiño Douce et al., 2011; Marks et al., 2012; 

Hughes and Rakovan, 2015; Webster and Piccoli, 2015; Bao et al., 2016; Krneta et al., 2016). The 

majority of analyzed apatite grains from El Laco are compositionally similar to fluorapatite from 

mafic igneous rocks and hydrothermal fluids evolved from mafic silicate melts and are consistent 

with growth from a silicate melt or magmatic- hydrothermal fluid.  
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The Cl-enriched domains in some apatite grains from Rodados Negros are consistent with 

the variability of cathodoluminescence (CL) in those apatite grains and variations in the 

concentrations of CL activators such as Ce3+, Eu2+, and Mn2+, and quenchers such as Fe2+and La3+ 

(cf. Kempe and Götze, 2002). The areas of bright luminescence in apatite grains from Rodados 

Negros have the highest chlorine content of all apatite grains from the El Laco ore bodies and 

correspond spatially to the porous/mottled regions of those apatite grains. The areas of dark 

luminescence in apatite from Laco Sur have the highest sulfur content (up to ~1 wt% S) among all 

apatite grains from the El Laco ore bodies. Sulfur, Cl, Mn, REEs, and Fe are highly mobile in 

magmatic-hydrothermal fluids (Hedenquist and Lowenstern, 1994; Reed et al., 2000; Williams-

Jones and Heinrich, 2005; Simon et al., 2007; Simon and Ripley, 2011). The enrichment of these 

elements within the apatite grains, in addition to the presence of monazite inclusions within and 

between grains, is consistent with late-stage re-equilibration of the apatite with mineralizing 

magmatic-hydrothermal fluids. 

3.6.5     Magnetite and apatite hosted mineral inclusions 

The presence of mineral inclusions in magnetite (e.g., monazite, apatite, thorite, and Nb-

rich oxide; Fig. 3.2) and apatite (e.g., monazite; Fig. 3.7B) from the El Laco ore bodies has not, to 

our knowledge, been reported in previous studies for this deposit. Monazite and thorite inclusions 

in apatite have been reported from IOA deposits in the Cretaceous Iron Belt (CIB) in northern 

Chile (La Cruz et al. 2019; Palma et al., 2019), the Kiruna and Bafq districts (Harlov et al., 2002; 

Bonyadi et al., 2011), and at the Olympic Dam IOCG deposit in Australia (Krneta et al., 2016). 

Inclusions of monazite have been identified in the banded iron ore at Kiirunavaara, and intergrown 

with the iron oxides and apatite in the magnetite and hematite zones in the Pea Ridge deposit 

(Harlov et al., 2002; 2016). Many authors explain the presence of these inclusions in apatite as the 
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result of metasomatic alteration of apatite (Harlov et al., 2002; 2016; Bonyadi et al., 2011; Krneta 

et al., 2016; Palma et al., 2019; Sadove et al., 2019). For instance, Palma et al. (2019) report that 

altered Cl-OH apatite from the Carmen and Fresia IOA deposits in the CIB contains inclusions of 

monazite and xenotime and proposed that the inclusions record fluid-induced dissolution-

reprecipitation of apatite during metasomatism. Alternatively, monazite and thorite inclusions in 

magnetite samples may reflect growth of those phases as a result of local supersaturation of REE, 

Th, Si, and P in the fluid in contact with the magnetite grains (La Cruz et al., 2019).  

The presence of the Nb-rich oxides, which were observed along cracks between magnetite 

S2 and high-Si and Mg-magnetite A (Fig. 3.2F), and monazite inclusions in magnetite from Laco 

Sur (Fig. 3.2D), although not reported by Dare et al. (2015) and Broughm (2017), is consistent 

with the high field strength elements (HFSE) and light rare earth element (LREE) magnetite 

signatures reported by those authors. Magnetite grains that host Nb-rich oxides are depleted in Nb 

as well as Ti, Al, V, and Mn. This observation is consistent with the growth of Nb-oxide during 

hydrothermal alteration of originally Nb-enriched magnetite by meteoric fluids (Giovannini et al., 

2017), which is supported by H and O stable isotope signatures of these magnetite grains 

(Childress, 2019).  

3.6.6     Post-mineralization alteration of the ore bodies 

Goethite and hematite in surface samples from San Vicente Alto, Laco Sur, and Laco Norte 

indicate oxidation and hydration of magnetite, which Alva-Valdivia et al. (2003) report can occur 

by supergene alteration. Those authors report that the greater degree of oxidation observed in 

samples from Laco Norte reflects greater degrees of alteration by meteoric waters relative to 

samples from Laco Sur that exhibit less oxidation. It is well established that goethite is a product 

of the oxidation and low-temperature hydrothermal alteration of titanomagnetite (Alt et al., 1984; 
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Xu et al. 1997). Childress (2019) present O (16O, 17O, and 18O) and H stable isotope data and H2O 

contents of aliquots of the same surface samples investigated in this study. Values of δ2Η reported 

by those authors become increasingly negative with increasing H2O contents, and Δ17O and δ18O 

values fingerprint low-latitude, high altitude meteoric water in samples with increasing goethite 

contents. Thus, we conclude that goethite, and possibly hematite, formed by secondary processes 

after emplacement of the ore body. 

3.6.7     Formation of the El Laco ore bodies 

The body of data presented here for magnetite and apatite geochemistry is most consistent 

with formation of the El Laco ore bodies by a combination of igneous and magmatic-hydrothermal 

processes. Titanium-enriched magnetite at depths greater than 150 m in the ore bodies indicates 

that some proportion of magnetite grew from a silicate melt. In contrast, the systematic decrease 

of trace element concentrations in magnetite from deep to shallow levels, with a corresponding 

cooling trend, is consistent with the growth of the remaining volume of magnetite from an 

ascending magmatic-hydrothermal fluid. We highlight that our data for surface samples are 

consistent with the findings of Dare et al. (2015) who concluded that a magmatic-hydrothermal 

fluid was responsible for mineralization at El Laco. Those authors invoked hydrothermal 

replacement originally proposed by Rhodes and Oreskes (1995) and modified by Sillitoe and 

Burrows (2002) to explain mineralization at El Laco. In that model, mineralization at El Laco is 

proposed to have occurred by complete replacement of andesitic lava flows by magnetite that 

precipitated from a magmatic-hydrothermal fluid percolating through the andesite host. This 

hydrothermal replacement model was developed by only considering the chemistry of surface 

samples. The data reported here and in Ovalle et al. (2018) reveal the presence of igneous Ti-rich 

magnetite in the deepest portions of the ore bodies. The Ti-enriched magnetite can only be 
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explained by crystallization from a silicate melt owing to the fact that titanium is insoluble in 

hydrothermal fluids even at magmatic conditions (Audetat and Keppler, 2005). Thus, it is not 

plausible that the Ti-rich magnetite precipitated from a magmatic-hydrothermal fluid. It also seems 

implausible that a magmatic hydrothermal fluid would percolate through andesite and replace – 

atom by atom – silicate minerals in andesite and perfectly preserve the original textures of the 

lavas, including the vesicles. This is also difficult to reconcile with the sharp chilled contacts 

between the ore bodies and the andesite host, and the presence of andesite clasts in magnetite ore 

on the margins of the ore body. Gradational contacts are expected if the ore bodies resulted from 

replacement.  

The data presented here are consistent with those reported by Dare et al. (2015) and support 

the new genetic model for El Laco proposed by Ovalle et al. (2018). Here, we briefly summarize 

the model of Ovalle et al. (2018), which is based on the model of Knipping et al. (2015a). The Ti-

rich magnetite in the ore bodies crystallized from silicate melt, wherein magnetite is commonly 

the liquidus phase (Martel et al., 1999). After crystallization of magnetite, the silicate melt reached 

volatile saturation and exsolved a magmatic-hydrothermal fluid. Magnetite nanolites and 

microlites have been experimentally and numerically demonstrated to serve as nucleation surfaces 

for magmatic-hydrothermal fluid bubbles exsolving from silicate melts (Hurwitz and Navon, 1994; 

Edmonds et al., 2014; Knipping et al., 2019; Pleše et al., 2019). Continued degassing of the silicate 

melt during magma decompression and crystallization results in the formation of a magnetite-

bearing bubble-rich suspension (Edmonds et al., 2014; Ovalle et al., 2018; Knipping et al., 2019). 

The magmatic-hydrothermal fluid component of the suspension would be Cl and Fe rich, based on 

experiments that demonstrate the efficient partitioning of these elements from silicate melt to 

exsolved aqueous fluid (Bell and Simon, 2011). This is consistent with fluid inclusion studies of 



82 

samples from El Laco that document the high-temperature Cl-rich nature of the mineralizing fluid 

at El Laco (Broman et al., 1999). The magmatic-hydrothermal fluid also scavenges elements such 

as F, P, and Ca that allow the precipitation of fluorapatite in the ore bodies. 

During the collapse of the volcanic edifice at El Laco, as evidenced by the observation of 

fissures and ring structures (Ovalle et al., 2018), the magnetite-bearing bubble-rich suspension was 

forcibly injected into the upper crust where it formed the hydrothermal breccia bodies observed in 

drill core from the deeper levels of the deposit. The observation that Ti-rich magnetite (Fig. 3.2) 

is only found at intermediate to deeper levels of the ore body likely reflects gravitational settling 

of these igneous Ti-rich magnetite grains during ascent of the mineralizing fluid. Continued ascent, 

shallow level emplacement, and surface venting of the hydrothermal magnetite suspended in the 

magmatic-hydrothermal fluids gave rise to the formation of the massive magnetite flows and dike-

like bodies that outcrop around the Pico Laco resurgent dome. As discussed by Ovalle et al. (2018), 

numerical modeling (Edmonds et al., 2014), experimental studies (Knipping et al., 2019), and 

empirical studies of industrial froth flotation processes indicate that mineral-fluid-bubble 

aggregates have rheological properties similar to basaltic lava flows, which explains the presence 

of cavities and gas escape tubes in surface outcrops originally described by Park (1961). The 

presence of triple junctions among magnetite grains likely reflects local reequilibration of 

magnetite with interstitial high-temperature ore fluid after emplacement, which also explains the 

presence of monazite, thorite, and Nb-oxide inclusions in magnetite, monazite inclusions in 

apatite, and magnetite octahedra observed growing from the walls of cavities and gas escape tubes. 

Circulation and cooling of the interstitial magmatic-hydrothermal fluid also explains the presence 

of sulfide-bearing magnetite-diopside-scapolite veins and late veinlets of gypsum-magnetite-pyrite 
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that crosscut the main breccia bodies at depth (Ovalle et al., 2018), as well as the advanced argillic 

alteration at the surface (Sillitoe and Burrows, 2002).  

The El Laco ore bodies contain ~367 million tons (Mt) of iron based on the reported 

resources of ~734 Mt at an average grade of ~49 % iron (CAP Mineria, 2016). Following the 

methodology of Knipping et al. (2015a), if the magnetite-fluid suspension evolved from a hydrous 

magma that contained 6 wt% H2O, and the suspension contained 20 wt% primary Ti-rich 

magnetite, a parent magma on the order of 50 km3 is required to account for the Fe in the El Laco 

ore bodies if 50% of the Fe in the fluid phase precipitated during emplacement. This magma 

volume is consistent with typical arc volcano magma chambers (4–60 km3; Marsh, 1989) and 

seems plausible considering the ~30 km2 diameter volcanic edifice at El Laco (Oyarzún and Frutos, 

1984; Nyström and Henríquez, 1994). 

 Finally, we highlight that the δ18O, Δ17O, δ2H, and δ56Fe data reported by Childress et al. 

(in review) and Bilenker et al. (2016) are consistent with the model presented here for the 

formation of the El Laco ore bodies. Childress et al. (in review) report δ56Fe and δ18O values for 

magnetite from outcrop samples collected from Cristales Grandes, Laco Norte, Laco Sur, Rodados 

Negros, and San Vicente Alto, which in addition to the magnetite geochemistry presented here for 

the same samples, are consistent with magnetite crystallization from silicate melt and magmatic-

hydrothermal fluid. They report that values of δ2H become increasingly negative with increasing 

goethite modal abundance and H2O content of the samples. The Δ17O, which is defined as 

(δ17Osample - δ18Osample)* 5.302, and δ18O data for goethite-bearing samples indicate alteration of 

primary magmatic and magmatic-hydrothermal magnetite by meteoric water. Importantly, the O-

isotope data for samples of the El Laco ore bodies disallow formation by liquid immiscibility based 

on the experimental data of Lester et al. (2013a) that constrain the partitioning of O isotopes 



84 

between conjugate Fe-rich and Si-rich melts. Lester et al. (2013a) report values of Δ18O, which is 

defined as δ18OSi-rich-melt - δ18OFe-rich-melt, of 0.5 to 0.6 ‰, requiring that the Fe-oxide ore bodies at 

El Laco should yield δ18O values of ~7 to 9 ‰ if the ore bodies crystallized from an iron-rich 

liquid that had been in equilibrium with andesite host rocks. Rather, the El Laco ore bodies yield 

δ18O values of ~3.5 to 5 ‰ and the andesite host rock yield δ18O values of ~8 to 9 ‰, eliminating 

the possibility that silicate magmas in the El Laco plumbing system could be related to magnetite 

in the ore bodies by liquid immiscibility. The δ18O values of ore samples from El Laco match 

exactly the values expected for magnetite precipitated from a magmatic-hydrothermal fluid. The 

constraints from O-isotope data are also consistent with experimental data from Lester et al. 

(2013b) that demonstrate that liquid immiscibility does not occur in H2O + Cl-bearing silicate 

melts because the presence of chlorine increases the activity of silica in the melt, resulting in 

increased temperatures for the silicate mineral saturation surface, and eliminates unmixing of the 

silicate liquid. The Cl-rich nature of the ore fluids at El Laco as demonstrated by Broman et al. 

(1999), coupled with the experimental and O-isotope partitioning results of Lester et al. (2013a, b) 

falsify the liquid immiscibility hypothesis.  

3.7     Conclusions 

Magnetite from five ore bodies and apatite from three ore bodies at the El Laco iron oxide 

- apatite deposit in Chile have major, minor, and trace element chemistry consistent with growth 

from both a silicate melt and a magmatic-hydrothermal fluid. The magnetite grains contain mineral 

inclusions that preserve evidence of reequilibration of ore minerals with hydrothermal fluids 

during or after emplacement of the ore bodies. These observations are consistent with ore genesis 

at El Laco via shallow-level emplacement and surface venting of magnetite-bearing magmatic-

hydrothermal fluid suspensions according to the model described in Ovalle et al. (2018). The 
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current study adds to a growing body of geochemical and petrologic data for ore minerals from 

IOA deposits that indicate formation of Kiruna-type IOA deposits via the ascent of a cooling, 

decompressing Fe-bearing magmatic-hydrothermal fluid that contains and transports igneous 

magnetite nanolites and microlites. 
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Table 3.1: Summary of compositions of magnetite from outcrops at Cristales Grandes, Rodados 
Negros, San Vicente Alto, and outcrops and drill core at Laco Norte.    

Cristales Grandes   
Magnetite S1 Magnetite A 

EPMA D. L. N= 49 N= 69   
Min. Mean Max. Std. 

Dev 
Min. Mean Max. Std. 

Dev 
Fe (wt%) 0.02 67.0 69.2 71.4 1.1 65.5 69.0 70.9 1.2 
Ti (ppm) 89.46 104.0 3981.

6 
7346.0 2155.2 B.D.L

. 
1039.2 6554.0 1605.7 

V (ppm) 66.39 848.0 1677.
3 

1983.0 200.4 1151.
0 

1653.6 1875.0 170.3 

Al (ppm) 81.24 674.0 3420.
6 

8103.0 1468.8 532.0 1459.8 5162.0 1101.4 

Mn (ppm) 80.45 439.0 821.5 1459.0 179.2 B.D.L
. 

716.3 1009.0 211.6 

Mg (ppm) 128.04 2067.
0 

6854.
4 

12313.
0 

2268.7 1284.
0 

10735.
8 

22613.
0 

3553.1 

Si (ppm) 68.07 597.0 4736.
6 

15724.
0 

3007.6 174.0 5430.6 14983.
0 

3017.8 

P (ppm) 83.51 B.D.L
. 

B.D.L
. 

B.D.L. B.D.L. B.D.L
. 

B.D.L. 211.0 20.4 

Ca (ppm) 83.73 B.D.L
. 

1411.
6 

3423.0 871.2 B.D.L
. 

1881.0 4904.0 1239.7 

Cr (ppm) 62.61 B.D.L
. 

54.6 100.0 27.2 B.D.L
. 

B.D.L. 122.0 21.8 

LA-ICP-MS 
(ppm) 

D. L. 
(ppm) 

 

Na 56.67 B.D.L
. 

404.9 1110.0 260.6 B.D.L 376.3 956.0 209.9 

Mg 43.53 4120.
0 

7281.
6 

13110.
0 

2034.6 4840.
0 

10461.
3 

14600.
0 

2821.4 

Al 36.52 712.0 3483.
0 

6140.0 1706.0 604.0 1663.9 4860.0 1120.3 

Si 2989.50 100.0 5342.
3 

11900.
0 

2940.9 200.0 6856.9 20700.
0 

3867.3 

P 9.57 B.D.L
. 

40.2 134.0 43.2 B.D.L 229.7 13110.
0 

1573.9 

K 35.84 B.D.L
. 

193.8 1570.0 258.9 B.D.L 125.9 1890.0 244.9 

Ca 738.79 B.D.L
. 

1417.
9 

5290.0 1294.7 B.D.L 2285.2 22800.
0 

2795.2 

Sc 4.90 B.D.L
. 

2.9 12.9 1.8 B.D.L 3.0 10.4 1.5 

Ti 37.26 99.0 4292.
8 

7650.0 2749.6 277.0 1270.7 7290.0 1594.3 

V 14.33 1415.
0 

1759.
2 

2050.0 192.5 1397.
0 

1795.7 2100.0 182.2 

Cr 3.40 B.D.L
. 

11.1 57.9 13.9 B.D.L B.D.L 25.4 2.9 

Mn 5.59 578.0 926.2 1420.0 147.5 411.0 807.0 1162.0 210.7 
Co 2.13 65.8 117.9 140.7 14.3 61.7 95.4 153.7 26.1 
Ni 4.44 42.0 89.4 116.2 17.0 39.9 78.0 146.7 32.9 
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Cu 1.76 B.D.L
. 

8.5 44.5 10.2 B.D.L 4.6 48.2 9.5 

Zn 5.57 89.0 148.6 201.0 26.0 51.9 116.9 195.0 32.8 
Ga 0.94 13.9 36.2 47.5 12.4 9.2 24.3 46.0 10.5 
Ge 2.19 22.4 26.6 31.9 2.1 22.5 26.5 32.7 1.8 
As 5.51 B.D.L B.D.L 9.5 1.5 B.D.L B.D.L 11.7 2.8 
Rb 1.09 B.D.L

. 
B.D.L

. 
24.5 3.4 B.D.L 1.4 38.4 4.7 

Sr 0.08 0.3 5.9 19.5 4.6 0.3 4.8 59.6 7.7 
Y 0.99 B.D.L 9.8 214.0 30.3 B.D.L 14.0 94.8 14.4 
Zr 0.08 0.5 3.5 77.0 10.8 B.D.L 2.6 9.1 1.4 
Nb 0.27 1.1 3.5 40.6 7.9 0.8 16.6 44.1 16.2 
Mo 1.42 B.D.L B.D.L B.D.L. B.D.L. B.D.L B.D.L 1.8 0.1 
Ag 1.73 B.D.L B.D.L B.D.L B.D.L. B.D.L B.D.L. B.D.L. B.D.L. 
Cd 0.36 B.D.L

. 
0.4 1.8 0.2 B.D.L B.D.L. B.D.L. B.D.L. 

Sn 0.95 4.0 6.9 27.7 5.2 3.6 13.4 29.4 9.0 
Sb 1.28 B.D.L

. 
0.9 3.5 0.7 B.D.L

. 
B.D.L. 2.0 0.3 

Ba 0.15 B.D.L
. 

7.2 114.0 16.1 B.D.L
. 

3.9 44.3 6.7 

La 0.21 0.4 9.3 76.7 14.5 0.9 33.8 168.0 32.9 
Ce 0.46 0.6 22.4 199.0 37.5 1.3 82.5 342.0 79.8 
Pr 0.07 B.D.L

. 
2.6 21.8 4.0 B.D.L

. 
9.2 42.7 9.0 

Nd 0.27 B.D.L
. 

9.7 61.4 12.4 B.D.L
. 

29.8 167.0 29.8 

Sm 0.25 B.D.L
. 

1.5 7.7 1.7 B.D.L
. 

4.0 30.9 4.5 

Eu 0.05 B.D.L
. 

0.1 0.7 0.2 B.D.L
. 

0.4 1.7 0.4 

Gd 0.18 B.D.L
. 

1.7 13.3 2.4 B.D.L
. 

4.1 31.2 4.5 

Tb 0.06 B.D.L
. 

0.2 2.9 0.4 B.D.L
. 

0.4 3.2 0.5 

Dy 0.20 B.D.L
. 

1.4 21.8 3.2 B.D.L
. 

2.6 19.4 2.8 

Ho 0.08 B.D.L
. 

0.3 5.3 0.8 B.D.L
. 

0.5 3.5 0.5 

Er 0.15 B.D.L
. 

1.0 18.6 2.7 B.D.L
. 

1.7 11.7 1.8 

Tm 0.09 B.D.L
. 

0.1 2.7 0.4 B.D.L
. 

0.3 1.3 0.2 

Yb 0.19 B.D.L
. 

1.0 13.6 2.0 B.D.L
. 

2.0 8.8 1.7 

Lu 0.08 B.D.L
. 

0.2 2.7 0.4 B.D.L
. 

0.3 1.5 0.3 

Hf 0.07 B.D.L
. 

0.1 0.9 0.1 B.D.L
. 

B.D.L. B.D.L. B.D.L. 

Ta 0.07 B.D.L
. 

0.1 0.3 0.1 B.D.L
. 

0.2 0.6 0.2 

Au 0.03 B.D.L
. 

B.D.L
. 

B.D.L. B.D.L. B.D.L
. 

B.D.L. 0.0 0.0 
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Pb 0.44 B.D.L
. 

0.4 3.3 0.5 B.D.L
. 

B.D.L. 2.0 0.3 

Th 0.31 B.D.L
. 

5.6 65.0 13.4 B.D.L
. 

30.0 101.0 29.8 

U 0.11 B.D.L
. 

0.9 10.0 2.2 0.2 3.9 12.7 3.8 

   
Rodados Negros   

Magnetite S2 
   

Magnetite A 
EPMA D. L. N= 104 

   
N= 1   

Min. Mean Max. Std. Dev 
 

Fe (wt%) 0.02 68.2 70.5 71.5 0.6 69.8 
Ti (ppm) 89.46 B.D.L. 364.4 1662.0 375.7 103.0 
V (ppm) 66.39 259.0 1050.3 1447.0 284.2 274.0 
Al (ppm) 81.24 126.0 917.7 3327.0 721.0 884.0 
Mn (ppm) 80.45 642.0 968.0 1404.0 215.0 927.0 
Mg (ppm) 128.04 5881.0 7739.0 19610.0 1705.4 7406.0 
Si (ppm) 68.07 107.0 1809.5 12190.0 2196.5 609.0 
P (ppm) 83.51 B.D.L. B.D.L. B.D.L. B.D.L. B.D.L. 

Ca (ppm) 83.73 B.D.L. 481.0 2782.0 726.2 B.D.L. 
Cr (ppm) 62.61 B.D.L. B.D.L. 81.0 10.6 B.D.L. 

LA-ICP-MS (ppm) D. L. (ppm) 
 

Na 56.67 B.D.L. 122.7 761.0 160.0 78.0 
Mg 43.53 6100.0 7710.1 11490.0 1166.7 7280.0 
Al 36.52 155.3 1074.4 3620.0 882.1 345.0 
Si 2989.50 B.D.L. 4378.3 13700.0 3244.5 8300.0 
P 9.57 B.D.L. 58.0 1600.0 169.1 58.0 
K 35.84 B.D.L. 37.9 224.0 46.9 B.D.L. 
Ca 738.79 B.D.L. 934.2 3780.0 889.2 B.D.L. 
Sc 4.90 B.D.L. B.D.L. 11.8 1.2 B.D.L. 
Ti 37.26 60.0 454.9 1840.0 450.6 103.0 
V 14.33 311.0 1112.5 1499.0 289.8 266.0 
Cr 3.40 B.D.L. B.D.L. 30.7 3.6 B.D.L. 
Mn 5.59 723.0 1055.4 1520.0 223.2 1017.0 
Co 2.13 100.4 132.3 165.5 16.2 147.1 
Ni 4.44 96.8 123.2 150.0 14.2 106.0 
Cu 1.76 B.D.L. B.D.L. 20.8 2.6 1.9 
Zn 5.57 89.7 153.3 266.0 43.4 188.0 
Ga 0.94 6.5 11.2 19.4 3.2 7.7 
Ge 2.19 23.7 27.1 31.6 1.4 24.8 
As 5.51 B.D.L. B.D.L. 12.0 1.1 B.D.L. 
Rb 1.09 B.D.L. B.D.L. 1.1 0.1 B.D.L. 
Sr 0.08 B.D.L. 1.0 7.1 1.8 B.D.L. 
Y 0.99 B.D.L. 3.9 103.0 13.5 1.8 
Zr 0.08 0.3 1.1 4.8 0.9 0.7 
Nb 0.27 B.D.L. 1.6 7.5 1.7 1.1 
Mo 1.42 B.D.L. B.D.L. 1.6 0.1 B.D.L. 
Ag 1.73 B.D.L. B.D.L. B.D.L. B.D.L. B.D.L. 
Cd 0.36 B.D.L. B.D.L. B.D.L. B.D.L. B.D.L. 
Sn 0.95 3.9 5.4 8.0 0.9 8.5 
Sb 1.28 B.D.L. B.D.L. B.D.L. B.D.L. B.D.L. 
Ba 0.15 B.D.L. B.D.L. 8.7 1.7 B.D.L. 
La 0.21 B.D.L. 4.2 20.4 5.9 B.D.L. 
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Ce 0.46 B.D.L. 8.2 48.7 12.3 0.8 
Pr 0.07 B.D.L. 0.8 4.5 1.2 0.1 
Nd 0.27 B.D.L. 2.8 12.2 3.7 B.D.L. 
Sm 0.25 B.D.L. 0.5 3.0 0.6 B.D.L. 
Eu 0.05 B.D.L. 0.1 1.4 0.2 B.D.L. 
Gd 0.18 B.D.L. 0.7 11.3 1.4 B.D.L. 
Tb 0.06 B.D.L. 0.1 0.9 0.1 B.D.L. 
Dy 0.20 B.D.L. 0.6 11.9 1.6 0.3 
Ho 0.08 B.D.L. 0.1 2.2 0.3 B.D.L. 
Er 0.15 B.D.L. 0.4 11.9 1.3 0.3 
Tm 0.09 B.D.L. B.D.L. 0.9 0.1 B.D.L. 
Yb 0.19 B.D.L. 0.4 6.9 1.0 B.D.L. 
Lu 0.08 B.D.L. B.D.L. 0.9 0.1 B.D.L. 
Hf 0.07 B.D.L. B.D.L. 0.3 0.0 B.D.L. 
Ta 0.07 B.D.L. B.D.L. 0.1 0.0 B.D.L. 
Au 0.03 B.D.L. B.D.L. B.D.L. B.D.L. B.D.L. 
Pb 0.44 B.D.L. B.D.L. B.D.L. B.D.L. B.D.L. 
Th 0.31 B.D.L. 3.6 24.9 6.4 B.D.L. 
U 0.11 B.D.L. 0.3 2.3 0.5 B.D.L. 

   
San Vicente Alto   

Magnetite S2 Magnetite A 
EPMA D. L. N= 23 N= 44   

Min. Mean Max. Std. 
Dev 

Min. Mean Max. Std. 
Dev 

Fe (wt%) 0.02 67.5 69.2 71.2 1.2 66.4 67.9 69.9 0.5 
Ti (ppm) 89.46 B.D.L

. 
123.3 243.0 60.8 B.D.L

. 
156.4 345.0 90.6 

V (ppm) 66.39 620.0 873.8 979.0 95.3 668.0 902.3 1091.0 83.6 
Al (ppm) 81.24 B.D.L

. 
737.3 2311.0 629.6 282.0 922.8 4500.0 708.6 

Mn (ppm) 80.45 B.D.L
. 

473.8 684.0 173.7 B.D.L
. 

292.8 629.0 203.6 

Mg (ppm) 128.04 417.0 6668.
2 

10600.
0 

2335.5 B.D.L
. 

4324.
1 

39018.
0 

6281.4 

Si (ppm) 68.07 64.4 411.3 688.0 200.2 306.0 3750.
4 

11907.
0 

2881.6 

P (ppm) 83.51 B.D.L
. 

205.3 1109.0 313.9 B.D.L
. 

256.0 2194.0 461.1 

Ca (ppm) 83.73 B.D.L
. 

738.2 1879.0 626.9 B.D.L
. 

377.9 2063.0 554.0 

Cr (ppm) 62.61 B.D.L
. 

B.D.L
. 

B.D.L. 0.0 B.D.L
. 

B.D.L
. 

73.0 9.9 

LA-ICP-MS 
(ppm) 

D. L. 
(ppm) 

 

Na 56.67 B.D.L
. 

168.3 451.0 162.3 B.D.L
. 

142.9 584.0 209.0 

Mg 43.53 635.0 4533.
3 

7980.0 2440.8 180.0 3147.
4 

8580.0 2938.0 

Al 36.52 64.4 411.3 688.0 200.2 196.0 527.7 974.0 237.5 
Si 2989.50 B.D.L

. 
4677.

6 
17600.

0 
4139.0 B.D.L

. 
4163.

5 
14000.

0 
2756.3 

P 9.57 12.0 111.9 449.0 120.1 B.D.L
. 

102.7 344.0 106.2 



90 

K 35.84 B.D.L
. 

47.5 113.3 34.1 B.D.L
. 

41.1 150.0 45.7 

Ca 738.79 B.D.L
. 

852.7 2470.0 700.3 B.D.L
. 

B.D.L
. 

1960.0 461.3 

Sc 4.90 B.D.L B.D.L B.D.L. 0.0 B.D.L
. 

B.D.L
. 

B.D.L. 0.0 

Ti 37.26 17.7 149.4 250.0 76.5 49.4 185.5 350.0 90.7 
V 14.33 532.0 906.5 1082.0 130.5 725.0 916.1 1095.0 87.2 
Cr 3.40 B.D.L

. 
B.D.L

. 
B.D.L. 0.0 B.D.L

. 
B.D.L

. 
B.D.L. 0.0 

Mn 5.59 77.0 391.3 746.0 221.1 38.7 307.5 646.0 191.5 
Co 2.13 88.6 129.7 156.4 19.3 78.6 119.5 154.0 22.8 
Ni 4.44 175.4 245.2 287.0 29.5 182.6 242.6 293.0 27.0 
Cu 1.76 B.D.L

. 
10.6 61.1 18.1 B.D.L

. 
10.2 93.4 21.1 

Zn 5.57 20.3 61.6 95.4 23.1 18.5 57.3 90.9 21.5 
Ga 0.94 B.D.L

. 
2.2 3.8 1.0 B.D.L

. 
2.4 4.1 0.8 

Ge 2.19 21.0 22.9 26.2 1.3 21.2 23.8 26.9 1.3 
As 5.51 B.D.L

. 
B.D.L

. 
7.1 0.9 B.D.L

. 
B.D.L

. 
B.D.L. 0.0 

Rb 1.09 B.D.L
. 

B.D.L
. 

B.D.L. 0.0 B.D.L
. 

B.D.L
. 

B.D.L. 0.0 

Sr 0.08 0.4 1.9 4.0 1.0 0.2 1.7 5.5 1.2 
Y 0.99 B.D.L

. 
2.4 7.5 2.1 B.D.L

. 
1.8 4.2 0.9 

Zr 0.08 B.D.L
. 

4.7 98.0 20.3 0.3 0.6 1.6 0.3 

Nb 0.27 0.8 5.0 14.5 3.8 0.8 4.1 11.1 2.7 
Mo 1.42 B.D.L

. 
B.D.L

. 
4.3 0.9 B.D.L

. 
B.D.L

. 
1.9 0.3 

Ag 1.73 B.D.L
. 

B.D.L
. 

B.D.L. 0.0 B.D.L
. 

B.D.L
. 

B.D.L. 0.0 

Cd 0.36 B.D.L
. 

B.D.L
. 

B.D.L. 0.0 B.D.L
. 

B.D.L
. 

B.D.L. 0.0 

Sn 0.95 3.2 4.0 5.6 0.7 2.9 3.8 4.4 0.4 
Sb 1.28 B.D.L

. 
B.D.L

. 
B.D.L. 0.0 B.D.L

. 
B.D.L

. 
B.D.L. 0.0 

Ba 0.15 0.2 7.4 47.2 13.0 B.D.L 9.0 118.1 19.8 
La 0.21 1.0 5.3 18.7 5.3 0.8 3.3 7.9 1.9 
Ce 0.46 1.8 9.8 31.6 9.2 1.9 6.5 15.5 3.4 
Pr 0.07 0.2 1.0 3.3 0.9 0.2 0.7 1.6 0.4 
Nd 0.27 0.6 3.5 11.1 3.2 0.7 2.4 5.3 1.2 
Sm 0.25 B.D.L

. 
0.5 1.5 0.5 B.D.L

. 
0.4 0.9 0.2 

Eu 0.05 B.D.L
. 

0.1 0.2 0.1 B.D.L
. 

B.D.L
. 

0.1 0.0 

Gd 0.18 B.D.L
. 

0.5 1.4 0.4 B.D.L
. 

0.4 0.9 0.2 

Tb 0.06 B.D.L
. 

0.1 0.2 0.1 B.D.L
. 

B.D.L
. 

0.1 0.0 

Dy 0.20 B.D.L
. 

0.4 1.1 0.3 B.D.L
. 

0.3 0.7 0.2 
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Ho 0.08 B.D.L
. 

0.1 0.4 0.1 B.D.L
. 

B.D.L
. 

0.2 0.0 

Er 0.15 B.D.L
. 

0.2 0.9 0.2 B.D.L
. 

0.2 0.4 0.1 

Tm 0.09 B.D.L
. 

B.D.L
. 

0.1 0.0 B.D.L
. 

B.D.L
. 

B.D.L. 0.0 

Yb 0.19 B.D.L
. 

0.3 0.8 0.2 B.D.L
. 

0.2 0.6 0.2 

Lu 0.08 B.D.L
. 

B.D.L
. 

0.2 0.0 B.D.L
. 

B.D.L
. 

0.1 0.0 

Hf 0.07 B.D.L
. 

0.1 1.2 0.2 B.D.L
. 

B.D.L
. 

B.D.L. 0.0 

Ta 0.07 B.D.L
. 

0.3 1.1 0.2 B.D.L
. 

B.D.L
. 

0.7 0.2 

Au 0.03 B.D.L
. 

B.D.L
. 

B.D.L. 0.0 B.D.L
. 

B.D.L
. 

B.D.L. 0.0 

Pb 0.44 B.D.L
. 

B.D.L
. 

0.7 0.1 B.D.L
. 

B.D.L
. 

0.5 0.0 

Th 0.31 0.6 6.8 23.4 7.3 0.4 3.5 10.7 2.7 
U 0.11 B.D.L

. 
0.5 2.5 0.6 B.D.L

. 
B.D.L

. 
1.8 0.6 

   
Laco Norte: Surface/ Outcrop   

Magnetite S2 Magnetite A           

EPMA D. L. N= 14 N= 15   
Min. Mean Max. Std. 

Dev 
Min. Mean Max. Std. 

Dev 
Fe (wt%) 0.02 67.30 69.55 70.98 1.16 64.73 66.88 69.35 1.52 
Ti (ppm) 89.46 B.D.L. B.D.L. 170.00 42.66 B.D.L. 101.61 212.00 58.55 
V (ppm) 66.39 359.00 817.57 1208.00 359.81 401.00 532.80 629.00 74.39 
Al (ppm) 81.24 115.00 3923.6

4 
39767.0

0 
10549.2

2 
85.00 1108.47 7764.00 1870.72 

Mn (ppm) 80.45 B.D.L. 152.72 387.00 110.25 B.D.L. 290.66 504.00 185.19 
Mg (ppm) 128.04 2618.0

0 
8795.8

6 
15627.0

0 
3233.57 5956.0

0 
13375.4

7 
20437.0

0 
4745.11 

Si (ppm) 68.07 454.00 3642.2
9 

10293.0
0 

3122.77 318.00 11239.2
7 

18839.0
0 

7011.18 

P (ppm) 83.51 B.D.L. 110.81 559.00 153.97 B.D.L. 177.47 960.00 227.30 
Ca (ppm) 83.73 124.00 1262.2

9 
3261.00 1100.96 B.D.L. 3421.12 5509.00 2036.13 

Cr (ppm) 62.61 B.D.L. B.D.L. 151.00 31.99 B.D.L. B.D.L. B.D.L. 0.00 
LA-ICP-MS 

(ppm) 
D. L. 
(ppm) 

 

Na 56.67 60.00 463.14 856.00 275.85 76.00 832.93 1205.00 385.76 
Mg 43.53 503.00 8311.6

4 
11320.0

0 
2744.30 6480.0

0 
11180.0

0 
14800.0

0 
3017.02 

Al 36.52 B.D.L. 39.12 110.00 34.36 B.D.L. 377.25 717.00 309.58 
Si 2989.50 B.D.L. 7163.9

1 
11500.0

0 
3424.70 B.D.L. 15966.3

2 
33900.0

0 
10620.5

5 
P 9.57 43.00 157.07 371.00 96.54 B.D.L. 187.25 343.00 79.60 
K 35.84 B.D.L. 150.57 252.00 80.46 65.00 360.40 594.00 181.36 
Ca 738.79 B.D.L. 1763.3

6 
3830.00 1323.37 B.D.L. 3231.92 6500.00 2005.61 
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Sc 4.90 B.D.L. B.D.L. B.D.L. 0.00 B.D.L. 3.12 8.70 1.82 
Ti 37.26 B.D.L. B.D.L. B.D.L. 0.00 B.D.L. 91.23 191.00 83.25 
V 14.33 370.00 638.36 842.00 157.40 404.00 521.53 606.00 66.08 
Cr 3.40 B.D.L. B.D.L. B.D.L. 0.00 B.D.L. B.D.L. 3.80 0.54 
Mn 5.59 57.10 247.92 374.00 134.16 55.30 305.33 496.00 183.88 
Co 2.13 60.50 115.23 153.00 22.39 106.00 128.68 168.00 21.07 
Ni 4.44 175.00 227.03 253.00 22.59 188.00 212.60 246.00 17.22 
Cu 1.76 B.D.L. 6.21 34.30 10.65 B.D.L. 6.36 29.20 9.95 
Zn 5.57 15.60 39.54 56.90 14.24 20.20 55.26 118.00 22.41 
Ga 0.94 B.D.L. B.D.L. 1.54 0.37 B.D.L. 3.14 5.90 2.40 
Ge 2.19 21.50 24.35 26.20 1.61 21.50 24.05 27.80 1.80 
As 5.51 B.D.L. 22.25 33.40 11.46 B.D.L. 20.37 35.00 9.62 
Rb 1.09 B.D.L. B.D.L. 2.40 0.50 B.D.L. B.D.L. 1.56 0.34 
Sr 0.08 0.79 5.45 13.40 2.94 0.90 6.48 9.70 2.83 
Y 0.99 1.68 14.80 24.50 7.25 1.74 30.03 57.60 19.27 
Zr 0.08 B.D.L. 0.18 0.64 0.18 B.D.L. 1.76 3.70 1.52 
Nb 0.27 1.00 31.23 63.30 22.29 1.25 38.37 74.00 28.00 
Mo 1.42 B.D.L. B.D.L. 3.40 0.86 B.D.L. 1.67 7.50 1.93 
Ag 1.73 B.D.L. B.D.L. B.D.L. 0.00 B.D.L. B.D.L. B.D.L. 0.00 
Cd 0.36 B.D.L. 0.48 2.00 0.44 B.D.L. B.D.L. B.D.L. 0.00 
Sn 0.95 6.20 11.53 15.92 3.65 5.72 14.64 24.30 6.85 
Sb 1.28 B.D.L. 2.83 5.11 1.79 B.D.L. 3.34 6.80 2.43 
Ba 0.15 0.44 4.14 6.53 1.80 0.73 3.50 6.90 2.41 
La 0.21 3.38 31.70 58.20 16.68 1.78 7.23 11.40 2.67 
Ce 0.46 12.80 77.81 133.70 37.72 3.26 53.28 86.10 28.73 
Pr 0.07 1.02 8.22 14.87 4.31 9.48 119.87 193.00 62.12 
Nd 0.27 3.60 29.33 53.50 14.61 0.85 12.81 20.50 6.66 
Sm 0.25 B.D.L. 4.27 7.70 2.33 2.66 44.20 80.80 25.04 
Eu 0.05 B.D.L. 0.54 0.97 0.29 0.67 6.50 11.50 3.59 
Gd 0.18 B.D.L. 3.56 7.40 1.97 B.D.L. 0.69 1.33 0.39 
Tb 0.06 B.D.L. 0.44 0.75 0.23 B.D.L. 0.87 1.59 0.51 
Dy 0.20 B.D.L. 2.97 4.88 1.53 0.25 5.27 9.80 3.54 
Ho 0.08 B.D.L. 0.54 0.87 0.29 B.D.L. 1.16 2.40 0.77 
Er 0.15 B.D.L. 1.63 3.00 0.90 0.08 3.67 7.60 2.64 
Tm 0.09 B.D.L. 0.25 0.41 0.13 B.D.L. 0.60 1.29 0.49 
Yb 0.19 B.D.L. B.D.L. 2.81 0.89 B.D.L. 4.72 8.80 3.45 
Lu 0.08 B.D.L. 0.32 0.52 0.17 B.D.L. 0.76 1.61 0.63 
Hf 0.07 B.D.L. B.D.L. B.D.L. 0.00 B.D.L. B.D.L. 0.04 0.00 
Ta 0.07 

 
0.19 0.37 0.10 B.D.L. 1.46 2.88 1.17 

W 0.49 N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.M. 
Au 0.03 B.D.L. B.D.L. B.D.L. 0.00 B.D.L. B.D.L. B.D.L. 0.00 
Pb 0.44 B.D.L. B.D.L. B.D.L. 0.00 B.D.L. B.D.L. B.D.L. 0.00 
Th 0.31 3.83 40.52 65.10 20.80 3.08 89.72 157.00 56.72 
U 0.11 0.37 4.03 6.67 2.11 0.68 7.46 14.30 5.28 

 
Laco Norte Drill core: Intermediate depths Drill core: Shallow   

Magnetite X and Y Magnetite Z           

EPMA D. L. N= 21 N= 14   
Min. Mean Max. Std. 

Dev 
Min. Mean Max. Std. 

Dev 
Fe (wt%) 0.02 66.47 69.44 70.91 1.36 67.82 70.02 70.93 1.00 
Ti (ppm) 89.46 1672.8

3 
2782.0

3 
6271.75 1245.1

1 
900.00 1264.29 1800.00 264.89 
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V (ppm) 66.39 793.81 894.98 1090.07 85.19 800.00 957.14 1000.00 64.62 
Al (ppm) 81.24 1575.3

2 
2722.7

0 
4287.65 773.80 1562.0

0 
2069.14 2670.00 302.57 

Mn (ppm) 80.45 B.D.L. 372.04 933.76 263.33 B.D.L 228.57 500.00 216.36 
Mg (ppm) 128.04 5021.5

6 
8564.8

8 
13962.8

2 
2825.2

8 
1000.0

0 
7121.43 8900.00 2393.00 

Si (ppm) 68.07 76.68 3825.2
6 

11895.9
9 

4221.3
3 

100.00 235.71 900.00 227.38 

P (ppm) 83.51 B.D.L. B.D.L. B.D.L. 0.00 B.D.L B.D.L 200.00 53.45 
Ca (ppm) 83.73 B.D.L. 1271.8

6 
3789.22 1454.6

2 
B.D.L B.D.L B.D.L 0.00 

Cr (ppm) 62.61 B.D.L. B.D.L. B.D.L. 0.00 B.D.L B.D.L B.D.L 0.00 
LA-ICP-MS 

(ppm) 
D. L. 
(ppm) 

 

Na 56.67 B.D.L. 553.39 2130.00 661.98 B.D.L. B.D.L. 207.00 48.30 
Mg 43.53 5750.0

0 
9442.3

8 
14240.0

0 
2605.0

9 
5520.0

0 
7422.14 9740.00 1610.30 

Al 36.52 3660.0
0 

6492.3
8 

9100.00 1387.5
2 

1562.0
0 

2069.14 2670.00 302.57 

Si 2989.50 B.D.L. 8861.2
9 

28400.0
0 

7953.8
7 

B.D.L. 10167.0
9 

69000.0
0 

18120.9
1 

P 9.57 10.00 48.44 134.00 37.56 10.16 953.61 9100.00 2399.61 
K 35.84 B.D.L. 627.05 3130.00 836.92 B.D.L. B.D.L. 165.00 47.39 
Ca 738.79 B.D.L. 2288.5

6 
9020.00 2491.0

9 
B.D.L. 1630.15 9900.00 2640.57 

Sc 4.90 B.D.L. B.D.L. 8.80 1.99 B.D.L. 3.76 11.20 2.16 
Ti 37.26 2040.0

0 
3363.3

8 
5240.00 878.31 B.D.L. 1410.93 2040.00 277.74 

V 14.33 1688.0
0 

2027.5
2 

2590.00 248.24 1830.0
0 

2158.71 2410.00 149.93 

Cr 3.40 B.D.L. B.D.L. 6.80 1.04 B.D.L. B.D.L. 5.20 0.80 
Mn 5.59 313.00 561.95 829.00 120.04 122.30 428.16 677.00 152.55 
Co 2.13 143.90 155.07 170.00 6.91 89.00 137.79 162.00 20.01 
Ni 4.44 272.00 306.38 338.00 18.55 278.00 305.07 350.00 16.96 
Cu 1.76 B.D.L. B.D.L. B.D.L. 0.00 B.D.L. B.D.L. B.D.L. 0.00 
Zn 5.57 21.10 47.79 112.00 19.80 41.50 70.38 107.00 17.95 
Ga 0.94 34.20 46.26 57.50 6.68 25.00 27.33 30.20 1.68 
Ge 2.19 B.D.L. 2.91 4.50 0.86 B.D.L. 2.37 3.90 0.72 
As 5.51 B.D.L. B.D.L. 5.60 2.04 B.D.L. B.D.L. 38.00 10.03 
Rb 1.09 B.D.L. 2.09 22.50 4.90 B.D.L. B.D.L. B.D.L. 0.00 
Sr 0.08 B.D.L. 3.40 13.80 4.47 B.D.L. 2.00 14.20 3.70 
Y 0.99 B.D.L. 2.99 13.70 3.92 B.D.L. B.D.L. 2.54 0.62 
Zr 0.08 0.44 7.80 22.30 7.73 0.44 0.55 1.18 0.22 
Nb 0.27 B.D.L. 1.48 4.63 1.52 B.D.L. B.D.L. 0.45 0.10 
Mo 1.42 0.45 1.51 4.50 0.75 B.D.L. 1.70 2.60 0.41 
Ag 1.73 B.D.L. B.D.L. 1.76 0.37 B.D.L. B.D.L. B.D.L. 0.00 
Cd 0.36 B.D.L. B.D.L. B.D.L. 0.00 B.D.L. B.D.L. B.D.L. 0.00 
Sn 0.95 4.58 6.00 8.10 1.20 4.03 5.44 7.20 0.82 
Sb 1.28 B.D.L. B.D.L. B.D.L. 0.00 B.D.L. B.D.L. B.D.L. 0.00 
Ba 0.15 B.D.L. 6.92 26.70 8.88 B.D.L. 4.48 34.00 9.66 
La 0.21 B.D.L. 4.57 29.10 7.75 B.D.L. 3.92 29.00 7.53 
Ce 0.46 B.D.L. 10.19 53.90 15.28 B.D.L. 9.56 73.00 18.98 
Pr 0.07 B.D.L. 0.96 3.84 1.24 B.D.L. 0.90 7.80 2.04 
Nd 0.27 B.D.L. 3.32 13.30 4.26 B.D.L. 2.71 24.10 6.31 
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Sm 0.25 B.D.L. 0.42 2.03 0.63 B.D.L. B.D.L. 3.10 0.82 
Eu 0.05 B.D.L. B.D.L. 0.27 0.08 B.D.L. B.D.L. 0.27 0.07 
Gd 0.18 B.D.L. 0.34 1.38 0.48 B.D.L. 0.19 2.26 0.60 
Tb 0.06 B.D.L. B.D.L. 0.23 0.07 B.D.L. B.D.L. 0.30 0.08 
Dy 0.20 B.D.L. 0.41 2.05 0.63 B.D.L. B.D.L. 1.42 0.38 
Ho 0.08 B.D.L. 0.08 0.34 0.12 B.D.L. B.D.L. 0.22 0.06 
Er 0.15 B.D.L. 0.22 1.52 0.43 B.D.L. B.D.L. 0.23 0.06 
Tm 0.09 B.D.L. B.D.L. 0.20 0.05 B.D.L. B.D.L. B.D.L. 0.00 
Yb 0.19 B.D.L. 0.35 2.00 0.53 B.D.L. B.D.L. B.D.L. 0.00 
Lu 0.08 B.D.L. B.D.L. 0.19 0.05 B.D.L. B.D.L. B.D.L. 0.00 
Hf 0.07 0.11 0.11 0.12 0.00 0.11 0.11 0.11 0.00 
Ta 0.07 0.05 0.15 0.43 0.11 B.D.L. B.D.L. B.D.L. 0.00 
W 0.49 B.D.L. 0.78 5.90 1.54 B.D.L. 0.53 2.06 0.56 
Au 0.03 B.D.L. B.D.L. B.D.L. 0.00 B.D.L. B.D.L. B.D.L. 0.00 
Pb 0.44 B.D.L. B.D.L. 0.49 0.07 B.D.L. B.D.L. B.D.L. 0.00 
Th 0.31 B.D.L. 1.44 7.01 1.95 B.D.L. 1.31 6.40 1.58 
U 0.11 B.D.L. 0.46 1.87 0.68 B.D.L. 0.22 1.16 0.37 

   
Laco Norte: Deep Drill core   

Magnetite Alpha Magnetite Beta           

EPMA D. L. N= 9 N= 20   
Min. Mean Max. Std. 

Dev 
Min. Mean Max. Std. 

Dev 
Fe (wt%) 0.02 68.72 69.96 71.18 0.84 67.91 69.50 70.41 0.77 
Ti (ppm) 89.46 3826.6

1 
8389.02 16586.2

1 
4205.3

6 
755.45 5860.4

3 
15432.8

7 
3012.8

6 
V (ppm) 66.39 1170.5

2 
1330.50 1589.70 151.37 1059.6

8 
1288.8

9 
1439.84 75.62 

Al (ppm) 81.24 4870.0
0 

6127.78 6960.00 728.11 1315.2
5 

2111.7
8 

2921.76 393.52 

Mn (ppm) 80.45 B.D.L. B.D.L. 274.64 91.55 B.D.L. 294.25 967.80 282.76 
Mg (ppm) 128.04 712.78 2484.46 4351.13 1071.5

8 
1636.7

4 
5997.9

7 
9638.92 1939.4

5 
Si (ppm) 68.07 100.67 130.25 184.40 25.20 111.49 760.12 6052.66 1422.9

2 
P (ppm) 83.51 B.D.L. B.D.L. B.D.L. B.D.L. B.D.L. B.D.L. B.D.L. 0.00 

Ca (ppm) 83.73 B.D.L. B.D.L. 124.90 41.63 B.D.L. 679.10 4258.66 1255.6
8 

Cr (ppm) 62.61 B.D.L. B.D.L. B.D.L. 0.00 B.D.L. B.D.L. B.D.L. 0.00 
LA-ICP-MS 

(ppm) 
D. L. 
(ppm) 

 

Na 56.67 B.D.L. B.D.L. 103.00 27.88 B.D.L. 448.65 4310.00 930.72 
Mg 43.53 881.00 2534.33 4490.00 1110.7

6 
5610.0

0 
8124.5

0 
10130.0

0 
1363.0

1 
Al 36.52 4870.0

0 
6127.78 6960.00 728.11 5086.0

0 
5863.8

0 
6350.00 379.85 

Si 2989.50 B.D.L. B.D.L. 9100.00 2383.4
0 

B.D.L. 3522.8
3 

9900.00 2119.5
9 

P 9.57 10.16 29.74 117.00 35.60 10.16 41.98 107.00 32.06 
K 35.84 B.D.L. B.D.L. 45.00 17.65 B.D.L. 130.36 351.00 117.26 
Ca 738.79 B.D.L. 794.15 3700.00 1098.8

0 
B.D.L. B.D.L. 1880.00 485.98 

Sc 4.90 B.D.L. 5.29 11.10 2.47 B.D.L. 7.30 11.60 2.55 
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Ti 37.26 6540.0
0 

11537.7
8 

20200.0
0 

5365.2
3 

7680.0
0 

8654.0
0 

9870.00 547.66 

V 14.33 2580.0
0 

2978.00 3690.00 423.21 2690.0
0 

2957.4
0 

3400.00 207.25 

Cr 3.40 B.D.L. 8.13 42.70 13.07 B.D.L. 4.69 10.00 2.60 
Mn 5.59 55.60 115.31 186.00 46.41 441.00 606.75 872.00 130.72 
Co 2.13 141.20 159.74 174.40 11.10 120.80 148.88 171.30 13.68 
Ni 4.44 402.00 440.00 476.00 29.64 344.00 391.67 428.00 24.13 
Cu 1.76 B.D.L. 1.93 9.40 2.82 B.D.L. B.D.L. 2.68 0.66 
Zn 5.57 64.20 74.14 90.60 11.21 65.40 93.64 127.00 14.43 
Ga 0.94 29.20 34.51 38.50 2.47 39.70 45.51 50.50 2.66 
Ge 2.19 2.30 3.00 4.30 0.64 B.D.L. 2.36 3.11 0.51 
As 5.51 B.D.L. B.D.L. B.D.L. 0.00 B.D.L. B.D.L. 11.40 2.63 
Rb 1.09 B.D.L. B.D.L. B.D.L. 0.00 B.D.L. B.D.L. 2.83 0.79 
Sr 0.08 B.D.L. 0.46 4.10 1.37 0.00 1.57 8.40 2.31 
Y 0.99 B.D.L. B.D.L. 4.41 1.41 B.D.L. 1.07 4.47 1.21 
Zr 0.08 B.D.L. 2.64 6.80 1.87 0.90 4.53 12.20 3.48 
Nb 0.27 B.D.L. 0.54 1.29 0.41 B.D.L. 0.68 1.97 0.52 
Mo 1.42 B.D.L. 1.47 2.00 0.20 1.40 1.41 1.51 0.02 
Ag 1.73 B.D.L. B.D.L. B.D.L. 0.00 B.D.L. B.D.L. B.D.L. 0.00 
Cd 0.36 B.D.L. B.D.L. B.D.L. 0.00 B.D.L. B.D.L. B.D.L. 1.00 
Sn 0.95 3.26 4.93 6.28 0.87 3.49 4.56 5.80 0.60 
Sb 1.28 B.D.L. B.D.L. B.D.L. 0.00 B.D.L. B.D.L. 1.37 0.35 
Ba 0.15 B.D.L. B.D.L. 0.36 0.12 B.D.L. 2.97 36.00 7.89 
La 0.21 B.D.L. B.D.L. 0.94 0.31 B.D.L. 1.07 3.67 1.18 
Ce 0.46 B.D.L. B.D.L. 2.31 0.76 B.D.L. 2.62 10.23 3.05 
Pr 0.07 B.D.L. B.D.L. 0.38 0.13 B.D.L. 0.36 1.88 0.51 
Nd 0.27 B.D.L. B.D.L. 1.08 0.36 B.D.L. 1.50 7.20 2.08 
Sm 0.25 B.D.L. B.D.L. 0.94 0.31 B.D.L. B.D.L. 1.45 0.36 
Eu 0.05 B.D.L. B.D.L. 0.07 0.02 B.D.L. B.D.L. 0.10 0.02 
Gd 0.18 B.D.L. 0.19 1.74 0.58 B.D.L. B.D.L. 1.21 0.32 
Tb 0.06 B.D.L. B.D.L. 0.12 0.04 B.D.L. B.D.L. 0.09 0.03 
Dy 0.20 B.D.L. B.D.L. 1.45 0.48 B.D.L. B.D.L. 1.02 0.26 
Ho 0.08 B.D.L. B.D.L. 0.20 0.07 B.D.L. B.D.L. 0.14 0.04 
Er 0.15 B.D.L. B.D.L. 0.46 0.15 B.D.L. B.D.L. 0.48 0.13 
Tm 0.09 B.D.L. B.D.L. 0.14 0.05 B.D.L. B.D.L. B.D.L. 0.00 
Yb 0.19 B.D.L. B.D.L. 1.01 0.34 B.D.L. B.D.L. 0.20 0.06 
Lu 0.08 B.D.L. B.D.L. 0.14 0.05 B.D.L. B.D.L. B.D.L. 0.00 
Hf 0.07 0.11 0.11 0.11 0.00 0.11 0.11 0.18 0.02 
Ta 0.07 0.05 0.31 0.81 0.29 B.D.L. 0.15 0.32 0.08 
W 0.49 B.D.L. B.D.L. B.D.L. 0.00 B.D.L. B.D.L. B.D.L. 0.00 
Au 0.03 B.D.L. B.D.L. B.D.L. 0.00 B.D.L. B.D.L. B.D.L. 0.00 
Pb 0.44 B.D.L. B.D.L. 0.71 0.15 B.D.L. B.D.L. 0.84 0.15 
Th 0.31 B.D.L. B.D.L. 2.03 0.67 B.D.L. 1.06 3.30 1.06 
U 0.11 B.D.L. B.D.L. 0.29 0.10 B.D.L. 0.26 0.90 0.27 
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Table 3.2. Summary of compositions of apatite from outcrop samples at Cristales Grandes, 
Rodados Negros, and Laco Sur.    

Cristales Grandes   
Purple luminescence/ Blue luminescence/   

Gray in BSE Light gray in BSE 
EPMA D. L. N= 145 N= 12   

Min. Mean Max. Std. 
Dev 

Min. Mean Max. Std. 
Dev 

CaO (wt%) 0.09 49.87 53.43 54.68 0.88 52.33 53.12 53.64 0.37 
P2O5 (wt%) 0.17 36.75 39.81 41.51 0.91 38.56 39.25 40.37 0.45 

F (wt%) 0.27 2.06 3.16 3.98 0.22 2.89 3.10 3.44 0.18 
Cl (wt%) 0.02 0.65 0.80 1.16 0.08 0.65 0.69 0.73 0.03 

Calc. OH (wt%) N/A 0.00 0.17 2.04 0.18 0.00 1.70 0.50 0.14 
S (ppm) 155.50 B.D.L. 2383.70 4791.05 917.53 1104.5

5 
1821.68 2456.95 416.68 

Si (ppm) 245.50 B.D.L. 2923.29 4781.43 1078.0
2 

3183.1
0 

4876.86 5487.07 628.34 

Na (ppm) 369.50 B.D.L. 2159.64 4420.76 1126.9
1 

644.24 952.94 1573.49 237.03 

Al (ppm) 236.10 B.D.L. B.D.L. 3845.97 335.94 B.D.L. B.D.L. B.D.L. B.D.L. 
Mg (ppm) 250.30 B.D.L. B.D.L. 368.63 106.71 B.D.L. B.D.L. B.D.L. B.D.L. 
Fe (ppm) 828.30 B.D.L. B.D.L. 1374.48 274.92 B.D.L. B.D.L. 833.40 240.58 

LA-ICP-MS 
(ppm) 

D. L. 
(ppm) 

 

Na 29.91 1063.0
0 

1924.60 4540.00 579.28 919.00 1238.83 1600.00 204.67 

Mg 0.87 141.30 206.33 310.00 24.67 88.30 159.75 214.30 41.52 
Al 5.24 B.D.L. 10.78 555.00 59.14 B.D.L. 3.00 7.10 1.29 
Si 2616.06 B.D.L. 6453.76 66200.0

0 
7012.2

4 
B.D.L. 8786.01 52600.0

0 
14110.8

5 
K 9.06 B.D.L. 11.82 300.00 28.45 B.D.L. 18.44 140.00 39.34 
V 0.90 7.83 46.44 103.60 27.37 9.30 19.12 42.10 10.94 

Mn 2.55 75.60 94.39 171.00 11.27 83.60 91.32 103.60 5.76 
Fe 34.20 667.00 922.97 14100.0

0 
1111.1

4 
675.00 761.00 825.00 46.37 

Ni 0.97 B.D.L. 2.07 6.00 0.81 B.D.L. 2.30 5.00 1.13 
Ge 2.22 7.50 18.00 32.50 6.16 10.60 19.85 32.30 7.47 
As 4.77 66.60 120.77 321.00 38.99 87.60 294.63 1155.00 375.17 
Sr 0.07 402.00 485.00 774.00 78.59 429.00 447.67 463.00 11.43 
Y 0.05 280.00 759.95 1270.00 280.99 474.00 793.08 1132.00 232.25 
Zr 0.05 B.D.L. 0.61 7.00 0.67 B.D.L. 0.49 1.24 0.43 
Ba 0.10 0.32 1.13 3.70 0.50 0.57 0.93 1.59 0.34 
La 0.10 2673.0

0 
4279.85 8670.00 1189.1

0 
3030.0

0 
4297.58 6240.00 1210.80 

Ce 0.06 2456.9
7 

4004.35 6265.04 879.70 4210.0
0 

6355.00 9840.00 2109.12 

Pr 0.02 256.00 570.53 1352.00 213.13 342.00 571.75 984.00 218.25 
Nd 0.08 767.00 1901.03 4200.00 686.57 1172.0

0 
1904.50 3190.00 722.88 

Sm 0.06 91.80 299.53 1066.00 160.70 168.00 267.20 466.00 103.73 
Eu 0.04 10.12 20.81 53.00 7.93 14.30 19.34 29.10 4.92 
Gd 0.05 74.90 230.68 509.00 90.38 127.60 221.48 377.00 81.84 
Tb 0.02 8.11 30.80 117.00 18.45 15.20 26.21 44.70 9.80 
Dy 0.04 42.80 158.80 400.00 78.74 82.40 137.27 236.00 49.16 
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Ho 0.01 8.37 31.95 123.70 19.91 15.60 26.70 46.00 9.60 
Er 0.03 20.80 81.61 335.00 52.01 37.50 67.56 110.40 23.29 
Tm 0.02 2.45 11.41 54.40 8.20 4.80 8.49 14.80 3.00 
Yb 0.05 14.40 65.68 337.00 49.27 32.40 50.26 85.40 16.25 
Lu 0.01 2.05 11.51 135.70 18.81 4.38 6.22 11.42 2.10 
Hf 0.03 B.D.L. 0.26 3.10 0.39 B.D.L. 0.17 0.33 0.10 
Ta 0.01 B.D.L. 0.05 0.26 0.04 B.D.L. 0.06 0.19 0.05 
Th 0.03 B.D.L. 561.10 17100.0

0 
1458.9

1 
174.90 323.06 625.00 132.66 

U 0.01 B.D.L. 33.73 667.00 74.40 9.29 28.62 61.40 17.13 
Total REEs N/A 7699.1

8 
14121.1

9 
31676.8

0 
4608.3

3 
9705.3

8 
13959.5

5 
21674.8

2 
4525.57 

 
  

Rodados Negros   
Purple/ mauve luminescence/ Orange luminescence/   

Non-porous apatite Mottled/ porous apatite 
EPMA D. L. N= 59 N=11   

Min. Mean Max. Std. 
Dev 

Min. Mean Max. Std. 
Dev 

CaO (wt%) 0.09 47.48 53.01 53.85 1.16 44.54 51.86 53.66 2.64 
P2O5 (wt%) 0.17 34.51 39.05 40.13 0.88 34.37 39.62 40.71 1.84 

F (wt%) 0.27 2.33 3.10 3.64 0.27 2.07 2.51 2.86 0.23 
Cl (wt%) 0.02 0.82 1.00 2.05 0.24 1.76 2.10 2.66 0.26 

Calc. OH (wt%) N/A 0.00 0.04 0.36 0.09 0.00 0.03 0.19 0.06 
S (ppm) 155.50 0.00 2080.64 3806.84 1207.7

0 
0.00 1922.42 3777.30 1396.56 

Si (ppm) 245.50 0.00 2674.70 8304.48 1530.9
6 

0.00 2749.31 7105.50 2037.85 

Na (ppm) 369.50 0.00 1502.46 2518.32 670.31 0.00 1222.62 2052.96 720.53 
Al (ppm) 236.10 0.00 573.00 10129.2

1 
1884.1

9 
0.00 4669.78 49579.3

6 
14898.3

8 
Mg (ppm) 250.30 0.00 122.07 671.99 194.84 0.00 178.45 928.36 299.37 
Fe (ppm) 828.30 0.00 940.65 6650.07 1638.3

6 
0.00 3139.44 26934.5

6 
8137.43 

LA-ICP-MS 
(ppm) 

D. L. 
(ppm) 

 

Na 29.91 1126.0
0 

1582.10 2282.00 307.55 847.00 1459.82 2100.00 420.96 

Mg 0.87 130.50 186.49 292.00 41.06 135.40 314.04 650.00 130.96 
Al 5.24 B.D.L. 270.99 2680.00 586.73 B 1229.15 2420.00 813.01 
Si 2616.06 B.D.L. 5123.54 27700.0

0 
3755.0

1 
B 3720.37 5800.00 1762.39 

K 9.06 B.D.L. 91.66 2200.00 319.27 4.53 10.87 29.00 9.02 
V 0.90 33.20 60.95 96.70 13.93 16.40 38.50 59.20 14.36 

Mn 2.55 58.70 118.79 343.00 69.97 80.70 186.56 291.80 63.77 
Fe 34.20 722.00 1170.42 6380.00 889.68 722.00 2040.45 4330.00 1126.71 
Ni 0.97 B.D.L. 2.91 10.20 1.82 B.D.L. 7.01 13.10 4.32 
Ge 2.22 8.40 15.92 22.50 2.63 8.40 14.43 25.40 4.64 
As 4.77 68.70 110.11 206.00 29.62 90.80 122.79 222.00 47.02 
Sr 0.07 347.00 480.94 858.00 105.46 356.00 491.91 845.00 164.34 
Y 0.05 420.00 582.23 1057.00 122.51 402.00 527.82 800.00 144.16 
Zr 0.05 B.D.L. 0.21 0.90 0.14 B.D.L. 0.14 0.33 0.10 
Ba 0.10 0.35 6.51 101.00 15.45 0.98 17.95 87.00 24.17 
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La 0.10 2160.0
0 

3852.32 7540.00 1502.5
5 

1250.0
0 

3235.27 6530.00 1845.79 

Ce 0.06 3520.0
0 

5725.33 11010.0
0 

2136.7
1 

2330.0
0 

4905.45 9480.00 2499.70 

Pr 0.02 297.00 485.97 1097.00 217.11 240.00 448.64 935.00 237.87 
Nd 0.08 888.00 1324.58 2490.00 406.99 701.00 1208.36 2070.00 464.03 
Sm 0.06 117.20 170.11 298.00 43.00 110.80 165.80 282.00 55.18 
Eu 0.04 11.15 18.33 36.00 7.02 11.74 20.82 32.60 7.43 
Gd 0.05 95.20 156.68 306.00 55.55 95.20 163.97 270.00 54.83 
Tb 0.02 10.08 16.82 37.00 6.35 10.51 18.04 30.70 6.68 
Dy 0.04 47.80 81.15 184.00 29.96 52.00 88.35 138.20 30.36 
Ho 0.01 10.17 16.14 34.60 5.21 10.76 17.06 27.10 5.57 
Er 0.03 25.10 41.34 88.90 14.25 26.50 43.68 69.50 14.91 
Tm 0.02 3.23 6.26 15.80 3.19 3.61 7.16 12.90 3.15 
Yb 0.05 20.40 36.11 90.50 16.98 20.80 40.18 77.80 18.04 
Lu 0.01 2.35 4.32 10.78 2.08 2.66 4.87 9.74 2.16 
Hf 0.03 B.D.L. 0.09 0.33 0.07 B.D.L. 0.12 0.27 0.09 
Ta 0.01 B.D.L. 0.02 0.07 0.01 B.D.L. 0.02 0.07 0.02 
Th 0.03 128.90 395.33 1690.00 383.04 43.50 421.50 1430.00 488.42 
U 0.01 8.68 23.18 80.30 17.82 5.75 23.62 64.50 20.03 

Total REEs N/A 7390.2
7 

11935.4
8 

22604.3
9 

4419.1
8 

4961.9
9 

10367.6
7 

19911.3
4 

5204.54 

 
  

Laco Sur   
Bright luminescence/ Dark luminescence/   

Low S High S 
EPMA D. L. N=62 N=23   

Min. Mean Max. Std. 
Dev 

Min. Mean Max. Std. 
Dev 

CaO (wt%) 0.09 51.67 54.47 55.51 0.58 50.46 53.27 55.06 1.09 
P2O5 (wt%) 0.17 39.11 41.16 42.80 0.72 37.64 39.40 40.53 0.82 

F (wt%) 0.27 3.08 3.85 5.31 0.38 3.38 4.42 5.40 0.53 
Cl (wt%) 0.02 0.26 0.55 0.74 0.12 B.D.L. 0.12 0.54 0.13 
Calc. OH 

(wt%) 
N/A 0.00 0.01 0.24 0.05 B.D.L. 0.01 0.10 0.02 

S (ppm) 155.50 933.37 2221.2
7 

4860.17 1133.32 4537.4
4 

7997.11 11341.7
9 

1655.10 

Si (ppm) 245.50 382.37 731.29 1472.90 168.89 B.D.L. 378.93 1005.46 283.66 
Na (ppm) 369.50 873.17 2425.3

7 
6265.75 1114.42 3910.3

4 
5831.25 8479.46 1185.61 

Al (ppm) 236.10 B.D.L. B.D.L. B.D.L. B.D.L. B.D.L. B.D.L. B.D.L. B.D.L. 
Mg (ppm) 250.30 B.D.L. B.D.L. B.D.L. B.D.L. B.D.L. B.D.L. B.D.L. B.D.L. 
Fe (ppm) 828.30 4733.8

2 
7626.5

5 
13312.2

1 
1955.31 6553.5

0 
11379.8

5 
41628.0

6 
6967.74 

Ce (ppm) 1201.8
0 

0.00 2562.6
7 

3786.47 668.44 B.D.L. B.D.L. 2037.10 735.68 
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Figure 3.1. Maps showing (A) the location of the El Laco Volcanic Complex in the Miocene-Pleistocene volcanic arc on the western 
coast of South America, and (B) the locations of ore bodies, and drill core and outcrop samples analyzed in this study.  
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Figure 3.2. Representative backscattered electron (BSE) images of surface and drill core samples 
from ore bodies at El Laco. (A) Sample from Cristales Grandes containing magnetite (Mgt S1), 
which is altered to hematite (Hem)/martite (mar), and pyroxene (px). Craters from the LA-ICP-
MS transect are visible in image. (B) Sample from San Vicente Alto showing magnetite (Mgt S2) 
with euhedral hexagonal iron phosphate (FePO4) intergrowths, which are paragentically early and 
formed pre- or syn-magnetite. The FePO4 intergrowths also contain monazite (Mnz) grains at the 
FePO4 grain boundaries between the magnetite and and interspersed within the grain. Finally, some 
FePO4 grains contain quartz (Qtz), which is paragenetically later than the FePO4 (because the 
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FePO4 is enveloped by the quartz, as highlighted in the inset). (C) Sample from Laco Norte 
containing magnetite, hematite, goethite (Goe) and thorite inclusions (Thr). (D) Sample from Laco 
Sur containing apatite (Ap) and monazite inclusions. (E) Massive magnetite grains from Rodados 
Negros that are subhedral and inclusion free. (F) Sample from Laco Sur containing magnetite, 
patches of magnetite with high Si and Mg content, and Nb-rich oxide inclusions in cracks and at 
the boundary of the two generations of magnetite. (G) Sample from Laco Sur containing magnetite, 
hematite, and goethite (Goe). (H) Sample from Laco Norte containing magnetite Mgt A and Mgt 
S2, and goethite (Goe). 
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Figure 3.2. (I) Sample from deep zone of Laco Norte showing an aggregate of titanomagnetite 
crystals (Mgt-α) displaying trellis-textured ilmenite exsolution lamellae. (J) Sample from 
intermediate zone of Laco Norte showing a partially-dissolved magnetite (Mgt-X) core, which is 
overgrown by a later magnetite (Mgt-Y) defined by containing oscillatory textures of inclusion-
rich and inclusion-poor alternating growth zones. (K-L) Samples from intermediate zones of Laco 
Sur that correspond to a magnetite-scapolite-pyroxene-rich zone. Thorite inclusions are common 
in this zone (K). (M) Sample from the deep zone of Laco Norte showing a euhedral core of 

1 mm 
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inclusion-rich Magnetite-β surrounded by a rim of inclusion-poor magnetite. (N) Sample from the 
shallow zone of Laco Norte containing an aggregate of inclusion-poor Magnetite-Z grains, 
partially oxidized to martite/ hematite. (O) Sample from shallow depths of Laco Sur showing a 
coarse magnetite grain containing an inclusion-rich core surrounded by a rim of inclusion-poor 
magnetite. (P) Sample from the deep zone of Laco Sur displaying titanomagnetite (Mgt-α) grains 
from the breccia matrix, which contain well-developed ilmenite exsolution lamellae that exhibit 
both trellis and sandwich textures.  
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Figure 3.3.  Minor and trace element geochemistry of magnetite from surface samples from the Cristales Grandes (CG), Rodados Negros 
(RN), and San Vicente Alto (SVA) ore bodies from the El Laco deposit (A, C, E, G, I).. Data  for magnetite from surface outcrops and 
drill core samples from the Laco Norte (LN), Extension Laco Sur (ELS), and Laco Sur (LS) ore bodies are displayed in B, D, F, H, J  
Textural varieties of magnetite from LN are denoted by the same symbols as in Fig. 3.2 (α, β, X, Y, Z, S). Additionally, the drill core 
depths for the samples from LS are indicated, e.g., 91m. The orange line in the boxes represent the median concentrations and the green 
triangles represent the mean values. The upper and lower margins of the box identify the upper and lower fifty percent of the data, while 
the whiskers show the range of concentrations for ninety-five percent of the data.     
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Figure 3.4. The compositions of magnetite from Cristales Grandes, Rodados Negros and San 
Vicente Alto (lines) compared to the range of magnetite compositions (fields) from (A) igneous 
rocks, (B) low-temperature hydrothermal environments, (C) magmatic-hydrothermal 
environments and (D) Kiruna-type IOA deposits. All compositions are normalized to average bulk 
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continental crust using values in Rudnick and Gao (2003). Fields are taken from Dare et al. (2014) 
and Knipping et al. (2015b).  
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Figure 3.5. Compositions of magnetite from outcrop and drill core samples from Laco Norte 
compared to the same fields shown in Fig. 3.4. Magnetite alpha and beta represent magnetite from 
the deep zone of the drill core, magnetite X and Y represent magnetite from intermediate depths 
in the deposit, magnetite Z represents magnetite from shallow depths below surface, and magnetite 
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S represents magnetite from outcrop samples.  
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Figure 3.6. [Al + Mn] and [Ti + V] for magnetite from El Laco ore bodies and andesite (cf. Dare 
et al., 2015) plotted on the chemical discriminant diagram of Nadoll et al. (2014), with colored 
contours that represent magnetite formed at different temperatures (Nadoll et al., 2014). (A) 
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contains data for outcrop samples from Cristales Grandes, Rodados Negros, and San Vicente Alto 
analyzed in this study, and (B) contains data for outcrop and drill core samples form Laco Norte 
and Laco Sur (depth in meters from surface given in parentheses). 



113 

Figure 3.6. In Fig. 3.6C, we use ellipses to identify data from the dike-like ore bodies at Cristales 
Grandes and Rodados Negros (purple ellipse; red circles and yellow squares) and the flow-like ore 
body at San Vicente Alto (blue ellipse; black diamonds). Finally, in Fig. 3.6D, we identify 
magnetite from the deep breccia (red ellipse), the intermediate breccia (green ellipse) and the 
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shallow feeder zone and the surface flows (blue ellipse) from the Laco Sur and Laco Norte ore 
bodies.  
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Figure 3.7. Representative BSE and cathodoluminescence (CL) images for apatite from the El Laco ore bodies. BSE (A) and CL (B) 
images, of apatite from Cristales Grandes. Areas of dark luminescence in (B) correspond to brighter regions in the BSE image. BSE (C) 
and CL (D) images for apatite from Rodados Negros. Monazite grains (Mnz) occur in cracks within grains and at grain boundaries. The 
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regions of orange luminescence in (D) correspond to regions within the apatite grains that have porous/mottled texture, higher Cl 
contents, and contain monazite inclusions. BSE image (E), CL image (F) and Sulfur Kα EDS element map (G) for apatite grains from 
Laco Sur. The S Kα map (G) reveals elevated S concentrations near grain rims and regions of the grains with porous/mottled texture. 
Regions of low S content in the apatite grains exhibit bright (purple) luminescence (F), while high S regions exhibit dark luminescence 
(F).  
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Figure 3.8. Comparison of F-Cl-OH compositions of apatite from Cristales Grandes, Rodados Negros and Laco Sur with published 
compositions of apatite from other IOA deposits, e.g., Cerro de Mercado (Durango, Mexico), Carmen (Chile), Fresia (Chile) and Pea 
Ridge (Missouri, USA), and those in the Kiruna (Sweden) and Bafq (Iran) districts, mafic, felsic, and intermediate rocks, hydrothermal 
and sedimentary environments, and below the PGE ore zones at the Stillwater (USA) and Bushveld (South Africa) complexes. The 
apatite at El Laco is fluorapatite and has a composition similar to primary apatite in Cretaceous IOA deposits from the Chilean Iron Belt 
and IOA deposits globally. The apatite chemistry is consistent with growth from magmatic and magmatic-hydrothermal fluids. 
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Comparison data obtained from 1Torab and Lehman (2007); 2Marks et al. (2012); 3Harlov et al. (2002); 4Harlov et al. (2016); 5Webster 
and Piccoli (2015); 6Treloar and Colley (1996); 7Barth and Dorais (2000), Belousova et al. (2002), Krneta et al. (2016); 8Marks et al. 
(2012); Patiño Douce et al. (2011); 9Bao et al. (2016); 10Boudreau et al. (1995); 11Palma et al. (2019). The orange ellipse highlights Cl-
enriched apatite from Rodados Negros (yellow squares), which has porous texture and contains monazite inclusions (Fig. 7C, D). 
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Figure 3.9. Comparison of V and Ti contents of magnetite from surface (A) and drill core (B) 
from the El Laco ore bodies, the El Laco andesite, and Láscar dacite (cf. Broughm et al., 2017) 
with fields for V and Ti content for magnetite from igneous and hydrothermal environments cf. 
Dare et al. (2014) and Knipping et al. (2015b). Magnetite from Cristales Grandes, Rodados Negros, 
and deep- to intermediate-levels of the ore bodies at Laco Sur and Laco Norte plot in the 
composition field seen in igneous magnetite, whereas data for magnetite from Cristales Grandes, 
Rodados Negros, San Vicente Alto, and the shallow levels of the ore bodies at Laco Sur and Laco 
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Norte plot in the region where the fields for hydrothermal and igneous magnetite overlap. A few 
data points from San Vicente Alto plot in the field seen in reference hydrothermal magnetite and 
data from all surface samples studied plot in the low Ti region of the field. These data are consistent 
with growth of magnetite from magmatic and magmatic-hydrothermal fluids.  
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Figure 3.10. Comparison of (A) Ti, (B) V, (C) Al, (D) Sn, versus Ga contents in magnetite from 
surface and drill core from the El Laco ore bodies, the El Laco andesite and Láscar dacite host 
rocks (cf. Broughm et al., 2017). Igneous magnetite from the El Laco andesite and Láscar dacite 
host rocks have higher Ti, V, Al, and Ga contents. Generally, Ti, V, and Al contents decrease from 
deep to shallow regions in the deposit. This is consistent with growth of magnetite from a fluid 
that cools on ascent through the crust. The Sn contents are not as straightforward to interpret. 
Generally, there is a decrease in the Sn content of magnetite from Cristales Grandes, to Rodados 
Negros to San Vicente Alto for the surface samples. For drill core samples, the Sn content is 
highest in surface samples from Laco Sur but there are also 2 analyses of magnetite from deep 
breccias that have similarly high Sn contents. The surface samples from both Laco Norte and Laco 
Sur have higher Sn contents than the shallow, intermediate, and deep portions of these ore bodies. 
The increased Sn content of the surface samples from Laco Sur and Laco Norte, likely indicate 
metasomatic reactions of the ore minerals with hydrothermal fluids. 
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Figure 3.11. Comparison of V/Ti and Fe content of magnetite from surface outcrops (A) and drill 
core (B) from the El Laco ore bodies, and the El Laco andesite cf. Dare et al. (2015) with the fields 
for magmatic, reequilibrated, and hydrothermal magnetite (cf. Wen et al., 2017) and colored fields 
for igneous, high-temperature and low-temperature magnetite (cf. Nadoll et al., 2014). The 
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comparison indicates growth of magnetite in the ore bodies from magmatic and magmatic-
hydrothermal fluids and is consistent with ore genesis at El Laco according to the model presented 
by Ovalle et al. (2018).  
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Chapter 4  
 

Using the Chemistry of Detrital Magnetite as an Exploration Tool in Densely Covered 
Terrains: A Case Study in the Greenstone Belts of Guyana 

 

Co-authors: Aaron S. Wolf, Adam C. Simon, Chris Hunter, Marcus Harden, Georges Beaudoin 

 

4.1     Abstract 

Magnetite is a nearly ubiquitous phase in rocks and ore deposits, and its minor and trace 

element chemistry varies systematically depending on the environment in which it crystallizes. In 

this study, we developed a new statistical model that uses a global database of magnetite 

geochemistry measurements (n = 4600) for Cr, Ti, Mn, Al, V, Mg, Si, Ca, Cu, Ni, and Zn to 

discriminate magnetite from among the following ore deposit types: nickel copper platinum group 

element (Ni-Cu-PGE), orogenic gold, volcanogenic massive sulfide (VMS), iron oxide - copper - 

gold (IOCG), and porphyry copper (Au and Mo) deposits. We use this model, in addition to 

existing chemistry-based magnetite discriminant diagrams to identify the ore deposit source(s) 

(e.g., Ni-Cu-PGE, VMS, IOCG, etc.) of detrital magnetite in stream-sediment samples from 

catchments in Guyana. Comparisons of the chemistry of magnetite in outcrop and detrital grains 

from northwestern Guyana indicate that while the textural and physical characteristics of magnetite 

are partially preserved during weathering of rocks and stream transport, the minor and trace 

element chemistry of magnetite is only typically preserved if transported <1.5 km from the outcrop 

source. Notable exceptions are the concentrations of V and Al that remain unmodified during 
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stream transport (up to at least 5 km from the source outcrop). Application of our model to data 

for magnetite collected in Guyana indicates that the catchments sampled contain magnetite with 

chemistry characteristic of orogenic gold and Ni-Cu-PGE deposits. This work demonstrates the 

potential for detrital magnetite as an exploration tool for mineral systems in densely covered 

terrains, such as the Guiana Shield.   

4.2     Introduction 

 Magnetite is a common iron oxide mineral and is ubiquitous in igneous, sedimentary, and 

metamorphic rocks, as well as in ore deposits. Magnetite has inverse spinel structure, Fe3O4, where 

ferrous iron (Fe2+) is octahedrally coordinated and ferric iron (Fe3+) is both tetrahedrally and 

octahedrally coordinated. Magnetite incorporates a large number of metals that substitute for both 

Fe2+ and Fe3+, and results in the formation of solid solutions between magnetite, ulvöspinel, 

chromite, hercynite, magnesioferrite, trevorite, franklinite, and jacobsite as Ti4+, Cr3+, Al3+, Mg2+, 

Ni2+, Zn2+, and Mn2+ substitute for Fe in the magnetite structure (Deer et al., 1992; Dupuis and 

Beaudoin, 2011). Additionally, minerals such as coulsonite (FeV2O4,), cuprospinel (CuFe2O4), and 

harmunite (CaFe2O4), have the spinel structure and chemical formulas similar to magnetite with 

V3+ substituting for Fe3+, and Ca2+ and Cu2+ substituting for Fe2+ (Galuskina et al., 2014). Ahrensite 

(SiFe2O4) also has spinel structure and is similar to ulvöspinel with Si substituting for Ti (Biagioni 

and Pasero, 2014). Given its compositional flexibility, magnetite is thus an invaluable geochemical 

tracer, reflecting the environmental conditions and processes present during the formation and 

processing of each grain. Magnetite geochemistry has been shown to be useful as an indicator of 

provenance and petrogenesis (Lovering and Hedal, 1987; Grigsby, 1990; Razjigaeva and 

Naumova, 1992; Singoyi et al., 2006), and to vary depending on the environment in which it 

https://www.zotero.org/google-docs/?3sYy7l
https://www.zotero.org/google-docs/?3sYy7l
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crystallizes (Dupuis and Beaudoin, 2011; Dare et al., 2012; Boutroy et al., 2014; Nadoll et al., 

2014).  

Variations in the composition of magnetites from different ore environments, including 

nickel copper platinum group element (Ni-Cu-PGE) deposits, chromitites, iron-titanium-vanadium 

(Fe-Ti-V) deposits, orogenic gold, porphyry copper (Au and Mo), epithermal, and skarn deposits, 

banded iron formations, volcanogenic massive sulfide (VMS) and sedimentary exhalative 

(SEDEX) deposits, iron oxide - apatite (IOA), and iron oxide - copper - gold (IOCG) deposits, 

have been used to identify the ore environment in which magnetite crystallized (Loberg and 

Horndahl, 1983; Dupuis and Beaudoin, 2011; Dare et al., 2012; Boutroy et al., 2014; Nadoll et al., 

2014; Ward et al., 2018). Dupuis and Beaudoin (2011) showed that magnetite from ore 

environments, including Ni-Cu-PGEs, Cr deposits, VMS, Kiruna, porphyry Cu, BIF, IOCG, 

Skarn, and Fe-Ti-V deposits, can be identified using a combination of minor element 

concentrations. The authors report that Ni+Cr versus Si+Mg is useful for discriminating magnetite 

from Ni-Cu-PGE, Cr deposits; Al/(Zn+Ca) versus Cu/(Si+Ca) for identifying magnetite from Cu-

Zn-Pb VMS deposits, and Ni/(Cr+Mn) versus Ti+V or Ca+Al+Mn versus Ti+V for discriminating 

magnetite from Kiruna, IOCG, porphyry Cu, BIF, skarn, and Fe-Ti-V deposits. Nadoll et al. (2014) 

suggested using Al+Mn versus Ti+V for discriminating magnetite from hydrothermal ore deposits 

(including Kiruna, IOCG, porphyry Cu, BIF, skarn, and Fe-Ti-V deposits) and plutonic igneous 

rocks. Additionally, Ward et al. (2018) showed that Ni versus Cr/V is useful for identifying 

magnetite from barren mafic and ultramafic rocks, mineralised ultramafic, and ore-related mafic 

rocks from the magmatic Ni-Cu-PGE sulfide deposits at Munali in Zambia. Recently, numerous 

researchers have shown that the use of a variety of statistical methods, which incorporate trace 

element geochemistry, improves geochemical discrimination methods for magnetite. Huang et al. 
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(2018, 2019) showed that the ability to discriminate between magnetite from hydrothermal ore 

deposits, including IOA, IOCG, porphyry copper deposits, and igneous rocks is improved by using 

partial least squares-discriminant analysis (PLS-DA) on geochemical datasets that include trace 

elements in addition to minor elements. Makvandi et al. (2016) also showed that PLS-DA allows 

discrimination of magnetite from VMS and BIF deposits. Pisiak et al. (2017) used linear 

discriminant analysis (LDA) to assess similarities between major, minor, and trace element 

compositions of magnetite in glacial till and known porphyry copper deposits in British Columbia. 

Dmitrijeva et al. (2018) demonstrated that the use of statistical methods on datasets which include 

both minor and trace elements allow discrimination of magnetite from BIF deposits in South 

Australia. While many studies discuss the utility of magnetite geochemistry as a tool for 

exploration, there are only a few published studies which investigate the magnetite geochemistry 

as a tool for exploration. Ward et al. (2018) compared the chemistry of magnetite in soil above 

known Ni-Cu-PGE deposits with magnetite from those deposits and found chemical signatures of 

mineralization in the detrital samples. The studies of Pisiak et al. (2017) and Makvandi et al. (2016) 

highlight the utility of investigating the geochemistry of glacially transported magnetite grains to 

assess ore deposit potential. To our knowledge, there is an overall absence of published studies 

that assess the viability of using the geochemistry of alluvial detrital magnetite as an exploration 

tool for the discovery of ore deposits in covered terrains. 

The Guiana Shield in northern South America encompasses Guyana, Suriname, and French 

Guiana, much of western Venezuela, and parts of Colombia and Brazil (Gibbs and Barron, 1993). 

The Shield is primarily composed of early Proterozoic greenstones and metasediments that are 

overlain by conglomerates, quartzites, sandstones and shales, all of which are intruded by younger 

bimodal volcanic and intrusive rocks (Gibbs, 1987; Renner and Gibbs, 1987). Despite the long 
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history of mining in the Guiana Shield, it remains underexplored by modern exploration methods 

compared to other Precambrian cratons globally. Nonetheless, approximately 100 million ounces 

of gold have been discovered in the Guiana Shield (Goldfarb et al., 2017). Although gold is the 

major commodity mined in the Guiana Shield, it is an important producer of bauxite, and smaller 

deposits of manganese, diamonds, and iron have been discovered and/or mined (Bardoux et al., 

2018). The Guiana Shield is hypothesized to have been contiguous with the Birimian Shield of 

West Africa prior to the opening of the Atlantic Ocean in the Cretaceous (Bullard et al., 1965; 

Delor et al., 2003; Tedeschi et al., 2019). Considering the ore deposit discoveries in the Birimian 

Shield, including >300 million ounces of gold as well as magmatic nickel deposits (Markwitz et 

al., 2016; Tedeschi et al., 2019), etc., similar deposits might be discovered in the Guiana Shield.  

Though mining is an important contributor to Guyana’s economy, it remains the most 

underexplored region in the Guiana Shield. Gold production in Guyana is dominated by the two 

major gold mines (Karouni and Aurora), however, there is also a significant contribution by small 

and medium scale miners, who collectively produce in excess of 300,000 ounces of gold annually 

GGMC, 2018, Go-Invest, 2019; Hook, 2019). Additionally, Guyana’s mining sector comprises a 

bauxite mine (Bauxite Company of Guyana) and a manganese mine (Guyana Manganese 

Incorporated) in addition to small and medium scale alluvial diamond mining operations (GGMC, 

2018). Currently, exploration methods that involve the use of geologic data are only employed by 

large scale miners and the (~6) junior mining companies doing exploration in Guyana. There is a 

dearth of recent geological data for Guyana; additionally, the thick forest cover and weathering 

profile and lack of outcrops make the collection of data challenging. Current exploration 

techniques are heavily focused on using: (1) data from geochemical surveys — mostly stream and 

soil sediments — to identify geochemical anomalies and targets for exploration, and (2) data from 



138 

legacy geophysical surveys (1960s) to gain insight about regional geology and structures. 

Exploration in Guyana, and the Guiana Shield, would benefit greatly from novel exploration 

techniques that could complement the regional datasets that exist by providing additional 

information about undiscovered deposits present under dense forest and soil cover and assist with 

the identification of targets.  

In this study, we investigate the chemistry of magnetite and spinels from outcrop and 

stream sediment samples collected across Guyana in order to: (1) assess the effects of erosion, 

transport, and weathering on the chemistry of magnetite, and (2) to investigate the use of the 

geochemistry of detrital magnetite grains as a tool for regional exploration. We used a field 

emission scanning electron microscope (FE-SEM) to study samples at high magnification and 

acquire back scattered electron (BSE) images for textural characterization, and electron probe 

microanalysis (EPMA) to measure the abundance of major, minor, and trace elements in 

magnetite. Robust statistical methods were used to compare the chemistry of magnetite from 

Guyana with data from a global database of magnetite chemistry from Ni-Cu-PGE deposits, 

orogenic gold deposits, VMS deposits, IOCG deposits, porphyry - copper - gold (Cu-Au) deposits, 

and porphyry - copper - molybdenum (Cu-Mo) deposits. The mineralogical and geochemical data 

reveal that magnetite can be used as a robust exploration tool in areas that are heavily forested and 

have thick saprolite and soil cover. 

4.3     Geological Background 

4.3.1     Regional Geology 

The Amazonian craton is divided into the Guiana Shield (north) and the Guaporé Shield 

(south). There are many open questions regarding the geologic evolution of the Guiana Shield. 

However, published works about the geology of the Shield indicate that it comprises rocks ranging 
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from Archean to Cenozoic in age (Fig 4.1A). The Imataca complex in Venezuela and the Cupixi 

formation in Brazil are both Archean in age. The Imataca complex contains banded iron formations 

and is likely the South American conjugate to the Archean nucleus in the Leo-Man Shield in 

Liberia/West Africa (Baratoux et al., 2019). The Cupixi formation is characterized as an 

allocthonous granitoid terrane (Sidder, 1990; Dardenne and Schobbenhaus, 2003; Klein and Rosa-

Costa, 2003). 

Paleoproterozoic units constitute the majority of the Guiana Shield. The oldest 

Paleoproterozoic rocks are greenstone belts formed during the Trans-Amazonian orogeny ~ 2.13 

- 1.98 Ga (Daoust et al., 2011). The greenstone belts are distributed in the northwest of the Shield, 

in Guyana and Venezuela, and to the southeast in Suriname, French Guiana, and Brazil 

(Kroonenberg et al., 2016). The belts comprise bimodal mafic - ultramafic and felsic igneous 

rocks, in addition to clastic and chemical sedimentary rocks (Gibbs and Barron, 1993; Daoust et 

al., 2011). Gold mineralization has been discovered and mined in these belts in Venezuela (El 

Callao, Las Cristinas), Guyana (Aurora, Omai, Karouni), Suriname (Rosebel, Merian) and French 

Guiana (St. Elie) (Voicu et al., 1999; Daoust et al., 2011; Bassoo et al., 2018; Tedeschi et al., 

2018a, b). The greenstone belts also contain diapiric tonalite-trondhjemite-granodiorite intrusions 

(TTGs) and gneisses with ages of 2.18 - 2.13 Ga (Kroonenberg et al., 2016; Tedeschi et al., 2018a, 

b).  High grade metamorphic belts with ages ranging from 2.08 - 2.02 Ga are present in Suriname 

(Bakhuis and Coeroeni Belts), Guyana (Kanuku Group), and Brazil (Caurane belt) (Kroonenberg 

et al., 2016). The older felsic volcanic rocks and granitoids of the Orocaima belt (1.99 - 1.95 Ga) 

are present in Suriname, Guyana, Venezuela, and Brazil, while the younger felsic volcanics and 

granitoids of the Iricoumé belt (1.89 - 1.81 Ga) are present in Brazil and Guyana (Kroonenberg et 

al., 2016). The ~2000 m thick sandstones and conglomerates of the Roraima supergroup are 
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present in Venezuela, Guyana, and Brazil. This formation, dated to ~1.87 Ga (Kroonenberg et al., 

2016), represents foreland basin sediments derived from the Trans-Amazonian mountains (Santos 

et al., 2003). The conglomerates in the Roraima are hypothesized to be similar to the gold-bearing 

Tarkwa formation in Ghana (Frimmel, 2014), and have also been investigated as a potential source 

of uranium in Guyana (Thompson, 2012). The Rio Negro Belt (1.86 - 1.72 Ga) is present in 

Venezuela, Colombia, and Brazil (Kroonenberg et al., 2016). The youngest Paleoproterozoic rocks 

are the ~1.79 Ga mafic intrusives and younger Avanavero and other Proterozoic mafic and alkaline 

intrusives in Guyana and Venezuela.  

Mesoproterozoic intrusive rocks (1.59 - 1.51 Ga) and Platform Covers (1.3 - 1.2 Ga) are 

present in Brazil, Colombia, and Venezuela (Kroonenberg et al., 2016). Sedimentary rocks formed 

from the Paleozoic onwards are present in all 6 countries that constitute the Guiana Shield 

(Kroonenberg et al., 2016). 

4.3.2     Local Geology 

Of the countries that make up the shield, the geology of Guyana is the least well-

constrained. Based on geological mapping, the major lithologic formations in Guyana formed in 

the Precambrian, Mesozoic, and Cenozoic (Fig. 1B; Heesterman and Nadeau, 2010). Proterozoic 

formations include: (1) Lower Proterozoic supracrustals, i.e., the greenstone belts of the Barama - 

Mazaruni supergroup and the high grade gneisses, granulites, and charnockites of the Kanuku 

group; (2) rocks formed during the Trans-Amazonian tectono-thermal event, i.e., the granitoids of 

the Younger Granites, the gneissose granites, diorites, and the migmatites of the Bartica 

Assemblage; and (3) ultramafic intrusives, layered gabbros, and the Kaburi anorthosite of the 

Badidku Suite/Older Basic Rocks. Other Proterozoic geologic units of interest include: (1) 

manganese deposits of the Matthew’s Ridge Formation, (2) Middle Proterozoic gabbro-norite sills 
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and dikes of the Avanavero Suite; (3) fluviatile sands and conglomerates of the Roraima Group; 

(4) sub-volcanic granites and acid/intermediate volcanics of the Iwokrama and Kuyuwini 

Formations; (5) fluviatile sands and cherty mudstones of the Muruwa Formation; and (6) Upper 

Proterozoic nepheline syenites and inferred carbonatites of the Muri Alkaline Suite (Heesterman 

and Nadeau, 2010). Mesozoic formations include: (1) continental sands and silts of the Takutu 

Formation and (2) andesite flows of the Apoteri Volcanics, which constitute the Rewa Group 

(Heesterman and Nadeau, 2010). The Takutu graben formed during a failed rifting event that was 

a precursor to the opening of the Atlantic Ocean (Burke and Dewey, 1973; Choudhuri, 1980). The 

Cenozoic units include: (1) fluviatile and marine sands of the White Sand formation and (2) marine 

clays (Heesterman and Nadeau, 2010).  

The catchment areas sampled are shown in Figure 4.1B. The intrusions sampled in 

northwestern Guyana belong to the Barama - Mazaruni Supergroup, and the detrital samples 

collected in this region, likely sample rocks from both the Barama - Mazaruni Supergroup and the 

Younger Granites (Fig. 4.1B). The detrital samples collected in the rest of the country additionally 

sample the Badidku Suite/Older Basic Rocks and the Avanavero Suite (Fig. 4.1B). The 

southernmost detrital grains likely sample the charnockites of the Kanuku Group (Fig. 4.1B).  

4.4     Methods 

4.4.1     Sample collection and preparation 

We collected 14 outcrop samples and 84 detrital samples in the greenstone belts in Guyana. 

Sample locations for outcrops were identified by targeting regions with positive magnetic 

anomalies and coincident anomalous concentrations of Cr, Cu, and Ni in rock and soil 

geochemistry. In northwestern Guyana, stream sediment samples were collected from streams of 

different sizes/orders within 5 km of the intrusions sampled (Fig. 4.1C). Additionally, stream 
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sediment samples were collected during regional stream geochemistry surveys in the other regions 

of northwestern Guyana and in mining districts throughout the rest of the country (Fig. 4.1B). 

Outcrop samples were cut into billets and 100 μm thick sections were made. Heavy mineral 

separates were obtained by panning of stream sediments using a plastic pan to avoid 

contamination. The magnetic fractions of these heavy mineral separates were extracted using a 

hand magnet and mounted in epoxy resin to make 1 inch rounds, which were polished to a 0.3 μm 

finish using aluminum oxide polishing paper.  

4.4.2     Phase identification and quantitative analyses 

Mineral phases were identified and characterized via energy-dispersive X-ray spectrometry 

(EDS) spot analyses and backscattered electron (BSE) imaging by using the JEOL JSM – 

7800FLV Field-Emission Scanning Electron Microscope (FE-SEM) at the University of Michigan 

Electron Microbeam Analysis Laboratory (EMAL) with an accelerating voltage of 15 kV.  

The major, minor, and trace element chemistry of mineral phases was determined using a 

CAMECA SX-100 electron probe micro-analyzer (EPMA) in wavelength-dispersive X-ray 

spectrometry (WDS) mode in EMAL. For each outcrop and detrital sample, the concentrations of 

Fe, Ti, V, Mn, Ca, Mg, Cr, Al, Si, Ni, Cu, and Zn in representative magnetite and Fe-Cr-Ti oxide 

grains were measured by using an accelerating voltage of 20 keV, a beam current of 30 nA, and a 

focused electron beam. The counting times and standards used are presented in Table 4.1. 

Vanadium measurements were corrected for the spectral overlap of the V Kα X-ray line by the Ti 

Kβ. The average detection limits obtained for Fe, Ti, V, Mn, Ca, Mg, Cr, Al, Si, Ni, Cu, and Zn 

are 607 ppm, 101 ppm, 46 ppm,  82 ppm, 71 ppm, 86 ppm, 125 ppm, 74 ppm, 65 ppm, 83 ppm, 

115 ppm, and 275 ppm, respectively. A total of 1100 individual EPMA spot analyses were 
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conducted on ~ 600 representative iron oxide grains from rock and stream sediment samples 

collected throughout Guyana.  

4.4.3     Statistical analyses 

 In order to assess the ore deposit potential of the catchments sampled, we compared the 

chemistry of magnetite from Guyana with data from a global database that contains ~24,000 

analyses of oxides (magnetite, titanomagnetite, hematite, chromite) from 13 ore deposit types (Ni-

Cu-PGE, chromitites, Fe-Ti-V deposits, orogenic gold, porphyry copper (Au and Mo), epithermal, 

and skarn deposits, banded iron formations, VMS, SEDEX, IOA, and IOCG). We selected 

analyses from the global database that reported the concentrations of Ti, Cr, Mn, Al, Mg, Zn, Ni, 

V, Si, and Ca measured via EPMA, since we measured the concentrations of these elements in our 

samples from Guyana. This produced a global dataset that contained ~9,000 analyses. Next, we 

identified well-represented ore deposit types (with more than 300 analyses) to avoid issues 

associated with small number statistics. This produced a dataset of ~6,000 analyses from 6 ore 

deposit types (Ni-Cu-PGEs, VMS, orogenic gold, IOCG, porphyry Cu-Au, and porphyry Cu-Mo). 

Prior to the development and application of the model, data from both the Guyana and global 

datasets were screened to exclude data that were not representative of magnetite or spinel group 

minerals. We imposed concentration upper-limits (in wt. %) based on spinel group stoichiometry 

for Ti, Cr, Mn, Al, Mg, Zn, Ni, V, and Fe of 21.4, 46.5, 26.6, 31.1, 12.2, 16.6, 16.7, 46.5, and 72.4, 

respectively. Analyses were also removed if they had concentrations of Si and Ca greater than 5.5 

and 0.4 wt. %, as these are the maximum concentrations of these elements reported in magnetite 

from natural samples (Newberry et al., 1982; Shimazaki, 1998; Dupuis and Beaudoin, 2011). The 

final global dataset used in the statistical analyses contained ~4,600 analyses, and 99% of these 

analyses had compositions with mole fractions of magnetite greater than 0.75. The remaining 
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analyses had compositions between endmember magnetite, chromite, ulvöspinel, and hercynite. 

The Guyana dataset contained ~700 analyses with mole fractions of magnetite greater than 0.75 

and an additional 140 analyses with magnetite fraction less than 0.75. 

 The data were analyzed using scripts developed in the open-source Python programming 

language. We first developed a normative calculation scheme that attributes the measured 

concentrations to endmember spinel group minerals, which contain the elements of interest (Ti, 

Cr, Mn, Al, Mg, Zn, Ni, V, Si, and Ca), and calculates the mole fraction of magnetite. Next, the 

data from the global dataset were used to develop a multivariate normal distribution model (using 

tools from the Scikit-Learn module including quadratic discriminant analysis; see Pedregosa et al., 

2011) to distinguish magnetite from Ni-Cu-PGE, VMS, orogenic gold, IOCG, and porphyry 

copper (i.e., Cu-Au and Cu-Mo) ore environments (Appendix 4.1). The model was developed 

using >400 analyses of magnetite from multiple individual ore deposits belonging to the 

aforementioned ore deposit types. We grouped analyses for magnetite from porphyry Cu-Au and 

porphyry Cu-Mo deposits and treat them as a single ore deposit type, referred to as porphyry 

copper deposits (PCD). The model characterizes the distinct chemical signatures of magnetite from 

each of these deposit types, allowing us to predict the likely parent ore deposit type for a grain 

from an unknown source. To quantify the accuracy of this model for deposit type predictions, we 

determine the number of true and false positives and true and false negatives and used these values 

to calculate the sensitivity and precision for each deposit type in the model (this type of accuracy 

assessment is typical in diagnostic medical testing, e.g. Drum and Christacopoulos, 1972). The 

sensitivity indicates how likely the method is to correctly identify a sample from a given deposit 

type, while the precision reflects the accuracy of identifications made; they are calculated as 

follows: 
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𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 +𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑁𝑁𝑁𝑁𝑁𝑁𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

 (Equation 1) 

 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 +𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

 (Equation 2). 

 

For this study, true positives for a deposit type, e.g., Ni-Cu-PGEs, are the analyses from Ni-Cu-

PGE deposits that are correctly identified as being from the Ni-Cu-PGE deposit type; false 

positives are those analyses from other deposit types (e.g., VMS, IOCG) that are wrongly 

identified as Ni-Cu-PGEs; true negatives are analyses from other  deposit types (e.g., VMS, IOCG) 

that are identified as not being from Ni-Cu-PGEs; and false negatives are analyses from Ni-Cu-

PGEs that are incorrectly identified as belonging to another deposit type (e.g., VMS, IOCG). The 

normal distribution model thus provides a prediction of the relative likelihood that a single sample 

is derived from each of the five deposit types, and is well characterized in terms of its identification 

accuracy. 

In most cases, when we have a collection of samples from a given region, we can infer the 

likely mixture of ore deposit source types that produced the sample set. We used a non-negative 

least squares regression model to compare the multivariate normal model results of data from 

unknown samples and the characteristic geochemical signatures of the five classes of deposits to 

infer which deposit type or mixture of deposit types is required to produce the chemical signature 

obtained when the model is applied to the data. Lastly, the model was applied to the 700 analyses 

for magnetite from Guyana (generated in this study) to investigate if the chemistry of magnetite in 

intrusions and stream sediment samples are typical of Ni-Cu-PGE, VMS, orogenic gold, IOCG, 

and/or porphyry copper mineralization. 
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4.5     Results 

4.5.1     Mineral chemistry and descriptions 

4.5.1.1     Outcrop samples 

The sampled intrusions were identified as pyroxenites (GY-RC-03, GY-RC-07, GY-RC-

10, GY-RC-11, GY-RC-13, GY-RC-14) and iron-titanium (Fe-Ti) poor mafic rocks (GY-RC-01, 

GY-RC-12) using whole rock geochemistry and the rock-type classification calculations in the 

ioGAS software (Fig. 4.1C). Scanning electron microscope investigations of thin sections from 

the intrusions indicate that the investigated grains have chemistries equivalent to magnetite, 

hematite and spinel minerals that have compositions between endmember magnetite, ulvöspinel, 

and chromite. EPMA indicate that magnetite grains have a range of compositions, including low 

Cr-Ti magnetite, Cr-rich titanomagnetite, and Cr-poor titanomagnetite, and that the samples also 

contained chromium-rich spinels, titanomagnetite and hematite. Mafic outcrop samples contain 

Cr-poor titanomagnetite, hematite, and titanomagnetite. Pyroxenite outcrop samples contain the 

aforementioned phases present in the mafic outcrops, in addition to Cr-Ti poor magnetite, Cr-rich 

magnetite, Cr-rich titanomagnetite, and Cr-rich spinels. The chemistry of magnetite in the 

intrusions is presented in box and whisker plots in Fig. 4.4 and in Table 4.2. Generally, Cu and Zn 

concentrations are below or close to the detection limit for most of the analyses. The analyzed 

grains exhibit a variety of textures (Table 4.A1) and the observed textural differences correlate 

with chemical differences.  

Chromium-poor titanomagnetite from mafic rocks have median Fe, Cr, Ti, Mg, V, and Al 

contents (± 1σ) of 67.2 ± 2.4 wt%, 0.05 ± 0.04 wt.%, 1.7 ± .1.3 wt.%, 0.03 ± 0.1 wt.%, 0.6 ± 0.5 

wt.%, and 0.5 ± 0.3 wt.%, respectively. These grains have well-developed sandwich-textured 

ilmenite exsolution lamellae and cloth-textured ilmenite exsolution lamellae are present in the 
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magnetite between the sandwich-textured ilmenite lamellae (Fig. 4.2A). A subset of these 

magnetite grains also contains fluorapatite and sulfide grains as inclusions, and ilmenite granules 

are present in cracks within the magnetite grains and at their grain boundaries (Fig. 4.2B). 

Additionally, some of these magnetite grains are adjacent to ilmenite grains, which sometimes 

contain magnetite and/or sulfide inclusions (Fig. 4.2A, C, D). A subset of these grains are identified 

as titanomagnetite, and have median concentrations (± 1σ) of Fe, Cr, Ti, Mg, V, and Al of 58 ± 

3.5 wt.%, 0.1 ± 0.02 wt.%, 8 ± 2.3 wt.%, 0.07 ± 0.1 wt.%, 0.6 ± 0.2 wt.%, and 1.1± 2.5 wt.%, 

respectively.  

Chromium-Ti poor magnetite from pyroxenite sample GY-RC-07 have median 

concentrations (± 1σ) of Fe, Ti, and Mg of 70 ± 0.5 wt.%, 0.05 ± 0.02 wt.%, and 0.1 ± 0.2 wt.%, 

respectively, and Cr, Al and V below the limit of detection. These grains are small and inclusion-

poor. Chromium-rich titanomagnetite from the pyroxenite samples have median concentrations (± 

1σ) of Fe, Cr, Ti, Mg, V, and Al of 64.8 ± 6.9 wt.%, 3.2 ± 1.9 wt.%, 1 ± 1 wt.%, 0.1 ± 1.5 wt.%, 

0.2 ± 0.6 wt.%, and 0.2 ± 1.5 wt.%, respectively. Some Cr-rich titanomagnetite grains exhibit a 

wavy or spongy texture, which characterizes entire grains or is present only in the rims of some 

grains (Fig. 4.2E, F). Other grains are inclusion-poor and contain ilmenite or hercynite granules 

within grains or at grain boundaries (Fig. 4.2G, H). Additionally, some of these magnetite grains 

contain very thin trellis-textured ilmenite exsolution lamellae (Fig. 4.2I). Both the inclusion-poor 

grains and those that contain ilmenite exsolution lamellae sometimes meet at triple junctions. Cr-

poor titanomagnetite in the pyroxenite outcrops have median concentrations (± 1σ) of Fe, Cr, Ti, 

Mg, V, and Al of 68.9 ± 2 wt.%, 0.2 ± 0.1 wt.%, 0.5 ± 0.5 wt.%, 0.02 ± 0.4 wt.%, 0.3 ± 0.1 wt.%, 

and 0.04 ± 0.1 wt.%, respectively. These grains also exhibit wavy texture, contain small, 

irregularly shaped cloth-textured ilmenite exsolution lamellae, or contain visible ilmenite 
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exsolution lamellae or ilmenite granules (Fig. 4.1C; 4.2J). Chromium-rich magnetite from the 

pyroxenite intrusions have median Fe, Cr, Ti, Mg, V, and Al contents (± 1σ) of 62.6 ± 6.7 wt.%, 

2 ± 1.2 wt.%, 0.07 ± .01wt%, 0.7 ± 3.2 wt.%, 0.2 ± 0.1 wt.%, and 0.4 ± 1 wt.%, respectively. This 

magnetite is inclusion-poor, has lower Z than the previously described magnetite grains and is 

present between the cores and rims of zoned spinel grains in the intrusions (Fig. 4.2F). Chromium-

rich spinels from the pyroxenite samples have median Fe, Cr, Ti, Mg, V, and Al contents (± 1σ) 

of 44 ± 10 wt.%, 19 ± 6 wt.%, 1.8 ± 1.2 wt.%, 0.05 ± 2 wt.%, 0.3 ± 0.1 wt.%, and 0.8 ± 7 wt.%, 

respectively. These grains are present in three intrusions (GY-RC-10, GY-RC-11, GY-RC-14) and 

are zoned, with cores and rims of different compositions as indicated by differences in color BSE 

images (Fig. 4.1C; 4.2F). Titanomagnetite present in pyroxenite samples have median 

concentrations (± 1σ) of Fe, Cr, Ti, Mg, V, and Al of 57.2 ± 3.5 wt.%, 0.2 ± 1.9 wt.%, 7.9 ± 2.3 

wt.%, 0.05 ± 0.1 wt.%, 0.3 ± 0.2 wt.%, and 0.2 ± 1.9 wt.%, respectively. These grains, like the 

titanomagnetite grains in the mafic outcrops, contain visible ilmenite exsolution lamellae (Fig. 

4.2K).  

Hematite in the intrusion samples have median concentrations (± 1σ) of Fe, Cr, Ti, Mg, V, 

and Al of 68.5 ± 1 wt.%, 0.01 ± 0.1 wt.%, 0.02 ± 0.02 wt.%, 0.4 ± 0.2 wt.%, 0.04 ± 0.02 wt.%, 

and 0.03 ± 0.01 wt.%, respectively. Hematite grains are typically small and somewhat porous and 

meet at triple junctions (Fig. 4.2L). Additionally, hematite in GY-RC-07 contains millerite as an 

inclusion (Fig. 4.2M). Many intrusions contain ilmenite with patchy texture, which contain 

magnetite exsolution lamellae, and sometimes sulfide inclusions (Fig. 2C, 2N). Sulfide grains were 

observed in all sampled intrusions (Table 4.A1). Sulfides observed include pyrrhotite, pentlandite, 

chalcopyrite, pyrite, cubanite, bornite, sphalerite, covellite, chalcocite, and some grains contained 

multiple sulfide phases within the same grain (Fig. 4.2A, D, O, P, Q). Pentlandite, pyrrhotite, 
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sphalerite, chalcopyrite, and pyrite were observed in the mafic and ultramafic rocks (Fig. 4.2A, M, 

and O). Small (10s µm) sulfide grains are present in the groundmass of some intrusions; however, 

larger grains, (100s µm) were observed in other intrusions (Fig. 4.2P).  

4.5.1.2     Detrital samples 

The detrital grains present in the stream sediments samples include magnetite, hematite, 

chromium-rich spinels, and chromite, in addition to ilmenite, zircon, monazite, xenotime, and free 

gold grains. Magnetite in detrital grains exhibit the compositional variability described for the 

outcrop samples, i.e., low Cr-Ti poor magnetite, Cr-rich and Cr-poor titanomagnetite, and Cr- rich 

magnetite. Ilmenite is common in many samples and some detrital samples contain ilmenite and 

other phases, but no magnetite. Most mineral grains are angular to sub-angular, and only a few 

grains were rounded/subrounded (Fig. 4.3A). A summary of the chemical data for magnetite from 

the streams are presented in Fig. 4.4.  

The grains in the stream sediment samples contain many of the textures described for grains 

in the intrusion samples, however, the majority of the grains exhibit the inclusion-poor texture and 

some of these grains contain visible pits (Figure 4.3B). Inclusion-poor detrital grains have 

chemical compositions classified as Cr-Ti poor magnetite, Cr-rich magnetite, and Cr-rich 

titanomagnetite. The Cr-Ti poor magnetite grains have median concentrations (± 1σ) of Fe, Cr, Ti, 

V, and Al of 71.4 ± 1 wt.%, 0.02 ± 0.1 wt.%, 0.03 ± 0.03 wt.%, 0.1 ± 0.1 wt.%, and 0.02 ± 0.06 

wt.%, respectively and Mg below the limit of detection. Additionally, some Cr-Ti poor magnetite 

grains contain crevices along the (111) planes which appear to represent trellis and sandwich 

textured ilmenite exsolution lamellae that have been weathered or reacted away; this texture is 

referred to as magnetite with relic ilmenite exsolution lamellae (Fig. 4.3C). Detrital Cr-rich 

titanomagnetite have median concentrations (± 1σ) of Fe, Cr, Ti, Mg, V, and Al of 65.6 ± 3.5 wt.%, 
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3.6 ± 2.3 wt.%, 0.6 ± 1 wt.%, 0.1 ± 0.2 wt.%, 0.1 ± 0.1 wt.%, and 0.1 ± 0.6 wt.%, respectively. 

Some Cr-rich titanomagnetite grains have lower Z than the other magnetite grains in the samples 

(Fig. 4.3D). Chromium-rich magnetite grains have median Fe, Cr, Ti, Mg, V, and Al contents (± 

1σ) of 69.3 ± 5.3 wt.%, 0.5 ± 1.9 wt.%, 0.05 ± 0.02wt%, 0.03 ± 0.3 wt.%, 0.1 ± 0.1 wt.%, and 0.1 

± 0.7 wt.%, respectively. This group of magnetite grains is dominated by the inclusion-poor 

texture, however, some grains also contain thin trellis- and/or sandwich-textured ilmenite 

exsolution lamellae (Fig. 4.3E, F, G). Detrital Cr-poor titanomagnetite exhibits a variety of textures 

and have median Fe, Cr, Ti, V, and Al contents (± 1σ) of 68.1 ± 3.3 wt.%, 0.03 ± 0.06 wt.%, 0.6 

± 1.5 wt.%, 0.2 ± 0.2 wt.%, and 0.1 ± 0.5 wt.%, respectively, and Mg below the limit of detection. 

These magnetite grains contain visible trellis and sandwich textured or cloth-textured ilmenite 

exsolution lamellae and relic ilmenite exsolution lamellae (Fig. 4.3C, H, I). A few Cr-poor 

titanomagnetite grains also exhibit the wavy/ spongy texture observed in outcrop samples (Fig. 

4.3J). Detrital hematite grains have median concentrations (± 1σ) of Fe, Cr, Ti, V, and Al of 68.9 

± 0.4 wt.%, 0.02 ± 0.03 wt.%, 0.03 ± 0.02 wt.%, 0.1 ± 0.1 wt.%, and 0.04 ± 0.05 wt.%, respectively, 

and Mg below the limit of detection. These grains also appear inclusion-poor and contain visible 

pits (Fig. 4.3B). Chromium-rich spinels have median Fe, Cr, Ti, Mg, V, and Al contents (± 1σ) of 

40 ± 12 wt.%, 22 ± 9 wt.%, 0.7 ± 1 wt.%, 0.3 ± 1 wt.%, 0.2 ± 0.1 wt.%, and 1 ± 3 wt.%, 

respectively. Some of these grains were zoned with cores and rims of different compositions as 

observed in some intrusions samples (Fig. 4.3K, L). These grains are characterized by much lower 

Z or darker color in BSE images compared to the magnetite grains. Detrital titanomagnetite grains 

have median concentrations (± 1σ) of Fe, Cr, Ti, Mg, V, and Al of 61 ± 4 wt.%, 0.04 ± 0.2 wt.%, 

7.3 ± 2 wt.%, 0.01 ± 0.03 wt.%, 0.2 ± 0.2 wt.%, and 0.1 ± 0.3 wt.%, respectively. These grains 

have visible ilmenite exsolution lamellae (Fig. 4.3M).  
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Generally, a few magnetite grains have sharp, polygonal boundaries (Fig. 4.3B) and some 

magnetite grains contain sulfide inclusions, e.g., chalcocite and bornite (Fig. 4.3N, O, P, Q). Many 

ilmenite grains have patchy texture and contain magnetite exsolution lamellae (Fig. 3R) and 

ilmenite granules are present within cracks in some magnetite grains and on the edges of some 

grains (Fig. 4.3O). Pyrrhotite, pentlandite, chalcopyrite, bornite, sphalerite, pyrite, polymineralic 

sulfide assemblages, cobaltite, gersdorffite, and barite are present as inclusions in magnetite, 

ilmenite, quartz, and clinopyroxene in samples collected during regional stream sediment surveys, 

i.e., not in the samples proximal to the sampled outcrops (Fig. 4.3R, S, T, U, V). 

4.5.1.3     Chemical and textural comparison of outcrop and detrital samples collected in the 

 same catchment 

Detrital sample C-12174 was collected in a third order stream that drains rock samples GY-

RC-10 and GY-RC-11, and samples C-12170 and C-12171 were collected further downstream 

from C-12174 (Fig. 4.1C). Sample C-12170 was collected about 1 km from C-12174, while C-

12170 was ~0.1 km downstream from C-12171. Sample C-12174 contained inclusion-poor 

magnetite, magnetite with trellis-textured ilmenite exsolution lamellae, and magnetite with 

wavy/spongy texture (Fig. 4.5E-H). Magnetite with wavy/spongy texture was observed in GY-

RC-10, while the inclusion poor-magnetite and magnetite with thin ilmenite exsolution lamellae 

were observed in both GY-RC-10 and GY-RC-11 (Fig. 4.2E, 4.5A-D). Both rock samples and C-

12174 contain Cr-rich spinels. C-12174 contains magnetite with relic ilmenite exsolution lamellae 

(Fig. 4.5E). Sample C-12171 contains Cr-rich spinels, inclusion-poor magnetite, and magnetite 

with visible and relic ilmenite exsolution lamellae (Fig. 4.5I-M). The magnetite grains with relic 

ilmenite exsolution lamellae in samples C-12174 and C-12171 have similar appearance; however, 

the grains in C-12171 are more rounded (Fig. 4.5E, M). Sample C-12170 contains inclusion-poor 
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magnetite and magnetite with relic ilmenite exsolution lamellae (Fig. 4.5). Chemically, magnetite 

grains from the outcrop and detrital samples are similar, even though all textural types of magnetite 

observed in the outcrops are not observed in the detrital grains in this catchment (Fig 4.5; Table 

4.2). All three detrital samples contain Cr-Ti poor magnetite and Cr-poor titanomagnetite. All 

outcrop and detrital samples in this catchment contain Cr-rich titanomagnetite. Chromium-rich 

magnetite is present in GY-RC-10 and C-12170; titanomagnetite is present in GY-RC-11 and 

detrital samples C-12174 and C-12171. The V and Al content of the magnetite in C-12174 is lower 

than that in the rocks, however, the decrease in the concentrations of these elements is much 

smaller than for other elements, i.e., Cr, Ti, Mg, Mn, and Ni (Fig. 4.6C). Sample C-12171, 

collected about 1 km from C-12174, has similar median Si, Cr, V, and Ti concentrations, lower Ni 

concentrations, and higher Al and Mn concentrations relative to this sample. The magnetite grains 

in C-12170, generally have lower median concentration of Al, similar median concentrations of 

Si, V, Mn, Ni, and higher median concentrations of Cr and Ti relative to those in sample C-12171. 

The chemistry of the magnetite in C-12170 is generally similar to that for magnetite for C-12174, 

however, there are minor differences, including higher median Si, Cr, and Ti (Fig. 4.6C, E).  

Generally, the concentrations of all elements in detrital magnetite grains are lower than 

those from outcrop samples. The concentrations of Cr, Ca, Ti, Mn, Mg, and Ni in magnetite 

decrease in stream sediment samples as stream order/size increases (Fig. 4.4). The concentrations 

of V and Al are lower in magnetite from streams, however, the (median) concentrations of these 

elements are mostly constant in streams of all orders/sizes (Fig. 4.4).  
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4.6     Discussion 

4.6.1     Insights from compositions and textures of magnetite and Fe-Cr-Ti oxides in outcrop and 

detrital samples  

The chemical and textural analyses of grains from outcrop samples indicate the presence 

of multiple generations of magnetite and Cr-rich spinels in the samples. Magnetite grains from 

outcrop and detrital samples contain ilmenite exsolution lamellae, which form due to the oxy-

exsolution of the ulvöspinel component of magnetite-ulvöspinelss (Buddington and Lindsley, 

1964). This texture is an indication that the magnetite grains are igneous in nature. Magnetite with 

well-developed thick (10 - 200 μm) and thin (1-5 μm) ilmenite exsolution lamellae with trellis and 

sandwich textures, and ilmenite exsolution with cloth texture (Fig 4.2A) were observed by Arguin 

et al. (2018) in their study of vanadiferous titanomagnetite from the Lac Doré Complex in Québec, 

Canada. The authors note that the various textural forms of ilmenite exsolution lamellae provide 

insight about when the oxy-exsolution of ulvöspinel occurred. Arguin et al (2018) note that thick 

ilmenite exsolution lamellae form as a result of oxy-exsolution of ulvöspinel from magnetite-

ulvöspinelss above the solvus temperature (450-600 °C) and that cloth-textured and thin ilmenite 

exsolution lamellae form as a result of oxy-exsolution of ulvöspinel from magnetite-ulvöspinelss 

below the solvus temperature (Vincent et al., 1957; Duchense, 1970; Lindsley, 1981; Lilova et al., 

2012; Arguin et al., 2018). The occurrence of ilmenite exsolution lamellae formed via both super 

and sub-solvus oxy-exsolution of the ulvöspinel in a single mineral grain (Fig. 4.2A) are consistent 

with changes in the oxidation state of the silicate melt during cooling of intrusion after 

emplacement. We note that this texture was also observed by Ward et al. (2018) in the poikilitic 

gabbro in the Munali Igneous Complex. Ilmenite exsolution lamellae are observed in magnetite 

grains which terminate at triple junctions; similar observations were also made by Von 
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Gruenewaldt et al. (1985) and Arguin et al. (2018). They interpret this texture to indicate that oxy-

exsolution of ulvöspinel and the formation of ilmenite occurred after compaction and annealing of 

magnetite grains during cooling and accumulation in the rock mass (Von Gruenewaldt et al., 1985; 

Arguin et al. 2018). If the ilmenite lamellae had exsolved prior to re-equilibration, they would have 

diffused and migrated to the grain boundaries and eventually be expelled out of the grains to form 

granules (Buddington and Lindsley, 1964; Von Gruenewaldt et al., 1985; Arguin et al. (2018). 

Alternatively, re-equilibration of igneous magnetite — which contained ilmenite exsolution 

lamellae — with hydrothermal fluids (during or after cooling of the intrusions) via coupled 

dissolution reprecipitation reactions can also produce this texture (Hu et al., 2015; 2016).   

Chromium-rich spinels and Cr-rich magnetite were observed in outcrop and detrital 

samples (Fig. 4.2F, G; 4.3K, L). Chromite and Cr-spinels are the dominant oxide minerals in 

ultramafic rocks being the first spinels to crystallize from a primitive silicate melt (Irvine, 1965; 

Roeder, 1994; Abzalov, 1998; Barnes and Roeder, 2001). The compositions of spinels change as 

a result of compositional changes of parental magmas due to fractional crystallization such that 

the most primitive spinels are Al-Ti chromites, and later spinels have increasing Ti and Fe contents 

resulting in the formation of titanomagnetite and eventually magnetite (Roeder, 1994; Abzalov, 

1998; Barnes and Roeder, 2001). Spinel compositions can also be changed due to reactions of the 

earliest spinels with the evolving intercumulus silicate liquid during post-cumulus processes, and 

Cr-spinels can be altered to/or replaced by ferritchromite (chromian magnetite) and magnetite 

during metamorphism (Abzalov, 1998; Barnes and Roeder 2001; Merlini et al., 2005; 2009). 

Abzalov (1998) noted the crystallization of three generations of spinels in ultramafic (gabbro-

wehrlite) intrusions in the Proterozoic Pechenga greenstone belt in Russia. The earliest spinels 

were Al-Ti chromites, the second generation of spinels had composition ranging from Ti-rich 
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chromite to Ti-rich chrome magnetite and often contained ilmenite exsolution lamellae, and the 

third generation of spinel was Cr-poor titanomagnetite — this phase was common in pyroxenites 

and gabbros (Abzalov, 1998).  

The Cr contents measured in the Cr-rich spinel grains observed in this study (below the 

limit of detection to ~ 45 wt. %), overlap those reported by Abzalov (1998). Additionally, oxide 

grains from three intrusions showed zonations in Cr contents with highest Cr in the cores, 

intermediate Cr contents between the core and rim and very low Cr content in the rims (Fig. 4.2H). 

The chemical formulas of the phases in the distinct domains of this grain are 

Fe2+
0.9(Cr3+Fe3+

0.5Al3+
0.5)O4, Fe2+

1(Cr3+
0.9Fe3+

0.8Al3+
0.07)O4, Fe2+

1(Cr3+
0.3Fe3+

1.6Al3+
0.01)O4, and 

Fe2+
1(Cr3

0.03
+Fe3+

1.9Al3+
0.004)O4 from core to rim. The compositions of the cores of the zoned grains 

are similar to those reported for chromite by Abzalov (1998), consistent with the growth of these 

grains from silicate melts of primitive composition. The core to rim zonation of Cr and Fe in the 

grains is consistent with growth from or reaction with an evolving silicate liquid (Roeder, 1994; 

Abzalov, 1998; Barnes and Roeder, 2001).  

Additionally, we observed Cr-rich titanomagnetite containing thin ilmenite exsolution 

lamellae, attributed to sub-solvus oxy-exsolution of ulvöspinel, in sampled pyroxenite intrusions 

(Fig. 4.2I); Cr-rich magnetite grains were not observed in the mafic rocks. These grains have 

compositions similar to the second generation of spinels reported by Abzalov (1998), which were 

ascribed to growth from evolved parental melts or intercumulus melts. Pyroxenite samples also 

contained inclusion-poor Cr-rich titanomagnetite with elevated minor and trace elements, and 

these grains are sometimes associated with hercynite or ilmenite granules (Fig. 4.2G). The 

chemical and textural characteristics of these grains indicate that they are igneous in nature (Arguin 

et al., 2018). Further, the pyroxenites contain inclusion-poor Cr-Ti-poor magnetite that is 
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characterized by low minor and trace element contents that are consistent with precipitation from 

hydrothermal fluids (Nadoll et al., 2014; Dare et al., 2015; Fig. 4.2J). Hematite, which is 

sometimes associated with secondary sulfide minerals (e.g., millerite, Fig. 4.2M), is also present 

in intrusion samples. This provides further evidence of hydrothermal alteration of outcrop samples. 

The sampled outcrops were collected in a greenstone belt, where metamorphism to greenschist 

facies is common (Gibbs and Barron, 1993). Thus, it is likely that Cr-Ti-poor magnetite formed 

due to metamorphism/hydrothermal activity; these fluids, or later fluids, could have also produced 

the hematite observed (Abzalov, 1998; Mellini et al., 2005; Merlini et al., 2009; Nadoll et al., 

2014).  

Notable textural similarities are found in magnetite and spinel grains from outcrops and 

detrital samples, indicating that we can gain insights about the geology of the sampled catchments 

using the detrital grains (Fig. 4.5). Some detrital grains from northwestern Guyana have Fe and Cr 

contents expected for endmember chromite, while others are characterized by elevated Al and Cr 

contents, similar to the earliest formed chrome spinels described by Abzalov (1998). Moreover, 

we observe the compositional zonation observed in spinel from intrusion samples in detrital grains 

despite weathering and transport of these grains by streams. The detrital grains typically contain 2 

distinct compositional zones (Fig. 4.3K); however, these observations are enough to allow us to 

infer that the grains grew from a silicate fluid of evolving composition. Ilmenite exsolution 

lamellae are observed in detrital Cr-rich titanomagnetite grains in some sampled catchments (Fig. 

4.3D). However, the ilmenite exsolution lamellae in the detrital Cr-rich titanomagnetite grains are 

much thicker (up to 10 μm) than those observed in the Cr-rich titanomagnetite from the pyroxenite 

outcrops (Fig. 4.2I). The thin (<5 μm) trellis-textured ilmenite exsolution lamellae observed in 

outcrops was rarely observed (~ 1%) among detrital grains (Fig. 4.3G, F). The overlap in 
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compositions of the ilmenite-bearing and inclusion-poor Cr-rich titanomagnetite may indicate that 

the inclusion-poor grains represent a weathered form of the ilmenite-bearing Cr-rich 

titanomagnetite grains. The term weathering in this paper is used to describe chemical and physical 

processes. Physical weathering in this environment results is likely responsible for the formations 

of pits in grains, and the disintegration and removal of ilmenite exsolution lamellae. Consequently, 

this physical disintegration of magnetite likely also results in changes to the chemistry of magnetite 

grains (Fig. 4.4).  

Many investigated magnetite grains preserve evidence of the presence of trellis-textured 

ilmenite exsolution lamellae that have been lost due to weathering and erosion (Fig. 4.3G, 4.5E, 

M, V). Comparison of the chemistry of magnetite associated with ilmenite exsolution lamellae in 

sampled outcrops, and detrital grains with visible and relic ilmenite exsolution lamellae indicate 

decreasing concentrations of minor and trace elements (i.e., Ti, Cr, Mn, Mg, Ca) and increasing 

concentrations of Fe from the ilmenite-bearing magnetite in intrusions to magnetite with relic 

ilmenite exsolution lamellae in streams. This comparison further illustrates that magnetite grains 

are texturally and chemically altered during weathering and transport. Inclusion-poor magnetite is 

the most common textural variety of magnetite observed in the detrital samples, though this texture 

was not very common in outcrop samples. The prevalence of this texture is likely the result of loss 

of texture and changes in the composition of magnetite during weathering and transport. Despite 

the textural changes to detrital grains, the overlap in the chemical signatures of oxide grains from 

outcrops and detrital samples indicate that the chemical signatures of magnetite and spinels are 

preserved for transport up to 2 km within catchments, and that detrital grains can still be used as 

petrogenetic indicators at the local, catchment scale (Fig. 4.6). Generally, the detrital grains 

investigated in this study indicate that the grains are sourced from outcrops of mafic to ultramafic 
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compositions, which have been hydrothermally altered; this interpretation is consistent with the 

understanding of the geology of the regions sampled (Fig. 4.1B; Gibbs and Barron, 1993).  

4.6.2     A new model for inferring ore deposit potential from magnetite geochemistry 

We developed a new predictive model that identifies which of 5 types of ore deposits (Ni-

Cu-PGEs, orogenic gold, VMS, IOCG, and porphyry copper deposits) magnetite grains are likely 

sourced from by assessing chemical similarities with a global geochemical database for these 

deposit types. The attribution of measured compositions to endmember spinels proved important 

since it reduced the effects of outliers in the raw geochemical data. To predict the source of 

magnetite from unknown sources, the model compares individual analyses to the multivariate 

normal distributions for the global geochemical data. Thus, the probability for each deposit type 

for an unknown sample is predicted based on chemical similarity. Since we know the actual deposit 

source of each analysis from the training data, we are able to test the accuracy of the model for the 

global database by comparing the true and inferred deposit indices for each analysis; these results 

are presented in Fig. 4.7. The sensitivity of the model (which indicates the probability of detection) 

varies by deposit type: 59% for Ni-Cu-PGEs, 50% for orogenic gold, 16% for VMS, 37% for 

IOCG, and 76% for PCDs. The precision for each deposit type (which indicates the identification 

accuracy) is 76% for Ni-Cu-PGEs, 56% for orogenic gold deposits, 71% for VMS deposits, 25% 

for IOCGs, and 28% for porphyry copper deposits.  

The underlying premise of our model is that data for magnetite from the 5 ore deposit types 

are normally distributed and that the normal distributions for each deposit type are sufficiently 

distinct to enable clear identification. The precision and sensitivity for each deposit type measure 

the distinctness of the multivariate normal distributions for each deposit type. The high precision 

and sensitivity for Ni-Cu-PGEs suggest that for the elements considered (Si, Al, Mg, Ti, Cr, Mg, 
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Mn, V, Ca, Cu, Zn) there is minimal overlap between the multivariate normal distribution — the 

size and shape of the cluster of data points — for data from this and other deposit types. The low 

precision and high sensitivity for PCDs suggest that the multivariate normal distribution for this 

deposit type is not distinct in the geochemical space considered. In fact, the plot in figure 4.7A 

shows that the normal distribution for the data from PCDs overlaps the normal distributions for 

data from other deposit types. Based on the precision and sensitivity for each deposit type in our 

model, the model satisfactorily identifies analyses for magnetite from Ni-Cu-PGE and orogenic 

gold deposits, and does a less satisfactory job of identifying analyses for magnetite from VMS, 

IOCG, and porphyry copper deposits (Fig. 4.7A). When applied to a dataset, the model returns the 

proportion of the data that is identified as being from each deposit class, e.g., proportions of 57% 

Ni-Cu-PGE, 13% orogenic gold, 4% VMS, 13% IOCG, and 12% PCD are returned when the 

model is applied to the global Ni-Cu-PGE deposit dataset. This result reflects misidentification of 

analyses due to the overlap between the normal distributions for the ore deposits in the chemical 

space considered.  

The overlap between the chemical signatures for magnetite in the chemical space 

considered hampers our ability to accurately identify individual analyses as belonging to a 

particular deposit type. Therefore, to improve the predictive nature of our model, we use the 

characteristic overlap between the chemical signatures of magnetite from different deposit classes 

to infer the likely contribution of each deposit type to the signature obtained for a collection of 

samples gathered from a particular region. This is carried out using non-negative least squares 

regression (NNLS), by comparing the maximum likelihood model results for the unknown samples 

to that of the global training data. Due to compositional overlap, some deposit types are often 

confused for one another, but in a collection of samples, the fraction of grains assigned to each 
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deposit type is itself diagnostic of the mixture of deposits in the source region. NNLS thus 

determines the proportion of each deposit type that best reproduces the model results for the entire 

collection of grains. The NNLS regression model was utilized because it allows us to determine 

the contributions of individual deposit type signatures to the mixed stream signature with the 

constraint that the proportion of each deposit type is non-negative, since it represents the fractional 

contribution of magnetite grains, making negative numbers unphysical. When the NNLS model is 

applied to the global Ni-Cu-PGE data, the inferred source proportions are 94% Ni-Cu-PGE, 1% 

orogenic gold, 0% VMS, 0% IOCG, and 5% PCD (Fig. 4.7B). Comparison of the results for the 

multivariate normal distribution and NNLS model for the global Ni-Cu-PGE dataset indicate that 

by using the NNLS model, we are able to reduce the contamination/overlap in the signatures for 

magnetite from the other types of ore deposits, when we are provided a collection of magnetite 

samples. 

The effectiveness of the NNLS model was further assessed by applying it to individual 

deposits from the global database (Fig. 4.A1-A). The result indicates that magnetite grains from 

some individual deposits have chemistry that deviates from the bulk chemistry of the overall 

deposit type. The plot indicates that for some Ni-Cu-PGE, orogenic gold, and IOCG deposits, we 

can correctly identify the source deposit type with less than 20% contamination from other deposit 

types. Additionally, we applied the NNLS model to the results for a binary mixture of a Ni-Cu-

PGE deposit (Pipe Mine) and an orogenic gold deposit (Kittila) (Fig. 4.A1-B). The result indicates 

that the model does an acceptable job of identifying the signatures from individual deposit types 

in an input dataset that contains data from mixed ore deposit sources. This allows us to apply both 

aspects of the model to data for a sample that contains magnetite from unknown sources, e.g., 
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grains collected in a stream and to use each analysis in the sample, in addition to the collective 

sample signature to infer the ore deposit source(s) of the magnetite grains.  

4.6.3     Existing discriminant diagrams for magnetite from different ore environments 

The overlap of the composition of magnetite from Ni-Cu-PGE, VMS, orogenic gold, 

IOCG, and porphyry copper deposits is apparent when data from global datasets for individual 

classes of ore deposits are plotted on the existing discriminant plots (Fig. 4.8). We calculated the 

proportion of the data that plot in each field on the discriminant plots and the sensitivity (Equation 

1) for each plot for the respective target deposits. In figure 4.8A, we plot data from the global Ni-

Cu-PGE dataset on the discriminant plots and 24% of the data plot in the Ni-Cu-PGE field, even 

though all of the data are from known Ni-Cu-PGE deposits. This 24% represents the sensitivity of 

the discriminant plot. The plot indicates that 6% of the data from Ni-Cu-PGE deposits plots in the 

field for VMS deposits, while some data also plot in the porphyry and IOCG fields (Fig. 4.8A). 

The mean compositions for individual Ni-Cu-PGE deposits are plotted in Fig. A2-A; 

approximately half the deposit means plot in the Ni-Cu-PGE field, while the remainder plot in 

other fields, including VMS, IOCG, porphyry and BIF. When plotted on the Ward et al. (2018) 

discriminant plot (Ni versus Cr/V), 18% of the data plot in the field for ore-related mafic rocks 

while the remainder plot in the field for barren mafic rocks (Fig. 4.9). The existing discriminant 

plots do not identify magnetite from orogenic gold deposits; however, when data from the global 

dataset of orogenic gold deposits are plotted on the discriminant plots, up to 10% of the data plot 

in the fields for Ni-Cu-PGE, VMS, IOCG, and PCDs (Fig. 4.8C). The Al+Mn versus Ti+V 

discriminant plot has a sensitivity of 26% for IOCGs, while that for the Ni/(Cr+Mn) versus Ti+V 

plot has sensitivity of 11% (Fig. 4.8D). As observed for other global datasets, data from the global 

IOCG dataset plot in the field for other deposits (Fig. 4.8D). We plotted data for porphyry Cu-Au 
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and porphyry Cu-Mo deposits separately on the discriminant plot to assess how the deposits are 

discriminated by the plots. Figure 8E indicates that the Al+Mn versus Ti+V discriminant plot has 

a sensitivity of 48% for porphyry Cu-Au deposits, while that for the Ni/(Cr+Mn) versus (Ti+V) 

plot has sensitivity of 13%. The sensitivity of the Al+Mn versus Ti+V discriminant plot for 

porphyry Cu-Mo deposits is about half that for porphyry Cu-Au deposits (21%), while the 

sensitivity of the Ni/(Cr+Mn) versus Ti+V is similar for the two deposit types (Fig. 4.8F).  

4.6.4     Assessing the ore deposit potential of sampled catchments in Guyana 

Application of the models developed in this study to the Guyana dataset indicate that the 

chemistry of magnetite in most samples is consistent with being sourced from orogenic gold and/or 

Ni-Cu-PGE deposits. The results when the models are applied to data for magnetite from rocks 

and 1st to 5th order streams from northwestern Guyana are presented in Fig. 4.10. The model pie 

chart for the rocks indicates that the combined chemical signatures of all intrusions sampled are 

dominated by signatures for orogenic gold (37%) and Ni-Cu-PGEs (31%), with the remaining 32% 

indicating signatures for other deposit types (Fig. 4.10A). This result is confirmed and 

strengthened by the inferred source/NNLS model, which weighs the proportion of these two 

deposit types more heavily (i.e., 58% orogenic gold, 38% Ni-Cu-PGE) while removing the 

contamination from other deposit types (Fig. G). In Fig. 4.11, we plot the geochemistry for the 

rocks and ordered streams from northwestern Guyana on the discriminant plots of Dupuis and 

Beaudoin (2011), Nadoll et al. (2014), and Ward et al. (2018). Magnetite from the sampled 

intrusions plot in the fields for Ni-Cu-PGE, Fe-Ti-V, porphyry, and IOCGs (Fig. 4.11A), and in 

fields for magnetite from ore-related and barren mafic rocks (Fig. 4.11B). The results from the 

existing plots and the new model indicate that the magnetite in the ordered streams have chemistry 

consistent with being sourced from multiple ore deposit types (Fig. 4.10G, 4 11A, B).  
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The results for outcrop samples GY-RC-10 and GY-RC-11 and proximal detrital samples 

C-12174, C-12171, and C-12170 are presented in Fig. 4.12. Model results indicate that 36% and 

32% of the data from GY-RC-10 and GY-RC-11, respectively, are identified as having chemical 

signatures consistent with being from a Ni-Cu-PGE deposit, while 50% and 57% of the data from 

the rocks have chemistry consistent with being from an orogenic gold deposit. The inferred source 

model suggests that the chemical signatures of magnetite grains in the rocks are more consistent 

with 32% Ni-Cu-PGE and 68% orogenic gold for GY-RC-10 and 20% Ni-Cu-PGE and 80% 

orogenic gold for GY-RC-11. Detrital sample C-12174 is chemically and texturally similar to GY-

RC-10 and GY-RC-11 (Fig. 4.5Y, Z), and the model results indicate that 69% of its chemical 

signature has character to similar to that for orogenic gold deposits and 27% is similar to that for 

porphyry copper deposits (Fig. 4.12C). The inferred source model indicates that the chemical 

signature of this stream sediment sample is more consistent with all of the grains being sourced 

from an orogenic gold deposit (100%) (Fig. 4.12F). The chemical and textural observations of 

sample C-12171 indicate that the magnetite grains in this sample are similar to those seen in rock 

samples GY-RC-10 and GY-RC-11, and in C-12174, but that it contained magnetite from an 

additional source in the catchment (Fig. 4.5I). The model results suggest that the signature of this 

sample is dominated by PCD (57%) and orogenic gold (32%) but shows minor contribution from 

Ni-Cu-PGE (11%). The inferred source model indicates that the chemical signature of the grains 

are similar to orogenic gold (32%), PCD (43%), VMS (17%) and Ni-Cu-PGE (8%) (Fig. 4.11D, 

F). Sample C-12170 was chemically and texturally similar to sample C-12174, and the inferred 

source model result indicates that the chemical signatures of grains in this sample are very similar 

to those from orogenic gold deposits (100%; Fig. 4.5E, M, N; 4.12E, G). The disparity between 

the results of the multivariate normal model (e.g., pie charts in Fig. 4.12) and the inferred source 
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model (e.g., Fig. 4.12F) reflect the overlap in compositions of magnetite from the 5 ore deposit 

types considered. The results of the multivariate normal model is the average of the chemical 

signature for every analysis for a sample and it reflects the prevalence of misidentifications due to 

the overlap in the compositions of magnetite from the 5 ore deposit types. The NNLS inferred 

source model compares the chemical signature for all the analyses in an unknown sample with the 

chemical signatures of magnetite from all analyses of the individual class specific datasets and 

determines what proportion(s) of  the signature for each global deposit type is responsible for the 

unknown sample signature obtained using the multivariate normal model. The NNLS model, 

therefore, reduces the effect of the overlap between the compositions of magnetite from the 

individual ore deposit types and improves the predictive nature of the model.  

The existing discriminant plots of Dupuis and Beaudoin (2011) and Ward et al. (2018) also 

indicate Ni-Cu-PGE potential of the samples and highlight changes in the chemistry of magnetite 

grains during weathering and transport (Fig. 4.13). Magnetite from both intrusions plot in the fields 

for Ni-Cu-PGE deposits, Fe-Ti-V, porphyry, and Kiruna deposits (Fig. 4.13A). Data for samples 

C-12174 and C-12171, like the intrusions, plot in the fields for Ni-Cu-PGE deposits, Fe-Ti-V, 

porphyry and Kiruna deposits (Fig. 4.13A). The data for C-12170 plot outside most of the fields 

on the discriminant diagrams of Dupuis and Beaudoin et al. (2011) and Nadoll et al. (2014), and 

our model results suggest that the chemistry of this sample is most similar to that from an orogenic 

gold source. Data for magnetite from the intrusions and sample C-12174 plot in the field for ore-

related mafic rocks on the Ward et al., (2018) plot (Fig. 4.13B). Both rock samples 10 and 11 are 

pyroxenites. This result, therefore, suggests that the ultramafic rocks in this study have higher Cr/V 

ratios than those at the Munali Ni-Cu-PGE deposits in Zambia. There is overlap between the data 

for the three detrital samples, however, the plot also highlights the decrease in the Ni and Cr 
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content of the detrital grains as they are transported further away from their source intrusions. (Fig. 

4.13B).  

Both the existing discriminant plots and the new model presented in this study indicate 

porphyry copper deposit potential for the samples from Guyana (Fig. 4.12A, 4.13G, 4.A3). 

Porphyry copper deposits are hydrothermal ore deposits that are typically associated with 

intermediate to felsic rocks and found in arc environments (Richards, 2013). Magnetite in porphyry 

copper deposits is characterized by low minor and trace element contents compared to magnetite 

from igneous environments (Nadoll et al., 2014). The rock samples from Guyana are mafic and 

ultramafic rocks collected in greenstone belts, and contain magnetite with chemical and textural 

characteristics that suggest that they are hydrothermal in nature (Table 4.1; Fig. 4.2J). Therefore, 

while Archean-aged porphyry gold deposits have been discovered in greenstone belts (e.g., the 

Abitibi in Canada; Jébrak and Doucet, 2002; Jébrak, 2011), the indications of porphyry copper 

mineralization in the sampled intrusions likely reflect hydrothermal alteration of the outcrop 

samples. Additionally, our data indicate that minor and trace element concentrations in magnetite 

decrease with weathering and transport. Thus, it is possible that indications of PCD potential also 

reflect the effects of weathering and transport on detrital grains. Further, the results of the 

multivariate normal distribution and NNLS models and the discriminant plots indicate that there 

is overlap between the concentrations of Si, Al, Mg, Ca, Cr, Ti, Mn, Ni, V, Cu, and Zn in magnetite 

from porphyry copper deposits and the other deposit classes considered in this study. As such, the 

indication of porphyry copper deposit potential is likely indication of the potential for other classes 

of deposits, i.e., Ni-Cu-PGE, orogenic gold, or VMS, typically found in greenstone belt 

environments. The presence of other phases, e.g., sulfides, in the samples can likely be utilized to 

improve the interpretation of the model results.  
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4.6.5     Model results for samples containing sulfides 

Sulfide minerals are not necessarily diagnostic for the ore deposits considered in this study 

as many of them can be present in all the deposits considered, and in barren rocks. However, the 

combination of the model results (based on magnetite geochemistry) and the presence of visible 

sulfides provide useful information that can improve exploration efforts in particular catchments. 

Sulfides are the ore minerals in Ni-Cu-PGEs, porphyry, IOCG, and VMS deposits, and are present 

in orogenic gold deposit environments. The typical hypogene sulfide assemblage in Ni-Cu-PGEs 

include pyrrhotite, pentlandite, and chalcopyrite, however, cubanite and troilite may be present in 

lesser amounts; supergene enrichment in these environments results in a sulfide assemblage which 

may include bravorite, violarite, pyrite, millerite, and marcasite (Barnes and Lightfoot, 2005; 

Schulz et al., 2010). Porphyry copper deposits contain chalcopyrite, bornite, chalcocite, pyrite, 

pyrrhotite, and marcasite (Fontboté et al., 2017). Volcanogenic massive sulfide deposits contain 

sphalerite, galena, chalcopyrite, bornite, barite, pyrite, and pyrrhotite (Taylor et al., 1995). Iron 

oxide - copper - gold deposits usually contain chalcopyrite, bornite, chalcocite, and pyrite 

(Williams et al., 2010). Sulfides commonly present in orogenic gold deposits include pyrrhotite, 

pyrite, and arsenopyrite (Groves et al., 1998); however, the presence of sphalerite, chalcopyrite, 

bornite, marcasite, and galena has also been reported (Hammond and Tabata, 1997; Niroomand et 

al., 2011). Many of the aforementioned sulfides were observed in magnetite, ilmenite, and silicates 

in intrusions and detrital samples from Guyana.  

Sampled intrusions contain a variety of sulfide minerals present in Ni-Cu-PGE and other 

deposits, and by comparing the chemistry of magnetite in the samples with that from modeled ore 

deposits, we are able to narrow down the ore deposit source of the sulfide and magnetite grains. 

Rock samples GY-RC-01 and GY-RC-12 contain magnetite that is chemically and texturally very 
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similar, in addition to pyrite and chalcopyrite; sample 1 also contains pyrrhotite and cubanite (Fig. 

4.2A, B, D). The model results indicate that these rocks have magnetite with chemistry similar to 

that present in VMS and porphyry copper deposits; the sulfide mineralogy observed is consistent 

with the model results (Table 4.3). GY-RC-13 contained pyrrhotite and pentlandite, in addition to 

polymineralic sulfide grains comprising pyrrhotite, chalcopyrite, and pentlandite (Fig, 4.2O). The 

magnetite in this sample have chemistry similar to that from Ni-Cu-PGE deposits (86%), globally 

(Table 4.3) and also have non-negligible similarity to magnetite from orogenic gold deposits 

(14%). The model result for sample 3 indicates prospectivity for orogenic gold deposits and the 

sulfide assemblage in this rock was predominantly pyrrhotite, pyrite, and pentlandite (Table 4.3). 

Samples 11 and 14 contained pentlandite, pyrrhotite, and sphalerite; model results indicate that 

magnetite in these samples are compositionally similar to magnetite from Ni-Cu-PGE and 

orogenic gold deposits (Fig. 4.12B, F; Table 4.3). Sample 7 contained pyrrhotite, pentlandite, 

chalcopyrite, a Ni sulfide (millerite?) inclusion in a hematite grain, in addition to polymineralic 

sulfide grains. One polymineralic sulfide grain chalcopyrite, pentlandite, and pyrrhotite, and two 

other polymineralic grains contained pentlandite, magnetite, chalcopyrite, and bornite (Fig. 4.2Q). 

The chemical signatures of magnetite in this sample are similar to that from Ni-Cu-PGE (64%), 

orogenic gold (32%), and IOCG (4%) deposits (Table 4.3). The mixed source signatures observed 

for magnetite from the intrusions likely reflects both the overlap in chemistry of magnetite from 

the various classes of ore deposits, and the hydrothermal/metamorphic alteration of these outcrop 

samples which resulted in the formation of hydrothermal magnetite.  

The model results indicate Ni-Cu-PGE, orogenic gold, VMS, porphyry Cu-Mo, and 

porphyry Cu-Au ore deposit potential for sampled catchments and that the sulfide inclusions in 

detrital grains do not specify which type of mineralization they are sourced from. Detrital sample 
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83037 contained 4 magnetite grains with bornite inclusions, and one of these grains contained 4 

bornite inclusions (Fig. 4.3Q); the chemistry of magnetite in this stream indicates that the grains 

were sourced from an orogenic gold deposit (Table 4.3). Numerous chalcocite inclusions were 

present in clinopyroxene grains in sample 22503; the model suggests that the chemistry of 

magnetite in this sample are consistent with being sourced from a Ni-Cu-PGE deposit (Fig. 4.3U; 

Table 4.3). Chalcocite is present in the ore at Noril’sk Talnakh deposit (Sluzhenikin and Mokhov, 

2015) and as an accessory phase in Ni-Cu-PGE deposits in the Sudbury camp (Farrow and 

Watkinson, 1992). However, sample C-12178 contained a chalcocite inclusion in a magnetite grain 

and the model indicates that its source is a mixture of Ni-Cu-PGE (23%), VMS (26), and PCD 

(51%) (Fig. 4.2N; Table 4.3). Chalcocite is also a common supergene mineral in porphyry copper 

deposits and an accessory mineral in VMS deposits (Marshall et al., 2018). The model result for 

C-12178 likely indicates Ni-Cu-PGE and VMS potential. Sample 83108 contained chalcopyrite as 

an inclusion in ilmenite (Fig. 4.3V); the chemistry of magnetite is consistent with mixed source of 

34% Ni-Cu-PGE, 16% VMS and 50% PCD (Table 4.3). Sample 83117 contains pentlandite and 

pyrrhotite inclusions in clinopyroxene and a pyrrhotite inclusion in ilmenite, which had patchy 

texture that contained magnetite exsolution lamellae (Fig. 4.3R, S). Magnetite grains in this sample 

showed high prospectivity for orogenic gold deposits (100%). Sample 83103 contained multiple 

polymineralic sulfide grains as inclusions in ilmenite; two of the polymineralic grains comprise 

magnetite, sphalerite and pyrrhotite, and the other two grains comprise sphalerite and pyrite (Fig. 

4.3I). The model indicates that magnetite in this sample is sourced from Ni-Cu-PGE (27%), VMS 

(27%) and PCD (46%) (Table 4.3). Sample 83110 contained a chalcopyrite inclusion in magnetite, 

in addition to cubanite inclusions in ilmenite and clinopyroxene. Magnetite in this sample indicated 

mixed ore deposit potential: VMS (24%) and PCD (76%) (Table 4.3). Sample AH007 contained 
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chalcopyrite and pentlandite in ilmenite, in addition to a free gold grain ~50 μm long (Fig. 4.3W). 

The inferred source model suggests that magnetite grains in this sample are sourced from orogenic 

gold (5%), VMS (30%) and porphyry copper (65%) deposits (Table 4.3). Sample C-12180 also 

contained a visible gold grain; magnetite grains in this sample were identified as having chemical 

signatures similar to Ni-Cu-PGE (10%), VMS (29%), and porphyry copper deposits (61%) (Table 

4.3). Visible gold is common in orogenic gold deposits, and since the samples were collected in 

greenstone belts, known to host orogenic gold deposits, the observation of visible gold is expected 

to indicate orogenic gold mineralization. The model result for AH007 indicates orogenic gold 

potential but this is not the case for C-12180. Native gold grains have been reported in both gold 

rich VMS and porphyry copper deposits, though the bulk of the gold in these deposits is typically 

present in the lattice of sulfides (Kesler et al., 2002; Dube et al., 2007). The gold grains in both C-

12180 and AH007 were present as inclusions in quartz, which is typical for orogenic gold deposits. 

An interpretation of the model results is that the magnetite grains and auriferous quartz grains were 

derived from different sources or that the magnetite grains have been weathered to an extent such 

that their compositions no longer reflect their true ore deposit source. Generally, the sulfides 

present in samples from analysed catchments are common or present in the ore deposits predicted 

by the model in this study. Our results highlight that while the sulfide assemblages in catchments 

are similar, the ore deposit potential inferred for the catchments based on magnetite geochemistry 

can be very different. Therefore, while the presence of sulfides in detrital grains upgrades the 

prospectivity of a catchment during exploration, it is not a direct indicator of the type of 

mineralization that may be present in that catchment.  
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4.6.6     Samples with Ni-Cu-PGE potential 

Dare et al. (2012) and Boutroy et al. (2014) showed that for Ni-Cu-PGE deposits globally, 

the chemistry of magnetite, which crystallizes in equilibrium with a fractionating sulfide liquid, 

depends on the fractionation history of the sulfide liquid. Those studies showed that binary plots 

of Ni, Ti, V versus Cr identify magnetite that crystallized in equilibrium with primitive Fe-rich 

monosulfide solution (MSS), evolved, Fe-rich MSS, and residual Cu-rich intermediate solid 

solution (ISS), respectively. Since our data indicate that the Cr, Ti, and Ni contents of magnetite 

decrease with increasing transport distance from the host intrusion, we decided to ascertain the 

changes in Al and V contents of magnetite which crystallize in equilibrium with the 

aforementioned sulfide liquid compositions. Following Dare et al. (2012), we plotted data for 

magnetite from the Creighton and McCreedy East Ni-Cu-PGE deposits, both located in the 

Sudbury Igneous Complex that crystallized in equilibrium with sulfide liquids of different 

compositions (Fig. 4.14). Despite a paucity of data for magnetite that crystallizes from a sulfide 

liquid with composition equivalent to residual Cu-rich ISS, the plot indicates that the V and Al 

content of magnetite decreases with continued fractionation of a sulfide liquid (Fig. 4.14). This is 

the expected behavior as V and Al are lithophile elements, thus have high concentrations in 

magnetite crystallizing in equilibrium with the early forming monosulfide solid solution, and lower 

concentrations in magnetite crystallizing with the more evolved sulfide liquid (Dare et al., 2012). 

The plot indicates that there is some overlap in the V and Al signatures for magnetite from 

primitive and evolved MSS, however, the magnetite from the three sulfide liquid compositions 

generally plot in distinct regions in V and Al space. In Fig. 4.14, we also include the concentrations 

of V and Al for magnetite from 4 samples with chemical signatures most similar to those for Ni-

Cu-PGEs. The majority of the analyses overlap magnetite that crystallizes in equilibrium with 
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primitive/early MSS, and a few analyses from GY-RC-07 plot closer to the data for residual Cu-

rich ISS samples (Fig. 4.14). The observations of pentlandite, pyrrhotite, and chalcopyrite in GY-

RC-13 and GY-RC-07 support the composition of the sulfide liquid (primitive MSS) inferred from 

magnetite chemistry. Additionally, the presence of bornite in GY-RC-07 explains the overlap with 

the data for residual Cu-rich ISS. Thus, from an exploration perspective, if the chemistry of 

magnetite in an area is indicative of Ni-Cu-PGE potential, the V and Al plot may be used to gain 

insights about the tenor of ore in that area (i.e., Cu versus Ni rich). This can assist with target 

generation in covered terrains as it would provide insights about which geochemical anomalies 

would be most indicative of mineralization. 

4.6.7     Insights about ore deposit potential inferred from magnetite geochemistry 

Direct comparison of results for the global magnetite database indicates that the new model 

achieves better results for magnetite from Ni-Cu-PGE, VMS, IOCG, and porphyry Cu deposits 

than existing discriminant plots. Additionally, the new model allows discrimination of magnetite 

from orogenic gold deposits and other deposits, which were left unmodeled by prior discriminant 

methods. Of the existing discriminant plots, the Al+Mn versus Ti+V does an acceptable job of 

discriminating magnetite from porphyry Cu-Au deposits; 48% of the data plot in the porphyry field 

(Fig. 4.8E). The decreased ability of this diagram to discriminate magnetite from porphyry Cu-Mo 

deposits indicates that there are differences in the composition of magnetite from porphyry Cu-Au 

and porphyry Cu-Mo deposits for the elements considered (Fig. 4.7E, F). When the datasets for 

porphyry Cu-Au and porphyry Cu-Mo deposits are combined and plotted on the Al+Mn versus 

Ti+V diagram, 35% of the data are correctly identified as being from a porphyry copper deposit 

(Fig. 4.A3).  
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The success of the recent studies of Makvandi et al. (2016), Pisiak et al. (2017), Dmitrijeva 

et al. (2018), and Huang et al. (2018, 2019), indicate the utility of incorporating trace element 

geochemistry into statistics-based discrimination models for magnetite. Thus, by incorporating 

trace element compositions of magnetite into our model will likely be able to decrease the overlap 

of the normal distributions for the deposit classes in our model and improve its ability to 

discriminate magnetite from Ni-Cu-PGEs, orogenic gold, VMS, IOCG, and porphyry copper 

deposits. Additionally, the research outlined above, and the results of this study indicate that care 

must be taken when interpreting the results of the existing discriminant plots and that our ability 

to discriminate magnetite from different environments increases as we increase the number of 

elements considered.  

4.6.8     Implications and application to exploration in covered terrains 

The observations outlined above indicate that while the physical/textural signatures of 

magnetite from intrusions are somewhat retained during weathering and transport, the chemical 

signatures of magnetite grains change during weathering and transport (Fig. 4.4, 4.5). Our data 

suggest that the chemical signatures of magnetite in intrusions, is retained in detrital magnetite 

grains provided that the grains are transported less than 1.5 km from the source intrusions. The 

data presented also indicate that the V and Al contents of magnetite in intrusions can be retained 

in magnetite that has travelled up to 5 km away from the source intrusions. An important 

implication of these findings is that care must be taken when selecting elements to use in models 

to discriminate magnetite from different ore environments.  

We found that sulfide inclusions can be preserved in detrital magnetite, ilmenite, quartz, 

and clinopyroxene grains and while they are useful for identifying areas for targeted exploration, 

they are not indicative of the type of mineralization in a particular catchment. Due to the 



173 

importance of sulfides in many classes of ore deposits, including the 5 considered in this study, 

the presence of visible sulfides in detrital grains can be used to upgrade the prospectivity of an 

area during regional exploration, especially if that area was previously identified as prospective 

using other geologic information, e.g., geochemical and geophysical anomalies. Further, the 

observation of sulfides in detrital grains collected blindly in areas for which there was little to no 

prior geologic information, increases the prospectivity of that area and necessitates mapping to 

elucidate the geology of that catchment. This is especially important since the observed sulfide 

assemblages may not be diagnostic for a particular type of ore deposit. This approach is potentially 

valuable in countries like Guyana, and in regions like the Guiana Shield, where stream and soil 

sediment sampling are routinely done. Heavy minerals samples can be collected during stream 

sampling surveys and the grains can be observed by using a petrographic microscope to ascertain 

whether sulfides are present in an effort to identify catchments for prospecting and target 

generation. Investigation of the chemistry of magnetite from these catchments can additionally be 

used ascertain the ore deposit potential of the catchments and to identify geochemical tracers that 

will be useful for identifying targets in the region.  

Despite evidence of past and current drainage inversions in the regions sampled, the 

angular nature of the grains investigated indicate that they were sourced locally from the 

catchments where they were collected. Drainage inversions are very common in tropical 

environments, and they are often the result of duricrusts, e.g., ferricrete, silicrete, calcrete, and 

gypcretes (Pain and Ollier, 1995). Ferricrete observed in sampled catchments, therefore, provide 

evidence of past drainage inversion. Additionally, the bulk of the small and medium scale mining 

in Guyana targets gold in alluvium; so the land that is being mined likely represents old river 

channels and the streams have since migrated to new locations. Current gold mining in Guyana is 
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a major cause of drainage inversions or alterations to the courses of rivers/streams, and there is 

likely minimal drainage inversion due to tectonic activity since Guyana is located in the stable 

Amazonian craton. Thus, given the angular nature of the grains and the lack of evidence of recent 

mining activities, or other evidence of stream channel migration at sample locations, we assume 

that the samples collected are sourced locally.  

Though we observe sulfides in many of the rocks and detrital grains investigated, and the 

chemistry of magnetite in the samples indicate Ni-Cu-PGE potential, we do not encounter 

mineralization. The presence of sulfides in the intrusions indicate that they attained sulfide 

saturation, which is an important first step in the formation of ore deposits, such as Ni-Cu-PGEs. 

While Ni-Cu-PGE potential is inferred from magnetite in the sampled outcrops, the lack of 

mineralization in these samples indicates that ore forming processes aside from sulfide saturation 

did not occur. Ni-Cu-PGE deposits are not heavily pursued in Guyana and the Guiana Shield. 

However, the results of this study are encouraging for Ni-Cu-PGE exploration in the region 

because it indicates that the right geological processes have occurred in intrusions in the greenstone 

belts. Additionally, the observations of Cr-rich spinels in the detrital samples indicate the presence 

of primitive rocks in the sampled catchments. Thus, with continued mapping and exploration, we 

will likely be able to ascertain areas where more of the important ore-forming processes have 

occurred, and this can lead to the discovery of new ore deposits. 

4.7     Conclusions 

We investigated the chemistry of magnetite in outcrop and detrital samples from Guyana 

and compared them with geochemical data for magnetite from known ore environments using 

existing discriminant plots based on major and minor element chemistry and a new geochemical 

discriminant model developed in this study. Our new model improves the ability to discriminate 
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magnetite from Ni-Cu-PGE, orogenic gold, VMS, IOCG, and porphyry copper deposits using Cr, 

Ti, Al, V, Mn, Mg, Ca, Si, Ni, Cu, and Zn. Our results indicate that the concentrations of Ti, Cr, 

Ni, Mn, Mg, and Ca in magnetite decrease as magnetite is weathered and transported by streams 

to distances exceeding 1.5 km from the host intrusions, while the concentration of V and Al in 

magnetite remain mostly unchanged provided that the transport distance does not exceed 5 km. 

We found that the physical and textural signatures of magnetite from rocks, including sulfide 

inclusions, and mineral exsolutions, are partially preserved in detrital grains. Our model results — 

based on magnetite chemistry — indicate orogenic gold and/or Ni-Cu-PGE potential in the 

catchments investigated; this is supported by the presence of sulfide inclusions in detrital grains. 

This study indicates that petrographic and chemical investigations of detrital magnetite grains can 

be a useful tool for exploration in covered terrains. This work demonstrates the potential for detrital 

magnetite as an exploration tool for mineral systems in densely covered terrains, such as the 

Guiana Shield.
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Table 4.1. EPMA Conditions for magnetite analyses. 

 

 

 

 

 

 

 

 

 

Element/ X-ray line Crystal Standard Counting Time (s) 
Fe Kα LIF USMN Magnetite 20 
Ti Kα PET USMN Ilmenite 100 
Cr Kα PET Cr2O3 100 
V Kα LLIF V2O5 150 
Ca Kα PET CaF2 100 
Ni Kα LLIF Ni-olivine 150 
Mn Kα LLIF MnFe2O4 150 
Si Kα LTAP SiO2  100 

Mg Kα LTAP MgO 100 
Al Kα LTAP Al2O3 100 
Cu Kα LLIF Dioptase 150 
Zn Kα LIF Gahnite 280 
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Table 4.2: Median compositions of magnetite and spinel phases from sampled catchments.  

 

  Cr-poor titanomagnetite Cr-rich titanomagnetite 
Concentrations Detrital Mafic  Pyroxenite Detrital Pyroxenite 

 (wt.%) Median (N=246) σ Median (N=31) σ Median (N=27) σ Median (N=66) σ Median (N=98) σ 
Si 0.05 0.61 0.18 0.30 0.10 0.29 0.02 0.16 0.02 1.53 

Mg 0.00 0.18 0.03 0.12 0.02 0.39 0.10 0.17 0.11 1.51 
Al 0.07 0.52 0.48 0.33 0.04 0.13 0.09 0.61 0.15 1.82 
Cr 0.03 0.06 0.05 0.04 0.16 0.11 3.64 2.29 3.17 1.91 
Ti 0.63 1.52 1.68 1.28 0.52 0.55 0.59 0.87 0.98 0.99 
Ca 0.00 0.17 0.03 0.14 0.03 0.02 0.00 0.03 0.03 0.33 
V 0.15 0.15 0.63 0.54 0.25 0.11 0.13 0.10 0.20 0.55 

Mn 0.03 0.09 0.05 0.08 0.04 0.07 0.17 0.33 0.28 0.21 
Fe 68.12 3.33 67.17 2.36 68.94 2.02 65.64 3.52 64.84 6.87 
Ni 0.00 0.01 0.01 0.00 0.06 0.03 0.09 0.12 0.07 0.09 
Cu 0.00 0.01 0.00 0.04 0.00 0.01 0.00 0.00 0.00 0.00 
Zn 0.01 0.03 0.01 0.05 0.01 0.01 0.04 0.09 0.01 0.12 
 

 

  Hematite Cr-Ti-poor Magnetite 
Concentrations Detrital Pyroxenite Detrital Pyroxenite 

 (wt%) Median (N=22) σ Median (N=5) σ Median (N=9) σ Median (N=160) σ 
Si 0.04 0.03 0.38 0.32 0.02 0.15 0.08 0.13 

Mg 0.00 0.02 0.43 0.25 0.00 0.05 0.11 0.23 
Al 0.04 0.05 0.03 0.01 0.02 0.06 0.00 0.01 
Cr 0.02 0.03 0.01 0.10 0.02 0.06 0.01 0.02 
Ti 0.03 0.02 0.02 0.02 0.03 0.03 0.05 0.02 
Ca 0.00 0.00 0.12 0.11 0.00 0.01 0.01 0.11 
V 0.09 0.11 0.04 0.02 0.13 0.13 0.00 0.00 

Mn 0.01 0.02 0.02 0.01 0.01 0.07 0.03 0.03 
Fe 68.94 0.36 68.53 0.97 71.35 0.95 69.96 0.53 
Ni 0.00 0.01 0.05 0.11 0.00 0.01 0.10 0.15 
Cu 0.01 0.00 0.00 0.00 0.00 0.45 0.00 0.30 
Zn 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 
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  Cr-rich magnetite Titanomagnetite 
Concentrations Detrital Pyroxenite Detrital Mafic Pyroxenite 

 (wt%) Median (N=12) σ Median (N=3) σ Median (N=75) σ Median (N=8) σ Median (N=10) σ 
Si 0.11 0.85 0.88 1.02 0.01 0.21 0.05 0.22 0.03 0.11 

Mg 0.03 0.35 0.73 3.17 0.01 0.03 0.07 0.09 0.04 0.11 
Al 0.08 0.74 0.36 0.93 0.06 0.27 1.14 2.48 0.08 0.12 
Cr 0.54 1.88 1.98 1.21 0.04 0.19 0.05 0.02 1.40 2.13 
Ti 0.05 0.02 0.07 0.01 7.29 2.36 8.14 2.36 7.54 2.42 
Ca 0.02 0.12 0.08 0.01 0.00 0.06 0.01 0.02 0.04 0.05 
V 0.09 0.07 0.19 0.08 0.17 0.22 0.58 0.20 0.22 0.09 

Mn 0.02 0.20 0.04 0.06 0.24 0.46 0.17 0.09 1.09 0.48 
Fe 69.28 5.31 62.65 6.69 60.86 3.60 57.98 3.50 56.42 3.69 
Ni 0.03 0.03 0.09 0.12 0.00 0.01 0.01 0.01 0.05 0.01 
Cu 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 
Zn 0.01 0.02 0.01 0.01 0.01 0.03 0.11 0.13 0.01 0.09 
 

  Chrome spinel 
Concentrations Detrital Mafic 

 (wt%) Median (N=89) σ Median (N=18) σ 
Si 0.02 0.02 0.01 0.28 

Mg 0.27 1.17 0.05 1.97 
Al 1.13 2.71 0.77 6.73 
Cr 22.36 9.33 18.90 5.97 
Ti 0.70 0.96 1.79 1.18 
Ca 0.00 0.01 0.02 0.08 
V 0.17 0.09 0.26 0.14 

Mn 0.68 0.47 0.88 0.48 
Fe 39.97 12.42 43.98 10.35 
Ni 0.07 0.07 0.06 0.04 
Cu 0.00 0.00 0.00 0.00 
Zn 0.43 0.70 0.49 0.41 
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Table 4.3. Inferred deposit sources for magnetite from rocks and detrital samples that contain 
sulfides as inclusions in magnetite and other phases. 

 

 

 

Sample ID Ni-Cu-PGE Orogenic Gold VMS IOCG Porphyry Copper Deposit 
GY-RC-01 0 0 27 0 73 
GY-RC-03 0 100 0 0 0 
GY-RC-07 64 32 0 4 0 
GY-RC-12 0 0 25 0 75 
GY-RC-13 86 14 0 0 0 
GY-RC-14 44 56 0 0 0 
C-12180 10 0 29 0 61 
C-12186 96 4 0 0 0 
AH007 0 5 30 0 65 
C12178 23 0 26 0 51 
83037 0 100 0 0 0 
83039 0 72 0 21 7 
83047 0 100 0 0 0 
22503 71 0 0 0 29 
83108 34 0 16 0 50 
83110 0 0 24 0 76 
83103 27 0 27 0 46 
83117 0 100 0 0 0 
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Figure 4.1. (A) Regional map showing the major geologic units of the Guiana Shield and their ages. This map is modified from 
Tedeschi et al., 2018 a,b.  
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Figure 4.1. (B) Geological map of Guyana with boxes outlining the regions where samples were 
collected for this study.
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Figure 4.1. (C) Map showing primary collection locations of rocks (pink squares) and detrital 
samples (white circles) in northwestern Guyana. 
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Figure 4.2. Representative backscattered electron (BSE) images of grains from outcrop samples. Magnetite and Fe-Cr-Ti oxides display 
a variety of textures which indicate that the sampled outcrops are igneous in nature and have been altered by hydrothermal fluids. (A) 
BSE image of a magnetite grain from intrusion sample GY-RC-01 containing well developed ilmenite exsolution lamellae with sandwich 
texture and ilmenite overgrowth. Ilmenite exsolution lamellae with cloth texture are present in magnetite that exists in the regions 
between the ilmenite exsolutions with sandwich texture. Two small sphalerite (Sp) grains are also visible in the image. (B) Magnetite 
grain from a mafic intrusion showing texture dominated by sandwich-textured ilmenite exsolution lamellae. This grain contains 
fluorapatite and small sulfide grains (white phases in the grain). (C) Ilmenite from mafic intrusions contains magnetite as inclusions or 
magnetite at the boundaries of some grains. (D) Magnetite and ilmenite, which contains a chalcopyrite inclusion, from a mafic intrusion. 
(E) Magnetite with wavy/spongy texture; this texture was observed in grains from 2 of the pyroxenite outcrops. (F) Zoned magnetite 
grain with domains that contain differing Cr contents. The cores have highest Cr content and Cr content decreases towards the rim. (G) 
Inclusion-poor magnetite grain with hercynite (Hc) granules at the grain boundaries that is proximal to a sulfide grain, which contains 
pyrrhotite and pentlandite. (H) Agglomeration of magnetite grains from a pyroxenite intrusion. The grains terminate at triple junctions 
and an ilmenite granule is observed at the boundary of two grains. (I) Magnetite from pyroxenite intrusion with sub-micrometer trellis-
textured ilmenite exsolution lamellae. 
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Figure 4.2. (J) Magnetite from pyroxenite outcrop containing cloth-textured ilmenite exsolution lamellae. (K) Titanomagnetite grain 
from pyroxenite intrusion. (L) Hematite grains that meet at triple junctions. These grains were observed in three sampled outcrops.  (M) 
Hematite grain from GY-RC-07 with Ni-S (millerite?) inclusion. (N) Ilmenite from pyroxenite samples contains magnetite exsolution 
lamellae and magnetite granules. (O) Polymineralic sulfide grain comprising pentlandite, pyrrhotite and chalcopyrite; this grains was 
observed in GY-RC-13. (P) Pyrrhotite and pyrite (Py) observed in a sampled intrusion. Exsolved pentlandite observed in the pyrrhotite 
grain. (Q) Polymineralic assemblage of magnetite, chalcopyrite, pentlandite and bornite (Bn) in a pyroxenite intrusion. This grain likely 
represents a crystallized sulfide liquid globule.
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Figure 4.3. This figure contains representative backscattered electron images of Fe-Cr-Ti oxides from detrital samples collected 
throughout Guyana. Generally, the detrital grains are texturally similar to those in the outcrop samples but also show loss of texture 
caused by weathering. (A) Rounded magnetite grain collected from a catchment in north-central Guyana. (B) Angular to sub-angular 
detrital magnetite grains collected in Guyana; inclusion-poor magnetite is the dominant texture observed in detrital grains; however, 
ilmenite exsolution lamellae are sometimes preserved. Some inclusion poor grains also contain hematite rims. (C) Magnetite grain with 
visible crevices that appears to have contained ilmenite exsolution lamellae that have been lost due to weathering; these are referred to 
as relic ilmenite exsolution lamellae in this study. (D) Cr-rich titanomagnetite with ilmenite exsolution lamellae. (E) Magnetite grain 
containing a Cr-rich titanomagnetite core, with visible ilmenite exsolution lamellae, and a Cr-poor titanomagnetite rim. An ilmenite 
granule is observed within the Cr-poor rim. (F, G) Detrital magnetite grains with thin (<5 μm) trellis-textured ilmenite exsolution 
lamellae. (H) Magnetite grain with cloth-textured ilmenite exsolution lamellae. (I) Magnetite with sandwich-textured ilmenite exsolution 
lamellae. 
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Figure. 4.3. (J) Magnetite with wavy/spongy texture. L) Detrital chromite and weathered Cr-rich magnetite. (M) Detrital titanomagnetite 
grain with visible sandwich-textured ilmenite exsolution lamellae. Angular magnetite grains containing (N) chalcocite and bornite (O, 
P) inclusions. (Q) Magnetite grain containing multiple bornite inclusions. (R) Ilmenite grain with pyrrhotite and tiny magnetite 
exsolution lamellae inclusions. 
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Figure 4.3. (S) Pentlandite inclusion in detrital clinopyroxene grain. (T) Ilmenite grain containing 
polymineralic sulfide assemblage, comprising pyrite and sphalerite. (U) Chalcocite inclusions in 
clinopyroxene. (V)Ilmenite grain containing multiple chalcopyrite inclusions. (W) Visible gold 
grain, magnetite, and ilmenite.  
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Figure 4.4. Box and whisker plots showing the composition of magnetite in outcrop and detrital samples. The whiskers encompass 95 
percent of the data for each element, while the box covers the interquartile range (25% to 75%). The black line within each box represents 
the median concentration, and the diamonds represent outliers for samples. 
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Figure 4.5. Backscattered electron (BSE) images of representative spinel grains from outcrop and detrital samples from a catchment in 
northwestern Guyana (A - P).
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Figure 4.5. Additionally, we compare BSE images for Fe-Cr-Ti oxides from outcrop and detrital samples highlighting the textural 
similarities in grains from these sample types (Q - AB). The comparisons indicate that while some textural types persist during 
weathering and erosion (e.g., A,I, S,T, Y, Z, AA, AB), textures are altered and eventually lost due to weathering (E, G, M , V).   



196 

Figure 4.6. Box and whisker plots comparing the compositions of magnetite from outcrop samples 
GY-RC-10 (A), GY-RC-11 (B).
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Figure 4.6. Box and whisker plots comparing the compositions of magnetite from detrital samples 
C-12174 (C), C-12171 (D), and C-12170 (E). The outcrop and detrital samples are within 2 km of 
each other. Median concentrations of all elements are lower in the detrital samples compared to 
rock samples indicating change in the chemical composition of Fe-Cr-Ti oxides as they are 
chemically weathered. The concentrations of V and Al show less change than the other elements
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Figure 4.7. Model classification results for global magnetite data, comparing true and inferred deposit types along with model accuracy 
metrics. In (A) we plot of the actual versus inferred deposit type of global Fe-Cr-Ti oxide data used to train the model for 5 major ore 
deposits types. Analyses that plot along the diagonal are correctly classified, while off-diagonal points are misclassified. Model accuracy 



200 

is reported for each deposit type in two ways: sensitivity (or probability of detection) shows how often a sample from a particular deposit 
type is correctly identified, and precision shows how frequently an inferred classification label is correct. IOCGs and PCDs are hampered 
by high false positive rates, yielding low precision values, but the model shows informatively high precision for Ni-Cu-PGE, orogenic 
gold, and VMS deposits. Combined with sizeable detection probabilities, the model is especially diagnostic for Ni-Cu-PGE and orogenic 
gold deposits. By using a non-negative least squares regression (NNLS) model that compares the characteristic overlap between the 
chemical signatures of magnetite from the 5 ore deposit types with that obtained when the multivariate normal model is applied to data 
from an unknown source, we are able to reduce the effects of the chemical overlap and determine the ore deposit source of the input 
data. In (B) we show the corrected/improved ore deposit source proportions obtained when the NNLS model is applied to the 
characteristic chemical signatures for Fe-Cr-Ti oxides from the 5 ore deposit types when they are treated as data from unknown sources. 
The combined use of the multivariate normal and NNLS models improves our ability to identify magnetite from the 5 ore deposit types. 
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Figure 4.8. Global compilations of magnetite geochemical data from individual samples for (A) Ni-Cu-PGE, (B) VMS, (C) orogenic 
gold, (D) porphyry Cu-Au, and (E) porphyry Cu-Mo deposits are visualized using the discriminant plots of Dupuis and Beaudoin (2011) 
and Nadoll et al. (2014), where compositional fields are labeled according to nominal deposit type. When applied to individual analyses 
from ore deposits globally, only 24% and 5% of the global (A) Ni-Cu-PGE and (B) VMS deposit data are identified by those fields, 
respectively. 
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Figure 4.8. (B) Global compilation of magnetite from VMS deposits.  
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Figure 4.8. Global compilation of magnetite from (C) orogenic gold deposits.  
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Figure 4.8. Global compilation of magnetite from (D) iron oxide – copper – gold deposits.  
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Figure 4.8. Global compilation of magnetite from (E) porphyry Cu-Au deposits.  
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Figure 4.8. Global compilation of magnetite from (F) porphyry Cu-Mo.  
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Figure 4.9. Global magnetite data for Ni-Cu-PGE deposits are plotted as in Figure 5 but in Ni versus Cr/V geochemical space, according 
to Ward et al. (2018), who showed that magnetite from mineralised and unmineralised ultramafic rocks and ore-related and barren mafic 
rocks nominally display distinct compositions in this space. Eighteen percent of the data plot in the field for magnetite from ore-related 
mafic rocks, while the majority of the data plot in the field for barren mafic rocks. 
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Figure 4.10. Inferred proportions of magnetite from (A) outcrop, (B) 1st , (C) 2nd, (D) 3rd, (E) 
4th, and (F) 5th order streams that are identified as being similar to Fe-Cr-Ti oxides from Ni-Cu-
PGE (blue), orogenic gold (green), VMS (red), IOCG (purple), and porphyry copper deposits 
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(gold) using the multivariate normal model developed in this study. The pie charts represent the 
collective chemical signature obtained when individual analyses of grains from these samples are 
compared to the distribution of data from the 5 ore deposit types. Comparison of these collective 
signatures with those for magnetite from the (5) modeled ore deposit types, using the non-negative 
least squares (NNLS) model, reduces the effect of misidentification of analyses due to overlapping 
chemical signatures between ore deposit types and improves the predictive ability of the  model 
(G). For instance, application of the NNLS model to data from outcrop samples downweighs the 
effect of the overlap between the chemical signatures for VMS, IOCG and porphyry copper 
deposits, and reveals that the chemical signature of the sample is most similar to Fe-Cr-Ti oxides 
from Ni-Cu-PGE (72%) and orogenic gold (28%) deposits. 
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Figure 4.11. Visualization of geochemical data for rocks (pink squares), 1st (blue circles), 2nd (red upward triangles), 3rd (green 
downward triangles), 4th (yellow right-facing triangles), and 5th (cyan diamonds) order streams on the discriminant plots of (A) Dupuis 
and Beaudoin (2011) and Nadoll et al. (2014) and (B) Ward et al. (2018). The samples plot in many fields in the discriminant plots but 
generally indicate the potential for Ni-Cu-PGE, Fe-Ti-V, porphyry, and IOCG deposits in the sampled catchments. 
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Figure 4.11. (B) Visualization of geochemical data for rocks (pink squares), 1st (blue circles), 2nd (red upward triangles), 3rd (green 
downward triangles), 4th (yellow right-facing triangles), and 5th (cyan diamonds) order streams on the discriminant plot of Ward et al. 
(2018). 
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 Figure 4.12. Inferred ore deposit source results obtained when the multivariate normal model is 
applied to rock (10 (A) and 11 (B)) and detrital (C-12174 (C), C-12171 (D), and C-12170 (E)) 
samples from a catchment in northwestern Guyana. (F) Application of the NNLS model to the 
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collective chemical signatures of these samples indicate that the grains in this catchment are 
chemically similar to Fe-Cr-Ti oxides from global Ni-Cu-PGE and orogenic gold deposits. 
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Figure 4.13. Visualization of the data for the rocks and stream sediment samples from the catchment in Figure 4.12 on the discriminant 
plots of (A) Dupuis and Beaudoin (2011), Nadoll et al. (2014). 
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Figure 4.13. Visualization of the data for the rocks and stream sediment samples from the catchment in Figure 4.12 on the discriminant 
plot (B) Ward et al. (2018). 
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Figure 4.14. Comparison of the concentrations of V and Al in magnetite that crystallizes in equilibrium with sulfide liquids of 
different compositions; i.e., primitive monosulfide solid solution (red circles), evolved monosulfide solid solution (yellow diamonds), 
and Cu-rich intermediate solid solution (green squares). We also plot the V and Al contents for magnetite from samples with chemical 
signatures that are very similar to magnetite from Ni-Cu-PGE deposits, according to the multivariate normal and NNLS models 
developed in this study.
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Chapter 5  
Conclusions 

 

This dissertation demonstrates the utility of using the geochemistry of apatite, magnetite, 

and Fe-Ti-Cr oxides as a tool for investigating geological processes, including the fluid histories 

in Kiruna-type iron oxide apatite (IOA) deposits. The second and third chapters of my dissertation 

build on the work of Knipping et al. (2015a) that focused on using the chemistry of magnetite to 

investigate ore forming processes at the Los Colorados IOA deposit. Those authors hypothesized 

that since the minerals in ore deposits have the ability to record their fluid histories, and those fluid 

histories can be ascertained by using new (e.g., combined stable Fe and O isotopes of magnetite) 

and existing geochemical tools (e.g., major, minor, and trace element geochemistry), investigations 

of magnetite geochemistry are ideal for elucidating ore formation processes. After compiling the 

geochemical data for magnetite in the deposit, the researchers developed a new genetic model to 

explain the formation of IOA deposits that explains the geochemical data, and remains consistent 

with the field observations.  

Chapter 2 of this dissertation investigated the chemistry of apatite from the Los Colorados 

IOA deposit. Investigating the chemistry of apatite allows us to attain additional insights about the 

fluid history during ore genesis because apatite is a common gangue mineral found among the ore 

in these deposits. Additionally, investigating the chemistry of apatite from Los Colorados allows 

us to rigorously test the genetic model proposed by Knipping et al. (2015a) which was developed 

without considering the chemistry of apatite in the deposit. The analyses in Chapter 2 indicate that 

individual apatite grains contain distinct domains that have statistically significant differences in 
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chemical compositions that cannot be explained by growth from a single fluid (La Cruz et al., 

2019). These apatite grains are intergrown with magnetite grains that have cores enriched in Ti, 

V, Al, and Mn, and the concentrations of these elements decrease towards the rims of these grains 

(Knipping et al., 2015a, b). The geochemistry of apatite and magnetite from Los Colorados 

indicates growth of mineral cores from a silicate melt and growth of the rims from a magmatic-

hydrothermal fluid; these observations are most consistent with the formation of the Los Colorados 

IOA deposit according to the magmatic/magmatic-hydrothermal flotation model of Knipping et al. 

(2015a). An important takeaway from the study of apatite in this chapter is the usefulness of 

imaging the grains with techniques such as cathodoluminescence (CL) imaging, backscattered 

electron (BSE) imaging, and energy dispersive X-ray spectroscopy (EDS) element mapping, prior 

to quantitative analyses. Backscattered electron imaging is commonly done during EPMA 

analyses, so compositional zonations in grains can usually be ascertained using this technique 

during quantitative analyses. The apatite grains investigated in this chapter are compositionally 

zoned, despite not being obviously zoned in BSE images. The chemical variability in the grains, 

therefore, would not have been observed if CL imaging and EDS element mapping were not 

utilized. 

In Chapter 3, I investigate the chemistry of magnetite and apatite from multiple ore bodies 

at the El Laco IOA deposit. In addition to investigating magnetite from surface samples from 5 of 

the 7 ore bodies that constitute the ore deposit, I also studied drill core samples from 2 ore bodies 

in order to obtain a holistic understanding of the ore system at this deposit. Prior to this study, the 

bulk of the magnetite geochemical data for this deposit indicated that magnetite in the deposit has 

low Ti content (Nyström and Henríquez, 1994; Dare et al., 2015; Velasco, 2016; Broughm et al., 

2017). However, investigations of magnetite from outcrop and drill core samples from multiple 
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ore bodies indicate that the range of Ti content is much larger than the range of 200 - 300 ppm, 

reported by the aforementioned authors. The study of Ovalle et al., (2018), in addition to the study 

in Chapter 3 report Ti contents > 1 wt%, in addition to the presence of ilmenite exsolution lamellae 

in magnetite from the deepest samples at El Laco. The presence of ilmenite exsolution lamellae 

indicates that magnetite from the deep portions of the deposit grew from a silicate melt 

(Buddington and Lindsley, 1964; Ovalle et al., 2018). Additionally, the high Ti contents in the 

magnetite grains are consistent with growth of magnetite from magmatic/magmatic-hydrothermal 

fluids (Nadoll et al., 2014; Ovalle et al., 2018). Ovalle et al. (2018) concluded that the ore bodies 

at El Laco formed due to shallow emplacement and/or venting of magmatic/magmatic-

hydrothermal fluid suspensions that contain igneous magnetite microlites, and the chemistry of 

magnetite and apatite reported in this study agree with this conclusion. The F, Cl, and calculated 

OH contents for apatite from the sampled ore bodies at El Laco overlap those for apatite from 

many other IOA deposits, and igneous rocks. However, apatite grains from the Rodados Negros 

ore body have increased Cl content, relative to that from the other ore bodies, and the other global 

IOA deposits. The increased Cl content of apatite from Rodados Negros is, however, lower than 

the high Cl contents reported for apatite from IOA deposits in the Chilean Iron Belt (CIB), i.e. Los 

Colorados, Carmen and Fresia (Treloar and Colley, 1996; La Cruz et al., 2019; Palma et al., 2019). 

The chemistry of magnetite in the deposits from the CIB is similar to that for magnetite from IOA 

deposits in many global districts, and is consistent with ore genesis in these deposits from fluids 

that are magmatic/magmatic-hydrothermal in nature. However, apatite in the deposits of the CIB 

are relatively more Cl-enriched compared to apatite in the other IOA deposits. More work needs 

to be done to explain the difference in apatite chemistry and to assess what this difference reveals 

about the IOA deposits in the CIB.  
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In Chapter 4, I demonstrate that detrital magnetite geochemistry is a useful tool for 

exploration in covered terrains, such as Guyana, located in the Guiana Shield. An important aspect 

of this research was the development of a discriminant model that assists in the identification of 

ore deposit sources of magnetite grains of unknown origin; in particular, the model focuses on 

deposit types which are common in greenstone belt environments, specifically orogenic gold and 

nickel copper platinum group element (Ni-Cu-PGE). The multivariate normal distribution model 

developed allows discrimination of magnetite from orogenic gold deposits, and it more 

successfully identifies magnetite from Ni-Cu-PGE, volcanogenic massive sulfide (VMS), iron - 

oxide copper gold (IOCG), and porphyry copper gold and porphyry copper molybdenum deposits 

than the discriminant diagrams that existed previously. Application of the model to data for detrital 

magnetite from stream catchments throughout the greenstone belts of Guyana indicate the potential 

presence of orogenic gold and/or Ni-Cu-PGE deposits in the sampled catchments. Sulfide grains 

present in detrital grains from the sampled catchments support the inferred ore deposit potential 

from the model. This work demonstrates that weathering and transport of magnetite grains by 

streams result in changes to the chemistry and textures of detrital grains. The data indicate that 

grains maintain their chemical and textural character when transported to distances <1.5 km from 

source outcrops, but that the concentrations of V and Al are preserved for transport up to 5 km. 

The current model uses 11 elements measured via electron-probe micro-analyses (EPMA) to 

identify magnetite from the 5 ore deposit types, but despite outperforming the existing discriminant 

models, the model can be improved by increasing the number of elements included in the model 

as indicated by recent studies (Makvandi et al., 2016; Pisiak et al., 2017; Dmitrijeva et al., 2018; 

Huang et al., 2019). To this end, I will incorporate trace element contents of magnetite into the 

model, reassess its accuracy and apply the model to recently collected trace element compositions 
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for magnetite from Guyana. The findings of Chapter 4 are encouraging from an exploration 

perspective because it has demonstrated the potential presence of Ni-Cu-PGE mineralisation in the 

sampled catchments, while confirming the potential for the discovery of new orogenic gold 

deposits. During this study, I analysed the composition of ilmenite, which has been used in the 

exploration for diamonds (Mitchell, 1986; Haggerty, 1991a,b; Wyatt et al., 2004; Robles-Cruz et 

al., 2009; Castillo-Oliver et al., 2017). For instance, the Mg content of ilmenite has been shown to 

be an indicator of diamond-bearing kimberlite lavas (Mitchell, 1978). Alluvial diamonds are mined 

in Guyana, but no kimberlites have been discovered to date. Thus, assessing the geochemistry of 

ilmenite in the sampled and other catchments countrywide, may allow for the identification of 

catchments prospective for diamond exploration in Guyana. The detrital samples also contained 

zircon, monazite, and xenotime grains; these grains can also be utilized to gain insights about the 

geological processes that occurred in the sampled catchments. The use of the chemistry of detrital 

phases to identify regions for targeted exploration is advantageous since outcrops are scarce in this 

terrain.  

The data presented in this dissertation demonstrate that the geochemistry of minerals can 

be utilized to improve our understanding of the processes that result in the formation of ore 

deposits, and as a tool for finding ore deposits in regions where exploration for ore deposits is 

challenging. This research aims at ensuring that our global society has access to the required metals 

and non-metals for its survival. As we work to make these resources available, we must ensure 

that they are harvested in a manner that is environmentally and socially responsible. 
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Appendix 2.1 Detailed Explanation of Data Analysis Methodology 

Python programming language scripts used in the image and statistical analyses of apatite grains 

from the Los Colorados IOA deposit can be accessed from the Los Colorados IOA apatite 

repository on github.com. (user name: nlacruz). 

Data Analysis Methods 

We quantitatively assessed the observed spatial variability of F and Cl concentrations 

within individual apatite grains by using customized analysis scripts written in the Python 

programming language. We applied a Gaussian smoothing filter to the chemical (EDS) maps for 

P Kα and Cl Kα to improve signal- to-noise and reveal the local spatially-averaged composition 

of each grain. Individual grain boundaries were then identified automatically using the smoothed 

EDS P Kα maps, which provide masks that clearly distinguish apatite grains from other phases in 

the grain mounts and thin sections (Fig. 2.A11). The frequency distribution of Cl within each 

apatite grain was analyzed using histograms of the smoothed Cl maps, which revealed the presence 

of distinct Cl-rich and Cl-poor domains within each grain. The smoothed Cl maps were then used 

to assign each EPMA and LA-ICP-MS analytical spot to one of three possible grain regions: core, 

rim, or intermediate boundary zone. This assignment was- based upon the smoothed Cl intensity 

value at each analytical spot location, reflecting how the local Cl value compared to the histogram-

derived ranges for the Cl-poor, Cl-rich, and intermediate Cl populations.  Elemental concentrations 

of apatite cores and rims were analyzed by using sample means, standard deviations, and elemental 

correlations. We found that the data for apatite from both drill core samples are statistically 

indistinguishable for all analyzed elements; hence, we combined them for subsequent statistical 

analyses to avoid misinterpretations arising from small sample size. 
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Next, we conducted statistical tests to investigate the chemical variability within the apatite 

grains. For these analyses, we used the data for the Cl-rich (rim) and Cl-poor (core) populationsof 

the apatite grains from the pit sample and from the combined drill core dataset. First, we 

investigated the behavior of F and Cl in the Cl-rich and Cl-poor populations of apatite from the pit 

and drill core. The concentrations of F and Cl were visualized and found to covary, thus we 

determined the best-fit linear trends. Visual analysis showed that there were abundant outliers that 

might affect the best fit line in the drill core dataset; thus, robust linear estimators were necessary 

to assess the correlated behavior of F and Cl in the Cl-rich and Cl-poor regions of the grains. 

To investigate the statistical significance of the linear relationship between F and Cl in the 

cores and rims of the apatite grains, we performed a bootstrap Monte Carlo simulation to assess 

the uncertainties on the robust slope estimate, which properly downweighs the effect of outliers. 

The simulation (using 3000 Monte Carlo draws) produced uncertainty estimates for each region in 

the apatite grains. These results are summarized in histograms, shown in Fig. 2.A6, which estimate 

the probability distribution for the true slope of the data. To assess the significance of the fitted 

negative correlation, we evaluate the probability that the true slope is actually zero or positive 

based on the proportion of simulations that return a non- negative fitted value. A probability value 

≤ 0.05 suggests that the robust slope has a value that is significantly different than zero, i.e., the 

slope is likely negative. A probability value ≥ 0.05 suggests that the robust slope has a value 

that is not significantly different than zero, i.e., the slope is positive.  

Systematic differences between the behavior of minor and trace elements in core and rim 

regions, as well as between the pit and drill core samples, were observed in the data. To assess the 

significance of these observations, we performed statistical tests to determine whether there are 

statistically significant differences between the minor (Na, S, Si) and trace element concentrations 
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(Sr, Mn, As, La, Ce, Nd, Dy, Yb, Lu, Y, Ti, V) in the Cl-rich and Cl-poor regions of the apatite 

grains from the pit and drill core. The t-test was used to assess differences in the mean values, 

while the Levene test was used to assess differences in the spread (or standard deviation) of the 

concentration data. Since robust estimators were required for the statistical assessment of the major 

elements, we also used them in the statistical assessment of the minor and trace elements. Unlike 

the major elements, the use of robust versus non-robust estimators did not change the results 

obtained for the minor and trace elements, indicating that they were less affected by outliers as 

compared to F and Cl. 
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Appendix 3.1 Detailed Explanation of the LA-ICP-MS Analytical Protocol 

Details of LA-ICP-MS Analyses 

Magnetite 

The spot analyses were performed by using a beam diameter of 40 μm, a repetition rate of 

5 Hz, and energy density of 4 J/cm2. Each individual analysis consisted of first measuring the gas 

background for 20 s followed by ablation of magnetite for 60 s (300 pulses) and subsequent 

measuring of the gas background for at least 20 s between analyses. Different dwell times were 

used to optimize the analyses. For instance, 40 ms were for Cu and Cr, 30 ms were used for Mn, 

Ti, Ni, Pb, Ge and Mo, 20 ms were used for Ga, Zn and Sn, and 10 ms were used for all the other 

elements. The concentrations of most elements measured in the secondary reference glasses, when 

treated as unknowns, agree within analytical error to the concentrations reported by Jochum et al. 

(2005, 2011). 

Apatite 

A beam energy of ~8 J/cm2, a repetition rate of 10 Hz and a beam diameter of 30 μm were 

used during the analyses. Each spot analysis consisted of first measuring the gas background for 

20 s, followed by ablation of apatite for 60 s (600 pulses) and measuring of the gas background 

for at least 20 s between analyses. A dwell time of 10 ms was used for all elements except As for 

which we used dwell times of 30 ms. The concentrations of all elements measured in the Durango 

apatite, when treated as an unknown, agree within analytical error to the concentrations reported 

by Chew et al. (2016). 
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Appendix 4.1 Additional Explanation of the New Predictive Model 

Explanation of Model 

An underlying premise of the model is that the concentrations of various elements in 

magnetite can provide insights about the geological processes and environments in which 

magnetite crystallized. The elements that substitute into magnetite reflect conditions such as 

temperature, fluid composition, oxygen and sulfur fugacity, and silicate and sulfide activity in the 

environments in which magnetite formed (Nadoll et al., 2014). Thus by combining the 

concentrations of various elements — like Ti and Ni which have differential characteristics in 

magmatic and hydrothermal fluids that give rise to the formation of ore deposits — in magnetite, 

we are able to identify magnetite sourced from different ore deposit types. This model was 

developed as a way to improve our ability to identify magnetite from different ore deposit 

environments based on chemical composition. We found that the existing discriminant diagrams 

of Dupuis and Beaudoin (2011), Nadoll et al. (2014), and Ward et al. (2018), who used a few 

elements (<6) to identify magnetite from different ore deposit environments, do not sufficiently 

identify magnetite from different ore deposit environments. To this end, we developed a model 

that considers the concentrations of 11 elements measured via EPMA to assess whether we can 

improve the ability to identify magnetite from different ore deposit environments by increasing the 

chemical dimensions considered. Another fundamental difference with previous methods is that 

we consider the correlations amongst all 11 elements. In contrast, discriminant diagram methods 

consider only a few elements at a time, thereby projecting down into a much lower dimensional 

space and losing most of the information about the complex correlated compositional properties 

of magnetites, resulting from their formation histories. We found that by considering the 

concentrations of these 11 elements in magnetite, we are able to more satisfactorily identify 
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magnetite from different ore deposit environments. Despite our significant improvements over 

existing methods, there are still overlaps in the chemistry of magnetite from these 5 ore deposit 

types for the elements considered. By increasing the number of elements modeled, we will likely 

be able to reduce these chemical overlaps and better identify magnetite from different deposit 

types. 

In the first part of the model, the geochemical data of magnetite from unknown sources are 

compared to the multivariate normal distributions of magnetite from the 5 ore deposit types. This 

model is applied to a single analysis independently. The result of the multivariate normal model is 

a probability score for each analysis that represents the likely ore deposit source for that analysis. 

Application of the model to data for magnetite from individual ore deposit types indicate that the 

compositional ranges for magnetite from each deposit type overlap each other, thereby hindering 

precise identification. The overlaps, however, generate characteristic signatures for magnetite from 

each deposit type in the chemical space considered. This chemical signature, obtained by applying 

the model to data from the global database, reflects how frequently our multivariate normal model 

identifies individual analyses as belonging to each of the considered deposit types. Even when the 

identification of an individual analysis is incorrect, the combined results for a collection of 

analyses of magnetite from a particular ore deposit type is diagnostic of the chemistry of magnetite 

from that individual ore deposit types. This information can, therefore, be leveraged to improve 

the model’s ability to infer the ore deposit sources of a collection of magnetite analyses. 

For instance, the chemical signature for a collection of magnetite analyses from the 

streams/catchments in Guyana represents the combined signatures for magnetite from different 

sources; thus, the chemical signature is the weighted sum of the chemical signatures of magnetite 

from individual deposit sources in that catchment. If we assume that magnetite in the catchment is 
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sourced from the 5 modeled ore deposit types, then we can compare the combined catchment 

signature with the characteristic signature for each modeled ore deposit type and determine the 

proportions of the characteristic signatures from each ore deposit that constitutes the catchment 

signature. This is accomplished using a non-negative least squares (NNLS) regression model. The 

NNLS model was chosen because it allows us to determine the contributions of individual deposit 

type signatures to the mixed stream signature with the constraint that the proportion of each deposit 

type is non-negative, since it represents the fractional contribution of magnetite grains, making 

negative numbers unphysical. 

 We can better understand the chemical signature of each deposit type with a concrete 

example. When the multivariate normal model is applied to individual analyses of magnetite from 

Ni-Cu-PGE deposits, for instance, 59% of the data are correctly identified as being from this 

deposit type, and the remaining 41% are misidentified as belonging to other ore deposit types with 

a particular characteristic distribution due to geochemical overlap. The NNLS model then 

compares with combined signature for a collection of magnetite grains to the characteristic 

signature for each deposit type. We can analyze the accuracy of this process by considering, for 

instance, the collection of all magnetite grains from Ni-Cu-PGE deposits, to see how much our 

identification rate has improved. Using the NNLS model, we find that 94% of the analyses in the 

global dataset are correctly identified as being sourced from Ni-Cu-PGE deposits. Given this huge 

increase in modeling accuracy, we can therefore confidently apply this two-stage model to samples 

of unknown origin, like those collected in this study from stream catchments in Guyana.
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Flowchart and figures illustrating how the newly developed predictive model magnetite geochemistry works.  
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Figure 2.A1. Apatite grain maps as in Figure 2.2 for a representative sample from the pit. Similar to Figure 2.2, in this grain areas of 
bright luminescence correspond to the areas of low Cl concentration 
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Figure 2.A2. Apatite grain maps as in Figure 2.2 for a representative sample from the drill core LC-04 in a massive magnetite dike 
(sample 04-99.5B in Knipping et al., 2015a, b). In this grain, areas of bright luminescence correspond to the areas of high Cl 
concentration. 
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Figure 2.A3. (A) BSE image showing the distribution of monazite grains within apatite from Los Colorados. (B) Representative EDS 
spectrum for REEPO4 inclusions in apatite grains from drill core samples at Los Colorados.
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Figure 2.A4. (A) Distribution of thorite grains at the interface between apatite and actinolite. (B) Representative EDS spectrum for 
ThSiO4 inclusions in apatite grains from the pit and drill core samples at Los Colorados. 



242 

Figure 2.A5. Calculated OH concentration versus Cl concentration among all apatite grains from Los Colorados. Each sample is 
denoted by the same color and shape, and each point corresponds to an individual spot analysis. It is difficult to discern the 
relationship between calculated OH and Cl in the apatite grains.
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Figure 2. A6. Histograms summarizing the distribution of the slopes of best fit lines for the cores and rims of apatite grains from the pit 
and drill core samples during the bootstrap Monte Carlo simulation. The p values indicate the proportion of slopes (out of 3000 Monte 
Carlo draws) that had a positive value.
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Figure 2.A7. The concentrations of minor and trace elements versus the concentration of Cl. Each spot represents an individual EPMA 
and LA-ICP-MS analysis and the color of the spot indicates whether it was located in the core (teal), rim (plum) or boundary zone 
(yellow). The labels above the columns indicate if the data are for the pit or drill core A or B sample, while the label on the left side of 
each row indicates the element plotted on the y-axis of the plots in that row.
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Figure 2.A8. Comparison of mean concentrations of minor and trace elements in the cores (black) 
and rims (red) of apatite grains from pit (A) and drill core (B) samples. Symbols with error bars 
represent the mean and 1σ standard deviations in measured concentrations. Elements with 
statistically distinct (p<0.05) elemental concentrations in cores and rims are shown in bold. The 
cores and rims of apatite from the pit sample generally show numerous distinct elemental 
distributions (Sr, Ce, Nd, Y, V, Mn, La, Dy, Yb and As), while the cores and rims of apatite from 
the drill core samples are statistically indistinguishable for all elements, except Mn.
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Figure 2.A9. The concentrations of Mn, Na, and Ca in apatite cores (A) and rims (B) from Los 
Colorados plotted along with the fields that represent the compositions of apatite from mafic rocks 
(cyan) and felsic rocks (pink), associated and not associated with ore deposits, from the global 
compilation of Piccoli and Candela (2002). The symbols for apatite grains from the different 
samples at Los Colorados are the same as in previous figures (red circle: drill core 99.5B; yellow 
squares: drill core 99.5A; green triangles: pit sample). The concentrations of these elements in the 
cores and rims of apatite from Los Colorados overlap those for apatite from mafic and felsic rocks. 
Note that the mafic field from Piccoli and Candela (2002) plots within the felsic field.
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Figure 2.A10. The concentrations of Si, S, and P in apatite cores (A) and rims (B) from Los 
Colorados plotted along with fields that represent the compositions of apatite from mafic rocks 
and felsic rocks, associated and not associated with ore deposits, from the global compilation of 
Piccoli and Candela (2002). The colors representing the fields and symbols for apatite grains from 
the different localities are the same as Figure 15. Most of the data for both the cores and rims of 
apatite from Los Colorados overlap those for apatite from felsic rocks, while a small subset of the 
data overlap those for mafic rocks. Note that the mafic field from Piccoli and Candela (2002) plots 
within the felsic field.



252 

Figure 2.A11. Smoothed (pixel averaged) EDS P Kα maps for representative apatite grains from 
the pit (A), drill core A (B) and drill core B (C) samples. These masks were used to differentiate 
between apatite and other phases prior to the assessment of the distribution of Cl intensity in the 
apatite grains. 
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Table 2A.1. EPMA Conditions. (*APS-21 and APS-26 are synthetic apatite characterized and 
described by Schettler et al., 2011) 

Element/ X-ray line Crystal Standard Counting Time (s) 
Ca Kα PET *APS – 26  20 
P Kα LPET APS – 26  20 
Cl Kα LPET APS – 26  20 
F Kα PC1 *APS – 21  20 

Na Kα LTAP Jadeite 30  
S Kα LTAP Anhydrite 30 

Mg Kα LTAP Diopside 30 
Al Kα LTAP Sillimanite 30 
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Table 2.A2. EPMA and LA-ICP-MS composition data for all 43 apatite grains analyzed from the 
pit and drill core samples at the Los Colorados IOA deposit.  
 

Google drive folder link for Table 2.A2: 

https://drive.google.com/open?id=1-YLev-FFwUBIyAiFdNpBSOQrrGkMCmsZ 

 

https://drive.google.com/open?id=1-YLev-FFwUBIyAiFdNpBSOQrrGkMCmsZ


255 

Table 2A.3. p values obtained from the Levene test for the variance/ spread of the concentration 
data for elements in the cores and rims of apatite grains from the pit and drill core samples at Los 
Colorados. 
 

Element p value 
Pit Drill core 

Sr 0.541 0.453 
Mn 0.057 0.053 
As 0.898 0.003 
Na 0.195 0.933 
Si 0.222 0.746 
S 0.164 0.501 
V 0.350 0.989 
Ti 0.001 0.508 
Y 0.237 0.873 
La 0.578 0.495 
Ce 0.048 0.313 
Nd 0.263 0.044 
Dy 0.143 0.632 
Yb 0.961 0.802 
Lu 0.712 0.640 
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Figure 3.A1. Box and whisker plots displaying the range of concentrations of Ni, Co, Mg, Zn, and 
Cr in magnetite from surface outcrops (A, C, E, G, I) and drill core (B, D, F, H, J) at the El Laco 
deposit. The orange line in the boxes represents the median concentration and the green triangles 
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represent the mean values. The upper and lower margins of the box identify the upper and lower 
fifty percent of the data, while the whiskers show the range of concentrations for ninety-five 
percent of the data.
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Figure 3.A2. The average bulk continental crust normalized compositions of magnetite samples 
from magnetite breccias at deep (265 m) and intermediate (91 m, 66 m) depths, magnetite veinlets 
at intermediate (93 m, 61 m) depths, and massive magnetite from shallow (35 m) depths of the 
drill core and surface outcrops at Laco Sur compared to the same fields as shown in Figs. 4 and 5.
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Figure 3.A3. Comparison of the Ti, V, Mn, and Al contents measured via LA-ICP-MS and EPMA. While there is some variability 
between the measurements, the plot indicates good agreement between measurements via the two methods.
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Table 3.A1. EPMA Conditions for magnetite. 

Element/ X-ray line Crystal Standard Counting Time (s) 
Fe Kα LLIF USMN Magnetite 20 
Ti Kα PET USMN Ilmenite 120 
Cr Kα LLIF Cr2O3 100 
V Kα LLIF V2O5 120 
Ca Kα PET Wollastonite 100 
P Kα LTAP BaCl 100 

Mn Kα LPET Rhodonite (BHRH) 100 
Si Kα LTAP Wollastonite  100 

Mg Kα TAP Geikielite (GEIK) 100 
Al Kα TAP Jadeite 100 
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Table 3.A2. EPMA Conditions for apatite. 

Element/ X-ray line Crystal Standard Counting Time (s) 
F Kα PC1 MgF2 20 
Cl Kα LPET BaCl 20 
Ca Kα PET APS 21 20 
P Kα LPET APS 21 20 
S Kα LPET Anhydrite 30 
Fe Kα LLIF FESI 30 
Na Kα LTAP Jadeite 30 
Si Kα LTAP FOBO 30 

Mg Kα LTAP PX69 30 
Al Kα LTAP Sillimanite 30 
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Table 3.A3. EPMA and LA-ICP-MS compositional data for magnetite and apatite from the ore 

bodies at the El Laco IOA deposit. 

Google drive folder link for Table 3.A3: 

https://drive.google.com/open?id=1fa4BxH87dfdUSj7nZ41ZQJi9QHusj0tU 

 

https://drive.google.com/open?id=1fa4BxH87dfdUSj7nZ41ZQJi9QHusj0tU
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Figure 4. A1: Inferred sources for magnetite from (A) individual ore deposits from each deposit 
type and (B) a binary mixture comprising magnetite from an orogenic gold deposit and a Ni-Cu-
PGE deposit. The percent contamination in (A) is an indication of the proportion of the sample 
signature that is identified as belonging to another deposit class. The size of the symbols in (A) 
reflect the number of analyses for the particular deposit; the smallest symbol reflects deposits with 
<10 analyses, the intermediate symbol indicates deposits with 10 to 100 analyses, and the largest 
symbol indicates deposits with >100 analyses. The plot indicates that for the elements considered, 
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individual ore deposits from each class have magnetite chemistry that deviate from the magnetite 
compositions of the global dataset for the particular deposit class. This deviation results in the 
individual ore deposit having a chemical signature similar to that for another deposit type, and 
high percentage of  inferred contamination when the signature is compared to the chemical 
signature for the five deposit types using the non-negative least squares model. The non-negative 
least squares model reasonably identifies the proportions of the data that constitute the binary 
mixture of data from orogenic gold and Ni-Cu-PGE deposits (B).
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Figure 4. A2. Global compilations of magnetite geochemical data from individual samples (red circles) for (A) Ni-Cu-PGE, (B) VMS, 
(C) orogenic gold, (D) porphyry Cu-Au, and (E) porphyry Cu-Mo deposits are visualized using the discriminant plots of Dupuis and 
Beaudoin (2011) and Nadoll et al. (2014), where compositional fields are labeled according to nominal deposit type. Additionally, we 
plot the mean compositions (blue squares) for magnetite for the individual ore deposits represented in the global compilation for the 5 
ore deposit types. The deposit means, like the individual sample analyses plot in multiple fields within the discriminant diagrams.



267 

Figure 4. A3. A global compilation of magnetite geochemical data from porphyry Cu-Au and porphyry Cu-Mo deposits is visualized 
using the discriminant plots of Dupuis and Beaudoin (2011) and Nadoll et al. (2014), where compositional fields are labeled according 
to nominal deposit type. When data from these two types of porphyry copper deposits are combined, 35% of the data are correctly 
identified as being sourced from a porphyry copper deposit by the Al+Mn versus Ti+V discriminant plot compared to 11% by the 
Ni/(Cr+Mn) versus Ti+V discriminant plot.
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Table 4.A1. Identification of mineral phases and textures observed sampled catchments. 
 
Google drive folder link for Table 4.A1: 
https://drive.google.com/open?id=1Fl5x9jd2oj71sqoHkGXAOcX7UxbgUiVZ 

https://drive.google.com/open?id=1Fl5x9jd2oj71sqoHkGXAOcX7UxbgUiVZ
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