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The oxidants used in water treatment to inactivate pathogens are powerful and, 

consequently, react with other constituents they encounter, notably organic matter and pipe 

corrosion scale. Moreover, the complex relationships between said reactions remains poorly 

understood. Reactions with organic matter produce disinfection byproducts, many of which are 

regulated by the United States Environmental Protection Agency (EPA) due to their toxicity. To 

remove these byproducts and meet EPA standards, water treatment facilities add chemicals that 

can exacerbate corrosion and increase the concentration of dissolved metals in drinking water.  

Chlorine dioxide, the focus of this dissertation, has been used as an alternative to free 

chlorine, the most commonly used disinfectant, because it does not produce organic disinfection 

byproducts. Additionally, chlorine dioxide has a disinfecting power equal to or higher than that of 

free chlorine, its disinfection capabilities are independent of pH, and it can be used as either a 

primary or secondary disinfectant. From a corrosion standpoint, chlorine dioxide has a high 

oxidation-reduction potential, which promotes the formation of passivating scale layers on metal 

pipe surfaces, thereby preventing dissolution of heavy metals into drinking water. Chlorine dioxide 

does, however, produce two toxic inorganic byproducts, chlorite and chlorate.  

Despite the drawbacks associated with inorganic byproduct formation, chlorine dioxide is 

a disinfectant worthy of investigation with regards to three reactions: pathogen disinfection 

mechanisms; drinking water pipe corrosion; and formation of inorganic byproducts. The first part 

of this dissertation addresses the inactivation of the H1N1 influenza virus using computational 

models. Both computational and experimental methods identified tryptophan 153, an amino acid 
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residue key in the binding of H1N1 to its human host cell, as the primary target of chlorine dioxide 

oxidation. 

Part two of this work shows results from batch reactor experiments of chlorine dioxide 

with lead and copper minerals commonly found in corrosion scale layers. Decay of chlorine 

dioxide in the presence of lead oxide and lead carbonate was significantly faster and produced 

different byproducts than decay in the presence of cupric oxide. It was further revealed that the 

relationship between pH and reaction rate is likely dependent upon surface charge for lead oxide 

but not for cupric oxide.  

These findings were the impetus for the third and final part of this dissertation which 

employed computational methods to model the subtle differences between surface adsorption on 

cupric oxide and lead oxide, of either the chlorine dioxide monomer or dimer, in the presence or 

absence of hydroxide. The results of the calculations suggest that the chlorine dioxide degradation 

pathway on the cupric oxide surface favors dimerization of chlorine dioxide and its ensuing 

disproportionation into chlorite and chlorate, whereas the lead oxide surface favors direct electron 

transfer and formation of chlorite.  

 These findings add to the body of knowledge on the alternative disinfectant, chlorine 

dioxide, and its chemical interactions with pathogens and corrosion scale. The results suggest that 

chlorine dioxide may have highly specific mechanisms of virus inactivation and computational 

methods could be valuable tools for elucidating these mechanisms. Further conclusions suggest 

that chlorine dioxide decay caused by mineral scales in lead-containing water supply networks 

may be more pronounced than in those assembled from copper pipes.
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 DISINFECTION 

Disinfection reduces the number of viable waterborne and airborne pathogens to protect the 

public from disease, yet knowledge gaps persist in how disinfectants kill these pathogens. The 

disinfection process is a fundamental part of drinking water treatment systems as viral infections, 

including gastroenteritis, meningitis, and hepatitis, are often a result of exposure to improperly 

treated water.1 Gaseous disinfection is also used in the food industry to inactivate pathogens on 

fruits and vegetables and in the medical industry to sterilize medical equipment and surfaces.2–4 

Historically, the most common chemical oxidant used for disinfection has been chlorine gas due 

to its low cost.5 In the past two decades, water utilities, food industries, and medical facilities have 

begun using alternative disinfectants including: liquid free chlorine, chlorine dioxide, chloramines, 

ozone, and ultraviolet irradiation (UV).2,5–9 The alternatives to free chlorine will be further 

discussed to explain their use in drinking water treatment and what is known of their inactivation 

mechanisms. Gaps in understanding of inactivation mechanisms of both free chlorine and its 

alternatives remain, especially for unculturable viruses. These gaps must be filled to maintain 

disinfectant efficacy and thereby safe drinking water.  

 

1.1.1 Disinfection in drinking water treatment 

Drinking water facilities in the United States commonly add a residual chemical, during 

secondary disinfection, to protect against pathogens in the distribution system. Of the alternative 

disinfectants, ozone can only be use for primary disinfection, while chloramines can only be used 
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for secondary disinfection. Free chlorine and chlorine dioxide can be used in both primary and 

secondary disinfection. Compared to chlorine dioxide, free chlorine and chloramines require larger 

concentrations and longer contact times, and their effectiveness can vary with pH, including within 

common drinking water pH regimes.10,11 Free chlorine, chlorine dioxide, and ozone all have much 

greater disinfection power than chloramines, which is needed for primary disinfection. Thus 

chloramines are suitable only for secondary disinfection.12 

Disinfection via ozone, UV, and chlorine dioxide is used by a small percentage of treatment 

systems in the United States, but all have increased in popularity over the years.13 Chlorine dioxide 

and ozone are both powerful oxidants that inactivate viral pathogens through chemical reactions 

with either the outer protein or inner genetic material.14,15 UV primarily attacks the inner genetic 

material of pathogens, causing inactivation, but it can also target capsid proteins causing backbone 

cleavage and general damage.16,17 Chlorine dioxide and ozone require special equipment for on-

site generation, storing, and byproduct control. UV systems also require the installation of special 

equipment and monitoring technology for application. While chlorine dioxide, ozone, and UV can 

be more complex to handle than free chlorine, they offer advantages such as fewer disinfection 

byproducts, higher inactivation efficiencies, and little or no sensitivity to pH.5,18  

The characteristics of each oxidant need to be weighed when selecting a disinfectant for 

water treatment. While utilities have been implementing all types of oxidants in water treatment, 

the complexity of their effects on pathogen disinfection, corrosion, and byproduct formation and 

how these reactions affect each other are not well understood. 
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1.1.2 Virus Inactivation  

 Inactivation mechanisms are highly dependent on the type of disinfectant used. The 

variability comes from targeting virus proteins versus genomes. In general, damage to proteins 

causes the virus to lose the ability to recognize and bind to host cells, while damage to the genome 

prevents viral replication. Typically, free chlorine, the most common disinfection oxidant, destroys 

both viral protein and genome.14,15 Chlorine dioxide, in contrast, tends to exclusively target viral 

proteins.14,15 More specific mechanisms of inactivation are still unclear and seem to also depend 

on the virus type.14,15,19 Previous studies on bacteriophage MS2 show free chlorine damage causes 

loss of replication and injection but not binding ability despite widespread protein damage.14 

Chlorine dioxide in the same study exclusively damaged the bacteriophage MS2 protein and had 

no influence on replication ability.14 This is in agreement with a narrower study attributing chlorine 

dioxide inactivation of the H1N1 influenza A virus to oxidation of tryptophan 153 in the 

hemagglutinin protein, which ruined the virus’s ability to bind to host cells.20  

To effectively inactivate dangerous pathogens, disinfectants must have high reactivities. 

Powerful oxidants, however, will readily react with water constituents other than pathogens. Thus, 

inactivation is only one type of reaction that occurs during treatment. Other reactions include 

reactions with organic material, forming potentially hazardous disinfection byproducts, and 

reactions with metals in the distribution system, forming corrosion scales and potentially 

dissolving hazardous amounts of heavy metals into drinking water. The interplay and complexity 

of these reactions, for chlorine dioxide, is poorly understood.  
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 DISINFECTION BYPRODUCTS 

Disinfection reduces the risk of waterborne illness, but in the process, it can increase the risk 

of exposure to dangerous compounds formed during unwanted reactions with water constituents. 

Moreover, the relationships between these unwanted reactions and how they impact water quality is 

not well understood. The oxidants used during treatment react with natural organic matter (NOM), 

bromide, and iodide, which are naturally present in most source water.21,22 Despite the risks 

associated with these compounds, adequate disinfection for microbial control is essential.  In 1993, 

400,000 people were infected by cryptosporidiosis in Milwaukee, Wisconsin and more than 100 

people died, due to improperly disinfected water.23,24 Accordingly, disinfection remains a critical 

part of water treatment, but must be balanced with disinfection byproduct (DBP) control.  

The proliferation of DBPs could be attributed to the need for high concentrations of 

disinfectants added to drinking water to safeguard against unculturable viruses, whose inactivation 

kinetics are unmeasurable. Despite having employed the same disinfection methods for decades, 

the exact mechanisms by which they cause inactivation are poorly understood, as are the differences 

in efficacy for specific pathogens.14,15,19 The susceptibility of dangerous unculturable viruses to 

these disinfection methods is also unknown due to an inability to perform experiments on such 

viruses in vitro.15 Because of this knowledge gap, water treatment systems routinely administer 

disinfectants, specifically free chlorine, at higher concentrations than needed in order to achieve 

pathogen inactivation. This in turn leads to a proliferation of reactions with NOM rather than 

pathogens. Gaps in understanding of how formation and mitigation of DBPs influences corrosion of 

water treatment distribution systems and vice versa also persist. For chlorine dioxide there remains 

gaps in knowledge for chlorite and chlorate formation, especially in the presence of lead-based 
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corrosion scale. The state of knowledge on formation, regulation, and mitigation of these DBPs will 

be discussed herein. 

 

1.2.1 Formation of DBPs 

While many reactions between disinfectants and NOM create harmless byproducts, others 

form hazardous halogenated compounds called disinfection byproducts (DBPs), which can cause 

liver, kidney, heart, and neurological impairments; birth defects; and pregnancy risks even at 

relatively low concentrations.5,21,25 The most common disinfectants used in water treatment, free 

chlorine, chlorine dioxide, chloramines, and ozone, all produce their own, sometimes overlapping, 

sets of DBPs.21 As there are no DBP-free oxidants, a delicate balance that needs to be struck between 

byproduct formation and pathogen inactivation to maintain public health standards and create 

appropriate regulations that mitigate risk.26 This can only be achieved through a comprehensive 

understanding of DBP formation. Currently, more work needs to be done for chlorine alternatives, 

including chlorine dioxide, which create different sets of byproducts. It is not well understood what 

system parameters influence the production of chlorine dioxide byproducts or how these byproducts 

are formed in the presence of metal or organic matter catalysts.  

DBP formation is especially prevalent in systems that use free chlorine. Free chlorine has 

been shown to produce trihalomethanes (THMs) and haloacetic acids (HAAs), the two most 

regulated groups of DBPs.6,27,28 The discovery of THMs in the 1970s catalyzed research focused 

on mitigating public health issues related to DBPs.29,30 Since the first detection of THMs 

approximately 600 DBPs have been identified, including chloral hydrate, chloropicrin, haloketones, 

iodo- and bromo-compounds, MX, halonitromethanes, N-nitrosodimethylamine, and others.5,31 

Concentrations of these newer compounds, in drinking water, can be comparatively low ranging 
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from nanograms per liter to 100 micrograms per liter but can still be hazardous due to their high 

toxicity.32 Both concentration and potency therefore play a role in public health risk as highly toxic 

compounds can pose serious human health concerns. Work on DBP formation continues to reveal 

new byproducts, especially nitrogenated compounds, which are formed when chloramines are used 

as a disinfectant and are posited to be more toxic than THMs and HAAs.33 Due to the toxicity of 

DBPs, regulatory agencies have put measures in place to protect the public from ingesting high 

doses of DBPs in their drinking water. 

 

1.2.2 Regulation of toxic DBPs 

US Environmental Protection Agency (EPA) Regulations are based on total THM and 

HAA concentrations which include four distinct THMs and five distinct HAAs under the Stage 1 

Disinfectants/Disinfection Byproducts Rule (Table 1.1 and Table 1.2). These compounds form 

from reactions between disinfectants and NOM, where chlorine is substituted into the organic 

molecule. Also regulated by the EPA are the disinfectants themselves (Table 1.1), chlorite (a DBP 

associated with chlorine dioxide, Table 1.2), and bromate (associated with ozone and free chlorine 

if bromide is present in the treated water, Table 1.2).  

 

Table 1.1 EPA Disinfectant Rules adapted from the EPA.34 Maximum residual disinfection level (MRDL). 

 

Contaminant 

(as Cl2) 

MRDL 

(mg/L) 

Potential Health Effects from Long-

Term Exposure Above the MRDL 

Sources of Contaminant 

in Drinking Water 

Chloramines 4.0 Eye/nose irritation; stomach 

discomfort, anemia 

Water additive used to 

control microbes 

Chlorine 4.0 

Eye/nose irritation; stomach 

discomfort 

Water additive used to 

control microbes 

Chlorine 

dioxide 0.8 

Anemia; infants and young children: 

nervous system effects 

Water additive used to 

control microbes 
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Table 1.2. EPA Disinfection Byproducts Rules adapted from the EPA.34 Maximum contaminant level 

(MCL). 

 

Contaminant MCL 

(mg/L) 

Potential Health Effects from 

Long-Term Exposure Above the 

MCL 

Sources of Contaminant 

in Drinking Water 

Bromate 0.01 Increased risk of cancer Byproduct of drinking 

water disinfection 

Chlorite 1 Anemia; infants and young children: 

nervous system effects 

Byproduct of drinking 

water disinfection 

Haloacetic acids 

(HAA) 

0.06 Increased risk of cancer Byproduct of drinking 

water disinfection 

Total 

Trihalomethanes 

(TTHMs) 

0.08 Liver, kidney or central nervous 

system problems; increased risk of 

cancer 

Byproduct of drinking 

water disinfection 

 

 

To meet the standards set by the EPA, utilities originally focused on reducing the organic 

precursors to DBPs by coagulation,22 however, the methods used for the reduction of DBPs have 

had unintended consequences on corrosion and heavy metal dissolution in water distribution 

systems. Knowledge gaps remain how the formation and mitigation of DBPs influences corrosion 

and disinfection kinetics, especially with regards to chlorine alternatives such as chlorine dioxide.  

Early research showed coagulation methods resulted in successful reduction of total 

organic carbon, and were easily implemented in existing treatment systems.22 However, the 

mechanisms behind NOM removal by coagulation are still poorly understood, leading to excessive 

application of chemicals that cause unwanted corrosion effects. Commonly used coagulants 

containing chloride, such as ferric chloride and polyaluminum chloride, exacerbate corrosion in 

distribution systems by increasing the ratio of chloride to sulfate, which has been shown to create 

an environment conducive to high galvanic currents.35,36 Connections between copper and lead are 

highly susceptible to galvanic corrosion and are made more vulnerable by a high chloride to sulfate 
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mass ratio.36,37 While mitigating health risks associated with DBPs, chloride-based coagulants can 

inadvertently increase risks associated with heavy metal exposure. It has therefore been of interest 

to utilities to investigate disinfectants such as chloramines, ozone, UV and chlorine dioxide, which 

produce fewer THMs and HAAs than free chlorine without the use of coagulation. This 

dissertation aims to fill the gaps in knowledge of chlorine dioxide byproduct production and said 

byproducts’ influence on lead and copper corrosion and disinfection kinetics.  

 

1.2.3 Mitigation of DBPs 

The two strategies employed by utilities to reduce DBPs are: remove as much organic 

matter as possible before disinfection and avoid free chlorine as a disinfectant. Removal of organic 

matter can sometimes cause problems with corrosion and requires additional chemicals to be added 

during the treatment process. The literature has primarily focused on the mechanisms of free 

chlorine reaction with precursor NOM. It is of interest, however, to look at alternative disinfectants 

and the mechanisms they favor in forming DBPs as utilities continue to replace free chlorine with 

these alternatives.  

As an alternative to reducing NOM prior to disinfection, treatment plants have adopted 

alternative oxidants to chlorine to meet EPA regulations. Chloramines, chlorine dioxide, ozone, and 

UV are all alternatives to free chlorine with lower propensities to form DBPs.5 While they can reduce 

or eliminate THM and HAA formation, alternative disinfectants can produce alternative DBPs, 

especially in bromated waters. Ozone produces bromate,38 a carcinogen regulated by the EPA, while 

chloramines and free chlorine can form brominated organic compounds, which are demonstrably 

more toxic than chlorinated equivalents.39 Chloramines increase the occurrence of highly toxic 

nitrogenated compounds, such as nitrosodimethylamine (NDMA),7 and produced higher levels of 
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other priority DBPs such as iodinated THMs, especially when used in conjunction with ozonation.39 

Some of these compounds have much higher toxicities and associated risks than THMs or HAAs.7,40 

Chlorine dioxide readily forms chlorite and to a lesser degree chlorate41 but no iodinated, bromated, 

or nitrogenated DBPs.21  

 

 CORROSION SCALE  

Alongside reactions with NOM, disinfectants react with drinking water distribution 

infrastructure producing corrosion byproducts. These reactions occur with iron and copper 

plumbing, but recent water crises in Flint, Michigan and Washington DC have prompted increased 

interest in reactions with lead. Corrosion reactions cause serious public health concerns, as well as 

erosion of system materials, thereby influencing the cost of clean water, and affecting public 

perception of safe practices.37,42 Due to the complexity of drinking water chemistry, corrosion 

reactions are still poorly understood, as is apparent from the recent Flint, MI and Washington DC 

water crises. Additionally, the relationships between corrosion, byproduct formation and removal, 

and disinfection efficacy have not been well studied, especially for free chlorine alternatives.  

The costs associated with corrosion can be huge. Regulations established in 1986 prohibit 

the use of lead pipes in new construction, but a glut of older structures still contain original lead 

infrastructure. The EPA estimated $335 billion would be needed to repair corrosion related issues 

over the next 20 years for 70,000 water systems.43 Often these problems go overlooked until a 

public health crisis exposes dying infrastructure, as in the case of the Flint Water Crisis in 

Michigan beginning in 2014 and the Washington D.C. lead contamination from 2001 to 2004. 

Both events resulted in widespread public health problems, mistrust of government agencies, and 

costs to repair systems that should have already been upgraded.  
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The two primary metals that are regulated in the United States are copper and lead, whose 

concentrations have been subject to the EPA Lead Copper Rule since 1991.44 This dissertation 

focuses on the issue of lead corrosion. The main sources of lead exposure are normally through 

lead paint, dust containing lead paint, and leaded gas.6,45 There is no safe blood lead level in 

children according to the Center for Disease Control and Prevention. Lead is stored in the skeletal 

system and accumulates in the body over time, primarily affecting the nervous system and slowing 

mental and physical growth in children.46 In adults, lead toxicity affects the growth of red blood 

cells, metabolism, and sperm production, and causes anemia, kidney damage, miscarriages, and 

high blood pressure.34 As sources of lead exposure were reduced, such as the ban of leaded 

gasoline, there has been more of a focus on lead infrastructure as a route of exposure.47 The Lead 

Copper Rule requires drinking water systems to notify the public and/or reduce the corrosivity of 

the water if lead levels in more than 10% of the sampled consumer taps are over 15ppb.44 Lead 

infrastructure is the source of 50-75% of the total lead in drinking water.48 Because of the dissolved 

oxygen content, untreated water will corrode lead pipes and cause the EPA Action Level in the 

Lead Copper Rule to be exceeded.49,50 Disinfectant residuals, i.e. free chlorine, chloramines, or 

chlorine dioxide will also cause lead corrosion and produce mineral scales on the inside of lead 

plumbing.37 The following will discuss the formation, dissolution, and control of these mineral 

scales.  

This dissertation aims to address some of how these mineral scales affect byproduct 

formation and pathogen removal when chlorine dioxide is used as a disinfectant. Previous work 

has investigated chlorine dioxide reactions with copper, nickel, and iron scales,51 but there is little 

work on chlorine dioxide reactions with lead scales.  
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1.3.1 Formation of lead corrosion scale 

To control lead leaching into drinking water, the reactions between disinfectants and lead-

containing pipes and the affect these reactions have on byproduct mitigation must be better 

understood. The type of scales, layers of mineral deposits that form on distribution system 

plumbing, that develop on lead pipes depend on the chemistry of the system water. Metallic lead 

is too thermodynamically unstable and will immediately be oxidized to corrosion products where 

lead is in a divalent or tetravalent form.37 Lead can be found in lead (II) carbonates, lead (II) oxides, 

and lead (IV) oxides when phosphate inhibitors are absent from the system.52–54 

In drinking water systems, the oxidation-reduction potential (ORP) is the primary indicator 

of what the oxidation state of the corrosion products will be and therefore what type of scale will 

develop.55 ORP or redox potential is a measure of the water’s propensity to reduce or oxidize 

material and is based on the availability of free electrons.55 In drinking water systems, distribution 

plumbing is commonly made of iron, lead, or copper, metals which lose their electrons to oxidants 

in the water such as residual disinfectants (free chlorine, chloramines, chlorine dioxide), dissolved 

oxygen, and organic matter.55 

Free chlorine creates a high ORP and drives the system toward lead (IV) in the passivating 

form of lead oxide (PbO2), whereas oxygen or chloramines create lower ORPs that favor lead (II) 

(Table 1.3).53 The mechanism from metallic lead to tetravalent lead is not completely understood, 

but it is proposed that lead (II) minerals are formed as precursors to lead (IV) oxides 52,53. Both 

plattnerite (β- PbO2) and scrutinyite (α- PbO2) develop in the long term presence of free chlorine.53 

Formation of the lead oxide scale takes time to develop and can only occur in high ORP waters; 

thus, lead (II) compounds, hydrocerussite and cerussite, can also coexist with lead (IV) oxide 
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depending on alkalinity and/or pH of the water.53 It has been assumed that chlorine dioxide will 

also create a high ORP conducive to lead (IV) scale development (Table 1.3) 55.  

 

Table 1.3. Maximum EH values (Volts) as a function of pH and oxidant type.55 

Oxidant pH 7 pH 8 pH 9 

Oxygen 0.582 0.552 0.508 

Monochloramine 0.806 0.716 0.660 

Chlorine dioxide 0.980 0.943 0.912 

Free chlorine 1.020 0.922 0.769 

 

 

Systems that use chloramines do not develop ORPs high enough to oxidize lead to the (IV) 

state. Instead, lead (II) minerals, hydrocerussite (Pb3(CO3)2(OH)2) and to a lesser extent cerussite 

(PbCO3), are the primary corrosion products.56,57 Litharge (PbO) and plumbonacrite 

(Pb5O(CO3)3(OH)2 have also been found in pipe scales but are much less common than 

hydrocerussite or cerussite.57 Lead (II) solids are more soluble than lead (IV) oxides, which can 

increase levels of dissolved lead in plumbing that contains lead (II) scale.48 Previous studies 

showed chloraminated waters to have lead concentrations ten times that of chlorinated waters.37,47 

Chloramines also react with brass, cause galvanic corrosion, and promote the growth of nitrifying 

bacteria which all may further aggravate lead release.37,47  

 

1.3.2 Lead scale dissolution  

To prevent leaching of lead into drinking water, it is preferable to maintain a high ORP and 

thus a stable lead (IV) oxide passivating layer. Lead solubility is high when a bare pipe first comes 

into contact with a disinfectant or other natural oxidants,51 and as free chlorine or another 



 13 

disinfectant of high ORP is consumed lead is oxidized from lead (0), to lead (II), to lead (IV).53 

Concentration of dissolved lead steadies when lead (II), which forms more soluble compounds, 

develops into lead (IV) scale, relatively insoluble.58 Once the oxidant has been completely 

consumed, dissolved lead concentration increases dramatically due to the dissolution of the scale.58 

Free chlorine prevents the dissolution of lead into drinking water 37,58,59. 

Within distribution systems, it should be noted that water is not in contact long enough 

with pipe scales to reach equilibrium; even equilibrium in stagnant waters can take hours.60 The 

concentration of dissolved lead is therefore controlled by dissolution rates and the scale type rather 

than a controlling solid.60,61 Water in the plumbing system can have periods of stagnation and 

varying velocities which also influence lead leaching and prevent the system from reaching 

equilibrium.58 

High concentrations of lead in drinking water can also be attributed to the destabilization 

of any of the previously discussed corrosion scales. Stability of the scale depends on the chemical 

characteristics of the water, specifically pH, alkalinity, anions present, organic matter 

concentration, disinfectant concentration, and ORP.51,58 A switch from free chlorine to chloramine 

residual in Washington, D.C. in the early 2000s resulted in huge spikes in drinking water lead 

concentrations and public blood lead levels.37 The cause of this dramatic increase was the abrupt 

change in ORP of the system which resulted in the dissolution of the lead oxide scale previously 

formed by long term free chlorine use.37,47 Understanding the factors influencing the oxidation 

state of lead is essential in understanding and controlling corrosion chemistry.  
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1.3.3 Control of corrosion scale 

Disinfectants, corrosion control anions, pH and the presence of NOM are the main factors 

that influence corrosion chemistry. The relationships between these factors are vital in the 

mitigation of dissolved lead in tap water. Also crucial are the relationships between these factors, 

byproduct formation, and disinfection efficacy. While there are many studies on free chlorine and 

chloramine effects on corrosion, less work has been done on chlorine dioxide, especially in the 

context of lead dissolution.  

To control the release of lead, drinking water plants have monitored and maintained a high 

pH.54 More recently, corrosion inhibitors have become common additions to create passivating 

layers on metallic infrastructure. Phosphates have been added in the following forms: phosphoric 

acid, a combination of orthophosphoric acid and zinc orthophosphate, polyphosphates, and blends 

of orthophosphoric acid and polyphosphates.62 From 1992 to 1994, there was a significant increase 

in phosphate inhibitors as a result of the Lead Copper Rule, instituted in 1991.63 In the case of lead 

corrosion, orthophosphates, added as Na3PO4∙H2O, are the most effective and decrease soluble 

lead over a range of water chemistries, whereas polyphosphates can increase soluble lead.62  

Orthophosphate prevents the formation of both divalent and tetravalent lead corrosion 

products.61 Instead of a lead oxide or lead carbonate scale, orthophosphate facilitates the formation 

of hydroxypyromorphite, tertiary lead orthophosphate, and chloropyromorphite, all of which are 

insoluble, hydroxypyromorphite being the most prevalent.52 Phosphate inhibitors can passivate 

lead surfaces in systems that use both chloramines and free chlorine. If there is no orthophosphate 

present hydrocerussite forms and, if the water ORP is high enough, there is a subsequent shift to 

plattnerite and scrutinyite.53  
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In drinking water systems, NOM also plays a role in both the stability and the dissolution 

of lead corrosion scales. In the absence of a high ORP disinfectant, lead (IV) oxide scale will be 

reduced by NOM from lead (IV) to lead (II) thereby increasing soluble lead.59 NOM will also react 

directly with disinfectants to form DBPs, as discussed in 1.2 Disinfection byproducts. The 

interaction of NOM and disinfectants can also impact corrosion by influencing the system ORP. 

NOM and oxidants readily react, which can decrease the ORP of the system and promote the 

dissolution of corrosion scales.48 

Understanding the chemistry of corrosion is essential for regulating and avoiding lead 

release in tap water, and for chlorine dioxide, this chemistry is understudied. There are three major 

components to consider for distribution systems: the strength of the oxidant used for disinfection 

residual i.e. ORP; formation and destabilization of lead scales; and the presence of anions, 

primarily orthophosphate, and/or NOM. Corrosion chemistry is just one piece of the complex 

reactions that occur during disinfection. To avoid lead release, water treatment systems also need 

to consider byproduct formation and mitigation as well as the effect on disinfectant efficacy. The 

key knowledge gaps are in these relationships between corrosion scale, DBPs, and pathogens.  

 

 THE CASE FOR CHLORINE DIOXIDE  

Since the implementation of the Disinfectant Byproduct Rule by the EPA, utilities have 

been searching for alternate disinfectants that produce controllable DBPs (or none at all) while still 

maintaining safe water quality. One oxidant that could meet these criteria is chlorine dioxide. 

Numerous European countries including Italy, Germany, France and Switzerland have already 

employed chlorine dioxide as a secondary disinfectant.12 In the United States, chlorine dioxide use 

has increased in recent decades but is still used only by a small percentage of drinking water 
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treatment plants, typically for pre-oxidation purposes.64 Despite some implementation of chlorine 

dioxide as a disinfectant, its effect on corrosion scale and inorganic byproduct formation are key 

gaps in knowledge this dissertation aims to investigate.  

Chlorine dioxide has many benefits as a disinfectant when compared to free chlorine and 

chloramines. It has been shown to have greater disinfection efficiency than that of free chlorine or 

chloramines.12 Unlike chloramines and free chlorine, it has the oxidizing capacity to inactivate 

viruses, bacteria, and protozoa including Giardia and Cryptosporidium.10,65 Chloramines have also 

been shown to increase nitrification in distribution networks 66 and produce toxic nitrogenous 

DBPs.29 Free chlorine is susceptible to changes in pH and produces halogenate DBPs, primarily 

THMs and HAAs. Chlorine dioxide is pH resistant and does not produce THMs, HAAs, or 

nitrogenated DBPs.  

Free chlorine and chlorine dioxide have also been shown to have a similar ORP, which 

could facilitate a transition to chlorine dioxide without disrupting the passivating layers already in 

place in the distribution system. In Washington D.C., the switch from free chlorine to chloramines 

as a secondary disinfectant resulted in dangerously high levels of dissolved lead in the water 

system. It was concluded that the change in ORP due to the switch in oxidant upset the passivating 

layers on piping, resulting in lead dissolution.37 At high ORPs, chlorine dioxide and free chlorine 

should both form similar insoluble passivating layers on lead surfaces and thus lead dissolution 

due to change in disinfectant could be a nonissue but requires further investigation.  

Chlorine dioxide does produce inorganic byproducts chlorite and chlorate. Both have 

associated health risks including anemia and nervous system effects. Chlorite is regulated by the 

EPA with a maximum contaminant level of 1.0 mg/L whereas chlorate is unregulated.67 Chlorine 

dioxide does not produce either THMs or HAAs like free chlorine, carcinogenic bromate like 
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ozone, or nitrogenated compounds like chloramines.5,23,68 Chloramines, a more common 

secondary disinfectant in the US, can produce haloacetonitriles and iodoacetic acids that are 

potentially more toxic than currently regulated compounds.33 Chlorine dioxide could be used as a 

primary disinfectant for water rich in bromide (e.g. coastal waters) instead of ozone as it readily 

forms bromate when bromide is present whereas chlorine dioxide does not.69 Furthermore, ozone 

is also not a viable option for secondary disinfection due to its high reactivity. 

Despite producing inorganic DBPs, chlorine dioxide can still be used as a disinfectant in 

treatment systems. Adjustments to both pre-oxidation and coagulant application processes can 

greatly reduce chlorine dioxide consumption and chlorite formation.70 There are also specific 

removal techniques to control chlorite/chlorate formation and make chlorine dioxide a viable 

disinfectant for full scale implementation. Chlorite can be removed by chemical reduction via 

sulfate ions, granular activated carbon, or ferrous ions.71 Ferrous ions are the most effective form 

of removal and can be added in exiting coagulation/flocculation tanks and removed during 

sedimentation and/or filtration.72,73 Further work should be done to establish relationship between 

these chemicals and corrosion, especially with regards to the chloride sulfate ratio.  

Utilities that keep chlorine dioxide concentrations under 1.25mg/L have no problems 

meeting the chlorine dioxide Maximum Residual Disinfectant Level (MRDL) or chlorite 

Maximum Contaminant Level (MCL).74 A treatment plant in Roanoke County, VA successfully 

employed chlorine dioxide under these regulations; at a water demand of 2.3 to 3.7 mgd, chlorine 

dioxide demand was 0.19 mg/L and exceeded 0.3 mg/L only on four occasions.74  

Chlorine dioxide is a more powerful disinfectant than both free chlorine and chloramines, 

as manifested in the CT values for certain targets like cryptosporidium, while only producing 

inorganic DBPs that can be removed post disinfection. Free chlorine is susceptible to changes in 
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pH and produces carcinogenic, heavily regulated DBPs. Chloramines are ineffective against 

certain pathogens due to low disinfectant power, they can produce extremely toxic nitrogenated 

DBPs, and can nitrify water in distribution infrastructure. Ozone cannot be used as a residual and 

produces toxic brominated DBPs. With a similar ORP to free chlorine, chlorine dioxide could a 

more easily deployable alternative disinfectant than chloramines, which have a much lower ORP 

and thus the potential to disrupt passivating layers on metallic distribution system. Chlorine 

dioxide reactions with lead-based pipe corrosion and the byproducts produced during these 

reactions have yet to be investigated.  All these factors make chlorine dioxide worth investigating 

as an alternative to free chlorine in drinking water treatment.  

Drinking water treatment plants have not more broadly adopted chlorine dioxide for a few 

key drawbacks associated with its implementation. While there are examples of chlorine dioxide 

usage on treatment plant scales, the EPA regulations on chlorite are strict and difficult to maintain. 

Additionally, chlorine dioxide is a highly explosive and volatile chemical. Great care must be taken 

when manufacturing and storing the chlorine dioxide solution, therefore treatment plants are wary 

of investing in and training staff to safely manage its production. Although all powerful oxidants 

used in water treatment pose safety risks for operators, and chlorine dioxide is no different in this 

regard. Due to its volatility, chlorine dioxide must also be produced on site and can only be store 

for a limited amount of time. Nevertheless, its many and previously discussed advantages as a 

disinfectant do make it a potential option for drinking water treatment plants, especially if more is 

known about its pathogen disinfection mechanisms, inorganic byproducts, and reactions with 

corrosion on distribution pipes. Insight into these complex reactions could reveal further 

advantages over free chlorine for drinking water treatment.  
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 MOLECULAR MODELING METHODS  

Molecular scale interactions inherently govern all the macroscale properties of disinfection 

previously discussed. Computational techniques offer a way to examine molecular interactions and 

thereby explain results that experiments cannot. Background on the computational methods used 

in this dissertation is presented below.  

1.5.1 Molecular Docking 

Molecular docking methods use computations to predict the binding conformations and 

affinities of smaller molecules to macromolecules, termed ligands and receptors respectively.75,76 

Currently, the most common application of docking is for drug development, and it has never been 

applied to disinfectant docking. Using crystallographic structures of protein receptors and drug 

molecule ligands, docking calculates the free energy of binding and the preferred orientation of 

the ligand on the receptor pocket.77 An example of one such calculation is shown in Figure 1.1, 

the binding of sialic acid to a virus protein. One of the most popular molecular docking programs 

is the AutoDock suite, which contains AutoDock Vina and AutoDock. AutoDock Vina relies on a 

scoring function to calculate chemical potentials whereas AutoDock relies on classical force fields 

to calculate free energy.77 AutoDock Vina is much faster but has more limited applicability to 

atypical systems than AutoDock. Both programs were used in Chapter 2 of this dissertation.  
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Figure 1.1 Image of a sialic acid residue (ligand) bound to the H1N1 influenza virus hemagglutinin protein 

(receptor). The left image shows the molecular surface of both ligand and receptor. The right image labels 

two amino acids that have an affinity for the sialic acid residue. Calculations were done using Auto Dock 

Vina.  

 

1.5.2 Density Functional Theory 

Ab-initio methods use quantum chemistry to solve the Schrӧdinger equation, the central 

equation describing the behavior of atoms in a system. Quantum methods are transferable and 

produce highly accurate results compared to classical or semi-classical methods, but at high 

computational cost, limiting both size and time scales of the system.78 Classical and semi-classical 

methods treat electrons implicitly, which restricts their transferability and accuracy with regards 

to bond breaking or altering.78,79 To converge to an exact solution of the Schrӧdinger equation, ab-

initio methods treat electrons explicitly and the complexity of the calculations increases 

exponentially with the quantity of electrons considered in the simulated system.80 A number of 

methods have been established to mitigate the limitations of ab-initio methods, the most popular 

and widespread being density functional theory (DFT).78 DFT is primarily based on electronic 

ground state structure, which is determined via electron density distributions.80 Other quantum 

mechanical methods such as Hartree and Hartree-Fock use wave functions rather than electron 

density distribution. The DFT calculations are based on the Hohenberg and Kohn theorems for 
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solving the Schrӧdinger equation.80 DFT energy calculations can provide an understanding for any 

system that contains nuclei and electrons from molecules to clusters to solids.81 DFT can also 

determine a variety of molecular properties such as vibrational frequencies, formation energies, 

activation energy barriers, minimum energy structures, reaction paths, magnetic properties, etc.82 

Computational methods have grown popular in the field of organic chemistry as a way to 

understand structures and properties of compounds and to use this data to determine formation 

pathways.82 Using DFT and other ab-initio methods, potential energy surfaces of reaction 

pathways can be calculated from geometric and electronic properties of reactants, products, 

intermediates, and transition-state structures.82–84 A computational study of the Wacker process, 

which has been debated due to controversy in experimental studies, used ab-initio and classical 

methods to compared computed free energy barriers to experimentally measured kinetic 

parameters.85 A study by Yuan et. al. ruled out three proposed pathways and pinpointed the true 

mechanism for aromatic C-H oxidation by calculating transition states and energy barriers.86 

Computational calculations have also been used to study adsorption energies, 

conformations, and adsorbed transitions structures on crystal surfaces.87 Most studies focus on 

rutile crystal structures which common materials for catalysts.87–90 Of interest in the literature has 

been the diffusion or dissociation of a water molecule adsorbed to a rutile surface.87,90 DFT has 

been employed to analyze adsorption geometries and reaction pathways to explain macroscale 

catalytic properties.87 Chapter 4 of this dissertation aims to applies these methods to chlorine 

dioxide adsorption onto cupric and lead oxide surfaces.  

Understanding the complexity of pathogen disinfection, corrosion, and byproduct 

formation has been limited by experimental methods. While there has been computational work 
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done in the area of pathogen inactivation, computational docking and DFT adsorption methods 

have yet to be used to study disinfection.  

 

 DISSERTATION CHAPTERS 

This dissertation intends to contribute to the body of knowledge surrounding disinfectant 

reactions including inactivation, byproduct formation, and corrosion. The aims focus on the 

alternative disinfectant, chlorine dioxide, as it has potential to replace free chlorine in drinking 

water systems. Chlorine dioxide was thus evaluated based on inactivation mechanisms to use 

computational tools in a new way to better predict and understand chlorine dioxide disinfection 

efficacy (Chapter 2); byproduct formation and corrosion to fill the gaps in knowledge associated 

with chlorine dioxide reactions with lead-base corrosion scale and the inorganic DBPs it might 

produce during these reactions (Chapters 3 and 4).  

 Chapter 2 was motivated by the question: what components of a virus are susceptible to 

attack by a disinfectant? Chlorine dioxide appeared to have a highly specific mechanism for 

inactivation of the H1N1 influenza A virus, and because of this specificity H1N1 was chosen as a 

more easily testable starting point for evaluating the ability of docking methods to predict 

oxidation sites. It was shown this location could be predicted by molecular docking methods. 

Tryptophan 153 was identified by both the docking calculations and the mass spectrometry 

measurements as a primary target of chlorine dioxide oxidation. Additional docking calculations 

revealed free chlorine to have a more random docking pattern, and N-bromosuccinimide, a larger 

ligand known to selectively oxidize tryptophan residues, to dock near said residues including 

tryptophan 153. 
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Chapter 3 was motivated by the relationship between corrosion and toxic byproduct 

formation: what byproducts does chlorine dioxide produce when it interacts with corrosion scale 

minerals? The presence of lead-based minerals accelerates chlorine dioxide decay to a single 

inorganic byproduct, chlorite, whereas copper, nickel, and iron minerals catalyze reactions 

resulting in both chlorite and chlorate. The maximum rate of chlorine dioxide decay occurs at the 

zero-point pH for lead oxide. 

Chapter 4 attempts to address the questions resulting from the findings of Chapter 3 

concerning the differences in kinetics, byproduct formation, and dependence on pH between lead 

and copper oxides by using computational methods to determine adsorption energies and 

conformations. The adsorption of a single chlorine dioxide molecule and a chlorine dioxide dimer 

on the surface of lead oxide and cupric oxide, with hydroxide anion present, was investigated. It 

was found that cupric oxide favors the dimerization of chlorine dioxide. Lead oxide favors neither 

the chlorine dioxide monomer nor dimer but does have a weaker adsorption energy than cupric 

oxide, which could explain the kinetic rate disparity between the two metals.  

Overall this work provides insights into computational methods for determining 

inactivation mechanisms, byproduct formation and variation in the context of corrosion, and the 

influence of metallic oxide structure on disinfectant decay reactions.  
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 INTRODUCTION  

The influenza virus has long beleaguered human society,91,92 most recently causing a 

pandemic that killed more than 18,000 people in 2009.93 Epidemics of influenza A viruses annually 

infect individuals in a growing number of countries.94 Chlorine dioxide, a powerful oxidant, has 

been used in various disinfection methods as it is effective against bacteria, protozoa, and viruses, 

including influenza A.10,65 Chlorine dioxide is an alternative water disinfectant, and though H1N1 

is not waterborne, there have been concerns over H1N1 inactivation in water, as viral shedding 

occurs in infected patients’ stools.95,96 Gaseous ClO2 can be used to safely inactivate airborne 

viruses including H1N1 in mice and rats at low concentrations.97,98 Sodium hypochlorite has been 

recommended by the World Health Organization for the disinfection of medical equipment and 

countertops/table surfaces to reduce the risk of H1N1; gaseous ClO2 can serve as an alternative.2,3 

Starting in 1998, the Food and Drug Administration approved the use of ClO2 for the disinfection 

of fruits and vegetables.4 Given the viability of ClO2 as a disinfectant for H1N1 risk reduction, its 

inactivation mechanism is worthy of further investigation. 

One might expect ClO2 to stochastically dock to the protein sheath of a pathogenic virus and 

indiscriminately attack its transmembrane proteins.14 However, it has been proposed that ClO2 has 

a highly specific inactivation mechanism for the H1N1 strain of the influenza virus that targets the 

HA tryptophan 153 (W153) residue, and that the oxidation of this amino acid is responsible for 

Chapter 2. Molecular Docking Predicts Tryptophan 153 in the Hemagglutinin Protein of 

H1N1 Influenza Virus as the Primary Target of Chlorine Dioxide Oxidation 
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the inactivation of H1N1.20 W153, is in the HA spike protein of H1N1, which binds the virus to 

sialic acid residues on the cell. The HA protein and the amino acids that make up the receptor-

binding region are indicative of the pathogenicity of an influenza virus strain.94,99 The reported 

highly specific interaction of ClO2 with the W153 oxidation target in the HA receptor-binding 

pocket makes the H1N1 virus a logical starting point for computational investigation of ClO2 

disinfection mechanisms.   

Although mass spectrometry has proven an effective tool to probe the oxidation of virus 

proteins by chemical disinfectants,20,100 the application of this experimental approach is limited to 

viruses that are both culturable and can be propagated to high concentrations. H1N1 was chosen 

as a model virus because previous studies noted the specificity of ClO2 oxidation of the H1N1 HA 

protein. Therefore, the objectives of the present study were twofold: first, to assess the capability 

of molecular docking studies to predict ClO2 oxidation targets on the HA protein of the H1N1 

influenza virus, and second, to test the computational predictions using Orbitrap mass 

spectrometry to analyze the oxidation of H1N1 HA protein exposed to ClO2. 

 

 METHODS 

2.2.1 Reagents and HA protein. 

H1N1 recombinant hemagglutinin (HA) protein, the A/New Caledonia/20/99 strain, was 

obtained from Protein Sciences. The concentration of HA was measured using a Qubit Fluorometer 

2.0, which quantifies proteins via fluorescence-based assays using standards provided in the 

protein kit (ThermoFisher Scientific). ClO2 stock solution was prepared by mixing aqueous 

solutions of 0.15 M potassium peroxodisulfate (K2S2O8) and 0.88 M sodium chlorite (NaClO2) 

purchased from Sigma Aldrich.51 The solution was scrubbed with 0.11 M NaClO2 solution before 
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storage to remove any chlorite from the ClO2 stock. The stock solution was stored at 4 °C in amber 

bottles and its concentration was determined by spectrophotometry at 359 nm (ε359nm = 1230 M-1 

cm-1).101 Trypsin was purchased from Worthington.  

 

2.2.2 Computational docking: receptor and ligand models. 

YASARA-Structure 15.9.6,102 a computational molecular modeling suite, was used as a 

platform to run AutoDock and AutoDock Vina.75,103 The protein crystal structure file (PDB ID: 

3MLH, A/Mexico/4603/2009) for the HA domain of the 2009 H1N1 influenza virus was obtained 

from the RCSB Protein Data Bank and was selected for crystallographic resolution (2.09 Å) and 

location on the transmembrane proteins, specifically the receptor-binding region.104 Free energies 

of binding (G) were calculated using the AMBER03 force field105 with 3MLH as the receptor 

and the disinfectant compounds as the ligands. Clusters were determined by a cutoff of 2 Å as the 

root-mean square deviation of atomic positions. Global docking of the receptor in YASARA set 

the simulation cell automatically to extend beyond the geometric center of the receptor by 5 Å (x, 

y, z = 67.19, 55.34, 44.69 Å). Before docking, the receptor pdb file was edited to add hydrogens 

and remove solvent molecules. 

Docking studies were conducted for hypochlorous acid (HOCl) and ClO2, two chlorinated 

disinfectants. N-bromosuccinimide (NBS) was also modeled to analyze the effect of ligand size 

and type on ΔG. NBS is a significantly larger molecule than either ClO2 or HOCl, and it has been 

shown to selectively oxidize tryptophan residues in proteins.106,107 Ligand structures were imported 

from ChemSpyder into MarvinSketch, and the molecules were energy-minimized using the Merck 

Molecular Force Field provided by MarvinSketch 15.2.2.0 as a first step before more stringent 

minimization using AMBER03 in YASARA.108 
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Due to the unusual +4 oxidation state of chlorine in ClO2, the ClO2 molecule could not 

initially be modeled in YASARA. To enable this ligand to be modeled, a new topology file was 

created for YASARA to properly account for the +4-oxidation state and corresponding ClO2 bond 

lengths and angles.  

 

2.2.3 HA treatment with ClO2 and digestion  

Stock ClO2 solution was diluted with 10 mM phosphate buffer (130 mM NaCl, pH 7.0). 

The reaction mixture was 95 μL and contained 26 μM ClO2 and 173 mg/L HA protein of A/New 

Caledonia/20/99 strain in a chlorine demand-free glass vial. No quenching agent was used because 

Na2S2O3 may partially reduce the oxidized proteins, as reported previously.15 Instead, the reaction 

time was set for 6 hours to ensure that the ClO2 was completely consumed. After ClO2 treatment, 

the reaction mixture was washed with 50 mM Tris-HCl buffer at pH 8 and 37°C in a 100-kDa 

Amicon ultra-0.5 filter (Millipore), and digested with trypsin at 37°C overnight in accordance with 

a previously published protocol.14 

 

2.2.4 Peptide analysis and identification 

Digested HA peptides were subjected to liquid chromatography-tandem mass spectrometry 

(LC-MS/MS) to identify peptide degradation and oxidation reactions taking place on HA. 

Specifically, 20 L of the HA peptides were separated with a reverse-phase column (Accucore aQ, 

50  2.1 mm, 2.6 m particle size, ThermoFisher Scientific), using mobile phase A (LC-MS grade 

water, 0.1% formic acid v/v) and mobile phase B (LC-MS grade methanol, 0.1% formic acid v/v) 

for peptide separation. The mobile phase gradient began at 6% B for 3 min, climbed linearly to 

80% B over 30 min, maintained at 80% B for 5 min, and then equilibrated at 6% B for 5 min. 
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Eluted peptides from the column were directly sent to a QExactive Orbitrap high-resolution mass 

spectrometer (ThermoFisher Scientific). At the electrospray ionization source, the sheath gas flow 

rate was set as 24 AU, the spray voltage at 3 kV, and the auxiliary gas heater temperature at 275 

C. The full mass spectrum was scanned between 400-1800 m/z with an automatic gain control 

(AGC) target of 500,000 and mass resolution of 70,000.  

For tandem MS scans, the top twenty most abundant peptides were selected and collided 

at 30 normalized collision energy (NCE), with the AGC target set at 200,000, mass resolution of 

35,000, and isolation window of 1.6 Da. Raw MS and MS/MS data were analyzed using MASCOT 

Distiller (2.6.2.0) and searched against a customized database, including the HA sequence of the 

A/New Caledonia/20/99 strain, and human keratin contaminants. During the peptide searching, 

cysteine carbamidomethylation was set as a fixed modification and methionine oxidations as 

variable modifications. A 10 ppm mass tolerance for MS scans and a 0.3 Da mass tolerance for 

MS/MS scans yielded a false discovery rate of less than 1%. 

 

2.2.5 Statistical analysis  

One-way ANOVA and post-hoc Tukey’s test for multiple comparisons were performed on 

docking clusters to assess the significance between cluster means. For one-way ANOVA and a P-

value of less than 0.05, the null hypothesis, that ΔG means for each cluster were the same, was 

rejected.  Rejection of the ANOVA null hypothesis preceded Tukey’s test. The null hypothesis of 

Tukey’s test was defined as any possible pairs of clusters having equivalent ΔG means and was 

rejected for a P-value less than 0.05. The analyses were completed in GraphPad Prism 8 for 

Windows.  
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 RESULTS  

2.3.1 Protein receptor-binding domain with ClO2  

Receptor-binding, the event at the onset of virus infection, is mediated by the HA protein 

in the influenza virus.93,109,110 For H1 strains of influenza, two conserved amino acids in the HA 

protein, Asp 190 and Asp 225, are responsible for binding with human receptors.94 Thus, damage 

to the amino acids in this region could lead to inactivation of H1N1. Experimental work has 

revealed that disinfectants oxidize residues in this region,20 and so docking studies were conducted 

to determine if computational modeling identified the same HA regions as susceptible to oxidation.  

As shown in Figure 2.1, nine distinct energetically favorable binding locations for ClO2 

were found from global docking analysis of the H1N1 HA receptor-binding domain (one-way 

ANOVA, P-value <0.0001). Statistical analyses were performed to test the variance in the means 

of ΔG between clusters. The null hypothesis was accepted at P > 0.05, which occurred between 

C1 and C2 (P-value 0.120), and C5 and C7 (P-value 0.934). Cluster member number was then 

assessed to distinguish between C1 and C2.  

Although the top four clusters C1 through C4 had ΔG values within 2.5% of one another, 

cluster C1 contained four members, whereas clusters C2 through C4 contained two or fewer 

members. For binding locations with two or more members in the cluster, indistinct conformations 

were weighted to calculate an average ΔG. To qualify as distinct, the root-mean-square deviation 

of the atomic positions of two conformations had to be greater than 2 Å. The uncertainty in the 

reported ΔG is based on the standard deviations obtained from 500 separate docking calculations, 

with each docking run yielding one of the nine conformations shown in Figure 2.1. The ΔG values 

for the three- or four-membered clusters C1, C5, and C8 were obtained from averaging of the 

indistinct conformations for these clusters. The higher member number of cluster C1 suggests 



 30 

varied conformations of the receptor and ligand can dock in this location, which increases the 

favorability of C1 compared to the other top clusters.  

As noted in Table A-1 in Appendix A and Figure 1.1 footnote, the residues D190 and W153 

were found in cluster C1 with the highest binding affinity (Figure 2.2). D190, which was found in 

every conforming member of the cluster, is known to play a critical role in H1N1 binding to human 

receptors.94 As shown in Figure 2.1, the location of the C1 receptor-binding domain of ClO2 was 

proximal to D225, which has also been shown to play an essential role in H1N1 binding to a host 

cell.93,94 
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Figure 2.1 Solvent accessible surface of the H1N1 HA protein and nine docking conformations C1 through 

C9 for ClO2. The conformations are numbered in order of decreasing affinity between ClO2 and HA, and 

are listed as mean free energy of binding ± SD. The three docking locations obscured in the opaque protein 

structure (a) are visible in the transparent structure (b). P-values for the post-hoc Tukey’s test are listed 

below the table. A P-value < 0.05 was considered significant. A dash indicates a P-value <0.0001. There 

was no statistical significance found between C1 and C2 (P-value 0.120) or C5 through C7 (P-value 0.934 

for C5 versus C7). The footnote lists contacting residues for a given cluster.  
 

                                                 
* C1 | Y98, W153, H183, S186, D190, L194, Q226, E227, G228     

   C2 | Q191, D199, A200, K214, P215, I217, N250   
   C3 | K63, T90, S90A, S91           

   C4 | S132, N133, K133A, G134, V135, F147, L151, I152, W153 

   C5 | I103, D104, Y209, Y233, W234           
   C6 | W69, E77, S78, T81        

   C7 | W127, H130, D131, S132, N133, K157       

   C8 | N73, E75, C97, C139, P140, R224           
   C9 | N65, I66, E89, S91, S92, D93, N94, Y105, R109 
 

Cluster C1* C2 C3 C4 C5 C6 C7 C8 C9 

Members 4 2 1 2 1 3 1 3 2 

ΔG   

(kcal/mol) 

-2.43 

± 0.04 

-2.41 -2.40 -2.38 -2.30  -2.29 

±0.04 

-2.29 -2.25 

± 0.03 

-2.19 

          

C1  0.120 — — — — — — —  

C2   0.043 — — — — — —  

C3    — — — — — —  

C4     — — — — —  

C5      0.700 0.934 — —  

C6       0.234 — —  

C7        — —  

C8         —  

C1 

C7 

C3 

C4 

C6 

C8 

C2 
C5 

C9 

(a) (b)

)) 
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Figure 2.2 Receptor-binding domain of the docking conformation C1 with the highest ClO2 binding affinity 

and cluster member number. Amino acids highlighted in red play a crucial role in H1N1 binding to host 

cells. The ClO2 solvent-accessible surface area is visualized in yellow. HA protein contours are shown in 

transparent and opaque blue.  

 

 

2.3.2 Protein receptor-binding domain with other molecules 

Docking studies were also performed using N-bromosuccinimide (NBS) and hypochlorous 

acid (HOCl) in place of ClO2 to assess the role of molecular size and disinfectant type on free 

energy of binding. NBS (Figure 2.3), containing eight more heavy atoms, is a larger molecule than 

ClO2 and is known to oxidize tryptophan residues.107,111 HOCl is a more commonly used 

disinfectant than ClO2 and is less specific than ClO2 in its oxidation of virus capsid proteins.14 

NBS was therefore expected to have a higher binding affinity and fewer binding sites than ClO2 

and to bind in the region of W153, whereas HOCl was expected to have similar ΔG values as ClO2 

but to form binding clusters in a greater number of locations. Larger molecules tend to have higher 

binding affinities as there is more area for ligand-receptor contact, if there are fewer than fifteen 

heavy atoms in the ligand.112  

C7 

C3 

C1 

C4 
C6 

C8 
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Figure 2.3 N-bromosuccinimide (NBS), chlorine dioxide (ClO2), and hypochlorous acid (HOCl) structures 

(reading left to right) used for computational modeling. Bond lengths, optimized in YASARA, are listed in 

Å. 

 

 

Despite its chemical dissimilarities to ClO2, NBS docked in the same region of the H1N1 

receptor adjacent to W153, indicating the H1N1 HA protein might be more readily oxidized in this 

region. There were five binding locations for NBS on HA (Figure 2.4), which was fewer than that 

observed for ClO2. This was expected, as NBS is larger than ClO2, and it therefore has less 

capability to conform to the receptor surface. The NBS ΔG was also substantially more negative 

than the corresponding ClO2 ΔG (P-value <0.001 for all NBS clusters compared to C1). NBS 

clusters N1 and N4 both contain W153 (Figure 2.4). Moreover, the N4 cluster is nearly identical 

in amino acid composition to the most strongly binding ClO2 cluster C1 (Figure 2.2). Further 

statistical analysis showed the P-value for N1 versus N2 ΔG to be 0.047, and for N2 versus N5 P-

value 0.556, indicating N1 to be significantly different from the other clusters.  

HOCl had sixteen distinct binding locations, considerably more than either ClO2 or NBS, 

and lower binding affinities (Table A-2). Two of the sixteen HOCl conformations, clusters H6 and 

H8, included W153. Only two HOCl clusters, H2 and H11, had more than one member. The most 

favorable ΔG for HOCl was -2.30 kcal/mol, which is more positive (i.e., less favorable) than the 

binding energies of the first five ClO2 docking sites and all the NBS docking sites. Statistical 
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analysis of the HOCl clusters found there to be no significant difference between the means of the 

binding free energies of any of the clusters (one-way ANOVA P-value 0.199), supporting the 

hypothesis of a more randomized targeting of oxidation sites by HOCl in comparison to ClO2 and 

NBS. 

Given the comparable sizes of ClO2 and HOCl, it was expected that their binding energies 

would be of similar magnitude, whereas the larger NBS was expected to have a correspondingly 

greater binding affinity. NBS, being larger has more surface area to bind with the receptor. The 

number of docking sites, and more positive ΔG for HOCl, suggest that this ligand (free chlorine) 

has a lower affinity for binding at a particular location on HA (i.e., that the binding is less specific). 

NBS had fewer docking clusters than ClO2, which could also be explained by the difference in 

size. As a larger molecule, NBS is more conformationally limited in where it can bind compared 

to ClO2. 
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Cluster N1† N2 N3 N4 N5 

Members 8 2 8 1 1 

G (kcal/mol) -4.39 ± 0.23 -3.94 ± 0.06 -3.76 ± 0.13 -3.71 -3.58 

      

N1  0.047 <0.0001 0.022 0.005 

N2   0.757 0.858 0.556 

N3    0.999 0.901 

N4     0.989 
 

Figure 2.4 Five docking conformations N1 through N5 for NBS and HA protein. The conformations are 

numbered in order of decreasing affinity between NBS and ClO2, and are listed as mean free energy of 

binding ± SD. The fifth cluster, N5, on the backside of this image is not pictured. Amino acids key in H1N1 

binding with host cells highlighted in red. Solvent accessible surface area of NBS in green. H1N1 protein 

solvent accessible surface area in opaque and translucent blue. P-values for the post-hoc Tukey’s test are 

listed below the table. N1 was statistically different from all the clusters (P-value 0.047 for N1 versus N2), 

but N2-N5 were not statistically significant (P-value 0.556 for N2 versus N5). The footnote lists contacting 

residues for a given cluster. 

                                                 
† N1 | K123, S132, N133, G134, V135, F147, Y148, K149, L151, I152, W153, R255     

   N2 | L59, W69, E77, S78, A82, S83, F116B, R117, F258  

   N3 | G68, W69, I70, G72, N73, P74, C76, E77, S78, T81, A82, F116B, R117, K149, N150, F258      
   N4 | Y98, W153, H183, S186, D190, L194, Q226, E227, G228 

   N5 | S126, W127, P128, N129, H130, L164, S165, K166     

N1 
N3 N2 N4 
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2.3.3 Mass Spectrometry  

Oxidation of the H1N1 HA protein was examined by Orbitrap MS. After undergoing 

trypsin digestion, ClO2-treated protein fragments were analyzed using LC-MS/MS. A total of 261 

amino acids were recovered, comprising 46.3% of the HA sequence (Table A-3). The W153-

containing fragment NLLWLLGK was found in both unmodified and modified forms. The change 

in mass can be explained by the addition of two oxygen atoms from protein oxidation by ClO2. 

The MS/MS fragmentation spectra of the modified amino acid sequence (Figure A-1) further 

indicates that the tryptophan residue in the peptide NLLWLLGK was oxidized by ClO2, with 

W153 in the oxidized peptide confirmed to be 31.990  mass units heavier than tryptophan in the 

unmodified peptide, consistent with the formation of N-formylkynurenine as an oxidation product 

(Figure 2.5), as reported previously.20,100 Four additional protein modifications were detected in 

the MS experiments. They are listed in Table 1.1 and are addressed further in the discussion below 

 

 DISCUSSION 

2.4.1 HA conserved region  

During the initial stages of infection, the receptor-binding area allows transmission of the 

virus into the host cells. In the influenza virus, the HA protein mediates binding to the sialic acid 

receptor.99 The membrane-distal end of the HA protein contains the receptor-binding regions.113 

At the base of the region are four conserved residues: Y98, W153, H183, and Y195.99  

In this study, only the receptor-binding region was considered in the computational docking 

models. The full HA protein was analyzed in the experimental MS work. To confirm the results 

of Ogata, 2012,20 the same strain of H1N1 was used in the Orbitrap mass spectrometry, A/New 

Caledonia/20/99 (H1N1). To choose the virus strain for the computational models, the resolution 
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of the crystal structure was given priority over exact matching of the strain. At the time of this 

study, the A/Mexico/4603/2009 (H1N1) strain receptor-binding region crystallography had the 

highest resolution, 2.09Å. W153 is conserved in both these strains and in nearly all subtypes of 

the influenza virus (Table A-4).20 

 

2.4.2 Applying computational docking to virus inactivation 

Docking calculations performed in this study suggest that computational work could be 

used in conjunction with experimental work to predict protein oxidation during disinfection 

thereby providing further insights into inactivation mechanisms. Molecular docking tools have 

been used to assess influenza A virus HA affinity for various sialic acid receptors.114 Docking has 

also been used in conjunction with molecular dynamics to inspect the hydrogen bonding between 

H1N1 neuraminidase residues and inhibitors.115 In these studies, computation docking focused on 

the infection cycle of influenza rather than the role of disinfectants in inactivation. Other 

computational methods, including QM/MM models, have been used to confirm reaction 

intermediates for UV irradiation protein damage.16 Computational docking methods have looked 

at the binding of disinfection byproducts to estrogen receptors in humans.116 This study suggests 

docking could be used to improve understanding of disinfectant-virus interactions.  

Previous experimental work showed ClO2 oxidizes W153 on the H1N1 binding protein.20 

It is likely that W153 is modified to N-formylkynurenine by the addition of two oxygen atoms 

(Figure 2.5).100 From MALDI-TOF MS, it was suggested ClO2 oxidizes W153 to N-

formylkynurenine (NFK).20,100 Experimental work using the Orbitrap MS also found W153 to be 

oxidized to NFK. 
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Figure 2.5 Tryptophan oxidation to N-formylkynurenine. 

 

More interestingly, computational docking determined the region around W153 between 

D190 and D225 as the most energetically favorable binding location for ClO2. This region had 

both the lowest free energy of binding and the highest member number, suggesting ClO2 can bind 

to this location in more than one conformation. This region has also been cited as crucial in virus 

binding ability to a host cell due to the two aspartic acid residues 190 and 225.93 Damage to the 

amino acids in this region could therefore impede the ability of the virus to bind to host cells, thus 

causing functional inactivation. Computational and experimental results both indicated the W153 

residue in this region is susceptible to oxidation by ClO2.  

Computations were based only on the receptor-binding region of the HA protein in the 

H1N1 virus, whereas MS analysis was applied to the entire HA protein. Five protein modifications 

were identified from the MS analysis and were not found in the untreated protein (Table 2.1). Two 

of the five modified fragments that lie outside of the receptor-binding domain were noted, but 

these were considered unrelated to virus inactivation via HA oxidation, as they are not involved in 

the binding with the sialic acid residues in human receptors.93 After receptor binding, membrane 

fusion occurs between the cell and virus, which is mediated by HA.117 As binding precedes fusion, 

however, the receptor-binding domain was considered the focus of this study. The other fragments 

comprise tyrosine and tryptophan oxidation products, neither of which have been proposed as ClO2 

binding sites. Fragment 3 contains two tryptophan residues, but only had a mass shift of one 

ClO2 
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oxygen. This could be due to the tryptophan’s location on the HA protein. W234 and W255 are 

both further embedded in the protein and their pyrrole ring structures could be less accessible for 

oxidation. Instead an oxygen atom is imparted onto the more accessible benzene ring during 

oxidation, forming hydroxy-tryptophan. Oxidations of the Table 1.1 fragments also appear in the 

docking calculations, specifically in C6 (Figure A-2), but because the MS fragments are much 

larger, it is difficult to associate them with only one binding cluster and a corresponding single 

oxidized residue.  

 

Table 2.1 HA protein modifications found in MS results. The first three fragments are within the receptor-

binding region that was also the focus of the computational modeling.  

 

Fragment Residue 

oxidized 

Mass 

shift  

Proposed modification 

NLLWLTGK W +31.990 N-formylkynurenine100,111,118 

ALYHTENAYVSVVSSHYSR Y +15.995 3,4-dihydroxyphenylalanine17,118 

INYYWTLLEPGDTIIFEANGNL

IAPWYAFALSR 

W +15.995 Hydroxy-tryptophan17 

KVDDGFLDIWTYNAELLVLLE

NER 

Y 

W 

+15.995 

+31.990 

3,4-dihydroxyphenylalanine17,118 

N-formylkynurenine100,111,118 

MNTQFTAVGK M +15.995 Methionine sulfoxides17,118 

 

 

Docking results using the alternative ligands NBS and HOCl provided additional insight 

into virus inactivation.  Despite clear differences in size, NBS and ClO2 both appear to have an 

affinity for W153 according to the computational results. NBS has been shown to preferentially 

oxidize tryptophan residues,111,119 and docking results corroborate this affinity. In contrast, HOCl 

has been shown to be more indiscriminate during inactivation, attacking many regions of the capsid 

and viral genetic material.14 Computational docking again confirms these experimental 

observations, as the docking calculations reveal more potential binding sites for HOCl than for 

ClO2.  



 40 

Given the large quantities of data generated by mass spectrometry, computational docking 

can provide a means of winnowing MS datasets to find viral sites susceptible to oxidation or 

insights into the specificity of oxidation for a disinfectant. For unculturable or difficult-to-culture 

viruses in particular, docking calculations can be a crucial asset to determine the mechanisms of 

inactivation. Computational docking methods can also prospectively be used to predict the effects 

of virus mutations on their susceptibility to inactivation. Further work is needed to assess the 

transferability of this method to other disinfectants and viruses. This could include alternative 

disinfectants such as ozone, or capsid proteins in nonenveloped viruses.  
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 INTRODUCTION 

Historically, the most commonly used disinfectant for drinking water treatment has been 

free chlorine due to its low cost.5 Application of free chlorine however can exacerbate 

infrastructure corrosion37 and induce the formation of toxic disinfection byproducts (DBPs).5 The 

DBPs formed from the reactions of free chlorine with natural organic matter are strictly regulated 

by the United States Environmental Protection Agency (EPA) as they are nearly all carcinogenic 

and can damage essential bodily organs and functions.120 Removal of DBPs and their organic 

precursors by the addition of chloride containing coagulants can also intensify the corrosion of 

infrastructure in water supply networks.35,121 When selecting a disinfect for water treatment in a 

distribution system, the potential complications arising from corrosion scale and DBP formation 

must both be taken into consideration.  

Water utilities now have recourse to consider disinfectants other than free chlorine to 

satisfy DBP regulation requirements.6 Chlorine dioxide is comparable in power to free chlorine as 

an oxidant yet forms almost no organic DBPs. Moreover, unlike free chlorine, the disinfecting 

power of chlorine dioxide is insensitive to the pH of the treated water.12,65 On account of these 

favorable attributes, utilities have used chlorine dioxide as a primary or secondary disinfectant in 

both Europe12 and in the United States.64 Chlorine dioxide can, however, undergo oxidation or 

reduction reactions to form the inorganic DBPs chlorite and chlorate, respectively. The EPA 

Chapter 3. Lead Minerals Found in Drinking Water Distribution Systems Increase 

Chlorine Dioxide Decay to a Single Inorganic Byproduct 
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regulates chlorite with a maximum contaminant level (MCL) of 1.0 mg L-1 and chlorine dioxide 

with a maximum residual disinfectant level (MRDL) of 0.8 mg L-1. Although the World Health 

Organization recommends chlorate levels be limited to 0.7 mg L-1, the EPA has no current MCLs 

for chlorate. In a typical drinking water disinfection system, 70% of the chlorine dioxide added is 

converted to chlorite and the rest (30%) forms chlorate, so if the proper concentration of chlorine 

dioxide is maintained, EPA regulations will be met.41,74 Removal of chlorite in excess of the MCL 

can be accomplished as needed by the addition of sulfate or ferrous ions or by adsorption on 

granular activated carbon.71  

Chlorine dioxide thus has the advantage of producing little if any organic DBPs regulated 

by the EPA, and its two primary inorganic byproducts can be removed post-disinfection. However, 

the disinfecting power of chlorine dioxide and the DBPs it forms can be altered by the presence of 

metals in and the mineral scales that form upon copper, nickel, and iron pipes and pipe connections 

of water supply infrastructure,51 but this has not yet been investigate in lead-based systems. The 

type and extent of scale formation is strongly affected by pH, and hence treatment plants often 

adjust pH to control corrosion.56 While the scale formed is itself not necessarily toxic, its 

dissolution can increase the concentrations of toxic metals in public drinking water.58,122 

Dissolution may be caused by switching between disinfectants, the misuse or neglect of 

passivating phosphate addition, or the addition of chemicals for mitigation of DBPs, which were 

all causes of the water crises that occurred in Flint, Michigan, beginning in 2014, and Washington 

DC, in 2001.37,45,47,48  

For the research presented herein, the lead and copper minerals most commonly occurring 

in water supply systems were considered. Material characterization of lead supply lines where free 

chlorine was used as a disinfectant  revealed lead oxide as the principal scale mineral.53,59 Chlorine 
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dioxide has an oxidation-reduction potential equal to or greater than that of free chlorine; thus, its 

use as a disinfectant is likely to produce as similar lead oxide scale, but there are few studies that 

directly investigate lead-based scale formation in the presence of chlorine dioxide. Lead carbonate 

was also considered in this study as a scale mineral that is likely to form at lower pH regimes.55,57 

For a copper supply system, cupric oxide is the most prevalent scale mineral at free chlorine 

oxidation-reduction potentials.51  

 Previous work has shown that copper, nickel, and iron corrosion minerals react with 

chlorine dioxide to produce chlorate and chlorite.51 In basic solutions absent of minerals, metallic 

or otherwise, chlorine dioxide decays along three possible pathways to form either chlorite or a 

combination of chlorite and chlorate.123 Reaction rates and mechanisms chlorine dioxide 

interactions with lead corrosion minerals have not been reported.  The goals of this study were 

therefore to compare chlorine dioxide decay and byproduct formation in the presence of different 

lead and copper corrosion scale minerals, and to investigate the effects of pH on these reactions. 

The data uncovered from these aims will help the design of lead-based water treatment distribution 

systems, by providing insight into the affect corrosion minerals have on disinfection kinetics and 

the type of byproducts they produce. This will aid water utilities in maintaining a disinfectant 

residual and mitigating byproduct production depending on the metallic composition of their 

distribution pipes.  

 

 MATERIALS AND METHODS 

3.2.1 Standards and reagents 

Reagent-grade scale minerals and buffer compounds were purchased from Fisher Scientific 

Company, Acros Organics, and Sigma Aldrich. 
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Chlorine dioxide stock solution was prepared by mixing aqueous solutions of potassium 

peroxodisulfate (K2S2O8) and sodium chlorite (NaClO2).
51 All solutions were prepared in 

deionized water (18.2 MΩ cm, Milli-Q). The stock solution was stored between 1 and 5°C in the 

dark. During production, the gaseous chlorine dioxide was dissolved into deionized water via a 

stream of nitrogen gas. The stream was passed through a sodium chlorite scrubber to remove 

impurities including chlorine. As it is non-volatile, limited amounts of chlorite could have entered 

the final stock solution.  

3.2.2 Batch reaction setup 

The effects of scale mineral type, initial chlorine dioxide concentration, pH, and the 

presence of phosphate or carbonate on the rate of chlorine dioxide decay and byproduct formation 

were investigated. Batch experiments were conducted in 4.5 L flasks, as shown in Figure B-1 

illustration. Chlorine dioxide was diluted to a concentration between 29 and 94 μM (2.0 and 6.3 

mg L-1), and 2.5 mM tetraborate buffer with nitric acid was used to adjust the pH to 8.3. For all 

experiments in which the pH was varied, either nitric acid or sodium hydroxide was added to adjust 

pH to between 6.0 and 10.6.  

The mineral concentrations were normalized based on their BET surface area 

measurements (Table B-1) to yield a mineral surface area per unit solution volume of 3.6 m2/L for 

cupric oxide (initial CuO concentration of 0.96 g/L) and or 1.8 m2/L for lead oxide and lead 

carbonate (initial concentrations of 3.4 and 2.2 g/L respectively). The surface areas for the lead 

compounds were halved to slow the chlorine dioxide decay reaction to a measurable rate. 

Otherwise, chlorine dioxide concentrations in the batch reactors were depleted within minutes of 

the reaction onset.  



 45 

Reactions were initiated by addition of either cupric oxide, lead oxide, or lead carbonate. 

For batch experiments investigating the effect of anion concentration, 1 mM of phosphate or 63 

mM of carbonate salts was added prior to introduction of the mineral. During the experimental 

measurements, the reactor was kept in the dark and continuously mixed by a stir plate at 350 rpm. 

Samples were withdrawn with a syringe and then filtered through a 0.22 µm syringe filter, which 

was pretreated with chlorine dioxide solution. The filtered solution was analyzed for chlorine 

dioxide and the remaining sample was purged with nitrogen gas for at least 10 minutes to remove 

any residual chlorine dioxide.  

Batch experiments were carried out using powdered minerals that have higher active 

surface areas than the corrosion scale on actual water supply lines. This work, nonetheless, enables 

measurements of intrinsic rate constants for chlorine dioxide decay and byproduct formation in the 

presence of these minerals.  

 

3.2.3 Analytical methods 

Chlorine dioxide concentrations were determined using spectrophotometrically (ε359nm = 

1230 M-1 cm-1).101 4 mL aliquots from the filtered batch reactor sample were placed in a quartz 

cuvette and analyzed in triplicate. Chlorite, chlorate, and chloride concentrations were all 

quantified using a Dionex ion chromatograph with an AS9 column and Na2CO3 eluent. Three 

injection volume samples of 25 µL each were taken from 1.8 mL aliquots of nitrogen purged batch 

reaction samples. Five standards for chlorite, chlorate, and chloride were used at 1.0, 1.5, 2.0, 4.0, 

and 8.0 mg/L. The detection limit was found to be 0.5 mg/L. X-ray powder diffraction analysis 

was done with a Rigaku Ultima IV with Cu Kα radiations and analyzed using ReX 0.8.3 software. 

Samples that were exposed to chlorine dioxide solution were oven-dried to recover the mineral 
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powder. BET surface area measurements were obtained in liquid nitrogen at 77 K using 

Micromeritcs ASAP 2050 gas adsorption analyzer. Particle size measurements were done using a 

Malvern Zetasizer.  

 

 RESULTS AND DISCUSSION  

3.3.1 Effect of initial chlorine dioxide concentration on chlorine dioxide decay 

Figure 3.1 shows chlorine dioxide decay and the formation of chlorite in the presence of 

lead oxide for initial chlorine dioxide concentrations ranging from 30 to 90 µM. Chlorine dioxide 

decay was accelerated regardless of initial chlorine dioxide concentration. Previous studies of 

chlorine dioxide decay in the presence of cupric oxide showed the initial concentration of chlorine 

dioxide influenced the concentration ratio of chlorite and chlorate formed during the reaction.51 At 

high initial chlorine dioxide concentrations, the ratio was closest to 50:50, and the amount of 

chlorite produced increased as initial concentration decreased.51 For the lead oxide and carbonate 

minerals, chlorite is produced as the sole decay product, regardless of initial chlorine dioxide 

concentration. At an initial concentration of 28.9 μM, decay was so rapid that no amount of 

chlorine dioxide was measurable one minute after the lead oxide was added to the batch reactor. 

At 48.6, 62.7, and 93.5 μM, pseudo-second order rate constants for chlorine dioxide decay are 

290.4±0.1, 253.6±0.4, and 87.0±0.3 M-1 s-1 (R2 values 0.999, 0.986, and 0.991) respectively. Rate 

constants and models are discussed further in Appendix B and were based on the adsorption limited 

pseudo-second order rate model.124 

The accelerated decay of chlorine dioxide at lower concentrations presents a potential 

challenge for its used as a disinfectant. A concentration of 30 μM is equivalent to 2.0 mg/L which 

is well over the 0.8 mg/L MRDL standard set by the EPA. Also of concern, the complete chlorine 
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dioxide decomposition in the presence of lead oxide yields chlorite at a molar concentration 

essentially equal to that of the initial chlorine dioxide concentration. To implement chlorine 

dioxide disinfection in a lead-based distribution system, treatment plants might therefore need a 

mechanism for chlorite removal to achieve compliance with the chlorine MCL and a high enough 

initial concentration of chlorine dioxide to maintain a suitable residual. Chlorite removal processes 

have been implemented in previous systems employing chlorine dioxide disinfection.71 

Alternatively, corrosion control compounds, such as orthophosphate, can be added to the system 

to slow the rate of decay of chlorine dioxide.49 

Chlorate was absent from all the byproduct analyses of chlorine dioxide reactions with lead 

oxide, even at high initial chlorine dioxide concentrations. Previous studies of chlorine dioxide 

decay kinetics on cupric oxide have shown, at lower initial chlorine dioxide concentrations, 

chlorite is the favored byproduct.51,123 Reaction on lead oxide produces only chlorite as a decay 

product regardless of initial chlorine dioxide concentration. The chlorine balance in Figure 3.1 

confirms that the chlorite concentration in the batch reactor closely matches the amount of chlorine 

dioxide consumed. The mechanisms of chlorine dioxide decay in the presence of copper as 

opposed to lead corrosion scale minerals must therefore differ. 
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Figure 3.1 Chlorine dioxide decay, chlorite formation, chlorate formation, and chlorine balance equal to 

the sum of chlorine dioxide, chlorite, and chlorate in batch reactions containing different initial chlorine 

dioxide concentrations and lead oxide. Each data point represents the mean and standard deviation of 

duplicate experiments. If error bars were shorter than the symbol, they were removed.  

 

3.3.2 Corrosion and Mineral Type 

Figure 3.2 shows chlorine dioxide decay in the presence of the corrosion scale minerals 

lead oxide, lead carbonate, and cupric oxide. When compared against the “blank” reaction, 

containing only chlorine dioxide in solution, the scale-forming minerals are clearly observed to 

accelerate the decay of chlorine dioxide. The 5% chlorine dioxide loss over 4 hours in the batch 

reactor with no mineral present, can be attributed to volatilization when the reactor lid was 

removed. The reactor top was removed and exposed to the air to take samples at specific time 
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intervals but was otherwise kept closed to the atmosphere. In contrast to the blank, addition of lead 

oxide, lead carbonate, and cupric oxide to the batch reactor resulted in markedly faster chlorine 

dioxide decay causing 95%, 100%, and 42% loss of chlorine dioxide respectively after 1 hour.  
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Figure 3.2 Chlorine dioxide decay in batch reactions containing chlorine dioxide and three different 

corrosion scale minerals: lead oxide, lead carbonate, and cupric oxide. Each data point represents the 

mean and standard deviation of duplicate experiments. If error bars were shorter than the symbol, they 

were removed.  

 

 

For the lead minerals, the decay rates of chlorine dioxide followed an adsorption based 

pseudo-second order model,124 with rate constants equal to 290.4±0.1 and 42.1±0.6 M s-1 (R2 

values of 0.998 and 0.947) for lead oxide and lead carbonate, respectively. The loss to 

volatilization in the batch reaction with no added mineral, labeled Blank, when fit to a second order 

model had a rate constant of 0.06±0.04 M s-1. The cupric oxide-catalyzed chlorine dioxide decay 

data was fit to a second-order kinetics model with a rate constant of 6.4±0.5 M s-1 (R2 value 0.967), 

in agreement with previously reported results.51 The rates of chlorine dioxide decomposition on 

lead minerals are pointedly higher (more than 40 and 5 times faster on lead oxide and lead 
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carbonate, respectively) than the copper compound. Addition information on the rate models and 

equations used can be found in Appendix B.  

  Even more intriguing, the lead mineral reactions produce only chlorite as a byproduct of 

chlorine dioxide decay (Figure 3.3), unlike cupric oxide which produces both chlorite and chlorate. 

The production of chlorite is more rapid for the lead minerals, and the initial chlorine dioxide 

concentration is converted to chlorite byproduct. Cupric oxide produces both chlorite and chlorate 

in comparable amounts. At 110 minutes, chlorite and chlorate levels are 17.5 and 15.4 µM, while 

the loss of chlorine dioxide is 32.5 μM. Previous studies have hypothesized the production of 

chlorite and chlorate comes from a disproportionation reaction using the two byproducts (Equation 

1).51  

2ClO2 + 2H2O 
Mineral
→     ClO2 

-
+ ClO3

-
 + 2H

+
  (1) 

 

In the case of the lead minerals the disproportionation is clearly disfavored due to the 

absence of chlorate in byproduct analysis. The electrons must then be supplied by water (Equation 

2), which is favorable in basic systems due to the high oxidation-reduction potential of chlorine 

dioxide.52,55 The oxidation of water was further confirmed by the drop in pH of an buffered 

chlorine dioxide decay reaction in Milli-Q water (see Appendix B for calculation and Figure B-2).  

 

4ClO2 + 4OH- 
Mineral
→     4ClO2

-
 + O2 + 2H2O   (2) 

 

It has also been noted that chlorite can be the sole byproduct of first-order decay reactions 

in basic solutions.123 At low initial concentrations of chlorine dioxide, it has been shown that 

alternative pathways to disproportionation can lead to higher levels of chlorite.51 In the presence 
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of lead minerals, however, the reaction appears to be pseudo-second order and at any initial 

concentration of chlorine dioxide, only chlorite is produced (Figure 3.1). 
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Figure 3.3 Chlorine dioxide decay, chlorite formation, chlorate formation, and chlorine balance for three 

separate batch reactions containing chlorine dioxide and different corrosion scale minerals: (A) lead 

oxide, (B) lead carbonate, and (C) cupric oxide. Each data point represents the mean and standard 

deviation of duplicate experiments. If error bars were shorter than the symbol, they were removed.  
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In lead carbonate reactions, the electron transfer could come from the mineral itself. The 

lead (II) carbonate mineral is oxidized to lead (IV) oxide. This reaction has been shown to occur 

in systems with high oxidation-reduction potential, i.e. systems disinfecting with free chlorine or 

chlorine dioxide.53,56,125,126 The mineral also changes in color from white to pink during the course 

of the reaction, which could indicate lead carbonate being partially oxidized to lead (II, IV) oxide, 

which is distinctly red in color, unlike lead (IV) oxide which is black (Figure B-3). The variability 

in the lead carbonate reactions is higher, possibly due to the nonuniform oxidation of the surface 

to lead oxide. Partial oxidation could lead to faster rates on some surface locations, increasing the 

variability of the overall reaction. The oxidation mechanism and change in composition of lead 

carbonate could account for the increasing chlorine dioxide rate of decay and higher variability 

between batch reactions.  

Chlorine dioxide rates of decay and chlorite rates of formation are higher in the presence 

of lead minerals compared to copper minerals. Chlorite and chlorate are both byproducts of the 

cupric oxide reaction, whereas chlorite is the only byproduct of both lead minerals, suggesting 

different mechanisms are occurring.   

 

3.3.3 Notes on the Chlorine Balance 

The actual chlorine balanced varied in the batch reactions due to initial chlorite 

concentrations that could not be controlled for and ranged from 0 to 9 µM. Most notably in the 

lead carbonate reaction, which had an initial chlorite concentration in one duplicate reaction and 

can be seen in the standard deviation of the time zero minutes. The initial starting concentration of 

chlorine dioxide was measured and adjusted to a target of 50 µM. While the initial starting point 
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for total chlorine in the system is not uniform, the chlorine balance is closed. Chloride was also 

measured during the batch reactions, but concentrations remained inert in all cases.  

Initial chlorite concentrations in the batch reaction could be due to chlorite concentrations 

in the stock solution. While a scrubber solution is used to remove as much chlorite as possible 

during the generation of chlorine dioxide, there may still be some chlorite residual left in solution. 

Chlorite can also form in the batch reactor prior to the addition of mineral while the chlorine 

dioxide concentration is being calibrated. Although without a mineral catalyst, chlorine dioxide 

decay is relatively slow (Figure 3.2, Blank). The variation in the chlorine balance could also be 

due to inadequate sparging of chlorine dioxide before ion chromatography samples were taken. 

Sparging with nitrogen gas was performed for 10 minutes, but trace amounts of chlorine dioxide 

in the samples could form chlorite while waiting for analysis. Other sources of experimental errors 

were evaluated, including chlorine dioxide loss during filtration and chlorite formation while 

samples waited to be sparged. Chloride concentrations in all reactions were insignificant, and the 

chlorine balance accounts for most of the chlorine atoms in the system. 

A second consideration is the abrupt drop in the chlorine balance when the mineral is added 

to the batch reactor, more notably in the lead than copper mineral reactions. This could be due to 

a reaction or complexation with the mineral that is unaccounted for due to the speed of the reaction. 

Notably, the drop chlorine balance does not occur during the reactions with copper mineral. The 

kinetics of the cupric oxide reaction are significantly slower, more than forty times below those of 

the lead oxide reaction. During the slower reaction, there may be fewer surface complexes forming.  

Previous studies show surface adsorption binding energy correlates to valence of the 

adsorbate and coordination number at the adsorption site.127,128 Complexation on the lead versus 

copper mineral surface could vary due to the different electronic d-orbital configurations.128 
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Copper has one electron in its valence shell, while lead has four. In the oxide form, copper is 

coordinated with four oxygens and lead is coordinated with six. Chlorine dioxide could complex 

more strongly with copper than lead, resulting in the retention of chlorine on the metal surface and 

slower reactions times.  

 

3.3.4 Influence of pH  

The effect of pH on chlorine dioxide decay and byproduct formation was explored from 

5.9 to 10.6 and results are summarized in Figure 3.3. Drinking water pH is commonly between 6.5 

and 8.5, but utilities sometimes increase pH above this range to prevent corrosion. The pH 

increments were chosen to be above and below the zero point pH of lead oxide with lies around 

8.3129 and previously published data on cupric oxide studies.51 There was some variation at pH 5.9 

(0.5) and pH 7.4, but at or above pH 8.3 and above there was minimal change (less than 0.03; 

Figure B-4). A tetraborate buffer with the addition of either nitric acid or sodium hydroxide was 

chosen to have minimal impact on reaction kinetics.  

Cupric oxide-catalyzed reactions show a clear trend of increasing decay rates and chlorite 

formation as pH increases (Figure B-5). This is supported by previous work proposing the 

dependence of the cupric oxide-catalyzed reaction on hydroxide.51 Second order rate constants 

2.6±0.4, 6.4±0.5, and 71.9±5.7 M-1 s-1 were observed for pH 6.9, 8.3, and 10.4 respectively. Lead 

oxide reactions followed the same trend with rates increasing as pH increased from 5.9 to 8.3. 

However, above a pH of 8.3, the rate of chlorine dioxide decay decreased (Table 3.1). 
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Table 3.1. Pseudo-second order rate constants listed in increasing order at their corresponding pH values. 

 

   

pH Rate Constant (M-1 s-1) 

10.6 87.8±0.7 

9.7 156.0±0.9 

7.4 166.3±0.4 

5.9 267.6±0.7 

8.3 290.4±0.1 

 

 

As chlorite is the sole decay product formed due to the decay of chlorine dioxide in the 

presence of lead oxide, disproportionation cannot be occurring. Since chlorine dioxide and lead 

oxide are already in their most oxidized forms, water must supply the electron for chlorine dioxide 

reduction to chlorite, as previously discussed. Instead, surface interactions must be considered to 

provide a possible explanation of rate variations in the lead oxide reactions.  
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Figure 3.4 Chlorine dioxide decay and chlorite formation in batch reactions at different pH and in the 

presence of lead oxide. Each data point represents the mean and standard deviation of duplicate 

experiments. If error bars were shorter than the symbol, they were removed. 
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3.3.5 Influence of surface interactions 

It seems likely adsorption on the surface of lead oxide is occurring. Phosphates are 

routinely added to drinking water to prevent corrosion by adsorbing to the surface of lead 

pipes.60,130 Free chlorine has been shown to adsorb to the surface of lead oxide.130 The adsorption 

can enhance the reactivity of free chlorine on the surfaces of cupric oxide, and promotes the 

formation of chlorite over chlorate.51,131 Instead of inducing a disproportionation reaction 

(Equation 1), lead oxide surfaces could adsorb chlorine dioxide. The resulting complex could 

polarize the chlorine atom, increasing its electrophilicity and tendency to form chlorite. Metal are 

known to complex with ligands due to Lewis acid-base reactions.51,132 In this case, the ligands are 

chlorine dioxide and water. A previous proposed pathway for cupric oxide posits the dimerization 

of chlorine dioxide, shown to occur in basic solutions,123 and complexation of the dimer with 

hydroxide on the metal oxide surface (Scheme 1).51 

 

 

Scheme 1. Proposed surface mediated mechanism for the decay of chlorine dioxide in solution with lead 

oxide.  

       

 

 

Incorporation of surface interactions could explain the variation in rates at different pH 

points, which could be to be due to Coulombic interactions at the surface of lead oxide. The point 
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of zero charge for lead oxide, as reported in the literature, is in the range of 8.2-8.4 when using the 

isoelectric point method.129,133 X-ray powder diffraction analysis of the pure lead oxide revealed 

the compound to be plattnerite rather than scrutinyite. Plattnerite tends to have higher point of zero 

charge values, which fits with the maximum rate occurring around pH 8.3.130 Previous studies of 

adsorption of free chlorine on the surface of lead oxide showed a similar trend of maximum 

adsorption at the zero-point pH.130 Above and below this point of zero charge, there is an increase 

in either negative or positive ions on the surface. With these charged species there is higher 

coulombic repulsion. This slows surface assisted reactions taking place. Minimum electrostatic 

repulsion exists at pH 8.3. 

Lead oxide has been shown to speciate into three different surfaces, which vary depending 

on pH: >Pb(IV)OH, >Pb(IV)O-, and >Pb(IV)OH2
+.125,130 The surface is deprotonated at pH above 

the pHpzc and protonated at pH below the pHpzc. Modifying a pathway proposed by Odeh et al.123 

could give a possible mechanism for the reaction of the neutral lead oxide surface and chlorine 

dioxide (Scheme 2). This proposed reaction is pseudo second-order in chlorine dioxide, which will 

be discussed later.   

 

 

Scheme 2. Proposed surface mediated mechanism for the decay of chlorine dioxide in solution with lead 

oxide.  
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Speciation on the surface of the lead oxide was also considered to explain both reactions 

below pH 8. At lower pH, lead carbonate is favored to form over lead oxide, despite the high 

oxidation-reduction potential of chlorine dioxide. This could cause dissolution of the lead (IV) 

oxide to lead (II) compounds (Equation 4) and slow the rate of chlorine dioxide decay.  

 

PbO2(s) + 2H+ ↔ Pb
2+

 + 2H2O   (4) 

 

Dissolution of lead oxide was significant at pH’s below 5.7, and in the presence of free chlorine 

dissolution was inhibited.125 X-ray powder diffraction analysis showed some evidence of reduction 

but X-ray photoelectron spectroscopy was inconclusive, due to the unusual presentation of lead 

oxidation states, suggesting reduction was too slow to be observed.  There was however, visual 

evidence of lead carbonate as discussed in Corrosion and Mineral Type 3.3.2 (Figure B-3). Lead 

oxide at low pH could also be changing to a lead (II, IV) oxide, slowing the kinetics, but there is 

no visual evidence of this since lead oxide is a black powder. At low pH, electrons could be 

consumed by reducing lead (IV) to lead (II) rather than chlorine (IV) dioxide to chlorite (III), thus 

slowing down the chlorine dioxide decay reaction.  

 

3.3.6 Impact on water treatment 

While chlorine dioxide is not the most common disinfectant, it has been used in drinking 

water systems in Europe, Asia, and the USA. Lead oxide, lead carbonate, and cupric oxide are 

pervasive in distribution systems containing copper and/or lead due to corrosion. This study points 

to some key concerns for the use of chlorine dioxide in these systems: maintaining a disinfectant 

residual, inorganic byproduct formation, and how the operational pH influences both the residual 
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and byproducts. These batch reactions with powdered mineral have accelerated kinetics due to the 

increased available surface area of the metals. The mineral concentrations used here likely allow 

for higher exposure levels than those present with scale contained on a pipe surface. These data 

can still provide insight into the mechanisms and characteristics of chlorine dioxide decay and 

byproduct formation in the presence of lead minerals. In the environment, including distribution 

systems, metal oxides can be a porous matrix.132 Although a powered mineral still presents more 

surface area, it could be considered more similar to the porous scale found in distribution systems.  

If used for disinfection, the presence of corrosion scale minerals will enhance the decay of 

chlorine dioxide, possibly below the effective concentration needed to disinfect. The EPA limits 

the concentration of chlorine dioxide that can be applied to drinking water (MRDL = 0.8 mg L-1) 

and the concentration of chlorite produced (MCL = 1.0 mg L-1). At 30 µM initial concentration of 

chlorine dioxide, the presence of lead oxide will enhance the kinetics enough to consume all the 

disinfectant. To combat decay, the initial concentration of chlorine dioxide could be increased, but 

this could lead to excessive inorganic byproduct formation. Chlorine dioxide decay in the presence 

of lead minerals, however, only produces chlorite. Thus, treatment facilities could focus resources 

on chlorite removal. There have been precedents for chlorite removal using sulfate ions, granular 

activated carbon, or ferrous ions.71–73  

Maintaining a basic pH (above 7.4) has been shown to be an effective corrosion control 

method for lead-containing distribution systems.54,63,134 At high pH (8-10 range), calcium 

carbonate can form and block pipe flow or precipitate,54,63 and there is evidence of diminishing 

returns above pH 9.2 for corrosion control.134 If using a phosphate inhibitor for corrosion control, 

a pH between 7.0-8.0 is recommended.134 These data suggest operating above or below the zero 

point pH of the distribution system lead could help maintain a disinfectant residual and decrease 
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the amount of chlorite produced. Combining previous published recommendations, pH 7.4 would 

be optimal for lead oxide/chlorine dioxide system with regards to corrosion and byproduct 

formation. 

Operating treatment systems at pH above or below point of zero charge, could inhibit the 

decay of chlorine dioxide and decrease chlorite production. Treatment systems already prefer to 

maintain at least slightly basic pH to prevent corrosion.61 If utilities are able to meet the criteria of 

(1) operating below or above the point of zero charge and (2) maintaining a basic pH, they could 

combat byproduct formation and corrosion while still maintaining a disinfection residual.  
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 INTRODUCTION 

Copper and lead are common metals used for piping in drinking water distribution systems, 

and their concentration in drinking water has been limited by the US Environmental Protection 

Agency (EPA) Lead Copper Rule since 1991.44 These metals naturally undergo corrosion which 

forms layers of corrosion minerals, commonly oxides or carbonates on the metal surface.49,53,57,61 

The type of corrosion layer formed depends most heavily on the oxidation-reduction potential of 

the water flowing through the pipes, which in turn is primarily controlled by the disinfectant 

present in the water.55 Lead (IV) oxide and copper (II) oxide are the two most commonly formed 

layers in the presence of free chlorine, the most commonly employed disinfectant.51,52,55,135 

In recent decades, there has been a push to find alternatives to free chlorine, due to the 

number of toxic byproducts it produces, namely trihalomethanes (THMs) and haloacetic acids 

(HAAs), both of which are strictly regulated by the EPA.5,6 One such alternative is chlorine 

dioxide, which has equivalent if not higher disinfecting power, produces little to no THMs or 

HAAs, and maintains its disinfecting power under variable pH conditions.10,12,65 It does, however, 

produce two inorganic and hazardous byproducts, chlorite and chlorate.72 The formation of these 

byproducts and the interactions of disinfectants with corrosion minerals is important work in 

establishing safe alternatives to free chlorine.  

Chapter 4. Computational Modeling Predictions of Chlorine Dioxide Adsorption on Metal 

Oxide Surfaces Aid the Interpretation of Experimental Kinetic Data 
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Chapter 3 of this dissertation investigated chlorine dioxide decay reactions with copper and 

lead corrosion scale mineral. Three key differences in the reactions have been identified: (1) the 

rate of chlorine dioxide decomposition is an order of magnitude higher in the lead-catalyzed 

system; (2) the cupric oxide-catalyzed reaction produces both chlorite and chlorate, while the lead 

oxide- or carbonate-catalyzed reaction produces only chlorite; (3) reaction rates increased with 

increasing pH in the cupric oxide system, but peaked at the zero-point pH in the lead oxide system. 

The decay data appear to fit a second-order for cupric oxide or adsorption pseudo-second-order 

for lead oxide.51  

In basic solutions free of metal oxides or other constituents, chlorine dioxide decays in a 

second-order reaction, putatively involving the dimerization of chlorine dioxide and subsequent 

formation of chlorite and chlorate.123,136 For chlorine dioxide decay in the presence of lead oxide, 

the reaction mechanism is unknown. This chapter aims to determine if dimerization is a precursor 

step to decay on the lead oxide surface, and if so, why does chlorine dioxide decay only to chlorite 

rather than disproportionating into both chlorite and chlorate. Moreover, the role of hydroxide in 

these reactions is poorly understood. This work aims to investigate some of the reasons behind the 

kinetic rate disparity in chlorine dioxide reactions on cupric oxide and lead oxide surfaces and 

assess in particular the role that dimerization might serve in the chemisorption of chlorine dioxide 

on these mineral surfaces.  

 

 METHODS 

4.2.1 Surface calculations 

First principles calculations were done using spin-polarized Density Functional Theory 

(DFT) in CASTEP from BIOVIA Materials Studio 2019.137 CASTEP implements the plane-wave 
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pseudopotential method. The exchange-correlation functionals were calculated using the Perdew, 

Burke and Ernzerhof method of generalized gradient approximation.138 For these calculations 

utrasoft pseudopotentials and energy cutoff of 340 eV for lead oxide or 400 eV for cupric oxide 

were used. Geometry optimization were performed using the Broyden-Fletcher-Goldfarb-Shanno 

(BFGS) optimization method.139 The convergence criteria for the basis set considering the plane-

wave cutoff energy for pseudopotentials was set to 0.1 eV/atom. The energy and maximum force 

tolerances were 0.00001 eV/atom and 0.03 eV/Å. The k-points separation for metals was set at 

0.04 Å-1.  

 

4.2.2 Crystal surfaces 

The adsorption of chlorine dioxide monomer and dimer on the surface of either tenorite or 

plattnerite was simulated using DFT methods. Cleavage planes were chosen at (-110) and (111). 

Lead oxide does not have a known common cleavage plane but is very similar in structure to rutile 

compounds. Rutile structures, titanium oxide, are commonly modeled to cleave at (110), thus this 

same cleavage plane was used for platternite.88,89,140,141 (-110) was chosen to keep an appropriate 

ratio of lead to oxygen atoms on the surface. (111) is the most prevalent cleavage plane for cupric 

oxide.142  

Lead (IV) oxide and copper (II) oxide surfaces were constructed in CASTEP from 

plattnerite and tenorite the American Mineralogist Crystal Structure Database.143 The oxides were 

cleaved at (-110) and (111) respectively. Two different sized vacuum slabs were used. The first, 

smaller slab, consisted of six layers and twenty-four atoms. The bottom three layers were kept 

fixed to simulate the bulk crystal. The second, larger slab, consisted of four layers and sixty atoms. 

The bottom two layers were kept fixed. 10 Å of vacuum thickness above and 5 Å below was 
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established to prevent erroneous interactions between periodic structures. The crystal and unit cell 

were relaxed prior to adsorption calculations. The smaller slab was originally used to keep 

computational time low, but the larger slab was used once larger and more species were introduced 

on the surface, i.e. the chlorine dioxide dimer and hydroxide. Adsorption energy was calculated 

using Equation 1 below.142  

 

Eadsorption = EClO2+ metal oxide − Emetal oxide − EClO2
  (1) 

 

Equation 1 shows the adsorption energy is equal to the energy of the optimized adsorption 

conformation of chlorine dioxide on the metal oxide surface, either lead or cupric oxide, minus the 

relaxed energy of the metal oxide lattice, minus the energy of the optimized chlorine dioxide 

molecule.  

Charge density differences were calculated by subtracting the unperturbed chlorine dioxide 

and metal oxide surface electron densities from the adsorbed system density (Equation 2).137 

 

∆ρ = ρ
system

−  ρ
ClO2

−  ρ
metal oxide

  (2) 

 

Following previously published experimental work, hydroxide was incorporated into the 

adsorption simulations either already present and relaxed on the surface or in solution. Hydroxide 

appears to be a key component of the chlorine dioxide decay to chlorite and chlorate. It was added 

to the adsorption studies to assess its influence on the adsorption of the chlorine dioxide monomer 

or dimer on the metal oxides’ surfaces.  

 



 65 

4.2.3 Reaction pathway calculations  

Reaction pathway analysis was preformed used GAUSSIAN 16 program to find optimized 

structures for reactants, products, intermediates, and transition states of the chlorine dioxide dimer 

reaction with hydroxide.144 Calculations using the Becke three-parameter hybrid functional with 

the Lee, Yang, and Parr correlation (B3LYP) DFT method produced equilibrium geometries. The 

6-311++G(3df,3pd) basis set was used for all optimizations except the transition state.145 The 

transition state was optimized at a lower level 6-311G(d) basis set. The energies were corrected 

for zero-point energies from frequency calculations and the appropriate negative frequencies 

accounted for depending on the structure analyzed. 

 

 RESULTS AND DISCUSSION 

4.3.1 PbO2 and CuO surfaces  

Two crystals were chosen to model lead oxide and cupric oxide surfaces. The lead oxide 

surface was cleaved from plattnerite, the most common lead oxide compound found in distribution 

systems, to a (-110) surface, similar to rutile compounds. The surface was relaxed, keeping the 

bottom layers of the slab fixed. The surface oxygens relax upward, distorting the planar surface, 

while the lead atoms remained close to their original placement (Figure 4.1). The cupric oxide 

crystal was cleaved to from tenorite to a (111) surface, the most common cleavage plane.142 The 

bond distances between layers increased and the cupric oxide atoms relaxed inward (Figure 4.2).  
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Figure 4.1 (a) Side view and (b) top view of the relaxed plattnerite (-1 1 0) surface. Red and grey spheres 

represent oxygen and lead atoms respectively.  
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Figure 4.2 (a) Side view and (b) top view of the relaxed tenorite (1 1 1) surface. Red and blue spheres 

represent oxygen and cupric oxide atoms respectively. 
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To simulate a negatively charged surface, a hydroxide molecule was placed near the 

optimized surface, and the resulting configuration was relaxed before the chlorine dioxide was 

added to the system. The hydroxide anion orients its oxygen atom above the nearest surface lead, 

and the bond with hydrogen points towards the nearest surface oxygen. Adsorption of the 

hydroxide anion does alter the lattice structure, pulling the lead atom towards the hydroxide and 

away from the surface oxygens. On the cupric oxide surface, the hydroxide oxygen also orients 

above the nearest surface cupric oxide and the hydrogen orients towards the nearest oxygen. The 

cupric oxide in the lattice does not get pulled toward the surface, like the surface lead. Instead, 

bond distances in the vicinity of the hydroxide anion, in the lateral surface directions, are altered. 

 

4.3.2 Adsorption of chlorine dioxide on lead oxide surface 

As chlorine dioxide approaches the lead oxide surface it becomes increasingly more 

favorable to adsorb to the surface (Figure C-1). The chlorine dioxide molecular geometry remains 

constant but orients with the chlorine atom further from the surface than the two oxygen atoms. 

Closer to the surface, in its most stable conformation the chlorine atom situates directly above the 

nearest surface oxygen and the oxygen atoms above the two nearest surface lead atoms, which 

follows chemical intuition as it positions oppositely charged atoms near each other.  

Of interest is the position of the chlorine atom on the surface (Figure 4.3). Previous studies 

have shown cupric oxide to polarize chlorine through complexation, making the atom more 

electrophilic, and catalyzing chlorine dioxide decay to its byproducts.51,131,146 The adsorption 

conformation of chlorine dioxide on the lead oxide surface seems to corroborate this theory. 

Complexation of lead oxide, a Lewis acid, and chlorine dioxide leaves the chlorine atom sterically 

exposed to reactions with compounds near the lead oxide surface. The surface oxygen and 
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coordinated oxygens increase the positive charge of the chlorine atom, and the surface lead atoms 

increase the oxygens’ ability to polarize the chlorine atom.  

Charge density analysis shows depletion of charge on the chlorine atom in the plane of the 

chlorine dioxide molecule (Figure 4.3d), but enrichment above and below the slice of depletion 

(Figure 4.3e). This could lend evidence in support of the pseudo-second-order and second-order 

reaction rate models identified from the experimental studies reported in Chapter 3. The interaction 

of a second chlorine dioxide or hydroxide molecule creates a more electrophilic chlorine atom than 

the chlorine atom of an adsorbed chlorine dioxide monomer. 
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Figure 4.3 Optimized conformation of chlorine dioxide monomer adsorbed to the lead oxide surface from 

three different angles (a-c). (d) Slice of the charge density difference calculation in the plane of chlorine 

dioxide adsorption angle. Darker blue indicates a loss of electrons. (e) Isosurface of the adsorbed chlorine 

dioxide. Yellow indicates a depletion of electrons, 0.03 electrons/Å3. 

 

(a) 

 

(b) 

 

(c) 

 

(e) 

 

(d

) 
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4.3.3 Adsorption of chlorine dioxide dimer and monomer on a larger lead oxide surface 

A larger surface area, larger in the XY-plane, slab was constructed to better observe the 

adsorption of chlorine dioxide dimer, monomer, and both molecules in the presence of hydroxide 

anions. The primary proposed pathway for chlorine dioxide reactions in solution and metal oxide-

catalyzed begin with chlorine dioxide dimerization.51,123,136 Therefore the adsorption of this dimer 

on the surface of lead and cupric oxides was considered. Gas phase DFT calculations for the dimer 

were performed and compared to literature and are discussed in a later section of this chapter. 

Hydroxide has been shown to affect the rate of these reactions51,123 and thus was also added into 

larger simulations either as present already on the surface or in solution with the monomer or 

dimer, which will be discussed further later. The adsorption of the monomer was observed on the 

larger surface to check for additional stable configurations.  

Two stable configurations of chlorine dioxide monomer were found on the larger lead 

oxide surface, one matching the smaller surface and the other oriented with the chlorine dioxide 

molecule positioned with the chlorine above a subsurface oxygen and the oxygens directly above 

surface lead atoms (Figure C-2). Both configurations push the chlorine atom in the Z-direction 

away from the lead oxide surface, lending credence to the idea that the chlorine is sterically 

enhanced to react with other molecules in solution. The adsorption energies of each configuration 

are comparable, the second configuration on the larger surface being slightly lower, -0.92 eV to -

1.09 eV. The larger adsorption energies compared to the smaller surface correspond to the 

increased number of atoms in the system. This was confirmed via simulations with varying atom 

amounts (Table B-1).  

The dimer adsorption energy on the lead oxide surface was -0.98 eV, which is as favorable as 

either of the two monomer configurations, indicating the dimer is no more favorable than the 
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monomer. Considering the geometry of the system, the monomer adsorbs closer to the surface than 

the dimer, 3.076 versus 3.184 Å between the chlorine atom and nearest surface oxygen atom 

(Figure 4.4). The chlorine dioxide molecule in the dimer closest to the surface is skewed in 

orientation compared to the chlorine dioxide monomer. The charge density difference shows very 

little charge depletion or enrichment on the dimer or lead oxide surface at the 0.03 electrons/ Å3 

level. This will be discussed more compared to the cupric oxide surface dimer adsorption but seems 

to indicate adsorption of the dimer does not create an electrophilic chlorine atom that is needed for 

a catalyzed reaction. These results cast doubt on the chlorine dioxide lead oxide reaction following 

the same pathway as the cupric oxide reaction, i.e. dimerization leading to disproportionation. 

Experimental results that show only the formation of chlorite and pseudo-second-order analysis 

corroborate this.  
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Figure 4.4 Optimized conformation of chlorine dioxide dimer adsorbed to the lead oxide surface from three 

different angles (a-c).  

 

(b) 

 

(c) 

 

(a) 
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4.3.4 Adsorption of chlorine dioxide monomer and dimer on cupric oxide surface 

The chlorine dioxide molecule adsorbs to the surface of cupric oxide in a similar 

conformation as on the lead oxide surface. The oxygen atoms alight closer to the surface copper 

atoms than surface lead atoms (Figure 4.5). Considering only the distance, the chlorine atom rests 

close to 3.0 Å from the surface oxygens in either mineral, 2.996 Å and 3.076 Å from the surface 

oxygens in the cupric oxide and lead oxide minerals respectively. The adsorption energy, however, 

is higher for the cupric oxide conformation than the lead oxide conformation, -1.74 eV versus -

0.92 or -1.09 eV.  

The orientation of the molecules adsorbed to both surfaces leaves the chlorine atom 

sterically exposed to chemical reactions with other molecules, notably hydroxide ions, and creates 

a more electrophilic halogen atom. Adsorption on the surface is favorable for both minerals and 

appears to increase the electrophilic nature of chlorine. These corroborate previously published 

experimental results that show higher kinetic rates of decay of chlorine dioxide in the presence of 

lead and cupric oxide minerals compared to chlorine dioxide in solution.51,123  

In studies of transition-metal and transition-metal compound catalysts, adsorption energy 

must be considered in the kinetics of the reactions, in order to fulfill the Sabatier 

principle.127,128,147,148 The best catalytic activity occurs when interactions between the catalyst and 

substrate are strong enough to bind, but weak enough to then dissociate. The strength of adsorption 

can be related to the structure of the catalyst, and its coordination number with the substrate.127,149 

Compared with each other, rates are significantly higher for lead than copper. The lead oxide 

surfaces have a lower adsorption energy than the cupric oxide surface, which could mean the cupric 

oxide surface retains the chlorine dioxide more strongly than the lead oxide surface. The lead oxide 
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surface increases the electrophilicity of the chlorine atom, but more readily releases the chlorine 

dioxide molecule to surface or in solution reactions, thus satisfying the Sabatier principle.  

Considering the charge density difference, especially the isosurface analysis, the cupric 

oxide mineral appears to increase the electrophilicity of the chlorine atom more than the lead oxide 

surface. This could be due to the ratio of cupric oxide to oxygen atoms is higher than lead to oxygen 

atoms in the lead oxide crystal, and the corresponding differences in coordination number.127,149 

There are more cupric oxide atoms to pull electrons away from the chlorine. Considering the Cu2+ 

orbitals, [Ar] 3d9, and Pb4+, [Xe] 4f14 5d10, it seems further likely that the cupric oxide would 

enhance the electrophilicity of the chlorine atom more than the lead atom.  

The highly electrophilic chlorine then readily reacts with the negatively charged 

hydroxides in the system, explaining the increases rates that occur when the pH is increased in the 

cupric oxide-catalyzed reaction. The lead oxide reaction, in contrast, shows a decrease in rate when 

pH and hydroxide concentration increase.  
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Figure 4.5 Optimized conformation of chlorine dioxide monomer adsorbed to the cupric oxide surface from 

three different angles (a-c). (d) Slice of the charge density difference calculation in the plane of chlorine 

dioxide adsorption angle. Darker blue indicates a loss of electrons. (e) Isosurface of the adsorbed chlorine 

dioxide. Yellow indicates a depletion of electrons, 0.03 electrons/Å3. 
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Figure 4.6 Optimized conformation of chlorine dioxide dimer adsorbed to the cupric oxide surface from 

three different angles (a-c). (d) Slice of the charge density difference calculation in the plane of the lower 

chlorine dioxide angle. Darker blue indicates a loss of electrons. (e) Isosurface of the adsorbed chlorine 

dioxide. Yellow indicates a depletion of electrons, 0.01 electrons/Å3. 

(b) 
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Compared to the chlorine dioxide monomer on the cupric oxide surface, adsorption energy 

is lower for the dimer, -1.74 eV versus -1.01 eV, but both are favorable. The monomer and dimer 

also adsorb at a similar distance from the surface, 2.996 versus 2.987 Å from the lower chlorine 

atom to the nearest surface oxygen (Figure 4.6). More interestingly, there is a starker charge 

density difference in the dimer than the monomer. The upper chlorine atom in the dimer appears 

to have more pronounced regions of electron depletion and little or no enrichment. It seems cupric 

oxide surface reactions with chlorine dioxide create a more electrophilic chlorine atom when a 

dimer rather than a monomer is adsorbed. This contrasts with the lead oxide surface, which adsorbs 

monomer and dimer equally favorably, and, more notably perhaps, has enrichment rather than 

depletion of charge on the chlorine dimer (Figure 4.7). To note, this is at 0.005 versus 0.03 

electrons/Å3 isosurface, thus the enrichment is not as large as the monomer, but the lack of 

enrichment is notable. 

 

                                       

Figure 4.7 Isosurface of the adsorbed chlorine dioxide dimer on (a) lead oxide and (b) cupric oxide surfaces. 

Yellow indicates a depletion of electrons, 0.005 electrons/Å3. 

 

  

(a) 

 

(b) 
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4.3.5 Reaction kinetics and chemisorption  

The surface cupric oxide reaction is second-order catalyzed by the adsorption.51 The metal 

oxide-catalyzed rate of chlorine dioxide decay seems due to the electrophilicity of the chlorine 

atom being increased by adsorption. The electrophilicity appears to increase when a dimer rather 

than a monomer is involved, hence the second-order dependence in chlorine dioxide. At higher 

chlorine dioxide concentrations the ratio of chlorite to chlorate produced becomes increasingly 

equivalent.51 The dimerization of chlorine dioxide is more likely at higher concentrations, and the 

disproportionation reaction requires the formation of said dimer.  

The lead adsorption data does not seem to favor a dimer over a monomer in terms of both 

adsorption energy and electron density difference. Considering the increased rate of decay in the 

lead versus cupric oxide reaction and the absence of chlorate byproduct, it seems more likely that 

a dimer is not needed for the lead oxide surface reactions. Instead the decay could be limited by 

chemisorption and exchange of valence electrons between the chlorine dioxide, water, and lead 

oxide surface. Dependence on chemisorption could also explain the kinetic rate dependence on pH 

for the lead oxide surfaces. Above and below the zero-point pH, charged particles accumulate on 

the surface, possibly hindering the adsorption of chlorine dioxide and thus limiting its adsorption 

to the surface. Pseudo-second-order rate models have been developed for adsorption and employed 

in many studies since.124,150,151 From Chapter 3 of this work, chlorine dioxide decay appears to fit 

this model. The physical meaning of the pseudo-second-order likely correspond to chemisorption 

being the rate-limiting step.124,150,152 

In the presence of lead, perhaps direct electron transfer from water to chlorine dioxide to form 

chlorite is more favorable than dimerization and subsequent disproportionation to chlorite and 

chlorate. The reaction is limited by adsorption on the surface. The adsorption energies are 
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favorable for chlorine dioxide monomer, but perhaps weak enough for desorption to easy occur 

after the electron transfer reaction.  

 

4.3.6 Equilibrium geometries of intermediates from Gaussian 

Previous experimental work of chlorine dioxide decay in basic solution and in the presence 

of metal oxides, including cupric oxide, suggest three key reaction pathways.51,123 The first 

pathway being first order and a disproportionation reaction was not considered for this study since 

the lead oxide pathway produces only chlorite and is pseudo-second-order, and the cupric oxide 

pathway is second-order. The other two pathways were considered, with a focus on the rate 

limiting step of each reaction. Both reactions guided the adsorption studies, thus the chlorine 

monomer, chlorine dimer, and presence of hydroxide were all considered in the adsorption 

analyses.  

Scheme 1. First and second order decay reactions of chlorine dioxide to its byproducts chlorite and chlorate 

in solution.  

 

 

(a) First-order pathway in chlorine dioxide  
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(b) Second-order pathway in chlorine dioxide  

 

 

 

 The optimized geometries of reactants, products, and intermediates of these two reactions 

were calculated using DFT methods (Table B-2). Using these energies, the reaction enthalpies of 

the chlorine monomer (first-order pathway) and dimer (second-order pathway) reactions were 

calculated, considering the rate limiting step of each reaction. The dimer pathway is more favorable 

from an energetic standpoint (Table 4.1). The dimer reaction also seems more likely to be 

occurring, given the reaction order of the reactions on the lead and copper surfaces. Thus, the 

transition state of the dimer pathway was also calculated (Figure 4.8).  

 Ideally these calculations would be performed on the metal oxide surface, which could be 

considered for future work. As stands, these calculations provide some support of the dimer 

pathway and guided the adsorption studies. They also highlight the importance of hydroxide in 

these reactions, which led to the final analysis of this study.  
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Table 4.1 Relative enthalpies of formation for the rate limiting step in a chlorine dioxide dimer or monomer 

reaction with hydroxide anion.   

 

Rate limiting step ClO2 form ΔH° (eV) 

 
Dimer -1.75 

 
Monomer -1.15 

 

 

 

 

 

 
 

Figure 4.8 (a) Reactants, (b) transition state, and (c) intermediates of the rate limiting step in the chlorine 

dioxide dimer reaction with hydroxide anion. Chlorine, oxygen, and hydrogen atoms are represented by 

green, red, and white spheres respectively.  

 

 

4.3.7 Influence of hydroxide on chlorine dioxide dimer and monomer adsorption  

 Hydroxide appears to have a strong influence on the cupric oxide surface reactions, as pH 

increased the rate of chlorine dioxide decay increased.51 The effect of hydroxide on the lead oxide 

reactions is more nebulous. Clearly water is being oxidized to supply electrons for the formation 

of chlorite, but increasing pH decreases the rate of chlorine dioxide decay. The reaction pathways 

in Scheme 1 seem inadequate in describing the lead oxide surface reaction. Nevertheless, the 

influence on hydroxide on adsorption was considered. Two scenarios were run for both the 

chlorine dioxide monomer and dimer: the hydroxide already adsorbed to the metal oxide surface 

(a) (b) (c) 
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and the hydroxide in solution equal distance from the metal oxide surface as the chlorine dioxide 

sorbate.  

Adsorption energies suggest that the presence of hydroxide either on the surface or in solution 

inhibits adsorption of chlorine dioxide (Table 4.2). The less favorable adsorption could lead to 

reduced kinetic rates of decay, which adds to the theory of chemisorption being the rate limiting 

step of the pseudo-second-order reaction on the lead oxide surface. 

 

  

Table 4.2 Energy of adsorption for chlorine dioxide monomer or dimer on the surface of lead oxide in the 

presence of hydroxide anion either previously adsorbed to the surface or in solution with the sorbate.  

  
ClO2 only ClO2 + surface OH- ClO2 + OH- in solution 

Monomer Eads (eV) -0.92 -0.17 -0.04 

Dimer Eads (eV) -0.98 0.01 0.26 

 

 

 

 

           
 
Figure 4.9 Charge density differences of chlorine dioxide dimer (a, c) and monomer (b, d) adsorption on 

the surface of lead oxide in the presence of hydroxide anion either previously adsorbed to the surface (a, b) 

or in solution with the sorbate (c, d). The yellow isosurface indicates charge depletion, 0.03 electrons/Å3. 

 

 

When assessing the influence of hydroxide on the charge density differences, the chlorine 

dioxide monomer and dimer both become more electrophilic when the hydroxide was present in 

(a) (b) (c) (d) 
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solution rather than starting on the surface (Figure 4.9). This corroborates the theory that the zero-

point pH plays a role in lead oxide surface reactions. Above the zero-point pH there will be an 

excess of negatively charged species already on the surface, and in this simple system, primarily 

hydroxide. The presence of these ions will both prevent chemisorption and decrease the effect on 

the chlorine atom electrophilicity.  

From computational adsorption data, it seems the cupric oxide surface is well suited for the 

adsorption of monomer and dimer chlorine dioxide. Adsorption increases the electrophilic nature 

of the chlorine atom in either case, but especially on the dimer. The adsorption energy of the 

monomer is stronger, but in this system, could be too strong for desorption of the reaction products 

leading to slower reaction rates. All this supports the theory of chlorine dioxide dimerization and 

decay to chlorite and chlorate proposed by previous work. Adsorption on the lead oxide surface is 

still favorable for either a chlorine dioxide monomer or dimer, but less favorable than the cupric 

oxide surface, supporting the experimental data that shows higher kinetic rates of decay on the 

lead oxide surface. The adsorption energy strikes a balance that allow the chlorine dioxide to 

adsorb, but also react and desorb, which has been shown to be key in developing useful catalysts. 
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 Overview 

Balancing the risks of waterborne disease, toxic byproduct formation, and pipe corrosion, 

associated with drinking water distribution systems remains a concern of water utilities tasked with 

providing potable water to modern society. The goal of the work reported in this dissertation is to 

assess the interplay of these three issues in the context of a particular drinking water disinfectant, 

chlorine dioxide. Despite the prevalence of free chlorine usage as a disinfectant in drinking water 

treatment over the last several decades, knowledge gaps remain in free chlorine disinfection 

mechanisms, byproduct formation, and corrosion. These literature gaps are even larger for free 

chlorine alternatives including chlorine dioxide. Drinking water treatment plants have considered 

chlorine dioxide as a free chlorine replacement in their disinfection processes primarily because 

chlorine dioxide produces almost no THMs or HAAs. However, little is known about how chlorine 

dioxide inactivates pathogens, forms inorganic byproducts, or impacts corrosion; thus, this 

dissertation aimed to fill some of those knowledge gaps using both computational and 

experimental methods. Computational methods from molecular scale models, not typically 

employed by environmental engineers, offer a new way to analyze these mechanisms and add 

insight to macroscale phenomena observed by experimental measurements in the laboratory, 

Each chapter of this dissertation advances the current understanding of chlorine dioxide 

disinfection chemistry from the complementary perspectives of pathogen disinfection, byproduct 

formation, and corrosion. From the work presented in Chapter 2, chlorine dioxide appears to have 

an unusually specific method of inactivating the H1N1 influenza virus, oxidizing the tryptophan 

Chapter 5. Conclusions and Future Work 
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153 residue, thereby disrupting the virus’s ability to bind to its host. More significantly, molecular 

modeling was used to predict the location of this oxidation site on the protein, which was then 

confirmed via mass spectrometry measurements of the oxidized protein. Expansion of these results 

to more pathogens and oxidants could lead to more efficient disinfection systems and safeguards 

against viral mutations that impact the efficacy of disinfection. Chapter 3 provides insight into 

byproduct formation and the reaction kinetics of chlorine dioxide decay in the presence of 

corrosion minerals. Notable differences between lead and copper minerals were discovered 

including a lack of chlorate formation, higher reaction rates, and zero-point pH dependence in the 

lead mineral-catalyzed decay. These findings motivated the adsorption studies reported in Chapter 

4, which employed DFT methods to examine the molecular-scale interactions that govern the 

experimental results described in Chapter 3. Adsorption energies, geometries, and charge density 

differences support the hypothesized mechanism of chlorine dioxide dimerization and subsequent 

disproportionation for the cupric oxide-catalyzed reaction pathway, but not for the lead oxide-

catalyzed reaction pathway, which appears instead to be limited by chemisorption.  

There are implications and limitations to each of these studies that will be discussed in 

more detail along with suggestions for future work to extend this research.  

 

 Computational modeling and virus inactivation mechanisms 

 Using molecular docking methods, it was shown that the target of chlorine dioxide 

oxidation on the H1N1 influenza virus was tryptophan 153, and moreover, this target could be 

predicted by both mass spectrometry and molecular modeling. Admittedly, a main limitation of 

this study is its lack of breath in terms of both number of viruses and oxidants tested using the 

molecular docking methodology. Ideally, future work would include a range of representative 
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viruses and commonly used water disinfectants i.e. chloramines. Additional data would help to 

show patterns in protein susceptibility thus aiding water treatment efficiency and efficacy. 

Disinfection systems could become more tailored to the types of pathogens present in the source 

water they treat. This could be of value for hospitals concerned with opportunistic pathogens not 

typically monitored by standard water treatment facilities. Having a more efficient disinfection 

system also reduces the amount of disinfectant that needs to be added to drinking water, thereby 

reducing the formation of DBPs, coagulants added for DBP removal, and issues related to 

corrosion.  

 Beyond matching computational to experimental data, molecular modeling could be used 

to better explain why particular protein oxidations cause inactivation, by examining molecular-

scale changes in protein structure and folding. Insight into protein modifications could unlock 

patterns that help describe pathogen disinfection mechanisms and promote better treatment 

practices. Knowledge of protein oxidation, in general, could also have further implications in the 

public health realm specifically for aging and disease. Data could be gathered through molecular 

docking calculations and molecular dynamics simulations.  

 Of growing concern in drinking water treatment is also the ability of viruses to mutate and 

thereby decrease the disinfecting power of the chemical oxidants presently used to treat drinking 

water. Molecular modeling seems an ideal realm to explore the implications of viral mutations. 

Numerous sequences of potential mutations could be screened, and the potentially dangerous 

mutations further explored. Armed with more knowledge, treatment systems could adjust their 

disinfection techniques to maintain the efficacy of their disinfection process. Computational work 

could furthermore provide insight into the structural and chemical changes that occur after a 
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mutation to assess the susceptibility of the mutated virus to various oxidants. This could help to 

determine which oxidants would still be effective against mutated viruses.  

 

 Relationship between disinfection, corrosion, and toxic byproducts 

 Chapters 3 and 4 of this dissertation have shown that there are clear differences in water 

supply systems that contain lead versus copper scale minerals. Lead-catalyzed reactions occur at 

higher kinetic rates and produce only chlorite as a byproduct. The lead oxide-assisted decay 

reaction also appears to be dependent on surface charge, with the chlorine dioxide decay rates 

peaking at the zero-point pH, whereas in the cupric oxide reaction, as the pH increases, the chlorine 

dioxide decay rate also increases. Lead and copper, possibly due to their orbital structures and 

coordination numbers, promote different reaction pathways, with chemisorption and direct 

electron transfer in the case of the former and dimerization to disproportionation favored on the 

latter.  

For drinking water plants considering chlorine dioxide as a disinfectant, there are key 

recommendations that can be taken from this dissertation’s findings. Drinking water treatment 

plants often increase pH to mitigate corrosion effects, which will enhance the decay of 

disinfectants, in the case of a copper-based system. In a lead pipe system, it seems more important 

to increase the pH above or below the zero-point if chlorine dioxide is used as a disinfectant. 

Distribution systems comprised primarily of lead infrastructure could focus efforts on removing 

chlorite, since it seems unlikely any chlorate would be produced.  

 Future work for these chapters could benefit from additional computational and 

experimental investigations. The primarily limitation of Chapter 3 lies in the use of batch reaction 

and powdered minerals to determine decay kinetics. Future work could include first laboratory 
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grown scale and then true scale samples taken from actual water supply networks, rather than 

synthesized powdered minerals. These samples could give more realistic kinetic rates and perhaps 

include the effects of flow. The effects of corrosion inhibitors, namely orthophosphate, and natural 

organic matter should also be considered as both constituents are often present in treated drinking 

water. Future computational adsorption studies could include the effects of solvation and look at 

reaction pathways on the corrosion mineral surfaces rather than in a vacuum.  

 Overall, this dissertation provides insights into chlorine dioxide chemistry through 

experimental and computational methods and was motivated by the intriguing relationships 

between disinfection, byproduct formation, and corrosion.  
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Appendix A. Supplementary Information for Chapter 2 

 

 

Table A-1 The chlorine dioxide conformations with the free energies of binding, C1, contains four 

indistinct members, listed below. D190 and W153 are highlighted in bold where present in the cluster 

members.  

 

G 

(kcal/mole) 

Amino acid residues 

-2.471 Y 98 S 186 D 190 Q 226 E 227 G 228 
   

-2.470 Y 98 S 186 D 190 Q 226 E 227 G 228 
   

-2.385 Y 98 W 153 H 183 D 190 L 194 Q 226 E 227 G 228 
 

-2.382 Y 98 W 153 H 183 S 186 D 190 L 194 Q 226 E 227 G 228 
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Table A-2 The sixteen conformations with the free energy of binding calculated for the global docking of 

HA with hypochlorous acid. The conformations are numbered in order of decreasing affinity between 

HOCl and HA, and are listed as mean free energy of binding ± SD. In the statistical analysis, one-way 

ANOVA showed none of the mean free energies of binding were significantly different (P-value 0.199). 

The footnote lists contacting residues for a given cluster. 

 

 

Cluster Members G (kcal/mol) 

H1†† 1 -2.30 

H2 1 -2.17 

H3 1 -2.00 

H4 2 -1.99±0.27 

H5 2 -1.99±0.07 

H6 1 -1.94 

H7 2 -1.88±0.25 

H8 1 -1.88 

H9 1 -1.83 

H10 

H11 

H12 

1 

1 

2 

-1.76 

-1.73 

-1.71±0.03 

H13 1 -1.71 

H14 1 -1.65 

H15 1 -1.56 

H16 1 -1.51 

 

 

 

  

                                                 
††H1   | D93, N94, G95, T96 

   H2   | L71, N150, L151, V178, L179, P254, R255, Y256, A257, F258 
   H3   | G62, K63, E75, C76, E77 

   H4   | S132, N133, K133A, G134, V135, F147, I152, W153 

   H5   | I103, D104, Y209, Y233, W234 
   H6   | L59, W69, S78, S80, T81, A82 

   H7   | Q191, A198, D199, A200, K214, P215, I217, N250 

   H8   | Y98, W153, H183, P185, S186, D190, L194, G228 
   H9   | E119, P122, K123, T124, S125, R255 

   H10 | F147, Y148, K149, L151, I152, R255 

   H11 | S167, G205, S206, K242, I243, T244 
   H12 | L123, W127, P128, H130, D131, S132, N133, K157 

   H13 | I66, T86, I87, R109, L112, S113 

   H14 | I182, H184, F213, P215, N231, Y233 
   H15 | Q111, E175, M260, E261, R262 

   H16 | H184, R220, R229 
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Table A-3 H1N1 hemagglutinin capsid protein sequence. Orbitrap MS detected the underlined fragments. 

261 amino acids, or 46.3% of the total, were recovered. 

 

MKAKLLVLLC10 TFTATYADTI20 CIGYHANNST30 DTVDTVLEKN40 VTVTHSVNLL50 EDSHNGKLCL60 

LKGIAPLQLG70 NCSVAGWILG80 NPECELLISK90 ESWSYIVETP100 NPENGTCYPG110 YFADYEELRE120 

QLSSVSSFER130 FEIFPKESSW140 PNHTVTGVSA150 SCSHNGKSSF160 YRNLLWLTGK170 NGLYPNLSKS180 

YVNNKEKEVL190 VLWGVHHPPN200 IGDQRALYHT210 ENAYVSVVSS220 HYSRRFTPEI230 AKRPKVRDQE240 

GRINYYWTLL250 EPGDTIIFEA260 NGNLIAPWYA270 FALSRGFGSG280 IITSNAPMDE290 CDAKCQTPQG300 

AINSSLPFQN310 VHPVTIGECP320 KYVRSAKLRM330 VTGLRNIPSI340 QSRGLFGAIA350 GFIEGGWTGM360 

VDGWYGYHHQ370 NEQGSGYAAD380 QKSTQNAING390 ITNKVNSVIE400 KMNTQFTAVG410 

KEFNKLERRM420 ENLNKKVDDG430 FLDIWTYNAE440 LLVLLENERT450 LDFHDSNVKN460 

LYEKVKSQLK470 NNAKEIGNGC480 FEFYHKCNNE490 CMESVKNGTY500 DYPKYSEESK510 LNREKIDGVK520 

LESMGVYQIL530 AIYSTVASSL540 VLLVSLGAIS550 FWMCSNGSLQ560 CRIC 
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Table A-4 Hemagglutinin protein amino acid sequences of A/New Caledonia/20/99, used for 

experimental work, and A/Mexico/4603/2009, used in the computational modeling. The third sequence 

contains the most commonly occurring residues in human strains of H1N1 hemagglutinin.  
 

NewCal  MKAKLLVLLCTFTATYADTICIGYHANNSTDTVDTVLEKNVTVTHSVNLLEDSHNGKLCLLKGIAPLQL 

Mex     MKAILVVLLYTFATANADTLCIGYHANNSTDTVDTVLEKNVTVTHSVNLLEDKHNGKLCKLRGVAPLHL 

Human   MKVKLLVLLCTFTATYADTICIGYHANNSTDTVDTVLEKNVTVTHSVNLLEDSHNGKLCLLKGIAPLQL 

 

NewCal  GNCSVAGWILGNPECELLISKESWSYIVETPNPENGTCYPGYFADYEELREQLSSVSSFERFEIFPKES 

Mex     GKCNIAGWILGNPECESLSTASSWSYIVETSSSDNGTCYPGDFIDYEELREQLSSVSSFERFEIFPKTS  

Human   GNCSVAGWILGNPECELLISKESWSYIVETPNPENGTCYPGYFADYEELREQLSSVSSFERFEIFPKES  

 

NewCal  SWPNHTVT-GVSASCSHNGKSSFYRNLLWLTGKNGLYPNLSKSYVNNKEKEVLVLWGVHHPPNIGDQRA 

Mex     SWPNHDSNKGVTAACPHAGAKSFYKNLIWLVKKGNSYPKLSKSYINDKGKEVLVLWGIHHPSTSADQQS  

Human   SWPNHTVTKGVSASCSHNGKSSFYRNLLWLTGKNGLYPNLSKSYANNKEKEVLVLWGVHHPPNIGDQRA  

 

NewCal  LYHTENAYVSVVSSHYSRRFTPEIAKRPKVRDQEGRINYYWTLLEPGDTIIFEANGNLIAPWYAFALSR  

Mex     LYQNADAYVFVGSSRYSKKFKPEIAIRPKVRDQEGRMNYYWTLVEPGDKITFEATGNLVVPRYAFAMER  

Human   KCQTPQGAINSSLPFQNVHPVTIGECPKYVRSAKLRMVTGLRNIPSIQSRGLFGAIAGFIEGGWTGMVD  

 

NewCal  GFGSGIITSNAPMDECDAKCQTPQGAINSSLPFQNVHPVTIGECPKYVRSAKLRMVTGLRNIPSIQSRG  

Mex     NAGSGIIISDTPVHDCNTTCQTPKGAINTSLPFQNIHPITIGKCPKYVKSTKLRLATGLRNVPSIQSRG  

Human   GWYGYHHQNEQGSGYAADQKSTQNAINGILYHTENAYVSVVSSHYSRRFTPEIAKRPKVRDQEGRINYY  

 

NewCal  LFGAIAGFIEGGWTGMVDGWYGYHHQNEQGSGYAADQKSTQNAINGITNKVNSVIEKMNTQFTAVGKEF 

Mex     LFGAIAGFIEGGWTGMVDGWYGYHHQNEQGSGYAADLKSTQNAIDEITNKVNSVIEKMNTQFTAVGKEF  

Human   WTLLEPGDTIIFEANGNLIAPRYAFALSRGFGSGIITSNAPMDECDATNKVNSVIEKMNTQFTAVGKEF  

 

NewCal  NKLERRMENLNKKVDDGFLDIWTYNAELLVLLENERTLDFHDSNVKNLYEKVKSQLKNNAKEIGNGCFE  

Mex     NHLEKRIENLNKKVDDGFLDIWTYNAELLVLLENERTLDYHDSNVKNLYEKVRSQLKNNAKEIGNGCFE 

Human   NKLERRMENLNKKVDDGFLDIWTYNAELLVLLENERTLDFHDSNVKNLYEKVKSQLKNNAKEIGNGCFE 

 

NewCal  FYHKCNNECMESVKNGTYDYPKYSEESKLNREKIDGVKLESMGVYQILAIYSTVASSLVLLVSLGAISF  

Mex     FYHKCDNTCMESVKNGTYDYPKYSEEAKLNREEIDGVKLESTRIYQILAIYSTVASSLVLVVSLGAISF 

Human   FYHKCNDECMESVKNGTYDYPKYSEESKLNREKIDGVKLESMGVYQILAIYSTVASSLVLLVSLGAISF 

 

NewCal  WMCSNGSLQCRIC- 

Mex     WMCSNGSLQCRICI 

Human   WMCSNGSLQCRICI 
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Figure A-1 MS/MS analysis of Orbitrap MS peak. The inset shows the amino acid residues, indicating 

NLLWLLGK was oxidized to NLL[FK]LLGK, tryptophan oxidized to N-formylkynurenine. 
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Figure A-2 Amino acids of the chlorine dioxide docking conformation with the second highest binding 

energy. The tyrosine highlighted in red was identified as modified in the experimental MS analysis. The 

chlorine dioxide solvent accessible surface area is depicted in yellow. The HA protein is shown in 

transparent blue. 
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Appendix B. Supplementary Information for Chapter 3 

 

 

Figure B-1 Graphic illustration of batch reactions and experimental parameters. 
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Table B-1 Characteristics and concentrations of scale minerals used in batch reactions.  

 

Compound BET surface 

area 

(m2 g-1) 

Particle 

diameter 

(nm) 

Reaction surface 

area 

(m2 L-1) 

Mass 

concentration 

(g L-1) 

PbO2 0.52 1028 1.8 3.4 

PbCO3 0.83 1238 1.8 2.2 

CuO 3.73 858 3.6 0.96 

 

 

 

 

 

 

 

  



 98 

Rate models 

Six different rate models were considered for the analysis of chlorine dioxide decay: first-

order, second-order, mixed-order (simultaneous first and second order reactions), and two-phase 

(two simultaneous first-order reactions), and pseudo-first and pseudo-second order adsorption 

models. Despite matching the proposed reaction mechanism, first-order models were significantly 

worse than any of the other models. When fitted to a two-phase model, the R2 values improve over 

a second-order or mixed-order model (Table B-2). P-values for both models indicated evidence of 

an inadequate model for the second and mixed order decay, but an adequate model for two phase 

decay.  

The mixed-order model was used in previous studies observing chlorine dioxide 

decomposition in basic solutions.123 The rate constants essentially followed a second order decay, 

with the first order rate constant essential equal to zero. A second order model fit the pH 8.3 data 

best. At phases above and below the zero-point pH there is an initial phase of lead oxide surface 

reacting with chlorine dioxide. As the experiment progresses the lead surface becomes populated 

with charged ions, positive or negative depending on whether the experiment was conducted above 

or below the point of zero charge. The kinetic rates slow as the surface becomes blocked for 

chlorine dioxide adsorption. Perhaps these surface interactions are incorporated into the two-phase 

model, where the phases represent (1) the first-order reaction of chlorine dioxide on the lead 

surface, and (2) the reduction of surface sites for the reaction to take place.  

The final two rate models considered, pseudo-first (Equation 5) and pseudo-second order 

(Equation 6), were chosen to incorporate adsorption into the chlorine dioxide decay rate constants. 

The rate laws are based on adsorption kinetics and the capacity of the sorbent.124,130 These models 

have been used in the adsorption of free chlorine adsorption on lead (IV) oxide at different pH 
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values. For the chlorine dioxide model, adsorbed chlorine dioxide was taken to be the difference 

between initial chlorine dioxide concentration and the concentration at time t.  

 

𝑙𝑜𝑔(𝑞𝑒 − 𝑞𝑡) = log 𝑞𝑒 −
𝑘1

2.303
𝑡   (5) 

 

𝑡

𝑞𝑡
=

1

𝑘2𝑞𝑒
2 +

1

𝑞𝑒
𝑡     (6) 

 

Chlorine dioxide adsorption follows the pseudo-second order adsorption based on the R2 

values. These results suggest that hydroxide ions are in excess and then the reaction is dependent 

on chlorine dioxide concentration. Previously published work demonstrated copper, nickel, and 

iron enhancement of chlorine dioxide decay followed a second-order dependence on chlorine 

dioxide.51  

A secondary consideration is the phase of the lead mineral itself. The oxidation-reduction 

potential for chlorine dioxide is high,55 and for pH levels relevant to drinking water, lead (IV) 

oxide is favored to form.52,53 At lower pH, the mineral surface could be changing composition to 

lead carbonate, which has a slower reaction rate with chlorine dioxide than lead oxide. The phase 

shift from lead (IV) oxide to lead (II) carbonate could also point to why a second order model is 

statistically unfavorable at pH less than 7. In this case the first phase rate constant corresponds to 

the presence of lead oxide and is more rapid than the second phase rate constant, corresponding to 

a new surface of lead carbonate.  
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Table B-2 Rate constants and R2 values for three different exponential decay models fit to chlorine 

dioxide decay in the presence of lead oxide at varying pH values.  

 

 

pH Mixed order decay Second order decay Pseudo-second order 

adsorption 

 Rate R2 Rate R2 Rate R2  
 First 

(s-1) 

Second 

(M-1 s-1) 

  

(M-1 s-1) 

  

(M-1 s-1) 

 

 

5.9 0.0001±1.4 11.7±3.5 0.58 14.1±3.4 0.58 267.6±0.7 0.994 

7.4 0.0006±27 61.1±9.0 0.92 58.5±8.2 0.92 166.3±0.4 0.988 

8.3 0.0020±189 217±46 0.98 203.0±22 0.98 290.4±0.1 0.999 

9.7 0.0003±9.8 25.8±4.2 0.87 25.6±3.9 0.87 156.0±0.9 0.968 

10.4 0.0011±557 20.9±5.0 0.76 19.7±4.4 0.76 87.8±0.7 0.965 
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Figure B-2 Chlorine dioxide decay and chlorite formation in an unbuffered batch reaction with PbO2. 

Each data point represents the mean and standard deviation of duplicate experiments. If error bars were 

shorter than the symbol, they were removed. 
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Electron supply  

The two unbuffered batch reactions were done in Milli-Q water, a starting chlorine dioxide 

concentration of about 70 μM, and the same PbO2 concentration as the buffered reactions. They 

were performed to confirm the oxidation of water via pH measurements.  

Chlorine dioxide oxidizes water (eq 1).  

 

ClO2 + 
1

2
H2O = 

1

4
O2 + ClO2

-
 + H+ (1) 

 

In an unbuffered system this corresponds to a drop in pH (eq 2 and 3): 

 

∆ClO2 moles = H+ moles   (2) 

pH = - log [H+ ]   (3) 

 

The change in chlorine dioxide concentration in both replicates of the unbuffered batch reaction 

had a theoretical pH of 4.76 and 4.79, and measured pH of 5.1 and 4.8 respectively.  
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Figure B-3 Lead carbonate batch reaction over the course of one hour. Image 1 was taken immediately 

upon the addition of lead carbonate. Images 2 and 3 are taken after late batch reaction samples.   
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Figure B-4 Variation in pH during pH batch experiments corresponding to Figure 3. At pH 5.9 and pH 

7.4 the variation was 0.5. Above pH 8.3 there was less than 0.03 change in pH.   
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Figure B-5 (A) Chlorine dioxide decay, (B) chlorite formation, and (C) chlorate formation in batch 

reactions containing chlorine dioxide and cupric oxide at three different pH values. Each data point 

represents the mean and standard deviation of duplicate experiments. If error bars were shorter than the 

symbol, they were removed. 
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Figure B-6 Relationship between measured second-order rate constants and hydroxide concentration. 

Batch experiments with CuO showed a linear dependence on [OH-], while PbO2 showed no dependence 

and a maximal rate at pOH 5.7 (pH 8.3).  
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Figure B-7 Chlorine dioxide decay in batch reactions at different pH and in the presence of lead 

carbonate. Each data point represents the mean and standard deviation of duplicate experiments. If error 

bars were shorter than the symbol, they were removed. 
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Appendix C. Supplementary Information for Chapter 4 

 

 

 

Figure C-1 Side view of the optimized configurations of adsorbed chlorine dioxide on lead oxide surface. 

The distances in angstroms represent the initial distance of the chlorine atom from the nearest surface 

oxygen atom. Chlorine, oxygen, and lead atoms are represented by green, red, and grey spheres 

respectively.  
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Figure C-2 Two configurations found on the 60-atom lead oxide surface. The configuration on the left is 

slightly more favorable in terms of adsorption energy.  
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Table C-1 Variation in adsorption energy of chlorine dioxide on the lead oxide surface depending on 

number of atoms in the system. The total energy and energy normalized by atom number are shown.  

 

 

Atoms Energy (eV) 

Energy 

(eV/atom) 

20 -0.359 -0.016 

40 -0.871 -0.020 

60 -0.977 -0.016 

80 -1.243 -0.015 
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Table C-2 Total energies and zero-point energy correction calculated in Gaussian of species in the two 

pathways presented in Scheme 1. Literature values are shown for comparison.123,136 

 

 

Molecule Calculated Literature 

 

6-311++g(3df,3pd) 

(Hartrees) 

ZPE 

(kcal/mol) 

6-311++g(3df,3pd) 

(Hartrees) 

ZPE 

(kcal/mol) 

ClO2 -610.5493027 3.62 -610.549303 3.6 

ClO2
- -610.622099 2.86 -610.626663 2.9 

H2O -76.443196 13.38 -76.464512 13.4 

OH- -75.8309271 5.38 -75.830927 5.4 

ClO2ClO2 -1221.091561 9.03 -1221.0901446 8.6 

OHClO2 -686.341628 13.14 -686.362561 13.1 

OClOOH- -686.4246207 10.32 -686.414346 11.2 

TS: OHClO3ClO -1293.087427 13.34 
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