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ABSTRACT

A driving force behind the development of machine learning techniques is the availability of
vast amounts of data that are continuously generated and the enormous potential of using these data.
It is, however, not uncommon to have a paucity of data. This paucity can come in different forms:
we may have an insufficient amount of data to perform the task at hand, we may have missing
entries, or we may be working with aggregate statistics that only capture a fraction of the data we
seek to study.

To extract meaningful conclusions from scarce data is challenging and requires creative ap-
proaches that account for the scarcity in their assumptions and/or finding other means to make up for
insufficient data. It is not always possible to adapt the standard algorithm for a given problem and
the challenge often lies in finding the right basis from which to build a viable solution. This thesis
takes on two problems within this realm, where there is a paucity of data, and develops techniques
to overcome the challenges such paucities can pose.

In single cell RNA-sequencing, entries of a gene expression matrix are counts of the number of
molecules observed where only a small fraction of the molecules in the cell have been observed.
This is particularly challenging because biologists are often concerned with whether a gene is
expressed in a cell at all; however, a zero entry in a gene expression matrix only says that no such
molecules were seen in the given cell, not that there were no such molecules in the given cell. In
practice, a vast majority (often over 90%) of entries in gene expression matrices are zero. We
focus on the problem of feature selection: we give theoretical guarantees for information-theoretic
algorithms and address practical issues involved in their implementation.

The problem of ranking items from pairwise comparisons is also often constrained by a paucity of
data—collecting pairwise comparisons made by humans can be expensive—and we propose ways to
incorporate other data to overcome a small number of pairwise comparison observations. In addition
to giving a better sample complexity bound for the RankCentrality algorithm with simpler proofs
that use matrix concentration inequalities, we introduce A-regularized RankCentrality (theoretical
analysis for this regularization depends on our new proofs for RankCentrality), that is capable of
giving non-trivial output even when the number of observations is small, and a similarity-based
regularization that can use features of the items being ranked to significantly improve performance

in the small-sample regime.
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CHAPTER 1

Introduction

A driving force behind the development of machine learning techniques is the availability of
vast amounts of data that are continuously generated and the enormous potential of using these data.
It is, however, not uncommon to have insufficient, missing, or partially observed data. One of the
most famous examples of such a problem is the “Netflix Prize” matrix completion problem [BL]
[BKV], where users have rated some of the movies they have watched and ratings for about 1% of
the user-movie pairs are known. The goal is to predict how users may rate movies that they have not
yet watched. In this case, a movie recommendation system has to overcome missing data—where
only a fraction of the entries in a matrix have been observed.

Scarcity of data can come in various forms. Unlike in the Netflix problem, where entries in
a matrix were missing, single cell RNA-sequencing data suffer from a subtly different problem:
entries in the resulting matrix are not “observed” or “not observed” but rather are counts of the
number of molecules observed where only a small fraction of the molecules in each cell have been
observed. This is particularly challenging because biologists are often concerned with whether a
gene is expressed in a cell at all; however, a zero entry in a gene expression matrix only says that no
such molecules were seen in the given cell, not that there were no such molecules in the given cell.
In practice, a vast majority (often over 90%) of entries in gene expression matrices are zero. The
problem of ranking items from pairwise comparisons also faces hurdles that arise from a paucity of
data—getting humans to make pairwise comparisons can be expensive—and we propose ways to
incorporate other data to overcome a small number of pairwise comparison observations.

To extract meaningful conclusions from scarce data is challenging and requires creative ap-
proaches that account for the scarcity in their assumptions and/or finding other means to make up for
insufficient data. It is not always possible to adapt the standard algorithm for the given problem and
the challenge often lies in finding the right basis from which to build a viable solution. This thesis
takes on two problems within this realm, where there is a paucity of data, and develops techniques
to overcome the challenges such paucities can pose.

Single cell RNA-sequencing is a field that has grown tremendously in recent years. It has

allowed researchers to study the gene expression levels in cells at the resolution of individual cells,



a vast improvement from bulk RNA sequencing which averaged expression levels across many cells
(often on the order of 103 to 107 cells). New techniques allow researchers to process millions of cells
and detect RNA molecules from across the transcriptome. This ability to analyze the heterogeneity
cells even within a tissue gives biologists a much deeper insight into the workings of complex tissues
that may have a large number of cell types, each performing different functions and producing
different proteins in order to do so. Researchers anticipate significant breakthroughs in medicine
as a result of the studies that biologists are now able to conduct using this technology. There is,
however, a caveat that comes with this newfound resolution in sequencing. Due to technical reasons,
the “read depth” of these techniques tends to be very small and this is particularly true when we want
to be able to sequence larger number of cells. The “read depth” is the fraction of RNA molecules in
a cell that we expect to actually detect. In typical experiments, we usually detect between 5% to
15% of the RNA molecules in a cell.

A problem that we focus on in this field is that of marker selection—the process of selecting
a small number of genes that can distinguish between cells when only expression levels of those
genes are available. In machine learning, this is called “feature selection”, choosing a small but
informative subset of the available features, not to be confused with “feature extraction” and other
forms of dimensionality reduction that create new features from existing features.

In this thesis, we develop and analyze supervised and unsupervised methods that are able to
be agnostic to underlying distributions of observations. This agnositicity is important especially
because there is a lack of consensus on what distributions best model the scarcity of reads and a
vast majority of the existing algorithms are generative models that make strong assumptions on the
distribution and fit parameters according to those assumptions.

The problem of ranking items from pairwise comparisons is also often constrained by a paucity
of data. For example, we may be interested ranking a large number of text documents in terms
certain properties (for example, news articles ranked by how worrisome the news might be, social
media posts by the perceived age of the author), but the time required to collect sufficiently many
pairwise comparisons might be prohibitive.

Because standards for scoring such items are extremely prone to fluctuations—both between
the human evaluators and also over time as an evaluator observes the various items. Such scoring
systems require strict and detailed rules and rubrics. On the other hand, asking humans which of two
items should be ranked higher gives far more consistent results, both between different evaluators
and over time.

This problem is distinct from that of sorting because these pairwise comparisons are usually not
deterministic and not always consistent. There are various models that can be used to describe the
randomness of such comparisons, usually by making assumptions about /;;, the probability that j

is preferred to 7 in comparison of 7 and j. Some models make very weak assumptions about such a



matrix, for example, the low-noise model [RA14] assumes that for all i, 5 € {1,...,n} =: [n], we

have . .
Pij>PjZ‘ :ZPM>ZPJM
k=1 k=1

Note that this does not require that P;; > Py, for all k. On the other hand, a model that makes
stronger assumptions, and one that we will use repeatedly in this thesis, is the Bradley-Terry-Luce
(BTL) model that assumes that these probabilities can be modeled by parameters w; that we call the
BTL score of item ¢ € [n|. Under the BTL model,

b = m7

and it is easy to check that this is strictly stronger than the assumptions of the low-noise model.

There are various algorithms in the literature for learning such a ranking from pairwise com-
parisons, each for a model under which we can give theoretical guarantees. Of these algorithms,
we discuss one, RankCentrality, in detail. We focus on RankCentrality because of its ability to
be regularized in novel and creative ways that allow us to incorporate other forms of data into the
ranking process. To this end, we also address a major issue with RankCentrality that prevents it
from giving any meaningful results when an insufficient number of pairwise comparisons have been
made. We propose A-regularized RankCentrality to ensure the underlying empirical Markov chain is
irreducible even the sample size is small, which is not true of the original algorithm. We build on top
of A-regularized RankCentrality, which does not take into account any other information, a similarity
based regularization for RankCentrality that can use similarity information (for example, from
features of the n items being compared) to impute pairwise comparisons which yields significantly

better estimators, especially when the training dataset is small.



CHAPTER 2

Information Theoretic Feature Selection for scRNA-seq

2.1 Background

Single cell RNA-sequencing (scRNA-seq) technologies have generated an expansive amount
of new biological information, revealing new cellular populations and hierarchical relationships.
These methods quantify expression of thousands of genes across tens or hundreds of thousands of
individual cells derived from a single cell suspension [Gie+17; Mac+15]. Using unbiased methods
for cell clustering, researchers define cell types based on these gene expression patterns [DRS18].
When information derived from these transcriptionally-defined cell clusters is integrated with
spatial or protein level data, additional biological insights can be gleaned. A number of technologies
complementary to sScCRNA-seq rely on the selection of a smaller number of marker genes to accurately
differentiate cell types within a complex mixture of cells. For example, fluorescence activated cell
sorting (FACS) can isolate specific cell populations from a single cell suspension for further in
depth biological characterization based on the expression of a distinguishing set of a small number
of cell surface markers. Mass cytometry provides data on expression of up to 40 proteins for cells
in a single cell suspension, adapting traditional flow cytometry methods by labeling antibodies
with heavy metal isotopes rather than fluorophores and using a time-of-flight mass spectrometry
readout [Ben+11]. Imaging mass cytometry further allows for in situ assessment of approximately
40 markers in tissue sections, quantifying the spatial distribution of marker expression in the tissue
[Gie+14]. Finally, spatial transcriptomic profiling approaches use fluorescence in situ hybridization
in tissue sections for imaging based quantification of gene expression [Raj+08; Eng+19]. Optimal
usage of each of these techniques requires selection of a small set of marker genes (or features) that
can accurately assign an individual cell to a known cell type based on expression.

Feature selection is a challenging combinatorial problem; it is already known that feature
selection is NP-hard [AK98]. In the field of scRNA-seq, the most commonly used techniques
for marker gene selection data are based on highly variable gene identification [Sat+15; Zhe+17]
and differential expression/logistic regression [Ntr+18], the former being unsupervised and the

later supervised. Most of these methods are univariate: they consider properties of each feature



individually and do not consider any interactions between features. Additionally, these methods
make strong assumptions about how gene expression is distributed. They typically measure the mean
and standard deviation of features and use these in their determination of variability (or differential
expression). Such techniques, especially ones that output probability values, are implicitly or
explicitly making assumptions about the underlying distributions (e.g., Gaussian, or Student’s
t-distribution). Even when the data suggest that these assumptions are reasonable, it is usually
only the case for individual features in isolation. Supervised feature selection methods used
in scRNA-seq such as differential expression can natively handle binary class labels and need
strategies such as one-vs-rest (OvR) or one-vs-one (OvO) to transform the problem back into a
binary classification problem. This transformation causes two additional problems. First, by pooling
clusters together (e.g., with OVR), we blur out valuable information by artificially suppressing
genes that are informative about multiple class labels and boosting genes that are differentially
expressed in one class when compared to all other classes. This puts an unnecessary importance
on choosing class labels with the correct resolution. Secondly, methods to combining the lists of
features identified in each pairwise comparison (either OvO or OvR) tend to be arbitrary and there
is no canonical approach to reconciling the many ((’;) or kK — 1in OvO and OVR respectively, where
k is the number of class labels) lists of features into one list.

In contrast to differential expression based methods for marker selection, information-theoretic
methods address a number of these issues. Rather than considering properties of each marker indi-
vidually, information-theoretic algorithms consider interactions between features to various degrees.
Specifically, the “degree K algorithm considers interactions between K features. For example, the
degree 1 algorithm is a univariate algorithm, much like the differential expression methods, and the
degree 2 algorithm considers interactions between pairs of features, etc. Additionally, in contrast to
differential expression methods, information-theoretic methods can run as native multiclass methods
as well as binary methods.

Our goal is to benchmark the efficacy of differential expression and information-theoretic
methods for marker selection in scRNA-seq experiments, quantifying the strengths and weaknesses
of a range of objective functions. We then focus on the degree 2 approximation, which corresponds
to the conditional infomax feature extraction (CIFE) feature selection algorithm [LT06], and give
theoretical guarantees for its performance. We then evaluate the performance of these algorithms on
publicly available scRNA-seq datasets and describe optimizations for sparse data that improve the

computational efficiency of these algorithms considerably.



2.2 Introduction to Information Theoretic Methods

We seek to find an small subset of genes that is most informative about the class labels. In the
language of information theory, we can frame this as the problem finding a small subset S of the
variables X’ (the set of all genes) such that /(S y), the mutual information between a set of features

S and target labels y, is maximized. This warrants some definitions before we proceed.

2.2.1 Definitions, Notation, and Abuses Thereof

We begin with the definition of mutual information. For a more extensive resource on informa-
tion theory, we recommend [CT06]. The mutual information between random variables U and V'
can be thought of as the number of bits of information knowing U tells us about V. For example,
if U is a outcome of a fair coin toss (i.e., U takes values in { H, T'} with equal probability) and V'
is the opposite of U (i.e., V is T"if U is H and vice-versa), then their mutual information is 1 bit.
However, if V' is a “noisy” opposite of U so that V' is the opposite of U with probability 0.99 and is
equal to U with probability 0.01 then /(U; V') should be just under 1 (in fact it is approximately
0.92).

Definition. If U and V" are discrete random variables, then the mutual information 7 (U; V') between
UandV is

PUv(u U)
ZZPUV u, v) log (PU( )Py (v )>
=HU)+H(\V)-H{U,V}),

where

* Px is the probability mass function of X, a random variable, in particular Py (u,v) =
P(U=uwand V = v),

* H(-) is the Shannon entropy of a discrete random variable, and
* the above logarithms are with base 2, by convention.

We will only consider the case when U and V' are discrete random variables (in practice, such
algorithms are used after data has been discretized, although continuous analogues that use density

estimators exist, but are computationally harder).

By abuse of notation and in line with existing literature, we will often



e treat a set of random variables as an ensemble of random variables. That is,

H{X1,...,Xn})
= — Z p(x1, ... x,) logp(xy, ..., x,),

* drop the U symbol and write H(UV') to mean H (U U V), and

* treat a feature z; as a singleton {z;}, so H(Uz;) = H(U U {x;}).

2.2.2 Information-theoretic Feature Selection

We may now return to making the statement of our problem precise. We want to find S C X
such that /(S;y) is maximum over subsets of size k or less of X. Here k is a user-prescribed
number of features to select. There are (1,:) such subsets (for fixed k, this is O(P*¥)). Datasets
often have many thousands of features from which we may seek to select on the order of a hundred
features, which makes an exhaustive search computations intractable. It is already known that
feature selection is NP-hard (see [AK98]), as are sub-modular maximization problems for coverage-
type functions (see [Von(07]) that our problem can be reduced to by constructions similar to those
discussed in Section 2.3. Various greedy algorithms, usually of the form of Algorithm 1, have been
studied in the literature. We give a summary of these algorithms in Table 2.1. These algorithms use
different objective functions J : X — R, where J(z;) estimates the (relative) value of feature x;

given that S C X has already been chosen.

Algorithm 1 General Greedy Algorithm for Feature Selection with Objective .J
1: procedure GREEDYSEARCH(X, y, n)

2: S @

3: while |S| < n do

4: S <« SU {q arg max J(xz)}
r,€X—-S

5: end while

6: return S

7: end procedure

If we were to naively maximize /(S;y) via a greedy search, we would run Algorithm 1 with
Jemi(z;) = 1(S U {x;};y). Computing this requires estimating the joint probability distribution
of Sx;y (which has |S| 4+ 2 dimensions). This is not only computationally intractable, but also
impossible to estimate reasonably in the absence of a very large number of samples. Therefore, the
objective function

Jemi(@i) = 1(SUA{zi}; y) (2.1)

7



is difficult to estimate. We follow the terminology of Brown, et al. [Bro+12] and will refer to this as
the conditional mutual information (CMI) objective because a greedy search with the conditional
mutual information objective, J(z;) = I(z;;y|S), is equivalent to using J.,,; from (2.1). This is
because [ (z;;y|S) — I(Sx;;y) is constant with respect to z;.

In this work, we present a series expansion of /(S U {z;};y) in terms of multivariate mutual
information through which we can derive degree K approximations to / (SU{z;};y). This expansion
gives us insight into the strengths and weaknesses of various objective functions in the literature. We
then focus on the degree 2 approximation, which corresponds to the CIFE feature selection algorithm
[LTO6], and give new theoretical guarantees for its performance. We then evaluate the performance
of these algorithms on publicly available scRNA-seq datasets and describe optimizations for sparse

data that improve the computational efficiency of these algorithms considerably.

2.2.3 Previous work

Because of the computational challenges in empirically evaluating .J.,,,;, many approximation
algorithms have been proposed. Brown et al. [Bro+12] generalize a vast number algorithms in the

literature as

J(x;) = Iz y) — B Z I(@i; ;) + Z (s x]y). 2.2)
j€S j€S
Specifically, the widely used mRMR algorithm in [PLDO05] has g = ﬁ and v = 0. The MIFS

algorithm by [Bat94] has v = 0 and leaves 3 as a (constant) hyperparameter chosen from [0, 1].
The CIFE algorithm in [LT06] has 3 = v = 1. The JMI algorithm ([YMO0O]) and IGFS' algorithm

([EEAO8]) use 8 = v = ﬁ See Table 2.1 for a summary of the various algorithms described.

Brown et al. provide an interpretation of this class of objective functions in terms of three

assumptions.

1. Given an unselected feature x,

(a) the selected features are independent: p(S|zy) = ije ¢ P(xj|xy) and

(b) the selected features are class-conditionally independent: p(S|yxy) = [, s P(jlyze).
2. Features are pairwise class-conditionally independent: p(z;z;|y) = p(z:|y)p(x;|y).

3. Features are pairwise independent: p(x;z;) = p(x;)p(z;).

IBrown et al. incorrectly claim IGFS is equilvalent to CIFE, it is, in fact, equivalent to JML.



| Objective function

Description

Jcmi(xi) = [(S U {xz}a y)

This is the objective we would ideally like to
optimize against, but the cost of computing its
empirical value is prohibitive.

Imim (2:) = (233 y)

The Mutual Information Maximization (MIM)
is a univariate feature selection method—it
does not consider the interactions between vari-
ables and only considers features in isolation.

e (1) = (235 y) — L > I xy)

|S| J}]'ES

The minimum Redundancy Maximum Rel-
evance (mRMR) algorithm proposed by
[PLDO5] uses a diminishing penalty on redun-
dancy and does not distinguish between rele-
vant and irrelevant redundancy (see Example
2).

Juits (i) = I(ziy) — By (i ;)

T es

The Mutual Information Feature Selection
(MIFS) algorithm proposed by [PLDOS5] uses
a diminishing penalty on redundancy and does
not distinguish between relevant and irrelevant
redundancy.

1
Jimi(i) = 1(2439) — Kl > I(wizy5y)
I]‘ES

The Joint Mutual Information (JMI) algorithm
proposed by [YMOO], like the mRMR algo-
rithm, uses a diminishing penalty on redun-
dancy. However, it only penalizes relevant re-
dundancy which, we explain in Section 2.3, is
desirable.

Jate(wi) = Iasy) — > I(xs;25y)

:E]'GS

The (CIFE) algorithm proposed by [LT06] does
not diminish its redundancy penalty (which it
applies only to relevant redundancy, as desired).
Although it can penalize redundancy somewhat
aggressively, we will show that it it the degree
2 approximation to .J.n,; and, under certain con-
ditions, is a submodular set function. We focus
on these properties of the CIFE objective to
give theoretical guarantees on its performance.

Table 2.1: Summary of various objective functions that are used with Algorithm 1.




2.2.4 Our Work

We attempt to address two sets of important questions about the information theoretic methods

that we discuss in this chapter:

* What are the differences between the various objective functions? Under what conditions
does the CMI objective function (the ideal objective function that we would use if computing
power and quantity of data were not restricted) reduce to the approximate objective functions
such as MIM, mRMR, JMI, and CIFE? What explains the relative strengths and weaknesses

of these objective functions?

* What guarantees can we make for the greedy search algorithm? How far from optimal are the

outputs of the greedy search?

We address the first point by expanding the CMI objective function J(x) = I(S U {z},vy),
which considers all possible interactions, in terms of lower-order interactions in Section 2.4. We
show that truncating this series after the degree 2 terms gives us the CIFE objective. The reader
may also find it helpful to read the example-based Section 2.3 which demonstrates where various
objective functions fail.

To address the second set of questions, on the effectiveness of the greedy search algorithm,
we demonstrate in Section 2.5 that under certain conditions, mutual information and its degree 2
approximation (i.e., CIFE) are submodular functions and we use existing literature on submodular
functions to give theoretical guarantees for the performance of the greedy search algorithm for
CIFE.

In Section 2.7, we explain various considerations that the practitioner will find useful. This
includes a section our approach to preprocessing datasets for information-theoretic feature selection
methods as these methods require the counts to be in discrete bins, as well as a section on trade offs
between running information-theoretic methods as mutli-class and binary methods.

Finally, we note that we have implemented fast versions of these algorithms in the PICTURE-
DROCKS Python package and we explain some of the optimizations that we made in Section
2.8.

2.3 Analysis of Existing Methods

Most of these algorithms are affected by three broad theoretical weaknesses. We analyse these
problems in the context of existing algorithms and present simple examples where they arise.
Obviously, many assumptions from [Bro+12] that we discussed in Section 2.2.3 are violated in these

simple examples. The aim of these examples, however, is to present the theoretical weaknesses
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of existing algorithms in information-theoretic terms. This will motivate our approach to mutual
information based feature selection?.
2.3.1 Diminishing penalty on redundancy

The mRMR algorithm in [PLDO05] is a prominent example of an objective that progressively

diminishes the penalty on redundancy. Specifically,

1
ijS
The JMI algorithm in [YMOO] also has a factor of ﬁ on its redundancy term:
Jimi(:) = I(zs;y Z (ws ;) — I a5ly)) - (24)
:EJGS

When |5 is large, the redundancy penalty is so small that these algorithms, when asked for a large
set of features (but still considerably smaller than the total number of features), will yield similar
outputs as MIM. We demonstrate this empirically in Tables 2.2, 2.3, 2.5, and 2.4.

In practice, the & factor in algorithms such as mRMR and JMI serves two purposes. First,

\S\

the L factor accounts for shared redundancy between multiple variables (see examples in Section

Ell
2.3.3). Second, it acts to mitigate the accumulating noise in empirical estimations of I (z;; x;),
because even if z; and x; are independent the empirical estimation of their mutual information
might be positive. In either case, the G| S‘ factor is a somewhat arbitrary approach that suppresses

both signal and noise and, in doing so, impedes our ability to detect true redundancies.

Example 1. Let by, by, ... be random variables chosen from {0, 1} independently with uniform
probability. Let x1 = b1b, ... b5 (a binary concatenation of bits), xo = bgb; . .. by, 3 = b11, and
x4 = b1bobs. Suppose y = b1by . .. b1;. Algorithms such as mRMR and JMI would select z; and
xo first. At this point, J(z3) = 1 and J(z4) =3 — % -3 = 1.5. But clearly, x4 contributes no new

information, while z3 does.

2.3.2 Penalizing Irrelevant Redundancy

Algorithms like mRMR and MIFE penalize all redundancy, even if the redundancy does provide
any information about y. For example, if x; and x; are highly correlated, then it is possible that

I(z;; ;) > max (I(x;;y), I(z;;y)). This is demonstrated in the following example.

2t should be noted, however, that no algorithm can truly overcome all the weaknesses below for that will require
being able to infer a joint probability distribution over a large number of random variables which is meaningless without
an enormous number of samples and also computationally intractable.
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Example 2. Let by, by, ... be random variables chosen from {0, 1} independently with uniform
probability. Let x1 = b1bybs, x9 = b1boby, x3 = b5, and y = b3by. Without loss of generality,
assume the algorithm chooses x first. Now [ (z2;y) = 1, but I(x; x2) = 2. Such algorithms might
choose z3 instead of x5, because (z1; z5) is large, but the redundancy between x; and x5 is not

relevant to y and should not be penalized.

2.3.3 Ignoring Higher-degree Interactions Between Features

Features can say both more and less about the target labels together than the sum of their parts.
All features covered by Brown, et al.’s framework (objectives of the form (2.2)) are unable to detect
higher-order synergies and redundancies because they only detect two-way interactions between

features.

Example 3 (Synergy). Let by, by, ... be random variables chosen from {0, 1} independently with
uniform probability. Let 1 = by and x5 = by. If y = by & by (Where & denotes the XOR operation
on bits), then I (z1;y) = I(x9;y) = 0, but I (x129;y) = 1. This can be understood in terms of the

multivariate mutual information (zy; 9;y) = —1 (which we saw in section 2.4)?

Example 4 (Shared Redundancy). Let by, by, . .. be random variables chosen from {0, 1} indepen-
dently with uniform probability. Let 1 = b1by, x5 = byby, T3 = b3by, x4 = b5, and y = b1b3b3b4.
Without loss of generality, after two iterations, an algorithm of the form (2.2) will likely have
S = {x1,x2}. Now, [ ({x1,22,23},y) = 4 and I({z1, 22, 24},y) = 3, but objectives of the form

(2.2) penalize z3 twice for its redundant bit (b,).

2.4 Series Expansion of Mutual Information

In Section 2.3.3, we give examples of shared redundancy and synergy. These interactions
between features is explained by multivariate mutual information. Intuitively, we want to measure
how much information a set of random variables share simultaneously. If the one bit of information
that x3 shares with x; is the same as the one bit of information that x5 shares with x5, then
we want [(zq;x9;23) = 1, and if 3 shares different bits of information with z; and x5, then
I(x1;xe;23) = 0.

This suggests a generalization of mutual information that was studied in [Han75]. We let I1(x) =
H (x) to be the Shannon entropy of z (i.e., the self-information). Define the multivariate mutual infor-
mation [,,(x1; .. .;x,) recursively as I, (x1; .. .;2) = L1 (21; .. 5 xn) =L (155 21| T0),

where I,,_1(x1;...; 2, 1|x,) is the information shared between x1, . .., z,_; given we know the

3In cases of extreme synergy, such as the current example (where individual feature provide no information on their
own) even the J.n,; objective will fail to choose an optimal set of features as a result of the shortsightedness of a greedy
approach. In less extreme cases, it is still beneficial for the objective function to recognize such synergy).
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value of z,,. If S = {x1,...,2,}, we denote by I,(S) the multivariate mutual information
I,(x1;29; .. .;x,). Note the subtle, but crucial, difference in notation: I,,(.S) is the information
simultaneously shared by the n variables in S (intuitively, the intersection of information), while
I(9) is the self-information of the ensemble of random variables of S (intuitively, the union of
the information). The following equality (a la Principle of Inclusion and Exclusion) expresses the

multivariate mutual information /,,(.S) in terms of lower degree information terms.

Proposition 2.1.
L(ziiaes . ze) = Y (“)XFPH(X)

XC{z1,xn}

Proof. We prove the equality above by induction. For n = 2, this follows from the definition of

mutual information. For n > 2, we have

Ln(w1; 205 .. )
=1L (xy;. . 52 1) — (1. Tpt|Tn)

_ Z (—=1)XHYH(X) — H(X |z,))

XC{z1,e., Tp—1}

= Y (C)XFYHX) - H(X,) + H(z,))

XZA{z1,zn} =0
= Y. (-y¥FH(X)
XCH{z1,yzn}

Corollary 2.2.
H(A) =) (1) g(9).

SCA

Proof. This follows from a version of the principle of inclusion and exclusion, see [GGL9S, p. 1049

Theorem 12.1]. O
We now give a series expansion of the mutual information I({z1,...,z,},y) that suggests
approximations to I({x,...,x,},y) using lower degree terms (i.e., without needing to estimate

the joint probability distribution of a large set of variables).
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Lemma 2.3.

Proof.

3

[<{$1,...,$n},y) = Z (_1)k+l[k+1(X>y)

I{x1,..., 2z}, 9)
=H{z,...,x,}) + Hly) — H{x1, ..., 2n,y})
= Y ()T Iy(X) + 1(y)

XC{z1,zn}
- > )R (x)
XC{z1,;zn}

= Y DR L(XGy)

2.4.1 Degree K Supervised Feature Selection Algorithm

(2.5)

It is clear that if X C Y, then /|x|(X) > Ijy((Y). In a practical setting it is also reasonable to
believe that as k gets larger, the terms in the series in (2.5) converge to 0. As mentioned earlier, the

computational cost of the terms in the series above grows exponentially with respect to k. This

suggests that a fast “degree K approximation to the mutual information 7 ({z1, ..

I({z1,... 20t y) = Z (=) 1 (X ).

k=1 XC{z1,.., T}

At each iteration of the greedy algorithm, our goal is to compute

arg max [ (S U{z;};y).

(2.6)

If we use the above degree K approximation, we only need to consider the terms involving x; in the

series expansion. Therefore, at each step, the degree ' mRMR algorithm selects the next feature to
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add to S as:
K—

() = g max 3 z Flhea(X: )
wES o C

Notice that for K = 2, this simplifies to

Jaeg2 (x;) = arg max I (x;;y) — Z I(zs;255y),
@i S ;€S

the CIFE objective in [LT06]. These functions Jy..ic serve as the objective function .J in the greedy

search algorithm (Algorithm 1).

2.4.2 Degree K Unsupervised Feature Selection Algorithm

In the unsupervised setting, we are trying to solve

arg max H(95).
SCX;|S|<n

This involves approximating n-dimensional joint probability distributions, which necessitates the

need for lower-degree approximations.
We use Corollary 2.2 to expand H (S) and write

Bl
= > I
k=1 UCS;|U|=k
If we assume that there are no higher-degree interactions, we get a low degree approximation

for H(S).

Corollary 2.4. If I;/(U) = 0 whenever |U| > 3, then

Using the greedy search (Algorithm 1), at each step, we identify

Junsup degK('ri) = arg ;nax (E(S U {$1}> - ﬁ;(S))
;&S

= arg max | H(z;) — Z I(z;25)
mi¢s szS
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2.5 Guarantees for Greedy Search

The greedy search algorithm (Algorithm 1) is a necessary compromise to avoid the computation
cost of an exhaustive search over all subsets of size at most n. However, there are some cases where

such an approach is too shortsighted, even when we use the ideal objective function J.y;(z) =
I(SU{z}y).

Example 5. Let by, by be random variables chosen from {0, 1} independently with uniform prob-
ability. Let b3 be a random variable (independent of by, by) such that P(b; = 0) = % + ¢ and
P(by = 1) = 1 — e where 0 < ¢ < 1. Finally, let 21 = by, 23 = by, 23 = by @ by ® b3, and
y = by @ by. Itis clear that I(xy;y) = [(z2;y) = 0 and I(z3;y) = 1 — H(bs). The optimal
2-element subset S of {1, zy, x5} that maximizes I(S;y) is obviously {z, 2>}, but a greedy

approach will always choose 3 at the first step.

In this section, we describe conditions under which we can give performance guarantees for the
greedy search algorithm. These results rely heavily on results for the maximization of submodular
functions. A function f defined on sets is submodular if it satisfies the diminishing returns property:
(T +{zx}) — f(T) < f(S+{x}) — f(S) whenever S C T'. The seminal paper on this topic by
[NWF78] proves the following result.

Theorem 2.5 ((NWF78]). Consider the maximization problem

arg max f(95).
SCX,|S|<k

If f is a non-decreasing submodular function, the greedy algorithm yields a (1 —1/e)-approximation.

In other words, if S, is an optimal set and S, is the set found via a greedy search, then

f(S5) — f(Sy)
f(So) - f(@)

1
< -
e

2.5.1 Submodularity of Entropy and its Degree 2 Approximation

Proposition 2.6. The entropy function H : 2% — R is submodular.

Proof. We want to show H(T' U {z}) — H(T) < H(SU {z}) — H(S) whenever S C T Let
T" =T —S. We have I(T";z|S) > 0 because (conditional) mutual information is always non-

16



negative. This gives us

H(z|S) — H(x|ST") >0
H(SuU{z})—H(S)>H(SUT U{z})—H(SUT")
H(SU{z}) — H(S) = H(T U{z}) — H(T)

]

Proposition 2.7. The degree 2 approximation Hy:2%¥ SR of H, given by [72(5 ) =D aes H(wi)—

> wiayes L (@i ;) is submodular.

Proof. Note that E(Su{x}) N(S) = H(z)=>_,. e I(x;x;). Recall that (+; -) is non-negative.
Clearly, Hy(T U {z}) — Hy(T) < Hy(S U {z}) — Hy(S) whenever S C T. O

2.5.2 Submodularity of Mutual Information and its Degree 2 Approximation

In general, mutual information is not submodular. As we saw in Example 5, the “value” of a
feature is not necessarily diminishing. In that particular example we had I (zy;y) — I(0;y) = 0,
but I({x1,22};y) — I(z1;y) = 1; crudely put, a greedy algorithm only appreciates the value of x5
when it already knows ;. This specific phenomenon is a direct consequence of synergy and we

explain this relation rigorously in this section.

Proposition 2.8. If for all x ¢ T O S, we have I(T — S;x;y|S) > 0, then the set function
f:2% = Rgiven by f(S) = I(S;vy) is submodular.

Proof. As before, let 7" =T — S. We have I(T";x;y|S) = I(T";x;y) — I(S;T"; z;y). We can
now rewrite [ (T — S;z;y|S) > 0as I(S;T";x;y) — I(T"; x;y) < 0. Adding many terms to each

side of the inequality, we get

I(S5y) + 1T y) + 1(zy) — 1(S533y)
—I(T";y) — 1(S; T y) + 1(S; T w3 y)
~I(S;y) — I(T"y) + 1(S; T'; )

y)

I(Syy) + I(z;y) — I(S;m39) — 1(S; (2.7)

Therefore,
I(TU{a};y) — I(Tyy) < I(SU{a};y) — I(S;y) (2.8)
0
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The analogous result for the degree approximation I of I given by INQ(S Y) =D ges LT y) —
in,xj cs I(xi;x5;y) (which is the function that the CIFE algorithm maximizes) is a little easier
to describe, since we ignore higher order interactions. We only need to assume that there is no

two-way synergy.

Proposition 2.9. If for all x;, x;, we have I (x;; z;;y) > 0, then the set function f : 2% — R given
by f(S) = ines I(zs;y) — mejes I(z; 253 y) is submodular.

Proof. Note that E(S U{z};y) — E(S;y) = I(z;y) — >_,,es L(z;2:5y). Because we have
assumed [ (z;; x;;y) > 0 forall z;, x;, we have f(T'U{z})— f(T) < f(SU{z})— f(S) whenever
SCT. O

2.5.3 Guarantees for Feature Selection

It is well known that /(-; y) and H(-) are non-decreasing set functions. We immediately have

the following corollaries.

Corollary 2.10. The greedy search algorithm to maximize H(S) over S C X with |S| < k for
some user-specified k yields a (1 — 1/e)-approximation (i.e., H(Sgeeay) > (1 — 1/€)H (Soptimar)-

Proof. Follows by Theorem 2.5 and Proposition 2.6. [

Corollary 2.11. If forall x ¢ T O S, we have I(T — S;x;y|S) > 0, then the greedy search
algorithm to maximize 1(S;y) over S C X with |S| < k for some user-specified k yields a
(1 — 1/e)-approximation (i.e., I(Sgreeay; ) > (1 — 1/€)I(Soptimat; ¥)-

Proof. Follows by Theorem 2.5 and Proposition 2.8. 0

Unfortunately, our approximations fg(, y) and H, of I (-;y) and H functions are not non-
decreasing, even though (-;y) and H themselves are. This leaves us with a slightly weaker result

for optimizing I, and E The following is a generalization of Theorem 2.5.

Theorem 2.12 ((INWF78]). Consider the maximization problem

arg max f(95).
SCX,|S|<k

If f is a submodular function and f(S U {z}) — f(S) > =0 forall S C X and x € X, we have

f(So> — f(Sg)
f(So) - f<@> + ko

1
S )
e
where S, is an optimal set and S, is the set found via a greedy search.
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Corollary 2.13. If Hy(SU{z}) — Hy(S) > —0 forall S C X and x € X, then the greedy solution

Sy C X to arg maxgc y |s|<k ./_H\;<S) relates to the optimal solution S, as follows:

~ ~ Hy(S,) + ko
(s.) - H(s,) < TR
Corollary 2.14. If I(x;; xj;y) > 0 for all x;,x; € X and L(SU {z};y) — L(S:y) > —0 for all
S C X and v € X, then the greedy solution S, C X (i.e., the output of the CIFE algorithm) to

arg maXgc v, s|<k 1,(S; y) relates to the optimal solution S, as follows:

I,(S,; ) + k0

e

I(Ss;y) — Ia(Sg;y) <

In practical terms, we can interpret corollary 2.14 as follows: if we know that shared redundancy
between any pair of features outweigh synergies and that our degree 2 approximation to mutual
information is monotone, then the greedy algorithm will output an 1 — %(z 0.632) approximation
(i.e., the score of the set returned by a greedy search will be at least 63.2% of the score of the
optimal set). If we know that the degree 2 approximation is not monotone but can bound how much

it might decrease by at any step, we can still recover a (weaker) guarantee.

2.6 Empirical Results

To assess the performance of mutual information methods in practice, we performed numerous
experiments with publicly available single cell RNA-seq datasets. For each of the datasets listed

below, we treat each cell as an observation and each gene as a feature.

* Paul dataset from [Pau+15] with 2730 mouse bone marrow cells and 3451 genes. Bone
marrow cells form a continuous trajectory rather than distinct clusters because many of the
cells are in the process of differentiating. The authors of the study assign class labels to cells

based on expression of known marker genes.

* Green dataset [Gre+18] with 34633 cells from adult mouse testis and 37241 genes. The cells

in dataset form a continuous trajectory, as should be expected for spermatogenesis.

* Zheng dataset from [Zhe+17] with 68579 human blood cells and 32738 genes. This dataset
consists of human blood cells that were clustered into distinct cell types. Zheng, et althen
used these clusters to isolate more cells based on these types to validate their computational

results.
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» Zeisel dataset [Zei+15] with 3005 mouse neuron cells and 19972 genes. Because neuron cells
lie in discrete clusters in gene space, we expect clustering and classification tasks to be easier
for this dataset. Further, Zeisel, et al. have carefully assigned labels to clusters and validated

their cluster labels as corresponding to known biology.

Recall that our goal is to find a small set of genes that explain the given target labels (e.g., cluster
labels or biologically verified cell type labels). To this end, we performed 5-fold cross validation by
splitting the datasets into 5 folds, and then, for each fold, we selected markers on the four remaining
folds, projected the data onto the selected features (i.e., only considered the columns of the matrix
that correspond to the selected genes), trained a classifier on the four folds, and predicted class
labels on the current fold. The feature selection methods that perform well are those that select
discriminative features that, together, help predict the class of an unseen observation. In other words,
feature selection methods with the lowest error rates choose genes that explain the class labels best.

We tested three mutual information based feature selection algorithms:

* the CIFE algorithm (which is equivalent to the degree 2 approximation presented in Section
24.1),

* the MIM algorithm (which is equivalent to the degree 1 approximation), and

1

Bk where

e the JMI algorithm (which dampens the redundancy penalty in CIFE by a factor of
S is the set of previously selected features).

For each dataset, we ran these algorithms in both a multi-class and binary fashion (see Section
2.7.2). For all information-theoretic algorithms, we began by selecting the 5000 most relevant
features (as found by the univariate MIM) before running bivariate algorithms (the run times in
Figure 2.6 includes the MIM run time). For binary versions, this univariate filter was run for each
class label separately.

We tested our algorithms with two different classifiers. Note that even for the datasets where
class labels were originally found using an (unsupervised) classifier (rather than biologically), and
we use supervised classifiers because we want to assess how informative the selected features are

about the class labels.

* a Nearest Centroids Classifier that computes the centroid (unweighted mean of vectors) for
each class label and to each unseen observation assigns the class label with the nearest centroid.
We ran our experiments with this classifier to evaluate performance with a transparent classifier
with minimal bells and whistles that can be easily implemented from scratch. Plots for

classification errors with Nearest Centroids are available in Section 2.6.3.
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(a) t-SNE Plot for Green Dataset using 10 features

(b) t-SNE Plot for Green Dataset using 10 features
selected by CIFE (multiclass)

selected by JMI (multiclass)

bod -
]
MR

(c) t-SNE Plot for Green Dataset using 11 features

(d) t-SNE Plot for Green Dataset using 11 features
selected by Logistic Regression

selected by t-test

(e) t-SNE Plot for Green Dataset using 11 features

(f) t-SNE Plot for Green Dataset using 11 features
selected by Wilcoxon Rank Sum

selected by CIFE (binary)

21



0.55

0.45 -

reclassification error

Figure 2.2: Classification Errors For Paul Dataset (left: multiclass MI methods, right:

methods)

| |
50 100 150

number of features

0.6 |

reclassification error

number of features

reclassification error

reclassification error

—— CIFE
Q IMI
\ —— MIM
-0~ t-test
\ -0~ ‘Wilcoxon
0‘45 = © = Logistic Regression
— ©- Random Forests
0.4
0.35
L T
- o
C_O ©
0.3
| | | |
0 50 100 150
number of features
binary MI
0.6 - —— CIFE
JMI
RN —o— MIM
Q 9 - o- t-test
\ N -0~ ‘Wilcoxon
Q \s - = © = Logistic Regression
LY ~G - - ©~= Random Forests
0.4}
0.2}
Q
- oy Os
o —e g %
(1= | | | | |
0 20 40 60 80 100 120

number of features

Figure 2.3: Classification Errors For Green Dataset (left: multiclass MI methods, right: binary MI

methods)

22



0.25

0.2

0.15

0.1

reclassification error

0.05

40 60 80
number of features

reclassification error

0.2

0.15

0.1

0.05

\ = ©= Random Forests

CIFE
JMI
MIM

+

—o—
- - t-test

- - ‘Wilcoxon
— ©~ Logistic Regression

40 60 80
number of features

Figure 2.4: Classification Errors For Zeisel Dataset (left: multiclass MI methods, right: binary MI

reclassification error

methods)
Q
[ 05 | \\
8 \
) S}
5 k
Z 04 %
< Q \
O
=
4
< 0.3 0%\
& 6-9
\e~~ A
(c3 _0-0_-0_‘9-—9__0
0.2 ! ! ! ! !
20 40 60 80 100

number of features

=
ot

0.4

<
o

0.2

AY -o-

CIFE

JMI

MIM

t-test
Wilcoxon
— ©- Logistic Regression
Q — ©- Random Forests

——

+
_O_

a o._
B0 Tso-

2 e S0 &568- 0 -0

¥whhe“0—o

| | | | |

20 40 60 80 100

number of features

Figure 2.5: Classification Errors For Zheng Dataset (left: multiclass MI methods, right: binary MI

methods)

23



Table 2.2: Number of Genes in Common between algorithms (Paul Dataset)

LogReg t-Test Wilcoxon RForest JMI MIM CIFE JMI(B) CIFE(B)
LogReg 24 18

t-Test
Wilcoxon
RForest
JMI
MIM
CIFE
JMI(B)
MIM(B)
CIFE(B)

MIM(B)

* a Random Forests Classifier that uses an ensemble of decision trees. We use the Scikit Learn
([Ped+11]) implementation, which has numerous tweaks to improve accuracy and reduce
overfitting. Although it is a more opaque classifier, the Random Forests Classifier does not
give each feature equal weight and will use new features only when they are helpful. This
aligns more closely with our motivation of finding an efficient set of features that are collective
informative about the class labels rather than features that, individually, distinguish classes

from one another.

We also tested against three differential expression algorithms (Z-test with overestimated vari-
ation, Wilcoxon Rank Sum, and Logistic Regression) for single cell RNA sequencing (using the
implementations in the widely used SCANPY package*, see [WAT18]). Since differential expression
algorithms take a One-vs-Rest approach, we combined the lists into a single list by taking the first &
genes (features) for each class label and removing duplicates.

Finally, since we are using a Random Forests classifier, we also evaluated Random Forests’
“feature importance” as a feature selection method. We should note that using Random Forests
for feature selection and comparing against other methods using Random Forests is not a fair
comparison, but we include it nonetheless for sake of comparison.

Figures 2.1a, 2.1b, 2.1c, 2.1d, 2.1e, 2.1f are t-SNE plots (the projection of the dataset onto the
top two principal components) for the Green dataset [Gre+18] generated using only a few genes.
The colors of each point represents its class label (cell type).

The error rates in 5-fold cross validation with random forests are summarized in Figures 2.2,
2.3, 2.5, and 2.4 (the corresponding figures for the nearest centroids classifier are Figures 2.8, 2.9,
2.10, and 2.11 in Section 2.6.3).

In addition to error rates, which suggest how well the algorithms select features that explain

“We used the latest developmental version (commit 80e635d2b78) available at the time as this revision fixed a bug
that prevented us from using scanpy during K -fold cross validation.
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Table 2.3: Number of Genes in Common between algorithms (Green Dataset)

LogReg t-Test

Wilcoxon RForest JMI MIM CIFE JMI(B) MIM(B) CIFE(B)
32 8 9 7 3 20
28 24 15 6 27
28 27

LogReg
t-Test
Wilcoxon
RForest
JMI
MIM
CIFE
JMI(B)
MIM(B)
CIFE(B)

Table 2.4: Number of Genes in Common between algorithms (Zeisel Dataset)

LogReg t-Test Wilcoxon RForest JMI MIM CIFE JMI(B) MIM(B) CIFE(B)
LogReg 29 21 4 23
t-Test 26
Wilcoxon ( 26
RForest 57 30
JMI 57 100
MIM 31
CIFE 2
JMI(B) 30
MIM(B) 20
CIFE(B) 06

Table 2.5: Number of Genes in Common between algorithms (Zheng Dataset)

LogReg t-Test Wilcoxon RForest JMI MIM CIFE JMI(B) MIM(B) CIFE(B)

LogReg 102 31 29 19 19 18 2 33 31 19
t-Test 31 94 ¢ 14 34
Wilcoxon 29 ¢ 108 ( 15
RForest 19 53 7 20
JMI 19 62 C 16
MIM 18 ! 62 7 g 14
CIFE 2
JMI(B) 33

MIM(B) 31
CIFE(B) 19
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Figure 2.6: Runtimes for various algorithms

class labels, we are also interested in knowing the extent to which these algorithm select the same
features. We summarize these intersections in Tables 2.2, 2.3, 2.4, and 2.5. Because binary methods
merge lists of features, we cannot ensure that all feature sets are of equal size. Therefore, not all
sets are exactly of size 100 features, but they are the smallest possible sets of size > 100.

In order to compare the run times for the various algorithms, we timed individual runs of each
algorithm on each dataset (without any cross-validation). The recorded times for bivariate methods
(the multiclass and binary variants of both CIFE and JMI) include the run time for the initial

univariate selection of 5000 features with MIM.

2.6.1 Discussion

On the datasets we have evaluated, the mutual information based methods seem to consistently
outperform differential expression methods when run as binary methods. However, when run as
multiclass methods, mutual information based methods perform better than differential expression
methods only on some datasets, e.g., the Green dataset (Figure 2.3) and the Zheng dataset (Figure
2.5), while differential expression methods far outperformed multiclass methods in other datasets,
e.g., the Paul dataset (Figure 2.2). It is worth noting that it is only on the Zheng dataset that
selecting features based on Random Forests’ feature importances is significantly better than other
methods. We would also add that Figures 2.1a, 2.1b, 2.1c, 2.1d, and 2.1e demonstrate the strength of
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multiclass information theoretic methods on the Green dataset, but as we see by comparing Figure
2.3 to Figure 2.2, we don’t expect this to be the case on all datasets.

Tables 2.2, 2.3, 2.5, and 2.4 suggest that many binary methods choose many of the same features.
The notable exceptions are logistic regression and the binary CIFE method, both of which have
moderate overlaps with other methods, but still select numerous features that other methods do not.
The multiclass CIFE algorithm has, by far, the most distinct feature sets. This proves to be both
a source of strength and weakness as the classification errors associated to these feature sets are
sometimes very poor (e.g., in the Paul dataset, Figure 2.2, and, to a much milder extent, the Zheng
dataset, Figure 2.5) but sometimes very competitive (e.g., in the Green dataset, Figure 2.3, and in
the Zeisel dataset, Figure 2.4). This suggests that in some cases, CIFE can be used to discover novel
markers genes for cell types and/or cell states in scCRNA-seq.

The run times for information-theoretic algorithms, as demonstrated by Figure 2.6, are compara-
ble to their differential expression counterparts. Specifically, the univariate MIM is almost always
the fastest and the bivariate CIFE and JMI have similar run times to logistic regression.

Finally, we consider the assumptions we made to give our theoretical guarantees in Section
2.5 and examine how close these datasets are to satisfying those assumptions. One of the most
significant assumption we made (e.g., in Corollary 2.14) is that I (x;; x;;y) > 0 for all x;, z; € X.
In Figure 2.7, we see that although the hypothesis don’t hold perfectly on any dataset, they hold
best on the Green dataset (where CIFE seems to perform best, see Figure 2.3) and worst on the Paul

dataset (where CIFE seems to perform the worst, see Figure 2.2).

2.6.2 Experimental Setup

Our benchmarking process relied heavily on SCANPY, a widely used package for single cell anal-
ysis in Python, and PICTUREDROCKS, a software package that we developed. PICTUREDROCKS is
a Python package that can perform information-theoretic feature selection and also contains tools
to benchmark feature selection methods via k-fold cross-validation. PICTUREDROCKS includes a
interactive user interface for feature selection that can allows researchers to incorporate domain
knowledge in the process of feature selection. All the code to reproduce our benchmarking study
can also be found on GitHub.

There are numerous possible pitfalls when evaluating the ability of a feature selection method to
select informative features. We refer the reader to the excellent section on “The Wrong and Right
Way to do Cross-validation” in [HTF13, Section 7.10.2]. In particular, we highlight the following:

» Cross-validation is effective at estimating the generalization error rather than the test error,

which is susceptible to artificially being suppressed due to overfitting.

* It is extremely important to ensure that at no point does any data “leak’ between folds. For
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Figure 2.7: Histogram of I (x;; z;;y) values for various datasets.
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example, as explained in [HTF13], it is not fair to evaluate a feature selection method by first

selecting features on the entire dataset and then report the cross-validation error. Even though

the classifier used to predict labels for each fold was not trained on that fold, the feature

selection algorithm had access to data from all folds.

In order to avoid such pitfalls, we performed our benchmarking in the following manner:

1. Split the dataset into 5 folds

2. Foreachfold k =1,...,5:

(a)

(b)

©

use all samples not in fold £ to select n features; repeat for each feature selection
algorithm and store results separately

Remark 1: For binary feature selection methods (such as t-test, Wilcoxon Rank Sum,
Logistic Regression, and when any of the information-theoretic methods are forcibly run
as binary methods), this means running the algorithm for each class label and combining
the top [n/c| features from each class label, where c¢ is the number of classes. Remove
duplicates. Keep track of the number of features selected, since this may not be exactly
n.

Remark 2: the bivariate methods (CIFE and JMI) can slow down considerably in
situations when we are selecting many features and there are many candidate features
(specifically there is a O(np) term in the time complexity of these methods). To avoid
these prohibitively slow run times, we use a univariate method (MIM) to select 5000

features and then use the bivariate method to select among those 5000 features

train a Random Forests classifier and a Nearest Centroids classifier on all samples not in
fold k£ with only the n (or possibly a few more) features selected; repeat for each feature

selection algorithm

use both classifiers to predict labels for samples in fold & and store the predictions of

each classifier separately; repeat for each feature selection algorithm

3. for each feature selection algorithm and classifier combination:

(a)
(b)

compute the error rate of the predictions as #(wrongly classified) /# (samples).

for binary methods where the number of features may not be exactly n, record the

number of features used as the average number of features used for each fold

For t-test, Wilcoxon Rank Sum, and Logistic Regression feature selection methods we used

the standard implementation in SCANPY. As part of the feature selection subroutines, we perform

basic preprocessing (as this happens on a copy of the data, it does not affect the data used for
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classification): normalize per cell followed by 1oglp. These methods scale the counts
matrix so that each cell’s counts sum to the same number (this is usually chosen to the median
count prior to scaling) and then apply the z — log(1 + ) transformation element-wise. For the
information-theoretic methods, we use the recursive quantile transformation (with 5 bins) before
running the methods, see Section 2.7.1.

At the classification step, we used the Random Forests classifier from the Scikit-learn pack-
age[Ped+11] with 100 estimators. As a preprocessing step, we scaled the data so that the sum of
counts for each cells was 1000 (this is arbitrary but had to be chosen in order to standardize the
preprocessing between training and testing) and then applied the = — log(1 + x) transformation.
For the Nearest Centroids classifier, we applied the = — log(1 + x) transformation, projected onto
the top 30 principal components of the training data (as euclidean distances become less meaningful
in high dimensions), and the mapped each training point to the class with the nearest centroid in the
training data.

When generating Figure 2.6 and Tables 2.2, 2.3, 2.4, 2.5, we performed the preprocessing for
feature selection algorithms listed above and ran the algorithms on the entire dataset rather than use
cross validation as these figures are not meant to estimate generalizability. Figures 2.1a, 2.1b, 2.1c,
2.1d, 2.1e, and 2.1f were also generated with these feature sets using the ¢t-SNE implementation in
Scikit-Learn [Ped+11].

2.6.3 Classification Errors with Nearest Centroids

In this section, we present classification error rate figures when we use nearest centroids, instead
of random forests, to classify points after feature selection. In general, the error rates are higher
when we classify with nearest centroids rather than random forests. Moreover, this different is more
noticeable with information-theoretic algorithms (particularly CIFE) as random forests can treat
features as new information (and therefore benefit from non-redundant features, even when they
have weaker signal) while nearest centroids weighs every feature equally (which leads to worse

performance when noisy features are added). See Figures 2.8, 2.9, 2.10, and 2.11.

2.7 Practical Implementation Issues

There are numerous issues that arise in the implementation of the information-theoretic algo-
rithms in this chapter. These issues warrant further discussion as they have a significant impact on
the output of these algorithms. We present our approach to addressing these issues in this section.
Optimizations that improve runtime but do not affect the output of the algorithm are presented in
Section 2.8.
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2.7.1 Binning Technique

All our discussion thus far has assumed that the x;’s are discrete random variables. When

working with continuous data, it is common to discretize the data prior to running information

theoretic methods. Although the datasets we have used are inherently discrete (with entries in Z>),

there is a need to limit the number of values that entries can take. To understand why this is so

important, suppose that the z;’s take integer values from O to k£ — 1. In order to empirically compute

I(z;;z;;y), we need to approximate P(z;, z;,y). Without any additional assumptions on the joint

probability distribution, we are left to approximate this distribution by counting occurrences of each
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possible combination, of which there are k3. If our dataset has n observations, we need n > k3
to have a reasonable approximation of /(z;;z;;y). It is also important not to collapse too many
values together as that would result in very poor resolution stifling our ability to observe significant
differences. We recommend targeting & = 5 discrete values as a reasonable default.

The process of choosing bins has a surprisingly large impact on the performance of information-
theoretic algorithms. For single cell RNA-sequencing, we propose a recursive quantile transforma-
tion that adjusts for the sparsity of the data. To motivate the need for our modification to the usual

quantile transform, suppose we would like £ = 5 bins for each feature. Because scRNA-seq datasets
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3
9 5 b
%—th quantiles could all be 0. This leaves us with only two meaningful bins. To avoid this problem,

have a large number of zero entries (in some cases > 90% of entries are zero), the %—th, %—th and
we recommend a recursive strategy described in Algorithm 2 for selecting right endpoints for £ bins.
On our experiments, we perform this transformation on each feature individually to account for the

different distributions of values across features.

Algorithm 2 Recursive-quantile transform
1: procedure QUANTBINS(C, k)
2 if £ <1 then
3 return (max C)

4: end if

5: q <+ %—th quantile of C'

6

7

8:

C'+—{ceC|c>q}
return concatenate((q, ), QuantBins(C’, k — 1))
end procedure

2.7.2 Multiclass vs Binary Feature Selection Methods

The mutual information based feature selection methods are approximations of

arg max [ (S;y).
|S|<n
Unlike many of the differential expression methods, the mutual information based algorithms allow
for y to take more than two values (i.e., they are multiclass rather than binary methods). This, in
theory, allows us to select features at once, rather than having to select them for every class label
(one-vs-rest) or every pair of class labels (one-vs-one).

However, as we mentioned in Section 2.6, it is also possible to run these algorithms as binary
methods by letting ¢, = 1,—, and treating ¥, as the class labels. This gives us the opportunity both
to compare binary differential expression methods to binary mutual information based methods and
to evaluate strengths and weaknesses of multiclass methods vis-a-vis binary methods.

We saw that for almost all datasets (the only exception being the Zheng dataset for a small
number of markers), turning the mutual information based methods into binary methods led to a
significant improvement in performance. We describe some possible ways in which these differences
in performance can be explained. Note that unlike in Section 2.3, this is not an exhaustive list of
shortcomings. Instead, these examples demonstrate ways in which these approaches differ.

Sometimes features can be informative about multiple target labels. Unless the feature selection
algorithm used is inherently multi-class, we cannot detect features that may have a weak signal

about any particular target label but a strong signal that helps discern between sets of target labels.
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Example 6. Let by, by be random variables chosen from {0, 1} independently with uniform probabil-
ity. Lety = biby and let z; = Li—(p,1,),,, fori € {0, 1, ..., 3}. Here the subscript (b) denotes that
we are looking at the binary representation of the number. For example,

1 ifby=1,b0=0
Ty = .
0 otherwise

Finally, let x4, = b; and x5 = bs.

It is easy to see now that I(x4;y) = 1 = I(zs5;y). However, for ¢ < 3 we have I(x;;y) =
1log(4) 4 2log(3) ~ 0.811. That is to say, multiclass methods will correctly identify x, and x5 as
being very informative about y.

On the other hand, if our class labels were binary, for i < 3 we have I(z;;7;) = }llogél +
3log 3 ~ 0.811. However, I(z4;%;) = H(x4) + H(7i) — H(za%i) = 1+ (3log4+ 3log3) —
(2 1og(2) + $1og(4)) ~ 0.311. A binary method would therefore choose o, . . . , x5 before 4 and

Is5.

It must be noted that if we run a binary method on the example above, we will eventually
choose {xg, x1, T2, r3}, which, together, are as informative as {z4, x5 }. The following modification

demonstrates a situation in which this is not true.

Example 7. Let ¢y, ca, ... be independent Bernoulli trials with probability p for some constant
p € [0, %] (these will introduce noise in xg, z1, 22, x3). In other words, P(¢; = 1) = p and
P(c; = 0) = 1 — p. Now follow the previous example, except let x; = ¢; ® Lim(baba) gy TOT
i€{0,1,...,3}. Recall @ is the XOR operator: a ®b=aifb=0and a b= —aifb= 1.

It is clear that for small values of p, a binary method will still choose {x¢, z1, 22, x3} instead
of {z4, x5}, even though y is a deterministic function of x4 and x5 but not of zy, ..., z3. With a
sufficiently large value of p (i.e., where there is enough noise in xy, . .., x3), even a binary method

will choose x4 and x5

Recall that objectives like CIFE and JMI only consider low-degree interactions between features.
Therefore, it is easy to under/over-estimate redundancies. By measuring relevance (I (x;; y) term)
and redundancies (I (z;; z;; y) terms) only in the context of a specific class label, binary methods
are less vulnerable to accumulating errors in approximations.

We demonstrate this idea with two example. In the first example, we consider a univariate
feature selection method (e.g., MIM) that does not penalize any redundancy (i.e., it underestimates
redundancy) and outline a case where the binary version outperforms the multiclass version. In
the second example, we demonstrate a situation in which a bivariate feature selection method (e.g.,
CIFE) overpenalizes redundancy in the multiclass version and the binary version yields a better
selection of features.
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Example 8. Let by, by, by be random variables chosen from {0, 1} independently with uniform
probability. Let y = bibsbs and let ¢; = Li—(p,p504),, for ¢ € {0,1,...,7}. We will use the
t;’s to define features. Let x; = tot1tat; fori € {3,...,7}. Let xg = tyt5 and xg = tgt7. A
univariate multiclass method (e.g., MIM) will associate a higher score to z3, ..., x7 because they are
individually more informative about y than xg and 9. However, a binary method (when considering
the class label y = 100 or y = 101) will assign the same scores to xg, x4, and x5. Similarly, it would
assign the same scores to xg, x4, and x7 when considering y = 110 and y = 111). To construct an
example where the binary method will definitely pick xg and x¢ while the multiclass method won'’t,

we can add noise (as in Example 7) to features xs, ..., x7.

In the previous example, we saw how binary methods, in searching for information specific to
individual class labels, are able to avoid traps of redundant information. We now demonstrate an

example in which binary methods avoid overpenalizing redundancy.

Example 9. Let by, by be random variables chosen from {0, 1} independently with uniform prob-
ability. Let ¢y, 3 be independent Bernoulli trials with probability p € [0, 1]. Let y = b1b, and

let t; = Li—b,5,),, fori € {0,1,...,3}. We will use the ¢;’s to define features. Let z1 = tt;1o,

b
To = totits, T3 :()tQ @B ¢y, and x4 = t3 B c3.

If we use a bivariate multiclass method (e.g., CIFE), without loss of generality we select z; at
the first iteration (analogous argument if we selected x5 first). Because [ (zo; x1;y) is significant,
the penalty on x5 (with CIFE, say) would be large enough that we would pick z, instead of z-,

which is more informative. The binary version of CIFE would not have this problem.

We posit that the Paul dataset, with its high cluster resolution (numerous clusters that cannot be
separated easily) resembles Example 9 and believe that this (at least partially) explains the stark
contrast in the reclassification accuracy between the multiclass and binary algorithms (especially
CIFE).

2.8 Efficient Algorithms

2.8.1 Computing Entropy for Sparse Matrices

In this section, we outline a fast computation of entropy for sparse matrices. As a result of
Proposition 2.1, this algorithm can be used to efficiently compute various information-theoretic
objective functions for feature selection (especially low-dimension approximations, such as CIFE
and JMI). In this section, we will use zero-indexing rather than one-indexing (i.e., the first element
of an array A is A[0]).

Compressed Sparse Column (CSC) is a sparse matrix format that is optimized for column
operations (e.g., slicing by columns, iterating over non-zero entries in a given column, etc.). It is

defined as follows. For an n x m matrix M, the CSC format stores three arrays:
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» X, the values of the non-zero entries stored in column major order.
* R, the row index of the non-zero entries in X (i.e., X and R have the same length).

* C, an array of length m + 1 where C[j + 1] — C[j] is the number of non-zero entries in

column j and C[0] = 0.

In other words, for any s such that C[j] < s < C[j + 1], we have Xs] is the value of a non-zero
entry in row R][s] and column j.

Assume all values in X come from {0, 1,--- ,k — 1} (i.e., there are k distinct values in X). To
efficiently compute the (empirical) entropy of an individual column j of an n X m matrix M, we
follow Algorithm 3.

Algorithm 3 Entropy of a Single Column
1: procedure ENTROPY(M = (X, R, (), j)
2 counts <— array (length k)
3 counts[0] < n
4. for C[j] <s < C[j+ 1] do
5: counts[0] < counts[0] - 1
6
7
8
9

counts[X[s]] < counts[X][s]] + 1
end for
H<+0
: for nonzero ¢ in counts do
10: H <+ H + (£)logy(£)
11: end for
12 return H
13: end procedure

We often need to compute the entropy of two or more columns. A trivial way to overcome this
problem is to combine multiple columns into one column. One way to combine 7 columns is to
write each entry as an r-tuple. This combined column will retain the sparse structure as the non-zero
entries will correspond to rows in which at least one entry was non-zero.’

However, the process of computing the tuple representation of multiple columns can sometimes

be repetitive. For example, to compute

arg max [ (i3 2,5 Tjp; - -+ 5 5,),
x;
we need to compute H (z;;xj,;%,,;- - ;x;,) for all z; € X. In such cases, it make sense to
precompute the tuple representation of z;,, ..., z;,.
3In practice, is can be faster to represent (ag, a1, - ,a,_1) as ag+ark+---+a,_1 k"' where k = max;(a;) +1,

but we will avoid this conversion for the sake of readability. See our source code for such an implementation.
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However, in most cases, the column of class labels y tends not to be a sparse column. Combining
y into the tuple representation means that most entries in the column become non-zero. This voids
the benefits of exploiting the sparse structure of M. We can address these concerns by precomputing
some information and vectorizing the entropy computation as in Algorithm 4. The ENTROPYWRT
(“entropy with respect to”) takes a list of columns (z;,,xj,, -, ,y) and returns the vector
(H (x5, - - xj,y)|ir, . Pseudocode for ENTROPYWRT when the y column is not in the list of
columns can be written with a trivial modification to Algorithm 4. Here we assume ¥ has entries in

07 ]-7 ooy Nabels — 1.

Algorithm 4 Entropy of Multiple Columns (all but one fixed)

1: procedure ENTROPYWRT(M = (X, R, C), j1, J2s --+» Jrs Y )
2: H < zero-filled array (length m)

3 P < sparse tuple representation of [M;;] e}

4: ycounts <— array (length napers)

5: for yval in y do
6

7

8

9

increment ycounts[yval]
end for
for0 <j <mdo
counts <— Map: (r + 2)-tuples — Zx

10: for 0 < yval < Niabels O

11: counts[(yval, 0, ..., 0)] < ycounts[yval]

12: end for

13: curind < 0

14: coljindices <— where (j # 0)

15: colPindices < where (P # 0)

16: while exists x € colPindices U coljindices, x > curind do
17: curind <— min { x : = € colPindices U coljindices, = > curind }
18: decrement counts[(y[curind], O, ..., 0)]

19: increment counts[(y[curind], P[curind], M[curind, 7])]
20: end while

21: for c in counts, ¢ > 0 do

»: HIj) + Hj) + (£) logy(£)

23: end for

24: end for

25: return A

26: end procedure

The time complexity of ENTROPYWRT is O(n + mp + q + mk™ ') where p is the number of
rows with non-zero entries in columns ji, jo, ..., j,, and ¢ is the number of non-zero entries in
M. Typically, ENTROPYWRT will be called numerous times, in which case ycounts should be
precomputed once, rather than on each call to ENTROPYWRT. In this case, the time complexity
is O(mp + ¢ + mk™1). Also note that when we use ENTROPYWRT, we will typically fix &
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beforehand (depending of discretization strategy) to be about 5. For CIFE and JMI algorithms, we
have » = 2 because we will only ever compute the joint entropy of three columns or less. In these

cases, the time complexity is O(mp + q).

2.8.2 Efficient Optimization of CIFE and JMI

The CIFE and JMI algorithms compute arg max, ¢ J(z;) at each iteration. If done naively,
computing .J(z;) can take longer as S grows because Jeire(2:) = I(2i3y) — 32, e5 L (25255 y) and
Jimi(2;) = I(2i5y) — ﬁ ijes I(z;; x5 y) have |S| 4 1 terms. The computational complexity to
select ¢ features is O(mt? f) where f is the time to compute /(z;; z;;y) and is a function of n, k,
and sparsity parameters of columns in X. A minor modification to vectorize this process can lower

the complexity to O(mt f), as shown in Algorithm 5.

Algorithm 5 Vectorization of CIFE/IMI

1: procedure FEATURESELECTION(X, t, method)
2: S0

m—1

3: basescore < [I(z;;y)]7%,
4: penalty <— zero-filled vector (length m)
5: score <— basescore
6: for0 < /< tdo
7: § <— arg max,g¢ g scorefi]
8: penalty < penalty + [ (z; z;; y)]?";_ol
9: if method = “CIFE” then
10: score <— basescore — penalty
11: else if method = “JMI” then
12: score <— basescore —ﬁ penalty
13: end if
14: end for

15: end procedure

Note that I (z,; z;;y) = I(z;;y) + H(xs) — H(zs, x;) — H(zs,y) + H(zs, x;,y). Since I(x;;y)
was computed as basescore, and H (z,) — H(z4;y) is constant with respect to j, the only two
calls to ENTROPYWRT are for H(z,, ;) and H (x5, x;,y).

Under certain conditions, this process can be made even faster with a strategy adapted from the
fast algorithm for CMIM in [Fle0O4]. In the aforementioned paper, the authors propose a objective
function that can be rewritten as Jemim(2:) = 1 (74 y) —max,,es I(2;; z;; y). They improve the effi-
ciency of the naive algorithm by updating Jemim(;) (i-e., checking if the penalty term has increased
since more features were selected into S) only J(z;) > J(z;) for all j < i. This prevents some un-
necessary evaluations of I(z;; z;; y). This trick hinges on the monotonicity of max, e (7 753 y)

with respect to S. In our case > x; € SI(z;;2;;y) is monotone if I(x;; x;;y) > 0. If we do make
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this assumption (as we did in Proposition 2.9), we could make a similar optimization. In fact, we

believe such an optimization would be best implemented using a priority queue.

2.9 Problems with mRMR

A false theorem in [PLDOS5, §2.3] states that maximizing the mRMR objective in a greedy
search is “equivalent” to maximizing the CMI objective in a greedy search. We believe that the
most reasonable interpretation of “equivalent” is that given the same input, the two algorithms will
return the same output. In this case, their claim (and the proof thereof) is incorrect. We have already
seen in Examples 1 and 2 cases where the mRMR objective makes different choices than the CMI
objective. To understand why these examples are counterexamples to the claim in [PLDO5], we
walk through their proof.

For notational convenience, we let X be the set of all features, S = .S,,,_; be the set of m — 1
features selected after m — 1 steps, D(x;) = I(x;;y) be the relevance of feature x; and R(x;) =
|—é| >_u,¢s 1(wi; 2;) be the redundancy of feature x;. They definite a quantity J : P(X) — R and
show that 1(S,,—1 U{z;};y) = J(Sm-1, i, y) — J(Sm—1, ;). Fixing S,,_1, they then show that
the first term, J(S,,—1, x;, y), is maximized when D(z;) = I(x;;y) is maximized, and the second

term, J(S,,—1, x;) is minimized when R(z;) = ﬁ > ;g5 1 (x5 2;) is minimized. They then falsely
conclude that

arg max I(S,,—1 U{x;};y) = arg max D(x;) — R(x;). (2.9)
Ii¢57n71 Iz‘¢5m—1

2.10 PicturedRocks: Information-Theoretic Feature Selection Software for Single Cell

RNA-Sequencing

As part of the work in this chapter of the dissertation, I developed PicturedRocks, a Python
package with efficient implementations of the algorithms in this chapter. PicturedRocks allows users
to import data using the widely-used ScanPy package [WAT 18] and perform various information-
theoretic feature selection algorithms. In addition to implementing CIFE, JMI, and MIM, it also
supports the degree 1 and degree 2 approximations to unsupervised feature selection as described in
Section 2.4.2. PicturedRocks can compute empirical entropy over columns of sparse matrix natively,
which significantly reduces the runtime and memory usage.

PicturedRocks also features an interactive marker selection user interface that allows biologists
to use domain knowledge to select markers in a data-informed (rather than data-driven) manner.
The user interface (see Figure 2.12) presents the user with candidate genes that they can add to their
current selection of genes, updating the candidate genes after every change to the current selection

of genes. A visualization of various statistics about candidate genes are available at each step. This
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Figure 2.12: A screenshot of the PicturedRocks Interactive Marker Selection tool on the Paul
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Figure 2.13: A screenshot of the “Violin Plots™ tab of the PicturedRocks Interactive Marker Selection
tool on the Paul dataset.
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allows biologists not only to understand the algorithm more intuitively but to overrule the decisions
at various steps (for example, to select a biologically verified marker gene over a correlated gene)
but continue to use the results of the algorithms. The interactive tool is modular and users may add
their own visualization tools to the interface (see for example the violin plot in Figure 2.13).

To help perform many of the benchmarking experiments in this chapter, PicturedRocks has a
variety of tools for evaluating feature selection methods using cross-validation. These include tools
that store and recover folds for k-fold cross-validation, select markers for each fold, and train a
classifier and classify points using the markers selected. In addition to automating this process,
these tools can serialize output at various stages of the process which allows users to parallelize
parts of this experiment through multiple jobs on an high performance computing (HPC) cluster.

Software packages such as PicturedRocks written for niche audiences often suffer from repro-
ducibility problems especially because of dependency and compatibility issues. I have taken the

following steps to minimize the extent to which these issues affect PicturedRocks.

* To allow researchers anywhere to reproduce the results in this chapter, I have made a “Docker”
image® with PicturedRocks installed. It includes code that downloads the datasets in Section
2.6, performs all preprocessing steps, and runs the various analyses in Section 2.6. I have also

made the code for these analyses directly available’.

* To ensure that every dependency is explicitly stated, that PicturedRocks remains compatible
with its dependencies as they change, and that core features of PicturedRocks are regularly
tested, I have used a continuous integration tool® that regularly builds PicturedRocks, install

dependencies, and runs unit tests in a minimal environment.

* PicturedRocks is extensively documented’ with instructions for installing, an API reference,

and a tutorial on using PicturedRocks for feature selection.

2.11 Conclusion

The opportunity presented by single cell RNA-sequencing also poses challenges in its analysis.
While traditional differential expression reveal meaningful information about the data, we believe
that a multiplicity of feature selection techniques allows researchers to discover novel marker genes.
Specifically, we believe that information-theoretic feature selection algorithms can detect marker
genes that may otherwise be obscured by interactions with other genes or distributional assumptions

of statistical tests.

Shttps://hub.docker.com/r/umangv/picturedrocksbenchmarks
"https://github.com/umangv/picturedrocksbenchmarks/
dhttps://travis-ci.com/umangv/picturedrocks
https://picturedrocks.readthedocs.io/en/latest/
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We do not expect (in fact, we believe it is unrealistic to hope) that a single marker selection
technique is appropriate for all purposes and datasets. The algorithms in this chapter (especially
CIFE) have proven to select sets of genes that are very distinct from those selected by traditional
differential expression methods. In most cases the reclassification accuracy when restricting datasets
to the chosen genes was comparable between information-theoretic algorithms and traditional
differential expression algorithms and in some cases information-theoretic algorithms performed
considerably better.

The reader will likely have noted that there are numerous possible combinations of configurations
and versions of these algorithms to choose from. We attempt to summarize these options in the

form of suggestions below.

* MIM is a univariate algorithm. Because it does not consider interactions between genes, it
yields somewhat similar results to traditional differential expression algorithms, especially
when run as a binary method rather than a multiclass method. As a multiclass method, it is
particularly susceptible to selecting features with a strong signal without any consideration of
how informative those features are together or what class labels they are informative about.
Therefore, the output of MIM is more meaningful and easier to interpret when it is run as a

binary method.

* CIFE is a bivariate algorithm that aggressively penalizes redundancy. When used as a
multiclass method, it is particularly strong at identifying a small set of informative genes (in

our examples, CIFE often far outperformed other algorithms when selecting 10 to 30 genes).

CIFE’s ability to consider interactions allows it to pick genes that may not be as informative in
isolation but are informative in the context of other selected genes. However, when selecting a
large number of genes, the interactions (particularly redundancies) overwhelm the algorithm
and it eventually picks very uninformative features. This is especially true when individual
genes have information about numerous class labels (for example, when there are many class

labels in the dataset; see Example 9).

If we need a larger set of genes or want marker genes for specific class labels, we recommend
using CIFE as a binary feature selection method. Running the algorithm as a binary method

ensures that the number of features chosen per class label remains relatively low.

* JMI is a bivariate algorithm that acts as an intermediate between CIFE and MIM. As the
algorithm selects more features, it dampens the impact of interactions resulting, eventually,
in a convergence in behavior between JMI and MIM. As a consequence of this damping, it
is unlikely to unearth informative features hidden behind interactions as CIFE can nor does

its output reflect the strength of the signal of features in isolation. The damping in JMI is a
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heuristic that is not justified theoretically and should be used cautiously. However, empirical
results show that its performance is consistently decent and avoids the occasional extreme

poor performance of CIFE.

In all of these cases, we strongly recommend using the recursive quantile transform we describe
in Section 2.7.1 to discretize datasets.

Used in conjunction with traditional differential expression methods, the information-theoretic
algorithms in this chapter have the potential to discover novel marker genes that reveal information
that otherwise be lost on differential expression algorithms that prioritize signal strength of genes
over new information. Future directions include more sophisticated analysis and benchmarking of

unsupervised feature selection methods for single cell RNA-sequencing.
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CHAPTER 3

Ranking from Pairwise Comparisons

3.1 Introduction

Rank aggregation is the problem of determining an ordering or preference scores for n items
based on various kinds of comparison data. Learning such rankings has applications in sport ranking
[ES08], web search [Dwo+01], and social sciences [KS40], [Thu45]. Often these comparisons are
pairwise comparisons: for example, in a league of n sports teams that play total of 7 games and in
the k-th game, which is between ¢;, and j;, one of the two is judged the winner. Alternatively, we
may wish to understand user preferences and display a pair of items on a website and record which
item the user click on. When gathering user feedback on 7 items, it is helpful to present comparisons
pairwise as opposed to asking for scores on individual items as standards’ for assigning scores vary
from user to user and can shift over time, especially with exposure to more items. In both of these
examples, we should not expect our observations (pairwise comparisons) to be self-consistent (for
example item ¢ may beat item j only a fraction of the time, or in some cases, the probability that
7 beats j and that j beats ¢ are both greater than % but the probability that 7 beats ¢ may not be),
but we still believe that asking to rank these items is a meaningful question. There are numerous
frameworks in the literature that account for this lack of consistency. For a survey on some of the
most prominent frameworks, we refer the reader to [RA14].

A variant of this problem also falls under the category of active learning (for example, the
extreme case when the outcome of each observation is completely deterministic and 7 beats j in an
observation if and only if ¢ should be ranked higher than j can be handled by traditional sorting
algorithms where the algorithm can choose which pairs are compared). While it is conceivable that
active learning approaches [JN11] to this problem could perform better than non-adaptive algorithms
that do not influence the choice of pairs that are compared, there is little evidence that active learning
algorithms can significantly outperform non-adaptive algorithms in practice [Kat+18].

The contributions of this work fall under three broad categories.

1. We analyze the RankCentrality algorithm [NOS16] under a natural sampling scheme con-
sidered by [RA14] and improve their sample complexity upper bounds from O(n°logn) to
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O(nlogn) using proofs that are significantly simpler that those in [NOS16] and [RA14].

2. We introduce a A-regularized RankCentrality algorithm that, unlike unregularized RankCen-
trality, is capable of returning non-trivial output even when the number of observations is
very small. Our theoretical analysis of this algorithm relies on our proofs of convergence for
RankCentrality.

3. We propose similarity-based regularization for RankCentrality that can leverage features
and similarity information to impute pairwise comparisons and vastly improve the predicted
ranking when the number of pairwise comparisons is small. We give empirical evidence that
similarity-based regularization can outperform SVM and Siamese Networks for certain kinds

of datasets.

One framework of particular interest to us is the Bradley-Terry-Luce (BTL) model, which
assumes that each item ¢ has a positive score w; and the probability that j is preferred to ¢ (“‘; beats
7”’) in a comparison 1s

Wy

Pj:=Pli<j)= 3.1

(here < isn’t comparing ¢ and j as integers, rather refers to the event that j is preferred to 7 in an
individual observation). In this chapter, we propose algorithms to approximate w (and hence a linear
ordering on the n items) from a set of pairwise comparisons. We analyze an unbiased estimator,
RankCentrality (modified slightly from the literature), and present a novel approach to regularizing
RankCentrality that addresses a major problem practitioners will encounter when the number of
pairwise comparisons is small relative to the number of items. In addition to giving a bias-variance
trade-off for the latter algorithm (which we call A-regularized RankCentrality), we also demonstrate
the power of our regularization technique that allows for creative ways to regularize RankCentrality
when other information (such as features for the n items being compared) is available.

There are multiple methods to learn w given pairwise comparisons (i1, j1,41)s - - - » (ims Jm, Ym)»
where the 3-tuple (i, jk, yx) denotes that the k-th comparison was between items 7, and j;, and
yr = 0 denotes that ¢;, was preferred in this observation, whereas y;, = 1 denotes that j; was

preferred. Because w;’s are all positive, we often write v; = In(w;) and

evs 1

evi + evi o 1 + evi—vj :

P(i<j)=

An obvious approach, if we assume the BTL model, is to maximize (log-)likelihood. Specifically,

solve

k k
1
arg max E log ( ) = arg max E log expit (y;ﬁvT(ejk — eik)) . (3.2)
i—1 i=1

" (0s —v;
vER™ 1 + e¥k (i =vik) vER™

46



Here y}, := 2y, — 1 is used to ensure that y;, takes values in {1, —1}. We have now reduced this to
logistic regression where each observation (i, ji, yi) is represented as e;, — e, (here {e;}!"; is the
elementary basis on R"™). The target label in this case is y; (but can be 1 — g, if we represent the
input instead as e;, — e;,).

Another method, RankCentrality, originally proposed by Negahban, et al. in [NOS16], learns the
ranking as the stationary distribution of a Markov chain. Let ]5” be the proportion of comparisons
between ¢ and j in which ;7 was preferred to ¢ (if there are no comparisons between ¢ and j, we
let Pij — 0). We call P the empirical comparison matrix and distinguish it from P, the pairwise
preference matrix (defined in (3.1) above). Now construct a directed weighted graph G with vertices
{1,...,n}. If i and j were compared (equivalently, if I%j + 15]Z = 1) then add an edge from ¢ to j
with weight P and an edge from j to ¢ with weight Pﬂ Let d,,.x be the maximum out-degree of a

node on G. Finally, we definite the time-invariant transition matrix for the Markov chain as

~

1 . . .
ANOS _ dmax Pij if i 7é J (3 3)
1] 1 P . ’
1_21@&10{ Pu ifi = j.

max

(The second case ensures row-stochasticity of QNOS). We will use QNOS to denote Negahban, Oh,
and Shah’s construction of the transition matrix in order to disambiguate between the different
constructions of the transition matrix that we will present in this chapter. The RankCentrality
estimator is 7, the unique stationary distribution of this Markov chain, provided this exists. In
[NOS16], Negahban, et. al. prove that as the number of pairwise comparisons increase, the vector

approaches the vector of BTL scores w (appropriately scaled).

Algorithm 6 RankCentrality algorithm

1: procedure RANKCENTRALITY(n, S = {(ix, Jk, Yk )k })

compute Q) as in (3.5) (for [NOS16] compute QNOS as in (3.3), for [RA14] compute QR4
as in (3 4))
3 if Q defines an ergodic (irreducible and aperiodic) Markov chain then
4 return leading left eigenvector of Q (i.e., unique stationary distribution of Q)
5: else
6
7
8

»

return uniform distribution [1/n|,
end if
: end procedure

After the original paper on RankCentrality by Negahban, et. al. [NOS16], Rajkumar and Agarwal
[RA14] proved convergence of a modified version of this algorithm under a different sampling
scheme. In the following paragraphs, we explain the differences in how they observe pairwise
comparisons and in their algorithms. We will also highlight where both their approaches fall short
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and present various improvements to the RankCentrality algorithm.

Negahban, et. al. [NOS16] assume that pairwise comparisons are observed by constructing an
Erd6s—Rényi graph on n vertices and for each edge (pair) observing k£ comparisons. This involves
fixing a constant p € [0, 1], the probability that an edge (pair) is included in the graph independent
of all other edges. We believe that the sampling scheme proposed by Rajkumar and Agarwal [RA14]
is more practical: they assume that each pair (7, j), where i < j, is observed with probability 1;;,
independent of previous observations. Here >, ., ;. #;; = 1 and each p;; > 0. Observe that
in Rajkumar and Agarwal’s sampling scheme each observation is made independent of the other
observations, which is not true of Negahban, et. al.’s scheme. This observation will be important in
our analysis later in the chapter.

Since Rajkumar and Agarwal do not explicitly construct an underlying graph as part of their
sampling scheme, their algorithm varies slightly. They construct Q®* in terms of P and ORA by
computing the empirical comparison matrix P:

L A m_ AT G
1=, e ifi=j. 1=, 0 ifi=j.

As the reader might expect, the estimator for Rajkumar and Agarwal’s algorithm is limiting
distribution of QRA. However, Rajkumar and Agarwal add an important caveat that their algorithm
outputs %1 = [%]?:1 if QR4 is not an ergodic markov chain (recall that an ergodic markov chain is
such that every state is aperiodic and positive recurrent, which together guarantee a unique stationary
distribution).

For completeness, we state the results by both Negahban, et. al. [NOS16] and Rajkumar and
Agarwal [RA14] in the notation that we use in this chapter. First, we state Negahban, et. al.’s
theorem for random Erd6s—Rényi graphs. We state this result instead of their result on general
graphs because that requires that a graph be constructed under certain constraints and states the
result in terms of the spectral gap of the graph Laplacian, which is harder to interpret and compare

to other results both in this chapter and in [RA14].

Theorem (Negahban, et. al. [NOS16], Theorem 2). Given n objects, let the comparison graph
G = ([n], E') be generated by selecting each pair (i, j) to be in E with probability d/n independently
of everything else. Each such chosen pair of objects is compared k times with the outcomes of
comparisons produced as per a BTL model with parameters w1, . . ., w,. Then, if d > 10C?logn
and k d > 128C20° logn (here b = max; ; w;/w;), the following bound on the error rate holds with
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probability at least 1 — 10n~C/%:

M < 8CH*?, /lo&'
Il — k

In order to make a reasonable comparison between this result and the following, we note that the
number of pairwise comparisons made in the above sampling scheme is O(nkd). While noting that
the sampling scheme above deviates significantly from the one proposed by Rajkumar and Agarwal
(which we also use in our analysis), we can informally conclude that the sample complexity for the
above version of the RankCentrality algorithm is O(n logn).

Now the result in Rajkumar and Agarwal [RA14].

Theorem (Rajkumar and Agarwal [RA14], Theorem 7). Let [imin 1= Mmin,; f;;. Assume fipyin > 0.
Here yu;; is the probability that the pair (i,j) is chosen for a given comparison. Let Pj; =
w;/(w; + w;) as per the BTL model. Let Q®* and QRA be defined as in (3.4) and let ™ and 7 be
their unique stationary distributions (if QRA is not ergodic, let ™ = %1. Let Pyin = min,»; P,
Tmax = Max; T;, and Ty, = min; ;. Let 0 < e < land § € (0,1]. If

- 1024n Moo 31 16n2 ; 12 3 12 3
m max n —_— n —_—
- 82Pn2’1in1u12nin T'min 6 ’ :u?nin /1’12nin

then with probability at least 1 — 6 (over the random draw of m samples from which P is constructed),

the score vector T produced by the rank centrality algorithm satisfies
it —7lls < <.

The sample complexity here scales as O(n® logn) since p.., > (4), with equality achieved
only when g is uniform. Intuition suggests that a much stronger bound is possible, which is indeed
the case. We modify the RankCentrality algorithm yet again and demonstrate that under Rajkumar
and Agarwal’s sampling scheme, we are able to give a O(nlogn) sample complexity bound. It
is also worth noting that Rajkumar and Agarwal give their bound as |7 — 7|| < ¢ instead of

|m — 7||/||7|| < e. This makes their result weaker because if 7 is close to uniform, —1/2,

|| =~ n

Algorithm 7 \-regularized RankCentrality algorithm

1: procedure RANKCENTRALITY(n, S = {(ix, Jk, Yk )k }» \)
2: compute Q asin (3.5)

3 set Dy« (1—\)I+2117

4: return leading left eigenvector of QD A

5: end procedure
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A crucial point to note is that in both of these cases, it is assumed that the empirical estimate Q
of the markov transition matrix is ergodic. When the number of comparisons m is small, this is
usually not the case. In the same way that linear classifiers (such as logistic regression and linear
SVM) need regularization when the dimension of the feature space exceeds the number of samples,
our A-regularized RankCentrality algorithm (Section 3.3) addresses this concern. This is a primary
motivation for the work in this chapter.

Our work in this chapter begins by modifying RankCentrality and giving a stronger sample

complexity bound.

Theorem (Corollary 3.9). Fix§ € (0,1) and e € (0,1). If

2
m > 320%*n" ! log Fn

and the empirical Markov chain Q constructed as in (3.5) is ergodic, then with probability at least

1 — 4, we have

We then introduce the A-regularized RankCentrality algorithm (Algorithm 7), which constructs
a Markov chain that is guaranteed to be ergodic, and give the following sample complexity bound
(note that £ > 2\y~!, which reflects that this is a biased estimator).

Theorem (Corollary 3.12). Recall v = 2(1:“% Let A € (0,2). Choose § € (0,1) and
ee (2L 1). If
52(1 — \)b3

m > 5
T fbmin (5 - 2)‘7_1)

then with probability at least 1 — 6, we have

Finally, in Section 3.5, we give examples of other creative ways to regularize RankCentrality

and give an empirical analysis of these methods.

3.2 Convergence of RankCentrality: Unregularized and Regularized

We begin this section by reformulating RankCentrality to make it easier for analysis. We present
significantly simpler proofs for the convergence of the RankCentrality algorithm. We loosely follow
notation from Rajkumar and Agarwal [RA14]. Our “RankCentrality” algorithm differs from both
Negahban, Oh, and Shah [NOS16] as well as from Rajkumar and Agarwal [RA14].
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Definition

unless stated otherwise, vector norms are ¢, norms, and matrix norms
are operator (spectral) norms

2(11%1)111)3/ 2

limiting distribution of ()

limiting distribution of Q

regularization constant, see D)

second largest eigenvalue of matrix 12 (because the largest eigenvalue of
an irreducible Markov chain is always 1)

probability that pair (¢, j) is observed

vector of all one entries, usually in R"

max; ; 7’:—;

number of comparisons per pair in sampling scheme in [NOS16]
number of items being compared

number of comparisons total

pairwise preference matrix

empirical comparison matrix

true markov chain (requires knowing P)

empirical markov chain

empirical markov chain as defined in [NOS16]

empirical markov chain as defined in [RA14]

(1-XNI+ 2117

Table 3.1: Notation used in Chapter 3
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Negahban, et al. [NOS16] assume pairs are sampled without replacement and each pair is
compared d times. We prefer the approach in [RA14] by Rajkumar and Agarwal: each pair is
sampled with replacement and compared once (comparing with replacement allows for each
pair to be compared different number of times). Our arguments should extend to the case
where each pair is observed a multiple of d times, i.e., pairs are chosen with replacement but
each time a pair is chosen, we observe it d times, but we focus on the case d = 1. Let
S = ((11,J1,Y1)s - - > (s G, Ym)) € (X x {0,1})™ be the training sample, where i, ji de-
notes the items compared on the k-th observation and y;, € {0, 1} denotes the outcome of the
comparison (0 implies 7;, won, 1 implies j; won).

To construct the Markov transition matrix Q, let C;; be the number (not fraction, as in F;;) of
comparisons between ¢ and j that 7 won, then,

. Pnninf ;- 2 ifi#j
Qij = vom .
U= fimin Yo i S i 0=

(3.5)

We want to view Q as a sum of simpler matrices and, to that end, make the following definitions.
Let

QW) = eel — esef (3.6)
and let
P L (3.7)
p; QURIR) if gy =1
We see now that .
Q:J+“§“2Qk, (3.8)
k=1

and for the remainder of our analysis shall consider (3.8) as the definition of Q

We pause, briefly, to give intuition into the motivation for our choice of Q and to highlight
the differences between Q and the analogous QNOS and QRA. First, we observe that the choice
of denominator in the off-diagonal entries does not affect the output of algorithm. Indeed, we
can see by inspection that for any row-stochastic matrix R the leading left eigenvectors of R and
%R + (1 — %)I are equal. That QYOS has a denominator of dp,.y, the maximum degree on the
underlying graph, Q®* has a denominator of n, the number of items, and () has a denominator
of m, the number of comparisons, does not affect the leading left eigenvalue returned. We then
engineer @ so that it is row-stochastic and the entries are sums of independent random variables.
We use ﬂ;jl to scale each entry so that the expected value of the ij-entry depends on F;; but not ;.

However, we need to ensure that the entries in Q are never negative, so we multiply these entries by
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Umin- Having ensured that each summand’s row-sums don’t exceed 1, we need to ensure that that
the same is true of @ and do so by dividing by m.

The advantage of defining Q in this way, as opposed to QRA in (3.4), is that we can write Q asa
sum of independent random variables, which allows for stronger central-limit type theorems.

Recall P;; = P(i < j). Set

Q= ttuin 3 Py QU.
i#]

More concretely,

Qij = ’ Y (3.9)
L= tmin e if i =

and observe that E (Q)) = Q. It is also worth noting that () satisfies the detailed balance equation

and is time-reversible: for all 7 # j, we have

Penin T3 7T 5
Win‘j . pmmiety Wiji-

7TZ'+7Tj

~

Note that our definition satisfies () = E (@) regardless of the number of pairwise comparisons.
To contrast this with [RA14], there we had that £ (QRA) is a function of m, the number of
comparisons observed, and it is only true that lim,,, ., E (Q®*) = Q®4. That E (Q) = Q is the
first of two main reasons that we are able to give stronger sample complexity bounds. The second is
that Q) can be written as a sum of m independent random matrices. This enables us to use matrix
concentration inequalities (such as those in [Tro12]) for ||Q — Q)||, unlike Rajkumar and Agarwal,
who had to prove element-wise convergence and apply a union bound over all elements.

We begin our analysis of the RankCentrality algorithm by giving a bound on the spectral gap of

the transition matrix () constructed from pairwise preferences.

Proposition 3.1. The spectral gap 1 — A\yax of Q is at least “53, where b = max; j -

Wy
J

Proof. We will use the following lemma from Negahban, et al [NOS16, Lemma 6].

Lemma 3.2 (Comparison Inequality for Spectral Gaps[NOS16]). Let ), m and R, T be reversible

Markov chains on a finite set [n] representing random walks on a graph G = ([n], E), i.e. R(i,j) =
0and Q(i,7) = 0if (i,j) ¢ E. For o = ming jyep{m:Qij/7: Rij} and = max;{m;/7;},

1 - )\max(Q) > g
1 —Anax(R) — B

Let R = 1117 = [1];; and 7 = 21 = [1]; and observe that these define a reversible Markov

chain. Since R has rank 1, we have A, (R) = 0, which gives us that 1 — A\, (Q) > % Now we
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bound « and S.

We have
Wi wj .
: 7.(-’LC2Z] . Zl wy witw; Hmin
o = mln _ = mln T
vy Tl i ol
2 s W W 2, s o
— 1nin N~ pminW; W n= Umin M1N; W; - N° hmin MIN; 7;
v (Wi +wy) Y T 2w 2
We also see $ = max; = = nmax; ;. Thus, % > e, o
1

It is easy to see that this bound is close to optimal. Since the diagonal entries are each at least
1 — Nplmin, We know (nfimin) 2 (Q — (1 — npumin)I) is non-negative and row stochastic. By the
Perron-Frobenius Theorem, the eigenvalues of (nfimin) 1 (Q — (1 — npumin)I) lie in [—1, 1] and the
eigenvalues of () must lie in [1 — 2n /iy, 1]. The difference between 1 and the smallest possible

eigenvalue of () is only a factor of 4b larger than our bound on the spectral gap.

Proposition 3.3 (Effect of perturbing QQ). Let () be the true transition matrix as defined in (3.9). For
any ergodic Markov chain on [n| with row-stochastic transition matrix Q and stationary distribution

7, if|Q — Q| < Srays, we have

7 ==l _ _ 2)Alp2
17l = g — 2[|A[[63/2

where A = Q — Q.

Proof. We begin by citing a lemma by Negahban, et al. [NOS16, Lemma 2].

Lemma 3.4. For any Markov chain Q = Q + A with a reversible Markov chain Q, let p, be the
distribution of the Markov chain Q when started with initial distribution po. Then,

-7 - T max 1 [ T max
Hpt || SpthO || a + ||AH2 a )
Hﬂ—” ||7T|| Tmin 11— P Tmin

where T is the stationary distribution of Q and p = A\pax(Q) + || All2v/ Tmax/ Tmin-

As before, let b = max; ; =+. Consider the limit as ¢ — oo:

5

e when 0 < p < 1 we have p! — 0, and

« when the Markov chain @ is irreducible we have p; — 7.
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In this case,

17— =]

7]l

Recall that 1—\pay(Q) > “52= by Proposition 3.1. Now we have that p < 1 when [|A| < e
because when this is the case, we have ||A|[v/b < “mi» and hence p < 1 — ™min 4 ||A[|V/b < 1.

Assuming [|A[| < 2, we have

1
< —[Alvb
—p

7 —all _ _ AIVE  2ApY2

Il = et Y A[VD g — 2| A6

]

For transition matrices () and Q we define the centered transition matrix ¢’ and ¢’ by subtracting
I. Thatis, Q' = Q — I and @’ = Q — I. These centered matrices Q' and (), as well as @}, and
Q) defined previously, have non-negative entries everywhere except on the diagonal (where they
are non-positive) and their rows sum to zero. These centered matrices significantly simplify the

algebra in the following computations.
Lemma 3.5. The difference Z,, := %’FQ’ is bounded in norm: || Z;|| < 2.

Proof. To bound ||Qy]|, recall that Q) is of the form /Ji_le(ij) = ”i—jl(eiejr — e;e;). Observe that
QUIQUIT = 2¢;el’. Therefore, || Q|| < funinpi;; V2 < V2. By convexity of norms, [|Q'|| =
IE ftmin Q|| < E || phmin@r|| < v/2. Using the triangle inequality we get || minQr — Q'|| < 2v/2 <

3. ]

. —0O .
Lemma 3.6. Let 7), = W, as before. We can bound the variance term as:

= 3 -1 min
%= max{ ZEZkZ; } Su.
k=1

m
Proof. To bound ||E Z, Z¢||, we see

Y

iﬂz Zt 7
k=1

L1
E Zka = ﬁE (Mfansz - MmianQ/T - Q,Mmian + Q,Q,T)
1
=Sk (M QuQk — Q'Q™) .

We can compute these explicitly.

Begin by considering the 12, Qx Q¥ term. We know QU QUT = 2¢,e!". By simple algebra, we
get EQrQp =3, Ej;éi 2#;3'1PjieieiT~ Therefore, [|E 12, QeQf || < iy, max; Zj;éi 2/%’”%%’ <
2(’/7, — 1)umin.
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Computing ’Q'" is more tedious.

Q/Q,T = (Z Mmin-Pij (61'6? - eieg)) (Z /Lminpuv(evef - eueu))

i#j uFv
2 T, T T T, T T, T
= g PminPij Puv(€i€) €0, — €€ euey — €i€; eye, + ei€; ey, ).
i#jutv
By ignoring zero terms (notice that the first of four summands is non-zero only when j = v, the

second when j = u, etc.) and re-indexing, we get

00" < (32 Pubsee] = 3 Potd = X e+ 3 Purie ).
oy i#i#e il utiztv

where statements such as ¢ # ¢ # j mean ¢ # ¢ and j # ¢ (but : may be equal to j). This
is a symmetric matrix, so its singular values are its eigenvalues. We can now invoke the Ger-
shgorin circle theorem, a consequence of which is that [[M|| < max; ), [M;;| for symmetric
matrices. Therefore, ||Q'Q"|| < 4n?u2,,. Finally, the triangle inequality gives ||E Z,Z;| <
L (2(n = 1) pmin + 40 pi25) < 3(”_”11# for all n > 4 (we used the fact that iy, < (g)fl).

We now turn to Z}; Z;,. Similar to the calculations above, simple algebra gets us

EQiQr=Y_> ;' (Py+ Ppi)(eie] — eie]).
P i

As before, this is a symmetric matrix and we can use the Gershgorin circle theorem to give a bound

on the largest singular value of E 2, Q7 Q:
J#
As before computing Q'7'Q)’ is more tedious but gives
QT = 1 33 PoPanlese! = sl eue! = el
1#£] uFv
= (i > > PiPulejel —ejel —eiel +eiel)

i£j vi

= Mo ( > ( Y PuPy— PPy~ R-mj) eic)

i#] \lil]

+) ( > PuPu+ ZP&P&) eie] )

% uFL,vF#L 01

56



Again, we can invoke the Gershgorin circle theorem and see that ||Q'Q'"|| < 4n?1i2 ;. As before,
the triangle inequality gives [|E Z; Zi|| < 7z (2(n — 1) ftmin + 4n*ply,) < 3(”;11# forall n > 4.

Finally, note that 7 are not only independent but also identically distributed and hence

max{ E Y ZiZ|| B 22
k k

We will soon need to use the Matrix Bernstein Inequality from [Tro12, Theorem 1.6] and state

% % 3n—1 min
} — mmas (|E 23 2], |E 2,5} < 20 Dmin

?

]

it here as a lemma.

Lemma 3.7 (Matrix Bernstein [Tro12]). Consider a finite sequence {Zy.} of independent, random

matrices with dimensions dy X dy. Assume that each random matrix satisfies
E Z,=0 and |Zi]| <R almost surely.

Define

2. *
o= maX{HZkE (ZiZy)

|5 ol

Then, for all t > 0,

(50,220 < e (L)

Finally, we put this all together.

Theorem 3.8 (Convergence of Unregularized RankCentrality). Let Q be constructed as in (3.5). If
Q is ergodic and 7 is the stationary distribution of Q, then we have (where probability is taken over

the m comparisons made under the BTL model and each pair is equally likely to get picked)

P |7 — =] <) >1-9 —e2m
—_— — 2nex .
oo/ — P 5nb3 (1 +¢€)2 + nb32e(1 + ¢)

Proof. Assuming ||Al| < —37, by Proposition 3.3 we have

nb3/2°

e —all _ _ 2[Ap2
Il ropmin — 2[| A3/

This means we want
2[| Al|p*/

Mhmin — 2[|A[|63/2

<e,
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which happens when ||Al| < 2;;75—@ Note that this is stronger than [|A|| < %%, so our previous
assumption will hold.

Finally, we let t = 2;3’}5—(“1“:5) and use Lemma 3.7 to get

|7 — A —t?
P{— > <P — >t) <=2 —_
( Il =)= <”Q <= ) = TP\ TRz )

where we have 02 < 3—”% by Lemma 3.6 and R < % by Lemma 3.5. Therefore, we get

) _ <L>2
_ 3/2
I e T I
< ome _Mmin€2nm < IMme —,um-m52nm
nex e 81 +e)? )
S e G ap a1 ) < O\ S0 e

Corollary 3.9. Fix§ € (0,1) and e € (0,1). If

2n

m > 320%*n "l log = 5

and the empirical Markov chain Q constructed as in (3.5) is ergodic, then with probability at least

1 — 4, we have

Proof. We need

||ﬁ- — 7T|| _,umin52nm
P{——— > <2 — | <0.
( °) =PSB o)

By re-writing in terms of m, we see that the second inequality is true when

2n

m > 8b*(1+¢e)?n u_t e ?log — 5

The desired inequality now follows immediately from £ < 1 (we make this assumption for simplicity;

the statement of the theorem is not very strong when £ > 1). [

When 4 is uniform, the above theorem requires m > 16b°c?nlog(%*). We have given an
0 (5‘2n log %) upper bound on the sample complexity. This is a much better bound than Rajkumar
and Agarwal give in [RA14]. Their O(c%u, 7 nlog(%)) scales as O(s?n®log(2)) when 4 is

uniform, and worse otherwise.
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Our results, however, require that we know o beforehand whereas Rajkumar and Agarwal’s
version of RankCentrality does not assume j is known beforehand. Future work on our algorithm
could study the impact of using an approximate p (e.g., by sampling from p before running
RankCentrality) on the output of RankCentrality.

The b3 term may seem counterintuitive to the reader as it should be harder to rank n items when
b, the dynamic range of their BTL scores, is small. However, we are using the /5, norm to evaluate
performance, and, under the ¢, norm, both 7 and 7 are close to =1 = [1]”_, when b is small.

3.3 A-Regularized RankCentrality

There is a crucial problem with the RankCentrality algorithm that prevents it from being useful
when only a small number of pairwise comparisons are available. In such a scenario, the empirical
markov chain Q is not ergodic, which means we cannot guarantee a unique stationary distribution
(the output of the RankCentrality algorithm). We propose the following approach to regularizing
the RankCentrality algorithm that also ensures that the resulting markov chain is irreducible. We
call this method A-Regularized RankCentrality.

Let Dy := (1 =XM1+ %11T. The Regularized RankCentrality algorithm computes Q as before,
but returns the leading left eigenvector of QD, instead of the leading left eigenvector of Q. Note
that QD) = (1— )\)Q + ﬁllT. This is the sum of a non-negative matrix and a positive matrix,
giving us a positive matrix, which must be ergodic. The intuition here is that we are allowing,
with probability ), a transition to any state i € [n] uniformly at random, thus the Markov chain is
irreducible and aperiodic.

The rest of this subsection is devoted to an analysis of the bias-variance trade-off of A-

Regularized RankCentrality. We will compare
« 7, the leading left eigenvector of QD A, 1.€., the output of A-regularized RankCentrality, and

* 7, the leading left eigenvector of () D,, i.e., the expected output of A\-regularized RankCen-

trality as m — oo,
* 7, the leading left eigenvector of (), and the expected output of RankCentrality as m — co.

. . I N min . _. . . l
For notational convenience, let v := 5k AESoITZER Note that +y is not constant—in fact it is O ()

when g is uniform and O(%) in general. We will be careful not to use « anywhere that it might
obfuscate sample complexity.
Proposition 3.10 (Regularized RankCentrality Bias). Fix A\ € (0,7). The asymptotic (m —

00) expectation of the output of the \-Regularized RankCentrality algorithm is 7 and the bias
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|7 — 7||/||7|| can be bounded as

Proof. Let Q = QD,. We now have Q — Q = AM2117 — Q) and ||Q — Qll < A1+ v/2). Now
we apply Proposition 3.3 to see that

lm =&l 204+V2NE A
17l 7 npmin — 2(1+ V2)AB32 = A

O

Theorem 3.11 (Regularized RankCentrality). Fix A € (0,%) and choose ¢ € (2\y™',1). We
construct Q as before and let T be the stationary distribution (leading left eigenvector) of QD ) (e,
the output of \-regularized RankCentrality). We have

p(1E=xl _
I

> 1—2nexp(

—(Nftming — 4(1 +V/2)b2X)%m
A8(1 — N2 pimmin3 + 463/2(1 — X) (npimime — 403/2(1 + v/2)N)

Proof. As we noted in the proof of Theorem 3.8, to guarantee |7 — 7||/||7|| < e, we need

1Q — @D, < Stz Using the triangle inequality, we have [|Q — QDy|| < ||Q — QD +

|QDy + QD,||. We showed in Proposition 3.10 that ||Q — QD, || < A(1 + v/2). So we need

A ENUmin ENfbmin
[QDx = QDy|| < 2+ e AML+V2) < e —A1+V2)

1++v2 1++v2
= %m ~ M1 +V2) = %(57 —2)\)
Note that this quantity is positive when € € (2\y~!1, 1) (which is precisely the requirement in the
hypothesis above). We have required that ¢ < 1 for ease of computation. Note that the theorem is

not very useful in practice otherwise. We now require that

En min
|QDx = QDall < 3% — M1+ V).

( ,umek)-

A) 2 3nl;;;nln

We can now invoke Lemma 3.7 with Z;, = -(Q'Dy — puninQrDy) = =(1 —

By our previous calculations in Lemmas 3.5 and 3.6, we have the variance term o2 < (1 —
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and the norm term R < (1 — \)2. The resulting inequality is

P (QDy = QD) > “HmnE — (14 v2)2)

453/2
Npmin€ 2
< 2nexp —_ ( 573/2 —(1+ \/5))\)
B (1 — )28 + (1= M) ("7 — (1+V2)))
which simplifies to the desired inequality. [

Corollary 3.12. Recall v = Q(TZ’%)“W Let X € (0,2). Choose 6 € (0,1) ande € 2\~ ', 1). If

52(1 — \)b?
Mfbpin (€ — 2)\7—1)2

m >

then with probability at least 1 — 0, we have

<e
7]l
Proof. As before, we need
p(1E=ml _
7]l
—(Nptmine — 4(1 +V2)0%2X)%*m
< 2nexp
A8(1 — N)2nininb3 + 4b3/2(1 — N) (npimine — 463/2(1 + V/2)\)

<9

Rewriting in terms of m, we see that the second inequality is true when

48(1 — N2 nfimind® + 46%2(1 — N) (nfimine — 40°2(1 ++/2)N) . 2n

m > log —
—(Nfimine — 4(1 + V/2)b3/2))2 &

J

The desired inequality now follows by replacing various terms in the above inequality with
upper bounds for them (e.g., (1 — A\)2 <1 — )\, %2 < b3, and £ < 1). O

Empirical evidence suggests that we can use values of A much larger than 3 and still get very
good results. We believe that bridging the gap between the theory and application is worthy of

further inquiry in the future.

61



1% ==/l

1& ==/l

Accuracy (n = 200)

Kendall’s Tau 7(m, #)

0.8

0.6

0.4

0.2

Kendall’s Tau-b (n = 200)

Lol Lol Lol Lol
10! 102 103 10*

Number of comparisons (m)

—— BTL-MLE — BTL-MLE (regularized)

— A=0 — A =1/200
—— A= 1/400 A =1/800
—— A= 1/1600

(b) Kendall’s Tau-b metric

Figure 3.1: Performance of algorithms with n = 200
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Figure 3.2: Performance of algorithms with n = 20

62




3.4 Empirical Results

Having analyzed RankCentrality and A-regularized RankCentrality in theory, we now evaluate
their performance in empirical experiments.
Our main experiments was to evaluate convergence of these algorithms with synthetic BTL

scores and comparisons. We compared (unregularized) RankCentrality, A-regularized RankCentral-
1 1
> On® 4n’

and regularized BTL-MLE (using the Scikit-Learn [Ped+11] implementation of logistic regression).

ity (with values of  from X and g-), the BTL maximum likelihood estimation (see (3.2)),
The BTL score w; for each item ¢ was assigned by choosing v; uniformly at random from [0, 5] and
setting w; = exp(v;). Then, for various values of m, we generated m comparisons (first choose m
pairs of items, uniformly at random from all possible pairs, then assign winners via the BTL model)
and ran each algorithm on the same set of comparisons. In each of these cases, we store the ¢ error
and the Kendall’s Tau correlation metric. We repeat this process of generating comparisons and
evaluating algorithms for a total of 40 times and record the mean and standard deviations of the ¢,
error and the Kendall-Tau correlation metric. The results for these experiments for a few different
values of n are shown in Figures 3.1 and 3.2.

The Kendall-Tau correlation metric we use in our experiments is also know as Kendall’s Tau-b,

defined as
P—-Q
VP+Q+T)x(P+Q+1U)

where P is the number of concordant pairs (i.e., the number of pairs ¢, 7 such that the relative

7(a, ) =

(3.10)

ordering of o; and «; is the same as that of 3; and 3;), () the number of discordant pairs, 7" the
number of ties only in «, and U the number of ties only in 3.

The first observation we make is that (unregularized) RankCentrality does not return non-trivial
results until many comparisons have been made. As we have noted many times above, this is
because the Markov chain Q is not ergodic and hence the algorithm is forced to return a uniform
distribution 7 = %1 = [%]?:1. Because of the way that Kendall’s Tau-b handles ties in 7, it is
undefined when 7 is uniform.

These plots demonstrate that the bias for A\-regularized RankCentrality is most visible in the
{5 error rather than in Kendall’s Tau-b, which suggests that if practitioner is more concerned with
recovering a ranking of the n items rather than the BTL scores, the need for careful tuning of A is
diminished.

It is also worth noting that we have used values of \ larger than v = 2(11“%, which violates
the hypotheses of Theorem 3.11. By comparing the bias in Figures 3.1 and 3.2, we see that A may

1 1 1
’2n? 4n’ 8n

not need to scale as O(n~1). It is clear that the bias, when \ € {% }, is much greater

when n = 20 as opposed to n = 200.
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3.5 Similarity-based Regularization

In this section we illustrate creative approaches to regularization that can significantly improve
the performance of RankCentrality. Intuitively, we seek to exploit other data about the n items with
the goal of improving the output ranking even when we have very few pairwise comparisons.

Thus far, we have considered the case when we have n items and m pairwise comparisons. The
other end of the spectrum is the case when we have features (i.e., an embedding [n] — R?) for the
items we are comparing. When we have features z; € R? for each item i € [n], it may be reasonable
to assume that there is a function f : RY — R such that sign(f(z;), f(z;)) = sign(w; — w;). If we
assume the BTL model, we may (but not necessarily) ask that the function f output BTL scores.
The literature has various methods for learning such functions f. The goal in these pursuits is
typically not to learn a ranking of the n items given but rather to learn a function f to rank new
(unseen) items.

We can adapt our method of regularizing RankCentrality to solve a problem in the middle of
this spectrum. We do not seek to use the features x; to learn a scoring function f, but rather to
augment the pairwise comparison data and improve our estimation of the ranking on the n items.
To do so, we construct a regularizing matrix D that incorporates information that we have about
features and/or similarity of the n items.

We give the practitioner two examples of regularizing matrices D. If we have continuous

features z; € RY, we can begin by constructing an n x n affinity matrix A by setting

(s — 1.:)2
Aij = exp (_(561 2%) )>

o

where o, the kernel width, is an appropriately chosen hyperparameter. We make the matrix row

stochastic by dividing each row by its row sum, i.e.,

D = L
Y Z?:l Aie
Finally, our regularization matrix is D, D’ (here D, ensures that the resulting Q is irreducible).
Note that D" — Dy = I,, as 0 — 0 (assuming all x; are distinct) and D’ — D; as 0 — oo.
If we have discrete features, we let A;; be the total number of features on which x; and z; agree

(i.e., d minus the Hamming distance between x; and x;). Then

D =
ij n e
1- Ze:u;ﬂ Aij/m ifi=
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where 7, the tightness, is an appropriately chosen hyperparameter such that >, | A;; < 7 for all 4.
Again, our regularization matrix is D, D’.

We expect that there are many other ways to construct D and encourage the practitioner to
explore regularizations that are appropriate for their purposes. We think of the role that D plays as
local averaging. In doing so, multiplication by D imputes comparisons. To see this, consider the

following example where n = 4. Let

08 02 0 O
02 08 0 O
0 0 09 0.1
0 0 01 09

D=

If we make a single observation (say that item 1 beat item 3), then

&

|
o = o
o o o o
—_ o o o

o O = O

but
08 02 0 O

02 08 0 O
08 02 0 O
0 0 01 09

QD =

As we can see, we have not only inferred a preference for 1 over 3, but imputed preferences for
1 and 2 over 3. Further, allowing a similarity based transition from state 4 to 3, we have created
paths from state 4 to states 1 and 2, thus inferring a preference for items 1 and 2 over items 3 and 4.
The reader might notice that the low preference for item 4 is more explicitly observed if we were to
compute DQD. In practice, however, the weight of self-loops in Q are very large (asymptotically
atleast 1 — (n — 1) (g)fl =1 — 2), which makes Q close to I,,, and DQD, D2Q), and QD? are all
approximately equal.

For the remainder of this section, we present the results of experiments using real and synthetic

datasets.

3.5.1 Car Preferences Dataset

The Car Preferences dataset [Abb+13] is a publicly available dataset of pairwise comparisons.

Abbasnejad, et. al., the investigators of the experiment, gave each of 60 users pairwise comparisons
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between 10 cars with four different attributes:
* body type (sedan or SUV)
* transmission (automatic or manual)
* engine capacity (2.5L, 3.5L, 4.5L, 5.5L, or 6.2L)
* fuel consumed (hybrid or non-hybrid)

Each user was given all 45 pairs to compare and five duplicate pairs (as a control). All but two users
compared at least 48 pairs, and 46 users compared all 50 pairs given. We discarded the observations
that were intended to be controls (one user had two consistent answers to controls, six users had
three consistent answers, 22 users had four consistent answers, and 31 had all five correct). The
primary reason for discarding these controls was that the control pairs seemed to be chosen from a
very limited set of pairs, skewing the distribution g of pairs. Once we discarded control observations,
the distribution of pairs seemed to be almost uniform (with each pair being observed once per user,
except for a small number of missing observations). We were not concerned by the small number of
users with multiple inconsistent comparisons and did not take any steps to filter those comparisons
out. In our experiments, we ignore which user made each observation. We are implicitly assuming
that the users are our source of randomness.

We randomly selected 1600 observations for training and the remaining 1075 to evaluate the
algorithms. For various values of m, we choose m observations 20 times uniformly at random
without replacement from the 1600 training observations and ran each algorithm on each of the 20
sets of m observations. We recorded the mean and standard deviation of the test error (the fraction
of comparisons in the test dataset in which the item with the lower predicted score was preferred).
The results of this experiment are summarized in Figure 3.3. That similarity based regularization is
competitive with RankSVM when the number of samples is small demonstrates the strength of this
method, considering that the similarity-based regularization only considered the number of features

that cars had in common but did not access the features directly.

3.5.2 Synthetic Data

To evaluate the empirical performance of similarity-based regularization on data with continuous

features, we constructed three synthetic datasets.

* In Experiment 1, we generated 1000 points {x; };%° chosen uniformly at random from [0, 4]
and chose w € R at random from a Gaussian. To each i € [1000] we associate a score

w; = exp(cos(bwx;)).
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Figure 3.3: Performance of various algorithms when given a small number of observations from the
Car Preferences dataset. Similarity-based regularization was run with tightness parameter 7 = 21.

e In Experiment 2, we generated 1600 points {z;}%° chosen uniformly at random from
0, 4]?, we chose wy,ws, . ..,ws € R? at random, each entry chosen independently from a

Guassian. To each i € [1600] we associate a score w; = w; = >.»_, exp(cos(5w] z;)) +
S g exp(wle;/10).

* In Experiment 3, we generated 1000 points {z; }1%%° chosen uniformly at random from [0, 4]

10
We chose wy, ws, . . . ,ws € R at random, each entry chosen independently from a Guassian.

To each i € [1000] we associate a score w; = >, _, exp(wy x;/10).

Similar to the experiment on Car Preferences, for various values of m, we simulated m observa-
tions 20 times (by choosing a pair uniformly from all possibilities and choosing a winner according
to the BTL model) and ran each algorithm on each of the 20 sets of m observations. We recorded
the mean and standard deviation of the Kendal-tau correlation metric (with respect to the synthetic
scores we generated). The results of these experiments are summarized in Figures 3.4a, 3.5a, and
3.6a.

The impact of similarity-based regularization in Experiment 1 is dramatic when compared to
A-regularized RankCentrality. While it is true that RankSVM with random features far outperforms
other algorithms, it should not come as a surprise given that the BTL scores w;, as a function of z;,

come from precisely the kind of function that random features are supposed to help learn.
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periment 1. Similarity-based regularization was run

with kernel width o = 27°.

Figure 3.4: Synthetic Experiment 1

In Experiment 2, similarity-based regularization proves to be the best method when the number
of comparisons is small, but the regularization biases the estimator sufficiently that algorithms that
do not consider the features (e.g., the BTL-MLE and A-regularized RankCentrality) eventually
out-perform it.

Finally, in Experiment 3, the dataset is generated from precisely the kind of function we would
expect RankSVM and Siamese Nets to learn and this is reflected in the plots. While similarity-based
regularization outperforms methods that do not use any feature information it should not surprise
the reader that in this case, it does not perform as well as the methods that designed to learn scoring
functions such as the one we used in this experiment.

Figures 3.4b, 3.5b, and 3.6b demonstrate the role that the kernel width o plays. Recall that as
o — 0, we have D — D,. The left end of these plots represents the case when we have hardly
regularized and the right end the case when we have over-regularized. As one should expect, when
we have only a small number of comparisons, regularization can have a beneficial impact. However,
when we are given sufficiently many pairwise comparisons, we see that A\-regularized RankCentrality
already performs very well and the bias introduced by similarity-based regularization becomes
apparent, especially in 3.4b.
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Figure 3.5: Synthetic Experiment 2
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3.5.3 Baseline methods

In the following paragraphs, we describe the baseline methods that we have compared our
method against. In each of these algorithms, it is assumed that associated to each item i € [n] there
is a vector z; € R? and the goal is to learn a ranking function f : R? — R such that item i is ranked
lower than item j if and only if f(i) < f(j). The methods vary in the assumptions they make about
f and how they learn such a function.

RankSVM was first introduced by Joachims [Joa02] to rank items with features (Joachims
generated features as a function of the search query and document/item, our experiments can be
considered as a special case where there is only one query). RankSVM tries to learn a ranking
function f that is linear, i.e., f : 2 — w’ 2. Note that this can be solved with standard implementa-
tions of the SVM algorithm by treating every pairwise comparison observation (i, 7, y) as a point
x; — x; with label y. In this case, an observation (i, j, y) conveys information about the sign of
f(z;) — f(x;) should be higher and f(z;) — f(x;) = w’ (z; — z;).

The RankSVM cannot naively be kernelized to learn non-linear functions because the distributive
property f(z;) — f(x;) = f(z; — x;) we used above no longer holds. To overcome this problem,
we transformed the features for each point using random features, as described in [RRO8] and
implemented in [Ped+11]. These random features can give a finite-dimension approximation to the
infinite dimension inner product space that the RBF kernel is equivalent to. Since we are fitting a
linear function on this space, the distributive property now holds and we can run RankSVM on the
random features space to learn a non-linear function f : R¢ — R.

Siamese Nets were originally introduced by Bromley, et. al. in [Bro+94] to detect forged
signatures and now have numerous applications, especially in one-shot learning. A Siamese network
consists of two identical and simultaneously updated copies (the “left” and “right” copies) of a base
neural network and whose outputs are combined appropriately (for example, in one-shot image
recognition, it is common to measure a norm of the differences in output and apply an appropriate
transformation). We implemented a Siamese network using Keras [Cho+15] with two hidden dense
layers, each with 20 nodes and a dropout factor of 0.1, and an output dimension of 1. Each layer in
the base network used a ReLLU activation. The outputs of the right network is subtracted from that
of the left and a sigmoid transformation is applied to this difference. Thus, the Siamese Net is a
function g : R? x R? — (0, 1) such that g(z,y) = 1 — g(y, z).

3.6 Comparison of Algorithms

In this chapter, we have summarized two versions of the RankCentrality algorithm from the
literature and presented a version of the algorithm that is easier to analyze and gives a stronger sample

complexity bound for a natural sampling scheme. We proposed a A-regularized RankCentrality
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algorithm that is able to give meaningful non-trivial output when the number of comparisons is
small. Finally, we also demonstrate other ways of regularizing RankCentrality that can incorporate

feature information and we give an empirical analysis.

3.6.1 Sampling Schemes

Negahban, et. al., in their original paper [NOS16], assume a sampling scheme that we find
somewhat unnatural. Their analysis assumes that the set of pairs compared form an Erdds—Rényi
graph G(n, p) and that each edge (pair) in the graph is compared a fixed k times. Rajkumar and
Agarwal [RA14] give a more natural sampling scheme: they assume that each comparison is
independent of the previous comparisons and the pair (¢, j) is compared with probability 1;; (Where

1 < j). We consider this sampling scheme to be more natural.

3.6.2 Importance Sampling

An important difference between Rajkumar and Agarwal’s transition matrix QRA defined in (3.4)
and our transition matrix Q defined in (3.5) is that while QRA is constructed using the empirical
comparison matrix P, we build Q directly from the comparisons S = {(ix, jx, yx)}i-,. The
QRA matrix essentially weights each observation by the reciprocal of the number of times the
corresponding pair was observed. While this helps to handle the case when y;; is not known, it
means that entries in Q®* cannot be written as a sum of independent random variables. On the other
hand, Q, the empirical markov chain that we construct in this chapter, is a sum of m independent
random matrices where each matrix encodes the outcome of a comparison, which is possible only
when p;; 18 known. This discussion is not as relevant to Negahban, et. al.’s analysis as they assume

that each observed pair is observed a constant number of times.

3.6.3 Ergodicity of Empirical Markov Chain

A Markov chain is ergodic if it is irreducible (underlying directed graph is strongly connected)
and aperiodic (gcd of length of paths from any ¢ to 5 is 1). Because Q, QNOS_ and QR all have
self-loops, irreducibility implies aperiodicity, which leaves irreducibility as the only condition
required to guarantee a unique stationary distribution.

Negahban, et. al. require that the graph of comparisons is connected and hence, for large
enough k, with high probability the Markov chain QN°S is ergodic (irreducible and aperiodic). The
RankCentrality algorithm in Rajkumar and Agarwal outputs the unique stationary distribution only
if QRA is irreducible (and outputs O otherwise). Unfortunately, when m, the number of comparisons,
is small, QRA is unusually not irreducible. The A-regularized RankCentrality algorithm we propose

guarantees that the Markov chain QD, is irreducible and hence is appropriate to use even when
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the number of comparisons is small. We give a detailed analysis of the bias-variance trade-off of

A-regularized RankCentrality.

3.6.4 Incorporating Feature or Similarity Information

The A-regularized RankCentrality is useful even when there are no features available, but we
extend the idea of multiplying the transition matrix Q by a matrix D to construct matrices D that
can impute pairwise comparisons based on similarity information. By doing so, we solve a problem

that is distinct from the two problems addressed the literature:
* learn a ranking on n items using pairwise comparisons between them, and

* learn a ranking function f : RY — R using pairwise comparisons between n items where we

have features x; for each item i € [n].

Instead, we learn a ranking on n items using pairwise comparisons between them and use the
associated features z; € R? (or other similarity information) to offset an insufficient or small

number of observations without learning a ranking function f : R — R.
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