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 Abstract 

 

Natural product synthesis exists today as a crucible for method development, a test of 

strategic disconnections, and, perhaps most importantly, a means of generating bioactive small 

molecules and testing biological hypotheses. Indeed, many small molecule diterpenoids, upon 

isolation from plant material, are tested for their ability to serve as cytotoxins in cancer and for 

their ability to reduce signals of inflammation. These diterpenoids often bear sterically complex, 

densely functionalized cage-like core structures, making their synthesis a significant endeavor 

and providing opportunities for the development of new methods and strategic disconnections. 

NF-κB is a family of transcription factors that drive both inflammation and cancer cell survival, 

and many diterpenoids that were shown to have anti-cancer anti-inflammatory activities have 

also been shown to interact with this pathway. The focus of this thesis work has been to apply 

synthetic approaches to the challenge of studying if, and how, small molecule diterpenoids 

inhibit the NF-κB pathway. The aromatic gibberellin, pharbinilic acid, was selected as a 

synthetic target based upon its structural homology to a known NF-κB binder and based upon its 

anti-cancer and anti-inflammatory properties. In the course of the first successful synthesis of 

this molecule a potent, selective inhibitor of the NF-κB pathway was discovered and 

demonstrated to have thousand-fold selectivity for killing inflammatory cancer derived cell lines 

over cell lines derived from healthy fibroblasts. A unified approach to the bioactive ent-kaurene 

diterpenoids is disclosed. These studies were initiated in order to differentiate between specific 

activities inherent to the diverse cage-like structures of these molecules and those misattributed 

to pan assay interfering enone moieties present in many such molecules. Of particular interest is 



 xviii 

the synthesis of eriocalyxin B it has been shown to covalently label the DNA binding domain of 

NF-κB. Finally, the development of a new method to enable a key disconnection towards the 

synthesis of the terpene alkaloid isopalhinine A is discussed. 
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Chapter 1 Introduction 

 

Chapter 1.1 Nuclear Factor-kappaB (NF-κB) 

 

Chapter 1.1.1 NF-κB structure and function 

 

NF-κB was discovered in 1986 as a protein that bound to a specific DNA sequence in B 

lymphocytes and it was named for the gene it effected and the cell line it was found in, nuclear 

factor binding near the κ-light chain gene in B cells.1 In my favorite piece of NF-κB trivia David 

Baltimore, one of the discoverers of NF-κB, apologized for giving it a name so difficult to type 

saying “Had we realized  that NF-κB would have a wide role in inflammation and other natural 

and pathological processes, we might have found a simpler designation for ease of typing.”2  

NF-κB is a transcription factor that is not one, but a family of five, closely related 

proteins. These proteins, to make matters worse, are referred to often by different names and are 

RelA (p65), RelB, c-Rel, p105/p50 (NFKB1), and p100/p52 (NFKB2). What unites these 

proteins is the possession of a Rel homology domain (RHD, Figure 1.1). This 300 amino acid 

domain has three functions.3,4 First, it enables sequence specific DNA binding to a nearly 

palindromic sequence namely 5’-GGGRNWYYCC-3’ (R = purine, N = any base, W = adenine 

or thymine, Y = pyrimidine). Second, it allows for binding to ankyrin rich repeats in inhibitory 

proteins. Third, it allows for characteristic dimerization. All NF-κB family members exist as 

dimers, either homodimers (excepting RelB) or heterodimers. 13 of 15 dimeric proteins have 

been identified in vivo and likely have differential selectivities in terms of specific gene 

activation.2  
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Of the five NF-κB family members only three of the, RelA, RelB, and c-Rel, contain 

transactivating domains. These transactivating domains are required for recruiting the 

transcriptional machinery necessary for inducing the transcription of target genes.5 Thus it is 

typically only dimers of NF-κB that contain RelA, RelB, or c-Rel that are activating while homo- 



 3 

and heterodimers of p50 and p52 are silencing6 though there are reports of co-transcriptional 

regulators such as Bcl-3 binding to p50:p52 heterodimers and facilitating gene activation.7  

The genes associated with NF-κB are myriad and a catalog of genes characterized to be 

activated by NF-κB, current as of 2010, can be found at bu.edu/nf-kb/gene-resources/target-

genes/. This pathway is so well studied because genes that it controls have biologically and 

pathologically critical functions including immune cell differentiation and control, inflammation, 

and all stages of cancer development and survival. These functions will be covered in more detail 

in this document (see Chapter 1.1.4).  

 

Chapter 1.1.2 IKK kinases and NF-κB regulation 

 

One striking feature of NF-κB is the speed with which it can be activated and controlled.7 

This is important because NF-κB activates the immune response so it must be able to adapt 

quickly when required. The genius to the transcription factor lies in the way it is controlled. NF-

κB is uniformly expressed in mammalian cells and are kept locked in the cytoplasm by a feature 

of the RHD which enables binding of NF-κB subunits to the ankyrin repeats (AnkR) subunits of 

inhibitors of NF-κB (IκB), the most well characterized of which is IκBα.8 Upon binding an IκB 

the nuclear localization sequence (NLS) and the DNA binding domain (DBD) of NF-κB subunits 

are blocked preventing them from being transported to the nucleus and even were they in the 

nucleus preventing them from binding DNA and activating genes.  

Non-transcriptionally active NF-κB subunits, p105/p50 and p100/p52, must be 

proteolytically processed before they can be translocated to the nucleus and bind DNA. This is a 

result of their AnkR regions which themselves are inhibitors of NF-κB (IκBγ and IκBδ 

respectively). These regions are proteolytically cleaved before the active subunits, p50 and p52, 

can be a part of an active NF-κB dimer. In the case of p50 this processing is constitutively active 
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and occurs largely as p105 is being translated, though some cytostolic p105 can be detected.9 For 

p100 this proteolytic processing is more tightly regulated and will be discussed in more detail 

below.  

The transcriptionally active subunits of NF-κB are thought to be controlled in two major 

ways. The first is the canonical pathway (Figure 1.2). In this activation mode an IκB, the most 

well studied and characterized of which is IκBα, binds the RHD of a transcriptionally active NF-

κB family member, typically RelA, then c-Rel, less frequently RelB, preventing it from entering 

the nucleus and binding DNA. In these complexes NF-κB is typically dimerized with a 

transcriptionally inactive subunit, typically p50, rarely p52, and occasionally another active 

subunit, RelA, c-Rel, or RelB.10 In the case of inhibition by IκBα, IκBβ, or IκBε the inhibitory 

protein must be ubiquitinylated and proteolytically degraded before transcriptionally active NF-

κB can be transported to the nucleus. 

In all so-called canonical NF-κB pathways the protein complex that is responsible for 

activating the IκB for degradation is made up of three distinct IκB kinases (IKKs). This complex, 

which is made up of IKKα, IKKβ and NF-κB essential modifier (NEMO or IKKγ), 

phosphorylates an N-terminal serine on IκB leading to its degradation. It has also been observed 

that this IKKβ, IKKα, NEMO complex can activate NF-κB complexes that are inhibited by 

unprocessed p105, such as p105:RelA or p105:c-Rel dimers.11-13 In all such canonical signaling 

it has been shown that IKKβ and NEMO are essential for pathway activation while IKKα 

appears to play more of a supporting role.14 
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 6 

 

In so-called noncanonical NF-κB dimers of IKKα are activated by NF-κB inducing 

kinase (NIK) and the activated IKKα dimers then phosphorylate p100 (Figure 1.3). p100 unlike, 

p105 is not co-translationally processed so translated p100 in the cytosol dimerizes, typically 
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with RelB but also with p50, processed p52, and the other Rels. These dimers of unprocessed 

p100 are inhibited by the AnkR in p100 until activated dimers of IKKα phosphorylate p100 and 

signal for its proteolytic processing into uninhibited complexes.15  

Other modes of NF-κB signaling exist but are far less well studied. Among the more 

prominent modes is how homo- and heterodimers of p50 and p52 effect NF-κB pathway 

inhibition (Figure 1.4). Specifically, a transcriptional co-activator, Bcl-3, binds transcriptionally 

inactive NF-κB dimers that contain p52.16 Unlike other Bcl family proteins, Bcl-3 contains a 

TAD which, upon phosphorylation in the nucleus by IKKα or IKKβ, can activate genes which 

had been silenced and lead to oncogenic gene transcription specifically Bcl-3 phosphorylation by 

nuclear IKKs promotes cell proliferation and migration.17  

 

This mode of activations dovetails nicely into a discussion of non-cytostolic modes of 

IKK activity. For decades the study of IKK was relegated to how they are activated and 

assembled to phosphorylate and activate NF-κB signaling (vide supra).10 IKKα has been shown 
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to constitutively translocate to and from the nucleus in an equilibrium that favors cytosolic 

localization.18 However, upon NF-κB pathway stimulation, in particular by TNFα, lymphotoxin 

β, and CD40, IKKα is shifted towards nuclear localization.19 IKKα has been shown to modulate 

histones by phosphorylating histone 3 freeing NF-κB controlled genes and allowing for their 

transcription.20,21 IKKα translocation has been shown to be critical in apoptosis, cell cycle 

progression, and tumor progression in colorectal,22,23 breast,24,25 pancreatic,26 gastric,27 

osteosarcoma,28 and prostate cancers.29 In general IKKα functions in the nucleus by affecting the 

co-translational machinery shifting equilibrium towards the transcription of NF-κB controlled 

genes by phosphorylating and deactivating repressor complexes and phosphorylating and 

activating activator complexes.30  
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Chapter 1.1.3 NF-κB pathway activation 

 

 

A whole host of PRRs, TNFRs, and TLRs can recognize ligands and set of a host of 

cascades that are united by a set of kinases, typically TAK1, which activates the trimeric 

canonical IKK complexes as well as NIK which activates the dimeric noncanonical IKK 

complexes.15 These regulatory pathways are complex and typically function by inhibiting 

ubiquitin ligases that degrade TAK1 or NIK. 
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For example, when TLR4 is activated by LipoPolySaccharide (LPS) it recruits and 

activates MyD88 and TRIF.31 Activation of MyD88 leads to the activation of the IRAK kinases 

the effect of which is the phosphorylation, ubiquitinoylation and proteolytic degradation of 

TRAF6 which itself ubiquitinylates and degrades TAK1. Recruitment of TRIF leads to the 

sequestration of TRAF2/3/ This leads to the activation of TBK1. When TBK1 is not initiating 

IFN signaling, it phosphorylates and leads to the ubiquitinoylation and degradation of RIP1 



 11 

which itself would ubiquitinylate and degrade TAK1. As inhibitory signaling events are reduced, 

TAK1 is allowed to persist in the cytosol which can initiate NF-κB signaling. 

 

In an example of noncanonical NF-κB pathway signaling, TNFR superfamily receptors, 

like CD40, can recruit cIAP to the membrane.32 cIAP, in turn, recruits TRAF3 to the membrane 

and causes its degradation. TRAF3 is predominantly the ubiquitin ligase that’s responsible for 

the degradation of NIK.33 If TRAF3 activity is reduced NIK can also become inhibited by a 

cascade that is initiated by phosphorylation by kinases including TBK1, which is involved in 

activating canonical NF-κB signaling, as well as IKKα itself. This provides a negative feedback 

loop in healthy cells limiting noncanonical NF-κB signaling.34 Which is not a unique feature of 
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NF-κB pathway activity as NF-κB also controls for the expression of IκBs providing for negative 

feedback loops in the case of a transient activating signal, and cyclical activity in the case of 

chronic activating signals.7 

 

Chapter 1.1.4 Physiological consequences of NF-κB related dysregulation 

 

So why do we care about NF-κB? Why is the discoverer of NF-κB apologizing for 

making it so hard to type?2 Why were there more than 25,000 papers published on NF-κB as of 

2006?10 The answer to all of these questions are related to 3 predominant consequences of NF-

κB dysregulation. First, NF-κB controls for immune cell differentiation, thus dysregulation of 

NF-κB can cause aberrant immune cell activity and the development of immune disorders and 

cancer. Second, NF-κB is a key driver in extrinsic inflammation, as observed by the promotion 

of pro-inflammatory cytokines like IL-1β or TNFα, and the intrinsic inflammation pathway, by 

controlling the expression of NLRP3. As such NF-κB is implicated in every inflammatory 

disease from arthritis to multiple sclerosis to obesity. Third, NF-κB has been implicated in every 

stage of tumor development from initiation to metastasis to survival, even angiogenesis. As such 

the study of the NF-κB pathway and NF-κB mediated gene expression has allowed researchers to 

identify mechanisms of pathogenicity and elucidate new targets for therapeutic intervention.  

First NF-κB is a driver in immune cell differentiation. In macrophages activation of PRRs 

in response to pathogen associated molecular patters (PAMPs) or damage associate molecular 

patterns (DAMPs) NF-κB is activating leading to polarization and differentiation to both M1 and 

M2 macrophages.35 This helps drive the differentiation of T cells into Th1 and Th17 cells36 and 

promotes the production of inflammatory cytokines IL-10 and IL-13 which are necessary for 

wound healing.37 Additionally, the signaling through antigen presenting dendritic cells hinges on 

NF-κB activity38 and maturation of CD4+ helper T cells (Th) relies on canonical NF-κB 
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signaling.39 Mice bearing mutations in canonical NF-κB signaling have impaired allergen antigen 

responses.36 Mice bearing noncanonical NF-κB pathway loss of function (LOF) mutations have 

impaired abilities to develop memory T cells and have significantly reduced 

neuroinflammation.40  

With such a profound effect on immune cells it should not be surprising that NF-κB 

pathway dysregulation is at the core of many auto-immune disease phenotypes. These include 

systemic lupus erythematosus,41 severe combined immunodeficiency (SCID),42 combined 

variable immune deficiency (CVID),43 combined immune deficiency (CID),44 anhidrotic 

ectodermal dysplasia with immune deficiency (EDA-ID),45 psoriasis,46 and many more.1. 

If NF-κB is affecting immune cell differentiation and function it should not be surprising 

to see that NF-κB dysregulation also plays a driving role in many inflammatory disorders. 

Canonical47 and noncanonical48 NF-κB dysregulation has been shown to be important for the 

progression and development of rheumatoid arthritis. Inhibition of NF-κB has been shown in 

vivo to ameliorate the effects of the disease.49 Genome wide association studies have shown that 

NF-κB pathway members likely play a role in multiple sclerosis.50-52 Genetic intervention and 

pathway inhibition in murine MS models have shown that NF-κB inhibition reduces the severity 

of MS.53,54 In inflammatory bowel disease (IBD) and Crohn’s disease, NF-κB is constitutively 

active.55,56 Inhibition of the NF-κB pathway, either using inhibitory oligonucleotides57,58 or by 

genetic intervention59 inhibits inflammatory colitis and treats IBD. Noncanonical NF-κB 

inflammatory activity has even been linked to inflammatory metabolic diseases such as type-2 

diabetes60,61 and obesity.62  

Given the link between inflammation and cancer and the importance of inflammation in 

tumor microenvironments63 it should not be surprising that NF-κB is implicated in cancer as 
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well.64 Intuitively this makes sense as inflammatory cytokines, such as TNFα, are pro-apoptotic 

in nature, inducing apoptosis through the TNFR1 associated death domain (TRADD).65 This 

allows for damaged cells in the case of an infection or wound to be destroyed and ultimately 

replaced with a healthy cell. However, healthy cells in an inflammatory environment, such as 

immune cells for example, need to have a mechanism to overcome this pro-apoptotic signal. As 

such, NF-κB, which promotes and responds to inflammatory signaling, also controls for pro-

survival or anti-apoptotic proteins, such as Bcl-XL, to allow healthy cells to survive in 

inflammatory environments. It is not surprising that in cancer, which is characterized by 

abnormal cell survival and inflammation, NF-κB is often over expressed, constitutively active 

and necessary for survival.64 Indeed the NF-κB pathway is associated with tumor initiation66, 

angiogenesis67 and metastasis68 as well. NF-κB activity and mutations have proven critical to 

cancer survival and development in lymphoma, either Burkitt’s,69 Hodgkin’s,69 B cell,70 or T 

cell,71 in breast carcinoma,72,73 colorectal cancer,74 non-small cell lung cancer,75 ovarian cancer,76 

multiple myeloma,77 nasopharengyal carcinoma,78 prostate carcinoma,79 and glioma80 to name a 

handful of cases. This has prompted the community to consider the NF-κB pathway as a target 

for the development of novel anti-cancer therapeutics.81 

 

Chapter 1.1.5 Inhibitors and inhibition of the NF-κB pathway 

 

So, if you’re reading this and you’re thinking ‘why haven’t I heard of a widespread 

commercial direct NF-κB inhibitor?’ A part of this is that the oldest characterized activity of NF-

κB is its inflammatory activity. While chronic inflammation is certainly worth developing 

therapeutics for, consider what would happen if you greatly suppressed NF-κB activity across an 

entire organism for a prolonged period of time. NF-κB controls immune cell differentiation, its 

required for embryonic development, it is necessary for epithelial cell integrity and polarization, 
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completely inhibiting NF-κB chronically is probably not going to be a therapeutically useful 

strategy.  

 

That being said, many anti-inflammatory therapeutics and small molecules do work on 

the NF-κB pathway but as modulators or depressors rather than complete inhibitors (Figure 1.8). 

NSAIDs, such as aspirin (1-1) or ibuprofen (1-2), inhibit COX-2 an NF-κB controlled protein 

that initiates prostaglandin mediated inflammatory signaling. Other anti-inflammatory small 

molecules have been shown to have effect on the NF-κB pathway such as epigallocatechin 

gallate (1-10), eicosapentanoic acid (1-6), curcumin (1-11), and luteolin (1-8). Apigenin (1-9) 

and anarcadic acid (1-3) have been shown to suppress IKK activity. Resveratrol (1-4), for what 

it’s worth, has been shown to inhibit RelA phosphorylation. Epicatechin (1-5) inhibits nuclear 

translocation of RelA. Celestrol (1-7) inhibits DNA binding to NF-κB.82-84 However very 
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specific and potent inhibitors of NF-κB pathway activity have not been developed for chronic 

inflammation. 

 

The importance of NF-κB to cancer development and survival along with the observation 

that 20% of cancer is strongly linked to underlying inflammation,85 suggest that NF-κB might be 

an excellent target for cancer therapy.86 Additionally a chemotherapeutic use of NF-κB would be 

an acute treatment which would avoid some of the consequences for long term pathway 

inhibition. As such IKK, which is 1) a kinase and 2) a central regulator and activator of NF-κB 

signaling, has been a target of intensive research into therapeutic inhibition. As of 2010,86 BAY-

11-7082 (1-14),87 BAY-11-7085 (1-15),87 MLN120B (1-12),88 BMS-345541 (1-16),89 SC-514 

(1-13),90 and CHS828 (1-17)91 had been developed as IKK inhibitors both for use alone and in 
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combination with other therapies. Unfortunately, none of these inhibitors have been approved for 

therapeutic use.92  

 

Other modes of potential NF-κB pathway inhibition by small molecules have been 

explored, most prominently protease inhibitors which prevent IκB degradation and hopefully 

induce cell death. One such example, bortezomib (1-18), is actually mild enough that it can be 

used for treatment of myeloma alone93 or as a part of a combination therapy in a wide variety of 

tumor cells in model studies94 and clinically in breast,95 head and neck cancers,96 and non-small 

cell lung cancers.97 Broad spectrum proteasome inhibitors, such as MG132 (1-19),98 are too 

general to be useful as a potential therapeutic and though new proteasome inhibiting molecules 

such as NPI-0052 (1-20) and CEP-18770 (1-21)92 have been investigated alone and in concert 

with other therapeutic agents none have become approved therapeutics. To make matters more 

complicated the lone FDA approved NF-κB protease inhibitor, bortezomib, has demonstrated 

potential as an NF-κB activator, of all things.99  

Other interesting modes of inhibition include peptide-based inhibitors. Mapp and 

coworkers produced a synthetic loop peptide that inhibited canonical NF-κB signaling by 
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interfering in the canonical IKK complex.100 SN-50 is a synthetic analog to the nuclear 

translocation domain of p50 and outcompetes native p50 for translocation increasing the 

sensitivity of ovarian cancer to cisplatin treatment.101 A peptide that mimicks the NEMO binding 

domain reduces tumors in a canine model of relapsed diffuse B cell lymphoma.102 Though it 

bears saying that peptide based therapeutics suffer from clinical challenges including cell 

permeability, oral bioavailability and poor plasma half-lives.103 Similarly excellent viral based 

gene therapy approaches for NF-κB pathway inhibition have been explored but there have been 

as of yet no examples of clinically relevant gene therapy much less in the NF-κB space.104,105  

If I would summarize my thoughts, based on the literature record, I have reviewed, I 

would say that the NF-κB pathway is important to understanding biochemical underpinnings to 

disease states. It is undeniable that inhibiting the NF-κB pathway can have beneficial effects in 

disease models. However, NF-κB controls for its own inhibition and in many cell types is 

protective rather than destructive. Existing small molecule inhibitors with well characterized 

activities have proven ineffective therapeutics. Small molecules that are efficient therapeutics, 

such as 1-18, have a confluence of effects, inhibiting NF-κB in some ways but promoting it in 

others.  

This seems like a promising area of research and potential benefit. The discovery of 

molecules that perturb the kinetics of the pathway could be beneficial to patients. However, the 

current popular modes of inhibition, general proteasome inhibitors, and signaling kinase 

inhibitors are not effective therapeutic strategies. Basic and academic research that is conducted 

in the space of NF-κB pathway inhibition or modulation might be best spent in less traditional 

areas such as protein-protein interactions, targeting protein DNA complexes, effecting NF-κB 
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co-transcriptional machinery, or effecting NF-κB gene related histone modulation. One 

potentially untapped resource in this regard is the area of natural product chemistry. 

 

Chapter 1.2 Michael accepting enones as bioactive molecules and covalent inhibitors 

 

 

The first thing one should consider when working with electrophilic enones is that they 

are Michael acceptors, or in a more chemistry-oriented vernacular, they are capable of 

undergoing conjugate addition by nucleophiles (Figure 1.11). This is particularly important in 

biological contexts as thiols are suitably soft nucleophiles to undergo, often functionally 

irreversible, addition to an enone. This means that cysteine thiol, and every protein with a solvent 

exposed cysteine residue, can be covalently labeled by any molecule that contains a suitably 

reactive enone.  

This has caused enones to be considered by hit-to-lead medicinal chemists a PAIN (Pan 

Assay INterference compound).106 Practically this means that enones are overrepresented in 

screening efforts as low micromolar assay hits which often cannot by improved by SAR as they 

are not the result of specific interactions. Enones are not alone in this activity, catechols, 

quinones, peroxides, epoxides, and orthophenolic Mannich bases are also PAINs, to name a few.  
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Even natural product scaffolds are not immune to the designation of being a PAIN, 

despite being presumably evolved to interact with a specific or narrow subset of targets.107 For 

example epigallocatechin gallate (1-10) continues to be and has frequently been published to be 

bioactive and has even been the subject of many clinical trials all without success.108 Curcumin 

(1-11) has been considered by some as a “privileged biological scaffold” however close 

consideration of its chemical properties indicates that it is redox active, chelates metals, and 

irreversibly binds nucleophilic cysteines all in a scaffold not predisposed to make specific 

interactions with specific targets. It is certainly these PAIN effects that make 1-11 so well 

studied and not a function of privileged interactions with a specific subset of targets.109-112 

Molecules like resveratrol (1-4) similarly are PAINs as they interfere with membrane integrity 

causing very nonspecific signaling events.113 Celastrol (1-7) similarly has been shown to provide 

a positive result in 61 of 216 primary screens and 29 of 62 follow up screens.114  

If you, the reader, have just finished reading the above review of compounds shown to 

inhibit the NF-κB pathway you’ll notice the above list of commonly occurring PAIN-ful natural 

products are well represented in the NF-κB literature. In fact, nearly all of the molecules shown 

to be anti-inflammatory are PAINs. Suggesting perhaps that the NF-κB pathway is particularly 

susceptible to the effect of these molecules. 

So the questioned begged, is whether it is fruitless to consider any PAIN containing 

molecule for discovery of novel therapeutic indices or for the discovery of probe compounds. 

Perhaps not, take artemisinin (1-28) which has more than a hundred suggested biological 

targets115 but has nevertheless won the Nobel Prize in Medicine for its clinical ability to treat 

malaria.116 There has even been a successful, if truly heroic, SAR campaign around 1-28 to yield 

a second generation peroxide malaria treatment OZ439 (1-29).117 Another such success story is 
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of rohitukine (1-30) which, despite containing a reactive enol moiety as well as phenolic groups 

known to be disruptive to cell membranes, was elaborated by medicinal chemists to flavopiridol 

(1-31) an FDA approved treatment for acute myelogenous leukemia.118  

 

How are we, the scientific community, then to know whether a literature report of an 

isolated natural product, that contains a PAIN moiety is worth the effort to target for synthesis 

and study? How are we, chemical biologists, supposed to be able to glean from a 20th century 

report of low micromolar activity of a molecule that contains a PAIN moiety if it is a valuable 

molecule to include as a positive control in our assays? Well, recently two separate groups 

concurrently reported on a systematic analysis of putative PAIN-moiety containing 

molecules.114,119  

In these, nearly identical, reports the authors computationally analyzed data from publicly 

available PubChem and PAINS Alert databases. They then looked for 1) if compounds flagged 

as being PAINs are statistically more likely to cause PAIN and 2) what motifs if any are 
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routinely flagged as PAINs without displaying appreciable Pan Assay INterference. In their 

analysis they found that the median hit rate for compounds excluded from screening libraries for 

PAIN structural alerts is 4 per 100 assays conducted, compared to 2-3 per 100 assays for 

compounds lacking PAIN alerts. 75% of PAIN alert compounds were active in fewer than 7 

assays per 100 conducted compared to fewer than 5 per 100 for non-PAIN alert compounds. 

These results are statistically significant, certainly but if the expected hit rate is on the order of 3 

‘hits’ in 100 assays and PAIN molecules are providing 1 additional false positive on average is 

that practically relevant.  

When the authors examined specifically Michael acceptors the results were quite striking. 

They found that in a database of 463 Michael acceptors across 1.5% had been identified as a hit 

in a luciferase assay, 0.8% had been identified as a hit in a β-lactamase assay, and 2.2% had been 

identified as hits in an assay with a fluorescent tag read out. Across all assays they identified 

Michael acceptors generated a 2.1% hit rate. So why do Michael acceptors have a bad reputation 

as a PAIN alert? Perhaps it is because in the same analysis they found that 16 of 483 PAIN alert 

Michael acceptors are active in >10% of all primary screens they are reported in suggesting that 

when a Michael accepting compound is promiscuous it is quite promiscuous. 
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Recently, Michael accepting covalent inhibitors have been validated as a viable approach 

for the development of therapeutics with the approval of afatanib (1-32), ibrutinib (1-33), and 

osimertinib (1-34) which were developed to modify specific cysteines on specific proteins 

(Figure 1.13). The challenge then, it seems, is to identify when a Michael acceptor is too 

promiscuous for utility and when it is slow to react enough that it can be targeted at a specific 

cysteine reside. 

This challenge is heightened when the kinetics of covalently labeling an enone are 

considered. Independent of the effect of thermodynamics on observing Michael additions, this is 

a bimolecular reaction, identical concentrations of both enone and nucleophile are necessary to 

efficiently compare the rates of reactions from two different reports of the reactivity of enones.120 

Generally, however, it can be said that rate of thiol additions are as follows enals > enones > 

acrylates > acrylamide > acrylic acids. Outside of these dimensions, electronics and sterics can 

play an outsized role in the reactivity of any given Michael acceptor. 
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The natural product, α,β unsaturated lactone kozusamycin A (1-35) displays quite potent 

activity against HPAC cells, 0.08 nM, suggestive of specific activity (Figure 1.14). When the 

steric bulk around the enone at the γ position is increased the molecule, 1-36 is more potent 

against HPAC cells, 0.04 nM, perhaps as a result of less off-target activity. However, there is a 

limit to this observation, a β methyl substituent with no, 1-37, one 1-38, or two 1-39 γ methyl 

groups trends towards less activity against HPAC cells (0.31, 180, 16000 nM respectively).121 

This is likely a result of the enone losing affinity for and/or reactivity towards its cellular targets. 
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The orientation of the enone is also pertinent to its reactivity. Consider the general 

schemes highlighted in Figure 1.11. In a Michael addition such as Figure 1.11A the approaching 

thiol nucleophile is activating the carbonyl enhancing its electrophilicity. One might expect that 

in complicated molecular scaffold the ability to conform to an architecture like 1-22 would relate 

to the rate of Michael additions. This can, indeed, be observed in literature report of Michael 

additions on sesquiterpene lactones (Figure 1.15). Researchers studying the addition of cysteine 

to elephantopin (1-40) have shown that the exocyclic Michael acceptor (red) reacts with cysteine 

at a rate equivalent to iodoacetamide, the a cyclic Michael acceptor (orange) reacts 12 times 

slower with cysteine than the exocyclic Michael acceptor and they did not observe addition to 

the endocyclic Michael acceptor at all in the time scale of their NMR studies.122 This 

corroborates the hypothesis that confirmation is relevant to reactivity. The exocyclic Michael 

acceptor (red) is locked in a more reactive confirmation, the acyclic Michael acceptor (orange) 

can transiently adopt a more reactive confirmation, and the endocyclic Michael acceptor (green) 

is locked in a less reactive confirmation.  

These results are of critical importance to our work. As described above any number 

of PAINs have been shown to bind or inhibit the NF-κB pathway. Even more complex natural 

product scaffolds than BAY-11-7082 (1-14) have been observed to bind and inhibit NF-κB 

subunits. For example, parthenolide (1-41)123 and ent-kaurene diterpenoids such as eriocalyxin B 

(1-42)124 have been shown to bind specific cysteines in NF-κB (Figure 1.16). It should be noted 

that each of these molecules bears an exocyclic Michael acceptor (red) similar to the exocyclic 

Michael acceptor in 1-40. Specific rate measurements have not, to my knowledge been done, but 

it would not surprise me if these structurally similar enones were similarly reactive towards 

iodoacetamide as well, which is to say completely unselective. It should be noted however that 
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1-42 also possesses an endocyclic Michael acceptor (green) as well. The relative reactivities and 

the importance of these Michael acceptors to specific protein targets have not been 

elucidated.120 Limited studies in the area of eriocalyxin 1-41and similar ent-kaurene biological 

activities have been towards their general cytotoxicity and limited research has suggested that 

reducing more reactive exocyclic Michael acceptors reduces the general cytotoxicity of 

these molecules but they retain specific activity.125 Additionally, prodrug strategies have been 

developed to mask reactive Michael acceptors as tertiary amides which can, slowly in biological 

systems, revert to the reactive enones. This tends to improve the drug like properties of otherwise 

over reactive molecules.126 

 

It is our opinion that these observations warrant further study to help set the record 

straight in the natural product literature around the bioactivity of these terpene natural products. 

We hope that with synthetic access to these molecules we can differentiate between pan assay 

inhibition and selective, likely irreversible, inhibitory activities of these endocyclic Michael 

acceptors.  



 27 

In the following chapters you will read about our efforts towards the synthesis of 

pharbinilic acid, a putative NF-κB pathway inhibitor, our discovery of a gibberellin bearing an 

endocyclic Michael acceptor with a high selectivity profile against cancer derived cell lines and a 

unique phenotypic activity against the NF-κB pathway, our synthesis of a common intermediate 

to more than 600 ent-kaurene diterpenoids, to enable the direct comparison of Michael acceptor 

reactivity and selectivity, and the development of a synthetic method to take advantage of 

Michael acceptors to promote specific aldol reactions for the purpose of synthesizing diterpene 

alkaloids. 
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Chapter 2 Gibberellins as Inhibitors of the NF-κB Pathway 

 

Chapter 2.1 Introduction  

 

Chapter 2.1.1 Gibberellic acid (2-1) isolation and biosynthesis 

 

Gibberellic acid (GA3, 2-1, Figure 2.1) is among the most well studied and characterized 

terpenes. Its roots go back to the early 1800’s, in 1809 a semiliterate farmer, Konishi, dictated a 

book on farming and described a disease prevalent in rice farming. He described a disease in 

which a single plant grows much taller, thinner and faster than its neighbors which he named 

bakanae or “foolish seedling.”1 From that time forward significant effort was undertaken in 

identifying the cause of this disease. It was not, however, until 1929 when Kurosawa found that 

only the extract from the growth media of a disease-causing fungus was necessary for causing 

the disease phenotype.2 This caused researchers to start searching for a small molecule that was 

responsible for the disease and in 1938 Yabuta and Sumaki isolated two crystalline compounds 

both of which could cause the disease phenotype.3 It was not until the 1950’s that researchers in 

the US and Britain joined the field of gibberellin research.4 The application of cutting edge 

crystallographic techniques were finally able to confirm some of the competing structural 

hypotheses by X-ray chromatography.5 The field of study of gibberellins have flourished ever 

since owing to their ability to promote plant growth (vide infra). 



 34 

 

Though originally isolated from the extract of fungi, gibberellins are synthesized by 

essentially all higher plants. Though at least 136 gibberellins have been isolated from plants only 

a select few appear to be active as growth hormones, the most prevalent being GA1 (2-2), GA4 

(2-3) and GA3 (2-1).6 The rest appear to be biosynthetic precursors and are typically isolated in 

much higher concentrations than the active hormones themselves.  

 

Like most diterpenoids, the gibberellin diterpenoids are biosynthetically derived from the 

linear C20 geranylgeranyl pyrophosphate (2-7, GGPP) whereupon first GGPP (2-7) is cyclized to 

afford a bicyclic intermediate, ent-copalyl pyrophosphate (ent-CPP, 2-8) (Figure 2.2).7 These 
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intermediates can then differentially derivatized by oxidations, reductions, cyclizations, 

acetylations, and glycosylations to furnish a variety of structurally unique diterpenoids.  

The same enzyme that promotes the formation of ent-CPP (3-7), (-)-copalyl diphosphate 

synthase, also referred to as ent-kaurene synthase, can promote the subsequent functionalization 

to ent-kaurene (2-10) via a similar cationic rearrangement (Figure 2.3).8 This core structure is 

then subjected to a series of subsequent oxidations by ent-kaurenoic acid oxidase, first to ent-

kaurenoic acid (2-11) then to ent-7α-hydroxykaurenoic acid (2-12). Oxidation of this alcohol 

proceeds with ring contraction to 2-13 which is oxidized once more to GA12 (2-6) which is the 

progenitor of all other gibberellins.6 In the biosynthesis of gibberellic acid (2-1) and similar 

gibberellins the first step is oxidation at C13 by, the creatively named, gibberellic acid 13-oxidase 

providing GA53 (2-14). One remarkable step in the biosynthesis of 2-1 is the loss of C20 which 

proceeds by oxidation and loss of C20 as carbon dioxide ultimately yielding GA20 (2-16).9 

Finally, gibberellic acid 3-oxidase oxidizes 2-16 to an olefin providing GA5 (2-17) and then one 

more oxidation yields gibberellic acid (2-1). 
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Chapter 2.1.2 Gibberellic acid (2-1) synthesis 

 

Synthetic interest in gibberellic acid (2-1) began as soon as its structure was elucidated 

but it was not until 1978 that the synthesis was completed, as a single enantiomer by Corey and 

coworkers.10 This synthesis relied on an oxidative dearomatization to form 2-19 followed by a 

Diels Alder to 2-20. The most challenging sequence of steps involves closing the highly strained 
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C/D ring. Corey and coworkers manage this task by a titanium mediated radical ring closure to 

form 2-22. Oxidatively opening the B ring cyclohexene followed by aldol condensation and 

olefination lead to a second Diels Alder precursor 2-23. The Diels Alder did close the A ring to 

2-24. Until this point the sequence had been racemic but Corey and coworkers were able to 

couple the C13 hydroxyl group to an amino acid to enable a stereo-resolution which yielded a 

single enantiomer which the elaborated to 2-1 in a total of 14 steps from 2-24. Though an 

impressive undertaking, 40 steps relying on a stereo-resolution that loses half of the mass is the 

most efficient way to gain access to 2-1. 

 

Though gibberellic acid (2-1) has been synthesized since, by Yamada,11 Mander,12 and 

twice by Corey,13 none of these synthetic approaches, the shortest being 31 steps, have improved 

upon the original to the point of allowing for easy synthetic access to 2-1. In large part this is due 

to the challenge of constructing and working with the C/D ring bicycle. In particular, the 

incredible strain inherent in the cis-boat configuration provides a strong thermodynamic driving 

force that enables a Wagner-Meerwein rearrangement in which the C/D ring olefin can react with 

even mild electrophiles, such as Lewis or Bronstead acids (Figure 2.5).10 Furthermore it has been 
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shown that even in neutral water the bridging A ring bicycle can eliminate to form gibberellenic 

acid (2-26).14 In more acidic media, presumably upon eliminating water from the A ring of 

gibberellenic acid (2-26), the A ring can decarboxylate and aromatize to provide allogibberic 

acid (2-4) and H9-epi-allogibberic acid (2-27). These products form in a mixture favoring 2-4, 

likely due to the release of ring strain in the C/D ring.15 Taken together these side reactions 

prompted E.J. Corey to label it as a “singularly diabolical placement and density of 

functionality.”16  

 

Gibberellic acid (2-1), despite these challenges inherent in its synthesis, is a valuable 

target. This is due to its myriad of biological activities (vide infra), chief among those is its 

ability to act as a plant growth hormone and promote healthy plant growth. Especially with the 

rise of organic farming practices access to 2-1 and related gibberellins is of paramount interest to 

the agricultural community. Shu and coworkers first addressed this challenge in a scalable way 

in 1959.17 They showed that in a mixture of glucose and galactose that they could produce 2-1 at 
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concentrations of 880 mgL-1 on bench top scale but more importantly 650 mgL-1 in a 1000 gallon 

reactor. This represented a production of 11.8 kgh-1 a feat that synthetic methods would struggle 

to match. This initial entreaty is hardly a unique occurrence, in 1986 Lonsane and Kumar 

reported a solid state fermentation process that could produce 2-1 for half the cost of liquid 

fermentation at a rate of 150m3y-1.18 In 1997 Barrios-Gonzalez and coworkers reported that by 

using low density polyurethane as a support they could increase the efficiency of the procedure 

developed by Losane and Kumar by increasing the extraction efficiency from the solid state 

growth medium.19 In 2000 Escamillia and coworkers used modern bioreactors and 

computationally driven multivariant analysis to more than triple the efficiency of existing 

methods, up to 3.9 gL-1.20 More modern efforts take a green chemistry approach and show how 

food waste can be used as feedstock in bioreactors to produce 2-1 including coffee husks,21 and 

citric pulp.22 With all these advancements in the production of gibberellic acid by fermentation it 

is available in bulk for $180/kg. 

 

Chapter 2.1.3 Gibberellic acid (2-1) biological activity 

 

Historically, commercially, and most famously gibberellins function as plant growth 

hormones. The first and most obvious of its activities are the way that it promotes stem 

elongation. From the very first report in 1809 farmers characterized gibberellins by the spindly 

growth of affected rice plants, called bakanae.1 The next 150 years of phenotypic study of the 

effects of gibberellins took place in Japan and are nicely highlighted in a review by Yamake and 

Stowe.23. It has long been known that gibberellins promote growth in plants afflicted by 

dwarfism.24 This is likely due both to the ability of gibberellins to promote cell division25 and 

also their ability to promote cell elongation in plant stems.26 In plant physiology there is a factor 

that promotes stem growth, auxin, and it was long been debated the interplay between auxin and 
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the gibberellins. In 2001 Reid and coworkers put the controversy to bed by identifying that auxin 

effects cell elongation by promoting gibberellin biosynthetic pathways.27  

The second most well studied physiological effect of gibberellins are in their role in seed 

germination. Application of gibberellins to plant seeds accelerate the germination even in seeds 

that typically require photactivation.28 In cereal crops, such as rice, wheat, and barley, 

germination is chiefly controlled and associated with production and secretion of α-amylase 

which hydrolyzes macromolecules in the seed aleurone providing nutrients for the growing 

seedling. Even in 1940 researchers had determined that gibberellins induced the production and 

secretion of α-amylase in barley seeds.29 In 1976 researcher showed that gibberellins increase the 

amount of mRNA transcripts of α-amylase.30 It was not until 1995 that researchers were able to 

elucidate that gibberellins regulate the expression of MYB a transcription factor that binds the α-

amylase gene promoter region and promotes the transcription of α-amylase.31 Of course together 

these observed biological effects beg the question how gibberellins control the transcription of 

particular genes. 

At first it was postulated that gibberellins might bind a G protein coupled receptor 

(GPCR) and as a result control for the expression of genes.32 This hypothesis is precedented in 

part due to the inability of bioactive gibberellins to passively cross the cell membrane. However 

more recent data sheds doubt on whether plants have any GPCRs at all.33 A more attractive 

hypothesis presented itself with the discovery of a nuclear receptor GID1 that binds and is 

activated by gibberellins.34 Subsequent X-ray crystallography provides structural evidence that 

upon binding physiologically active gibberellins GID1 closes around the small molecule with a 

flexible N-terminus acting as a lid.35 The effect of this conformational change is to allow GID1 

to bind a family of proteins that contain DELLA domains resulting in their polyubiquitinoylation 
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and degradation (Figure 2.6).36 Focus on the biological activity has turned, therefore, to the 

activity of DELLA proteins. Among the best characterized activity of DELLA proteins are as co-

transcriptional regulators and they’ve been found to both promote and repress a wide variety of 

gene expression though a two second sound bite would be that DELLA proteins inhibit cell and 

plant growth.37 A non-transcriptional affect of DELLA has also been observed as an inhibitor of 

microtubule assembly, which also contributes to their net anti-cell proliferative effects.38  

GID1

GA

GID1

GA

DELLA

GID1

GA

DELLA

DELLA
degradation

 

In animals, gibberellins are often thought of as being safe. Even in long term exposure 

experiments rats don’t have significant negative trends. Though one experiment from the mid 

90’s indicated the potential for an increase in cancer incidence.39 Longitudinal studies conducted 

later show no increase in cancer and mild, non-statistically significant changes in oxidative stress 

response factors.40 Additional research on teratogenicity in frog embryos show that prolonged 

exposure to 2-1 at concentrations of 1.3 gL-1 can cause 10% increase in incidents of birth 

defects.41  

Some efforts have been undertaken in the area of cancer research. Researchers at Yunan 

University in China have synthesized a small library of gibberellins that they demonstrated have 
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activity against a variety of cancer derived cell lines.42 In particular GA-13315 (2-28) was shown 

to have 2.9 µM IC50 against HT29 cells, as well as inhibiting topoisomerase I at 8 µg/mL. It 

should be noted that despite possessing both a more reactive exo-cyclic, and a less reactive endo-

cyclic Michael acceptor, this molecule was somewhat selective killing all tested cell lines at 40-

60 µM. This 20-fold selectivity was enough to convince the researchers to conduct studies in 

mouse xenografts in which they showed that 2-28 reduced A549 tumor size at 19 ± 7.6 µM over 

3 days.43 They also showed that this reduction in size was a result of mitochondrial apoptosis and 

that this was characterized by a decrease in cellular concentration of Bcl-2, a pro-survival 

protein, controlled by NF-κB, that inhibits apoptosis. 

 

Of particular inspiration to us is the research conducted by Koehler and coworkers that 

showed that gibberellins might serve as selective binders and inhibitors of NF-κB.44 They 

identified that commercial gibberellic acid (2-1) bound to p50 of NF-κB by small molecule 

microarray (SMM) and confirmed this initial hit by surface plasmon resonance (SPR). However, 

these results were somewhat inconsistent, in particular when they HPLC purified 2-1 they found 

that the activity of 2-1 in their SPR and inhibition assays was remarkably reduced. When they 

investigated further they identified that allogibberic acid (2-4) was a significant contaminant in 

commercial gibberellic acid (2-1) and that 2-4 is a significantly more potent binder of NF-κB 

p50 as determined by SPR. 
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Chapter 2.1.4 Pharbinilic acid (2-5) isolation and biological activity 

 

Pharbinilic acid was isolated shortly before I began my thesis work from the seeds of 

Morning Glories.45 From 2 kg of dried seeds they isolated 6 mg of 2-5. This was of significance 

to the gibberellin academic community because pharbinilic acid (2-5) is likely intentionally 

produced by plants and to date the only other isolated aromatic gibberellins are thought to be 

degradation products of other gibberellins. Though its physiological purpose remains unknown 

the isolation chemists tested it against a variety of cell lines and found modest activity against 

several of them. Additionally, they looked to see if 2-5 inhibited LPS driven inflammatory 

signaling and showed that it did. Taken together, these two physiological activities, as well as its 

structural homology to 2-4, a known direct binder of NF-κB indicated to us that pharbinilic acid 

(2-5) might be a binder and inhibitor of the NF-κB pathway. 
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Chapter 2.2 Synthesis and biological evaluation of pharbinilic acid (2-5) 

 

 

In light of our interest in studying and inhibiting the NF-κB pathway and the limited 

global supply of pharbinilic acid (2-5) we chose to target pharbinilic acid (2-5) for synthesis and 

study (Figure 2.9A). We thought that if we could disconnect the furan ring of pharbinilic acid it 

would take us back to an aromatized intermediate 2-29. Key precedent from Hergenrother and 

coworkers showed that gibberellic acid (2-1) could be treated with Bronstead acids at 

intermediately elevated temperatures which provide allogibberic acid (2-4) and epi-9H-

allogibberic acid (2-27).15 We hypothesized that if we first oxidized the A ring of 2-1 we could 

conduct a similar acid promoted aromatization decarboxylation sequence which would provide 

oxidized allogibberic acids 2-34 and 2-35. 
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For solubility and ease of purification we began our synthesis by methyl esterifying to 2-

36. Next we had to oxidize the A ring to enone 2-30 (Figure 2.10A). This was not a trivial 

transformation, significant side products were observed with IBX and activated DMSO based 

oxidations. Manganese dioxide provide poor and inconsistent yields of 2-30. Dess-Martin 

periodinane worked well but the expense and risk of preparing the reagent on scale caused us to 

switch to a catalytic Griffith-Ley oxidation. Next we tried our key disconnections strategy. 

However, no matter which Lewis or Bronstead acid we tried we were unable to observe any 

aromatized product. Instead, we did occasionally observed C/D ring epimerization product 2-37. 

We then turned to reactions reported without spectral information from the 1970s that suggested 

that oxidized gibberellins could be aromatized in low (3-15%) yields.46 We were able to optimize 

this transformation in flow all the way to 45% yield however the product was the undesired H9-
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epimer 2-38. Next we reimagined this transformation using a transition metal catalyzed 

approach. We thought that palladium might undergo oxidative addition into the allylic A ring 

lactone. This intermediate would be unable to undergo a syn 1,2-beta-hydride elimination to 

form a gibberellenic acid like intermediate, perhaps avoiding a thermodynamic protonation that 

would lead to epimerization at H9. While our initial results yielded the desired aromatic A-ring 

and avoided H9 epimerization it proceeded with Wagner-Meerwein rearrangement of the C/D 

ring 2-39. However, by reducing the temperature to 80 °C we were able to suppress this thermal 

rearrangement providing the desired intermediate 2-29.  

 

We had hoped to take advantage of recent precedent involving an oxidative Mizorki-

Heck coupling (Figure 2.11).47 However when we constructed substrate 2-42 we found that not 

only did the reaction conditions epimerize the C/D ring but the furan ring closed with 

decarboxylation, perhaps upon hydrolysis of the methyl ester by advantageous water. Several 

solvents, silver sources and palladium conditions were evaluated and whenever the benzofuran 
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ring was closed it closed only with decarboxylation. Additionally, no conditions could be found 

that avoided the C/D ring epimerization. 

 

This forced us to reevaluate our synthetic strategy (Figure 2.12). We had originally 

wanted to avoid pre-functionalizing the A ring phenol because we had feared that any 

electrophilic aromatic substitution would also rearrange the C/D ring. Fortunately, we found 

conditions that provided the desired bromo-phenol 2-44 as the major product, though the 

remaining mass balance was C/D ring epimerization and doubly brominated A ring phenol. 

Despite the challenging nature of what might be described as a 5-endo trig cyclization we were 

able to treat 2-45 under palladium catalyzed conditions that provided 2-46 in good yield. Finally, 

we were able to saponify bismethyl ester 2-46 with trimethoxysilane to provide pharbinilic acid 

(2-5) in 7 total steps and 19% overall yield. 
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Owing to our interest in pharbinilic acid (2-5) as an NF-κB pathway inhibitor we decided 

to analyze our synthetic 2-5 and all synthetic gibberellins as NF-κB pathway inhibitors. To test 

this, we developed a Luciferase reporter gene assay in which HeLa cells were transiently 

transfected with a plasmid that contained a Luciferase gene driven by six NF-κB response 

elements (Figure 2.13). Though we observed no activity against the NF-κB pathway by 2-5, 

perhaps due to poor cell permeability, the bismethyl ester 2-46 did exhibit some pathway 

inhibition, as did aryl bromide 2-45. However, enone 2-30 showed remarkable activity against 

the pathway. We were, initially, nervous about 2-30 as it contained an enone which we thought 

might be a pan assay interfering compound (PAINS, see Chapter 1.2).48 So we followed up on 

this reporter assay hit by looking at the ability of 2-30 to inhibit the transcription of NF-κB 

controlled genes. We were pleased to see by qT-PCR that enone 2-30 specifically inhibited the 

transcription of NF-κB controlled gene expression, specifically MIP3α. 
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We were pleased to publish our efforts towards the synthesis of pharbinilic acid (2-5) as 

well as our initial biological evaluations and discovery of a new NF-κB pathway inhibitor 2-30 

in 2015.49 Since the time of publication we have been studying the mechanism of action of enone 

2-30 and related synthetic gibberellins, details of which are to follow. 

 

Chapter 2.3 Evaluation of gibberellins as NF-κB pathway inhibitors 

 

Chapter 2.3.1 Structure Activity Relationship (SAR) studies—synthesis and NF-κB pathway 

inhibition 

 

Excited by the initial results around enone 2-30, we were first interested in what 

structural elements are key to the activity of 2-30. In order to better accommodate the throughput 

of identifying the inhibition against the NF-κB pathway we switched from our initial assay 

design of transiently transfected HeLa cells stimulated by IL-1β to stably transfected HEK-293T 

cells stimulated by TNFα. Additionally these experiments were conducted at the Koch 

Integrative Cancer Research Institute at MIT. First, we thought that an easy point of 

differentiation would be the B ring carboxylic acid, so we esterified or formed a peptide bond 

with a small collection of alcohols and amines (Figure 2.15). We found that none of these 

coupled molecules were active but just like 2-36 is inactive and 2-30is we thought that by 
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oxidizing the A ring alcohol to an electrophilic enone we might recover the activity. Though that 

was true we observed less activity in all cases than with the methyl ester and also less selectivity 

as observed by some level of toxicity at concentrations about 50 µM. An important set of 

molecules are terminal alkynes 2-53-56 as these will allow for further biotinylation and analysis 

by pulldown studies (vide infra).  

 

Our next area of SAR exploration took advantage of our ability to very selectively form 

9β-H aromatic gibberellins. This was especially true in light of the work of Koehler and 

coworkers who indicated that allogibberellic acid would be a good binder and inhibitor of the 

NF-κB pathway. In our initial studies on IL-1β stimulated transiently transfected HeLa cells we 

observed no pathway inhibition by 9α-H allogibberellic acid (2-4). We thought there might be 

something about the difference between the two assays and that the commercial allogibberic acid 

used by Koehler and coworkers may have been contaminated by 9β-H allogibberellic acid (2-27). 
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We found that by triflating and proto-demetallating 2-29 we could form 9β-H allogibberellins 

and directly compare their activities to the more readily accessible 9α-H allogibberellins. 

 

Another possibility and opportunity with regards to studying the NF-κB pathway 

inhibition is that the C/D ring epimer of the gibberellins might possess unique activities. While 

non-electrophilic allogibberellins, regardless of H9 epimerism, 2-59-62, were not found to be 

active, the 9β-H epimer was found to be active when it bears a C/D ring Michael acceptor 

(Figure 2.17).  
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With the indication that a C/D ring enone might provide activity in our NF-κB luciferase 

assay we also constructed the unepimerized C/D ring allogibberellins (Figure 2.18). Riley 

oxidations could provide epimeric alcohols one of which would cyclize to form a new lactone 

the other of which we could oxidize to a new C/D ring enone which we found to be active in our 

pathway though the 9β-H epimer was found to be more active. 

 

Excited about this potential we constructed C/D ring enones from phenol 2-29 as well as 

2-30 (Figure 2.19). Of particular interest was the difference in activities between 2-76 and 2-30. 

Though possessing nearly identical structural features to each other 2-76 was found to be less 

active perhaps because the C/D ring enone is more reactive and less selective functionally 

lowering the cellular concentration of 2-76. This is also interesting in contrast to the biological 

activities reported of GA-13315 (2-28) which also possesses both an endocyclic A ring enone 

and an exocyclic C/D ring enone and is shown to be quite active against cancer both in cultured 

cells and in xenografts. 
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Epimerization of the C/D ring juncture using electrophilic halogenating reagents can 

provide unique gibberellins with and without an A ring enone (Figure 2.20). It seems that C/D 

ring epimerization in this manner did not provide for a more active analog to 2-30.  

 

Chapter 2.3.2 Structure Activity Relationship (SAR) studies—HTS Cell Titre Glo 

 

After assessing whether or not our synthetic gibberellins were inhibitors of the NF-κB 

pathway. We were interested in whether pathway inhibition would have any therapeutic 

relevance, so we conducted a high throughput screen (HTS) Cell Titre Glo cell viability in a 

wide variety of cancer and non-cancer derived cell lines. 28 different cell lines were assayed 

against full dilution curves of 29 different synthetic gibberellins, duplicate curves per plate, 

duplicate plates per day, duplicate days. A hierarchical clustering of all of the data against the 

assay positive control, MG-132, showed a clustering of all NF-kB inhibiting gibberellins both 

with each other and with the positive control (Figure 2.21).  
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Analysis of individual results show that gibberellins that possess a C/D ring enone are 

typically cytotoxic against all assayed cell lines. Interestingly, enone 2-30 was quite specific with 

thousand fold selectivity for cells derived from a stage III breast carcinoma against healthy 

fibroblast derived cells (Figure 2.22). In fact, enone 2-30 was found to be quite toxic to a wide 

variety of inflammatory cancer derived cell line but was not generally toxic to non-cancer 

derived cells and some non-inflammatory cancer derived cell lines. These results provoked our 

interest in the molecular mechanism of action (MoA) of enone 2-30 in cells. 
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Chapter 2.3.3 NF-κB nuclear translocation studies—highlighting a potential MoA 

 

As describe in chapter 1 the NF-κB pathway is tightly regulated by controlling the 

cellular compartmentalization of transcriptionally active NF-κB. In particular the pathway is 

characterized by the phosphorylation, ubiquitinoylation, and proteolytic degradation of an 

inhibitory complex (IκB) that keeps transcriptionally active NF-κB subunits locked in the 

cytoplasm. Upon degradation a nuclear localization signal on transcriptionally active NF-κB is 

revealed and the proteins are actively transported to the nucleus where they can then bind DNA 

and control for the expression of target genes. Thus, identifying whether NF-κB family members 

are being nuclearly translocated can help identify if a pathway inhibitor is acting upstream of IκB 

phosphorylation or downstream.  

We first used an immunohistochemical staining approach to look for the location of RelA 

in HUVEC cells by fluorescent microscopy (Figure 2.23). As a negative control we used 2-36, 

which, though bearing nearly complete structural homology to active inhibitor 2-30, does not 

inhibit the NF-κB pathway. We did not have a small molecule that inhibited nuclear 

translocation of RelA but in the absence of stimulation by TNFα, NF-κB is not translocated into 

the nucleus and thus serves as a serviceable positive control. In this assay we see that enone 2-30 

does not significantly inhibit the nuclear translocation of RelA at 10 µM, a concentration ~10x 

the IC50 in a luciferase assay.  
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However, these initial histochemistry experiments, conducted at the Koch Cancer 

Research Institute at MIT, were valuable for informing initial hypotheses they did not provide 

complete information. In particular, fluorescent microscopy provides a top down look at cells 

and it can be difficult to see if a protein is actually within the nucleus or if it is instead outside 

the nucleus at the nuclear membrane. Confocal microscopy would give a more compelling look 

at compartmentalization. Additionally, these initial experiments only looked at RelA when two 

additionally transcriptionally active NF-κB subunits exist, namely RelB and c-Rel. It would still 

be possible that our molecules were acting by preventing the translocation of one of these other 

subunits.  

To address these concerns, we conducted additional microscopy experiments (Figure 

2.24). This time we looked at all three transcriptionally active subunits by confocal microscopy. 

These imaging experiments, conducted in the Molecular Imaging Laboratory in the Biomedical 

Science Research Building at the University of Michigan, were conducted on Hek-293T cells in 

in the absence or presence of stimulation by IL-1β. Again, we used 2-36 as a negative control at 

50 µM, along with DMSO as a vehicle control. Once again, we observed no inhibition of 
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translocation in any of the three transcriptionally active NF-κB subunits in the presence of 10 

µM 2-30.  

 

In the course of these experiments we also looked at the fate of the kinases that are 

responsible for phosphorylating IκB and activating transcriptionally active NF-κB for 

transclocation, namely IKKα and IKKβ (Figure 2.25). If I’m being honest, we included these 

images in our experimental plan because we expected that they would stay in the cytoplasm and 

provide us with a nice assay control. We were surprised, however, to see that upon inducing NF-

κB pathway activity with IL-1β, we found that both IKKα and IKKβ. We later did our job and 

looked in the literature for reports of IKK activity in the nucleus and saw a limited series of 

articles that demonstrated a nuclear role of IKKs phosphorylating and deactivating NF-κB 

inhibitory complexes (for details see chapter 1.1.2). This was of particular interest when we 

noticed that our active NF-κB pathway inhibitor, enone 2-30, did inhibit the nuclear translocation 

of IKKα and IKKβ. This suggested perhaps a novel MoA for our small molecule inhibitors.  
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These images are all snapshots, to take a population level look at the nuclear 

translocation of NF-κB pathway components we fractionated the nuclear and cytostolic fractions 

of Hek-293T cells and analyzed them for NF-κB pathway members by Western blotting (Figure 

2.26). This analysis confirmed the results suggested by the microscopy. Enone 2-30, even at 10x 

its IC50, did not significantly inhibit the translocation of transcriptionally active NF-κB subunits. 

Instead it prevented the nuclear translocation of the IKK kinases. These results prompted us to 

conduct pulldown experiments to attempt to identify the cellular target of enone 2-30.  
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Chapter 2.3.4 Pulldown studies and proteomics 

 

 

We first envisioned conducting pulldown experiments with biotinylated compounds 2-85, 

which we expect would not bind the target and 2-86which we had hoped would (Figure 2.27). 

When we ran the pulldowns with 5 and 1 µM of 2-85 and 2-86 we first looked for total protein 

(Figure 2.28). We observed, as expected, no significant protein in the lanes with 2-85 but were 
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somewhat surprised to see such an unclean profile with 2-86 though it was somewhat promising 

to see relatively few protein bands at 1 µM.  

 

When we took our Nutravadin pulldown and analyzed it by Western blotting we were 

able to observe RelA, RelB, cRel, IKKα, and IKKβ (Figure 2.29). We did not observe p50 or 

p52. These pulldowns were conducted with relatively low concentration of salt in the wash steps. 

So it’s possible that we are merely pulling down the NF-κB family members as a part of a larger 

complex. The silver staining is relatively unclean, so it is also possible that we are tagging every 

protein present in sufficient concentrations with a nucleophilic cysteine. This seems unlikely for 

2-30, as it is incredibly selective in the HTS viability screen, but we did see an increase in 

activity and selectivity when we changed the B ring ester identity.  
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Taken together these data suggested we needed to employ an alternative strategy in 

which 1) we use more stringent wash conditions to be sure of target identity and 2) we conduct a 

competition experiment by pretreating cells with 2-30 before adding 2-86, the loss of signal 

when compared to treatment with 2-86 alone would provide insight into selectivity. Finally, we 

wanted to conduct our pulldown experiments in a relatively unbiased manner, so we thought that 

a proteomic analysis would provide the most accurate and fruitful means of acquiring target ID. 
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So we switched to a probe that did not contain a labile ester allowing for more stringent 

washing conditions, 6M urea. First, we checked to look for an appropriate concentration to use 

our probe at (Figure 2.30). We determined that 1 µM 2-56 would be the optimal concentration. 

The fluorescent profile indicated to us that 2-56 was not selective so when conducted our 

pulldown experiments, we did so with or without pretreatment with 2-30 and we analyzed for the 

presence of members of the NF-κB pathway. The analysis was conducted by Dr. Kyle Cole in 

the Weerapana lab and the experiment was conducted by stable isotopic labeling of amino acids 

in cell culture (SILAC) mass spec proteomics (Figure 2.31). These results showed no specific 

activity against RelA, RelB, cRel, p50, or p52. Unfortunately, the total counts for IKKα and 

IKKβ were low and there was significant error at the low end of the spectra. That being said, 

IKKα was significantly competed away by pretreatment with IKKα. This supports the hypothesis 

that inhibition of nuclear translocation of IKKα is a result of direct, specific covalent binding. 
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One additional advantage of a mass spec proteomic approach like this is that it is 

unbiased allowing us to analyze other potential targets. To do so we looked for proteins that were 

successfully competed away in 2 different triplicate pulldowns (Figure 2.32). This analysis 

highlighted relatively few potential targets for 2-30. Arguably the most interesting of which were 

the members of TCP-1 Ring Complex (TRiC) a chaperonin50 most well characterized for folding 

actin and tubulin51 but which has also been shown to fold the pro-leukemia oncogenic fusion 

protein AML1-ETO52. We did attempt to validate TRiC as a target and looked to see if enone 2-

30 inhibited the folding and assembly of actin filaments, in collaboration with the Verhey lab at 

the University of Michigan, however we were unable to observe any inhibition of tubule or 

filament assembly in Hek-293T or HS578T cells.  
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Chapter 2.4 Conclusions and mechanistic hypothesis 

 

In light of these data we can see trends in the activity of enone 2-30. It 1) inhibits the NF-

κB pathway IC50 = 0.8 – 2 µM, 2) is cytotoxic towards many inflammatory cell lines, particularly 

lymphoma and breast cancers IC50 <100 nM, 3) Directly and specifically binds IKKα, may 

specifically bind IKKβ, 4) does not inhibit the activity of IKKα and IKKβ, as RelA, RelB, and c-

Rel are still translocated to the nucleus, and 5) inhibits the nuclear translocation of IKKα and 

IKKβ. As IKKα and IKKβ, upon translocation to the nucleus, help activate intentionally silenced 

genes, we have created a unifying hypothesis for the mechanism of action of 2-30 (Figure 2.33). 

We believe that by preventing the nuclear translocation of IKKα we are preventing the activity of 

the NF-κB pathway, decreasing the transcription of pro-survival proteins and ultimately leading 

to apoptosis in cancer derived cell lines. 
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Chapter 3 Efforts Towards the Unified Synthesis of the ent-Kaurene Diterpenoids 

 

Chapter 3.1 Introduction 

 

Chapter 3.1.1 ent-Kaurene history and biosynthesis 

 

The ent-kaurene family of natural products belongs within the larger family of terpene 

and terpenoid natural products, which are characterized by being built up from five carbon 

isoprene units.1 Specifically, the ent-kaurenes are diterpenoids, which are characterized by being 

made up of four isoprene units.2 The parent kaurene structure (3-1), as defined by IUPAC, is 

tetracyclic and contains a characteristic 6-6-[3,2,1]bicyclic fused ring system.3 However, the vast 

majority of isolated kaurene natural products belong to the ent-kaurene subclass in which every 

kaurene stereocenter is inverted (3-2) (Figure 3.1).4  

 

More than 600 members of this class of natural products have been isolated from tropical 

plants of the genus Isodon, a family of more than 150 flowering plants primarily found in 

tropical and sub-tropical Asia. Isodon lamiaceae are traditional Chinese medicinal herbs and 

have been used to treat cancer and diseases associated with inflammation for centuries.5 ent-

Kaurene diterpenoids have been found to be as much as 1.5% of the dry weight of these plants 

and have been studied for more than a century. 1910 investigations of the bitter principles of 
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‘enmei-so,’ a household folk treatment for gastrointestinal disorders sourced from Isodon 

japonicus and Ilex trichocarpa. identified enmein (3-3) as one of the first known bioactive ent-

kaurene diterpenoids.6 Though the structure of enmein (3-3) was not elucidated until 1966 

(Figure 3.2).7 Modern work on more than 36 Isodon species have identified more than 600 ent-

kaurenes that have been studied to gain insight into their biosynthesis and myriad of biological 

properties.4 

Additional early work beginning in 1901 in South America identified Stevia rebaudiana 

as having characteristically sweet leaves.8 In 1908 was isolated as a compound making up 20% 

of the dry weight of the leaves.9 It was not until 1931 that the sweet tasting compound was 

purified and characterized as a triglycoside named stevioside (3-5) enzymatic hydrolysis of 

which provided the diterpenoid steviol (3-4).10 Finally in the 1950s the structures of stevioside 

(3-5) and steviol (3-4) were unambiguously assigned (Figure 3.2).11  
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Like most diterpenoids, the ent-kaurene diterpenoids are biosynthetically derived from 

the linear C20 geranylgeranyl pyrophosphate (3-6, GGPP) whereupon first GGPP (3-6) is 

cyclized to afford a bicyclic intermediate, copalyl pyrophosphate (CPP, 3-7) or ent-copalyl 

pyrophosphate (ent-CPP, 3-8) (Figure 3.3).12 These intermediates can then differentially 

derivatized by oxidations, reductions, cyclizations, acetylations, and glycosylations to furnish a 

variety of structurally unique diterpenoids.  

 

The same enzyme that promotes the formation of ent-CPP (3-7), (-)-copalyl diphosphate 

also referred to as ent-kaurene synthase, can promote the subsequent functionalization to the ent-

kaurene core structure (3-2). First loss of the pyrophosphate leads to formation of tertiary 

carbocation 3-9. This could be captured by the terminal olefin to generate the ent-beyenranyl 

cation (3-10), so named for its intermediacy towars the ent-beyerene family of diterpenoids. This 

cation, 3-10, can then undergo a Wagner-Meerwein rearrangement to form a new ent-kaurenyl 

cation (3-11) which upon elimination furnishes the ent-kaurene core structure (3-2) (Figure 3-
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4A).13 This core structure is then subjected to a series of subsequent oxidations, and often 

acetylations or glycosylations such as in the biosynthesis of steviol (3-4) (Figure 3-4B).14 

 

Chapter 3.1.2 Selected biological activities of ent-kaurene diterpenoids 

Even from the very beginning, researchers have been interested in the biologically 

relevant activities of the ent-kaurenes (eg. enmein (3-3) and steviol (3-4) vide supra). 

Interestingly, the plants that produce ent-kaurenes such as ‘dangling cao,’ or Isodon rubescens, 

as well as Isodon ternifolia, Isodon lophanthoids, Isodon megathyrsus and Isodon eriocalyx have 

been used in traditional folk medicine for centuries to treat diseases related to inflammation, as 

well as infections and cancer.4 Gratifyingly, the ent-kaurenes that are isolated from these 
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medicinally relevant plants have since been characterized as having biological activity relevant 

to those traditional medicinal uses. 

Early studies towards the medicinal effects of Isodon plants were focused on ethanolic 

extracts of Isodon japonicus and Isodon trichocarpa which were found to inhibit the growth of 

Gram-positive bacteria.15 Researchers identified an active component of that mixture to be 

enmein (3-3) while, notably, dihydroenmein (3-15) was found to be inactive.16 Further research 

identified several ent-kaurenes that had activity against Gram positive bacteria including 

isodonal (3-14), nodosin (3-16), oridonin (3-17). Although the researchers note that the exo-

cyclic Michael acceptors found on the fused C/D rings are essential for activity, which is 

corroborated by the lack of activity of dihydroenmein (3-15) and shikokianidin (3-18) (Figure 

3.5)..17 Additionally the major component of Isodon eriocalyx, eriocalyxin B (3-19), has been 

shown to have potent activity against Gram positive bacteria that the autors describe as being 

related to the exo-cyclic Michael acceptor as well as the C6-OH group which might serve to 

activate the C15-carbonyl for nucleophilic attack through hydrogen bonding (Figure 3.5).18 It 

should be noted here that Gram positive bacteria have a well-documented susceptibility to 

electrophilic interventions.19  
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Just as many ent-kaurenes display activity against bacteria, so to do they exhibit activity 

against cancers. The earliest work in this area was the 1960’s and early 1970’s in which enmein 

(3-3) and oridonin (3-17) were found to have significant activity against ascites in mouse tumor 

models.20 Though there does seem to be a structure activity relationship in the anti-tumor 

properties of the ent-kaurenes thus far the most significant predictor of activity is the presence or 

absence of exocyclic Michael acceptors. While some sources suggest that these molecules have 

relatively low toxicity,4,5 other sources show general activity of these molecules against a wide 

variety of cell types21 and work conducted in our laboratory suggests that exocyclic Michael 

acceptors of this type display broad toxicity against all mammalian cells (see Chapter 1.2 and 2.3 

for a discussion of Michael acceptors and their specificity in the gibberellin diterpenoids). 

However, despite this general activity, the existence of structure activity relationships do suggest 

that specific interactions between ent-kaurenes and biological macromolecules are responsible 
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for observed biological effects including against telomerase, p53, phosphatidyl-inositol-3-kinase 

(PI3K)/protein kinase B (AKT), epidermal growth factor receptor (EGFR) signaling, AMP-

activated protein kinase, and the NF-κB pathway.  

One key motif amongst tumor cell lines is the ability to endlessly replicate. Most healthy 

cells, however, have a limited capacity to self-replicate in part due to degradation of the 

protective ends of chromosomes, telomeres.22 The ribonuclear protein telomerase provides cells 

the ability to protect their telomeric integrity and thus avoid irreversible cell cycle arrest. It is 

unsurprising therefore that telomerase activity has been found in almost all cancer cell lines.23 

Eriocalyxin B (3-19) was found to inhibit 86.7% of telomerase activity at 1µM.5 Additionally, 

treatment with oridonin (3-17) was found to upregulate the expression of HP1 beta, a protein 

which reduces the ability of telomerase to associate with telomeres.24 These inhibitory activities 

may contribute to the known antitumor properties of eriocalyxin B (3-19) and oridonin (3-17).  

Another feature of tumor cell lines is the ability to suppress or avoid pro-apoptotic 

signaling. Apoptosis is a mechanism for programmed cell death in which the mitochondrial outer 

membrane is permeabilized and caspases are released into the cytoplasm irreversibly triggering 

cell death. One feature that promotes apoptosis is the presence of reactive oxygen species (ROS) 

such as hydroxyl radicals, nitric oxide, peroxides, and singlet oxygen. Activation of the tumor 

suppressor protein pathway p53 can result in an increase in ROS which has been shown to 

induce apoptosis.25 In HepG2 cells, derived from human hepatoma, treatment with oridonin (3-

17) leads to p53 activation and ROS mediated apoptosis.26 Additionally, eriocalyxin B (3-19) 

was shown in pancreatic adenocarcinoma cells to activate p53 and thus cell cycle arrest, 

apoptosis and limit proliferation.27 These p53 activatory effects might contribute to the anti-

tumor effects of eriocalyxin B (3-19) and oridonin (3-17).  
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The PI3K/AKT pathway is found to be upregulated in many cancers and has been linked 

to the resistance of tumors to available chemotherapies.28 It has been postulated that suppressing 

AKT activity might serve as a proapoptic intervention in tumor cells, either alone or in 

combination with existing therapies. Oridonin (3-17) was shown to inhiit AKT signaling and 

promote apoptosis in HeLa cells.29 Structurally related excisanin (3-20) was shown to inhibit 

AKT signaling and promote apoptosis in vivo as well as in vitro. It promotes apoptosis in both 

MDA-MB453 breast cancer cells as well as Hep3B hepatocarcinoma derived cells. Notably 

excisanin (3-20) has even been shown to reduce Hep3B tumor size in mouse xenografts.30  

Epithelial cells can become cancerous upon acquiring activating mutations in the EGFR 

signaling pathway. Over expression of EGFR is found in 80% of head and neck squamous cell 

carcinoma (HNSCC).31 Oridonin (3-17) has been shown to be proapoptotic in squamous cell 

derived Hep-2 cells. Indeed in those cells treatment with oridonin (3-17) has reduced the EGFR 

induced phosphorylation while leaving protein concentrations unaffected suggesting that it may 

be acting on the pathway as an inhibitor.32  

Additionally, many ent-kaurene diterpenoids were found to inhibit the NF-κB pathway. 

As discussed previously (vide supra, Chapter 1.1.4) NF-𝜅B not only drives inflammation but 

also has been shown to play a role in all stages of cancer development and is found to be 

constitutively active in many different inflammatory cancer cell types.33 inflexinol (3-21), 

kamebakaurin (3-22), and eriocalyxin B (3-19) have all been shown to directly and irreversibly 

bind the NF-κB subunits themselves. 34,35 Inflexinol (3-21) was shown to inhibit NF-κB 

translocation. Eriocalyxin B (3-19) was shown to bind in the DNA binding domain of NF-κB and 

thereby prevent NF-κB from binding DNA.36 
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What is notable about the structure of these bioactive ent-kaurenes is that they all contain 

Michael acceptors (Figure 3.6). However, some limited studies have been done on isolated 

eriocalyxin B (3-19) that have demonstrated that eriocalyxin B (3-19) and other derivatives that 

contain very reactive exocyclic C/D ring Michael acceptors are quite generally toxic in a variety 

of different mammalian cell lines derived from cancers (Figure 3.7). The researchers were also 

able to reduce the exocyclic Michael acceptor while retaining the less reactive endocyclic A ring 

Michael acceptor to generate analog 3-29. While the researchers note that such a reduction costs 
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significant and broad spectrum activity against the cell lines tested, we note that it retains activity 

against select cancer cell lines (Figure 3.8).21 This suggests that the reduced analog 3-29 might 

be more selective and more specific to a subset of pathways important to only malignant 

mammalian cells rather than the broad spectrum of activities that have been ascribed to its parent 

eriocalyxin B (3-19).  

 

It is this underexplored area of research that would most benefit from forward, general 

total syntheses that would allow for complete control of the presence of reactive Michael 

acceptors to assess which of the myriad of reported activities of these molecules are due to 
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specific interactions with biological macromolecules and which are merely a byproduct of the 

susceptibility to said macromolecules towards electrophilic stress.  

 

Chapter 3.1.3 ent-Kaurene classifications 

As of 2006 over 600 ent-kaurene diterpenoids had been isolated.37 These natural products 

are generally classified into 5 major classes which are distinguished by their oxidation patterns 

(Figure 3.9) and alternative connectivity patters through the tetracyclic core (Figure 3.10). 

However, some notable ent-kaurene diterpenoids are challenging to classify, the most famous of 

which is maeocrystal V (3-28) which bears a unique 6,7-seco-ent-kaurene skeleton (Figure 3.10). 
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Chapter 3.1.4 Selected syntheses towards the ent-kaurene diterpenoids 

Among the earliest syntheses of the kaurene diterpenoids were the syntheses of kaurene 

(3-1), enmein (3-3), and steviol (3-5), perhaps unsurprisingly. Ireland and coworkers conducted 

the first synthesis of kaurene (3-1), racemicaly, in 1966 (Figure 3.11).38 His synthesis is 

reminiscent of early steroid syntheses in that he begins with tetralone 3-36 which he elaborates 

via a series that includes a Robinson annulation to a tricyclic framework 3-37.39 3-37 is then 

subjected to a series of reductions, including a Birch reduction to provide a more saturated 

tricycle 3-38. Then a series of oxidation state manipulations and pericyclic rearrangements 

installs the missing two carbons to form the C/D ring bridge which is closed by an aldol reaction. 

This provides 3-40 which is oxidized, methenylated and reduced to form the final racemic 

kaurene (3-41).  

 

In 1972 Fujita and coworkers completed the first synthesis of enmein (3-3) which at the 

time was among the most well studied ent-kaurene diterpenoid (Figure 3.12).40 Their synthesis 

began with an advanced tricyclic intermediate 3-42 not unlike 3-37. Like in Ireland’s synthesis 

of kaurene (3-41), this intermediate was transformed in a series that include a Birch reduction of 
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the C ring fragment to C ring ketone 3-43. This was transformed in 11 steps to tetracycle 3-44 

which was accessible from degradation of isolated enmein (3-3). Several redox manipulations 

were required to install the C6-C20 hemi acetal and the C1-C7 lactone 3-46. And several more 

were required to furnish the correct oxidation states on the ethyl bridge of the C/D ring [2,3,1]-

bicycle. to yield enmein (3-3) in 42 steps from 3-42. While certainly elegant for its time this 

synthesis does illustrate the challenges in rapidly assembling an unfunctionalized tricyclic ring 

system and then attempting to install the necessary functionality to access more challenging 

synthetic targets. 

 

Ziegler and coworkers completed the racemic synthesis of steviol methyl ester (3-52) in 

1977 (Figure 3.13).41 They also quickly assembled a tricyclic aromatic core by first coupling the 

A-ring and C-ring systems (not shown) and then constructing the center B-ring system in 6 steps 
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to form 3-47, which they had to dearomatize, oxidatively open to a dicarbonyl, and condense to a 

cyclopentene ring 3-50. This eneal 3-50 underwent a photochemical [2+2] and then ring 

expansion to install the appropriate C/D ring and furnish steviol methyl ester (3-52). While this 

approach does highlight an innovative and successful way to form the challenging C/D ring 

system it does so in quite low yields and is somewhat specific to compounds bearing C13 

oxidation.  

 

In contrast, in their racemic 1998 synthesis of isosteviol (3-53), Snider and coworkers 

turned to a biomimetic strategy (Figure 3.14).42 This relied on constructing the highly 

unsaturated β-keto ester 3-53. This was subjected to a radical, oxidative cyclization which in one 

step assembled tetracycle 3-54 Which could be transformed to isosteviol (3-55) in only 6 

transformations. This approach elegantly demonstrated how biomimetic approaches could 

efficiently form the kaurene core structure however the lack of regio-control and 

enantioselectivity outside of the context of an enzyme active site does limit this approach 

generally. 
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In 2013, Baran and coworkers took advantage of all the prior art in the area of steviol (3-

5) synthesis to take enantioenriched epoxide 3-56 forward to steviol (3-5) in15 steps as a single 

enantiomer (Figure 3.15).43 They combined the pseudo biomimetic cyclization of Snider’s 

synthesis, to provide 3-57, with the well-established dearomative approaches of Ireland, Fujita, 

Ziegler, and others to form 3-58. Here they used a photochemical [2+2] followed by a retro-

Dieckman/Dieckman cyclization to form [2,2,2] bicycle 3-61. Which had been previously 

demonstrated to undergo a zinc promoted rearrangement to the desired [2,3.1] bicycle 3-62.44 

This late stage intermediate could be efficiently converted to the natural product in 3 steps. 

Though very efficient and enatioselective, this route again necessitates oxidation at C13 to form 

the C/D ring juncture and is thus limited to steviol-type products. 
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These strategies together nicely highlight what had by the early 2000s been the state of 

the art. Rapidly constructing the tricyclic core of the ent-kaurene diterpene target and then 

functionalizing it by constructing the bicycle toward the end of the synthesis. Unfortunately, 

these strategies were highly targeted. The divergence points of these strategies were in the 

construction of the tricycle, often racemicaly, and converting simple tricycles to complex target 

structures involved lengthy step counts and exhaustive redox manipulations. An exception to this 

trend was the 1986 racemic synthesis of 15-Desoxy-effusin (3-69) by Mander and coworkers 

(Figure 3.16).45 They began with aromatic acid 3-63 and constructed the C/D ring first providing 

[2,3,1] bicycle 3-65 in 7 steps. Then they constructed the A ring carbocycle 3-67 in 14 synthetic 
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transformations which still required 11 steps to form 15-desoxy-effusin (3-69) relying on a key 

and clever oxidative C6-C7 bond cleavage from hemiacetal 3-68. 

 

These works perhaps presaged many modern approaches which rely on first constructing 

key portions of the target ent-kaurenes and then appending the rest of the molecule in as efficient 

a manner as possible. These have even yielded quite diversifiable synthetic efforts perhaps most 

notably by Riesman and coworkers.  

The synthetic efforts of Reisman and coworkers are notable in that they begin with the 

rapid construction of a common core structure (Figure 3.17).46 3-78 is formed by an SN-2 type 

alkylation of enantio-enriched lactone 3-73 and chiral iodide 3-77. Lactone 3-73 is formed via (-

)-γ-cyclogeraniol (3-3-71), which is accessible in 7 steps via a previously reported route from 
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methyl heptenone 3-70.47 (-)-γ-Cyclogeraniol (3-71) is protected and oxidized to epoxide 3-72. 

This epoxide is the directly converted to lactone 3-73 via a titanocene mediated single electron 

reduction of the epoxide to form a tertiary radical which undergoes a Michael addition and 

subsequent lactonization. The chiral iodide 3-77 is formed using a chiral auxiliary based strategy. 

pentenoic acid 3-74 is coupled to pseudoephedrine, alkylated to form the key stereocenter in 3-

76. This intermediate is then reduced and iodinated to furnish the electrophilic primary iodide 3-

77. 

 

The hallmark of the Riesman syntheses from common intermediate 3-78 is the SmI2 

induced cyclization cascades (Figure 3.18). Towards maeocrystal Z (3-25) the Riesman group 

fully deprotected and oxidized 3-78 to dialdehyde 3-79.46 This is then subjected to SmI2 which 

presumably first closes the C-ring and then closes the cyclopentane ring to form 3-80. Tetracycle 
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3-80 is converted to diacetate 3-81 which impressively can be selectively deacetylated to provide 

maeocrystal Z (3-25).  
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The Riesman group was also able to convert common intermediate 3-78 towards (-)-

logikaurin E (3-27) and (-)trichorabdal A (3-26).48 The strategy employs a mono TBS-

deprotection and oxidation to 3-82 followed by a SmI2 promoted cyclization and protection to 

form silyl ketal ether 3-82. This is poised to undergo an enolate Heck cyclization to close the 

C/D-ring to form tetracycle 3-84. This tetracyclic lactone 3-84 can be converted with four simple 

functional group manipulations to provide (-)-trichoribdal A (3-26). Tetracyclic lactone 3-84 can 

also be deprotected and oxidized to aldehyde 3-85. This aldehyde is poised to undergo another 

SmI2 promoted reductive cyclization which is oxidized to (-)-longikaurin E (3-27).  

This body of work is quite impressive particularly as it highlights the ability of modern 

synthetic techniques to provide for rapid, convergent asymmetric access to highly functionalized 

intermediates which bear the necessary oxidation to be rapidly transformed into a variety of 

bioactive ent-kaurene diterpenoids. Though the approach is somewhat limited to less 

functionalized A-rings and C11-oxidations. Though in principal it would be possible t modify the 

synthetic approach to include other oxidatively differentiated starting materials, rendering them 

asymmetrically and efficiently is not trivial to realize. This is unfortunate because many of the 

more biologically interesting ent-kaurenes, such as eriocalyxin B (3-19) and laxiflorin B (3-32), 

are not accessible via this strategy.  
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Any discussion of modern synthetic approaches towards ent-kaurene diterpenoids would 

be lacking if they did not discuss the synthetic efforts towards maoecrystal V (3-28). This ent-

kaurene was structurally confirmed only in 2004 and is one of the most structurally unique 

kaurenes isolated to date. Additionally, very early, material limited, biological studies on isolated 

maoecrystal V (3-28) identified that it was an extraordinarily active molecule against cancer 

derived cell lines however they could not conduct extensive studies, nor even duplicate their 

original results, as they did not have sufficient quantities of 3-28.49 It is unsurprising, therefore, 

that synthetic access reported thus far to this natural product has been very focused and isolated 

seeing as 3-28 is both structurally unique and required significant material throughput to verify 

initial promising biological studies.  
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The two chief structural challenges towards maoecrystal V (3-28) are the vicinal 

quaternary stereocenters between C9 and C10 as well as the bridged C/D [2.2.2] bicycle. (Figure 

3.19) It is unsurprising that many of the approaches focus on a Diels-Alder reaction to address 

both of those challenges. The strategies typically will either rely on an oxidative dearomatization 

strategy for providing the Diels-Alder substrate (Figure 3.20) or the generation of a stable 

enolate to provide for the Diels-Alder substrate (Figure 3.21). Both of these approaches are quite 

efficient but any route that relies on a Diels-Alder reaction to close the C/D ring concomitantly 
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with forming the C9 stereocenter will only provide access to a limited scope of kaurenes that 

contain that closed C/D ring moiety.  

 

One particularly inspirational approach to maeocrystal V (3-28Z) was conducted in 2014 

by Thomson and coworkers (Figure 3.22).55 Relying on an enantioenriched epoxide 3-102 the 

researchers directly append the C-Ring as an aromatic subunit to form ether 3-103. This is set up 

to do a challenging 6-exo-trig Mizoroki-Heck cyclization which proceeds with isomerization of 

the resultant olefin to the more thermodynamically stable distal position in tricycle 3-104. After 
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oxidative dearomatization and selective reduction of the resultant enone ketone 3-105 is 

deprotonated and protected to form a diene which is immediately subjected to a Diels-Alder 

reaction with nitroethylene to provide bicycle 3-106. This must then be subjected to a variety of 

functional group manipulations including the reduction of a ketone via an intermediate dithiane 

to form 3-108 which is then oxidized both allylically to enone 3-109 and also to form a lactone 

as the final step in the synthetic sequence to maoecrystal V (3-28). Though this route did not 

deliver sufficient quantities of 3-28 to support or reject the initial biological findings, this route 

did take an inspirational approach as the two ring systems were initially brought together to build 

the central ring systems. However, the choice of a Diels-Alder reaction, while efficient towards 

the formation of 3-28, limits the ability to extend this route towards other ent-kaurenes.  
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No discussion of maoecrystal V (3-28) syntheses could be considered complete without 

mentioning the 2016 enantioselective synthesis by Baran and coworkers (Figure 3.23).56 The 

synthesis begins with an enantioselective Michael addition onto cyclohexenone to form ketone 3-

110. This is then oxidized to alpha-keto acetate 3-111 which undergoes an intramolecular 

allylation to form [3,2,1] bicycle 3-112. After the tertiary alcohol is protected and the acetate is 

oxidized to a ketone the A-ring of maoecrystal V (3-28) is added via a Grignard addition. This 

provides 3-113 which is subjected to acidic conditions without further purification which 

promotes a Wagner-Meerwein type rearrangement to the desired [2,2,2] bicycle in 3-114. Upon 

alkylation to 3-115 the in situ formed acetal is rearranged to 3-116 which without purification is 
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captured by cyanide and hydrolyzed to form the central lactone in 3-117. This can be converted 

to maoecrystal V (3-28) by epoxidation, epoxide opening and oxidation. 

 

Notably, this sequence provided sufficient material, 80 mg, to conduct exhaustive 

biological evaluations. In these experiments the researchers failed to reproduce the promising 

biological activities that were disclosed upon isolation. This led Baran and researchers to 

conclude that either the initial experiments were done with error or that the initial biological 

evaluations had missed a particularly active impurity. Either way this information is of value to a 

community of scientists studying these natural products and could only be realized by the efforts 

of total synthesis. Of personal interest, maoecrystal V (3-28) does contain an A-ring Michael 
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acceptor. This provides evidence that ent-kaurenes that have a sterically congest A-ring enone 

are likely less generally reactive and have more specific biological activity that their analogs that 

contain a more reactive, less selective exocyclic C/D-ring Michael acceptor.  

 

Chapter 3.2 Retrosynthetic analysis for a unified approach to the ent-kaurene diterpenoids 

 

Chapter 3.2.1 Eriocalyxin B as a retrosynthetic target 

Eriocalyxin B (3-19) is among the most well studied ent-kaurene diterpenoids. Perhaps 

the wealth of biological studies on 3-19 is a result of its biological abundance, in Isodon 

eriocalyx ent-kaurene diterpenoids make up 1.5% of the dry weight of the leaves of mature 

plants of which eriocalyxin B (3-19) is a major component.57 This abundance, along with 

promising biological activities (vide infra), has prompted isolation chemists and chemical 

retailers to make this material commercially available, accelerating the pace of research into 3-

19.58  

We became interested in eriocalyxin B (3-19) owing to its ability to inhibit or modulate 

the NF-κB pathway. Leizer and coworkers demonstrated that eriocalyxin B (3-19) inhibits the 

NF-κB pathway in ovarian cancer stem cells (OCSCs).59 They showed that the inhibition of NF-

κB in OCSCs led to a decrease in the production of pro-carcinogenic inflammatory cytokines as 

well as a reduction in pro-survival protein, XIAB. Together they show that 3-19 inhibits cell 

growth at 0.5 µM. Zhao and coworkers found that 3-19 significantly inhibited the NF-κB 

pathway in four different lymphoma derived cell lines; SU-DHL-4, Namalwa, H9, and Jurkat 

cells.60 They show that 3-19, at 1.5 µM, inhibits the phosphorylation of IκB, modestly inhibits 

the nuclear translocation of RelA(p65), and inhibits the ability of RelA to bind DNA. The result 

of these effect was found to be a significant decrease in pro-survival proteins, Bcl-2 and Bcl-xL. 
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This led to an increase in apoptosis and lymphoma cell death. Several different groups have 

shown that, though eriocalyxin B (3-19) does inhibit nuclear translocation of RelA at 

concentrations significantly higher than the IC50 against the pathway, at lower concentrations 

they find no inhibition of nuclear translocation.36,61 Instead they show that 3-19 prevents NF-κB 

from binding DNA. They even identify the specific cysteine, Cys62, that 3-19 covalently 

modifies to prevent p50 from binding DNA. With well identified, moderately specific activity 

against NF-κB synthetic access to eriocalyxin B (3-19) would provide us the ability to more 

specifically interrogate the structural features of 3-19 that are required for reactivity. 

In addition to furthering our research interests in NF-κB pathway inhibition and study, 

eriocalyxin B (3-19) has a variety of other published biological activities. 3-19 shows activity 

against JAK2/STAT3 signaling in SW1116 colon cancer cells and the researchers link that 

inhibitory activity to cancer proliferation, migration, invasion, and angiogenesis.62 Additionally, 

3-19 has been identified as a covalent modifier of Cys712 on STAT3 and was shown to inhibit 

STAT3 signaling, inducing apoptosis in a variety of STAT-dependent cancer cell lines including 

A549 and MDA-MB-453 cells.63 Eriocalyxin B (3-19) has been shown to enhance the 

proapoptotic effects of established chemotherapeutics, for example it enhances the effect of 

gembaticine in pancreatic cancer.64 In other studies, 3-19 promoted p53 activity in pancreatic 

adenocarcinoma derived cell lines causing cell cycle arrest and promoting apoptosis.65 

Eriocalyxin B (3-19) and related diterpenoids were shown to inhibit telomerase activity at 

concentrations as low as 10 nM and exhibited cytotoxicity with IC50s below 1 µM in K562, HL-

60, MKN, and A549 cells.66  

Taken together, these biological activities warrant consideration for targeting for 

synthesis. 3-19 contains two separate enones. The bulk of the biological studies indicate that 
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eriocalyxin B (3-19) works by covalently modifying cysteines on biological macromolecules. 

However, these studies also suggest that 3-19 is not very specific limiting its utility as a 

biological probe or chemotherapeutic candidate. Synthetic access would provide a platform for 

diversification and structure activity relationship (SAR) studies that enable hypothesis driven 

study rather than material availability driven study. Towards this end we designed our synthesis 

to target both 3-19 specifically and enable detailed access and SAR to identify new, specific 

inhibitors. 

 

Some synthetic efforts towards eriocalyxin B (3-19) have been disclosed. Before we 

began our synthetic efforts eriocalyxin B (3-19) had been synthesized via a semi-synthesis from 

oridonin that has been isolated from natural sources which neither provided enough quantity of 

material to enable further study nor allowed for significant structural diversification (Figure 

3.24).67 While our synthetic efforts were underway a racemic, though quite scalable, synthesis of 

3-19 was disclosed (Figure 3.25).68 While this certainly could provide sufficient quantities of 3-

19 for testing it is very targeted and does not enable additional synthetic access to the ent-

kaurene diterpenoids. As such it still seemed valuable to continue the synthetic efforts described 

herein. 
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Chapter 3.2.2 Retrosynthetic analysis highlights a common intermediate to the ent-kaurene 

diterpenoids 

When considering synthetic approaches to 3-19 we wanted to be able to install the C/D 

ring Michael acceptor last, providing a natural access to analogs with and without that structural 

feature. It has been well demonstrated that the B/E ring cyclic core can be constructed by a 

pinacol coupling mediated by samarium diiodide.46,48 This would provide the carbocyclic core 

common to the laxiflorins (3-119), particularly laxiflorin B (3-32). It is expected that the C/D 
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ring could be disconnected relying on either an acyl radical alkene addition, or a reductive aldol 

reaction.69,70  

 

This proposed intermediate, 3-127, we contend is a useful synthetic intermediate not just 

for eriocalyxin B (3-19) and laxiflorin B (3-32) but instead all ent-kaurenes bearing the oxidation 

state of 3-127. One set of products could be envisioned being derived from laxiflorin B (3-32) or 

its unmethenylated precursor, 3-126 (Figure 3.27). We envisioned that 3-126 or 3-32 could be 

converted via a lumiketone rearrangement to the neolaxiflorins A (3-128) and B (3-129). pinacol 

coupling via SmI2 would provide eriocalyxin B (3-19) or maoecrystal C (3-130) which differ 

only in the oxidation state of the C/D ring. Eriocalyxin B (3-19) could be converted to 

maoecrystal P (3-131) by first oxidizing the B/E ring secondary alcohol to a ketone and then 

allowing for the isomerization of the C20 oxidation to form an A ring bicycle via an oxa-Michael 

addition. These products are of biological interest because they differ significantly in the 

reactivity of their Michael acceptors. Especially maoecrystal P (3-131) which contains a masked 

A ring enone. 



 102 

 

Additionally, a common intermediate such as 3-127 would be advantageous because it 

allows for facile access to 8-15 seco ent-kaurenes (Figure 3.28). An oxa-Michael addition 

followed by a methenylation would provide laxiflorin G (3-34) which is a reduction away from 

laxiflorin F (3-132). While both of these molecules contain a masked A-ring enone, 3-34 has a 

more reactive electrophilic acrylic acid moiety. A macrolactonization with the A ring and C15 

could provide access to the terfenolides such as terfenolide A (3-133). This can also provide 

access to some unique laxiflorins such as laxiflorin P (3-134) which would be the product of a 

pinacol type coupling, as discussed above and once again contains a masked A ring enone and a 

very reactive enal moiety. 
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Having established the ability of a common intermediate such as 3-127 to be translated to 

a variety of interesting targets, we turned towards the synthesis of 3-127. An ideal synthesis is 

one in which a fully elaborated A ring fragment was combined with a fully elaborated C ring 

fragment constructing both the ester of the B ring lactone and the C10-C9 bond, shown in red 

(Figure 3.29). This would allow for not only 3-135 and 3-136 to be combined but, in principal, A 

ring and C ring fragments bearing alternative oxidation patterns, such as at C19 or C14 could be 

subjected to the same coupling conditions and provide access to an even more diverse set of ent-

kaurene diterpenoids. It seemed apparent that the first key step of the synthesis would be forging 

this key C—C bond. 
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Chapter 3.2.3 Model system studies towards synthesizing a common intermediate to the ent-

kaurene diterpenoids 

Our first concept was that a photochemical [2+2] cycloaddition could be undertaken to 

form a highly substituted cyclobutene such as 3-142 (Figure 3.30). We imagined that a diene 

such as 3-144 and a cyclic enone such as 3-145could come together. Then 3-146 could undergo 

an elimination, fragmentation and lactonization which could in one step provide the common 

intermediate 3-127. This approach posed two significant challenges. First, [2+2] cycloadditions 

to form fully substituted cyclobutanes were unknown at the time of our investigation and second, 

the fragmentation conditions could induce alternative products including retro-[2+2]. In model 

system studies we found that both challenges were significant obstacles. We could overcome the 

challenge of making highly substituted cyclobutanes by careful analysis of solvents and the use 
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of flow reactors. In flow, and only in flow, 3-148 and 3-149 could be combined to form 3-150 

and 3-148 and 3-152 could be combined to form 3-153 both in synthetically useful yields. 

However, all attempts to fragment the cyclobutanes yielded only retro [2+2] and we could not 

promote the desired cyclobutene fragmentation. This prompted us to consider alternative 

approaches to form the key bond in 3-127. 
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Our second approach is one in which we envisioned taking an ester such as 3-154 and 

then generating an enolate which might undergo a Michael addition/elimination cascade to form 

common intermediate 3-143 (Figure 3.31). However, this approach does suffer from a potential 

E1CB elimination mode in which the enolate that is formed simply eliminates the ester as a 

leaving group. This is what is observed in model system studies such as the conversion of ester 

3-155 to 3-156. When we tried to carry out an intermolecular Michael addition, we found that if 

there was an oxygen in the beta position, which would be necessary to form a B ring lactone, it 

only reacted by E1CB elimination to form 3-156. We thought that such an elimination would be 

impossible if we had a β-keto ester such as 3-157. However, we could not identify conditions in 

which an enolate generated from 3-157 would engage an electrophile such as 3-158 in a Michael 

addition. These experiments highlighted to us the importance of both stable, and reactive 

coupling partners if we intended to carry out a reaction manifold such as this.  

  



 107 

 

In our third approach we hoped that a nucleophilic radical, generated by the single 

electron reduction (SER) of an epoxide like 3-160 could react intermolecularly with an enone 

such as 3-161 and then subsequent lactonization would form common intermediate 3-162 (Figure 

3.32).46,71 We initially hoped to use a model system epoxide 3-164, but we encountered volatility 

problems that prompted us to redesign our model system studies to utilize keto epoxide 3-165. 

Unfortunately, upon subjection to titannocene-mediated SER the tertiary radical 3-166 was not 

reactive enough to productively interact with methyl acrylate and instead underwent a second 

SER to an enolate which upon protonation led to epoxide reduction product 3-167. In response, 
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we hoped that by reducing the ketone to an alcohol, 3-168, we would be able to avoid this over 

reduction problem. Gratifyingly, when 3-168 was subjected to titannocene it did efficiently react 

with methyl acrylate to form desired lactone 3-169. However, when we switched to an 

electrophile, 3-158, that was more analogous to our desired electrophile, 3-161, we found no 

desired Michael addition product. Instead the only isolable product was over reduction product 

3-170. Taken together these approaches highlight the inherent challenges with constructing this 

bond via a Michael addition. Either in a single electron process or a two-electron process, 

Michael acceptors such as 3-158 are too unreactive to outcompete side reactions. These results 

prompted us to totally rethink our strategy.  

Our fourth strategy involved a 6-exo-trig cyclization via a Mizoroki-Heck reaction 

(Figure 3.33). A vinyl halogen, or pseudo-halogen, such as 3-171, could be a substrate for an 

intramolecular Mizoroki-Heck reaction would provide common intermediate 3-172. This 

approach was not without complications, The A ring product is less oxidized than originally 

planned, though this would provide simpler access to more A ring functionalization present in 

the ent-kaurene diterpenoids. Additionally, 6-exo-trig cyclizations from Mizoroki-Heck reactions 

are rare as are Heck reactions with beta-carbonyls which can chelate transition metals after 

oxidative addition preventing the complex from undergoing productive migratory insertion. 

Finally, the allylic ester is a suitable electrophile for oxidative addition providing an alternative 

reaction pathway that proceeds through a palladium-allyl species that would provide a diene 

product rather than the desired Heck product. 
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Despite these potential pitfalls, we constructed a vinyl bromide model system 3-173 

which we subjected to palladium tetrakis and potassium carbonate. Unfortunately, we saw 

exclusive formation of the volatile diene, 3-175, rather than the desired 3-174. We hoped that a 

Lewis acid would be capable of promoting the desired oxidative addition and silver salts are well 

precedented to promote oxidative addition.72 We found that by switching to silver carbonate 

under otherwise identical conditions that we efficiently observed 3-174. We knew that the 

addition of steric bulk around the sites of reactivity could impact our system and additionally we 

needed this transformation to be highly diastereoselective. Fortunately, we found that 3-176 was 
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converted to 3-177 which was derivatized to 3-178, crystallized and the relative configuration 

unambiguously determined to be the desired configuration.  

 

Chapter 3.3 The synthesis of a common intermediate towards the ent-kaurene diterpenoids 

 

Chapter 3.3.1 Synthesis of the A ring fragment  

 

 

In order to both synthesize and study the conversion of 3-171 to 3-172 we needed to 

construct an A ring fragment that we could link to a C ring fragment via an esterification. Our 

first approach was based on a published approach to 3-183 that proceeds via a Diels-Alder 

reaction.73 Aldehyde 3-179 is converted to an enamine diene to give 3-180. Unfortunately, this 

diene, though quite electronically activated, is sterically encumbered to efficiently promote a 

Diels-Alder reaction with dimethyl malonate. The effect of which is a sluggish reaction even at 

120 °C to form 3-181. This meant that it was unlikely to succumb to an enantioselective Diels 

Alder reaction as they almost exclusively require lower temperatures to maintain high 
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enantiomeric excesses.74 Selective hydrogenation of 3-181 followed by a careful reduction to 3-

183 provided a platform with which to explore protecting group strategies. The challenge here 

was selectively installing a protecting group. Using one equivalent acetic anhydride we could 

observe a combined 60% yield of a 2:1:2 ratio of desired 3-184 to undesired 3-185, to doubly 

protected 3-186. The bis acetate 3-186 could be somewhat selectively deacetylated to 3-184 

providing 3-184 and 3-185 in a 2:1 ratio with 50% conversion. The lack of enantiomeric excess 

and the challenge in selectively diversifying the diol 3-183 to a monoprotected acetate 3-184 led 

us to consider alternative approaches.  

 

Our next series of strategies relied on the intermediacy of chiral cyclogeraniol (3-188). In 

our first attempts we took gerainic acid (3-191) which can be purchased on scale as a mixture of 

E/Z isomers. We found that catalytic triflic acid could efficiently promote the cyclization to 

racemic cyclogerainic acid (3-189). We then thought that we could take advantage of the 

availability of 3-189 to promote a chiral resolution to 3-192.75 However, in our hands we found 

that we could isolate at best 33% yield and 80% ee of 3-192. This rather moderate enantiomeric 

excess prompted us to explore an alternative strategy.  
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We were able to approach the problem of synthesizing 3-188 in high enantiomeric 

excess. We found that by preparing the thiophenyl ester of cyclogerainic acid 3-194 we could 

take advantage of an enatioselective protonation strategy to achieve high %ees (Figure 3-36).76 

At -100 °C we formed a stable enolate of 3-194 which could be protonated by N-isopropyl 

ephedrine (3-195) with excellent facial selectivity. chiral thioester 3-196 is reduced in situ to 

provide desired chiral cyclogeraniol 3-188. 

The next challenge was to oxidize the allylic methyl group to provide 3-187. Our first 

strategy was to engage that methyl group in a direct C—H oxidation (Figure 3.37). We first 

wanted to try a Suarez oxidation to form an allylic iodide 3-199.77 This strategy was unsuccessful 

and so we attempted a Hartwig siylation oxidation sequence which was originally optimized for 

1,3 C—H abstraction oxidation sequences.78 In our case there are no hydrogen atoms on the 3-

position so we hoped that the methodology could be extended to a 1,4 C—H abstraction. This 

ultimately failed to provide 3-200. Next we hoped that we could perhaps overcome latent 

selectivity in a Riley-type allylic oxidation.79 We did observe the desired product 3-202 in an 

inseparable mixture of oxidation products but in low yield. Finally we employed an approach 

developed by White and coworkers to use Mn porphyrins to selectively do C—H aminations 

instead of aziridations.80 Unfortunately, we were again trying to push the method to a 1,4 
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functionalization and so did not observe 3-204and instead we did detect azirane 3-205. These 

failures prompted us to attempt an alternative strategy.  

 

Our next strategy relied on first oxidizing the olefin in 3-206 then engaging in a kinetic 

ring opening to 3-208 and finally attempting to promote a transposition to 3-209 (Figure 3.38). 

We saw some success in epoxidizing 3-210 and opening the epoxide with a bulky base, LiTMP, 

to 3-211 in a highly diastereoselective sequence. We then employed a known gold cation 

catalyzed rearrangement but were disappointed to see very low conversion to 3-213.81 
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Additionally, when we reisolated 3-211 we saw that it had become distereomerically enriched. 

So we hypothesized that if we could invert the stereochemistry of the intermediate acetate such 

as by a Mitsunobu to 3-214, we would be able to promote the rearrangement in higher yield. 

Even though the Mitsunobu provided an inseparable 1:1 mixture of acetate 3-214 and desired 

SN2’ product 3-213, we could transform the crude mixture directly to the desired 3-213 using the 

same method. Though this did provide us with highly enantioenriched 3-213 it relied on two 

moderately yielding transformations and the LiTMP epoxide opening was completely intolerable 

of other protecting group strategies. Together these limitations compelled us to continue 

exploring alternative strategies. 
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We found that by chlorinating 3-215 we could achieve a kinetic olefinic product without 

resorting to strong, bulky bases (Figure 3.39).82 This allowed for a more efficient, less protecting 

group sensitive approach. We were able to promote a silver (I) oxide directed SN2’ of -OH. 

However, the selectivity of this approach was suspect. Especially as 3-217and 3-218 are 

inseparable. This could be overcome by an SN2’ reaction with iodide which is not isolated but 

instead substituted with sodium formate. Primary formate 3-220 could be selectively 

methanolized at elevated temperatures. This allowed gram scale access to 3-217in 97% ee with 

36% yield from gerainic acid (3-191). 

 

Chapter 3.3.2 Synthesis of the C ring fragment  

Our successful strategy towards 3-224 relies on forming symmetrical ketone 3-222.83 

This was achieved by taking monoacetal 3-221 and subjecting it to an HWE olefination which 

provide a mixture of olefin isomers which can be immediately hydrogenated. The ester is 

reduced, and the acetal is hydrolyzed. It should be noted that the alcohol here is incredibly water-

soluble necessitating washing with saturated sodium sulfate in order to successfully extract it. 
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Finally, a TBS protection yields 3-222 in 65% yield over five steps requiring only one 

purification on a one mole scale in a single pass.  

 

This symmetric ketone 3-222 was subjected to a desymmetrizing deprotonation using a 

chiral lithium amide generated from Koga’s amine 3-223.84 We tried to directly convert the in 

situ generated chiral lithium enolate to 3-225 in a single step but unfortunately it proceeded with 

limited yield. We found that by isolating and purifying a TMS enol ether 3-224 we could then 

transmetallate to a lithium enolate which could be captured by Mander’s reagent though it does 

require the addition of HMPA which can provide 3-225. It should be noted that this 

transformation is very sensitive to the quality of MeLi used. It works best with Acros methyl 

lithium, lithium bromide conjugate. Additionally, we explored alternative protecting group 

strategies and found that carbonyl based protecting groups were nucleophilically deprotected by 

methyl lithium. Benzyl-type protecting groups were eliminated off by methyl lithium over the 

course of the transformation of 3-224  to 3-225. Additionally, the enantiomeric excess of 3-225 

could only be provided at 9:1 er, or 80% ee. Taken together these highlight just how important 

the modification to the A ring route (vide supra) were to provide high %ees and broad protecting 

group compatibilities. Another challenge that needed to be overcome was the determination of 

the %ee. No conditions could be uncovered that could determine the %ee by chiral HPLC, chiral 

GC, or chiral SFC. We found success using a two step procedure in which first we deprotected 

the TBS group to 3-226 and then we formed a Mosher ester, 3-228, and analyzed the %ee by 

NMR (Figure 3.41).  
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Chapter 3.3.3 Combining the A ring and C ring fragments towards a common intermediate to the 

ent-kaurenes 

 

Gratifyingly the first of two key bonds towards a common intermediate to the ent-

kaurene diterpenoids was relatively straightforward. A ring fragment 3-217 and C ring fragment 

3-225 were combined via a DMAP promoted transesterification reaction which is both high 

yielding and selective for the methyl beta-keto ester over the A ring acetate. Then transester 3-

229 was smoothly converted to vinyl triflate and Mizoroki-Heck substrate 3-230. At this point all 

that remained towards a common intermediate was the discovery and development of an intra 

molecular 6-exo trig Mizoroki-Heck reaction. 

A Mizorkoi-Heck reaction on a substrate such as 3-230 could provide a myriad of 

products (Figure 3.42). If the transition metal catalyst inserted into the allylic ester to generate a 

metal allyl species, we would expect to observe a diene 3-237. If the desired oxidative addition 

occurs a metal hydride or proton source could provide a net proto-demetallated product 3-236. 

Additionally, at elevated temperatures even mild Lewis acids such as potassium or silver cations 

could deprotect a silyl ether protecting group which could return a desilyated substrate 3-235. 

Even if the desired C—C bond is formed this reaction proceeds via an intermediate metal 
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hydride species which is capable of transposing olefinic products which could provide with 

either 3-231 or transposed olefin 3-232 and if these products are desilated the reaction could 

additionally provide 3-233  or  3-234. These challenges loomed large as we continue to optimize 

this transformation. 

 

We worked in concert with the Merck Process Chemistry catalysis group to conduct HTE 

on this reaction screening over 800 different reaction condition combinations. We evaluated 48 

separate ligands in palladium catalyzed processes with Pd(OAc)2 and a variety of combinations 

of bases, temperatures and solvents. Additionally, we explored the idea that a nickel catalyzed 
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Mizoroki-Heck reaction either with heat or in the presence of a photocatalyst would promote the 

reaction as well and were disappointed to find only efficient proto-demetallation to 3-236. We 

took the best ligands from our screen at Merck and evaluated different sources of palladium 

hypothesizing that insitu generated silver acetate might be detrimental to the reaction. We found 

both PdCl2 and [ClPd(allyl)] dimer out performed Pd(OAc)2. Under the optimal reaction 

conditions (entry 6, Figure 3.42) we have observed on 50 mg scale up to 87% yield of combined 

desired Heck products though more typical yields are 30-40% as represented in Figure 3.42.  

Current work continues 1) better optimize this Mizorkoi-Heck reaction as we 2) work 

towards elaborating the common intermediates which we prepare in a combined 12% yield in 11 

longest linear steps.  
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Chapter 4 Lewis Base-Catalyzed Reductive Aldol Reaction to Access Quaternary Carbons 

 

Chapter 4.1 Introduction 

Toxicity is known to be the leading cause for drug candidates failing clinical trials.1 

Recent studies suggest that compounds of higher complexity, as measured by the saturation and 

presence of sp3-hybridized quaternary carbon centers, have fewer off-target effects, show less 

toxicity, and have a greater success rate in the clinic.2 However, synthetic access to molecules 

with increased complexity requires successful methods for the construction of quaternary carbon 

centers.3 Despite recent advances, synthetic challenges in the formation of quaternary carbon 

centers still exist, and prove even more difficult when the desired quaternary carbons are chiral.3a 

Additionally, quaternary carbon centers in acyclic molecules and molecular fragments remain 

challenging to access.3b,c, 4 Furthermore, most of the methods currently available for the 

construction of quaternary carbons rely on metal-based catalysts, and the development of 

alternative catalytic systems was recently described as a future challenge.3b Here we describe a 

method for the diastereoselective construction of β-hydroxyl lactones and lactams bearing α-

quaternary carbon centers that relies on simple, electronically differentiated phosphine oxides as 

Lewis base catalysts that enables access to structural motifs prevalent in many biologically 

relevant target structures.5, 6 
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In fact, this methodology was inspired by a synthetic challenge presented by ongoing 

synthetic work in our lab (Figure 4.1). We identified a common core structural motif in both 

atropurpuran (4-4) as well as isopalhinine A (4-5) and hypothesized that rapid assembly of that 

core structure would enable efficient access to both molecules. Tetralone 4-1 could undergo 

Birch reduction and isomerization to diene 4-2 which can be subject to a Diels-Alder reaction to 

form 4-3 which we believed could be prepared in bulk and diversified to both natural products. 

 

When considering a retrosynthetic analysis of isopalhinine A (4-5) towards the common 

core structure 4-7 a key aldol disconnection is highlighted (Figure 4.2). This aldol reaction would 
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suffer from two distinct selectivity challenges. The first is a regioselectivity challenge; with two 

carbonyls in the molecule, both esters both in nearly identical steric environments, selecting for 

one over the other in a traditional aldol reaction we expect would be hard. There is also a steric 

challenge with one and only one stereoisomer of the product β-hydroxy lactone desirable for 

completion of the natural product it was not immediately clear that this reaction could proceed 

with complete steric control.  

 

A reductive aldol approach seemed particularly desirable, as it would permit a select 

Michael acceptor such as 4-7 to react in the presence of enolizable functional groups (Figure 

4.3). Several successful protocols for transition metal-catalyzed reductive aldol reactions for ,-

unsaturated carbonyl compounds 4-10 have been described that rely on Rh,7 Ir,8 Cu,9 Co,10 Ru,11 

or Pd12 in combination with boranes, silanes or hydrogen gas as suitable reductants. 

Unfortunately, methods for converting ,-disubstituted (4-11),13 or ,,-tri-(4-12)14 and tetra-

(4-13) substituted enones to the reductive aldol products bearing -quaternary carbons are less 

common (Figure 4.4).15  
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An inherent challenge to enones 4-11-13 relates to the identification of potent catalyst 

systems that 1) exhibit high levels of chemoselectivity for 1,4-reduction, 2) activate both the 

resulting enolate nucleophile and aldehyde electrophile for aldol addition while 3) minimizing 

competing reduction of the aldehyde electrophile. Denmark’s pioneering work has established 

Lewis bases as a powerful class of catalysts capable of enhancing enolate nucleophilicity in 

asymmetric aldol reactions.16 Recently, Nakajima has shown that Lewis bases, such as triphenyl 

phosphine oxide (TPPO, 4-23) and hexamethyl phosphoramide (HMPA, 4-24), are able to 

promote reductive aldol reactions of ,-disubstituted enones 4-10, though ,-disubstituted (4-

11) and ,,-trisubstituted (4-12) enones still remain elusive as substrates.17 We postulated that 

the reactivity of these Lewis base catalysts can be tuned to the specific electronic and steric 

requirements inherent to highly functionalized enones 4-11-13, to enable both, in situ conjugate 

reduction and activation of the resulting enolate for a subsequent aldol reaction.  
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What is particularly promising about the extant literature on phosphine oxide mediated 

reductive aldol reactions is that they highlighted the potential to solve the second challenge 

presented by the transformation of 4-7 to 4-6. Denmark and coworkers have shown that chiral 

phosphine oxides can affect the configuration about trichlorosilane and allow aldol reactions of 

trichlorosilenol ethers to proceed either through a boat-like transition state or a chair-like 

transitions state (Figure 4.5).16,18c They present a case study of the reaction of stable enolate 

analog 4-14 with benzaldehyde 4-15 which in the presence of one or fewer equivalents of a 

phosphoramide Lewis base provides a syn disposed product 4-18 while with two or more 

equivalents of phosphoramide they observe anti disposed product 4-20. A chair-like Zimmerman 

Traxler transition state 4-19 would suggest that the observed product should be 4-20 but 

Denmark and coworkers suggest that a pentavalent silyl complex would form a structure 4-17 in 

which no chair-like transition state could be stably formed. Instead they suggest that this 
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pentavalent silyl complex would form a reactive boat-like complex 4-16 which would be more 

stable than any reactive chair complex.  

Taken together this suggests that if we could develop a new method that relied on a 

Lewis basic phosphine oxide to promote a silane reduction of an α,α,β-trisubstituted enone we 

could (1) provide for a method to synthesis quaternary stereocenters concomitantly with creating 

a C—C bond, allowing for the synthesis of less toxic molecules with more sp3 character. We 

would (2) address a significant gap in currently available methodology for conducting reductive 

aldol reactions on substrates more analogous to complex drug-like and natural product-like 

scaffolds. And we would (3) enable the synthetic efforts towards isopalhinine A (4-5). 

 

Chapter 4.2 Reaction optimization and diastereoselectivity 

Aryl phosphine oxide derivatives seemed like an excellent starting point for optimization 

as we postulated that the reactivity of these Lewis base catalysts can be tuned to the specific 

electronic and steric requirements inherent to highly functionalized enones 4-11-13. Aryl 

phosphine oxide derivatives allow for facile electronic differentiation of the aryl substituents to 

probe our hypothesis. We began our study by attempting to react lactone 4-21, bearing an 

exocyclic Michael acceptor, with benzaldehyde as an electrophile and TPPO (4-23) or HMPA 

(4-24) as Lewis base catalyst with HSiCl3 as the reductant. These initial attempts proved quite 

promising and resulted in the formation of the reductive aldol product 4-22 in 43% and 45% 

yield, respectively (entries 1 and 2, Figure 4.6).  
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Although both catalysts produced 4-22 in similar yields, the reaction profiles differed 

dramatically. Unreacted starting material (4-21) was recovered when employing TPPO (4-23), 

but 4-21 was consumed with HMPA (4-24), forming both 1,4-reduced lactone and benzyl 

alcohol as side products. These results suggest that HMPA (4-24) is a potent catalyst for initial 

conjugate reduction but is either too sterically encumbering to fully promote subsequent aldol 

addition, or so aelectronically activating it allows for competitive direct reduction of the 

bezaldehyde electrophile, or both. In comparison, TPPO (4-23) is not Lewis basic enough to 

complete the initial conjugate reduction reaction thus resulting in the reisolation of starting 

material 4-21. Unfortunately, when we attempted to overcome this lack of reactivity by the 



 131 

addition of more 4-23 we observed no significant effect. When we tried to enhance reactivity by 

adding more trichlorosilane we saw over reduction of benzaldehyde. When we elongated 

reaction times we did not see improved conversions, presumably because of nonproductive 

consumption of trichlorosilane.  

When we attempted to overcome the challenges associated the use of  HMPA, through 

analogs 4-24 and 4-25, which we hypothesized would decrease steric bulk in the aldol addition, 

we observed no reaction or no improved yield of the desired reductive aldol product 4-22 (entries 

3 and 4, Table 1). This perhaps supports the hypothesis that HMPA is not an effective catalyst 

because it is promoting indiscriminate reduction of benzaldehyde to benzyl alcohol. As a result, 

subsequent catalyst optimization centered on electronic differentiation of triaryl phosphine 

oxides to increase their reactivity in the initial 1,4-reduction.  

An advantage of triarylphosphine oxides is that the aromatic rings can be decorated with 

electron donating or withdrawing groups which effect the Lewis basicity of these catalysts. 

Lewis bases 4-27, 4-31 and 4-32, bearing electron-donating substituents in the ortho-position, 

formed lactone 4-22 in low yields. Perhaps this is the effect of an increased steric bulk 

decreasing the rate of an aldol addition. Para-methyl triarylphosphine oxide 4-28 showed a 

reaction profile similar to TPPO (4-23) and resulted in the formation of 4-22 in 39% yield 

together with reisolated starting material (entry 6, Table 1). In comparison, the corresponding 

Lewis base 4-29 bearing a dimethylamine moiety in the para-position showed low solubility in 

dichloromethane and resulted in inconsistent yields of 4-22 (entry 7, Table 1). However, para-

methoxy triarylphosphine 4-30 led to formation of product 4-21 in 71% yield with minor 

competing reduction (entry 8, Table 1) and was identified as the optimal Lewis base catalyst. 
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 Subsequent reaction optimization focused on the silane reductant. It was found that 2.5 

equivalents of trichlorosilane were optimal, while increased amounts resulted in diminished 

yields of the desired reductive aldol products due to competing reduction side- products. 

Additionally, 20 mol% catalyst loadings proved superior with minimal reduction of the aldehyde 

electrophile (<10%), while stoichiometric quantities of Lewis base 4-30 resulted in diminished 

yields of 11 in 28%. Notably, the diastereomeric ratio of aldol product 4-21 remained constant 

despite changes in catalyst loading.18  

An aside, though the trichlorosilane in theory needs only 1 equivalent to promote this 

reaction, we used 2.5 equivalents of trichlorosilane. This observation is likely a result of 

nonproductive consumption of trichlorosilane. The reagent turned the septa used to seal the flask 

brittle and grey after the reaction was complete the septa did occasionally have to be cut away 

from the flask. With repeated use of the reagent the tygon tubing connecting the flasks to a 

Schlenk line were discolored by the reagent as well. When we scaled this reaction we found that 

sometimes changing the amount of trichlorosilane could be beneficial. We also saw mixed 

results with a slow addition protocol in which trichlorosilane was added to the reaction over the 

course of hours as a solution in dichloromethane. Though required for excellent yields and 

selectivities described herein, this reagent proved to be a troublesome one. 
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Transition state models similar to those proposed by Denmark for phosphoramide-

catalyzed aldol reactions of pre-formed trichlorosilyl enolates can justify the stereochemical 

outcome observed in the reductive aldol reaction.19 Stereochemical models are consistent with a 

boat transition state 4-37 resulting in the major diastereomer 4-36 with both the CH2R
2 and 

hydroxyl substituent being anti to one another. The minor diastereomer with the CH2R
2 and 

hydroxyl group being syn to one another could be formed either via the less favorable boat 
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transition state 4-38 or by a chair transition state 4-33 (Figure 4.7A). The relative configuration 

of both diastereomeric products of lactam 4-39 and tolualdehyde 4-40 was confirmed using x-ray 

analysis to result in the formation of lactam anti-4-41 as the major diastereomer and syn-4-42 as 

the minor diastereomer in combined 70% yield (Figure 4.7B). This supports the Denmark 

hypothesis that such a reaction would proceed via a boat-like transition state. 

 

Chapter 4.3 Substrate scope and derivitization 
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First we assessed the reaction scope on a variety of α,α-di- and α,α,β-tri-substituted 

lactone enones (Figure 4.8). We then investigated the reaction scope on α,α-di- and α,α,β-tri-

substituted lactam enones (Figure 4.9). The conditions developed proved efficient affording 

yields and diastereomeric ratios up to 85% and 50:1, respectively. For 6-membered monocyclic 

lactones and lactams, the anti-product was favored with diastereomeric ratios up to 20:1 d.r., 

increasing with both aldehyde and alkene bulk. Importantly, sterically encumbered tricyclic 

lactones resulted in the formation of the corresponding β-hydroxylactones 4-43 and 4-49 in up to 

67% yield and 50:1 d.r. (Figure 4.8). It should be noted that these lactones are analogous to the 

desired synthetic intermediate 4-7 for the synthesis of isopalhinine A (4-5) N-alkyl- or N-aryl-

substituted lactams proved efficient under the optimized reaction conditions and resulted in up to 

85% yield and 20:1 d.r. of the desired reductive aldol products. Notably, lactams bearing 

removable para-methoxyphenyl (PMP) or benzyl protecting groups afforded high yields and 

good to excellent diastereomeric ratios of the desired β-hydroxylactams though unsubstituted 

lactams were not tolerated, presumably due to the acidic N—H bond. Aryl aldehydes with 

varying substitution are viable electrophiles, and increased hindrance on the aromatic moieties 

lead to higher diastereomeric ratios. Aldehydes conjugated to heterocycles including furan and 

thiophene were tolerated well as electrophiles rendering yields up to 77%. Initial efforts to 

extend the substrate scope to unsaturated aldehydes, such as cinnamaldehyde, proved 

challenging due to the formation of competing aldol condensation products. However, 

conducting the reaction in toluene under otherwise identical conditions attenuated this competing 

self-condensation and resulted in good yields of the respective β-hydroxylactone and –lactam 

adducts.  



 136 

 

Aliphatic aldehydes were initially problematic. At first, we didn’t know if the reaction of 

otherwise reactive enones, such as 4-67, and aliphatic aldehydes failed because the aldehydes 

were electronically mismatched for reactivity or if it was a function of the acidic alpha proton. 

Either way when we ran the reaction under optimized conditions with an aliphatic aldehyde 
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bearing an acidic alpha proton, 4-68, we returned only reduced lactones and lactams, 4-69 

(Figure 4.10). Interestingly, when we ran these same reactions with aliphatic aldehyde bearing 

acidic alpha deuterons, 4-70, we saw deuterium incorporation in the alpha position of our 

reduced substrates, 4-71 . This suggested that our inability to tolerate aliphatic aldehydes was a 

function of their acidity. 

 

If it were only a problem of acidity, we would expect that aliphatic aldehydes that lacked 

an acidic alpha proton, such as pivaldehyde 4-72, would be well tolerated under our optimized 

reaction conditions. We found this hypothesis to be true (Figure 4.11). Our optimized reaction 

conditions were found to be successful with α,α-di- and α,α,β-tri-substituted lactone enones. 

Lactams reacted well with pivaldehyde. Unsurprisingly given the steric bulk of 4-72, the 

reactions proceeded in very high d.r. and gratifyingly in good yields. 
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We tried some acyclic esters and amides without much success. We hypothesized that 

this discrepancy was due to a conformational requirement where the beta position of the enone 

needs to be in close proximity to the carbonyl in order for the conjugate reduction to occur. If 

this were the explanation we would expect that conformationally constrained acyclic substrates, 

such as morpholine amides would be tolerated and we were pleased to find that to be true (Figure 

4.12). Morpholine amides are important synthetic alternatives to Weinreb amides characterized 

by their ease of use.21 This reaction was successful with α,α-di- and α,α,β-tri-substituted 

morpholine acrylamides (4-80 and 4-77, respectively). The products of this reaction are 

stereodivergent with existing (Ipc)2BH mediated methodologies.22  
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Finally, we demonstrated that the products of our reductive aldol methodology could be 

converted into versatile building blocks bearing a stereogenic quaternary carbon core (Figure 

4.13). We can deprotect benzyl lactam 4-63 to form substituted piperidine 4-84 in excellent yield 

over two steps. Additionally, we could take lactone 4-22 to an acyclic triol 4-85 via a lithium 

aluminum hydride reduction in 74% yield. Most importantly, protected amine 4-86, which is 

formed using our methodology in 66% yield, as a single diastereomer on multi-gram scale, can 
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be protected and hydrogenated to yield 4-87, the desired intermediate towards isopalhinine A (4-

5).  

 

 I am grateful to report that this methodology has been published and that this 

methodology is currently being applied by my coworkers towards the synthesis of isopalhinine A 

(4-5).23 
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Appendix 1-Chapter 2 Supplementary Information 

 

The synthesis of pharbinilic acid and original Luciferase methodology has been 

published.1 The following section will describe the synthesis of unpublished gibberellins as well 

as the full biological data and methods. 

 

General Method 2A EDC coupling of the B-ring Carboxylic Acid 

The following protocol was used to prepare 2-47, 2-48, 2,49, 2-53, 2-54, and 2-85. 

Gibberellic acid (2-1) is treated with 10 eq of alcohol or amine coupling partners, 1.1 eq 

EDC, and 0.2 eq DMAP in DCM (0.1 M) for 14 hr at room temperature with stirring under an 

inert atmosphere. The reactions are quenched with saturated ammonium chloride extracted twice 

with DCM. The combined organic extracts were washed twice with saturated sodium 

bicarbonate and once with brine, dried over sodium sulfate and concentrated. The crude solids 

were purified by gradient column chromatography to yield white solids. Samples were purified 

by HPLC on a Phenomenex RPC18 column before being subjected to biological evaluations. 

 

General Method 2B Dess Martin Periodinane oxidation of enols to enones 

The following protocol was used to prepare 2-50, 2-51, 2-52, 2-55, 2-56, 2-71, 2-72, 2-74, 2-76, 

2-79, 2-80, 2-81, and 2-86. 

 The enol starting material was dissolved in THF (0.1 M) to which was added 2 eq Dess 

Martin Periodinane, which had been prepared according to published protocols,2 10 eq sodium 

bicarbonate, and 1 eq of tert-butanol. The reaction was allowed to proceed for 4 hr or until the 
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starting material had been consumed by TLC. The reaction was diluted in ether, 1:1 saturated 

sodium bicarbonate: saturated sodium thiosulfate was added and the mixture was sonicated for 

10 minutes. At which point the mixture was extracted with ether the organic layers were washed 

with brine, dried over magnesium sulfate and concentrated yielding a white solid or foam often 

not needing further purification. When purification was required gradient column 

chromatography over silica was employed. .Samples were purified by HPLC on a Phenomenex 

RPC18 column before being subjected to biological evaluations. 

 

General Method 2C Riley oxidations 

The following protocol was used to prepare 2-65, 2-66, 2-67, 2-68, 2-69 2-70, 2-73, and 2-75 

Gibberellins and 1 eq selenium dioxide were dissolved in DCM (0.1 M) to which 4.5 eq 

tert-butyl hydroperoxide (2 M in decanes) was added. After 2 hr at room temperature, or when 

starting material was consumed by TLC, the reaction was concentrated water was added and the 

reaction was sonicated for 30 minutes at 10 °C. Organic molecules crystalized out from the 

aqueous mixture upon standing overnight. They were purified by gradient column 

chromatography over silica and samples were purified by HPLC on a Phenomenex RPC18 

column before being subjected to biological evaluations. 

Often upon purification or standing some lactoization of 2-65 and 2-66 to 2-67 to 2-68 

would occur in part. If this is desired the crude mixture of alcohol diastereomers could by 

suspended in DMF (0.1 M), treated with 0.1 eq toluenesulfonic acid and heated to 50 °C for 4 hr. 

At this point most 2-65 and 2-66 is consumed leaving 2-69 and 2-70 unreacted. 

 

General Methods 2D allogibberellic acid epimerization and alphamethenylation 
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The following protocols were used in the synthesis of 2-59, 2-60, 2-61, 2-62, 2-63, 2-64 

Epimerization of the C/D ring of allogibberellins was achieved by refluxing the 

gibberellins in toluene (0.1 M) with 0.1 eq toluene sulfonic acid for 2 hr. Cooling to room 

temperature, and washing with saturated sodium bicarbonate and brine. Upon drying over 

sodium sulfate and concentrating to dryness the epimerized gibberellins could be obtained, often 

without further purification. Samples were purified by HPLC on a Phenomenex RPC18 column 

before being subjected to biological evaluations. 

C/D-epi-gibberellins were dissolved in THF (0.1 M), cooled to -78 °C and 1 eq of freshly 

prepared LDA (0.5 M in THF) was added dropwise. 1.5 eq of Eschenmoser’s salt was added as a 

solution (0.5 M in THF) to the resultant lithium enolate. The reaction was allowed to come to 

room temperature over 60 minutes, quenched with saturated sodium bicarbonate, and exracted 

with ether. The combined extracts were washed with saturated sodium bicarbonate and brine, 

dried over magnesium sulfate, and concentrated. The N,N-dimethylamino gibberellins were 

purified by HPLC on a Phenomenex RPC18 column before being subjected to biological 

evaluations. 

N,N-dimtheyl amino gibberellins were dissolved, crude,  in THF and treated with 4 eq 

iodomethane at room temperature for 8 hr. 2 eq DBU was added and the reaction was refluxed 

for 90 minutes. The reaction was cooled to room temperature quenched with ammonium 

chloride, and extracted with ether. The combined extracts were washed with brine, dried over 

magnesium sulfate, and concentrated to dryness. The alpha-methnylated gibberellins were 

purified by gradient column chromatography over silica. Samples were purified by HPLC on a 

Phenomenex RPC18 column before being subjected to biological evaluations. 
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Synthesis of 2-27 

Gibberellin 2-29 was dissolved in Pyridine (0.5 M) and 2.5 eq of freshly distilled triflic 

anhydride was added. The reaction was allowed to proceed until the starting material was 

consumed and was quenched with saturated ammonium chloride. The resulting mixture was 

extracted with ether, washed extensively with 0.1 M HCl, then brine. The combined extracts 

were dried over magnesium sulfate, concentrated to dryness and then the aryltriflate was 

redissolved in DMF. To the aryltriflate was added 0.1 eq palladium acetate, 0.2 eq triphenyl 

phosphine and a solution of 10 eq 1:1 triethylamine:formic acid (1 M in DMF). The solution was 

heated to 90 °C for 4 hours, cooled to room temperature and then quenched with a 5% (w/v) 

solution of lithium chloride. The mixture was extracted with ethyl acetate, and the combined 

extracts were washed with saturated sodium bicarbonate, 1 M HCl, 5% (w/v) lithium chloride 

and brine, dried over sodium sulfate and concentrated. Gibberellin 2-57 was purified by gradient 

column chromatography over silica. 2-57 was purified by HPLC on a Phenomenex RPC18 

column before being subjected to biological evaluations.  

Methyl allogibberellic ester 2-57 was dissolved in THF (0.1 M) and 2.5 eq of potassium 

trimethylsiloxide was added. The reaction was allowed to stir for 24 hr before being quenched 

with 0.5 M HCl, and extracted with ethyl acetate. The combined extracts were dried over sodium 

sulfate and concentrated to dryness yielding 2-27 as a white powder. Allogibberellic acid 2-27 

was purified by gradient column chromatography over silica. 2-57 was purified by HPLC on a 

Phenomenex RPC18 column before being subjected to biological evaluations.  

 

General Method 2E Epimerization by halogenation 

The following method was used to prepare 2-76, 2-77, 2-78, 2-82, 2-83, 2-84 
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10 eq of N-chlorosuccinimide, N-bromosuccinimide, or N-iodosuccinimide was added to 

a solution of 2-36 (0.5 M in THF) or 17.5 eq of N-chlorosuccinimide, N-bromosuccinimide, or 

N-iodosuccinimide was added to a solution of  2-30 (0.5 M in THF) and heated at reflux for 30 

minutes. The reactions were, cooled, quenched with saturated sodium bicarbonate, and extracted 

with ether. The combined extracts were washed with 1 M HCl, saturated sodium bicarbonate and 

brine, dried over magnesium sulfate and concentrated. The halogenated gibberellins were 

purified by gradient column chromatography over silica and samples were purified by HPLC on 

a Phenomenex RPC18 column before being subjected to biological evaluations.  

 

TNFα induced HEK293 Luc2P Luciferase Assay 

This assay was conducted in GloResponseTM NF-κB-RE-luc2P HEK293 cells which 

were purchased from Promega (Product Number E8520) and cultured according to the 

manufacturer’s specifications with hygromycin B to maintain stable transfection. The cells were 

seeded at 5000 cells/well in a sterile TC-treated white clear bottom 384 well plate in 20 µL of 

DMEM containing 10% FBS, penicillin and streptomycin. It should be noted that 4 wells were 

excluded having only cell growth media but no cells to serve as a control for background 

luminescence. 0.2 µL of Assay compounds, along with Parthenolide and Lactocysteine B, as 

positive controls, were dosed in quadruplicate as 6 point 4x dilution curves from 100 µM to 

0.098 µM and the cells were allowed to incubate for 30 minutes at 37 °C. TNFα was added in 5 

µL of DMEM to a final concentration of 20 ng/mL in the assay well. It should be noted that 4 

wells, preincubated with DMSO alone, were excluded from TNFα induction to serve as a 

positive assay control and to these wells were added 5 µL of DMEM alone. The cells were 

allowed to be induced for 1 hour at 37 °C. One volume, 25 µL, of Firefly OneGlo assay solution 
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was added, incubated with rocking for 3 minutes, careful not to create bubbles, and the 

luminescence was read out. 

 

High Throughput Cell Titre Glo Viability Assay Protocol 

These experiments were done by the Dr. Jamie Cheah at the Koch Integrative Cancer 

Research Institute of MIT in the High Throughput Screening core facility. Cells were plated at 

2000 cells/well in 384 well plates in 50 µL of growth media as recommended by their 

manufacturers. To these cells in duplicate plates, in duplicate curves were pinned 500 nL of 

assayed cell lines from 100 µM to 100 nM and the cells were incubated for 3 days at which point 

they were assayed by a commercial Cell Titre Glo kit and read by luminescence. MG-132, a 

known proteasome inhibitor, was employed as a positive control.  
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Nuclear Translocation Assays 

Confocal microscopy was conducted on HeLa cells that has been plated on 6 well tissue 

culture treated microscope slides at 50,000 cells/well in 200 µL DMEM complete. After 

incubation at 37 °C overnight cells were preincubated with 2-30, 2-36 or DMSO for 1 hour at 

1% DMSO final concentration. The cells were induced with TNFα at 20 ng/mL final 

concentration from a stock solution in PBS. After incubation at 37 °C for 1 hour, the media was 

removed and the cells were fixed by addition of 37 °C 4% formaldehyde, 16% methanol. After 

10 minutes the fixation solution was removed and the cells were washed with PBS. 0.2% Triton 

X-100 in PBS was added and incubated for 10 minutes to permeabilize the fixed cells. The 

permeabilization solution was removed and the cells were washed twice with PBS. The cells 

were blocked with 10% normal goat serum in PBS for 30 minutes and then the blocking buffer 

was discarded and the cells were washed again with PBS. The cells were incubated with 

Alexafluor tagged antibodies at the manufactorers specified dilutions (in most cases 1:500) in 

1.5% normal goat serum in PBS. The cells were washed with 0.1%Tween in PBS twice. The 

cells were incubated with 0.2% DAPI, 1.5% normal goat serum in PBS for 1 hour. The cells 

were washed twice with 0.1% Tween in PBS and stored at 4 °C in the dark under PBS. The cells 

were imaged with a Nikon A1 High Sensitivity confocal microscope with the assistance of the 

Biomedical Research Core Facilities at the University of Michigan. 

Fluorescent Microscopy was conducted as above except that the cells used were HUVEC 

cells. The antibodies used were not conjugated to AlexaFluor so the incubation with DAPI also 

contained secondary antibodies that were conjugated to AlexaFluor fluorescent dyes. The 

microscope used was a TX5000 at the Koch Integrative Cancer Research Institute at MIT.  
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Appendix 2-Chapter 3 Supplementary Information 

 

Model System Studies: 

 

3-148 

2-oxocyclohexanecarboxylic acid was cooled to 0 °C and 3 eq of acetone and 3.3 eq 

acetic anhydride were added to it. 3 drops of concentrated sulfuric acid was added and the 

reaction was allowed to stir at 0 °C until starting material was consumed by TLC. The reaction 

mixture was diluted in ether and quenched with saturated sodium carbonate, extracted with ether, 

and the combined organic fractions were dried of magnesium sulfate and concentrated. The 

mixture was crudely purified by column chromatography and 3-148 was recrystallized as a white 

solid from hexanes.  

 

3-149 

Ethyl acetoacetate was dissolved in benzene (0.5 M) and 1.5 eq triethyl amine was added 

followed by 1.5 eq chlorotrimethylsilane. The reqction was stirred at room temperature until the 

starting material was consumed by TLC and the reaction was concentrated. 3-149 was purified 

from the reaction mixture by vacuum distillation. 

 

3-152 
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Neat ethyl acetoacetate was treated with 3 eq trimethyl orthoformate and catalytic 

concentrated sulfuric acid. Upon completion by TLC the reaction was neutralized with quinoline 

and 3-152 was crudely distilled from the reaction mixture. 

 

3-150 and 3-153 

In the most successful photochemical protocols 3-148 and 5 eq of 3-149 or 3-152 were 

dissolved in acetone (0.1 M) and cold sparged for 90 minutes. The sparged reaction was placed 

under an inert atmosphere and was passed through FEP tubing via a flow apparatus around a 450 

W mercury arc lamp at 50 mL/min while the photochemical setup was being cooled with an 

isopropanol chiller set to 7.5 °C. 3-150 or 3-153 were purified by silica gel chromatography and 

the product crystalized out of the fractions therefrom.  

 

3-157 

 

4,4 dimethyl cyclohex-2-ene-1-one was added, slowly, over 2 hr, as a solution in DME 

(2.4 M) to a suspension of 5 eq of dimethyl carbonate and 2 eq sodium hydride in DME (0.8 M) 

at reflux. After the addition was complete the reaction continued at reflux for 2 hour and was 

then cooled to 0 °C. The cooled reaction was quenched, dropwise, with 10% acetic acid and 

extracted wit hethylacetate. The combined organic layers were washed with saturated sodium 

bicarbonate, brine, dried and concentrated. Purification by column chromatography yielded A-1. 
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A-1 was dissolved in a suspension of methanol (0.5 M) and 0.1 eq 10% palladium on 

carbon. The reaction was vacuum sparged with hydrogen and stirred under an atmosphere of 

hydrogen overnight. The reaction mixture was filtered over Celite and concentrated to yield pure 

3-157. 

 

3-159 (R = H) 

A-1 was dissolved in ether (0.1 M) and was treated with 2 eq lithium aluminum hydride 

portion wise at 0 °C. The reaction was allowed to proceed until the starting material was 

consumed by TLC and was worked up following the Fieser method. The crude product was 

dissolved in dioxane (0.1 M) and 1.9 eq DDQ was added. The reaction was allowed to stir 12 

hours at which point DHQ was filtered away and the flow through was washed with saturated 

thiosulfate, brine, dried and concentrated. Yielding a slightly impure orange compound which 

was further chromatographed over silica gel to provide a clean 3-159 (R = H).  

 

3-155 

Cyclohexene-1-carboxylic acid was suspended in DCM (0.2 M) with 1.1 eq EDC and 0.1 

eq DMAP for 5 minutes to which 1 eq 3-159 (R = H) was added as a solution in DCM (1 M). 

The resulting solution was allowed to stir at room temperature until 3-159 (R =H) was found to 

be consumed by TLC. At which point the reaction was washed with saturated sodium 

bicarbonate, brine, dried over sodium sulfate, and concentrated. 3-155 was purified by silica gel 

chromatography.  

 

3-168 
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Tetralone and 4 eq of paraformaldehyde were suspended in THF (1.2 M) to which was 

added 1 eq diisopropylammonium trifluoroacetate and 0.1 eq trifluoroacetic acid. The reaction 

was allowed to stir for 2 hr at reflux. It was then cooled to room temperature and a second 

addition of 4 eq paraformaldehyde was added and the reaction was allowed to stir for an 

additional 12 hr at reflux. The mixture was cooled the solvent was removed and the mixture was 

resuspended in ether washed with 1 M HCl, 1 M NaOH, and brine before being dried with 

magnesium sulfate, concentrated and purified by silica gel chromatography to provide A-2. 

 

To a 0 °C suspension of A-2 and 1 eq cerium trichloride in methanol (0.3 M) was slowly 

added 1.5 eq sodium borohydride and the reaction was allowed to come to room temperature. 

After 10 minutes the suspension gelled and stirring ceased. The gel was dissolved in methanol, 

cooled to 0 °C and quenched by slow addition of water. The mixture was extracted with ethyl 

acetate and the combined extracts were washed with brine and concentrated. The crude reaction 

products were dissolved without purification in DCM (assumed 0.3 M) cooled to 0 °C and 1.5 eq 

recrystallized mCPBA was added to it. The reaction was allowed to come to room temperature 

overnight at which point it was quenched with 1 M NaOH and extracted with DCM. The 

combined extracts were washed with brine, dried over sodium sulfate, and concentrated to yield 

3-168 as a mixture of diastereomers which were separated by column chromatography. 

 

3-165 
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3-168 was dissolved in DMSO (0.3 M) and 1.5 eq freshly prepared IBX was added to it 

and the mixture was allowed to stir for 3 hr. The mixture was separated between saturated 

sodium bicarbonate and ether and filtered through Celite. The organic layer was washed with 

water and brine, dried over magnesium sulfate and concentrated to provide 3-165 after 

purification by column chromatography. 

3-169 (and general procedure for titannocene epoxide reductions)  

In a protocol adapted from the literature2 we dissolved 3-165 in air-free, dry, distilled 

THF (0.05 M) with 1.5 eq activated zinc and 3 eq 2,4,6 trimethyl pyridine HCl salt. 0.2 eq 

titannocene dichloride was added as a suspension in THF every 3 hr for 24 hr. The reaction was 

quenched with saturated ammonium chloride, filtered through Celite. The resulting biphasic 

mixture was extracted with ether and the combined extracts were washed with brine, dried over 

magnesium sulfate, and concentrated yielding 3-169 after purification by silica gel 

chromatography.   

 

Heck Reaction Optimization Data: 

In collaboration with Merck Process Chemistry Enabling Technologies Group and Dr. 

Danielle Schultz we conducted high throughput reaction optimization in which 200 µL reactions 

were set up in a glovebox under an argon atmosphere in 96 well plate formats enabling µmole 

scale reactions to be rapidly evaluated and analysis of conversions of 3-230 as well as yields of 

3-236 were ascertained by UPLC-MS using di-tertbutyl biphenyl as an internal standard. 

Unfortunately, we did not have an authentic standard of Heck products 3-231, 3-232, 3-233, 3-

234 were unavailable at the time of the evaluation. However subsequent analyses established 

XPhos as a uniquely suitable ligand for the formation of these Heck products. 
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21.1 24.4 16.6 11.4 5.54 8.41 10.8 13.7 8.62 19 -0.8 -0.8

24.3 24.7 9.94 5.9 2.02 1.32 11 8.65 20 1.02 5.38

11.8 25.8 8.41 5.39 10.5 15.6 7.23 14.7 8.2 1.85 3.22

10.5 14.8 11.9 0.13 11.5 3.21 9.93 9.46 25.9 -1.9 11.7 2.09

19.4 28.1 20.6 19 19.2 9.12 -0.3 27.1 10.5 10 16.9 15.8

16.2 30.5 25.9 13.6 16.5 22.8 24 19.3 26.9 8.1 10.9 -0.1

31.4 25.7 23.6 24.3 32.6 38.4 33.9 39 51.9 21 14.1 19.3

28.3 19.2 37 20.3 31.9 14.9 19.9 13.5 48.1 18 1.58 5.61

Ag3PO4

Cy2NMe 

+ AgNO3

Ag3PO4

Cy2NMe 

+ AgNO3

DMA

MeCN

46.3 28.6 40.2 35.6 30.4 1.45 30.8 19.3 32.8 50 17.6 24.9

37.7 31.4 56.7 39 14 35.6 7.18 40.3 31.8 41 18.2 5.72

55.2 52.8 44.3 45.5 34.5 42 50.9 27.3 56.2 52 31.4 21.4

50 25 75.1 62.2 24 45.3 42.8 40.6 44.4 26 27.3 55.3

46.2 33.5 21.1 26.6 10.3 26.2 37.9 18.5 7.09 1.2 29 32.5

34 12.5 50.5 18.4 34.6 38.7 31.1 16.4 10.1 28 10.4 29.2

59.4 41.8 58.1 58.6 44.5 54.4 58.6 51.2 45.2 41 53 53.7

65.1 47.6 81.8 52.7 42.4 49.6 48.2 55.7 15.2 44 47.3 73.7

Ag3PO4

Cy2NMe 

+ AgNO3

Ag3PO4

Cy2NMe 

+ AgNO3

DMA

MeCN

0 0 0 0 0 0 0 0 0 0 0 0

0 0 5.94 0 0 0 0 0 0 0 0 0

0 7.31 0 0 0 0 0 0 0 0 0 0

0 0 9.64 6.13 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 12.3 0 0 0 0 0 0 0

0 0 0 0 0 8.67 7.45 10.1 7.52 0 0 5.77

5.83 0 9.91 0 0 0 5.07 7.82 10.4 0 4.11 3.3

Ag3PO4

Cy2NMe 

+ AgNO3

Ag3PO4

Cy2NMe 

+ AgNO3

DMA

MeCN

 



 160 

 



 161 

 



 162 

88.3 17.2 39.6 33.4 25.9 46.2 55.1 52.4 56.9 52 14.9 20.4

39.5 23.3 14.5 -25 8.82 6.06 8.85 -8.3 -67 -43 13.8 -1.6

58.7 -38 62.6 -19 -11 9.66 45.3 -5 53.9 24 42 -1.4

55.9 35.9 58.8 49.9 74.4 52.7 69 31.1 69.5 50 61.2 56

50.5 56.6 46.7 35.9 12.1 45.4 62.6 52.1 58.6 45 42.9 21.7

47 42.1 47.8 50 69.4 53.6 56.6 49.3 36.9 30 12.2 26

65.7 56.4 67.5 50.1 55.4 65.1 62.5 78.1 62.8 49 63 54.2

51.5 45.6 65.1 58.7 100 48 57.4 63.4 65.9 57 65.9 64.3

Ag3PO4

Cy2NMe 

+ AgNO3

Ag3PO4

Cy2NMe 

+ AgNO3

DMA

MeCN

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 5.85 0 0 0 0 0

0 0 0 0 0 0 0 0 5.97 0 0 0

0 0 0 0 0 0 0 0 8.76 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 5.31 0 0 6.78 0 4.57 7.42 0 0 0

7.06 5.11 4.58 0 3.7 0 5.94 0 7.4 0 0 6.59

Ag3PO4

Cy2NMe 

+ AgNO3

Ag3PO4

Cy2NMe 

+ AgNO3

DMA

MeCN

-36 -7.8 -3.4 -3 -20 21.6 82.3 37.5 15.3 -12 12.4 -16

8.73 -9.5 19.9 87.4 30.6 32.5 57.5 11.3 5.38 0.5 3.96 6.76

16.9 54.6 1.66 8.2 10.7 24.7 84.6 46.3 28.5 26 24.1 35.4

87.2 31.3 36.8 87.5 47.5 34.5 20.2 11.9 -4.4 19 12.9 9.94

23.3 22.7 1.99 46.4 40.9 7.18 91.9 66.2 41.7 21 15.2 -3.5

-41 -21 17.6 76.4 83.7 100 38.8 -1.8 -5.6 35 17 -11

7.94 -29 -12 -6.1 29.3 21 66.2 34.2 12.6 5.4 8.28 7.55

-38 2.67 22 73.8 47.6 37.9 77.7 21.4 15.1 12 8.64 9

A/B Ligands Except A10 and B7 including in column 12 IMes  and Ipr with KHMDS

dioxane

toluene

dioxane

toluene

+AgNO3

+AgNO3

-AgNO3

-AgNO3

0 0 0 9.62 24.4 2.24 0 1.57 1.46 2.5 1.63 2.55

0 0 1.96 0.34 2.25 0 0 0 0 0 0 0

0 0 0 0 21 0 0 0 0 0 0 0

25.6 16.8 0 14.8 14.2 17.8 8.27 0 0 0 0 0

5.07 3.35 3.53 0 10 2.6 0.85 1.47 0 0 3.04 2.35

17.7 7.42 5.92 35.3 35.1 87.9 27.8 11.7 10.9 9.1 7.22 5.21

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 7.87 0 12.8 0 0 0 0 0 0

A/B Ligands Except A10 and B7 including in column 12 IMes  and Ipr with KHMDS

dioxane

toluene

dioxane

toluene

+AgNO3

+AgNO3

-AgNO3

-AgNO3
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K3PO4 2.04 2.29 3.12 1.07 2.88 1.69 2.67 8.14 1.06 2 4.63 4.22 K3PO4

26Lutidene 12.6 11.8 18.8 21 7.99 0 0 11 0 0 9.18 10.7 26Lutidene

Hunigs Base 4.26 18.6 13.1 12 10.3 0 6.82 12.3 10.2 7.2 10.6 7.19 Hunigs Base

Cy2NMe 9.97 34.6 8.93 26.4 4.76 0 7.17 20.9 13.8 0 8.64 10.3 Cy2NMe

K3PO4 2.04 3.55 1.43 3.27 0.81 1.19 5.74 3.29 5.2 0 4.32 2.72 K3PO4

26Lutidene 8.52 16 16.7 18 5.7 10.5 9.71 17 19 11 8.65 8.65 26Lutidene

Hunigs Base 27.4 38.4 21.2 25.8 11.3 8.6 10.9 17.4 29.7 13 16.2 13.4 Hunigs Base

Cy2NMe 37.6 56.9 12.6 23.9 5.56 8.17 11 10 26.6 19 27.8 9.85 Cy2NMe

MeCN

DMA

dioxane

tamylOH

K3PO4 100 100 98.3 100 100 100 100 100 96.8 100 100 100 K3PO4

26Lutidene 87.8 86.1 48.2 41.7 60.7 48.2 19.8 86.8 29 45 70.8 43 26Lutidene

Hunigs Base 81.1 57.2 38.4 41.5 80.1 43.3 49.1 36.1 38.6 29 67.1 15.3 Hunigs Base

Cy2NMe 93.5 84.9 77.4 61.5 81.8 61.3 47.4 20.5 41.4 26 75.2 33.9 Cy2NMe

K3PO4 100 100 100 100 100 100 100 99 99.5 98 100 97.6 K3PO4

26Lutidene 61.1 67.4 25.8 68.2 70.5 28.9 54.1 66 74.1 57 95.1 33.7 26Lutidene

Hunigs Base 87.6 24.8 33.2 45 66.5 42.6 60.8 46.4 58.4 38 76.3 33.3 Hunigs Base

Cy2NMe 98.5 81 79.4 56 83 73.5 92.4 52.3 53 48 100 37.5 Cy2NMe

MeCN

DMA

dioxane

tamylOH
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MeCN DMF dioxane

no lig
and

dtb
bpy

box
n-xa

ntp
hos

no lig
and

dtb
bpy

box
n-xa

ntp
hos

no lig
and

dtb
bpy

box
n-xa

ntp
hos

Ni(COD)2 11 11 41 26 11 23 41 17 12 9.7 46 15

NiCl2-dme 10 9.4 14 19 7.8 12 28 25 11 20 20 9.5

Ni(COD)2 5.5 4.7 6.5 9.6 6.6 8.9 8.8 3 2 2.4 4.7 3

NiCl2-dme 2.1 1.7 5.1 6.5 4.7 8.6 4.5 3.1 1.7 1.5 1.1 1.9

Ni(COD)2 2.3 2.2 3.1 4.8 4 8 4.7 2.9 2.3 2.6 2.3 0

NiCl2-dme 0 1.9 0 0 0 0 0 0 0 0 0 2.4

Ni(COD)2 2.5 2.9 6.4 5.1 6.7 5.8 7.7 2.9 2.4 2.3 1.9 2.4

NiCl2-dme 0 0 6.1 4.6 3.9 4.4 3.8 2 1.7 1.7 1.7 37
Cs2CO3

no photo-

catalyst

(Ir[dF(CF3)

ppy]2(dtb

py))PF6

Cy2NMe

Cs2CO3

Cy2NMe

MeCN DMF dioxane

no lig
and

dtb
bpy

box
n-xa

ntp
hos

no lig
and

dtb
bpy

box
n-xa

ntp
hos

no lig
and

dtb
bpy

box
n-xa

ntp
hos

Ni(COD)2 87 83 89 89 96 78 96 98 71 66 90 96

NiCl2-dme 69 74 82 81 94 82 94 96 97 81 96 90

Ni(COD)2 53 66 52 86 90 95 93 96 71 69 61 73

NiCl2-dme 41 51 43 68 86 90 90 96 60 61 58 54

Ni(COD)2 45 29 35 37 38 37 27 33 40 27 23 28

NiCl2-dme 15 17 14 25 23 21 24 30 15 24 20 15

Ni(COD)2 18 43 27 63 76 81 83 88 51 48 47 48

NiCl2-dme 19 24 11 53 78 83 85 90 54 41 38 32
Cs2CO3

no photo-

catalyst

(Ir[dF(CF3)

ppy]2(dtb

py))PF6

Cy2NMe

Cs2CO3

Cy2NMe
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dp
pf

dip
pf

dp
pp

dp
pb

DPEPh
os

Xan
tph

os

R-B
in
ap

SL-J
00

9-
1

N-p
he

ny
l d

tbp
ho

sp
hin

o-p
yrr

ole

Cy3
PHBF4

(o
-to

l)3
P

NiX
an

tph
os

(Ir[dF(CF3)ppy]2(dtbpy))Cl 10 5.1 37 16 20 39 9.5 6.9 5 6.4 5.1 32
Ru(bpy)3Cl2 11 7.9 35 17 13 22 10 7.1 6.7 8.2 5.4 15

dark & (Ir[dF(CF3)ppy]2(dtbpy))Cl 4.4 3.1 2.4 3.3 4 2.7 1.8 1.2 0 2.6 1.9 2

no photocat 2.9 2.5 6.5 9.5 6.1 6.3 3 2.5 1.9 0 1.8 2.3

(Ir[dF(CF3)ppy]2(dtbpy))Cl 1 1.8 11 13 6.9 16 5 3.1 2.7 4.8 2.9 4.2

Ru(bpy)3Cl2 1.8 1.7 8.7 9.5 7 13 3.5 2.6 2.3 3.3 0 5.5
dark & (Ir[dF(CF3)ppy]2(dtbpy))Cl 0 1.9 3.4 4.3 2.4 2.9 2.8 2.7 2.9 1.9 0 2

no photocat 2.6 1.8 10 6.4 6.1 13 3.2 2.4 0 2.3 0 4.4

K3PO4

Cy2NMe

dp
pf

dip
pf

dp
pp

dp
pb

DPEPh
os

Xan
tph

os

R-B
in
ap

SL-J
00

9-
1

N-p
he

ny
l d

tbp
ho

sp
hin

o-p
yrr

ole

Cy3
PHBF4

(o
-to

l)3
P

NiX
an

tph
os

(Ir[dF(CF3)ppy]2(dtbpy))Cl 87 83 89 89 96 78 96 98 71 66 90 96
Ru(bpy)3Cl2 69 74 82 81 94 82 94 96 97 81 96 90

dark & (Ir[dF(CF3)ppy]2(dtbpy))Cl 53 66 52 86 90 95 93 96 71 69 61 73

no photocat 41 51 43 68 86 90 90 96 60 61 58 54

(Ir[dF(CF3)ppy]2(dtbpy))Cl 45 29 35 37 38 37 27 33 40 27 23 28

Ru(bpy)3Cl2 15 17 14 25 23 21 24 30 15 24 20 15
dark & (Ir[dF(CF3)ppy]2(dtbpy))Cl 18 43 27 63 76 81 83 88 51 48 47 48

no photocat 19 24 11 53 78 83 85 90 54 41 38 32

K3PO4

Cy2NMe

dp
pf

dip
pf

dp
pp

dp
pb

DPEPh
os

Xan
tph

os

R-B
in
ap

SL-J
00

9-
1

N-p
he

ny
l d

tbp
ho

sp
hin

o-p
yrr

ole

Cy3
PHBF4

(o
-to

l)3
P

NiX
an

tph
os

(Ir[dF(CF3)ppy]2(dtbpy))Cl 8.2 3.1 7 6.6 11 10 5 2.6 8 6.1 8.3 6.2
Ru(bpy)3Cl2 3.6 2.4 3.4 3.3 4.2 6.1 3.5 2.7 3.6 3.3 3.4 4.8

dark & (Ir[dF(CF3)ppy]2(dtbpy))Cl 3.4 2.3 8 5 2.8 3.8 3.2 5.6 9.8 2.9 8.1 3.6

no photocat 5.4 2.1 9 8.4 9.2 7.8 2.6 3 6 2.6 4.5 5.6

(Ir[dF(CF3)ppy]2(dtbpy))Cl 5.2 3.6 30 18 15 14 5.8 3.6 3.9 5.4 4.5 17

Ru(bpy)3Cl2 7.7 5.8 26 15 13 18 7.3 6.4 9.8 9.2 8 15
dark & (Ir[dF(CF3)ppy]2(dtbpy))Cl 4.7 3.3 7.4 3.4 3.7 2.6 2.4 3 3.9 5.8 2.7 2.5

no photocat 2.8 2.2 11 10 3.5 3.2 2.4 2.3 3.5 2.2 1.8 3.1

DIPEA

26Lutidene

dp
pf

dip
pf

dp
pp

dp
pb

DPEPh
os

Xan
tph

os

R-B
in
ap

SL-J
00

9-
1

N-p
he

ny
l d

tbp
ho

sp
hin

o-p
yrr

ole

Cy3
PHBF4

(o
-to

l)3
P

NiX
an

tph
os

(Ir[dF(CF3)ppy]2(dtbpy))Cl 4.6 14 -6 -0.4 22 16 3.5 38 45 15 32 20
Ru(bpy)3Cl2 23 23 16 15 18 16 10 30 24 15 25 14

dark & (Ir[dF(CF3)ppy]2(dtbpy))Cl 27 21 18 15 22 14 9.7 13 21 11 25 19

no photocat 15 19 18 16 19 14 8.8 22 21 26 27 18

(Ir[dF(CF3)ppy]2(dtbpy))Cl 29 22 65 53 39 33 17 25 31 16 48 33

Ru(bpy)3Cl2 26 28 55 49 30 33 14 25 48 27 38 40
dark & (Ir[dF(CF3)ppy]2(dtbpy))Cl 28 18 22 33 17 11 7.1 11 17 17 23 13

no photocat 24 19 28 34 11 6.9 11 14 13 13 21 37

DIPEA

26Lutidene
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