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Abstract

Growth is one of the most profound concepts in biology, shared among all living organisms

from bacteria to human beings, and has had a long history in physics as well. One of

the major open questions in biology regarding growth is how organs in a growing animal

regulate and coordinate their sizes to ensure proper body proportions. In this thesis, we

study size coordination and growth regulation in biological tissues from multiple angles using

phenomenological models borrowed from nonequilibrium statistical physics, control theory

and the theory of elasticity as well as image processing algorithms to analyze biological data.

Motivated by a recent observation in the fruit fly Drosophila that a single hormone secreted

by the developing organs is instrumental in keeping the bilateral symmetry of the fly wings,

we first investigate coordination between left and right organs via chemical signaling. We

show that there are limits to the ability of the signal to ensure successful left/right symmetry,

suggesting that organ sizes are primarily set autonomously. We then discuss an experimental

collaboration with the biology lab of Pierre Leopold in France. We explain our efforts in

mounting and imaging adult Drosophila wings, and developing image processing algorithms

to automate the wing segmentation to measure wing size asymmetry. We also outline a code

based on the Procrustes analysis to quantify shape asymmetry and see whether or not wing

shape is also affected in response to mutations that cause an increase in size asymmetry

between left/right wings. Finally, inspired by our analytical conclusion that final organ sizes

are primarily set autonomously despite growth being an intrinsically noisy process, we look

at noisy growth of individual tissues subject to mechanical feedbacks to understand what the

implications of noise are in a growing tissue. We show that even the simplest model of noisy

tissue growth exhibits a surprisingly rich behavior. For instance, we find that the growth

displays power law correlations, and soft modes that lead to large variations in the size of

marked clones of cells. Our models set the stage for future experimental and theoretical

studies of nonequilibrium tissue growth in biology and physics alike.
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CHAPTER 1

Introduction

Why might a theoretical physicist study biology? I would say, because there is a certain kind

of beauty in biology, the kind that is not only aesthetically pleasing but also fascinating and

almost magical. So, it is only natural for our curious minds to draw us towards understanding

animate objects the same way that it draws us to understanding, say, the nature of gravity. In

other words, studying biology as a theoretical physicist merely means approaching biological

questions with a physicist’s mindset.

This is indeed an exciting era for theoretical physicists to work on biological problems.

Nowadays, the advancements in imaging, molecular biology and genetics have granted us the

power to manipulate different model organisms such as the fruit fly Drosophila melanogaster,

the roundworm Caenorhabditis elegans, and the zebra fish Danio rerio among others in order

to study the functions of different genes and proteins, cellular processes, interactions between

cells and their surroundings, and so on, thus providing us with an ever expanding library of

biological data and questions to tackle.

Although given the complexity of living systems, it might seem as though our only contri-

butions to biology can be in doing numerical simulations or detailed modeling of biological

processes that involve a large parameter space of interacting components (e.g. [7]), there

is arguably great value in taking a phenomenological approach by building simple generic

models that attempt at describing the system in a coarse-grained manner.

It is well established that living organisms are complex, i.e. they are greater than the

sum of their parts. This means that for example by mixing up all the content found inside

a cell, we would most likely make goo and not a cell! Therefore, a detailed microscopic

model probably will not give us a good intuition about biological principles that cause these

molecules to self-organize into a living system, and more importantly will likely not be

tractable analytically at all, forcing us to resort to numerical studies. However, all hope is

not lost, because not all details matter ‘equally’ and we can indeed gain insight into a system

without knowing every single detail about that system.

Two famous examples of the power of generic models include Michaelis-Menten kinetics
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[8] and pattern formation by Turing instability 1 [9]. Michaelis and Menten were able to

explain the saturation of the production rate in an enzyme driven reaction by proposing

an intermediate reaction where enzyme binds the substrate into a complex, the existence of

which was proven thirty years later [10].

To explain the pattern formation in animal development, Alan Turing proposed that

by having a two component reaction-diffusion system where one component diffuses more

slowly that the other, instability driven patterns can arise. He called these diffusing chemi-

cals morphogens. Even though he did not take into account the complex interaction between

morphogens and cells, the idea that patterns can form from diffusing molecules was revo-

lutionary and has since been attributed to different cases of pattern formation in different

animals [11].

These two examples highlight three features that distinguish such phenomenological mod-

els from microscopically detailed models: (i) These models are not specific to any particular

system (Michaelis-Menten kinetics does not apply just to one particular reaction, and even

more so, Turing’s model applies to the process of pattern formation in general). (ii) They

rely on mainly macroscopic observables and only a minimal set of microscopic details. (iii)

Their basic assumptions predict the necessary existence of an unobserved detail2. Moreover,

the fact that coarse-grained models can work attests to an inherent simplicity and universal-

ity at the heart of the complexity and messiness of biology: many fundamental components,

processes and interactions are shared among most living beings. Simple toy models have

indeed uncovered motifs that are repeated in different systems. Examples include robustly

achieving a desired steady state through negative integral feedback [12, 13] and exhibiting

multistability via positive feedback [14, 15]. All in all, it is valuable to strive for a simple

phenomenological approach that gives us the power to tackle fundamental questions about

biology that are not necessarily specific to a certain organism and make general predictions

about biological mechanisms.

An area where this phenomenological approach can be particularly helpful is develop-

mental biology. What is fascinating about development is that it is a purely emergent

phenomenon. In other words, there is nothing in the DNA that explicitly tells the animal

how it should look like. Genes in the DNA are responsible for the production of different

proteins and the interactions between them, effectively determining cell-cell communica-

1Notably, both cases happened before much was known about the microscopic details of biological pro-
cesses. For reference, Watson and Crick discovered the double helix structure of DNA in 1953.

2Note that we are not claiming that heavily detailed models do not have predictive power. However, such
models often become black boxes with results that are hard for humans to interpret. For instance, it often
is not easy to know by looking at a detailed model what sort of parameter changes lead to qualitatively
different behaviors.
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tions. From the ensuing spatio-temporal network of interactions on different scales emerges

a self-organized living organism. Then, clearly studying each individual part will not pro-

vide a satisfying and sufficient answer to, say, how a chicken emerges from an egg. Thus,

developmental biology is an exciting area for physicists to employ phenomenology in order

to gain insight into the most basic biological principles that are required for proper animal

development.

One of the central questions in developmental biology is how organs regulate and set their

sizes leading to an exceptionally well-proportioned animal. This is in fact the question from

which this thesis was born. To answer this question, we teamed up with the biology lab of

Pierre Leopold at the Curie Institute (previously at the University of Nice) in a collaboration

and used phenomenological models to address the problem of growth and size regulation in

development. Before delving more deeply into our findings, it is important to give some

background on organ size determination and tissue growth.

1.1 Organ Size Control

Leonardo da Vinci created the Vitruvian Man circa 1487, a drawing that underlined the

proportional relationship of different parts of human anatomy, echoing da Vinci’s idea of

a universal design. He was most likely not the first to notice how well-proportioned and

symmetrical body parts are, but perhaps the first to attempt at quantifying this symmetry.

Since him, scientists have consistently shown interest in symmetry and proportionality in

nature. For instance, it is well known that the golden ratio shows up in different parts of

nature such as the spiral patterns in seashells or the patterns of seeds in a sunflower. Notably,

one of the early comprehensive quantitative studies of proportionality of growth was done

by D’Arcy Thompson in his momentous book, On Growth and Form [16], which is now

hailed for its fundamentally physical and mathematical approach to the problem of growth,

something rather unheard of at the time of its publication in 1917. In the more recent years,

advancement of experimental techniques has lead to a renewed interest in understanding the

principles behind the observed symmetries and size control in biology.

As one would expect, size control is not limited to the scale of organs but exists at even

subcellular scales. For instance, some organelles inside a cell alter their sizes based on the

cell size [17]. Indeed, changes in organelle size can be indicative of disease progression, which

suggests that sizes of subcellular structures can be functionally important. Cell size has been

shown to scale with the genome size [18]. While cells of different types show a very wide

range of sizes (for instance, in humans, blood cells are about 10 µm while neurons can be

larger than 1 meter in length [19]), cells of a given type in a given organism must regulate
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their sizes to ensure functionality. Cell size is mainly regulated by a balance between cell

growth and division [20]. There have been several signaling pathways and genes identified

that regulate cell growth and proliferation in developing organisms [21,22]. Yet interestingly,

cell size is regulated both autonomously [23] and non-autonomously in organs [24]: While

in some organisms like C. elegans cell number and size determines the size of the organism,

in most animals cell size and number are regulated by the size of the organ, which is often

determined by other factors, so that repressing cell division for instance would lead to larger

cells such that the organ size is untouched [19, 24]. Organ and body size regulation by

extrinsic and intrinsic mechanisms such as nutritional signals, growth factors, morphogens,

and local cell-cell interactions have been studied in different organisms [21,24–27].

Even though many of the molecular components that are involved in size control are

known today, it is still not clear how these components collectively lead to a well-proportioned

animal. When talking about a well-proportioned organism, perhaps the first thing that comes

to mind is the existence of some kind of symmetry, be it bilateral symmetry as in butterflies

or human face, dihedral symmetry as in starfish and so on. For instance, it is widely reported

in the fruit fly Drosophila that the left and right wings of the same fly do not defer in size by

more than about 1% [1,28,29] (Fig. 1.1A). Similarly, it has been measured that vein patterns

in the wing are reproducible to within a single cell size, suggesting high symmetry in shape in

addition to size [30]. The small asymmetry is due to intrinsic and environmental variations

that commonly occur during development, and is called fluctuating asymmetry (FA). FA is a

measure of deviations from perfect symmetry where a particular symmetry is expected [31].

Organisms seem to buffer fluctuations very well leading to a low FA. Importantly, variations

between different individuals are significantly higher that the intra-individual variability [32].

FA is a manifestation of the fact that most processes in biology are noisy. Stochasticity

stems from the fact that processes inside a cell involve discrete and thus inherently random

reactions. Indeed, gene expression is a stochastic process [33]. One of the major consequences

of noise is the phenomenon of translational bursting wherein proteins are produced in pulses

[34, 35]. Bursting at the level of RNA transcription has also been observed in bacteria and

mammalian cells [36,37]. Another example of a noisy process is protein partitioning, meaning

daughter will likely not get the same number of proteins [38]. Cell division also involves a

level of stochasticity [39].

Yet the high level of symmetry and reproducibility observed in organisms implies that

there are regulatory mechanisms to buffer noise. A question remains, however: Do organs

autonomously attenuate noise and reach the correct final form, or do they somehow commu-

nicate with each other as they grow? Classic transplantation experiments have indeed shown

that organs have at least a rough idea of what size they want to be. A limb transplanted

4



from a salamander onto another salamander retains the same growth rate as the donor and

can end up with a different size than the recipient [40]. Dissected wing tissues from a larva

that are cultured inside the gut of an adult fly end up with similar sizes to the uncultured

wing tissue even though they grow in very different environment that lacks many of the

developmental signals that the wing would receive inside a larva [41]. Similarly, baby rat

kidneys cultured in the bodies of adult rats autonomously grow to wild type size [42]. These

experiments suggest that organs have an idea of the size they want to be, which we call the

target size.

It is noteworthy, however, that some animals never stop growing but organ growth slows

down with aging. This pattern of growth is called indeterminate growth [24]. For instance,

most fishes such as the zebra fish fall into this category. Even in animals with determinate

growth, there could be parts of the body that never cease to grow, e.g. nose and ears in

humans [43].

In animals with determinate growth, the existence of a target size notably does not

exclude the possibility and need for some kind of a feedback mechanism. For instance, in

the case of flies, the transplantation experiment has an error of about 10%. Even accounting

for experimental errors, is having an autonomous idea of a final size enough to ensure the

observed 1% asymmetry? Moreover, there have been experiments that show that at least in

response to extreme growth disturbance of one organ, other organs modulate their growth

and developmental timing is slowed down for the affected organ to ‘catch up’ [44–46].

Another piece of the puzzle was discovered in 2012 independently by the labs of Pierre

Leopold (our collaborator) and Maria Dominguez, who found that a single gene in Drosophila

called dilp8 is responsible for inducing a delay in pupariation (the point at which growth

stops and the fly starts transitioning from larval to pupal stage), thus allowing imaginal discs

(larval precursers to adult fly organs) to reach proper sizes [1,47]. The way it works is that a

disc whose growth is in some way impaired secretes the hormone Dilp8, which in turn down-

regulates ecdysone, the hormone that promotes transitioning from larva to pupa. Moreover,

it was discovered that knocking out dilp8 causes a significant increase in adult wing area

FA (Fig. 1.1B) [1]. Later experiments further confirmed that Dilp8 slows down the growth

of discs at least in response to severe growth perturbation to one disc [46]. The question

that remains is whether dilp8 plays any role in disc size coordination in normal physiological

conditions, where there are no growth perturbations such as neoplastic growth [47], damages

to a disc [48], or inhibiting disc growth by knocking down ribosomal proteins [46], all of which

are known to trigger stress responses from the cells. There is indeed some experimental

evidence that hints at the possibility of feedback in normal conditions. Boone et al. have

found that other than being involved in stress response pathways, dilp8 is also a target of
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Figure 1.1: Left and right wing of the same fruit fly overlayed. Preparation and imaging of
wings are discussed in Chapter 3. (A) Wings of a wild type fly. It is really hard, if at all
possible, to see a difference in most wild type pairs. (B) Wings of a dilp8 –/– fly. Here, the
difference is more pronounced and clearly visible. There are some pairs with even more area
difference (see e.g. [1, 2]).

the transcription co-activator yorkie (Yki) [2]. Yki is known to promote growth of imaginal

tissues. On the other hand, ecdysone, which is down-regulated by Dilp8, is known to promote

growth of imaginal discs [49].

This all suggests that Dilp8 may be involved in a feedback loop, as its secretion rate is

a readout of disc growth rate and it can also inhibit the growth rate by down-regulating

ecdysone. There are other unanswered questions as well. For example, it is not known if

wings in dilp8 –/– mutants have a higher FA in shape compared to wild type flies. Also,

there is no information yet regarding the FA distribution in different genotypes. Is the FA

distribution in dilp8 –/– mutants just wider than in wild type or, say, it has a longer longer

tail? We address these open questions about dilp8 further in Chapter 3.

What is exciting about Dilp8 in a broader sense than its specific function in Drosophila

is that it suggests that organ size coordination may be achievable via a single endocrine

signal. Therefore, inspired by the example of Drosophila, we asked a general question: What

are the possible mechanisms of organ size coordination using a single coordination signal?

To answer this question we built a phenomenological model of noisy growth of organs and

studied different coordination scenarios and their consequences. A crucial difference between

our model of organ growth and those that have come before is the existence of a target size.

Previous models have usually included a decaying growth rate [50], so even though the

dynamics reaches a fixed point, this fixed point is dependent on initial conditions, whereas

our model includes a target size independent of other parameters as a fixed point. This target

size can indeed depend on local patterning genes or systemic and nutritional signals [21,25],

which we do not include in our model for simplicity.
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In Chapter 2 we demonstrate that there are severe limitations in coordination using a

single chemical signal. In particular, we show that a feedback on growth rate (as seems to

be the case in flies) is also the most viable form of feedback but that it fails at correcting

possible errors in target sizes, i.e., if organs infer their individual target sizes incorrectly,

feedback cannot help improving the organ symmetry in adults. This unfortunate conclusion

suggests that organs may have autonomous error correcting mechanisms that help them to

individually specify their sizes properly. We were then motivated by this conclusion to look

at growth of individual tissues and understand how they locally regulate their growth. We

discuss this in the next section.

1.2 Growth of Biological Tissues

In the previous section, we suggested the idea of a target size that each organ can reach

independently of others. This immediately begs the question: how does a growing tissue

autonomously stop growing? In the past several years, there has been a large body of work

dedicated to this very question. A major step towards answering this question was taken by

Boris Shraiman in 2005, who proposed a mechanism for growth regulation via mechanical

feedbacks [51]. Then, it can be inferred that a morphogen gradient would lead to growth

arrest if cells at the boundary an epithelial tissue (a 2D layer of cells, e.g. wing disc in fruit fly

larvae) stop proliferating once the morphogen level they see drops below a certain threshold.

The reason is that the arrest of cell proliferation will lead to a build up of mechanical stresses

in the middle of the tissue. If this stress field then feeds back on the growth rate, after some

time the growth completely stops [24]. This hypothesis also suggests that the length scale

of organ sizes might be determined by the length scale of the morphogen gradients. There

have been many experimental, analytical and computational studies ever since to examine

this hypothesis, including whether or not mechanical feedback can lead to a unique final

size (e.g. [52–54]). One notable example is a study by Ranft et al., who showed that in a

growing elastic solid, if the tissue responds to mechanical stresses by cell division or death,

the stress tensor relaxes so that the tissue effectively acts like a viscoelastic fluid on long

time scales [6].

But given that growth is intrinsically noisy, what are the implications of noise for tissue

growth? If a tissue is to reach a specific target size with a high precision, it must be able to

buffer noise in growth. It turns out that this question has not been explored in great depth

before. In particular, not much is known about the interplay between stochasticity and

mechanical feedback in growing tissues. Ranft et al. have briefly looked at noisy dynamics

of tissues at homeostasis, the state at which cell division and death balance each other out,
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Figure 1.2: Signatures of noisy tissue growth (A) Taken from [3]; mitotic cells in Drosophila
wing disc show clumping. (B) Taken from [4]; dynamics of clones in Drosophila wing disc.
Each clone at n earlier time point (red) is connected to the same clone at a later time point
(green). After some time clones grow to different extends and change shapes.

but not in the more general case of growing tissues.

Experimentally, there have been several studies probing noisy tissue growth. For example,

cell density variations have been studied in culture (e.g. [55, 56]) and labeled clones of cell

have been used in various experiments (e.g. [4]). Clones are labeled and genetically identical

cells that share a common ancestry, enabling us to study the dynamics of a part of the tissue

as the tissue grows. For example, looking at images of a a snapshot of mitotic cells and

time evolution of clones in growing wing disc clearly shows some stochasticity (Fig. 1.2). We

ought to be able to then say something about the statistics of mitotic cell density or, say,

size distribution of clones.

As a first step towards understanding noisy tissue growth, we studied a simple model to

attempt at answering these basic questions. For this purpose, we assumed that the tissue

is a 2D elastic solid. A solid description is valid when there are no cell rearrangements in

the tissue. This is definitely true for plants [57]. Even though many epithelial tissues show

significant cell rearrangements, some like Drosophila wing disc have been shown to fit the

solid description to a good approximation [58]. Therefore, for the rest of this section, we

focus on growth of elastic tissues (we will discuss the validity of this assumption in more

detail in Chapter 4).

Deterministic growth of elastic tissues has been studied in depth theoretically. One

formalism that is often used to describe volumetric growth of elastic materials is called

morphoelasticity, which is an extension of finite strain theory of elastic deformations [59]

and formally similar to stress dependent plastic deformations [60]. It has been used to study

buckling of morphoelastic filaments [61], instability of growing tissues [62], and growth and
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remodeling of heart and bone tissues [63]. This formalism asserts that the deformation

gradient tensor, the map from the initial state to the current state, can be decomposed

into two components: a growth tensor G followed by elastic deformations. The principal

components of G determine tissue’s preferred dilation locally, i.e. they tell us by how much

the tissue wants to grow in different directions locally to remain stress free. The tissue then

has to elastically deform to be as close to the preferred grown state as possible. However,

since G can end up being incompatible with the Euclidean space, tissue deformations may

not be able to totally cancel out the local mass increase, leading to mechanical stresses to

build up.

It is worth noting that another formalism that is sometimes used is called the target metric

formalism, which has been shown to be equivalent to morphoelasticity. In this formalism,

instead of the growth tensor G, the metric ḡ = GTG is considered as the preferred metric

after dilation [64]. This formalism has in particular been used to design and engineer elastic

materials that would deform into a desired shape after dilation due to, say, temperature

increase [65].

In Chapter 4, we start from the morphoelasticity formalism and consider a very simple

model of nonequilibrium growth of elastic tissues to make predictions about experimentally

accessible such as density-density correlation functions and the variance of clone size. We

find that this simplistic model produces rich and surprising results. Even though the results

do not in obvious ways help us understand how tissues buffer noise to stop growing at a

specific size, this model can act as a first step towards more biologically accurate models,

models that include effects of morphogens and anisotropic growth for example.

Our study of noisy tissue growth can be of value to the physics community as well. Growth

has been studied extensively in physics. Particularly, nonequilibrium growth of interfaces,

which often exhibits fractal patterns, have been of interest [66–68]. The most famous model

of interface growth is arguably the KPZ equation [69]. KPZ equation is a great example

of a generic model that was built purely by symmetry arguments, thus it should not come

as a surprise that the KPZ equation has been used to successfully describe phenomena

with completely different microscopic details such as combustion of paper [70], growing

interface of bacterial colonies [71], turbulent liquid crystals [72], and the patterns of coffee

rings [73]. Another notable example is diffusion-limited aggregation (DLA), which has been

used to describe a variety of systems from particle aggregates [74] to urban structure [75].

Nonequilibrium growth of biological tissues can be seen as a new class of growth problems

encompassing rich properties, waiting to be discovered.
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1.3 Organization of the Thesis

This thesis is the collection of my PhD research under Prof. David Lubensky and involves

a collaboration with the biology lab of Pierre Leopold in France, for which I have trav-

elled to France on two occasions and taken part in experimental and imaging endeavors in

addition to the main focus of my work, the theory of nonequilibrium growth and size reg-

ulation in biological tissues. Our goal in our modeling, in the same vein as the discussion

at the beginning of this chapter, is to provide generic models of organ size coordination and

growth regulation as a search for basic principles behind these mechanisms and to explore

different consequences of our simple assumptions. The thesis has been divided into three

semi-independent parts: (i) theoretical treatment of size coordination between organs, (ii)

experimental and imaging aspects of size coordination in Drosophila wings, and (iii) growth

regulation at the tissue level.

(i) In Chapter 2, as briefly discussed in Section 1.1, we look at the possibility of size

coordination between organs by a single chemical signal. In particular, we will look at

the most basic forms of feedback that can potentially exist in biology, namely proportional

and integral feedback on growth rate and on absolute size, in each case examining the

experimental signatures and potential issues. Moreover, we consider the most viable feedback

mechanism in the case of Drosophila, which is proportional feedback on growth rate, and

make predictions about different genetic manipulations. We will see that none of these

feedback models are good candidates to correct errors in target size, suggesting that organ

autonomous mechanisms also should be at play.

(ii) In Chapter 3, which focuses on our collaboration with the Leopold Lab, we look

at the experimental and imaging side of organ coordination in the context of Drosophila.

The chapter discusses the experimental procedure for mounting adult Drosophila wings on

slides for imaging, and two MATLAB codes that we have used to quantify size FA and wing

pattern FA of Drosophila wings in wild type flies and dilp8 –/– mutants. Even though size

FA can be easily measured by manual segmentation, it is a tedious and slow task, and prone

to errors. This is particularly troublesome because we would ideally want to learn about the

size FA distribution in different genotypes which means that we need many measurements

of wing areas. To circumvent these issues, we automate this process using an image analysis

algorithm. Moreover, to quantify shape FA, we look at the vein patterning and specifically

the vein crossings on the veins. We present a code to identify vein crossings and used the

Procrustes transformation to remove differences in size or rigid rotations and translations,

and to isolate variations in vein patterns. This method allows us to quantify pattern FA.

(iii) In Chapter 4, we shift our focus towards growth and regulation at the tissue level as
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a first step towards understanding autonomous size regulation in tissues such as Drosophila

wing disc. As briefly discussed in Section 1.2, we look at the simplest case, where we will

take the tissue to be an infinite 2D elastic solid with periodic boundary conditions. With

this basic model, we study different measurable quantities like density-density correlation

functions and the variance of clone size. What we discover is that surprisingly, density

correlators show a power-law in space similar to inflationary models of cosmology where

quantum fluctuations in the early universe lead to formation of large scale structures [76].

Because of this resemblance, we call our model inflationary embryology. We also find that our

model exhibits two soft modes of growth. These are modes that do not generate any stress

and are allowed to grow diffusively. We show that these modes have important consequences

for dynamics of clones. Our model is the first step towards understanding noisy tissue growth

and autonomous growth regulation in more specific biological contexts.

Finally, even though the contents of these chapters are related and tell a story on a

whole, we have tried to give enough background information in the Introduction section and

sufficient conclusions in the Discussion section of each chapter so that each of them can

stand on its own merits independent of others. In some ways, each chapter in this thesis

is like an organ of this body of work. Similar to how we think organs may function during

development, each chapter is in a way autonomous, but there is still cross-talk between them.
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CHAPTER 2

Organ Size Coordination by Chemical

Signaling

Ojan Khatib Damavandi and David K. Lubensky

Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-1040, USA

(Manuscript in preparation for Journal of the Royal Society Interface)

2.1 Introduction

One of the biggest open questions in biology is how animals set the sizes of their organs and

how or whether organs coordinate their growth to lead to a a correctly proportioned animal

at the end of development [77]. For instance, in the fruit fly Drosophila melanogaster, the

left and right wings of the same fly rarely differ in surface area by more than 1% [1,2,29,32]

and the variability in wing shape is very low [30,78]. Length measurements of left and right

mouse forelimbs and hindlimbs show similar results [45].

In the recent years, there have been many new experimental discoveries regarding the

underlying molecular components of organ size determination [21]. However, not much

progress has been made into the mechanisms by which these components ensure proper

organ sizes. In this chapter, we explore basic models of organ growth and coordination

involving a single chemical signal and study the limitations of organ coordination and in

particular, whether coordination can on its own ensure the exceptionally low asymmetry

observed between left and right organs.

This small intra-individual asymmetry is due to intrinsic fluctuations present during

growth and is often quantified by the so-called fluctuating asymmetry (FA) index [31, 32,

79–83]. FA refers to the difference in size or shapes due to intrinsic sources of noise of

otherwise symmetrical organs [84–86] and can give us useful information about the amount

of asymmetry in different genetic backgrounds or environments. The high precision in size

control observed in animals and the low FA in their features is somewhat surprising given

that often morphogenesis is a noisy process [87]. Could it be that each organ autonomously
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regulates its growth precisely in such a way that all organs independently reach proper

relative proportions? Or are there potential inter-organ coordination mechanisms to buffer

errors in individual organ growth and ensure correct body proportions?

There is indeed evidence for autonomous organ growth, and existence of a ‘target size’ —

an intrinsic size that an organ will reach independently of other organs — in animals ranging

from fruit fly to salamander [40–42]. These classic transplantation experiments suggest that

each organ has an idea of what size it wants to be. Furthermore, there has been evidence

to suggest that organs have a control on their size and not necessarily their cell number.

For instance, slowing cell division in a compartment of wing imaginal discs (precursor to

adult wings in larval stage) in Drosophila leads to fewer cells in the compartment but the

cells become larger and compartment size is unaffected [88]. This target size can in fact,

and presumably does, depend on nutrition and environmental effects [21, 25]; organs read

systemic signals related to these clues and determine their target size accordingly. We also

note that even though organs in many organisms do stop growing, in some animals, such as

lobsters and most fishes, growth never stops, rather it slow down as the animal ages but is

never fully arrested [24,43].

But is the existence of a target size enough to ensure correct final sizes to within a few

percents as observed (e.g. 1% for adult fruit fly wings)? One could imagine that each organ

may estimate its target size with some uncertainty, which can lead to high asymmetries if

errors in relative target sizes are large. Even if each organ perfectly estimatees its target

size, organs still may end up with large size differences if they are not allowed enough time

to reach their respective target sizes. This could particularly be an issue for fruit flies which

are known to have a very fast development, therefore potentially preventing organs from

reaching their desired sizes before maturation, when growth stops.

Nonetheless, development is extremely robust against environmental variations, suggest-

ing that some form of a feedback mechanism may be present during development to assist

organs to coordinate their growth. A feedback mechanism can inform each organ of the

developmental stage of others, thus helping organs modulate their growth rate accordingly.

There is in fact evidence of coordination [26, 89–91]. Catch up growth has been observed

in zebra fish inner ear development [92]. In Drosophila and mice, disrupting growth of an

organ leads to a systemic growth rate reduction in other organs [44–46]. Coordination has

even been observed between different compartments of Drosophila wings [46,93].

The Drosophila example is particularly interesting as it was observed that knocking out

the gene dilp8 (responsible for the endocrine hormone Dilp8) in fly larvae results in an

increased FA in adult fly wings [1, 2, 29]. Notably, even though it is not the first gene

involved in buffering noise [28,32], it is the first responsible for a secreted factor that has an
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FA phenoype. Moreover, damaging or slowing down the growth of one imaginal disc in larva

results in elevated levels of dilp8 and increased secretion of Dilp8 hormone by the damaged

disc, which in turn delays pupariation (the end of larval development and the onset of pupal

stage) and slows down growth of uninterrupted discs so that the damaged disc can heal and

catch up [1, 46–48, 94]. Thus, in Drosophila, Dilp8 is a natural candidate for a coordinating

signal. What is less clear is whether Dilp8 is involved in coordinating organ sizes during

normal physiological development when there is no significant stress on any of the discs.

Size coordination between organs has been studied before. One particular example is

the notion of competition for limited resources observed in insects and bacteria [95–100].

However, at least in steady state, these limited resources mechanisms seem to only set a

bound on the final size such that one organ could become large at the expanse of others [101].

This would lead to higher FA and thus makes these models less desirable for our study.

Here, inspired by Dilp8 in Drosophila, the question we tackle is whether organs can

coordinate their growth by a single endocrine signal secreted by the organs themselves during

normal development; in particular, we specifically exclude situations where one or more

organs have been strongly perturbed so that they activate stress response pathways that

are inactive in healthy, wildtype animals. Our primary focus is on coordination between

left/right organs that show bilateral symmetry (e.g. fruit fly wings). Importantly, we build

our models with the assumption that organs have an intrinsic target size, which suggests

that organ growth slows down and stops eventually. This is in contrast with previous models

that have assumed a growth rate that decays exponentially in time [5, 50, 102]. The issue

with that assumption is that the steady state organ size will then depend on the initial

conditions, which is incompatible with the idea of target size.

The organization of the chapter is as follows: first, we give an overview of the general

scenarios of size coordination that we will consider for our study, pointing out their possible

biological origins in Section 2.2. Then, in Section 2.3, we study these different cases individ-

ually in detail, discuss their major biological implications and explore their potential issues.

Finally, in Section 2.4, we apply our models to the specific example of Dilp8 in Drosophila.

2.2 Scenarios of Growth and Coordination: Overview

In this section, we present an overview of the different scenarios of growth and size co-

ordination in pairs of bilaterally symmetric growing tissues via a single endocrine signal

(summarized in Table 2.1). In Section 2.3, we provide mathematical descriptions of these

cases and discuss the main experimental consequences and of each model and their potential

issues. Our main assumptions are:
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(I) Organs have an idea of an asymptotic target size so that given enough time their

growth will stop at this autonomously decided size at steady state.

(II) Organ growth completely stops at a specific developmental checkpoint, which we call

the maturation point (e.g. pupariation time in Drosophila), before the asymptotic steady

state is reached.

These assumptions are motivated by Drosophila development but have been observed

in other organisms as well [43]. Throughout this section, we will frequently talk about the

“coordination signal,” by which we mean a hormonal signal that is secreted by both organs

that helps in coordinating their sizes, and not, for example, a feed forward signal from the

body. In order to understand the basic possibilities in the simplest context, we focus here

and in the rest of this chapter on cases where one coordination scenario is predominant, but

it is of course also conceivable that one animal might avail itself of multiple mechanisms

(e.g., both controlling the timing of the maturation point and feeding back on organ size

throughout growth).

2.2.1 No Coordination (NC)

The first possibility of coordination is of course that organs do not coordinate their growth

at all, at least in normal physiological conditions. We call this scenario the ‘NC model.’

In this scenario, there may still be a hormone that only acts as a coordination signal in

response to severe growth perturbations. But in normal conditions, the only signals each

organ would receive are systemic ones such as nutritional and maturation signals, and the

coordination signal is either not secreted or is only involved indirectly with processes such

as homeostasis and housekeeping in each organ and not in any direct way involved with

coordination between them. This implies that organs set their target size independently

with high precision and, moreover, have enough time to reach that target size, or else FA

would be high.

2.2.2 Timing-only (T)

Another possibility is that the coordination signal is only involved in delaying the timing

of maturation long enough for the organs to come close to their target sizes. This scenario,

similar to the NC model requires organs to have the same target size but relaxes the condition

on timing. We call this hypothesis the ‘T model.’ Here, the hormone would need to down-

regulate the secretion of some maturation signal (e.g., ecdysone in Drosophila), to delay the

onset of maturation long enough for organs to grow to their proper sizes.
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2.2.3 Continuous Feedback on Absolute Size (FS)

The coordination signal, secreted by the organs into the blood, may be involved in a con-

tinuous feedback loop instead of controlling only the timing of the maturation point. Even

though the signal may simultaneously feed back on organs and delay timing of maturation,

the simplest assumption is that in normal conditions signal only is involved in a feedback

mechanism and only in response to severe growth disruption it may delay maturation.

First, let us assume that the coordination signal feeds back on errors in the absolute

size of organs. Biologically, to have feedback on absolute size, we will show that organs

need to secrete a hormone at a rate proportional to their size. Simultaneously, and more

problematically, the cells in the organ need to ‘know’ the size of the organ, which could

be achieved for instance by a constant amount of another chemical confined to the organ

that is diluted as the organ grows, or perhaps by measuring the steepness of a morphogen

gradient. As we show later, since the signals secreted by both organs are mixed up in the

bloodstream, each organ can only gain knowledge about the average size by measuring the

hormone concentration.

We consider two versions of this feedback, each with its own unique experimental signa-

tures:

(A) Proportional feedback on absolute size, or ‘FS-P model’

(B) Integral feedback on absolute size, or ‘FS-I model’

2.2.4 Continuous Feedback on Growth Rate (FR)

Another possible case of continuous feedback is feedback on growth rate. This scenario

implies that the coordination signal is secreted into the blood by organs in proportion to

their growth rate. Again, hormone concentration in blood will carry information about the

average growth rate of organs. Then each cell in each organ will have to compare its growth

rate to this average growth rate to decide if it should slow down (to compensate for the other

organ) or speed up (to catch up with the other organ). This case on the face of it seems

more biologically probable as it is more natural for cells to know their growth rate than it is

for them to know the absolute size of the entire organ and it does not require extra players

such as a diluting chemical inside the organ. We also consider two versions of this scenario

and will discuss their differences in the next section:

(A) Proportional feedback on growth rate, or ‘FR-P model’

(B) Integral feedback on growth rate, or ‘FR-I model’
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2.2.5 Issues with Conversion of Hormone Concentrations

In both FS and FR models, organs need to convert the total concentration of hormone [h]

that they sense in the blood to a a meaningful average size (FS models) or growth rate (FR

models) that they can then compare to their size or growth rate. This is not a trivial process

and it is hard to imagine that organs are able to precisely interpret the correct blood volume

accessible to them at all times, which is necessary to back out the information about average

size or growth rate hidden in the hormone concentration. Thus, it is fair to assume that

organs are likely to misinterpret the hormone concentration to some extend (but see [103] for

a case where misinterpretation is not an issue). The question then is whether these feedback

models are sensitive to signal misinterpretation and if so, how sensitive they are. We will

see that only one mechanism (FR-P) is completely robust against errors in conversion, while

others are sensitive to errors to varying degrees.

In Section 2.3, we work out the mathematical form of each model, which allows us to

explore the biological implications of and issues with each scenario.

Scenario Abrv.
Coefficient
sign

Corrects
δA∞?

Sensitive
to ci?

Sensitive
to Ai(0)?

No coordination NC N/A No N/A No
Timing-only T N/A No N/A No
Proportional feedback
on absolute size

FS-
P

Positive Partially Yes No

Integral feedback on
absolute size

FS-I Positive Yes Yes No

Proportional feedback
on growth rate

FR-
P

Negative No No No

Integral feedback on
growth rate

FR-I Positive Yes Yes Yes

Table 2.1: Overview of coordination scenarios. The following explain what each column
mean. 2nd column: the abbreviation of each scenario that we will use throughout the chap-
ter. 3rd column: what the effects of increasing the signal concentration are, e.g. a positive
coefficient means increasing signal concentrations promotes growth. 4th column: whether
the model is able to correct errors in target size, δA∞. 5th column: whether the model is
robust against misinterpretation of hormone concentration by organs (‘Yes’ means the model
is not robust). 6th column: whether the model is robust against variabilities in initial sizes
(‘Yes’ means the model is not robust).
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2.3 Scenarios of Growth and Coordination: Models

Here, we go through the cases presented in the previous section one by one, first building the

model mathematically based on our biological assumptions, then discussing experimental

signatures and implications using fixed point analysis of the steady state organ sizes, and

finally exploring the sensitivity of each model towards errors in parameters.

2.3.1 NC Model

This model assumes no coordination between organs in normal conditions. We model growth

of two organs with sizes Ai (i = 1, 2) assuming that each one knows its target size A
(i)
∞

[assumption (I) in Section 2.2] and that there is no communication between them (the

dynamics are decoupled). To do so, we assume that growth is exponential initially and slows

down as the organ approaches its target size. Additionally, we assume that as the organ

approaches its target size, the difference A
(i)
∞ − Ai decays exponentially.

The simplest mathematical model with a built-in target size that captures these asymp-

totic behaviors is the logistic growth. In logistic growth the growth rate decreases linearly

with size, making it a natural first choice for our model. The logistic differential equation is

dAi
dt

= Ȧi = kAi(A
(i)
∞ − Ai). (2.1)

From Eq. 2.1 it is clear that if there is no coordination between organs, organs need to

have the same target size A∞ to high precision or each organ would approach a different final

size leading to unwanted residual asymmetry (Fig. 2.1A). This is in fact a necessary but not

sufficient condition because organs also need to have enough time before growth arrest to

reach their asymptotic target size [based on assumption (II) in Section 2.2].

To understand why that is the case, we need to remember that growth is a noisy process.

To discuss the consequences of noise, it is constructive to briefly look at noisy growth of

organs (discussed in more details in Appendix A). Taking growth to be approximately a

Poisson process and assuming that there is no cell death, noise can be shown to have a

strength proportional to growth rate, and for each organ we will have:

dAi = kAi(A∞ − Ai) dt+ ε
√
kA∞ Ai(A∞ − Ai) dWi, (2.2)

where ε is a dimensionless noise strength parameter, dWi is the Wiener process [104] and we

have assumed that both organs have the same target size A∞. We can see that noise goes

down as Ai approaches A∞. Importantly, this feature is due to the assumption that there is
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Figure 2.1: NC model requires the organs to have the same target size and are allowed
enough time to grow. (A) Organs with different target sizes will have a high FA (5% in
this case). Here it is assumed that there is no stochasticity due to growth fluctuations. (B)
Even if organs have the same target sizes, noise can lead to variability. The average area
¯〈A〉 ±

√
Var(Ā) is plotted against time. We can see that variance goes down as organs

approach A∞, so premature growth arrest will lead to high FA.

no cell death. If cell death is significant during growth, noise level never approaches zero.

According to 2.2, in order to reach the same size, organs need enough time to grow close

enough to A∞ so that the noise level is below a certain threshold. This threshold depends not

only on ε, but also on the distance from A∞. Therefore, even though on average organs may

be following the same growth dynamics, the width of the size distribution will be nonzero

unless organs are close enough to their target size (Appendix A) (Fig. 2.1B). In Fig. 2.1B,

we plot ¯〈A〉 ±
√

Var(Ā) with ¯〈A〉 = (〈A1〉 + 〈A2〉)/2, where 〈. . . 〉 is the ensemble average

over the noise and the overhead bar represent the mean.

Experimental Signatures

Assume that a hormone is identified or is suspected to be involved in organ coordination in

response to large perturbation. Even though in normal physiological conditions the hormone

does not play any role in coordination, if the hormone is involved in organ autonomous error

corrections and ensuring homeostasis, knocking it out can still lead to higher FA by either

increasing ε in Eq. 2.2 or leading to different targets sizes (Appendix A).

If the hormone is only permissive in normal conditions and has an indirect role in au-

tonomous organ growth, its precise concentration may not matter, so for example, knocking

it out and feeding the animal a downstream hormone required for proper tissue growth and

homeostasis should rescue the wild type phenotype. Similarly, heterozygote mutants may

not display an FA phenotype.

It is also possible that the mechanisms responsible for autonomous error corrections are
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separate than the mechanism of coordination in response to severe perturbations. In that

case, knocking down the coordination signal in normal conditions should not have any effect

on final FA.

Error Sensitivity and Robustness

Perhaps not so much an issue, but a feature of the model is that it assumes that organs

set their target sizes correctly with high precision. This implies organ autonomous error

correction mechanisms.

2.3.2 T Model

This model assumes that in normal conditions, the coordination signal is necessary for achiev-

ing low FA by delaying maturation long enough so that the organs are close to their target

sizes and noise level is low, but importantly, the signal is not involved in size coordination.

So, while the model is mathematically represented by the same equation as NC model, (i.e.

organs still follow Eq. 2.1 as they grow, and they still need to autonomously reach the same

A∞), T model differs from all other scenarios in that the maturation time, which we call tf ,

is not assumed to be fixed in this model. In other words, the other models assume tf is fixed

and independent of growth history, whereas T model instead assumes that the signal affects

tf based on the growth history of organs such that they have enough time to grow.

Experimental Signatures

Where this model differs from NC model is in genotypes where the signal is knocked out.

For these mutants, T model asserts that maturation will be accelerated since there is no

signal to delay it and this acceleration causes organs to stop growing farther away from their

target size, thus increasing final FA (Eq. 2.2), whereas NC model states that noise strength

of individual organs may increase in mutants but developmental timing is untouched. This

is an important distinguishing feature that can be tested in experiments.

Error Sensitivity and Robustness

The issue with this model is again the fact that the model necessitates having the same

target size, so T model still requires autonomous error correction mechanisms.
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2.3.3 FS-P model

As the first continuous feedback mechanism, let us assume that each cell in the organs

secretes into the bloodstream an amount of a hormone proportional to its size. Then the

total amount of hormone Nh in the bloodstream follows the rate:

dNh

dt
= r(A1 + A2)− µNh, (2.3)

where r is a proportionality constant and µ is the degradation rate. Assuming fast degrada-

tion so that the hormone is in a quasi steady state, Nh = (2r/µ)Ā, where Ā = (A1 +A2)/2.

Cells then can read off the total hormone concentration in the blood,

[h] = Nh/V ∝ Ā/V. (2.4)

Here V is the volume of the blood available to the organs, which we take to be a constant.

Even though as the animal grows, perhaps V also increases, because our interest is in the

final size of the organs, taking V to be a constant does not affect the fixed point analysis and

it is the most natural choice (assuming that V is not strongly correlated with organ sizes).

Eq. 2.4 shows that the coordination signal is proportional to the average size of the

organs. In other words, an average size is all the information the coordination signal can

carry. This is because the signal secreted by each organ gets mixed in the same pool and

information about individual organ sizes is lost.

Each cell then reads out [h] and constructs an error signal that will be fed back to its

growth rate. As we discussed in Section 2.2, each cell in organ i has to know the absolute

size Ai through some other mechanism. The FS-P model is

Ȧi
Ai

= k(A(i)
∞ − Ai) + η(ciĀ− Ai), (2.5)

where Ȧi/Ai is the cell growth rate, and η is the strength of feedback, followed by the error

signal that is fed back to the growth rate proportionally. ci is organ i’s interpretation of the

concentration [h] (Section 2.2.5). In other words, ci represents what organ i thinks the blood

volume is. Ideally, we want ci = 1 as it will mean that the error signal will try to get organs

close to the average size. However, it is almost impossible for organs to be able to correctly

interpret the signal concentration and exactly back out Ā at all times.

For simplicity, we assume that ci are independent of time. We will study the consequences

of errors in ci for the final organ sizes in Section 2.3.3. To find the steady state behavior of
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FS-P model, we find the fixed point of Eq. 2.5 (Ȧi = 0 at t→∞):

Ā(t→∞) =
k

k + (1− c̄)η
Ā∞

δA(t→∞) =
k

k + η
δA∞ +

η k δc

k + (1− c̄)η
Ā∞, (2.6)

with δA = A1 − A2, and other quantities similarly defined.

Experimental Signatures

Here, we summarize the main implications of FS-P model.

Feedback coefficient η is positive: The feedback coefficient in FS-P model has to be pos-

itive (η > 0) in order for coordination to reduce errors. This can be seen from Eq. 2.5: Say

initially A1(0) < A2(0). Then in the ideal case c1 = c2 = 1 the error signal Ā − A1 > 0,

therefore, η > 0 is required Ȧ1 to increase so A1 can catch up to A2. Experimentally, this

means that if the concentration of signal is increased (via overexpression of hormone), the

feedback is expected to increase the growth rate (Appendix A).

FS-P model partially corrects errors in target size if δc = 0: From Eq. 2.6, δA(t→∞) =

k δA∞/(k + η) < δA∞ if δc = 0. Intuitively, stronger feedback (larger η) improves the error

correction mechanism. However, FS-P model does not guarantee perfect error correction.

Importantly, note that η → ∞ is pathological because it will drive the organ sizes to zero,

Ā(t → ∞) → 0, unless c̄ = 1 (in this case, since we are additionally assuming δc = 0,

this condition implies that organs need to interpret the signal perfectly). Regardless, as

long as the error in target size δA∞ is not too large, FS-P model can lower it below an

acceptable value (Fig. 2.2A). The FA normalized by the average area at steady state is

δA(t→∞)/Ā(t→∞) = [(k+ (1− c̄)η)/(k+ η)]δA∞/Ā∞, which linearly depends on 1− c̄.
Interestingly, this means that if organs overestimate the signal concentration c̄ > 1, the

steady state FA will be lower.

Notably, it is reasonable to believe that in most cases, the condition δc = 0 can be met as

it simply means that both organs have the same interpretation of the signal concentration,

which can be expected to be true when both are subject to the same environment. If however,

the ability of one of the organs to interpret the signal is disturbed, we expect FA to increase

even if the organs accurately estimate their target sizes (Eq. 2.6).

Mutants will have smaller organs and higher FA: knocking out the gene responsible for

the coordination signal or knocking down the signal effectively amounts to setting c1 = c2 = 0

because this means that organs will not receive any hormone concentration. From Eq. 2.5 we

find Ai(t→∞) = k A
(i)
∞/(k+η), which is smaller than final wild type organ sizes. Assuming
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c1 = c2 for wild type, it can be easily seen from Eq. 2.6, Ā(t→∞) in wild type is larger than

in mutant. Moreover, even though δA(t → ∞) is the same in both wild type and mutant

(c1 = c2 in wild type), error relative to Ā(t → ∞) is larger in mutant. Thus, mutants have

a higher FA than wild type (Fig. 2.2B).

Organs in heterozygous mutants are expected to secrete about half the hormone as the

the wild type animals (ci ∼ 1/2). Hence, final average organ size is expected to be smaller

than wild type but larger than knockout mutants, and FA to be higher than wild type but

lower than knockout.

Feedback reduces noise during growth: Here, we assume both organs have the same tar-

get size and c1 = c2 = 1 in wild type, and focus on noisy dynamics of the FS-P model to see

if the noise during the growth is lowered by feedback. ci 6= 1 qualitatively behaves the same.

We add noise with strength proportional to the square root of growth rate and use small

noise approximation outlined in Appendix A to find Var(A1 − A2) for three cases: η = 0

(NC model), {η 6= 0, c1 = 1} (FS-P model, wild type), and {η 6= 0, c1 = 0} (FS-P model,

knockout). We find that Var(A1 − A2) is smaller for FS-P model throughout the growth.

Interestingly, the knockout shows lower variability compared to wild type initially due to

smaller organ sizes, but later it becomes noisier than wild type (Fig. 2.2C). To find FA, we

normalize
√

Var(A1 − A2) by the average area ¯〈A〉 = (〈A1〉 + 〈A2〉)/2, which reveals that

knockout mutants have a higher FA throughout growth (Fig. 2.2D).

Error Sensitivity and Robustness

The main issue with FS-P model stems from the dependence of the steady state on how

signal is interpreted by the organs. In particular, if δc 6= 0, from Eq. 2.6 we can see that

even if organs have determined their target sizes correctly (δA∞ = 0), the final sizes will be

different and the steady state FA depends linearly on δc. However, we note that it is not

very likely for organs to misinterpret the signal in different ways as long as no significant

perturbation is applied to one organ and not the other.

2.3.4 FS-I Model

We saw that even though FS-P model improves errors in target size, it still is not able to

fully correct them. It is well known in control theory that in order to ensure that a system

reaches a specific final state, integral feedback needs to be employed [105]. Therefore, here,

we assume that the error signal is integrated before being fed back to organ growth rates.
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Figure 2.2: FS-P model. (A-B) Some asymmetry in initial sizes was introduced to better
distinguish organs during growth. (A1(0) = 264, A2(0) = 164). (A) Left and right organs
growing without feedback (NC model) and with feedback (FS-P model). Feedback can
partially correct errors in target size. (B) Knocking out the signal ci = 0 leads to increased
FA and significant size reduction. Even though δA(t → ∞) is not changed in mutants, the
lower average size leads to higher FA. (C-D) Noisy dynamics shows that Var(A1 − A2) is
lowered in FS-P model compared to NC model η = 0. In knockout mutants, Var(A1 − A2)
is initially lower due to smaller organ sizes. Var(A1 − A2) normalized by the average size
¯〈A〉 shows that FA is higher in mutants throughout the growth, but interestingly, still lower

than NC model.
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The differential equations are thus

Ȧi
Ai

= k(A(i)
∞ − Ai) + η gi(t)

ġi(t) = ciĀ− Ai, (2.7)

where gi is the integral of error signal and other parameters defined similarly to FS-P model.

It is instructive to also look at the dynamics of ḡ from Eq. 2.7:

˙̄g(t) = (c̄− 1)Ā. (2.8)

Eq. 2.8 shows that the dynamics only results in finite steady state sizes if c̄ = 1, in which

case, taking gi(0) = 0, ḡ(t) = 0. This implies Ai(t → ∞) = ciĀ∞. If additionally, ci = 1

for each i, organs are guaranteed to be the same size as the average size at fixed point,

A1(t→∞) = A2(t→∞), as expected from integral feedback.

However, if c̄ 6= 1, the error signal keeps feeding back on organs until their sizes shrink

to zero or gets pathologically large. For instance, if c1 = c2 = 1/2, initially, sizes will grow

because the dynamics is dominated by the logistic growth, however, since A1 or A2 can

never simultaneously be half the average size Ā (unless they are both identically zero), the

magnitude of the integrated error signal gets large enough and will drive the dynamics to

the zero steady state (Fig. 2.3C).

Experimental Signatures

It is already clear that this model is not robust against errors in ci, but before discussing

it in the next subsection, we provide some experimental signatures assuming c̄ = 1 in wild

type so that the dynamics is well-behaved.

η is positive: Similar to FS-P model, this model requires η > 0. Notably, for η < 0 the

fixed point becomes unstable as can be seen from stability analysis below.

Feedback can correct errors in target size if ci = 1: as we showed above, the integral feed-

back guarantees that the organs will reach the same size at steady state if organs perfectly

interpret the signal concentration.

FS-I model is oscillatory: It is common for integral feedback to show oscillations. In

particular, in integral control, the output may be allowed to overshoot until it settles to the

steady state as a damped oscillator. Accordingly, FS-I model also shows oscillations with

a period that depends on the strength of feedback: The larger η is, the faster oscillations

will be (Fig. 2.3A-B). A simple stability analysis around the fixed point shows a damped

oscillation, as outlined below.
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For simplicity, we assume organs have the same target size. Expanding Ai = A∞ + xi,

where xi � A∞, we can expand Eq. 2.7 to lowest order in xi. After taking a second derivative,

the dynamics of xi is given by

ẍi = −[kA∞ − ηg(t→∞)]ẋi + ηA∞(x̄− xi). (2.9)

From Eq. 2.7 with A
(i)
∞ = A∞, we can find g(t→∞) = 0. This is the equation for a coupled

damped oscillator. The dynamics of δx = x1 − x2 makes this very clear:

δẍ+ kA∞δẋ+ ηA∞δx = 0. (2.10)

The frequency of undamped oscillations is ω0 =
√
ηA∞ and the damping ratio is ζ =

k
√
A∞/2

√
η. This oscillation can be observed experimentally if in vivo images of organs

during growth is obtained. We expect organ sizes to oscillate if FS-I model is at play.

Finally, this analysis also shows that η > 0 is required for stability of fixed point.

Mutants lose their organs: Any mutation that causes ci < 1 will drive Ai → 0 at steady

state. If however, maturation happens before the organs reach zero size, mutants will not

lose their organs, albeit the organs will be significantly smaller than wild type. If somehow

maturation is delayed (for instance by inhibiting the maturation signals), it is expected that

organs would eventually destroy themselves by cell death. Note that even though in FS-P

model, mutants has smaller organs, the dynamics reaches a nonzero steady state, whereas

in FS-I model, the steady state is identically zero.

Error Sensitivity and Robustness

FS-I model has a serious problem, which is its sensitivity to ci. There are two issues that

arise from this sensitivity:

1) As we showed, unless c̄ = 1, the dynamics does not have a finite-sized fixed point.

However, this condition is difficult to achieve and maintain throughout the growth because

as the animal grows, organs need to always know precisely what the blood volume available

to them is, which is unrealistic given the noisy nature of biology.

2) If the condition c̄ = 1 is met but δc 6= 0, organs will not reach the same size: Ai(t→
∞) = ciĀ∞, thus the FA normalized by the average size will be δc at fixed point regardless

of errors in target size. In other words, the model corrects errors in target size but introduces

errors of its own (Fig. 2.3D).

Therefore, unless c1 = c2 = 1, either the dynamics will be pathological or errors in

integration will carry over and perfect size coordination cannot be achieved, which is what
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Figure 2.3: FS-I model. (A-B) FS-I model can correct errors in target size, however, it is
oscillatory. Increasing η increases the frequency of oscillations. (C) FS-I model is sensitive
to c̄. If c̄ 6= 1, the dynamics is pathological. For example, underestimating the signal
concentration will cause organs to shrink to zero. Similarly, in mutants, same behavior is
observed. (D) FS-I model is sensitive to δc. A small change in δc will lead to different final
sizes even if δA∞ = 0.

an integral feedback model is intended to do. Therefore, it seems inevitable to conclude that

FS-I is not a robust mechanism of size coordination due to its sensitivity to misinterpretation

of signal.

2.3.5 FR-P Model

Along the same line as Section 2.3.3, we will build another continuous model, this time with

a coordination signal that is a readout of growth rate instead of absolute size. Assume that

each cell secretes an amount of hormone proportional to its growth rate. On average, growth

rate of a cell belonging to organ i is Ȧi/Ai, therefore, hormone production rate over the

entire area of organ i is proportional to Ai(Ȧi/Ai) = Ȧi. The hormone is released into the

circulatory system, hence hormone produced by each organ is mixed with that produced

by the other organ. We again assume that the hormone is degraded with constant µ and
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produced with rate r, and that the hormone degrades fast and is in quasi steady state. Then

for the total number of hormone molecules produced we have Nh = (2r/µ) ˙̄A and the hormone

concentration [h] = Nh/V ∝ ˙̄A/V where V is again the volume of the blood available to the

organs. We can take V to be a constant like in Section 2.3.3, but perhaps a more accurate

guess would be V ∝ (A1 + A2) leading to

[h] ∝
˙̄A

Ā
. (2.11)

Note that in Section 2.3.3, we could not use the same approximation for V as Nh was also

proportional to the average size, which would have led to a constant hormone concentration

defeating the purpose of coordination. In Appendix A we show that for FR-P model, a

constant V qualitatively does not differ from our choice.

Eq. 2.11 shows that the concentration of hormone is a readout of the average growth rate

per average area, or roughly, the average “distance” from the target size (Ȧ/A ∝ A∞ − A).

In fact, another way that we can get a hormone concentration that effectively looks like Eq.

2.11 is if the organ produces a fixed amount of the hormone, part of which will be used in

the organ and the rest leaks out. Then as the organ grows, less of the hormone can leak

out, until the organ reaches its target size at which point all of the hormone is used up in

the organ. Thus the total amount of hormone will be proportional to the target size, and at

each instant, an amount proportional to A∞ − A leaks out.

Unlike FS models, we do not require extra chemicals for the model to work. Cells can

simply compare their own growth rate Ȧi/Ai to [h] and autonomously regulate their growth

rate so that both organs sync up their growth. Thus, we formulate a feedback mechanism

by considering the error signal ˙̄A/Ā − Ȧi/Ai, which is fed back to the growth rate of each

cell:
Ȧi
Ai

= k(A(i)
∞ − Ai) + λ

(
ci

˙̄A

Ā
− Ȧi
Ai

)
. (2.12)

Here λ represents the strength of the feedback signal that the organs feel, and ci is defined

similarly as before. Notably, if ci = 1, Ā does not see any feedback (i.e. it is independent of

λ). This means that feedback is symmetric with respect to the average size.

We can rewrite this equation to get another useful form of this model:

Ȧi
Ai

=
k

1 + λ
(A(i)
∞ − Ai) + ci

λ

1 + λ

˙̄A

Ā
. (2.13)

This alternative form will be useful later when we discuss Experimental signatures of this

model.
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Fixed point analysis of Eq. 2.12 reveals that at steady state

Ai(t→∞) = A(i)
∞ , (2.14)

which immediately appears to disqualify FR-P model as it is not capable of correcting errors

in target size (Fig. 2.4B). However, this model has benefits that actually make this the most

plausible scenario of coordination that we will discuss. In FR-I model section we explore

whether integral feedback on growth rate does better in terms of correcting errors in target

size.

Experimental Signatures

Even though FR-P model fails at correcting possible errors in target size, it still has benefits

for development that are worth discussing; therefore, in this section we assume that by some

other (perhaps organ autonomous) mechanism, target sizes are correctly set by the organs,

A
(i)
∞ = A∞, and study FR-P model’s experimental signatures.

Feedback coefficient λ is negative: Unlike FS models, this model require feedback coeffi-

cient to be negative (λ < 0). To understand the sign of λ assume that A1 > A2 just before

the feedback is turned on. If organs are past the initial exponential phase of growth, because

A1 > A2, A1 is closer to the target size and therefore has a smaller growth rate. If we turn

on feedback, we expect it to slow down A1 even more while accelerating A2 growth so it can

catch up sooner (Fig. 2.4A). In other words, the error signal ˙̄A/Ā− Ȧi/Ai is negative for the

smaller organ and we need a negative λ to accelerate Ȧ2. As a matter of fact, −1 < λ < 0

because λ = −1 is a singular point, which could be seen from Eq. 2.13.

Experimentally, λ < 0 suggests that if the hormone concentration is elevated, growth

rate of the organ would decrease (Appendix A).

Model is robust against misinterpretation of signal by organs: FR-P model is more well-

behaved and robust against noise than FS models since the steady state is independent of

ci, or how accurately the organs interpret the signal (Eq. 2.14). Because of this robustness,

for the rest of this section, we assume ci = 1 for wild type as it makes our calculations more

straightforward.

Feedback reduces noise during growth: Since we have assumed that the organs have the

same target size, we need some other source of variation to study how FR-P model does.

Firstly, if the organs have different initial sizes right before the feedback kicks in, we can

see in (Fig. 2.4A) that feedback reduces the size difference faster than having no feedback

(NC model). More concretely, we study the stochastic version Eq. 2.12 to explore the effects

of feedback on noise and in particular, Var(A1 − A2). We find that similar to FS-P model,
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feedback on growth rate reduces noise throughout growth, which also means that the animal

can reach maturation sooner than NC model while having the same FA (Fig. 2.4C).

Mutants have a higher FA than wild type: Similar to before, a knockout mutant corre-

sponds to ci = 0 in our model. From Eq. 2.13 we can see that organs in knockouts show

logistic growth with a modified growth rate k′ = k/(1 + λ) > k. In (Fig. 2.4D) we can see

growth can accelerate significantly in mutants according to FR-P model and according to

Eq. 2.2, since organs will reach their target size much faster, noise in mutants will be lower.

However, we believe that this significant increase in growth rate is implausible biologically

as there are fundamental limits to how fast cell cycles can become, and thus a more likely

scenario is that organs in the absence of the coordination signal get desensitized against

higher levels of growth promoting factors. This means that in mutants k′ → k, which means

that effectively, mutants in this model are equivalent to setting λ = 0, or in other words NC

model. Looking at (Fig. 2.4C) again shows that mutants have a higher FA than wild types

in FR-P model.

Equivalently, we can think of this rescaling of k as asking organs to stop growing at the

same average size as wild type (since as we mentioned, the average size is independent of

λ at least when ci = 1). This allows us to explore other mutations such as heterozygous

mutations where we expect organs to produce half of the signal ci ∼ 1/2. In this case, asking

for maturation at the same average size as wild type results in a higher FA than wild type

but lower FA than knockout mutation similar to FS-P. The difference between FS-P and

FR-P here is that in FS-P a significant decrease in organ size is expected for mutants where

as in FR-P model that is not the case.

Error Sensitivity and Robustness

The main issue with this model is that it cannot correct errors in target size. Biologically,

this is because when each organ reaches its target size, it will stop secreting the coordination

signal. Moreover, FR-P model ensures that the growth rates are synced throughout the

growth, therefore both organs will reach their respective target sizes at roughly the same

time, meaning that at that point there will be no signal to correct any error in target size.

2.3.6 FR-I Model

As we saw, even though FR-P model is promising in terms of syncing up the organ growth

rates thus reducing noise, and also being robust against errors in ci, it fails at fixing errors

in target size. Here, we study the integral feedback on growth rate in hopes to fix that issue.
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Figure 2.4: FR-P model. (A-B) In the absence of error in target size, FR-P model can sync
up the growth rate during the growth. Different initial conditions were chosen to demonstrate
the error correction mechanism; however, FR-P model cannot correct errors in target size
(A1(0) = 264, A2(0) = 164). (C) Noisy dynamics shows that FR-P model can lower noise
during growth compared to the NC model λ = 0. We also believe that knockout mutants
also correspond to λ = 0 due to desensitization of organs to higher growth promoting factors
in the absence of the coordination signal. Here we assume δA∞ = 0. (D) If organs do not
desensitize against higher levels of growth promoting factors in knockout mutants, growth
rate will increase significantly, thus organs would reach their target size much faster and
noise in mutants would be significantly lower because noise goes to zero as organs reach
their target size (Eq. 2.2)
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The differential equations of FR-I model are

Ȧi
Ai

= k(A(i)
∞ − Ai) + λ fi(t)

ḟi(t) = ci
˙̄A

Ā
− Ȧi
Ai
. (2.15)

The steady state of this model strongly depends on initial conditions, therefore, we will

discuss the behavior of Eq. 2.15 in appropriate places in the following subsection.

Experimental Signatures

Here, we summarize different implications of FR-I model.

λ is positive: Unlike FR-P model, this model is only well-behaved when λ > 0. The

reason for this difference lies in the fact that the sign of fi(t), the integral of error signal, will

depend on only the initial sign of ˙̄A/Ā− Ȧi/Ai in most cases and thus will not change sign.

For example, it can be seen that when A
(1)
∞ 6= A

(2)
∞ , ˙̄A/Ā− Ȧi/Ai will change sign somewhere

mid-growth, however its integral, fi will not. So, if initially Ȧ1 > Ȧ2, f1 will always be

negative, and we need λ > 0 for FR-I model to properly reduce the size difference between

the organs whereas in the FR-P model that depends on the instantaneous error signal and

not its integral, only λ < 0 works for proper late time behavior of the model (see Appendix

A for more information).

Feedback can correct errors in target size if δc = 0 and A1(0) = A2(0): This model turns

out to be sensitive to initial conditions. First, let us assume that ci = 1. In Appendix A,

we show that if we want the same final sizes, f1 and f2 must exactly have the following

relationship

f2(0)− f1(0) = log
A1(0)

A2(0)
+
k δA∞
λ

. (2.16)

The most reasonable initial conditions are f1(0) = f2(0) or each cell’s integrator has to

know δA∞ and the initial sizes. This implies that for the model to correct errors in target

size with the initial condition f1(0) = f2(0) = 0, we additionally need a strong feedback

λ � 0 and A1(0) = A2(0). Intuitively it makes sense that a strong feedback would work

because integral feedback on growth rate will ensure that the growth rates are the same

asymptotically, so a strong integral feedback will sync up the growth rates from the beginning

and if A1(0) = A2(0), the organs will have the same sizes throughout growth (Fig. 2.5A).

For ci 6= 1 but δc = 0, it can also be seen (Fig. 2.5A) that feedback corrects errors

in target size if the same conditions hold. However, the final size and growth rate will be

affected. For c̄ > 1, growth rate will be larger and organs will reach a larger size, whereas
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for c̄ < 1, the opposite is true, and the stronger the feedback is, the more pronounced these

effects are.

Mutants have much smaller organs: In mutants, c̄ < 1, so as we mentioned above, final

size of the organs will be much smaller. For example, for knockout mutants where ci = 0,

organs will be orders of magnitude smaller in size compared to wild type (Fig. 2.5C). This

is because ḟi < 0 and growth rates of both organs will consistently be negatively affected.

Thus, even though unlike FS-I model that loses organs in mutants, FR-I model does not, it

still will lead to pathologically small organs in mutants.

Error Sensitivity and Robustness

The biggest issue with FR-I model is the strong dependence of the final sizes on initial

conditions. This is problematic because it having the exact same initial sizes seems to be

improbable biologically. A small difference in initial conditions will indeed leads to large

final FA even if target sizes are the same (Fig. 2.5D). Moreover, this means that this model

shifts the requirement of having the same target sizes (FR-P model) to a requirement of

having the same initial sizes.

Additionally, we are not gaining much by this model since it is also sensitive to errors in

ci. This is especially an issue since feedback needs to be strong to correct errors in target

size, which will make the effects of signal misinterpretation more pronounced and can lead

to pathologically large or small organs. Also, if δc 6= 0 (which admittedly is a less likely

scenario), final FA will again be large (Fig. 2.5B). For these reason, we believe this model is

not a robust mechanism of size coordination.

In this section, we discussed the main biological implications of each model and their

shortcomings and issues summarized in Table 2.1. Overall, integral feedback models are

not robust mechanisms of error correction in organ growth. FS-P and FR-P models seem

to be the most reliable coordination mechanisms, but each had its own shortcomings as

we saw. Overall, it seems unlikely that organs could coordinate final sizes with a single

endocrine signal. In the next section, we discuss the example of Dilp8 in Drosophila and

study experimental implications of the models relevant in that case. In particular, based on

experimental observations, Dilp8 matches the descriptions of FR-P model the most.
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Figure 2.5: FR-I model. (A) FR-I can correct errors in target size if A1(0) = A2(0) and
δc = 0. A 1% change in c̄ from 1 will additionally lead to a significant increase of reduction
of final sizes. Note: The bright yellow curve that reaches the smallest steady state size is
actually two curves almost on top of each other. (B) FR-I model is sensitive to changes
in δc. Even if target sizes are the same, a 1% variation in δc leads to different final sizes.
(c) Organ sizes knockout mutants reach steady state very quickly and are pathologically
smaller (in this example Ai(t → ∞) ≈ Ai(0) ≈ 0.003Ā∞ and Ai(0) = 264). The reason for
this pathological behavior is that in mutants, the dynamics is mainly driven by fi due to
feedback being strong which quickly reaches its steady state value. (D) FR-I model is not
robust against changes in initial condition. Here A1(0) = 264 and A2(0) = 164.
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2.4 Experimental Implications Dilp8 as a Coordination

Signal in Drosophila

Major implications of coordination models were discussed in the previous section. Here, we

focus on Drosophila and explore the possibility of coordination in this organism. Particularly,

Dilp8 hormone is a strong candidate for a coordination signal. We know that at least

in strong perturbations, Dilp8 is involved in organ coordination. The question we try to

answer in this section is what the experimental implications are if Dilp8 is also involved

in coordination in normal physiological conditions. We will show that based on current

experimental observations of Dilp8, the most likely possibility (other than no coordination

in normal growth) is FR-P model. We will then make predictions about different genetic

manipulations based on this model.

Our current knowledge is that in response to growth perturbations to imaginal discs,

Dilp8 is secreted by the organs and delays pupariation, which is normally initiated by a

large spike in ecdysone (the molting hormone). Dilp8 is able to delay pupariation by down-

regulating biosynthesis of ecdysone. Moreover, this inhibition also results in a reduction of

disc growth rates since ecdysone additionally promotes disc growth [49, 106]. Furthermore,

knocking out Dilp8 leads to a two- to three-fold increase in FA but not much acceleration in

pupariation.

dilp8 is a target of several pathways. In response to stresses, it is known that JNK

pathway activates dilp8. However, in normal conditions, it seems to be a target of Yorkie

(Yki), a growth promoting transcription co-activator. This suggests that during normal

growth, Dilp8 is a readout of growth rate. Thus, with its inhibitory effect on ecdysone, Dilp8

may be involved in a feedback loop on disc growth (Fig. 2.6A) such that overexpression of

Dilp8 would lead to a decrease in disc growth rates. This suggests that if Dilp8 is involved

in organ coordination in physiological conditions, the FR-P model is the best candidate for

describing this mechanism. However, we also cannot fully rule out the T model, since some

experiments have shown a slightly earlier pupariation in dilp8 –/–, which is what we would

expect from T model. In other words, it is possible that Dilp8 does not affect the basal level

of ecdysone required for proper disc growth and only delays the large ecdysone spike to delay

pupariation. We do not study the FR-I model here because of the issues we discussed about

its sensitivity to initial conditions and the sign of λ being the opposite of what experiments

suggest for Dilp8.

We will thus begin by testing T model based on available growth Drosophila data, and

then move on to exploring different experimental implications of FR-P model. Since both
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these models require discs to have the same target size, we assume that by some organ

autonomous way, discs set their target sizes correctly. Hence, an immediate conclusion is

that Dilp8 alone cannot be regulating wing final size precision as a coordination signal.

Finally, we mainly use the noisy version of the models (Appendix A) and define an FA

index (FAi(t)) to study the time evolution of FA as

FAi =
σ{A1 − A2}

¯〈A〉
(2.17)

where σ{· · · } denotes the standard deviation and ¯〈A〉 = (〈A1〉+〈A2〉)/2 is the average organ

size. Since our models are nonlinear, we apply the small noise approximation (Appendix A)

to approximate FAi. Eq.2.17 is in fact the square root of FAi6 measure defined in [107]. The

reason we use the square root is that it would be easier to interpret this FAi as a relative

error.

2.4.1 Application of T Model to Drosophila Example

Here, we assume that in the absence of large growth perturbations or damage to one of the

discs, Dilp8 is only affects the timing of pupartion by delaying the large spike in ecdysone

and thus follows teh T model. Before discussing the model’s predictions for the role of Dilp8

in Drosophila, we briefly review the small noise approximation on Eq. 2.2 that we need for

our analysis.

Small Noise Approximation on Logistic Growth

Because in the T model, there is no direct feedback on disc growth rates, dynamics of the

discs are decoupled and each disc follows Eq. 2.2. Using the small noise approximation

(Appendix A), we expand the area Ai as Ai(t) = ai(t) + ε Xi(t) +O(ε2), where ai(t) is the

solution to the deterministic equation given by Eq. 2.1 (with A
(i)
∞ = A∞). By equating terms

of the same order in ε, we find the following equations up to first order in ε

dai
dt

= kai(A∞ − ai)

dXi = kXi(A∞ − 2ai)dt+
√
kA∞ ai(A∞ − ai) dWi. (2.18)

The time evolution of noise is captured in σ{Ai}, which is found to increase in value in

the initial stage of the growth when growth is approximately exponential, and decrease as the

organ approaches its target size and the average growth rate decreases. The initial increase

in variance is expected because as the area increases exponentially any noise in divisions will
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intensify over time, but as the growth rate slows down as the organ approaches its target

size, strength of the noise also decays with the growth rate. The growth dynamics of a wing

disc evolving according to Eq. 2.2 and with the approximation given in Eq. 2.18 is shown in

(Fig. 2.6C).

Because σ{Xi} is a function of ai(t), it follows from Eq. 2.17 that FAi is a function of

only ε and ai(t). FAi(t) = f [ε, ai(t)]. In fact, FAi is linear in ε:

FAi(t) = εf [ai(t)] . (2.19)

Therefore, we can use ε as a control parameter to tune FAi: smaller ε means smaller FA.

This of course makes intuitive sense, because ε is a measure of noise strength. The linear

dependence of FAi on ε also means that by knowing the ratio of knockout FAi to wild type

FAi, we can uniquely find the amount by which growth arrest is accelerated in mutants as

we discuss next.

Acceleration of Pupariation in dilp8 –/– Mutants

Here we provide an experimental implication of Dilp8 if it follows T model. As a demon-

stration, we use the data for Drosophila ( [5] and Leopold Lab).

Based on this model, each wing grows independently according to Eq. 2.2 until growth

stops at pupariation time tf in wild type flies. If on the other hand, the discs lack the ability

to secrete Dilp8 (knockout mutants), the growth stops prematurely at t∗f < tf , thus based on

Eq. 2.2, since the organs are farther away from the target size, final noise and subsequently

FAi (Eq. 2.17) will be higher. From the experiments, we can see how much FAi is increased

and how much the timing of maturation is accelerated if any. The model gives a unique t∗f
based on the FAi increase, which we can compare to experimental results. The procedure is

as follows:

1) In principle we should be able to get an average estimate for growth parameters k

and A∞ by measuring disc sizes at different times and fitting a logistic curve to the data.

For instance, in (Fig. 2.6B) these parameters for Drosophila published in Bittig et al. are

A∞ = 103, 667 µm2 and kA∞ = 0.13566 hrs−1. This allows us to find ai(t) (Eq. 2.18). Note

that growth stops before discs actually reach A∞ as it is merely the asymptotic size. If we

also obtain the average pupariation time tf (we took it to be 72 hrs after the end of first

larval instar, L1) and measure the final FAi from experiments, we can get an estimate the

noise strength ε by solving Eq. 2.19 for ε at time t = tf . We can then use this ε to get

the entire width of the growth and FAi at all times. (Fig. 2.6C) shows the width for two

different values of ε. As can be seen, a larger ε leads to larger width and larger asymmetry
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on average throughout the growth.

2) Now, assume that we knock out dilp8. If T model is true, pupariation time tf would

go down and the increased FA caused by the knockout has to be due to the change in tf only.

From experiments, we can get the average mutant pupariation time t∗f and the mutant FAi.

Obtaining ε from wild type data has uniquely identified FAi as a function of time. Therefore,

if only the pupariation time is different in mutants, we can read off the FAi at t∗f . Fig. 2.6D

shows FAi vs. maturation time for ε = 0.01. This provides a simple test for this model. If

the assumption that the signal only coordinates the timing is true, the FAi obtained from

Eq. 2.19 for the experimental t∗f should match the experimental mutant FAi, or equivalently,

t∗f obtained from Eq. 2.19 for the experimental mutant FAi should match the experimental

t∗f .

In Drosophila, it has been reported by some studies that pupariation is accelerated by only

4 hours or less while in other studies, no significant acceleration has been seen [1,47]. Using

the published data from [5] for average growth parameters and FAi measured for wild type

and dilp8 –/– flies from the Leopold Lab we found that an accelerated maturation time of 8

hours is needed if the hypothesis is true (p-value of 0.03). Even though not very conclusive,

it seems that the model requires flies to pupariate more prematurely than what has been

observed experimentally, and therefore, Dilp8 does appears to be more likely involved in a

feedback mechanism in normal conditions if it plays any coordinating role at all.

2.4.2 Application of FR-P Model to Drosophila Example

Since knocking out dilp8 does not cause significant acceleration in the timing of pupariation,

it is reasonable to believe that at least in normal conditions, Dilp8 does not delay pupariation

and thus may only be involved in a feedback mechanism. Furthermore, based on biological

data, it seems that if Dilp8 is indeed feeding back on organ growth, it must be a negative

feedback on growth rate, meaning that FR-P model is the most likely candidate for describing

the coordination between left and right wings. Here, we discuss the experimental implications

of this model for specific Drosophila experiments. We assume that feedback starts from the

beginning of the larval growth, however, our results can be modified if feedback starts later.

We do not expect significant dependence on when feedback starts during development as

long as it does not start too close to pupariation. This can be verified later in Fig. 2.7D

where we start the feedback at a time after the beginning of growth.
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Figure 2.6: Applications to Drosophila experiments. (A) Possible negative feedback loop
involving Dilp8 and ecdysone based on experimental observations. Larger wing disc (top) is
closer to the target size, thus grows more slowly and secretes less amount of Dilp8. Dilp8
secreted by both discs gets mixed up in the hemolymph, the larval equivalent of blood,
and inhibits ecdysone, which promotes disc growth. (B) Fitting Bittig et al. data [5] to a
logistic curve using Mathematica’s nonlinear model fitting function. Error bars represent the
experimental errors in their paper. (C) Adding noise to the NC model (Eq. 2.2) and applying
small noise approximation allows us to analytically find the variance of the size distribution
as a function of time.

√
Var(Ā) depends linearly on epsilon, so higher epsilon will lead to a

higher width in the size distribution. (D) For a fixed ε FAi monotonically goes down with
time near the target size. Thus, in the T model, having the pupariation time or the final
FAi uniquely determines the other. L1 refers to the first larval instar. The measurements in
Bittig et al. started from the end of L1, and we take that as our initial state.
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Predictions for dilp8 –/– and dilp8 +/–

By following the same procedure as in the previous section, we can write down Langevin

equations for the discs with noises proportional to the square root of growth rates. One

subtlety is that feedback correlates the discs, so A1 and A2 are not statistically independent

anymore Appendix A. FAi now depends on ε, the strength of noise, and λ, the feedback

strength.

If we have the wild type disc growth data, we can get the feedback strength as a function

of the noise strength, λ(ε), that produces the correct wild type FA. We can see in Fig.

2.7A that as the noise strength increases, feedback also becomes stronger (more negative)

to compensate for the noise and result in the wild type FA. By comparing Var(A1 − A2)

normalized by ε it is clear that noisy feedback does better compared to having no feedback

in terms of noise suppression and lower FA (Fig. 2.4C). Noise suppression also can potentially

ensure that both organs are at the same developmental stage at all times, which is crucial

in development.

Following the same steps as in the previous section, we can find the pupariation time for

dilp8 –/– mutants by using λ(ε) from the wild type data. According to the model, organs

in knockout animals follow Eq. 2.2 with k → k′ = k/(1 + λ). The problem as we discussed

is that k′ > k and the resulting increase in growth rate leads to less asymmetry late in

development because the organs will approach the target size much more quickly and the

noise decays faster. Therefore, to get higher FA than wild type, the organs need to stop

growing much sooner. In fact, it is easy to see that for any −1 < λ < 0 growth arrest in

knockouts is accelerated more in this model compared to T model, or λ = 0 (Fig. 2.7B).

This is an issue since as in Drosophila the pupariation time is not accelerated significantly,

and this model then would do worse than T model.

One possible remedy as we explained the is desensitization of organs to the higher growth

promoting factors in the absence of the coordination signal. In the case of Drosophila, Dilp8

is assumed to control the growth rate by regulating the basal levels of ecdysone in this model.

While inhibiting ecdysone production has negative effect on disc growth, feeding ecdysone

to wild type flies does not seem to further promote the growth of imaginal discs than normal

conditions [49]. This, together with the evidence on the lack of sensitivity of growth rate to

the elevated levels of ecdysone in dilp8 –/– flies lead us to believe that if Dilp8 is a feedback

agent, knocking it out should desensitize imaginal discs to the excess amount of ecdysone

produced, which in mathematical terms means rescaling k′ back to k (or effectively setting

λ→ 0 in FR-P model).

It has also been shown experimentally [2] that at pupariation, average wing disc size in

dilp8 –/– does not have a significant difference compared to wild type flies and the mutant
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pupariation time is not significantly shorter than the wild type, which means that in our

model, mutant maturation time, t∗f should be the same as wild type tf at least in the

Drosophila example. Alternatively, instead of scaling k′ → k, we could find the FAi at the

time when mutant average size is the same as wild type average size. For knockouts this

is equivalent to the rescaling, but in other mutants like heterozygous, the scaling would be

different because heterozygotes still see some feedback and are not fully decoupled, and thus

numerically, it is easier to use this condition instead of scaling k′.

With the k′ → k rescaling, we can easily see that the mutant FA at tf increases mono-

tonically with |λ| (Fig. 2.7C). By knowing the FAi of both WT and mutants, we can find

the noise strength along with the feedback strength that buffers the noise in the WT.

Using the ε and λ(ε) found by fitting our model to the wild type and mutant data, we

can look at other genetic manipulations and test the model predictions against experimental

results. As an example, we now discuss our model’s prediction for dilp8 heterozygous flies.

Because heterozygotes produce half the amount of wild type Dilp8, we need to set ci = 1/2

in Eq. 2.12.

We use the ε and λ obtained from the dilp8 –/– FA analysis and find the FA for dilp8

+/– flies. We also assume that heterozygotes pupariate at the same size as the wild type,

which is in agreement with experiments. Our model predicts that heterozygotes have an

increased FA compared to wild type, but that this FA is smaller than dilp8 –/–. dilp8 –/–

has a 2.75-fold increase in FA compared to WT, but dilp8 +/– show a 1.6-fold increase.

The recent experiments also show an increased FA in dilp8 +/– but the results are currently

statistically insignificant.

Temporal Control on dilp8

Another possible experiment is time dependent expression of dilp8 using the temperature

sensitive GAL80ts driver to observe for example how late dilp8 expression could be delayed

while still rescuing the wild type FA. In our feedback model, we can look at the final FA

starting the FAi some time T ∗ in the middle of growth. For λ and ε, we pick values that

would give the wild type FAi if T ∗ = 0 and the knockout mutant if T ∗ = tf . As we can

see in Fig. 2.7D, where the final FAi (normalized by the wild type FAi) is plotted against

the time at which dilp8 expression is turned on (T ∗). What we observe is that the final FAi

at pupariation stays relatively similar to the wild type FAi up until two thirds through the

growth, and only starts to increase for T ∗ close to tf .
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Figure 2.7: Implications of FR-P model for fruit fly experiments. (A) λ vs. ε that would
give an FAi of 0.8% (wild type FA) at pupariation. As the noise in increased, |λ| needs to
increase accordingly to lead to the same final FAi. (B) If wings do not desensitize against
higher levels of basal ecdysone in dilp8 –/– background, to get the observed mutant FAi
of 2.2%, pupariation needs to be accelerated in FR-P model, with the lowest acceleration
belonging to λ = 0 or T model. (C) With the desensitization to ecdysone in knockouts,
mutant FAi will increase monotonically with |λ| as expected: higher |λ| means that noise is
stronger so in the absence of feedback, FAi will be higher. (D) Activation of dilp8 using the
GAL80ts driver at time T ∗. The feedback can buffer noise relatively well if it is activated
later than usual, and only fails if it is activated close to puparation. This suggests that dilp8
does not necessarily need to be expressed from the beginning of development and temporal
variations in dilp8 expression do not significantly affect the final FA.
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2.5 Discussion

In this chapter, we explored all obvious coordination mechanisms between bilaterally sym-

metric organs that have an autonomous idea of a target size via a single endocrine signal.

Our generic approach to the complicated question of organ coordination enabled us to make

predictions about the limitations of chemical signaling in organ development based on simple

assumptions on how possible models of coordination look like based on biological constraints.

Specifically, we studied how the notion of target size affects coordination, concluding

that it is unlikely to robustly coordinate final sizes with endocrine signaling. This suggests

that organs most probably have robust intrinsic mechanisms of error correction that will

ensure that each organ can independently reach the correct final size in proportion to the

body (see for example [108] for a review of biology and [51, 54, 109] for models describing

possible mechanisms). During development, however, feedback can help coordinate organs

in response to different fluctuations facilitating maturation in a timely manner. We found

that among all the cases considered (Table 2.1), the FR-P model was the most biologically

plausible scenario, the most robust against perturbations and can help organs coordinate

their sizes during growth. Interestingly, this mechanism is also the most likely candidate for

describing the role of Dilp8 in coordinating left and right wings in Drosophila.

Particularly, we saw that while FR-P model is unable to correct any possible errors in

target sizes, it is not sensitive to how accurately organs interpret the concentration of the

signal (represented by ci parameters). In contrast, all other mechanisms are sensitive to

varying degrees to errors in ci. Notably, both integral feedback mechanisms (FS-I and FR-I)

failed to robustly improve errors in final sizes. More specifically, FS-I completely breaks

if organs do not perfectly interpret the signal concentration at all times and FR-I model

showed a high sensitivity to ci and initial conditions. This is perhaps somewhat surprising

given that integral control is often employed to guarantee a desired steady state [12,13,105].

The reason is that normally the error is calculated based on a parameter independent of the

input, which determines the steady state value, whereas here the error is calculated with

respect to the average size or growth rate.

Even though the fixed point of FS-P model depends on ci, we note that it is still a well-

behaved mechanism and like FR-P model it can lower noise during growth and help organs

sync up (Fig. 2.2D). This is indeed a major implication of coordination. Experimentally,

the noise levels during growth can be measured by dissecting organs at different instances

or using in vivo imaging when appropriate to measure sizes and calculate the variance in

the difference between the left and right organs of the same animal. It is also worth noting

the experimental differences between FS-P and FR-P models. One of the main differences
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between these two models is that the coefficient of the feedback signal in FS-P model is

positive whereas the coefficient for FR-P model is negative. This can be a distinguishing

feature for example if the signal is overexpressed (Appendix A). Specifically, FS-P model is

expected to lead to larger final sizes and a lower FA if signal is overexpressed, whereas FR-P

model is expected to behave oppositely. Moreover, an organism that follows FS-P model

for organ coordination is expected to have significantly smaller organ sizes in mutants (Fig.

2.2B) while in FR-P model no significant reduction in final size is expected.

We also applied our models to the example of Drosophila. In Drosophila, Dilp8 is the

clearest candidate for wing size coordination during larval stage, although Dpp has also been

suggested as a signal that leaks out of discs as they growth (thus it also can carry information

about growth rate) [110]. From experimental signatures of Dilp8, it is most likely that in

normal conditions it follows the FR-P model of coordination (Fig. 2.6A). However, we also

explored the possibility that Dilp8 only delays pupariation in physiological conditions and

does not affect wing disc growth directly (T model). We saw that it is in fact an unlikely that

T model is correct given that the amount by which pupariation is accelerated in mutants is

not significant. Regardless, the procedure we outlined can be used in other organisms where

T model is suspected to test this hypothesis.

Finally, we used FR-P model to make predictions about different genetic manipulations

on dilp8 in Drosophila. We saw that this model predicts desensitization to higher levels of

ecdysone in the absence of Dilp8 hormone, which has been observed in before [49]. We also

found that in dilp8 +/– mutants, lower FA than dilp8 –/– is expected but that FA is still

higher than in wild type. This is expected from the model since heterozygotes will produce

half the amount of wild type hormone. It has been shown than the FA increase in dilp8

+/– is not signficant compared to wild type [2]. Whether this means that dilp8 +/– do

not show FA or that more experiments would make the increase more significant remains to

be seen. Lastly, we looked at temporal control on dilp8 expression using the temperature

sensitive GAL80ts driver. We saw that there is some tolerence regarding the timing of dilp8

activation (Fig. 2.7D); expressing dilp8 as late as mid-third instar seems to still lead to a

final FA close to wild type at pupariation.

Size coordination is useful as it helps organs 1) stay coordinated during growth and

in response to different environmental fluctuations, and 2) stop growing sooner and keep

their symmetry since it helps organs lower their developmental noise sooner. The latter

is particularly useful for Drosophila as it is known to have a fast developmental timing.

However, this does not exclude the possibility that organ coordination is not needed during

normal growth and is only activated in response to significant growth perturbations (NC

model).
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This indeed seems to be the case in mice [45]. Then, in normal conditions, the coordina-

tion signal may be involved in organ autonomous error correction mechanisms by regulating,

say, cell apoptosis. If this is the case, knocking out the signal would still lead to in increased

FA, but it is possible that heterozygotes still have enough amount of the hormone and do

not show significant FA compared to wild type. In terms of our models, these mechanisms

can amount to a control on noise in target size or the strength of the noise, ε in Eq. 2.2. In

Appendix A we briefly explore these cases in more detail.

Another possibility is the idea of “catch up” growth, which suggests that if an organ’s

growth is interrupted, that organ intrinsically modulates its growth rate to catch up to the

unperturbed organ. If in an organism there is no feedback and instead the catch up growth is

involved, organs need to individually respond to stresses and damages. Previously, models of

size correction have been studied for individual organs [111]. The catch up growth hypothesis

was recently observed in the development of fish ear [92].

One of the main limitations of our models is that they only consider two organs yet it

is definitely possible that several organs participate in the same feedback mechanism. For

example, in Drosophila coordination has been observed between wing and eye discs [44,46].

If all organs have the same target size, our model can be extended to include N coupled

organs. If however organs have different target sizes because they are different organs, the

same model can still be applied and each organ just needs to individually interpret the

signal properly based on internal mechanisms. Overall, no qualitative changes to our main

results are expected. Furthermore, the coordination signal could be involved in multiple

mechanisms at once, but even if that is the case, the major signatures of these models will

still be relevant.

Finally, our model does not say anything about shape asymmetry. However, organ shapes

also show low FA [30]. Recently a mechanism for shape control in Drosophila independent

has been proposed [112] that is independent of what individual cells do, thus it would be

interesting to build generic mathematical models to investigate the possibility of shape con-

trol through global or local mechanisms and whether a secreted hormone can have a role in

correcting errors in organ shapes as well as organ sizes.
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CHAPTER 3

Size and Shape Asymmetry in Drosophila

Wings

In the previous chapter, we discussed the concept of fluctuating asymmetry (FA) in devel-

oping left/right organs drawing inspiration from Drosophila wing development and the role

of the hormone Dilp8 in regulating the final FA in wing surface area. The observed wing

area FA in wild type flies is less than about 1% and dilp8 –/– mutants show a small but

significant increase in FA [1, 2, 29]. However, more information about the FA distribution

is lacking. For example, one important question that needs to be answered is what the

distribution of FA looks like in different genotypes. Does FA in both wild type and dilp8

–/– have a distribution of the same shape but differet mean, or does the FA distribution in

dilp8 –/– have a longer tail for instance? Quantifying the FA distribution can help us better

understand the mechanistic role of Dilp8 in regulating FA and can inform us in developing

more biologically relevant models. Another question one could ask is whether Dilp8 also

affects shape asymmetry. For example, it would be interesting to see if the pattern of veins

in dilp8 –/– flies is more varied between left and right wings. In fact, it has been reported,

though without citation of any published data, that vein patterns are more varied among

dilp8 –/– flies [113]. Thus, quantification of such a variability would be crucial. Answering

these questions inspired us to work on image segmentation algorithms to automate area FA

measurements and to quantify shape asymmetry in adult Drosophila wings.

In this chapter, dedicated to a collaboration with the biology lab of Pierre Leopold in

France, we will discuss the procedures involving mounting, imaging fly wings, using image

analysis techniques to measure size and shape FA in different genetic backgrounds, and error

analysis. The organization of this chapter is as follows: First we give a brief outline of

the mounting and imaging procedure. Then we discuss the shortcomings of the manual

segmentation method currently employed by most biologists and motivate automating the

process. Next, we will explain the wing segmentation algorithm. And finally we will discuss

the quantification of shape asymmetry using the Procrustes method adopted from [30].

Unfortunately, we will not present any final results for wing area and pattern FA. The
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reason is that the fly samples that we collected for our analyses did not match the previously

reported area FA, which we believe may be due to mislabeling of our samples. Therefore, we

have postponed final measurements and detailed error analysis of our codes until we receive

new images from our collaborators. In what follows, we will only discuss our methods.

3.1 Image Analysis of Adult Wings

Imaging adult Drosophila wings is a relatively straightforward task as far as biological exper-

iments are concerned, and it turned out to be more or less theorist-friendly. To mount adult

wings, we followed the protocol used in [2] as follows: First, wings of dead flies (courtesy

of Leopold Lab) are clipped in ethanol using forceps under a microscope one by one. Care

must be taken not to damage the wing in the process as wings are very delicate. Each wing

is then dried and submerged in a Euparal solution, a mounting medium, on a glass slide

making sure that left and right wings are placed with the right orientation relative to each

other so that later on we can tell them apart. After mounting wings on the slide, a cover

slip is placed on top of the wings to spread out the mounting medium and keep the wings

flat. Then, slides are incubated at 60°C overnight for bubbles to dissipate while the medium

slowly polymerizes. A small weight is also placed on top of the cover slip during this process

to ensure that the wings stay flat and are not wrinkled. After the incubation process, wings

are permanently fixed on the slide and can be imaged. An example image of a right wing is

shown in Fig. 3.1. Images were taken using a Leica M205 FA florescence stereo microscope

with a Leica MC190 HD digital camera at 40× magnification. We note that in another

common method, instead of using Euparal, wings are mounted in lactic acid, which does

not require incubation allowing for faster mounting [114] and is now being employed by the

Leopold lab; however, in this method wings are not mounted permanently.

3.1.1 Manual Segmentation and its Issues

Traditionally, wing area measurements have been done by manual segmentation of wing

images. However, there are obvious problems with manual segmentation that make it less

than ideal. Firstly, manual segmentation is prone to errors as a human needs to draw a

contour around the wing by eye. From Fig. 3.1 we can see that the periphery of the wing

is surrounded by a thick vein that slowly becomes thinner as it wraps around the wing in

clockwise fashion, which is itself covered in bristles. This causes ambiguities in where to draw

the contour line. This is particularly problematic since Drosophila wings show very small

FA values even in knockout mutants, so small measurement errors can lead to significant
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Figure 3.1: A bright field image of the right wing of a wild type fly.

uncertainties. Secondly, manual segmentation is an extremely tedious task that needs to be

repeated for tens of pairs of wings for each genotype to be able to say anything statistically

meaningful about the fold change in FA between different genetic backgrounds. What’s more,

finding the FA distribution requires many more measurements than biologists typically do

to find the FA, which would be very time consuming and impractical to do manually.

These issues with manual segmentation motivated us to look for a way to automate the

process. For this purpose, we wrote a short code in MATLAB to automatically segment the

wings and find the area FA. Our goal was to have a simple code with few free parameters

(so that people unfamiliar with coding can also benefit from it) that is fast and reliable,

and performs at least as well as manual segmentation. The wing segmentation algorithm

is outlined in the following section. We used the Imgae Processing Toolbox in MATLAB

edition R2018a for the analyses in this chapter.

3.2 Adult Wing Segmentation Algorithm

In this section we outline the wing area segmentation algorithm that can be used to find

wing area FA in a short amount of time, hence making it attractive for analysis of large

sample populations. Manually, the most reasonable way to segment is to crop through the
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Figure 3.2: The ROI specified by the user. The user only needs to accurately specify the
where on the hinge the wing is to be segmented; the rest of the wing blade will automatically
be identified by the program. The circles show the locations of mouse clicks specifying the
vertices of the ROI polygon.

middle of the thick vein at the edge of the wing blade, thus excluding the bristles. The

main challenge in automating the process is that those bristles make a simple thresholding

method futile. Our method gets around this issue by effectively “cutting” the bristles out.

The way we get around this issue is by using a skeleton of the outer vein to effectively make

a cut through the edge of the wing blade and remove the bristles from the segmented wing.

The code outlined below is in the Live Script (MATLAB notebook) for user accessibility.

First, the user needs to specify where along the hinge they want the wing to be cut using

a polygon selection tool roipoly(Image). This is the only part of the program that is not

currently automated, the reason being that there is not an obvious pattern or structure on

the hinge to use for segmentation. Therefore, this part of the wing needs to be segmented

manually but because it is a small region, the manual ROI selection is quite fast. In Fig. 3.2

we show an example of a reasonable ROI selection.

After this, two separate thresholds are applied to the input image. One is a simple global

thresholding with a cut off set automatically by MATLAB based on the global histogram and

using Otsu’s method, an optimal thresholding method [115]. This global threshold segments

the whole wing including the bristles. After morphological operations, we get an image like
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the one in Fig. 3.3, which we call initial segmentation. These operations are shown in the

Listing 3.1. We first fill the holes after the global threshold, then apply morphological closing

and opening to smooth out the bristles and close any openings inside the wing, then fill any

remaining holes. Finally, we erode the image as a control mainly on the bottom edge of the

wing. Depending on the resolution of the image, the size of erosion needs to be set manually

once to get the desired output. The larger the size of erosion is, the more the bottom half

of the edge will shrink in the final segmentation. Erosion is necessary to exclude the short

hairs at the bottom half of the wing periphery.

Listing 3.1: Initial segmentation

1 BWs = 1-imbinarize(Image); %global threshold

2

3 %%morphological operations on the global threshold

4 BWdfill = imfill(BWs, 'holes'); %fill the holes

5

6 seD = strel('diamond',10); %size of erosion. recommended: 10

7 seC = strel('disk',3); %radius of closing. recommended: 3

8 seO = strel('disk',5); %radius of opening. recommended: 5

9 BWfinal = imclose(BWdfill,seC);

10 BWfinal = imopen(BWfinal,seO);

11 BWfinal = imfill(BWfinal, 'holes'); %fill any remaining holes

12 %erodes the image

13 BWfinal = imerode(BWfinal,seD);

Before applying the other threshold, a Gaussian filter is applied to the input image to

blur out some of the fine details such as trichomes on the surface of the wing. The standard

deviation of the filter is set by the user, which specifies the amount of blurring. Later

we explain how to pick a reasonable value for this parameter. The second threshold is an

adaptive one which is chosen using local first-order image statistics around each pixel. The

result is a binary image that only identifies the veins, which locally have different intensity

than their surroundings — we call this image the ‘skeleton’ of the wing (Listing 3.2). This

threshold has a sensitivity parameter that needs to be set by the user. Together with the

standard deviation of the Gaussian blur, these two parameters control the resulting skeleton.

The user needs to tune these two parameters such that the skeleton shows the the top half

of the wing periphery up until the point where the third inner vein touches the periphery,

but not much beyond that (Fig. 3.4).
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Figure 3.3: The global threshold segments the whole wing, including the unwanted edge
bristles.

Listing 3.2: Second segmentation

1 Iblur = imgaussfilt(Image, 10); %blurring the image with standard ...

deviation 10

2 %adaptive threshold with sensitivity = 0.78

3 BWs2 = 1-imbinarize(Iblur,'adaptive','Sensitivity',0.78);

The proper values for these parameters depend mainly on the imaging variables such

as resolution, exposure, etc. As long as these variables are consistent among all acquired

images, standard deviation and sensitivity parameters will not need to be tweaked a lot once

tuned for one image. Higher standard deviation leads to a smoother image with less defined

structure, and thus a smoother skeleton (see Fig. 3.4B with Fig. 3.5 for a comparison between

standard deviation of 10 and 4). Generally, a smoother skeleton will give us a cleaner final

segmentation. Higher sensitivity leads to a skeleton with less of the wing structure visible

(Fig. 3.4).

After the skeleton is produced, we further thin the skeleton using MATLAB’s bwmorph

function. The thinning process reduces the skeleton to lines of a single pixel width. We then

multiply the initial segmentation shown in Fig. 3.3 by the inverse of the thinned skeleton to

effectively make a cut through the bristles. This cut essentially separates the bristles around

the periphery of the wing from the rest of the wing blade (Fig. 3.6A) allowing them to be
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Figure 3.4: Two adaptive thresholds with standard deviation of 10 pixels and different
sensitivities. (A) An example of a improper adaptive threshold (sensitivity of 0.69). This
threshold is not useful as the bottom half of the periphery in the resulting skeleton will
remove parts of the actual wing blade from the segmented image. (B) An example of a
proper adaptive threshold (for this test wing, sensitivity was 0.78). The periphery is visible
up until the third horizontal vein crossing but does not extend to the fourth vein crossing
near the bottom of the wing. The blue dashed circle indicates where the periphery should
extend based on our experience: a little after the third vein crossing but not much further.

52



Figure 3.5: An adaptive threshold with sensitivity 0.78 and standard deviation of 4 pixels.
The detailed structure of the wing and particularly the bristles make this skeleton undesir-
able.
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removed using morphological opening. The radius of this morphological operation is set by

the user such that the result no longer has the bristles but other parts of the wing are mostly

intact. The result is shown in Fig. 3.6B. We can see in Fig. 3.6 that the multiplication has

also cut through the inner veins. This can easily be filled using morphological closing after

we have removed the bristles. Listing 3.3 shows the procedure.

Listing 3.3: Cutting through the initial segmentation

1 skeleton = bwmorph(BWs2,'thin',inf); %thinning the skeleton

2 %make a cut through the initial segmentation

3 BWfinal2 = (1-skeleton).*BWfinal;

4

5 %remove the cut out bristles with morphological opening

6 BWfinal2 = imopen(BWfinal2,strel('disk',20));

7 %pick the largest connected component. Useful when there are leftover ...

pieces that we don't want

8 BWfinal2 = bwareafilt(logical(BWfinal2),1,4);

9

10 %morphologically close to fill out the interior cuts

11 BWfinal2 = imclose(BWfinal2,strel('disk',30));

12 BWfinal2 = imfill(BWfinal2, 'holes'); %fill any remaining holes

Finally, we do one more round of smoothing by first, blurring the image in Fig. 3.6B

using a Gaussian filter, and then re-thresholding the blurred image to get the smoothed

image (Listing 3.4).

Listing 3.4: Final smoothing

1 BWfinal3 = BWfinal2;

2 blurryImage = imgaussfilt(double(BWfinal3), 50);

3 BWfinal3 = blurryImage > 0.5;

4 BWfinal3 = J.*BWfinal3;

After applying the ROI mask to this smoothed binary, we get the final segmented wing.

This is shown as a red shading of the original image in Fig. 3.7. The code outputs the area

of this segmented image, which can be used for area FA measurements. We have used our

code on several sets of images which had been already segmented manually, and in all cases

the FA values we found using the code has agreed with the manual method.

Possible sources of error are the standard deviation of the Gaussian filters (both for

the blurring in Listing 3.2 and smoothing in Listing 3.4), the sensitivity of the adaptive
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Figure 3.6: (A) Multiplying the initial segmentation by the inverted thinned skeleton results
in an effective cut through the segmented wing. (B) Applying morphological opening to the
image removes the bristles from the edge of the wing.
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threshold (Listing 3.2), and morphological operations. Since the standard deviations of

Gaussian filters and the threshold sensitivity parameter are the main parameters that need

to be set by the user, we varied them to see how sensitive the outcomes are to these parameter

choices, finding that the final result is not sensitive to small changes in these parameters.

In particular, we first picked a pair of wild type wings. For this pair, the FA, defined as

2(Aleft−Aright)/(Aleft+Aright), was found to be −0.017 (which notably is high for wild type).

We then varied the adaptive threshold from 0.75 - 0.77, the standard deviation of the first

Gaussian filter from 7 - 10 pixels, and the standard deviation of the second Gaussian filter

from 30 - 50 pixels, and ran the segmentation code seven times for the pair, each time with

different parameter values. The ranges of parameters were decided such that skeleton of the

image followed the condition in Fig. 3.4 and the final segmented image looked reasonable to

the eye. The standard deviation of the resulting area measurements were 0.05% and 0.04%

of the left and right wing areas respectively suggesting that the algorithm is not sensitive to

these parameters.

We further tested how the pairwise measurements were affected by calculating the FA

of each outcome, which was consistently about -0.017. Pairing up outcomes with the same

parameter values, the standard deviation of these FA values was 2×10−4 while for randomly

paired outcomes, the standard deviation in the FA values was 6 × 10−4. Notably, standard

deviation of 2(Aleft−Aright)/(Aleft +Aright) is the FAi (defined in Chapter 2, Eq. 2.17) if it

is calculated across the population (but with Aleft and Aright of the same fly). For wild type,

FAi is about 1%, so variations due to parameter choices are more than an order of magnitude

smaller than the observed FA, again suggesting that the algorithm is not sensitive to choices

of parameters.

3.3 Wing Shape Asymmetry

In this section, we outline a code for measuring the wing shape asymmetry. As a measure

of wing shape, we focus on vein patterns and in particular, the location of vein crossings.

This method is adopted from a study by Abouchar et al. [30]. In their paper, Abouchar et

al. found the location of seven vein crossings called landmarks on each wing, and used the

so-called Procrustes transformation to analyze the difference between the location of these

seven landmarks across different wings finding that the variability in vein crossing patterning

is less than or equal to a single cell size in wild type. The idea of Procrustes method is to

scale all wings to the same size (thus removing size asymmetries) and rotate them in such a

way to get rid of rigid rotations. This method guarantees that the resulting variance in the

location of the landmarks is purely due to pattern asymmetries. Following their analysis, we
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Figure 3.7: The final result of the wing segmentation algorithm. The red shade shows the
final segmented image, imposed on the original image.

find the location of these seven landmarks (shown in Fig. 3.8) on each of our wings using a

simple MATLAB code, then use the Procrustes method to find the pattern FA between left

and right wings. The procedure is outlined below.

3.3.1 Finding Vein Crossing Landmarks

Firstly, we mirror the left wing images to have the same orientation as right wings. The

input image1 first needs to be blurred using a Gaussian filter and thresholded by the same

adaptive threshold introduced in Section 3.2 (Listing 3.2) to visualize only the veins. The

Gaussian blur standard deviation and threshold sensitivity need to be chosen such that all

seven vein crossings of interest are visible. Speaking out of experience, it is mostly sufficient

to set these parameters based on one image and not change them for the rest of the images

in the set, and the same parameter values as in Listing 3.2 work in this analysis as well.

Next, the skeleton will be thinned down to lines. At this stage, the user specifies the

seven landmarks one by one by drawing a small polygon encompassing each landmark. After

each polygon is drawn, the algorithm finds the vein crossing by finding the intersection of

1Note that wings need to have the same orientation for our analysis. We decided to mirror images of left
wings.
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Figure 3.8: Seven landmarks used for pattern FA analysis marked on the wing.

the lines inside the polygon (Listing 3.5).

Listing 3.5: Finding the landmarks

1 x = zeros(1,7);

2 y = zeros (1,7);

3 for i =1:7

4 roi = roipoly(skeleton);

5 crossing = bwmorph(roi .* skeleton,'branchpoints');

6 [y(1,i),x(1,i)] = find(crossing);

7 end

After all seven polygons are drawn by the user, the program saves the list of the seven

landmark coordinates in a file. The user repeats the same procedure for each wing making

sure to specify landmarks in the same order for all images. We note that Abouchar et al.

used a different method in finding the vein crossings by finding the center of each vein close

to the crossings from the intensity profile across the vein and then estimating the crossing

as the centroid of extrapolated lines that denote the center of each vein [30]. Even though

their method is more concrete, our final results agree with theirs fairly well (see the next

Section), so we decided to continue with our method based on skeletonization.
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After all wings are processed, the coordinate files are read by a separate code that per-

forms the Procrustes transformation and asymmetry measurements.

3.3.2 Procrustes Transformation and vein Pattern FA

The Procrustes transformation first translates each configuration of landmark coordinates

(X0,i, Y0,i) (i = 1, . . . , 7 denotes each of the landmarks on a given wing) to a common origin

by subtracting the average position of the seven landmarks from each landmark in each set.

The algorithm then scales each set of now translated coordinates (Xi, Yi) by the centroid

size S =
√∑7

i=1[X2
i + Y 2

i ]:

(xi, yi) =
1

S
(Xi, Yi). (3.1)

S is a linear measure of the size of the wing, therefore scaling the coordinates by it effectively

removes variability in sizes across different wings. Finally, the set of normalized coordinates

(xi, yi) of each configuration is rotated to be as close as possible to other configurations, thus

subtracting the variability due to rigid rotations. To do this, the average of all configura-

tions was chosen as the reference coordinate (xrefi , yrefi ) and all configurations were rotated

according to:

(xri , y
r
i ) = (xi cos θ − yi sin θ, yi cos θ + xi sin θ) (3.2)

with

θ = tan−1

∑7
i=1

(
xiy

ref
i − yixrefi

)
∑7

i=1

(
xiy

ref
i + yix

ref
i

)
 , (3.3)

where (xri , y
r
i ) denotes the coordinates of landmark i after rotation. θ is chosen this way to

minimize the sum of the squared distances between (xi, yi) and (xrefi , yrefi ).

To get a single value for variability between the sets, we construct the 14× 14 covariance

matrix C of the coordinates (7 landmarks with 2 coordinates each) and define the variability

as the square root of the unbiased variance across the configurations, i.e.

Σ = 〈S〉
√

1

10
Tr(C) = 〈S〉

√√√√ 1

10

[
7∑
i=1

Var(xi) +
7∑
i=1

Var(yi)

]
, (3.4)

where 〈S〉 is the average centroid size in the set of wing images being analyzed. Var(xi) means

the variance in the x-coordinate of the i’th landmark across all configurations. The unbiased

variance is obtained by considering the number of degrees of freedom for the Procrustes

transformation, i.e. we need to subtract 4 (2 degrees for translation, 1 for scaling and 1 for

rotation) from 14, the total number of coordinates.

59



Σ gives the pattern variability for all wings. More specifically, to find the pattern FA, we

define

ΣL−R = 〈S〉

√√√√ 1

10

[
7∑
i=1

Var(xLi − xRi ) +
7∑
i=1

Var(yLi − yRi )

]
, (3.5)

where the superscript L refers to the coordinates of the left wing and R refer to the right

wing. In Fig. 3.9 we show the transformation results for a set of 38 pairs of supposedly wild

type wings. For this set, we found Σ = 7.3µm and ΣL−R = 6.9µm consistent with the values

reported by Abouchar et al [30]. The area FAi for this set was found to be 0.016 (confirmed

with both manual and our automated segmentation), which is too high for wild type, leading

us to believe that some of the flies in the set may have been mislabeled.

We have also looked at the error of the algorithm in finding vein crossings by running

the algorithm several times on a single image while changing the threshold sensitivity or

the Gaussian blur standard deviation. Σ was then calculated for the outcomes (but with 14

degrees of freedom instead of 10 since the Procrustes transformation was not applied here)

finding that Σ was consistently well below the reported size of a single cell (13.0±0.7µm [30]).

For instance, for an image we varied the Gaussian blur standard deviation from 6 - 15 pixels

while fixing the threshold sensitivity at 0.73, finding Σ = 1.46µm, while fixing Gaussian blur

standard deviation at 10 pixels and varying the threshold sensitivity from 0.68 - 0.78 lead

to Σ = 1.81µm. This suggests that the algorithm is not very sensitive to changes in the

sharpness of the image or the sensitivity of the adaptive threshold. For reference, all three

images shown in Figs. 3.4 and 3.5 would be reasonably acceptable for the algorithm.

3.4 Discussion

In this chapter, we examined image analysis of adult Drosophila wings from two angles:

1) We presented an automated, more efficient alternative to manual wing segmentation

for calculation of wing area FA. This alternative method eliminates the strenuous and error-

prone segmentation by hand. As we discussed, the user still needs to manually specify where

the wing needs to be segmented along the hinge, which has the potential for errors, but we

argue that the algorithm minimizes errors by limiting the variability introduced by human

errors and being more consistent across the set of images. As we showed in Section 3.2, the

error introduced by the choice of parameters was insignificant. Furthermore, we tested for

the magnitude of the error introduced by the manual ROI selection by segmenting the same

wing five times using the same parameters and each time re-selecting the ROI. We found

that the standard deviation of the resulting areas was three orders of magnitude smaller
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Figure 3.9: An example of the Procrustes transformation for a set of 38 pairs of wings.
(A) Vein crossing landmarks after translating each configuration to the common origin. (B)
Landmarks after scaling and rotating the configurations. Each cluster shows the variability
among 76 wings for each landmark. For this set, Σ = 7.3µm.
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than the average area of those five measurements. The most important advantage of this

code, however, is its relative speed compared to manual segmentation. Whereas manual

segmentation, if done carefully, can take about 2 minutes for each wing, the code, once the

parameters are properly set, takes less than 30 seconds to run, making it more than 4 times

faster than manual segmentation.

2) We also discussed wing shape FA in the context of vein patterning variability between

different wings, and in particular the relative location of seven vein crossings shown in

Fig. 3.8. Studying the variability in these seven landmarks is perhaps the most obvious and

simplest first choice in quantifying the shape FA. We tested the algorithm for a set of wild

type wing images acquired in France and found a shape FA comparable with the results

reported in [30], however, because the area FA’s of the wild type and dilp8 –/– flies did not

agree with reported values, we think the flies might have been mislabeled at collection, so

we have not been able to conclude this analysis.

One extension of this analysis would be to include the eighth vein crossing at the bottom

of the wing. The reason that we did not include it in the first place was that in [30] the

authors show that including it does not affect their final results about variability in vein

patterning in the genetic backgrounds that they studied. However, in our case, dilp8 –/–

mutants could potentially show significant patterning variability at that crossing, so it would

be interesting to include that in our analysis as well. Of course, this only amounts to minor

modifications in our code, and additionally, to obtain the unbiased variance, Tr(C) needs

to be divided by 12 and not 10 to account for two extra degrees of freedom for the extra

landmark.

Other sources of errors other than the ones we mentioned (i.e. parameters of the algo-

rithms) are imaging errors. When taking an image, there are several parameters that need

to be set such as the light intensity, focus, magnification, as well as the orientation of the

sample. All of these parameters can introduce errors of their own, however, these errors do

not appear to be significant [30].

Finally, once we have access to new sets of images with enough number of wings, we

would be able to measure area and pattern asymmetries and hopefully, we can extract useful

information about the FA distribution in different genotypes.
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CHAPTER 4

Statistics of Noisy Growth with Mechanical

Feedback in Elastic Tissues

Ojan Khatib Damavandi and David K. Lubensky

Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-1040, USA

(Published in PNAS Mar 2019 [116])

4.1 Abstract

Tissue growth is a fundamental aspect of development and is intrinsically noisy. Stochasticity

has important implications for morphogenesis, precise control of organ size, and regulation of

tissue composition and heterogeneity. Yet, the basic statistical properties of growing tissues,

particularly when growth induces mechanical stresses that can in turn affect growth rates,

have received little attention. Here, we study the noisy growth of elastic sheets subject to

mechanical feedback. Considering both isotropic and anisotropic growth, we find that the

density-density correlation function shows power law scaling. We also consider the dynamics

of marked, neutral clones of cells. We find that the areas (but not the shapes) of two clones

are always statistically independent, even when they are adjacent. For anisotropic growth,

we show that clone size variance scales like the average area squared and that the mode

amplitudes characterizing clone shape show a slow 1/n decay, where n is the mode index.

This is in stark contrast to the isotropic case, where relative variations in clone size and

shape vanish at long times. The high variability in clone statistics observed in anisotropic

growth is due to the presence of two soft modes—growth modes that generate no stress. Our

results lay the groundwork for more in-depth explorations of the properties of noisy tissue

growth in specific biological contexts.
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4.2 Introduction

Growth is central to biology and usually involves a level of stochasticity [39, 117, 118]. The

presence of such noise can have significant consequences for developmental processes like

morphogenesis and the regulation of organ size. Yet, relatively little is known about quan-

titative aspects of stochastic growth. Our goal here is to understand the interplay between

noise and mechanical feedback in growing elastic tissues. To that end, we present a generic,

continuum model of such tissues and use it to study measurable features of tissue architec-

ture like density fluctuations and statistics of marked, neutral clones. Our model makes a

number of unexpected predictions, including the presence of power law correlations in space

and the existence of soft modes that allow clone sizes to grow diffusively, evading the effects

of mechanical feedbacks that might otherwise be expected to limit clone size variability.

In experiments, noise in growth has most often been probed through the size and spatial

distribution of clones of cells [4, 119–124], especially of neutral clones that are genetically

identical to surrounding tissue except for a clone marker. Cell density variation has also been

observed directly in culture [55, 56, 125–127] and in fixed tissues [128], as have correlations

in positions of mitotic cells [117], and size asymmetry between contralateral organs can be

used as an indirect readout of noise levels [86].

Theoretically, the most thoroughly explored area is the noisy dynamics of stem cell

populations [119, 120, 123], where zero-dimensional descriptions are often appropriate and

spatial crowding effects, when important, have been included at the level of simple lattice

models. Similar models apply to fluid tissues where clone fragmentation and aggregation

is the dominant process at long times [121]. Here, in contrast, our goal is to explicitly

include the effects of mechanical stresses on growth of elastic tissues. An elastic description

is typically valid for plants [57,129] and can be applied to animal tissues like the Drosophila

wing imaginal disc to the extent that cell rearrangements are rare [3,58,130–132]; moreover,

the formalism we adopt can be extended to encompass simple models of plastic flow that

allow for more frequent rearrangements [59]. We expect that noise will lead to growth non-

uniformities and thus to the uneven accumulation of cell mass; this, in turn, will generate

stresses that can feed back on local growth rates. Ranft et al. [6] have shown that such

mechanical feedbacks cause the stress tensor to relax as if the tissue were a viscoelastic fluid;

their treatment of noise, however, is limited to fluctuations about zero average growth, where

most of the phenomena of interest here are absent.

On a very basic level, the idea of mechanical feedback on growth is uncontroversial—

cells obviously cannot grow indefinitely into space occupied by other cells, so some sort of

contact inhibition or crowding effects must be present. Whether cells more generally adjust
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their growth rates to their mechanical environment is, however, less obvious. The idea

that negative feedback from mechanical stresses could damp out cell density fluctuations

was proposed in [51] and has since been incorporated into a number of models [53, 57, 109,

122, 129, 133–140]. Clear experimental examples of mechanical feedback have been more

difficult to obtain [141, 142]. Nonetheless, several studies have argued that tissues both in

culture [126,143–145] and in vivo [52,146–149] respond to mechanical stress by modulating

the rate and orientation of cell division or by inducing cell death [145, 150–152]. Clones

of fast-growing cells in Drosophila wing discs reduce their growth rate through mechanical

feedback [122], and similar behavior has been observed in plant systems [129,153] including

the Arabidopsis sepal [124]. In confluent monolayers, contact inhibition slows mitosis [125,

127]. Cell aggregates [154–157] and bacterial populations [158] also appear to respond to

mechanical cues. Thus, it seems likely that some mechanical feedback on growth is present

in many tissues.

In what follows, we first introduce our basic framework, which assumes linear elastic

deformations about a uniformly growing reference state and linear feedback of the stress

tensor on the local growth rate. We then consider the special case of strictly isotropic

growth, where we show that density-density correlations generically decay with distance as a

power law and that mechanical feedback drives clone size variability to zero on large scales.

(Closely related results are obtained independently in [159].) We also find that the areas

of neighboring clones are statistically uncorrelated. We then turn to the more general case

of locally anisotropic growth. Here, we observe the appearance of soft modes, where faster

growth of one tissue region is exactly compensated by slower growth in surrounding regions

and elastic deformations so as to leave the tissue completely stress-free; these modes can

thus grow without bound even in the presence of feedback. As a consequence, clone sizes

display a standard deviation of order their mean, in strong contrast to the isotropic case.

4.3 Basic Model

We consider a flat epithelium undergoing isotropic, exponential growth on average, with

small, random deviations from this average. Though many of our results can be generalized,

we limit ourselves here to two-dimensional tissues. At the macroscopic scale, we view the

epithelium as an elastic continuum. Growth then looks like local creation of mass, and non-

uniform growth can induce tissue deformations. We treat the simplest case of an infinite

tissue and ignore boundary effects.

With these assumptions, we define reference (Lagrangian) coordinates {R} and material

(Eulerian) coordinates {r}. Each point on the tissue at time t is related to a point in the
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Figure 4.1: Noisy growth leads to tissue deformation. A shaded square of side L in the initial
state has grown at time t into a larger region with deformed boundaries (red); dashed grid
lines indicate the average, uniform tissue dilation. A material point (green dot) initially at
R is displaced to Reγ0t + w.

reference coordinates by r = eγ0tR + w, where γ0 is the average growth rate and w the local

deformation due to growth fluctuations (Fig. 4.1). We focus primarily on γ0 > 0 but show

in the Supporting Information (Appendix B) that we recover known results [6] when γ0 = 0.

Growth is represented by the symmetric second rank tensor G(R) (see, e.g., [59]). Its

principal components give the tissue’s preferred dilation—that is, the factor by which the

tissue particle at R must expand to remain stress free—along the two principal axes. It can

be decomposed as G(R) = Ḡ1 + G̃(R), where the scalar Ḡ = eγ0t describes the spatially

uniform, average tissue expansion, and the tensor G̃(R) represents fluctuations about the

average.

We assume that growth is slow enough that the tissue is always at mechanical equilib-

rium; absent any external forces or confinement, spatially uniform growth then should not

generate any mechanical stress, which will instead be caused entirely by the spatially-varying

component G̃ of the growth tensor. In the limit of weak fluctuations in growth rate, G̃ and

w will both be small, and we can linearize at each instant about the uniformly dilated state.

The resulting theory has a form familiar from thermoelasticity [160,161]. We define a strain-

like tensor wij = (∂iwj + ∂jwi)/2, where ∂i denotes the partial derivative with respect to Ri.

(Throughout this paper, spatial derivatives are taken with respect to Lagrangian coordinates

unless otherwise specified.) The Cauchy stress tensor is then:

σij =
1

Ḡ
[λ(wll − G̃ll)δij + 2µ(wij − G̃ij)], (4.1)
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where λ and µ are the Lamé coefficients and summation on repeated indices is implied.

Intuitively, Eq. 4.1 says that the stress vanishes when the actual strain wij matches the

preferred local deformation due to growth G̃ij and otherwise grows linearly with the difference

between these two quantities. It differs from textbook thermoelastic results only in the factor

of 1/Ḡ, which arises from the conversion of derivatives with respect to R to derivatives with

respect to the uniformly dilated reference coordinates ḠR. Eq. 4.1 can also be obtained by

linearizing a fully nonlinear theory of morphoelasticity [59] (see Appendix B).

Given Eq. 4.1, force balance ∂iσij = 0 implies

(λ+ 2µ)∇(∇.w)− µ(∇×∇×w) = λ∇G̃ll + 2µ∇.G̃. (4.2)

This equation may be solved to obtain w, and thus wij and σij, at each instant as a function

of G̃.

To complete our description, we must specify the dynamics of G, whose most general

possible form is

∂tG = ΓG, (4.3)

where Γ is a rank four tensor that incorporates mechanical feedback and noise (see Appendix

B). We define ∂t to be a time derivative taken at fixed Lagrangian coordinates R. (The

Appendix B discusses how ∂tG with this convention is related to proposed expressions for

the time derivative at fixed Eulerian coordinates.)

Assuming that deviations from uniform growth are small, we can expand Eq. 4.3 to linear

order in stress feedbacks and noise. The most general form allowed by symmetry is

∂t

[
G̃ij

Ḡ

]
= c σll

δij
2

+ c(d)

(
σij − σll

δij
2

)
+ ξij(R, t), (4.4)

where we have also dropped higher order gradient terms (whose effects are addressed in the

SI). The constants c and c(d) give the strengths of the stress feedbacks (the superscript (d)

stands for deviatoric), and ξij is a noise term.

4.3.1 Density

Within continuum elasticity, it is natural to define a density ρ(R, t) of the deformed material.

For a complex biological tissue, ρ of course does not represent the total mass density but

instead can be thought of as roughly the density of materials (like cytoskeletal proteins) that

give the tissue an elastic rigidity or, equivalently, as a measure of elastic tissue compression

or expansion relative to an ideal, unstressed state. If we call the (uniform) density in the
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stress-free configuration ρ0 and deviations δρ(R, t) = ρ(R, t) − ρ0, then to linear order in

growth fluctuations,

δρ =
ρ0

Ḡ
(G̃ll − wll). (4.5)

If all cells in the tissue have the same preferred apical area, then ρ is proportional to the

cell density. Even if that is not the case, as long as cells’ relaxed areas are uncorrelated, the

difference between the cell density and the average of ρ over a region of area A will decrease

as 1/
√
A, allowing the cell density to be used to estimate ρ on long enough scales.

4.4 Isotropic Growth

In order to build intuition, we first consider the simplest case of isotropic growth. We thus

set G̃ij = G̃ δij and keep only the isotropic part of Eq. 4.4 by taking c(d) = 0 and ξij = ξδij/2.

As outlined above, we can use force balance (Eq. 4.2) to find wij in terms of G̃. After

Fourier transforming, we have (λ+ 2µ)(Q.w)Q−µ(Q×Q×w) = −2i(λ+µ)G̃Q. Solving

for w and using Eq. 4.5 to relate δρ and G̃, we find

w = −2i
(λ+ µ) Q

(λ+ 2µ)Q2
G̃ and δρ = ρ0

2µ

λ+ 2µ

G̃

Ḡ
.

Then Eq. 4.4 can be rewritten as

∂t δρ(R, t) = −k δρ+ ρ0
µ

λ+ 2µ
ξ(R, t). (4.6)

Here, k = 2µ(λ+ µ)c/(λ+ 2µ), and the (scalar) noise ξ(R, t) is delta correlated in time and

spatially correlated on a length scale a of order a cell radius; this small but non-zero correla-

tion length is needed to prevent pathological behavior and reflects the fact that cell growth

and division are correlated on the scale of a single cell. Because typical cell sizes remain con-

stant as the tissue grows, the correlation length should be viewed as fixed in Eulerian coordi-

nates, so that 〈ξ(r, t)ξ(r′, t′)〉 = De−
(r−r′)2

a2 δ(t− t′)/πa2, where D is the noise strength. In La-

grangian coordinates, the noise then satisfies 〈ξ(R, t)ξ(R′, t′)〉 = De−
Ḡ(t)2(R−R′)2

a2 δ(t− t′)/πa2,

where we used, to leading order, r ≈ ḠR.
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4.4.1 Density-density Correlations

From Eq. 4.6 we can calculate the density-density correlation function, which we find in

steady state drops off like a power law in r for large separations r � a:

1

ρ2
0

〈δρ(r, t)δρ(0, t)〉t→∞ ∼
(r
a

)−2k
γ0 , (4.7)

where the pre-factor is O(k/γ0) (see Appendix B). Fig. S1 plots the full correlation function

versus r/a.

To understand this behavior, suppose that noise generates a density fluctuation initially

correlated on a length scale a. Over time, growth will advect this fluctuation outwards

while mechanical feedback will cause its amplitude to decay. After time t, the initial, small-

scale fluctuation will induce correlations up to a scale r ∼ a eγ0t, but δρ will have decayed

like e−kt (so that the correlation function is smaller by a factor e−2kt). For a given r,

fluctuations that happened around t∗(r) = log(r/a)1/γ0 ago are dominant; earlier fluctua-

tions have died out while later ones have not yet reached the distance r. Thus, we expect

〈δρ(r)δρ(0)〉 ∼ exp[−2kt∗(r)] ∼ (r/a)−2k/γ0 . A similar mechanism produces power law cor-

relations in inflationary models of the early universe [76]. This result requires a small but

finite initial correlation length for fluctuations. In the SI, we extend our results to the case

where this lengthscale is set by gradient terms in the growth dynamics as well as to unequal

time correlations in arbitrary dimension.

Qualitatively, our finding of power law correlations says that cells in growing epithelia

are more clumped together on large scales than for a totally random spatial distribution,

with the effect becoming more pronounced for smaller k/γ0. Correlations in cell density

are experimentally accessible [55, 56, 127, 128], and we expect that similar clumping should

be observed in spatial distributions of mitotic cells (which, intriguingly, are known cluster

in some tissues [3, 117]). Estimates of the exponent 2k/γ0 could be used to determine the

strength c of mechanical feedback, which has not previously been measured.

4.4.2 Clone Statistics

Following marked, neutral clones has proven to be a useful tool to track growth and devel-

opment [4, 119–124]. Here, we examine the size and shape statistics of clones in a growing

tissue. Starting from a circular clone, we derive expressions for the variance of the clone area

and of mode amplitudes characterizing the clone shape.

The area of a clone with initial radius Rc is A(t) =
∫
R≤Rc |∂r/∂R| dR ≈ π(ḠRc)

2 +
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Ḡ
∫
R≤Rc ∇.w dR, to leading order in small w. The variance of clone size is then

Var(A) = Ḡ2

∫
R,R′≤Rc

〈∇.w ∇′.w′〉 dRdR′, (4.8)

where ∇′ = ∇R′ is the gradient operator taken with respect to R′. To study clone shape, we

describe the instantaneous clone boundary as a curve rc(θ) in Eulerian coordinates, where θ

is the polar angle, which we can then express as a Fourier series rc(θ) =
∑
Bne

inθ. To linear

order in w, we may neglect differences between the Lagrangian and Eulerian polar angles Θ

and θ, and rc = ḠRc + R̂.w, where R̂ is a unit vector in the direction of R. Continuing to

work to the same order, and defining w′j = wj(Rc,Θ
′), it is easy to see that

〈
|Bn|2

〉
=

2π∫
0

dΘdΘ′

(2π)2
R̂k(Θ)R̂j(Θ

′)〈wkw′j〉e−in(Θ−Θ′). (4.9)

For isotropic growth, both w and ∇.w can be written in terms of δρ, so Eq. 4.6 is

all we need to evaluate Eqs. 4.8 and 4.9. We find that the variances in clone size and

shape become small compared to the mean at long times: limt→∞Var(A)/ 〈A〉2 → 0 and

limt→∞ 〈|Bn|2〉 /B2
0 → 0. Thus, for isotropic growth, all sufficiently old clones are statistically

similar. This is a direct consequence of the mechanical feedback that causes δρ to relax

exponentially to zero; we will see in the next section that once growth is allowed to be

locally anisotropic, soft modes lead to dramatically different behavior.

Before introducing anisotropy, we note that our model also predicts that the areas of

two nearby clones are uncorrelated: If the deviations from the mean clone areas are ∆A1

and ∆A2, then 〈∆A1∆A2〉 = 0. This follows immediately from the elastic response of an

infinite tissue to localized growth [122]: With G̃ ∼ δ(R), w ∼ R̂/R, and ∇.w = 0 except at

the origin. Thus, while the shapes of clones near the origin are distorted, only clones that

actually contain the origin change their area (Fig. 4.2A). More generally, for both isotropic

and anisotropic growth, the size of each clone depends only on G̃ within its own boundaries,

and G̃ is spatially uncorrelated (see Appendix B).

4.5 Anisotropic Growth

Cells in both animal [52, 144, 146] and plant [153] tissues have been shown to orient their

divisions relative to the principal axis of an applied stress. Thus, in general, we should

consider stress-dependent, local growth anisotropies. If we continue to assume that growth

is isotropic on average so that Gij = eγ0tδij + G̃ij, then we can specify the symmetric tensor
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G̃ by three scalars: its trace and two components for the traceless part. We follow the

same steps as in the isotropic case to solve Eq. 4.4 and find expressions for density-density

correlations and clone statistics. We will see that density-density correlations follow the

same power law behavior as in Eq. 4.7, but that new soft modes appear which cause clone

size and shape variability to remain large even at long times.

To solve Eq. 4.2 for w in terms of G̃, we work in Fourier space and write the traceless

part of G̃ in terms of the Q-dependent scalars G̃‖ and G̃⊥ (see also the SI):

G̃ij = G̃ll
δij
2

+ (G̃‖δik − G̃⊥εik)
[

2QkQj

Q2
− δkj

]
, (4.10)

where εij is the Levi-Civita tensor. Eq. 4.2 then gives the components of w longitudinal and

transverse to Q:

w
‖
k =

−i
λ+ 2µ

[
(λ+ µ)G̃ll + 2µ G̃‖

] Qk

Q2

w⊥k = 2i G̃⊥ εkl
Ql

Q2
. (4.11)

Finally, we have the stress tensor:

σij = 2(λ+ µ)
δρ

ρ0

[
QiQj

Q2
− δij

]
. (4.12)

Strikingly, growth in an infinite system can thus only induce a nonzero stress when there is

a non-vanishing density fluctuation δρ related to G̃ij by

δρ = ρ0
µ

λ+ 2µ

(
G̃ll − 2G̃‖

Ḡ

)
. (4.13)

Having found the stress, we next turn to the time evolution of G. The noise ξij in Eq.

4.4 now has three independent components. We define ξll, ξ‖, and ξ⊥ in analogy to the

corresponding quantities in Eq. 4.10 and take them to be independent, Gaussian random

variables; rotational invariance requires that ξ‖ and ξ⊥ have the same strength which can,

however, differ from that of ξll. As in the isotropic case, we choose these random variables to

be delta correlated in time but colored in space to avoid pathological behavior (see Appendix

B).

Substituting Eq. 4.12 for the stress into the growth dynamics Eq. 4.4, we find that the
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dynamics can be decomposed into three independent modes as (see also SI)

∂t δρ = −(k + k(d))δρ+ ρ0
µ

λ+ 2µ

(
ξll − 2ξ‖

)
(4.14)

∂t ZT = ξ⊥ (4.15)

∂t ZL = ξll + 2
k

k(d)
ξ‖, (4.16)

where k(d) is defined similarly to k, and ZT = G̃⊥/Ḡ and ZL = [G̃ll + 2(k/k(d)) G̃‖]/Ḡ are

the amplitudes respectively of transverse and longitudinal soft modes, which do not produce

any stress and thus grow diffusively. Before studying the density and clone statistics, we

next consider these soft modes more carefully.

4.5.1 Soft Modes

As just shown, in two dimensions growth has two soft modes. They have the same physi-

cal origin: A nonuniform growth field G̃ induces a displacement w that exactly cancels the

growth, so that no mechanical stress or density change results. Fig. 4.2B illustrates this for

the longitudinal mode. In essence, excess mass created by faster growth in one part of the

tissue is transported to slower-growing parts so as to equalize the tissue density. What is

remarkable is that, for certain patterns of growth, this redistribution can be accomplished

in an elastic tissue—thus without viscous flow or cell neighbor exchanges—without causing

shear stresses or mechanical feedback. Specifically, Eq. 4.13 implies that only growth per-

pendicular to Q—i.e., only the G̃22 component of G̃, if Q points in the 1 direction—induces

density changes that can then generate stresses (Eq. 4.12). In contrast, growth parallel to

Q (ZL) or at a 45° angle (ZT ) is exactly compensated by elastic deformations.

From Eqs. 4.15–4.16, one might imagine that the soft modes grow without bound. This,

however, turns out not to be the case: The modes are defined at fixed Lagrangian wavevector

Q, but ξ⊥ and ξ‖ have constant correlations in Eulerian space. As growth progresses, a given

Q corresponds to longer and longer Eulerian lengthscales, leading to a decrease in the noise

amplitude with time. As a result (see Appendix B), the mean squared values of ZL and ZT

remain bounded for all times.

4.5.2 Density-density Correlations

As in the isotropic case, we can calculate density-density correlation functions for anisotropic

growth. From Eq. 4.14, it is evident that the only differences between the two cases are the

feedback strength and the presence of a second noise term ξ‖. The latter will only affect the

72



A

B +1

0

-1

Figure 4.2: (A) Independence of nearby clone areas. A localized region of growth (marked
by the red star) at the center of the left clone (light blue) leads to an increase in the area
of that clone, but it leaves the area of the adjacent clone (dark blue) unchanged even while

distorting its shape. (B) Longitudinal soft mode. Sinusoidal growth (color scale gives G̃)
leads to a deformation field w (arrows) that exactly compensates for the growth, leaving the
density unchanged.
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pre-factors. We thus find that

1

ρ2
0

〈δρ(r, t)δρ(0, t)〉t→∞ ∼
(r
a

)−2(k+k(d))
γ0 , (4.17)

just as for isotropic growth, with prefactors of the same order.

4.5.3 Clone Statistics

In the isotropic case, where δρ was the only dynamical variable, mechanical feedback caused

clone size and shape variations to decay in time relative to the average dilation. However,

if we allow growth anisotropies, ∇.w and w, which are the relevant variables for clone

properties (Eqs. 4.8 and 4.9), depend on the soft modes as well as on the density.

As mentioned above, the correlation functions for soft modes reach constant values at long

times, whereas correlators that involve δρ decay exponentially in time. Thus 〈∇.w ∇′.w′〉
and 〈wkw′j〉 will be dominated by soft modes at long times. We find that as t→∞ the clone

area obeys
Var(A)

〈A〉2
∼ 1

R2
c

, (4.18)

while for n ≥ 2 the mode amplitudes show a slow 1/n decay:

〈|Bn|2〉
B2

0

∼ 1

R2
c

n

n2 − 1
. (4.19)

The pre-factors are O(1) if Rc ∼ a, i.e. the clone is initially the size of a single cell. Adjacent

clones’ areas are uncorrelated, just as in the isotropic case (Fig. 4.2A).

Eq. 4.18 says that the areas of large clones are just as variable as those of small clones.

Such behavior would be normal for an exponentially growing population with no constraints

on its size [162], but it is quite unexpected for a clone embedded in an elastic tissue and

subject to mechanical feedback. In effect, soft modes allow the growth to be as noisy as

if feedback were absent. Together with our finding that the areas of different clones are

uncorrelated, this result means that even elastically coupled clones behave in many ways as

if they were growing independently and without feedback.

4.6 Discussion

We presented a simple model of noisy growth of elastic tissues with mechanical feedback.

This model predicts nontrivial behavior for experimentally accessible quantities including
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density-density correlation functions and clone size statistics.

We first showed that density correlations decay in space as a power law whose exponent

depends on the average growth rate and feedback coefficient. Using our result, it should be

possible to estimate the strength c+ c(d) of the mechanical feedback, a quantity that has not

so far been measured in growing tissues. Somewhat counterintuitively, the sign of c(d) seems

to be negative in some plant systems [153]. We find that this does not destabilize growth as

long as c+ c(d) > 0.

We then studied marked, neutral clones, whose statistics depend strongly on whether local

growth anisotropies are allowed. In their absence, mechanical feedback tends to prevent

fluctuations on large scales, and size variation becomes much smaller than the mean for

large clones. This behavior changes dramatically for anisotropic growth, where soft modes

allow certain deformations to escape any negative feedback. As a consequence, the standard

deviation in clone area grows like the mean, exactly as if the clone were an exponentially

growing aggregate of independently dividing cells completely indifferent to the presence of

surrounding tissue [162]. Similarly, fluctuations in clone shape remain large when growth

is anisotropic and soft modes dominate. Strikingly, we also find that the areas of different

clones are always uncorrelated. These conclusions together imply that (at least to within the

weak noise approximation inherent in our calculations) neutral clone areas have the same

statistical properties in elastic tissues as in systems where mechanical feedback and crowding

effects are completely absent.

Our calculations also show more generally that overgrowth of one clone (whether or not

neutral) cannot induce undergrowth in nearby tissue solely through mechanical feedback in a

linear, elastic continuum (Appendix B and [122]); this is consistent with the fact that known

examples of such behavior, like cell competition [163], appear to depend on the activation of

specific signaling pathways rather than on generic mechanical effects.

One limitation of our results is that they ignore clone disappearance and fragmentation.

Such events should be vanishingly unlikely for fast enough growth or large enough initial

clone area, but can skew size distributions in the opposite limits [119]. Thus, our findings

are most directly applicable to tissues where the rate of cell division is much higher than of

cell death or to situations where clones can be imaged over time [4], so that it is possible to

quantify a clone’s incremental growth after it has reached some threshold size.

We emphasize that the soft modes in our model are distinct from stress relaxation due to

tissue fluidization [6]. Whereas in the latter case, stress decays exponentially in time, for soft

modes it is identically zero. Our soft modes are related to harmonic growth [53, 164, 165],

which likewise does not generate any stress. This phenomenon, however, occurs in finite

tissues with isotropic growth and appropriate boundary conditions. Here, anisotropic soft
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modes are integral to the structure of the growth problem even in the absence of boundary

effects.

Our model is the simplest that incorporates noise in the growth control problem. It

ignores the influences both of boundaries and of frictional forces. Friction always dominates

for large enough growing tissues [166], but its effects can be small when growth is slow or

sources of drag are weak (as, e.g., for plant tissues growing in air). By assuming a solid

tissue, we also neglect the possibility of cell rearrangements (T1 transitions) and flow. This

assumption usually holds for plant cells [57, 129]. In animal epithelia, flows and T1’s are

sometimes significant [121], but there are also cases that exhibit more solid-like behavior.

The Drosophila wing disc, for example, clearly supports circumferential stresses without

yielding [52,146], and cell shapes and packing are consistent with a solid rather than a fluid-

like phase [167]. Despite some differences in measured rates of T1’s in ex vivo discs [3, 58]

and of clone dispersal [130–132], these are consistent with predominantly solid behavior with

possibly some plastic slippage. Thus, it is reasonable to treat the disc as an elastic solid

in a first approximation. Moreover, plastic deformations can be described with the same

multiplicative decomposition of the deformation gradient used in morphoelasticity (Appendix

B), so that incorporating a simple version of plasticity into our model requires nothing more

than renormalizing the coefficients in the time evolution of G (Eq. 4.4) [59].

Our calculations also assume weak noise and hence small deformations. Importantly, this

approximation is valid and self-consistent even with soft modes, because the soft mode ampli-

tude is proportional to the noise strength and remains bounded at long times. Nonetheless,

it would be of interest to explore what happens for stronger noise and larger deformations.

Indeed, the physics of nonequilibrium growth has a long and rich history (e.g. [69]), and from

this perspective volumetric tissue growth represents an entirely new class of problems. No-

tably, we expect that the basic physics of soft modes survives the transition to the nonlinear

regime. In the nonlinear case, it is convenient to characterize growth by a “target metric”

(equal to GTG); if this metric lacks intrinsic curvature, it can always be compensated by a

displacement field w and so will not generate any stresses [54,59].

The formalism presented here can also be extended to include less generic effects, like

inhomogeneous growth driven by morphogen gradients and chemical signaling, that are

nonetheless crucial to many examples of morphogenesis and organ size control [109,133,134].

Our work is thus a first step towards more comprehensive models of specific biological sys-

tems.
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CHAPTER 5

Conclusions

In this thesis, we tackled profound questions in growth and size coordination in developmental

biology with simple and generic models, combining methods from a variety of subjects such

as nonequilibrium statistical physics, theory of elasticity and control theory. Our approach

enabled us to make nontrivial predictions about the underlying biological processes that

are at play in a growing living being. Importantly, these predictions were made without

relying too heavily on the microscopic details of such systems. This is indeed a feature

of phenomenology that makes these models powerful tools in studying complex biological

systems. Our models not only shed light on the biology involved in the process of growth,

but also informed us of exciting new physics waiting to be explored. Here, we give a brief

summary of this work and discuss some possible future steps in studying nonequilibrium

tissue growth.

We started with a fundamental question in biology: How do growing animals ensure

that their organs have the proper sizes in relation to one another and to the body? What

makes this question a problem well-suited for physicists is that there is no information in the

DNA that directly specifies organ shape and size. Thus, morphogenesis is a self-organization

problem likely influenced by many different physical and chemical interactions, which calls

for the type of coarse-grained modeling for which physicists were trained.

Chapter 2 entailed our attempts at answering the aforementioned question. More specif-

ically, inspired by the biological observation that Dilp8, an endocrine signal secreted by the

organs during Drosophila larval stage, is involved in coordination of organ sizes, we asked

the question, can we get organ size coordination via a single chemical signal? To answer

this question, we studied several biologically plausible models based on feedback mechanisms

regulating either absolute size or growth rate of organs. By building biologically relevant

feedback models we were able to study the implications of each feedback mechanism if a

system were to employ said mechanism for organ size coordination. In particular, by fixed

point analysis of different models and studying noisy organ growth, we were able to discrim-

inate between different coordination mechanisms and explore experimental implications of
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each feedback model. Crucially, these generic models equipped us with the predictive power

to set limits on the ability of chemical signaling in coordination of final organ sizes.

Notably, we made an important assumption that organs have an idea of what size they

want to be, which we called the target size. This assumption, again based on biological data,

had important consequences for the feedback models. For example, if organs did not have a

target size, proportional feedback on growth rate (Section 2.12) would have the opposite sign

than what we found in our study, implying very different experimental signatures. Moreover,

having a target size introduces a source of error that needs to be corrected for proper organ

proportions to be achieved (because it is possible for organs to estimate their target sizes

inaccurately on their own). Notably, we found that no form of feedback can reliably correct

errors in target size. This is an important conclusion as it implies that organs must have an

intrinsic size correction mechanism to buffer noise in their target size. In other words, organs

autonomously set the correct target size and feedback can then help coordinate sizes during

growth, perhaps in response to environmental fluctuations and to help speed up development.

Perhaps the most obvious signature of feedback is coordination during growth. Then,

it would be interesting to look at in vivo imaging of wing discs in wild type and dilp8 –/–

flies and measure the wing sizes as the larva grows. The expectation would be that if Dilp8

acts as a feedback agent during normal growth, we expect to see less variability in wing

pairs in wild type flies during growth. Ideally, we would be able to extract FA curves and

even extract the strength of feedback λ. Of course, there are challenges associated with live

imaging as we need to minimize stresses to larvae or stress dependent pathways involving

Dilp8 may be activated [21, 47, 48]. The Leopold Lab is pursuing this and hopefully in the

near future, size variability during growth can be measured.

The conclusion that we reached in Chapter 2, namely that organs perhaps autonomously

correct errors in target size, raises another important question: How exactly? We explored

this question in Chapter 4, but before that, we discussed a collaboration with the Leopold

Lab in Chapter 3. In addition to their instrumental contributions to our research by pro-

viding experimental data to use for testing our models, our collaborators provided us with

the opportunity to take part in imaging and image analysis of adult wings. We used this

opportunity to think about some open questions regarding FA in fruit fly wings in different

genotypes. For example, what does the wing size FA distribution look like in wild type

and dilp8 –/– flies, or whether Dilp8 also affects shape asymmetry in wings? We outlined

two algorithms, one for automating wing image segmentation that would help facilitate area

measurements and thus size FA measurements, and another algorithm for quantifying the

shape asymmetry based on the pattern of vein crossings in wings.

Regarding shape FA, there are indeed other ways of quantifying shape. For instance, one
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could think about FA in the length to width ratio of the wing. One could also study the

curvature of wing periphery and perhaps compare not only the shapes of left and right wings

of the same fly, but how different wing shape is on average between different genotypes. It

would be interesting to use different methods of shape FA measurements and see whether

there is a particular measure that shows a significantly higher FA and what that would tell

us about the process of wing growth.

In Chapter 4, we tackled the question of autonomous error regulation in growing tissues.

It has been known that morphogen gradients can stop tissue growth without outside help

[109]. Moreover, recently the form of mechanical response to morphogens that would lead to

a unique target size has been studied [54]. However, it is not yet clear what the consequences

of noise are in setting the precision of this final size. In fact, as we have discussed, there have

not been many studies on noisy tissue growth in general. What we set out to understand,

then, was the basic consequences of noise in quantities that could be observed experimentally.

Our study not only was an important step towards understanding how organs may be able to

accurately set their target size, but also provided us with striking results like the power law

behavior of density density correlations, which could be used as an indirect way to measure

the strength of mechanical feedbacks, a quantity that has not been measured before. Another

somewhat unexpected observation was the appearance of two soft modes of growth, with

important consequences for clone dynamics.

Remarkably, our simple framework, stripped of many biologically relevant details such

as the existence of morphogen gradients, tissue boundaries and anisotropic growth, led to

nontrivial and surprising results. Importantly, because of the generic nature of our model,

our findings are expected to hold in more complex situations. For instance, to observe

remnants of a power law, all that is needed is the existence of fluctuations correlated on a

small length scale in a growing tissue, which would be present in most situations involving

stochastic cell divisions. Of course, biological experiments are often not clean and it is not

guaranteed that these power law behaviors can ever be observed experimentally, but our

hope is that on large enough distances where short scale fluctuations average out, we might

be able see the clumpiness of tissue due to the power law correlations.

In the mean time, vertex model simulations of growing tissues could provide an alterna-

tive avenue for observing the power law correlations and soft modes. It would be interesting

to confirm these results starting from discrete cells. Simulations would also allow us to

study cell rearrangements that currently are not included in our continuum framework and

see how plasticity affects the results. Another open question is how valid our approximation

to take the tissue as a continuum sheet is. For example, how large should the tissue be for

this approximation to be meaningful? Are there important properties that are inherent to
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tissues that are made up of discrete cells (other than cell rearrangements) that a continuous

treatment cannot capture? Vertex model simulations provide the perfect platform to investi-

gate these questions in future studies. On the theoretical side, future iterations of the model

should improve the biological relevancy of the model by including for instance anistoropic

average growth and spatially heterogeneous growth.

More generally, there are many open questions left regarding size coordination in bio-

logical tissues. A major question that remains to be answered is how the length scale of

organ sizes is set. In Chapter 2 we started with the assumption that organs know this length

scale, but how they know it is still an open question. Morphogen gradients can provide a

length scale; however, by which mechanism organs can infer length scale from morphogens

is not clear yet [24]. Would studying robustness of different mechanisms against noise help

distinguish between them?

We only focused on coordination between organs. However, there are important organ-

body communications as well. A related concept in insect development is the apparent

existence of a larval “critical weight,” a size after which the larva fully commits to pupal

transition [21, 25]. In Drosophila for example, this size is thought to be in the middle of

the last larval instar and is linked to nutrition and a spike in ecdysone [168], and may be

connected to disc growth as well [169]. It is interesting to see how critical weight affects disc

growth and is perhaps affected by Dilp8. Again in Drosophila, ecdysone interestingly has

the opposite effect on the growth of imaginal discs and larval tissue: it promotes growth of

imaginal discs but inhibits growth of larval tissues. Thus by virtue of this common player,

organs and the body can communicate. Can we somehow coordinate final sizes if we include

organ-body communications? Another important parameter we ignored in our model of

organ growth was how target size is affected by systemic signals and nutrition. How does

nutrition dynamically affect not only the target size, but also growth rate of organs and the

body, and global growth checkpoints (e.g. the critical weight in insects)?

It would have been naive to think that the question we posed in the beginning of this

thesis could be answered in the span of a few years of PhD research. It would have been

equally as naive to think that phenomenological modeling can ever provide complete answers

to questions in biology. Details do matter after all. Rather, phenomenology can help us

focus on those details that matter more and are universally shared among many organisms.

And this is indeed what we aimed for in this work. our main goal in this thesis was to

provide simple toy models of growth regulation and organ size coordination based upon

basic assumptions about the fundamental biological principles that govern those processes

and to elucidate consequences of our assumptions. We hope that our work serves as a guide

for future theoretical and experimental studies as well as a step, as small as it may be,
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towards unlocking the mysteries of life.
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APPENDIX A

Further Discussion of Organ Size

Coordination

A.1 Introduction

In this Appendix, we discuss in more detail some of the calculations that we skipped in

Chapter 2. We start by introducing the noisy version of the dynamics and briefly going over

the small noise approximation that we used for our results particularly in Section 2.4. Then

we will discuss an alternative signal normalization for the FR-P model, where instead of

taking V to be proportional to the sum of organ sizes, we assume it is a constant throughout

growth. We will show that it is not qualitatively different than the version we studied in

Chapter 2. Next we will further discuss the FR-I model and in particular how to derive Eq.

2.16 and why the feedback is positive. We will then briefly explore the possibility that the

coordination signal controls noise in target size or the strength of the noise, ε. Finally, we

will provide a way to distinguish between the FS-P and FR-P models based on the fact that

one is a positive feedback mechanism and the other is negative.

A.2 Noisy Growth Rate and Small Noise Approxima-

tion

In this section, we introduce our noisy growth framework, which we use to study the noisy

versions of NC model (Section 2.3.1), FS-P model (Section 2.3.3) and FR-I model (Section

2.3.5), and also for our study of Dilp8 in Drosophila in Section 2.4. We start with a general

noisy growth model and use small noise approximation to analytically quantify FA.

Consider the general stochastic differential equation (SDE)

Ȧi = γi(A1, A2) + ξi(t), (A.1)
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where γi(A1, A2) is the growth rate of organ i, which includes any coupling between the organs

by feedback, and ξi(t) represents the noise. Growth is roughly a Poisson random process,

and it easily follows that ξi(t) is a Gaussian random process (i.e. white noise) with a strength

proportional to
√
γi [170]. In particular, the noise correlators are 〈ξi(t)ξj(t′)〉 ∝ γi δijδ(t− t′).

If noise was due to fully random cell divisions each contributing the same area δA, the

proportionality constant would be δA. However, in general there are many sources of noise

and cells continuously grow. Therefore, at each time step, a variable area will be added to

the total area Ai and noise strength is affected. To account for this variability, we introduce

a dimensionless free parameter ε which we call noise strength, and write 〈ξi(t)ξj(t′)〉 =

ε2Ā∞γi δijδ(t − t′), where Ā∞ is the mean target size, which is included merely to fix the

dimensions.

To better emphasize the multiplicative structure of the noise, we write the SDE (also

called the Langevin equation) as

dAi = γi(A1, A2) dt+ ε
√
Ā∞γi(A1, A2) dWi, (A.2)

where dWi is the Wiener process representing the temporally uncorrelated Gaussian white

noise (dW 2
i ∼ dt).

A key feature of this model is that the noise in Eq. A.2 approaches zero as the growth

rate goes to zero. In fact this is only true if there is no apoptosis as having apoptosis would

introduce fluctuations around the fixed point. This feature allows two organs with the same

target size A∞ to reach similar final sizes even without any continuous feedback loop if

they are given enough time to grow. Inclusion of feedback is then expected to facilitate the

decrease in noise helping the animal to mature sooner as we explicitly showed in Chapter 2.

Now we are in a position to quantify the size asymmetry between left/right organs. We

define the following FA index (FAi)

FAi =
σ{A1 − A2}

¯〈A〉
=

(Var(A1) + Var(A2)− 2[〈A1A2〉 − 〈A1〉〈A2〉])
1
2

¯〈A〉
(A.3)

where σ{· · · } denotes the standard deviation, Var(· · · ) the variance, 〈· · · 〉 the ensemble

average and ¯〈A〉 = (〈A1〉 + 〈A2〉)/2 is the average organ size. For two organs growing

independently (no feedback), 〈A1A2〉 = 〈A1〉〈A2〉. A lower FAi means that organs are more

symmetrical in size.

Because of the nonlinearity of Eq. A.2, closed form solutions for 〈Ai〉 and 〈AiAj〉 cannot

be obtained. Therefore, we make an additional assumption that noise is weak (ε � 1) and
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use the so-called small noise approximation, as outlined below [104], to make the dynamics

analytically tractable.

Assuming ε � 1, we can Ai(t) = ai(t) + ε Xi(t) + O(ε2), where ai(t) is the solution to

the deterministic equation dai/dt = γi(a1, a2). Plugging the series expansion into Eq. A.2

and equating terms of the same order in ε, we find to first order in ε

dai
dt

= γi(a1, a2),

dXi = Xi
∂γi(a1, a2)

∂ai
dt+

√
Ā∞γi(a1, a2) dWi. (A.4)

The first equation is simply the deterministic growth law for the average area ai. The second

equation gives the deviation from ai. Also, note that only ai appears in the noise term; this

is expected because the noise is already first order in ε meaning that the first order noise is

additive.

Eq. A.4 is linear in Xi, hence it is straightforward to find 〈XiXj〉. It follows that 〈Ai〉 = ai

and 〈AiAj〉 − 〈Ai〉〈Aj〉 = ε2〈XiXj〉 to lowest order in ε. In fact, one can see that the

probability distribution function P (Ai) is a Gaussian distribution up to O(ε) [104]. With

this approximation, FAi can be easily found for a given growth law.

A.3 On the Choice of V in FR Models

In Chapter 2 the hormone concentration was found for FR models to be [h] ∝ ˙̄A/V where

V is the volume of the blood available to the organs for the feedback. We decided to choose

V ∝ 2Ā for FR models as it is a more natural choice and makes the model more symmetric.

Here we show that at least for FR-P model, setting V to be a constant does not affect the

behavior of the model qualitatively.

It seems reasonable to assume that a constant blood volume is proportional to the average

target size (the largest size the organs can get), V ∝ Ā∞. Then the dynamics for the FR-P

model will be
Ȧi
Ai

= k(A(i)
∞ − Ai) + λ

(
ci

˙̄A

Ā∞
− Ȧi
Ai

)
, (A.5)

while FR-I model will now look like

Ȧi
Ai

= k(A(i)
∞ − Ai) + λ fi(t)

ḟi(t) = ci
˙̄A

Ā∞
− Ȧi
Ai
. (A.6)
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It is easy to see that the error signal ḟi < 0 at all times, which means that in the FR-I

model, the integrated error that the both organs will receive is negative and will never decay

to zero. This is similar to the behavior of the knockout mutants that we discussed in Section

2.3.6. The fact that the error signal is negative at all times is much less problematic in FR-P

model since it does decay to zero and is not accumulated like in the case of FR-I model.

This means that organs are allowed to reach their target size as the magnitude of error signal

near steady state is small. The effect is that growth is accelerated compared to the version

in Chapter 2 (λ < 0 in FR-P model so both organs will see a positive error that up-regulates

their growth) but reaches the same fixed point (Fig. A.1A). Again, as expected, errors in ci

do not affect the dynamics of this version of FR-P model significantly.

We now study noisy version of Eq. A.5 look at how the knockout behaves in this alterna-

tive version of FR-P model (setting ci = 1 for wild type). Firstly, because feedback changes

the average growth rate compared to the version in Chapter 2, maturation needs to happen

earlier in this version. Then, in the mutant ci = 0, which has an even higher growth rate,

we ask organs to stop growing at the same average size as wild type. The FA at this point is

higher as seen from (Fig. A.1B-D). Note that unlike the version of FR-P model in Chapter 2,

the requirement“stop at the same average size as wild types” is not equivalent to “set λ = 0

and stop at the same time as wild type.” These two statements are only equivalent when

the average growth rate of wild type is independent of λ, which was the case for Chapter 2

version of the model but not here.

Overall, normalizing the hormone signal by a constant volume does not seem to qualita-

tively change the results of the FR-P model, however it makes the FR-I model pathological,

which reiterates the sensitivity of that model to model parameters.

A.4 Further Discussion of Error Signal in FR Models

A.4.1 Dependence of Feedback Coefficient on Dynamics of Error

Signal

In this section, we take a closer look at the error signal in the FR models to better understand

the sign of λ in the models. For convenience, we rewrite the FR-P model as

Ȧi
Ai

= k(A(i)
∞ − Ai) + λḟi, (A.7)
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Figure A.1: FR-P model with normalization volume V = Ā∞. (A) Average growth curves of
FR-P model with V = Ā normalization (main text), FR-P model with V = Ā∞ normaliza-
tion, and FR-P knockout. (B) To stop growing at the same size as Chapter 2 version of FR-P
model, organs with V = Ā∞ normalization must stop earlier, indicated by the crossing of
the red line and the yellow curve. The knockouts must stop even earlier. (C) The FAi curves
(ε = 0.06 shows that in the V = Ā∞ version of the model, FA goes down much earlier due to
the faster growth rate. Interestingly, the knockout has lower FA at all times, however, since
the developmental timing is also accelerated, we should compare the FA at equal sizes. The
blue and red dots correspond to the FA at the same average size for wild type and knockout
respectively. (D) If we plot the FAi with respect to average size and not time, we see that
the knockout mutant shows higher FA at any average size.
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where ḟi is the error signal:

ḟi =
˙̄A

Ā
− Ȧi
Ai
, (A.8)

with ci = 1 for simplicity, and FR-I model is defined as before (Eq. 2.15). Understanding

the dynamics of the error signal and its integral fi can give us a better intuition into FR-P

and FR-I models.

If feedback is small, the sign of ḟi is mainly determined by A
(i)
∞−Ai. Near the fixed point,

the organ that is closer to its target size has a smaller growth rate, so if A1 > A2, ḟ1 > 0 and

ḟ2 < 0. Thus in the FR-P model, as we discussed in Chapter 2, λ < 0 is appropriate because

we want the larger organ to slow down and smaller organ to speed up. Early dynamics can

behave a bit differently. If A1(0) > A2(0) and A
(1)
∞ = A

(2)
∞ , A

(1)
∞ − A1(0) < A

(2)
∞ − A2(0)

and thus ḟ1 > 0 and ḟ2 < 0 from the beginning (Fig. A.2A). However, if for example

A1(0) = A2(0) and A
(1)
∞ > A

(2)
∞ , initially A1 has a higher growth rate and ḟ1(0) < 0 and

ḟ2(0) > 0 while the late time behavior is the same as before, meaning that ḟi change sign

(Fig. A.2C). Therefore, the FR-P model will favor λ > 0 early on but again a λ < 0 is

favored later in growth. However, in this case, feedback ultimately fails regardless of the

sign of feedback because FR-P cannot correct errors in target size.

The situation for FR-I model is different because the integral of error signal is the im-

portant parameter. In the first example (A1(0) > A2(0) and A
(1)
∞ = A

(2)
∞ ), since ḟ1 > 0 and

ḟ2 < 0 at all times, f1(t) > 0 and f2(t) < 0 as can be seen in Fig. A.2B (assuming fi(0) = 0).

Then, clearly λ > 0 increases the size difference as we saw in Chapter 2. However, λ < 0 is

not good either because it will force A1 to become smaller than A2 and instead of reaching

the same target size, organs will reach different sizes with A1(t → ∞) < A2(t → ∞) even

though A
(1)
∞ = A

(2)
∞ . In the second example, even though ḟi change sign during the growth,

the sign of fi is determined by ḟi(0) because the magnitude of ḟi is smaller later on as the

organs approach steady state (Fig. A.2D). Thus, f1(t) < 0 and f2(t) > 0, thus λ > 0 is

appropriate for FR-I model in this case.

We also add that in a situation where say A1(0) > A2(0) and A
(1)
∞ > A

(2)
∞ , fi also can

change sign in addition to ḟi during the growth, suggesting that λ < 0 in FR-I can bring

down A1, which then can actually lower the final FA; however, the magnitude of λ is highly

dependent on Ai(0), which again is the main issue with FR-I model (Fig. A.3).

Overall, this analysis suggests that when FR-P is helpful (same target sizes), λ < 0 is

favored, and when FR-I is useful (different target sizes but same initial conditions), λ > 0 is

appropriate.
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Figure A.2: Behavior of ḟi and fi based on different initial conditions. (A-B) If A1(0) > A2(0)

and A
(1)
∞ = A

(2)
∞ , ḟ1 > 0 and ḟ2 < 0 at all times. (A1(0) = 264, A2(0) = 164.) (C-D) If

A1(0) = A2(0) and A
(1)
∞ > A

(2)
∞ , ḟi change sign but fi do not. Here, blue curves represent ḟ1

and f1 while yellow curves represent ḟ2 and f2.
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Figure A.3: Negative feedback in FR-I model and its dependence on initial conditions. (A-

B) If A1(0) > A2(0) and A
(1)
∞ > A

(2)
∞ , negative feedback may be favorable in FR-I model

because of fi’s signs near the end (here A1(0) = 264, A2(0) = 164). (C-D) A different initial
condition (A1(0) = 164, A2(0) = 264) will change the behavior of fi, thus can lead to the
failure of FR-I model. Here fi do not change sign anymore. (E-F) FR-I model can correct
errors in target size for a specific choice of δA0 (E) but the same feedback will fail for a
different initial condition (F). In (A-D) blue curves represent ḟ1 and f1 while yellow curves
represent ḟ2 and f2.
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A.4.2 Initial Conditions of fi in FR-I Model

Here, we derive the initial conditions of fi that we used in Section 2.3.6 (Eq. 2.16). We can

see from Eq. A.8 that

ḟ2 =
Ȧ1A2 − Ȧ2A1

(A1 + A2)A2

= −A1

A2

ḟ1. (A.9)

With a bit of algebra we can find f2(t) in terms of f1(t) and other parameters.

Ȧ1A2 − Ȧ2A1

A2

= A2
d

dt

[
A1

A2

]
= A1

d

dt

[
log

A1

A2

]
⇒ (A1 + A2)ḟ2 = A1

d

dt

[
log

A1

A2

]
⇒ ḟ2 +

A2

A1

ḟ2 = ḟ2 − ḟ1 =
d

dt

[
log

A1

A2

]
⇒ f2 = f1 + log

A1

A2

+ C (A.10)

We can easily find the constant C by looking at boundary conditions at t → ∞. At

steady state, we want the feedback to correct errors in target size, so we ask A1(t → ∞) =

A2(t→∞) = Ā∞. Then C = f2(t→∞)− f1(t→∞). From Eq. 2.15 we also have

fi(t→∞) =
k(A

(i)
∞ − Ā∞)

λ
. (A.11)

So,

C =
k δA∞
λ

. (A.12)

Now we can write f2(t) in terms of f1(t) and arrive at Eq. 2.16:

f2(t) = f1(t) + log
A1(t)

A2(t)
+
k δA∞
λ

(A.13)

For initial conditions, we argued that the most natural choice for initial conditions are

fi(0) = 0, which constrains A1(0) = A2(0) and a λ� k δA∞ for perfect correction of errors

in target size. Other choices of fi(0) will lead to nonbiological dependence of the internal

integrator of each organ depending on the other.
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Figure A.4: Overexpression of signal in FS-P and FR-P models. (A) In the FS-P model,
overexpression increases the final sizes and the growth rate. (B) overexpression of signal in
FR-P model lowers the growth rate and the final sizes. (δ A∞ = 0, A1(0) = 264, A2(0) = 164.)

A.5 Overexpression of Coordination Signal in FS-P and

FR-P Models

In this section, we study the behavior of our proportional feedback models to overexpression

of signal. Because the feedback coefficients have the oposite signs in FS-P and FR-P models,

we expect them to behave differently in response to overexpression. Overexpression can be

achieved by simply adding a constant H to the error signal, which looks like

Ȧi
Ai

= k(A(i)
∞ − Ai) + η(ciĀ− Ai +H), (A.14)

for FS-P model, and

Ȧi
Ai

= k(A(i)
∞ − Ai) + λ

(
ci

˙̄A

Ā
− Ȧi
Ai

+H

)
, (A.15)

for FR-P model. Indeed, overexpression can distinguish between these two models: In FS-P

model, overexpression leads to growth acceleration and reaching larger final sizes, whereas

the in FR-P model,the effect is opposite. Fig. A.4 shows the different behaviors, where we

assumed same target sizes for fair comparison. If target sizes are not the same, note that

in the steady state, δ A(t → ∞) is independent of H in both models. However, since the

average size is affected by it, FS-P model would show lower FA while FR-P model would

show a higher FA than wild type.
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A.6 Regulation of Noise Strength

One could imagine that in the wild type animals the hormone is only involved in regulating

homeostasis in an organ autonomous manner to ensure a low noise level across the organ,

allowing for a low final FA. Then, by knocking it out, could lead to a higher FA at matura-

tion. Here we outline how one would go about modeling this process using our small noise

approximation.

Assume that the coordination signal only regulates ε and not the timing and does not

play any role in feedback between organs. If then we knock out the hormone, ε would go up,

leading to higher FA at maturation since FAi is linearly dependent on ε as we showed in Eq.

2.19. An interesting experimental result is found if we do the time dependent control of the

signal as we did for Drosophila in Section 2.4.

Say we have obtained the noise strength for wild type (ε) and for knock out ε∗ from

experimental data. Then, if we activate the signal sometime in the middle of growth, T ∗,

noise strength would go down from ε∗ → ε and final FA will be larger than wild type but lower

than knockout. One thing to note is that we want continuity in the variance after changing

ε. This in the context of small noise approximation means that ε∗〈XiXj〉T ∗ = ε〈XiXj〉T ∗ so

that 〈AiAj〉before = 〈AiAj〉after.
We applied this procedure to the fly data that we used in Section 2.4 to see what the

GAL80ts experiment would look like if Dilp8 were to only regulate the strength of noise.

The result is shown in Fig. A.5, where we can see a stark difference between this case and

the FR-P model explored in Chapter 2 (Fig. 2.7D). Namely, dilp8 control of final FA is very

sensitive to T ∗. This means that if somehow dilp8 is expressed just a few hours late, the

final FA would look much more like a knockout which definitely would not be desirable.

In the final section, we will take a brief look at the case that there is no noise in growth

rate but in the target size, and ask what role can the coordinating signal play in that scenario.

A.7 Noisy Target Size

In this section, we will briefly look at the scenario in which fluctuations are solely affect-

ing the target sizes and growth rate remains deterministic. We will then assume that the

coordination signal only reduces noise in target size.

Assume that each organ grows according to the logistic equation

Ȧi = kAi(a
(i)
∞ − Ai), (A.16)
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Figure A.5: The effect of time dependent activation of dilp8 on final FA if it is only involved
in an autonomous error correction in normal physiological conditions. In this case, the final
FA is very sensitive to the time T ∗ that dilp8 is activated early on, so that if it is activated
just a few hours late, final FA would be much higher and closer to knockouts.

but with target size a
(i)
∞ chosen from a Gaussian distribution with mean Ā∞ and standard

deviation σ∞:

P (a(i)
∞ ) ∝ exp

{
−(a

(i)
∞ − Ā∞)2

2σ2
∞

}
. (A.17)

In this case, the probability of an organ with size A(t) at time t is given by a convolution:

P (A(t)) =

∫
P (A(t)|a∞)P (a∞) da∞ (A.18)

P (A(t)|a∞) is the conditional probability, a delta function

P (A(t)|a∞) = δ(A(t)− a(t, a∞)), (A.19)

where a(t, a∞) is the solution to ȧ = kα(a∞ − a). In other words, each a∞ chosen from the

distribution P (a∞) will lead to a deterministic logistic growth since the assumption is that

there is no noise in the growth rate. But we will have a distribution for the organ sizes given

by Eq. A.18 leading to an FA at maturation. The FA at maturation will be a function of

σ∞.

In the case of fluctuations in growth rate, we saw that noise decayed to zero as the organs
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approach the target size. This property of the noisy dynamics results in a dependence of FA

on the timing of maturation: the more maturation is delayed, the less FA we have.

In this case however, unlike noise in growth rate, noise does not decay to zero as the

organs approach their final size. Instead, it approaches a fixed value determined by σ∞.

Therefore, the final FA is almost entirely determined by σ∞.

If the Coordination signal can lower σ∞, it will decrease the final FA and knocking it

out will increase σ∞ leading to higher FA. It is hard to say anything more about say time

dependent expression of the signal as in the GAL80ts experiments without extra assumptions

about the mechanism by which σ∞ is regulated by the signal. It would be interesting for

future studies to explore, say, temporal noise in target size, i.e. the organs start with some

error in their target size that is lowered as they approach this target size.
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APPENDIX B

Further Discussion of Statistics of Growing

Tissues

B.1 Introduction

In this Appendix, we present several derivations and calculations that we skipped in Chapter

4 and some theoretical background regarding the quantities of interest. First, we derive our

expression for the stress tensor (Eq. 4.1) from the general nonlinear theory of morphoelastic-

ity [59]. Next, we show a linearization of the growth dynamics in Eq. 4.3 leading to Eq. 4.4

in Chapter 4. Then, we discuss our choice of time derivative and some subtleties associated

with material time derivatives of tensors. In the same section, we also discuss the equivalence

of our model with the fluidization picture proposed by Ranft et al. [6]. After that, we show

the full derivation of the spatial density-density correlation function (Eq. 4.7) and derive an

expression for the time-dependent density-density correlation function. We then consider

the effect of including gradients of the stress tensor in the growth dynamics and verify our

claim in Chapter 4 that this is not qualitatively different from the simple stress feedback we

presented there. Next, we show the extension of our model for isotropic growth to higher

dimensions. Then we move on to anisotropic growth and provide a more detailed derivation

of the anisotropic growth dynamics and soft modes (Eqs. 4.14–4.16), which we will then use

in our calculation of clone statistics. In the final section of this SI, we return to the special

case of no net growth, γ0 = 0, recovering several results from [6].

B.2 Derivation of Cauchy Stress from Nonlinear Mor-

phoelasticity

In this section, we show how the expression for the Cauchy stress tensor given in Eq. 4.1 of

Chapter 4 (and valid in the limit of small deviations from uniform growth) can be obtained
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by linearizing the general, nonlinear theory of morphoelasticity. We quote here without jus-

tification a number of well-established results in morphoelasticity; for derivations and a more

in-depth explanation, the interested reader is referred to [59]. Following the morphoelasticity

literature, we call the fully nonlinear Cauchy stress tensor Tij, reserving σij for the linearized

version used in Chapter 4.

The theory of morphoelasticity is an extension of finite strain theory, applied when de-

formations can no longer be considered infinitesimal. Morphoelasticity deals with arbitrary

deformations due to growth. The deformation gradient Fij = ∂ri/∂Rj is defined which maps

the Eulerian to Lagrangian coordinates. The underlying assumption of morphoelasticity [63]

is that we can decompose the deformation gradient into a growth part G followed by an

elastic deformation denoted by A, F = AG. Then, the Cauchy stress tensor is taken to be

related in the usual manner to the elastic part of the deformation:

T = J−1A
∂W

∂A
= 2J−1A

∂W

∂ATA
AT

where J = det(A) and W is the elastic energy density per unit volume of the so-called virtual

configuration, which we can imagine as the state of the material after growth but before any

elastic deformations. For an isotropic, neo-Hookean material,

W =
1

2
Aijkl εij εkl =

1

2
(λ ε2ll + 2µ ε2ij),

where Aijkl = λδijδkl + µ(δikδjl + δilδjk) is the elasticity tensor for an isotropic body, ε =

(ATA − 1)/2 is the morphoelastic strain tensor, and summation over repeated indices is

implied. It is helpful to express A in terms of F and G. Therefore we define a new strain

tensor

ε′ = GT ε G = (FTF−GTG)/2.

Then with the new elastic tensor

A′ijkl = λ(GTG)−1
ij (GTG)−1

kl + µ
(
(GTG)−1

ik (GTG)−1
jl + (GTG)−1

il (GTG)−1
jk

)
,

the energy density W = A′ijkl ε′ij ε′kl/2.

Now we linearize for small G̃ij/Ḡ (and wij/Ḡ because deformations are of the same order

as growth fluctuations) to get the results in the limit we are interested in. First, we note

that A = 1 + O(G̃/Ḡ) because uniform growth does not cause any deformations. Then

ε = O(G̃/Ḡ) and we can approximate

T ≈ 2 ∂W/∂(ATA) = ∂W/∂ε. (B.1)
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To linear order in wij/Ḡ and G̃ij/Ḡ, (FTF)ij = ∂ir . ∂jr ≈ Ḡ2δij + 2Ḡ wij and (GTG)ij ≈
Ḡ2δij + 2Ḡ G̃ij respectively. Therefore, we can explicitly write out ε′ij:

ε′ij ≈ Ḡ2εij ≈ Ḡ(wij − G̃ij),

and so εij ≈ (wij − G̃ij)/Ḡ. This allows us to express W and thus T in terms of wij and G̃ij.

The elastic energy density to linear order in wij/Ḡ and G̃ij/Ḡ is

W ≈ 1

2Ḡ2

[
λ(wll − G̃ll)

2 + 2µ(wij − G̃ij)
2
]
.

Using Eq. B.1, the linearized Cauchy stress tensor is

Tij ≈ σij =
1

Ḡ

[
λ(wll − G̃ll)δij + 2µ(wij − G̃ij)

]
, (B.2)

which is Eq. 4.1 in Chapter 4.

As a side note, the target metric formalism, an equivalent framework to morphoelasticity,

also leads to the same result [64]. In fact, the new strain tensor ε′ that we defined is the

strain tensor used in that formalism. In target metric formalism, a target metric ḡij is defined

denoting the grown, stress free configuration, which often cannot be embedded in real space.

ḡij = (GTG)ij in morphoelasticity formalism. The metric defining the final configuration

(denoted by gij) is indeed (FTF)ij, and the strain tensor is ε′ij = (gij − ḡij)/2. We found it

easier to work with ε′ij than with εij because we had explicit expressions for gij and ḡij to

linear order.

B.3 Linearized Growth Dynamics

In this section, we show how to get to the linearized growth dynamics equation (Eq. 4.4 in

Chapter 4) starting from the tensorial dynamics in Eq. 4.3.

Γ in Eq. 4.3 could be a 4th rank tensor in the most general case, but here we show that

it simplifies to a 2nd rank tensor in the limit of small fluctuations. In particular we write:

Γijkl = γ0δijδkl +Kijkl(σ) + ξijkl

where Kijkl(σ) is first order in the stress tensor and ξijkl is the noise. Then, knowing ∂tḠ =

γ0Ḡ we find from ∂tG = ΓG

∂tG̃ij = γ0G̃ij +KijklGkl + ξijklGkl
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or

∂t

[
G̃ij

Ḡ

]
= (Kijkl + ξijkl)

(
δkl +

G̃kl

Ḡ

)

Since Kijkl is first order in the stress tensor and thus O(G̃ij/Ḡ), we can ignore KijklG̃kl/Ḡ.

Thus, to lowest order in G̃kl/Ḡ, the most general form of feedback allowed by symmetries of

the system is Kijklδkl = Kijll ≈ c σll δij/2 + c(d) σ
(d)
ij , where σ

(d)
ij denotes the traceless part of

the stress tensor and the superscript (d) stands for deviatoric. The noise term is evaluated

in the weak noise limit, meaning that we can write Gkl ≈ Ḡδkl and ξijklGkl/Ḡ ≈ ξijklδkl = ξij

where ξij is now a 2nd rank tensorial noise. Putting all of this together we arrive at the

following growth equation, Eq. 4.4 in Chapter 4:

∂t

[
G̃ij

Ḡ

]
= c σll

δij
2

+ c(d)σ
(d)
ij + ξij. (B.3)

B.4 On the Choice of Time Derivative and Connection

to Ranft et al. [6]

In this section and this section only, we redefine ∂t to be the time derivative at fixed Eulerian,

not Lagrangian, coordinates. Therefore, the time derivative at fixed Lagrangian coordinates

used in every other section becomes ∂t + v.∇r ≡ d/dt, where v is the velocity of dilation

(i.e. flow velocity).

In specifying the dynamics of the tensor G in Chapter 4, we suggested that it should

have the form dG/dt = ΓG (compare Eq. 4.3; here, as just explained, we have written

the time derivative at fixed Lagrangian coordinates as d/dt). It has been argued, however

(e.g. ref. [6]), that a better choice would be DG/Dt = ΓG, where D/Dt is the convected

corotational time derivative defined, for any tensor Aij, as (DAij/Dt) = ∂tAij + vl∂rlAij +

ωilAlj +ωjlAil, where vi is the velocity and ωij = (∂rivj−∂rjvi)/2 is the vorticity of the flow.

This derivative differs from d/dt by the terms proportional to ωij. In the most general case,

the choice between these time derivatives is a subtle one, which potentially depends both on

the biological assumptions one wants to make and on technical questions like whether Gij

is defined to include rigid rotations. (See, e.g., ref. [59] for more on the question of rigid

rotations and the growth tensor.) To leading order in small deviations from uniform growth

(and thus in small displacements), however, it turns out we can sidestep this issue entirely:

the two time derivatives agree to this order, as we now demonstrate.

First, notice that any time derivative of G contains a derivative of Ḡ and a derivative of

G̃. The former is the same for all of the possible time derivatives, because Ḡ has no space
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dependence and the parts proportional to ωij must vanish because of its antisymmetry. For

the part proportional to G̃, to leading order we can drop any terms where G̃ is multiplied

by something small. Now the velocity field is vl = γ0rl + O(wl). Thus, noting that wl is

first order small and that γ0rl is an irrotational flow, we conclude that ωij is first order small

and so can be dropped when it multiplies G̃. We are then left with the bare time derivative

and a convection term proportional to γ0 (i.e. ∂t + γ0rl∂rl), which are the same for the two

proposed choices d/dt and D/Dt.

Now, we show that, in the limit of small growth non-uniformities, our formalism is

equivalent to that of Ranft et al., who show fluidization of growing tissues. In particular, we

derive Eqs. 12 and 13 in their paper. Working in Eulerian coordinates, they show in Eq. 12

that in a growing tissue, the trace of the stress tensor follows

d

dt
σll = 2χ[vll − κ(ρ)], (B.4)

where d/dt = ∂t + v.∇r is the convected time derivative, χ = λ + µ is the bulk modulus in

two dimensions, κ the growth rate, and vij is the rate of strain tensor, defined with respect

to the Eulerian coordinates. This means that in contrast to our spatial derivatives, theirs is

taken with respect to ri. In Eq. 13 of their paper, they show that the traceless part of the

stress tensor relaxes, which they use to conclude that the tissue acts viscoelastic:(
1 + τa

D

Dt

)
σ

(d)
ij = 2τaµ v

(d)
ij , (B.5)

where τa is the relaxation time.

First, we simplify their equation for the trace, Eq. B.4, in the limit of small growth non-

uniformities. They have shown in their Eq. 11 that near the isotropic homeostatic state, the

trace of stress relaxes in a similar fashion to the traceless part, with relaxation time τ . Here,

we show that we only really need mostly uniform growth with small deviations to see the

relaxation.

Looking at Eq. B.4, we can see that if ρ is uniform, σll = 0. We use this fact to expand

both vll and κ for small non-uniformities (i.e. ρ = ρ0 +δρ and δρ� ρ0) keeping in mind that

at ρ = ρ0, vll = κ(ρ0) = κ̄. We write κ = κ̄+δκ and vi = v̄i+δvi with v̄i = γ0ri and κ̄ = 2γ0.

From vi we find vij = γ0δij + δvij. We also write δκ in terms of δρ as δκ ≈ τ−1δρ/ρ0 just as

Ranft et al. did in the homeostatic case. We then use σll = −2χδρ/ρ0 from Eq. 6 in their

paper to put all of this together and arrive at the following equation that shows relaxation
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of the trace of stress for almost uniform growth in a similar manner to the traceless part:(
1 + τ

d

dt

)
σll = 2τχδvll. (B.6)

Now, we bring our attention to our formalism and show that we get the same relaxations

as Eqs. B.5 and B.6. Firstly, we ignore the noise in the growth dynamics and assume the

density fluctuations are given as an initial condition. Starting from Eq. B.2, we can take the

time derivative to get:

d

dt
σij =

[
λ

(
d

dt

[wll
Ḡ

]
− d

dt

[
G̃ll

Ḡ

])
δij + 2µ

(
d

dt

[wij
Ḡ

]
− d

dt

[
G̃ij

Ḡ

])]
.

(d/dt)[wij/Ḡ] in our framework is actually δvij. The factor of 1/Ḡ comes from the fact that

δvij is defined in the Eulerian coordinates and ∂ri ≈ ∂Ri/Ḡ. Replacing (d/dt)[G̃/Ḡ] with Eq.

B.3 and dropping the noise term, we get the following equations for the trace and traceless

parts of the stress tensor: (
1 +

1

2χc

d

dt

)
σll =

1

c
δvll(

1 +
1

2µ c(d)

d

dt

)
σ

(d)
ij =

1

c(d)
δv

(d)
ij

The first equation is the same as Eq. B.6 if we define τ = 1/(2χc). Setting τa = 1/(2µc(d)),

the second equation is also the same as Eq. B.5 if we replace D/Dt with d/dt (which we

may do to leading order in growth non-uniformities, as explained at the beginning of this

section), and notice that v
(d)
ij = δv

(d)
ij , easy to see from vij = γ0δij + δvij.

B.5 Isotropic Density-density Correlations

In Chapter 4 we claimed that the spatial density-density correlation shows a power law

behavior (Eq. 4.7) while the time correlations decay exponentially. Here, we show the full

calculations and express the correlation functions including the prefactors, which we omitted

in Chapter 4. We will only focus on the isotropic case as the dynamics of density fluctuations

is the same in isotropic and anisotropic growth, and effectively we just need to change

k → k + k(d) to go from isotropic to anisotropic, as can be seen by comparing Eqs. 4.6 and

4.14.

Starting from Eq. 4.6, we first do the calculations in fixed Lagrangian coordinates to

bypass the complexities associated with large convected terms due to the uniform tissue
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dilation. ξ is naturally defined in the Eulerian coordinates, but in the weak noise limit,

we can easily find the noise correlators in the Lagrangian coordinates. First, let us näıvely

take the noise to be delta correlated in both time and space, so that in Eulerian coordinates

〈ξ(r, t)ξ(r′, t′)〉 = Dδ(r− r′)δ(t − t′). In Lagrangian coordinates, we approximate r ≈ ḠR

and write 〈ξ(R, t)ξ(R′, t′)〉 = Dδ(R−R′)δ(t − t′)/Ḡ2, where D is the noise strength. We

now solve for δρ(R, t) from Eq. 6:

δρ(R, t) = ρ0
µ

λ+ 2µ
e−kt

∫ t

0

ξ(R, t1)ekt1dt1.

Here, the initial condition is omitted because it will not matter at long time, where we expect

to reach a steady state. Then, for the correlation function, we have:

1

ρ2
0

〈δρ(R, t)δρ(R′, t)〉 = e−2kt µ2

(λ+ 2µ)2

∫ t

0

dt1 dt2 〈ξ(R, t1)ξ(R′, t2)〉 ek(t1+t2)

=
µ2

(λ+ 2µ)2
De−2kt

∫ t

0

dt1δ(R−R′)e−2γ0t1e2kt1 (B.7)

From now on use D′ = µ2D/(λ + 2µ)2. Because we want to find the correlation at fixed

Eulerian coordinates at time t, we can write R = e−γ0tr:

1

ρ2
0

〈δρ(r, t)δρ(r′, t)〉 =
D′

2(γ0 − k)

(
e2(γ0−k)t − 1

)
δ(r− r′).

The long time behavior of this expression is pathological: for k < γ0, the correlation function

blows up as t → ∞ while for k > γ0 it tends to a delta function. The reason for this

pathological behavior is that the dynamics actually never reaches steady state for fixed

Eulerian coordinates due to the fact that early fluctuations that are delta correlated in space

never have time to reach any finite distance in Eulerian coordinates even if t→∞.

Therefore, we need to consider a small correlation length for the noise to regularize

the growth as we did in Chapter 4. In Lagrangian coordinates, the noise correlator now

becomes 〈ξ(R, t)ξ(R′, t′)〉 = De−
Ḡ(t)2(R−R′)2

a2 δ(t − t′)/πa2, where a is a small length scale for

correlations. Eq. B.7 now yields

1

ρ2
0

〈δρ(R, t)δρ(R′, t)〉 =
D′

πa2
e−2kt

∫ t

0

dt1e
− (R−R′)2

a2 e2γ0t1
e2kt1 ,

or in Eulerian coordinates

1

ρ2
0

〈δρ(r, t)δρ(r′, t)〉 =
D′

πa2

∫ t

0

dt1e
− (r−r′)2

a2 e−2γ0(t−t1)

e−2k(t−t1).
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With the change of variable u = e−2γ0(t−t1) and setting r′ = 0 without loss of generality, we

can see that for t→∞ (i.e. in steady state), the integral simplifies to
∫ 1

0
duuk/γ0−1e−r

2u/a2
,

which is in fact the integral representation of the lower incomplete gamma function defined

as γ(s, x) =
∫ x

0
us−1e−udu. The full expression for the density-density correlation function is

1

ρ2
0

〈δρ(r, t)δρ(0, t)〉t→∞ =
D′

(2γ0)πa2
γ
(
k/γ0, (r/a)2

) (r
a

)−2k
γ0 r�a−−→ D′

(2γ0)πa2
Γ

(
k

γ0

) (r
a

)−2k
γ0 ,

(B.8)

where we have used the fact that for r � a, γ (k/γ0, (r/a)2) tends to Γ (k/γ0). Compare this

to Eq. 4.7 in Chapter 4.

We can also estimate the prefactor. Firstly, we expect the tissue to behave similarly under

bulk and shear strains so that µ2/(λ+ 2µ)2 is of order 1 and D′ ∼ D. For the purposes of a

first estimate, we assume that cells divide independently according to a Poisson process and

that they instantaneously double their size upon division. Each division then contributes a

fixed area of order πa2/2 to the tissue. It is a standard result (e.g. [162]) that this discretized,

Poissonian growth process can be approximated by a Langevin equation with noise strength

D = (2γ0)πa2/8. We emphasize that this is only a very rough estimate for the prefactor

because in reality, divisions are not perfectly random, and cells add mass throughout the

cell cycle rather than only at the moment of division. With this in mind, our estimate for

the prefactor is
D′

(2γ0)πa2
Γ

(
k

γ0

)
∼ 1

8
Γ (k/γ0) .

For k ∼ γ0, Γ (k/γ0) ∼ 1, while for k � γ0 or k � γ0, Γ (k/γ0) → ∞. We note, however,

that for the case of k � γ0 (strong feedback), the expression of Eq. B.8 as a whole tends to

zero, which is expected from a strong feedback.

Finally, we consider density-density time correlations, i.e., correlation between a point

initially at R and itself at a later time τ . This means that in Eulerian coordinates, we are

looking at two different points, i.e. (r, t) and (r′, t + τ), such that both points originate

from (R, 0). We show that this correlator decays exponentially in time as expected from the

negative feedback. Taking t′ = t+ τ , we can see that

1

ρ2
0

〈δρ(R, t)δρ(R, t+ τ)〉 =
D′

πa2
e−kτ

∫ t

0

dt1e
2k(t1−t) =

D′

(2k)πa2
e−kτ

(
1− e−2kt

)
.

Again, we are interested in long time behavior (t � k−1), which shows exponential decay,

〈δρ(R, t)δρ(R, t+ τ)〉 ∼ e−kτ ; using the same estimate for D′ as in the previous paragraph,

we find that the prefactor is roughly γ0/8k.
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B.6 Laplacian Feedback

In Chapter 4 and above, we only considered mechanical feedbacks proportional to stress.

However, in principle, spatial derivatives of stress could also feed back on the growth. Con-

tinuing to work to linear order in the stress, the lowest order term allowed by symmetry in

a gradient expansion is the Laplacian of the stress. We show here that this term has the

effect of regularizing the model’s short distance behavior so that the correlation functions are

well-behaved in the limit that the noise is delta-function correlated in space. In particular,

we explicitly calculate the density-density correlation functions for isotropic growth and find

that they exhibit the same power law behavior at large distances as we found in Chapter 4

without the Laplacian feedback but with noise that is colored in space. Because cells most

naturally measure local stress differences in the current state of the tissue, not with respect

to the initial state, the Laplacian should be taken with respect to the Eulerian coordinates.

Eq. 4.6 must then be modified to read

∂tδρ(R, t) = −k1δρ+ k2∇2
rδρ+ ρ0

µ

λ+ 2µ
ξ(R, t), (B.9)

where k2 is the strength of Laplacian feedback, and the noise is chosen to be delta correlated

in time and space, i.e. 〈ξ(r, t)ξ(r′, t′)〉 = D δ(t − t′) δ(r− r′) or in Lagrangian coordinates

〈ξ(R, t)ξ(R′, t′)〉 = D δ(t − t′) δ(R−R′)/Ḡ2, as before. Note that k2 > 0 otherwise the

dynamics would not be stable. To leading order in δρ, we can approximate∇2
rδρ ≈ ∇2

Rδρ/Ḡ
2

because δρ is of the same order as w/Ḡ.

To solve Eq. B.9 we go to Fourier space, using the convention

f(Q, t) =

∫
dR e−iQ.Rf(R, t) ,

and define a particular solution

δρ(p)(Q, t) = e−k1t e
k2Q

2

2γ0Ḡ(t)2 e
− k2Q

2

2γ0 .

Then, it is easy to see that the full solution of Eq. B.9 in Fourier space is

δρ(Q, t) = ρ0
µ

λ+ 2µ
δρ(p)(Q, t)

∫ t

0

ξ(Q, t1)

δρ(p)(Q, t1)
dt1

with 〈ξ(Q, t)ξ(Q′, t′)〉 = (2π)2D δ(t−t′) δ(Q + Q′)/Ḡ2. We can then find 〈δρ(Q, t)δρ(Q′, t)〉.
We are interested to find 〈δρ(r, t)δρ(0, t)〉t→∞, but we need to be careful about when to take
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the limit t→∞. We proceed as follows: First, we take the inverse Fourier transform to find

〈δρ(R, t)δρ(R′, t)〉, then make the change R = r/Ḡ(t) and R′ = r′/Ḡ(t) to arrive at

1

ρ2
0

〈δρ(r, t)δρ(r′, t)〉 =
D′

(2π)2

∫ t

0

dt1
Ḡ(t1)2

e−2k1(t−t1)

∫
dQ e

iQ.(r−r′)
Ḡ(t) e

k2
γ0

(
1

Ḡ(t)2
− 1
Ḡ(t1)2

)
Q2

.

Here, it is easier to take the Q integral first. Also setting r′ = 0 we find

1

ρ2
0

〈δρ(r, t)δρ(0, t)〉 =
D′ γ0

4πk2

∫ t

0

dt1 e
−2k1(t−t1) e

− r2

4k2
γ0

(
Ḡ(t)2

Ḡ(t1)2
−1

)

Ḡ(t1)2
(

1
Ḡ(t1)2 − 1

Ḡ(t)2

) .
With the change of variable t2 = t − t1, we eliminate any explicit dependence on t in the

integrand, allowing us to easily take the limit t → ∞ in the limits of integration. The

resulting integral is

1

ρ2
0

〈δρ(r, t)δρ(0, t)〉t→∞ =
D′ γ0

4πk2

∫ ∞
0

dt2 e
−2k1t2

e2γ0t2

e2γ0t2 − 1
e
− r2

4k2
γ0 (e2γ0t2−1) .

With a final change of variable y = 1/(e2γ0t2 − 1), we arrive at

1

ρ2
0

〈δρ(r, t)δρ(0, t)〉t→∞ =
D′

8πk2

∫ ∞
0

dy y
k1
γ0
−1

(1 + y)
− k1
γ0 e

− γ0 r2

4k2
y
,

which is the integral representation of the so-called confluent hypergeometric function of the

second kind defined as U(a, b, x) = 1/Γ(a)
∫∞

0
dy ya−1(1 + y)b−a−1 e−xy with the asymptotic

behavior limx→∞ U(a, b, x) ∼ x−a[1 +O(1/x)] [171]. Defining a2 := 4k2/γ0, we get

1

ρ2
0

〈δρ(r, t)δρ(0, t)〉t→∞ =
D′

(2γ0)πa2
Γ

(
k1

γ0

)
U

(
k1

γ0

, 1,
(r
a

)2
)
. (B.10)

For r � a, using the asymptotic form of U(a, b, x), we arrive at the same power law as in

Eq. B.8:
1

ρ2
0

〈δρ(r, t)δρ(0, t)〉t→∞
r�a

=
D′

(2γ0)πa2
Γ

(
k1

γ0

) (r
a

)−2k1
γ0 .

As we can see, in this case, the length scale a =
√

4k2/γ0 was determined by the Laplacian

feedback strength instead of by a correlation length for the noise. This length scale could

span several cells depending on how strong the feedback is relative to the average growth

rate γ0. The power law then is regulated purely by k1/γ0 as before. In other words, the role

of the Laplacian feedback is to provide a length scale for the early fluctuations to be carried
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over the tissue as it dilates. We note that the Laplacian feedback with delta correlated

noise is only valid for separations greater than cell size: for large distances, we can take the

limit of cell size → 0 and use a delta correlated noise, with Laplacian feedback providing

a correlation length
√

4k2/γ0 for the dynamics; however, for distances close to a cell size,

we cannot assume a delta correlated noise anymore and need to have the colored noise as

before to regularize the correlations. This is evident by noticing that U(a, b, x) blows up

like log 1/x as x→ 0 meaning that without a cut off density-density correlations diverge for

r → 0 which is nonphysical.

Fig. B.1 compares the density-density correlation function with Laplacian feedback and

without (k2 = 0). As can be seen, both follow a power law for large r/a, but the Laplacian

feedback has a slower convergence to the power law. This plot assumes that both cases

have the same length scale a, while the source of this length scale is very different: for the

Laplacian feedback, it is given by the strength of the feedback, whereas for k2 = 0 it comes

from having a colored noise in space.

B.7 Generalization of Isotropic Growth to d dimen-

sions

It is fairly straightforward to generalize the results for density-density correlation to d di-

mensions. In this section, we will introduce quantities with subscript d (e.g. kd), which are

the d dimensional version of quantities that we have defined before; subscript d should not be

confused with superscript (d) that stands for deviatoric and is reserved for traceless tensors

or scalars associated with such tensors (e.g. k(d)).

Here, we show that the power-law behavior derived in Chapter 4 (Eq. 4.7) and in the

Laplacian Feedback section above still hold in arbitrary d dimensions. Writing G̃ij = G̃ δij,

we find from Eq. 4.2 that

wll =
dλ+ 2µ

λ+ 2µ
G̃.

Then from Eq. 4.5, we have

δρ = ρ0

(
2(d− 1)µ

λ+ 2µ

)
G̃

Ḡ
.

Eq. 4.4 in d dimensions looks like

∂t

[
G̃ij

Ḡ

]
= c σll

δij
d

+ c(d)σ
(d)
ij + ξij(R, t),
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and so for isotropic growth in d dimensions we get

d ∂t

[
G̃

Ḡ

]
= c σll + ξ(R, t),

where ξ(R, t) = ξll(R, t). Therefore, the dynamics of δρ will be

∂tδρ = −kdδρ+ ρ0
2(d− 1)µ

d(λ+ 2µ)
ξ(R, t), (B.11)

where kd = 2(d − 1)µ(dλ + 2µ)c/(dλ + 2dµ). For d = 2, we recover Eq. 4.6. To solve Eq.

B.11 and find the density-density correlator, we first need to rewrite the noise correlator in

d dimension (and remember that we are in the case of no Laplacian feedback and so need

to use a colored noise): 〈ξ(R, t)ξ(R′, t′)〉 = Dd e
− Ḡ(t)2(R−R′)2

a2 δ(t − t′)/(πa2)d/2. After some

straightforward algebra (see Section 4.4.1), we find:

1

ρ2
0

〈δρ(r, t)δρ(0, t)〉t→∞ =
D′d

(2γ0)(πa2)d/2
γ
(
kd/γ0, (r/a)2

) (r
a

)−2kd
γ0

r�a−−→ D′d
(2γ0)(πa2)d/2

Γ

(
kd
γ0

) (r
a

)−2kd
γ0 , (B.12)

with D′d = [2(d−1)µ/(dλ+2dµ)]2Dd. Comparing this with Eq. B.8, we see that the density-

density correlator shows the same power-law behavior in any dimensions with d-dependent

exponent and prefactors. To estimate the prefactor in this case, we follow the same argument

presented in Isotropic Density-density Correlation section, namely, we estimate the noise to

be due to random Poisson divisions each contributing the same d dimensional volume ∆Vd to

the tissue. In particular, Dd = ∆Vd(dγ0)/d2. dγ0 comes from the fact that in a Poisson-like

growth, noise is proportional square root of volumetric growth rate, which is precisely dγ0.

The factor of 1/d2 comes from change of variable from volumetric growth to density. ∆Vd

on the other hand is assumed to be the volume of a d dimensional sphere with radius a/
√

2,

or Ωda
d/(2d/2d) where Ωd is the solid angle in d dimensions. Therefore, our estimate for Dd

is Dd = γ0Ωd a
d/(d2 2d/2).

Now, we show that the same power law of Eq. B.12 is achieved with Laplacian feedback

and delta correlated noise in d dimensions. The differential equation for δρ is

∂tδρ = −kd,1δρ+ kd,2∇2
rδρ+ ρ0

2(d− 1)µ

d(λ+ 2µ)
ξ(R, t), (B.13)

and the noise correlator is 〈ξ(R, t)ξ(R′, t′)〉 = D δ(t− t′) δ(R−R′)/Ḡd. We follow the exact
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same steps we did in Laplacian Feedback section to solve Eq. B.13. The only difference is

that the Q integrals are now d dimensional. After some algebra, we get

1

ρ2
0

〈δρ(r, t)δρ(0, t)〉 =
D′d π

(2π)d

(
γ0

kd,2

)d/2 ∫ t

0

dt1 e
−2kd,1(t−t1) e

− r2

4kd,2
γ0

(
Ḡ(t)2

Ḡ(t1)2
−1

)

Ḡ(t1)d
(

1
Ḡ(t1)2 − 1

Ḡ(t)2

)d/2 .
Now we eliminate the explicit t dependence with the change of variable t2 = t− t1 allowing

us to take t → ∞, and do another change of variable y = 1/(e2γ0t2 − 1) just like we did

before to find

1

ρ2
0

〈δρ(r, t)δρ(0, t)〉t→∞ =
D′d π

(2π)d(2γ0)

(
γ0

kd,2

)d/2 ∫ ∞
0

dy y
kd,1
γ0
−1

(1 + y)
d
2
−
kd,1
γ0
−1

e
− γ0 r2

4kd,2
y
.

In terms of U(a, b, x), we have

1

ρ2
0

〈δρ(r, t)δρ(0, t)〉t→∞ =
D′d

(2γ0)πd−1ad
Γ

(
kd,1
γ0

)
U

(
kd,1
γ0

,
d

2
,
(r
a

)2
)

r�a−−→ D′d
(2γ0)πd−1ad

Γ

(
kd,1
γ0

) (r
a

)−2kd,1
γ0 , (B.14)

which shows the same power law as Eq. B.10. Here a =
√

4kd,2/γ0. This concludes the

extension of isotropic growth to d dimensions.

B.8 Anisotropic Growth Equations

Going back to d = 2, here we discuss the decomposition we used for G̃ij in Fourier space

(Eq. 4.10), and the derivation of the mode structure and growth equations when anisotropic

growth is allowed (Eqs. 4.14–4.16).

We first find w in terms of G̃ij from Eq. 2 in Fourier space:

(λ+ 2µ)(Q.w)Q− µ(Q×Q×w) = −i[λ G̃ll Q + 2µ Q.G̃], (B.15)

where [Q.G̃]i = QjG̃ij. To solve this equation, we proposed the following decomposition,

Eq. 4.10:

G̃ij = G̃ll
δij
2

+ (G̃‖δik − G̃⊥εik)
[

2QkQj

Q2
− δkj

]
.

Here, we have decomposed G̃ij into the trace and nematic components parallel and perpen-
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dicular to Q. G̃‖ and G̃⊥ are Q-dependent, and the traceless symmetric tensor made with

them as its basis is related to the traceless part of G̃ij by a rotation in Q-space, i.e.[
G̃‖ G̃⊥

G̃⊥ −G̃‖

]
=

[
cos β − sin β

sin β cos β

][
1
2
(G̃11 − G̃22) G̃12

G̃12
1
2
(G̃22 − G̃11)

][
cos β sin β

− sin β cos β

]
, (B.16)

where 2β = sin−1(−2Q1Q2/Q
2). This rotation takes any tensor decomposed in this specific

way to a basis without explicit Q-dependence, which will prove useful later on when deriving

the growth dynamics.

The lefthand side of Eq. B.15 is already decomposed into a longitudinal term (Q.w)Q

and a transverse term Q×Q×w. Therefore, with the aforementioned decomposition of

G̃ij we can easily find w‖ and w⊥ in terms of the growth tensor as we did in Eq. 4.11.

Next, we can find the stress tensor in terms of the 3 components of G̃ij and then write

down the dynamics for these components starting from Eq. 4.4. One can see easily that the

strain tensor in terms of the growth factor is

wij =
1

λ+ 2µ

(
(λ+ µ)G̃ll + 2µ G̃‖

) QiQj

Q2
− G̃⊥εik

[
2QkQj

Q2
− δkj

]
.

It’s immediately clear that the transverse part of wij is exactly the same as the transverse

part of G̃ij, which means that the stress tensor σij = [λ(wll − G̃ll)δij + 2µ(wij − G̃ij)]/Ḡ is

not going to have a transverse component. After some algebra we get

σij =
2µ(λ+ µ)

(λ+ 2µ)Ḡ
(G̃ll − 2G̃‖)

[
QiQj

Q2
− δij

]
.

Noticing that

δρ =
ρ0

Ḡ
(G̃ll − wll) = ρ0

µ

λ+ 2µ

(
G̃ll − 2G̃‖

Ḡ

)
,

we can now rewrite the stress tensor above in terms of δρ to arrive at the expression given

in Eq. 4.12.

To solve the growth dynamics equation (Eq. 4.4), we first go to Fourier space and find

ODEs for G̃ll, G̃‖ and G̃⊥. To do so, it is convenient to rotate the tensors in Q-space with

angle β to go to the basis where there is no explicit Q-dependence as we showed above in Eq.

B.16. Note that the stress can be written as σij = σll δij/2+(σ‖δik−σ⊥εik)(2QkQj/Q
2−δkj)

where σ‖ = µ(λ+µ)(G̃ll−2G̃‖)/[(λ+2µ)Ḡ] and σ⊥ = 0 as stress has no transverse component.
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Similarly, we write the noise in the same basis as

ξij = ξll
δij
2

+ (ξ‖δik − ξ⊥εik)
[

2QkQj

Q2
− δkj

]
. (B.17)

To find the correlators of ξll, ξ‖ and ξ⊥, we first need to find the correlators in real space.

Note that since Eq. 4.4 is a first order perturbation about an isotropic growth, we require

the noise to be rotationally invariant. Therefore, if we write the noise in real space as

ξij = ξll
δij
2

+ ξ1

[
1 0

0 −1

]
+ ξ2

[
0 1

1 0

]
,

where ξll, ξ1 and ξ2 are independent random variables, then ξ1 and ξ2 need to have the same

variance (which could in general be different from the variance of ξll). In other words, we

have the following correlators for the noise components:

〈ξll(r, t)ξnn(r′, t′)〉 = D1
e−

(r−r′)2

a2

πa2
δ(t− t′),

〈ξ1(r, t)ξ1(r′, t′)〉 = D2
e−

(r−r′)2

a2

πa2
δ(t− t′),

〈ξ2(r, t)ξ2(r′, t′)〉 = D2
e−

(r−r′)2

a2

πa2
δ(t− t′),

and all cross correlations are zero. Here, we assumed for simplicity that a is the same for

ξ1,2 and ξll, but the correlation lengths for these 3 components could be different in general.

In Q-space, the correlators will involve δ(Q + Q′), therefore different Q’s don’t mix. This

along with rotational invariance leads to statistical independence of ξll, ξ‖ and ξ⊥, and we

get the following correlators:

〈ξll(Q, t)ξnn(Q′, t′)〉 = (2π)2 D1
e−(aQ

2Ḡ
)2

Ḡ2
δ(t− t′) δ(Q + Q′),

〈ξ‖(Q, t)ξ‖(Q′, t′)〉 = (2π)2 D2
e−(aQ

2Ḡ
)2

Ḡ2
δ(t− t′) δ(Q + Q′),

〈ξ⊥(Q, t)ξ⊥(Q′, t′)〉 = (2π)2 D2
e−(aQ

2Ḡ
)2

Ḡ2
δ(t− t′) δ(Q + Q′), (B.18)

with all the cross correlators zero. Now that we have the noise correlators for ξ‖ and ξ⊥, we
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can apply the rotation in Eq. B.16 to both sides of Eq. 4.4 and find:

∂t

(
1

Ḡ

)[ G̃ll
2

+ G̃‖ G̃⊥

G̃⊥
G̃ll
2
− G̃‖

]
= − k

2Ḡ

[
G̃ll − 2G̃‖ 0

0 G̃ll − 2G̃‖

]

+
k(d)

2Ḡ

[
G̃ll − 2G̃‖ 0

0 −G̃ll + 2G̃‖

]
+

[
ξll
2

+ ξ‖ ξ⊥

ξ⊥
ξll
2
− ξ‖

]

where k = 2µ(λ + µ)c/(λ + 2µ) and k(d) = 2µ(λ + µ)c(d)/(λ + 2µ). And, finally, by writing

G̃ll − 2G̃‖ in terms of δρ, we arrive at the differential equations describing the growth:

∂t δρ = −(k + k(d))δρ+ ρ0
µ

λ+ 2µ

(
ξll − 2ξ‖

)
,

∂t

[
G̃⊥
Ḡ

]
= ξ⊥,

∂t

[
G̃ll + 2 k

k(d) G̃‖

Ḡ

]
= ξll + 2

k

k(d)
ξ‖.

The bottom two equations describe soft modes with diffusive dynamics. We define the

amplitudes of the transverse soft mode ZT = G̃⊥/Ḡ and the longitudinal soft mode ZL =

[G̃ll + (2k/k(d))G̃‖]/Ḡ. The interpretation of these modes is given in Chapter 4. Finally, in

terms of these three amplitudes, G̃ij is given by

G̃ij = Ḡ

[
k(d)

k + k(d)

(
ZL +

k(λ+ 2µ)

k(d)µ ρ0

δρ

)
δij
2

+
k(d)

2(k + k(d))

(
ZL −

λ+ 2µ

µ ρ0

δρ

)(
2QiQj

Q2
− δij

)
−ZT εik

(
2QkQj

Q2
− δkj

)]
.

B.9 Clone Statistics

In this section, we derive the results for clone size and shape statistics given, for the general

case of anisotropic growth, in Chapter 4 Eqs. 4.18 and 4.19. First, starting from Eq. 4.8 of

Chapter 4, we derive the variance of the clone size (Eq. 4.18) and show that this variance

scales with clone size when there are growth anisotropies but not in the isotropic limit. Next,

we follow the same steps for clone shape starting from Eq. 4.9 to derive the scaling relation

in Eq. 4.19. Finally, we discuss the correlation, or lack thereof, between the areas of two

adjacent clones in our model.
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B.9.1 Clone Size

To simplify Eq. 8, note that ∇.w = wll. In the previous section, we found wll in Q-space to

be

wll =
1

λ+ 2µ

(
(λ+ µ)G̃ll + 2µ G̃‖

)
.

We rewrite this expression in terms of δρ and ZL

wll = Ḡ

[
α1
δρ

ρ0

+ α2ZL

]
,

where α1 = [(λ + µ)k − µk(d)]/[µ(k + k(d))] and α2 = k(d)/(k + k(d)). As we can see, this

quantity has no explicit Q dependence, so we can formally take the inverse Fourier transform

of the scalars wll, δρ, and ZL. Although it is not easy to interpret ZL in real space, it is

nevertheless useful for us to work in real space. By expressing wll in terms of δρ and ZL,

now in real space, we can write Var(A) in Eq. 4.8 as:

Var(A) = Ḡ4

∫
R,R′≤Rc

[
α2

1

ρ2
0

〈δρ(R, t)δρ(R′, t)〉+
2α1α2

ρ0

〈δρ(R, t)ZL(R′, t)〉

+α2
2 〈ZL(R, t)ZL(R′, t)〉

]
dR dR′.

Note that the cross correlation term is not zero because the noises of δρ and ZL are corre-

lated (see Eqs. 4.14 and 4.16). However, as we will shortly see, the long time behavior of the

integral is dominated by the ZL autocorrelation term and the other two terms are negligible

in comparison. Let us look at the three correlators one by one. For 〈δρ(R, t)δρ(R′, t)〉 we

have

1

ρ2
0

〈δρ(R, t)δρ(R′, t)〉 =

e−2(k+k(d))t µ2

(λ+ 2µ)2

∫ t

0

dt1 dt2 e
(k+k(d))(t1+t2)

[
〈ξll(R, t1)ξll(R

′, t1)〉+ 4〈ξ‖(R, t1)ξ‖(R
′, t1)〉

]
= e−2(k+k(d))t µ2

(λ+ 2µ)2

D1 + 4D2

πa2

∫ t

0

e−
(R−R′)2Ḡ(t1)

a2 e2(k+k(d))t1dt1.

Notice that here we are working in fixed Lagrangian coordinates because we are only inter-

ested in points within a circular clone of Lagrangian radius Rc independent of time. This is

in contrast to our calculation of 〈δρ(r, t)δρ(r′, t)〉 that needed to be carried out in Eulerian

coordinates. One benefit of working in Lagrangian coordinates is that we can take the noise

to be delta correlated in r (i.e. work in the a→ 0 limit) without introducing any pathological

behavior. This simplifies the calculations, so we will take noise to be white in time and space
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similar to our calculation for Laplacian feedback, i.e.

〈ξll(R, t)ξnn(R′, t′)〉 =
D1

Ḡ2
δ(t− t′) δ(R−R′),

〈ξ‖(R, t)ξ‖(R′, t′)〉 =
D2

Ḡ2
δ(t− t′) δ(R−R′),

〈ξ⊥(R, t)ξ⊥(R′, t′)〉 =
D2

Ḡ2
δ(t− t′) δ(R−R′). (B.19)

With this, we have

1

ρ2
0

〈δρ(R, t)δρ(R′, t)〉 =
µ2

(λ+ 2µ)2

D1 + 4D2

2(k + k(d) − γ0)

(
e−2γ0t − e−2(k+k(d))t

)
δ(R−R′).

Similarly, for 〈δρ(R, t)ZL(R′, t)〉 we get

1

ρ0

〈δρ(R, t)ZL(R′, t)〉 =
µ

λ+ 2µ

D1 − 4(k/k(d))D2

k + k(d) − 2γ0

(
e−2γ0t − e−(k+k(d))t

)
δ(R−R′).

Finally for 〈ZL(R, t)ZL(R′, t)〉 we find

〈ZL(R, t)ZL(R′, t)〉 =
D1 + 4(k/k(d))2D2

2γ0

(
1− e−2γ0t

)
δ(R−R′).

Before we go any further, we note that 〈ZL(R, t)ZL(R′, t)〉 does not grow linearly with time

as one would näıvely expect given the apparently diffusive dynamics of ZL. The reason is

that, as Eq. B.19 makes clear, the amplitude of the noise decays with time like 1/Ḡ2. This

behavior, in turn, arises from the fact that the noise is defined to have constant strength in

Eulerian coordinates. But a region of fixed size in Lagrangian coordinates will grow larger

and larger in Eulerian coordinates as time progresses, leading overall variation in that region

to go down. The growth hence puts a limit on how large the soft mode variances can get,

and at long times, 〈ZL(R, t)ZL(R′, t)〉 approaches a constant. (There is in fact one further

subtlety here: The noise correlators of the form 〈ξ(R, t)ξ(R′, t′)〉 have an explicit prefactor

of 1/Ḡ2 only when we take the limit a → 0 and convert Gaussian correlation functions in

space into delta functions. In fact, for finite a, the mean-squared mode displacement at a

single point R, 〈ZL(R, t)2〉, does grow linearly in time. The integral of 〈ZL(R, t)ZL(R′, t)〉
over any fixed region in R, however, still approaches a constant, just as in the limit a→ 0,

because the range of spatial correlations in R decreases exponentially in time. Similarly, the

noise correlations in Q space, Eq. B.18, always have an explicit prefactor of 1/Ḡ2, even for

finite a, so that the mean-squared value of of ZL(Q, t) remains bounded for all time.)

Now, if we compare the three correlators at long times, we see that 〈ZL(R, t)ZL(R′, t)〉
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dominates the growth as the other two correlators decay exponentially and so can be ignored

in the long time limit. In particular, with 〈A〉 = Ḡ2πR2
c , as t→∞ we can see that the ratio

Var(A)/〈A〉2 is a constant:

Var(A)

〈A〉2

∣∣∣∣
t→∞

= α2
2

D1 + 4(k/k(d))2D2

(2γ0)πR2
c

∼ 1

R2
c

,

agreeing with Eq. 18. Estimating Rc to be of order of a cell radius, the ratio will be of order

1 with the same assumptions on noise strengths as above in the Isotropic Density-density

Correlations section. As a final note, this scaling of variance with clone size is the direct

result of having the soft mode ZL and would not occur in isotropic growth. In that case, the

only term we have is 〈δρ(R, t)δρ(R′, t)〉, which does not scale with size, and the ratio will

decay to zero at long times.

B.9.2 Clone Shape

Now we move on to the expression for the amplitudes Bn of the modes specifying clone

shape, which involves a few subtleties. For one, notice that the integral involves correlators

of wk, which was found in Q space and has explicit Q dependence. Therefore, we first need

to find the correlator 〈wkw′j〉 in Fourier space, then take the inverse transform and finally

take the Θ integrals.

We first write out the components of w (Eq. 4.11) in terms of the modes as we did with

wll for clone size:

wk(Q, t) = −i Ḡ
Q2

[
(α1

δρ

ρ0

+ α2ZL)Qk − 2ZT εklQl

]
.

The correlator will look like

〈wk(Q, t)wj(Q′, t)〉 = − Ḡ2

Q2 Q′2

[(
α2

1

ρ2
0

〈δρ(Q, t)δρ(Q′, t)〉+
2α1α2

ρ0

〈δρ(Q, t)ZL(Q′, t)〉

+α2
2 〈ZL(Q, t)ZL(Q′, t)〉

)
QkQ

′
j + 4 〈ZT (Q, t)ZT (Q′, t)〉 εkl εjsQlQ

′
s

]
.

Note that δρ and ZL do not mix with ZT because their respective noises are statistically

independent. We use the correlators in Eq. B.19 for noise terms, of which we then take

the Fourier transform to go to Q-space. The only dominant terms in 〈wk(Q, t)wj(Q′, t)〉
are the soft mode autocorrelations, with the other two terms involving δρ showing the same

exponential decay in time as in the clone size calculation above. Therefore we only focus on
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the two soft mode autocorrelators:

〈ZL(Q, t)ZL(Q′, t)〉 = (2π)2D1 + 4(k/k(d))2D2

2γ0

(
1− e−2γ0t

)
δ(Q + Q′),

〈ZT (Q, t)ZT (Q′, t)〉 = (2π)2 D2

2γ0

(
1− e−2γ0t

)
δ(Q + Q′),

and

〈wk(Q, t)wj(Q′, t)〉t→∞ ≈ −(2π)2 Ḡ
2

Q4

[
α2

2

D1 + 4(k/k(d))2D2

2γ0

QkQ
′
j +

2D2

γ0

εkl εjsQlQ
′
s

]
×
(
1− e−2γ0t

)
δ(Q + Q′).

Now we need to take the inverse Fourier transform before evaluating the integral in

Eq. 4.9. We are basically taking the inverse transform of something like QkQj/Q
4:

1

(2π)4

∫
dQ dQ′

QkQ
′
j

Q4
ei(Q.R+Q′.R′)δ(Q + Q′) = − 1

(2π)4

∫
dQ

QkQj

Q4
eiQ.(R−R

′)

=
∂Rk∂Rj
(2π)4

∫
dQ

eiQ.(R−R
′)

Q4
.

The inverse transform of 1/Q4 is known from the theory of generalized functions [172] to be∫
dQ

eiQ.(R−R
′)

Q4
= −π

2

{
(1− γ + log 2)(R−R′)2 − (R−R′)2 log |R−R′|

}
,

where γ is the Euler’s constant and not to be confused with the growth rate γ0. The logR

term is allowed by dimensional analysis and turns out to be part of the solution. There is

an ambiguity in the scale l in log(R/l) but it will not affect the final result.

Taking the double derivative of the integral, we get

Ikj = ∂Rk∂Rj

∫
dQ

eiQ.(R−R
′)

Q4
= π

{
(γ−1

2
−log 2)δkj+

(Rj −R′j)(Rk −R′k)
(R−R′)2

+log |R−R′|δkj
}
.

Now, we just need to put these pieces together to find

〈wk(R, t)wj(R′, t)〉t→∞ ≈ −
Ḡ2

4πγ0

[
α2

2

D1 + 4(k/k(d))2D2

2
Ikj + 2D2 εkl εjs Ils

] (
1− e−2γ0t

)
,
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which we then plug into

〈
|Bn|2

〉
=

1

(2π)2

2π∫
0

dΘdΘ′R̂k(Θ)R̂j(Θ
′)〈wkw′j〉e−in(Θ−Θ′).

The only nonzero term in this integral is given by the log |R−R′| term in Ikj and Ils. The

integral becomes

〈
|Bn|2

〉
t→∞ ≈ −

Ḡ2

(4π)2γ0

[
α2

2

D1 + 4(k/k(d))2D2

2
+ 2D2

] (
1− e−2γ0t

)
×

2π∫
0

dΘ dΘ′(cos Θ cos Θ′ + sin Θ sin Θ′) log |R−R′|e−in(Θ−Θ′).

The final integral was evaluated to be −2nπ2/(n2 − 1) (for n > 1). With B0 = ḠRc, we can

see that in the limit of t→∞ we get

〈|Bn|2〉
B2

0

∣∣∣∣
t→∞

=

[
α2

2

D1 + 4(k/k(d))2D2

4γ0R2
c

+
D2

γ0R2
c

]
n

4(n2 − 1)
∼ 1

R2
c

n

n2 − 1
,

In agreement with Eq. 19. Again, assuming Rc is approximately of order of a cell size, the

quantity in square brackets will be of order 1. Similar to the clone size, this scaling relation is

purely a result of the soft modes. Here, in contrast to the clone size variance, the transverse

soft mode is also involved. This is because wk , which was the important variable here,

depends on both soft modes whereas in the case of clone size the important variable is wll

which depends on only the longitudinal soft mode.

B.9.3 Independence of Adjacent Clone Areas

In this subsection, we discuss the correlation between adjacent clones. We claimed in Chapter

4 at the end of Section 4.4 that the areas of adjacent clones are uncorrelated in our model.

This may sound counterintuitive, especially knowing that due to soft modes, boundaries of

clones are soft, which could lead us to expect that one clone can grow at the expense of an

adjacent clone. We show here that this in fact is not the case.

To understand the statistical independence of clone areas, it is useful first to consider the

simpler situation where we have only a delta-like instantaneous growth at the origin with

strength ν, i.e. Gij(R, 0) = (1 + ν δ(R))δij. (Here, Ḡ = 1.) From Eq. 4.2 in Chapter 4, we

can find

w(R, 0) =
2ν(λ+ µ)

λ+ 2µ

R

R2
,
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which implies a purely deviatoric strain field except at the origin [122] and thus a localized

change in density

δρ(R, 0) = ρ0[G̃ll(R, 0)− wll(R, 0)] =
2µρ0

λ+ 2µ
νδ(R).

This bump in the density induces mechanical feedback, leading to density relaxation. More

precisely, the dynamics given by Eqs. 4.14–4.16 in Chapter 4 but without noise (ξij = 0),

together with Eq. 4.13 and the initial conditions G̃ll(R, 0) = 2νδ(R), G̃‖(R, 0) = G̃⊥(R, 0) =

0 allow us to find the growth tensor and the density at time t (note that because there is no

explicit Q dependence in Eqs. 4.14–4.16, we can formally take the inverse Fourier transform

and work in real space):

G̃ll(R, t) =
k(d)

k + k(d)
2ν

(
1 +

k

k(d)
e−(k+k(d))t

)
δ(R)

G̃‖(R, t) =
k(d)

k + k(d)
ν
(

1− e−(k+k(d))t
)
δ(R)

G̃⊥(R, t) = 0

δρ(R, t) =
2µρ0

λ+ 2µ
νe−(k+k(d))t δ(R).

Now, from Eq. 4.11, we can easily see that w(R, t) ∼ R/R2 stays divergence free (∇.w ∼
δ(R)). Therefore, since ∆A =

∫
∇.w dR, any region of the tissue that does not contain the

origin will not see any increase in area. In other words, if we have two adjacent clones and

introduce a small amount of incremental growth at the origin, only the area of the clone

containing the origin will increase; the size of the other will be unchanged, though its shape

will be distorted (see Fig. 4.2A in Chapter 4). This implies that the areas of any two clones

are uncorrelated. There is an additional subtlety worth mentioning: While G̃ll(R, t) and

G̃‖(R, t) remain local, G̃ij(R, t) in general is not localized to the origin. This is due to the

fact that G̃‖ lives in Fourier space and does not have a well-defined physical meaning in

real space. To see the non-locality of G̃ij(R, t), we start from Eq. 4.10, noticing that G̃‖

is flat in Fourier space and thus, G̃ij(Q, t) is Q-dependent and not local in real space. For

instance, G̃12(Q, t) ∝ Q1Q2/Q
2 which yields G̃12(R, t) ∝ R1R2/R

4. Nonetheless, since ∇.w
is localized to the origin (at least in the absence of effects from boundary conditions that we

neglect throughout this paper), clone areas remain uncorrelated.

Returning to our full calculation with arbitrary growth tensor G, we can explicitly see

this decoupling if we take two adjacent clones of sizes A1 and A2 and look at 〈∆A1∆A2〉. We

define ∆Ak = Ḡ
∫
Rk∈clone k

∇k.wk dRk with k = 1, 2, wk = w(Rk) and ∇k = ∇Rk
. Then,
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the correlation of clone 1 and 2 will be

〈∆A1∆A2〉 = Ḡ2

∫
〈∇1.w1 ∇2.w2〉 dR1dR2

This quantity involves noise correlators 〈ξll(R1, t)ξll(R2, t)〉 and 〈ξ‖(R1, t)ξ‖(R2, t)〉 that give

δ(R1 − R2), and because we are integrating over two separate regions, the integral is zero

as claimed in Chapter 4. We note that if instead of delta correlated noise, we consider

colored noise with a small width a, within our continuum model clones that actually share a

boundary must show small but nonzero area correlation because the correlations in the noise

stretch across the boundary: 〈∆A1∆A2〉 ∼ O(L2a2) where L is the length of the shared

boundary. However, in reality, the interface is where the cells of clone 1 meet the cells of

clone 2, and assuming independent divisions of discrete cells, there is no correlation between

noise in clone 1 and 2 and 〈∆A1∆A2〉 will again be zero.

B.10 The Limit of No Net Growth

Here, we derive expressions for fluctuations in density and velocity in the limit of no net

growth (γ0 = 0 or Ḡ = 1) and show that in this limit, our model is equivalent to the

fluctuating homeostatic tissue described in Ranft et al. [6]. In particular, we will derive

expressions of the same form as Eqs. 21 and 22 in [6], which related the Fourier transformed

(in space and time) density and velocity fluctuations δρ(q, ω) and v(q, ω) to appropriate

noise terms.

Since we are interested in fluctuations about the steady state of no growth, the distinction

between Lagrangian and Eulerian coordinates vanishes to linear order in small quantities, so

we will use lower-case q to denote the wavevector for consistency with [6].

Starting from Eq. 4.14 of Chapter 4 and Fourier transforming in time, we get(
−iω +

2µ(λ+ µ)

λ+ 2µ
(c+ c(d))

)
δρ = ρ0

µ

λ+ 2µ
(ξll − 2ξ‖).

Now, writing λ + µ = χ, 1/c = 2χτ and 1/c(d) = 2µτa, and also noting that the traceless

part of the noise tensor ξ
(d)
ij = ξij − ξllδij/2 is related to ξ‖ via ξ‖ = qiξ

(d)
ij qj/q

2 (Eq. B.17),

we arrive at an expression of the same form as Eq. 21 in [6]:

δρ =
τ ρ0(τaµ)

(1− iωτa)τχ+ (1− iωτ)τaµ

[
ξll − 2

qiξ
(d)
ij qj

q2

]
. (B.20)

We note that the extra factors of 4/3 in [6] appear because their calculation was carried
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out in 3d. The prefactor to ξ
(d)
ij is also different here from [6] because we have defined the

noise to be acting on the growth tensor (see Eq. B.3), whereas Ranft et al. have the traceless

noise act directly on the traceless stress tensor.

We now find the velocity fluctuations. We have

vk(q, t) = ∂twk(q, t) = − i

q2

[
(α1 ∂t

δρ

ρ0

+ α2 ∂tZL)qk − 2 ∂tZT εkl ql

]
.

Denoting the component of velocity parallel to q as v‖ = vlql/q, we find

iq v‖ = α1

[
− 2µχ

χ+ µ

(
1

2τχ
+

1

2τaµ

)
δρ

ρ0

+
µ

χ+ µ

(
ξll − 2

qiξ
(d)
ij qj

q2

)]
+α2

(
ξll + 2

τaµ

τχ

qiξ
(d)
ij qj

q2

)
,

where, in terms of τ and τa, α1 = (τa − τ)χ/(τχ + τaµ) and α2 = τχ/(τχ + τaµ). Using

the expression for δρ in Eq. B.20 and after some manipulation, we arrive at the following

(compare with v‖ in Eq. 22 of [6])

iq v‖ =
1

(1− iωτa)τχ+ (1− iωτ)τaµ

[
τχ(1− iωτa)ξll + τaµ(1− iωτ)2

qiξ
(d)
ij qj

q2

]
. (B.21)

Finally, we have, for the component of velocity perpendicular to q

v⊥k = ∂tw
⊥
k = 2iεkl

ql
q2
ξ⊥.

It is easy to see that ξ⊥ is related to ξ
(d)
ij by εklqlξ⊥ = qkqmξ

(d)
mjqj/q

2 − ξ(d)
kj qj. Plugging this

in, we obtain

v⊥k =
2i

q2
(qkqmξ

(d)
mjqj/q

2 − ξ(d)
kj qj). (B.22)

Comparing B.22 to Eq. 22 in [6], we see that they again only differ by prefactors that can

be absorbed in the noise strength by redefinition of ξ⊥.
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k2≠ 0, white noise in space

k2= 0, colored noise in space
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Figure B.1: Plot of density-density correlation function for Laplacian feedback (k2 6= 0) and
the simple stress feedback (k2 = 0) discussed in Chapter 4. In the case of k2 6= 0, the
approach to the power law is slower. The plot is for k1 = γ0/2. For k2 = 0, a is the width
of the colored noise, whereas for k2 6= 0, a =

√
4k2/γ0.
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APPENDIX C

MATLAB Codes for Chapter 3

In this appendix, we list the image analysis codes discussed in Chapter 3. The codes were

tested in MATLAB edition R2018a.

C.1 Adult Wing Segmentation

Listing C.1: Adult Wing Segmentation

1 filename = 'image0001'; %type the name of the input image here

2 E = imread(strcat(filename,'.tif'));

3

4 Image = rgb2gray(E);

5

6 %manual segmentation of wing hinge

7 J =roipoly(Image);

8

9 BWs = 1-imbinarize(Image); %global threshold

10

11 %%morphological operations on the global threshold

12 BWdfill = imfill(BWs, 'holes'); %fill the holes

13

14 seD = strel('diamond',10); %size of erosion. recommended: 10

15 seC = strel('disk',3); %radius of closing. recommended: 3

16 seO = strel('disk',5); %radius of opening. recommended: 5

17 BWfinal = imclose(BWdfill,seC);

18 BWfinal = imopen(BWfinal,seO);

19 BWfinal = imfill(BWfinal, 'holes'); %fill any remaining holes

20 %erodes the image

21 BWfinal = imerode(BWfinal,seD);

22

23 Iblur = imgaussfilt(Image, 10); %blurring the image with standard ...

deviation 10
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24 %adaptive threshold with sensitivity = 0.78

25 BWs2 = 1-imbinarize(Iblur,'adaptive','Sensitivity',0.78);

26

27 skeleton = bwmorph(BWs2,'thin',inf); %thinning the skeleton

28 %make a cut through the initial segmentation

29 BWfinal2 = (1-skeleton).*BWfinal;

30

31 %remove the cut out bristles with morphological opening

32 BWfinal2 = imopen(BWfinal2,strel('disk',20));

33 %pick the largest connected component. Useful when there are leftover ...

pieces that we don't want

34 BWfinal2 = bwareafilt(logical(BWfinal2),1,4);

35

36 %morphologically close to fill out the interior cuts

37 BWfinal2 = imclose(BWfinal2,strel('disk',30));

38 BWfinal2 = imfill(BWfinal2, 'holes'); %fill any remaining holes

39

40 BWfinal3 = BWfinal2;

41 blurryImage = imgaussfilt(double(BWfinal3), 50);

42 BWfinal3 = blurryImage > 0.5;

43 BWfinal3 = J.*BWfinal3;

44

45 A=bwarea(BWfinal3)

46 csvwrite(strcat(filename,'.csv'),A)

C.2 Finding Vein Crossing Landmarks

Listing C.2: Finding Landmarks

1 filename = 'image0001'; %type the name of the input image here

2 E = imread(strcat(filename,'.tif'));

3

4 E = fliplr(E); %use for left wing images to orient them the same way ...

as right wings

5 Image = rgb2gray(E);

6

7 Iblur = imgaussfilt(Image, 10);

8 BWs2 = 1-imbinarize(Iblur,'adaptive','Sensitivity',0.78);

9 skeleton = bwmorph(BWs2,'thin',inf);

10
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11 %pick landmarks in the same order for all images

12 x = zeros(1,7);

13 y = zeros (1,7);

14 for i =1:7

15 roi = roipoly(skeleton);

16 crossing = bwmorph(roi .* skeleton,'branchpoints');

17 [y(1,i),x(1,i)] = find(crossing);

18 end

19

20 M = [x',y']

21

22 %the name of the .csv files should start from 1

23 csvwrite('results 1.csv',M)

C.3 Procrustes Analysis

Listing C.3: Procrustes

1 %%import csv files of the positions of 7 landmarks

2 m=76; %number of csv files

3 M = cell(m,1);

4 % Read results 1.csv through results m.csv.

5 % Files are in the "crossings/" directory.

6 for k = 1:m

7 csvFilename = sprintf('results %d.csv', k);

8 fullFileName = fullfile('¬/crossings/', csvFilename);

9 csvData = csvread(fullFileName);

10 M{k} = csvData;

11

12 end

13

14 %%translate points to have the same origin

15 TM = cell(m,1);

16 for k = 1:m

17 TM{k} = M{k} - sum(M{k})/7;
18 end

19

20 %%scale each wing to be get rid of variabilities in size

21 SM = cell(m,1);

22 S list = cell(1,1);
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23

24 meanS = 0;

25 for k = 1:m

26 S = sqrt(sum(TM{k}(:,1).ˆ2)+sum(TM{k}(:,2).ˆ2))
27 S list{1}(k) = S;

28 meanS = meanS + S;

29 SM{k} = TM{k}/S;
30 end

31

32 meanS = meanS/m;

33

34 %%rotate each wing onto a reference (average) wing

35 refSM = zeros(7,2);

36 for k = 1:m

37 refSM = refSM + SM{k};
38 end

39 refSM = refSM/m;

40 %refSM = SM{1};
41

42 RM = cell(m,1);

43

44 for k = 1:m

45 Theta = atan((sum(SM{k}(:,1).*refSM(:,2))
46 -sum(SM{k}(:,2).*refSM(:,1)))/(sum(SM{k}(:,1).*refSM(:,1))
47 +sum(SM{k}(:,2).*refSM(:,2))));
48 RM{k}(:,1) = cos(Theta)*SM{k}(:,1) - sin(Theta)*SM{k}(:,2);
49 RM{k}(:,2) = sin(Theta)*SM{k}(:,1) + cos(Theta)*SM{k}(:,2);
50 end

51

52 %%calculate the variability in landmark positions

53 xyList = cell(7,1); %list of x-y coordinates sorted based on each ...

landmarks and not different wings

54 TrC = 0; %Trace of 14x14 Covariance matrix

55 for i = 1:7

56 for k = 1:m

57 xyList{i}(k,1) = RM{k}(i,1);
58 xyList{i}(k,2) = RM{k}(i,2);
59 end

60 TrC = TrC + sum(var(xyList{i}));
61 end

62 Sigma pixels = meanS * sqrt(TrC/10) %Sigma in pixels

63 Sigma microns = Sigma pixels*0.66 %each pixel in the original image ...

was calculated to be 0.66 microns. Can vary based on the resolution ...
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of the image.

64

65

66 %% calculate L-R difference for the same fly

67 Delta LR = cell(m/2,1);

68 RM left = cell(m/2,1); %list of left wings

69 RM right = cell(m/2,1); %list of right wings

70

71 Area FA = 0;

72

73 for k = 1:m/2

74 RM left{k} = RM{2*k-1};
75 RM right{k} = RM{2*k};
76 end

77

78 for k = 1:m/2

79 Delta LR{k} = RM left{k} - RM right{k};
80 end

81

82 %%calculate the variability for L-R

83 xyList LR = cell(7,1); %list of x-y coords sorted based on each ...

landmarks and not different wings

84 TrC LR = 0; %Trace of 14x14 Covariance matrix

85 for i = 1:7

86 for k = 1:m/2

87 xyList LR{i}(k,1) = Delta LR{k}(i,1);
88 xyList LR{i}(k,2) = Delta LR{k}(i,2);
89 end

90 TrC LR = TrC LR + sum(var(xyList LR{i}));
91 end

92 Sigma pixels LR = meanS * sqrt(TrC LR/10)

93 Sigma microns LR = Sigma pixels LR*0.66 %each pixel in the original ...

image was calculated to be 0.66 microns

94

95

96 % %only use the following for results from the same wing with only ...

changing threshold cutoffs

97 %

98 xyList = cell(7,1); %list of x-y coords sorted based on each landmarks ...

and not different wings

99 TrC = 0; %Trace of 14x14 Covariance matrix

100 for i = 1:7

101 for k = 6:5+m
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102 xyList{i}(k-5,1) = M{k-5}(i,1);
103 xyList{i}(k-5,2) = M{k-5}(i,2);
104 end

105 TrC = TrC + sum(var(xyList{i}));
106 end

107 Sigma pixels = sqrt(TrC/14) %devided by 14 (instead of 10) because M ...

has all 14 degrees of freedom

108 Sigma microns = Sigma pixels*0.66 %each pixel in the original image ...

was calculated to be 0.66 microns
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