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ABSTRACT

Computational modeling of dislocation behavior is vital for designing new lightweight

metallic alloys. However, extraordinary challenges are posed by the multiscale physics

ranging over a vast span of interacting length-scales from electronic-structure and

atomic-scale effects at the dislocation core (< 10−9m) to long-ranged elastic interac-

tions at the continuum scale (∼ 10µ). In particular, quantification of the energetics

associated with electronic-structure effects inside the dislocation core and its interac-

tion with the external macroscopic elastic fields have not been explored due to limi-

tations of current electronic-structure methods based on the widely used plane-wave

based discretization. This thesis seeks to address the above challenges by developing

computational methodologies to conduct large-scale real-space electronic-structure

studies of energetics of dislocations in Aluminum and Magnesium, and use these

results to develop phenomenological connections to mesoscale models of plasticity

like discrete dislocation dynamics (DDD), which study the collective behavior of the

dislocations at longer length scales (∼ 1–15 µ).

First, a local real-space formulation of orbital-free Density Functional Theory is

developed based on prior work, and implemented using finite-element discretization.

The local real-space formulation coupled with bulk Dirichlet boundary conditions

enables a direct computation of the isolated dislocation core energy. Studies on

dislocations in Aluminum and Magnesium suggest that the core-size—region with

significant contribution of electronic effects to dislocation energetics—is around seven

to eleven times the magnitude of the Burgers vector. This is in stark contrast to prior

displacement field based core size estimates of one to three times the magnitude of
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the Burgers vector. Interestingly, our study further indicates that the core-energy of

the dislocations in both Aluminum and Magnesium is strongly dependent on external

macroscopic strains with a non-zero slope at zero external strain.

Next, the computed dislocation core energetics is used to develop a continuum

model for an arbitrary aggregate of dislocations in an infinite isotropic elastic con-

tinua. This model, which accounts for the core energy dependence on macroscopic de-

formation provides a phenomenological approach to incorporate the electronic struc-

ture effects into mesoscale DDD simulations. Application of this model to derive

nodal forces in a discrete dislocation network, leads to additional configurational

forces beyond those considered in existing DDD models. Using case studies, we show

that even up to distances of 10 − 15 nm between the dislocations, these additional

configurational forces are non-trivial in relation to the elastic Peach-Koehler force.

Furthermore, the core force model is incorporated into a DDD implementation, where

significant influence of core force on elementary dislocation mechanisms in Aluminum

such as critical stress of a Frank-Read source and structure of a dislocation binary

junction are demonstrated.

To enable the above electronic-structure studies of dislocations in generic material

systems, calculations using the more accurate and transferable Kohn-Sham Density

Functional Theory (KS-DFT) are required. The final part of this thesis extends pre-

vious work on real-space adaptive spectral finite-element discretization of KS-DFT to

develop numerical strategies and implementation innovations, which significantly re-

duce the computational pre-factor, while increasing the arithmetic intensity and low-

ering the data movement costs on both many-core and heterogeneous architectures.

This has enabled systematically convergent and massively parallel (demonstrated up

to 192,000 MPI tasks) KS-DFT calculations on material systems up to∼ 100, 000 elec-

trons. Using GPUs, an unprecedented sustained performance of 46 PFLOPS (27.8%

of peak FP64 performance) is demonstrated on a large-scale benchmark dislocation

xvi



system in Magnesium containing 105,080 electrons.
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CHAPTER I

Introduction

Plasticity in crystalline materials is governed by defects and their collective be-

havior, which includes their nucleation, kinetics, evolution and interaction with other

defects (cf. [5–7]). The primary defect type responsible for plasticity are dislocations,

which are line defects. However, developing a predictive dislocation based model of

plasticity poses extraordinary challenges due to the multiscale physics ranging over a

vast span of interacting length-scales (cf. [8]) ranging from electronic-structure effects

at the dislocation core to continuum elastic effects, with mesoscale physics of the dis-

location microstructure (cf. [9]) playing an important role. While mesoscopic models

like the discrete dislocation dynamics (DDD) [10–19], phase field methods [20–25], and

continuum theories based on continuously distributed dislocations [26–31] correctly

account for the elastic interactions outside the dislocation core using linear elastic the-

ories of dislocations [5, 32–34] or non-linear elastic theories of dislocations [31, 35], the

physics inside the dislocation core has been supplemented by atomistic calculations

of dislocation core structure, dislocation core energetics, dislocation mobilities, and

solute strengthening (cf. e.g. [15, 36–42]). However, these atomistic calculations are

based on interatomic potentials, which may not adequately describe the significant

electronic structure effects inside the dislocation core. In fact, recent investigations

of dislocation core structure in Aluminum and Magnesium [43–47] using explicit elec-
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tronic structure calculations based on plane-wave implementations of density func-

tional theory (DFT) have demonstrated that atomistic predictions of the dislocation

core structure properties are widely sensitive to the choice of the interatomic poten-

tial, and also show discrepancies in comparison to the more transferable and accurate

electronic structure calculations. However, these electronic structure studies of dis-

locations have a major limitation that the periodic boundary conditions inherent in

plane wave based methods are incompatible with the displacement fields of an iso-

lated dislocation. Such studies are thus limited to either using dipole and quadrapole

configurations of dislocations [48, 49], or introducing a vacuum region around the iso-

lated dislocation [43, 44, 47]. While these approaches have been useful to predict the

dislocation core structures [43, 44, 47, 49], and to compute Peierls stress [46, 48, 49]

and interaction energetics such as dislocation-solute binding energies [50, 51], a direct

calculation of dislocation core energy using plane-wave based DFT implementations

has been beyond reach.

This thesis seeks to address the above challenges by developing computational

methodologies to conduct large-scale, electronic-structure studies of core energetics

of isolated dislocations in Aluminum and Magnesium, and use these results to de-

velop phenomenological connections to mesoscale models of plasticity like discrete

dislocation dynamics (DDD), which study the collective behavior of the dislocations

at longer length scales (∼ 1–15 µ). As a first step [52], we improved upon previous

research [53, 54] to develop a local, real-space formulation of orbital-free DFT in con-

junction with higher-order finite-element discretization, whose general basis set offers

significant advantages over the previously mentioned plane wave discretization like al-

lowing for arbitrary boundary conditions, ease of handling complex geometries, excel-

lent scalability on parallel computing architectures, and tailoring the mesh-resolution

to the system physics, all of which make the developed framework very well suited to

study dislocations.
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In the next step, we use the developed local real-space formulation of orbital-free

DFT to study the core energetics and core structure of an isolated screw dislocation

in Aluminum [55], and isolated basal edge and basal screw dislocations in Magnesium.

We adopt the bulk Dirichlet boundary conditions approach proposed in [56], which

allows for direct calculation of the dislocation core energy of an isolated dislocation

embedded in the bulk. Using this direct energetics approach, we estimate the core

size of a perfect screw dislocation in Aluminum to be ≈ 7 |b|, and core sizes of perfect

basal edge and screw dislocations in Magnesium to be be ≈ 8 |b| and ≈ 11 |b| re-

spectively. These are considerably larger than previous atomistics based estimates of

1− 3 |b|. The perfect dislocations in both Aluminum and Magnesium dissociate into

two Shockley partials with partial separation distances measured from differential dis-

placement plots comparing well with previous DFT estimates. Similar to a previous

electronic structure study on edge dislocation [56, 57], we find that the core energy

of the screw dislocation in Aluminum and basal dislocations in Magnesium are not a

constant, but strongly dependent on macroscopic deformations with a non-zero slope

at zero external strain. Next, we use the above core energetics data with physically

reasonable assumptions to develop a continuum energetics model for an aggregate of

dislocations that accounts for the core energy dependence on macroscopic deforma-

tions. Further, we use this energetics model in a discrete dislocation network, and

from the variations of the core energy with respect to the nodal positions of the net-

work, we obtain the nodal core force which can directly be incorporated into discrete

dislocation dynamics frameworks. We analyze and classify the nodal core force into

three different contributions based on their decay behavior. Two of these contribu-

tions to the core force, both arising from the core energy dependence on macroscopic

deformations, are not accounted for in currently used discrete dislocation dynamics

models which assume the core energy to be a constant excepting for its dependence

on the dislocation line orientation. Using case studies involving simple dislocation
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structures, we demonstrate that the contribution to the core force from the core en-

ergy dependence on macroscopic deformations can be significant in comparison to the

elastic Peach-Koehler force even up to distances of 10 − 15 nm between dislocation

structures. Thus, these core effects, whose origins are in the electronic structure of

the dislocation core, can play an important role in influencing dislocation-dislocation

interactions to much larger distances than considered heretofore. Furthermore, we

have incorporated the core force into a DDD implementation, and demonstrate the

influence of core effects on elementary dislocation mechanisms in Aluminum such as

structure of a dislocation binary junction and critical stress of a Frank-Read source.

Though orbital-free DFT is demonstrated to be accurate for Aluminum-Magnesium

materials system in comparison to Kohn-Sham DFT, the kinetic energy functionals

are not well developed or are not sufficiently accurate for generic material systems,

such as transition metals and covalently bonded systems. For example, Kohn-Sham

DFT is important in studying the electronic structure effects in dislocation-solute

interactions [50, 58–60]. However, the cubic scaling computational complexity of

Kohn-Sham DFT coupled with limited parallel scaling of widely used plane-wave

basis implementations have so far been a significant bottleneck in accessing large sys-

tem sizes reaching thousands of atoms as required for studying dislocations. Thus,

in the final part of this thesis, we extend previous work on real-space adaptive spec-

tral finite-element discretization of Kohn-Sham DFT [61, 62] to develop a capability

(DFT-FE) to perform large scale and accurate Kohn-Sham DFT calculations. The

present work [63]1 develops numerical strategies and implementation innovations,

which significantly reduce the computational pre-factor and delay the onset of cu-

bic scaling computational complexity. This has enabled systematically convergent

and massively parallel (demonstrated up to 192,000 MPI tasks) Kohn-Sham DFT

calculations on material systems up to ∼ 100, 000 electrons. Further, these devel-

1Phani Motamarri and Sambit Das are co-first authors.
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opments have resulted in DFT-FE being more than 10× faster in time to solution

and 5–10× more computationally efficient than the state-of-the-art plane-wave codes

for large-scale metallic systems with more than 10,000 electrons at similar accuracy.

The above approaches have also been extended to efficiently use Graphical Process-

ing Units (GPUs) [64] through implementation innovations which increase arithmetic

intensity and lower the data movement costs. Using GPUs on the Summit super-

computer, we demonstrated an unprecedented sustained performance of 46 PFLOPS

(27.8% of peak FP64 performance) on a large-scale benchmark dislocation system in

Magnesium containing 105,080 electrons.

The remainder of this thesis is organized as follows. Chapter II provides an

overview of orbtial-free DFT and subsequently discusses the local real-space formu-

lation of orbital-free DFT and its accuracy and transferability for the Aluminum-

Magnesium materials system. Chapter III applies the developed real-space orbital-

free DFT framework to study core energetics of isolated dislocations in Aluminum

and Magnesium. Subsequently, the obtained isolated dislocation core energetics is

used in Chapter IV to develop a continuum model for an aggregate of dislocations,

which is then incorporated into a DDD framwork and importance of this model for

dislocation-dislocation interactions is demonstrated using various case studies. Next,

Chapter V discusses development of numerical and implementation strategies for

large-scale Kohn-Sham DFT calculations, and demonstration on large-scale bench-

mark material systems. Finally we conclude in Chapter VI with a short discussion

and consider the scope for future work.
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CHAPTER II

Real-Space Formulation of Orbital-Free Density

Functional Theory Using Finite-Element

Discretization

2.1 Introduction

Electronic structure calculations have played an important role in understanding

the properties of a wide range of materials systems [65]. In particular, the Kohn-

Sham formalism of density functional theory [66, 67] has been the workhorse of

ground-state electronic structure calculations. However, the Kohn-Sham approach

requires the computation of single-electron wavefunctions to compute the kinetic en-

ergy of non-interacting electrons, whose computational complexity typically scales as

O(N3) for an N -electron system, thus, limiting standard calculations to materials

systems containing few hundreds of atoms. While there has been progress in devel-

oping close to linear-scaling algorithms for the Kohn-Sham approach [68, 69], these

are still limited to a few thousands of atoms, especially for metallic systems [70].

The orbital-free approach to DFT [71], on the other hand, models the kinetic en-

ergy of non-interacting electrons as an explicit functional of the electron density, thus

circumventing the computationally intensive step of computing the single-electron

wavefunctions. Further, the computational complexity of orbital-free DFT scales lin-

6



early with the system size as the ground-state DFT problem reduces to a minimization

problem in a single field—the electron density. The past two decades has seen consid-

erable progress in the development of accurate models for orbital-free kinetic energy

functionals [2, 72–78], and, in particular, for systems whose electronic-structure is

close to a free electron gas (for e.g. Al, Mg). Also, orbital-free DFT calculations are

being increasingly used in the simulations of warm dense matter where the electronic

structure is close to that of a free electron gas at very high temperatures [79–83]. As

the reduced computational complexity of orbital-free DFT enables consideration of

larger computational domains, recent studies have also focused on studying extended

defects in Al and Mg, and have provided important insights into the energetics of

these defects [44, 46, 53, 56, 84, 85].

The widely used numerical implementation of orbital-free DFT is based on a

Fourier space formalism using a plane-wave discretization [1, 86]. A Fourier space

formulation provides an efficient computation of the extended interactions arising

in orbital-free DFT—electrostatics and kinetic energy functionals—through Fourier

transforms. Further, the plane-wave basis is a complete basis and provides variational

convergence in ground-state energy with exponential convergence rates. However, the

Fourier space formulations are restricted to periodic geometries and boundary con-

ditions that are suitable for perfect bulk materials, but not for materials systems

containing extended defects. Also, the extended spatial nature of the plane-wave

basis affects the parallel scalability of the numerical implementation and is also not

suitable for multi-scale methods that rely on coarse-graining. In order to address the

aforementioned limitations of Fourier space techniques, recent efforts have focused on

developing real-space formulations for orbital-free DFT and numerical implementa-

tions based on finite-element [54, 87, 88] and finite difference discretizations [89–91].

In the present work [52], we build upon prior efforts [54, 87] to develop an effi-

cient real-space formulation of orbital-free DFT employing the widely used non-local
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Wang-Govind-Carter (WGC) [2] kinetic energy functional. We also propose an unified

variational framework for computing the configurational forces associated with geom-

etry optimization of both internal atomic positions as well as the cell geometry. We

subsequently investigate the accuracy and transferability of the proposed real-space

formulation of orbital-free DFT for Aluminum and Magnesium materials systems,

where we obtain good agreement with Kohn-Sham DFT calculations on a wide range

of properties and benchmark calculations. We finally investigate the cell-size effects in

the electronic structure of a mono-vacancy in Aluminum using bulk Dirichlet bound-

ary conditions, where the perturbations in the electronic structure arising due to the

vacancy vanishes on the boundary of the computational domain. We note that the

bulk Dirichlet boundary conditions are crucial to the study of energetics of isolated

dislocations embedded in the bulk as will be discussed in Chapter III.

2.2 Orbital-free density functional theory

The ground-state energy of a charge neutral materials system containing M nuclei

and N valence electrons in density functional theory is given by [65, 71]

E(ρ,R) = Ts(ρ) + Exc(ρ) + EH(ρ) + Eext(ρ,R) + Ezz(R) , (2.1)

where ρ denotes the electron-density and R = {R1,R2, . . . ,RM} denotes the vector

containing the positions of M nuclei. In the above, Ts denotes the kinetic energy of

non-interacting electrons, Exc is the exchange-correlation energy, EH is the Hartree

energy or classical electrostatic interaction energy between electrons, Eext is the clas-

sical electrostatic interaction energy between electrons and nuclei, and Ezz denotes

the electrostatic repulsion energy between nuclei. We now discuss the various contri-

butions to the ground-state energy, beginning with the exchange-correlation energy.

The exchange-correlation energy, denoted by Exc, incorporates all the quantum-
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mechanical interactions in the ground-state energy of a materials system. While the

existence of a universal exchange-correlation energy as a functional of electron-density

has been established by Hohenberg, Kohn and Sham [66, 67], its exact functional

form has been elusive to date, and various models have been proposed over the past

decades. For solid-state calculations, the local density approximation (LDA) [3, 92]

and the generalized gradient approximation [93] have been widely adopted across

a range of materials systems. In particular, the LDA exchange-correlation energy,

which is adopted in the present work, has the following functional form:

Exc(ρ) =

ˆ
εxc(ρ)ρ(x) dx , (2.2)

where εxc(ρ) = εx(ρ) + εc(ρ), and

εx(ρ) = −3

4

(
3

π

)1/3

ρ1/3(x) , (2.3)

εc(ρ) =


γ

(1+β1
√

(rs)+β2rs)
rs ≥ 1,

A log rs +B + C rs log rs +D rs rs < 1,

(2.4)

and rs = (3/4πρ)1/3. In the present work, we use the Ceperley and Alder constants [3]

in equation (2.4).

The last three terms in equation (2.1) represent electrostatic interactions between

electrons and nuclei. The Hartree energy, or the electrostatic interaction energy

between electrons, is given by

EH(ρ) =
1

2

ˆ ˆ
ρ(x)ρ(x′)

|x− x′|
dx dx′ . (2.5)

The interaction energy between electrons and nuclei, in the case of local pseudopo-
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tentials that are adopted in the present work, is given by

Eext(ρ,R) =

ˆ
ρ(x)Vext(x,R) dx

=
∑
J

ˆ
ρ(x)V J

ps(|x−RJ |)dx , (2.6)

where V J
ps denotes the pseudopotential corresponding to the J th nucleus, which, be-

yond a core radius is the Coulomb potential corresponding to the effective nuclear

charge on the J th nucleus. The nuclear repulsive energy is given by

Ezz(R) =
1

2

∑
I

∑
J,J 6=I

ZIZJ
|RI −RJ |

, (2.7)

where ZI denotes the effective nuclear charge on the I th nucleus. The above expres-

sion assumes that the core radius of the pseudopotential is smaller than internuclear

distances, which is often the case in most solid-state materials systems. We note

that in a non-periodic setting, representing a finite atomic system, all the integrals in

equations (2.5)-(2.6) are over R3 and the summations in equations (2.6)-(2.7) include

all the atoms. In the case of an infinite periodic crystal, all the integrals over x in

equations (2.5)-(2.6) are over the unit cell whereas the integrals over x′ are over R3.

Similarly, in equations (2.6)-(2.7), the summation over I is on the atoms in the unit

cell, and the summation over J extends over all lattice sites. Henceforth, we will

adopt these notions for the domain of integration and summation.

The remainder of the contribution to the ground-state energy is the kinetic energy

of non-interacting electrons, denoted by Ts, which is computed exactly in the Kohn-

Sham formalism by computing the single-electron wavefunctions (eigenfunctions) in

the mean-field [65]. The conventional solution of the Kohn-Sham eigenvalue problem,

which entails the computation of the lowest N eigenfunctions and eigenvalues of the

Kohn-Sham Hamiltonian, scales as O(N3) that becomes prohibitively expensive for
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materials systems containing a few thousand atoms. While efforts have been focused

towards reducing the computational complexity of the Kohn-Sham eigenvalue prob-

lem [68, 69], this remains a significant challenge especially in the case of metallic

systems. In order to avoid the computational complexity of solving for the wave-

functions to compute Ts, the orbital-free approach to DFT models the kinetic energy

of non-interacting electrons as an explicit functional of electron density [71]. These

models are based on theoretically known properties of Ts for a uniform electron gas,

perturbations of uniform electron gas, and the linear response of uniform electron

gas [2, 71–74]. As the orbital-free models for the kinetic energy functional are based

on properties of uniform electron gas, their validity is often limited to materials sys-

tems whose electronic structure is close to a free electron gas, in particular, the alkali

and alkali earth metals. Further, as the orbital-free approach describes the ground-

state energy as an explicit functional of electron-density, it limits the pseudopotentials

calculations to local pseudopotentials. While these restrictions constrain the appli-

cability of the orbital-free approach, numerical investigations [2, 94] indicate that

recently developed orbital-free kinetic energy functionals and local pseudopotentials

can provide good accuracy for Al and Mg, which comprise of technologically impor-

tant materials systems. Further, there are ongoing efforts in developing orbital-free

kinetic energy models for covalently bonded systems and transition metals [95, 96].

In the present work, we restrict our focus to the Wang-Goving-Carter (WGC)

density-dependent orbital-free kinetic energy functional [2], which is a widely used

kinetic energy functional for ground-state calculations of materials systems with an

electronic structure close to a free electron gas. In particular, the functional form of

the WGC orbital-free kinetic energy functional is given by

Ts(ρ) = CF

ˆ
ρ5/3(x) dx +

1

2

ˆ
|∇
√
ρ(x)|2 dx + TK(ρ) (2.8)
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where

TK(ρ) = CF

ˆ ˆ
ρα(x)K(ξγ(x,x

′), |x− x′|) ρβ(x′) dx dx′ ,

ξγ(x,x
′) =

(kγF (x) + kγF (x′)

2

)1/γ

, kF (x) =
(
3π2ρ(x)

)1/3
.

In equation (2.8), the first term denotes the Thomas-Fermi energy with CF = 3
10

(3π2)2/3,

and the second term denotes the von-Weizsäcker correction [71]. The last term de-

notes the density dependent kernel energy, TK , where the kernel K is chosen such

that the linear response of a uniform electron gas is given by the Lindhard re-

sponse [97]. In the WGC functional [2], the parameters are chosen to be {α, β} =

{5/6+
√

5/6, 5/6−
√

5/6} and γ = 2.7. For materials systems whose electronic struc-

ture is close to a free-electron gas, the Taylor expansion of the density dependent

kernel about a reference electron density (ρ0), often considered to be the average

electron density of the bulk crystal, is employed and is given by

K(ξγ(x,x
′), |x− x′|) =K0(|x− x′|) +K1(|x− x′|)

(
∆ρ(x) + ∆ρ(x′)

)
+

1

2
K11(|x− x′|)

(
(∆ρ(x))2 + (∆ρ(x′))2

)
+K12(|x− x′|)∆ρ(x)∆ρ(x′) + . . . . (2.9)

In the above equation, ∆ρ(x) = ρ(x) − ρ0 and the density independent kernels re-
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sulting from the Taylor expansion are given by

K0(|x− x′|) = K(ξγ, |x− x′|)
∣∣∣
ρ=ρ0

K1(|x− x′|) =
∂K(ξγ, |x− x′|)

∂ρ(x)

∣∣∣
ρ=ρ0

K11(|x− x′|) =
∂2K(ξγ, |x− x′|)

∂ρ2(x)

∣∣∣
ρ=ρ0

K12(|x− x′|) =
∂2K(ξγ, |x− x′|)
∂ρ(x)∂ρ(x′)

∣∣∣
ρ=ρ0

. . . (2.10)

Numerical investigations have suggested that the Taylor expansion to second order

provides a good approximation of the density dependent kernel for materials systems

with electronic structure close to a free electron gas [2, 98]. In particular, in the

second order Taylor expansion, the contribution from K12 has been found to dominate

contributions from K11. Thus, in practical implementations, often, only contributions

from K12 in the second order terms are retained for computational efficiency.

2.3 Real-space formulation of orbital-free DFT

In this section, we present the local variational real-space reformulation of orbital-

free DFT, the configurational forces associated with internal ionic relaxations and cell

relaxation, and the finite-element discretization of the formulation.

2.3.1 Local real-space formulation

We recall that the various components of the ground-state energy of a materi-

als system (cf. section 2.2) are local in real-space, except the electrostatic interaction

energy and the kernel energy component of the WGC orbital-free kinetic energy func-

tional that are extended in real-space. Conventionally, these extended interactions

are computed in Fourier space to take advantage of the efficient evaluation of convo-
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lution integrals using Fourier transforms. For this reason, Fourier space formulations

have been the most popular and widely used in orbital-free DFT calculations [1, 86].

However, Fourier space formulations employing the plane-wave basis result in some

significant limitations. Foremost of these is the severe restriction of periodic ge-

ometries and boundary conditions. While this is not a limitation in the study of

bulk properties of materials, this is a significant limitation in the study of defects

in materials. For instance, the geometry of a single isolated dislocation in bulk is

not compatible with periodic geometries, and, thus, prior electronic structure studies

have mostly been limited to artificial dipole and quadrapole arrangements of disloca-

tions. Further, numerical implementations of Fourier-space formulations also suffer

from limited scalability on parallel computing platforms. Moreover, the plane-wave

discretization employed in a Fourier space formulation provides a uniform spatial res-

olution, which is not suitable for the development of coarse-graining techniques—such

as the quasi-continuum method [99]—that rely on an adaptive spatial resolution of

the basis.

We now propose a real-space formulation that is devoid of the aforementioned

limitations of a Fourier space formulation. The proposed approach, in spirit, follows

along similar lines as recent efforts [53, 54], but the proposed formulation differs im-

portantly in the way the extended electrostatic interactions are treated. In particular,

the proposed formulation provides a unified framework to compute the configurational

forces associated with both internal ionic and cell relaxations discussed in 2.3.2.

We begin by considering the electrostatic interactions that are extended in the

real-space. We denote by δ̃(x −RI) a regularized Dirac distribution located at RI ,

and the I th nuclear charge is given by the charge distribution −ZI δ̃(x−RI). Defining

ρnu(x) = −
∑

I ZI δ̃(|x−RI |) and ρnu(x
′) = −

∑
J ZJ δ̃(|x′−RJ |), the repulsive energy
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Ezz can subsequently be reformulated as

Ezz =
1

2

ˆ ˆ
ρnu(x)ρnu(x

′)

|x− x′|
dxdx′ − Eself , (2.11)

where Eself denotes the self energy of the nuclear charges and is given by

Eself =
1

2

∑
I

ˆ ˆ
ZI δ̃(|x−RI |)ZI δ̃(|x′ −RI |)

|x− x′|
dxdx′ . (2.12)

We denote the electrostatic potential corresponding to the I th nuclear charge (−ZI δ̃(|x′−

RI |)) as V̄ I
δ̃

(x), and is given by

V̄ I
δ̃

(x) = −
ˆ
ZI δ̃(|x′ −RI |)
|x− x′|

dx′ . (2.13)

The self energy, thus, can be expressed as

Eself = −1

2

∑
I

ˆ
ZI δ̃(|x−RI |)V̄ I

δ̃
(x)dx . (2.14)

Noting that the kernel corresponding to the extended electrostatic interactions in

equations (2.12)-(2.13) is the Green’s function of the Laplace operator, the electro-

static potential and the electrostatic energy can be computed by taking recourse to

the solution of a Poisson equation, or, equivalently, the following local variational

problem:

Eself = −
∑
I

min
V I∈H1(R3)

{ 1

8π

ˆ
|∇V I(x)|2dx +

ˆ
ZI δ̃(|x−RI |)V I(x)dx

}
, (2.15a)

V̄ I
δ̃

(x) = arg min
V I∈H1(R3)

{ 1

8π

ˆ
|∇V I(x)|2dx +

ˆ
ZI δ̃(|x−RI |)V I(x)dx

}
. (2.15b)

In the above, H1(R3) denotes the Hilbert space of functions such that the functions

and their first-order derivatives are square integrable on R3.
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We next consider the electrostatic interaction energy corresponding to both elec-

tron and nuclear charge distribution. We denote this by J(ρ, ρnu), which is given

by

J(ρ, ρnu) =
1

2

ˆ ˆ (
ρ(x) + ρnu(x)

)(
ρ(x′) + ρnu(x

′)
)

|x− x′|
dxdx′ . (2.16)

We denote the electrostatic potential corresponding to the total charge distribution

(electron and nuclear charge distribution) as φ̄, which is given by

φ̄(x) =

ˆ
ρ(x′) + ρnu(x

′)

|x− x′|
dx′ . (2.17)

The electrostatic interaction energy of the total charge distribution, in terms of φ̄, is

given by

J(ρ, ρnu) =
1

2

ˆ
(ρ(x) + ρnu(x))φ̄(x)dx . (2.18)

As before, the electrostatic interaction energy as well as the potential of the total

charge distribution can be reformulated as the following local variational problem:

J(ρ, ρnu) = −min
φ∈Y

{ 1

8π

ˆ
|∇φ(x)|2dx−

ˆ
(ρ(x) + ρnu(x))φ(x)dx

}
, (2.19a)

φ̄(x) = arg min
φ∈Y

{ 1

8π

ˆ
|∇φ(x)|2dx−

ˆ
(ρ(x) + ρnu(x))φ(x)dx

}
. (2.19b)

In the above, Y is a suitable function space corresponding to the boundary conditions

of the problem. In particular, for non-periodic problems such as isolated cluster of

atoms Y = H1(R3). For periodic problems, Y = H1
per(Q) where Q denotes the unit

cell and H1
per(Q) denotes the space of periodic functions on Q such that the functions

and their first-order derivatives are square integrable.

The electrostatic interaction energy in DFT, comprising of EH , Eext and Ezz (cf.
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equations (2.5)-(2.7)), can be rewritten in terms of J(ρ, ρnu) and Eself as

EH(ρ) + Eext(ρ,R) + Ezz(R) =J(ρ, ρnu)

+
∑
J

ˆ
(V J

ps(|x−RJ |)− V̄ J
δ̃

(|x−RJ |))ρ(x)dx

− Eself . (2.20)

For the sake of convenience of representation, we will denote by V = {V 1, V 2, . . . , V M}

the vector containing the electrostatic potentials corresponding to all nuclear charges

in the simulation domain. Using the local reformulation of J(ρ, ρnu) and Eself (cf.

equations (2.15) and (2.19)), the electrostatic interaction energy in DFT can now be

expressed as the following local variational problem:

EH + Eext + Ezz = max
φ∈Y

min
V I∈H1(R3)

Lel(φ,V , ρ,R) (2.21a)

Lel(φ,V , ρ,R) =− 1

8π

ˆ
|∇φ(x)|2dx +

ˆ
(ρ(x) + ρnu(x))φ(x)dx

+
∑
J

ˆ
(V J

ps(|x−RJ |)− V̄ J
δ̃

(|x−RJ |))ρ(x)dx

+
∑
I

{
1

8π

ˆ
|∇V I(x)|2dx +

ˆ
ZI δ̃(|x−RI |)V I(x)dx

}
. (2.21b)

In the above, the minimization over V I represents a simultaneous minimization over

all electrostatic potentials corresponding to I = 1, 2, . . . ,M . We note that, while

the above reformulation of electrostatic interactions has been developed for pseu-

dopotential calculations, this can also be extended to all-electron calculations in a

straightforward manner by using V J
ps = V̄ J

δ̃
and ZI to be the total nuclear charge in

the above expressions. Thus, this local reformulation provides a unified framework

for both pseudopotential as well as all-electron DFT calculations.
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We now consider the local reformulation of the extended interactions in the kernel

energy component of the WGC orbital-free kinetic energy functional (cf. (2.9)). Here

we adopt the recently developed local real-space reformulation of the kernel energy [54,

88], and recall the key ideas and local reformulation for the sake of completeness. We

present the local reformulation of K0 and the local reformulations for other kernels

(K1, K11, K12) follows along similar lines. Consider the kernel energy corresponding

to K0 given by

TK0(ρ) = CF

ˆ ˆ
ρα(x)K0(|x− x′|) ρβ(x′) dx dx′ . (2.22)

We define potentials v0
α and v0

β given by

v0
α(x) =

ˆ
K0(|x− x′|)ρα(x′)dx′ ,

v0
β(x) =

ˆ
K0(|x− x′|)ρβ(x′)dx′ . (2.23)

Taking the Fourier transform of the above expressions we obtain

v̂0
α(k) = K̂0(|k|)ρ̂α(k) ,

v̂0
β(k) = K̂0(|k|)ρ̂β(k) . (2.24)

Following the ideas developed by Choly & Kaxiras [98], K̂0 can be approximated to

very good accuracy by using a sum of partial fractions of the following form

K̂0(|k|) ≈
m∑
j=1

Aj|k|2

|k|2 +Bj

, (2.25)

where Aj, Bj, j = 1 . . .m are constants, possibly complex, that are determined using

a best fit approximation. Using this approximation and taking the inverse Fourier
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transform of equation (2.24), the potentials in equation (2.23) reduce to

v0
α(x) =

m∑
j=1

[ω0
αj

(x) + Ajρ
α(x)] ,

v0
β(x) =

m∑
j=1

[ω0
βj

(x) + Ajρ
β(x)] . (2.26)

where ω0
αj

(x) and ω0
βj

(x) for j = 1 . . .m are given by the following Helmholtz equa-

tions:

−∇2ω0
αj

+Bjω
0
αj

+ AjBjρ
α = 0 ,

−∇2ω0
βj

+Bjω
0
βj

+ AjBjρ
β = 0 . (2.27)

We refer to these auxiliary potentials, ω0
α = {ω0

α1
. . . ω0

αm} and ω0
β = {ω0

β1
. . . ω0

βm
}

introduced in the local reformulation of the kernel energy as kernel potentials. Ex-

pressing the Helmholtz equations in a variational form, we reformulate TK0 in (2.22)

as the following local variational problem in kernel potentials:

TK0(ρ) = min
ω0
αj
∈Y

max
ω0
βj
∈Y
LK0(ω

0
α, ω

0
β, ρ) , (2.28a)

LK0(ω
0
α, ω

0
β, ρ) =

m∑
j=1

CF

{ˆ [ 1

AjBj

∇ω0
αj

(x) · ∇ω0
βj

(x)

+
1

Aj
ω0
αj

(x)ω0
βj

(x) + ω0
βj

(x)ρα(x) + ω0
αj

(x)ρβ(x)

+ Ajρ
(α+β)(x)

]
dx
}
.

(2.28b)

The variational problem in equation (2.28) represents a simultaneous saddle point

problem on kernel potentials ω0
αj

and ω0
βj

for j = 1, . . . ,m. Following a similar

procedure, we construct the local variational reformulations for the kernel energies

TK1 , TK11 and TK12 corresponding to kernels K1, K11 and K12, respectively. We

denote by LK1(ω
1
α, ω

1
β, ρ), LK11(ω

11
α , ω

11
β , ρ) and LK12(ω

12
α , ω

12
β , ρ) the Lagrangians with
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respective kernel potentials corresponding to kernel energies of K1, K11 and K12,

respectively. We refer to the supplemental material for the numerical details of the

approximations for each of the kernels used in the present work.

Finally, using the local variational reformulations of the extended electrostatic

and kernel energies, the problem of computing the ground-state energy for a given

positions of atoms is given by the following local variational problem in electron-

density, electrostatic potentials, and kernel potentials:

E0(R) = min√
ρ∈X

max
φ∈Y

min
ωsαj∈Y

max
ωsβj
∈Y

{
CF

ˆ
ρ(x)5/3 dx

+
1

2

ˆ
|∇
√
ρ(x)|2 dx +

ˆ
εxc(ρ)ρ(x) dx

+
∑
s

LKs(ωsα, ωsβ, ρ) + min
V I∈H1(R3)

Lel(φ,V , ρ,R)
}
. (2.29)

In the above, s denotes the index corresponding to a kernel, and X and Y are suitable

function spaces corresponding to the boundary conditions of the problem. In partic-

ular, for periodic problems, Y = H1
per(Q) and X = {√ρ|√ρ ∈ H1

per(Q),
´
ρ = N}.

It is convenient to use the substitution u(x) =
√
ρ(x), and enforce the integral

constraint in X using a Lagrange multiplier. Also, for the sake of notational sim-

plicity, we will denote by ωα and ωβ the array of kernel potentials {ω0
α, ω

1
α, ω

11
α , ω

12
α }

and {ω0
β, ω

1
β, ω

11
β , ω

12
β }, respectively. Subsequently, the variational problem in equa-
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tion (2.29) can be expressed as

E0(R) = min
u∈Y

max
φ∈Y

min
ωsαj∈Y

max
ωsβj
∈Y
L(u, φ, ωα, ωβ; R) subject to :

ˆ
u2(x) dx = N ,(2.30)

L(u, φ, ωα, ωβ; R) = L̃(u) + LK(ωα, ωβ, u
2) + Lc(u, λ) + min

V I∈H1(R3)
Lel(φ,V , u2,R) ,

L̃(u) = CF

ˆ
u10/3(x) dx +

1

2

ˆ
|∇u(x)|2 dx +

ˆ
εxc(u

2)u2(x) dx ,

LK(ωα, ωβ, u
2) =

∑
s

LKs(ωsα, ωsβ, u2) ,

Lc(u, λ) = λ

(ˆ
u2(x) dx−N

)
.

2.3.2 Configurational forces

We now turn our attention to the configurational forces corresponding to geometry

optimization. To this end, we employ the approach of inner variations, where we

evaluate the generalized forces corresponding to perturbations of underlying space,

which provides a unified expression for the generalized force corresponding to the

geometry of the simulation cell—internal atomic positions, as well as, the external cell

domain. We consider infinitesimal perturbations of the underlying space ψε : R3 → R3

corresponding to a generator Γ(x) given by Γ = dψε(x)
dε
|ε=0 such that ψ0 = I. We

constrain the generator Γ such that it only admits rigid body deformations in the

compact support of the regularized nuclear charge distribution ρnu in order to preserve

the integral constraint
´
δ̃(x −RI)dx = 1. Let x denote a point in Q, whose image

in Q′ = ψε(Q) is x′ = ψε(x). The ground-state energy on Q′ is given by

E0(ψε) = Lε(uε, φε, ωαε, ωβε; Rε) (2.31)

where uε, φε, ωαε and ωβε are solutions of the saddle point variational problem given by

equation (2.30) evaluated over the function space Y ′ = H1
per(Q

′). The subscript ε on

L is used to denote that the variational problem is solved on Q′ = ψε(Q). For the sake

of convenience, we will represent the integrand of the Lagrangian L in equation (2.30)
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by f(u,∇u, φ,∇φ, ωα,∇ωα, ωβ,∇ωβ;Vps, V̄δ̃,R) and g(V̄ I
δ̃
,∇V̄ I

δ̃
; R), where f denotes

the integrand whose integrals are over Q and g denotes the integrand whose integrals

are over R3. The ground-state energy on Q′ in terms of f and g can be expressed as

E0(ψε) =

ˆ
Q′
f(uε(x

′),∇x′uε(x
′), φε(x

′),∇x′φε(x
′), ωαε(x

′),

∇x′ωαε(x
′), ωβε(x

′),∇x′ωβε(x
′);Vps(x

′), V̄δ̃(x
′), ψε(R))dx′

+
∑
I

ˆ
R3

g(V̄ I
δ̃ε

(x′),∇x′V̄
I
δ̃ε

(x′);ψε(R))dx′ . (2.32)

Transforming the above integral to domain Q, we obtain

E0(ψε) =

ˆ
Q

f(uε(ψε(x)),∇xuε(ψε(x)).
∂x

∂x′
, φε(ψε(x)),

∇xφε(ψε(x)).
∂x

∂x′
, ωαε(ψε(x)),∇xωαε(ψε(x)).

∂x

∂x′
, ωβε(ψε(x)),

∇xωβε(ψε(x)).
∂x

∂x′
;Vps(ψε(x)), V̄δ̃(ψε(x)), ψε(R)) det(

∂x′

∂x
) dx

+
∑
I

ˆ
R3

g(V̄ I
δ̃ε

(ψε(x)),∇xV̄
I
δ̃ε

(ψε(x)).
∂x

∂x′
;ψε(R)) det(

∂x′

∂x
) dx

(2.33)
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We now evaluate the configurational force given by the Gâteaux derivative of E0(ψε):

dE0(ψε)

dε

∣∣∣
ε=0

=

ˆ
Q

f(u0(x),∇u0(x), φ0(x),∇φ0(x), ωα0(x),

∇ωα0(x), ωβ0(x),∇ωβ0(x);Vps(x), V̄δ̃(x),R)
d

dε
(det(

∂x′

∂x
))
∣∣∣
ε=0
dx

+

ˆ
Q

(
∂f

∂∇u
(∇u0)⊗∇u0 +

∂f

∂∇φ
(∇φ0)⊗∇φ0

+
∑
s

( ∂f

∂∇ωsα
(∇ωsα0)⊗∇ωsα0 +

∂f

∂∇ωsβ
(∇ωsβ0

)⊗∇ωsβ0

))
:

(
d

dε

∂x

∂x′

∣∣∣
ε=0

)
dx

+
∑
J

ˆ
Q

u2
0(x)

(
∇V J

ps(|x−RJ |)−∇V̄ J
δ̃

(|x−RJ |)
)
.

(
dψε(x)

dε

∣∣∣
ε=0
− dψε(RJ)

dε

∣∣∣
ε=0

)
dx

+
∑
I

ˆ
R3

g(V̄ I
δ̃0

(x),∇V̄ I
δ̃0

(x); R)
d

dε
(det(

∂x′

∂x
))
∣∣∣
ε=0
dx

+
∑
I

ˆ
R3

∂g

∂∇V̄ I
δ̃

(∇V̄ I
δ̃0

)⊗∇V̄ I
δ̃0

:

(
d

dε

∂x

∂x′

∣∣∣
ε=0

)
dx . (2.34)

In the above, we denote by ‘⊗’ the outer product between two vector, by ‘.’ the dot

product between two vectors and by ‘:’ the dot product between two tensors. We

note that in the above expression there are no terms involving the explicit derivatives

of f and g with respect to R as δ̃(|x′ − ψε(R)|) = δ̃(|x−R|), which follows from the

restriction that ψε corresponds to rigid body deformations in the compact support

of ρnu. We further note that terms arising from the inner variations of E0(ψε) with

respect to uε, φε, ωαε, ωβε and V̄ I
δ̃ε

vanish as u0 φ0, ωα0, ωβ0 and V̄ I
δ̃0

are the solutions

of the saddle point variational problem corresponding to E0(ψ0). We now note the

following identities

d

dε

{
∂xi
∂x′j

} ∣∣∣
ε=0

=− ∂xi
∂x′k

( d
dε

{
∂ψεk
∂xl

})∂xl
∂x′j

∣∣∣
ε=0

=− ∂Γi
∂xj

,

(2.35)
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d

dε

{
det
( ∂x′l
∂xm

)} ∣∣∣
ε=0

= det
( ∂x′l
∂xm

)∂xj
∂x′i

( d
dε

{
∂ψεi
∂xj

})∣∣∣
ε=0

=
∂Γj
∂xj

.

(2.36)

Using these identities in equation (2.34), and rearranging terms, we arrive at

dE0(ψε)

dε

∣∣∣
ε=0

=

ˆ
Q

E : ∇Γ(x) dx +
∑
I

ˆ
R3

E
′

I : ∇Γ(x) dx

+
∑
J

ˆ
Q

u2
0(x)

(
∇
(
V J
ps − V̄ J

δ̃

))
. (Γ(x)− Γ(RJ)) dx (2.37)

where E and E′ denote Eshelby tensors corresponding to f and g, respectively. The

expressions for the Eshelby tensors E and E′I explicitly in terms of u, φ, ωα, ωβ, Vps

and V̄δ̃ are given by

E =

(
CFu

10/3 +
1

2
|∇u|2 + εxc(u

2)u2 + λu2 − 1

8π
|∇φ|2 + u2φ

+
∑
J

(
V J
ps − V̄ J

δ̃

)
u2 +

∑
s

fKs(ω
s
α,∇ωsα, ωsβ,∇ωsβ, u2)

)
I

−∇u⊗∇u+
1

4π
∇φ⊗∇φ−

∑
s

(
∂fKs
∂∇ωsα

⊗∇ωsα +
∂fKs
∂∇ωsβ

⊗∇ωsβ

)
(2.38)

E
′

I =
1

8π
|∇V̄ I

δ̃
|2I− 1

4π
∇V̄ I

δ̃
⊗∇V̄ I

δ̃
(2.39)

In the above, for the sake of brevity, we represented by fKs the integrand correspond-

ing to LKs . We also note that the terms φρnu and V I
δ̃
δ̃(x − RI) do not appear in

the expressions for E and E
′
I , respectively, as ∇.Γ = 0 on the compact support of

ρnu owing to the restriction that Γ corresponds to rigid body deformations in these

regions. It may appear that evaluation of the second term in equation (2.37) is not

tractable as it involves an integral over R3. To this end, we split this integral on a

bounded domain Ω containing the compact support of δ̃(x−RI), and its complement.
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The integral on R3/Ω can be computed as a surface integral. Thus,

ˆ
R3

E
′

I : ∇Γ dx =

ˆ
Ω

E
′

I : ∇Γ dx +

ˆ
R3/Ω

E
′

I : ∇Γ dx

=

ˆ
Ω

E
′

I : ∇Γ dx−
ˆ
∂Ω

E
′

I : n̂⊗ Γ ds , (2.40)

where n̂ denotes the outward normal to the surface ∂Ω. The last equality follows

from the fact that ∇2V̄ I
δ̃

= 0 on R3/Ω.

The configurational force in equation (2.37) provides the generalized variational

force with respect to both the internal positions of atoms as well as the external cell

domain. In order to compute the force on any given atom, we restrict the compact

support of Γ to only include the atom of interest. In order to compute the stresses

associated with cell relaxation (keeping the fractional coordinates of atoms fixed),

we restrict Γ to affine deformations. Thus, this provides a unified expression for

geometry optimization corresponding to both internal ionic relaxations as well as cell

relaxation. We further note that, while we derived the configurational force for the

case of pseudopotential calculations, the derived expression is equally applicable for

all-electron calculations by using V J
ps = V̄ J

δ̃
.

2.3.3 Finite-element discretization

Among numerical discretization techniques, the plane-wave discretization has

been the most popular and widely used in orbital-free DFT [1, 86] as it naturally

lends itself to the evaluation of the extended interactions in electrostatic energy and

kernel kinetic energy functionals using Fourier transforms. Further, the plane wave

basis offers systematic convergence with exponential convergence in the number of

basis functions. However, as noted previously, the plane-wave basis also suffers from

notable drawbacks. Importantly, plane-wave discretization is restricted to periodic

geometries and boundary conditions which introduces a significant limitation, espe-
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cially in the study of defects in bulk materials [56]. Further, the plane-wave basis has

a uniform spatial resolution, and thus is not amenable to adaptive coarse-graining.

Moreover, the use of plane-wave discretization involves the numerical evaluation of

Fourier transforms whose scalability is limited on parallel computing platforms.

In order to circumvent these limitations of the plane-wave basis, there is an increas-

ing focus on developing real-space discretization techniques for orbital-free DFT based

on finite-difference discretization [89–91] and finite-element discretization [53, 88]. In

particular, the finite-element basis [100], which is a piecewise continuous polynomial

basis, has many features of a desirable basis in electronic structure calculations. While

being a complete basis, the finite-element basis naturally allows for the consideration

of complex geometries and boundary conditions, is amenable to unstructured coarse-

graining, and exhibits good scalability on massively parallel computing platforms.

Moreover, the adaptive nature of the finite-element discretization also enables the

consideration of all-electron orbital-free DFT calculations that are widely used in

studies of warm dense matter [79, 80, 82]. Further, recent numerical studies have

shown that by using a higher-order finite-element discretization significant computa-

tional savings can be realized for both orbital-free DFT [88] and Kohn-Sham DFT

calculations [61, 70], effectively overcoming the degree of freedom disadvantage of the

finite-element basis in comparison to the plane-wave basis.

Let Yh denote the finite-element subspace of Y , where h represents the finite-

element mesh size. The discrete problem of computing the ground-state energy for a

given positions of atoms, corresponding to equation (2.30), is given by the constrained

variational problem:

E0(R) = min
uh∈Yh

max
φh∈Yh

min
ωsαj h

∈Yh
max

ωsβj h
∈Yh
L(uh, φh, ωαh , ωβh ; R)

subject to :

ˆ
u2
h(x) dx = N . (2.41)
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In the above, uh, φh, ωαh and ωβh denote the finite-element discretized fields cor-

responding to square-root electron-density, electrostatic potential, and kernel poten-

tials, respectively. We restrict our finite-element discretization such that atoms are

located on the nodes of the finite-element mesh. In order to compute the finite-

element discretized solution of V̄ J
δ̃

, we represent δ̃(x−RJ) as a point charge on the

finite-element node located at RJ , and the finite-element discretization provides a

regularization for V̄ J
δ̃

. Previous investigations have suggested that such an approach

provides optimal rates of convergence of the ground-state energy (cf. [61, 88] for a

discussion).

The finite-element basis functions also provide the generator of the deformations of

the underlying space in the isoparametric formulation, where the same finite-element

shape functions are used to discretize both the spatial domain as well as the fields

prescribed over the domain. Thus, the configurational force associated with the lo-

cation of any node in the finite-element mesh can be computed by substituting for Γ,

in equation (2.37), the finite-element shape function associated with the node. Thus,

the configurational force on any finite-element node located at an atom location cor-

responds to the variational ionic force, which are used to drive the internal atomic

relaxation. The forces on the finite-element nodes that do not correspond to an atom

location represent the generalized force of the energy with respect to the location of

the finite-element nodes, and these can be used to obtain the optimal location of the

finite-element nodes—a basis adaptation technique.

We note that the local real-space variational formulation in section 2.3.1, where

the extended interactions in the electrostatic energy and kernel functionals are refor-

mulated as local variational problems, is essential for the finite-element discretization

of the formulation.
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2.4 Numerical Implementation

In this section, we present the details of the numerical implementation of the finite-

element discretization of the real-space formulation of orbital-free DFT discussed in

section 2.3. Subsequently, we discuss the solution procedure for the resulting discrete

coupled equations in square-root electron-density, electrostatic potential and kernel

potentials.

2.4.1 Finite-element basis

A finite-element discretization using linear tetrahedral finite-elements has been

the most widely used discretization technique for a wide range of partial differential

equations. Linear tetrahedral elements are well suited for problems involving com-

plex geometries and moderate levels of accuracy. However in electronic structure

calculations, where the desired accuracy is commensurate with chemical accuracy,

linear finite elements are computationally inefficient requiring of the order of hundred

thousand basis functions per atom to achieve chemical accuracy. A recent study [88]

has demonstrated the significant computational savings—of the order of 1000-fold

compared to linear finite-elements—that can be realized by using higher-order finite-

element discretizations. Thus, in the present work we use higher-order hexahedral

finite elements, where the basis functions are constructed as a tensor product of basis

functions in one-dimension [100].

2.4.2 Solution procedure

The discrete variational problem in equation (2.41) involves the computation

of the following fields—square-root electron-density, electrostatic potential and ker-

nel potentials. Two solution procedures, suggested in prior efforts [88], for solving

this discrete variational problem include: (i) a simultaneous solution of all the dis-

crete fields in the problem; (ii) a nested solution procedure, where for every trial
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square-root electron-density the discrete electrostatic and kernel potential fields are

computed. Given the non-linear nature of the problem, the simultaneous approach is

very sensitive to the starting guess and often suffers from lack of robust convergence,

especially for large-scale problems. The nested solution approach, on the other hand,

while constituting a robust solution procedure, is computationally inefficient due to

the huge computational costs incurred in computing the kernel potentials which in-

volves the solution of a series of Helmholtz equations (cf. equation (2.27)). Thus, in

the present work, we will recast the local variational problem in equation (2.41) as

the following fixed point iteration problem:

{ūh, φ̄h} = arg min
uh

arg max
φh
L(uh, φh, ω̄αh , ω̄βh ; R)

subject to :

ˆ
u2
h(x) dx = N. (2.42a)

{ω̄αh , ω̄βh} = arg min
ωαh

arg max
ωβh

L(ūh, φ̄h, ωαh , ωβh ; R) . (2.42b)

We solve this fixed point iteration problem using a mixing scheme, and, in particular,

we employ the Anderson mixing scheme [101] with full history in this work. Our

numerical investigations suggest that the fixed point iteration converges, typically, in

less than ten self-consistent iterations even for large-scale problems, thus, providing

a numerically efficient and robust solution procedure for the solution of the local

variational orbital-free DFT problem. We note that this idea of fixed point iteration

has independently and simultaneously been investigated by another group in the

context of finite difference discretization [91], and have resulted in similar findings.

In the fixed point iteration problem, we employ a simultaneous solution proce-

dure to solve the non-linear saddle point variational problem in uh and φh (equa-

tion (2.42a)). We employ an inexact Newton solver provided by the PETSc pack-

age [102] with field split preconditioning and generalized-minimal residual method

(GMRES) [103] as the linear solver. The discrete Helmholtz equations in equa-
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tion (2.42b) are solved by employing block Jacobi preconditioning and using GMRES

as the linear solver. An efficient and scalable parallel implementation of the solution

procedure has been developed to take advantage of the parallel computing resources

for conducting the large-scale simulations reported in this work.

2.5 Results and Discussion

In this section, we discuss the numerical studies on Al, Mg and Al-Mg inter-

metallics to investigate the accuracy and transferability of the real-space formula-

tion of orbital-free DFT (RS-OFDFT) proposed in section 2.3. Wherever appli-

cable, we benchmark the real-space orbital-free DFT calculations with plane-wave

based orbital-free DFT calculations conducted using PROFESS [1], and compare

with Kohn-Sham DFT (KS-DFT) calculations conducted using the plane-wave based

ABINIT code [104]. Further, we demonstrate the usefulness of the proposed real-space

formulation in studying the electronic structure of isolated defects.

2.5.1 General calculation details

In all the real-space orbital-free DFT calculations reported in this section, we

use the local reformulation of the density-dependent WGC [2] kinetic energy func-

tional proposed in section 2.3.1, the local density approximation (LDA) [3] for the

exchange-correlation energy, and bulk derived local pseudopotentials (BLPS) [94] for

Al and Mg. Cell stresses and ionic forces are calculated using the unified variational

formulation of configurational forces developed in section 2.3.2. In the second order

Taylor expansion of the density-dependent WGC functional about the bulk electron

density (cf. Section 2.2), we only retain the K12 term for the computation of bulk

properties as the contributions from K12 dominate those of K11 for bulk materials

systems. However, in the calculations involving mono-vacancies, where significant
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Figure 2.1: Convergence of the finite-element approximation in the energy of a fcc Al unit
cell with lattice constant a = 7.2 Bohr.

Figure 2.2: Convergence of the finite-element approximation in the hydrostatic stress of
a fcc Al unit cell with lattice constant a = 7.2 Bohr.

31



spatial perturbations in the electronic structure are present, we use the full second

order Taylor expansion of the density dependent WGC functional. We recall from

section 2.3.1 that in order to obtain a local real-space reformulation of the extended

interactions in the kinetic energy functionals, the kernels (K0, K1, K11, K12) are ap-

proximated using a sum of m partial fractions where the coefficients of the partial

fractions are computed using a best fit approximation (cf. equation (2.25)). These

best fit approximations for m = 4, 5, 6 that are employed in the present work are

given in the supplemental material. It has been shown in recent studies that m = 4

suffices for Al [54, 91]. However, we find that m = 6 is required to obtain the desired

accuracy in the bulk properties of Mg, and Table 2.2 shows the comparison between

the kernel approximation with m = 6 and plane-wave based orbital-free DFT calcula-

tions conducted using PROFESS [1] for Mg. Thus, we use the best fit approximation

of the kernels with m = 4 for Al, and employ the approximation with m = 6 for Mg

and Al-Mg intermetallics. Henceforth, we will refer by RS-OFDFT-FE the real-space

orbital-DFT calculations conducted by employing the local formulation and finite

element discretization proposed in section 2.3.

The KS-DFT calculations used to assess the accuracy and transferability of the

proposed real-space orbital-free DFT formalism are performed using the LDA ex-

change correlation functional [3]. The KS-DFT calculations are conducted using

both local BLPS as well as the non-local Troullier-Martins pseudopotential (TM-

NLPS) [105] in order to assess the accuracy and transferability of both the model

kinetic energy functionals in orbital-free DFT as well as the local pseudopotentials to

which the orbital-free DFT formalism is restricted to. The TM-NLPS for Al and Mg

are generated using the fhi98PP code [106]. Within the fhi98PP code, we use the fol-

lowing inputs: 3d angular momentum channel as the local pseudopotential component

for both Al and Mg, default core cutoff radii for the 3s, 3p, and 3d angular momentum

channels, which are {1.790, 1.974, 2.124} Bohr and {2.087, 2.476, 2.476} Bohr for Al
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and Mg respectively, and the LDA [3] exchange-correlation. For brevity, henceforth,

we refer to the KS-DFT calculations with BLPS and TM-NLPS as KS-BLPS and

KS-NLPS, respectively.

In all the RS-OFDFT-FE calculations reported in this work, the finite-element

discretization, order of the finite-elements, numerical quadrature rules and stop-

ping tolerances are chosen such that we obtain 1 meV/ atom accuracy in energies,

1×10−7 Hartree Bohr−3 accuracy in cell stresses and 1×10−5 Hartree Bohr−1 accuracy

in ionic forces. Similar accuracies in energies, stresses and ionic forces are achieved for

KS-DFT calculations by choosing the appropriate k-point mesh, plane-wave energy

cutoff, and stopping tolerances within ABINIT’s framework. All calculations involv-

ing geometry optimization are conducted until cell stresses and ionic forces are below

threshold values of 5×10−7 Hartree Bohr−3 and 5×10−5 Hartree Bohr−1, respectively.

2.5.2 Convergence of finite-element discretization

We now study the convergence of energy and stresses with respect to the finite-

element discretization of the proposed real-space orbital-free DFT formulation. In

a prior study on the computational efficiency afforded by higher-order finite-element

discretization in orbital-free DFT [88], it was shown that second and third-order

finite-elements offer an optimal choice between accuracy and computational efficiency.

Thus, in the present study, we limit our convergence studies to HEX27 and HEX64

finite-elements, which correspond to second- and third-order finite-elements. As a

benchmark system, we consider a stressed fcc Al unit cell with a lattice constant

a = 7.2 Bohr. We first construct a coarse finite-element mesh and subsequently

perform a uniform subdivision to obtain a sequence of increasingly refined meshes.

We denote by h the measure of the size of the finite-element. For these sequence of

meshes, we hold the cell geometry fixed and compute the discrete ground-state energy,

Eh, and hydrostatic stress, σh. The extrapolation procedure proposed in Motamarri
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et. al [88] allows us to estimate the ground-state energy and hydrostatic stress in

the limit as h → 0, denoted by E0 and σ0. To this end, the energy and hydrostatic

stress computed from the sequence of meshes using HEX64 finite-elements are fitted

to expressions of the form

|E0 − Eh| = Ce

(
1

Nel

)qe
3
,

|σ0 − σh| = Cσ

(
1

Nel

)qσ
3
, (2.43)

to determine E0, qe, σ0,& qσ. In the above expression, Nel denotes the number of

elements in a finite-element mesh. We subsequently use E0 and σ0 as the exact values

of the ground-state energy and hydrostatic stress, respectively, for the benchmark

system. Figures 2.1 and 2.2 show the relative errors in energy and hydrostatic stress

plotted against
(

1
Nel

) 1
3
, which represents a measure of h. We note that the slopes

of these curves provide the rates of convergence of the finite-element approximation

for energy and stresses. These results show that we obtain close to optimal rates of

convergence in energy of O(h2k), where k is polynomial interpolation order (k = 2

for HEX27 and k = 3 for HEX64). Further, we obtain close to O(h2k−1) convergence

in the stresses, which represents optimal convergence for stresses. The results also

suggest that higher accuracies in energy and stress are obtained with HEX64 in

comparison to HEX27. Thus, we will employ HEX64 finite-elements for the remainder

of our study.

2.5.3 Bulk properties of Al, Mg and Al-Mg intermetallics

We now study the accuracy and transferability of the proposed real-space formu-

lation of orbital-free DFT for bulk properties of Al, Mg and Al-Mg intermetallics. To

this end, we begin with the phase stability study of Al and Mg, where we compute the

difference in the ground-state energy of a stable phase and the ground-state energy
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Table 2.1: The energy difference in eV between a stable phase and the most stable phase
for Al and Mg computed using RS-OFDFT-FE and KS-DFT with TM-NLPS.

Al fcc hcp bcc sc dia

RS-OFDFT-FE 01 0.016 0.075 0.339 0.843

KS-NLPS 0 0.038 0.106 0.400 0.819

Mg hcp fcc bcc sc dia

RS-OFDFT-FE 0 0.003 0.019 0.343 0.847

KS-NLPS 0 0.014 0.030 0.400 0.822

Table 2.2: Bulk properties of Al and Mg: Equilibrium ground-state energy per atom

(Emin in eV), volume per atom (V0 in Å
3
) and bulk modulus (B0 in GPa) computed using

RS-OFDFT-FE, PROFESS, and KS-DFT with BLPS and TM-NLPS.

Al1 RS-OFDFT-FE PROFESS KS-BLPS KS-NLPS

Emin -57.935 -57.936 -57.954 -57.207

V0 15.68 15.68 15.62 15.55

B0 81.7 81.5 84.1 83.6

Mg2 RS-OFDFT-FE PROFESS KS-BLPS KS-NLPS

Emin -24.647 -24.647 -24.678 -24.514

V0 21.40 21.43 21.18 21.26

B0 36.8 36.6 38.5 38.6
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of the most stable phase. The results for Al and Mg are shown in Table 2.1, and

are compared against those obtained with KS-DFT employing TM-NLPS. We note

that RS-OFDFT-FE correctly predicts the most stable phases of Al and Mg being fcc

and hcp, respectively. Further, the stability ordering of the various phases computed

using RS-OFDFT-FE is consistent with KS-DFT TM-NLPS calculations. Moreover,

the energy differences between the various stable phases and the most stable phase

computed using RS-OFDFT-FE are in close agreement with KS-DFT calculations.

We next consider bulk properties of Al, Mg and Al-Mg intermetallics. To this end,

for each system, we first optimize cell geometry and ionic positions to determine the

equilibrium cell structure, equilibrium volume (V0) and ground-state energy (Emin).

We subsequently compute the bulk modulus given by [97]

B = V
∂2E

∂V 2

∣∣∣∣
V=V0

, (2.44)

where E denotes the ground-state energy of a unit-cell with volume V . To compute

the bulk modulus, we vary the cell volume by applying a volumetric deformation

to the relaxed (equilibrium) unit-cell, which transforms the equilibrium cell vectors

{c1 , c2 , c3} to {c′1 , c′2 , c′3} and are given by

c′ij = cij (1 + η) . (2.45)

While keeping the cell structure fixed, we calculate the ground-state energy for each η

between −0.01 to 0.01 in steps of 0.002 and fit a cubic polynomial to the E−V data.

We subsequently compute the bulk modulus, using equation (2.44), at the equilibrium

volume, V0. The computed bulk properties—ground-state energy, equilibrium volume

and bulk modulus at equilibrium—for Al and Mg are given in Table 2.2, and those

of Al-Mg intermetallics (Al3Mg, Mg13Al14, Mg17Al12, and Mg23Al30) are given in

Table 2.3. These results suggest that the bulk properties of Al, Mg and Al-Mg
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intermetallics computed using RS-OFDFT-FE are in good agreement with PROFESS

and KS-DFT calculations.

Table 2.3: Bulk properties of Al-Mg intermetallics: Equilibrium ground-state energy per

primitive cell (Emin in eV), volume of primitive cell (V0 in Å
3
), and bulk modulus (B0 in

GPa) computed using RS-OFDFT-FE, PROFESS, and KS-DFT with BLPS and TM-NLPS.

Al3Mg RS-OFDFT-FE PROFESS KS-BLPS KS-NLPS

Emin -198.492 -198.496 -198.575 -196.162

V0 67.23 67.31 67.13 66.52

B0 69.2 67.0 67.6 71.0

Mg13Al14 RS-OFDFT-FE PROFESS KS-BLPS KS-NLPS

Emin -1130.083 -1130.100 -1130.972 -1117.936

V0 494.77 494.73 498.19 492.73

B0 53.1 52.1 54.7 54.8

Mg17Al12 RS-OFDFT-FE PROFESS KS-BLPS KS-NLPS

Emin -1114.446 -1114.526 -1116.185 -1104.012

V0 545.32 544.85 543.67 544.21

B0 51.1 52.3 55.2 54.4

Mg23Al30 RS-OFDFT-FE PROFESS KS-BLPS KS-NLPS

Emin -2306.785 -2306.762 -2307.989 -2281.082

V0 953.87 952.55 963.72 957.46

B0 64.2 60.9 60.5 60.5

Finally, we consider the formation energies of Al-Mg intermetallics. In addition to

the Al-Mg intermetallics for which we computed the bulk properties, we also compute

the formation energy of the β′ alloy. The β′ alloy has a disorder in 10 out of 879

sites with each site having 0.5 chance of being occupied by either Al or Mg. In our

simulations, we consider the two limits where all 10 sites are occupied by either Al

or Mg and refer to these as β′(Al) and β′(Mg), respectively. For these two systems,

we do not provide KS-DFT results as they are computationally prohibitive. The

formation energies for the range of Al-Mg intermetallics are reported in Table 2.4.

Our results suggest that the formation energies predicted by RS-OFDFT-FE are in

good agreement with PROFESS calculations, and in close agreement with KS-DFT
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calculations.

Table 2.4: Formation energy per atom (eV/atom) of Al-Mg intermetallics calculated using
RS-OFDFT-FE, PROFESS, and KS-DFT with TM-NLPS.

Method Al3Mg Mg13Al14 Mg17Al12 Mg23Al30 β′(Al) β′(Mg)

RS-OFDFT-FE -0.010 0.053 -0.008 -0.035 -0.026 -0.020

PROFESS -0.011 0.052 -0.011 -0.034 -0.029 -0.023

KS-NLPS -0.007 0.061 -0.027 -0.019 - -

2.5.4 Configurational forces and atomic displacements

As a next step in our study of the accuracy and transferability of RS-OFDFT-

FE, we compute the configurational forces on atoms that are perturbed from their

equilibrium positions and compare these with Kohn-Sham DFT calculations. We

investigate the accuracy of the forces in both fcc Al and hcp Mg. We begin by

considering the relaxed Al fcc unit cell, and the relaxed Mg hcp unit cell. In the

relaxed Al fcc unit cell, we perturb the face-centered atom with fractional coordinates

0, 1
2
, 1

2
by 0.1 Bohr in the [0 1 0] direction. In the relaxed Mg hcp unit cell, we

perturb the atom with fractional coordinates 2
3
, 1

3
, 1

2
by 0.1 Bohr in the [2̄ 1̄ 3 0]

direction (directions in hcp Mg are represented using Miller-Bravais indices). The

configurational forces on the perturbed atoms are computed using RS-OFDFT-FE,

and compared against KS-DFT calculations. The computed restoring forces, along

[0 1̄ 0] for the Al system and along [2 1 3̄ 0] for the Mg system, are reported in

Table 2.5. We note that the computed restoring forces from RS-OFDFT-FE are in

good agreement with PROFESS and KS-DFT calculations.

As a more stringent test of accuracy and transferability, we consider the atomic

relaxations around a mono-vacancy in fcc Al and hcp Mg. In the case of mono-vacancy

in Al, we consider a supercell containing 3 × 3 × 3 fcc Al unit cells and remove an

atom to create a mono-vacancy. We calculate the forces on the neighboring atoms

of the mono-vacancy, and their relaxation displacements upon ionic relaxation using
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both RS-OFDFT-FE and KS-DFT calculations. Periodic boundary conditions are

employed in these calculations. Table 2.6 reports the computed force and relaxation

displacement in Al on the nearest neighboring atom, which experiences the largest

ionic force and relaxation. In the case of a mono-vacancy in Mg, we consider a

supercell containing 3 × 3 × 2 hcp unit cells, and Table 2.7 reports the ionic force

and relaxation displacement on the neighboring atom that has the largest force in

the presence of the vacancy. As is evident from the results, the ionic forces and

relaxed displacements for a mono-vacancy in Al and Mg computed using RS-OFDFT-

FE are in good agreement with PROFESS, and in close agreement with KS-DFT

calculations. These results suggest that the proposed real-space orbital-free DFT

formulation provides a good approximation to KS-DFT for Al-Mg materials systems.

Table 2.5: Restoring force (eV/Bohr) on the perturbed atom in fcc Al and hcp Mg unit
cells computed using RS-OFDFT-FE, PROFESS, and KS-DFT calculations.

RS-OFDFT-FE PROFESS KS-BLPS KS-NLPS

Al 0.148 0.137 0.134 0.126

Mg 0.019 0.019 0.018 0.019

Table 2.6: Ionic forces (eV/Bohr) and relaxation displacement (Bohr) on the nearest
neighboring atom to a mono-vacancy in a periodic 3 × 3 × 3 fcc Al supercell, calculated
using RS-OFDFT-FE, PROFESS, and KS-DFT. f and d denote the magnitudes of ionic
force and relaxation displacement. ∠f and ∠d denote the angles (in degrees) of the force
and displacement vectors with respect to the KS-NLPS force and displacement vectors.

RS-OFDFT-FE PROFESS KS-BLPS KS-NLPS

f 0.141 0.146 0.130 0.119

d 9.90×10−2 9.75×10−2 9.47×10−2 8.90×10−2

∠f 0.00 0.00 0.00 0.00

∠d 0.15 0.00 0.00 0.00

2.5.5 Cell-size studies on a mono-vacancy in Al

Prior Fourier-space calculations using OF-DFT and WGC Functional [84], and

KS-DFT calculations [107] have suggested that cell-sizes containing ∼ 256 lattice sites
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Table 2.7: Ionic forces (eV/Bohr) and relaxation displacement (Bohr) on the nearest neigh-
boring atom to a mono-vacancy in a periodic 3× 3× 2 hcp Mg supercell, calculated using
RS-OFDFT-FE, PROFESS, and KS-DFT.

RS-OFDFT-FE PROFESS KS-BLPS KS-NLPS

f 0.059 0.060 0.053 0.046

d 8.26×10−2 8.64×10−2 7.00×10−2 5.83×10−2

∠f 5.11 4.73 2.75 0.0

∠d 5.66 5.27 3.58 0.0

are sufficient to obtain a well-converged (to within 3 meV) mono-vacancy formation

energy in fcc Al. These Fourier-space calculations, which employ periodic boundary

conditions, compute the properties of a periodic array of vacancies. On the other

hand, real-space calculations on isolated mono-vacancies in bulk, computed using the

recently developed coarse-graining techniques for orbital-free DFT [54, 99], suggest

that cell-size effects in mono-vacancy calculations are present up to cell-sizes of ∼ 103

atoms. Although both approaches give similar converged vacancy formation energies,

this discrepancy in the cell-size effects has thus far remained an open question.

In order to understand the source of this discrepancy, we conduct a cell-size study

of the mono-vacancy formation energy in Al using RS-OFDFT-FE with two types

of boundary conditions: (i) periodic boundary conditions on electronic fields; (ii)

Dirichlet boundary conditions on electronic fields with values corresponding to that

of a perfect crystal. These Dirichlet boundary conditions, which we refer to as bulk

Dirichlet boundary conditions, correspond to the scenario where perturbations in the

electronic structure due to the mono-vacancy vanish on the boundary of the com-

putational domain, and the electronic structure beyond the computational domain

corresponds to that of the bulk. We note that periodic boundary conditions mimic

the widely used Fourier-space calculations on point defects, whereas the bulk Dirich-

let boundary conditions correspond to simulating an isolated point defect embedded

in bulk. We note that the local real-space formulation of orbital-free DFT and the
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finite-element basis are key to being able to consider these boundary conditions.

We compute the vacancy formation at constant volume as [97, 108]

Evf = E

(
N − 1, 1,

N − 1

N
Ω

)
− N − 1

N
E (N, 0,Ω) , (2.46)

where E (N, 0,Ω) denotes the energy of perfect crystal containing N atoms occu-

pying a volume Ω, and E(N − 1, 1, N−1
N

Ω) denotes energy of a computational cell

containing N − 1 atoms and one vacancy occupying a volume N−1
N

Ω. For both pe-

riodic boundary conditions and bulk Dirichlet boundary conditions, the lattice site

where the vacancy is created is chosen to be the farthest site from the domain bound-

ary. As we are primarily interested in the cell-size effects of the electronic structure,

we do not consider ionic relaxations in this part of our study. Table 2.8 shows the

unrelaxed mono-vacancy formation energies for different cell sizes computed using

RS-OFDFT-FE using both periodic boundary conditions and bulk Dirichlet bound-

ary conditions. We note that the mono-vacancy formation energies using both sets of

boundary conditions converge to the same value, and this is also in good agreement

with PROFESS and KS-DFT calculations (cf. Table 2.9). However, it is interesting

to note that the mono-vacancy formation energies with periodic boundary conditions

are well converged (to within 10 meV) by 3× 3× 3 cell-size (108 atoms), whereas we

required a 6 × 6 × 6 cell-size (864 atoms) to achieve a converged formation energy

with bulk Dirichlet boundary conditions.

In order to understand this boundary condition dependence of the cell-size effects,

we compute the perturbations in the electronic fields due to the presence of the

mono-vacancy by subtracting from the electronic fields corresponding to the mono-

vacancy the electronic fields of a perfect crystal. To this end, we define the normalized
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Table 2.8: Unrelaxed mono-vacancy formation energies for Al computed using RS-OFDFT-
FE with periodic boundary conditions (Epvf in eV) and bulk Dirichlet boundary conditions

(EbDvf in eV).

Cell size N EbD
vf Ep

vf

2x2x2 32 -0.390 0.955

3x3x3 108 0.864 0.915

4x4x4 256 0.971 0.908

5x5x5 500 0.944 -

6x6x6 864 0.918 -

7x7x7 1372 0.914 -

Table 2.9: Unrelaxed mono-vacancy formation energies (Evf in eV) for Al computed using
PROFESS [1], and KS-DFT on a 3× 3× 3 computational cell.

Evf

PROFESS 0.903

KS-DFT-BLPS 0.815

KS-DFT-NLPS 0.811

perturbations in the electronic fields computed on the finite-element mesh to be

uch = (uh − uph) /vav (uph) ,

φch = (φh − φph) /vav (φph) ,

kcα,h =

(
m∑
j=1

ωαj ,h −
m∑
j=1

ωpαj ,h

)
/vav

(
m∑
j=1

ωpαj ,h

)
,

kcβ,h =

(
m∑
j=1

ωβj ,h −
m∑
j=1

ωpβj ,h

)
/vav

(
m∑
j=1

ωpβj ,h

)
. (2.47)

In the above, {uh, φh, ωαj ,h, ωβj ,h} and {uph, φ
p
h, ω

p
αj ,h

, ωpβj ,h} denote the electronic fields

in the computational domain with the vacancy and those without the vacancy (per-

fect crystal), respectively. vav(.) denotes the volume average of an electronic field

over the computational cell. As a representative metric, in the definition of kcα,h and

kcβ,h we only consider the kernel potentials corresponding to K0. Figures 2.3 and 2.4

shows the normalized corrector fields for the mono-vacancy, computed using periodic
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boundary conditions, along the face-diagonal of the periodic boundary. It is interest-

ing to note from these results that the perturbations in the electronic structure due

to the vacancy are significant up to 6×6×6 computational cells. Thus, although the

vacancy formation energy appears converged by 3 × 3 × 3 computational cell while

using periodic boundary conditions, the electronic fields are not converged till a cell-

size of 6 × 6 × 6 computational cell. On the other hand, the cell-size convergence

in mono-vacancy formation energy suggested by the bulk Dirichlet boundary condi-

tions is inline with the convergence of electronic fields. These results unambiguously

demonstrate that the cell-size effects in the electronic structure of defects are larger

than those suggested by a cell-size study of defect formation energies employing peri-

odic boundary conditions. Using bulk Dirichlet boundary conditions for the cell-size

study of defect formation energies provides a more accurate estimate of the cell-size

effects in the electronic structure of defects, and the extent of electronic structure

perturbations due to a defect. Further, while periodic boundary conditions are lim-

ited to the study of point defects, bulk Dirichlet boundary conditions can be used

to also study defects like isolated dislocations [56], whose geometry does not admit

periodic boundary conditions.

2.6 Summary

We have developed a local real-space formulation of orbital-free DFT with WGC

kinetic energy functionals by reformulating the extended interactions in electrostatic

and kinetic energy functionals as local variational problems in auxiliary potentials.

The proposed real-space formulation readily extends to all-electron orbital-free DFT

calculations that are commonly employed in warm dense matter calculations. Build-

ing on the proposed real-space formulation we have developed a unified variational

framework for computing configurational forces associated with both ionic and cell

relaxations. Further, we also proposed a numerically efficient approach for the so-
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Figure 2.3: Normalized corrector fields for a mono-vacancy, computed with periodic bound-
ary conditions, along the face diagonal on the computational domain boundary. The abscissa
d̄ represents a normalized coordinate along the face diagonal. Results for computational
cell sizes from 2× 2× 2 to 4× 4× 4 are shown.
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Figure 2.4: Normalized corrector fields for a mono-vacancy, computed with periodic bound-
ary conditions, along the face diagonal on the computational domain boundary, for cell sizes
ranging from 5× 5× 5 to 7× 7× 7.
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lution of ground-state orbital-free DFT problem, by recasting the local saddle point

problem in the electronic fields—electron density and auxiliary potential fields—as a

fixed point iteration problem and employing a self-consistent iteration procedure. We

have employed a finite-element basis for the numerical discretization of the proposed

real-space formulation of orbital-free DFT. Our numerical convergence studies indi-

cate that we obtain close to optimal rates of convergence in both ground-state energy

and configurational forces with respect to the finite-element discretization.

We subsequently investigated the accuracy and transferability of the proposed

real-space formulation of orbital-free DFT for Al-Mg materials system. To this end,

we conducted a wide range of studies on Al, Mg and Al-Mg intermetallics, including

computation of bulk properties for these systems, formation energies of Al-Mg inter-

metallics, and ionic forces in bulk and in the presence of point defects. Our studies

indicate that orbital-free DFT and the proposed real-space formulation is in good

agreement with Kohn-Sham DFT calculations using both local pseudopotentials as

well as non-local pseudpotentials, thus providing an alternate linear-scaling approach

for electronic structure studies in Al-Mg materials system. We finally investigated the

cell-size effects in the electronic structure of a mono-vacancy in Al, and demonstrated

that the cell-size convergence in the vacancy formation energy computed by employ-

ing periodic boundary conditions is not commensurate with the convergence of the

electronic fields. On the other hand, the true cell-size effects in the electronic struc-

ture are revealed by employing the bulk Dirichlet boundary conditions, where the

perturbations in the electronic fields due to the defect vanish on the boundary of the

computational domain. Our studies indicate that the true cell-size effects are much

larger than those suggested by periodic calculations even for simple defects like point

defects. We note that the proposed real-space formulation and the finite-element ba-

sis are crucial to employing the bulk Dirichlet boundary conditions that are otherwise

inaccessible using Fourier based formulations. The proposed formulation, besides be-
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ing amenable to complex geometries, boundary conditions, and providing excellent

scalability on parallel computing platforms, also enables coarse-graining techniques

like the quasi-continuum reduction [99, 109] to conduct large-scale electronic struc-

ture calculations on the energetics of extended defects in Al-Mg materials system,

and is an important direction for future studies.
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CHAPTER III

Orbital-Free Density Functional Theory

Calculations on the Energetics of Dislocations in

Al-Mg Materials System

3.1 Introduction

This work is composed of two parts. First, we study core energetics of an isolated

screw dislocation in face-centered-cubic (fcc) Aluminum [55] using the local real-space

orbital-free DFT formulation (RS-OFDFT) discussed in chapter II. Second, using the

same approach we study the core energetics of basal edge and basal screw dislocations

in hexagonal-close-packed (hcp) Magnesium. In all the above dislocation systems, we

estimate the core size of the isolated dislocation directly from the energetics and

subsequently study the effect of external macroscopic deformation on the dislocation

core energy.

3.2 Isolated Dislocation Energetics in Aluminum

In this section, we present our study on an isolated screw dislocation in Aluminum

using RS-OFDFT. We adopt the approach proposed in [56], where bulk Dirichlet

boundary conditions have been applied on the electronic fields to simulate an isolated
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edge dislocation embedded in the bulk in Aluminum. Following along similar lines,

we compute the core size of the isolated screw dislocation in Aluminum directly from

energetics, by identifying the region up to which the contribution from electronic

structure perturbations (beyond those that can be accounted for in a nonlinear con-

tinuum theory) is significant to the energetics. The dislocation energy corresponding

to this core size, computed from the proposed electronic structure calculations, is

identified as the core energy. Further, we study the influence of external macroscopic

deformations on the dislocation core energy and core structure for a wide range of

macroscopic deformations. The RS-OFDFT calculations are conducted using the

following choices: Wang-Govind-Carter (WGC) model for the kinetic energy func-

tional [2] (second order Taylor expansion of the density dependent kernel, cf. [2]), a

local density approximation (LDA) for the exchange-correlation energy [3], and the

Goodwin-Needs-Heine pseudopotential [4]. For the finite-element discretization, we

use quadratic hexahedral elements, where the basis functions are constructed as a

tensor product of basis functions in one dimension. Numerical parameters like the

finite-element mesh size, quadrature rules and stopping tolerances for iterative solvers

are chosen such that the error in the computed dislocation energies per unit length

of the dislocation line is less than 0.001 eV/Å. Atomic relaxations are performed till

the force components in all directions on the atoms are less than 2.5×10−3 eV/Å.

3.2.1 Dislocation core size and core energy

We begin by estimating the core size of a perfect screw dislocation in face-centered-

cubic (fcc) Aluminum explicitly from the energetics, and subsequently calculate the

core energy for the perfect screw dislocation as well as the core energy after atomic

relaxation. The coordinate system, X — Y — Z axes (or equivalently 1—2—3), is

aligned along [1 1 2̄]—[1 1 1]—[1 1̄ 0] crystallographic directions. With this coordi-

nate system, we create a perfect fcc crystal of size R
√

6a0 × 2R
√

3a0 × a0√
2
, where a0
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denotes the lattice parameter and R is an integer-valued scaling factor which sets the

simulation domain size. Then we introduce a perfect screw dislocation with Burgers

vector b = a0
2

[11̄0] and line direction along [1 1̄ 0] at the center of the simulation

domain by applying isotropic Volterra displacement fields [5] of a screw dislocation

to the positions of atoms. We employ the bulk Dirichlet boundary conditions on

electronic fields, proposed in [56], to simulate the isolated screw dislocation in bulk.

More specifically, in the X and Y directions, we employ Dirichlet boundary conditions

on the electronic fields comprising of electron density, electrostatic potential and ker-

nel potentials, and, in the Z direction, we use periodic boundary conditions on these

fields. The Dirichlet boundary values for the electronic fields are determined using

the Cauchy-Born approximation, wherein the values are obtained by projection of

orbital-free DFT computed electronic fields on periodic unit cells which are deformed

using the elastic field of the screw dislocation. These boundary conditions on the elec-

tronic fields correspond to an isolated dislocation in bulk with the electronic structure

on the boundary of (and outside of) the simulation domain given by the Cauchy-Born

hypothesis. The local real space formulation along with the finite-element discretiza-

tion are crucial to realizing these bulk Dirichlet boundary conditions. Using these

boundary conditions, we compute the electronic-structure and ground-state energy

of the perfect screw dislocation for varying simulation domains with R = 2, 3, 4, 5, 7

while keeping the atomic positions fixed. This enables us to unambiguously delineate

the contribution from electronic-structure perturbations to the dislocation energy, the

origins of which are quantum mechanical in nature and are beyond the scope of any

homogenized non-linear continuum theory, and also identify the region where this

contribution is significant. Figure 3.1 shows the contours of the electron density for

R = 4. For each of these simulation domains, the dislocation energy (Ed) is computed

as

Ed(N, V ) = Edisloc(N, V )− E0(N, V ), (3.1)
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where Edisloc(N, V ) denotes the energy of a dislocation system containing N atoms

with a volume V, and E0(N, V ) denotes energy of a perfect crystal of the same vol-

ume and containing the same number of atoms. From a thermodynamic standpoint,

Ed is the dislocation formation energy at constant volume. We note that there is no

volume change due to the perfect screw dislocation Volterra field. Table 3.1 shows the

computed dislocation energies for the various domains. We note that the domain-size

is measured to be
√

3R|b|, which is the distance from dislocation line to the bound-

ary along [1 1 2̄]. In order to identify the region in which the electronic-structure

perturbations arising from the dislocation are significant, we consider the dislocation

energy change for every successive increase in the domain size, and denote this change

by ∆Ed. This has two contributions: (i) the elastic energy of the region between the

two domains, which we denote by ∆Eelas
d ; (ii) contribution from electronic-structure

changes due to the change in the location of the bulk Dirichlet boundary conditions on

electronic fields, which we denote by ∆Eelec
d . ∆Eelas

d is computed using the Cauchy-

Born approximation, wherein the elastic energy density at each point is computed

from RS-OFDFT calculations on periodic unit-cells deformed by screw dislocation

elastic fields. We note that ∆Eelas
d , thus computed, corresponds to the elastic con-

tributions from the non-linear continuum elastic theory derived from OFDFT. We

subsequently infer ∆Eelec
d , by subtracting ∆Eelas

d from ∆Ed. The computed ∆Eelas
d

and ∆Eelec
d are reported in Table 3.1, where the computed values are accurate up to

0.001 eV. We find that ∆Eelec
d remains significant in comparison to ∆Eelas

d , i.e. more

than 10 % of ∆Eelas
d , until a domain-size of ≈ 7|b|. This suggests that the electronic-

structure perturbations due to the dislocation are significant up to ≈ 7|b| from the

dislocation line, which represents the core size of the perfect screw dislocation. Graph-

ically, this is also evident from figure 3.2, with the energy of the dislocation deviating

from the logarithmic dependence for domain sizes below 7|b|. Importantly, we note

that this domain size is much larger than previous core size estimates based on contin-

51



Table 3.1: Computed dislocation energy of perfect screw dislocation in Aluminum for
varying domain-sizes, where N denotes the number of atoms in the simulation domain.
∆Ed denotes the change in the dislocation energy from the previous domain-size. ∆Eelas

d

and ∆Eelec
d denote the elastic and electronic contributions to ∆Ed.

Domain N Ed ∆Ed ∆Eelas
d ∆Eelec

d

size (R
√

3|b|) (atoms) (eV) (eV) (eV) (eV)

3.5|b| 96 0.837 - - -

5.2|b| 216 0.891 0.054 0.100 -0.046

6.9|b| 384 0.943 0.052 0.069 -0.017

8.7|b| 600 0.996 0.053 0.051 0.002

12.1|b| 1176 1.079 0.083 0.080 0.003

uum displacement or strain fields of ∼ 1− 3|b| [5, 110, 111], underscoring the longer

ranged nature of electronic structure perturbations from defects than previously be-

lieved, and its potential significance in governing the energetics of dislocations. The

present finding is consistent with a recent electronic structure study on edge disloca-

tion in Aluminum by [56], wherein the core size was computed to be 10|b|. We note

that real-space studies on point defects have also shown strong cell-size effects owing

to the electronic structure perturbations from the defect [52, 54, 99, 112, 113].

(a) (b)

Max: 4.2e-2

Min : 6.5e-3

Figure 3.1: Electron density contours on a) a (11̄0) plane, and b) a (111) plane of a perfect
screw dislocation in Aluminum. The (111) plane passes through the dislocation center.
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Figure 3.2: Semi-log plot of dislocation formation energy of the perfect screw dislocation
in Aluminum as a function of simulation domain size. The dashed line demonstrates the
asymptotic logarithmic divergence of the computed dislocation energies, as expected from
continuum estimates, beyond simulation domains of ≈ 7|b|.

Next we investigate the relaxed core structure of the screw dislocation by relax-

ing the positions of atoms interior to the simulation domain, while holding fixed the

positions of atoms on the Dirichlet boundary. We find that the relaxed structure

and the corresponding reduction in the energy from the perfect screw core energy

(denoted by Erelax
d ) are sensitive to the simulation domain size up to the domain size

of 8.7|b|. Beyond 8.7|b|, the change in the core structure is negligible and the change

in Erelax
d is within the tolerance 0.001 eV/Å. This suggests that electronic structure

perturbations are not significant beyond 8.7|b| for the relaxed screw dislocation rep-

resenting Shockley partials. Thus, we consider 8.7|b| to be the core size of the relaxed

screw dislocation, and the dislocation energy corresponding to this core size as the

dislocation core energy of the Shockley partials. The core energy of Shockley partials

is computed to be 0.811 eV, or, equivalently, the core energy per unit length of dis-

location line is 0.284 eV/Å, and Erelax
d is 0.065 eV/Å. Figure 3.3 shows the edge and
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screw components of the differential displacements [114] and indicates the approx-

imate location of the Shockley partials. The partial separation distance computed

from the edge-component differential displacement (DD) plot is 6.59 Å (2.3 |b|), and

that computed from the screw-component differential displacement plot is 8.24 Å (2.9

|b|). An uncertainty magnitude equal to twice the spacing between atomic planes in

the X direction, which is a0√
6

= 1.65 Å (or 0.58 |b|) is expected in computing the

partial separation using this procedure. Comparing the partial separation distance

with other DFT studies on a screw dislocation in Aluminum [44, 47], we are in good

agreement with these studies that have reported partial separation distances between

5.0–7.5 Å.

(a)

(b)

Figure 3.3: Differential displacement plots of the a) screw and b) edge components of
Shockley partials of a screw dislocation in Aluminum.
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3.2.2 Effect of macroscopic deformations

This study is motivated from recent investigations which suggest that macro-

scopic deformations can play a significant role in governing the electronic structure

and subsequently the energetics of defects [115–118]. In the recent study on an edge

dislocation in Aluminum [56, 57], it was observed that the core energy of the edge

dislocation strongly depends on the external macroscopic deformation. In the present

work, we perform a similar investigation on a screw dislocation in Aluminum to un-

derstand the effect of macroscopic deformation on its core energy and core structure.

We begin with a perfect screw dislocation in a 8.7|b| simulation domain, which cor-

responds to the core size of the Shockley partials determined in Section 3.2.1. On

that simulation domain, we apply an affine deformation corresponding to a macro-

scopic strain ε, and, while holding the positions of the atoms fixed, we compute the

electronic structure and the relaxed positions of atoms. The dislocation core energy,

following equation (3.1), is computed as a function of macroscopic strain

Ec(ε) = Edisloc(ε)− E0(ε), (3.2)

where Edisloc(ε) denotes the ground-state energy of the 8.7|b| simulation domain con-

taining the dislocation under an affine deformation corresponding to macroscopic

strain ε, and E0(ε) denotes the energy of a perfect crystal under the same affine

deformation, containing the same number of atoms and occupying the same volume.

We begin by studying the effect of macroscopic volumetric strain εv, corresponding

to equi-triaxial strain, on the core energy and the core structure of screw dislocation

Shockley partials. In this study, we consider volumetric strains of -5%, -2%, -1%,

1%, 2% and 5%. Figure 3.4 shows the core energy (per unit length of dislocation

line) for the different volumetric strains. The core energy changed monotonically

and almost linearly from 0.34 eV/Å at -5% volumetric strain to 0.24 eV/Å at 5%
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volumetric strain, showing a strong dependence on volumetric strain, which is in sharp

contrast to widely used continuum based dislocation models where the dislocation core

energy is assumed to be independent of macroscopic deformation. However, for the

range of volumetric strains considered, the core structure only changed marginally. In

particular, the partial separation distance in the edge-component DD plots is found

to be 2.3–2.6 |b|, and the partial separation distance in the screw-component DD plot

remained unchanged at 2.9 |b|. We note that |b| used here to quantify the partial

separation distance is computed with respect to the fcc lattice under the applied

macroscopic strain.

We next study the influence of macroscopic uniaxial strains along the coordinate

directions, [1 1 2̄]—[1 1 1]—[1 1̄ 0]. For each of the coordinate directions we con-

sider uniaxial strain values of -1.64%,-0.66%,-0.33%, 0.33%, 0.66% and 1.64%. Fig-

ures 3.5(a), 3.5(b), and 3.6 show the core energy dependence on ε11 (uniaxial strain

along [1 1 2̄]), ε22 (uniaxial strain along [1 1 1]) and ε33 (uniaxial strain along [1 1̄

0]), respectively. Similar to volumetric strain, the core energy dependence on uniaxial

strains, for the range of strains considered in this study, is found to be monotonically

decreasing from compressive to tensile strains. However, the core energy dependence

on ε33 is significantly weaker compared to the other two uniaxial strains. Interestingly,

the monotonic and almost linear dependence of the screw dislocation core energy on

uniaxial strains is in contrast to the edge dislocation results [56, 57], where the core

energy dependency on uniaxial strains was found to be non-monotonic and non-linear.

This suggests that the dislocation character can play an important role in influencing

the dependence of core energies on macroscopic deformation. In contrast to the effect

of volumetric strains, we find that ε22 and ε33 uniaxial strains have a more significant

influence on the core structure of a screw dislocation, while the ε11 uniaxial strain has

a smaller influence compared to ε22 and ε33 strains. For the range of uniaxial strains

considered in this study, the partial separation distance in the edge-component DD
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plots varies monotonically in going from compressive to tensile strains. The ranges

of the variation for ε11, ε22 and ε33 strains are 2.3–2.1|b|, 2.6–1.7|b|, and 2.1–2.6 |b|

respectively. The screw component partial separation distance remained unchanged

for all uniaxial strains. These changes in the core structure cannot be rationalized

using the linear elastic theory as these uniaxial strains do not result in any glide

forces on the Shockley partials, thus underscoring the role of electronic structure in

governing the core structure and energetics.

Finally, we consider the influence of macroscopic shear strains ε12 and ε13. We

have not considered the ε23 strain, as this results in a net glide force on the screw

dislocation and can result in dislocation glide upon overcoming the small Peierls

barrier (≈ 11 MPa, cf. [46]). We considered shear strains of -0.66%,-0.33%, 0.33%

and 0.66% in this study. Figure 3.7 shows the computed core energy dependence on

ε12 and ε13 shear strains. We observe that the core energy dependence on ε13 is weak

and symmetric, whereas the core energy dependence on ε12 strain is significant and is

non-symmetric. This significant difference can be rationalized by taking note of the

linear elastic forces on the Shockley partials due to these macroscopic shear strains.

The ε13 shear strain causes climb forces to act on the screw components of Shockley

partials. When the sign of ε13 is changed, the force direction is reversed but it has

a symmetric influence on the core structure, which leads to the observed symmetry

in the core energy dependence on ε13. On the other hand, ε12 shear strain results in

equal and opposite glide forces on the edge component of Shockley partials, which

can either increase or decrease the partial separation distance depending on the sign

of ε12 shear strain. This leads to the asymmetry in the core energy dependence on

ε12. This rationalization is also supported by investigating the change in the core-

structure. For the ε12 strain, the partial separation in the edge-component of the

DD plot changes considerably from 1.7 |b| at ε12 = 0.66% to 2.9 |b| at ε12 = -0.66%

(cf. figure 3.8). On the other hand for ε13 strain, the partial separation distances are
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found to be unchanged for equal and opposite strains.
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Figure 3.4: Core-energy per unit length of dislocation line of relaxed Shockley partials of
screw dislocation in Aluminum as a function of volumetric strain.

3.3 Isolated Dislocation Energetics in Magnesium

On similar lines as the screw dislocation core energetics study in Section 3.2, we

now present our study on isolated basal edge and screw dislocations in Magnesium us-

ing RS-OFDFT. We adopt the aforementioned bulk Dirichlet boundary conditions on

the electronic fields to simulate isolated basal edge dislocation and basal screw dislo-

cation in the bulk in Magnesium, and first estimate the core size of the isolated perfect

dislocations. Next, we study the influence of external macroscopic deformations on

the dislocation core energy for a wide range of macroscopic deformations. The RS-

OFDFT calculations are conducted using the following choices: Wang-Govind-Carter

(WGC) model for the kinetic energy functional [2] (second order Taylor expansion of

the density dependent kernel, cf. [2]), a local density approximation (LDA) for the

exchange-correlation energy [3], and a analytic form of local pseudopotential for Mag-

nesium [119]. We use the same numerical parameters (finite element discretization

and solver tolerances) as that used for the screw dislocation core energetics study in

Section 3.2.
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Figure 3.5: Core-energy per unit length of dislocation line of relaxed Shockley partials of
screw dislocation in Aluminum as a function of uniaxial strains: (a) ε11; (b) ε22.
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Figure 3.6: Core-energy per unit length of dislocation line of relaxed Shockley partials of
screw dislocation in Aluminum as a function of ε33 uniaxial strain.

3.3.1 Dislocation core size and core energy

We first estimate the core size of the perfect basal edge and basal screw disloca-

tions in hexagonal-close-packed (hcp) Magnesium explicitly from the energetics, and

subsequently calculate the core energy of the perfect dislocations as well as the core

energy after atomic relaxation. For the dislocation core-size study of the basal edge

dislocation, the computational domain is set up by aligning the coordinate system, X

— Y — Z axes (or equivalently 1—2—3) along [21̄1̄0]—[0001]—[01̄10] crystallographic

directions respectively. Next, we chose a perfect crystal of size 2Ra0 × Rc0 ×
√

3a0

,where a0 and c0 denotes the lattice parameters of the hcp Mg crystal and R is an

integer-valued scaling factor used to consider a sequence of increasing simulation do-

main sizes. A perfect edge dislocation with Burgers vector b = 1
3
[21̄1̄0] is introduced

at the center of the simulation domain by applying anisotropic elastic displacement

fields [5] to the positions of atoms. Next we apply mixed periodic and Dirichlet

boundary conditions similar to the case of screw dislocation in Aluminum, discussed

previously in Section 3.2.1, and compute the electronic-structure and dislocation en-

ergy Ed (cf. equation 3.1) of the perfect edge dislocation for varying simulation
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Figure 3.7: Core-energy per unit length of dislocation line of relaxed Shockley partials of
screw dislocation in Aluminum as a function of shear strains: (a) ε12; (b) ε13.
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(a)

(b)

Figure 3.8: Differential displacement plots of the edge components of Shockley partials:
(a) ε12 = 0.66% ; (b) ε12 = -0.66%.
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Table 3.2: Computed dislocation energy of perfect basal edge dislocation in Magnesium
for varying domain-sizes, where N denotes the number of atoms in the simulation domain.
∆Ed denotes the change in the dislocation energy from the previous domain-size. ∆Eelas

d

and ∆Eelec
d denote the elastic and electronic contributions to ∆Ed.

Domain N Ed ∆Ed ∆Eelas
d ∆Eelec

d

size (atoms) (eV) (eV) (eV) (eV)

4.1|b| 119 2.325 - - -

6.1|b| 275 2.729 0.404 0.344 0.060

8.1|b| 495 2.995 0.266 0.241 0.025

10.2|b| 779 3.194 0.199 0.188 0.011

14.3|b| 1539 3.489 0.295 0.290 0.005

domains with R = 4, 6, 8, 10, 14. The computed dislocation energies for the various

domains are presented in Table 3.2. From Table 3.2, we observe that the ratio of

∆Eelec
d in relation to ∆Eelas

d is non-negligible until a domain-size of 8.1|b|, suggesting

that the electronic-structure perturbations are significant up to distances as far as

8|b| from the dislocation line. Graphically, this is also evident from figure 3.10, with

the energy of the dislocation deviating from the logarithmic dependence for domain

sizes below 8|b|. The computed core-energy for perfect basal edge dislocation is 2.995

eV , or, equivalently, the core-energy per unit length of dislocation line is 0.556 eV/Å.

Figure 3.9: Electron density contours on (01̄10) plane of a perfect basal edge dislocation
in Magnesium.
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Figure 3.10: Semi-log plot of dislocation formation energy of the basal edge dislocation
in Magnesium as a function of simulation domain size. The dashed line demonstrates the
asymptotic logarithmic divergence of the computed dislocation energies, as expected from
continuum estimates, beyond simulation domains of ≈ 8|b|.

We subsequently study the core-size of the basal screw dislocation, where we

first align the coordinate axes 1—2—3 along [011̄0]—[0001]—[21̄1̄0] crystallographic

directions. Next, we chose a perfect crystal of size R
√

3a0 × Rc0 × a0 to consider

sequence of increasing simulation domain sizes similar to the basal edge dislocation

case. A perfect screw dislocation with Burgers vector b = 1
3
[21̄1̄0] is introduced

at the center of the simulation domain by applying anisotropic elastic displacement

fields [5] to the positions of atoms. Next we apply mixed periodic and Dirichlet bulk

boundary conditions, and compute the electronic-structure and dislocation energy Ed

(cf. equation 3.1) of the perfect basal screw dislocation for varying simulation domains

with R = 4, 6, 8, 10, 12, 14. The computed dislocation energies for the various

domains are presented in Table 3.3. From Table 3.3, we observe that the ratio of

∆Eelec
d in relation to ∆Eelas

d is non-negligible until a domain-size of 11.4|b|, suggesting

that the electronic-structure perturbations are significant up to distances as far as
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Table 3.3: Computed dislocation energy of perfect basal screw dislocation in Magnesium
for varying domain-sizes, where N denotes the number of atoms in the simulation domain.
∆Ed denotes the change in the dislocation energy from the previous domain-size. ∆Eelas

d

and ∆Eelec
d denote the elastic and electronic contributions to ∆Ed.

Domain N Ed ∆Ed ∆Eelas
d ∆Eelec

d

size (atoms) (eV) (eV) (eV) (eV)

3.8|b| 64 1.059 - - -

5.7|b| 144 1.193 0.134 0.146 -0.012

7.6|b| 256 1.290 0.097 0.104 -0.007

9.5|b| 400 1.350 0.060 0.081 -0.021

11.4|b| 576 1.435 0.085 0.066 0.019

13.3|b| 784 1.492 0.057 0.056 0.001

11|b| from the dislocation line. Graphically, this is also evident from figure 3.11, with

the energy of the dislocation deviating from the logarithmic dependence for domain

sizes below 11|b|. The computed core-energy for perfect basal screw dislocation is

1.435 eV , or, equivalently, the core-energy per unit length of dislocation line is 0.461

eV/Å. The estimated perfect dislocation core sizes of 8–11|b| for basal dislocations in

Magnesium are commensurate with the estimated core sizes of 7–10 |b| for dislocations

in Aluminum (cf. Section 3.2.1).

Next we investigate the relaxed core structures of the basal edge and basal screw

dislocation by relaxing the positions of atoms interior to the simulation domain,

while holding fixed the positions of atoms on the Dirichlet boundary. We find that

the relaxed structures and the corresponding reduction in the energy from the perfect

dislocation core energy (denoted by Erelax
d ) are sensitive to the simulation domain

size beyond the estimated core sizes of the unrelaxed dislocation— 8|b| and 11 |b|

for basal edge and screw dislocations respectively. In particular, for the basal edge

dislocation we find that beyond 14.3 |b|, the change in the core structure is negligible

and the change in Erelax
d is within the tolerance 0.001 eV/Å. Similarly, for the basal

screw dislocation we find that beyond 13.3 |b|, the change in Erelax
d is within the

tolerance 0.001 eV/Å. Thus, we consider 14.3|b| and 13.3 |b| to be the core sizes
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Figure 3.11: Semi-log plot of dislocation formation energy of the basal screw dislocation
in Magnesium as a function of simulation domain size. The dashed line demonstrates the
asymptotic logarithmic divergence of the computed dislocation energies, as expected from
continuum estimates, beyond simulation domains of ≈ 11|b|.

of the relaxed basal edge dislocation and basal screw dislocations respectively. The

core energy of Shockley partials for basal edge dislocation is computed to be 0.624

eV/Å(Erelax
d = 0.023 eV/Å) and that for basal screw dislocation is computed to

be 0.449 eV/Å(Erelax
d = 0.030 eV/Å) . Figures 3.12 and 3.13 shows the edge and

screw components of the differential displacements [114] of the basal edge and basal

screw Schockley partials respectively. The partial separation distance is computed as

the average of the partial separation distances from the edge and screw component

differential displacement (DD) plots. For the basal edge dislocation, we find the

partial separation distance to be 19.5 Å (6.3 |b|), and for the basal screw dislocation

it is 10.1 Å (3.2 |b|). This is in good agreement with other DFT studies on basal

edge and basal screw dislocations in Magnesium [45, 120], that have reported partial

separation distances between 22–27 Å for basal edge dislocation and 12–15 Å for basal

screw dislocation.
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(a)

(b)

Figure 3.12: Differential displacement plots of the a) edge and b) screw components of
Shockley partials of basal edge dislocation in Magnesium. The differential displacement
plot is projected on the (01̄10) plane.
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(a)

(b)

Figure 3.13: Differential displacement plots of the a) screw and b) edge components of
Shockley partials of basal screw dislocation in Magnesium. The differential displacement
plot is projected on the (21̄1̄0) plane.
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3.3.2 Effect of macroscopic deformations

We now study the effect of macroscopic deformation on the core energy of basal

edge and basal screw dislocations in Magnesium. Similar studies were performed on

screw dislocation in Aluminum in Section 3.2.2 and on edge dislocation in Aluminum

in [56, 57]. For both basal edge and basal screw dislocations, we consider a simulation

domain corresponding to the core size of the relaxed Shockley partials— 14.3|b| and

13.3 |b| for basal edge and basal screw dislocations respectively. On that simulation

domain, we apply an affine deformation corresponding to a macroscopic strain ε, and,

while holding the positions of the atoms fixed, we compute the electronic structure

and the relaxed positions of atoms. Finally, the dislocation core energy, Edisloc(ε) is

computed as a function of macroscopic strain using equation 3.2.

We first study the influence of macroscopic uniaxial strains along the coordinate

directions, [21̄1̄0]—[0001]—[01̄10] for the basal edge dislocation and along [011̄0]—

[0001]—[21̄1̄0] for the basal screw dislocation. For each of the coordinate direc-

tions we consider uniaxial strain values of -0.66%,-0.33%, 0.33%, and 0.66%. Fig-

ures 3.14(a), 3.14(b), and 3.15 show the core energy dependence of the basal edge

dislocation on ε11 (uniaxial strain along [21̄1̄0]), ε22 (uniaxial strain along [0001]) and

ε33 (uniaxial strain along [01̄10]), respectively. Figures 3.17(a) and 3.17(b)(b) shows

the core energy dependence of the basal screw dislocation on ε11 (uniaxial strain along

[011̄0]) and ε22 (uniaxial strain along [0001]) respectively. In the case of the basal edge

dislocation, the core energy dependence on uniaxial strains for the range of strains

considered in this study is found to be in general non-monotonic and non-linear ex-

cept for the ε11 strain, where the core energy dependence monotonically decreases

from compressive to tensile strain. In the case of the basal screw dislocation, the core

energy dependence on uniaxial strains is non-monotonic and non-linear for the ε11

strain whereas for the ε22 strain the core energy dependence monotonically decreases

from compressive to tensile strain and demonstrates almost linear dependence. The

69



core energy dependence for the ε22 is weaker than that for the ε11 strain. Interestingly,

we observe that the slope of the core energy dependence for ε11 at zero strain has a

positive sign in contrast to negative slope obtained in general for uniaxial strains in

the case of basal edge dislocation in Magnesium and edge and screw dislocations in

Aluminum.

Next, we consider the influence of the Ecsaig shear strain, which results in equal

and opposite glide forces on the Shockley partials, leading to asymmetry in the core

energy dependence as seen previously in the case of dislocations in Aluminum. In the

case of basal edge dislocation, the relevant Ecsaig shear strain is the ε23 strain, and in

the case of basal screw dislocation, the relevant Ecsaig shear strain is the ε12 strain.

We consider shear strain values of -0.66%,-0.33%, 0.33%, and 0.66%. Figures 3.16

and 3.18 show the core energy dependence on Ecsaig shear strains for basal edge

and screw dislocations respectively. Similar to previous observations in the case of

dislocations in Aluminum, we observe significant and non-symmetric dependence of

the core energy on the Ecsaig shear strains.

3.4 Core-force on an infinite straight dislocation

The studies in Sections 3.2.2 and 3.3.2 of the present work and Iyer et al. [56]

demonstrate that the core energy of a dislocation is significantly dependent on macro-

scopic deformations. This core energy dependence on the macroscopic deformation

results in an additional configurational force on the dislocation, beyond the Peach-

Koehler force, which we refer to as the core-force. The core-force on a unit line

segment of an infinite straight dislocation due to an external strain field εext is given

by

fc,i(ε
ext) = −∂Ec(ε

ext)

∂εext
kl

∂εext
kl

∂xi
, (3.3)
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(a)

(b)

Figure 3.14: Basal edge dislocation in Magnesium: core-energy per unit length of disloca-
tion line of relaxed Shockley partials as a function of uniaxial strains: (a) ε11; (b) ε22
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Figure 3.15: Basal edge dislocation in Magnesium: core-energy per unit length of disloca-
tion line of relaxed Shockley partial as a function of ε33 uniaxial strain.

Figure 3.16: Basal edge dislocation in Magnesium: core-energy per unit length of disloca-
tion line of relaxed Shockley partials as a function of Ecsaig shear strain ε23.
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(a)

(b)

Figure 3.17: Basal screw dislocation in Magnesium: core-energy per unit length of dislo-
cation line of relaxed Shockley partials as a function of uniaxial strains: (a) ε11; (b) ε22.
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Figure 3.18: Basal screw dislocation in Magnesium: core-energy per unit length of dislo-
cation line of relaxed Shockley partials as a function of Ecsaig shear strain ε12.

where Ec(ε
ext) is the core energy of the dislocation per unit-length. In the above

expression, the core size is assumed to be smaller than the length scale on which εext

varies.

We note that the core-force on an infinite straight dislocation depends on the

spatial gradient of the strain field. Thus, the core-force can play an important role

in governing the dislocation behavior in regions of inhomogeneous deformations, such

as the case of multiple interacting dislocations which has been widely studied using

3D discrete dislocation dynamics calculations (cf. Arsenlis and Parks [10], Arsenlis

et al. [11], Bulatov et al. [13], Kubin et al. [14], Schwarz [18], Zbib et al. [19]) to

predict macroscopic deformation response in crystalline materials. Apart from this,

core forces may be significant in other physical scenarios involving dislocations in an

external inhomogeneous strain field, such as interaction of dislocations with other

defects like grain boundaries and precipitates (cf. [121–124]). In the next section,

we develop a general framework for computing the core-force on a dislocation line

segment in an aggregate of dislocations.
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3.5 Summary

In summary, we studied the core structure and core energetics of an isolated screw

dislocation in Aluminum and isolated basal edge and screw dislocations in Mag-

nesium using a local real-space formulation of orbital-free DFT with finite-element

discretization (RS-OFDFT). This study is complementary to an earlier RS-OFDFT

study by [56, 57] on an isolated edge dislocation in Aluminum. In order to directly

compute the core energetics, we employed mixed boundary conditions corresponding

to an isolated dislocation embedded in the bulk—i.e., periodic boundary conditions

along the dislocation line and bulk Dirichlet boundary conditions on the electronic

fields obtained from the Cauchy-Born hypothesis along the boundary on the other

two directions for fixed atomic positions on the boundary that are determined based

on the elastic field of the dislocation. The local real-space formulation and the finite-

element discretization are essential to realizing these boundary conditions, which are

not accessible using the widely employed plane-wave discretization in electronic struc-

ture calculations. We computed the dislocation energies of a perfect dislocation in

each dislocation type for a series of increasing domain sizes, and identified the re-

gion up to which the perturbations in the electronic structure are significant to the

dislocation energetics. This allowed us to unambiguously characterize the core size,

where the physics cannot be described using a homogenized continuum theory. We

estimate, from an energetic viewpoint, the core size of the perfect screw dislocation in

Aluminum to be ≈ 7 |b|, and core sizes of basal edge and screw dislocations in Mag-

nesium to be ≈ 8 |b| and ≈ 11 |b| respectively. These core sizes corresponds well with

the estimated core size of ≈ 10 |b| for the perfect edge dislocation in Aluminum [56].

Significantly, these core sizes are much larger than the conventional estimates of 1–3

|b| based on displacement fields underlining the longer ranged nature of quantum

mechanical perturbations in the energetics due to the dislocation core in comparison

to displacement field deviation from elastic estimates. Upon ionic relaxation, the per-
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fect screw dislocation in Aluminum and perfect basal edge and screw dislocations in

Magnesium dissociated into two Shockley partials with partial separation distances

comparing closely with other estimates from prior electronic structure studies. We

also computed the core energy under externally applied affine volumetric, uniaxial

and shear deformations, and found that, in general for dislocations in both Alu-

minum and Magnesium, the core energy was strongly dependent on the macroscopic

deformations with non-zero slopes at zero deformation. Similar observations were re-

ported for the core energetics of edge dislocation in Aluminum [56, 57]. This suggests

that the dependence of the core energy on macroscopic deformations is a fundamental

characteristic of dislocation energetics.
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CHAPTER IV

Core-Force Model: Connecting Dislocation Core

Energetics to Mesoscale Dislocation Behaviour

In this chapter, first in Section 4.1 a continuum model for an arbitrary aggregate

of dislocations is developed, which takes into account the core energy dependence

on macroscopic deformation, and the resulting additional configurational forces on

the dislocations are derived. Next in Section 4.2, using case studies of dislocation–

dislocation interactions, we demonstrate the significance of these additional configu-

rational forces in relation to the elastic Peach-Koehler force. Finally in Section 4.3,

using discrete dislocation dynamics (DDD) case studies, significant influence of the

additional configurational forces on elementary dislocation mechanisms in Aluminum

such as critical stress of a Frank-Read source and structure of a dislocation binary

junction are demonstrated.

4.1 Core-energetics based forces for an aggregate of disloca-

tions

In this section, we first develop an electronic-structure informed energetics model

for an aggregate of dislocations in an isotropic infinite elastic continua, and subse-

quently, we obtain the forces in a discrete setting from variations of the total energy
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with respect to the degrees of freedom. In particular, we focus on the contribution

to the forces arising from the core energy dependence on macroscopic deformations.

In the present work, we have used RS-OFDFT calculations from Section 3.2 and Iyer

et al. [56], Das et al. [57] to inform the core energetics model for Aluminum, however,

the framework developed here is not materials system or data specific, and can be

used with other materials systems and core energetics data from other studies. We

note that recent DDD models have used core energetics information (cf. [15, 125])

from atomistic calculations resulting in additional force terms beyond the linear elas-

tic Peach-Koehler force. However, the core energy is assumed to be a constant in

these models, whereas it is evident from our study that the core energy can have a

strong dependence on macroscopic strains. As noted in Section 3.4, for a simple case

of an infinite edge dislocation, this dependence on macroscopic deformation results

in another additional force that is proportional to external strain gradients and the

slope of the core energy dependence on macroscopic strains (cf. equation (3.3)). In re-

gions of inhomogeneous deformations with large strain gradients, this additional force

can be significant as will be evident from the case studies presented in Section 4.2.

Moreover, in Appendix B, we demonstrate that the slopes of the core energy depen-

dence on macroscopic strains in Aluminum computed using atomistic calculations are

sensitive to the choice of the interatomic potential, which underscores the need for

quantum-mechanical calculations to compute the core energetics.

Broadly, this section comprises of two main parts, and is supported by Ap-

pendix B. Section 4.1.1 discusses the choice of the underlying linear elastic model,

the partitioning of the total energy of the system into core and elastic energies, and

the assumptions which go into developing the core energetics model for an arbitrary

dislocation aggregate. Appendix B discusses the post-processing of the core energy

data from RS-OFDFT calculations to remove the elastic effects consistent with the

energy partition and tabulates the relevant information. In Section 4.1.2, we consider
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a dislocation network discretized into straight segments, and derive the forces on the

nodes of the segments using linear shape functions.

4.1.1 Energetics model

We start by considering the elastic energy of the dislocation aggregate. We model

the entire aggregate of dislocations as a collection of dislocation loops1, and denote

this by C. In an infinite isotropic elastic continua, using classical linear elastic theory

of dislocations for small displacements, the stress field due to C at a spatial point x

is expressed in terms of the line integral [5, 126],

σCαβ(x) =
µ

8π

˛
C

∂i∂p∂pR
[
b′mεimα dx′β + b′mεimβ dx′α

]
+

µ

4π(1− ν)

˛
C

b′mεimk (∂i∂α∂βR− δαβ∂i∂p∂pR) dx′k , (4.1)

where εijk denotes the cyclic tensor, ∂i ≡ ∂
∂xi

, R = ‖x − x′‖, b′ = b(x′) is the

Burgers vectors at x′, and µ and ν are the isotropic shear modulus and Poisson’s

ratio, respectively. The total elastic energy of C, denoted by EC
el , is expressed as a

double line integral [5, 126, 127],

EC
el =− µ

8π

˛
C

˛
C

∂k∂kR bib
′
j dxi dx

′
j −

µ

4π(1− ν)

˛
C

˛
C

∂i∂jR bib
′
j dxk dx′k

+
µ

4π(1− ν)

[˛
C

˛
C

∂k∂kR bib
′
i dxj dx′j − ν

˛
C

˛
C

∂k∂kR bib
′
j dxj dx′i

]
, (4.2)

where b = b(x) and b′ = b(x′) are the Burgers vectors at x and x′, respectively.

We note that the partial derivatives of R appearing in the integrand of the above

expressions for stress and energy become singular as R → 0. In order to circumvent

this issue, non-singular linear elastic theories [126, 128–130] have been proposed to

remove the singularity in the elastic fields. Gradient elasticity theories [32–34] are also

1We are interested in dislocation loops as dislocation lines cannot terminate inside the crystal.
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inherently non-singular, but we do not use them here as our focus is to investigate the

forces from electronic structure effects at the dislocation core beyond what is captured

by the classical linear elasticity theory. Among the non-singular formulations by Cai

et al. [126], Brown [128], Gavazza and Barnett [129], Indenbom and Lothe [130], the

formulations of Gavazza and Barnett [129] and Cai et al. [126], have the desirable

variational property, i.e., the Peach-Koehler force on any point on the dislocation line

is equal to the derivative of the total elastic energy with respect to its spatial position.

In the Gavazza and Barnett [129] formulation, a tubular region around the dislocation

is excluded from the elastic energy calculation, while in the Cai et al. [126] formulation,

the Burgers vector is smeared using an isotropic spreading function characterized by

a parameter a that quantifies the spread radius. In developing our model, we adopt

the latter formulation as the former has difficulty dealing with dislocation lines with

sharp corners which can be encountered at situations like junction nodes or cross-slip

nodes. The total elastic energy of C using the non-singular formulation of Cai et al.

[126] is given by

EC
el (a) =− µ

8π

˛
C

˛
C

∂k∂kRabib
′
j dxi dx

′
j −

µ

4π(1− ν)

˛
C

˛
C

∂i∂jRabib
′
j dxk dx′k

+
µ

4π(1− ν)

[˛
C

˛
C

∂k∂kRabib
′
i dxj dx′j − ν

˛
C

˛
C

∂k∂kRabib
′
j dxj dx′i

]
, (4.3)

where Ra =
√
R2 + a2. Choosing a > 0, the spatial derivatives of Ra are no longer

singular, and we assume this going forward. We refer to Cai et al. [126] for the

non-singular expression for the stress field, which, analogous to equation (4.1), is

expressed as a line integral. The non-singular stress field can be expressed in a

condensed manner as

σCαβ(x; a) =

˛
C

σ̄αβ (ξ(x′(s′)),b(x′(s′)),x− x′(s′); a) ds′, (4.4)
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where σ̄αβ denotes the per unit-length contribution to the stress field at the spatial

point x from the dislocation line at x′(s′), with s′ being the length parametric variable

of C. The other dependencies of σ̄αβ are ξ(x′), which is the tangent line direction at

x′ such that ξ(x′)ds′ = dx′ , and b(x′) is the Burgers vector at x′. The dependency

on the isotropic elastic constants, µ and ν, is implicit. Similarly, the non-singular

strain field is also expressed as

εCαβ(x; a) =

˛
C

ε̄αβ (ξ(x′(s′)),b(x′(s′)),x− x′(s′); a) ds′ , (4.5)

where ε̄αβ is the per unit-length contribution to the strain field at spatial point x

from the dislocation line at x′(s′), with the same dependencies as the stress field.

This representation for the strain field will be used in the subsequent development of

the core energetics model. We note that this representation can also be extended to

the anisotropic case, where the anisotropic stress and strain fields of a dislocation loop

are expressed as a line integral [131], as well as to gradient elasticity theories [33, 34].

4.1.1.1 Non-elastic core energetics model

We now develop a model that accounts for the dislocation core energy in the total

energy of C, and its dependence on macroscopic strain, which is informed by the core

energetics data obtained from RS-OFDFT electronic structure calculations. To this

end, we refer to the total energy of C inside the tubular domain corresponding to

the core-size (core-domain) as the core energy, and denote this by EC
c . A portion of

EC
c is the non-singular elastic energy of the core-domain, which we denote as EC

cel(a)

(core-domain elastic energy or elastic core-energy). We refer to the remaining part

of the core energy as the non-elastic core-energy, denoted by EC
cnel(a), which includes

contributions from atomistic and quantum mechanical effects inside the dislocation
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core. Thus, we have the following partitioning for the the core energy:

EC
c = EC

cel(a) + EC
cnel(a). (4.6)

We note that as EC
cel depends on the choice of the spread radius (a) in the non-singular

approximation, EC
cnel also depends on a. Changing a changes the partitioning of total

core energy EC
c , but this has no effect on the dislocation properties (energy and forces)

as these are governed by EC
c , which is informed from electronic structure calculations

and is independent of a. Furthermore, the energy outside the core-domain is solely

elastic energy and is independent of the spread radius a—the non-singular elastic

fields converge to the classical elastic fields at distances beyond a, and commonly used

values of a, a < 2|b| [15, 125], are much smaller than the RS-OFDFT calculated core-

size of 7–10 |b|. Thus, the total energy of C, which we denote as EC
tot, is independent

of a, and is given by

EC
tot = EC

el (a) + EC
cnel(a) . (4.7)

We now present a model for EC
c using reasonable approximations, where the

model is directly informed by the core-energetics data from RS-OFDFT, and we

subsequently extract the non-elastic core-energy EC
cnel(a) using the partitioning in

equation (4.6). In our model, we ignore the non-elastic effects arising from the direct

core-core interactions between any two points on C, which is a reasonable approxima-

tion as the average separation between dislocations in DDD simulations is larger than

the RS-OFDFT estimated core-size of 7–10 |b|. Under this approximation, EC
c can be

expressed as a line integral on C. Further, we approximate the core energy per unit

length at any point x(s) with that of an infinite straight dislocation having the same

local Burgers vector (b(s)), the same tangent line direction (ξ(s)), and embedded in

the same macroscopic environment, i.e., the infinite straight dislocation subjected to

the same external strain field as being felt by the dislocation core at x(s). In other
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words, we ignore the possible explicit dependence of EC
c on the curvature of C. Thus,

under these approximations, the core energy is given by

EC
c =

˛
C

Estr
c (ξ(s),b(s), εextloc(x(s) + xc)) ds, xc ∈ Ωc , (4.8)

where Estr
c denotes core energy per unit length of an infinite straight dislocation. In

the above expression, εextloc(x(s) + xc) denotes the external strain field experienced

by all points xc in the dislocation core domain Ωc, where xc is the position vector

with respect to the core center at x(s). The external strain field is due to the entire

dislocation network C excluding the dislocation lines at and near the dislocation core,

which is computed using a cut-off procedure that will be discussed subsequently. The

symbol “loc” is used to denote that the strain tensor is expressed in a local coordinate

frame at x(s), which is aligned such that the axis labelled ‘1’ lies on the slip plane at

x(s) and is perpendicular to ξ(s), axis labelled ‘2’ is perpendicular to the slip plane,

and the axis labelled ‘3’ is along ξ(s). This choice of the local coordinate axes is the

same as those employed in RS-OFDFT calculations and thus allows an immediate

parametrization of the core energy dependence on macroscopic strains from the RS-

OFDFT core energetics data. The transformation of the strain tensor field ε̄ (the

integrand in equation (4.5)) from the global frame to the local frame is given by

ε̄loc
αβ (ξ(s′),b(s′),x− x′(s′)) =

Rkα(ξ(s),b(s))Rlβ(ξ(s),b(s))ε̄kl (ξ(s′),b(s′),x− x′(s′)) , (4.9)

where the rotation matrix R(ξ(s),b(s)) maps the components of any vector in the

local coordinate frame at x(s) to the components of the same vector in the global

coordinate frame. We note that the dependency on the smearing parameter, a, is ig-

nored in the above expression as the separation between the dislocations is assumed

to be larger than a. Using equations (4.5) and (4.9), as the rotation matrix is in-
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dependent of s′, the external strain field in the local coordinate frame, εextloc(x), is

given by

εextloc
αβ (x) =

ˆ
C−ρcut

ε̄loc
αβ (ξ(s′),b(s′),x− x′(s′)) ds′, (4.10)

where ρcut is a small cut-off radius characterizing a spherical region centered at x(s),

and the dislocation lines inside this region are excluded in evaluating the above line

integral. We note that the use of this cut-off approach is solely to restrict the sources

of the external strain field to those outside of the dislocation core, and is not an

attempt to regularize the external strain field at the core as the regularization is

already achieved by virtue of the non-singular elastic model. We further note that

the external strain field in the above expression is considered to be independent of

a, as the average separation distance in DDD calculations is greater than the values

used for a, beyond which the strain fields are independent of the choice of a. Thus,

by extension, EC
c is also independent of the choice of a. We now consider reasonable

simplifications to equations (4.8) and (4.10), which enable us to use the available

RS-OFDFT data to inform the core energy.

Simplification (1): In equation (4.8), the core energy per unit length of the straight

dislocation, Estr
c , in all generality, is a function of the external strain field at all

points inside the core. However, parametrizing Estr
c in the strain field function space

is intractable. A reasonable approximation will be to simplify this dependence to a

homogeneous mean-field strain dependence. To this end, we simplify the dependence

to the external strain field at the dislocation line (xc = 0), given by

EC
c =

˛
C

Estr
c (ξ(s),b(s), εextloc(x(s))) ds . (4.11)

We note that this approximation is reasonable when the distance between dislocations

is much larger than the core-size.
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Simplification (2): We note that the dependence of Estr
c on ξ(s) and b(s) arises from

the changing character for the dislocation that depends on the angle between the line

direction and the Burgers vector, given by

θ(s) = arccos

(
ξ(s) · b(s)

‖b(s)‖

)
. (4.12)

Parametrizing Estr
c as a function of θ(s) can be very tedious and time consuming

especially using electronic structure calculations. To this end, we adopt the commonly

used approximation, where the core energy of a dislocation with mixed character is

interpolated from the core energies of the edge and screw dislocations as

Estr
c (ξ(s),b(s), εextloc(x(s))) =

Eedge
c (εextloc(x(s)))sin2(θ(s)) + Escrew

c (εextloc(x(s)))cos2(θ(s)) . (4.13)

Simplification (3): In general, the dependence of Estr
c on εextloc can be non-linear.

However, when the distance between dislocations is sufficiently large, the external

strain fields at the dislocation line are small. Thus, we can further simplify the

dependence of Estr
c on εextloc by using a Taylor expansion to first order about εextloc = 0

as

EC
c =

˛
C

[
Estr

c (ξ(s),b(s), εextloc(x(s)) = 0)

+Sαβ(ξ(s),b(s))εextloc
αβ (x(s))

]
ds , (4.14)

where Sαβ(ξ(s),b(s)) is the slope of the core energy dependence on external strain
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evaluated at zero strain,

Sαβ(ξ(s),b(s)) =
∂Estr

c (ξ(s),b(s), εextloc)

∂εextloc
αβ

∣∣∣∣∣
εextloc=0

. (4.15)

The values of the slopes for dislocations with mixed character are evaluated, using

equation (4.13), from the slopes of the pure edge and screw dislocations, which, in

turn, are available using RS-OFDFT calculations.

Next, using the partition in equation (4.6), we obtain EC
cnel(a) from EC

c by sub-

tracting the non-singular linear elastic energy. The values of the slopes at zero strain

in equation (4.15) are also accordingly obtained by removing the contribution from the

non-singular elastic energy. We refer to Appendix B for details of this post-processing.

Finally, as a counterpart of equation (4.11), we obtain

EC
cnel(a) =

˛
C

Estr
cnel(ξ(s),b(s), εextloc(x(s)); a) ds , (4.16)

and as the counterpart of the linearized equations (4.14), we obtain

EC
cnel(a) =

˛
C

[
Estr

cnel(ξ(s),b(s), εextloc(x(s)) = 0; a)

+Ŝαβ(ξ(s),b(s); a)εextloc
αβ (x(s))

]
ds , (4.17)

where

Ŝαβ(ξ(s),b(s); a) =
∂Estr

cnel (ξ(s),b(s), εextloc ; a)

∂εextloc
αβ

∣∣∣∣∣
εextloc=0

. (4.18)

We note that an important limitation of the aforementioned model stems from

neglecting direct interactions between dislocation cores at different points on the dis-

location aggregate. This is a reasonable assumption when distances between the

dislocations are much larger compared to the core-size. However, there are practical

situations where this assumption fails—e.g. when radius of curvature of the disloca-
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tion line is comparable to core-size, dislocations passing each other at distances less

than core size, and dislocation core reactions like annihilation and junction formation.

In such situations, the energetics have to be obtained from direct electronic structure

calculations of the dislocation-dislocation interactions, which are still out of reach for

such large systems. We note that, even for these situations, the energetics model

developed here is an improvement over existing models that ignore the core energy

dependence on external strains.

4.1.2 Derivation of nodal core force in a discretized network of dislocation

line segments

In a 3D nodal discrete dislocation network, it is common to discretize the disloca-

tion line into straight line segments forming discretized polygonal loops. The network

is represented by a set of nodes with position vectors {ri}, which are connected by

straight segments. The other set of degrees of freedom corresponds to bij, which

denotes the perfect dislocation Burgers vector of line-segment lij = rj − ri pointing

from node i to node j. Here ij denotes the index of the line segment, lij. Overall, we

denote the network as C ≡ {ri,bij}. Constraints are imposed on bij and the nodal

connections such that the Burgers vector at each node is conserved, and dislocation

lines cannot end in the crystal. Additionally, bij are assumed to be constant when

the nodal positions {ri} are updated without changing the node connectivity. We

refer to [10, 11, 13] for a comprehensive description of the 3D DDD implementation

including mobility laws, time integration, topological rearrangements, treatment of

dislocation core reactions, and computational strategies. In this study, we are con-

cerned with the nodal forces arising from non-elastic core energy contributions.

Applying the core energetics model we developed in Section 4.1.1 to a discrete

dislocation network C ≡ {ri,bij}, we obtain the non-elastic core energetics as (cf.
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equation (4.16)),

EC
cnel(a) =

∑
ij ∈U

ˆ Lij

0

Estr
cnel(ξ

ij,bij, εextloc(xij(sij)); a) dsij . (4.19)

In the above, Lij = ‖lij‖ is the length of lij, ξij = lij

‖lij‖ is the unit vector corresponding

to lij, xij(sij) is the position vector of a point on lij, parametrized by sij, which is

the parametric length coordinate of lij measured from node i towards node j. The

index ij is summed over the set U , which represents the collection of all distinct line

segments in the dislocation network. In particular, ij and ji are not considered as

distinct as they refer to the same segment but with reversed directions for the unit

vector and Burgers vector. Further, for computing the external strain field, we follow

a more convenient cut-off procedure suited to the segment discretization rather than

the spherical cut-off procedure used in equation (4.10). This is given by

εextloc(xij(sij)) =
∑
kl∈U ′ij

εklloc(ξkl,bkl,xij(sij)), (4.20)

where εklloc(ξkl,bkl,xij(sij)) is the strain field contribution of lkl segment at the spatial

point xij(sij), expressed in the local frame attached to lij in which the electronic

structure core-energetics data is available, and the set U ′ij comprises of all distinct

line segments in the network excepting those that have i or j as one of their nodes.

In other words, the set U ′ij excludes the segment lij and its immediate neighbours.

We note that this approach and the spherical cut-off approach converge to the same

external strain field as maxij∈U Lij → 0 and ρcut → 0, respectively. In the above

expression, εklloc(ξkl,bkl,xij(sij)) is expressed using equation (4.9) as

εkllocαβ (ξkl,bkl,xij(sij)) = Rηα(ξij,bij)Rωβ(ξij,bij)εklηω(ξkl,bkl,xij(sij)) , (4.21)

which transforms the strain field contribution from lkl segment at the spatial point
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xij(sij) in the global frame to the local frame attached to lij. Next, we substitute

equation (4.20) in equation (4.19), and linearize the dependence of the non-elastic

core energy on the external macroscopic strain using equations (4.17) and (4.18), to

simplify EC
cnel(a) as

EC
cnel(a) =

∑
ij ∈U

ˆ Lij

0

Estr
cnel(ξ

ij,bij, εextloc(xij(sij)); a) dsij,

≈
∑
ij ∈U

Estr
cnel(ξ

ij,bij,0; a)Lij

+
∑
ij ∈U

∑
kl∈U ′ij

Ŝαβ(ξij,bij; a)

ˆ Lij

0

εkllocαβ (ξkl,bkl,xij(sij)) dsij . (4.22)

For keeping the subsequent analysis concise, we rewrite the above expression in a

condensed form as

EC
cnel(a) =

∑
ij ∈U

T ijself +
∑
ij ∈U

∑
kl∈U ′ij

T
(ij,kl)
ext . (4.23)

The force on node i, Fi, is the negative derivative of the total energy with respect

to the position ri, i.e.,

Fi =− ∂EC
el (a)

∂ri
− ∂EC

cnel(a)

∂ri

=Fi
el + Fi

c, (4.24)

where Fi
el and Fi

c are the nodal elastic force and core force contributions. Fi
el, has been

analytically determined in previous literature [11, 126] for the non-singular elastic

formulation, by applying the principle of virtual work and using the Peach-Koehler

formula. The focus in this study is on obtaining the expressions for Fi
c. Using the
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representation in (4.23), Fi
c is given by

Fi
c =− ∂EC

cnel(a)

∂ri
=
∑
j

f{i}jcs +
∑
j

∑
kl∈U ′ij

f ({i}j,kl)
ce +

∑
j

∑
kl∈U ′ij

f̃ ({i}j,kl)
ce , (4.25a)

f{i}jcs =− ∂T ijself

∂ri
; f ({i}j,kl)

ce = −∂T
(ij,kl)
ext

∂ri
; f̃ ({i}j,kl)

ce = −∂T
(kl,ij)
ext

∂ri
, (4.25b)

where j runs over all nodes which have a connection to node i, and the superscript

notation ‘{i}’ denotes that the force is with respect to perturbation of node i. In the

above, the first term, f
{i}j
cs , is force resulting from change in T ijself due to perturbation of

ri, but this does not account for the force resulting from the core energy dependence

on external macroscopic strains. We note that this term is already incorporated

into current DDD implementations [11, 15], but, we still analyze it here for the sake

of completeness. The next two terms in the nodal force manifest from the core

energy dependence on external strain, and these are not considered in current DDD

implementations. To elaborate, f
({i}j,kl)
ce is the contribution to Fi

c arising from the

core energy change of segment lij due its dependence on the external strain field of

another segment lkl (kl ∈ U ′ij), and f̃
({i}j,kl)
ce is the contribution arising from the core

energy change of the segment lkl (kl ∈ U ′ij) due to its dependence on the strain field

of lij.

We now derive the expressions for each of the terms contributing to Fi
c from the

first order perturbations in T ijself , T
(ij,kl)
ext and T

(kl,ij)
ext resulting from a perturbation of

the nodal position ri, while holding the other nodes fixed. Noting that the segments

are always constrained to remain straight, we define a linear shape function attached

to node i having a compact support over all segments lij attached to it,

Ni(x
ij(sij)) =

‖xij(sij)− rj‖
‖ri − rj‖

, (4.26)
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which can also be expressed as

Ni(sij) =
Lij − sij
Lij

. (4.27)

We first start with computing the first order perturbations in T ijself with respect to ri,

and aim to write them in the form

δT ijself = −f{i}jcs · δri . (4.28)

Using equations (4.22) and (4.23),

δT ijself =
∂Estr

cnel(ξ
ij,bij,0; a)

∂ξijα

∂ξijα
∂riβ

δriβLij − Estr
cnel(ξ

ij,bij,0; a)ξijβ δr
i
β

=
∂Estr

cnel(ξ
ij,bij,0; a)

∂ξijα
{ξijα ξ

ij
β − δαβ}δr

i
β − Estr

cnel(ξ
ij,bij,0; a)ξijβ δr

i
β , (4.29)

where δαβ denotes the Kronecker delta function. Comparing equations (4.28) and (4.29),

we can extract the force vector

f
{i}j
cs,β =

∂Estr
cnel(ξ

ij,bij,0; a)

∂ξijα
{δαβ − ξijα ξ

ij
β }+ Estr

cnel(ξ
ij,bij,0; a)ξijβ , (4.30)

where the first term is the contribution to the force which tends to rotate the line

segment orientation to lower its core energy, while the second term represents a line

tension force to reduce the length of the segment. Next, we consider the perturbations

in T
(ij,kl)
ext with respect to ri. From equations (4.22), (4.23) and (4.21), T

(ij,kl)
ext is given

by

T
(ij,kl)
ext = Ŝαβ(ξij,bij; a)Rηα(ξij,bij)Rωβ(ξij,bij)

ˆ Lij

0

εklηω(ξkl,bkl,xij(sij)) dsij.

(4.31)

The first order perturbations in T
(ij,kl)
ext with respect to ri results from the following
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perturbations, given by

δŜαβ(ξij,bij; a) =
∂Ŝαβ(ξij,bij; a)

∂ξijp

∂ξijp
∂riq

δriq

=
∂Ŝαβ(ξij,bij; a)

∂ξijp

{ξijp ξijq − δpq}
Lij

δriq

=− tŜαβqδriq ,

(4.32a)

δ
(
Rηα(ξij,bij)Rωβ(ξij,bij)

)
=

[
∂Rηα(ξij,bij)

∂ξijp
Rωβ(ξij,bij)

+Rηα(ξij,bij)
∂Rωβ(ξij,bij)

∂ξijp

]
∂ξijp
∂riq

δriq

=

[
∂Rηα(ξij,bij)

∂ξijp
Rωβ(ξij,bij)

+Rηα(ξij,bij)
∂Rωβ(ξij,bij)

∂ξijp

] {ξijp ξijq − δpq}
Lij

δriq

=− tRαβωηqδriq ,

(4.32b)

δ

(ˆ Lij

0

εklηω(ξkl,bkl,xij(sij)) dsij

)
=

[ˆ Lij

0

∂εklηω(ξkl,bkl,xij(sij))

∂xijq
Ni(sij) dsij

−
ξijq
Lij

ˆ Lij

0

εklηω(ξkl,bkl,xij(sij)) dsij

]
δriq

=−
(
tε1ηωq + tε2ηωq

)
δriq .

(4.32c)

In the above, the first contributions results from the orientation dependence of the

slopes of the core energy vs external macroscopic strain, originating from the differ-

ence in the slopes of the edge and screw dislocations. The second term results from

the orientation dependence of the rotation matrix, which is solely geometric in nature.

The third contribution is composed of two terms. The first term results from the per-

turbations to the spatial positions of the points on segment lij, which then perturbs

the external strain field experienced by these points. The second term captures the

contribution arising from the change in the length of lij. In the above perturbations,
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we used the fact that the position of segment lkl remains unchanged with respect to

perturbations of ri owing to the cut-off procedure. Using equations (4.32) and (4.25),

we arrive at the force

f ({i}j,kl)
ce,q = tŜαβqRηα(ξij,bij)Rωβ(ξij,bij)

ˆ Lij

0

εklηω(ξkl,bkl,xij(sij)) dsij

+ tRαβωηqŜαβ(ξij,bij; a)

ˆ Lij

0

εklηω(ξkl,bkl,xij(sij)) dsij

+ tε1ηωqŜαβ(ξij,bij; a)Rηα(ξij,bij)Rωβ(ξij,bij)

+ tε2ηωqŜαβ(ξij,bij; a)Rηα(ξij,bij)Rωβ(ξij,bij). (4.33)

Next, we consider first order perturbations of T
(kl,ij)
ext with respect to ri. Using equa-

tions (4.31) and (4.5), we have

T
(kl,ij)
ext =Ŝαβ(ξkl,bkl; a)Rηα(ξkl,bkl)Rωβ(ξkl,bkl)

ˆ Lkl

0

εijηω(ξij,bij,xkl(skl)) dskl

=Ŝαβ(ξkl,bkl; a)Rηα(ξkl,bkl)Rωβ(ξkl,bkl)
ˆ Lkl

0

ˆ Lij

0

ε̄ijηω(ξij,bij,xkl(skl)− xij(sij)) dsijdskl

=Dηω

ˆ Lkl

0

ˆ Lij

0

ε̄ijηω(ξij,bij,xkl(skl)− xij(sij)) dsijdskl , (4.34)

and

δT
(kl,ij)
ext =Dηω

{ξijp ξijq − δpq}
Lij

ˆ Lkl

0

ˆ Lij

0

∂ε̄ijηω(ξij,bij,xkl(skl)− xij(sij))

∂ξijp
dsijdskl δr

i
q

+Dηω

ˆ Lkl

0

ˆ Lij

0

∂ε̄ijηω(ξij,bij,xkl(skl)− xij(sij))

∂xijq
Ni(sij) dsijdskl δr

i
q

−Dηω

ξijq
Lij

ˆ Lkl

0

ˆ Lij

0

ε̄ijηω(ξij,bij,xkl(skl)− xij(sij)) dsijdskl δr
i
q

=− f̃ ({i}j,kl)
ce,q δriq . (4.35)

In the above, the first term results from the perturbation in the core energy of lkl
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due to the perturbation in the strain field of segment lij’s resulting from a change in

its orientation. The second and the third term manifest from the perturbations in

the strain field of segment lij associated with its position and length, respectively. In

summary, equations (4.30), (4.33), and (4.35) provide the various contributions to the

nodal core force Fi
c in equation (4.25). In Appendix C, we extend the above analysis

to the case where the perfect dislocations are dissociated into partials.

The various terms in the nodal core force can broadly be divided into three types

based on their dependence on the strain field. These three types are: (I) terms which

are proportional to the spatial gradients of the strain field, (II) which are proportional

to the strain field or its gradients with respect to the dislocation orientation, and

(III) which are independent of the strain field. Starting with type-(I) contributions,

we note that they arise from the core energy dependence on external strain and

perturbations in the external strain due to perturbations in the displacement vector

connecting the dislocation source (producing the external strain) to the core location

(cf. third term in equation (4.33) and second term in equation (4.35)). Next, the

type-(II) contributions also arise from the core energy dependence on external strain,

but, due to perturbations in the length and orientation of the dislocation segments

(cf. first, second and fourth terms in equation (4.33), and first and third terms

in equation (4.35)). Finally, type-(III) contributions (cf. equation (4.30)) manifest

from the perturbations of the core energy solely due to perturbation in the length

and orientation of dislocation segments without accounting for any dependence of

the core energy on the external strain. We note that the current DDD frameworks

(cf. [11, 15]) only account for type-(III) contributions to the core force. Further, these

three different types of force contributions have different decay behavior in dislocation

interactions. Type-(I) contributions are proportional to the spatial gradient of the

strain field, thus are short-ranged decaying as O( 1
d2

), where d is the distance between

the two interacting dislocation segments ij ∈ U and kl ∈ U ′ij. On the other hand,
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type-(II) contributions are long-ranged decaying as O(1
d
) (the same decay of the

elastic force), while type-(III) contributions do not depend on d. Thus, we expect

type-(I) contributions to be significant in comparison with the elastic force at smaller

distances. In Section 4.2, we use case studies to numerically compare the type-(I) core

force contributions with the elastic force for a wide range of dislocation interactions.

Studies that also include non-trivial type-(II) contributions are considered in the DDD

case studies in Section 4.3.

4.2 Static case studies using core-energetics based forces

In this section, we consider case studies involving pairs of simple dislocation struc-

tures in fcc Al to find the spatial extent to which the core force contribution (cf. Sec-

tion 4.1.2) is significant in comparison to the longer ranged Peach-Koehler force. In

our case studies, we consider the systems as an aggregate of dislocation loops 2 only

allowing for rigid body translations of the individual loops. In other words, we do

not allow any changes in the shape, size and orientation of the dislocation loops. A

full-fledged treatment without any restrictions on the degrees of freedom requires the

efficient implementation of the core force in a 3D DDD framework, which we will

pursue in a future work. Further, in these case studies, we treat the dislocations as

perfect dislocations for computing the non-singular elastic fields. This is a reasonable

assumption here, as the combined elastic fields of the partials converges to that of

the perfect dislocation elastic fields beyond the core size.

We denote the ith loop in a system of n loops as Ci. Following Section 4.1.2, the

core force on the dislocation loop Ci (denoted as Fi
c) corresponding to its rigid body

2Infinite straight dislocations can be treated as loops with radius approaching infinity.
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translations, while keeping other loops fixed, is obtained as

Fi
c =

˛
Ci

f ic(x
i(si)) dsi =

˛
Ci

{∑
j 6=i

f (i,j)
ce (xi(si)) +

∑
j 6=i

f̃ (i,j)
ce (xi(si))

}
dsi , (4.36)

where

f (i,j)
ce,q (xi(si)) = −Ŝαβ

(
ξi(si),b

i; a
)
Rηα

(
ξi(si),b

i
)
Rωβ

(
ξi(si),b

i
)

˛
Cj

∂ε̄jηω(ξj(sj),b
j,xi(si)− xj(sj))

∂xiq
dsj, (4.37)

and

f̃ (i,j)
ce,q (xi(si)) = −

˛
Cj

Ŝαβ
(
ξj(sj),b

j; a
)
Rηα

(
ξj(sj),b

j
)
Rωβ

(
ξj(sj),b

j
)

∂ε̄iηω(ξi(si),b
i,xj(sj)− xi(si))

∂xiq
dsj . (4.38)

In the above, ξi(si) is the tangent line direction at xi(si) on Ci, bi is the Burgers

vector of Ci, and ε̄i(ξi(si),b
i,x−xi(si)) is the per unit-length strain field contribution

at x due to the dislocation line at a point xi(si) on loop Ci. Based on the classification

of core force contributions in Section 4.1.2, the above core force corresponds to the

type-(I) contribution arising from pairwise interactions of loops Ci with Cj.

We now undertake a numerical study on assessing the significance of the core

force in comparison to the Peach-Koehler force. To this end, we consider the follow-

ing case studies: (i) interaction of a straight edge dislocation with a low-angle tilt

grain boundary, (ii) interaction of a circular glide loop with a low-angle tilt grain

boundary (iii) interaction of two circular glide loops, and (iv) interaction of a cir-

cular glide dislocation loop with a straight edge dislocation. The schematics of the

geometry are shown in figure 4.1. The Burgers vectors of the dislocations are defined

with respect to line directions taken as the following: along [112̄] for straight edge
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dislocations, and for the glide loops, the line direction curls around the [111] direction

in the right hand sense. In each of these case studies, the forces are evaluated with

respect to translational perturbations of the blue-colored dislocation system, while

keeping the red-colored dislocation system fixed. The values of the fcc Al material

constants used in the calculations are obtained from RS-OFDFT, which are provided

in Table B.1. The value of the smearing parameter, a, in the non-singular elastic

formulation is chosen to be 1|b| for all the case studies. Corresponding to this choice

of a, Table B.3 provides the values of the non-elastic core energy and its slopes with

respect to external macroscopic strains.

(i) (ii)

(iii) (iv)

x

y

z
x

y

z

y

x
z

y

x
z

r=50 
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r=40 

(x,y)

(x,y,0) (x,y,0)

(x,y,0)
(0,0)

(0,0,0)

(0,0,0)

(0,0,0)

A

B

D

Figure 4.1: Schematic of the case studies.

Case study (i): We consider the interaction between a a0
2

[11̄0] low-angle tilt grain

boundary (LATGB) with tilt axis [112̄], and a straight negative edge dislocation with

Burgers vector −a0
2

[11̄0]. LATGB’s are conventionally modeled as an uniformly spaced

array of edge dislocations up to tilt angles of ≈ 15◦ [132]). We denote the tilt angle

as θ, as shown in figure 4.1. The relationship between θ and the dislocation array
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spacing, denoted as D, is given by

D =
|barr|

2 sin(θ/2)
, (4.39)

where barr = a0
2

[11̄0] is the Burgers vector of each edge dislocation in the array.

We consider two tilt angles of θ = 4◦ and θ = 10◦. In both these systems, we

evaluate the Peach-Koehler force and the core force per unit length on the straight

edge dislocation. The quantity of interest to us is the ratio of glide component (along

[11̄0] on the rotated frame) of the core force, F str,gl
c , to the glide component of the

Peach-Koehler force, F str,gl
PK , with a regularization (c0), given by

Rstr({x, y}) =

(
|F str,gl

c ({x, y})|
|F str,gl

PK ({x, y})|+ c0

)
, (4.40)

where {x, y} is the position of the straight edge dislocation in the un-rotated frame

attached to the GB. The regularization is used to avoid singularities in the ratio at

the points where F str,gl
PK vanishes. The value of c0, a positive regularization constant,

is chosen to be

c0 = 10× |PNf | , (4.41)

where PNf is the Peierls-Nabarro force per unit length of the straight edge disloca-

tion computed using the Peierls stress to be 1.6 MPa [46]. Figures 4.2(a) and 4.2(b)

show the contour plots of log10 (Rstr({x, y})) for tilt angles of θ = 4◦ and θ = 10◦,

respectively. For better presentability of the contour, we truncate the range of

log10 (Rstr({x, y})) to [−3, 3], the values to the left and right of this range being

fixed at −3 and 3, respectively. We also adopt this truncation procedure for the

subsequent case studies. In the contour plots, the regions of interest are those with
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log10 (Rstr({x, y})) > −1, which from equation (4.40) correspond to

|F str,gl
c ({x, y})| > |F

str,gl
PK ({x, y})|

10
& |F str,gl

c ({x, y})| > |PNf |. (4.42)

In the x direction, these regions extend upto x = 4 nm from the grain boundary in fig-

ure 4.2(a), and x = 2 nm from the grain boundary in figure 4.2(b). In the y direction,

these regions almost completely fills up the separation between the dislocations in the

GB. There are also areas inside these regions with separation distances of < 2 nm,

where log10 (Rstr({x, y})) > 0. Here, the core force is greater in magnitude compared

to the Peach-Koehler force, and is also greater than ten times the Peierls-Nabarro

force. Thus, we can expect the core force to influence the physical processes involved

in dislocation–GB interactions like dislocation pile-up, dislocation absorption and dis-

location transmission that play an important role in governing mechanical properties

of polycrystalline materials.

Case study (ii): In this case study, we consider the interaction between a a0
2

[11̄0]

LATGB with tilt axis [112̄], and a circular (111) glide loop of radius 40 Å with Burgers

vector −a0
2

[11̄0]. We evaluate the total Peach-Koehler force and core force on the

dislocation loop for two different values of LATGB tilt angles of θ = 4◦ and θ = 10◦.

As in the previous case study, we consider the regularized ratio of glide component

of the core force on the loop, F loop,gl
c , to the glide component of the Peach-Koehler

force on the loop, F loop,gl
PK , given by

Rloop({x, y}) =

(
|F loop,gl

c ({x, y})|
|F loop,gl

PK ({x, y})|+ c0

)
, (4.43)

where

c0 = 10× Perloop × |PNf | , (4.44)

with Perloop denoting the perimeter of the circular glide loop. Figures 4.3(a) and 4.3(b)
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(a)

(b)

Figure 4.2: Case study (i): Contour plot of log10 (Rstr({x, y})) for the interaction
between a straight edge dislocation and a low-angle title grain boundary for tilt
angles a) θ = 4◦ b) θ = 10◦. The range of the y-axis in these plots is [−D

2
, D

2
].
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show the contour plots for tilt angles of θ = 4◦ and θ = 10◦, respectively. The regions

with log10 (Rloop({x, y})) > −1 extend up to distances of 4–6 nm between the loop

center and the LATGB.

(a)

(b)

Figure 4.3: Case study (ii): Contour plot of log10 (Rloop({x, y})) for the interaction
between a glide loop and a low-angle tilt grain boundary for tilt angles a) θ = 4◦ b)
θ = 10◦. The range of the y-axis in these plots is [−D

2
, D

2
].

Case study (iii): Here we consider the interaction between two circular (111)

glide loops of radius 50 Å with equal Burgers vector a0
2

[11̄0]. The center of the

loop A is fixed at the origin {0, 0, 0}, while loop B’s center is located at a variable

position {x, y, 0}. We compute F loop,gl
c and F loop,gl

PK on glide loop B, and obtain the

contour plot of log10 (Rloop({x, y})) using equations (4.43) and (4.44), which is shown

in figure 4.4. We observe that the regions with log10 (Rloop({x, y})) > −1 extend up

to very significant distances of ≈ 15 nm between the loop centers.

Case study (iv): In the final case study, we consider the interaction between a

circular (111) glide loop of radius 50 Å with Burgers vector a0
2

[11̄0], and a straight

negative edge dislocation with Burgers vector −a0
2

[11̄0]. The straight edge dislocation

is fixed at the origin while the glide loop’s center has a variable position, {x, y, 0}.
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Figure 4.4: Case study (iii): Contour plot of log10 (Rloop({x, y})) for the interaction
between two glide loops.

We compute F loop,gl
c and F loop,gl

PK on the glide loop. Figure 4.5 shows the contour plot

of log10 (Rloop({x, y})). We observe that core force are considerable up to distances

of ≈ 10 nm between the glide loop center and the straight edge dislocation.

4.3 Dislocation dynamics case studies with core-energetics

based nodal core force

In this section, we consider discrete dislocation dynamics case studies to investi-

gate the influence of incorporating the nodal core force derived in Section 4.1.2. In

particular, we incorporated the equations 4.25–4.35 into DDLab [133], a MATLAB

based 3D DDD code for small scale DDD simulations. The DDD model used in DD-

Lab is similar to that used in the widely used ParaDiS DDD code [11] for large-scale

DDD simulations. The underlying elastic model in DDLab is the non-singular elastic

formulation by [126]. We note that both DDLab and ParaDis already incorporate

the self core force term ((cf. equation 4.30)) but lack the interaction core force terms
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Figure 4.5: Case study (iv): Contour plot of log10 (Rloop({x, y})) for the interaction
between a glide loop and a straight edge dislocation.

resulting from the core energy dependence on external macroscopic strain.

Here, we consider two case studies of dislocation hardening mechanisms in fcc

Aluminum— a Frank-Read source and a dislocation binary junction. The values of

the RS-OFDFT calculated fcc Al material constants used in the case studies are pro-

vided in Table B.1 (cf. Appendix B). The value of the smearing parameter, a, in the

non-singular elastic formulation is chosen to be 15|b|. Corresponding to the above

choice of a, the values of the non-elastic core energy and its slopes with respect to ex-

ternal macroscopic strains are recomputed by following the post-processing approach

discussed in Appendix B.

First, we consider the Frank-Read source case study. Frank-Read source is a dis-

location multiplication mechanism [5, 134] which involves repeated bowing out and

generation of dislocations from an initial pinned dislocation line segment beyond a

certain critical applied stress. In the present case study, we investigate the influence
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of incorporating OFDFT core energetics informed nodal core force on the critical

applied stress predictions via DDD simulations. We consider fcc Aluminum crystal

with coordinate axes X–Y–Z aligned along [100]—[010]—[001] crystallographic direc-

tions and introduce an initial straight dislocation line pinned at (−L/2;−L/2; 0) and

(L/2;L/2; 0), where the parameter L controls the pinning distance. (0; 0; 0) is a mo-

bile node at the center. The Burgers vector of the dislocation line is b = a0
2

[101̄] and

the specified glide plane is (111). The default FCC mobility parameters in DDLab

are used. Next we apply a certain external stress state, σµA, whose magnitude is

controlled by the dimensionless scalar σ. µ is the isotropic shear modulus and A is

a 3 × 3 matrix with A(1, 3) = A(3, 1) = 1.0, all other entries being zero. We define

critical stress, σc as the value of σ which makes the dislocation line bow beyond a

certain empirical measure. The empirical criteria for critical stress we use here is

the maximum distance of any node in the bowed dislocation line from the center of

the initial pinned dislocation line. When this exceeds the length of the initial pinned

dislocation length, we consider critical stress to be reached. Figure 4.6 shows the

numerically computed critical stress for various initial pinned lengths using three dif-

ferent approaches—(A) DDLab code without any modifications to Fc, which only has

the self core force term (cf. equation 4.30) but the core energies are determined based

on a heuristic used by DDLab, (B) modified DDLab code where the self core force

term is informed from OFDFT calculated dislocation core energetics for Aluminum,

and (C) modified DDLab code which incorporates OFDFT core-energetics informed

self as well interaction core force terms (cf. equations 4.25–4.35). We observe signif-

icant differences in the calculated critical stress between route (A) and route (B) as

well as between routes (B) and route (C). This underlines the significant influence of

quantum mechanically informed self and interaction nodal core force terms in relation

to the original DDD model, which includes only the self core force with heuristically

set core energies.

104



Figure 4.6: Influence of nodal core force on critical stress of a Frank-Read source.

We now consider the second case study— dislocation binary junction in fcc Alu-

minum. When two dislocations on different glide planes approach each other, under

certain conditions of orientation and Burgers vectors they form a binary junction.

Such junctions play an important role in strain hardening [135, 136]. Important bi-

nary junction characteristics are the equilibrium junction length and the critical stress

required to cause dissociation of the junction. In the current case study, we focus on

the influence of nodal core force on equilibrium junction length. Similar to the pre-

vious case study, the coordinate axes X–Y–Z are aligned along [100]—[010]—[001]

crystallographic direction. We consider two pinned dislocation line segments— one

(denoted as dislocation 1) on the (111) plane and the other (denoted as dislocation

2) on the (111̄) plane. The Burgers vectors of dislocation 1 and dislocation 2 are

b1 = a0
2

[101̄] and b2 = a0
2

[011] respectively. We choose orientations for dislocation 1

and dislocation 2 such that the two dislocations interact and form a binary junction
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Table 4.1: Influence of nodal core force on equilibrium junction lengths of a binary
dislocation junction in fcc Aluminum.

(A) DDLab with original Fc 301 |b|
(self core force only)

(B) DDLab with OFDFT core-energetics informed Fc 556 |b|
(self core force only)

(C) DDLab with OFDFT core-energetics informed Fc 495 |b|
(self and interaction core force)

along the intersection of their glide planes. In particular, following are the posi-

tions of the end nodes for dislocation 1 ((−1597.3‖b1‖, 1092.7‖b1‖, 504.6‖b1‖) and

(1597.3‖b1‖, −1092.7‖b1‖, −504.6‖b1‖)) and dislocation 2 ((339.5‖b2‖, 1213.6‖b2‖

, 1553.1‖b2‖) and (−339.5‖b2‖ ,−1213.6‖b2‖ ,−1553.1‖b2‖)). Table 4.1 shows the

numerically computed equilibrium junction lengths computed using three different

routes similar to the previous case study. We observe significant influence on the

equilibrium junction lengths due to incorporation of OFDFT core-energetics informed

nodal self and interaction core force. In particular, between routes (A) and (B), there

is a 85% change in the equilibrium junction length, and between routes (B) and (C)

there is further change of 11% in the equilibrium junction length.

4.4 Summary

We developed an energetics model for a dislocation aggregate, denoted by C, in

an isotropic infinite elastic continua, which incorporates the dependence of the core

energetics on macroscopic deformations. The underlying elastic model is chosen to

be the non-singular elastic formulation by [126]. Under the physically reasonable

assumption that the core size is smaller than the structural length-scales of the dislo-

cation aggregate, the core energetics of isolated edge and screw dislocations are used

to describe the total core energy, which is expressed as a line integral on C. The

core energy per unit length at each point on C depends on the external strain field at
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the point resulting from all parts of C excepting a chosen cut-off region around the

point. Further, we subtract the non-singular elastic effects from the total core energy

to obtain the non-elastic core energy that is dependent on external strain. Next, we

extended the developed energetics model to a nodal dislocation network, and derived

the nodal force associated with the non-elastic core energy contribution, which we

referred to as the nodal core force.

Next, we considered case studies to compare the magnitude of the Peach-Koehler

force with the magnitude of the core force contribution arising from the macroscopic

deformation dependence of the core energy. These case studies involved interactions

of grain boundary-straight dislocation, grain boundary-glide loop, glide loop-glide

loop and glide loop-straight dislocation in fcc Aluminum. Numerically computing

the Peach-Koehler and core force along the slip direction in these case studies, we

found that even up to distances of 10-15 nm between dislocations, the magnitude of

the core force is significant with respect to the Peach-Koehler force (being at least

10% of the Peach-Koehler force), while also being larger than the Peierls-Nabarro

force. Furthermore, for some configurations with distances of < 2 nm, the magnitude

of the core force was found to be comparable or more than the elastic force.

Finally, we incorporated the nodal core force into DDLab, a MATLAB based

3D DDD framework, and studied the influence of nodal core force on two different

case studies involving dislocation mechanisms in fcc Aluminum. The first case study

investigated the influence of nodal core force on critical stress of a Frank-Read source

while the second case study investigated the influence of nodal core force on the

equilibrium junction length of a dislocation binary junction. In both of these case

studies, we observed significant influence of both self as well as interaction nodal core

force terms on the computed quantities.

Based on the analysis of the core force expressions and the results of the above

case studies, we anticipate that the core force may influence macroscale predictions
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of plasticity via large-scale DDD simulations. The nodal core force expressions devel-

oped here can be readily incorporated into DDD implementations as demonstrated

here for small scale DDD simulations of elementary mechanisms of dislocation en-

abled hardening in fcc crystal. However, extending this to large-scale bulk plasticity

simulations using DDD codes like ParaDis requires a computationally efficient im-

plementation of the nodal core force terms in these frameworks. In this regard, the

asymptotic behavior of various terms contributing to the core force can be exploited,

along with obtaining analytical expressions, which will be pursued in a subsequent

work.
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CHAPTER V

Extensions to Large-Scale Kohn-Sham Density

Functional Theory: Computational Methods and

Benchmarks

5.1 Introduction and previous work

So far in the current thesis, the electronic structure method development and cal-

culations have focussed on orbital-free DFT, which is shown to provide good accuracy

in comparison to the more accurate Kohn-Sham DFT (KSDFT) for material systems

close to uniform electron gas like Aluminum and Magnesium. However, obtaining

the dislocation core energetics for material systems where orbital-free DFT kinetic

energy functionals are not well developed or are not sufficiently accurate, such as tran-

sition metals and covalently bonded systems, requires the use of Kohn-Sham DFT for

studying such systems. Importantly, in the context of electronic structure studies of

dislocations there so far has not been any direct quantitative comparison of disloca-

tion core energetics between OFDFT and KSDFT. Furthermore, electronic structure

study of dislocation-solute interactions in Aluminum and Magnesium [50, 58–60] is

very critical for alloy design, but OFDFT may not be transferable for the various

solute types. However, the computational cost of KSDFT scales asymptotically cu-

bically with respect to number of atoms and thus accurate KSDFT calculations are
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routinely limited to materials systems with at most a few thousands of electrons re-

stricting the system sizes to a few hundred atoms. In this regard, the focus of the

current chapter is the development of a capability to perform accurate and large-scale

KSDFT calculations using large parallel computers on dislocations in generic metallic

systems with system sizes ranging up to 10,000 atoms.

Traditionally, the widely used KSDFT codes employ either plane-waves [104, 137–

139] or atomic-orbital type basis sets [140–144] for DFT calculations. However, the

use of plane-wave basis restricts simulation domains to be periodic. Further, these

basis sets do not exhibit good parallel scalability, severely limiting the range of ma-

terials systems that can be studied. On the other hand, atomic orbital type basis

sets are not systematically convergent for generic materials systems. Thus, to over-

come the above limitations, there has been an increasing thrust in the development

of systematically improvable and scalable real-space discretization techniques like

finite-elements [61, 145–157], finite-difference [158–163], wavelets [164], psinc func-

tions [165], and other reduced order basis techniques [166, 167].

In this work, we focus on real-space adaptive spectral finite-element (FE) dis-

cretization of Kohn-Sham DFT which affords excellent parallel scalability. The cur-

rent endeavour is composed of two steps. The first step [63]1 extends previous work

on local real-space variational formulation of Kohn-Sham DFT [61, 62], which handles

all-electron and pseudopotential calculations in the same framework while accommo-

dating periodic, non-periodic and semi-periodic boundary conditions. In [61], the

advantage of higher-order spectral finite-elements in conjunction with Chebyshev fil-

tering approach [168] in significantly improving the computational efficiency of DFT

calculations has been demonstrated. Here, we focus on reducing the computational

prefactor by using efficient numerical strategies, which include: (i) optimized FE cell

level matrix operations during the Chebyshev filtering procedure; (ii) Cholesky fac-

1Phani Motamarri and Sambit Das are co-first authors.
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torization based Gram-Schmidt orthonormalization; (iii) mixed precision arithmetic,

and (iv) spectrum splitting based Rayleigh-Ritz procedure. We note that the use of

these techniques delays the onset of cubic scaling computational complexity to very

large system sizes. These strategies enabled systematically convergent, computation-

ally efficient and massively parallel DFT calculations (demonstrated up to 192, 000

MPI tasks) on material systems with tens of thousands of electrons for both metallic

and insulating systems. This part of the work has resulted in the development of the

DFT-FE open-source software, a massively parallel adaptive finite-element code for

large-scale density functional theory calculations.

In the second step of this work [64], we focus on acceleration of DFT-FE using

Graphics Processing Units (GPUs). Our implementation innovations on GPUs that

significantly reduce the data movement costs and increase arithmetic intensity lead to

significant speedups of 20x factor with respect to CPUs. Using the GPU nodes on the

Summit supercomputer, we demonstrate an unprecedented sustained performance of

46 PFLOPS (27.8% peak FP64 performance) on a dislocation system in Magnesium

containing 105,080 electrons using 3,800 GPU nodes of Summit supercomputer, which

is the highest performance to-date among DFT codes.

5.1.1 Governing equations in DFT

We consider a materials system with Ne electrons and Na atoms whose position

vectors are denoted by R = {R1, R2, · · ·RNa}. Neglecting spin, the variational prob-

lem of evaluating the ground-state properties in density functional theory is equivalent

to solving the N lowest eigenvalues of the following non-linear eigenvalue problem [67]:

(
−1

2
∇2 + Veff(ρ,R)

)
ψi = εiψi, i = 1, 2, · · ·N with N >

Ne

2
, (5.1)
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where εi and ψi denote the eigenvalues and corresponding eigenfunctions (also referred

to as the canonical wavefunctions) of the Hamiltonian, respectively. For clarity and

notational convenience, the case of spin independent Hamiltonian is discussed here.

However, extension to spin-dependent Hamiltonians [169] is straightforward, and in-

corporated in DFT-FE. The electron density ρ in equation (5.1) can be expressed in

terms of the orbital occupancy function f(ε, µ) and the canonical wavefunctions as

ρ(x) = 2
N∑
i=1

f(εi, µ)|ψi(x)|2 . (5.2)

The range of f(εi, µ) lies in the interval [0, 1], and µ represents the Fermi-energy.

In material systems with large number of eigenstates around the Fermi energy, the

numerical instabilities that may arise in the solution of the non-linear Kohn-Sham

eigenvalue problem are avoided by using a smooth orbital occupancy function. In

DFT-FE, f is represented by the Fermi-Dirac distribution [138, 170] given by

f(ε, µ) =
1

1 + exp
(
ε−µ
σ

) . (5.3)

In the above, σ = kBT denotes the regularization parameter with kB denoting the

Boltzmann constant and T representing the finite temperature. We note that as

σ → 0, the Fermi-Dirac distribution tends to the Heaviside function. The constraint

on the total number of electrons in the system (Ne) determines the Fermi-energy µ,

and is given by ˆ
ρ(x) dx = 2

∑
i

f(εi, µ) = Ne . (5.4)

We note that f(εi, µ) is denoted as fi in the remainder of the manuscript. The effective

single-electron potential, Veff(ρ,R), in the Hamiltonian in equation (5.1) is given by

Veff(ρ,R) = Vxc(ρ) + Vel(ρ,R) =
δExc

δρ
+
δEel

δρ
(5.5)
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In the above, Vxc(ρ) denotes the exchange-correlation potential that accounts for

quantum-mechanical interactions between electrons [171], and is given by the first

variational derivative of the exchange-correlation energy Exc. We adopt the general-

ized gradient approximation (GGA) [93, 169] for the exchange correlation functional

description throughout the manuscript. However other forms of functionals involving

local density (LDA, LSDA) are also incorporated in DFT-FE. In the case of GGA,

the exchange-correlation energy is given by

Exc(ρ) =

ˆ
εxc(ρ,∇ρ)ρ(x) dx. (5.6)

Numerous forms for εxc(ρ,∇ρ) have been proposed, and the three widely used forms

are Becke (B88) [172], Perdew and Wang (PW91) [173] and Perdew, Burke and

Enzerhof (PBE) [174].

The term Vel(ρ), in the effective single-electron potential (equation (5.5)), accounts

for the electrostatic interactions. In particular, it is the variational derivative of the

classical electrostatic interaction energy between electrons and nuclei, Eel, which can

further be decomposed as

Eel(ρ,R) = EH(ρ) + Eext(ρ,R) + Ezz(R) . (5.7)

In the above, EH, Eext and Ezz denote the electrostatic interaction energy between

electrons (Hartree energy), interaction energy between nuclei and electrons, and re-

pulsive energy between nuclei, respectively. These are given by

EH =
1

2

ˆ ˆ
ρ(x)ρ(y)

|x− y|
dx dy, Eext = −

∑
J

ˆ
ρ(x)

ZJ
|x−RJ |

dx,

Ezz =
1

2

∑
I,J 6=I

ZIZJ
|RI −RJ |

, (5.8)
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where ZI denotes the charge on the I th nucleus. In the case of non-periodic boundary

conditions representing an isolated atomic system, all integrals in equations (5.8) are

over R3, and the summations include all the atoms in the system. In the case of peri-

odic boundary conditions representing an infinite periodic crystal, all integrals involv-

ing x in equation (5.8) are over the periodic domain (supercell), whereas the integrals

involving y are over R3. Further, the summation over I is on atoms in the periodic

domain, and the summation over J extends over all the lattice sites. Henceforth,

unless otherwise specified, we will adopt this convention. Next, we define the nuclear

charge distribution b(x,R) = −
∑

I ZI δ̃(|x−RI |) with δ̃(x−RI) denoting a regular-

ized Dirac distribution centered at RI (and similarly b(y,R) = −
∑

J ZJ δ̃(|y−RJ |))

to reformulate the repulsive energy Ezz(R) as

Ezz =
1

2

ˆ ˆ
b(x,R) b(y,R)

|x− y|
dx dy − Eself

=
1

2

ˆ ˆ (
b(x,R) b(y,R)

|x− y|
−
∑
I

Z2
I δ̃(|x−RI |)δ̃(|y−RI |)

|x− y|

)
dx dy ,

(5.9)

where Eself denotes the self energy of the nuclear charges which depends only on the

nuclear charge distribution.

The tightly bound core electrons close to the nucleus of an atom do not influence

chemical bonding in many materials systems, and, thus, may not play a significant

role in governing many materials properties. Hence, it is a common practice to adopt

the pseudopotential approach, where valence electronic wavefunctions are computed

in an effective potential generated by the the nucleus and the core electrons. The

pseudopotential is often defined by the operator VPS = Vloc + Vnl =
∑

J(VJloc + VJnl),

where VJloc and VJnl denote the local and non-local part of the pseudopotential operator

for an atom J , respectively. Further, in the case of norm-conserving pseudopotentials,

VJnl can be constructed as a separable pseudopotential operator [169, 175] of the form∑
lpm |χlpm〉hlp 〈χlpm| , with |χlpm〉 denoting the pseudopotential projector. Here l
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denotes the azimuthal quantum number, p denotes the index corresponding to the

projector component for a given l whilem denotes the magnetic quantum number with

hlp denoting the pseudopotential constant. Using the representation of the operator

VPS in the x basis, Eext in pseudopotential Kohn-Sham DFT can be expressed as

Eext = 2
N∑
i=1

ˆ ˆ
fi ψ

∗
i (x)VPS(x,y,R)ψi(y) dy dx . (5.10)

Norm conserving pseudopotentials are employed in DFT-FE, where the action of the

nonlocal psuedopotential operator on a wavefunction is given by

Vnl ψi :=

ˆ
Vnl(x,y,R)ψi(y) dy =

∑
J

∑
lp

∑
m

CJ,i
lpm hJlp χ

J
lpm(x,RJ) , (5.11)

with CJ,i
lpm =

ˆ
χJlpm(x,RJ)ψi(x) dx,

1

hJlp
=
〈
ξJlm
∣∣ , χJlpm | 〉 . (5.12)

In the above,
∣∣ξJlm〉 denotes the single atom pseudo-wavefunction. Note that hJlp does

not depend on the magnetic quantum number m as the spherical harmonics associ-

ated with angular variables in the inner product (5.12) are normalized to unity. We

remark that equation (5.11) reduces to Troullier-Martins (TM) pseudopotential [176]

in the Kleinman-Bylander form [175] for one projector component, i.e. p = 1 for

every l, while in the case of optimized norm conserving Vanderbilt pseudopotential

(ONCV) [177] there are two projector components (p = 1, 2) for every l. Both TM

and ONCV norm-conserving pseudopotentials are implemented in DFT-FE. We fur-

ther note that the accuracy of ONCV pseudopotentials are shown to be on par with

PAW approaches widely employed in DFT codes [178].

We note that the various components of the electrostatic interaction energy in (5.8)

and (5.9) are non-local in real-space, and these extended interactions are reformulated

as local variational problems as discussed in [61, 87]. To this end, we define the

electrostatic potential corresponding to the I th nuclear charge ZI δ̃(|x − RI |) to be
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V̄ I
δ̃

(x) and the electrostatic potential corresponding to the total charge distribution

(ρ+ b) to be ϕ(x,R), and these potentials are given by:

V̄ I
δ̃

(x) =

ˆ
−ZI δ̃(|y−RI |)
|x− y|

dy, ϕ(x,R) =

ˆ
ρ(y) + b(y,R)

|x− y|
dy . (5.13)

Noting that the kernel corresponding to these extended interactions is the Green’s

function of the Laplace operator, these potentials can be efficiently computed by

taking recourse to the solution of a Poisson problem. Using the potentials defined

in (5.13) and the expressions for different components of electrostatic energy in (5.8)-

(5.10), we can rewrite the electrostatic energy Eel = EH + Eext + Ezz as [52, 62]

Eel =
1

2

ˆ
(ρ(x) + b(x,R))ϕ(x,R) dx− 1

2

∑
I

ˆ
−ZI δ̃(|x−RI |)V̄ I

δ̃
(x) dx

+
∑
J

ˆ (
V J

loc(|x−RJ |)− V̄ J
δ̃

(|x−RJ |)
)
ρ(x) dx

+ 2
N∑
i=1

ˆ ˆ
fi ψ

∗
i (x)Vnl(x,y)ψi(y) dy dx .

Finally, for given positions of nuclei, the reformulated governing equations for the

Kohn-Sham DFT problem are:

(
−1

2
∇2 + Vxc + ϕ+

∑
J

(V J
loc − V̄ J

δ̃
) + Vnl

)
ψi = εi ψi, (5.14a)

− 1

4π
∇2 ϕ(x,R) = ρ(x) + b(x,R) , − 1

4π
∇2 V̄ I

δ̃
(x,RI) = −ZI δ̃(|x−RI |) ,

(5.14b)

2
∑
i

f(εi, µ) = Ne , ρ(x) = 2
∑
i

f(εi, µ)|ψi(x)|2. (5.14c)

Though, the above equations (5.14) and (5.14) represent a pseudopotential treat-

ment, we note that an all-electron treatment can be realized by setting V J
loc = V̄ J

δ̃
and

Vnl = 0. We further remark that the equations (5.14) and (5.14) are equally valid for
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both periodic and non-periodic systems with appropriate boundary conditions. In a

non-periodic setting, the simulation domain corresponds to a large enough domain,

containing the compact support of the wavefunctions, with Dirichlet boundary condi-

tions. In periodic calculations, it corresponds to a supercell with periodic boundary

conditions.

5.1.2 Variational formulation

The Kohn-Sham governing equations discussed in the previous subsection are the

Euler-Lagrange equations of a local variational Kohn-Sham problem that corresponds

to the computation of the electronic ground-state free energy for a given position

of atoms. The variational problem can be formulated in terms of wavefunctions,

fractional occupancies and the electrostatic potentials as given by [62]:

F0(R) = min
f∈[0,1]N

min
Ψ∈(Y)N

max
ϕ∈Y

L(f ,Ψ, ϕ; R)

such that

ˆ
ψ∗iψj dx = δij, 2

∑
i

fi = Ne , (5.15)

where L(f ,Ψ, ϕ; R) = L̃(f ,Ψ) + min
V∈(H1(R3))Na

Lel(f ,Ψ, ϕ,V ; R) ,

with L̃(f ,Ψ) = Ts(f ,Ψ) + Exc(ρ) + Eent(f). (5.16)

We note that Ψ = {ψ1(x), ψ2(x), ψ3(x), · · · , ψN(x)}, and f = {f1, f2, f3 · · · fN} de-

notes the vector of orbital occupancy factors, while V = {V 1, V 2, · · · , V Na} denotes

the vector containing the trial electrostatic potentials corresponding to all nuclear

charges in the simulation domain. Here, Ts(f ,Ψ) denotes the kinetic energy of non-

interacting electrons and Eent(f) denotes the electronic entropy contribution, and the
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corresponding expressions are given by

Ts(f ,Ψ) = 2
N∑
i=1

ˆ
fi ψ

∗
i (x)

(
−1

2
∇2

)
ψi(x) dx , (5.17)

Eent = −2σ
N∑
i=1

[fi ln fi + (1− fi) ln(1− fi)] . (5.18)

The energy functional corresponding to electrostatic energy, Lel, can be expressed in

the local form as [62]

Lel(f ,Ψ, ϕ,V ,R) =

ˆ [
− 1

8π
|∇ϕ(x)|2 + (ρ(x) + b(x,R))ϕ(x)

]
dx

+
∑
I

ˆ [
1

8π
|∇V I(x)|2 + ZI δ̃(|x−RI |)V I(x)

]
dx

+
∑
J

ˆ (
V J

loc(|x−RJ |)− V̄ J
δ̃

(|x−RJ |)
)
ρ(x) dx

+ 2
N∑
i=1

ˆ ˆ
fi ψ

∗
i (x)Vnl(x,y,R)ψi(y) dy dx ,

(5.19)

where V̄ J
δ̃

denotes the electrostatic potential corresponding to the J th nuclear charge

(see equation (5.13)), or analogously

V̄δ = {V̄ 1
δ̃
, V̄ 2

δ̃
, · · · , V̄ Na

δ̃
} = arg min

V∈(H1(R3))Na
Lel(f ,Ψ, ϕ,V ; R). (5.20)

Further, we note that, Y in equation (5.15) denotes a suitable function space that

guarantees the existence of minimizers. We remark that numerical computations

involve the use of bounded domains, which in non-periodic calculations correspond

to a large enough domain containing the compact support of the wavefunctions, and,

in periodic calculations, correspond to the super-cell2. Denoting such an appropriate

bounded domain by Ω subsequently, Y = H1
0 (Ω) in the case of non-periodic problems,

2while the variational problem in equation (5.15) is presented for super-cells in the case of
periodic calculations, it can be extended to periodic unit-cells using the Bloch Ansatz as discussed
in [62].
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and Y = H1
per(Ω) in the case of periodic problems.

5.1.3 Discrete Kohn-Sham DFT equations

We introduce here the finite-element (FE) discretization of the Kohn-Sham DFT

problem by representing various electronic fields in the FE basis, a piece-wise poly-

nomial basis generated from the FE discretization [100]. In particular, we employ

C0 continuous Lagrange polynomial basis interpolated over Gauss-Lobatto-Legendre

nodal points. The FE discretization of the Kohn-Sham DFT problem described here

is along the lines of our prior work [61] and is briefly discussed here, highlighting

the important differences in this work. We specifically note here that the real-space

formulation of Kohn-Sham DFT as presented in equation (5.15) results in a saddle

point problem (min-max problem) in the electronic fields. Thus, it is possible that

the electronic ground-state energy obtained from a single FE discretization of all the

solution fields in the Kohn-Sham DFT problem can be non-variational. To address

this, we seek to solve the electrostatic problem to a more stringent accuracy than the

Kohn-Sham eigenvalue problem. To this end, we consider two FE triangulations for

representing the wavefunctions and the electrostatic potentials, namely T h and T hel

with the characteristic mesh-sizes denoted by h and hel, respectively. We consider

T hel to be a uniform subdivision of T h. Denoting the subspaces spanned by the FE

basis corresponding to triangulations T h and T hel to be VM
h (with dimension M) and

VMel
hel

(with dimension Mel > M), we note that VM
h ⊂ VMel

hel
. Finally, the representa-

tion of the various fields in the Kohn-Sham problem (5.14)—the wavefunctions and

the electrostatic potentials—in the FE basis is given by

ψhi (x) =
M∑
j=1

Nh
j (x)ψji , ϕhel(x) =

Mel∑
j=1

Nhel
j (x)ϕj , V̄ Jhel

δ̃
(x) =

Mel∑
j=1

Nhel
j (x)V̄ Jj

δ̃
,

(5.21)
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where Nh
j : 1 ≤ j ≤ M denotes the FE basis spanning VM

h and Nhel
j : 1 ≤ j ≤ Mel

denotes the FE basis spanning VMel
hel

. We note that ψhi , ϕhel and V̄ Jhel

δ̃
denote the FE

discretized fields, with ψji , ϕ
j and V̄ Jj

δ̃
denoting the coefficients in the expansion of the

ith discretized wavefunction and the electrostatic potentials, which also correspond to

the nodal values of the respective fields at the jth node on the FE mesh.

The FE discretization of the Kohn-Sham eigenvalue problem (5.14) results in a

generalized eigenvalue problem given by HΨ̂i = εhi MΨ̂i where H denotes the discrete

Hamiltonian matrix with matrix elements Hjk, M denotes the overlap matrix (or

commonly referred to as the mass matrix in finite element literature) with matrix

elements Mjk, and εhi denotes the ith eigenvalue corresponding to the discrete eigen-

vector Ψ̂i. The expression for the discrete Hamiltonian matrix, Hjk = Hloc
jk + Hnl

jk, is

given in terms of

Hloc
jk =

1

2

ˆ
Ω

∇Nh
j (x).∇Nh

k (x) dx +

ˆ
Ω

V h
eff,loc(x,R)Nh

j (x)Nh
k (x) dx . (5.22)

In the above, V h
eff,loc denotes the local part of the effective single-electron potential

computed in the FE basis as the sum of discretized exchange-correlation potential V h
xc,

total electrostatic potential ϕhel(x) and the local pseudopotential term as follows:

V h
eff,loc(x,R) = V h

xc(x) + ϕhel(x) +
∑
J

(
V J

loc(|x−RJ |)− V̄ Jhel

δ̃
(|x−RJ |)

)
. (5.23)

In the case of all-electron calculations, V h
eff,loc(x,R) = V h

xc(x)+ϕhel(x) and Hnl
jk is zero.

In the case of pseudopotential calculations, Hnl
jk is given by

Hnl
jk =

Na∑
J=1

∑
lpm

CJ
lpm,jh

J
lpC

J
lpm,k , where CJ

lpm,j =

ˆ
Ω

χJlpm(x,RJ)Nh
j (x) dx . (5.24)
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Finally, the matrix elements of the overlap matrix M are given by

Mjk =

ˆ
Ω

Nh
j (x)Nh

k (x) dx. (5.25)

We note that the matrices Hloc and M are sparse as the FE basis functions are

local in real space and have a compact support (a finite region where the function

is non-zero). Further, the vectors CJ
lpm,j in Hnl are also sparse since the projectors

χJlpm(x,RJ) have a compact support, thus rendering a sparse structure to the discrete

Hamiltonian H.

In order to explore efficient solution strategies, it is desirable to transform the

generalized eigenvalue problem into a standard eigenvalue problem. Since the matrix

M is positive definite symmetric, there exists a unique positive definite symmetric

square root of M, and is denoted by M1/2. Hence, the following holds true:

HΨ̂i = εhi MΨ̂i ⇒ HΨ̂i = εhi M
1/2M1/2Ψ̂i ⇒ H̃Ψ̃i = εhi Ψ̃i , (5.26)

where Ψ̃i = M1/2Ψ̂i , H̃ = M−1/2HM−1/2 . (5.27)

We note that H̃ is a Hermitian matrix, and (5.26) represents a standard Hermitian

eigenvalue problem. The actual eigenvectors are recovered by the transformation

Ψ̂i = M−1/2Ψ̃i. Furthermore, we note that the matrix M−1/2 can be evaluated with

modest computational cost by using a spectral FE basis in conjunction with the use

of Gauss-Lobatto-Legendre (GLL) quadrature for the evaluation of integrals in the

overlap matrix, that renders the overlap matrix diagonal [61]. This renders the matrix

H̃ the same sparsity structure as the matrix H.

Finally, for the given positions of nuclei, the discrete Kohn-Sham eigenvalue prob-

lem along with the discretized Poisson equations for the electrostatic potentials (ϕhel
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and V̄ Jhel

δ̃
) are to be solved self-consistently, and are given by:

M−1/2HM−1/2Ψ̃i = εhi Ψ̃i , (5.28a)

Mel∑
j=1

[
1

4π

ˆ
Ω

∇Nhel
i (x).∇Nhel

j (x) dx

]
ϕj =

ˆ
Ω

(
ρh(x) + bhel(x,R)

)
Nhel
i (x) dx ,

(5.28b)

Mel∑
j=1

[
1

4π

ˆ
ΩJ

∇Nhel
i (x).∇Nhel

j (x) dx

]
V̄ Jj

δ̃
=

ˆ
ΩJ

(
bhelJ (|x−RJ |)

)
Nhel
i (x) dx , ∀J ,

(5.28c)

2
∑
i

f(εhi , µ) = Ne , ρh(x) = 2
∑
i

f(εhi , µ)|ψhi (x)|2 . (5.28d)

We note that the nuclear charges in DFT-FE implementation are located on the

nodes of the FE triangulation, and are treated as point charges. Thus, the nuclear

charge distribution in the discrete setting bhel(x,R) in equation (5.28b) is given by

bhel(x,R) =
∑

I b
hel
I (|x − RI |) with bhelI = −ZIδ(|x − RI |) where δ(|x − RI |) de-

notes the Dirac-delta distribution centered at the position of the atom RI . The

boundary conditions used for the computation of the discrete potential field ϕhel(x)

in equation (5.28b) are either homogeneous Dirichlet boundary conditions or periodic

boundary conditions depending on whether the problem is non-periodic or periodic.

Further, the discrete self potential V̄ Jhel

δ̃
associated with individual nuclear charge J

is solved using the discrete Poisson equation (5.28c) subject to Dirichlet boundary

conditions with prescribed Coulomb potential applied on a domain ΩJ enclosing the

atom J . After obtaining the electronic ground-state from the solution of the discrete

Kohn-Sham problem (equations (5.28)), we compute the discrete total ground-state

energy Eh in terms of the discrete solution fields (ε̄hi , ρ̄
h, ϕ̄hel , V̄ Ihel

δ̃
) as follows:

Eh = Eh
band − Eh

pot + Eh
xc(ρ̄

h,∇ρh) + Ehel
el , (5.29)
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where,

Eh
band = 2

∑
i

f(ε̄hi , µ)ε̄hi , Eh
pot =

ˆ
Ω

ρ̄h(x)
(
V h

xc(x) + ϕ̄hel(x)
)
dx ,

Ehel
el =

ˆ
Ω

[
− 1

8π
|∇ϕ̄hel(x)|2 + (ρ̄hel(x) + bhel(x,R))ϕ̄hel(x)

]
dx

+
∑
I

ˆ
R3

[
1

8π
|∇V̄ Ihel

δ̃
(x)|2 − bhelI (|x−RI |)V̄ Ihel

δ̃
(x)

]
dx .

5.2 Improvements in the SCF Algorithm for large-scale Kohn-

Sham DFT calculations

The discrete nonlinear Hermitian eigenvalue problem is solved self-consistently

along with Poisson equations (see equation (5.28)) to compute the Kohn-Sham ground-

state solution. Algorithm 1 lists all the steps in the SCF procedure followed in

DFT-FE. We use adaptive higher order spectral finite-elements in conjunction with

computationally efficient and scalable Chebyshev filtered subspace iteration tech-

nique (ChFSI) [61, 179] to evaluate the occupied eigenspace of the discrete Kohn-

Sham Hamiltonian. We further employ Anderson and Broyden schemes [101, 180]

for electron-density mixing, and the finite-temperature Fermi-Dirac smearing [138] to

avoid the charge sloshing associated with metallic systems.

The ChFSI procedure in Algorithm 1 involves the Chebyshev filtering (CF), or-

thonormalization (CholGS), and the Rayleigh-Ritz procedure (RR). We note that CF

scales quadratically with number of atoms, while CholGS and RR scale cubically with

number of atoms. Thus, for small to medium scale system sizes CF is the dominant

computational cost, while for larger system sizes the computational cost of CholGS

and RR dominates. To this end, the numerical implementation in DFT-FE focuses on

reducing the prefactor and improving scalability of the ChFSI procedure by exploiting

efficient methods and cache-friendly data-structures like FE cell level matrix-matrix

multiplications, mixed precision strategies and spectrum splitting approach, as will
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be discussed subsequently. Furthermore, the electrostatic potentials are computed

by solving a Poisson problem, which employs a matrix-free framework of the deal.II

finite-element library [181, 182] in conjunction with a Jacobi preconditioned conju-

gate gradient solver. We note that the above matrix-free framework computes the

matrix-vector product of the FE operator on the fly without ever storing it as a sparse

matrix. Such on the fly computations benefit from significantly lower memory access

costs and have been demonstrated to outperform global sparse-matrix based methods

on modern computing architectures [181].

Algorithm 1 Self Consistent Field (SCF) iteration in DFT-FE

1: Compute the self-potentials (V̄ Jhel

δ̃
) corresponding to the nuclear charges by solv-

ing the discrete Poisson equations (5.28c).
2: Compute the discrete pseudopotential projector matrices CJ

lpm,j (see equa-
tion (5.24)).

3: Start with an initial guess for ρhin(x), obtained from the superposition of single

atom charge densities, and an initial guess for Ψ̃ using single-atom Kohn-Sham
DFT wavefunctions.

4: [ES] Get the total electrostatic potential ϕh(x,R) by solving the discrete Poisson
equation (5.28b).

5: Get effective potential, V h
eff,loc(ρ

h
in(x),R) = V h

xc + ϕhel +
∑

J(V Jh

loc − V̄ Jhel

δ̃
) (see

equation (5.14)).
6: Compute the FE cell level Hamiltonian matrices corresponding to H loc

jk (see equa-
tion (5.22)).

7: Employ Chebyshev-filtered subspace iteration (ChFSI) method to get the occu-

pied subspace spanning the N(N > Ne/2) lowest eigenvectors of H̃ (see equa-
tion (5.26)).

a: [CF] Chebyshev filtering of Ψ̃ (see Section 5.2.1).

b: [CholGS] Orthonormalize the Chebyshev filtered basis Ψ̃ (call Algorithm 2 in
Section 5.2.2).
c: [RR] Perform the Rayleigh-Ritz procedure (call Algorithm 3 in Section 5.2.3).

8: [DC] Compute new output electron density, ρhout(x) (call Algorithm 4 in Sec-
tion 5.2.3).

9: If
∥∥ρhout(x)− ρhin(x)

∥∥ ≤ tolerance, stop; Else, compute new ρhin(x) using a mixing
scheme and go to step 4.
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5.2.1 Chebyshev filtering

In DFT-FE, Chebyshev polynomial filtering technique [168] is used to adaptively

approximate the wanted eigenspace (the lowest N occupied eigenfunctions) of the FE

discretized Hamiltonian H̃ [61]. In practice, N is typically chosen as Ne/2 + b to

allow for finite-temperature Fermi-Dirac smearing, where b is usually (5− 10)% of

Ne/2. In a given SCF iteration step, a scaled Hamiltonian H̄ is obtained by scaling

and shifting H̃ such that the unwanted spectrum of H̃ is mapped on to [−1, 1],

and the wanted spectrum is mapped on to (−∞,−1) to exploit the fast growth

property of Chebyshev polynomials in this region. Subsequently, the action of a

degree m Chebyshev polynomial filter, Tm(H̄), on the input subspace, Ψ̃, is computed

recursively as

Tm(H̄)Ψ̃ =
[
2H̄Tm−1(H̄)− Tm−2(H̄)

]
Ψ̃ . (5.30)

We use an adaptive filtering strategy in which multiple sweeps of ChFSI procedure are

performed till the residual norm of the eigenpair closest to the Fermi energy reaches

below a specified tolerance δ, chosen to between 1× 10−2 − 5× 10−2. Our numerical

experiments in the case of pseudopotential electronic ground-state calculations show

that while multiple calls to ChFSI are triggered in the first few SCF iterations, there

is an overall reduction in the number of ChFSI calls (due to reduced number of SCF

iterations) when employing the adaptive filtering strategy in comparison to employing

a single sweep in all SCF iterations. We remark that despite using the adaptive

filtering strategy, for atomic relaxations or molecular dynamics simulations, multiple

Chebyshev filtering calls are typically not triggered as the wavefunctions from the

previous electronic ground-state calculation are reused as a starting guess. We note

that the choice of the Chebyshev polynomial degree m in equation (5.30) is based

on the upper bound of the spectrum of H̃, which is governed by the smallest mesh

size employed in the finite element discretization. A Chebyshev polynomial degree
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between 20–50 is typically used in DFT-FE for pseudopotential calculations, whereas

significantly higher Chebyshev polynomial degrees (∼ 500 − 1000) are required for

all-electron calculations.

5.2.1.1 Practical implementation aspects of Chebyshev filtering

The computational complexity of Chebyshev filtering scales as O(MN), where

M is the size of the discretized Hamiltonian H̃ and N is the number of occupied

states. Since Chebyshev filtering is the dominant computational cost in DFT-FE

for small to medium sized systems (up to 20,000 electrons), we optimize the core

kernel in the Chebyshev filtering procedure, which involves the computation of H̄X

in equation (5.30), with X denoting a trial subspace in the course of the Chebyshev

recursive iteration. To this end, we first explicitly compute and store the FE Hamil-

tonian matrices (cell level Hamiltonian matrices), and subsequently extract the cell

level wavefunction matrices from the global wavefunction vectors X. We then employ

BLAS Xgemm routines to compute the matrix-matrix products involving cell Hamil-

tonian and wavefunction matrices, and assemble them to get the global wavefunction

vectors. We note that global FE sparse matrix approaches, particularly when deal-

ing with large number of wavefunction vectors, are more memory-bandwidth limited3

and incur a higher communication cost4 than the cell level matrix approach employed

above.

In case of large problems with many thousands of wavefunction vectors, the peak

memory during Chebyshev filtering can be quite high if implemented naively by fil-

tering all the wavefunction vectors simultaneously, as multiple temporary memories

of size X are needed in the course of the Chebyshev recursive iteration. Hence, to re-

3The cell level matrix approach is similar in spirit to matrix-free based approaches, which have
been demonstrated to have lower memory access costs than global FE sparse-matrix based meth-
ods [181].

4The global FE sparse matrix framework in deal.II library currently does not take advantage of
performing MPI communication of multiple vectors in a single communication call.
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duce the peak memory, we use a blocked approach by filtering blocks of wavefunction

vectors, Xb with block size denoted by Bf , based on the rationale that Chebyshev

filtering can be performed on each wavefunction vector independently. Further, the

blocked approach also allows us to take advantage of batched Xgemm 5 routines in

H̃Xb to perform the aforementioned cell level matrix-matrix products concurrently

on multiple threads, which we found to be faster than using multiple threads on stan-

dard Xgemm calls involving very skewed matrix dimensions when blocked approach is

not used. Additionally, we use a single contiguous memory block to store the global

wavefunction vectors as well as the block wavefunction vectors, where the data lay-

out is such that for each degree of freedom the corresponding wavefunction values

are stored contiguously. This leads to more cache-friendly data access while copying

the data between the global wavefunction vectors and the cell wavefunction matrices.

Furthermore, we exploit the fact that all wavefunction vectors have identical commu-

nication pattern to minimize the total number of MPI point-to-point communication

calls in H̃Xb, which reduces the network latency.

The optimal value of the Chebyshev filtering block size, Bf , depends on two

competing factors—very small sizes lead to higher memory access overheads and

communication latency, whereas very large sizes increase peak memory and reduce

the efficiency of batched Xgemm routines. Based on numerical experiments, we find the

optimal range of Bf to be between 300–400, which is set as the default in DFT-FE.

5.2.2 Cholesky factorization based Gram-Schmidt orthonormalization

ChFSI involves orthonormalization procedure after the Chebyshev filtering step

to prevent the ill-conditioning of the filtered vectors in the course of the subspace

iteration procedure. This procedure scales cubically with number of electrons and

5Batched operations are efficient for performing many small matrix-matrix multiplications con-
currently on multiple threads. Currently such routines are available in vendor optimized BLAS
libraries such as Intel MKL.
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becomes one of the dominant computational costs in large-scale problems (greater

than 20,000 electrons). To this end, we employ Cholesky factorization based Gram-

Schmidt (CholGS) orthonormalization technique in DFT-FE. This is shown to be

more efficient and scalable [164, 183] than the commonly used classical Gram-Schmidt

procedure. Algorithm 2 shows the steps involved in the CholGS procedure. The

O(N2) dot products involved in classical Gram-Schmidt are replaced by more cache-

friendly matrix-matrix multiplications in CholGS (steps 1 and 4). Furthermore, the

single communication call involved in the computation of overlap matrix S in CholGS

has a much lower communication latency in comparison to O(N2) communication

calls in classical Gram-Schmidt.

Algorithm 2 Cholesky-Gram-Schimdt (CholGS) orthonormalization

1: Compute overlap matrix, S = Ψ̃†Ψ̃. (O(MN2))
2: Perform Cholesky factorization of the overlap matrix, S = LL†. (O(N3))
3: Compute L−1. O(N3)

4: Construct orthonormal basis: Ψ̃
o

= Ψ̃L−1†. (O(MN2))

5.2.2.1 Parallel implementation aspects of CholGS in Algorithm 2

Computation of overlap matrix We first note that Ψ̃ is stored in parallel as a

Mloc × N matrix, where Mloc is the number of FE nodes owned locally by a given

MPI task. Accordingly, a straightforward approach to compute the overlap matrix

S in step 1 involves the evaluation of local contributions of Ψ̃†Ψ̃ (a N × N matrix)

on each MPI task, and then accumulating the local contributions to S using the

MPI_Allreduce collective routine. However, this approach requires memory corre-

sponding to a N ×N matrix on each MPI task, and hence is not practically applica-

ble for large-scale problems ∼ (N > 20, 000). To avoid this large memory footprint

in both storage of S as well as computation of the local contributions, we use the

popular 2D cyclic block grid distribution of ScaLAPACK library [184] to distribute

the memory of S, and use a blocked approach to compute the local contributions of
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Ψ̃†Ψ̃ to S. Further in the blocked approach, we also exploit the Hermiticity of S,

by computing only the lower triangular portion of S. Fig. 5.1 shows the schematic

of the blocked approach with block size Bv, where [i, N ] × [i, i + Bv] sub-matrices

of S are computed successively one after another. Computation of each sub-matrix

first involves computation of the local contribution in each MPI task by performing

matrix-matrix multiplication between [i, N ]×Mloc block of Ψ̃† and Mloc × [i, i+Bv]

of Ψ̃ using BLAS Xgemm routine, followed by accumulation of the local contributions

using the MPI_Allreduce collective. Subsequently, the corresponding sub-matrix en-

tries of the ScaLAPACK parallelized S are filled. Overall, the above blocked approach

combined with ScaLAPACK parallelization of S provides both memory optimization

and efficiency improvements.

Computation of inverse of Cholesky factor Cholesky factorization of S in step 2

and inversion of the Cholesky factor L in step 3 are performed using ScaLAPACK

routines pXpotrf and pXtrtri, respectively. Based on the numerical experiments

conducted on a large benchmark systems, we find that the steps 2 and 3 are a minor

cost compared to other steps in CholGS. For instance, the cost of steps 2 and 3

combined contributed to about 7% of the total wall time for CholGS for a system

containing 61,502 electrons (see Fig. 5.3).

Construction of orthonormal vectors Similar to step 1, computation of the or-

thonormalized basis Ψ̃
o

in step 4 also has a large memory footprint when performed

simply as a matrix-matrix multiplication between the local portion (Mloc×N matrix)

of the parallel distributed Ψ̃ and the full L−1† (N × N matrix) on every MPI task.

For large-scale problems this leads to a high peak memory due to storage of the full

L−1† on every MPI task, and also to store the computed Ψ̃
o
, which requires the same

memory size as Ψ̃. Hence, we compute Ψ̃
o

using two blocked levels to address both

of these memory issues, as shown schematically in Fig. 5.2. First, we employ an outer

blocked level over Mloc with block size Bd, which allows reuse of the memory of Ψ̃ to
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store Ψ̃
o
. In particular, we compute [i, i + Bd]× [1, N ] sub-matrices of Ψ̃

o
one after

the other and copy the orthonormalized sub-matrices back on to Ψ̃, thereby requiring

only an additional Bd×N memory. Secondly, we employ an inner blocked level where

each [i, i+Bd]× [1, N ] sub-matrix of Ψ̃
o

is further divided into [i, i+Bd]× [j, j+Bv]

sub-matrices and successively computed. Similar to the blocked approach used in

step 1, this inner blocked level removes the requirement to store the full L−1† while

also exploiting the triangular matrix property of L−1†. Each [i, i + Bd] × [j, j + Bv]

sub-matrix in the inner blocked level is computed by performing a matrix-matrix mul-

tiplication between a [i, i+Bd]×[1, j+Bv] sub-matrix of Ψ̃ and a [1, j+Bv]×[j, j+Bv]

sub-matrix of L−1†. We note that L−1† is stored in a ScaLAPACK parallel format

after the end of step 3. Thus to obtain the [1, j + Bv] × [j, j + Bv] sub-matrix of

L−1† in each MPI task, we first use the local portion of the parallel L−1† to fill the

corresponding entries in the sub-matrix and the rest as zeros, and subsequently use

the MPI_Allreduce collective to gather and communicate the filled sub-matrix to all

MPI tasks.

Remarks on block sizes We now discuss few considerations regarding the choice

of optimal values for the block sizes Bv (used above in steps 1 and 4) and Bd (used

above in step 4). Too small values of Bv will lead to computational overheads in the

Xgemm calls due to the highly skewed matrix dimensions which are not cache-friendly,

and, further, the total number of MPI collective communication calls will increase

leading to higher communication latency. On the other hand too large values of Bv

will deprecate the efficiency benefit of exploiting the Hermiticity of S in step 1 and

the triangular matrix nature of L−1† in step 4. Based on numerical experiments, we

find that value of Bv between 350–500 is optimal. Similarly, the choice of Bd is based

on two competing factors— too small values of Bd incur higher computational and

communication overheads due to repeated access of L−1† for every outer level block

computation, whereas larger values increase the peak memory required in step 4. We

130



Figure 5.1: Blocked approach computation of lower triangular part of the Hermitian
overlap matrix, S = Ψ̃†Ψ̃ in Algorithm 2, and of the Hermitian projected Hamilto-

nian, Ĥ = Ψ̃
o†

H̃Ψ̃
o

in Algorithm 3.

Figure 5.2: Two level blocked approach computation of Ψ̃
o

= Ψ̃U, where U is an
upper triangular matrix.

find that Bd values between 2000–3000 have very negligible overhead costs while still

providing memory efficiency when Mloc is much larger than Bd.

5.2.2.2 Mixed precision approaches in CholGS

To further reduce the prefactor of the CholGS algorithm, we make use of mixed

precision arithmetic in steps 1 and 4 of Algorithm 2, which are the dominant costs

in the CholGS algorithm. Mixed precision approaches for orthonormalization in the

context of electronic-structure calculations have been explored previously by [185].

We first develop a mixed precision approach for step 1, where the computation of the

overlap matrix, S can be split into computation of the diagonal and the off-diagonal
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parts:

S = Sd + Sod, (5.31)

where Sd is a matrix containing the diagonal entries of S. We take advantage of the

fact that Sod → 0 as the SCF approaches convergence and hence compute Sod using

single precision BLAS Xgemm routines, while the computation of diagonal entries of

Sd is performed using double precision BLAS routines at negligible computational

cost. Similarly, step 4 can be split into

Ψ̃
o

= Ψ̃L−1
d

†
+ Ψ̃L−1†

od, (5.32)

where L−1
d

†
is a matrix containing the diagonal entries of L−1†. Taking advantage of

the fact that L−1
od

† → 0 as the SCF approaches convergence, we compute Ψ̃L−1
od

†
using

single precision BLAS Xgemm routines, while the computation of Ψ̃L−1
d

†
is performed

as a double precision scaling operation at negligible computational cost. We remark

that, in addition to the reduction of computational costs, the use of mixed precision

also reduces the communication costs in steps 1 and 4 as the MPI_Allreduce collec-

tives employed in these steps communicate the relevant single precision data with half

the MPI message size (bytes), in comparison to their double precision counterparts.

The computational cost reduction in steps 1 and 4 of the mixed precision approach

is demonstrated in Fig. 5.3 for large-scale benchmark problems involving 39,900 and

61,502 electrons. We find this approach to be around 2 times faster in comparison to

double precision approach. Furthermore, we also examine the accuracy and robust-

ness of the mixed precision algorithm in the overall SCF convergence in Section 5.2.3.2,

and is discussed in detail subsequently.
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Figure 5.3: Comparison of CholGS algorithm (Algorithm 2) wall times for a single
SCF step in using mixed precision arithmetic in steps 1 and 4. Case studies: (i)
Mg10x10x10 with 39,990 electrons run on 51,200 MPI tasks and (ii) Mo13x13x13 with
61,502 electrons run on 64,000 MPI tasks.

5.2.3 Rayleigh-Ritz procedure and electron-density computation

Rayleigh-Ritz (RR) procedure in ChFSI involves the following steps: i) compu-

tation of the projected Hamiltonian, Ĥ = Ψ̃
o†

H̃Ψ̃
o

into the space spanned by the

orthonormalized wavefunctions Ψ̃
o
, ii) diagonalization of Ĥ: ĤQ = QD, where D

contains all the eigenvalues of Ĥ in ascending order and Q contains the correspond-

ing eigenvectors, iii) subspace rotation of Ψ̃
o
: Ψ̃

R
= Ψ̃

o
Q. Subsequently, the output

electron-density at a point x belonging to a FE cell e is computed as

ρhout(x) =2
N∑
i=1

f(εhi , µ)|ψhi (x)|2

= 2
N∑
i=1

[
f(εhi , µ)

(
Me∑
j=1

ψe,ji N e
j (x)

)(
Me∑
k=1

ψe,k
∗

i N e
k(x)

)]
, (5.33)

where
{
N e

1 (x), N e
2 (x), · · · N e

Me
(x)
}

denote the FE basis functions associated with the

given cell (Me denoting the number of nodes in the cell), and
{
ψe,1i , ψe,2i , · · · ψe,Me

i

}
denote the corresponding nodal values of the ith wavefunction, ψh

i (x) in FE cell e.
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Using the subspace rotated wavefunctions Ψ̃
R

, Equation 5.33 can be re-written as

ρhout(x) = 2ne
T

(x)Ψ̂
R

e f (D, µ) Ψ̂
R†

e n
e(x), (5.34)

where

ne(x) =
[
N e

1 (x)N e
2 (x) · · · N e

Me
(x)
]T
, (5.35)

and the matrix Ψ̂
R

e contains the FE cell column vectors extracted from Ψ̂R which is

given by

Ψ̂
R

= M−1/2Ψ̃
R
. (5.36)

In the above, the computational complexity of steps i), ii) and iii) of the Rayleigh-

Ritz procedure scales as O(MN2), O(N3), and O(MN2), respectively, while the

electron-density computation scales as O(MN). Rayleigh-Ritz procedure is, thus,

one of the significant bottlenecks for large-scale problems. To this end, we employ

two strategies in DFT-FE: spectrum-splitting and mixed precision, to reduce the

prefactor of Rayleigh-Ritz procedure, as discussed below.

5.2.3.1 Spectrum-splitting in RR

Algorithm 3 Spectrum-splitting based Rayleigh Ritz procedure (RR)

1: Compute Ĥ = Ψ̃
o†

H̃Ψ̃
o
.

2: Compute Nfr largest eigenstates of Ĥ: ĤQfr = QfrDfr.

3: Subspace rotation to compute fractionally occupied eigenstates: Ψ̃
R

fr = Ψ̃
o
Qfr.

The key idea behind spectrum-splitting is that the eigenvalues and eigenvectors

of the projected Hamiltonian Ĥ with orbital occupancy function fi = 1 are not

explicitly necessary for the computation of the electron-density in equation (5.34).

This can be exploited to achieve significant computational savings when most of the

Kohn-Sham states are fully occupied as is the case for typically used Fermi-Dirac
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smearing temperatures ∼ 500 K. Such methods have been developed in previous

works in the context of both pseudopotential [159, 186] and all-electron DFT [187]

calculations, which we have adapted in DFT-FE. Furthermore, we additionally take

advantage of spectrum-splitting to develop a mixed precision technique to reduce the

computational cost of the projected Hamiltonian computation. We discuss below the

implementation of the spectrum-splitting algorithm in DFT-FE.

Let Noc denote the number of Kohn-Sham eigenstates with full occupancies (fi =

1), and Nfr = N−Noc denote the number of remaining states with partial occupancies.

We consider the following split in the diagonalization of Ĥ:

Ĥ =

[
Qoc Qfr

] Doc 0

0 Dfr


 Q†oc

Q†fr

 , (5.37)

where Qoc contains the eigenvectors corresponding to Noc eigenvalues of Ĥ, which

are stored as the diagonal entries of Doc. On the other hand, Qfr contains the

eigenvectors corresponding to remaining Nfr eigenvalues of Ĥ, which are stored as the

diagonal entries of Dfr. Similarly f (D, µ) can be split as

f (D, µ) =

 f (Doc, µ) 0

0 f (Dfr, µ)

 . (5.38)

Using the above equation (5.38) along with the scaling step in equation (5.36) and

subspace rotation: Ψ̃
R

= Ψ̃
o
Q, equation (5.34) can be written as

ρhout(x) = 2ne
T

(x)Ψ̂
o

e

[
Qoc Qfr

] f (Doc, µ) 0

0 f (Dfr, µ)


 Q†oc

Q†fr

 Ψ̂
o†

e n
e(x),

(5.39)

where Ψ̂
o

e denotes the FE cell level vectors of Ψ̂
o

= M−1/2Ψ̃
o
. We note that
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f (Doc, µ) = Ioc, an Noc × Noc identity matrix and hence equation (5.39) can be

recast in the following way:

ρhout(x) =2ne
T

(x)Ψ̂
o

e

[
Qoc Qfr

]I +

 0 0

0 f (Dfr, µ)− Ifr



 Q†oc

Q†fr

 Ψ̂
o†

e n
e(x)

=2ne
T

(x)

[
Ψ̂

o

eΨ̂
o†

e + Ψ̂
o

eQfr (f (Dfr, µ)− Ifr) Q†frΨ̂
o†

e

]
ne(x)

=2ne
T

(x)

[
Ψ̂

o

eΨ̂
o†

e + Ψ̂
R

fr,e (f (Dfr, µ)− Ifr) Ψ̂
R†

fr,e

]
ne(x), (5.40)

where Ψ̂
R

fr,e denotes the FE cell level vectors of Ψ̂
R

fr = M−1/2Ψ̃
o
Qfr.

Algorithm 4 Electron-density computation (DC)

1: Compute Fermi-energy (µ) using the constraint:

2

(
Noc +

N∑
i=Noc

f(εhi , µ)

)
= Ne.

2: Scale Ψ̃
o

and Ψ̃
R

fr: Ψ̂
o

= M−1/2Ψ̃
o
, Ψ̂

R

fr = M−1/2Ψ̃
R

fr.
3: Compute electron density using equation (5.40):

ρhout(x) = 2ne
T

(x)

[
Ψ̂

o

eΨ̂
o†

e + Ψ̂
R

fr,e (f (Dfr, µ)− Ifr) Ψ̂
R†

fr,e

]
ne(x).

In the above, it is evident that the electron-density computation requires only the

Nfr largest eigenstates of Ĥ. Accordingly, the spectrum-splitting based algorithms

for the Rayleigh-Ritz procedure and electron-density computation in DFT-FE are

given in Algorithm 3 and Algorithm 4, respectively. Even with finite-temperature

Fermi-Dirac smearing, Nfr is usually a small fraction of N . From our numerical ex-

periments, we find that Nfr is 10–15% of N for metallic systems, and much smaller

percentage (< 5%) for insulating and semi-conducting systems. This translates to

significant cost savings in the subspace rotation step as shown in Fig. 5.4. This is

because the usual full subspace rotation: Ψ̃
R

= Ψ̃
o
Q, which scales as O(MN2) is
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Figure 5.4: Comparison of Rayleigh-Ritz procedure wall times for a single SCF step
by using spectrum-splitting (Algorithm 3). Case studies: (i) Mg10x10x10 with 39,990
electrons run on 51,200 MPI tasks and (ii) Mo13x13x13 with 61,502 electrons run on
64,000 MPI tasks. Nfr for both case studies is 15% of N

now replaced by a significantly cheaper partial subspace rotation step: Ψ̃
R

fr = Ψ̃
o
Qfr

(step 3 of Algorithm 3), which scales as O(MNNfr). Furthermore, step 2, which now

amounts to a partial diagonalization of Ĥ to compute the Nfr largest eigenstates, can

be exploited to reduce diagonalization cost. In the literature, iterative approaches

like LOBPCG [159], and inner Chebyshev filtering [186] are shown to be better than

ScaLAPACK’s direct eigensolver for partial diagonalization. However, iterative ap-

proaches may not be robust for metallic systems in the limit of vanishing band gaps.

Hence in DFT-FE, we perform partial diagonalization using the ELPA library’s [188–

190] direct eigensolver, which is more scalable than ScaLAPACK’s eigensolver and

competes with the aforementioned iterative approaches with respect to minimum so-

lution time. Fig. 5.4 shows the direct diagonalization times6 (step 2) for very large

system sizes with 39,990 electrons and 61,502 electrons.
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Figure 5.5: Comparison of Rayleigh-Ritz procedure (Algorithm 3) wall times for a
single SCF step by using mixed precision arithmetic in the computation of projected
Hamiltonian. Case studies: (i) Mg10x10x10 with 39,990 electrons run on 51,200 MPI
tasks and (ii) Mo13x13x13 with 61,502 electrons run on 64,000 MPI tasks.

5.2.3.2 Mixed precision in RR

We observe that the computation of the projected Hamiltonian, Ĥ = Ψ̃o
†
H̃Ψ̃

o
is

the most dominant cost in the Rayleigh Ritz procedure using the spectrum-splitting

technique (see Fig. 5.4). To this end, we develop a mixed precision algorithm to

reduce the prefactor of the computation of Ĥ and illustrate the procedure here. We

first consider the following split of the orthonormalized wavefunctions Ψ̃
o

Ψ̃
o

=
[
Ψ̃

o

oc Ψ̃
o

fr

]
, (5.41)

where the columns Ψ̃
o

oc and Ψ̃
o

fr contain the first Noc and the remaining Nfr wavefunc-

tions, respectively. We next rewrite the partial eigendecomposition of Ĥ : ĤQfr =

6The ELPA diagonalization times quoted here are run on NERSC Cori Intel KNL nodes which
have 1.4 GHz clock frequency. On a higher clock frequency machine (eg: IBM Power and Intel
Skylake architectures), these diagonalization timings are faster by a factor of 2–3 [190].
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QfrDfr (see step 2 of Algorithm 3) as

 Ĥoc−oc Ĥoc−fr

Ĥfr−oc Ĥfr−fr


 Qa

fr

Qb
fr

 =

 Qa
fr

Qb
fr

Dfr, (5.42)

where Ĥoc−oc = Ψ̃
o†

ocH̃Ψ̃
o

oc, Ĥfr−fr = Ψ̃
o†

fr H̃Ψ̃
o

fr, Ĥfr−oc = Ψ̃
o†

fr H̃Ψ̃
o

oc, and Ĥoc−fr =

Ψ̃
o†

ocH̃Ψ̃
o

fr. As the SCF approaches convergence, Ψ̃
o

tends to the eigenfunctions of

H̃, and hence the limiting behaviour of equation (5.42) can be written as

 Ĥoc−oc → Doc Ĥoc−fr → 0

Ĥfr−oc → 0 Ĥfr−fr → Dfr


 Qa

fr → 0

Qb
fr → Ifr

 =

 Qa
fr → 0

Qb
fr → Ifr

Dfr. (5.43)

Using equation (5.43) the limiting behaviour of the partial eigendecomposition of

Ĥ : ĤQfr = QfrDfr is written as

Ĥfr−frQ
b
fr = Qb

frDfr. (5.44)

Equation (5.44) provides the rationale to design a mixed precision algorithm to com-

pute Ĥ by employing double precision BLAS Xgemm routine to compute the Ĥfr−fr

sub-matrix, while all the other sub-matrices: Ĥoc−oc, Ĥfr−oc and Ĥoc−fr are com-

puted using single precision BLAS Xgemm routine. Since Nfr is typically less than

15% of N , the computation of Ĥfr−fr using double precision is a very small computa-

tional cost in this approach. This leads to overall computational savings by a factor

of around 2 in computation of Ĥ as shown in Fig. 5.5. Additionally, in Table 5.1,

we examine the accuracy and robustness in employing mixed precision algorithms

for both Rayleigh-Ritz and orthonormalization (see Section 5.2.2) steps on various

benchmark systems in DFT-FE. These benchmark system are chosen such that the

FE discretization errors are ∼ 10−4 Ha/atom in ground-state energy and ∼ 10−4
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Ha/Bohr in ionic forces. The results in Table 5.1 show that number of SCFs do

not change between mixed precision and double precision approaches, and further

the mixed precision algorithms incur negligible errors in both energies and forces in

comparison to the double precision calculations. Notably, these errors are about two

orders of magnitude lower than the discretization errors.

In addition to using mixed precision in computation of Ĥ, we also use a blocked

approach for memory and computational efficiency improvements. The computa-

tional efficiency improvement in using the blocked approach arises from exploiting

the Hermiticity of Ĥ as shown in Fig. 5.1. The implementation of the blocked ap-

proach used here is similar to the implementation of the blocked approach in the

overlap matrix computation (see Section 5.2.2). Finally, we remark that the use of

spectrum splitting technique in conjunction with the mixed precision algorithm in

the Rayleigh-Ritz procedure provides efficiency gains by a factor of around 3 for the

large benchmark systems considered in Fig. 5.4 and 5.5.

Table 5.1: Accuracy and robustness study of mixed precision computations in CholGS
orthonormalization and Rayleigh-Ritz procedure on benchmark systems. Energy dif-
ference, maximum atomic force difference magnitude ( max

1≤i≤Na

∥∥f idp − f isp
∥∥) and total

number of SCFs are reported with respect to double precision calculations. f idp and

f isp denote atomic force on ith atom for double precision and single precision cal-
culations respectively. Discretization errors for the benchmark systems are ∼ 10−4

Ha/atom in ground-state energy and ∼ 10−4 Ha/Bohr in ionic forces. More details
about the benchmark systems are given in Section 5.3.3.

System Energy difference Maximum force difference Total SCFs

(Ha/atom) magnitude (Ha/Bohr) (Double, Mixed)

Mg6x6x6 7× 10−12 2× 10−6 (49, 49)

Cu4-shell 5× 10−12 3× 10−6 (46, 46)

Mo6x6x6 3× 10−12 7× 10−7 (49, 49)
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5.2.4 Parallelization

The primary level of parallelization in the DFT–FE code is based on domain

decomposition of the adaptive FE mesh into partitions and distributing them to

different MPI tasks. This is accomplished through the deal.II finite element library

with p4est [191]. We note that the FE basis is localized with a compact support on

the cells shared by a FE node. Hence only the FE nodes on the processor boundaries

need to be communicated, which has a significantly smaller communication cost in

comparison to the all-to-all communication required in global basis sets like plane-

waves. This allows for excellent parallel scalability of DFT–FE, which we demonstrate

subsequently in Section 5.3.2.

To further improve scalability, we implement a second level of parallelization over

wavefunctions (band parallelization) in each of the key computational steps of the SCF

iteration: Chebyshev filtering, CholGS (steps 1 and 4 of Algorithm 2), Rayleigh–Ritz

procedure (steps 1 and 3 of Algorithm 3), and electron density computation. In par-

ticular, computations over the total number of wavefunctions (Ψ̃) are divided into

groups of wavefunctions (band groups) and distributed among a group of MPI sub–

communicators, with each sub–communicator doing computations on a single band

group of size Nbi , denoted by Ψ̃bi , where i denotes the band group index. The use of

band parallelization in Chebyshev filtering and electron density computation does not

involve any inter band group communication of Ψ̃bi ’s. However, the computation of

the electron density requires accumulation of the electron density contribution from

each band group incurring a very small communication cost. Further, we exploit band

parallelization in the computation of overlap matrix and orthonormal basis construc-

tion in CholGS as Sbi = Ψ̃†Ψ̃bi and Ψ̃
o

bi
= Ψ̃L−1

bi

†
, respectively. We note that L−1

bi

†

denotes N × Nbi sub-matrix of L−1†. Similarly, band parallelized computation of

projected Hamiltonian in Rayleigh–Ritz procedure is performed as Ĥbi = Ψ̃
o†

H̃Ψ̃
o

bi
.

We note that all-to-all communications of Ψ̃bi ’s and Ψ̃o
bi

’s across band groups are
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performed before beginning the orthonormalization and Rayleigh-Ritz procedure, re-

spectively. Furthermore, all-to-all communications of Sbi ’s and Ĥbi ’s across band

groups are also performed to compute the matrices S and Ĥ (N × N dimensions).

The above all-to-all communications involve large memory sizes, and hence the com-

munication cost can increase significantly with increase in band parallelization groups,

thus affecting parallel scaling efficiency. However, a modest amount of band paral-

lelization can be combined with domain decomposition parallelization to extend the

parallel scalability in DFT-FE, as discussed below. Additionally, we have also imple-

mented parallelization over k points for problems involving multiple k-point sampling

over the Brillouin zone in periodic calculations.

We now compare the scalability of three different parallelization approaches in

DFT-FE: (i) only domain decomposition parallelization (P1), (ii) primarily band par-

allelization with just enough domain decomposition parallelization to fit the memory

(P2), and (iii) domain decomposition parallelization till parallel scaling efficiency of

∼ 70% followed by moderate band parallelization (P3). We conduct comparative

studies on a large benchmark system containing 3999 atoms (39,990 electrons) using

the above three approaches, and the results are shown in Fig. 5.6. We observe that

only domain decomposition parallelization (P1) provides better parallel scalability

than the primarily band parallelization approach (P2)—73% efficiency vs. 52% effi-

ciency at 51,200 MPI. This is attributed to the significant increase in MPI collective

communication cost of wavefunctions as the number of band parallelization groups

increase. However, the use of band parallelization is beneficial for medium–large sys-

tem sizes when appreciable scaling from domain decomposition parallelization has

already been extracted, as is evident from Fig. 5.6, where the best parallel scaling ef-

ficiency is obtained for the combined parallelization approach (P3). In particular, we

use domain decomposition parallelization till 51,200 MPI tasks (73% efficiency), and

band parallelization using two band parallelization groups to achieve 49% efficiency
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at 102,400 MPI tasks. We remark that only 41% efficiency is achieved for the same

102,400 tasks by solely using domain decomposition parallelization approach (P1).

Based on the above comparison, in the remainder of this work, we primarily use the

combined parallelization approach (P3) to scale DFT-FE calculations, particularly

for large system sizes.

Figure 5.6: Comparison of parallel scalability of Mg10x10x10 (39,990 electrons) using
three different parallelization approaches: (P1) only domain decomposition paral-
lelization, (P2) primarily band parallelization with minimal domain decomposition
parallelization, and (P3) domain decomposition parallelization till parallel scaling ef-
ficiency of ∼ 70% followed by moderate band parallelization. The number of band
parallelization groups used in approaches P2 and P3 are denoted by NPBAND. This
benchmark study comprised of ∼ 94 million 4th order FE basis functions.

5.3 Validation and performance benchmarking

In this section, we demonstrate the accuracy, parallel scaling performance and

computational efficiency of the developed DFT-FE code on various benchmark sys-

tems involving pseudopotential DFT calculations. GGA [93] exchange correlation of

the PBE form [174] is employed in all the calculations, and additionally ONCV [177]

pseudopotentials from the SG15 database [192] are employed in all the calculations.
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Further, we use Fermi-Dirac smearing with temperature T = 500 K, and the n-stage

Anderson mixing scheme [101] for mixing the electron-density in the SCF iteration

procedure.

We first validate the accuracy of DFT-FE with widely used DFT basis sets on

benchmark materials systems involving periodic and non-periodic pseudopotential

DFT calculations. Second, we demonstrate the parallel scalability of DFT-FE on

pseudopotential benchmark systems with sizes ranging from 2, 550 electrons to 39, 990

electrons. Third, we assess the computational efficiency of the DFT-FE code by com-

paring to popular plane-wave based codes—QUANTUM ESPRESSO (QE) [137, 193],

and ABINIT [104]—on periodic and non-periodic pseudopotential benchmark systems

with sizes ranging from 2, 550 to 20, 470 electrons. Finally, we also conduct large-scale

DFT calculations on sizes ranging from 27, 986 to 61, 502 electrons using DFT-FE that

are computationally prohibitive using plane-wave codes. The discretization param-

eters in the above computational efficiency studies are chosen to be commensurate

with chemical accuracy (discretization errors of ∼ 10−4 Ha and ∼ 10−4 Ha/Bohr in

energy per atom and ionic forces respectively), based on the validation studies on the

same benchmark systems at smaller sizes.

All the numerical simulations with computational times reported in this work were

executed on the Cori supercomputer at the National Energy Research Scientific Com-

puting (NERSC) center. In particular, we used Cori’s Phase II partition containing

9,688 compute nodes based on Intel Xeon Phi processors. Each compute node has

the following specifications: single-socket Intel Xeon Phi 7250 (“Knights Landing”)

processor with 68 physical cores per node @ 1.4 GHz and 96 GB of memory per node.

Cori uses a Cray Aries with Dragonfly topology for inter-node communication with

45.0 TB/s global peak bidirectional bandwidth.

The DFT-FE simulations reported in this section were run using 32 MPI tasks per

node and 2 OpenMP threads (for BLAS operations), except for a few small system sizes
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(less than 3, 000 electrons) where using 64 MPI tasks per node and a single OpenMP

thread was found to be more efficient. Similarly, QE and ABINIT simulations were

run using optimal MPI tasks-OpenMP threads combinations based on the problem

size— 32 MPI tasks per node and 2 OpenMP threads for smaller problem sizes (less

than 3, 000 electrons), and 16/8 MPI tasks per node and 4 OpenMP threads for

larger problem sizes where more memory per MPI task is required. Furthermore,

MPI task to core binding was also appropriately set for all the above combinations.

Our numerical experiments showed that using more than 4 OpenMP threads provided

negligible performance gains in DFT-FE as well as in QE and ABINIT.

5.3.1 Validation

We consider three different benchmark systems: (i) hexagonal close packed (hcp)

Mg periodic supercells with a mono-vacancy, (ii) body centered cubic (bcc) Mo pe-

riodic supercells with a mono-vacancy, and (iii) non-periodic Icosahedron Cu nano-

particles. In each of the benchmark systems, we take increasingly refined basis sets

in DFT-FE and QE and compare the ground-state energy per atom, ionic forces,

and cell stresses at two different accuracy levels: a) medium accuracy—discretization

errors of ∼ 10−4 Ha/atom in ground-state energy, ∼ 10−4 Ha/Bohr in ionic forces,

and ∼ 5 × 10−6 Ha/Bohr3 in cell stress (in periodic benchmark systems), which we

consider as chemical accuracy; b) high accuracy—using a more refined basis set in

both DFT-FE and QE to demonstrate much closer agreement between them. Fur-

ther, we note that the validation studies for the aforementioned periodic benchmark

systems are conducted using a Gamma point.

In the benchmark system involving Mg, we consider periodic supercells con-

structed from orthogonal unit cells (containing 4 atoms) of hcp Mg with lattice

constants: a = 5.882 Bohr and c = 9.586 Bohr. We consider a mono-vacancy in

two supercells: 2× 2× 2 denoted by Mg2x2x2 containing 31 atoms (310 electrons) and
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Table 5.2: Validation of DFT-FE with QE on pseudopotential benchmark systems at two
different accuracy levels— medium accuracy and high accuracy. FEo, h1 and h2 denote
the FE polynomial order, minimum element size and maximum element size (Bohr), re-
spectively, in DFT-FE. Ecut denotes the plane-wave basis cut-off used in QE (Hartree).

Eg denotes ground-state energy (Hartree/atom). ∆maxf = max
1≤i≤Na

∥∥∥fDFT−FE
i − fQE

i

∥∥∥
(Hartree/Bohr), where fi denotes the force on the ith atom. ∆σh =

∣∣σhDFT−FE − σhQE
∣∣

(Hartree/Bohr3), where σh denotes the hydrostatic cell stress.

(a) Medium accuracy

System DFT-FE DFT-FE QE QE Differ. in forces &

(FEo, h1, h2) Eg Ecut Eg stress (∆maxf, ∆σh)

Mg2x2x2 4, 0.46, 1.92 −54.3195364 45 −54.3195594 ∆maxf = 2.1× 10−4

∆σh = 3.7× 10−6

Mg4x4x4 4, 0.46, 1.92 −54.3279442 45 −54.3279638 ∆maxf = 3.3× 10−4

∆σh = 4.6× 10−6

Mo2x2x2 5, 0.74, 1.49 −68.5573334 20 −68.5573613 ∆maxf = 1× 10−5

∆σh = 1.6× 10−6

Mo4x4x4 5, 0.74, 1.49 −68.5811483 20 −68.5811857 ∆maxf = 2.1× 10−5

∆σh = 1.9× 10−6

Cu3-Shell 4, 0.39, 12.5 −182.5870759 50 −182.5870221 ∆maxf = 7.2× 10−5

Cu4-Shell 4, 0.39, 12.2 −182.5908621 50 −182.5908346 ∆maxf = 1.4× 10−4

(b) High accuracy

System DFT-FE DFT-FE QE QE Differ. in forces &

(FEo, h1, h2) Eg Ecut Eg stress (∆maxf, ∆σh)

Mg2x2x2 5, 0.24, 0.96 −54.3196337 55 −54.3196270 ∆maxf = 4.6× 10−6

∆σh = 2.7× 10−7

Mg4x4x4 5, 0.24, 0.96 −54.3280448 55 −54.3280318 ∆maxf = 7.9× 10−6

∆σh = 2.6× 10−7

Mo2x2x2 5, 0.37, 0.74 −68.5574282 50 −68.5574315 ∆maxf = 4.5× 10−6

∆σh = 1.1× 10−6

Mo4x4x4 5, 0.37, 0.74 −68.5812495 50 −68.5812527 ∆maxf = 6× 10−6

∆σh = 9.8× 10−7

Cu3-Shell 5, 0.18, 12.5 −182.5872871 70 −182.5872868 ∆maxf = 2.5× 10−5

Cu4-Shell 5, 0.18, 12.2 −182.5910308 70 −182.5910298 ∆maxf = 3.5× 10−5
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4 × 4 × 4 denoted by Mg4x4x4 containing 255 atoms (2, 550 electrons). The relevant

mesh parameters for DFT-FE and cut-off energies for QE are shown in Table 5.2.

Table 5.2 also provides the comparison between DFT-FE and QE at medium and

high accuracy levels. At the medium accuracy level, the agreement in ground-state

energy is O(10−5) Ha/atom, ionic forces is O(10−4) Ha/Bohr, and hydrostatic stress

is O(10−6) Hartree/Bohr3. Similarly, at high accuracy level the agreement in ground-

state energy is O(10−5) Ha/atom, ionic forces is O(10−5) Ha/Bohr, and hydrostatic

stress is O(10−7) Hartree/Bohr3. We additionally remark that Mg has a hard ONCV

pseudopotential, which is reflected in basis set parameters.

Next, in the benchmark system involving Mo, we consider periodic supercells

constructed from bcc Mo unit cells with lattice constant of 5.95 Bohr. We consider a

mono-vacancy in two supercell sizes—2×2×2 denoted by Mo2x2x2 containing 15 atoms

(210 electrons) and 4×4×4 denoted by Mo4x4x4 containing 127 atoms (1,778 electrons).

Table 5.2 shows the comparison between DFT-FE and QE, which demonstrates a

similar excellent agreement as in the case of the Mg benchmark system. We note

that the lower plane-wave cut-off or larger hmin in DFT-FE in comparison to the Mg

benchmark system is attributed to Mo having a softer ONCV pseudopotential than

Mg.

Finally, in benchmark system involving Cu, we consider three-dimensional non-

periodic Icosahedron Cu nano-particles [194]. The Icosahedron nano-particles are

constructed with nearest neighbour bond length of 6.8 Bohr and varying the number

of shells. We consider two Cu nano-particle sizes: Cu3-Shell containing 147 atoms

(2, 793 electrons), Cu4-shell containing 309 atoms (5, 871 electrons). For the DFT-FE

simulations, we choose a non-periodic domain containing the Cu nano-particle and

impose homogeneous Dirichlet boundary conditions on the boundary of the domain.

On the other hand, for the QE simulations, we choose an artificial periodic domain

containing the Cu nano-particle. The energy and forces are converged with respect to
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the domain size in both DFT-FE and QE simulations. Table 5.2 shows the comparison

between DFT-FE and QE, which demonstrates excellent agreement between the two

codes in a non-periodic setting.

Overall, from Table 5.2, we show excellent agreement between DFT-FE and QE

for both medium and high accuracy calculations, with the difference between the

codes systematically reducing with increasing discretization.

5.3.2 Parallel scaling performance

Here we demonstrate the parallel scalability of DFT-FE on various system sizes.

We consider hexagonal close packed (hcp) Mg periodic super cells with a mono-

vacancy, and study the strong scaling behavior using pseudopotential DFT calcu-

lations on three system sizes: (a) small—Mg4x4x4 (255 atoms, 2,550 electrons), (b)

medium—Mg8x8x8 (2,047 atoms, 20,470 electrons), and (c) large—Mg10x10x10 (3,999

atoms, 39,990 electrons). In particular, we study the strong scaling behavior by mea-

suring the relative speedup with increasing number of MPI tasks while keeping the

discretization fixed for all the three systems. The speedup is measured relative to the

wall time taken on 128 MPI tasks, 512 MPI tasks, 3,200 MPI tasks, 12,800 MPI tasks

for C60 , Mg4x4x4, Mg8x8x8 and Mg10x10x10 respectively. We note that further lower

number of MPI tasks were not possible due to memory constraints. This is primarily

because of low memory per core (∼1.4 GB) of the many-core KNL architecture in the

Cori supercomputer. Further, the FE mesh in the above studies is chosen such that

the discretization errors in energy and forces are ∼ 10−4 Ha per atom and ∼ 10−4

Ha/Bohr, respectively.

We first consider Mg4x4x4, the smallest of the three Mg hcp periodic supercell

benchmarks considered in this study. As demonstrated in Fig. 5.7, we use domain

decomposition parallelization to scale up to 4,096 MPI tasks at 75% efficiency, with

an average of 1,629 dofs per MPI task. The corresponding wall time for a single SCF

148



iteration step is 28 seconds. Such excellent parallel scalability is possible due to the

aforementioned low communication cost in the FE discretized Hamiltonian matrix

and wavefunction vector products involved in Chebyshev filtering. Next, we consider

the parallel scalability of the medium to large system sizes: Mg8x8x8 and Mg10x10x10,

which are shown in Fig. 5.8. Based on the comparison of three different parallelization

strategies in Section 5.2.4 for achieving maximum parallel scalability for large system

sizes, we use the parallelization strategy of combined domain decomposition and band

parallelization. In particular, in the case of Mg8x8x8, we use domain decomposition

parallelization from 3,200 to 32,000 MPI tasks and then use band parallelization with

two band parallelization groups to further scale to 64,000 MPI tasks at 43% efficiency.

At 64,000 MPI tasks, we use an average of 1,436 dofs per MPI task, and obtain a wall

time of 91 seconds for a single SCF iteration step. Similarly, in the case of Mg10x10x10,

we use domain decomposition parallelization till 51,200 MPI tasks, and then use band

parallelization to further scale to 102,400 MPI tasks at 49% efficiency. At 102,400

MPI tasks, we use an average of 1,835 dofs per MPI task, and obtain a wall time of 237

seconds for a single SCF iteration step. The parallel scaling of the above medium to

large system sizes is dependent on the scalability of the major computational steps:

CF, CholGS and RR (section 5.2). We remark that in spite of the computational

complexity of CF scaling quadratically in comparison to cubic scaling of CholGS and

RR, CF’s excellent parallel scalability afforded by FE discretization continues to be

crucial for parallel scalability at medium to large system sizes. This is evident from

Fig. 5.9 showing the strong scaling of the various computational steps in DFT-FE for

Mg8x8x8 and Mg10x10x10, where we note that CF is still a significant portion of the total

wall-times, and further CF also demonstrates excellent parallel scalability. Fig. 5.9

also demonstrates good parallel scaling of CholGS and RR steps, where the use of

mixed precision arithmetic based algorithms play a key role in reducing communi-

cation costs. Overall, DFT-FE’s massive parallel scalability, as demonstrated here,
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is a result of the locality of the FE basis as well as an effective parallel implemen-

tation of the various algorithms in DFT-FE, as discussed in section 5.2, that reduce

communication costs and latency.

Figure 5.7: Strong parallel scaling using DFT-FE on a small system. Case study:
Mg4x4x4 (255 atoms, 2,550 electrons).

5.3.3 Computational efficiency and wall time comparison with plane-wave

codes

We now consider three different benchmark systems with sizes ranging from 2, 550

to 61, 502 electrons to compare the computational efficiency (CPU-time and min-

imum wall-time) of the DFT-FE code against the plane-wave codes—QUANTUM

ESPRESSO (QE) v6.3 [137, 193], and ABINIT v8.8.4 [104]. In particular, we con-

sider: (i) hexagonal close packed (hcp) Mg periodic super cells with a mono-vacancy,

(ii) body centered cubic (bcc) Mo periodic super cells with a mono-vacancy, and (iii)

non-periodic Icosahedron Cu nano-particles. The details on these benchmark systems

are discussed previously in Section 5.3.1, with a wider range of system sizes considered

here. We note that the FE mesh parameters and plane-wave cut-off energies in all
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(a)

(b)

Figure 5.8: Strong parallel scaling using DFT-FE on larger system sizes. Case studies:
a) Mg8x8x8 (2,047 atoms, 20,470 electrons), and b) Mg10x10x10 (3,999 atoms, 39,990
electrons).
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(a)

(b)

Figure 5.9: Breakdown of total wall-time per SCF iteration into the various computa-
tional steps in DFT-FE: a) ES (Total electrostatic potential solve), b) CF (Chebyshev
filtering), c) CholGS (Cholesky-Gram-Schimdt Orthogonalization), d) RR (Rayleigh-
Ritz procedure), and e) DC (Electron-density computation). Case studies: a) Mg8x8x8,
and b) Mg10x10x10. The number of MPI tasks correspond to the strong scaling studies
in Fig. 5.8.
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the benchmark calculations are chosen to be commensurate with chemical accuracy,

based on the validation studies on smaller system sizes for the same benchmark system

types. We do not explicitly measure the discretization errors here as highly refined

calculations required to do so will use significant computational resources given the

many benchmark systems along with large sizes (up to 61, 502 electrons) considered

here. Further, we note that all QE and ABINIT timings reported below are for an

optimal combination of FFT grid parallelization and band parallelization.

The DFT-FE simulations for the above benchmark systems use the following val-

ues of Chebyshev polynomial degree m (see Section 5.2.1): m = 45 for benchmark

systems (i) and (ii), and m = 50 for benchmark system (iii). Further, Nfr, which is

used in the RR step (see Section 5.2.3), is chosen to be 15 % of N . Additionally, in

all simulations (DFT-FE, QE and ABINIT) N is chosen as Ne/2+ b, with b ∼ 10% of

Ne/2 for benchmark systems (i) and (ii), and b ∼ 5% of Ne/2 for benchmark system

(iii).

CPU-time comparisons In Tables 5.3, 5.4, and 5.5 we compare the average compu-

tational CPU-times per SCF iteration step7 in the above benchmark systems between

DFT-FE and the plane-wave codes QE and ABINIT. The CPU-times are reported in

Node-Hrs, which is obtained by multiplying the total number of compute nodes used

with the average wall-time per SCF iteration measured in hours. We also compare

the number of basis functions used to achieve the desired chemical accuracy in energy

and forces. We note that all the simulations for Tables 5.3, 5.4, and 5.5 are run using

the minimum number of compute nodes required to fit the peak memory of the sim-

ulation, and additionally remark that the dashes in the table corresponding to QE

7Measured by taking the average of a few SCF iteration steps after the first 2− 3 SCF iteration
steps, which are excluded as their timings can be variable depending on the starting wavefunc-
tions guess to the SCF procedure. Furthermore, for few system sizes (< 10, 000 electrons) in each
benchmark system, we verify that the choice of the DFT-FE parameters are adequate to achieve
convergence in similar number of SCF iteration steps as taken by QE and ABINIT. We do not
use advanced mixing strategies like Kerker preconditioning in QE and ABINIT simulations as such
strategies are currently not implemented in DFT-FE.
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and ABINIT benchmark simulations that are not performed as they are computation-

ally prohibitive. First, we consider the periodic benchmark problems in Tables 5.3

and 5.4, where we observe that DFT-FE is more computationally efficient than both

QE and ABINIT beyond system sizes of ∼ 3000 electrons (300 atoms) for hcp Mg

supercells, and ∼ 6, 000 electrons (428 atoms) for bcc Mo supercells. There are a cou-

ple of reasons for DFT-FE’s efficiency gains over QE in spite of the number of basis

functions advantage of plane-wave basis for periodic problems. Firstly, simulations

for medium to large system sizes require more compute nodes to fit the peak memory

on many-core architectures like the Cori KNL nodes. This increases the CPU-time of

plane-wave codes, relative to DFT-FE, due to the better parallel scaling of DFT-FE.

Secondly, the efficient and scalable numerical implementation CF, CholGS and RR

in DFT-FE (see Section 5.2) is also a key factor. Next, we consider the non-periodic

benchmark problem: Icosahedron nano-particles of varying sizes, in Table 5.5. Here

we observe that that DFT-FE is more computationally efficient than QE beyond a

very small system size of 147 atoms (2, 793 electrons). We note that the spatial adap-

tivity of DFT-FE provides a key advantage in non-periodic systems where the FE

mesh can be coarse-grained into the vacuum as opposed to a uniform spatial resolu-

tion of the plane-wave basis. Furthermore, the spatial adaptivity of the FE basis is

also an advantage in systems having hard pseudopotentials such as Cu. Overall, from

Tables 5.3, 5.4, and 5.5, we observe that DFT-FE’s efficiency gains over QE increases

with increasing system size, achieving efficiency gains of 5.7×, 12.4×, and 11.9× for

Mg8x8x8, Mo10x10x10, and Cu5-shell, respectively, which are the largest benchmark sys-

tems considered for CPU-time comparison. We note that ABINIT is slower than QE

for all benchmark systems considered here. Finally, another key observation is that

due to the efficient numerical implementation of cubic-scaling CholGS and RR steps

in DFT-FE, the range of close to quadratic scaling in computational complexity with

respect to number of electrons (Ne) is extended to much larger system sizes—O(N2.12
e )
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up to Ne = 39, 990 for hcp Mg super cells, O(N2.32
e ) up to Ne = 27, 986 for bcc Mo

super cells, and O(N2.04
e ) up to Ne = 17, 537 for Cu nano-particles.

Table 5.3: CPU-time comparison of DFT-FE with QE and ABINIT: Average time per
SCF iteration step in Node-Hrs. Benchmark system (i): hcp Mg periodic supercells with a
mono-vacancy.

System No. of atoms FE basis DFT-FE Plane-wave QE ABINIT

(No. of electrons) basis

Mg4x4x4 255 (2,550) 6,673,513 0.3 530,051 0.1 0.3

Mg6x6x6 863 (8,630) 19,852,441 3.3 1,788,771 4.4 20.2

Mg8x8x8 2,047 (20,470) 45,954,505 21.6 4,240,071 123.5 -

Mg10x10x10 3,999 (39,990) 93,972,153 103.4 - - -

Table 5.4: CPU-time comparison of DFT-FE with QE and ABINIT: Average time per
SCF iteration step in Node-Hrs. Benchmark system (ii): bcc Mo periodic supercells with a
mono-vacancy.

System No. of atoms FE basis DFT-FE Plane-wave QE ABINIT

(No. of electrons) basis

Mo6x6x6 431 (6034) 5,475,843 0.5 194,310 0.56 0.7

Mo8x8x8 1,023 (14,322) 12,942,743 4.2 460,725 22.1 115.7

Mo10x10x10 1,999 (27,986) 25,229,995 17.7 899,849 219.5 -

Table 5.5: CPU-time comparison of DFT-FE with QE and ABINIT: Average time per
SCF iteration step in Node-Hrs. Benchmark system (iii): Cu Icosahedron nano-particles of
varying sizes.

System No. of atoms FE basis DFT-FE Plane-wave QE ABINIT

(No. of electrons) basis

Cu3-Shell 147 (2793) 6,584,861 0.3 1,080,751 0.2 0.8

Cu4-Shell 309 (5,871) 13,974,767 1.7 2,110,867 5.5 10.7

Cu5-Shell 561 (10,659) 26,060,299 5.3 3,647,655 63.4 -

Cu6-Shell 923 (17,537) 41,775,101 12.7 5,792,547 - -

Wall-time comparisons Next, in Tables 5.6, 5.7, and 5.8 we compare the average

minimum wall-times per SCF iteration step in the above benchmark systems between

DFT-FE and QE, with the restriction that the parallel scaling efficiency is above
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40%. We observe that DFT-FE wall-times are smaller than QE wall-times for all

the benchmark systems considered. Furthermore, the speedups in DFT-FE over QE

increases with system size, with substantial speedups of 9×, 16.1× and 6.9× for

Mg8x8x8, Mo10x10x10, and Cu5-shell, respectively. Even at the smallest system sizes

DFT-FE is still significantly faster than QE, with speedups of 1.5×, 7.5× and 3.3×

for Mg4x4x4, Mo6x6x6, and Cu3-shell, respectively. Additionally, in Tables 5.6, 5.7,

and 5.8, we also report some very large scale simulations conducted using DFT-FE:

Mg10x10x10, Mo13x13x13, and Cu6-shell, obtaining very modest minimum wall-times of

203, 277 and 70 seconds, respectively (with parallel scaling efficiencies above 40%).

We note that such large system sizes are computationally prohibitive using QE, and

thereby QE simulations for these systems are not performed. Finally, in Table 5.9 we

show the breakdown of DFT-FE wall-times into key computational steps for the large

system sizes in the above benchmark problems. Overall, we have demonstrated that

DFT-FE is faster than plane-wave codes QE and ABINIT for system sizes beyond

2, 000 electrons with significant speedups at larger system sizes, and large-scale DFT

simulations on generic material systems are practically feasible using DFT-FE for

system sizes ranging up to 50, 000–100, 000 electrons.

Table 5.6: Minimum wall-time comparison of DFT-FE with QE: Average time per SCF
iteration step in seconds (rounded to the nearest whole number). Benchmark system (i):
hcp Mg periodic supercells with a mono-vacancy.

System No. of atoms DFT-FE QE

(No. of electrons)

Mg4x4x4 255 (2,550) 19 29

Mg6x6x6 863 (8,630) 38 165

Mg8x8x8 2,047 (20,470) 91 816

Mg10x10x10 3,999 (39,990) 203 -
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Table 5.7: Minimum wall-time comparison of DFT-FE with QE: Average time per SCF
iteration step in seconds (rounded to the nearest whole number). Benchmark system (ii):
bcc Mo periodic supercells with a mono-vacancy.

System No. of atoms DFT-FE QE

(No. of electrons)

Mo6x6x6 431 (6,034) 23 173

Mo8x8x8 1,023 (14,322) 52 549

Mo10x10x10 1,999 (27,986) 117 1883

Mo13x13x13 4,393 (61,502) 277 -

Table 5.8: Minimum wall-time comparison of DFT-FE with QE: Average time per SCF
iteration step in seconds (rounded to the nearest whole number). Benchmark system (iii):
Cu Icosahedron nano-particles of varying sizes.

System No. of atoms DFT-FE QE

(No. of electrons)

Cu3-Shell 147 (2,793) 15 50

Cu4-Shell 309 (5,871) 25 183

Cu5-Shell 561 (10,659) 44 304

Cu6-Shell 923 (17,537) 70 -

5.4 Strategies for acceleration of DFT-FE using Graphics

Processing Units

In the last decade, with the slowing down of the Moore’s law for central processing

units (CPUs) there has been considerable interest in using Graphics Processing Units

(GPUs) to accelerate electronic-structure calculations [195, 196]. However, efficiency

on CPU architectures may not translate to efficiency on GPU architectures. This

is because of two reasons— a) the massively parallel GPU architecture requires the

computational algorithm to expose fine-grained parallelism in the computations, and

b) data movement both inside the GPU and across GPUs is considerably slower than

the compute on GPUs, and thus it is imperative to increase compute intensity (the

ratio of compute to data movement) on GPUs to obtain high efficiency. We focus on

these aspects to achieve significant GPU acceleration of DFT-FE. As will be evident
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Table 5.9: Breakdown of average wall-time per SCF iteration step (in seconds, rounded
to the nearest whole number) using DFT-FE for large systems into the following compu-
tational steps: a) ES (Total electrostatic potential solve), b) CF (Chebyshev filtering), c)
CholGS (Cholesky-Gram-Schimdt Orthogonalization), d) RR (Rayleigh-Ritz procedure), e)
DC (Electron-density computation) and f) O (other—Discrete Hamiltonian computation,
electron density mixing, and computation of Fermi energy). “NDP” denotes number of do-
main decomposition MPI tasks, and “NBP” denotes number of band parallelization groups.
Total number of MPI tasks is NDP times NBP.

(a) Setup of the benchmark simulations.

System No. atoms No. electrons DOF’s NDP (NBP) Total

per atom MPI tasks

Mg8x8x8 2,047 20,470 22,450 32,000 (2) 64,000

Mg10x10x10 3,999 39,990 23,499 51,200 (3) 153,600

Mo10x10x10 1,999 27,986 12,621 16,000 (3) 48,000

Mo13x13x13 4,393 61,502 12,594 48,000 (4) 192,000

(b) Breakdown of average wall-time per SCF iteration step.

System ES CF CholGS RR DC O Total

time

Mg8x8x8 11 33 15 24 6 2 91

Mg10x10x10 12 63 53 63 9 3 203

Mo10x10x10 5 49 23 30 6 4 117

Mo13x13x13 7 80 80 97 9 4 277

below, the use of FE basis comes to our advantage in GPU acceleration of DFT-FE

as it allows us to expose the fine-grained parallelism in compute across the FE cells.

5.4.1 GPU acceleration strategy in DFT-FE

We recollect the self consistent field (SCF) iteration (cf. Algorithm 1) for solving

Kohn-Sham nonlinear eigenvalue problem by employing the Chebyshev filtered sub-

space iteration procedure (ChFSI) [61, 168] in each SCF iteration. Below we discuss

the innovations on GPUs focused on improving arithmetic intensity and reducing

data movement costs in the ChFSI algorithm.

To achieve maximum performance on GPUs, we have ported all computationally

intensive steps in the ChFSI procedure to GPUs. Further, the algorithm is imple-
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mented such that we minimize CPU-GPU data transfers, which can be a rate limiting

step relative to the high arithmetic performance on the GPU. In ChFSI procedure,

all the key compute operations corresponding to CF, CholGS and RR are ported to

GPUs using CUDA kernels, and cuBLAS library for the Xgemm operations. However,

the Cholesky factorization and inversion steps in CholGS, and Hermitian matrix di-

agonalization step in RR are still performed on CPUs in parallel on a subset of the

MPI ranks using the ELPA library [188]. These operations could not be performed

on GPUs as the O(N2) memory of the overlap (S) and projected Hamiltonian (Ĥ)

matrices would be too large to store in serial on a single GPU for very large scale

problems considered in this work (N ∼ 60, 000). However, the cost of these opera-

tions on CPUs are much smaller compared to other steps. An important aspect of

our implementation is that, by porting the aforementioned steps in ChFSI procedure

to GPUs in conjunction with GPU porting of the electron-density computation (DC),

we completely eliminate the otherwise required large data transfer of Ψ̃ between CPU

and GPU during the SCF procedure.

We now briefly discuss the GPU acceleration of the key Chebyshev filtering step

(CF) in the ChFSI procedure. As discussed in Section 5.2.1, the key computational

kernel in CF are H̃X evaluations, which are performed using a blocked approach to

reduce peak memory. To this end, blocks of Bf wavefunction vectors, denoted by Xb,

are filtered sequentially. We significantly reduce the memory access costs in H̃Xb

by employing FE cell level dense matrix operations as shown in Fig. 5.10, instead

of global sparse matrix approaches. The FE cell level matrix operations involving

many small dense matrix-matrix multiplications are performed simultaneously for

all cells on GPUs using cuBLAS’s XgemmStridedBatched routine. Furthermore, as

shown in Fig. 5.10, we structure the memory layout of Xb to ensure coalesced mem-

ory access across GPU threads, thereby significantly reducing memory access costs

in extracting Xci
b from Xb and in the assembly operation. Additionally, we min-
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imize communication latencies and overheads in H̃Xb by exploiting the fact that

all wavefunction vectors have identical MPI point-to-point communication pattern

across the FE domain decomposition partition boundaries. This allows us to perform

the MPI communication for all wavefunction vectors in Xb simultaneously, which in-

curs minimal network latency compared to communicating the wavefunction vectors

one by one. The above optimization further benefits from the memory layout of Xb

(see Fig. 5.10) when copying the wavefunctions data to and from the MPI buffer.

Furthermore, we use FP32 (single precision) for this MPI communication and it has

been observed to retain FP64 accuracy in ground-state solutions while reducing the

communication cost by a factor of 2.

These implementation innovations lead to a high overall throughput for CF, as

demonstrated in Fig. 5.11. Notably, we achieved 20.5% of the FP64 peak using block

size Bf = 200 on a single Tesla V100 GPU of Summit. Overall, as demonstrated in

Table 5.10, all the innovations discussed above have led to substantial GPU acceler-

ation, with overall SCF iteration (including all steps) speedups of 19.6× on Summit

nodes.

Table 5.10: GPU speedup of single SCF iteration step with respect to CPU on Summit
nodes. Case study: 18,480 electrons Mg dislocation system using 140 nodes. CPU simula-
tion used 40 MPI tasks per node, with each task bound to 1 CPU core (total 42 cores in
each node). CPU linear algebra performed using IBM ESSL. GPU simulation used 18 MPI
tasks across 6 GPUs on each node.

Step Wall-time Wall-time Speedup

CPU (sec) GPU (sec)

Single SCF Total 844.8 43.1 19.6×

5.4.2 Large-scale dislocation system benchmarks using GPUs

All simulations reported in this section are exectuted using the hybrid CPU-

GPU architecture on the Summit supercomputer. Summit is currently the fastest

supercomputer in the world, with 200.79 PFLOPS FP64 peak. Summit comprises
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Figure 5.10: Schematic of H̃Xb computation over four FE cells distributed over two MPI
tasks using batched Xgemm operations. Memory layout of Xb where wavefunction values
are stored contiguously for each degree of freedom provides coalesced memory access across
GPU threads. Mloc denotes number of DoFs owned locally by a MPI task.
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Figure 5.11: Chebyshev filtering (CF) throughput on a single Tesla V100 GPU of Summit
using 3 MPI tasks (via Multi Process Service) for various block sizes (Bf ). FP64 peak
of Summit’s Tesla V100: 7.3 TFLOPS. Case study: Mg super cell with mono-vacancy
containing 310 electrons. FE Mesh DoFs: 254,097.

of 4,608 IBM Power System AC922 nodes with two IBM POWER9 processors (42

physical cores) and six NVIDIA Volta V100 GPUs in each node. Each node contains

512 GB of DDR4 memory for use by the POWER9 processors and 16 GB of HBM2 for

each V100 GPU. Summit nodes are connected to a dual-rail EDR InfiniBand network

providing a node injection bandwidth of 23 GB/s.

In a recent work on the effect of alloying elements on ductility in Mg (Mg) [60],

it was shown that small energy difference between pyramidal I and II < c + a >

screw dislocations can be tuned to significantly improve the ductility of Mg. In order

to use DFT calculations to guide the alloy design, it is imperative to compute the

energy difference between pyramidal I and II < c + a > screw dislocations (∆EI−II)

to an accuracy that is better than 10−4 Ha/Å [60]. Based on this motivation, here we

choose an isolated pyramidal II < c+ a > screw dislocation in Mg, with system sizes

ranging up to 105,080 electrons, as the benchmark problem on which we demonstrate

the performance of DFT-FE. We consider three different system sizes: pyrIIScrewA
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Figure 5.12: Strong scaling of wall-time per SCF iteration on Summit GPU nodes using
DFT-FE. Case study: Mg dislocation system with 18,480 electrons (1,848 atoms). Each
GPU is associated with 3 MPI tasks.

with 18,480 electrons (1,848 atoms), pyrIIScrewB with 61,640 electrons (6,164 atoms),

and pyrIIScrewC with 105,080 electrons (10,508 atoms). Additionally, we have also

considered pyramidal I and II screw dislocations on smaller computational domains

with less than 1,000 atoms, where we conducted a convergence study with respect to

FE discretization to determine the discretization parameters to achieve the targeted

accuracy of better than 10−4 Ha/Å in ∆EI−II. These discretization parameters have

been used for pyrIIScrewA, pyrIIScrewB and pyrIIScrewC simulations.

First, we conduct a strong scaling study using Summit GPU nodes on the pyrI-

IScrewA system containing 18,480 electrons (1,848 Mg atoms) as shown in Fig. 5.12.

We obtain 96% efficiency at 280 nodes (5,040 MPI tasks) with 11,000 DoFs per task.

The wall-time per SCF iteration reduced from 97.6 sec on 1,260 MPI tasks to around

13.99 sec on 20,160 MPI tasks.

Next, we demonstrate the performance of DFT-FE on large-scale Mg dislocation

systems: pyrIIScrewB with 61,640 electrons (6,164 Mg atoms), and pyrIIScrewC with
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Figure 5.13: Electron density contour of pyramidal II screw dislocation system in Mg with
61,640 electrons (6,164 Mg atoms).

105,080 electrons (10,508 Mg atoms) using Summit GPU nodes. First, in Table 5.11,

we report the time-to-solution and performance of the pyrIIScrewB system, which has

been discretized with 179.03 million DoFs. This simulation achieved 16.7 PFLOPS

(29.5% efficiency) sustained performance in the ground-state calculation involving 56

SCF iterations, and almost similar sustained performance of 14.7 PFLOPS (26.0%

efficiency) over the entire run time of the program including initialization costs.

Table 5.11: Time-to-solution and performance of pyrIIScrewB (61,640 electrons) system.
Simulation performed using 1,300 Summit nodes (FP64 peak: 56.65 PFLOPS). Breakdown
of run time into initialization and ground-state calculation costs.

Procedure Wall-time FLOP count PFLOPS

(sec) (PFLOP) (% of FP64 peak)

Initialization 981 - -

Ground-state 7377 123174 16.7 (29.5%)

Total 8358 123174 14.7 (26.0%)

Finally, in Table 5.12, we report the wall-time and sustained performance of a sin-

gle SCF iteration step of the pyrIIScrewC system, the largest system size considered

in this work with 105,080 electrons (10,508 Mg atoms) and discretized with 304.92

million DoFs (17.69 trillion wavefunction values). We note that the SCF wall-time
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Table 5.12: Wall-time and sustained performance of a single SCF iteration step of pyrIIS-
crewC (105,080 electrons) system. Simulation performed using 3,800 Summit nodes (FP64
peak: 165.58 PFLOPS).

Step Wall-time FLOP count PFLOPS

(sec) (PFLOP) (% of FP64 peak)

Single SCF 142.7 6,563.7 46 (27.8%)

in Table 5.12 is obtained by taking the average over 10 calls to the ChFSI proce-

dure, thus demonstrating sustainability of the performance. This simulation achieves

two significant landmarks. First, the single SCF wall-time of 142.7 sec demonstrates

that fast large-scale and chemically accurate Kohn-Sham DFT simulations of metallic

systems reaching ∼ 100, 000 electrons are now possible. Second, we achieve an un-

precedented sustained performance of 46 PFLOPS (27.8% efficiency) utilizing 3,800

nodes out of total 4,608 nodes on Summit.

The above benchmarks demonstrate that accurate Kohn-Sham DFT studies on

dislocation energetics now becomes a reality, which can guide and accelerate the

discovery of new light weight structural alloys.

5.5 Summary

In this work, we have developed DFT-FE (Density Functional Theory with Finite-

Elements), an accurate, computationally efficient and scalable finite-element (FE)

based code for large-scale first-principles based materials modeling using Kohn-Sham

DFT. The DFT-FE code can conduct both pseudopotential and all-electron calcula-

tions on non-periodic, semi-periodic and periodic systems, which is a unique feature

that has been possible due to the real-space formulation employed in this work in

conjunction with the versatility of the FE basis. Besides the systematic convergence

afforded by the FE basis, the spatial adaptivity of the FE basis (realized through

‘p4est’ library in deal.II package) and the higher-order spectral finite-elements em-

ployed in DFT-FE play an important role in the computational efficiency of the code.
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The computational efficiency and scalability of the DFT-FE code can largely

be attributed to the locality of the FE basis, the algorithms employed in the so-

lution of the discrete Kohn-Sham problem, and a careful numerical implementation

of the algorithms—minimizing floating point operations, communication costs and

latency—some of which leverage the attributes of the FE basis. In particular, the

solution to the Kohn-Sham problem is efficiently computed by: (i) employing Cheby-

shev filtered subspace iteration technique to compute the eigensubspace of interest;

(ii) using Cholesky factorization based Gram-Schmidt orthonormalization (CholGS)

to compute an orthonormal basis spanning the subspace; (iii) employing Rayleigh-

Ritz (RR) procedure to diagonalize the Hamiltonian in the projected subspace and

compute the electron density to continue the self-consistent field (SCF) iteration.

We developed and implemented mixed precision arithmetic based algorithms for the

various steps in the solution procedure, and also employed spectrum splitting tech-

nique, that significantly reduced the computational prefactors for CholGS and RR

procedure by factors of around 2 and 3, respectively, for large-scale systems. Since

the computational complexity of CholGS and RR procedure scale cubically with sys-

tem size, these efficiency gains delay the onset of cubic computational complexity in

DFT-FE to very large system sizes. Our numerical studies on benchmark problems

demonstrate that DFT-FE exhibits close to quadratic-scaling in system size even for

those as large as 40, 000 electrons. The scalability of DFT-FE has been tested on

up to 192, 000 MPI tasks, with a parallel efficiency of 42% realized on a ∼ 60, 000

electron system. The locality of the FE basis is an important factor in the excellent

parallel scalability of the DFT-FE code. However, a careful implementation of the

various aspects of the algorithms—such as the use of elemental level matrix-matrix

products and blocked approach in Chebyshev filtering, the use mixed precision arith-

metic based algorithms in the CholGS and RR procedure—have been instrumental

in reducing communication costs and latency, thus resulting in better scalability and
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reduced wall-times.

In order to assess the accuracy of DFT-FE with respect to state-of-the-art DFT

codes, we have conducted a comprehensive comparison study with respect to QUAN-

TUM ESPRESSO (QE), a widely used pseudopotential plane-wave code. The bench-

mark systems considered included periodic metallic systems and non-periodic nano-

particles of various sizes. Importantly, the agreement between DFT-FE and QE on

ground-state energies, ionic forces and stresses was excellent, with the differences

being significantly lower than the discretization errors of the codes.

In order to compare the computational efficiency and scalability afforded by DFT-

FE with respect to widely used DFT codes, we conducted an extensive comparison

study with QE using ONCV pseudopotentials. We used the CPU-time per SCF iter-

ation on a wide range of benchmark problems as a metric to assess the computational

efficiency, and the minimum wall-time (with at least 40− 45% parallel efficiency) as

a metric to also assess the effectiveness of the scalability. These benchmark studies

suggest that DFT-FE is more efficient than QE for periodic system sizes beyond 3,000

electrons. Furthermore, for larger systems (10, 659− 20, 470 electrons), we find DFT-

FE to be substantially more efficient than QE by 4.5− 12× in terms of CPU-times.

We used the same benchmark systems to also compare the minimum wall-time per

SCF iteration. Importantly, DFT-FE was significantly faster than QE for all the

systems considered, with 1.5− 7.5× speedups for smaller system sizes (2, 550− 6, 034

electrons) to 7 − 16× speedups for larger system sizes (14, 322 − 20, 470 electrons).

We also considered three very large periodic metallic systems with 27, 986, 39, 990

and 61, 502 electrons, where we achieve very modest average minimum wall-times per

SCF iteration of 1.9, 3.4 and 4.6 minutes, respectively.

Finally, we have also accelerated DFT-FE using Graphics Processing Units (GPUs).

We employed implementation strategies that significantly reduce the data movement

costs and increase arithmetic intensity. This lead to significant speedups of 20x fac-
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tor with respect to CPUs. Using the GPU nodes on the Summit supercomputer, we

demonstrated an unprecedented sustained performance of 46 PFLOPS (27.8% peak

FP64 performance) on a dislocation system in Mg containing 105,080 electrons us-

ing 3,800 GPU nodes of Summit supercomputer, which is the highest performance

to-date among DFT codes.

Overall, DFT-FE provides a practical capability to perform accurate massively

parallel large-scale pseudopotential DFT calculations (reaching 100,000 electrons) in

generic material systems with arbitrary boundary conditions and complex geometries.

An attractive feature of DFT-FE is also the ability to perform all-electron calcula-

tions in the same framework, which can aid transferability studies on pseudopoten-

tials. Further, the framework, in principle, can support mixed pseudopotential and

all-electron calculations, where some atoms are treated at the all-electron level and

others are treated at the pseudopotential level. This can be useful in a wide range

of applications from using all-electron calculations for certain atoms with unreliable

pseudopotentials to the computation of spin Hamiltonian parameters that require an

all-electron treatment around the defect states (e.g. NV center in diamond) [197].

Implementation of enriched finite-element basis [156] in DFT-FE, which can enable

large-scale efficient all-electron DFT calculations, is currently being pursued. Further,

implementation of advanced exchange-correlation functionals (hybrid and dispersion

corrected), advanced mixing schemes, spin-orbit coupling, and implementation of po-

larizability and dielectric calculations in DFT-FE are other efforts that are being

pursued.
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CHAPTER VI

Conclusions

6.1 Summary

The present thesis developed computational methodologies in both orbital-free

DFT and Kohn-Sham DFT to conduct large-scale real-space electronic-structure

studies of core structure and core energetics of dislocations in Aluminum and Mag-

nesium, and used the dislocation core energetics to develop a continuum model for

an arbitrary aggregate of dislocations. The additional configurational forces result-

ing from the developed continuum model is incorporated into various case studies of

dislocation–dislocation interactions in static as well as dislocation dynamics setting,

where significant influence of the additional core-energetics informed configurational

forces is demonstrated in relation to the elastic Peach-Koehler force.

The first part of the thesis (Chapter II) developed a local real-space formulation

of orbital-free DFT with WGC kinetic energy functionals by reformulating the ex-

tended interactions in electrostatic and kinetic energy functionals as local variational

problems in auxiliary potentials. Building on the proposed real-space formulation we

have developed a unified variational framework for computing configurational forces

associated with both ionic and cell relaxations. Further, we also proposed a numer-

ically efficient approach for the solution of ground-state orbital-free DFT problem,

and employed a finite-element basis for the numerical discretization of the proposed
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real-space formulation of orbital-free DFT. Our numerical convergence studies indi-

cate that we obtain close to optimal rates of convergence in both ground-state energy

and configurational forces with respect to the finite-element discretization. We sub-

sequently demonstrated the accuracy and transferability of the proposed real-space

formulation of orbital-free DFT for Aluminum-Magnesium materials system using

various bulk and defect material systems. We finally investigated the cell-size effects

in the electronic structure of a mono-vacancy in Aluminum, where we demonstrated

that the true cell-size effects in the electronic structure are revealed by using bulk

Dirichlet boundary conditions, where the perturbations in the electronic fields due to

the defect vanish on the boundary of the computational domain. We note that the

proposed real-space formulation and the finite-element basis are crucial to employing

the bulk Dirichlet boundary conditions that are otherwise inaccessible using Fourier

based formulations.

The second part of the thesis (Chapter III) studied the core structure and core en-

ergetics of dislocations in Aluminum and Magnesium using the real-space formulation

of orbital-free DFT with finite-element discretization developed in Chapter II. In or-

der to directly compute the core energetics, we employed mixed boundary conditions

corresponding to an isolated dislocation embedded in the bulk—i.e., periodic bound-

ary conditions along the dislocation line and bulk Dirichlet boundary conditions on

the electronic fields obtained from the Cauchy-Born hypothesis along the boundary

on the other two directions for fixed atomic positions on the boundary that are deter-

mined based on the elastic field of the dislocation. The local real-space formulation

and the finite-element discretization are essential to realizing these boundary condi-

tions, which are not accessible using the widely employed plane-wave discretization in

electronic structure calculations. We computed the dislocation energies of a perfect

dislocation in each dislocation type for a series of increasing domain sizes, and identi-

fied the region up to which the perturbations in the electronic structure are significant
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to the dislocation energetics. This allowed us to unambiguously characterize the core

size of the perfect screw dislocation in Aluminum to be ≈ 7 |b|, and core sizes of

basal edge and basal screw dislocations in Magnesium to be ≈ 8 |b| and ≈ 11 |b|

respectively. This core size corresponds well with the estimated core size of ≈ 10 |b|

for the perfect edge dislocation in Aluminum [56]. Significantly, these core sizes are

much larger than the conventional estimates of 1–3 |b| based on displacement fields

underlining the longer ranged nature of quantum mechanical perturbations in the

energetics due to the dislocation core in comparison to displacement field deviation

from elastic estimates. Upon ionic relaxation, the perfect screw dislocation in Alu-

minum and perfect basal edge and basal screw dislocations in Magnesium dissociated

into two Shockley partials with partial separation distances comparing closely with

other estimates from prior electronic structure studies. We also computed the core

energy under externally applied affine volumetric, uniaxial and shear deformations,

and found that, in general for dislocations in both Aluminum and Magnesium, the

core energy is strongly dependent on the macroscopic deformations with non-zero

slopes at zero deformation. This suggests that the dependence of the core energy on

macroscopic deformations is a fundamental characteristic of dislocation energetics.

The third part of this thesis (Chapter IV) used the dislocation core energetics to

develop an continuum model for a dislocation aggregate, in an isotropic infinite elastic

continua. This model incorporates the dependence of the core energetics on macro-

scopic deformations. The underlying elastic model is chosen to be the non-singular

elastic formulation by [126]. Next, we extended the developed energetics model to a

nodal dislocation network, and derived the nodal force associated with the core energy

contribution not captured by the non-singular elastic formulatoin, which we referred

to as the nodal core force. Next, we considered case studies to compare the magni-

tude of the Peach-Koehler force with the magnitude of the core force contribution

arising from the macroscopic deformation dependence of the core energy. These case

171



studies involved interactions of grain boundary-straight dislocation, grain boundary-

glide loop, glide loop-glide loop and glide loop-straight dislocation in fcc Aluminum.

Numerically computing the Peach-Koehler and core force along the slip direction in

these case studies, we found that even up to distances of 10-15 nm between disloca-

tions, the magnitude of the core force is significant with respect to the Peach-Koehler

force (being at least 10% of the Peach-Koehler force), while also being larger than

the Peierls-Nabarro force. Furthermore, for some configurations with distances of < 2

nm, the magnitude of the core force was found to be comparable or more than the

elastic force. Finally, we incorporated the nodal core force into DDLab, a MATLAB

based 3D DDD framework, and studied the influence of nodal core force on two dif-

ferent case studies involving dislocation mechanisms in fcc Aluminum. The first case

study investigated the influence of nodal core force on critical stress of a Frank-Read

source while the second case study investigated the influence of nodal core force on

the equilibrium junction length of a dislocation binary junction. In both of these case

studies, we observed significant influence of both self as well interaction nodal core

force on the computed quantities.

The final part of the thesis (Chapter V) improved upon previous work on real-

space adaptive spectral finite-element (FE) discretization of Kohn-Sham DFT [61, 62]

to develop DFT-FE (Density Functional Theory with Finite-Elements), an accurate,

computationally efficient and scalable finite-element (FE) based code for large-scale

Kohn-Sham DFT calculations (reaching ∼ 100,000 electrons). The important numer-

ical and implementation improvements made in this work are: (i) optimized FE cell

level matrix operations during the Chebyshev filtering procedure; (ii) Cholesky fac-

torization based Gram-Schmidt orthonormalization; (iii) mixed precision arithmetic

based algorithms, and (iv) spectrum splitting based Rayleigh-Ritz procedure. In

particular, the mixed precision and spectrum splitting algorithms reduced the com-

putational prefactors for CholGS and RR procedure by factors of around 2 and 3,
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respectively, for large-scale systems. We demonstrate the accuracy of DFT-FE by

comparing the energies, ionic forces and periodic cell stresses on a wide range of

problems with QUANTUM ESPRESSO— a popularly used plane-wave DFT code.

Further, we demonstrate that DFT-FE significantly outperforms widely used plane-

wave codes—both in CPU-times and wall-times, and on both non-periodic and peri-

odic systems—at systems sizes beyond a few thousand electrons, with over 5–10 fold

speedups in systems with morethan 10,000 electrons. The benchmark studies also

highlight the excellent parallel scalability of DFT-FE, with strong scaling demon-

strated on up to 192,000 MPI tasks. Finally, we have also accelerated DFT-FE using

Graphics Processing Units (GPUs), where we achieved significant speedups of 20x

factor with respect to CPUs using the Summit supercomputer.

6.2 Future work and directions

Influence of core force on macroscale strain hardening via large-scale

DDD simulations: In the present thesis, significant influence of core force is

demonstrated on elementary strain hardening mechanisms in Aluminum— a Frank-

Read source and a dislocation binary junction. This suggests that predictions of

macroscale strain hardening behaviour in Aluminum and Aluminum alloys can be

influenced by core force. However, the modified DDLab code used in the present thesis

to study the above elementary mechanisms is not adequate for performing large scale

DDD simulations. Thus, integrating the nodal core force from this work into large-

scale, massively parallel DDD codes like ParaDiS is an important future direction.

The major challenge in the implementation stems from developing a strategy to reduce

the O(N2) computational cost of calculating all the interaction core force, where N is

the number of discrete dislocation line segments in the dislocation network. To that

end, the asymptotic behavior of various terms contributing to the core force can be

exploited, along with obtaining closed form expressions.
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Study of dislocation core energetics in Aluminum and Magnesium us-

ing Kohn-Sham DFT: Large-scale Kohn-Sham DFT calculations of dislocation

core energetics would provide more accurate prediction of dislocation core energetics

in Aluminum and Magnesium in comparison to orbital-free DFT used in the present

thesis. This is particularly important in the context of the core force expression de-

veloped in the present thesis, which contains terms that are proportional to the slope

of the core energy dependence on macroscopic strains. The values of the slopes could

be sensitive to the kinetic energy functional approximation in orbital-free DFT. The

development of DFT-FE in the present thesis allows accurate and large scale Kohn-

Sham DFT calculations of dislocation core energetics. To that end, development of

an computational approach to apply Dirichlet bulk boundary conditions for isolated

dislocations in the context of Kohn-Sham DFT is an important future direction. Fur-

thermore, such a capability will allow electronic-structure study of dislocation core

structure and core energetics in other metals like Ti (hcp) and Fe (bcc), which are of

significant interest to the material science community.
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APPENDIX A

Partial Fraction Approximations of WGC Kernels

We now discuss the partial fraction approximations of the K0, K1, K11 and K12

kernel terms arising from the second order Taylor series expansion of the WGC [2]

kinetic energy functional (cf. equations (2.9) and (2.25)) that are central to the local

reformulation of the extended interactions in the kinetic energy functional. Following

the procedure by Choly and Kaxiras [98], we seek to fit with a sum of partial fractions

the Fourier transforms of the kernels given by K̂0(q̄), K̂1(q̄), K̂11(q̄) and K̂12(q̄) in a

scaled Fourier space q̄ = k/(2k̄F ), where k̄F = (3π2ρ0)
1/3

and ρ0 denotes the refer-

ence electron density, generally taken as the bulk average electron density. Taking

into account the difference in asymptotic behavior of these kernels as q̄ → ∞, two

forms of partial fraction approximations are chosen, one for the K0 kernel, and the

second for all the remaining kernels. In particular, the forms of the partial fraction
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approximations for the kernels of interest are given by

K̃0(q̄) =
m∑
j=1

q̄2Aj
q̄2 +Bj

,

ρ0K̃1(q̄) =
m∑
j=1

Aj
q̄2 +Bj

,

ρ0
2K̃11(q̄) =

m∑
j=1

Aj
q̄2 +Bj

,

ρ0
2K̃12(q̄) =

m∑
j=1

Aj
q̄2 +Bj

, (A.1)

where K̃0(q̄), K̃1(q̄), K̃11(q̄) and K̃12(q̄) are approximations to K̂0(q̄), K̂1(q̄), K̂11(q̄)

and K̂12(q̄), respectively. We note that the Ajs and Bjs for each of the kernels are

fitted independently, by employing a best fit approximation.

The kernels K̂0(q̄), K̂1(q̄), K̂11(q̄) and K̂12(q̄) for the second order Taylor se-

ries expansion of the density dependent WGC functional with parameters {α, β} =

{5/6 +
√

5/6, 5/6−
√

5/6} and γ = 2.7 are computed following the lines of [2], which

involves the numerical solution of a series of ordinary differential equations. Choly

and Kaxiras [98] have proposed the best fit approximation of these kernels using a

sum of four partial fractions, i.e., m = 4. However, such a fit, while satisfactory for

Al is found to be inadequate for Mg. Thus, we compute the best fit approximation of

these kernels for m = 5 and m = 6. The best approximations for m = 4, m = 5 and

m = 6 employed in this work are provided in Tables A.1, A.2 and A.3, respectively.

The errors in the best fit approximation are shown in Figures A.1, A.2, A.3 and A.4.

177



Table A.1: Best fit approximation with m = 4 for the WGC kinetic energy functional
kernels K̂0(q̄), K̂1(q̄), K̂11(q̄), and K̂12(q̄). Only odd indices are given. The even indices
j = 2, and j = 4 satisfy the relations: A2 = A∗1, A4 = A∗3, B2 = B∗1 , and B4 = B∗3 , where
‘∗’ is the complex conjugate symbol.

j=1 j=3

K0 Aj 0.108403 + i0.079657 −0.908403 + i0.439708

Bj −0.470923− i0.465392 0.066051− i0.259678

ρ0K1 Aj −0.030515 + i0.015027 0.028915− i0.008817

Bj −0.597793− i0.294130 −0.087917− i0.164937

ρ0
2K11 Aj 0.008907− i0.032841 −0.034974 + i0.009116

Bj −0.537986− i0.233840 −0.041565− i0.196662

ρ0
2K12 Aj 0.012423− i0.034421 −0.031907 + i0.007392

Bj −0.511699− i0.266195 −0.034031− i0.188927

Table A.2: Best fit approximation with m = 5 for the WGC kinetic energy functional
kernels K̂0(q̄), K̂1(q̄), K̂11(q̄), and K̂12(q̄). Only odd indices are given. The even indices
j = 2, and j = 4 satisfy the relations: A2 = A∗1, A4 = A∗3, B2 = B∗1 , and B4 = B∗3 .

j=1 j=3 j=5

K0 Aj −0.886 + i0.4146 0.08621− i0.09572 −0.0004198 + i0.0

Bj 0.06707− i0.2503 −0.447 + i0.4122 0.2402 + i0.0

ρ0K1 Aj −0.008928− i0.02575 0.03686 + i0.07371 −0.10395 + i0.0

Bj −0.7097 + i0.3011 −0.1313 + i0.3094 0.3323 + i0.0

ρ0
2K11 Aj 0.02388− i0.03564 −0.01716 + i0.004228 0.02037 + i0.0

Bj −0.2272 + i0.2447 −0.7899 + i0.1762 0.09371 + i0.0

ρ0
2K12 Aj 0.02387− i0.02923 −0.0172 + i0.002471 0.01633 + i0.0

Bj −0.2334 + i0.2403 −0.7962 + i0.1756 0.09016 + i0.0
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Table A.3: Best fit approximation with m = 6 for the WGC kinetic energy functional
kernels K̂0(q̄), K̂1(q̄), K̂11(q̄), and K̂12(q̄). Only odd indices are given.The even indices
j = 2, j = 4, and j = 6 satisfy the relations: A2 = A∗1, A4 = A∗3, A6 = A∗5, B2 = B∗1 ,
B4 = B∗3 , and B6 = B∗5 .

j=1 j=3 j=5

K0 Aj 0.09497 + i0.2248 0.01503 + i0.006301 −0.9100 + i0.2338

Bj −0.2711− i0.4679 −0.7524 + i0.3445 0.09512− i0.2323

ρ0K1 Aj 0.004923− i0.007041 −0.05719− i0.009509 0.04444− i0.01249

Bj −0.8584 + i0.222 −0.4359− i0.391 −0.01699 + i0.2098

ρ0
2K11 Aj −0.006501− i0.007079 0.02922 + i0.03002 −0.02879− i0.005261

Bj −0.9058 + i0.1325 −0.4807 + i0.3047 −0.04111 + i0.171

ρ0
2K12 Aj −0.006068− i0.007396 −0.02479− i0.006033 0.02405 + i0.0302

Bj −0.9081 + i0.1324 −0.04396 + i0.1684 −0.4863 + i0.3013

Figure A.1: Partial fraction approximation errors for WGC kernel, K̂0(q̄).
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Figure A.2: Partial fraction approximation errors for WGC kernel, K̂1(q̄).

Figure A.3: Partial fraction approximation errors for WGC kernel, K̂11(q̄).
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Figure A.4: Partial fraction approximation errors for WGC kernel, K̂12(q̄).
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APPENDIX B

Computation of Non-Elastic Core Energy From

RS-OFDFT Dislocation Core Energetics Data

Here, we discuss the post-processing of the core-energetics data from RS-OFDFT

calculations to estimate the non-elastic core energy of the dislocation aggregate, EC
cnel.

The non-elastic core energy is obtained by subtracting from the core energy of a

dislocation aggregate, EC
c , the elastic energy of the dislocation (cf. equation (4.6)).

In the model presented in section 4.1.1, as the core energy of a dislocation aggregate

is computed in terms of the core energies of straight edge and screw dislocations,

E
edge/screw
c (εext) (cf. equation (4.13)), it is sufficient to compute the non-elastic core

energies of straight edge and screw dislocations—E
edge/screw
cnel (εext).

To this end, we consider the domain corresponding to the dislocation core, de-

noted by Ωc, as determined from RS-OFDFT calculations—10 |b| for the edge dislo-

cation [56] and 8.7 |b| for the screw dislocation (cf. section 3.2) in Aluminum. The

coordinate axes 1—2—3 are aligned such that the axis labelled ‘1’ lies on the slip

plane and is perpendicular to the line direction, axis labelled ‘2’ is perpendicular to

the slip plane, and the axis labelled ‘3’ is along the line direction. In the present

work, as we restrict our model and study to a dislocation aggregate of perfect dis-

locations, though an extension to consider dissociated partials is possible following
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the lines of Mart́ınez et al. [15], we subtract the non-singular elastic contribution of

perfect dislocation from the RS-OFDFT core energy data that corresponds to relaxed

Shockley partials. Thus, the energetics associated with core structure relaxation are

present in the non-elastic core energy. Further, in the context of DDD calculations,

the average distance between dislocations is much larger compared to the core size,

beyond which the combined elastic fields of the Shockley partials converges to the

elastic field of the perfect dislocation. We now consider the non-singular elastic en-

ergy of isolated straight edge and screw dislocations under an external homogeneous

strain, εext, using a choice for a and the isotropic elastic constants for Al computed

from RS-OFDFT (cf. Table B.1). The non-singular elastic energy per unit length of

dislocation line in the domain Ωc is given by

E
edge/screw
cel (εext; a) =

1

2

ˆ
Ωc

(
σd(xc, a) + σext

)
:
(
εd(xc, a) + εext

)
dA

=
1

2

ˆ
Ωc

σd(xc, a) : εd(xc, a) dA+
1

2

ˆ
Ωc

σext : εext dA

+

ˆ
Ωc

σd(xc, a) : εext dA , (B.1)

where σd(xc, a) and εd(xc, a) are the non-singular stress and strain fields, respectively,

of the straight edge or screw dislocation at any point xc ∈ Ωc, and xc is measured

with respect to the dislocation line. In the above, as we are interested in the regime

of small external homogenous strains, we assume that σd and εd are independent of

εext.

Next, we turn to the core energies of the isolated straight edge and screw dislo-

cations, and the estimation of the corresponding non-elastic core energies. While the

core energy, E
edge/screw
c (εext), is defined as the total energy inside Ωc measured with

respect to the unstrained perfect crystal, the core-energetics data from RS-OFDFT

calculations, presented in section 3.2, measure the excess energy with respect to a

perfect crystal undergoing the same external homogenous strain (cf. equation (3.2)).
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Thus, E
edge/screw
c (εext) is related to the RS-OFDFT core energetics data, which we

denote by E
edge/screw
c,data (εext), as

Eedge/screw
c (εext) = E

edge/screw
c,data (εext) +

1

2

ˆ
Ωc

σext : εext dA . (B.2)

The non-elastic core energy, following the partitioning in equation (4.6), is given by

E
edge/screw
cnel (εext) = Eedge/screw

c (εext)− Eedge/screw
cel (εext) . (B.3)

In the regime of small external homogeneous strains, linearizing the above equation

about εext = 0 (cf. equations (4.14) - (4.15)), we obtain

E
edge/screw
cnel (εext; a) ≈ E

edge/screw
cnel (εext = 0; a) + Ŝ

edge/screw
αβ (a)εext

αβ

=

(
Eedge/screw

c (εext = 0)− 1

2

ˆ
Ωc

σd(xc, a) : εd(xc, a) dA

)
+

(
S

edge/screw
αβ −

ˆ
Ωc

σd
αβ(xc, a) dA

)
εext
αβ . (B.4)

In the above, Ŝ
edge/screw
αβ =

∂E
edge/screw
cnel

∂εextαβ

∣∣∣
εext=0

and S
edge/screw
αβ = ∂E

edge/screw
c

∂εextαβ

∣∣∣
εext=0

. We

note that, from equation (B.2), E
edge/screw
c (εext = 0) = E

edge/screw
c,data (εext = 0), and,

further, S
edge/screw
αβ =

∂E
edge/screw
c,data

∂εextαβ

∣∣∣
εext=0

. Thus, the values of Sedge/screw are directly

obtained from the RS-OFDFT calculations in this work for a screw dislocation in

Section 3.2.2, and for an edge dislocation from Iyer et al. [56], Das et al. [57]. Al-

though we lack the core energetics data for the shear strains causing the perfect

edge or screw dislocations to glide, from symmetry, the slopes corresponding to these

glide shear strains, Sedge
12 and Sscrew

23 , should be zero. Table B.2 provides the data

for E
edge/screw
c (εext = 0) and Sedge/screw. Table B.3 provides the corresponding non-

elastic core energetics data, E
edge/screw
cnel (εext = 0) and Ŝedge/screw, computed based on

equation (B.4) using a = 1|b|. We note that though the non-elastic core energy at
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Table B.1: Material parameters of fcc Al computed using RS-OFDFT with Wang-
Govind-Carter (WGC) kinetic energy functional [2], local density approximation (LDA) for
the exchange-correlation energy [3], and Goodwin-Needs-Heine pseudopotential [4]. The
isotropic elastics constants, µ and ν are computed from the fcc cubic elastic constants using
Voigt average [5].

Cell relaxed lattice constant
(Bohr)

7.63

Isotropic shear modulus, µ (GPa) 22

Isotropic Poisson’s ratio, ν 0.35

Table B.2: Core energy of edge and screw dislocations in Al, and their slopes with respect
to external strains at zero strain, directly obtained from RS-OFDFT calculations. All values
are in eV/Å.

Edge Screw

Eedge
c (εext = 0) 0.401 Escrew

c (εext = 0) 0.284

Sedge
11 -2.3 Sscrew

11 -1.4

Sedge
22 -2.2 Sscrew

22 -1.2

Sedge
33 -1.0 Sscrew

33 -0.3

Sedge
13 0.0 Sscrew

13 0.0

Sedge
23 -2.91 Sscrew

12 1.31

Sedge
12 - Sscrew

23 -

zero strain has a small value, the values of the slopes are considerable. Furthermore,

we note that the values of Ŝedge/screw and Sedge/screw are equal, which follows from

equation (B.4) as ˆ
Ωc

σd(xc, a) dA = 0 , (B.5)

which in turn is readily observed from the anti-symmetries in the analytical expres-

sions for the stress fields of the perfect edge and screw dislocations [126]. Finally,

in Table B.4, we have also provided values of Sedge/screw computed using atomistic

calculations. Comparing with Table B.2, we observe that they vary widely based on

the choice of the EAM potential, which underscores the need for electronic structure

calculations to compute these quantities.
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Table B.3: Non-elastic core energy of edge and screw dislocations in Al, and their slopes
with respect to external strains at zero strain, obtained from the RS-OFDFT data by
subtracting the non-singular elastic contribution with smearing parameter a = 1|b|. All
values are in eV/Å.

Edge Screw

Eedge
cnel (εext = 0) 0.046 Escrew

cnel (εext = 0) 0.024

Ŝedge
11 -2.3 Ŝscrew

11 -1.4

Ŝedge
22 -2.2 Ŝscrew

22 -1.2

Ŝedge
33 -1.0 Ŝscrew

33 -0.3

Ŝedge
13 0.0 Ŝscrew

13 0.0

Ŝedge
23 -2.9 Ŝscrew

12 1.3

Ŝedge
12 - Ŝscrew

23 -

Table B.4: Slopes of core energy of edge and screw dislocations in Al with respect to exter-
nal strains at zero strain, directly obtained from atomistic calculations using two different
EAM potentials for Al. All values are in eV/Å.

Al99.eam.alloy [198] Al-LEA.eam.alloy [199]

Edge Screw Edge Screw

Sedge
11 0.0 Sscrew

11 -0.9 Sedge
11 -4.5 Sscrew

11 -7.7

Sedge
22 -3.0 Sscrew

22 -1.6 Sedge
22 -4.4 Sscrew

22 -3.9

Sedge
33 -1.8 Sscrew

33 -2.0 Sedge
33 -2.1 Sscrew

33 -0.6

Sedge
13 0.0 Sscrew

13 0.0 Sedge
13 0.0 Sscrew

13 0.0

Sedge
23 -1.5 Sscrew

12 0.3 Sedge
23 -3.5 Sscrew

12 6.2

1 The values of Ŝscrew
12 and Ŝedge

23 are obtained from the RS-OFDFT calculated core energy
dependence on Escaig strains of screw dislocation (cf. Section 3.2.2) and edge dislocation [56,
57], respectively. The non-zero values of the slopes are due to the change in the Shockley partial
separation distance in response to the Escaig strains. However, as the details of the partials are
absent in the mesoscale model used for the case studies in Section 4.2, we do not include these
contributions there.
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APPENDIX C

Derivation of Nodal Core Forces for Dislocations

Dissociated Into Partials

Here, we briefly discuss on extending the derivation of the nodal core forces for a

network of perfect dislocations presented in Section 4.1.2 to the case where the perfect

dislocation lines are dissociated into partials. Consideration of partials is crucial to

correctly study various elementary mechanisms which govern plasticity and hardening

in fcc materials, for e.g. , dislocation junction formation and cross-slip mechanisms

(cf. [15, 135]). We consider the DDD framework developed by [15] which accounts

for partials and stacking faults in fcc crystals, and briefly discuss incorporating the

core-energetics information into such a framework. Their methodology considers the

dissociated partials as independent segments, and introduce a new degree of freedom,

γnij to each partial segment lij, where γ is the stacking fault energy per unit area,

and nij is the unit normal to the slip plane on which the partials are dissociated.

The force at any point on the segment corresponding to perturbations in the stacking

fault energy is expressed as

f ijsf,p = γεpqkξqn
ij
k , (C.1)

where the direction of nij is chosen such that the above force always points towards
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the other partial, or in other words it is attractive. The attractive force is balanced

by the elastic repulsion between the partials and other external elastic forces, such as

those resulting from Escaig stresses, producing the equilibrium stacking fault width.

We refer to [15] for more details on topological considerations and conservation rules

related to the consideration of partials. Focussing on the core energetics, similar

to equation (B.4), we remove the non-singular elastic energy due to the Shockley

partials and additionally the already accounted stacking fault energy effects from

E
edge/screw
c (εext = 0) and S

edge/screw
αβ , to obtain the non-elastic core energy and its

slopes, denoted as Ě
edge/screw
cnel (εext = 0; a) and Š

edge/screw
αβ (a), respectively. Further,

as the partials are treated as independent segments, it is convenient to assume the

non-elastic core energy of each partial to be half of the full dislocation non-elastic

core energy,

Ě
edgep/screwp

cnel (εext; a) =
1

2

(
Ě

edge/screw
cnel (εext = 0; a) + Š

edge/screw
αβ (a)εext

αβ

)
, (C.2)

where Ě
edgep/screwp

cnel (εext; a) is the non-elastic core energy of the edge or screw partial

per unit length of dislocation line, and εext is the external strain field experienced by

the partial excluding the strain field contribution from the other partial in the pair.

To exclude the other partial, the external strain field cutoff procedure developed for

the perfect dislocation network in equation (4.20) can be modified as follows,

εextloc(xij(sij)) =
∑
kl∈U ′′ij

εklloc(ξkl,bkl,xij(sij)) , (C.3)

where the set U ′′ij includes all distinct segments in the network excepting the ones

which have one of their nodes as i or j and their respective Shockley partials. Rest

of the analysis for derivation of the core forces follows along similar lines as the case

of the perfect dislocation presented in Section 4.1.2.
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