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ABSTRACT

Causal inference methods including propensity score (PS) matching and weighting

have been widely used for comparative effectiveness research based on observational

clinical databases. There are new challenges of causal inference in medical stud-

ies, including how to handle clustered data structure, how to improve efficiency of

the traditional methods and etc. To overcome these challenges, we develop novel

causal inference method for estimating treatment effects. The proposed methods are

motivated by and applied to various studies of cardiovascular diseases and cardiac

surgeries.

In Chapter II, we aim to estimate causal treatment effect in clustered observa-

tional data and in our application clustered data structure arises from patients being

nested within hospitals. We propose a strategy to combine PS matching and outcome

regression model for estimating treatment effect while accounting for the hierarchical

nature of the data. We show that this method enjoys the double robustness property,

i.e. when either the PS or outcome model is correctly specified, the bias is negligible.

The proposed method has better performance than the usual PS method and the

existing doubly robust PS weighted method, and is more robust than the outcome

regression method.

Chapter III is motivated by comparing different types of ventricular assist devices

(VAD) for end-stage heart failure patients where patients are likely to receive a heart

transplant after receiving a VAD. We propose to treat heart transplants as depen-

dent censoring and propose an augmented inverse probability weighted method to

xiii



estimate the treatment-specific difference in potential restricted mean lifetimes, had

no patients received heart transplant. Specifically, we first derive an estimator that

combines inverse probability of treatment weighting and inverse probability of censor-

ing weighting to account for the imbalance in baseline characteristics and censoring

that may depend on time-dependent confounders, respectively. Then we propose an

augmentation method to improve the efficiency of estimation. Large-sample prop-

erties of the proposed methods are studied and simulation studies are conducted to

assess the finite-sample performance.

In Chapter IV, we further extend and refine the work in Chapter III and develop

methods for estimating more meaningful causal treatment effects as opposed to the

average treatment effect. The goal is to overcome two potential problems related

to estimating the average treatment effect. Namely, depending on the specific ap-

plication the average treatment effect may not be the most clinical meaningful and

relevant quantity. Also it is known that estimators for average treatment effect often

have large variance even with the use of more sophisticated methods for improving

efficiency (e.g., augmentation). We propose augmented methods of matching weights

to estimate the treatment-specific difference in potential restricted mean lifetimes for

the matched population, had no patients received heart transplant. Simulation stud-

ies show that the proposed methods considerably improve the efficiency compared to

the existing methods.
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CHAPTER I

Introduction

Observational data are widely used in health science research. In observational

data, the covariates are often unbalanced between treatment groups and need to be

adjusted when estimating causal treatment effect. Causal inference methods including

propensity score (PS) matching and weighting have been widely used for comparative

effectiveness research based on observational clinical databases. However, there are

new challenges of causal inference in health science research that cannot be well

handled by current methods, including how to handle clustered data structure, how to

improve efficiency of the traditional methods, how to define the clinically meaningful

estimand and etc. In this dissertation, to overcome these challenges, we develop novel

causal inference method for estimating treatment effects. The proposed methods are

motivated by and applied to studies of cardiovascular diseases and cardiac surgeries.

In Chapter II, we aim to estimate causal treatment effect in clustered observa-

tional data. In our application clustered data structure arises from patients being

nested within hospitals. Compared to cross-sectional data, the complexity of data

structure and treatment assignment mechanisms brings in additional challenges for

estimating causal effects. Regression modeling is a typical method to handle covariate

imbalance between treatment groups. By appropriately adjusting the confounding co-

variates, treatment effects can be consistently estimated from regression model. But
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the accuracy of estimation of causal effects highly relies on the correct specification of

outcome model, which is often difficult to achieve because the relationships between

outcome and covariates are complicated. Alternatively, PS matching is a popular one

in medical researches as it is intuitive and easy to implement. Instead of modeling

outcomes or specifying the heterogeneity of treatment effect, it aims to equalize the

covariate distributions between treatment groups. However, although PS matching

has a mature application procedure in cross-sectional data, it has not been well stud-

ied in clustered data. We propose a strategy to combine PS matching and outcome

regression model for estimating treatment effect while accounting for the hierarchical

nature of the data. We show that this method enjoys the double robustness property,

i.e. when either PS or outcome model is correctly specified, the bias is negligible.

The proposed method has better performance than the usual PS matching method

and the existing doubly robust PS weighted method, and is more robust than the

outcome regression method. We also study various types of matching strategies for

clustered data and compared their performances.

Chapter III is motivated by comparing different types of ventricular assist devices

(VAD) for end-stage heart failure patients where patients are likely to receive a heart

transplant after receiving a VAD. In this chapter, our aim is to estimate the causal

treatment effects but there are two challenges. First, as this is an observational s-

tudy, the distributions of patient baseline covariates are different between groups.

Second, patients may receive heart transplants after receiving VAD implantation. So

their survival outcomes we observed are due to not only VAD implantation but also

heart transplant. Also, we know that the patients with worse post-implant situa-

tion were more likely to need a heart transplant. To overcome these two challenges,

we treat heart transplant as dependent censoring and propose an augmented inverse

probability weighted method to estimate the treatment-specific difference in poten-

tial restricted mean lifetimes had no patients received heart transplant. Specifically,

2



we derive an estimator that combines inverse probability of treatment weighting and

inverse probability of censoring weighting to account for imbalance in baseline charac-

teristics and censoring that may depend on time-dependent confounders, respectively.

Then we propose an augmentation method to improve the efficiency of estimation.

Large-sample properties of the proposed methods are studied and simulation studies

are conducted to assess the finite-sample performance.

In Chapter IV, we further refine the work in Chapter III and develop methods

for estimating more meaningful causal treatment effects as opposed to the average

treatment effect. The goal is to overcome two potential problems related to estimat-

ing the average treatment effect. Namely, depending on the specific application the

average treatment effect may not be the most clinical meaningful and relevant quan-

tity. Also it is known that estimators for the average treatment effect (ATE) often

have large variance even with the use of more sophisticated methods for improving

efficiency (e.g., augmentation). In this chapter we focus on estimating the average

treatment effect on the matched population (ATM). In the application of Chapter

III, a small fraction (3.1%) of patients received BiVAD and the majority (96.9%) of

patients received LVAD. It is possible that the physicians only provide the option

of BiVAD implantation to the patients with more severe clinical conditions. In this

case, we think it may be more reasonable to estimate the treatment effect for the

patients who can receive either treatment. Hence, in this chapter we are interested in

estimating the treatment-specific difference in potential restricted mean lifetimes on

the matched population, had no patients received heart transplant. PS matching is a

common method for estimating the ATM, but it has drawbacks in practice, including

difficulty in estimating variance of PS matching estimator and developing methods to

improve efficiency. Li and Greene (2013) proposed a matching weight (MW) method

which is an analogue to one-to-one PS caliper matching method without replacement

and showed it is more efficient and has better variance estimation than the PS match-

3



ing. However, how to apply the MW method for causal inference for survival outcome

and further improve the efficiency remains unclear. In this chapter, motivated by the

same application with Chapter III, we adopt the matching weight method to esti-

mate the treatment-specific difference in potential restricted mean lifetimes had no

patients received heart transplant, had no patients received heart transplant. Then

we develop augmented methods to improve the efficiency.

4



CHAPTER II

Doubly Robust Propensity Score Matching

Methods for Clustered Data

2.1 Introduction

In medical research, randomized design is gold standard of assessing causal treat-

ment effects. However, randomized trials are not always feasible due to high cost and

potential ethical issues. Alternatively, observational data are often used in medical

research. In observational studies, the covariates (e.g., age, gender, race, comorbid-

ity) are often unbalanced between treatment groups and need to be adjusted when

estimating causal treatment effects. Regression modeling is a typical method to han-

dle the covariate imbalance between treatment groups. By appropriately adjusting

the confounding covariates, treatment effects can be consistently estimated from re-

gression model. However, if differences in the characteristics across groups are large,

the causal effect estimated from regression models may be quite problematic because

valid estimations rely on model extrapolations which may be sensitive to model mis-

specification (Rubin, 1979). In other words, the accuracy of estimation of causal

effects highly relies on the correct specification of outcome models, which is often dif-

ficult to achieve because the relationships between outcome and covariates are often

complicated.

5



Rosenbaum and Rubin (1983) proposed the propensity score (PS) methods to re-

duce bias in estimating causal effects. Instead of modeling outcomes or specifying

the heterogeneity of treatment effect, PS methods aim to equalize the covariate dis-

tributions between treatment groups. There are four types of PS methods (Austin,

2011), including matching (Rosenbaum and Rubin, 1985; Austin, 2008; Stuart , 2010),

inverse probability weighting (IPW) (Lunceford and Davidian, 2004), stratification

and covariate adjustment using propensity score (Rosenbaum and Rubin, 1984). A-

mong these methods, PS matching is popular in medical research as it is intuitive

and easy to implement. In last decades PS matching in cross-sectional data has been

well studied and improved in many aspects, including PS model fitting and matching

strategy (Rosenbaum, 1989; Gu and Rosenbaum, 1993; Stuart , 2010).

However, although PS matching has a mature application procedure in cross-

sectional data, it has not been well studied in clustered data, which is a common

type of medical data. In medical data patients are often nested in hospitals, and the

patient characteristics and treatment assignment mechanism may vary greatly among

hospitals. The complexity of data structure and treatment assignment mechanisms

introduces additional challenges for estimating causal effects using PS matching. In

the last decade, a few publications have explored PS matching in clustered data.

The performances of within-cluster and across-cluster matching have been compared

in the cases of different cluster sizes (Steiner et al., 2013; Kim and Steiner , 2015).

Single-level and two-level PS models together with new two-level matching strategies

have been studied (Thoemmes and West , 2011; Rickles and Seltzer , 2014; Arpino

and Cannas , 2016). Furthermore, to overcome the common problem of unobserved

cluster-level confounders when estimating causal treatment effects, Arpino and Mealli

(2011) and Oelrich (2014) developed PS matching methods, and Li et al. (2013)

and Yang (2016) developed inverse probability weighting methods, respectively. To

summarize, the previous researches have mainly focused on taking into account the

6



hierarchy of data structure by using multi-level PS models or improving matching

strategies, or solving the problem of unobserved cluster-level confounders.

Medical researchers often perform PS matching and estimate treatment effects

by calculating the difference of the average of observed outcomes between treatment

groups. Unpaired or paired two-sample tests are used to assess the significance of the

estimated treatment effects. However, generally PS matching cannot remove all the

imbalances between groups. Directly comparing the average outcome between group-

s after matching precludes further removing residual imbalances and improving the

efficiency. It has been suggested that post-matching outcome regression may further

remove the residual imbalances in matched data and thus improve the performance

of PS matching (Rubin, 1973, 1979; Rubin and Thomas , 2000; Ho et al., 2007; Stu-

art , 2010). However, to our knowledge, no study has evaluated the performance of

combining PS matching and outcome regression using simulation study, especially for

clustered data.

This chapter is motivated by a multi-center observational cardiac study. The pa-

tient data were collected from multiple hospitals with widely varying sizes, and two

treatment groups were unbalanced in patient-, surgeon- and hospital-level character-

istics. The aim of the study is to estimate the causal effect of cardiac treatment.

In this chapter, we propose a strategy to combine PS matching and outcome regres-

sion, while accounting for the hierarchical nature of the data. We also study different

matching methods in clustered data and compare the performances. The remainder

of the chapter is organized as follows: we propose the methods in Section 2.2; Section

2.3 is the simulation study; Section 2.4 is the application; Finally Section 2.5 is the

discussion.
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2.2 Methods

2.2.1 Assumptions for Causal Inference in Two-level Data

Without loss of generality, we consider a two-level data structure, including hospital

and patient levels. Considering a two-level observational data structure where n

patients are nested into m hospitals, i.e. n =
∑m

i=1 ni, i = 1, ...,m, where ni denotes

number of patients in hospital i. Let Zij indicate whether patient j in hospital i

is assigned to treatment (Zij = 1) or control (Zij = 0). Let X denote the vector

of patient-level covariates, V denote the vector of hospital-level covariates, and Y

denote the continuous outcome. The propensity score eij is defined as the probability

of being assigned to treatment for patient j in hospital i, conditional on patient-

and/or hospital-level covariates, i.e. eij = Pr(Zij = 1|Xij, Vi).

To estimate the causal treatment effect, we adopt the potential outcome frame-

work. Unlike cross-sectional data, in two-level data analysis, the framework need

to be adjusted to account for the hierarchical nature of data and the existence of

hospital-level covariates. We assume patient j in hospital i has two potential out-

comes Y 1
ij and Y 0

ij , which denote the hypothetical outcomes if the patient has taken

treatment (Zij = 1) or control (Zij = 0) in his/her observed hospital, respectively.

There are two common estimands including the average treatment effect (ATE) and

the average treatment effect on the treated (ATT). In this chapter we are interest-

ed in estimating the ATE, i.e. E(Y 1
ij − Y 0

ij). Valid estimation of the ATE depends

on three assumptions. We first make the stable unit treatment value assumption

(SUTVA), stating that the potential outcomes for one patient are not affected by the

treatment assignment of other patients in either the same or different hospitals, i.e.

Yij = ZijY
1
ij + (1 − Zij)Y

0
ij . The second assumption is unconfoundedness, claiming

that

(Y 1
ij , Y

0
ij) ⊥ Zij|Xij, Vi or (Y 1

ij , Y
0
ij) ⊥ Zij|(Xij, hospital i). (2.1)
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The symbol “⊥” denotes independence. Rosenbaum and Rubin (1983) proved that for

cross-sectional data, if the unconfoundedness assumption i.e. (Y 1, Y 0) ⊥ Z|X hold-

s, the potential outcomes are independent of treatment assignment conditional on

propensity score i.e. (Y 1, Y 0) ⊥ Z|e(X), which is the theory basis for the PS match-

ing methods. Here, we modify the unconfoundedness assumption for the two-level

data setting. Specifically, we assume that the potential outcomes for one patient are

independent of treatment assignment conditional on both patient- and hospital-level

covariates, or conditional on patient-level covariates and hospital membership. The

second part of Equation (2.1) applies to matching within hospital. Matching within

hospital does not require observing hospital-level covariates, because the hospital-level

covariates are automatically balanced as the matched pairs are in the same hospital.

In this case, the hospital membership is sufficient for making valid estimation of the

ATE, which has also been claimed by Thoemmes and West (2011) and Steiner et al.

(2013). Based on the second part of Equation (2.1), matching within hospital is a

method to make valid inference in the presence of unobserved cluster-level covariates.

The third assumption is the overlap assumption, which states the patients in each

hospital have positive probabilities of being assigned to either the treatment or the

control, i.e.

0 < eij < 1. (2.2)

Rosenbaum and Rubin (1983) considered it as “strong ignorable” if both unconfound-

edness and overlap assumptions are satisfied.

2.2.2 Propensity Score Models

The propensity scores are often not observed and need to be estimated from models

(e.g. logistic model). Depending on how to model the hierarchical effect of hospitals,

we consider three types of PS models. The first one is single-level logistic model, for

which we ignore the hierarchical data structure and model the probability of being
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assigned to treatment using patient-level covariates, i.e.

Single-level PS model: logit{P (Zij = 1|Xij)} = Xijβ.

As two-level PS models have been shown to reduce bias of causal treatment effects

in clustered data (Arpino and Mealli , 2011; Li et al., 2013), we consider two types

of two-level PS models: the random-effect logistic model and the fixed-effect logistic

model, i.e.

Random-effect PS model: logit{P (Zij = 1|Xij, Vi)} = bi +Xijβ + Viγ,

where bi is a random intercept for hospital i.

Fixed-effect PS model: logit{P (Zij = 1|Xij, Vi)} = Hi +Xijβ,

where Hi is the indicator for hospital i.

It is important to include all covariates related to treatment assignment into the

PS model. If it is not clear that which characteristics are associated with treatment

assignment mechanisms, it has been recommended to include as many covariates as

possible to avoid potential confounding (Stuart , 2010), although the trade-off is a

slight inflation of variance of the estimator (Brookhart et al., 2006).

2.2.3 Matching

After estimating PS from models, the next step is to match patients between

groups using estimated PS. In cross-sectional data analysis, various matching strate-

gies have been proposed and studied, including nearest neighbor matching, optimal

matching and nearest neighbor matching within a caliper (caliper matching). The
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caliper matching is a popular method in medical research and has been shown to

be less biased than nearest neighbor matching and optimal matching (Austin, 2014).

Gu and Rosenbaum (1993) have shown that optimal matching does not improve the

performance of balancing between groups compared to other matching algorithms,

although it performs better at minimizing the within pair difference. In this chap-

ter, the primary interest is to estimate the ATE instead of achieving best individual

matching pair, so we use the caliper matching with caliper equal to 0.10 standard

deviation of the estimated propensity score. Let us take the caliper matching within

hospital as an example; let Mij be the matched set for patient j in hospital i who

received treatment, Si0 be the set of all control patients in hospital i, j′ be the patient

id in Si0. Then Mij can be formally expressed as

Mij =
{
j′ ∈ Si0 : min

j′∈Si0
|êij − êij′| ≤ 0.10σ̂e

}
.

With regards to matching with or without replacement, we consider three methods,

including matching without replacement, matching with replacement, and modified

matching with replacement. Matching without replacement is frequently used in

medical research. It means that one patient can only be matched once and after

s/he is matched, s/he would not be considered in future matching. Matching with

replacement means that the patients are allowed to match with multiple patients.

It has been argued that matching with replacement may decrease bias but cause

more complicated inference due to the violation of independence assumption (Stuart ,

2010). For matching with replacement, Dehejia and Wahba (1999) and Hill et al.

(2004) proposed to incorporate weights into outcome analysis. For example, if 1

control is matched to 5 treated patients, then each of these 5 patients receive a

weight of 1/5. Beside these two traditional methods, we propose a third way that we

call “modified matching with replacement”. Specifically, we first match the patients
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without replacement, then for the unmatched patients, we attempt to match them

with the patients that have already been matched. When an unmatched patient can

be matched to multiple patients, we match her/him to the patient with fewest times

being matched.

A new challenge for PS matching in clustered data is how to handle the hierarchical

data structure during matching. Generally there are two common matching methods,

including within-hospital matching and across-hospital matching. Within-hospital

matching only matches the patients in the same hospital. It achieves perfect hospital-

level balance between groups, but the matching rates may be low, especially when

hospital sizes are small. Across-hospital matching ignores the hierarchical structure

and matches patients regardless of whether they are in the same hospital, which has

been shown to perform better for reducing bias. In this chapter, we consider both

within-hospital and across-hospital matching, and also propose a matching method

called “modified across-hospital matching”, that is, we first match patients within

the same hospital, and for the patients who cannot be matched within hospital, we

match them across hospitals. This is similar to the preferential matching proposed

by Arpino and Cannas (2016).

2.2.4 Post-matching Analysis

Traditionally people perform PS matching and then estimate the ATE or ATT by

calculating the difference in average outcomes between two matched groups. Unpaired

or paired two-sample tests are used to assess the significance. As stated in Section

2.1, it has been suggested that post-matching covariate adjustment would potentially

improve the estimation. Hence, instead of directly comparing the averages between

two matched groups, we propose a method of modeling outcome using covariates

after matching. Similar to PS models, we consider three types of outcome models
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depending on how to account for hierarchical effects of hospitals:

Single-level outcome model: Yij ∼ Zijβ +Xijγ (2.3)

Random-effect outcome model: Yij ∼ αi + Zijβ +Xijγ + Viθ (2.4)

Fixed-effect outcome model: Yij ∼ Hi + Zijβ +Xijγ, (2.5)

where αi is a random intercept for hospital i, and Hi is the indicator for hospital i.

There are still debates on whether to account for matching pairs in the post-

matching analysis (Rubin, 1973; Hill and Reiter , 2006; Schafer and Kang , 2008; S-

tuart , 2008); we have chosen not to account for matching pairs in this chapter. In

the situation that we do not observe all the hospital-level confounders, the random-

effect PS model will be biased due to the endogeneity problem (Mundlak , 1978). In

this case, the fixed-effect model is still unbiased because the effect of the missing

hospital-level covariates would be absorbed into hospital indicator Hi in Model (2.5).

2.3 Simulation Study

We perform a simulation study to evaluate the performance of the proposed meth-

ods using 1000 Monte Carlo datasets. The number of hospitals is 30. We consider

three scenarios by varying hospital sizes. The hospital sizes in three scenarios are 30,

100 and a random number generated from the uniform distribution (30,170), respec-

tively.

Let Xij denote the patient-level covariate vector and Xij = (X1,ij, X2,ij, X3,ij)
T .

X1,ij and X3,ij are generated from standard normal distribution N(0, 1). X2,ij is gen-

erated from Bernoulli(0.6). The hospital-level covariate Vi is simulated from N(0, 1).

The treatment indicator Zij is generated from the Bernoulli distribution with param-

eter expit(X1,ij +X2,ij +0.5Vi+ηi), where ηi ∼ N(0, 1). The outcome Yij is generated
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from a two-level random-effect model:

Yij = αi + 1.5X1,ij +X2
1,ij + 2.5X2,ij + 1.5X3,ij + 3Zij + Vi + εij,

where αi ∼ N(0, 1.2), εi,j ∼ N(0, 2).

To estimate propensity scores, we consider five PS models: (1) the benchmark

model, (2) the single-level model with linear forms of all patient-level covariates, (3)

the single-level model with linear forms of all patient-level covariates except X1,ij, (4)

the random-effect model with linear forms of all patient-level covariates, and (5) the

fixed-effect model with linear forms of all patient-level covariates. For the PS Models

(2)-(5), we omit hospital-level covariate in order to mimic the realistic situation that

we do not observe hospital-level confounders.

PS model 1 (benchmark): logit(eij) = bi +X1,ij +X2,ij + Vi

PS model 2: logit(eij) = X1,ij +X2,ij +X3,ij

PS model 3: logit(eij) = X2,ij +X3,ij

PS model 4: logit(eij) = bi +X1,ij +X2,ij +X3,ij

PS model 5: logit(eij) = Hi +X1,ij +X2,ij +X3,ij.

After estimating propensity scores, we consider three ways to match patients as de-

scribed in Section 2.2: within-hospital, across-hospital and modified across-hospital

matching. Regarding matching with or without replacement, we also consider three

ways: with replacement, without replacement and modified with replacement match-

ing. After matching, we further perform outcome regression modeling using five

models, including (1) benchmark model, (2) single-level model with Zi as the only

covariate, (3) mixed-effect model with Zi as the only covariate, (4) random-effect

model with Zi and linear forms of all patient-level covariates, and (5) fixed-effect

model with Zi and linear forms of all patient-level covariates. For outcome model

(2)-(5), we omit hospital-level covariate Vi.
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Outcome model 1 (benchmark): Yij ∼ bi+Zij+X1,ij+X
2
1,ij+X2,ij+X3,ij+Vi

Outcome model 2: Yij ∼ Zij

Outcome model 3: Yij ∼ bi + Zij

Outcome model 4: Yij ∼ bi + Zij +X1,ij +X2,ij +X3,ij

Outcome model 5: Yij ∼ Hi + Zij +X1,ij +X2,ij +X3,ij.

In each scenario, in addition to the proposed methods, we also evaluate the outcome

regression method, PS matching method and Li’s doubly robust weighting methods,

in terms of bias and Monte Carlo standard deviation. We estimate the standard error

via the bootstrap approach. In each scenario, we mainly focus on matching without

replacement; the detailed simulation results of the matching with replacement and

the modified matching with replacement can be found in Appendix A.1 and A.2.

Tables 2.1-2.6 show the simulation results for matching without replacement in

three scenarios. We first describe the simulation results for Scenario 1 (Table 2.1 and

2.2) from the following six aspects.

First, we show that the proposed method has the double robustness property.

Double robustness means that when either the PS model or the outcome model is

correctly specified, the bias of the estimation is negligible. In Table 2.1, when the

PS model is wrong (PS model 3), if we directly compare the two groups without co-

variate adjustment after matching (outcome models 2 and 3), the biases are large. In

contrast, if we perform outcome regression using patient-level covariates after match-

ing (outcome models 1, 4 and 5), the biases are greatly reduced. Although outcome

models 4 and 5 are not exactly correct (because they omit the hospital-level con-

founder and polynomial terms of the patient-level confounders), it still works well for

reducing bias. Similarly, when the outcome models are wrong (models 2 and 3), if

we use correct or almost correct PS models (models 1,4 and 5), the biases are greatly

reduced. Thus, the simulation results show that when either the PS or the outcome

model is almost correct, the biases of the proposed method are low.
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Second, the proposed method is more efficient than PS matching without subse-

quent outcome modeling. As we described in Section 2.2, the PS matching method

is equivalent to PS matching followed by outcome model 2 or 3. Table 2.1 shows

that the proposed methods using outcome model with covariate adjustment (out-

come models 1, 4 and 5) always have smaller variance compared to PS matching

without subsequent covariate adjustment (outcome model 2 and 3).

Third, we show that our method is more robust than outcome regression. The

biases for outcome regression are large when the outcome models are greatly misspec-

ified (model 2 and 3), and not negligible when outcome models are almost correct

(model 4 and 5). The proposed method combines outcome regression with PS match-

ing, and if the PS models are correct or almost correct (model 1, 4 and 5), the biases

are greatly reduced compared to outcome regression. Even when the PS models are

very wrong (model 3), the proposed method is still less biased than outcome regres-

sion.

Fourth, we show that the proposed method has comparable or better performance

than Li’s doubly robust IPW method in our simulation settings. Most of the biases

and variances for the proposed methods are smaller than those for Li’s method condi-

tional on same PS models and outcome models. Especially when either the PS model

or outcome model is very wrong, the biases from Li’s method are much larger than

the proposed method.

Fifth, in Scenario 1, the biases for matching within hospital are smaller compared

to across-hospital and modified across-hospital matchings. In particular, when either

the PS model or outcome are very wrong (PS model 3, outcome model 2 and 3),

the across-hospital and modified across-hospital matchings are much more biased

compared to within-hospital matching. One possible reason is that matching within

hospital achieves perfect balance on the hospital level, hence avoiding the potential

hospital-level confoundings. Its variances are slightly larger compared to matching
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across hospital and modified matching across hospital. A possible reason may be that

many patients cannot be successfully matched within the same hospital, so we lose a

large percentage of patients during matching. The low matching rate is a particular

common problem when hospital sizes are small. When the hospital size increases, the

variance of matching within hospital would be smaller (Scenario 2 and 3).

Sixth, the coverage probabilities for the proposed methods appear to be around

95% when using PS models 1,4 and 5 and outcome models 1,4 and 5.

Tables 2.3-2.6 show simulation results for Scenario 2 and 3 in which the hospital

sizes increase to 100 and random numbers between 30 and 170, respectively. As the

hospital sizes increase, the variances of the proposed methods are smaller than that in

Scenario 1, making the proposed methods much more efficient than Li’s method. Ad-

ditionally, the variances of within-hospital matching methods are still larger than but

closer to the modified across-hospital matching. The conclusion from the simulation

results for Scenario 2 and 3 are generally consistent with the above seven conclusions

for Scenario 1. It suggests that the proposed methods perform well in either small or

large hospital sizes.

Table A.1-A.12 show simulation results for matching with replacement and mod-

ified matching with replacement in three scenarios. The conclusions from Table A.1-

A.12 are generally consistent with matching without replacement. One remarkable

difference is that when the sample size is 30, matching with replacement and mod-

ified matching with replacement are more efficient than matching without replace-

ment. This makes sense because when the sample size is small, matching without

replacement greatly limits the number of matchings, but matching with replacement

greatly increases the chance of being matched. In contrast, when the sample size

increases to 100 or to a random number between 30 and 170, matching without re-

placement are more efficient than matching with replacement or modified matching

with replacement. This seems counter-intuitive, but actually the efficiency depends
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on the number of unique patients in matched data, instead of the total number of the

matched patients. In the medium or large hospitals, matching with replacement is

likely to create more matching pairs but the number of unique matched patients could

be smaller than matching without replacement because one patient can be matched

with multiple patients.
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Table 2.1: Monte Carlo bias and standard deviation using the outcome regression method, proposed methods and Li et al
method. For each method, we use 5 PS models (not for the outcome regression method) and 5 outcome models
described in Section 2.3. We use matching without replacement. The results are based on 1000 Monte Carlo data
sets with number of hospitals equals to 30 and hospital size equals to 30.

PS Model

Outcome Model 1 Outcome Model 2 Outcome Model 3 Outcome Model 4 Outcome Model 5

Bias MCSD Bias MCSD Bias MCSD Bias MCSD Bias MCSD

Outcome Regression
Only

0.004 0.168 1.764 0.327 1.679 0.253 −0.051 0.205 −0.089 0.206

Without
replacement

Within
hospital
matching

PS Model 1 0.000 0.232 0.008 0.300 0.008 0.300 0.002 0.242 0.002 0.242
PS Model 2 0.000 0.245 0.006 0.289 0.006 0.289 0.003 0.257 0.003 0.257
PS Model 3 −0.004 0.206 1.189 0.261 1.189 0.261 0.002 0.237 −0.009 0.238
PS Model 4 0.000 0.234 0.008 0.275 0.008 0.275 0.003 0.244 0.003 0.244
PS Model 5 0.000 0.233 0.010 0.272 0.010 0.272 0.003 0.244 0.003 0.244

Across
hospital
matching

PS Model 1 0.009 0.191 −0.142 0.279 −0.190 0.273 0.005 0.223 0.002 0.224
PS Model 2 0.003 0.186 0.414 0.343 0.179 0.232 0.052 0.201 0.000 0.204
PS Model 3 0.004 0.183 1.366 0.327 1.224 0.244 0.050 0.216 0.002 0.218
PS Model 4 0.005 0.196 −0.085 0.253 −0.190 0.240 0.009 0.224 0.015 0.226
PS Model 5 0.006 0.195 0.030 0.257 −0.097 0.241 0.005 0.225 0.021 0.227

Modified
across
hospital
matching

PS Model 1 0.005 0.191 −0.118 0.269 −0.110 0.257 0.014 0.208 0.018 0.208
PS Model 2 0.002 0.181 0.346 0.307 0.250 0.221 0.045 0.195 0.004 0.198
PS Model 3 0.003 0.176 1.338 0.287 1.311 0.231 0.036 0.207 −0.002 0.209
PS Model 4 0.006 0.192 −0.078 0.235 −0.104 0.225 0.023 0.209 0.021 0.209
PS Model 5 0.006 0.195 −0.017 0.242 −0.056 0.228 0.010 0.214 0.013 0.213

Li et al method

PS Model 1 0.008 0.192 0.166 0.428 0.201 0.405 0.003 0.282 −0.003 0.282
PS Model 2 0.007 0.173 0.441 0.383 0.377 0.286 0.046 0.237 0.007 0.238
PS Model 3 0.004 0.168 1.361 0.308 1.283 0.219 −0.055 0.206 −0.094 0.207
PS Model 4 0.008 0.191 0.235 0.401 0.215 0.380 0.007 0.280 −0.003 0.280
PS Model 5 0.007 0.222 0.006 0.530 0.008 0.494 0.004 0.334 0.004 0.333
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Table 2.2: Monte Carlo average of estimated standard errors and coverage probability using the outcome regression method,
proposed methods and Li et al method. For each method, we use 5 PS models (not for outcome regression method)
and 5 outcome models described in Section 2.3. We use matching without replacement. The results are based on
1000 Monte Carlo data sets with number of hospitals equals to 30 and hospital size equals to 30.

PS Model

Outcome Model 1 Outcome Model 2 Outcome Model 3 Outcome Model 4 Outcome Model 5

ASE CP ASE CP ASE CP ASE CP ASE CP

Outcome Regression
Only

0.089 0.945 0.137 0.000 0.136 0.000 0.108 0.883 0.109 0.862

Without
replacement

Within
hospital
matching

PS Model 1 0.241 0.962 0.406 0.994 0.362 0.987 0.264 0.968 0.265 0.968
PS Model 2 0.251 0.960 0.422 0.993 0.375 0.989 0.274 0.968 0.276 0.970
PS Model 3 0.211 0.957 0.343 0.029 0.311 0.018 0.261 0.973 0.262 0.973
PS Model 4 0.241 0.960 0.406 0.998 0.362 0.992 0.264 0.961 0.265 0.963
PS Model 5 0.238 0.959 0.402 0.997 0.358 0.993 0.261 0.972 0.262 0.971

Across
hospital
matching

PS Model 1 0.202 0.957 0.330 0.965 0.305 0.930 0.228 0.951 0.230 0.955
PS Model 2 0.193 0.954 0.286 0.657 0.291 0.955 0.217 0.956 0.221 0.961
PS Model 3 0.182 0.953 0.274 0.005 0.277 0.005 0.223 0.955 0.227 0.961
PS Model 4 0.202 0.957 0.331 0.986 0.305 0.959 0.229 0.949 0.230 0.949
PS Model 5 0.202 0.955 0.334 0.989 0.308 0.983 0.230 0.953 0.232 0.953

Modified
across
hospital
matching

PS Model 1 0.197 0.951 0.329 0.976 0.298 0.966 0.221 0.957 0.221 0.960
PS Model 2 0.184 0.950 0.284 0.745 0.277 0.901 0.206 0.952 0.209 0.961
PS Model 3 0.175 0.954 0.274 0.002 0.265 0.000 0.215 0.950 0.217 0.958
PS Model 4 0.197 0.957 0.330 0.989 0.298 0.982 0.221 0.957 0.221 0.956
PS Model 5 0.197 0.945 0.331 0.991 0.299 0.985 0.221 0.956 0.222 0.960

Li et al method

PS Model 1 0.172 0.918 0.429 0.888 0.392 0.864 0.235 0.923 0.235 0.919
PS Model 2 0.151 0.912 0.340 0.674 0.315 0.726 0.204 0.911 0.204 0.916
PS Model 3 0.136 0.886 0.251 0.002 0.227 0.000 0.168 0.882 0.167 0.853
PS Model 4 0.171 0.917 0.421 0.861 0.389 0.864 0.233 0.926 0.233 0.926
PS Model 5 0.207 0.935 0.521 0.954 0.479 0.952 0.281 0.939 0.280 0.936
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Table 2.3: Monte Carlo bias and standard deviation using the outcome regression method, proposed methods and Li et al
method. For each method, we use 5 PS models (not for the outcome regression method) and 5 outcome models
described in Section 2.3. We use matching without replacement. The results are based on 1000 Monte Carlo data
sets with number of hospitals equals to 30 and hospital size equals to 100.

PS Model

Outcome Model 1 Outcome Model 2 Outcome Model 3 Outcome Model 4 Outcome Model 5

Bias MCSD Bias MCSD Bias MCSD Bias MCSD Bias MCSD

Outcome Regression
Only

0.000 0.088 1.751 0.252 1.657 0.138 −0.083 0.108 −0.096 0.108

Without
replacement

Within
hospital
matching

PS Model 1 0.001 0.104 0.016 0.134 0.016 0.134 0.004 0.108 0.004 0.108
PS Model 2 −0.004 0.106 0.005 0.126 0.005 0.126 −0.001 0.110 −0.001 0.110
PS Model 3 0.000 0.099 1.190 0.134 1.190 0.134 0.001 0.113 −0.002 0.112
PS Model 4 −0.003 0.103 0.008 0.117 0.008 0.117 −0.001 0.108 −0.001 0.108
PS Model 5 −0.003 0.103 0.010 0.117 0.010 0.117 0.000 0.108 0.000 0.108

Across
hospital
matching

PS Model 1 0.001 0.098 −0.034 0.173 −0.143 0.151 0.010 0.120 0.015 0.121
PS Model 2 0.000 0.097 0.409 0.288 0.124 0.130 0.010 0.104 −0.006 0.104
PS Model 3 0.000 0.093 1.366 0.261 1.192 0.139 0.010 0.108 −0.005 0.108
PS Model 4 −0.001 0.100 −0.012 0.162 −0.142 0.134 0.010 0.121 0.014 0.121
PS Model 5 −0.001 0.099 0.024 0.161 −0.113 0.133 0.009 0.120 0.014 0.120

Modified
across
hospital
matching

PS Model 1 0.001 0.098 −0.022 0.133 −0.015 0.129 0.017 0.106 0.017 0.106
PS Model 2 0.000 0.094 0.292 0.218 0.266 0.121 0.014 0.100 0.003 0.100
PS Model 3 0.000 0.092 1.318 0.206 1.311 0.132 0.000 0.105 −0.012 0.105
PS Model 4 −0.001 0.099 −0.018 0.117 −0.019 0.111 0.014 0.106 0.014 0.106
PS Model 5 −0.002 0.098 −0.005 0.116 −0.009 0.111 0.010 0.105 0.010 0.105

Li et al method

PS Model 1 0.001 0.114 0.043 0.406 0.055 0.377 −0.006 0.224 −0.007 0.223
PS Model 2 0.002 0.090 0.424 0.298 0.325 0.165 0.011 0.123 −0.002 0.123
PS Model 3 0.000 0.088 1.351 0.247 1.257 0.125 −0.088 0.110 −0.100 0.109
PS Model 4 0.001 0.113 0.069 0.392 0.058 0.366 −0.005 0.219 −0.007 0.218
PS Model 5 0.000 0.129 −0.025 0.528 −0.023 0.487 −0.006 0.279 −0.006 0.277
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Table 2.4: Monte Carlo average of estimated standard errors and coverage probability using the outcome regression method,
proposed methods and Li et al method. For each method, we use 5 PS models (not for the outcome regression
method) and 5 outcome models described in Section 2.3. We use matching without replacement. The results are
based on 1000 Monte Carlo data sets with number of hospitals equals to 30 and hospital size equals to 100.

PS Model

Outcome Model 1 Outcome Model 2 Outcome Model 3 Outcome Model 4 Outcome Model 5

ASE CP ASE CP ASE CP ASE CP ASE CP

Outcome Regression
Only

0.089 0.945 0.137 0.000 0.136 0.000 0.108 0.883 0.109 0.862

Without
replacement

Within
hospital
matching

PS Model 1 0.111 0.972 0.189 0.992 0.170 0.988 0.124 0.977 0.124 0.977
PS Model 2 0.112 0.966 0.191 0.996 0.172 0.992 0.125 0.977 0.125 0.977
PS Model 3 0.105 0.963 0.173 0.000 0.158 0.000 0.130 0.973 0.130 0.973
PS Model 4 0.111 0.971 0.189 0.998 0.171 0.996 0.124 0.978 0.124 0.978
PS Model 5 0.111 0.966 0.189 0.998 0.170 0.996 0.124 0.976 0.124 0.976

Across
hospital
matching

PS Model 1 0.108 0.965 0.178 0.959 0.165 0.880 0.122 0.952 0.123 0.950
PS Model 2 0.104 0.959 0.155 0.371 0.159 0.920 0.117 0.962 0.118 0.967
PS Model 3 0.099 0.959 0.150 0.000 0.152 0.000 0.121 0.974 0.122 0.971
PS Model 4 0.108 0.965 0.178 0.970 0.165 0.912 0.122 0.951 0.123 0.950
PS Model 5 0.108 0.971 0.179 0.967 0.165 0.945 0.123 0.957 0.123 0.952

Modified
across
hospital
matching

PS Model 1 0.104 0.970 0.177 0.993 0.160 0.987 0.118 0.972 0.118 0.972
PS Model 2 0.097 0.960 0.154 0.529 0.147 0.579 0.109 0.971 0.109 0.970
PS Model 3 0.094 0.957 0.150 0.000 0.144 0.000 0.115 0.966 0.116 0.967
PS Model 4 0.104 0.964 0.177 0.996 0.160 0.998 0.118 0.973 0.118 0.972
PS Model 5 0.104 0.960 0.177 0.996 0.160 0.997 0.118 0.972 0.118 0.971

Li et al method

PS Model 1 0.106 0.935 0.284 0.950 0.264 0.932 0.155 0.940 0.155 0.940
PS Model 2 0.084 0.925 0.188 0.422 0.176 0.517 0.114 0.928 0.114 0.926
PS Model 3 0.075 0.899 0.137 0.000 0.125 0.000 0.093 0.807 0.093 0.774
PS Model 4 0.106 0.935 0.282 0.937 0.263 0.932 0.155 0.938 0.155 0.938
PS Model 5 0.116 0.942 0.315 0.978 0.293 0.966 0.171 0.943 0.171 0.943
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Table 2.5: Monte Carlo bias and standard deviation using the outcome regression method, proposed methods and Li et al
method. For each method, we use 5 PS models (not for the outcome regression method) and 5 outcome models
described in Section 2.3. We use matching without replacement. The results are based on 1000 Monte Carlo data
sets with number of hospitals equals to 30 and hospital size follows uniform distribution U(30,170).

PS Model

Outcome Model 1 Outcome Model 2 Outcome Model 3 Outcome Model 4 Outcome Model 5

bias MCSD bias MCSD bias MCSD bias MCSD bias MCSD

Outcome Regression
Only

0.000 0.090 1.736 0.267 1.660 0.139 −0.088 0.112 −0.099 0.112

Without
replacement

Within
hospital
matching

PS Model 1 −0.001 0.107 0.011 0.140 0.011 0.140 0.002 0.113 0.002 0.113
PS Model 2 −0.001 0.107 0.007 0.128 0.007 0.128 0.000 0.113 0.000 0.113
PS Model 3 −0.001 0.100 1.188 0.131 1.188 0.131 −0.001 0.113 −0.004 0.113
PS Model 4 −0.001 0.104 0.012 0.120 0.012 0.120 0.002 0.111 0.002 0.111
PS Model 5 −0.001 0.105 0.014 0.121 0.014 0.121 0.002 0.111 0.002 0.111

Across
hospital
matching

PS Model 1 0.002 0.102 −0.032 0.184 −0.142 0.160 0.010 0.124 0.015 0.125
PS Model 2 0.002 0.099 0.374 0.309 0.118 0.136 0.011 0.105 −0.003 0.105
PS Model 3 0.001 0.097 1.344 0.279 1.194 0.135 0.012 0.113 −0.001 0.114
PS Model 4 0.001 0.103 −0.008 0.170 −0.139 0.141 0.012 0.124 0.015 0.125
PS Model 5 0.002 0.101 0.029 0.172 −0.109 0.142 0.011 0.124 0.016 0.125

Modified
across
hospital
matching

PS Model 1 −0.001 0.101 −0.026 0.143 −0.020 0.137 0.012 0.109 0.012 0.108
PS Model 2 0.000 0.095 0.265 0.232 0.256 0.129 0.012 0.102 0.002 0.102
PS Model 3 −0.001 0.094 1.299 0.214 1.306 0.132 −0.002 0.109 −0.012 0.109
PS Model 4 −0.001 0.098 −0.017 0.119 −0.019 0.114 0.012 0.107 0.012 0.106
PS Model 5 −0.001 0.099 −0.003 0.120 −0.008 0.115 0.009 0.107 0.009 0.107

Li et al method

PS Model 1 0.001 0.109 0.060 0.247 0.075 0.235 0.000 0.162 −0.001 0.161
PS Model 2 −0.002 0.094 0.391 0.327 0.314 0.167 0.005 0.130 −0.006 0.130
PS Model 3 0.000 0.090 1.326 0.263 1.251 0.124 −0.093 0.113 −0.104 0.113
PS Model 4 0.001 0.109 0.085 0.239 0.078 0.226 0.000 0.161 −0.001 0.161
PS Model 5 0.001 0.116 0.005 0.265 0.008 0.250 0.003 0.173 0.003 0.172
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Table 2.6: Monte Carlo average of estimated standard errors and coverage probability using the outcome regression method,
proposed methods and Li et al method. For each method, we use 5 PS models (not for the outcome regression method)
and 5 outcome models described in Section 2.3. We use matching without replacement. The results are based on
1000 Monte Carlo data sets with number of hospitals equals to 30 and hospital size follows uniform distribution
U(30,170).

PS Model

Outcome Model 1 Outcome Model 2 Outcome Model 3 Outcome Model 4 Outcome Model 5

ASE CP ASE CP ASE CP ASE CP ASE CP

Outcome Regression
Only

0.088 0.952 0.137 0.000 0.136 0.000 0.108 0.860 0.108 0.840

Without
replacement

Within
hospital
matching

PS Model 1 0.111 0.955 0.189 0.993 0.170 0.987 0.124 0.964 0.124 0.964
PS Model 2 0.112 0.959 0.190 0.998 0.171 0.996 0.125 0.965 0.125 0.965
PS Model 3 0.104 0.958 0.173 0.000 0.158 0.000 0.129 0.976 0.129 0.973
PS Model 4 0.111 0.968 0.189 1.000 0.170 0.997 0.124 0.970 0.124 0.971
PS Model 5 0.111 0.965 0.188 0.999 0.170 0.995 0.124 0.967 0.124 0.968

Across
hospital
matching

PS Model 1 0.108 0.963 0.178 0.939 0.165 0.870 0.122 0.944 0.123 0.942
PS Model 2 0.104 0.962 0.155 0.422 0.158 0.932 0.117 0.963 0.117 0.964
PS Model 3 0.099 0.951 0.150 0.000 0.152 0.000 0.121 0.957 0.122 0.962
PS Model 4 0.108 0.959 0.178 0.961 0.165 0.889 0.122 0.942 0.123 0.942
PS Model 5 0.108 0.970 0.179 0.965 0.165 0.930 0.123 0.940 0.123 0.940

Modified
across
hospital
matching

PS Model 1 0.104 0.955 0.177 0.984 0.160 0.977 0.118 0.960 0.118 0.960
PS Model 2 0.097 0.955 0.154 0.575 0.147 0.602 0.109 0.966 0.109 0.966
PS Model 3 0.094 0.951 0.150 0.000 0.144 0.000 0.115 0.958 0.116 0.956
PS Model 4 0.104 0.968 0.177 0.997 0.160 0.993 0.118 0.969 0.118 0.970
PS Model 5 0.104 0.961 0.177 0.996 0.160 0.994 0.118 0.968 0.118 0.968

Li et al method

PS Model 1 0.104 0.936 0.264 0.930 0.246 0.904 0.146 0.933 0.145 0.932
PS Model 2 0.084 0.928 0.189 0.465 0.178 0.548 0.115 0.915 0.115 0.920
PS Model 3 0.075 0.909 0.137 0.000 0.125 0.000 0.093 0.782 0.093 0.756
PS Model 4 0.104 0.934 0.263 0.931 0.246 0.925 0.145 0.932 0.145 0.931
PS Model 5 0.112 0.935 0.286 0.954 0.266 0.949 0.156 0.940 0.156 0.940
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2.4 Application

Cardioplegia is a blood or crystalloid based solution that induces myocardial elec-

trical silence and provides buffers and basic cellular nutrients to myocardium during

cardiac surgery. Del Nido cardioplegia (DC) and blood-based cardioplegia (BC) are

two types of cardioplegia used in cardiac surgery. We apply our methods to compare

the post-operative length of stay (LOS) (days) between DC and BC using multi-

center clinical data. The data contain 11 hospitals and 14,339 patients in total. The

hospital sizes vary between 40 and 4,211 and median hospital size is 1,077. The

patients received either DC (n = 5, 005) or BC (n = 9, 394). The possible patient

characteristics associated with the post-operative LOS and treatment assignment are

age, gender, hypertension, diabetes, previous cardiovascular disease and etc. Imbal-

ances of the patient characteristics and post-operative LOS were observed between

hospitals (Table 2.7).

Table 2.7: Distribution of post-operative length of stay (days), age, gender, hyper-
tension, diabetes and previous cardiovascular disease by hospital.

Hospital Post-operative LOS (mean) Age (mean) Female (%) Hypertension (%) Diabetes (%) Previous cardiovascular disease (%)

1 7.4 62.6 34.4 71.9 27.0 14.0
2 6.3 65.2 30.0 90.0 40.0 7.5
3 10.7 63.0 31.1 84.9 42.5 5.3
4 7.6 65.6 28.9 85.2 35.9 5.9
5 7.5 69.1 31.2 85.1 41.6 3.5
6 7.3 66.7 32.1 92.1 43.3 5.8
7 7.6 66.7 30.8 87.4 42.9 3.6
8 7.2 67.5 31.2 81.9 38.4 6.0
9 8.3 64.7 33.4 85.6 40.9 4.4
10 12.2 67.3 30.3 89.4 39.4 7.6
11 8.2 63.1 37.1 85.4 46.7 7.3

We perform the data analysis using the proposed method. According to the

simulation results, we choose matching within hospitals without replacement as it

generally has the best performance when hospital sizes are larger than 30. We use

the fixed-effect PS model and outcome models because we assume there were un-

measured hospital-level confounders. We include the linear forms of all the possible

confounders mentioned above in both the PS and outcome models. Table 2.8 shows

the results of the analyses. The proposed method shows that the post-operative LOS

for DC is slightly longer than that for BC although the difference is not significant.
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The standard error of the proposed method is smaller compared to other methods.

δ: difference in the post-operative LOS (DC minus BC). SE: standard error.

Table 2.8: Estimation of the difference in the post-operative LOS (days) between DC
and BC.

Method δ̂ ŜE(δ̂) P-value

Outcome regression 0.001 0.117 0.503
PS matching −0.058 0.118 0.311
Li et al method 0.110 0.127 0.193
Proposed method 0.068 0.114 0.275

2.5 Discussion

In this chapter, we propose doubly robust PS matching methods for estimating the

ATE in clustered observational data. The proposed methods combine PS matching

and outcome regression while accounting for the hierarchical nature of the data. We

further study and compare various matching methods for clustered data, including

matching within hospital, across hospital and modified across hospital. The simula-

tion results show that the proposed methods perform well for either small or large

cluster sizes.

We show that as long as we fit either PS model or outcome model correct or

relatively correct, the bias of proposed method is negligible. We recommend to use

hierarchical models instead of single-level models for causal inference in clustered data.

It is important to include as many important covariates as possible when fitting PS

or outcome model. Regarding the matching approaches, matching within hospital

has best performance on reducing bias. Also if people suspect there are important

hospital-level confounders unobserved which likely happen in reality, we recommend

matching within hospital. As we stated in Section 2.4, matching with replacement is

less efficient when hospital sizes are medium or large. Our results are consistent with

26



the previous research by Austin (2014) which claimed that matching with replacement

does not reduce or even have larger standard errors of the ATE estimates compared

to matching without replacement. Yet when hospital sizes are very small, matching

with replacement should be a better choice for reducing variance. In this chapter,

we did not study how to decide the caliper to achieve best baseline balance between

groups in this chapter.

We use bootstrap approach to calculate standard errors. Abadie and Imbens

(2008) claimed that bootstrap standard errors for matching estimator are not valid

and proposed an alternative way for standard error for nearest neighbor matching es-

timator. However, we use caliper matching and consider matching in clustered data,

which make the estimation of standard error much more challenging. When we use

matching with replacement, the coverage probabilities seem not close to the nominal

level, which suggests that the bootstrap standard errors are more problematic when

patients have different weights in the matched data. Although we did not propose a

method to solve this in this chapter, it may be an interesting research topic in future.
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CHAPTER III

Augmented Double Inverse-Weighted Method for

Causal Inference Based on Restricted Mean

Lifetime

3.1 Introduction

In medical studies, it is often of interest to compare the survival outcomes between

treatment groups using observational data. In observational studies, the distributions

of patient baseline covariates are often different between treatment groups. To esti-

mate the treatment effect, it is therefore necessary to adjust for covariate imbalances.

Since being proposed in 1972 (Cox , 1992), the Cox model has been a dominant

method of covariate adjustment in survival analysis and is often used to compare

hazards between groups. However, if the proportional hazard assumption is violated,

the hazard ratio estimated from the Cox model is difficult to interpret. In such cases,

it is more reasonable to compare survival times instead of hazards between groups.

As the durations of medical studies are often finite, the time to the event of interest

may be administratively censored. Therefore, the restricted mean lifetime instead of

mean lifetime has been widely used in medical research.

This Chapter is motivated by a study of cardiac surgery, in which we were interest-
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ed in comparing the restricted mean lifetime between two types of cardiac surgeries

for patients with advanced heart failure (AHF). Heart transplants used to be the

dominant treatment for AHF. However, during the last decade, the implantation of

ventricular assist devices (VAD) has grown dramatically and become the most popu-

lar treatment. Depending on patients’ clinical conditions, VAD implantations can be

performed on either the left side only (LVAD) or both sides (BiVAD) of the heart.

The cardiac surgeons were interested in comparing the LVAD and BiVAD in terms of

restricted mean lifetime. However, the comparison was challenging due to two rea-

sons. The first one was that two types of VAD implantations were not randomized,

which meant that the baseline patient covariates were not balanced between groups;

patients receiving BiVAD had more severe conditions than those receiving LVAD. For

example, patients were more likely to receive BiVAD implantation if s/he was expe-

riencing the critical cardiogenic shock or her/his central venous pressure was greater

than 15 mmHg before the surgery. The second reason was that it is not uncom-

mon that patients receive heart transplants after the VAD implantations, which may

not be balanced between the two groups. We knew that the patients with a worse

post-implant situation were more likely to receive heart transplants. For example, it

has been shown that the patients with high post-operative creatinine and albumin

were more likely to need a subsequent heart transplant compared to other patients.

Hence, the time of receiving heart transplant was not independent of survival time

given treatment assignment and patient baseline covariates. Various approaches have

been proposed to handle the events like transplant (Zhang and Wang , 2012, 2013). In

this chapter, we treat the heart transplant as dependent censoring and then estimate

the treatment-specific difference in restricted mean lifetimes, had no patients received

heart transplants. To reach this goal, we need to handle both group-level baseline

imbalance and dependent censoring.

Generally, two strategies can be used to overcome these two challenges. The first
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strategy is directly modeling the relationship between survival time and covariates

using group-specific models, then average the fitted mean lifetimes over the entire

sample (Chen and Tsiatis , 2001; Zhang and Schaubel , 2011). Zhang and Schaubel

(2011) further improved this strategy by incorporating weighting methods to accom-

modate the dependent censoring. The second strategy is using inverse probability

weighting to equalize group-specific covariate distributions and handle dependent

censoring. Instead of modeling survival outcome, this strategy only requires model-

ing treatment assignment and censoring. In our motivating study, the relationship

between survival time and covariates was complicated and hence difficult to model.

However, the treatment assignment and transplant decision were much better under-

stood. The surgeons typically have standard protocols to decide which treatment to

use according to the patient’s conditions. Therefore, we prefer the second strategy.

Inverse probability of treatment weighting (IPTW) was proposed by Robins et al.

(1994) to adjust baseline covariate imbalances between treatment groups. To solve

the dependent censoring problem, inverse probability of censoring weighting (IPCW)

was proposed by Robins and Rotnitzky (1992). To addressing both baseline imbal-

ances and dependent censoring, several researchers have proposed combining IPTW

and IPCW. Anstrom and Tsiatis (2001) proposed a double weighted method for

time-lagged data. Schaubel and Wei (2011) proposed a double weighted estimator

to estimate the cumulative hazard and restricted mean lifetime. Zhang and Schaubel

(2012b) developed a double robust estimator using both IPTW and IPCW to esti-

mate the restricted mean lifetime. However, one disadvantage of inverse probability

weighting (IPW) methods is inefficiency, for which various strategies have been pro-

posed. For example, Zhang et al. (2008) proposed a broadly applicable augmentation

approach to improve efficiency using baseline auxiliary covariates. More recently,

Zhang (2015) developed a robust method to use patient covariates to improve effi-

ciency in randomized clinical trials which made no assumptions of the relationship
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between survival outcome and covariates.

In this chapter, we propose a method to estimate the treatment-specific differ-

ence in potential restricted mean lifetimes, had no patients received heart transplant,

where the heart transplant is treated as dependent censoring for the potential life-

time. Specifically, we first derive an estimator that combines IPTW and IPCW to

account for the imbalance in baseline characteristics and receipt of heart transplant,

respectively. Then we propose augmentation method to improve the efficiency of the

estimation.

The remainder of this chapter is organized as follows. In Section 3.2, we describe

the notation and data structure. In Section 3.3, we propose our method and state its

connection to existing methods. We evaluate the performance of our method using

a simulation study in Section 3.4. In Section 3.5, we apply the method to cardiac

surgery data obtained from the Interagency Registry for Mechanically Assisted Cir-

culatory Support (INTERMACS). Finally, we conclude and discuss in Section 3.6.

3.2 Notation and Data Structure

Let A indicate two non-randomized treatment groups (A = 1 means treatment,

A = 0 means control). We denote the survival time without heart transplant by T .

Let C denote dependent censoring (heart transplant). In practice, one observes the

minimum of the survival time and time to censoring. We let U = T ∧ C denote the

observation time and ∆ = I(T ≤ C) denote the indicator for observing the death time.

We let Z be the baseline covariate vector, and Z(t) be the time-dependent covariate at

time t. Note that Z(0) would be the elements of Z. We let Z̃(t) = {Z(u);u ∈ [0, t)} be

the history of the baseline and time-dependent covariates up to time t. The observed

data can be summarized as Oi = {Ai, Ui,∆i, Zi, Z̃i(ui)}, where the Oi is assumed

to be identically and independent distributed (i.i.d.) across i = 1, ..., n. Note that
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the Oi is redundant because Z̃(t) includes all the baseline covariate Zi, but it is more

convenient for presentation. We denote the observed event process and at-risk process

by Ni(t) = I(Ui ≤ t,∆ = 1) and Yi(t) = I(Ui ≥ t), respectively.

We define the parameter of interest using the potential outcome framework pro-

posed by Rubin (1974, 1978). Let T k (k = 0,1) denote the potential lifetime for a

randomly selected patient from the population if, possibly contrary to fact, s/he were

assigned to group k, and not censored by a heart transplant. We make the assump-

tion that there are no unmeasured baseline confounders. We also assume that Ci is

conditionally independent of Ti given {Ai, Zi, Z̃i(t)}, formally expressed as

lim
ξ→0

ξ−1P{t ≤ Ui < t+ ξ,∆i = 0|Ui ≥ t, Ai, Z̃i(t), Ti}

= lim
ξ→0

ξ−1P{t ≤ Ui < t+ ξ,∆i = 0|Ui ≥ t, Ai, Z̃i(t)}.

Our estimand δ is the difference in restricted mean lifetime up to time L between

two treatment groups, had no patients received heart transplants. Let µk denote the

restricted mean lifetime for group k and Sk(t) = P (T k > t), then

δ = µ1 − µ0

= E{min(T 1, L)} − E{min(T 0, L)}

=

L∫
0

S1(t)dt−
L∫

0

S0(t)dt.

Sk(t) can be estimated as by exp{−Λk(t)}, where Λk(t) is the cumulative hazard for

T k.
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3.3 Methods

3.3.1 Existing Methods

We first introduce existing methods and their connections with the proposed method.

Let Λk(t) denote the marginal cumulative hazard function of T k. We estimate the

group-specific restricted mean lifetime µk by
∫ t

0
exp{−Λ̂k(u)}du. If we assume that,

possibly contrary to fact, all patients were assigned to group k, and survival time

is independent of censoring given their treatment assignment, i.e. T |= C|A. Based

on these assumptions, we can use the Nelson-Aalen estimator to estimate for the

marginal cumulative hazard for group k Λk

Λ̂NA

k (u) =

t∫
0

∑n
i=1 dNi(u)∑n
i=1 Yi(u)

.

Actually, the Nelson-Aalen estimator can be viewed as a solution of the following

estimating equation
n∑
i=0

{dNik(t)− Yik(t)dΛk(t)} = 0.

In observational studies, not everyone is assigned to group k and there are baseline

imbalances between groups. If we assume C is independent of T given A and there

are no unmeasured baseline confounder, the unbiased IPTW estimating equation for

dΛk(t) can be generated as follows:

n∑
i=1

Aik{dNi(t)− Yi(t)dΛk(t)}
pik(θ̂)

= 0, (3.1)
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where Aik = I(Ai = k) and pik(θ̂) estimates Pr(Aik = 1|Zi) through a model with

parameter θ. By solving the Equation (3.1), the IPTW estimator for Λk(t) is

Λ̂IPTW
k (t) =

t∫
0

∑n
i=1 wik(θ̂)dNi(u)∑n
i=1wik(θ̂)Yi(u)

,

where wik(θ̂) = I(Aik = 1)/pik(θ̂).

In observational studies, the assumption that C is independent of T given A is too

restrictive. A more realistic assumption would be that C is independent of T given

{A,Z, Z̃(t)} as assumed in this chapter. Under this assumption, the IPTW estimator

is biased as it does not account for the dependent censoring. As IPCW can be used

to handle dependent censoring, if we can incorporate IPTW and IPCW in a proper

way, we can obtain an unbiased estimator.

Before explaining the proposed method, we will first introduce the coarsening

concept first. We say that the full data one would like to observe are coarsened because

of treatment assignment and censoring (Tsiatis , 2007). For example, if Aik = 0, T ki

is completely missing, we say it is most coarsened; if Aik = 1, Ci = t < T ki , T ki is

partially observed, we say it is less coarsened; if Aik = 1, Ci ≥ T ki , T ki is completely

observed, it is not coarsened. By Tsiatis (2007), one can inverse weight an unbiased

estimating function based on full data by the probability of observing the complete

case (not being coarsened), i.e. the probability of being assigned to treatment k

and not being censored. Based on this principle, we can combine IPTW and IPCW

into a single inverse probability weighting framework and derive the unbiased double

weighted estimating equation for dΛk(t), that is:

n∑
i=1

Aik{dNi(t)− Yi(t)dΛk(t)}
pik(θ̂)pci(γ̂, t)

= 0,

where pci(γ̂, t) estimates Pr{Ci ≥ t|Ai, Zi, Z̃i(t)} through a model like the Cox model
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with parameter γ. By solving the estimating equation, the double inverse probability

weighted (DIPW) estimator for Λk(t) can be obtained:

Λ̂DIPW
k (t) =

t∫
0

∑n
i=1wik(θ̂)w

c
i (γ̂, u)dNi(u)∑n

i=1 wik(θ̂)w
c
i (γ̂, u)Yi(u)

.

Here wci (γ̂, t) = I(Ci ≥ t)/pci(γ̂, t). Please note that, Λ̂DIPW
k (t) are consistent only

if the models for P (Aik = 1|Zi) and P{Ci ≥ t|Ai, Zi, Z̃i(t)} are correctly specified.

As stated in Section 3.1, we assume that we are able to correctly specify both mod-

els in our motivating study, and therefore we can consistently estimate Λk(t) using

Λ̂DIPW
k (t).

3.3.2 Proposed Augmentation Method

So far we have introduced IPW approaches that use baseline and time-varying co-

variates to reweight patients in order to equalize the covariate distributions between

groups. As we stated in Section 3.1, one drawback of the simple inverse probability

weighting method is inefficiency. In order to improve the efficiency of the DIPW

estimator, we propose an augmentation method. Motivated by Tsiatis (2007) and

Zhang et al. (2008), we construct unbiased augmented double weighted estimating e-

quation by adding an augmentation term with expectation equal to zero to the double

weighted estimating equation:

n∑
i=1

[
Aik{dNi(t)− Yi(t)dΛk(t)}

pik(θ̂)pci(γ̂, t)
− Aik − pik(θ)

pik(θ̂)
hk(t, Zi)dt

]
= 0. (3.2)

In this equation, hk(t, Zi) is an arbitrary function of baseline covariate Zi at time t.

The expectation of the second part of this equation is 0, becauseE
[Aik−pik(θ̂)

pik(θ̂)
hk(t, Zi)dt

]
=

E
[
E
{Aik−pik(θ̂)

pik(θ̂)
hk(t, Zi)dt

∣∣Zi}] = E
[
hk(t, Zi)dtE

{Aik−pik(θ̂)

pik(θ̂)

∣∣Zi}] = 0. Therefore E-

quation (3.2) is still an unbiased estimating equation. The rationale for adding the sec-
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ond part of the left part of Equation (3.2), is that if we can find an ‘optimal’ hk(t, Zi),

we may reduce the standard deviation of the resulting estimator. It is straightfor-

ward to show that the expectation of
[Aik{dNi(t)−Yi(t)dΛk(t)}

pik(θ̂)pci (γ̂,t)
− Aik−pik(θ̂)

pik(θ̂)
hk(t, Zi)dt

]
is

0. Hence the estimators derived from Equation (3.2) are M-estimators. According to

the theory of M-estimators, we show that the asymptotic variance of the estimator

derived from this equation is

E
[Aik{dNi(t)−Yi(t)dΛk(t)}

pik(θ̂)pci (γ̂,t)
− Aik−pik(θ̂)

pik(θ̂)
hk(t, Zi)dt

]2
E2
[ AikYi(t)

pik(θ̂)pci (γ̂,t)

] .

The optimal hk(t, Zi) corresponds to the one that minimizes E

[
Aik{dNi(t)−Yi(t)dΛk(t)}

pik(θ̂)pci (γ̂,t)
−

Aik−pik(θ̂)

pik(θ̂)
hk(t, Zi)dt

]2

, which is the variance of the left part of Equation (3.2).

By straightforward algebra, we can show that hk(t, Zi) that minimizes the above

asymptotic variance is E(dMik|Zi, Aik = 1). This solution involves a conditional ex-

pectation, which needs to be estimated from a model that we inevitably misspecify in

reality. If we misspecify the model, the efficiency is not guaranteed to be improved,

and may be even worsen. Thus, this may not be a good strategy for improving the

efficiency. Instead, we apply the augmentation strategy proposed by Zhang (2015).

Specifically, we consider a subclass where hk(t, Zi) is of the form βTk (t)gk(Zi), and

where gk(Zi) are basis functions in Zi, including intercept, linear term, possibly poly-

nomial terms and interaction terms in Zi. Then we derive the optimal hk(t, Zi) in

this subclass, which is equivalent to finding the optimal βk(t). Therefore we only

need to identify βk(t) to minimize the variance of the estimating equation. We show

that the optimal βk(t) that minimizes the variance of the estimating equation can be

estimated by ordinary least square method, where we treat
[Aik{dNi(t)−Yi(t)dΛk(t)}

pik(θ̂)pci (γ̂,t)

]
as

the outcome, and
{Aik−pik(θ̂)

pik(θ̂)
gk(Zi)

}
as covariates. We show that the optimal βk(t)dt
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is

βk,opt(t)dt = E−1

[{Aik − pik(θ̂)
pik(θ̂)

gk(Zi)

}{Aik − pik(θ̂)
pik(θ̂)

gk(Zi)

}T ∣∣∣∣Aik = 1

]

E

[{Aik − pik(θ̂)
pik(θ̂)

gk(Zi)

}Aik{dNi(t)− Yi(t)dΛk(t)}

pik(θ̂)pci(γ̂, t)

∣∣∣∣Aik = 1

]
,

and can be consistently estimated by

β̂k,opt(t)dt =

[ n∑
i=1

{Aik − pik(θ̂)
pik(θ̂)

gk(Zi)

}{Aik − pik(θ̂)
pik(θ̂)

gk(Zi)

}T]−1

[ n∑
i=1

{Aik − pik(θ̂)
pik(θ̂)

gk(Zi)

}Aik{dNi(t)− Yi(t)dΛ̂DIPW
k (t)}

pik(θ̂)pci(γ̂, t)

]
.

if we correctly model treatment assignment and dependent censoring. Note that since

we do not know dΛk(t), we substitute it by its unbiased estimator dΛ̂DIPW
k (t). The

estimator developed using this strategy is guaranteed to improve efficiency compared

to the double inverse weighted estimator. The reason is that when βk(t) = 0, the

estimating equation reduces to the DIPW estimating equation. In other words, this

subclass includes the DIPW estimator as a special case. Since we minimize variance

within this subclass, the optimal estimator must be equivalent to or better than the

DIPW estimator, in terms of efficiency.
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3.3.3 Proposed Augmented Double Inverse Weighted Estimators

We fit models for treatment assignment and censoring conditional on Ai and Zi. First,

we model treatment assignment by logistic regression:

logit{P (Aik = 1|Zi)} = θTXi,

where Xi = (1, Zi). We assume that we correctly model the treatment assignment,

thus the maximum likelihood estimator for θ, θ̂ consistently estimate θ. Secondly, we

assume the hazard model of censoring is a Cox model:

λ(t|Vi) = λ0(t)exp(γTVi),

where Vi = {Ai, Zi, Zi(t)}. We assume it is correctly specified, thus Λ0(t) and γ

can be consistently estimated by the Breslow estimator and the maximum partial

likelihood estimator, respectively. Therefore, the proposed augmented double inverse

probability weighted (ADIPW) estimator for Λk(t) is

Λ̂ADIPW
k (t) =

t∫
0

∑n
i=1wik(θ̂)w

c
i (γ̂, u)dNi(u) + {1− wik(θ̂)}β̂k,opt(u)g(Zi, u)du∑n

i=1wik(θ̂)w
c
i (γ̂, u)Yi(u)

.

(3.3)

Sk(t) can be estimated by Ŝk(t) = e−Λ̂k(t), µk(t) can be estimated by µ̂k =
∫ L

0
Ŝk(u)du,

and hence δ̂ = µ̂1 − µ̂0. The asymptotic properties of the proposed estimator are de-

rived in Appendix B.1.
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3.4 Simulation Study

We perform a simulation study to evaluate the performance of our proposed meth-

ods. The reported results are based on 1000 Monte Carlo data sets. The sample size

n is 500 for each data set.

Each Monte Carlo data set is generated as follows: baseline covariate vector Z

= (Z1, Z2, Z3)T , with Z1, Z2 and Z3 generated from multivariate normal distribution

with mean 0, unit variance and all pairwise correlations 0. All the normal covariates

are truncated at ±3 to satisfy the regularity conditions. The treatment indicator

A is generated from the Bernoulli distribution with parameter expit(1.5Z1 − Z2).

The censoring time C is generated from the exponential distribution with parameter

0.15exp(1.5Z3 + 0.3Z(t)). To generate the time-varying covariate Z(t), we first gen-

erate a latent variable V from the standard normal distribution, then generate Z(t)

as a binary variable depending on V and A, Z(t) = I(0.5 + (5 + V − A)t ≥ 5). t∗

= 4.5/(t + V − A) is the time that Z(t) jumps from 0 to 1. The survival time T is

generated from the three scenarios below.

The details of generating survival time T are in Appendix B.2. Briefly, in the

first scenario, the survival time T is generated from a Cox model with an exponential

baseline survival time distribution. In the second scenario, T is generated from an

accelerated failure time (AFT) model with lognormal baseline survival time distribu-

tion. In the third scenario, T is generated from a Cox model with lognormal baseline

survival time distribution.

In our simulation, we use the correct treatment assignment model and censoring

model for the estimation of the restricted mean lifetime. Specifically, we use the

treatment assignment model

logit{P (Ai = 1|Zi)} = β1Z1 + β2Z2,
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and the Cox model for censoring

λc(t|Zi, Zi(t), Ai) = λc0(t)exp{γ1Z3,i + γ2Zi(t)},

where λc(t|Zi, Zi(t), Ai) is the conditional hazard for censoring. For the proposed

method, when we do augmentation, we let gk(Z, u) be a basis function including

intercept and linear forms of all baseline covariates, i.e. gk(Z, u) = (1, Z1, Z2, Z3)T .

We estimate the standard error via bootstrap approach. In our simulation study, we

are interested in the restricted mean lifetime up to L = 1.5. We include a detailed

practical implementation procedure in Appendix B.3.

Table 3.1: Estimation of the difference in restricted mean lifetimes between treatment
and control. The results are based on 1000 Monte Carlo datasets. Sample
size n = 500.

δ̂ µ̂1 µ̂0

Method Bias ESD ASE CP RE Bias ESD ASE CP Bias ESD ASE CP

Scenario 1
N-A −0.457 0.053 0.053 0.00 −0.175 0.038 0.038 0.00 0.282 0.038 0.036 0.00
IPTW −0.056 0.074 0.084 0.90 0.016 0.046 0.049 0.96 0.072 0.069 0.067 0.75
DIPW −0.026 0.084 0.090 0.94 1 0.000 0.050 0.052 0.96 0.027 0.077 0.073 0.91
Proposed 0.008 0.077 0.083 0.96 1.29 0.015 0.048 0.055 0.95 0.007 0.070 0.066 0.92

Scenario 2
N-A −0.319 0.047 0.046 0.00 −0.115 0.035 0.034 0.07 0.204 0.031 0.032 0.00
IPTW −0.050 0.077 0.072 0.85 0.016 0.043 0.040 0.93 0.065 0.070 0.059 0.70
DIPW −0.024 0.095 0.086 0.91 1 −0.001 0.047 0.043 0.94 0.023 0.087 0.070 0.87
Proposed 0.001 0.090 0.087 0.93 1.19 0.010 0.044 0.046 0.95 0.009 0.082 0.075 0.92

Scenario 3
N-A −0.430 0.048 0.047 0.00 −0.157 0.034 0.033 0.00 0.273 0.034 0.034 0.00
IPTW −0.066 0.070 0.075 0.85 0.021 0.047 0.047 0.95 0.086 0.061 0.058 0.62
DIPW −0.025 0.090 0.086 0.93 1 −0.002 0.050 0.050 0.95 0.022 0.078 0.069 0.90
Proposed −0.009 0.084 0.084 0.96 1.22 0.014 0.047 0.055 0.96 0.005 0.073 0.066 0.93

Bias:Monte Carlo bias. ESD: Monte Carlo standard deviation. ASE: Monte Carlo

average of estimated standard errors. CP: coverage probability of nominal 95% Wald

confidence intervals. RE: Monte Carlo mean squared error for the DIPW estimator

divided by that for the indicated estimator

We use the proposed method to estimate the restricted mean lifetime and compare

its performance with Nelson-Aalen, IPTW and DIPW methods in three scenarios.

Under all scenarios, the Nelson-Aalen estimator greatly underestimates the difference
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of restricted mean lifetime between groups, which leads to large bias, as it does

not account for both baseline imbalances and dependent censoring. The bias of the

IPTW method is much smaller compared to the Nelson-Aalen method because it

accounts for the baseline imbalances between groups. However, there are still some

bias as the IPTW method does not account for the dependent censoring. Both DIPW

and the proposed method are approximately unbiased and the coverage probabilities

approximately achieve the nominal levels.

We compare the efficiency of the unbiased estimators which are DIPW and the

proposed estimators. Compared to the DIPW estimator, the variances of the pro-

posed estimators are smaller under all scenarios. We use relative efficiency to quantify

the difference in efficiency between DIPW and the proposed method. The relative

efficiency is defined as the ratio of the mean squared errors of DIPW and the proposed

estimators. Under the three scenarios, the relative efficiencies are between 1.19 and

1.29 for δ̂, which suggests that the proposed method improves efficiency in different

situations of survival outcome distributions and generating models.

3.5 Application

We apply the proposed method to a cardiac surgical data set obtained from IN-

TERMACS. It contains 5,856 AHF patients who received VAD implantations from

2008 to 2014. Among these patients, 5,672 (96.9%) received LVAD and the other 184

(3.1%) received BiVAD. We are interested in comparing the restricted mean lifetime

between LVAD and BiVAD up to 365 days. Approximately 58.4% of the survival

time was administratively censored, and 1.4% received heart transplants after VAD

implantations. As stated in previous sections, we treat the heart transplant as de-

pendent censoring. The data contains a rich set of covariates that are expected to be

related to survival outcome, and decisions regarding treatment and transplant. Based
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on cardiac surgeons’ recommendation, we identified variables for the estimation of the

restricted mean lifetime by the proposed method. Specifically, 7 variables were relat-

ed to treatment assignment, including 5 variables measured within 48 hours before

the implantation surgery–extracorporeal membrane oxygenation (ECMO), mechani-

cal ventilation, intra-aortic balloon pump, dialysis or ultrafiltration and feeding tube,

and also whether central venous pressure was larger than 15 mmHg and INTERMA-

CS profile. Eight variables were related to the transplant decision, including age,

gender, race, creatinine, albumin, number of infections, device strategy, and INTER-

MACS profile, where the number of infections is a time-varying covariate. Up to 13

variables were thought to be related to survival outcome, including age, gender, race,

the Elixhauser comorbidity index, hemoglobin and diastolic blood pressure.

Preliminary analyses (Table 3.2) showed, as expected, that there were imbalances

in baseline covariates between BiVAD and LVAD. Generally, the patients in BiVAD

group needed more clinical interventions prior to surgery, which implied that they were

more ill compared to the patients in LVAD. In particular, there were large imbalances

in the interventions within 48 hours before surgery, including ECMO, ventilation,

IABP, dialysis and feeding tube. The percentage of central venous pressure higher

than 15 mmHg is larger for BiVAD patients.

We fit a logistic model for treatment assignment and a Cox model for the time

to receive heart transplants after VAD implantations. Then we applied the proposed

method to estimate the difference of the restricted mean lifetime up to 365 days.
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Table 3.3 shows the estimates of the restricted mean lifetime for the two treat-

Table 3.2: Characteristics of the study cohort stratified by treatment group
Patient Characteristic Category Overall LVAD BiVAD P-value

Age (mean± sd) 62.3± 11.2 62.4± 11.2 59.8± 12.4 0.002
Female (n, %) 1152, 19.7 1115, 19.7 37, 20.1 0.954
Race (n, %) White 4182, 71.4 4059, 71.6 123, 66.8 0.106

Black 1260, 21.5 1219, 21.5 41, 22.3
Other 414, 7.1 394, 6.9 20, 10.9

Extracorporeal membrane oxygenation
(ECMO) (n, %) 85, 1.5 63, 1.1 22, 12.0 <0.001

Mechanical ventilation (n, %) 269, 4.6 236, 4.2 33, 17.9 <0.001
Intra-aortic balloon pump (IABP) (n, %) 1385, 23.7 1318, 23.2 67, 36.4 <0.001
Dialysis or continuous veno-venous

ultrafiltration (n, %) 126, 2.2 112, 2.0 14, 7.6 <0.001
Feeding tube (n, %) 81, 1.4 71, 1.3 10, 5.4 <0.001
Central venous pressure

higher than 15 mmHg (n, %) 1343, 22.9 1282, 22.6 61, 33.2 0.001
Creatinine (mg/dL) (mean± sd) 1.5± 0.8 1.5± 0.7 1.6± 1.1 0.004
Albumin (g/dL) (mean± sd) 3.4± 0.6 3.4± 0.6 3.2± 0.7 <0.001
Device strategy (n, %) Group 1 1289, 22.0 1246, 22.0 43, 23.4 0.008

Group 2 3019, 51.6 2943, 51.9 76, 41.3
Group 3 1548, 26.4 1483, 26.1 65, 35.3

INTERMACS profile (n, %) 1 698, 11.9 617, 10.9 81, 44.0 <0.001
2 2191, 37.4 2123, 37.4 68, 37.0
3 1729, 29.5 1707, 30.1 22, 12.0

4-7 1238, 21.1 1225, 21.6 13, 7.1
Elixhauser comorbidity index (mean± sd) 3.2± 1.5 3.2± 1.5 2.6± 1.4 <0.001
Previous cardiac operation (n, %) 2071, 35.4 2000, 35.3 71, 38.6 0.395
Total bilirubin (mg/dL) (mean± sd) 1.3± 1.5 1.3± 1.4 2.4± 3.0 <0.001
Diastolic blood pressure (mean± sd) 63.9± 11.5 63.9± 11.5 62.0± 11.7 0.02
Hemoglobin (g/dL) (mean± sd) 11.3± 2.0 11.4± 2.0 10.7± 2.1 <0.001

Table 3.3: Estimation of the difference in restricted mean lifetime (days) up to 365
days between BiVAD and LVAD.

δ BiVAD LVAD

Method δ̂ ŜE(δ̂) µ̂1 ŜE(µ̂1) µ̂0 ŜE(µ̂0) P-value

Nelson-Aalen −135.7 17.2 176.7 17.3 312.4 1.5 <0.001
IPTW −125.3 21.9 186.6 22.0 311.8 1.5 <0.001
DIPW −125.0 21.9 186.9 22.0 311.9 1.5 <0.001
Proposed −87.1 25.6 222.8 25.5 309.9 1.9 <0.001

ment groups and their differences. The proposed method yields a larger estimate for
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BiVAD and smaller estimate for LVAD, and hence smaller absolute difference between

the two groups, compared to the other methods. This seems reasonable because that

the patients in BiVAD are more ill than those in LVAD; thus, failing to adjust for

the imbalances will overestimate the LVAD and underestimate the BiVAD. Regarding

the standard errors, the proposed method does not show improvement compared to

the DIPW method. One possible reason is that we did not estimate the standard

error accurately, which is also a concern in our simulation study (Table 3.1). Recent

work by Li and Ding (2019) introduced the concepts “S-optimal” and “C-optimal”,

which indicated the optimality based on the uncertainty of the sampling distribution

and estimated distribution, respectively. According to the definitions, our proposed

estimators are S-optimal and may differ with the C-optimal estimators.

3.6 Discussion

In this chapter, we propose an augmented double inverse weighted method to

estimate the difference in restricted mean lifetime between groups had no patients

received heart transplant. We incorporate two types of inverse weighting methods

into one single weighting framework to build an estimator and further improve its

efficiency by the augmentation strategy. The asymptotic properties of the proposed

estimator are heuristically proved, and the performance of the proposed methods

in finite samples is shown by simulation. The proposed method is applied to the

INTERMACS cardiac surgery data.

The proposed method allows the clinical analysts to compare restricted mean life-

time in observational study without modeling the complicated relationship between

the outcome and patient covariates. In many cases, the clinicians know much bet-

ter about treatment decision than the relationships between outcomes and patient

covariates. The consistency of the proposed estimator requires correct modeling of
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treatment assignment and dependent censoring. If the relationship between patien-

t covariates and the treatment assignment or dependent censoring is not clear, the

proposed method may not be a good choice. In that case, it may be a better choice

to model the outcome directly if they have good knowledge about the outcome.

We treat the heart transplant as censoring and ignore the information after the

initiation of the heart transplant. There are other strategies which can be used to

deal with such problems. For instance, the heart transplant can be treated as a

secondary treatment and then handled using a marginal structural Cox model that

was proposed by Zhang and Wang (2012). This method would let us gain more

efficiency. However, we did not consider this strategy because the effect of heart

transplant is not specified; moreover, the further efficiency gain may not be sufficiently

large because the percentage of patients receiving heart transplants is small. Another

method is to consider the heart transplant as a time-varying covariate and use an

outcome model to estimate the treatment effect. This method is not applicable in

our motivating study because the percentage of patients receiving heart transplants

is small.
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CHAPTER IV

Methods for Estimating More Meaningful Causal

Treatment Effects as Opposed to The Average

Treatment Effect

4.1 Introduction

In Chapter III, we estimated the average treatment effect (ATE), where the av-

erage was calculated over the whole population. Although the ATE is a popular

estimand in medical research, it is not always the most clinically meaningful quantity

of interest. In Section 3.5, we showed that the patient characteristics vary between

two groups (Table 3.2). Figure 4.1 shows that the discrepancy of the distributions of

the probability of receiving BiVAD between groups. Compared to BiVAD group, a

higher percentage of LVAD patients had a probability of receiving BiVAD close to 0,

and a much smaller percentage of LVAD patients had probability of receiving BiVAD

larger than 0.15. In practice, not all patients can receive either BiVAD or LVAD.

For example, the very sick patients may only receive the BiVAD, while healthier pa-

tients are more likely to receive the LVAD. When doctors compare BiVAD and LVAD,

they may want to exclude the patients who are unlikely to receive either treatmen-

t or control, and mainly focus on the patients who may receive either. Therefore,
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in this chapter, we are interested in estimating the average treatment effect on the

matched population (ATM), which is the treatment-specific difference in potential

restricted mean lifetimes on the matched population, had no patients received heart

transplants. Here the matched population means the population that can be matched

between treatment and control using propensity scores (PS).

Figure 4.1: Distribution of PS by treatment groups

According to the definition of ATM, we know that the PS matching is a natural

method for estimating the ATM. However, PS matching has some drawbacks in prac-

tice. First, it is challenging to estimate the variances of the PS matching estimators.

To our best knowledge, the asymptotic properties of the PS matching methods have

not yet been well studied. As an alternative, the bootstrap method has been used

for estimating the standard errors of PS matching estimators. However, Abadie and

Imbens (2008) showed that bootstrap standard errors are generally not valid for the

matching estimators. Abadie and Imbens (2006) proposed a method for estimating

standard errors for nearest neighbor matching with replacement, but this matching

approach is infrequently used in medical research. How to calculate standard er-

rors for the popular matching methods, including one-to-one PS matching without

replacement and optimal matching, remains unclear. Secondly, we always need to

47



subjectively choose a matching algorithm or tuning parameters like the caliper size

for the caliper matching, in order to achieve the best balance between groups. How-

ever, the criteria for whether achieving the best balances is often vague. Thirdly, it is

difficult to develop methods to improve efficiency of PS matching. In Chapter II, we

proposed methods to improve the efficiency of PS matching, but they lacked rigorous

theoretical derivation.

Unlike PS matching, the inverse probability weighting (IPW) methods have a rig-

orous theoretical framework, which can be used to derive the asymptotic properties

and improve the efficiency of estimation using strategies like augmentation. How-

ever, the IPW is generally used to estimate the ATE instead of the ATM. Li and

Greene (2013) proposed a PS weighting method called the matching weight (MW)

method, which is an analogue to the one-to-one PS caliper matching method with-

out replacement. They showed that compared to PS matching, the MW method has

an asymptotically identical estimand but better variance calculation and efficiency

of estimation. The non-stabilized IPW weights are the inverse of the probability of

being assigned to the treatment or control, while the matching weight is defined as a

product of the usual non-stabilized IPW weight and a term min(ei, 1 − ei), i.e. the

matching weight wmwi = min(ei,1−ei)
Aiei+(1−Ai)(1−ei) where ei is the conditional probability of

being assigned to treatment and Ai is the indicator of being assigned to treatment

for subject i. Intuitively, suppose there are k patients whose propensity scores are

close to e∗, then approximately ke∗ patients would be assigned to the treatment,

and k(1 − e∗) would be assigned to the control. If e∗ < 0.5, fewer patients would

be assigned to the treatment and more patients would be assigned to the control,

all treated patients can be matched while only a subset of control patients can be

matched. Therefore, the probability of being matched for treated patients is about

1, and the probability of being matched for control is about e∗/(1 − e∗). As we can

see, these two probabilities are exactly the wmwi conditional on Ai and ei. In other
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words, intuitively the wmwi can be viewed as the probability of being matched. Please

note that the one-to-one PS caliper matching discards the patients that cannot be

matched, while the MW method keeps all the patients and only down-weights some

patients whose PSs are close to 0 or 1.

Li and Greene (2013) proposed the MW method for continuous outcomes and

discussed the possibility of extending to binary outcomes. However, how to apply

the MW method for causal inference for survival outcomes and further improve the

efficiency of estimation has not been studied. In this chapter, motivated by the same

application as in Chapter III, we adopt the MW method for estimating the treatment-

specific difference in potential restricted mean lifetimes for the matched population,

had no patients received heart transplants. Then we propose augmentation methods

to improve the efficiency of estimation.

The remainder of the chapter is organized as follows: in Section 4.2, we describe

the notation. In Section 4.3, we propose the augmented MW methods. Then we e-

valuate the performance of the proposed methods using a simulation study in Section

4.4. In Section 4.5, we apply our methods to analyze the cardiac surgery data ob-

tained from the Interagency Registry for Mechanically Assisted Circulatory Support

(INTERMACS). Finally, we conclude and discuss in Section 4.6.

4.2 Notations

The notations are the same as in Chapter III. We let A denote treatment groups

that are not randomized (A = 0 control, A = 1 treatment). We let T denote the

survival time without heart transplant and C denote the dependent censoring (heart

transplant). U = T ∧ C denotes the observation time, and ∆ = I(T ≤ C) is the

indicator for observing the death time. We let Z denote baseline covariate vector,

and Z(t) represent the time-dependent covariate at time t. We let Z̃(t) = {Z(u);u ∈

49



[0, t)} denote the history of the baseline and time-dependent covariates up to time t.

We denote the observed event process and at-risk processes by Ni(t) = I(Ui ≤ t,∆ =

1) and Yi(t) = I(Ui ≥ t), i = 1, ..., n, respectively.

We define the parameter of interest by using the potential outcome framework

which was studied by Rubin (1974, 1978, 1980). Let T k (k = 0,1) denote the potential

(or counterfactual) lifetime for a randomly selected subject from the population if,

possibly contrary to fact, s/he was assigned to group k, and not censored by heart

transplant. We assume that there are no unmeasured baseline confounders. We

also assume that Ci is conditionally independent of Ti given {Ai, Zi, Z̃i(t)}, formally

expressed as:

lim
ξ→0

ξ−1P{t ≤ Ui < t+ ξ,∆i = 0|Ui ≥ t, Ai, Z̃i(t), Ti}

= lim
ξ→0

ξ−1P{t ≤ Ui < t+ ξ,∆i = 0|Ui ≥ t, Ai, Z̃i(t)}.

The estimand of interest δ is the difference in restricted mean lifetime up to time

L between two treatment groups on the matched population, had no patients re-

ceived heart transplants. Let µk denote the restricted mean lifetime on the matched

population in group k and Sk(t) = P{T k > t|A = 1}, then

δ = µ1 − µ0

= E{min(T 1, L)|A = 1} − E{min(T 0, L)|A = 1}

=

L∫
0

S1(t)−
L∫

0

S0(t)dt.

Sk(t) can be estimated as by exp{−Λk(t)}, where Λk(t) is the cumulative hazard for

T k.
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4.3 Methods

4.3.1 Matching Weight Method

Li and Greene (2013) defined the matching weight for patient i as

wmwi =
min(ei, 1− ei)

Aiei + (1− Ai)(1− ei)
, (4.1)

where ei = Pr(Ai = 1|Zi). Using the same double inverse weighting method as in

Chapter III, we combine the IPTW and IPCW to develop the double inverse weighted

MW estimating equation for Λk(t) (k = 0, 1), that is

n∑
i=1

min(êi, 1− êi)
Ψ

[
Aik{dNi(t)− Yi(t)dΛk(t)}

{Aiêi + (1− Ai)(1− êi)}pci(γ̂, t)

]
= 0, (4.2)

where Aik = I(Ai = k), and Ψ = E{min(ei, 1− ei)}. êi ≡ ei(θ̂) estimates ei through

a model with parameter θ, and pci(γ̂, t) estimates informally the probability of not

being censored conditional on {Ai, Zi, Z̃i(t)} through a model with parameter γ. By

solving Equation (4.2), the double inverse weighted MW estimator for Λk(t) is

Λ̂mw
k (t) =

t∫
0

∑n
i=1Aikw

mw
i (θ̂)wci (γ̂, u)dNi(u)∑n

i=1 Aikw
mw
i (θ̂)wci (γ̂, u)Yi(u)

,

where wmwi (θ̂) = min(ei(θ̂),1−ei(θ̂))
Aiei(θ̂)+(1−Ai)(1−ei(θ̂))

and wci (γ̂, u) = I(Ci > t)/pci(γ̂, t).

4.3.2 Proposed Augmented MW Methods

Starting from the MW estimator for Λk(t) that we derived, we propose augmen-

tation methods to improve its efficiency. Similar with Equation (3.2), we propose the
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augmented double inverse weighted MW estimating equation for Λk(t), that is

n∑
i=1

min(êi, 1− êi)
Ψ

[
Aik{dNi(t)− Yi(t)dΛk(t)}

{Aiêi + (1− Ai)(1− êi)}pci(γ̂, t)
− Aik − êik

êik
hk(t, Zi)dt

]
= 0,

(4.3)

where êik estimates P (Aik = 1|Zi) and hk(t, Zi) is an arbitrary function of baseline

covariate Zi at time t. We consider two augmentation strategies. The first strategy

is the augmentation method proposed in Chapter III; that is, we consider a subclass

of Equation (4.3) where hk(t, Zi) = βk(t)g(Zi). Then the Equation (4.3) can be

rewritten as

n∑
i=1

min(êi, 1− êi)
Ψ

[
Aik{dNi(t)− Yi(t)dΛk(t)}

{Aiêi + (1− Ai)(1− êi)}pci(γ̂, t)
− Aik − êik

êik
βk(t)g(Zi)dt

]
= 0.

(4.4)

Then we use the ordinary least square (OLS) method to obtain β̂optk (t). Specifically,

when we apply the OLS method to estimate βoptk (t), we let the outcome be

O =
n∑
i=1

min(êi, 1− êi)
Ψ

[
Aik{dNi(t)− Yi(t)dΛk(t)}

{Aiêi + (1− Ai)(1− êi)}pci(γ̂, t)

]
.

As we don’t know dΛk(t), we substitute it with dΛ̂mw
k (t). We let the covariate be

C =
n∑
i=1

min(êi, 1− êi)
Ψ

[
Aik − êik

êik
βk(t)g(Zi)dt

]
.

Then the optimal βk(t) can be estimated by β̂optk (t)dt = (CTC)−1CTO. Plugging

β̂optk (t)dt into Equation (4.4) and solving the equation, the augmented double inverse
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weighted MW estimator for Λk(t) using OLS method is

Λ̂mw,OLS
k (t) =

t∫
0

∑n
i=1 min(êi, 1− êi)

[ AikdNi(u)
{Aiêi+(1−Ai)(1−êi)}pci (γ̂,u)

+ Aik−êik
êik

β̂optk (u)g(Zi)du
]

∑n
i=1

min(êi,1−êi)AikYi(u)
{Aiêi+(1−Ai)(1−êi)}pci (γ̂,u)

.

Alternatively, motivated by Zhang and Schaubel (2012a) and Zhang and Schaubel

(2012b), we consider using the Cox model for augmentation. The augmented double

inverse weighted MW estimator for dΛk(t) using Cox model is

Λ̂mw,Cox
k (t) =

t∫
0

∑n
i=1 min(êi, 1− êi)

[ AikdNi(u)
{Aiêi+(1−Ai)(1−êi)}pci (γ̂,u)

− Aik−êik
êik

e−Λ̂ik(u)dΛ̂ik(u)
]

∑n
i=1

min(êi,1−êi)AikYi(u)
{Aiêi+(1−Ai)(1−êi)}pci (γ̂,u)

,

where Λ̂ik(u) and dΛ̂ik(u) were estimated through a Cox model.

4.4 Simulation Study

We perform a simulation study to evaluate performance of the proposed methods.

The reported results are based on 5000 Monte Carlo data sets. In each data set, the

sample size n is 500. We use the same simulation settings and scenarios as in Chapter

III; please refer to Section 3.4 for the detailed information of the simulation design.

In our simulation, we use correct treatment assignment model and censoring model

for the estimation of restricted mean lifetime. Specifically, we use treatment assign-

ment model

logit{P (Ai = 1|Zi)} = β1Z1 + β2Z2,

and Cox model for censoring

λc(t|Zi, Zi(t), Ai) = λc0(t)exp{γ1Z3,i + γ2Zi(t)},
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where λc(t|Zi, Zi(t), Ai) is the conditional hazard for censoring. For the proposed

methods, when we use the OLS augmentation method, we let gk(Z, u) be a basis

function including intercept and linear forms of all baseline covariates, i.e. gk(Z, u) =

(1, Z1, Z2, Z3)T . When we use the Cox augmentation method, we use the following

model to calculate Λ̂ik(t) and dΛ̂ik(t)

λ(t|Zi, Zi(t), Ai) = λ0(t)exp{η1Z1,i + η2Z2,i + η3Z3,i}.

We estimate standard errors of estimators via the bootstrap approach.

We evaluate the performance of the proposed methods, together with the methods

described in Chapter III, including the Nelson-Aalen, IPTW and DIPW methods.

The simulation results are summarized in Table 4.1.

Table 4.1: Estimation of the difference in restricted mean lifetime between treatment
and control. The results are based on 5000 Monte Carlo datasets. Sample
size n = 500.

δ̂ µ̂1 µ̂0

Method Bias ESD ASE CP RE Bias ESD ASE CP Bias ESD ASE CP

Scenario 1
NA −0.456 0.053 0.053 0.000 −0.175 0.039 0.038 0.004 0.281 0.036 0.036 0.000
IPTW −0.054 0.077 0.084 0.900 0.015 0.047 0.049 0.954 0.069 0.070 0.067 0.754
DIPW −0.022 0.087 0.091 0.942 −0.001 0.051 0.052 0.961 0.021 0.078 0.073 0.908
MW 0.001 0.080 0.078 0.941 1 0.040 0.048 0.045 0.818 0.039 0.069 0.062 0.854
Proposed (OLS) 0.002 0.076 0.073 0.947 1.11 0.041 0.046 0.045 0.810 0.039 0.067 0.061 0.858
Proposed (Cox) 0.002 0.074 0.080 0.965 1.17 0.039 0.045 0.048 0.852 0.038 0.067 0.062 0.852

Scenario 2
NA −0.318 0.046 0.046 0.000 −0.114 0.034 0.033 0.071 0.205 0.032 0.032 0.000
IPTW −0.051 0.074 0.072 0.847 0.016 0.039 0.040 0.942 0.066 0.067 0.059 0.682
DIPW −0.025 0.091 0.083 0.905 −0.002 0.044 0.044 0.954 0.023 0.083 0.070 0.864
MW −0.010 0.079 0.073 0.934 1 0.022 0.042 0.040 0.880 0.032 0.069 0.060 0.864
Proposed (OLS) −0.009 0.078 0.072 0.936 1.03 0.023 0.041 0.040 0.881 0.031 0.068 0.061 0.873
Proposed (Cox) −0.010 0.077 0.079 0.960 1.05 0.022 0.041 0.044 0.920 0.032 0.068 0.062 0.884

Scenario 3
NA −0.430 0.048 0.047 0.000 −0.156 0.033 0.033 0.004 0.274 0.034 0.034 0.000
IPTW −0.064 0.069 0.076 0.853 0.021 0.045 0.047 0.946 0.085 0.060 0.058 0.610
DIPW −0.026 0.085 0.085 0.930 −0.001 0.050 0.050 0.956 0.025 0.075 0.068 0.883
MW −0.003 0.076 0.072 0.943 1 0.025 0.045 0.042 0.877 0.028 0.066 0.058 0.880
Proposed (OLS) −0.002 0.072 0.068 0.939 1.12 0.026 0.043 0.041 0.878 0.027 0.065 0.057 0.882
Proposed (Cox) −0.003 0.071 0.077 0.968 1.15 0.025 0.042 0.045 0.915 0.028 0.065 0.059 0.900

Bias:Monte Carlo bias. ESD: Monte Carlo standard deviation. ASE: Monte Carlo

average of estimated standard errors. CP: coverage probability of nominal 95% Wald

confidence intervals. RE: Monte Carlo mean squared error for the MW estimator

divided by that for the indicated estimator
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In all scenarios, the biases of δ̂ for the MW and proposed methods are negligible

compared to the other methods. The 95% coverage probabilities appear to achieve the

nominal level. There are biases for µ̂1 and µ̂0 from the MW and proposed methods.

This is because the true µ1 and µ0 values that we used to calculate biases are the

expectation of potential outcomes for the whole population. However, here the µ̂1

and µ̂0 estimated by the MW and proposed methods are for a subpopulation, that

is the patients who can be matched between two groups. Hence, it is actually unfair

to compare the biases of group-level estimates between MW methods and usual IPW

methods (IPTW and DIPW), because they estimate different estimands.

Next, we compare the efficiency of the methods. As we show in Chapter III, the

simple IPW estimators including IPTW and DIPW reduce bias but lose efficiency.

The MW method is also a simple double inverse weighted estimator, but compared to

DIPW method, the variances are much smaller. As we stated in Section 4.1, the MW

method reduces variances because it down-weights some of the patients. The resulting

weighted population is more homogeneous compared to the weighted population by

the usual IPW methods.

In Table 4.1, we also see that the proposed augmentation methods reduce the

variance of the MW estimators. We use relative efficiency to quantify the difference

in efficiency between the MW and the proposed methods. The relative efficiency is

defined as the ratio of mean squared errors for the MW method and the proposed

methods. In three scenarios, for proposed OLS methods, the relative efficiencies are

between 1.03 and 1.12 for δ̂. For the proposed Cox methods, the relative efficiencies

are even larger, which are between 1.05 and 1.17 for δ̂. This results suggest that

the proposed methods successfully improve efficiency of MW estimators in different

situations of outcome distributions and generating models.

Furthermore, we see that the proposed Cox method has larger efficiency gains in

Scenario 1 and 3 compared to Scenario 2. This may be because that we generate
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survival time from Cox models in Scenario 1 and 3, but from an accelerated failure

time (AFT) model in Scenario 2. Although the analysis outcome model we use in

Scenario 2 is incorrect, the proposed Cox method still shows some efficiency gain.

4.5 Application

We apply the proposed method to the same application data as in Chapter III. The

5,856 advanced heart failure patients received either LVAD or BiVAD implantations.

Of these patients, 5,672 (96.9%) patients received LVAD and 184 (3.1%) patients

received BiVAD. We showed the baseline imbalances between the two groups in Table

3.2. As in Chapter III, we consider BiVAD as the treatment and LVAD as the control.

We are interested in estimating treatment-specific difference in potential restricted

mean lifetimes on the matched population, had no patients received heart transplants.

The proposed methods show smaller estimates of the differences between BiVAD and

Table 4.2: Estimation of the difference in restricted mean lifetime (days) up to 365
days between BiVAD and LVAD.

δ BiVAD LVAD

Method δ̂ ŜE(δ̂) µ̂1 ŜE(µ̂1) µ̂0 ŜE(µ̂0) P-value

Nelson-Aalen −135.7 17.2 176.7 17.3 312.4 1.5 <0.001
IPTW −125.3 21.9 186.6 22.0 311.8 1.5 <0.001
DIPW −125.0 21.9 186.9 22.0 311.9 1.5 <0.001
MW −117.8 17.1 177.1 17.3 294.9 4.0 <0.001
Proposed (OLS) −119.2 17.9 184.7 17.1 303.9 5.5 <0.001
Proposed (Cox) −92.0 16.4 202.5 16.5 294.5 3.7 <0.001

LVAD compared to the DIPW method. The MW shows smaller standard errors than

the DIPW method. The proposed Cox augmentation method has smaller standard

errors than the MW method.
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4.6 Discussion

In this chapter, we discuss the clinically meaningful estimand and then propose

methods to estimate that estimand. Specifically, we propose an augmented double

inverse MW method to estimate the difference in the restricted mean lifetime on the

matched population between groups. We first develop an MW estimator and then

propose augmentation strategies to improve the efficiency. We show the performance

of the proposed methods in finite sample using simulation. The proposed methods

are then applied to INTERMACS cardiac surgery data.

The MW method is an analog to the one-to-one caliper matching without replace-

ment, but it has better properties of variance estimation and efficiency improvement.

Li and Greene (2013) showed the MW method was more efficient than the one-to-one

caliper matching without replacement in their continuous outcome setting. Beside

one-to-one caliper matching, there are many other types of PS matching methods,

such as matching with replacement, nearest neighbor matching, optimal matching,

and many-to-one matching. It would be interesting to compare the performance of

the MW method with these types of matching. We can also apply the doubly robust

PS matching method proposed in Chapter II for survival outcomes and compare the

performance with the proposed OLS and Cox methods.

Our simulation results show that the MW method is more efficient than DIPW

method. As we know, the DIPW method use the usual IPW weight which is the

inverse of probability of being assigned to one group. The usual IPW weights can be

very large when the propensity scores are small, which greatly increase the variability

of the estimation and make the estimation unstable. But the MW method down-

weights the patients with extreme propensity scores and control the variance inflation.

This is why we see the MW method is generally more efficient than DIPW method.

We use the bootstrap approach to calculate standard errors for the MW and

proposed augmented estimators. We can also study the asymptotic properties and
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develop the closed form of standard errors, because the MW method provides a good

framework for these theoretical derivation.
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APPENDIX A

Appendix for Chapter II

A.1 Simulation Results for Matching with Replacement
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Table A.1: Monte Carlo bias and standard deviation using the outcome regression method, proposed methods and Li et al
method. For each method, we use 5 PS models (not for the outcome regression method) and 5 outcome models
described in Section 2.3. We use matching with replacement. The results are based on 1000 Monte Carlo data
sets with number of hospitals equals to 30 and hospital size equals to 30.

PS Model

Outcome Model 1 Outcome Model 2 Outcome Model 3 Outcome Model 4 Outcome Model 5

Bias MCSD Bias MCSD Bias MCSD Bias MCSD Bias MCSD

With
replacement

Within
hospital
matching

PS Model 1 0.001 0.120 0.031 0.158 0.031 0.158 0.010 0.126 0.010 0.126
PS Model 2 −0.002 0.111 0.005 0.132 0.005 0.132 0.000 0.116 0.000 0.116
PS Model 3 0.000 0.114 1.158 0.148 1.158 0.148 −0.006 0.130 −0.008 0.130
PS Model 4 0.001 0.119 0.032 0.143 0.032 0.143 0.011 0.125 0.011 0.125
PS Model 5 0.001 0.120 0.040 0.146 0.040 0.146 0.013 0.126 0.013 0.126

Across
hospital
matching

PS Model 1 0.003 0.128 −0.060 0.224 0.039 0.193 0.014 0.149 0.014 0.149
PS Model 2 −0.003 0.111 0.369 0.315 0.328 0.153 0.007 0.120 −0.007 0.120
PS Model 3 −0.001 0.106 1.325 0.273 1.247 0.140 0.003 0.123 −0.011 0.124
PS Model 4 0.000 0.129 −0.038 0.217 0.037 0.181 0.011 0.148 0.010 0.148
PS Model 5 0.003 0.129 0.022 0.215 0.091 0.183 0.013 0.152 0.013 0.152

Modified
across
hospital
matching

PS Model 1 0.002 0.125 0.082 0.196 0.139 0.177 0.034 0.140 0.034 0.140
PS Model 2 −0.001 0.108 0.173 0.185 0.235 0.139 0.010 0.116 0.004 0.116
PS Model 3 −0.001 0.113 1.168 0.147 1.164 0.147 −0.005 0.129 −0.008 0.129
PS Model 4 0.000 0.124 0.091 0.184 0.138 0.163 0.033 0.139 0.033 0.139
PS Model 5 0.002 0.124 0.131 0.182 0.171 0.164 0.038 0.139 0.038 0.139
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Table A.2: Monte Carlo average of estimated standard errors and coverage probability using the outcome regression method,
proposed methods and Li et al method. For each method, we use 5 PS models (not for the outcome regression
method) and 5 outcome models described in Section 2.3. We use matching with replacement. The results are based
on 1000 Monte Carlo data sets with number of hospitals equals to 30 and hospital size equals to 30.

PS Model

Outcome Model 1 Outcome Model 2 Outcome Model 3 Outcome Model 4 Outcome Model 5

ASE CP ASE CP ASE CP ASE CP ASE CP

With
replacement

Within
hospital
matching

PS Model 1 0.094 0.877 0.163 0.952 0.147 0.921 0.105 0.897 0.105 0.898
PS Model 2 0.099 0.928 0.170 0.987 0.153 0.976 0.110 0.939 0.110 0.939
PS Model 3 0.095 0.902 0.157 0.000 0.143 0.000 0.118 0.924 0.118 0.916
PS Model 4 0.094 0.882 0.163 0.970 0.147 0.941 0.105 0.902 0.105 0.902
PS Model 5 0.094 0.881 0.163 0.958 0.146 0.934 0.105 0.893 0.105 0.893

Across
hospital
matching

PS Model 1 0.088 0.819 0.161 0.823 0.146 0.847 0.103 0.834 0.103 0.831
PS Model 2 0.096 0.906 0.155 0.427 0.157 0.438 0.111 0.931 0.112 0.926
PS Model 3 0.099 0.939 0.152 0.000 0.151 0.000 0.121 0.944 0.121 0.943
PS Model 4 0.088 0.812 0.161 0.851 0.146 0.877 0.103 0.822 0.103 0.821
PS Model 5 0.088 0.802 0.160 0.858 0.146 0.836 0.103 0.808 0.103 0.811

Modified
across
hospital
matching

PS Model 1 0.088 0.833 0.158 0.849 0.143 0.783 0.101 0.837 0.101 0.839
PS Model 2 0.088 0.897 0.155 0.767 0.145 0.636 0.103 0.922 0.103 0.919
PS Model 3 0.094 0.901 0.156 0.000 0.142 0.000 0.116 0.921 0.116 0.916
PS Model 4 0.087 0.839 0.158 0.867 0.144 0.809 0.101 0.836 0.101 0.836
PS Model 5 0.087 0.834 0.157 0.828 0.143 0.743 0.101 0.825 0.101 0.824
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Table A.3: Monte Carlo bias and standard deviation using the outcome regression method, proposed methods and Li et al
method. For each method, we use 5 PS models (not for the outcome regression method) and 5 outcome models
described in Section 2.3. We use matching with replacement. The results are based on 1000 Monte Carlo data sets
with number of hospitals equals to 30 and hospital size equals to 100.

PS Model

Outcome Model 1 Outcome Model 2 Outcome Model 3 Outcome Model 4 Outcome Model 5

Bias MCSD Bias MCSD Bias MCSD Bias MCSD Bias MCSD

With
replacement

Within
hospital
matching

PS Model 1 0.002 0.115 0.031 0.147 0.031 0.147 0.013 0.121 0.013 0.121
PS Model 2 0.000 0.108 0.007 0.129 0.007 0.129 0.003 0.112 0.003 0.112
PS Model 3 0.000 0.110 1.159 0.148 1.159 0.148 −0.005 0.126 −0.008 0.126
PS Model 4 0.001 0.116 0.029 0.138 0.029 0.138 0.011 0.121 0.011 0.121
PS Model 5 0.000 0.118 0.038 0.143 0.038 0.143 0.013 0.124 0.013 0.124

Across
hospital
matching

PS Model 1 0.004 0.124 −0.051 0.220 0.044 0.187 0.017 0.146 0.017 0.146
PS Model 2 0.000 0.109 0.405 0.292 0.340 0.154 0.013 0.119 −0.002 0.119
PS Model 3 −0.001 0.104 1.349 0.258 1.249 0.143 0.004 0.121 −0.012 0.121
PS Model 4 0.004 0.122 −0.027 0.205 0.045 0.174 0.019 0.145 0.019 0.145
PS Model 5 0.004 0.122 0.025 0.208 0.095 0.176 0.019 0.147 0.019 0.146

Modified
across
hospital
matching

PS Model 1 0.003 0.121 0.090 0.189 0.149 0.167 0.038 0.137 0.039 0.137
PS Model 2 0.001 0.104 0.202 0.181 0.254 0.136 0.015 0.113 0.008 0.113
PS Model 3 0.000 0.110 1.171 0.149 1.166 0.148 −0.004 0.126 −0.008 0.126
PS Model 4 0.003 0.121 0.099 0.183 0.148 0.160 0.039 0.138 0.039 0.138
PS Model 5 0.003 0.121 0.137 0.182 0.180 0.160 0.041 0.137 0.041 0.137
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Table A.4: Monte Carlo average of estimated standard errors and coverage probability using the outcome regression method,
proposed methods and Li et al method. For each method, we use 5 PS models (not for the outcome regression
method) and 5 outcome models described in Section 2.3. We use matching with replacement. The results are based
on 1000 Monte Carlo data sets with number of hospitals equals to 30 and hospital size equals to 30.

PS Model

Outcome Model 1 Outcome Model 2 Outcome Model 3 Outcome Model 4 Outcome Model 5

ASE CP ASE CP ASE CP ASE CP ASE CP

With
replacement

Within
hospital
matching

PS Model 1 0.094 0.897 0.163 0.970 0.146 0.942 0.105 0.920 0.105 0.920
PS Model 2 0.100 0.930 0.171 0.992 0.153 0.982 0.111 0.954 0.111 0.954
PS Model 3 0.095 0.902 0.157 0.000 0.143 0.000 0.118 0.935 0.118 0.936
PS Model 4 0.094 0.892 0.163 0.984 0.146 0.967 0.105 0.917 0.105 0.917
PS Model 5 0.094 0.877 0.163 0.972 0.146 0.949 0.104 0.906 0.104 0.906

Across
hospital
matching

PS Model 1 0.088 0.848 0.160 0.847 0.146 0.870 0.103 0.830 0.103 0.830
PS Model 2 0.096 0.904 0.154 0.366 0.157 0.421 0.111 0.929 0.112 0.936
PS Model 3 0.099 0.935 0.152 0.000 0.152 0.000 0.121 0.949 0.122 0.945
PS Model 4 0.088 0.847 0.161 0.875 0.146 0.890 0.103 0.828 0.103 0.829
PS Model 5 0.088 0.847 0.160 0.869 0.146 0.837 0.103 0.835 0.103 0.833

Modified
across
hospital
matching

PS Model 1 0.087 0.848 0.158 0.877 0.143 0.774 0.101 0.835 0.101 0.835
PS Model 2 0.088 0.897 0.155 0.719 0.145 0.594 0.103 0.929 0.103 0.925
PS Model 3 0.094 0.909 0.156 0.000 0.143 0.000 0.117 0.932 0.117 0.933
PS Model 4 0.087 0.843 0.158 0.860 0.143 0.796 0.101 0.835 0.101 0.838
PS Model 5 0.087 0.838 0.157 0.816 0.143 0.725 0.101 0.839 0.101 0.838
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Table A.5: Monte Carlo bias and standard deviation using the outcome regression method, proposed methods and Li et al
method. For each method, we use 5 PS models (not for the outcome regression method) and 5 outcome models
described in Section 2.3. We use matching with replacement. The results are based on 1000 Monte Carlo data sets
with number of hospitals equals to 30 and hospital size follows uniform distribution U(30,170).

PS Model

Outcome Model 1 Outcome Model 2 Outcome Model 3 Outcome Model 4 Outcome Model 5

bias MCSD bias MCSD bias MCSD bias MCSD bias MCSD

With
replacement

Within
hospital
matching

PS Model 1 0.001 0.120 0.031 0.158 0.031 0.158 0.010 0.126 0.010 0.126
PS Model 2 −0.002 0.111 0.005 0.132 0.005 0.132 0.000 0.116 0.000 0.116
PS Model 3 0.000 0.114 1.158 0.148 1.158 0.148 −0.006 0.130 −0.008 0.130
PS Model 4 0.001 0.119 0.032 0.143 0.032 0.143 0.011 0.125 0.011 0.125
PS Model 5 0.001 0.120 0.040 0.146 0.040 0.146 0.013 0.126 0.013 0.126

Across
hospital
matching

PS Model 1 0.003 0.128 −0.060 0.224 0.039 0.193 0.014 0.149 0.014 0.149
PS Model 2 −0.003 0.111 0.369 0.315 0.328 0.153 0.007 0.120 −0.007 0.120
PS Model 3 −0.001 0.106 1.325 0.273 1.247 0.140 0.003 0.123 −0.011 0.124
PS Model 4 0.000 0.129 −0.038 0.217 0.037 0.181 0.011 0.148 0.010 0.148
PS Model 5 0.003 0.129 0.022 0.215 0.091 0.183 0.013 0.152 0.013 0.152

Modified
across
hospital
matching

PS Model 1 0.002 0.125 0.082 0.196 0.139 0.177 0.034 0.140 0.034 0.140
PS Model 2 −0.001 0.108 0.173 0.185 0.235 0.139 0.010 0.116 0.004 0.116
PS Model 3 −0.001 0.113 1.168 0.147 1.164 0.147 −0.005 0.129 −0.008 0.129
PS Model 4 0.000 0.124 0.091 0.184 0.138 0.163 0.033 0.139 0.033 0.139
PS Model 5 0.002 0.124 0.131 0.182 0.171 0.164 0.038 0.139 0.038 0.139
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Table A.6: Monte Carlo average of estimated standard errors and coverage probability using the outcome regression method,
proposed methods and Li et al method. For each method, we use 5 PS models (not for the outcome regression
method) and 5 outcome models described in Section 2.3. We use matching with replacement. The results are based
on 1000 Monte Carlo data sets with number of hospitals equals to 30 and hospital size follows uniform distribution
U(30,170).

PS Model

Outcome Model 1 Outcome Model 2 Outcome Model 3 Outcome Model 4 Outcome Model 5

ASE CP ASE CP ASE CP ASE CP ASE CP

With
replacement

Within
hospital
matching

PS Model 1 0.094 0.877 0.163 0.952 0.147 0.921 0.105 0.897 0.105 0.898
PS Model 2 0.099 0.928 0.170 0.987 0.153 0.976 0.110 0.939 0.110 0.939
PS Model 3 0.095 0.902 0.157 0.000 0.143 0.000 0.118 0.924 0.118 0.916
PS Model 4 0.094 0.882 0.163 0.970 0.147 0.941 0.105 0.902 0.105 0.902
PS Model 5 0.094 0.881 0.163 0.958 0.146 0.934 0.105 0.893 0.105 0.893

Across
hospital
matching

PS Model 1 0.088 0.819 0.161 0.823 0.146 0.847 0.103 0.834 0.103 0.831
PS Model 2 0.096 0.906 0.155 0.427 0.157 0.438 0.111 0.931 0.112 0.926
PS Model 3 0.099 0.939 0.152 0.000 0.151 0.000 0.121 0.944 0.121 0.943
PS Model 4 0.088 0.812 0.161 0.851 0.146 0.877 0.103 0.822 0.103 0.821
PS Model 5 0.088 0.802 0.160 0.858 0.146 0.836 0.103 0.808 0.103 0.811

Modified
across
hospital
matching

PS Model 1 0.088 0.833 0.158 0.849 0.143 0.783 0.101 0.837 0.101 0.839
PS Model 2 0.088 0.897 0.155 0.767 0.145 0.636 0.103 0.922 0.103 0.919
PS Model 3 0.094 0.901 0.156 0.000 0.142 0.000 0.116 0.921 0.116 0.916
PS Model 4 0.087 0.839 0.158 0.867 0.144 0.809 0.101 0.836 0.101 0.836
PS Model 5 0.087 0.834 0.157 0.828 0.143 0.743 0.101 0.825 0.101 0.824
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A.2 Simulation Results for Modified Matching with Replace-

ment
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Table A.7: Monte Carlo bias and standard deviation using the outcome regression method, proposed methods and Li et al
method. For each method, we use 5 PS models (not for the outcome regression method) and 5 outcome models
described in Section 2.3. We use modified matching with replacement. The results are based on 1000 Monte Carlo
data sets with number of hospitals equals to 30 and hospital size equals to 30.

PS Model

Outcome Model 1 Outcome Model 2 Outcome Model 3 Outcome Model 4 Outcome Model 5

Bias MCSD Bias MCSD Bias MCSD Bias MCSD Bias MCSD

Outcome Regression
Only

0.004 0.168 1.764 0.327 1.679 0.253 −0.051 0.205 −0.089 0.206

With
modified
replacement

Within
hospital
matching

PS Model 1 −0.002 0.224 0.010 0.286 0.010 0.286 0.003 0.231 0.003 0.231
PS Model 2 −0.001 0.238 0.005 0.278 0.005 0.278 0.003 0.248 0.003 0.248
PS Model 3 −0.001 0.198 1.186 0.246 1.186 0.246 0.001 0.227 −0.009 0.228
PS Model 4 −0.001 0.224 0.012 0.260 0.012 0.260 0.005 0.232 0.005 0.232
PS Model 5 0.001 0.223 0.019 0.257 0.019 0.257 0.007 0.232 0.007 0.232

Across
hospital
matching

PS Model 1 0.006 0.184 −0.148 0.259 −0.142 0.256 0.007 0.212 0.016 0.212
PS Model 2 0.004 0.178 0.417 0.333 0.253 0.219 0.043 0.193 −0.002 0.195
PS Model 3 0.004 0.175 1.359 0.314 1.266 0.230 0.041 0.206 −0.002 0.207
PS Model 4 0.005 0.184 −0.088 0.231 −0.140 0.222 0.014 0.208 0.013 0.208
PS Model 5 0.006 0.184 0.030 0.235 −0.046 0.224 0.011 0.210 0.019 0.211

Modified
across
hospital
matching

PS Model 1 0.005 0.180 −0.065 0.249 −0.046 0.244 0.017 0.199 0.017 0.200
PS Model 2 0.003 0.177 0.388 0.310 0.303 0.213 0.044 0.191 0.004 0.193
PS Model 3 0.003 0.174 1.354 0.287 1.311 0.224 0.023 0.202 −0.016 0.204
PS Model 4 0.003 0.180 −0.025 0.216 −0.048 0.210 0.022 0.197 0.017 0.197
PS Model 5 0.005 0.180 0.069 0.217 0.030 0.210 0.015 0.200 0.015 0.199
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Table A.8: Monte Carlo average of estimated standard errors and coverage probability using the outcome regression method,
proposed methods and Li et al method. For each method, we use 5 PS models (not for the outcome regression
method) and 5 outcome models described in Section 2.3. We use matching with replacement. The results are based
on 1000 Monte Carlo data sets with number of hospitals equals to 30 and hospital size equals to 30.

PS Model

Outcome Model 1 Outcome Model 2 Outcome Model 3 Outcome Model 4 Outcome Model 5

ASE CP ASE CP ASE CP ASE CP ASE CP

With
modified
replacement

Within
hospital
matching

PS Model 1 −0.002 0.224 0.010 0.286 0.010 0.286 0.003 0.231 0.003 0.231
PS Model 2 −0.001 0.238 0.005 0.278 0.005 0.278 0.003 0.248 0.003 0.248
PS Model 3 −0.001 0.198 1.186 0.246 1.186 0.246 0.001 0.227 −0.009 0.228
PS Model 4 −0.001 0.224 0.012 0.260 0.012 0.260 0.005 0.232 0.005 0.232
PS Model 5 0.001 0.223 0.019 0.257 0.019 0.257 0.007 0.232 0.007 0.232

Across
hospital
matching

PS Model 1 0.006 0.184 −0.148 0.259 −0.142 0.256 0.007 0.212 0.016 0.212
PS Model 2 0.004 0.178 0.417 0.333 0.253 0.219 0.043 0.193 −0.002 0.195
PS Model 3 0.004 0.175 1.359 0.314 1.266 0.230 0.041 0.206 −0.002 0.207
PS Model 4 0.005 0.184 −0.088 0.231 −0.140 0.222 0.014 0.208 0.013 0.208
PS Model 5 0.006 0.184 0.030 0.235 −0.046 0.224 0.011 0.210 0.019 0.211

Modified
across
hospital
matching

PS Model 1 0.005 0.180 −0.065 0.249 −0.046 0.244 0.017 0.199 0.017 0.200
PS Model 2 0.003 0.177 0.388 0.310 0.303 0.213 0.044 0.191 0.004 0.193
PS Model 3 0.003 0.174 1.354 0.287 1.311 0.224 0.023 0.202 −0.016 0.204
PS Model 4 0.003 0.180 −0.025 0.216 −0.048 0.210 0.022 0.197 0.017 0.197
PS Model 5 0.005 0.180 0.069 0.217 0.030 0.210 0.015 0.200 0.015 0.199
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Table A.9: Monte Carlo bias and standard deviation using the outcome regression method, proposed methods and Li et al
method. For each method, we use 5 PS models (not for the outcome regression method) and 5 outcome models
described in Section 2.3. We use modified matching with replacement. The results are based on 1000 Monte Carlo
data sets with number of hospitals equals to 30 and hospital size equals to 100.

PS Model

Outcome Model 1 Outcome Model 2 Outcome Model 3 Outcome Model 4 Outcome Model 5

Bias MCSD Bias MCSD Bias MCSD Bias MCSD Bias MCSD

With
modified
replacement

Within
hospital
matching

PS Model 1 0.000 0.100 0.017 0.127 0.017 0.127 0.004 0.104 0.004 0.104
PS Model 2 −0.002 0.101 0.007 0.118 0.007 0.118 0.001 0.104 0.001 0.104
PS Model 3 0.000 0.095 1.181 0.128 1.181 0.128 0.000 0.106 −0.003 0.106
PS Model 4 −0.002 0.099 0.013 0.109 0.013 0.109 0.002 0.102 0.002 0.102
PS Model 5 −0.002 0.099 0.015 0.110 0.015 0.110 0.002 0.103 0.002 0.103

Across
hospital
matching

PS Model 1 0.002 0.093 −0.035 0.154 −0.083 0.140 0.008 0.110 0.010 0.110
PS Model 2 0.001 0.093 0.409 0.277 0.210 0.125 0.006 0.099 −0.008 0.099
PS Model 3 0.000 0.090 1.351 0.249 1.240 0.130 0.005 0.104 −0.009 0.104
PS Model 4 0.001 0.095 −0.013 0.141 −0.083 0.123 0.008 0.111 0.009 0.111
PS Model 5 0.001 0.094 0.025 0.140 −0.052 0.122 0.007 0.111 0.010 0.111

Modified
across
hospital
matching

PS Model 1 0.002 0.092 0.092 0.132 0.096 0.124 0.016 0.101 0.014 0.101
PS Model 2 0.000 0.092 0.373 0.232 0.338 0.115 0.018 0.098 0.007 0.098
PS Model 3 0.000 0.090 1.350 0.211 1.311 0.134 −0.014 0.103 −0.026 0.103
PS Model 4 0.000 0.093 0.100 0.117 0.092 0.107 0.013 0.102 0.011 0.102
PS Model 5 −0.001 0.092 0.124 0.116 0.112 0.107 0.011 0.101 0.009 0.101
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Table A.10: Monte Carlo average of estimated standard errors and coverage probability using the outcome regression method,
proposed methods and Li et al method. For each method, we use 5 PS models (not for the outcome regression
method) and 5 outcome models described in Section 2.3. We use modified matching with replacement. The results
are based on 1000 Monte Carlo data sets with number of hospitals equals to 30 and hospital size equals to 30.

PS Model

Outcome Model 1 Outcome Model 2 Outcome Model 3 Outcome Model 4 Outcome Model 5

ASE CP ASE CP ASE CP ASE CP ASE CP

With
modified
replacement

Within
hospital
matching

PS Model 1 0.102 0.953 0.174 0.995 0.157 0.982 0.114 0.970 0.114 0.970
PS Model 2 0.104 0.961 0.176 0.999 0.159 0.995 0.115 0.977 0.115 0.977
PS Model 3 0.097 0.961 0.160 0.000 0.146 0.000 0.120 0.970 0.120 0.971
PS Model 4 0.102 0.960 0.174 1.000 0.157 0.997 0.114 0.971 0.114 0.971
PS Model 5 0.102 0.959 0.174 0.999 0.157 0.997 0.114 0.969 0.114 0.969

Across
hospital
matching

PS Model 1 0.097 0.956 0.165 0.958 0.150 0.928 0.111 0.954 0.111 0.953
PS Model 2 0.095 0.946 0.145 0.339 0.147 0.727 0.107 0.962 0.108 0.964
PS Model 3 0.092 0.948 0.141 0.000 0.141 0.000 0.112 0.969 0.113 0.964
PS Model 4 0.097 0.951 0.165 0.976 0.150 0.957 0.111 0.952 0.111 0.948
PS Model 5 0.097 0.965 0.165 0.971 0.151 0.978 0.111 0.953 0.111 0.952

Modified
across
hospital
matching

PS Model 1 0.095 0.952 0.162 0.958 0.147 0.939 0.108 0.960 0.108 0.959
PS Model 2 0.092 0.951 0.146 0.362 0.142 0.310 0.104 0.963 0.105 0.969
PS Model 3 0.091 0.949 0.144 0.000 0.140 0.000 0.112 0.960 0.112 0.957
PS Model 4 0.095 0.953 0.163 0.969 0.147 0.972 0.108 0.955 0.108 0.957
PS Model 5 0.095 0.951 0.163 0.960 0.147 0.951 0.108 0.959 0.108 0.959
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Table A.11: Monte Carlo bias and standard deviation using the outcome regression method, proposed methods and Li et al
method. For each method, we use 5 PS models (not for the outcome regression method) and 5 outcome models
described in Section 2.3. We use modified matching with replacement. The results are based on 1000 Monte Carlo
data sets with number of hospitals equals to 30 and hospital size follows uniform distribution U(30,170).

PS Model

Outcome Model 1 Outcome Model 2 Outcome Model 3 Outcome Model 4 Outcome Model 5

bias MCSD bias MCSD bias MCSD bias MCSD bias MCSD

With
modified
replacement

Within
hospital
matching

PS Model 1 −0.001 0.102 0.016 0.133 0.016 0.133 0.003 0.108 0.003 0.108
PS Model 2 −0.002 0.102 0.007 0.120 0.007 0.120 0.000 0.108 0.000 0.108
PS Model 3 0.000 0.096 1.179 0.126 1.179 0.126 −0.002 0.109 −0.005 0.109
PS Model 4 −0.002 0.101 0.015 0.113 0.015 0.113 0.001 0.106 0.001 0.106
PS Model 5 −0.002 0.100 0.018 0.113 0.018 0.113 0.002 0.106 0.002 0.106

Across
hospital
matching

PS Model 1 0.001 0.097 −0.036 0.158 −0.084 0.145 0.008 0.113 0.010 0.113
PS Model 2 0.002 0.095 0.377 0.301 0.205 0.128 0.006 0.101 −0.006 0.101
PS Model 3 0.001 0.092 1.330 0.268 1.238 0.130 0.006 0.108 −0.007 0.108
PS Model 4 0.001 0.097 −0.011 0.142 −0.081 0.125 0.009 0.112 0.010 0.113
PS Model 5 0.002 0.096 0.026 0.144 −0.050 0.126 0.009 0.113 0.011 0.113

Modified
across
hospital
matching

PS Model 1 0.000 0.094 0.093 0.137 0.097 0.130 0.012 0.104 0.010 0.104
PS Model 2 0.001 0.093 0.349 0.252 0.336 0.123 0.017 0.101 0.007 0.101
PS Model 3 0.000 0.092 1.331 0.220 1.308 0.134 −0.016 0.107 −0.026 0.107
PS Model 4 0.000 0.094 0.105 0.117 0.098 0.109 0.012 0.102 0.010 0.102
PS Model 5 0.000 0.094 0.129 0.117 0.118 0.109 0.009 0.103 0.008 0.103
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Table A.12: Monte Carlo average of estimated standard errors and coverage probability using the outcome regression method,
proposed methods and Li et al method. For each method, we use 5 PS models (not for the outcome regression
method) and 5 outcome models described in Section 2.3. We use modified matching with replacement. The results
are based on 1000 Monte Carlo data sets with number of hospitals equals to 30 and hospital size follows uniform
distribution U(30,170).

PS Model

Outcome Model 1 Outcome Model 2 Outcome Model 3 Outcome Model 4 Outcome Model 5

ASE CP ASE CP ASE CP ASE CP ASE CP

With
modified
replacement

Within
hospital
matching

PS Model 1 0.102 0.946 0.174 0.988 0.156 0.975 0.114 0.958 0.114 0.958
PS Model 2 0.103 0.955 0.176 0.997 0.158 0.990 0.115 0.964 0.115 0.964
PS Model 3 0.097 0.951 0.160 0.000 0.146 0.000 0.120 0.968 0.120 0.967
PS Model 4 0.102 0.957 0.174 0.998 0.156 0.994 0.114 0.956 0.114 0.956
PS Model 5 0.102 0.957 0.174 0.997 0.156 0.994 0.114 0.958 0.114 0.958

Across
hospital
matching

PS Model 1 0.097 0.949 0.165 0.949 0.150 0.918 0.111 0.940 0.111 0.938
PS Model 2 0.095 0.956 0.145 0.390 0.146 0.743 0.107 0.961 0.108 0.958
PS Model 3 0.092 0.953 0.141 0.000 0.141 0.000 0.112 0.958 0.113 0.958
PS Model 4 0.097 0.947 0.165 0.981 0.150 0.955 0.111 0.944 0.111 0.942
PS Model 5 0.097 0.961 0.165 0.975 0.150 0.977 0.111 0.943 0.111 0.940

Modified
across
hospital
matching

PS Model 1 0.094 0.948 0.162 0.948 0.147 0.936 0.107 0.954 0.107 0.956
PS Model 2 0.092 0.949 0.146 0.405 0.141 0.314 0.104 0.955 0.104 0.961
PS Model 3 0.091 0.954 0.144 0.000 0.140 0.000 0.112 0.959 0.112 0.953
PS Model 4 0.095 0.956 0.162 0.963 0.147 0.959 0.107 0.962 0.107 0.962
PS Model 5 0.094 0.952 0.162 0.947 0.147 0.946 0.107 0.964 0.107 0.962
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APPENDIX B

Appendix for Chapter III

B.1 Asymptotic Properties

We heuristically prove that the estimator that solves Equation (3.2) is consistent

and asymptotically normal.

The Equation (3.2) can be written into the form:

n∑
i=1

[
AikI(Ci ≥ t){dN∗ik(t)− Y ∗ik(t)dΛk(t)}

pik(θ)pci(γ, t)
− Aik − pik(θ)

pik(θ)
hk(t, Zi)dt

]
= 0. (B.1)

We define m(t, θ, γ) as

m(t, θ, γ) =
AikI(Ci ≥ t){dN∗ik(t)− Y ∗ik(t)dΛk(t)}

pik(θ)pci(γ, t)
− Aik − pik(θ)

pik(θ)
hk(t, Zi)dt.
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Then the left part of Equation (B.1) is a summation of independent and identically

distributed quantities m(t, θ, γ). The expectation of the first part of m(t, θ, γ) is:

E

[
AikI(Ci ≥ t){dN∗ik(t)− Y ∗ik(t)dΛk(t)}

pik(θ)pci(γ, t)

]
= E

[
E

{
AikI(Ci ≥ t){dN∗ik(t)− Y ∗ik(t)dΛk(t)}

pik(θ)pci(γ, t)

∣∣∣∣Zi}]
= E{dN∗ik(t)− Y ∗ik(t)dΛk(t)}E

{
AikI(Ci ≥ t)

pik(θ)pci(γ, t)

∣∣∣∣Zi}
= E{dM∗

ik(t)}E
{
AikI(Ci ≥ t)

pik(θ)pci(γ, t)

∣∣∣∣Zi}
= 0 ∗ E

{
AikI(Ci ≥ t)

pik(θ)pci(γ, t)

∣∣∣∣Zi}]
= 0,

and the expectation of the second part of m(t, θ, γ) is:

E

{
Aik − pik(θ)

pik(θ)
hk(t, Zi)dt

}
= E

[
E

{
Aik − pik(θ)

pik(θ)
hk(t, Zi)dt

∣∣∣∣Zi}]
= E

[
hk(t, Zi)dtE

{
Aik − pik(θ)

pik(θ)

∣∣∣∣Zi}]
= E

[
hk(t, Zi)dt ∗ 0

]
= 0.

Thus, the expectation of m(t, θ, γ) is equal to 0. As m(t, θ, γ) has expectation 0, Λ̂j(t)

is an M-estimator and therefore is consistent and asymptotically normal.

B.2 Generating Censoring and Survival Times

For ease of presentation, we denote X = (1, Z1, Z2, Z3, A)T .
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B.2.1 Censoring Time

The censoring time C is generated from a Cox model and λc(t|Z(t), Z) = λc0{exp(1.5Z3+

0.3Z(t))}. We assume C is exponentially distributed and λc0(t) = λc = 1.5. To gener-

ate C, we follow the same procedure with generating the survival time T in Scenario

1.

B.2.2 Scenario 1

In the first scenario, the survival time T is generated from a Cox model and

λ(t|Z(t), X) = λ0(t) exp{ηX + βZ(t)}. We assume T is exponentially distributed

and λ0(t) = λ, then then cumulative hazard function

Λ(t|Z(t), X) = λ

t∫
0

exp{ηX + βZ(u)}du

= λ exp(ηX)

t∫
0

exp{βZ(u)}du.

If t < t∗,

Λ(t|Z(t), X) = λ exp(ηX)

t∫
0

exp{0}du = λ exp(ηX)t;

If t ≥ t∗,

Λ(t|Z(t), X) = λ exp(ηX)


t∗∫

0

exp(0)du+

t∫
t∗

exp(β)du


= λ exp(ηX){1− exp(β)}t∗ + λ exp(ηX + β)t.
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As S(t|Z(t), X) = exp{−Λ(t|Z(t), X)} and S(t|Z(t), X) follows uniform distribution

U(0, 1),

T =


− log(u)

λ exp(ηX)
, if − log(u) ≤ λ exp(ηX)t∗

− log(u)− λ exp(ηX){1− exp(β)}t∗

λ exp(ηX + β)
, if − log(u) > λ exp(ηX)t∗,

where u ∼ U(0, 1).

In this scenario, we let λ = 0.6, η = (−0.5, 1, −1, 1, −0.5) and β = 0.3.

B.2.3 Scenario 2

In the second scenario, the survival time T is generated from an accelerated failure

time (AFT) model. For the time dependent covariate Z(t), Cox (2018) proposed an

extension of the AFT model:

U =

T∫
0

exp{βZ(s)}ds,

where U is the latent baseline survival time.

Based on this idea, we consider both baseline covariates and time-varying covariate:

U =

T∫
0

exp{ηX + βZ(s)}ds.

If T ≤ t∗,

U =

T∫
0

exp{ηX + 0}ds = exp(ηX)t;
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If T > t∗,

U =

t∗∫
0

exp(ηX)ds+

T∫
t∗

exp(ηX + β)ds

= exp(ηX)t∗ + exp(ηX + β)(T − t∗).

We let U = eε, where ε∼N(0,1), then

T =


U

exp(ηX)
, if exp(ηX)U ≤ t∗

U − exp(ηX){1− exp(β)}t∗

exp(ηX + β)
, if exp(ηX)U > t∗.

In this scenario, we let η = (0.2, −0.5, 0.5, −0.5, 0.3) and β = −0.3.

B.2.4 Scenario 3

In the third scenario, the survival time T is generated from a Cox model and we

assume T follows lognormal distribution. The cumulative hazard function

Λ(t|Z(t), X) =

t∫
0

λ0(u) exp{ηX + βZ(u)}du.

If t < t∗,

Λ(t|Z(t), X) =

t∫
0

λ0(u) exp{ηX + 0}du

= exp(ηX)Λ0(t).

Hence

Λ0(t) =
Λ(t|Z(t), X)

exp(ηX)
. (B.2)
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If t ≥ t∗,

Λ(t|Z(t), X) =

t∗∫
0

λ0(u) exp(ηX)du+

t∫
t∗

λ0(u) exp(ηX + β)du

= exp(ηX)Λ0(t∗) + exp(ηX + β){Λ0(t)− Λ0(t∗)}

= exp(ηX)[1− exp(β)]Λ0(t∗) + exp(ηX + β)Λ0(t).

Hence

Λ0(t) =
Λ(t|Z(t), X)− exp(ηX)[1− exp(β)]Λ0(t∗)

exp(ηX + β)
. (B.3)

The cumulative baseline hazard function for the lognormal distributed T is:

ΛLN,0(t) = − log
{

1− Φ
( log(t)

σ

)}
. (B.4)

As S(t|Z(t), X) = exp{−Λ(t|Z(t), X)} and S(t|Z(t), X) follows uniform distribution

U(0, 1), we generate T by inversing the cumulative baseline hazard function (B.4),

plugging in the right sides of Equation (B.2) and (B.3) respectively, and replacing

Λ(t|Z(t), X) with {− log(u)}, where u is from the uniform distribution U(0, 1), i.e.

T =


Λ−1
LN,0

(
−

log(u)

exp(ηX)

)
, if −

log(u)

exp(ηX)
≤ t∗

Λ−1
LN,0

(
−

log(u) + exp(ηX)[1− exp(β)]Λ0(t∗)

exp(ηX + β)

)
, if −

log(u)

exp(ηX)
> t∗.

In this scenario, we let η = (0.2, 1, −1, 1, −0.5) and β = 0.3.
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B.3 Practical Implementations

Take the treatment (A = 1) as an example, we show how to implement our method.

Step 1. Fit treatment assignment model

We fit a logistic model with parameter θ for treatment assignment using Z as the

covariates, i.e. logit{P (Ai = 1|Zi)} = θTZi. θ is estimated through maximum likeli-

hood estimator θ̂, which solves the estimating equation

n∑
i=1

Zi{Ai − expit(θTZi)} = 0.

Step 2. Calculate IPTW weight

We define pi1(θ) = P (Ai = 1|Zi, θ). The IPTW weight wi1(θ̂) = I(Ai = 1)/pi1(θ̂).

Step 3. Fit censoring model

We fit a Cox model for censoring where the time to censoring is outcome. Let X(t) =

{A,Z3, Z(t)}T , then the Cox model can be fit as λ1,i{t|Xi(t)} = λ01(t) exp{γT1 Xi(t)}.

Estimators for γ and Λ01(t) can be obtained by the maximum partial likelihood (PL)

estimator, γ̂ and the Breslow estimator, Λ̂01(t), respectively. The Breslow estimator

for Λ01 is defined as

Λ̂01(t) =

t∫
0

∑n
i=1 dNi1(t)∑n

i=1 exp(γ̂TXi(t))Yi1(t)
.

Step 4. Calculate IPCW weight

Let pci(γ, t) denote the probability that Ci is greater than t given {Xi(t), γ}. For

each patient at each time point, we calculate the IPCW weight wci (γ̂, t) = I(Ci ≥
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t)/pci(γ̂, t).

Step 5. Find optimal β1

As described in Section 3.3, we used the OLS approach to minimize the variance of

estimators within the subclass. To obtain the OLS estimator, we let Ai1 = I(Ai = 1),

and we treat
[Ai1{dNi(t)−Yi(t)dΛ̂DIPW1 (t)}

pi1(θ̂)pci (γ̂,t)

]
as the outcome, and

[Ai1−pi1(θ̂)

pi1(θ̂)
g1(Zi)

]
as covari-

ates, where g1(Zi) is a vector of basis function of Zi, e.g. g1(Zi) = (1, Z1,i, Z2,i, Z3,i).

Then the optimal β1(t) was estimated by

β̂1,opt(t)dt =

[ n∑
i=1

{Ai1 − pi1(θ̂)

pi1(θ̂)
g1(Zi)

}{Ai1 − pi1(θ̂)

pi1(θ̂)
g1(Zi)

}T]−1

[ n∑
i=1

{Ai1 − pi1(θ̂)

pi1(θ̂)
g1(Zi)

}Ai1{dNi(t)− Yi(t)dΛ̂DIPW
1 (t)}

pi1(θ̂)pci(γ̂, t)

]
.

Step 6. Augmented estimator

The cumulative harzard Λ1(t) is estimated by Λ̂1(t),

Λ̂1(t) =

t∫
0

∑n
i=1wi1(θ̂)wci (γ̂, u)dNi(u) + {1− wi1(θ̂)}β̂1,opt(u)g1(Zi)du∑n

i=1 wi1(θ̂)wci (γ̂, u)Yi(u)
.

Step 7. Estimate survival probability

S1(t) is estimated by Ŝ1(t) = e−Λ̂1(t).

Step 8. Estimate restricted mean lifetime

µ1(t) is estimated by µ̂1 =
∫ L

0
Ŝ1(u)du.
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