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Abstract 

Developing accurate simulations requires benchmarking numerical codes against high-

quality experimental data.  To validate and improve theoretical models of microwave-plasma 

interactions in free space, the Air Force Research Laboratory (AFRL) designed and constructed 

an experimental setup to study plasma generated at the focus of a high power continuous-wave 

(CW) microwave beam.  Discharges were sustained in the center of a vacuum chamber far removed 

from the chamber walls, which helped prevent non-ideal effects, such as contaminants, secondary 

electron emission, and plasma-induced desorption, from influencing the properties and behavior 

of the discharge.  A thorough description of the behavior and characteristics of the discharges 

produced in the AFRL’s experimental setup is the first step towards producing the high-quality 

data needed. 

Experiments were conducted with gas mixtures of argon, nitrogen, and oxygen at gas 

pressures ranging from 100 to 200 mTorr.  Three types of discharges were observed during these 

experiments: unstable, quasi-stable, and stable discharges.  It was determined that the stability of 

the discharges could be controlled through adjustments of the gas composition, gas pressure, and 

power of the microwave beam; the operational conditions in which each of the discharges was 

observed was documented. 

Invasive (electrostatic probe) and non-invasive (optical emission spectroscopy) plasma 

diagnostic methods were implemented to characterize the discharges generated in the experimental 

setup.  From these studies, it was determined that quasi-stable discharges were driven by 

instabilities resulting in the periodic propagation of ionization fronts.  In stable discharges, 
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striations were observed in all tested conditions; up to three different striation patterns were 

observed simultaneously.  An anticorrelation of the electron temperature and density along the 

path of the striations was observed in the measurements of the plasma parameters; this is consistent 

with behavior reported in the literature of striations in DC, and RF discharges.  While the source 

of the striations is still not fully understood, experimental and simulation results suggest that 

standing waves within the discharge might be the underlying cause of the striated patterns. 

Experimental measurements of the electron temperature and density showed similar trends 

in all tested gas mixtures (Ar-N2, Ar-O2, and Ar-N2-O2) as the gas pressure, the concentration of 

the molecular gas and power of the microwave beam were varied.  However, there was 

disagreement in the electron temperatures measured by the invasive and non-invasive diagnostic 

systems in discharges containing oxygen.  GlobalKin, a zero-dimensional plasma kinetics model, 

was also used to study the plasma parameters of the microwave-driven discharges.  Results from 

the simulations closely agreed with the electron temperatures measured by the non-invasive 

method, suggesting the presence of oxygen in the discharge affected the measurements of the 

invasive method.  In general, GlobalKin simulations showed good agreement with experimental 

results. 
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Chapter I  

Introduction 

1.1 Overview 

1.1.1 Motivation 

Predictive modeling is a powerful tool in plasma research as it provides investigators with 

some insight into the characteristics and behavior expected in plasma generated under different 

conditions.  The ability to predict the results of experiments that have not yet been conducted can 

be viewed as having a thorough understanding of the physical phenomena present in the 

experiment.  However, developing accurate simulations requires benchmarking numerical codes 

against high-quality experimental data.  Most laboratory plasmas are in contact with the surfaces 

of the chamber walls and plasma sources, which can cause significant uncertainties and errors in 

experimental measurements.  By eliminating the sources of non-ideal effects, such as the bounding 

surfaces, one can improve the accuracy of experimental measurements. 

Minimizing the effects that contaminants have in plasma discharges can help improve the 

accuracy of measurements of the plasma parameters, such as breakdown thresholds, ionization 

rates, and diffusion rates.  Electrodeless plasmas, such inductively coupled plasmas, eliminate the 

introduction of contaminants from sputtering of the electrodes; however, the plasma is still subject 

to contaminants and perturbations from the plasma-wall interactions.  The ideal plasma for these 

types of measurements would be plasma created in free space, which is plasma formed without 

any contact with walls or electrodes.  This kind of plasma can be generated at the focal region of 
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a laser or microwave beam when the electric field is strong enough to induce gas breakdown; free 

electrons accelerated by the electric field of the beam transfer their energy to neutral gas molecules 

via collisions.  Generating plasma discharges far removed from bounding wall surfaces, help 

prevent non-ideal effects, such as contaminants, secondary electron emission, and plasma-induced 

desorption, from influencing the properties and behavior of the discharges.  Note that plasma 

generated in the focus of a beam approaches the free space condition as the distance from the edge 

of the discharge to the nearest wall gets much larger than the characteristic lengths of the discharge, 

such as the wavelength of the beam, diffusion length, and collisional mean free path to name a 

few.[1] 

In an effort to study microwave-driven free space plasma (also known as free-localized 

microwave discharges) in laboratory conditions, scientists at the Air Force Research Laboratory 

(AFRL) in Kirtland Air Force Base, NM designed and constructed an experimental setup capable 

of generating plasma that approaches free space conditions.  The discharges are generated at the 

focus of a multi-kilowatt, 4.7 GHz continuous-wave (CW) microwave beam far from the chamber 

walls; the radius of the chamber is approximately 10 times larger than the wavelength of the 

microwave beam, which puts the edge of the plasma at approximately 8 to 9 wavelengths away 

from the nearest wall.  The discharges could also have been generated with a pulsed power beam, 

but the short lifetimes of pulsed microwave plasmas make them more challenging to diagnose than 

plasmas sustained in steady state.  While experiments conducted with pulsed microwave sources 

can provide useful information on the plasma parameters as the discharge evolves through the 

duration of the pulse (typically in the nanosecond to microsecond time-scale), they lack detail on 

the long-term (millisecond to hour time-scales) stability and characteristics of free space plasma. 



 3 

During initial testing of the experimental setup, two types of discharges were observed: a 

stable discharge whose size, shape, and brightness remained constant over extended periods 

(hours), and a quasi-stable discharge whose shape, position, and brightness oscillated in time; 

images captured of the discharges during this set of experiments are shown in Fig. 1.1.[2]  This 

thesis investigation is a continuation of the experiments conducted by Hoff et al. and the AFRL’s 

efforts to understand the behavior and characteristics of microwave-driven free space plasmas.[2]  

Understanding what factors affect the stability, appearance, and characteristics of the discharges 

generated in the AFRL’s experimental setup is the first step towards a better understanding of the 

physical phenomena present in the discharge (e.g., striations), and the generation of high quality 

data that can be used for the validation and improvement of theoretical models, such as the 

Improved Concurrent Electromagnetic Particle-In-Cell (ICEPIC) code developed by the AFRL. 

 

Figure 1.1: Visual comparison of the quasi-stable (top row) and stable (bottom row) discharge modes.  From left to right, the 
images are taken at 1 s intervals.  The quasi-stable discharge noticeably changes in brightness and extends while the stable discharge 
remains at a constant brightness for a given RF power level.  Discharges generated were approximately 45-60 cm in length with a 
20-30 cm diameter.  Reprinted from B. W. Hoff et al., Rev. Sci. Instrum. 87, 033507 (2016), with the permission of AIP Publishing. 

1.1.2 Unanswered Questions 

At the beginning of this investigation, little was known of the discharges that could be 

generated in the experimental setup at the AFRL.  During preliminary testing, stable and quasi-

stable argon discharges were observed in the experimental setup by Hoff et al.; however, it was 
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unclear what factors determined the discharge mode one would observe.[2]  During testing, it was 

noted that the stable discharges could not be obtained when the base pressure of the vacuum 

chamber was below 10-5 Torr before testing.  This suggested that contaminants (air molecules and 

trapped moisture) in the argon discharge played an important role in determining the stability of 

the discharge.  To test this hypothesis, additional mass flow controllers were added to the 

experimental setup to introduce molecular gases (nitrogen and oxygen) into the argon discharge in 

a controlled manner.  Results from these preliminary experiments with added nitrogen made it 

clear that adding a molecular gas indeed helped stabilize the discharge, but it was unclear how 

much of an impact the other control parameters, such as the power of the microwave beam and gas 

pressure, had on the stability of the discharge.  Furthermore, not much was known about the 

electron temperature and density of the discharges and how they were affected by changes in the 

gas composition, pressure, and power of the microwave beam. 

The discharges generated at the AFRL’s experimental setup were not well understood, so 

the primary objective of this investigation was to address the following questions: 

1. What is the general behavior of the instabilities in the discharge? 

2. Are they controllable?  If so, under what conditions is stability of the discharge 

achieved? 

3. What are the origins of the striations on the stable discharges? 

4. How are the characteristics (electron temperature and density) and appearance 

(brightness and size) of the stable striated discharges affected by changes in the gas 

composition, pressure, and power of the microwave beam? 

Understanding the underlying control parameters will allow for better predictions and control of 

the characteristics and stability of CW microwave-driven free space plasmas. 
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1.1.3 Structure of the Dissertation 

To address the aforementioned questions in a comprehensive manner, an overview of the 

research approach taken to answer these questions is first provided in the next section.  There, the 

plasma diagnostic methods considered for this investigation are discussed to provide some insight 

into how the diagnostic methods used for this investigation were selected.  A literature review of 

CW and pulsed microwave discharges in conditions that approach free space is provided in Sect. 

1.3 in order to develop the appropriate context for this work; the review covers from the first 

recorded experiment of a localized microwave discharge in 1960 to the most recent set of 

millimeter-wave discharge experiments. 

Details of the experimental setup and diagnostic systems used in this investigation are 

provided in Chapter II.  Chapter III expands on the plasma diagnostic methods and theory used for 

analysis of the data collected.  A brief background on sheath formation is provided along with a 

thorough discussion of the probe theory used for calculations of the electron temperature and 

density.  In the optical emission spectroscopy section, a brief review of a few selected quantum 

mechanics topics is provided for readers not familiar with spectroscopy notation, atomic processes, 

and molecular spectra.  A thorough discussion of the collisional radiative model and molecular 

spectra models used for calculations of the electron temperature and gas temperature is then 

provided. 

The last three chapters of the dissertation discusses the results of this investigation and 

areas in the field that will be explored in the future.  Chapter IV discusses the stability and behavior 

of microwave-driven discharges generated under various gas compositions, pressures, and 

microwave beam powers; the operational conditions in which stable discharges can be generated 

are defined.  Stable discharges within the defined boundaries are then characterized through 
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experimental and theoretical results in Chapter V; a correlation between oscillatory features on the 

triple probe measurements and the striated pattern observed on the stable discharges is then made.  

The dissertation concludes with a summary of the results and a discussion of the future of CW 

microwave plasma research at the AFRL. 

1.2 Research Approach 

1.2.1 Selection of Plasma Diagnostic Methods 

Preliminary measurements of a stable argon discharge were made with a single Langmuir 

probe and a low-resolution spectrometer by Hoff et al., so the initial plan was to replicate the 

measurements; however, with a great variety of invasive and non-invasive plasma diagnostic 

methods available, the first task was to determine which methods would work best with the 

experimental setup.[2]  Electrostatic probes are the simplest and most economical systems to build 

that can provide some insight into the plasma parameters, such the electron temperature and 

density, at the cost of localized disturbances to the plasma and microwave beam.  There are several 

electrostatic probe designs and methods, each of them with their advantages and disadvantages.  

Single Langmuir probes are the most common type of electrostatic probe used in plasma 

diagnostics as it not only provides information about the electron temperature and density, but also 

of the plasma potential, floating potential, and electron energy distribution function (EEDF).[3]–

[11]  However, Langmuir probes must be biased against a reference electrode that is also immersed 

in the plasma, otherwise, the current drawn by the probe would not return to the system; the plasma 

must complete the circuit between the probe and the reference electrode.  This means single probes 

cannot be used to characterize electrodeless free space discharges without introducing a secondary 

reference probe. 
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Adding a reference wire to the single probe (making it a double probe) for measurements 

of the electron temperature and density was first proposed by Johnson and Malter in 1950.[12]  

Similar to single probes, a voltage sweep must be performed to measure the current-voltage 

characteristic, which is used to determine the electron temperature and density of the 

discharge.[12]–[15]  Unlike single probes, the EEDF cannot be determined from double probe 

measurements unless the surface area of the reference probe wire is several thousand times larger 

than the measuring probe wire (ratio depends on the mass of the ions); the ion current to the larger 

reference probe must be able to match the electron current over the whole energy range of the 

EEDF.[16]–[19]  The required surface area ratio of an asymmetrical double probe is so large that 

even when using a relatively thin wire (diameter in the order of a tenth of a millimeter) the surface 

area of the reference probe would be so large that it would significantly perturb the plasma and 

microwave beam.  This makes any asymmetrical multi-tip probe unusable for the characterization 

of the discharges generated in the AFRL’s experimental setup. 

The symmetrical double probe could still be used but given that it can only provide 

information of the electron temperature and density of the plasma, adding a third wire to the double 

probe to make a symmetrical triple probe was a much better option.  The triple probe can take 

instantaneous measurements of the electron temperature, and density as no voltage sweep is 

required.  The response time of the probe is in the order of microseconds, which is fast enough to 

detect the oscillations in the quasi-stable discharge observed by Hoff et al.; the fact that the 

flickering of the discharge was observed through a video camera meant that the oscillations were 

occurring in the millisecond timescales (10s of Hertz).[2]  Furthermore, batteries can be used as 

the voltage source of the probe, which helps eliminate electrical noise from the power supply.  
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More details of the triple probe system constructed for this investigation can be found in Sect. 2.2; 

probe theory used to analyze the data is discussed in Sect. 3.1. 

While triple probes were a great option to begin the characterization of the plasma, they 

are invasive (perturb the plasma and microwave beam) and are subject to significant measurement 

errors due to the arbitrariness of ion current approximations and deviations of the EEDF from 

Maxwellian.[11], [20]–[22]  To assess the effects of triple probe perturbations on the plasma, 

experiments were also conducted with an optical emission spectroscopy system to measure the 

electron temperature without perturbing the plasma and microwave beam.  From the spectral 

measurements, the gas temperature was also determined from nitrogen’s rovibrational bands in the 

visible spectrum.  Non-invasive measurements of the electron density were also planned using 

microwave interferometry.  However, a combination of the expected low electron densities (1014 

to 1016 m-3), the relatively long plasma path (approximately 25 cm) between the transmitting and 

receiving horn antennas, and the hardware needed to resolve features of interest (striations) in the 

discharge, made it challenging to design a system within budget that could work with the 

experimental setup. 

1.2.2 Planning of Experiments 

The experimental setup control parameters included the microwave beam power, gas 

composition, gas pressure, and gas flow rate.  To study the behavior of quasi-stable discharges, an 

optical fast frame rate camera was first used to capture images of an argon discharge to explore 

the flickering of the discharge observed by Hoff et al.[2]  A triple probe system was then integrated 

to the experimental setup to study the oscillatory behavior of the quasi-stable discharge.  The effect 

of the gas flow rate on discharge behavior was also investigated; gas flow rate was kept constant 

for all experiments proceeding this one based on the findings of the study.  Unfortunately, the 
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plasma diagnostic systems used in this investigation were unable to properly characterize the 

quasi-stable discharge; however, the limited information (traces of the electron temperature and 

density) gathered through the diagnostic systems did provide some insight into the behavior and 

characteristics of the discharge. 

Experiments with stable discharges were significantly more straightforward to plan as the 

discharge could be sustained in steady-state for extended periods of times (hours).  A linear 

translation stage was added to the experimental setup allowing the diagnostic systems to make 

measurements along the axis of the plasma.  Experiments were first conducted to determine the 

lower and upper gas pressure limits at which stable discharges could be sustained in the presence 

of a triple probe; 100 mTorr and 200 mTorr were determined to be the limits for the experimental 

setup.  The next phase of the investigation was to determine the concentrations of nitrogen and 

oxygen that could be added to the argon discharge before it was no longer sustainable; the 

concentrations of the molecular gases were adjusted in increments of 2%.  The range of the 

microwave beam power for which the discharge was stable was also determined at each of the 

tested gas pressures and compositions by decreasing the beam power 500 W at a time starting from 

maximum power; triple probe measurements were made at every tested condition.  This procedure 

was repeated with the optical emission spectroscopy system for comparison purposes.  Finally, a 

zero-dimensional global-kinetics model was used to simulate the tested conditions and provide 

some insight into the electron temperature and density expected solely on the chemical kinetics of 

the discharge.  The densities of species acquired in this work, such as ions and excited states of 

atoms and molecules, were also valuable with regards to model validation and understanding the 

experimentally determined response of the discharge. 
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1.3 Prior Investigations 

1.3.1 CW Microwave Discharges 

To the author’s knowledge, there has been only one other experimental setup (reported in 

literature) in which CW microwaves were used to generate discharges removed from chamber wall 

surfaces; note that there has been extensive studies in CW microwave cavity discharges, but they 

are far from approaching free space conditions.[23]–[26]  In 1962, Allison et al. reported 

producing a striated argon discharge with a 2 kW, 8.8 GHz CW microwave source at pressures 

ranging from 500 mTorr to 400 Torr; a picture of the observed discharge is shown in Fig. 1.2.[27]  

However, the edge of the discharge was only a few centimeters away from the nearest glass wall 

making unclear if there were any non-ideal effects present on the discharge due its proximity to 

the chamber walls.  Furthermore, the thickness of the glass chamber is not reported, so it is unclear 

how much of the microwave beam is being reflected by the glass walls.  The authors only reported 

on the visible appearance of the argon discharge as gas pressure, and power of the microwave 

beam were varied; information on the purpose of the experiment and the plasma parameters was 

not reported.[27] 

 

Figure 1.2: Stable striated argon discharge reported by Allison et al.  The discharge is roughly a spheroid with a major axis of 
approximately 60 cm and minor axis of about 10 cm.[27] 
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While the operational conditions of their experiments were different from the ones in the 

AFRL’s experimental setup, the reported observations did provide some insight into the features 

and behaviors one could expect from CW microwave discharges.  For example, they were able to 

generate stable argon discharges at the focus of a CW microwave beam as they varied the power 

of the beam and gas pressure.  Also, they were unable to sustain the discharge in a 2-kW beam 

when the gas pressure was reduced below 500 mTorr.  They also observed striations in the 

discharge, but their origins were unclear.  A comparison of the operational conditions between the 

AFRL’s experimental setup and the one reported in literature by Allison et al. is shown in Fig. 1.3. 

[27] 

 

Figure 1.3: Operational conditions of experiments conducted in the AFRL’s and Allison et al. setups.[27] 

1.3.2 Pulsed Microwave Discharges 

There have been many experimental studies on the characteristics and instabilities of free 

space plasma generated by pulsed microwave sources.  In 1960, Hamilton reported generating a 

localized pulsed microwave air discharge at the focal region of a parabolic reflector.[28]  While 

the author claimed the discharge was isolated from the glass walls of the discharge vessel, it is 

unlikely that the conditions of the experimental setup approached those of free space as the plasma 

was only a few centimeters away from the glass chamber wall.  Furthermore, Hamilton reported 
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that the discharge was perturbed by reflections of the microwaves within the glass chamber, 

indicating the chamber influenced the behavior of the discharge.[28]  It was not until the 1980s 

that experimental research of microwave-driven discharges that approached the free space 

condition started to be published by different institutions.  Many of these investigations were 

conducted at the Institute of General Physics in Russia, where they built an experimental setup 

capable of generating discharges that approached the free space conditions; a diagram of the 

experimental setup is shown in Fig. 1.4.[29]–[34]  Most of the reported studies on this experimental 

setup focused on the breakdown thresholds of air, the time evolution of species in the plasma, and 

plasma chemical reactions.  While these studies did not provide information on stable discharges, 

they did provide some insight into the behavior observed in CW microwave-driven quasi-stable 

discharges. 

 

Figure 1.4: Scheme of super-clean plasma chemical reactor: “A” is the vacuum chamber, “B” is the lens, “C” is the microwave 
discharge, “D” is a CO2 laser, and “E” is a microwave absorbing load.[29] 

Several experimental studies reported observing ionization fronts or plasma filaments 

propagating towards the source of the microwave beam.[1], [28], [30], [34]–[47]  These 

instabilities occurred as a result of the plasma density exceeding the critical density, which caused 
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the microwaves to completely reflect off the plasma; depending on the experimental conditions, 

traveling ionization fronts or self-organizing plasma structures were observed.  The behavior of 

traveling ionization fronts resembles closely the behavior observed in quasi-stable discharges at 

the AFRL; however, most of the reported ionization fronts did not fully evolve due to the short 

duration of the microwave pulse.  Secondary traveling ionization fronts in helium and nitrogen 

discharges were observed by Vikharev et al. when the duration of the pulse was increased to 100 

µs, but it was unclear if the secondary ionization front was similar to the first one like in CW 

discharges.[42]  
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Chapter II  

Experimental Hardware and Procedure 

2.1 Experimental Setup 

The experiments discussed in this investigation were conducted using an experimental 

setup located at the AFRL in Albuquerque, NM.  The experimental setup was designed to generate 

and study free-space microwave-driven plasmas.[2]  Plasma diagnostics systems initially 

implemented in the experimental setup included an Impedans Automated Langmuir Probe (ALP) 

System and a Thorlabs model CCS200 spectrometer.  These plasma diagnostic systems were 

replaced by a triple Langmuir probe system and a Princeton Instruments SpectraPro HRS-500 

spectrometer. 

In the experimental setup, a high-power microwave (HPM) system transmits a multi-

kilowatt, 4.7 GHz microwave beam through a horn antenna located inside an anechoic chamber.  

The microwaves propagate through free-space before passing through a metal-plate lens that 

focuses the microwaves into a beam waist inside a vacuum chamber.  Fiberglass vacuum radomes 

allow the microwave beam to enter and exit the vacuum chamber with minimal incident power 

losses and reflections.  Borosilicate windows protect the vacuum radomes from getting damaged 

by interactions with the discharges or sharp objects.   After the microwave beam exits the chamber, 

it propagates through free space before being absorbed by a beam dump.  The intensity of the 

microwave beam was not strong enough to breakdown the background gas inside the chamber, so 

a plasma applicator was used to populate the chamber with seed electrons to facilitate breakdown; 
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the plasma applicator can be turned off after breakdown.  The focused microwave beam couples 

energy into the seed electrons to generate a localized discharge near the focal point of the beam.  

The diagnostic systems used to study the discharges are mounted on a linear translation stage 

located inside the vacuum chamber, allowing plasma parameters to be spatially resolved along the 

axis of the discharge.  A diagram of the experimental setup is shown in Fig. 2.1.. 

 
Figure 2.1: Experimental setup used to generate free-space microwave-driven plasma at the AFRL.  The cylindrical vacuum 
chamber is 152 cm in length with an inner diameter of 122 cm. 

2.1.1 High-Power Microwave System 

The HPM system consists of a local oscillator, a pre-amplifier, and a high-power klystron 

amplifier.  The local oscillator is an HP 8341B Synthesized Sweeper used to generate the 4.7 GHz 

input signal to be amplified.  Super-high-frequency coaxial cable transmits the input signal from 

the local oscillator to an Empower BBM5K8CGM solid state broadband high-power pre-amplifier 

that amplifies the signal to meet the minimum power requirements (approximately 5 W) of the 

klystron.  The klystron amplifier is rated for a maximum continuous-wave (CW) output power of 

10 kW and a bandwidth of approximately 0.5% at a center frequency that is mechanically tunable 

between 4.4 and 5.4 GHz.[2]  The amplified signal outputs into a WR187 waveguide where the 

microwaves pass through a 4.95-5.00 GHz band stop filter before being broadcast by a horn 

antenna inside an anechoic chamber.  The band stop filter is required to prevent the HPM system 
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from interfering with communication systems operating in this frequency range.  A water-cooled 

circulator is connected inline between the klystron amplifier and the band stop filter to protect the 

klystron amplifier from reflected power.  Power reflected into the waveguide is redirected by the 

circulator into a water-cooled broadband microwave load.  A diagram of the HPM system is shown 

in Fig. 2.2. 

 
Figure 2.2: Diagram of the high-power microwave system used in the experimental setup.[2]  The experimental setup was located 
inside the anechoic chamber. 

2.1.2 Metal-Plate Lens 

The microwave lens was designed based on a concept first proposed by Kock in 1946.[48]  

The metal-plate lens work on the principle that electromagnetic waves assume a wavelength and 

phase velocity greater than their phase velocity and wavelength in free space when confined to a 

waveguide.  The same effect occurs when microwaves pass in between conductive plates that are 

parallel to the electric field vector and spaced apart a distance greater than half a wavelength 

resulting in an index of refraction less than unity.  The index of refraction of such medium is given 

by  
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where c is the speed of light in free-space, vph is the phase velocity of the microwaves inside the 

metal-plate lens medium, λ0 is the wavelength of the microwaves in free-space, and ap is the 

distance between the parallel metal plates.[48] 

The array of metal plates used for the lens were cut to a spherical biconcave profile based 

on the lensmaker's equation for thin lenses,  

 1
𝑦𝑦

= (n − 1) �
1

R1
−

1
R2
�, (2.2) 

where f is the focal length, R1 is the curvature radius of the front side of the lens, and R2 is the 

curvature radius of the back side of the lens.  The parallel metal-plates are spaced 3.8 cm apart, so 

microwaves with a free-space wavelength of 6.4 cm (for 4.7 GHz) experience an index of 

refraction of approximately 0.54 when propagating through the metal-plate lens medium.  The 

metal-plate lens was designed with a radii of curvature (front and back side of the lens) of 91.4 

cm, which resulted in a focal length of 99.2 cm using Eqn. 2.2.  Note that for a biconcave lens R1 

is a negative value and R2 a positive value. 

2.1.3 Gas and Vacuum System 

The cylindrical vacuum chamber is 152 cm in length with an inner diameter of 122 cm.  

Vacuum radomes custom-fabricated out of TenCate BTCy-2 serve as the primary pressure 

boundaries at the ends of the chamber.  The material of the vacuum radomes allow microwaves to 

propagate in and out of the chamber with minimal power losses at frequencies ranging from 4.4 to 

5.4 GHz; it absorbs less than 0.1% of the incident power.  The borosilicate windows inside the 

vacuum chamber were designed to withstand pressure differentials of up to 2 Torr while 

maximizing the transmission of microwaves propagating at frequencies near 5 GHz; thickness of 

windows are approximately a quarter of the microwave beam’s wavelength in free space.  The 

regions between the borosilicate windows and the vacuum radomes are differentially pumped by 
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a secondary turbopump to maintain the regions at lower pressures (in the order of 10-4 Torr) than 

the rest of the chamber during testing – this prevents plasma from interacting with the vacuum 

radomes and damaging them. 

Precise gas mixtures of argon, nitrogen, and oxygen are fed into the vacuum chamber using 

Alicat MC gas mass flow controllers; flow rates can be set up to 500 sccm per channel.  The gas 

pressure can be varied between a few millitorr to hundreds of millitorr by a motorized butterfly 

valve connected in between the vacuum chamber and the primary turbopump.  The primary 

turbopump is water-cooled, which allow the system to sustain background gas pressures of up to 

200 mTorr at gas flow rates of up to 350 sccm.  Gas flows into the chamber through a  

CobberMuegge MA300G-012BB plasma applicator that can seed electrons into the vacuum 

chamber when turned on; the plasma applicator consists of a 3 kW, 2.45 GHz electron cyclotron 

resonance (ECR) plasma source.  As the electrons are accelerated by the electric field of the 

microwave beam, some gain enough energy to ionize some of the background gas resulting in the 

formation of a discharge near the geometric focus of the beam.  A diagram of the gas and vacuum 

system is shown in Fig. 2.3. 

 
Figure 2.3: Diagram of the gas and vacuum system of the experimental setup.[2]  The cylindrical vacuum chamber is 152 cm in 
length with an inner diameter of 122 cm. 
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2.1.4 Fast Frame Rate Cameras 

A set of Thorlabs 340M-GE fast frame rate cameras were installed as part of an upgrade to 

the security cameras initially installed when the experiment was first set up.  The fast frame rate 

cameras have an ADC resolution of 14-bits with a charge-coupled device (CCD) pixel clock speed 

of up to 40 MHz; the framerate of the cameras can vary from 10s to 100s of frames per second 

depending on the selected binning and clock speed settings.  Exposure times can be adjusted in 

increments of 1 ms, which allow us to study instabilities in the free-space plasma such as the 

propagation of ionization fronts in quasi-stable discharges.  The cameras can also be synchronized 

with other scientific instruments allowing us to link images captured by the cameras to 

measurements of our plasma diagnostics systems.  There are two regions of interests in our 

experiments: upstream of the beam’s geometric focus where the quasi-stable discharges occur and 

near the geometric focus where the stable discharges appear.  A diagram of the fast frame rate 

cameras viewing regions is shown in Fig. 2.4. 

 
Figure 2.4: Diagram of the regions the fast frame rate cameras monitor within the vacuum chamber. 

2.1.5 Translation Stage 

A linear translation stage was installed inside the vacuum chamber to be able to sweep 

electrostatic probes and collection optics along the axis of the chamber.  The platform and 

supporting frame of the translation stage were machined out of aluminum.  The platform sits on 
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the aluminum housings of four linear ball bearings guided by two stainless steel support rail shafts.  

A Phytron VSS 56.200.1.2 stepper motor rotates a lead screw allowing a lead nut attached to the 

platform to move along the axis of the chamber.  The translation stage has a travel distance of 105 

cm, with a 2.5 µm minimum incremental motion.  An MCS-2 motion controller from MDC 

Vacuum is used to adjust the speed and travel distance of the translation stage system.  An image 

of the translation stage is shown in Fig. 2.5. 

 
Figure 2.5: Image of the translation stage built to move our plasma diagnostic systems with electrostatic probe installed.  The 
translation stage has a travel range of approximately 105 cm and is about 30 cm wide. 

2.1.6 Plasma Diagnostic System 

Invasive and non-invasive plasma diagnostic systems were used in this investigation to 

characterize the plasma generated at the focus of the microwave beam.  The diagnostic systems 

were mounted on the linear translation stage, allowing us to resolve some of the plasma parameters 

spatially.  The invasive diagnostic system consists of an electrostatic triple probe which was used 

to measure the local electron temperature and density of the plasma.  The short intrinsic response 

time of the triple probe system (on the order of microseconds) in combination with the motion of 

the linear translation stage facilitates spatially resolved measurements; measurements were made 
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along the axis of the discharge for all tested conditions.  The non-invasive diagnostic system 

consists of a plasma spectroscopy system which was used to estimate the line-of-sight average 

electron temperature and gas temperature of the plasma.  Collecting spectra in the visible and near-

infrared (NIR) wavelength range with our plasma spectroscopy system is time-consuming 

(approximately 7 minutes per location), so spectral measurements  were taken at only a few 

locations along the axis of the discharge; note that the collection optics line-of-sight is along the 

radial direction of the discharge.   A diagram of the relative locations at which measurements of 

the plasma parameters were made is shown in Fig. 2.6.   

 

Figure 2.6: Diagram of the a) path of the probe (black dotted arrow) and b) the line-of-sight of the collection optics (black dotted 
lines)1 relative to the microwave beam’s propagation vector, 𝑘𝑘�⃗ , and the plasma generated near the focus of a microwave beam.  
Here location 3 is near the focus of the discharge, locations 1 and 5 are locations where the peak intensity of the 801.5 nm Ar I 
emission line falls to approximately 10% of the peak intensity, and locations 2 and 4 are halfway in between. 

2.2 Triple Probe System 

There are various configurations of the triple Langmuir probe, each one with its advantages 

and disadvantages.  For example, asymmetrical triple probes can measure the electron energy 

distribution function of an electrodeless plasma, but the relatively large current drawn from the 

lower-energy portion of the EEDF distorts the discharge more severely than in the case of 

symmetrical probes; the electron current drawn by the symmetrical probe is limited to two times 

the ion current.  Furthermore, asymmetrical triple probes require a reference probe that is 

 
1 It should be noted that optical emission spectroscopy measurements were made on locations 1-5 only for 

experiments conducted with Ar-N2 gas mixtures as no significant changes in the electron temperature were detected 
along the five different locations.  Spectral measurements were taken at locations 1, 3, and 5 for experiments conducted 
with gas mixtures of Ar-O2 and Ar-N2-O2. 
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significantly larger than the measuring probe, which can perturb electromagnetic waves in 

microwave-driven discharges; the reference probe’s surface area has to be at least several thousand 

times larger than the collecting area of the measuring probe for accurate measurements of the 

EEDF.[16], [49]  To select the appropriate configuration, one needs to take into consideration the 

plasma conditions and parameters of interest; triple probes can be used in conditions ranging from 

stable electrodeless plasmas to magnetized turbulent plasmas.[13], [16], [49]–[52]  The AFRL’s 

experimental setup generates free-space plasma at the focus of a CW microwave beam, which 

limits the electrostatic probe choices to symmetrical multi-tip probes if one wants to minimize 

disturbances on the plasma and microwave beam. 

2.2.1 Circuit Design 

The symmetrical triple Langmuir probe circuit design used in this investigation is based on 

the instantaneous direct-display system first proposed by Chen and Sekiguchi in 1965.[50]  The 

probe consists of three 1 mm diameter tungsten wires of equal lengths.  The wires are fed through 

the holes of a quad-bore alumina tube leaving approximately 8 mm of the wire length exposed to 

the plasma.  The distance between the exposed probe wires was kept at approximately 2 mm to 

minimize the effects of spatial variations in the plasma while preventing ion sheaths from 

overlapping between the wires.   

Four 9 V batteries were connected in series to supply a constant voltage potential (Vd3) 

between two of the probe wires as batteries minimizes electrical noise in the measured signals 

while allowing the biased probes to float with the plasma; the 36 V probe bias is enough to satisfy 

the probe conditions as it will be discussed in Sect. 3.1.  Current flows between the positively 

biased probe wire (P1) and the negatively biased probe wire (P3) when the probe is immersed in a 

plasma.  It is important to note that all the probe wires are biased relative to the plasma floating 
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potential (Vf) and that all the probe wires sit at a negative potential relative to the plasma space 

potential (Vs) as shown in Fig. 2.7.  The current flowing through the biased probe wires (Ip) can 

be measured with a differential data acquisition (DAQ) system by placing a resistor in series with 

the positively biased probe and measuring the voltage drop across it.  The resistor’s resistance 

must be high enough to produce a voltage drop that is detectable by the DAQ system, but low 

enough to minimize voltage losses in the circuit; a 100 Ω resistor was used in this investigation.  

The third probe wire in the circuit (P2) is left floating and used as a reference to the biased probe 

wires.  A NI-9229 DAQ was used to measure and record the current flowing through the biased 

probe wires, and the voltage potential (Vd2) between the floating and positive probe wires.  A 

diagram of the triple probe circuit used in our experiments is shown in Fig. 2.8.  

 

Figure 2.7: Diagram of the relative potential of each probe wire. 
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Figure 2.8: Triple probe circuit diagram constructed based on Chen’s floating triple probe system.[50] 

2.2.2 Design Considerations 

When designing an electrostatic probe, ideally one wants to work in the thin sheath regime 

as it simplifies many aspects of the probe theory.  However, often this is not possible in low-

density discharges where the characteristic lengths of the discharge become too large to design a 

probe for the thin sheath regime.  Under these conditions, it is preferable to design the probe for 

operation in the thick sheath regime where the characteristic lengths of the discharge are much 

larger than the radius of the probe; a thorough discussion of sheath formation and the different 

sheath regimes is provided in Sect. 3.1.  Low electron densities were expected (on the order of 1014 

to 1016 m-3) in the AFRL’s experimental setup based on preliminary measurements made by Hoff 

et al., so the initial approach was to design a probe for such conditions.[2]  However, a correction 

factor was required to account for the orbital motion of ions in thick sheaths; without correction, 

the triple probe measurements could overestimate the plasma parameter by up to 60%.[50]   

To the author’s knowledge at the time the probe was designed and tested, the correction 

factor could only be obtained experimentally from the current-voltage characteristic curve 

obtained from single Langmuir probe measurements.[50]  As discussed in Sect. 1.2, this approach 

was not feasible, so the triple probe was instead designed for operating in the upper end of the 
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expected electron temperature and density, where thin sheath approximations could be made with 

a reasonably sized probe.  The maximum diameter that the probe wires could be before 

significantly perturbing the microwave beam was determined through simulations of the 

microwave beam conducted by Reid; 1 mm diameter wires were used based on the simulation 

results.[53]  A theoretical method for correcting triple probe measurements outside the thin sheath 

regime was later found in literature; probe measurements presented in this dissertation work were 

corrected using this theoretical method, which is discussed in Sect. 3.1.3.[54] 

Given that triple probe measurements can be corrected using a theoretical correction factor, 

the optimal wire diameter for the plasma conditions in the AFRL’s experimental setup would be 

one that allows the probe to operate in the upper limit of the thick sheath regime – this limit is 

discussed in Sec. 3.1.3.  When sizing the probe wires for operation in the thick sheath regime, one 

must keep in mind the electrical and mechanical challenges that come with working with thin 

tungsten wires.  For example, electrical connections between the tungsten wire and the conductor 

(typically copper) carrying the signal to the DAQ become increasingly difficult to make without 

specialized hardware the thinner the wire gets.  Electrostatic probes are one of the most common 

types of plasma diagnostics because they are inexpensive to make, so keeping electrical 

connections simple is an excellent way to judge how small is too small; for this work, the center 

pins of coaxial connectors were crimped to the probe wires. 

2.3 Plasma Spectroscopy System 

Plasma spectroscopy is a non-invasive diagnostic method that provides insight into plasma 

parameters (electron and gas temperatures) and processes based on the intensities and wavelengths 

at which light is emitted.  Emission spectra are observed when energy is emitted in the form of 

photons as a result of particle interactions within the plasma, such as electron impact excitation.  
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In this investigation, optical emission spectroscopy was used to determine the electron and gas 

temperatures of the discharges. 

2.3.1 Hardware Setup 

Collection optics mounted on the linear translation stage located inside the vacuum 

chamber collected light emitted from the discharges generated at the focus of the microwave beam.  

The collection optics consisted of a mirror that redirected light from the plasma into an aspheric 

lens.  The aspheric lens reduces optical aberrations, such as spherical aberrations, which can distort 

the light passing through it, causing a loss in the resolution of the image.  The lens focused the 

light from the plasma into an optical fiber cable used to transmit the photons out of the chamber 

and into the entrance slit of a Princeton Instruments SpectraPro HRS-500 spectrometer.  An optical 

fiber vacuum feedthrough served as the interface between the optical fiber inside the chamber and 

the one outside connected to the spectrometer.  A diagram of the collection optics setup is shown 

in Fig. 2.9. 

 

Figure 2.9: Optical emission spectroscopy setup used in this investigation. 
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The grating used for this investigation has a groove density of 1200 grooves/mm and a 

blaze wavelength of 500 nm, which is optimum for photons emitted in the 325 nm to 1000 nm 

wavelength range.  Light reflected by the grating is refocused by a mirror into a PI-MAX4 

intensified CCD (ICCD), which has a quantum efficiency ranging between 20% and 30% when 

collecting light emitted in the 480 nm to 850 nm wavelength range.  Signals from photons detected 

by the ICCD are then sent to a computer where they are processed using LightField, a software 

developed by Princeton Instruments.  The resulting image has a CCD resolution of approximately 

0.05 nm (varies with wavelength) due to a combination of the 500 mm focal length of the 

spectrometer, the high groove density of the grating, and the 10 μm slit width.  Furthermore, the 

ICCD has a thermoelectric cooler that reduces the CCD dark current to low levels (less than 2 

electrons/second), which helps improve the signal to noise ratio.  A diagram of the spectrometer 

and ICCD setup is shown in Fig. 2.10. 

 

Figure 2.10: Diagram of the 0.5 m spectrometer and ICCD system setup used for optical emission spectroscopy measurements. 

2.3.2 Calibration 

The plasma spectroscopy system must be calibrated before being used to infer plasma 

conditions.  Absolute wavelength and relative intensity calibrations were made in this work.  The 

first step in calibrating the diagnostic system is determining the wavelength range in the 

electromagnetic spectrum that is of interest for the study.  In this case, most of the photons emitted 
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by the plasma are in the visible and NIR regions of the spectrum, so the spectroscopy system was 

calibrated for spectral measurements in the 690 nm to 860 nm wavelength range.  The region of 

interest in this work expands over a spectral range of 170 nm, which means the grating must rotate 

(change incident angles) five times to cover the entire wavelength range; the spectral range per 

frame captured by the ICCD is approximately 40 nm for the experimental setup.2  Each time the 

grating rotates the centered wavelength changes, so the wavelength must be calibrated in the 

system to ensure the grating is at the correct angle; note that the resolution also changes due to its 

dependency to wavelength. 

Most commercial spectrometers are supplied with some sort of wavelength calibration 

system that consists of a light source with well-documented emission lines.  The spectrometer uses 

a spectral calibration system called IntelliCal that automates most of the calibration process when 

used with LightField.  The IntelliCal system includes an atomic emission source with dual mercury 

and neon-argon lamps that cover the near ultraviolet to NIR regions of the electromagnetic 

spectrum.  The neon-argon source was used for wavelength calibration of the spectroscopy system. 

The spectra measured by a spectroscopy system are the convolution of the instrument 

response function and the input light.  This dependence of the spectra on the instrument response 

makes it difficult to obtain reproducible accurate spectra when a component, such as the diffraction 

grating, changes in the system.  The spectroscopy system can be calibrated against a known 

intensity reference to eliminate instrument dependencies from the measured spectra; note that 

instrumental broadening still has to be accounted for in the analysis of spectra.  The IntelliCal 

system comes with a NIST traceable light source that automates the intensity calibration process 

 
2 The spectral range per frame captured by the ICCD can be increased at the cost of a decrease in the CCD 

resolution by using a diffraction grating with a lower groove density. 
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when used with LightField.  Alternative intensity calibration methods are discussed by Kunze for 

those not using the IntelliCal system.[55] 
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Chapter III  

Plasma Diagnostic Methods 

3.1 Symmetrical Triple Langmuir Probe 

The symmetrical triple Langmuir probe was first proposed by Yamamoto and Okuda in 

1956 as a method for determining the EEDF in electrodeless and high-frequency discharges.[13]  

However, measurements of the EEDF were limited to the high energy tail end of the electron 

distribution as floating symmetrical probes operate outside the electron retarding region, which 

contains information on lower-energy electron population in the plasma.  Furthermore, 

measurements of the EEDF using this triple probe method were time-consuming as the current 

going through the reference probe had to be adjusted to zero every time the potential between the 

double probe wires changed.  Okuda and Yamamoto addressed the limitations on the energy range 

of the EEDF measurements in 1960 and Aisenberg proposed improvements to the time resolution 

of the measurements in 1964.[16], [49]  However, these improvements were dependent on making 

the double probe wires asymmetrical, which introduced new challenges when working with 

electrodeless plasmas; for example, the large surface area of the reference probe would increase 

reflections of the electromagnetic waves in microwave discharges.  In 1965, Chen and Sekiguchi 

proposed a symmetrical triple probe method capable of measuring the electron temperature and 

density instantaneously at the cost of information of the EEDF.[50]  This method has since become 

the most common triple probe method employed when measuring the parameters of low-

temperature plasmas and is one of the diagnostic methods used for this investigation. 
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3.1.1 Sheath Formation 

Understanding how electrostatic probes work requires a basic understanding of the physics 

of sheaths.  When a floating probe is immersed in a low-temperature plasma, the probe surfaces 

charge up negative relative to the plasma space potential (Vs) because electrons have much higher 

thermal velocities than ions allowing them to attach to the material surface at faster rates than ions.  

As a result of the negatively charged surface, a thin layer of positive ions surrounds the surface to 

balance its negative charge due to an effect called Debye shielding that helps the bulk plasma 

remain quasi-neutral.  The length-scale of such shielding is known as the Debye length, 

 
λD = �

ε0kBTe
qe2ne

 , (3.1) 

where ε0 is the permittivity of free space, kB is the Boltzmann constant, Te is the electron 

temperature, qe is the elementary charge, and ne is the electron density.  As the probe potential, Vp, 

becomes more negative relative to the plasma space potential, fewer electrons have the energy to 

overcome the probe’s repulsive force resulting in an exponential decrease of the electron density 

within the sheath.  This behavior is described by the Boltzmann relation, 

 
ne(𝑥𝑥) = nesexp �

qeϕs(𝑥𝑥)
kBTe

�, (3.2) 

where nes is the electron density at the outer edge of the sheath, x is the distance from the sheath’s 

outer edge toward the probe, and ϕs(𝑥𝑥) is the potential distribution within the sheath.  The ion 

density, ni, within the sheath also decreases even though ions experience an attractive force from 

the negatively biased probe.  This behavior is due to the conservation of flux, which causes the 

density of ions in the sheath to decrease as the ions are accelerated through the potential drop 

within the sheath. 
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 An exponential potential drop in the sheath region means that ni(𝑥𝑥) > ne(𝑥𝑥) throughout 

the sheath according to Poisson’s equation, 

 d2ϕ
d𝑥𝑥2

= −
qe
ε0

[ni(𝑥𝑥) − ne(𝑥𝑥)]. (3.3) 

However, given that the ion density at the outer edge of the sheath, nis, is approximately equal to 

nes means that ions must enter the sheath with high enough velocity to satisfy the non-neutrality 

condition – this minimum limit is known as the Bohm velocity, 

 
vB = �

qeTe
mi

 , (3.4) 

where mi is the mass of the ion.  In a low-temperature plasma, the ion temperature, Ti, is much 

lower than the electron temperature, which means most ions have velocities lower than the Bohm 

velocity.  Under these conditions, the sheath’s electric field penetrates beyond the sheath’s edge 

into the plasma to accelerate ions to their Bohm velocity – this region is known as the pre-sheath.  

The pre-sheath typically extends a distance on the order of the ion’s mean free path with a potential 

drop (relative to Vs) defined by 

 
Vsh =

kBTe
2qe

 , (3.5) 

as discussed by Allen et al.[56]  A thorough review of the Bohm sheath criterion and the presheath 

is given by Riemann.[57]  An illustration of the sheath and pre-sheath voltage potential profiles 

relative to the plasma space potential is shown in Fig. 3.1. 
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Figure 3.1: Diagram of a sheath and pre-sheath in contact with the surface of a probe wire. The vertical axis represents the voltage, 
𝑉𝑉, relative to the plasma space potential. The horizontal axis represents distance, x, from the sheath’s outer edge. 

3.1.2 Probe Theory: Thin Sheath Approach 

Triple probes collect ion and electron current through the sheaths that form around the 

probe wires; the sheath is considered thin when the radius of the probe (rp) is much larger than the 

Debye length of the plasma.  By measuring the current flowing through the biased probes and the 

potentials that exist between the probes one can calculate the electron temperature and density of 

the plasma.  Analysis of the data recorded from the triple probe measurements require the 

following conditions to be valid. 

1) The electron population in the plasma can be approximated by a Maxwellian 

distribution. 

2) The mean free path of the electrons is much larger than the Debye length of the plasma 

and the radius of the probe wires. 

3) The separation between the probe wires is larger than two times the thickness of the 

ion sheaths (including presheath) that surround the probe wires. 

Assuming these conditions are met, the electron temperature can be calculated by 
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 1 − exp �− qeVd2
kBTe

�

1 − exp �− qeVd3
kBTe

�
=

1
2

 , (3.6) 

as discussed by Chen and Sekiguchi.[50]  When a relatively large voltage is applied between the 

biased probes, so that qeVd3 ≫ kBTe, the exponential component of the denominator goes to zero 

– this is mathematically represented by 

 lim
Vd3→∞

exp �−
qeVd3
kBTe

� = 0. (3.7) 

Under this condition Eqn. 3.6 can be simplified to  

 Te(eV) =
Vd2
ln 2

 . (3.8) 

For the low-temperature plasmas generated in the AFRL’s experimental setup, the 36 V from the 

four 9 V batteries connected in series was enough to make this approximation as the average 

electron temperature is just a few eV; this was also verified by solving Eqn. 3.6 numerically. 

When the radius of the probe is much larger than the thickness of the ion sheath (a few 

Debye length thick), one can approximate the ion current density collected by the probe, Ji, to be 

equal to the ion current density at the outer edge of the sheath, Jis.  Under this condition 

instantaneous values of the ion current density can be calculated by  

 
Ji =

Ip

Sp �1 − exp �−qeVd3
kBTe

+ qeVd2
kBTe

��
  , (3.9) 

where Sp is the surface area of the probe wires, and Ip is the current flowing through the externally 

biased probes.  Using Eqn. 3.6 the denominator of Eqn. 3.9 can be simplified to  

 
Ji =

Ip

Sp �exp �qeVd2
kBTe

� − 1�
  . (3.10) 
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The Boltzmann relation and the conservation of flux equation can then be used to relate the ion 

current density to the electron density.  Given that nis ≈ nes and Ji ≈ Jis, the electron density can 

be calculated by 

 
ne =

Ipexp �1
2�√mi

Sp �exp �qeVd2
kBTe

� − 1� qe�kBTe
  . (3.11) 

In multispecies discharges, mi can be approximated by the reduced mass of the atoms and 

molecules.[50], [54] 

3.1.3 Probe Theory: Transitional and Thick Sheath Approach 

There is a 10 to 20 percent error in electrostatic probe measurements due to the many 

assumptions (e.g., a Maxwellian EEDF) and approximations (e.g., the ion current) that are made 

during analysis.[20]  As the sheath begins to deviate from the thin sheath condition (when rp ≲

100λD), this error can increase by another 40% in triple probes according to Chen.[50], [54]  The 

increase in error is attributed to differences in the ion current density collected by the probe wires.  

As a probe wire becomes more negative relative to the plasma potential, the ion sheath increases 

in size; thus, the current collection surface area also increases.  The difference between the surface 

area of the ion sheath and the surface area of the probe wire can typically be ignored when rp ≫

λD, but when this condition is not met, the approximation Ji ≈ Jis can no longer be made and a 

correction factor must be introduced to reduce the error of the measurements. 

There are two ways of estimating the correction factor: experimentally and numerically.  

The numerical approximation of the correction factor was used in this work, as discussed in Sec. 

2.2.1.  The dimensionless correction factor, η, introduced by Chen is dependent on the probe radius 

to Debye length ratio, ξe.[54]  When ξe ≫ 1, the effects of orbital motion are negligible so it can 

be assumed that all the ions that enter the sheath are collected by the probe; the sheath is known 
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as a transitional sheath when  1 ≪ ξe ≲ 100.  Under this assumption, the current reaching the 

sheath’s edge, Is, must be equal to the current reaching the probe, Ip.  For cylindrical probes, 

 
Is = 0.61Spneqeξs�

kBTe
mi

  , (3.12) 

where ξs is the ratio of the radius of the sheath to the radius of the probe.[54]  The current reaching 

the probe is space-charge-limited and can be expressed by the Child-Langmuir’s equation, 

 
Ip =

2Lp�Vp − Vsh�
3 2⁄

9rpF2
�

2qe
mi

  , (3.13) 

where Lp is the length of the probe, and F is a function of ξs; F(ξs) was interpolated from tables of 

values provided by Langmuir.[54], [58]  Normalizing the probe potential to the electron 

temperature, y, and letting Is = Ip results in 

 
�𝑦𝑦 −

1
2
�
3 2⁄

= 0.97ξe2F2ξs , (3.14) 

which relates the radius of the sheath to the probe potential through dimensionless parameters.[54] 

 The theoretical correction factor can be estimated by the gradient of the curve of ξs2 as a 

function of y near the plasma floating potential normalized to the electron temperature, yf.  The 

normalized plasma floating potential is given by 

 
𝑦𝑦f = ln�

0.65
ξsf

�
mi

me
� , (3.15) 

where ξsf is the ratio of the radius of the sheath to the radius of the probe when the probe is at the 

plasma floating potential.[54]  Using the gradient between yf − 1
2 and yf + 1

2 , the correction factor 

can be estimated by 
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η(ξe) =

ξf+12
2 − ξf−12

2

ξsf2
 , (3.16) 

where ξf−1 2⁄
2  and ξf+1 2⁄

2  are the values of ξs2 at yf − 1
2 and yf + 1

2 , respectively.[54]  It is important 

to note that the value of ξsf2  used in Eqn. 3.16 depends on ξ𝑒𝑒 and can only be determined 

numerically.  This means that for a given gas composition and ξe the values of yf and ξsf2  can be 

approximated from the intersection of the curves of ξs2(𝑦𝑦) and ξsf2 (yf) obtained from Eqns. 3.14 and 

3.15, respectively; an example of these intersecting points for an Ar-N2 (96% Ar, 4% N2) plasma 

is shown in Fig. 3.2.  Once yf is determined, we can solve Eqn. 3.14 at the gradient boundaries to 

determine ξf−1 2⁄
2  and ξf+1 2⁄

2 , and finally, calculate the theoretical value of η for a given ξ𝑒𝑒. 

 

Figure 3.2: Theoretical curves (solid lines) of the square of the normalized sheath radius, 𝜉𝜉𝑠𝑠2, as a function of the normalized probe 
potential under various 𝜉𝜉𝑒𝑒; these curves are obtained from Eqn. 3.14.  The  𝜉𝜉𝑠𝑠2 curve (dashed line) for Ar-N2 (4% N2) is obtained 
from Eqn. 3.15.  The values of 𝑦𝑦𝑓𝑓  and 𝜉𝜉𝑠𝑠𝑓𝑓2  for a given 𝜉𝜉𝑒𝑒 are determined by the intersection of the curves. 

When ξe ≲ 1, the sheath is considered thick and all current collected by the probe is orbital 

motion limited.  The current reaching the probe under this condition is given by Langmuir’s 

orbital-motion theory as 

 Ii(V) =
2
√π

I𝑠𝑠(Vsh)(1 + 2𝑦𝑦)1 2⁄  , (3.17) 
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where Is(Vsh) is the ion current collected at the sheath’s outer edge, which can be obtained from 

Eqn. 3.12 when ξs = 1.[54]  Theoretical values of η can be calculated in a similar way as for the 

ξe ≫ 1 condition.  The main difference is that η is now solely dependent on the gas composition 

of the plasma.  The relation between η and the normalized plasma floating potential is given by 

 η =
1

2yf
 . (3.18) 

It is important to note that the relation for yf will be different from the one defined by Eqn. 

3.15 given that the current reaching the probe is governed by the orbital motion limited theory 

when ξe ≲ 1.  Taking Eqn. 3.17 into consideration, yf can be derived in a similar way as Eqn. 3.15 

resulting in the relation 

 
yf = ln�

0.73
yf1 2⁄ �

mi

me
� . (3.19) 

An exact solution for yf can be obtained by 

 
yf =

𝑊𝑊(2A0
2)

2
 , (3.20) 

where A0 ≡ 0.73�mi me⁄  and 𝑊𝑊(2A0
2) is the Lambert W-function.  The theoretical value of η 

can then be calculated by plugging Eqn. 3.20 into Eqn. 3.18; this value is constant at a fixed gas 

composition when ξe ≲ 1.  From Chen’s paper, it is not clear what the exact value of ξe is at which 

one needs to switch from Eqn. 3.16 to Eqn. 3.18 for calculations of the correction factor, so to 

determine this transition point the value of ξe at which Eqn. 3.16 and Eqn. 3.18 yield the same 

value of η was calculated.[54]  An example of a typical η(ξe) profile for an Ar-N2 plasma is shown 

in Fig. 3.3. 



 39 

 

Figure 3.3: Theoretical correction factor, η, as a function of the ratio of the probe radius to the Debye length, 𝜉𝜉𝑒𝑒, for an Ar-N2 
(96% Ar, 4% N2) plasma. 

 Calculating the theoretical correction factor can get complicated when working with 

inhomogeneous plasma as the probe can encounter different sheath conditions when making 

spatially resolved measurements.  Furthermore, it is impossible to manually employ the 

intersection method discussed by Chen when making corrections to the millions of data points 

collected per plasma condition.[54]  A MATLAB script was written to process the large amounts 

of data collected by the triple probe system to address this issue.  Within the script, a function that 

calculates the theoretical correction factor for any gas composition and ξe combination was added; 

a copy of this function is provided in Appendix A. 

 Unfortunately, applying the correction factor to Eqn. 3.6 makes the equation impossible to 

solve analytically, so the electron temperature must be calculated numerically, which significantly 

increases the computational time of the MATLAB script.  The corrected electron temperature is 

given by 

 1 − C(η, y2, y3)exp(−y2)
1 − exp(−y3)

=
1
2

 , (3.21) 

where 
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 C(η, y2, y3) =
1
2
�(1 − ηy2)1 2⁄ + �1 + η(y3 − y2)� , (3.22) 

 y2 =
qeVd2
kBTe

 , (3.23) 

and 

 y3 =
qeVd3
kBTe

 , (3.24) 

as discussed by Chen.[54]  Introducing the theoretical correction factor to Eqn. 3.11 makes the 

equation difficult to solve analytically, but not impossible.  The corrected electron density is given 

with dimensionless parameters as 

 

ne =
Ipexp �1

2�√mi �1 − η�𝑦𝑦𝑓𝑓 −
1
2��

1 2⁄

Sp[exp(𝑦𝑦2) − (1 − ηy2)1 2⁄ ]qe�kBTe
  , (3.25) 

where 𝑦𝑦𝑓𝑓 is calculated from 

 
exp�𝑦𝑦𝑓𝑓� = 0.657�

mi

me
�1 − η�𝑦𝑦𝑓𝑓 −

1
2
��
1 2⁄

 , (3.26) 

as discussed by Chen.[54]  Eqn. 3.26 is what makes the electron density difficult to solve 

analytically, but with the help of the Lambert W-function an exact solution for 𝑦𝑦𝑓𝑓 can be calculated 

by 

 
𝑦𝑦𝑓𝑓 =

2 + η − η𝑊𝑊 �2A1
−2η−1exp �2

η + 1��

2η
 , (3.27) 

where A1 ≡ 0.657�mi me⁄  and 𝑊𝑊 �2A1
−2η−1exp �2

η
+ 1�� is the Lambert W-function of variable 

2A1
−2η−1exp �2

η
+ 1�.  It is important to note that the corrections discussed in this section only 

help eliminate the error associated to operating outside the thin sheath conditions; this means that 
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after corrections, the measurements still have the 10 to 20 percent error inherent to electrostatic 

probes.[20], [50], [54] 

3.2 Optical Emission Spectroscopy 

Spectroscopy is a well-established diagnostic method that has been used for over two 

centuries.  During its infancy, spectroscopy was mainly used to determine the wavelength of 

spectral lines produced by light sources such as the sun, and it was not until 1860 that a link 

between spectral lines and atoms was made by Kirchhoff and Bunsen.[59]  In 1913, Bohr 

established a relation between spectra and the structure of the atom using Rutherford’s atomic 

model to develop the theory of the hydrogen atom.  However, the Rutherford-Bohr model became 

obsolete (does not produce accurate results for multi-electron systems) with the introduction of 

quantum mechanics and the discovery of quantum properties of subatomic particles, such as the 

electron spin.  In 1964, Griem published the first monograph on plasma spectroscopy, which was 

followed by a review by Cooper and an introductory text by Marr.[60]–[63]  Over the last five 

decades, many models have been developed to study the plasma parameters from spectral 

measurements.  In this investigation, models developed by Simek and Biloui et al. were used to 

measure the gas temperature.[64]–[66]  In addition, an argon-based collisional radiative model 

(CRM) based on a CRM for use in xenon plasmas developed by Dressel et al. to determine the 

electron temperature of the plasma is under development.[67]  The physics necessary to understand 

these models will be discussed in this section. 

3.2.1 Atomic Structure and Notation 

Describing the structure of an atom involves treating electrons as particles that exhibit 

wave-like behavior (first proposed by Louis de Broglie).  The shape of the wave that describes an 

electron system is known as the wave function, 𝜓𝜓, and its mathematical description is given by the 
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Schrödinger equation. Electrons within an atom can be modeled by the time-independent 

Schrödinger’s equation, 

 
�
−ℏ2

2𝑚𝑚
𝜕𝜕2

𝜕𝜕𝑥𝑥2
+ 𝑉𝑉(𝑥𝑥)�𝜓𝜓(𝑥𝑥) = E𝑒𝑒𝜓𝜓(𝑥𝑥) , (3.28) 

where ℏ is the reduced Planck constant, V(x) is the potential experienced by the electron, 𝜓𝜓(𝑥𝑥) is 

the time-independent wave function, and Ee is the energy of the electron.  Solving the Schrödinger 

equation yields multiple wave functions as solutions, each solution corresponding to an allowed 

state.  While interpretations of the meaning of the wave functions are still being debated within 

the scientific community, most agree that the probability of finding an electron in a specific volume 

of space within the atom can be described by the square of the wave function, |𝜓𝜓|2.  This means 

that electrons can only exist in regions where |𝜓𝜓|2 > 0; note that regions where constructive 

interference occur indicate the regions where the electron is more likely to be found.  The exact 

location of an electron cannot be determined for a given state due to the Heisenberg uncertainty 

principle, so a region in which the electron can be found 95% of the time can be defined from 

solutions to the Schrödinger’s equation; these regions are known as atomic orbitals or sub-shells. 

Visualizing atomic orbitals requires the introduction of four discrete numbers (called 

quantum numbers): the principal quantum number, the angular momentum quantum number, the 

magnetic quantum number, and the spin quantum number.  The principal quantum number, n, 

indicates the main energy level or shell of the electron with an integer (n = 1, 2, 3, …).  As the 

principal quantum number increases in value, the lower the average binding energy of the electrons 

in the shell.  The angular momentum quantum number, l, provides information about the shape of 

the atomic orbital and is represented by an integer dependent on the principal quantum number 

(𝑙𝑙 = 0, 1, …, n-1); these integers are usually represented by the letters s, p, d, f, and g for 𝑙𝑙 = 0, 1, 

2, 3, and 4, respectively.  For example, the s orbital (l = 0) is spherical, while the p orbital (l = 1) 
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is dumbbell-shaped; a diagram of the s and p orbitals is shown in Fig. 3.4.  The magnetic quantum 

number, 𝑚𝑚𝑙𝑙, describe the orientation (azimuthal component) of the orbital and is represented by 

an integer value dependent on the angular momentum quantum number (𝑚𝑚𝑙𝑙 = -l, …, l).  This 

means each atomic orbital can exist in more than one orientation (except the s orbital since it is 

spherically symmetrical) relative to the nucleus.  The spin quantum number, 𝑚𝑚𝑠𝑠, indicates the 

magnetic state of the electron, which is represented by a half-integer (𝑚𝑚𝑠𝑠 = ±1 2⁄ ).  This means 

that each atomic orbital is limited to two electrons since the Pauli exclusion principle limits one 

electron per quantum state. 

 

Figure 3.4: Diagram of the a) s orbital and b) p orbital.  The nucleus of the atom is represented by the blue circle and the probability 
density, |𝜓𝜓|2, is represented by the shaded red regions.  Note that the s orbital in three-dimensional space would be represented by 
a sphere enclosing the nucleus. 

In the absence of external influences, individual states are populated with electrons so as 

to minimize the total energy of the electrons.  This means electrons must first fill the lowest energy 

level available before moving to a higher one as described by the Aufbau principle.  Electrons in 

the outermost shell first seek empty orbitals (to minimize repulsion) before pairing up with an 

electron of opposite spin as described by Hund’s rules.  This natural arrangement of electrons 

within the atom is referred to as the ground state configuration and can be represented by the 

principal and angular momentum quantum numbers of each subshell (nl).  For example, the 
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electron configuration of a nitrogen atom in its ground state is 1s22s22p3, where the superscript 

indicates the number of electrons in the subshell; the number of electrons in a subshell is limited 

to 2(2l+1).  While this notation is usually used to describe the ground state configuration of an 

atom, it can also be used to describe excited states. 

The electron configuration of light atoms (𝑍𝑍 ≲ 40) is usually extended to include the 

values of the allowed total orbital and spin angular momentum quantum numbers, L and S, 

respectively.[68]  The L and S quantum numbers are obtained from the sum of the l and 𝑚𝑚𝑠𝑠 values 

of all valence electrons, respectively. The nomenclature for the total angular momentum quantum 

number is L = 0, 1, 2, 3, 4, … = S, P, D, F, G, …, which is analogous to that of l.  The notation for 

the extended part of the electron configuration containing information of the L and S quantum 

numbers is called the LS term and is given by L (2S+1) .  One can further expand the LS term to 

include the total angular momentum quantum number, J, which is the sum of the total orbital and 

spin angular momentum (J = L + S).  This scheme of adding the total orbital and spin angular 

momentum to obtain the total angular momentum is called LS-coupling or Russell-Saunders 

coupling and its described by the term symbol L (2S+1)
J
 .  An argon atom in its ground state can be 

described by the Russell-Saunders notation as 1s22s22p63s23p6(1S0). 

Often the term symbol includes a term on the upper right-hand side that describes the parity, 

P, of the state.  The term symbol that includes the parity of the state is of the form L (2S+1)
J
P, where 

P is written as “o” if the parity is odd and omitted if it is even.  All wave functions describing the 

stationary states of an atom have definite parity, where the parity is even if 𝜓𝜓(𝑥𝑥) = 𝜓𝜓(−𝑥𝑥) and 

odd if 𝜓𝜓(−𝑥𝑥) = −𝜓𝜓(𝑥𝑥).  The parity can also be determined from the electron configuration by 

adding the l value of each electron (j) in the atom as described by 

 P = (−1)∑ 𝑙𝑙jj . (3.29) 
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The parity is even when P = 1 and odd when P = -1.  Note that only odd orbitals (l = 1, 3, …) 

contribute to the total parity as the sum of even orbitals will always result in even integers.  

Furthermore, all filled orbitals result in even integers after summation, so it is reasonable to 

perform the summation only over the electrons in unfilled odd orbitals. 

3.2.2 Atomic Processes 

When two particles collide, the collision can be described as elastic or inelastic with elastic 

collisions being the most common type of collision in low-temperature plasmas.  While elastic 

collisions contribute to the kinetic energy of atoms (or ions)3, the interactions do not result in the 

emission of photons (no change in atom’s internal energy), which are essential for optical emission 

spectroscopy.  For this reason, the focus of this section will be on inelastic collisions which are 

responsible for most of the atomic processes that take place in our plasma.  Atomic processes that 

occur as a result of inelastic collisions can be separated into two categories: bound-bound and 

bound-free processes. 

Bound-bound processes occur when a collision results in a bound electron transitioning 

between bound states, such in electron impact excitation and de-excitation.  In electron impact 

excitation, a free electron transfers some of its energy to a bound electron of an atom during the 

collision causing the bound electron to transition to a higher energy state.  This process can be 

represented by 

 MY + e−∗ ⟶ MY∗ + e−, (3.30) 

where e- represents a free electron, M represents an atom, Y is the charge state of the atom, and 

the * symbol indicates that the atom or electron has extra energy.  For example, a ground-state 

nitrogen atom getting excited to one of its first resonance states can be represented by 

 
3 In this section, assume the atomic processes described for atoms also apply to ions. 
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 N + e−∗ ⟶ N∗ + e−, (3.31) 

or as 

 1s22s22p3� S 4 3/2
o � + e(εi) ⟶ 1s22s2p33s � P1/2

o
 
4

 
�+ e(εj), (3.32) 

to include the transition information, where εi and ε𝑗𝑗  are the initial and final energy of the free 

electron, respectively – a diagram of this atomic process is shown in Fig. 3.5.  Note that the 

difference between εi and ε𝑗𝑗  represent the kinetic energy the free electron lost during the collision, 

and the potential energy gained by the bound electron since total energy is conserved the collision. 

 

Figure 3.5: Electron impact excitation of a ground-state nitrogen atom.  The red lines represent the free electron colliding with a 
bound electron originally in the 2s subshell, while the purple line represents the bound electron transitioning to a higher energy 
level (3s subshell). 

Atoms can also be excited by absorbing a photon; however, the energy of the photon must 

be equal to the energy needed for the transition for it to be absorbed.  In photoexcitation, the electric 

and magnetic fields of the photon are responsible for the excitation of the bound electron with the 

strongest excitation coming from the electric field component.  The reaction can be written as 
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 MY + hν ⟶ MY∗, (3.33) 

where h is Planck’s constant, and ν is the photon’s frequency.  Without an external source of 

photons, the probability of an atom getting excited by a photon is low in optically thin plasmas.  

In low-temperature plasmas, the main source of photons are spontaneous transitions from excited 

and molecular states. 

During a spontaneous emission, excess energy from a bound electron is released as a 

photon via electric dipole radiation.  The energy of the photon is determined by the difference in 

energy between the initial and final bound states of the electron.  The bound states an excited 

electron is most likely to transition to (known as allowed transitions) can be predicted by a set of 

selection rules.  For a multi-electron atom, the selection rules impose the following conditions 

based on the quantum numbers4 of the excited state:[69], [70] 

 ΔJ = 0, ±1 (J = 0 ↔ 0 is a forbidden transition) 

 ΔMJ = 0, ±1 

 Parity changes (P = -1 ↔ 1) 

 When ΔS = 0 in LS-coupling, ΔL = 0, ±1 (L = 0 ↔ 0 is a forbidden transition) 

When the selection rules are not met, the excited atom can still lower its total energy through 

forbidden transitions, such as electric quadrupole and magnetic dipole transitions; however, these 

occur at much lower rates than allowed transitions.  Excited atoms in this state are said to be in a 

metastable state, which have relatively long lifetimes compared to excited atoms that can lose their 

energy through allowed transitions.  For example, argon in the metastable state 

 
4 MJ is the magnetic angular momentum quantum number, which is related to the total angular momentum 

by the inequality -J ≤ MJ ≤ J.  MJ only becomes relevant in the presence of external static magnetic field, 𝐵𝐵�⃗ 𝑒𝑒𝑒𝑒𝑒𝑒 , capable 
of splitting the spectral lines due to the Zeeman effect.  The Zeeman effect depends on the strength of the external 
field and only becomes significant outside the weak-field limit (𝐵𝐵�⃗ 𝑒𝑒𝑒𝑒𝑒𝑒 ≪ 𝐵𝐵�⃗ 𝑖𝑖𝑖𝑖𝑒𝑒), where 𝐵𝐵�⃗ 𝑖𝑖𝑖𝑖𝑒𝑒 is the internal magnetic field 
of the atom.[70]  MJ is introduced solely to provide a complete set of rules for allowed transitions in multi-electron 
atoms. 
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1s22s22p63s23p54s( P0o 
3 ) has a lifetime of approximately 40 seconds, while its excited states that 

can decay through spontaneous emission have lifetimes on the order of 10-8 to 10-6 seconds.[71]  

The long lifetimes of the metastable states allow metastable atoms to contribute to the kinetics of 

other chemical reactions in the plasma and lose energy through collisional relaxation processes, 

such as electron impact de-excitation.   

 Electron impact de-excitation is an atomic process similar to electron impact excitation 

with the main difference being the direction in which energy is transferred between the particles 

as represented by the reaction 

 MY∗ + e− ⟶ MY + e−∗. (3.34) 

In electron impact de-excitation, the excited bound electron decays into a lower energy level 

without emitting a photon by transferring its excess energy to the free electron during the collision.  

For electron impact de-excitation processes to be relevant in the depopulation of excited states, 

their reaction rates must be large enough to compete with those of spontaneous emission, which 

usually is not the case in low density plasmas.  However, electron impact de-excitation reactions 

can play an important role in the depopulation of metastable states as the excited atom cannot 

quickly decay to a lower energy state via allowed transitions.  This also means other atomic 

processes, such as electron impact excitation and ionization, can contribute to the depopulation of 

metastable states as the energy required to transition the bound electron to a higher energy state or 

even remove it from the atom is much less than when the atom is in its ground state.   

Electron impact ionization is one of the many atomic processes that result in an electron 

moving between bound and free states.  In electron impact ionization no photon is emitted as a 

result of the collision, but a bound electron is released from the atom in the process instead.  This 

atomic process can be described by the reaction 
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 MY + e−∗ ⟶ MY+1 + e− + e−. (3.35) 

For an atom to lose a bound electron during a collision with a free electron, the free electron must 

transfer enough energy to the bound electron to overcome its binding energy or ionization 

potential.  In low-temperature plasmas, only a small percent of the electron population has enough 

energy to remove electrons from atoms in their ground state, which results in low ionization 

fractions.  Atoms can also reach higher charge states through photoionization, but the probability 

of a photon removing an electron from an atom is low compared to electron impact ionization in 

optically thin plasmas when there is no external source of photons.  The photoionization process 

can be described by the reaction 

 MY + hν ⟶ MY+1 + e−. (3.36) 

 The reverse process of an atom losing an electron is an electron recombining with the atom.  

Three-body recombination is the reverse process of electron impact ionization where two free 

electrons collide in the vicinity of an ion resulting in one electron gaining energy and the other 

getting captured by the ion.  This process is usually ignored at low electron densities because the 

probability of two free electrons colliding in the vicinity of an ion is very low; however, this 

process scales up with electron density and can become the dominant recombination mechanism 

at higher electron densities (over approximately 1016 cm-3).  Electrons can also recombine with 

atoms through radiative recombination, which is the inverse process of photoionization as 

described by the reaction 

 MY+1 + e− ⟶ MY + hν. (3.37) 

The free electron in the photoionization process can be captured into any of the bound states 

resulting in a photon of energy equivalent to the kinetic energy lost by the free electron which is 

dependent on the binding energy of energy level the electron gets trapped in.  Unlike spontaneous 
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emission, the photon emitted in this process results in a continuous spectrum (known as radiative 

recombination continuum) because the initial energies of free electrons are not quantized.  The 

transition rate of this process is usually only significant at very low temperatures (less than a few 

tenths of an eV), but there are cases where it can be the dominant process. 

 Dielectronic recombination is a two-step recombination process that begins with a free 

electron getting captured by an ion while transferring energy to a bound electron through a resonant 

process called dielectronic capture.  The free electron can be captured into any of the available 

bound states, which increases the chances of the free electron having the right amount of energy 

for the process.  The dielectronic capture process results in an unstable atomic state that can either 

re-emit the captured electron (a process known as autoionization) or radiatively decay into a lower 

energy state via the emission of a photon.  The latter is known as dielectronic recombination and 

can be described by the two-step reaction 

 MY+1 + e− ⟷ MY∗∗ ⟶ MY + hν. (3.38) 

Dielectronic recombination is typically the dominant recombination mechanism in laboratory 

plasmas even though it is a two-step process.  A diagram of the dielectronic recombination two-

step process is shown in Fig. 3.6. 

 

Figure 3.6: Dielectronic recombination process for a nitrogen ion.  The first step illustrates the dielectronic capture of a free 
electron (red) by the ion.  The second step in the process consists of the excited electrons decaying to lower energy levels and 
emitting a photon per transition taken. 
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One way to get some insight into the energy requirements of an atom’s bound states is 

through an energy diagram.  From an energy level diagram, one can get an idea of the approximate 

energy needed for electron transitions within the bound states of an atom and the energy required 

to completely remove an electron from the atom (ionization).  An energy level diagram example 

of the argon atom is shown in Fig. 3.7.  Note that the energy diagram in Fig. 3.7 is meant to only 

provide some insight on the relative energies of the bound states of an excited argon atom (3p5nl 

configuration); energy values can be found in the National Institute of Standards and Technology 

(NIST) data bank.[72]  Furthermore, sometimes not all energy states can be illustrated accurately 

in a diagram as the energy of energy states within the same subshell sometimes only vary by a 

very small amount (hundredths of a volt).  For example, the 4p subshell has ten possible energy 

states, but only six are illustrated in Fig. 3.7 since some states, such as the P 1 1
 (-2.477 V) and P 3 0

 (-

2.487 V) states have similar potential energies.[68] 

 

Figure 3.7: Energy level diagram for the 3p5nl configuration of an argon atom.[68] 
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3.2.3 Molecular Spectra and Notation 

Molecular processes are more complex than atomic processes as molecules have additional 

degrees of freedom (vibrational and rotational) to which free electrons can lose their energy.  The 

focus of this section will on homonuclear diatomic molecules as the molecular spectra of excited 

N2 is used to determine the temperature of the gas in our experiments.  The spectroscopic term 

notation used to describe the state of diatomic molecules is similar to that of atoms where the total 

orbital angular momentum and total electron spin angular momentum quantum numbers are 

defined in the term symbol.  The total orbital angular momentum of a diatomic molecule is defined 

along the internuclear axis and is denoted by Λ = 0, 1, 2, and 3, which correspond to Σ, Π, Δ, and 

Φ, respectively.  The total electron spin angular momentum is represented by the quantum number 

S and appears in the multiplicity (2S+1) of the term symbol in the form Λ (2S+1) .  For diatomic 

molecules, the total angular momentum quantum number, Ω, is usually included as a subscript in 

the term symbol to describe electronic sub-states when Λ ≠ 0.[69]  Here the total angular 

momentum is the sum of the total orbital angular momentum and total electron spin angular 

momentum along the internuclear axis (denoted by the quantum number Σ).  Note that the quantum 

number Σ is different from the Σ state defined by Λ = 0.  Furthermore, the quantum number Σ is 

dependent on the total electron spin angular momentum (−S ≤ Σ ≤ S) and is only defined when 

Λ ≠ 0. 

The term symbol also includes information about the symmetry of the electronic wave 

function in the form of the superscripts and subscripts.  In the superscript, “+” and “−” are used to 

indicate if the wave function is symmetric or antisymmetric with respect to any plane including 

the internuclear axis.  The subscript is only included when describing homonuclear molecules, 

such as N2, and it describes the wave functions symmetry with respect to the interchange of nuclei; 
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“g” is used if it is symmetric and “u” if antisymmetric.[71]  Molecules in their ground state are 

identified by an X before the term symbol and by capital letters A, B, C, and so on to represent a 

series of excited states having the same multiplicity as the ground state.  Lowercase letters a, b, c, 

and so on are used for excited states with different multiplicity than the ground state.[71] 

Like excited atoms, molecules in excited states can also decay to lower energy states by 

emitting a photon via electric dipole transitions (allowed transitions).  These too have a set of 

selection rules governed by the quantum numbers of the excited state:[68], [71]  

 ΔΛ = 0, ±1 

 ΔS = 0 

 Σ+ → Σ+ or Σ− → Σ− (in transitions between Σ states) 

 g → u or u → g (in homonuclear molecules) 

Allowed transitions for excited homonuclear diatomic molecules require a change in the electronic 

state, which means vibrational and rotational transitions within the same electronic state are not 

allowed by the selection rules (forbidden transitions).  Consequently, homonuclear diatomic 

molecules do not produce a pure vibrational or rotational spectrum. 

When an excited homonuclear diatomic molecule decays to a lower electronic state, 

photons are emitted over broad wavelength regions (known as spectral bands or rovibrational 

bands) as there are no restrictions to changes in the vibrational state during the electronic transition; 

the energy of the photon accounts for changes in the electronic, vibrational, and rotational 

states.[73]  Molecular bands consist of many individual emission lines, resulting from changes in 

the vibrational, rotational, and electronic states of the molecules.  These emission lines are usually 

too close together for the resolution of the average spectrometer to detect them as individual lines.  

Instead, the emission lines are observed as a merged continuous spectrum with a sharp drop in 
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intensity at one end and a gradual decrease in intensity towards the other end.  The peak leading 

to the sharp drop in intensity is called the band head and is used to identify the spectral band within 

a band system.  A band system consists of all the rovibrational bands associated with a specific 

electronic state transition.  For example, bands produced from B3Πg to A3Σu+ transitions in N2 are 

part of the first positive system of nitrogen, where the name “first positive” refers to being the first 

excited state of a neutral molecule that can radiatively decay to a lower energy state; a band system 

is referred as “negative” if the molecule is not neutral. 

Identifying the rovibrational bands in a band system requires knowledge of the energy 

levels within the molecule.  The electronic energy of diatomic molecules can be described by the 

Morse potential, which is dependent on the distance between the two nuclei.  Within the potential 

well of an electronic state, there is a series of vibrational levels.  The energy of a vibrational level 

(E𝜐𝜐) can be described by the harmonic oscillator model with the first anharmonic correction, 

 
E𝜐𝜐 = h𝜈𝜈𝑒𝑒 �𝜐𝜐 +

1
2
� − 𝑥𝑥𝑒𝑒h𝜈𝜈𝑒𝑒 �𝜐𝜐 +

1
2
�
2

, (3.39) 

where 𝜈𝜈𝑒𝑒 is the natural vibrational frequency of the molecule, 𝜐𝜐 is the vibrational quantum number, 

and 𝑥𝑥𝑒𝑒 is the first anharmonicity constant.[69], [73]  The anharmonic correction causes the spacing 

between the vibration levels to decrease as their energy approaches the dissociation energy (De) of 

the molecule.  Note that the actual energy required for dissociation of the molecule (D0) is less 

than the dissociation energy since the ground state of a molecule has some internal energy from 

the lowest vibrational level. A diagram of the Morse potential curve is shown in Fig. 3.8. 
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Figure 3.8: Morse potential diagram for diatomic molecules. 

Rovibrational bands within a band system are identified by the change in the vibrational 

level during an allowed transition.  Electronic transitions resulting in similar changes in the 

vibrational level (∆𝜐𝜐 = 𝜐𝜐′ − 𝜐𝜐′′) appear in the spectrum as a series of bands (called progressions) 

whose separation increases at a slow rate; note that the first prime (′) and second prime (′′) denote 

the upper and lower electronic states, respectively.[73]  Each band head within a progression 

represents a change in the 𝜐𝜐′ and 𝜐𝜐′’, but not in the ∆𝜐𝜐.  When ∆𝜐𝜐 changes within a band system, a 

new progression forms in a different part of the spectrum determined by the wavelength of the 

emitted photons.  This results in a band system extending over a wide range of wavelengths in the 

electromagnetic spectrum.  For example, the first positive system of N2 extends over the 478 nm 

to 2531 nm wavelength range.[74] 

Vibrational levels have their own set of rotational levels, which are responsible for the 

wavelength range of rovibrational bands. The energy of the rotational levels can be obtained by 

solving the Schrödinger equation for a rigid rotor and adding a correction for centrifugal distortion.  

The resulting rotational energy (E𝒥𝒥) equation is given by 
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E𝒥𝒥 =

h2𝒥𝒥(𝒥𝒥 + 1)
8𝜋𝜋2𝜇𝜇𝑟𝑟𝑒𝑒

− D𝒥𝒥𝒥𝒥2(𝒥𝒥 + 1)2, (3.40) 

where 𝒥𝒥 is the rotational quantum number, 𝜇𝜇 is the reduced mass of the molecule, 𝑟𝑟𝑒𝑒 is the 

internuclear distance, and D𝒥𝒥 is the centrifugal distortion constant.[69], [73]  When excited 

molecules radiatively decay to a lower energy state, the emission lines can be separated by 

branches based on the change in the rotational level: the P-branch (∆𝒥𝒥 = −1), Q-branch (∆𝒥𝒥 =

0), and R-branch (∆𝒥𝒥 = 1) are the three most common branches.  These branches can be used to 

identify the location of sub-band heads (peaks) within a rovibrational band; the turning point of a 

Fortrat parabola indicates the location of such peaks.[73]  A diagram of the rotational levels within 

an electronic state is shown in Fig. 3.9.  Note that the spacing between the rotational levels 

increases as their energy increases due to the centrifugal distortion. 

 
Figure 3.9: First few rotational and vibrational levels of an electronic state.[73] 

3.2.4 Spectral Line and Band Identification 

In plasma spectroscopy, it is important to identify which elements are present in the plasma 

as it can help detect the presence of contaminants and determine the spectral range of interest.  
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Argon is the main gas used in our experiments, so the plasma spectroscopy system was designed 

to collect photons emitted in the optical and NIR range by excited argon atoms.  Some of the gas 

mixtures studied also included small amounts of nitrogen (up to 10% of the gas concentration), 

which allowed the gas temperature to be approximated from its rovibrational bands emitted in the 

optical range.  Spectral measurements of plasma generated from various gas mixtures of argon, 

nitrogen, and oxygen were made in the 690 nm to 860 nm wavelength range for this investigation.5  

Spectral measurements confirmed the presence of eighteen strong excited argon emission lines (Ar 

I) in all experiments.  In plasma containing nitrogen, the 2-0 band progression of the first positive 

system of nitrogen was observed.  Also, two emission peaks, each containing three excited oxygen 

emission lines (O I), were observed in the measured spectral range when oxygen was added to the 

plasma.  Sample spectral measurements of different gas mixtures are shown in Fig. 3.10-3.13. 

 
Figure 3.10: Spectrum of an Ar-N2 (4% N2) plasma generated at the focus of a 7.5 kW microwave beam at 200 mTorr. 

 
5 There is an Ar I emission line at 852.1 nm, but since it was not used in our collisional radiative model, only 

spectra between 690 nm and 850 nm was analyzed. 
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Figure 3.11: Spectrum of an Ar-O2 (4% O2) plasma generated at the focus of a 7.5 kW microwave beam at 200 mTorr. 

 
Figure 3.12: Spectrum of an Ar- N2-O2 (4% N2, 4% O2) plasma generated at the focus of a 7.5 kW microwave beam at 200 mTorr. 

3.2.5 Spectral Line Broadening 

The laws of quantum mechanics describe the atom as having discrete energy levels, so one 

would expect photons emitted from the decay of an excited atom into a lower energy state would 

all have the same energy for a given allowed transition.  However, this is not the case because 
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according to the uncertainty relation there is an uncertainty in the energy measurement (ΔE) of a 

quantum state when also measuring its lifetime; this is described by the equation, 

 
𝛥𝛥EΔ𝑡𝑡 ≥

ℏ
2

  , (3.41) 

where Δ𝑡𝑡 is the uncertainty in the lifetime measurement.  This phenomenon is observed in the 

natural broadening of emission lines.  Other broadening mechanisms include Doppler broadening, 

pressure broadening, Stark broadening, self-absorption broadening, and the Zeeman effect; 

however, most of these are only encountered under specific conditions or are not the dominant 

broadening mechanism in low electron density, low temperature plasmas.[55], [75]  In addition to 

the condition-dependent broadening mechanisms, instrument broadening also must be taken into 

consideration when analyzing spectral measurements. 

Line broadening affects intensity measurements as photons associated with a specific 

radiative decay transition are collected over a wider range of wavelengths, which means the 

intensity is not just the maximum value of the emission line as it would be if all photons had the 

same exact energy.  This means photons collected in the nearby wavelengths (usually within a few 

angstroms of the center wavelength) must also be considered when calculating the intensity of the 

emission line.  Broadened emission lines can typically be described by a Gaussian, Lorentzian, or 

Voigt profile, so often one of these profiles is fitted to the emission line for intensity calculations; 

the full width at half maximum (FWHM) of the fitted function is usually used to set the range over 

which to sum the intensities of the line shape.  The FWHM of a Gaussian fit was used for intensity 

calculations in this investigation.  An example of a Gaussian profile fitted to an Ar I emission line 

is shown in Fig. 3.13. 
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Figure 3.13: Gaussian profile fitted to Ar I emission line (696.5 nm).  Data is from Ar-N2 (4% N2) plasma generated at the focus 
of a 7.5 kW microwave beam at 200 mTorr. 

3.2.6 Gas Temperature: Biloiu’s Model 

There are various methods for approximating the neutral gas temperature (Tg) from the 

molecular spectra of nitrogen; depending on the plasma conditions, spectra from the first negative 

(B2Σu+ → X2Σg+), first positive (B3Πg → A3Σu+), or second positive (C3Πu → B3Πg) systems are 

typically used in the models.  The first negative and second positive systems have rovibrational 

bands in the 268 nm to 546 nm and 286 nm to 587 nm wavelength range, respectively; these ranges 

are outside the optimal spectral range of our spectroscopy system.[74]  Furthermore, the excited 

states of these band systems have relatively short radiative lifetimes (approximately 40-60 ns) 

compared to the mean neutral collision time range (0.6-1.3 μs) anticipated when operating in the 

100 mTorr to 200 mTorr background gas pressure (Pg) range. [74], [76] The mean gas-kinetic 

collision time of N2 molecules is given by 

 
𝑡𝑡�̅�𝑐 =

17.7�Tg
Pg�1 + 2.14exp�−6Tg × 10−4��

  , (3.42) 

where the collision time is in nanoseconds, the pressure in Torr, and the gas temperature in Kelvin 

(as cited by Biloiu).[66]  When the lifetime of the radiative process is shorter than the rotation-

translation relaxation time, it is unlikely that the rotational distributions achieve thermodynamic 
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equilibrium with the bulk gas.[77]  For these reasons, it was determined that the first negative and 

second positive systems of nitrogen were not good systems for the operational conditions 

encountered in the AFRL’s experimental setup. 

The first positive system of nitrogen was used instead as the lifetime of the N2(𝐵𝐵3Π𝑢𝑢) state 

(approximately 4-14 μs for 𝜐𝜐′ = 0-12) is longer than its mean collision time.[76], [78]–[83]  

Assuming that the N2(𝐵𝐵3Π𝑢𝑢) state’s rotational distribution thermalizes within 2-3 collisions, the 

measured rotational temperature should be a good approximation of the translational temperature 

of the neutral gas.[66]   Another advantage of using the first positive system is that the 2-0 

rovibrational band is within the spectral range originally set for measurements of the Ar I emission 

lines, so there is no need to have a separate spectroscopy setup for measuring the molecular spectra.  

Other advantages of the first positive system over the other two band systems include strong 

emission intensity under most plasma conditions and minimal perturbations by neighboring 

states.[66], [79]  An energy diagram of the three band systems of nitrogen is shown in Fig. 3.14 to 

help visualize the radiative decay channels of these band systems. 
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Figure 3.14: Energy diagram of different nitrogen states.  The radiative decay channels of the first negative, first positive, and 
second positive systems are denoted by shaded arrows.  Reprinted from C. Biloiu et al., J. Appl. Phys. 101, 073303 (2007), with 
the permission of AIP Publishing. 

The main disadvantage of the first positive system is that it has a complex structure 

resulting in a lack of interest in the band system for gas temperature approximations; only four 

models for the first positive system were found in literature.[64]–[66], [78], [84]  Out of the four 

models found in literature only the Biloiu and Simek models work within the tested operating 

conditions.  Biloiu et al. were generous enough to provide the scientific community with a copy 

of their fitting code along with the line positions and intensities used to generate the synthetic 

spectrum, so it was decided to implement their readily available model into the analysis of the 

nitrogen rovibrational bands observed in our experiments.[66] 
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The Biloiu model calculates the rotational temperature by fitting numerically generated 

spectra to experimental measurements.[66]  The line positions implemented in this model were 

calculated and experimentally verified by Effantin et al.[85]  Intensities of individual rotational 

lines were calculated by 

 
In′′υ′′J′′
n′υ′J′ = Nn′υ′J′𝐴𝐴𝑖𝑖′′𝜐𝜐′′𝐽𝐽′′

𝑖𝑖′𝜐𝜐′𝐽𝐽′ h𝑐𝑐
λ

  , (3.43) 

where Nn′υ′J′ is the population of the emitting level, 𝐴𝐴𝑖𝑖′′𝜐𝜐′′𝐽𝐽′′
𝑖𝑖′𝜐𝜐′𝐽𝐽′  is the Einstein transition probability, 

and λ is the wavelength of the emitted radiation.[66]  The model requires the user to input two 

instrument dependent parameters to correct the generated spectrum for instrumental broadening.  

Instrumental broadening is approximated by fitting a pseudo-Voigt function to an Ar I emission 

line in the vicinity of the rovibrational band of interest since the instrument function varies as a 

function of wavelength for a fixed slit width.  The pseudo-Voigt function is given by 

 
f(𝑝𝑝,𝑤𝑤) = 𝑝𝑝

√4 ln 2
𝑤𝑤√𝜋𝜋

exp �−
4 ln 2
𝑤𝑤2 (λ − λ0)2� + (1 − 𝑝𝑝)

2𝑤𝑤
𝜋𝜋[𝑤𝑤2 + 4(λ − λ0)2]  , (3.44) 

where p and 1−p are the relative magnitudes of the Gaussian and Lorentzian functions 

contributions, respectively, w is the FWHM of the line, and λ0 is the central wavelength of the line 

shape.[66]  Parameters p and w determined from the best fit of the pseudo-Voigt function are the 

instrument dependent parameters the code provided by Biloiu et al. requires the user to define.[66]  

In our case, fitting to the 794.8 nm Ar I line resulted in 0.653 and 0.127 nm for values of p and w, 

respectively.  The fitted pseudo-Voigt function is shown in Fig. 3.15. 
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Figure 3.15: Pseudo-Voigt function fitted to Ar I emission line (794.8 nm).  Data is from Ar-N2 (4% N2) plasma generated at the 
focus of a 7.5 kW microwave beam at 200 mTorr. 

The first thing that was noticed when using the code provided by Biloiu et al. was that the 

Ar I emission line in the middle of the 2-0 band was unacceptably degrading the accuracy of the 

fitting algorithm.  Initial attempts to remove contributions of the Ar I line to the rovibrational band 

resulted in a loss of peak features between the sub-band heads corresponding to the turning points 

of the R33 and P33 branches; the referenced band region is shown in Fig. 3.16.  The initial correction 

method implemented significantly improved the model’s nonlinear chi-squared value given by, 

 
𝜒𝜒2(𝑇𝑇𝑟𝑟) =

∑ [𝐼𝐼𝑘𝑘𝑟𝑟 − 𝐼𝐼𝑘𝑘𝑠𝑠(𝑇𝑇𝑟𝑟)]2𝑍𝑍𝑑𝑑
𝑘𝑘=1
𝑍𝑍𝑑𝑑(𝑍𝑍𝑑𝑑 − 1)   , (3.45) 

where 𝑍𝑍𝑑𝑑 is the number of points in the recorded rovibrational band, 𝐼𝐼𝑘𝑘𝑟𝑟 is the normalized and 

corrected measured intensity, and 𝐼𝐼𝑘𝑘𝑠𝑠 is the intensity of the simulated spectrum.[66]  However, 

when analyzing plasma generated at minimum microwave beam power conditions (minimum input 

power required to sustain the discharge), there were times when the calculated rotational 

temperature would be below room temperature.  This brought into question the accuracy of the 

correction method, so alternative methods were investigated for the removal of Ar I intensity 

contributions to the band, while minimizing losses of the band features. 
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Figure 3.16: Spectrum of the 2-0 rovibrational band of the first positive system of nitrogen recorded by Biloiu et al.  (a) Sub-band 
heads denoted by numbers 1-4 correspond to the (b) turning points of the P11, P22, P33, and R33 branches.  Reprinted from C. Biloiu 
et al., J. Appl. Phys. 101, 073303 (2007), with the permission of AIP Publishing. 

The code provided by Biloiu et al. allows the user to change the parameters used for the 

initial guess of the fitting function; the user can define the rotational temperature, background 

noise level, and wavelength shift for the initial guess and view the corresponding spectra of the 

initial guess.[66]  Using this feature, one can use the third and fourth sub-band heads (peaks 3 and 

4 shown in Fig. 3.16) as references for fitting simulated spectra (between the two sub-band heads) 

from initial guesses of the temperature.  The simulated spectrum can then be used to replace the 

measured spectrum that is in the vicinity of the Ar I emission line before fitting a synthetic 

spectrum to the entire 2-0 rovibrational band.  Note that the Ar I emission line consists of two Ar 

I lines (772.38 nm and 772.42 nm) that are observed as one line by our spectroscopy system, so 
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one has to be cautious when determining how much of the measured spectrum to replace with 

synthetic spectrum; measured spectrum within 0.5 nm of the central wavelength of the Ar I doublet 

was replaced in this case, as shown in Fig. 3.17.  This correction method resulted in significantly 

lower 𝜒𝜒2 values, and most important, realistic temperatures overall Ar-N2 plasma tested 

conditions.  Modifications made to the code provided by Biloiu’s et al. can be found in Appendix 

B; these include removal of the Ar I emission contributions to the 2-0 band and calculation of the 

rotational temperature’s 95% confidence interval. 

 

Figure 3.17: Uncorrected spectrum of the 2-0 band of the first positive system of nitrogen is compared to spectrum corrected for 
Ar I emission contributions using synthetic spectrum from Biloiu’s model.[66] 

3.2.7 Gas Temperature: Simek’s Model 

Simek’s model6 was implemented in this investigation to assess the accuracy of the 

correction method used with Biloiu’s model.  Unlike Biloiu’s model, Simek’s model only uses the 

intensity ratios of the sub-band heads to estimate the rotational temperature, which means 

corrections for the contributions of Ar I emissions are not necessary.  The temperature estimation 

method developed by Simek and Bendictis rely on the fact that the relative population of the ΠΩ  
3  

 
6 Simek’s model was originally developed to work with the 3-0 band of the first positive system of nitrogen, 

but later it was extended to the 0-0, 1-0, and 2-0 bands.  The original work was published in a peer-reviewed journal, 
but the extension of the model to the other bands was only released as a research report for the Institute of Plasma 
Physics Czechoslovak Academy of Science, which makes it difficult to find when doing a literature search.[64], [65] 
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sub-states in the N2(B3Πu) state is dependent on the rotational temperature.[65]  Similar to the 

Biloiu model, the population of a single rotational level is calculated assuming Hund’s case (a): 

 

NnυJ = N(υ)
2Φ(2S + 1)(2J + 1)exp �− h𝑐𝑐

kBTr
[Tel + vib(υ) + 𝐴𝐴𝜐𝜐ΛΣ + F(J)]�

QelQvibQrot ∑ �−𝐴𝐴𝜐𝜐ΛΣ
h𝑐𝑐

kBTr
�𝑆𝑆

−𝑆𝑆

, (3.46) 

where Tel, F(J), vib(υ), Qel, Qvib, and Qrot are electronic, rotational, and vibrational spectral 

terms and partition functions, respectively, 𝑁𝑁(𝜐𝜐) is the total population of vibrational level υ, 𝐴𝐴𝜐𝜐 

is the spin-orbit constant, and Φ is an alternation factor dependent on the nuclear spin and parity 

of the rotational level.[86]  The intensity of a single rotational line is then calculated by 

 
IJ′J′′ =

64𝜋𝜋4𝜈𝜈𝐽𝐽′𝐽𝐽′′4 𝑞𝑞𝜐𝜐′𝜐𝜐′′|𝑅𝑅𝑒𝑒|2𝑆𝑆𝐽𝐽′𝐽𝐽′′
3𝑐𝑐3(4𝜋𝜋𝜖𝜖0)(2J′ + 1)

Nn′υ′J′  
 , (3.47) 

where 𝜈𝜈𝐽𝐽′𝐽𝐽′′  is the frequency of the emitted radiation, 𝑆𝑆𝐽𝐽′𝐽𝐽′′ is the Hönl-London factor for the 

considered transition, 𝑞𝑞𝜐𝜐′𝜐𝜐′′ is the Franck-Condon factor, and 𝑅𝑅𝑒𝑒 is the electronic-vibrational 

transition moment.[87] 

 A convolution of the numerically calculated intensities with a triangular instrument 

function is performed to account for instrumental broadening in their synthetic data; tables of 

coefficients that can return their simulated data and the temperature associated with it are provided 

for different spectral bandwidths.[64]  Note that Simek and Benedictis define W as the slit width 

of the instrument early in the papers, but the equations and tables needed for the temperature 

calculations give W in angstroms which is several orders of magnitudes smaller than the typical 

slit width (tens to hundreds of micrometers).[64], [65]  It is clear that W should be defined as the 

spectral bandwidth given that the figures and some of the tables in the papers associate W with the 

spectral bandwidth or bandpass.[64], [65]  With that said, one can calculate the temperature using 



 68 

the intensities of the peaks, I1, I2, and I3 associated with the turning points of the P11, P22, and R33 

branches, respectively. 

 Temperature calculations can be made using two different peak intensity ratios:[64], [65] 

 𝑅𝑅21 =
𝐼𝐼2
𝐼𝐼1

 , (3.48a) 

and   

 𝑅𝑅31 =
𝐼𝐼3
𝐼𝐼1

 . (3.48b) 

Using these ratios, the temperature can be calculated by 

 
T21 = � exp��𝑥𝑥𝑖𝑖𝑗𝑗𝑊𝑊(𝑗𝑗)𝑅𝑅21

(𝑗𝑗)
4

𝑗𝑗=0

�
3

𝑖𝑖=0

 , (3.49a) 

and   

 
T31 = � exp��𝑦𝑦𝑖𝑖𝑗𝑗𝑊𝑊(𝑗𝑗)𝑅𝑅31

(𝑗𝑗)
4

𝑗𝑗=0

�
3

𝑖𝑖=0

  , (3.49b) 

where 𝑥𝑥𝑖𝑖𝑗𝑗 and 𝑦𝑦𝑖𝑖𝑗𝑗 are model coefficients given in tables by Simek.[64]  The spectral bandwidth of 

the spectroscopy system used for our measurements is 1.27 Å in the vicinity of the 2-0 rovibrational 

band; this value is the same as the w parameter calculated for the Biloiu’s model.  The tables 

provided by Simek do not provide 𝑥𝑥𝑖𝑖𝑗𝑗 and 𝑦𝑦𝑖𝑖𝑗𝑗 values in the range of our spectral bandwidth, but 

the tables containing the least-square polynomial coefficients ai(W) and bi(W) do have data in this 

range.  The least-square polynomial coefficients are given by 

 
𝑎𝑎𝑖𝑖(𝑊𝑊) = �𝑥𝑥𝑖𝑖𝑗𝑗𝑊𝑊(𝑗𝑗)

4

𝑗𝑗=0

 , (3.50a) 

and 
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𝑏𝑏𝑖𝑖(𝑊𝑊) = �𝑦𝑦𝑖𝑖𝑗𝑗𝑊𝑊(𝑗𝑗)

4

𝑗𝑗=0

 , (3.50b) 

which can be substituted into Eqns. 3.49a and 3.49b to calculate the temperature.[64]  

Temperatures calculated from both peak intensity ratios yielded values within a few Kelvin from 

each other, so the temperatures were averaged before comparing models.  For all tested Ar-N2 

plasma conditions, Simek’s and Biloiu’s models yield temperatures within the error range of each 

other, giving us confidence in the accuracy of the correction method implemented for the removal 

of Ar I emissions from the 2-0 rovibrational band.  Note that the error bar in Simek’s model is set 

by the 25 K step temperature resolution used for the generation of their synthetic data.[64], [65]  

A temperature comparison of the models is shown in Fig. 3.18. 

 
Figure 3.18: Gas temperature calculated using Biloiu’s and Simek’s models are compared as a function of input microwave beam 
power for an Ar-N2 plasma containing 6% N2 at 200 mTorr.  Note that the models measure the rotational temperature, but the gas 
temperature can be approximated by the rotational temperature under the tested conditions. 

3.2.8 Collisional Radiative Model 

The electron temperature of the plasma can be approximated from intensity ratios of the 

Ar I emission lines.  Initial attempts to measure the electron temperature of plasma generated in 

the AFRL’s experimental setup were done using the corona model, which is a common method to 

deduce population equilibrium in low electron density, low temperature plasmas.[2]  However, the 
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corona model used did not take into consideration excitations out of argon metastable states, which 

can reduce the accuracy of the model.[2]  Considering several of the Ar I emission lines observed 

in the optical range are from radiative decays into metastable states, it is likely for them to 

contribute to the population of higher energy states. 

In a collaboration with the Space Vehicles Directorate of the AFRL, a CRM for Ar plasma 

based on a CRM for Xe plasma developed by Dressler et al. has been under development.[67]  

Before going into the details of the CRM, it is important to note that many CRMs use Paschen 

notation to describe excited states. Given that the Paschen notation can be confusing, a brief 

explanation of the notation and a table relating the Paschen notation to the LS notation of argon 

states considered in our CRM will be provided.  Paschen notation is commonly used when 

describing the excited states of Ne, Ar, Kr, and Xe.  Paschen notation takes the form of n’ls, where 

l is the orbital quantum number of the excited electron, n’ is a number that attempts to describe the 

energy level of the excited electron as if it was in a hydrogen atom, and s indicates the energy level 

of the sub-state in decreasing order (e.g., the sub-state indicated by s = 10 is at a lower energy level 

than one indicated by s = 9).  For the most part, determining the value of n’ is the most confusing 

concept of the Paschen notation as it’s related to l by  

 𝑙𝑙 = 𝑛𝑛′ − 1, 𝑛𝑛′ − 2, . . . ,0 (3.51) 

which causes the starting value of n’ to change as the orbital quantum number changes; for a given 

orbital quantum number, n’ increases as the energy level of the excited electron increases.  Argon 

excited states considered in our CRM are listed in Table 3.1 with their LS and Paschen notations. 
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Table 3.1: Excited state of argon in LS and Paschen notation.  

 

The CRM used in this investigation, focuses on optical and NIR emission from the 2pi to 

1sj levels, similar to the corona model implemented by Hoff et al. for preliminary electron 

temperature measurements of the plasma generated in the experimental setup.[2]  The main 

difference between the models is that electron collisions with the 1s3 and 1s5 metastable states are 

included in the CRM.  Transitions from the 1s3 and 1s5 states to most of the 2pi states are electric 

dipole allowed, while transitions from the metastable states to 2sj and 3dk states are not.[88]  This 

is important since it means that metastable states contribute to the population of the 2pi states.  

Furthermore, the contributions to the population of 2pi states from metastable states can be 

significant since it takes less energy to excite an atom from an excited state than to excite an atom 

from its ground state.  This can be seen from the tables of rate coefficients provided by Zhu and 

Pu where the transitions from metastable states to 2pi states have higher rate coefficients than 

LS Notation Paschen Notation
3s23p54p(1S0) 2p1

3s23p54p(3P1) 2p2

3s23p54p(3P2) 2p3

3s23p54p(1P1) 2p4

3s23p54p(3P0) 2p5

3s23p54p(1D2) 2p6

3s23p54p(3D1) 2p7

3s23p54p(3D2) 2p8

3s23p54p(3D3) 2p9

3s23p54p(3S1) 2p10

3s23p54s(1P1) 1s2

3s23p54s(3P0) 1s3

3s23p54s(3P1) 1s4

3s23p54s(3P2) 1s5
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transitions from ground state to 2pi states.[89]  An example of the rate coefficients for transitions 

into the 2p2 state via electron impact excitation is shown in Fig. 3.19. 

 

Figure 3.19: Rate coefficients as a function of the average electron temperature for transitions into the 2p2 state via electron impact 
excitation.  Rate coefficients are based on the equations from Zhu and Pu.[89] 

In the CRM, the 2pi states are populated by electron impact excitation of the ground state, 

and the 1s3 and 1s5 metastable states; these reactions are listed in Table 3.2 (reactions 1-12) and 

Table 3.3 (reactions 1-10).  Ion contributions are ignored since their kinetic energy is expected to 

be too low to contribute to the population of those states.  Depopulation of the 2pi states is assumed 

to be only through radiative decay to lower energy states as spontaneous emissions occur at much 

faster timescales than de-excitation via electron impacts.  Metastable states are populated from 

electron impact excitation of ground state atoms, and radiative decay of the 2pi states; collision-

based reactions that contribute to the population of metastable states are listed in Table 3.3 

(reactions 11-12).  Our CRM currently depopulates the metastable states via electron impact 

excitation into the 1s2, 1s4, 2pi and 3p states, and electron impact ionization; these reactions are 

listed in Table 3.2 (reactions 13-18).  Atom-collision population transfer processes, such as 

 Ar + Ar(1s) ⟷ Ar + Ar(2p9) , (3.52) 

 are not considered in the depopulation of metastable states as the rate coefficients of such 

processes at low gas temperatures are three to four orders of magnitude lower than those of electron 
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impact excitation processes.  Other depopulation processes that can affect metastable states include 

diffusion (affects low electron density plasmas) and de-excitation via collision with non-argon 

molecules (e.g. nitrogen and oxygen); these processes will be added to future iterations of the CRM 

for improved accuracy of the model.[88], [90] 

Table 3.2: Electron impact excitation and ionization of metastable atoms.  Rate coefficient equations are from Zhu and Pu.[89] 
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Table 3.3: Electron impact excitation of ground state atoms.  Rate coefficient equations are from Zhu and Pu.[89] 

 

The plasma radiation intensity per unit volume for a specific emission line at wavelength, 

λ, can be approximated by 

  
Jλ =

h𝑐𝑐
4πλ

n0neRb
λ �ke0λ +

ns3
n0

kes3λ +
ns5
n0

kes5λ � , (3.53) 

where 𝑛𝑛0, 𝑛𝑛𝑠𝑠3, and 𝑛𝑛𝑠𝑠5, are the neutral, 1s3 metastable, and 1s5 metastable atom number densities, 

respectively, 𝑅𝑅𝑏𝑏𝜆𝜆 is the branching ratio corresponding to the emission line, and ke0λ , kes3λ , and kes5λ  

are the rate coefficients for electron impact excitations into the 2pi state associated with the 

emission line from the ground, 1s3, and 1s5 states, respectively.[91]  The steady-state metastable 

fraction can be calculated by 

  nm
n0

=
k0m + ∑ �ke0

q �q

∑ �Rb,s
r k2pmr �r + ∑ �kdmk �k + kion

 , (3.54) 

where 𝑛𝑛𝑚𝑚 is the metastable atom number density, 𝑘𝑘0𝑚𝑚 is the rate coefficient for electron impact 

excitations into the metastable state from the ground state, 𝑘𝑘𝑒𝑒0   is the rate coefficient for electron 

impact excitation of ground state atoms into 2pi states that radiative decay into the metastable state, 

Reaction Rate Coefficient [cm3/s]
1 e + Ar ↔ e + Ar(2p1) 2.2×10-9exp(-13.9/Te)
2 e + Ar ↔ e + Ar(2p2) 7.0×10-10exp(-13.8/Te)
3 e + Ar ↔ e + Ar(2p3) 1.3×10-9exp(-13.7/Te)
4 e + Ar ↔ e + Ar(2p4) 1.0×10-9exp(-14.0/Te)
5 e + Ar ↔ e + Ar(2p5) 1.0×10-9exp(-13.6/Te)
6 e + Ar ↔ e + Ar(2p6) 1.5×10-9exp(-13.5/Te)
7 e + Ar ↔ e + Ar(2p7) 1.1×10-9exp(-13.9/Te)
8 e + Ar ↔ e + Ar(2p8) 2.2×10-9exp(-13.6/Te)
9 e + Ar ↔ e + Ar(2p9) 1.9×10-9exp(-13.5/Te)
10 e + Ar ↔ e + Ar(2p10) 2.0×10-9exp(-13.0/Te)
11 e + Ar ↔ e + Ar(1s3) 2.7×10-9exp(-11.9/Te)
12 e + Ar ↔ e + Ar(1s5) 5.5×10-10exp(-12.2/Te)
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𝑘𝑘2𝑝𝑝𝑚𝑚  is the rate coefficient for electron impact excitation of the metastable state into 2pi states, 

Rb,s is the branching ratio corresponding to the radiative decay of the 2pi state to the 1sj state that 

is optically coupled to the ground state, 𝑘𝑘𝑑𝑑𝑚𝑚  is the metastable excitation rate coefficient to states 

outside the 2pi states (e.g., the 1s2 state), and kion is the electron impact ionization rate coefficient 

for the metastable atom.  The branching ratios for the radiative decay of the 2pi states into the 1sj 

states were obtained from Tsurubuchi et al. and are listed in Table 3.4.[92] 

Table 3.4: Radiative decay of 2pi states into 1sj states with their corresponding branching ratios and emission wavelengths.  
Information on the table was adapted from Zhu and Pu, and Tsurubuchi et al.[89], [92] 

 

Eighteen Ar I emission lines in the 690 nm to 860 nm spectral range were observed in all 

tested conditions; the Ar I lines observed are listed in Table 3.4.  However, many of the emission 

lines were unusable for electron temperature calculations.  Eight Ar I emission lines overlap with 

Reaction Branching Ratio Wavelength [nm]
1 Ar(2p2) → Ar(1s5) + hν 0.181 696.5
2 Ar(2p3) → Ar(1s5) + hν 0.110 706.7
3 Ar(2p2) → Ar(1s4) + hν 0.052 727.3
4 Ar(2p3) → Ar(1s4) + hν 0.245 738.4
5 Ar(2p1) → Ar(1s2) + hν 0.995 750.4
6 Ar(2p5) → Ar(1s4) + hν 1.000 751.5
7 Ar(2p6) → Ar(1s5) + hν 0.712 763.5
8 Ar(2p2) → Ar(1s3) + hν 0.332 772.4
9 Ar(2p7) → Ar(1s5) + hν 0.154 772.4

10 Ar(2p4) → Ar(1s3) + hν 0.561 794.8
11 Ar(2p6) → Ar(1s4) + hν 0.142 800.6
12 Ar(2p8) → Ar(1s5) + hν 0.288 801.5
13 Ar(2p7) → Ar(1s4) + hν 0.743 810.4
14 Ar(2p9) → Ar(1s5) + hν 1.000 811.5
15 Ar(2p2) → Ar(1s2) + hν 0.434 826.5
16 Ar(2p3) → Ar(1s2) + hν 0.645 840.8
17 Ar(2p8) → Ar(1s4) + hν 0.667 842.5
18 Ar(2p4) → Ar(1s2) + hν 0.419 852.1
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the 2-0 rovibrational bands of nitrogen approximately located in the 720 nm to 780 nm wavelength 

range.  Attempts to calculate the electron temperature from the intensity line ratio of two of the 

remaining ten emission lines were unsuccessful due to the ratios being sensitive over only a narrow 

range of temperatures or being non-monotonic as a function of temperature; an example of a non-

monotonic line ratio is shown in Fig. 3.20.  While the accuracy of the temperature approximation 

typically increases the more emission lines one includes, two-line approximations are useful when 

trying to map the electron temperature of the plasma since the time of the spectral measurements 

can significantly decrease if the two lines are in the vicinity of each other.  Note that depending 

the how far apart the emission lines are from each other, a spectrometer with the ability to scan 

wavelength can be needed. 

 

Figure 3.20: Intensity line ratio of the 801.5 nm and 800.6 nm emission lines.   

A minimum of four lines had to be used to counter the non-monotonic behavior of certain 

line ratios.  While testing for the temperature sensitivity of different line ratios, it was noticed that 

every time the 810.4 nm and 811.5 nm lines were included, the temperature approximated by the 

minimization of the chi-square fit could not be determined; it is unclear what causes the CRM to 

output the highest temperature of the simulated data whenever these two lines are included in the 

temperature approximation.  The relative chi-square was calculated by 
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𝑖𝑖=1

 , (3.55) 

where 𝑛𝑛𝑙𝑙 is the number of emission lines, and Ii
exp and IiCRM are the normalized experimental and 

simulated line intensities.  The combination of lines that produced the lowest chi-square values 

were the 696.5 nm, 706.7 nm, 801.5 nm, and 842.5 nm, most of which are from transitions into 

the 1s5 metastable state. 
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Chapter IV  

Properties of Stable and Quasi-Stable Discharges 

4.1 Plasma Stability 

Three types of plasma discharges have been observed in the experimental setup: unstable, 

quasi-stable, and stable discharges.[2], [93]  The stability of the plasma is sensitive to changes in 

the background gas pressure, gas flow rate, gas composition, and power of the microwave beam, 

with changes in the gas composition having the most impact on its stability.  Unstable plasma 

discharges are the least common of the three discharges as they have only been observed in plasmas 

containing approximately 99% or more argon by concentration.  The unstable mode is difficult to 

study directly as the lifetime of the discharge can vary from a few seconds to a little over a minute 

for a given set of conditions; currently there are no plans to study this type of discharge in the 

future.  Quasi-stable discharges are not stable, but their dynamic behavior is repeatable over 

extended periods of times (hours) making them relatively easier to study compared to unstable 

discharges.  Furthermore, studies completed for this work indicate that the discharge could be 

obtained in any gas mixture of argon, nitrogen, and oxygen whenever there is enough power 

available in the microwave beam to push the electron density of the plasma close to its critical 

density.  This type of discharge is of interest because it can be sustained far removed from the 

chamber walls resulting in minimal plasma-wall and beam-wall interactions. 
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4.2 Quasi-Stable Discharges 

Argon is the main gas used to generate plasma in the experimental setup as it is relatively 

easy to sustain a discharge in the microwave beam compared to molecular gases, such as nitrogen.  

When flowing only argon into the chamber, it is difficult to obtain a stable discharge.  Instead, the 

shape, position, and brightness of the plasma oscillates in time as it was described by Hoff et al. 

after observations of the quasi-stable discharge through a video camera; images captured of the 

discharge are shown in Fig. 4.1.[2]  It was not until after fast frame rate cameras were installed 

that it was observed that what was perceived as flickering of the plasma were actually ionization 

fronts propagating upstream in the microwave beam (towards the microwave source) at 10s of 

cycles per second; images captured by the fast frame rate camera are shown in Fig. 4.2.  

 
Figure 4.1: A single cycle of a quasi-stable discharge observed through a video camera.  Approximately 45 cm of the discharge 
length was observed.  Reprinted from B. W. Hoff et al., Rev. Sci. Instrum. 87, 033507 (2016), with the permission of AIP 
Publishing. 

 
Figure 4.2: Quasi-stable discharge observed through a fast frame rate camera.  Ionization fronts are approximately 10 cm wide 
with a 10-15 cm radius; size changes as the ionization front propagates upstream of the focus towards the microwave source. 
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The ionization fronts are generated when the plasma frequency (𝜔𝜔𝑝𝑝) is approximately equal 

to the frequency of the microwave beam (𝜔𝜔).  When this happens, the plasma starts behaving more 

like a conductor than a dielectric resulting in an increase in the reflected component of the 

microwave beam.  Reflection of the microwave beam increases as the dielectric permittivity of the 

plasma 

 
𝜖𝜖𝜔𝜔 = 1 −

𝜔𝜔𝑝𝑝2

𝜔𝜔2 + i𝜔𝜔𝜈𝜈𝑐𝑐
   (4.1) 

approaches to zero; here 𝜔𝜔 is the angular frequency of the microwaves, 𝜈𝜈𝑐𝑐 is the electron-neutral 

collision frequency, and 𝜔𝜔𝑝𝑝 is the plasma frequency, which can be approximated by 

 
𝜔𝜔𝑝𝑝 ≅ 𝜔𝜔𝑝𝑝𝑒𝑒 = �

𝑞𝑞𝑒𝑒2𝑛𝑛𝑒𝑒
𝑚𝑚𝑒𝑒𝜀𝜀0

 , (4.2) 

where 𝜔𝜔𝑝𝑝𝑒𝑒 is the electron plasma frequency.  The electron density corresponding to the condition 

in which the electromagnetic wave can no longer propagate through the plasma is known as the 

critical density and is given by 

  
nc =

me𝜀𝜀0(𝜔𝜔2 + 𝜈𝜈𝑐𝑐2)
qe2

  ; (4.3) 

the critical density of plasma generated in the experimental setup is approximately 2.7 × 1017 m-3.  

Constructive interference between the incident and reflected waves create regions of increased 

intensity near the leading edge of the plasma causing ionization of the gas in the vicinity.  The 

electron density of this new plasma formation region quickly increases up to the critical density 

causing the microwaves to reflect off the plasma again and creating a new region of high intensity 

further upstream the microwave beam.  This process repeats several times until the intensity is no 

longer strong enough to sustain the discharge at which point the plasma decays allowing the beam 

to reach the focus, heat residual electrons, and repeat the process.  This cyclic process of ionization 
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fronts propagating upstream of the microwave beam’s geometric focus (in vacuum) is referred to 

as a quasi-stable discharge.   

It is important to note that the instability responsible for the rapid increase in the electron 

density is still unclear; thermal instabilities are currently being considered as the source of the 

rapid increase in electron density.[71], [94], [95]  It is possible that the quasi-stable discharge is 

caused by a multi-step process, where an instability (like a thermal instability) first results in a 

rapid increase in the electron density until it is near the critical density, at which point ionization 

fronts start propagating due formation of high field regions upstream of the discharge (towards the 

microwave source).  Thermal instabilities are said to occur when an initial disturbance in the 

neutral density or gas temperature leads to an increase in electron temperature, which causes an 

increase in the electron density, which results in a further drop of the neutral density and increase 

in the gas temperature, and cycle repeats resulting in a rapid increase of the electron density.  The 

cycle for discharges containing molecular gases is well described by Nighan; a diagram of the 

thermal instability cycle presented by Nighan is shown in Fig. 3.3.[95]  Further, studies are needed 

to determine the instability responsible for the rapid increase in the electron density. 

 

Figure 4.3: Thermal instability in discharges containing molecular gases.[95] 



 82 

An interesting feature of the quasi-stable discharge is that the ionization fronts follow a 

propagation pattern (similar propagation paths and duration) for 10s to 10s of thousands of cycles 

before locking into a different propagation pattern.  The repeatability of the cycles can be observed 

in the signals of the transmitted and reflected power of a quasi-stable discharge; the almost 

identical (typically less than 5% variation) signals of the transmitted microwave power of several 

ionization fronts are shown in Fig. 4.4.  It is important to note the sharp drop in the transmitted 

microwave power over the cycle of an ionization front indicates the plasma becomes more 

reflective over a short period of time.  This significant drop in transmitted power is consistent with 

the plasma density approaching the critical density. 

 

Figure 4.4: Transmitted microwave power recorded a) over 15 ionization cycles and b) 980 consecutive cycles (overlaid) of a 
quasi-stable discharge.[96] 

Electron temperature and density measurements are difficult to make in a quasi-stable 

discharge as the ionization front moves too fast (100-300 m/s) for the translation stage that hold 

the plasma diagnostic systems to keep up with; the velocity of the ionization fronts was estimated 

via Doppler velocimetry measurements conducted by Reid.[96]  However, stationary triple probes 

can provide some insight into the electron temperature and density of the quasi-stable discharge 

by making measurements of the ionization front as it passes through the probe.  Given that the 
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measured transmitted and reflected power are almost identical from one cycle to the next, one 

would expect the electron density and temperature of the plasma measured by a stationary probe 

to be almost identical over every cycle too.  This was confirmed through triple probe measurements 

of an Ar-N2 (1% N2) quasi-stable discharge generated in a 4.5 kW microwave beam at 200 mTorr; 

the measured electron temperature and density are shown in Fig. 4.5.  It is important to note that 

corrections for operating in the transitional sheath regime were not made to the electron 

temperature and density measurements shown in Fig. 4.5 as the MATLAB code written for 

correcting triple probe measurements made outside the thin sheath regime is currently not 

optimized for quasi-stable discharges.  A combination of long run times and loss of features (e.g., 

the peaks in the electron temperature and density) makes the code7 inadequate for analyzing quasi-

stable discharges; however, uncorrected data provides some insight into the periodicity of quasi-

stable discharges and order of magnitude of the plasma parameters. 

 
Figure 4.5: Electron temperature and density of a quasi-stable discharge measured by a triple Langmuir probe.  Ar-N2 (1% N2) 
was generated with a 4.5 kW microwave beam at 200 mTorr. 

 
7 To improve the processing time of the code, the correction factor is only solved every time the probe radius 

to Debye length ratio changes by more than 0.1.  This ratio changes gradually in stable discharges, while in quasi-
stable discharges the change is abrupt resulting in the number of times the correction factor has to be calculated by 
the code and in a distortion of the measured plasma parameter profiles (looks like a step function). 
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A current challenge with electron temperature and density measurements of quasi-stable 

discharges is that it is unclear where the measurements were made relative to the ionization front.  

This issue will be addressed in future research efforts by synchronizing probe and optical emission 

spectroscopy measurements with images captured by the fast frame rate cameras.  Another 

challenge with quasi-stable discharges is measuring the evolution of the electron temperature and 

density in the ionization front as it propagates.  Stationary probes work well in quasi-stable 

discharges, but as soon as the probe is moved, the amount of time a cycle of a propagating 

ionization front (including decay and formation of the discharge) takes changes; this effect is 

shown in Fig. 4.6.  Note that the probe location in Fig. 4.6 was calculated from the constant velocity 

(0.265 cm/s) of the stage and the time change measured by the DAQ; this means the duration of 

an ionization front cycle can be determined from the distance traveled by the probe in one cycle.  

For example, the first ionization front in Fig. 4.6 has a lifetime of approximately 63 ms, while the 

second to last ionization front lasts approximately 94 ms.  This change in the duration of the 

ionization front cycles indicates the properties of the quasi-stable discharge are affected by changes 

in the probe location; noticeable changes are usually observed after the probe has traveled a little 

over 1.5 cm. 
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Figure 4.6: Electron density of a quasi-stable discharge measured by a moving (0.265 cm/s) triple probe.  The Ar-N2 (4% N2) 
quasi-stable discharge was generated by an 8.0 kW microwave beam at 150 mTorr.  The probe location is given with respect to the 
beam’s geometric focus, where positive values are upstream in the microwave beam towards the microwave source. 

One of the effects the triple probe has on the quasi-stable discharge is increase reflection 

of the microwaves.  How much of the incident microwaves gets reflected by the wires depends on 

the surface area of the wires that is exposed to the microwave beam and the beam’s intensity.  As 

the probe moves away from the beam’s geometric focus the surface area of the probe wires 

immersed in the beam increases, which should decrease the amount of reflected power given that 

the total power of the beam is distributed over a larger cross section.  However, this would 

occasionally cause stable discharges to go quasi-stable, which indicates the probe is perturbing the 

beam and plasma in other ways that remain unclear.  A moving probe usually causes stable 

discharges to transition to quasi-stable when the electron density of the discharge is in the order 

1016 m-3.  The antenna effect is currently under consideration as a possible cause to the disturbances 

observed as the local field enhancement (in between the probe wires in this case) produced by the 

effect could be high enough to induce the instability.  An example of a test where the probe caused 

a stable discharge to become quasi-stable is shown in Fig. 4.7; the relative direction the probe was 

traveling during the transition is shown in Fig. 4.8. 
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Figure 4.7: Electron a) temperature and b) density profiles of a stable Ar-N2 (4% N2) discharge becoming quasi-stable due to probe 
perturbations.  Plasma was generated in an 8.0 kW microwave beam at 150 mTorr.  Here the probe location is given with respect 
to the beam’s geometric focus (ΔL = 0 cm), where positive values are upstream in the microwave beam towards the microwave 
source, and 𝑘𝑘�⃗  is the microwave propagation vector.  The regions with the spikes in the electron density and sharp drops in the 
electron temperature indicate the locations in which the stable discharge transitioned into the quasi-stable mode. 

 
Figure 4.8: Probe moving upstream of the geometric focus. Note that more of probe’s surface area is within the beam in “Location 
2” than in “Location 1” resulting in a larger interaction cross section between the beam and the probe.  𝐵𝐵�⃗  is the direction of the 
magnetic component of the electromagnetic waves. 

Other factors that affect quasi-stable discharges include the flow rate of the gas, and the 

power of the microwave beam.  Studies conducted where the gas pressure, microwave beam 

power, and gas composition were kept constant showed that approximately 150 sccm is needed to 

sustain discharges in the experimental setup, and that gas flow rates must be kept under 400 sccm 

for the turbo pump to function properly.  For gas compositions containing 99% or more argon by 

concentration at fixed background gas pressure and microwave beam power, the quasi-stable 

discharge would go unstable when the gas flow rate went below 300 sccm.  This behavior was 

observed at background gas pressures in the range of 150 mTorr to 200 mTorr.  It is important to 
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note that Hoff et al. observed  “pure” argon discharges at 200 sccm because the ECR plasma source 

that seeds electrons into the main chamber was kept on through the duration of their experiments 

effectively increasing the population of charged particles in the discharge; this effect was observed 

during studies conducted on the effect changes in the gas flow rated had on the discharges.[2]  All 

experiments conducted for this investigation kept the ECR plasma source off after achieving gas 

breakdown in the main chamber. 

Varying the power of the microwave beam in a quasi-stable discharge affects the frequency 

of the ionization fronts and the distance traveled by the fronts.  A series of tests were conducted in 

which the power of the beam was varied while the gas pressure, flow rate, and composition were 

kept constant; the gas composition was kept at 99% Ar and 1% N2 as quasi-stable discharges are 

dominant at this composition.  The frequency of the oscillations in the discharge were measured 

with a stationary triple probe.  Results showed no clear correlation between the power of the beam 

and the frequency of the oscillations in the discharge.  However, live feed from the fast frame rate 

cameras showed that the distance traveled by the ionization front increased as the power of beam 

increased.  This relation was true until the ionization front reached the borosilicate window at 

which point the discharge attached to the window.  As the power of the beam was decreased to the 

lower limits in which the pure argon discharge could be sustained, the quasi-stable discharge 

transitioned into an unstable discharge before decaying; in argon discharges containing molecular 

gases, decreasing the beam power in a quasi-stable discharge results in a transition to a stable 

discharge. 
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4.3 Stable Discharges 

Stable discharges are the most common type of discharges observed in the experimental 

setup when molecular gases, such as nitrogen and oxygen, are introduced into the argon plasma.  

The few times stable discharges have been observed in “pure” argon plasma could be attributed to 

the presence of contaminants, such as air and trapped water vapor, in the chamber.  It is well known 

that adding molecular gases into a rare gas plasma, significantly changes the characteristics of the 

discharge due to more recombination channels becoming available and the introduction of 

vibrational states and the production of negative ions (in oxygen admixtures).[68], [71], [73], [90], 

[97], [98]  The addition of recombination channels helps balance the ionization rate resulting in a 

decrease in the electron density; keeping the electron density below the critical density 

(approximately 2.7 × 1017 m-3) allows stable discharges to be generated in the experimental.  The 

EEDF of the discharge is effected by the vibrational states of the molecules as they have relatively 

large excitation cross sections at low electron energies resulting in decrease in the average electron 

energy of the electron population; this reduction in the average electron energy means there are 

less electrons in the discharge with enough energy to ionize the gas mixture resulting in a decrease 

of the ionization rate. 

In this investigation, stable discharges were generated from different gas mixtures of argon, 

nitrogen, and oxygen.  The total gas flow rate was kept constant in all the studies conducted with 

stable discharges to reduce the number of variables in the experiments; the flow rate was kept at 

350 sccm based on the limits found in the studies of quasi-stable discharges.  The gas pressure was 

varied from 100 mTorr to 200 mTorr for Ar-N2 gas mixtures, but for plasmas containing oxygen 

the lower limit had to be increased to 150 mTorr due to difficulties with sustaining the discharge 

at the available power.  The output power of the klystron amplifier was kept below its maximum 
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rated power of 10 kW.  The concentration of molecular gases was increased in increments of 2% 

until the discharge could no longer be sustained.  It is important to note that gas mixtures containing 

over 6% nitrogen (over 12% oxygen for Ar-O2 plasmas) require more power than what is available 

to breakdown.  For this reason, all experiments started with a plasma containing 2% of the 

molecular gas being studied before increasing its content.  The microwave beam power was 

decreased in decrements of 0.5 kW starting from 9.5 kW in all experiments to keep observations 

and measurements consistent; the upper and lower limits of stable discharges were evaluated every 

0.5 kW. 

4.3.1 Ar-N2 Gas Mixtures 

Studies of Ar-N2 stable discharges were conducted at three different gas pressures: 100 

mTorr, 150 mTorr, and 200 mTorr.  Experiments at 200 mTorr were able to support a wider range 

of gas compositions in which the concentration of nitrogen ranged from 2% to 10%.  At 2% 

nitrogen, a quasi-stable discharge formed at breakdown, but the discharge was stabilized as the 

microwave beam power was reduced.  The beam power at which the discharge stabilized was 

different for experiments conducted with the triple probe in comparison with experiments 

conducted with the collection optics; the discharge stabilized at approximately 4.0 kW and 6.5 kW 

for triple probe and optical emission spectroscopy experiments, respectively.  This difference in 

the beam power could be attributed to the interactions between the microwave beam and the triple 

probe that have been found to induce instabilities in stable discharges. 

Triple probe experiments have also been found to affect the lower power limit of stable 

discharges.  For example, in Ar-N2 (6% N2) plasma generated with a 6.0 kW microwave beam at 

200 mTorr, the probe extinguished the discharge as the probe traveled through the leading end of 

the plasma; it is unclear if power reflected by the probe is enough to deprive the plasma from the 
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power needed to sustain the discharge.  The effects of having a probe in the microwave beam were 

most extensively when the discharge was quasi-stable at maximum beam power; this could be 

because more power is being reflected by the probe wires and possibly other local field 

enhancements mechanisms, such as the antenna effect, caused by the probe.  As the power of the 

microwave beam was increased, the plasma gradually moved upstream of the beam’s geometric 

focus while remaining stable.  This meant that the probe also had to go further upstream towards 

the microwave source during the probe measurements resulting in the stable discharge 

transitioning to its quasi-stable mode, as explained in Sect. 4.1.1. 

In general, the plasma exhibited similar stability behaviors under all tested gas pressures.  

As the concentration of nitrogen was increased, the minimum beam power required to sustain the 

Ar-N2 discharge increased.  This could be attributed to an increase in the available vibrational 

levels quenching the energy of the electrons resulting in a drop in the ionization rate; as the 

ionization rate falls, electron losses take over until the discharge completely decays.  An increase 

in the maximum beam power at which a stable Ar-N2 plasma could be sustained was also observed 

as the concentration of nitrogen increased.  In this case, the higher concentrations of nitrogen 

increase the channels to which electrons can be lost, which help balance the increases in the 

ionization rate that come with an increase in power.   

When the gas pressure was decreased, the minimum power required to sustain the 

discharge increased across all gas compositions.  When gas pressure decreases at a constant 

volume and temperature, the neutral density also decreases resulting in a decrease in the electron-

neutral collision frequency.  Having less interactions between electrons and neutrals means the 

production of free electrons will also experience a decrease.  To increase the ionization rate and 

balance the losses, an increase in the power of the microwave beam was required; total absorbed 
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power by the discharge increases with an increase in the input power.  At 100 mTorr the power 

required to sustain the discharge increased to the point that gas mixtures containing over 2% 

nitrogen could not be sustained.  For this reason, experiments conducted after the Ar-N2 triple 

probe studies were carried out over a 150 mTorr to 200 mTorr range; 175 mTorr was added to the 

test gas pressure conditions for comparison purposes.  The range of the microwave beam power 

for which Ar-N2 stable discharges were obtained are provided in Tables 4.1 and 4.2.  A diagram 

of the state of the discharge under various gas pressures, gas compositions, and beam power 

combinations is shown in Fig. 4.9.  Note that the 100 mTorr condition is not shown in the diagram 

given that discharge could not be sustained for nitrogen concentrations above 2%; the power 

required to sustain discharges containing higher concentrations of nitrogen was more than what 

was available in the setup.  

Table 4.1: Microwave beam power range in which Ar-N2 stable discharges generated for triple probe experiments can be obtained 
for multiple gas pressures and concentrations of N2. 

 

Table 4.2: Microwave beam power range in which Ar-N2 stable discharges generated for optical emission spectroscopy 
experiments can be obtained for multiple gas pressures and concentrations of N2. 

 

Min [kW] Max [kW] Min [kW] Max [kW] Min [kW] Max [kW]
2 4.0 4.0 5.0 7.0 8.0 9.5
4 5.5 6.5 7.0 9.0 ─ ─
6 6.5 9.0 8.0 9.5 ─ ─
8 7.5 9.5 9.0 9.5 ─ ─

10 8.5 9.5 ─ ─ ─ ─

200 mTorr
N2 [%]

150 mTorr 100 mTorr

Min [kW] Max [kW] Min [kW] Max [kW] Min [kW] Max [kW]
2 4.0 6.5 5.0 9.0 7.5 9.5
4 5.5 7.5 6.5 9.0 ─ ─
6 6.0 9.5 8.0 9.5 ─ ─
8 7.5 9.5 9.0 9.5 ─ ─

10 8.5 9.5 ─ ─ ─ ─

N2 [%] 200 mTorr 150 mTorr 100 mTorr
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Figure 4.9: Stability of Ar-N2 plasma discharges under various operating conditions for a) triple probe and b) optical emission 
spectroscopy experiments.  The shaded regions represent the combination of parameters (beam power, nitrogen concentration, and 
gas pressure) that yield stable discharges.  Regions above and below the boundary line of the stable discharge region yield quasi-
stable discharges and no discharges, respectively.  Note that there is insufficient or no data to determine stability boundaries for 
nitrogen concentrations below 2%.  The microwave beam limit was set by the operating limits of the power supply. 

4.3.2 Ar-O2 Gas Mixtures 

When oxygen was added to the argon plasma instead of nitrogen, the plasma generated 

appeared dimmer, longer, and centered closer to the beam’s geometric focus than Ar-N2 

discharges.  The range of the beam power and molecular gas concentration at which stable 

discharges were obtained also increased significantly; the amount of oxygen that could be added 

to the gas mixture before the discharge was no longer sustainable was approximately twice that of 

nitrogen.  This can be attributed to oxygen having a much smaller effective cross-section than 

nitrogen for electron impact excitation from the ground state to its vibrational states.[98]  The cross 

section for vibrational excitation of the oxygen from its ground state peaks at electron energies of 

approximately 10 eV; electrons with such energy would have enough energy to dissociate oxygen 

(D0(O2) = 5.1 eV).[99]–[102]  Furthermore, even at its peak cross section, oxygen’s vibrational 

excitation cross section is approximately an order of magnitude smaller than that of 

nitrogen.[103]–[105] 
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Negative molecular oxygen ions do have relatively large vibrational excitation cross 

sections at low electron energies; however, a series of reactions must first occur before those 

vibrational level become available.  Electrons must first collide and dissociate O2 to produce O 

and O−, which are needed to produce O2
−.  A few reactions that can produce O and O− include: 

 e + O2 ⟶  O− +  O , (4.4) 

 e + O2
∗ ⟶  O− +  O , (4.5) 

 e + O2(υ = 1) ⟶  O− +  O . (4.6) 

The dissociative electron attachment cross sections are in the order of 10-19 cm2 to 10-18 cm2 for 

electron energies in range of 5 eV to 9 eV.[101], [106]  These are one to two orders of magnitude 

smaller than the vibrational excitation cross sections of O2 in most of that energy range; however, 

the low dissociation energy increases the chances of dissociating any molecular oxygen state 

(ground state, electronically excited states, and vibrationally excited states).  When O2
─ finally 

forms, it is likely that most of it ends up dissociating before getting vibrationally excited by a low 

energy electron given its dissociation energy is approximately 4.07 eV.[107]  Dissociative electron 

attachment and vibrational excitation cross sections of O2( Σg− 
3 ) were digitized and are shown in 

Fig. 4.10.  The vibrational excitation cross sections of N2( Σ 1 g
+ ) and O2

−( Π 2 g
 ) were also digitized 

and are shown in Fig. 4.11. 

The expected low concentrations of O2
─ was confirmed by GlobalKin, a zero-dimensional 

plasma kinetics model, simulations of Ar-O2 and Ar-N2-O2 discharges where the model predicted 

concentration of O2
─ several orders (about four) of magnitude smaller than concentrations of O─ 

in the discharge.  Furthermore, simulations also predicted lower concentrations (one to two orders 

of magnitude) of vibrationally excited O2 in Ar-O2 discharges than concentrations of vibrationally 

excited N2 in Ar-N2 discharges simulated under similar conditions (gas pressure, concentration of 
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the molecular gas, flow rate, and total absorbed power).  This significant difference in the 

concentrations of vibrationally excited nitrogen and oxygen was also observed in simulations of 

Ar-N2-O2 discharges containing the same nitrogen and oxygen concentrations.  More details on 

the GlobalKin simulations and the input parameters used in this investigation are provided in Sect. 

5.3. 

 

Figure 4.10: Cross sections for a) vibrational excitation and b) dissociative electron attachment of O2( 𝛴𝛴𝑔𝑔− 
3 ) via electron impact 

collisions.  Vibrational excitation cross sections were digitized from Laporta et al.[99] Electron attachment cross sections were 
digitized from data provided by Asundi et al.[106] 

 

Figure 4.11: Vibrational excitation cross sections for N2( 𝛴𝛴 1 𝑔𝑔
+ , 𝜐𝜐 = 0) and O2−( 𝛱𝛱 2 𝑔𝑔

 , 𝜐𝜐 = 0) transitioning into their a) 𝜐𝜐 = 1 and 
b) 𝜐𝜐 = 2 vibrational states via electron impact collisions.  Cross sections for N2 ( 𝛴𝛴 1 𝑔𝑔

+ , 𝜐𝜐 = 1) and N2( 𝛴𝛴 1 𝑔𝑔
+ , 𝜐𝜐 = 2) were obtained 

from Itikawa and Schulz, respectively.[103], [104]  Cross sections for O2−( 𝛱𝛱 2 𝑔𝑔
 , 𝜐𝜐 = 1) and O2−( 𝛱𝛱 2 𝑔𝑔

 , 𝜐𝜐 = 2) were obtained from 
Laporta.[99] 



 95 

The other noticeable difference between the Ar-N2 and Ar-O2 stable discharges was that 

Ar-O2 discharges appeared to be dimmer in the fast frame rate cameras than Ar-N2 discharges.  

This can be attributed to the fact that oxygen is an electronegative gas that tends to capture 

electrons via dissociative electron attachment and direct electron attachment.  This results in a 

decrease in the electron density, which means there are less electrons to electronically excite the 

atoms and molecules emitting the photons in the visible spectrum; changes in the plasma 

parameters as a result of changes in the gas composition are discussed in Chapter V.   

Another possible factor that could be contributing to the dimmer discharge when compared 

to Ar-N2 discharges is the lack of allowed electronic transitions in the visible spectrum from 

excited molecular oxygen; the strongest emissions come from the Schumman-Runge system 

(B3Σu
─ → X3Σg

─) that emits in the 175 nm to 535 nm wavelength range.[107]  The first negative 

system of O2
+ (b4Σg

─ → a4Πui) also emits in the visible spectrum (499-853 nm), but none of its 

bands were observed in the optical emission spectroscopy measurements; the only sign of oxygen 

in the spectra came from excited atomic oxygen.  Images captured with the fast frame rate camera 

(15 ms exposure) of Ar-N2 and Ar-O2 stable discharges generated by a 9.5 kW microwave beam 

at 200 mTorr are shown in Fig. 4.12.  The fast frame rate camera used to capture the images has a 

quantum efficiency above 10% for wavelengths in the 380 nm to 800 nm range. 
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Figure 4.12: Images of a) Ar-N2 and b) Ar-O2 discharges captured by a fast frame rate camera (15 ms exposure).  The discharges 
were generated with a 9.5 kW microwave beam at 200 mTorr and were approximately 45-60 cm in length and 20-30 cm in diameter.  
The gain was kept the same for both images. 

The dimness of the Ar-O2 discharge is also noticeable at the lower limits of the beam power 

required to sustain the discharge, where the plasma can become so dim that is difficult to see with 

the fast frame rate camera without increasing the exposure time or the gain.  As the concentration 

of oxygen increases, the brightness of the discharge decreases at the lowest sustainable beam; this 

decrease in brightness can be seen in the images shown in Fig. 4.13.  This behavior was also 

observed in Ar-N2 discharges, but with the main difference being that Ar-N2 discharges are 

brighter at the minimum sustainable beam power.  For comparison purposes, images captured of 

Ar-N2 discharges generated at minimum microwave beam powers are shown in Fig. 4.14; the 

images were captured using the same exposure time and gain as the images in Fig. 4.13. 
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Figure 4.13: Images of Ar-O2 discharges captured by a fast frame rate camera (15 ms exposure time).  The discharges were 
generated at the minimum beam power required to sustain the discharge for various concentrations of oxygen at 150 mTorr and 
were approximately 45-60 cm in length and 20-30 cm in diameter. 

 

Figure 4.14: Images of Ar-N2 discharges captured by a fast frame rate camera (15 ms exposure time).  The discharges were 
generated at the minimum beam power required to sustain the discharge for various concentrations of nitrogen at 150 mTorr and 
were approximately 45 in length and 25 cm in diameter. 

The parameter (beam power and molecular gas concentration) ranges for which stable 

discharges were obtained in Ar-O2 gas mixtures was larger than that of Ar-N2 gas mixtures.  The 

molecular gas concentration that could be added to the argon discharge before becoming 

unsustainable at the available beam power increased from 10% when using nitrogen to 22% when 

using oxygen.  This difference is likely due to the differences in electron-impact vibrational 

excitation cross sections between the molecular nitrogen and oxygen where nitrogen’s vibrational 
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levels quenches the energy of the electrons significantly more than oxygen’s vibrational levels.  

There increase in range of power of the microwave beam was mostly noticeable at the lower 

concentrations of added oxygen, where the beam power could be maxed out or closed to (for 2% 

O2) without inducing the quasi-stable discharge.  This could be due an increase in the vibrational 

temperature due to electrons transferring energy to nitrogen’s vibrational levels and as the power 

of the beam increases the electron density also increases leading to more electrons dumping energy 

to the vibrational levels.  Note that the electron density of Ar-N2 discharges measured by the probe 

were on the order of 1016 m-3, which was far from approaching the critical density of approximately 

2.7 × 1017 m-3.  This suggests that some sort of instability could be causing the electron density to 

quickly rise (in less than a 500 W input power increase) leading the stable discharge to transition 

into its quasi-stable mode.  This rapid rise in electron density could occur if there was a disturbance 

in the vibrational temperature that feeds on an increase in the electron density and gas temperature 

according to Nighan and his description of thermal instabilities; this feedback process is shown in 

Fig. 4.3.[95] 

As in Ar-N2 discharges, the triple probe affects the range of the beam power and oxygen 

concentration at which stable discharges can be obtained.  These differences in the parameter 

boundaries can be seen from the results listed in Table 4.3 and Table 4.4.  A diagram of the stability 

state of the Ar-O2 discharge under various gas pressures, oxygen concentrations, and beam power 

combinations is shown in Fig. 4.15. 
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Table 4.3: Microwave beam power range in which Ar-O2 stable discharges generated for triple probe experiments can be obtained 
for multiple gas pressures and concentrations of O2. 

 

Table 4.4: Microwave beam power range in which Ar-O2 stable discharges generated for optical emission spectroscopy 
experiments can be obtained for multiple gas pressures and concentrations of O2. 

 

 

Figure 4.15: Stability of Ar-O2 plasma discharges under various operating conditions for a) triple probe and b) optical emission 
spectroscopy experiments.  The shaded regions represent the combination of parameters (beam power, nitrogen concentration, and 
gas pressure) that yield stable discharges.  Regions above and below the boundary line of the stable discharge region yield quasi-

Min [kW] Max [kW] Min [kW] Max [kW] Min [kW] Max [kW]
2 7.5 9.5 7.5 9.5 8.0 9.5
4 8.0 9.5 8.5 9.5 9.5 9.5
6 8.5 9.5 9.0 9.5 ─ ─
8 8.5 9.5 9.0 9.5 ─ ─
10 9.0 9.5 9.5 9.5 ─ ─
12 9.0 9.5 9.5 9.5 ─ ─
14 9.5 9.5 ─ ─ ─ ─
16 9.5 9.5 ─ ─ ─ ─

O2 [%]
200 mTorr 175 mTorr 150 mTorr

Min [kW] Max [kW] Min [kW] Max [kW] Min [kW] Max [kW]
2 4.5 8.0 5.0 8.0 5.5 9.0
4 5.5 9.5 6.0 9.0 7.0 9.5
6 7.0 9.5 7.0 9.5 7.5 9.5
8 7.0 9.5 7.0 9.5 8.0 9.5
10 7.5 9.5 7.5 9.5 8.5 9.5
12 8.0 9.5 8.0 9.5 9.0 9.5
14 8.5 9.5 8.0 9.5 9.5 9.5
16 9.0 9.5 9.0 9.5 ─ ─
18 9.0 9.5 9.5 9.5 ─ ─
20 9.5 9.5 9.5 9.5 ─ ─
22 9.5 9.5 ─ ─ ─ ─

O2 [%] 200 mTorr 175 mTorr 150 mTorr
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stable discharges and no discharges, respectively.  Note that there is insufficient or no data to determine stability boundaries for 
oxygen concentrations below 2%.  The microwave beam limit was set by the operating limits of the power supply. 

4.3.3 Ar-N2-O2 Gas Mixtures 

When all three gases are mixed, the structure of the discharge looks similar to that of an 

Ar-O2 discharge but significantly brighter due to the rovibrational bands of nitrogen.  The presence 

of nitrogen in the gas mixture appeared to dominate the reactions in the discharge given that the 

discharge was unsustainable when the gas mixture had more than a 12% molecular gas 

concentration.  This value is closer to the maximum molecular gas concentration tested in Ar-N2 

discharges than Ar-O2 discharges.  Furthermore, more oxygen than nitrogen could be added to gas 

mixture before the discharge could no longer be sustained at 9.5 kW.  When the concentration of 

nitrogen was kept at 2%, up to 10% oxygen could be added to the discharge before it became 

unsustainable.  On the other hand, when the concentration of oxygen was kept at 2%, only 6% 

nitrogen could be added to the discharge before it decayed.  The gas mixtures of Ar-N2-O2 tested 

for this investigation are listed in Tables 4.5 and 4.6. 

Table 4.5: Microwave beam power range in which Ar-N2-O2 stable discharges generated for triple probe experiments can be 
obtained for multiple gas pressures and concentrations of N2 and O2. 

 

Min [kW] Max [kW] Min [kW] Max [kW] Min [kW] Max [kW]
2 2 6.5 9.5 7.0 9.5 8.0 9.5
2 4 7.5 9.5 8.0 9.5 9.0 9.5
2 6 8.5 9.5 9.0 9.5 ─ ─
2 8 8.5 9.5 ─ ─ ─ ─
2 10 9.0 9.5 ─ ─ ─ ─
4 2 7.5 9.5 8.0 9.5 9.0 9.5
4 4 8.5 9.5 9.0 9.5 ─ ─
4 6 9.0 9.5 ─ ─ ─ ─
6 2 8.5 9.5 9.5 9.5 ─ ─

O2 [%]N2 [%]
200 mTorr 175 mTorr 150 mTorr
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Table 4.6: Microwave beam power range in which Ar-N2-O2 stable discharges generated for optical emission spectroscopy 
experiments can be obtained for multiple gas pressures and concentrations of N2 and O2. 

 

In general, discharges produced with a mix of all three gases followed the same trends as 

the Ar-N2 and Ar-O2 discharges.  As the concentration of argon in the gas mixture was replaced 

with molecular gases, the more power that was needed to sustain the discharge.  Gas pressure also 

affects the power requirements to sustain stable discharges.  As the gas pressure decreases, 

diffusion increases which means the electron temperature must increase for the ionization rate to 

keep up with the losses of the discharge; to increase the electron temperature, the discharge must 

absorb more power which means the beam power must also increase.  The effects of triple probe 

perturbations on discharges were also observed in the lower limits of the beam power needed to 

sustain the discharge.  The operational conditions for which stable discharges can be obtained in 

Ar-N2-O2 gas mixtures are shown in Figs. 4.16 and 4.17.  Note that diagrams are for gas mixtures 

where the concentration of nitrogen is kept constant at 2% and 4% in Figs. 4.16 and 4.17, 

respectively. 

Min [kW] Max [kW] Min [kW] Max [kW] Min [kW] Max [kW]
2 2 5.5 9.5 6.0 9.5 7.0 9.5
2 4 6.5 9.5 7.0 9.5 7.5 9.5
2 6 7.5 9.5 8.0 9.5 8.5 9.5
2 8 8.0 9.5 8.5 9.5 ─ ─
2 10 8.0 9.5 ─ ─ ─ ─
4 2 6.0 9.5 7.0 9.5 8.0 9.5
4 4 7.5 9.5 8.0 9.5 ─ ─
4 6 8.0 9.5 8.5 9.5 ─ ─
6 2 7.0 9.5 8.0 9.5 ─ ─
6 4 8.0 9.5 ─ ─ ─ ─

O2 [%]N2 [%] 200 mTorr 175 mTorr 150 mTorr
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Figure 4.16: Stability of Ar-N2-O2 plasma discharges under various operating conditions for a) triple probe and b) optical emission 
spectroscopy experiments.  Here the concentration of nitrogen was kept at 2%.  The shaded regions represent the combination of 
parameters (beam power, nitrogen concentration, and gas pressure) that yield stable discharges.  Regions above and below the 
boundary line of the stable discharge region yield quasi-stable discharges and no discharges, respectively.  The microwave beam 
limit was set by the operating limits of the power supply. 

 

Figure 4.17: Stability of Ar-N2-O2 plasma discharges under various operating conditions for a) triple probe and b) optical emission 
spectroscopy experiments.  Here the concentration of nitrogen was kept at 4%.  The shaded regions represent the combination of 
parameters (beam power, nitrogen concentration, and gas pressure) that yield stable discharges.  Regions above and below the 
boundary line of the stable discharge region yield quasi-stable discharges and no discharges, respectively.  The microwave beam 
limit was set by the operating limits of the power supply. 

4.4 Closing Comments 

Stability of the discharges generated in the AFRL’s experimental setup proved to be 

controllable by adjustments to the gas composition, power of the microwave beam, and gas flow 

rate.  Unstable discharges were only observed in pure argon discharges and could be transitioned 

into quasi-stable discharges by increasing the flow rate of the gas or increasing the power of the 
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microwave beam.  Studies on the quasi-stable discharges found that the temporal oscillations in 

brightness and size reported by Hoff et al. to describe the quasi-stable discharges was actually 

periodic ionization fronts propagation upstream towards the microwave source at 10s of Hertz.  

The ionization fronts observed in quasi-stable discharges were similar to those reported in the 

literature of pulse microwave discharges, with the main difference being the periodicity of the 

ionization fronts that came with using a CW microwave source.   

Towards the beginning of this investigation it was thought that the quasi-stable discharges 

were just a result gradually reaching the critical density (approximately 2.7 × 1017 m-3); however, 

it was later realized that the electron density measured at the last condition before the discharge 

would go quasi-stable was about an order of magnitude away from the critical density.  This meant 

that the electron density was increasing rapidly near its transition from stable to quasi-stable.  For 

example, the average increase in the peak electron density of a Ar-N2 (4% N2) discharge was 

approximately 25% for every 500 W the power of the beam was increased, so assuming the critical 

density was reached right before the discharge went quasi-stable would mean the electron density 

has to  increase by approximately 2500% in less than a 500 W increase in beam power.  While it 

is unclear what is causing this rapid increase in the electron density, thermal instabilities are 

currently being considered as a possible source of the instability.[71], [94], [95] 

Quasi-stable discharges in this investigation were transitioned to stable discharge by 

increasing the concentration of the molecular gas, decreasing the power of the microwave beam, 

or decreasing the gas pressure.  Three different gas mixtures were tested with all showing similar 

stability trends as the control parameters were varied; stability zones were established for most of 

the operational conditions that could produce discharges in the AFRL’s experimental setup.  In 

general, discharges became more difficult to sustain at max power as gas pressure decreased and 
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concentration of the molecular gas increased.  It was also determined that nitrogen quenched the 

discharges significantly faster than oxygen; only 10% nitrogen (compared to 22% oxygen) could 

be added the gas mixture before the discharge could no longer be sustained in the 9.5 kW beam at 

200 mTorr.  The main differences in the behavior observed between Ar-N2 and Ar-O2 discharges 

could be attributed the properties of each of the molecular gases; nitrogen easily quenched the 

energy of electrons through its vibrational states, while oxygen would capture the electrons 

through dissociative electron attachment and direct electron attachment. 
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Chapter V 

Characterization of Striated Microwave Discharges 

5.1 Striations 

Striations have been observed in plasmas since the mid-18th century, with Abria first 

reporting on the alternating bright and dark regions of DC glow discharges.[108]  While striations 

have been studied extensively in DC and RF discharges, they are still not well understood due to 

their diverse behavior and properties.[108]–[125]  In general, striations consist of periodic spatial 

modulations of the electron density and temperature that often are attributed to ionization 

instabilities.  However, the operational conditions (e.g. gas pressure and input power) for which 

these instabilities are triggered vary significantly between gases, plasma sources, and discharge 

vessel geometry.  Such variations observed in rare gases, with variation in chamber geometry are 

discussed by Kolobov, and Ghomi et al., respectively.[114], [118]  While the majority of the 

studies on striations have been performed in experimental setups where the discharge is bounded 

by electrodes or the chamber walls, striations have also been observed in free space 

discharges.[113], [126], [127]  One of the characteristics that free space discharges have in 

common with surface bounded discharges was that the periodic spatial modulation of the electron 

density and temperature were out of phase; when the electron density increased, the electron 

temperature decreased.[113], [114], [117] 
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5.1.1 Striated Microwave Discharges 

Striated microwave discharges generated at the AFRL’s experimental setup exhibited 

similar behavior and characteristics as those reported in literature.  In the reported DC and RF 

glow discharges, the striation pattern usually remained unchanged through the length of the 

discharge tube for a given set of conditions, while in the AFRL’s experimental setup up to three 

different striation patterns have been observed simultaneously along the length of the discharge.  

A bright round pattern (pattern #1) has been observed towards the leading end of the discharge, 

which then transitions into a striped pattern (pattern #2).  A third pattern (pattern #3) begins to 

develop towards the trailing end of the discharge that resembles a combination of patterns 1 and 

2.  It is unclear what causes the striation pattern to change through the length of the microwave 

discharge, but recent simulations conducted by Reid suggest that the angles (relative to the axis of 

the discharge) in which the microwave beam interacts with the leading end of the plasma might 

affect the appearance of the striation pattern near the leading end of the plasma; experiments to 

study the origins of the different striation patterns in more detail are planned for the future.[128]  

Images of an RF glow discharge and a microwave discharge (AFRL’s setup) are shown in Fig. 5.1 

to illustrate the difference in complexity of the observed striation patterns.   
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Figure 5.1: Images of an a) RF glow discharge (Mulders et al. setup) and a b) discharge generated at the focus of a microwave 
beam (AFRL’s setup).  The frequency of the RF discharges were (top to bottom) 70, 29, and 6 MHz resulting in 8, 9, and 10 total 
visible striations contained in a 30 cm long by 2.5 cm diameter discharge vessel .[115]  The microwave discharge shows three 
different patterns for Ar-O2 (4% O2) plasma generated by a 9.5 kW microwave beam at 200 mTorr.  The discharge was 
approximately 60 cm in length and 25 cm in diameter. 

While the striation patterns observed in the AFRL’s setup could be perceived as more 

complex than those commonly observed in DC and RF discharges, they exhibit similar trends as 

those of DC and RF discharges.  For example, the separation between striations is approximately 

constant throughout the discharge, including through the different patterns.  Processing the images 

of the striated discharges to display them as a colormap of the relative intensity captured by the 

cameras makes it easier to observe the striations and helps identify the regions emitting more light.  

Note that brighter regions suggest that there is a higher concentration of electrons that can 

electronically excite atoms and molecules in those regions resulting in an increase of photons 

emitted in the visible spectrum; an increase in electron temperature could also be contributing to 

brighter regions due to an increase in excitation rate.  A colormap of an Ar-O2 (2% O2) discharge 

generated with a 6.5 kW microwave beam at 200 mTorr is shown in Fig. 5.2. 

Taking the average intensity emitted over every column of pixels in the image captured 

provides insight into the distance in between striations by using a known distance as reference for 

converting pixels into distances.  In this case an alumina tubing that had an outer diameter of 6.35 
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mm was used as reference for the frame resulting in a conversion of approximately 0.668 mm per 

pixel.  Using this method, the average separation measured between striations (from center to 

center) was 50 pixels which converts to approximately 3.34 cm; this distance is a little over half a 

wavelength of the microwave beam providing some insight into the possible mechanism 

responsible for the formation of striations in the discharge.  The average distance between 

striations measured from an image of the discharge is shown in Fig. 5.2.  This process was repeated 

for discharges generated under different conditions (gas pressure, beam power, and gas 

compositions) and the results were almost identical to within 1 pixel or approximately 0.668 mm. 

 

Figure 5.2: a) Colormap of the intensity of striations observed in an Ar-O2 (2% O2) discharge generated by a 6.5 kW microwave 
beam at 200 mTorr.  b) The mean of the intensities in each column of pixels show the periodic spatial modulation of the intensity 
of the discharge associated with striations.  On average the measured distance between striations is approximately 3.34 cm; each 
pixel represents approximately 0.668 mm in this camera frame. 

Periodic spatial oscillations of the electron density and temperature were also observed in 

the experiments conducted with triple probes at the AFRL; these periodic spatial oscillations are 

shown in Fig. 5.3.  While the spacing between striations was relatively constant when measured 

through images of the discharge, the same could not be said when the spacing between spatial 

oscillations of the electron temperature and density was measured.  For most of the tested 

conditions the separation between local maximums of the electron temperature and density ranged 

from approximately 3.2 cm to 4.1 cm.  This significant range in the spacing between local 
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maximums could be a result of the triple probe measurements taken along the path of three 

different striations patterns; the path of triple probe is shown in Fig. 5.4.  In general, the spacing 

between the local maximums increases near the edges of the discharge and remains constant near 

the center of the discharge.  This behavior seems to agree with what the triple probe would see as 

it traveled through the three different striations patterns assuming a correlation between the bright 

regions and the electron density as reported in literature; note that as the probe transitions from 

pattern #1  to pattern #2, the probe would see longer dark and bright regions.[114], [117], [120] 

While the exact source of the striation patterns observed remains unclear, results analyzed to date 

suggest standing waves within the discharge might be responsible for the striations. 

 

Figure 5.3: Spatially resolved electron a) temperature and b) density measurements of stable Ar-O2 (2% O2) plasma generated at 
200 mTorr with various input microwave beam powers.  The probe location is relative to the beam’s geometric focus (in vacuum). 
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Figure 5.4: Approximate path traveled by the triple probe (dotted red line). 

Studies that measured the electron temperature and density of striations patterns reported 

observing an anticorrelation of the electron temperature and density attributed to disturbances on 

the electron density caused by local heating of the gas.[113], [114], [126], [129]  A similar 

anticorrelation behavior was observed in the triple probe measurements of the microwave 

discharges generated at the AFRL.  However, this behavior was only evident in the center region 

of the discharge (pattern #2); sample measurements of the electron temperature and density in this 

region is shown in Fig. 5.5.  It is unclear why the anticorrelation is only evident in a specific region 

of the discharge, but this behavior could also be associated with the change in the striation pattern 

as the probe travels through the discharge.  It can be seen from Fig. 5.4 that the width of the bright 

and dark regions along the path of the triple probe increases as the probe transitions from the center 

region of the discharge (pattern #2) to the leading end of the discharge (pattern #1).  These 

transition regions will be studied in more detail in the future after the translation stage is upgraded 

for multi-axis capabilities. 
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Figure 5.5: Anticorrelation of the electron temperature and density in a) Ar-O2 (2% O2) and b) Ar-N2 (4% N2) microwave 
discharges.  Tripe probe measurements shown were made within the region corresponding to where pattern #2 was observed.  The 
probe location is relative to the microwave beam’s geometric focus in vacuum conditions. 

5.2 Experimental Measurements of the Plasma Parameters 

Invasive and non-invasive plasma diagnostic methods were used to characterize the striated 

stable discharges generated at the AFRL; a triple probe system was used for measurements of the 

electron temperature and density, and an optical emission spectroscopy system was used for 

measurements of the electron temperature and gas temperature.  Studies of Ar-N2 discharges were 

conducted at gas pressures ranging from 100 mTorr to 200 mTorr for concentrations of nitrogen 

ranging from 2% to 10%.  For Ar-O2 and Ar-N2-O2 discharges the tested gas pressures ranged 

from 150 mTorr to 200 mTorr; reasons for this reduction in the gas pressure range is discussed in 

Sect. 4.3.  In Ar-O2 discharges the concentration of oxygen ranged from 2% to 22%, while in Ar-

N2-O2 discharges the oxygen content was limited to 10% before the discharge could no longer be 

sustained; the concentration of nitrogen was limited to 6% in Ar-N2-O2 as discussed in Sect. 4.3. 

The ranges of microwave beam powers for each tested gas pressure and composition combination 

can be found in Sect. 4.3. 

The total flow rate of the gas mixtures was kept at 350 sccm for all tested conditions and 

discharges were given a minimum of five minutes to reach steady state before making 
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measurements.  This minimum stabilization time was determined from monitoring the signal of 

the triple probe as 7 sccm of nitrogen (2% by concentration) were added to the gas mixture of a 

pure argon discharge; the steady state of the plasma was defined as the point where the voltage 

potential between the reference and positive wires of the probe changed by less than 0.05 V in a 

minute.  While the stabilization times are shorter (approximately two minutes) for plasmas already 

containing 2% of a molecular gas, five minutes stabilization times were used for all tested 

conditions to ensure steady state was reached before measurements were made and for consistency 

of the experimental procedure.  All measurements made with the triple probe use the geometric 

focus of the microwave beam in vacuum conditions as a reference point for the location of the 

probe, and all optical emission spectroscopy measurements were made near the center of the 

discharge; the relative location of the experimental measurements for both diagnostic methods 

used in this investigation are shown in Fig. 5.6. 

 

Figure 5.6: References for experimental measurement plots.  a) The triple probe location used the microwave beam’s geometric 
focus in vacuum conditions (dotted red line) as a reference point (location = 0).  The path of the probe is along the microwave 
propagation vector, 𝒌𝒌��⃗ , with positive and negative values of the probe location indicating regions upstream and downstream of the 
beam’s geometric focus, respectively.  b) All optical emission spectroscopy measurements reported in this investigation were made 
near the center of the discharge 
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5.2.1 Effects of Changes in Microwave Beam Power 

Triple probe measurements of the electron temperature and density of Ar-N2 discharges 

showed similar trends in all tested pressures (100 mTorr, 150 mTorr, and 200 mTorr).  When the 

microwave beam power was increased at a fixed gas pressure and composition, a slight increase 

in the electron temperature and a noticeable increase in the electron density were measured.  The 

increase in the electron temperature was expected as the stronger the electric field the more energy 

free electrons can transfer to the plasma via collisions; the electric field of the microwave beam is 

proportional to the square root of the beam power.  As the gas temperature increases, the neutral 

gas density decreases (at constant gas pressure), which would also contribute to the increase in 

electron temperature.  However, as the electron temperature increases the diffusion rate also 

increases, causing an expansion of the discharge volume that helps balance the energy gains; 

assuming the diffusion mechanism is dominated by ambipolar diffusion, the relationship between 

the ambipolar diffusion coefficient (Da) and the electron temperature for a weakly ionized 

discharge is given by 

 𝐷𝐷𝑎𝑎 ≈ 𝜇𝜇𝑖𝑖𝑇𝑇𝑒𝑒  , (5.1) 

where 𝜇𝜇𝑖𝑖 is the ion mobility.  The electron temperature is determined by the local balance between 

the energy gained by the electrons from the electric field and the energy lost to collisions with the 

gas particles and diffusion.  This relation can be expressed by 

 |𝑞𝑞𝑒𝑒𝐸𝐸𝑧𝑧|2𝑛𝑛𝑒𝑒
𝜈𝜈𝑐𝑐
𝜔𝜔

2𝑚𝑚𝑒𝑒𝜔𝜔[1 + (𝜈𝜈𝑐𝑐 𝜔𝜔⁄ )2] ≈ 𝑛𝑛𝑒𝑒𝑁𝑁𝑔𝑔κ(𝑇𝑇𝑒𝑒)  , (5.2) 

where Ez is the local field amplitude at location z, Ng is the density of the gas particles, and κ is an 

energy loss coefficient dependent on the electron temperature.[130]   

The increase in the electron density was also expected since an increase in the electric field 

is also associated with an increase in the ionization rate due to its dependency to the energy 
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distribution of the electrons and the cross sections for ionization of the atoms and molecules.  It is 

also possible that the increase in the gas temperature results in an increase in the Penning ionization 

rate from interactions between metastable states of argon and electronically excited states of 

nitrogen; increases in interactions between heavy particles are usually correlated with increases in 

the gas temperature.  An example of the changes in the electron temperature and density as a result 

of varying the power of the microwave beam is shown in Fig. 5.7. 

 

Figure 5.7: Spatially resolved electron a) temperature and b) density measurements of stable Ar-N2 (4% N2) plasma generated at 
200 mTorr with various input microwave beam powers.  

5.2.2 Effects of Changes in Gas Pressure 

When the gas pressure was decreased at a fixed gas composition and beam power, it was 

interesting to see that the electron temperature remained relatively constant as it would be expected 

for the electron temperature to increase due to the drop in the neutral gas density.  Perhaps the 

change in gas pressure between measurements was too small to make any noticeable difference in 

the electron temperature; again, it all comes down to the balance of energy gains and losses of the 

system.  On the other hand, the effects of gas pressure were more noticeable in the electron density 

which decreased as the gas pressure decreased.  The decrease in the electron density was expected 

because at a lower gas pressure there would be less neutral gas particles for free electrons to ionize.  
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The changes in the peak electron temperature and density due to changes in the gas pressure are 

shown in Fig. 5.8 

 

Figure 5.8: Peak electron a) temperature and b) density as a function of microwave beam power for stable Ar-N2 (6% N2) 
discharges generated at 200 mTorr and 150 mTorr. 

5.2.3 Effects of Changes in Gas Composition 

The last variable that was controlled in this investigation was the concentration of the 

molecular gases in the discharge.  Probe measurements recorded a slight decrease in the peak 

electron temperature and a significant decrease in the peak electron density as the concentration of 

nitrogen in the discharge increased at a fixed microwave beam power and gas pressure.  Molecular 

nitrogen is known to quench the energy of free electrons through its vibrational levels, as they can 

easily be excited at low energies levels (1.5 eV to 4.5 eV range).  This quenching effect is likely 

responsible for the decrease in the electron temperature; simulation results that support this claim 

are discussed in the next section (Sect. 5.2.2).  There are several factors that could be contributing 

to the decrease in the electron density as the concentration of nitrogen increases: increased 

channels for recombination, and metastable states of argon losing the excess energy to nitrogen.  

Molecular and atomic nitrogen ions serve as additional recombination channels, which could 

potentially increase electron losses to recombination.  The interactions between metastable states 

of argon and different states of nitrogen can also contribute to the decrease in the electron density 
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as these interactions can decrease the density of the metastable states that are essential to the 

ionization of argon atoms; these interactions could also result in Penning ionization of excited 

nitrogen molecules.  Lastly, the increase in the available vibrational levels that comes from 

increasing the concentration of nitrogen increases the probability of free electrons transferring 

energy to a vibrational state instead than to a metastable state of argon.  The changes on the electron 

temperature and density due to increases in the nitrogen content of the discharge are shown in Fig. 

5.9.   

 

Figure 5.9: Peak electron a) temperature and b) density as a function of microwave beam power of stable Ar-N2 discharges 
generated at 200 mTorr with various concentrations of N2. 

The electron temperature and density trends that were observed in Ar-N2 discharges were 

also observed in discharge generated from gas mixtures of Ar-O2 and Ar-N2-O2.  One of the main 

differences between the plasma parameters of the discharges was that a significant increase in the 

electron temperature was measured in discharges containing oxygen; the peak electron 

temperatures increased by approximately 140% compared to Ar-N2 discharges generated under 

similar operational conditions.  While an increase in the electron temperature could be expected 

due to molecular oxygen not quenching the energy of the electrons as much as molecular nitrogen, 

it was unclear the extent of the increase in the electron temperature one could expect; note that 

electron collisions with oxygen are more likely to result in dissociative electron attachment than 
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vibrational excitation, as discussed in Sect. 4.3.2.  Given that molecular oxygen is an 

electronegative gas that produces negative ions in a discharge, there is a chance that the presence 

of negative ions affected the accuracy of the triple probe measurements.   

Optical emission spectroscopy measurements and simulations also calculated higher 

electron temperatures in Ar-O2 discharges than in Ar-N2 discharges, but significantly lower than 

those measured by the probe; optical emission spectroscopy measurements are discussed later in 

this section and simulation results are discussed in the next section.  Unfortunately, the triple probe 

method used for this investigation does not address corrections needed to account for the presence 

of negative ions in the discharge.  Furthermore, given that the floating triple probe method operates 

in the ion saturation region of the current-voltage characteristic curve, it is likely that negative ion 

current was not collected by the probe as negative ions would not have enough energy to overcome 

the repulsive potential of the probe.  It is unclear what are the sources and the extent of the 

inaccuracies in triple probe measurements of discharges containing oxygen, but it is likely that its 

related to the presence of negative ions; further research is needed to better understand how the 

presence of negative ions affect triple probe measurements and ways to correct for the effects (if 

possible). 

A decrease in the peak electron density was also measured in discharges containing 

oxygen; on average the decrease in the peak electron density was approximately 80% when 

compared to Ar-N2 discharges generated under similar operational conditions.  The decrease in the 

electron density would also be expected given that molecular oxygen is known to capture free 

electrons through dissociative electron attachment.  However, given that there is a chance that 

there could be a larger error in the triple probe measurements of the electron temperature, this error 

would carry through the calculations of the electron density in addition to any other error on the 
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measured ion current that might be associated to the source(s) of error in the electron temperature 

measurements; the relation of the electron density and the measured electron temperature is given 

by Eqn. 3.25.  Unfortunately, there were no other experimental measurements made of the electron 

density, but simulations results provided some insight into the expected electron temperature and 

densities based on the global kinetics of the species in the discharge.  It is important to note that 

even if the absolute values of the triple probe measurements were inaccurate, the effects of changes 

in the gas pressure, gas composition, and power of the microwave beam in discharges containing 

oxygen were similar to those observed in Ar-N2 discharges.  Spatial electron temperature and 

density profiles of discharges containing oxygen are shown in Figs. 5.10 and 5.11; note that 

measurements shown were conducted under similar conditions (200 mTorr and 96% Ar) to those 

shown in Fig. 5.7. 

 

Figure 5.10: Spatially resolved electron a) temperature and b) density measurements of stable Ar-O2 (4% O2) plasma generated at 
200 mTorr with various input microwave beam powers.   
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Figure 5.11: Spatially resolved electron a) temperature and b) density measurements of stable Ar-N2-O2 (2% N2, 2% O2) plasma 
generated at 200 mTorr with various input microwave beam powers. 

The electron temperature was also calculated from optical emission spectroscopy 

measurements of light emitted from the decay of excited argon atoms using a CRM.  While this 

diagnostic method is non-invasive, the measurement is an averaged over the line-of-sight of the 

collection optics; the spatial resolution is not as good as that of an electrostatic probe.  In general, 

the electron temperature calculated from spectral measurements of Ar-N2 discharges was within 

error of the average electron temperature measured by triple probe; a comparison of these 

measurements is shown in Fig. 5.12.  Unfortunately, the same could not be said of measurements 

of the discharges containing oxygen as on average the measurements were off by approximately 2 

eV (approximately 1 eV for error bars to overlap).  It is unclear which of the two diagnostic 

methods is the more accurate when measuring the electron temperature in discharges containing 

oxygen; the probe measurements did not account for the presence of negative ions, and the CRM 

did not account for argon interactions with the molecular gases.  A comparison of the electron 

temperatures calculated by the CRM and measured by the triple probe in Ar-O2 and Ar-N2-O2 

discharges is shown in Fig. 5.13 and 5.14. 
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Figure 5.12: Average electron temperature of a stable Ar-N2 (6% N2) plasma at a) 200 mTorr and b) 150 mTorr measured by 
optical emission spectroscopy and floating triple probe methods. 

 

Figure 5.13: Average electron temperature of a stable Ar-O2 (2% O2) plasma at a) 200 mTorr and b) 150 mTorr measured by 
optical emission spectroscopy and floating triple probe methods. 

 

Figure 5.14: Average electron temperature of a stable Ar-N2-O2 (2% N2, 2% O2) plasma at a) 200 mTorr and b) 150 mTorr 
measured by optical emission spectroscopy and floating triple probe methods. 
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5.2.4 Scaling Parameter 

The E/Ng (V-cm2) ratio is the scaling parameter for electric fields in low temperature 

discharges.  In microwave discharges the effective E/Ng ratio is given by 

 
�

E
Ng
�
eff

=  
√2Erms

Ng
�

νc2

νc2 + ω2  , (5.3) 

where Erms is the root-mean-square (RMS) electric field of the microwave beam and ω is the 

angular frequency of the microwave beam.  An 11.8 kV/m RMS electric field was estimated near 

the microwave beam’s geometric focus from low power measurements in vacuum conditions 

scaled to an input power of 10 kW.  The RMS electric fields were also estimated for input powers 

as low at 4 kW; the estimated RMS electric fields ranged from 7.5 kV/m to 11.8 kV/m for input 

powers ranging from 4 kW to 10 kW.  The collision frequency was calculated from 

 νc =  𝑘𝑘𝑚𝑚Ng , (5.4) 

where km is the rate coefficient for momentum transfer.  The rate coefficient was approximated as 

3 × 10-8 cm3/s for elastic, electron-neutral collisions for electron energies in the range of 1 eV to 3 

eV.[71]  The neutral gas density (cm-3) was calculated from 

 
𝑁𝑁𝑔𝑔 =  2.687 × 1019 �

273𝑝𝑝𝑔𝑔
760𝑇𝑇𝑔𝑔

� , (5.5) 

where pg and Tg are the gas pressure and temperature, respectively.  For discharges containing 

nitrogen, the gas temperature was estimated from the 2-0 band of nitrogen’s first positive system; 

the gas temperature ranged between 350 K to 550 K for most of the tested conditions. 

 For Ar-N2 discharges the effective E/N ratio was estimated to be between 1.1 Td to 1.7 Td 

when using the RMS electric field measured near the geometric focus of the microwave beam; 

note that 1 Td = 10-17 V-cm2.  The average electron temperature and density increased as the E/N 

ratio increased for E/N values calculated at 200 mTorr.  At 150 mTorr the same trend was 
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observed, but the electron density was lower than those measured at 200 mTorr for similar E/N 

values; these trends are shown in Fig. 5.15.  This disagreement could be because the 

approximations assumed a constant electric field throughout the discharge, when in reality the 

electric field varied along the length of the discharge.  Furthermore, the approximations did not 

take into account changes in the size and location (relative to the beam’s geometric focus) of the 

discharge, which would affect the average electric field within the discharge.  Better agreement 

between the 200 mTorr and 150 mTorr results would require an increase and decrease in the E/N 

ratios estimated for the 200 mTorr and 150 mTorr tested conditions, respectively. 

 

Figure 5.15: Average electron a) temperature and b) density as a function of the effective E/N ratio for Ar-N2 (6% N2) discharges 
generated at the focus of CW microwave beam. 

5.3 GlobalKin Simulations 

GlobalKin, a zero-dimensional global kinetics model, was used to simulate discharges 

under similar conditions to those present in the AFRL’s experimental setup.  The global model has 

an internal Boltzmann’s equation solver that determines the electron energy distributions based on 

a set of initial conditions provided by the user; the frequency at which the Boltzmann’s equation 

is solved thereafter can be set by the user.  These solutions are then used to determine the rate 

coefficients of the reactions (from a look up table) necessary to solve the rate and energy balance 
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equations.  A more thorough description of the global model, including the rate and energy balance 

equations solved by the model, can be found in the studies of Lietz and Huang.[131], [132] 

Given that the global model is zero-dimensional, the spatial effects could not be simulated.  

However, by simulating inductively couple plasmas under similar operational conditions (gas 

pressure, composition, flow rate, and absorbed power) as those in the AFRL’s experimental setup, 

rough estimates of the densities and temperatures of the electrons, ions, and neutrals were obtained.  

The main challenge with the simulations was determining the proper input parameters for the 

simulations; gas pressure, composition, and flow rate were straightforward parameters, but the size 

of the discharge and the power absorbed require some consideration.  In GlobalKin, the size of the 

discharge is assumed to be the same as the size of the cylindrical discharge vessel, but discharges 

generated in the AFRL’s experimental setup do not occupy the entire volume of the vacuum 

chamber.  It was determined, from simulations conducted with various discharge vessel 

dimensions, that using the characteristic lengths (e.g., the diameter of the beam at its focus) of the 

microwave beam profile resulted in the most reasonable plasma parameters. 

5.3.1 Discharge Vessel Dimensions 

The diameter of a microwave beam near the beam’s geometric focus was approximated 

from the location at which the percent of the peak amplitude of the electric field component fell to 

approximately 22.4%.8  The amplitude of the electric field near the beam’s geometric focus was 

measured by Hoff et al.; however, they only measured down to where field drops to approximately 

30% of its peak amplitude, so a Gaussian curve was fit to the data to predict the location at which 

 
8 Note that there are different ways of estimating the diameter of the beam at its focus: some use the FWHM 

of the intensity profile, others use the locations at which the peak intensity falls to 1/e2 (approximately 13.5%).  In this 
investigation it was decided to use most of the beam’s intensity profile, so the beam diameter was defined by a 95% 
drop in the peak intensity, which translates to a 77.6% drop in the magnitude of the peak electric field; note that the 
intensity is proportional to the magnitude of the electric field squared. 
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the amplitude drops to 22.4%.[2]  CST Microwave Studio simulations of the RF electric field 

magnitudes at the beam’s geometric focus conducted by Hoff et al. predicted a slightly narrower 

beam profile than the one predicted from measurements, so the 25.6 cm beam diameter predicted 

from measurements was favored in this case and used in the GlobalKin simulations.  A comparison 

of the measured and predicted electric field profiles is shown in Fig. 5.16. 

 

Figure 5.16: RF electric field magnitudes at the beam’s geometric focus.  Data from Hoff et al. was used in the making of this 
figure.[2] 

The Rayleigh length is the distance from the focus at which the wavefront curvature is a 

maximum; this distance is defined by the location at which the beam radius increases by a factor 

of √2 relative to the radius at the beam’s focus.  Assuming a Gaussian beam profile, the Rayleigh 

length is given by 

 
𝑧𝑧𝑅𝑅 =

𝜋𝜋𝑤𝑤0
2

𝜆𝜆
  , (5.6) 

where w0 is the radius of the beam at its geometric focus, and λ is the wavelength of the microwave 

beam.  The confocal parameter (two times the Rayleigh length) of the microwave beam was taken 

as a reasonable length of the cylindrical discharge vessel in the simulations.  However, the confocal 

parameter was larger than the distance between the borosilicate windows in the experimental setup, 

so the actual length of the chamber was used instead in the simulations.  The length and radius of 
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the cylindrical discharge plasma boundaries were set to 130 cm and 12.8 cm, respectively, as an 

approximation to the average volume of the discharges generated in the experimental setup. 

5.3.2 Absorbed Power 

Estimates of the microwave power absorbed by the plasma were made by calculating the 

spatial change in power, 𝜉𝜉−2𝑘𝑘𝑖𝑖𝑒𝑒, where ki is the imaginary component of the wavenumber, k.  The 

dispersion relation of an electromagnetic wave traveling through a partially ionized, unmagnetized 

plasma is given by 

 
𝑘𝑘2 =  

1
c2
�ω2 −

ωp
2

1 − iνc ω⁄
� . (5.7) 

The plasma frequency was calculated from the triple probe electron density measurements and 

averaged over distances equal to one-tenth of the microwave wavelength; this distance was 

determined by the step size at which the numerical solutions converged.  The collision frequency 

was calculated from Eqn. 5.4 using neutral gas density values determined from experimental gas 

temperature measurements; note that the gas temperature measurements were made from the 2-0 

band of nitrogen’s first positive system, so for Ar-O2 discharges the gas temperature was assumed 

to be 400 ± 50 K. 

Once the attenuation of the electric field is calculated, the power absorbed by the discharge 

can be approximated by the time averaged Poynting vector relation 

 〈S〉 =
1
2
ε0cE02 , (5.8) 

where E0 is the peak electric field.  Here it was assumed that the defocusing effects of the discharge 

were negligible and that all power losses were to the discharge.  Initial electric field values were 

determined from electric field measurements performed by Hoff et al. for the beam in free space; 
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a 11.8 kV/m RMS electric field was calculated for a 10 kW microwave beam near the focus.[2]  

Note that the square of the RMS electric field is given by 

 Erms2 =
1
2

E02 , (5.9) 

which can directly be substituted into Eqn. 5.8 for quick scaling of the electric field with changes 

in power of the beam. 

5.3.3 Reacting Species 

 GlobalKin allows the user to select the species to be included in the simulation, which are 

then used to determine the reactions included in the simulation from an extensive database of 

reactions.  Simulations of Ar-N2 discharges took into consideration 19 reacting species and 233 

reactions; a list of the reacting species is provided in Table 5.1.  For Ar-O2 discharges, 24 species 

and 345 reactions were included in the simulations; a list of the reacting species is provided in 

Table 5.2.  Lastly, 37 species and 601 reactions were included in the simulations of Ar-N2-O2 

discharges; a list of the reacting species is provided in Table 5.3. 

Table 5.1: Species included in simulations of Ar-N2 discharges. 

 

State
Ground: Ar N2 N ─

Ar4s(1P1) Ar4s(3P0) Ar4s(3P1) Ar4s(3P2)
Ar(4p) Ar(4d) Ar2* N2(υ)

N2* N2** N* ─
e- N+ N2

+ Ar+

Ar2
+ ─ ─ ─

Excited:

Charged:

Species
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Table 5.2: Species included in simulations of Ar-O2 discharges. 

 

Table 5.3: Species included in simulations of Ar-N2-O2 discharges. 

 

5.3.4 Results 

In general, simulations of Ar-N2, Ar-O2, and Ar-N2-O2 discharges showed similar trends 

in the electron temperature and density as those observed in triple probe measurements when the 

molecular gas concentration was increased at fixed input power and pressure; an example of these 

trends from the simulations conducted are shown in Fig. 5.17.  There was also agreement in the 

trend of the changes in electron temperature as the gas pressure was varied; electron temperature 

increased as gas pressure increased.  However, there was disagreement in the trends of the electron 

density as the gas pressure was varied.  In the experiments, the electron density decreased as the 

State
Ground: Ar O2 O O3

Ar4s(1P1) Ar4s(3P0) Ar4s(3P1) Ar4s(3P2)
Ar(4p) Ar(4d) Ar2* O2(υ)

O2* O2*(1s) O* O(1s)

e- Ar+ Ar2
+ O2

+

O+ O2
─ O─ O3

─Charged:

Species

Excited:

State
Ar N2 N O2

O O3 N2O NO2

NO ─ ─ ─
Ar4s(1P1) Ar4s(3P0) Ar4s(3P1) Ar4s(3P2)

Ar(4p) Ar(4d) Ar2* N2(υ)
N2* N2** N* O2(υ)
O2* O2*(1s) O* O(1s)
e- Ar+ Ar2

+ N+

N2
+ O2

+ O+ O2
─

O─ O3
─ N2O

+ NO+

Species

Excited:

Charged:

Ground:
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gas pressure decreased, while in the simulations the electron density increased; simulation results 

of the electron temperature and density at different gas pressures are shown in Fig. 5.18.   

This disagreement could be due to the fact that the volume of the discharge vessel was kept 

constant in all the simulated conditions, while in the experiments the volume of the discharge 

increased as the pressure decreased; the decrease in the electron density would be as a result of a 

decrease in the absorbed power per unit volume (assuming the total absorbed power remained 

unchanged).  This was confirmed by simulations conducted for determining the dimensions of the 

discharge vessel, where the electron density decreased as the volume of the discharge vessel 

increased; results of simulations these simulations are shown in Fig. 5.19.  The electron density 

increased by approximately 6% for every 50 mTorr the gas pressure was decreased, which is 

relatively small compared to the 32% decrease in the electron density obtained from a small 

increase in the radius of the discharge vessel (12.8 cm to 15 cm).  Based on these results, it is 

reasonable to assume that a matching trend of the electron density could be obtained if the volume 

of the discharge was adjusted to account for expansion of the discharge that result from a decrease 

in the gas pressure. 

 

Figure 5.17: GlobalKin results of the a) electron temperature and b) density as a function of absorbed power.  The Ar-N2 discharge 
was simulated at 200 mTorr for various concentrations of nitrogen. 
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Figure 5.18: GlobalKin results of the a) electron temperature and b) density as a function of absorbed power.  The Ar-O2 (2% 
O2) discharges were simulated at 150, 175, and 200 mTorr. 

 

Figure 5.19: Electron densities predicted by GlobalKin simulations of Ar-N2 discharges at 200 mTorr.  The radius of the discharge 
vessel was the only parameter varied in this study. 

There was good agreement in the values of the electron temperature and density predicted 

by the simulations to those measured experimentally for Ar-N2 discharges.  GlobalKin simulations 

assume a homogeneous discharge that fills the volume of the discharge vessel, while the discharges 

produced in the AFRL’s experimental setup are inhomogeneous (gradients in the electron 

temperature and density) and do not fill the volume of the discharge vessel so they have plenty of 

room to expand.  This leads to the question of whether the simulation results are a better 

representation of the peak or average measured plasma parameters.  The average of the plasma 

parameters was taken over six wavelengths (38.4 cm) centered at the peak density; not all probe 
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measurements were taken over the same length, so to keep consistency between averages a fixed 

length was determined.  From Figs. 5.20 and 5.21, it can be seen that the measured peak electron 

temperature closely aligned with the simulated values and that on average its values were slightly 

closer to the predicted values than the average electron temperature measured.  On the other hand, 

the measured average electron density values are closer to the predicted values than the measured 

peak electron density values.   

Simulations conducted to determine the discharge vessel dimensions, showed that the 

electron temperature of the discharge decreased as the discharge vessel increased in size (at fixed 

absorbed power); the predicted electron temperatures of this study are shown in Fig. 5.22.  This 

suggests that a slight increase in the volume of the discharge vessel for each simulated condition 

would improve the agreement between experimental and simulated results.  Technically, the same 

could be achieved in the other direction, but if one recalls from Sect. 4.3, the discharge increased 

in size as the power of the microwave beam was increased, so increasing the volume would be a 

more reasonable approach to take.  Furthermore, the difference between the peak electron density 

values and the predicted values increased as the absorbed power increased, which meant that the 

volume would have to decrease more at higher absorbed powers than at lower; this would go 

against the behavior observed in the experiments. 



 131 

 

Figure 5.20: GlobalKin and triple probe results of the a) peak electron temperature and b) density as a function of absorbed 
power.  The Ar-N2 (6% N2) discharges were simulated at 200 mTorr. 

 

Figure 5.21: GlobalKin and triple probe results of the a) average electron temperature and b) density as a function of absorbed 
power.  The Ar-N2 (6% N2) discharges were simulated at 200 mTorr. 

 

Figure 5.22: Electron temperatures predicted by GlobalKin simulations of Ar-N2 discharges at 200 mTorr.  The radius of the 
discharge vessel was the only parameter varied in this study. 
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Simulations of Ar-O2 and Ar-N2-O2 discharges were also conducted for all tested 

conditions, but the agreement was not as good as in Ar-N2 discharges.  The disagreement between 

triple probe and simulated results was evident in the electron temperature where the average 

difference is in the order of 160%.  The electron temperatures predicted by the simulations are 

much closer to the electron temperatures obtained from the optical emission spectroscopy 

measurements than the probe measurements, which suggests the triple probe overestimated the 

electron temperature.  It is unclear to what extent this overestimation affected the electron density 

other than through the error in the electron temperature, especially since there are no other 

experimental measurements of the electron density to compare the results to.  A comparison with 

simulations would be difficult to make given that the approximation of the absorbed power 

depends on the electron density, so any errors in the electron density measurements would also 

carry on to the approximation of the absorbed power.  Examples of the typical comparison of 

experimental and simulated plasma parameters in Ar-O2 and Ar-N2-O2 discharges are shown in 

Figs. 5.23 and 5.24. 

 

Figure 5.23: GlobalKin and triple probe results of the a) average electron temperature and b) density as a function of absorbed 
power.  The Ar-O2 (4% O2) discharges were simulated at 200 mTorr. 
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Figure 5.24: GlobalKin and triple probe results of the a) average electron temperature and b) density as a function of absorbed 
power.  The Ar-N2-O2 (2% N2, 2% O2) discharges were simulated at 200 mTorr. 

5.4 Closing Comments 

Striated discharges have been studied for over a century and are still not fully understood 

due to the diverse conditions and patterns in which they have been observed.  While there are 

similarities in the behavior and properties exhibited by striated discharges, the source of the 

instability can vary between type of discharge system.  While the source(s) of the striated 

discharges observed in the AFRL’s experimental setup have still not been determined, the results 

from studies conducted to data suggest that standing waves within the discharge might be the cause 

of the striations in the discharge.  Results that support that hypothesis so far include: 

1. Distances between the striations measured through images captured by the fast frame 

camera are approximately equal to half the wavelength of the microwave beam. 

2. Distances between the periodic spatial oscillations of the electron temperature and density 

are approximately half the wavelength of the microwave beam near the center of the 

discharge (where pattern #2 is observed). 

3. Two-dimensional and one-dimensional simulations of the discharge (no chamber) 

conducted by Reid showed a periodic spatial variations in the electron density and electric 

field that resembled a standing wave pattern.[133] 
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Additional experiments are planned for the future that should provide a better insight into the 

source of the striations. 

Experimental measurements of the electron temperature and density in Ar-N2 discharges 

were in good agreement with values predicted by GlobalKin simulations.  Unfortunately, the same 

could not be said of the Ar-O2 and Ar-N2-O2 discharges where results suggested the presence of 

oxygen in the discharge affected the triple probe measurements, which appeared to overestimate 

the electron temperatures.  While there was disagreement in the values of the electron temperature 

and densities in discharges containing oxygen, the trends of the measured plasma parameters were 

the same throughout all three gas mixtures.  Furthermore, it was noted that some of the 

disagreements observed between simulations and experiments could be fixed by providing more 

realistic inputs to the simulation, like adjusting the size of the discharge vessel for every simulated 

condition.  By matching simulations results to experimental results there is the possibility that the 

volume of the discharge could be approximated more accurately, which could provide some insight 

into the parameters (other than the beam profile) that influence the size of discharges generated at 

the focus of microwave beams.  
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Chapter VI  

Concluding Remarks 

6.1 Conclusion 

There are limited studies reported in the literature of CW microwave discharges generated 

in laboratory conditions.  This dissertation research expanded on the investigations of Hoff et al. 

providing new insights into the behavior and properties of discharges generated at the focus of CW 

microwave beams.[2]  The effects of gas pressure, gas composition, and power of the microwave 

beam on the behavior and characteristics of the discharge were the focus of this investigation.  It 

was determined that the stability of discharges generated in the experimental setup could be 

controlled by adjusting the gas composition and power of the microwave beam; the combinations 

of the control parameters that yield stables discharges in the AFRL’s experimental setup are 

provided in this investigation.  While the exact cause of the instabilities observed is not fully 

understood, triple probe results presented in this investigation suggest that a multi-step process 

might be responsible for the transitions between stable and quasi-stable discharges; thermal 

instabilities are currently being considered as a possible initial source of the quasi-stable 

discharges.[71], [94], [95] 

The studies of striated stable discharges showed that there were similarities between the 

striations observed in microwave discharges and the striations reported in DC and RF glow 

discharges.  Among the similarities was the anticorrelation between the electron temperatures and 

densities measured along the length of the striated pattern observed near the center of the discharge.  
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The main differences were the fact that the striations in the AFRL’s experimental setup formed 

along the direction of the microwave beam propagation vector, while those reported in DC and RF 

glow discharges formed along the direction of the electric field.  Another noticeable difference 

was that up to three different striation patterns were observed simultaneously in microwave 

discharges compared to the one periodic pattern commonly reported in DC and RF glow 

discharges.  While the exact physics of striation formation is not fully understood, a combination 

of the results presented in this investigation and results from the studies of Reid, suggest that the 

striation patterns observed in the AFRL’s experimental setup could be caused by standing waves 

that develop within the discharge boundaries.[133]  Additional experiments are planned that 

should provide an answer to whether or not striations in the discharges observed in this 

investigation are caused by standing waves. 

Characterization of the stable discharges resulted in good agreement between experimental 

(probe and spectroscopy) and simulated results in Ar-N2 discharges; however, the same could not 

be said of the Ar-O2 and Ar-N2-O2 discharges.  Results from discharges containing oxygen suggest 

that the presence of oxygen in the discharge affected the triple probe measurements.  It is unclear 

what precisely in the oxygen was causing the overestimation of the electron temperature, given 

that the concentration of negative oxygen ions (O─, O2
─, and O3

─) was expected to be too low in 

the discharges to have any significant effect on the probe measurements.  The expected low 

concentration of negative oxygen ions was confirmed by GlobalKin simulations, which predicted 

negative oxygen ions only make up approximately 5% of the negative species population in 

discharges formed from Ar-O2 gas mixtures containing 8% molecular oxygen; electronegative 

plasmas usually have negative ion densities on the same order of magnitude or higher than the 

electron density.  While the presence of oxygen caused significant error in the measured values of 
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the electron temperature and density, the measured plasma parameters followed the same trends 

as Ar-N2 discharges when exposed to changes in the gas pressure, concentration of the molecular 

gas, and power of the microwave beam. 

In general, the observed trends in the electron temperature and density included: 

1. Electron temperature and density increased as the power of the microwave beam 

increased. 

2. Electron temperature and density decreased as the concentration of the molecular gases 

increased in the discharge. 

3. Electron temperature decreased as the gas pressure increased, while the electron density 

increased. 

All but one of these trends were also observed in the GlobalKin simulations.  This discrepancy 

could be attributed to the fact that the volume of the discharge vessel was kept constant for all 

simulated conditions.  While GlobalKin did not take the effects of electromagnetic waves have in 

a discharge (e.g., microwave reflections, and spatial variations of plasma parameter) into 

consideration, the predicted electron temperatures and densities in Ar-N2 discharges were 

remarkably close to the average values measured by the triple probe.  Furthermore, the electron 

temperatures predicted by GlobalKin in discharges containing oxygen were within error of those 

calculated from optical emission spectroscopy measurements, suggesting that the electron 

densities predicted by the model are likely to be within a small percent from the real values as 

well. 

6.2 Future Work 

There is still a lot to learn from the CW microwave-driven discharges generated at the 

AFRL, especially from quasi-stable discharges.  There are plans to make improvements to the 
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plasma diagnostic systems and methods in order to characterize the ionization fronts observed in 

quasi-stable discharges.  Optical emission spectroscopy will be used to measure the electron 

temperature and the gas temperature (in discharges containing nitrogen) of the ionization front as 

it passes over the collection optics.  Spectral measurements will need to be made at various 

locations in order to track how the plasma temperatures evolve as the ionization front propagates 

upstream of the microwave beam’s geometric focus.  While non-invasive diagnostic methods are 

preferred when characterizing quasi-stable discharges, there are plans to use an improved triple 

probe system as well. 

The improved triple probe system will be designed to reduce its effects on the discharge 

and microwave beam; its success at achieving this will be evaluated based on its ability to take 

measurements in the same conditions as the spectroscopy system.  If successful, all the 

measurements conducted for this investigation will be retaken to assess the extent of the 

disturbances from the probe used in this work.  Furthermore, the improved probe would allow for 

studies on the evolution of electron temperature and density of quasi-stable discharges to be 

conducted along the path of the ionization fronts produced; this could provide some insight into 

the source of the rapid increase in electron density in quasi-stable discharges. 

In regard to discharge stability, experiments to measure the relative change in the electric 

field strength along the length of the discharge are planned for the future.  A coaxial RF probe 

(also known as a Lecher wire probe) was constructed for this experiment based on a design 

proposed by Ellis to measure electromagnetic radiation in gas discharges.[134]  Results from these 

experiments will provide the last piece of information needed to determine the source of the 

striations observed in microwave discharges generated at the AFRL. 
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Additional GlobalKin simulations will also be conducted in the future to study the changes 

in the size of stable discharges as the gas pressure, the concentration of the molecular gases and 

power of the microwave beam are varied.  The approach that will be taken in this study is to vary 

the volume of the simulated discharge vessel until the predicted plasma parameters match the 

average values measured by the triple probe; this should provide some insight into how much the 

discharge is changing in size as the control parameters are varied.  Something that would help 

improve the accuracy of the comparison would be arrays of detectors to measure the transmitted 

and reflected power directly instead of relying on probe measurements for approximations of the 

absorbed power.  Microwave interferometry would be another way of improving the accuracy of 

the comparison as it would allow measurements of electron density to be taken non-invasively; the 

main challenge with this method is designing a system with high enough resolution capable of 

resolving the periodic variations in the density at a reasonable cost. 

There are plans to add a second translation stage to the experimental setup, which would 

expand the type of experiments one can perform in the setup.  An example of an experiment that 

could be performed with a second translation stage is a study to determine the distance from the 

discharge a wall can be before it starts affecting the characteristics of the discharge.  This could be 

done by attaching a piece of material (conductor or dielectric) to the secondary stage and 

measuring changes in the discharge as the surface moves closer to the discharge; measurements 

could be done with invasive and non-invasive methods for comparison purposes.  Another 

experiment that could be performed with the addition of a secondary linear translation stage is a 

three-dimensional mapping of the discharge assuming the discharge is radially symmetrical.  This 

would provide a more accurate and complete characterization of the discharge and how it changes 

as the control parameters are varied. 
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Appendix A 

Triple Probe Data Processing MATLAB Scripts 

MATLAB scrip used for analysis of triple probe data.  Note that the code uses a function 

called intersections.m written by Douglas M. Schwarz that can be downloaded from the MATLAB 

file exchange.  Other than the aforementioned function, this code calls two other functions written 

by the author; these are provided at the end of the main script. 

MAIN SCRIPT: 

% Calculates the electron temperature and density from collected TLP data. 
% Outputs cell containing the electron temperatures and densities at 
% all measured locations for every input file. 
% Input MAT-files contain raw data in [m x 3] arrays, where the first 
% column contains the time stamp, the second column the measured Vd 
% (voltage potential between the positive and floating probe), and the 
% third column the voltage drop across the load resistor between the 
% positive and negative probes. 
% Input MAT-files must be named as "Test_X.mat" where "X" is a number 
% between 1 and infinity (e.g. Test_1.mat, Test_2.mat, Test_3.mat, etc). 
  
%------------------------------------------------------------------------ 
% Author: Adrian Lopez 
% Email: alopz@umich.edu 
%------------------------------------------------------------------------ 
  
%================================================================== 
%--------------------------- Required Inputs ---------------------------- 
%=================================================================== 
  
% File range of interest - this are the "X" values of the files name 
fstart = 1;       % Starting file number 
fend = 8;         % Ending file number 
  
% Gas Composition Information 
N2_p = 0.02;      % Percent of N2 in gas mixture 
O2_p = 0.00;      % Percent of O2 in gas mixture 
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% Probe Information 
RL = 96.2;        % Load Resistor [Ohms] 
L = 8.0;             % Probe length [mm] 
r = 0.508;          % Probe radius [mm] 
  
% DAQ noise 
Vnoise = 0.0001;    % Average DAQ noise across load resistor channel [V] 
  
% Translation Stage Information 
d = 15;             % Max probe location downstream from geometric focus [cm] 
v = 0.265;        % Translation stage speed [cm/s] 
  
%=================================================================== 
%----------------------------- End of Inputs ---------------------------- 
%=================================================================== 
  
Data_Folder = uigetdir(path,'Select folder containing the data MAT-files'); 
if Data_Folder == 0 
    clearvars 
    return 
end 
tic 
  
% Mass of particles 
Ar = 39.948;           % Mass of Ar in amu 
N2 = 28.013;          % Mass of N2 in amu 
O2 = 31.998;          % Mass of O2 in amu 
me = 9.109e-31;     % Mass of electron in kg 
  
% Variables calculated from initial inputs 
Ar_p = 1-N2_p-O2_p;                               % Percent of Ar in gas mixture 
M = Ar_p*Ar+N2_p*N2+O2_p*O2;        % Effective gas mass in amu 
S = 2*pi*r*L+pi*r^2;                                % Surface area [mm2] - cylindrical probe 
k = 0.657*(1.67e-27*M/me)^0.5;              % Constant used in (27) - Sin-Li Chen 1971 
nfiles = fend-fstart+1;                                 % Total # of files to analyze 
  
% Variables with set initial values 
Rp = 1;                       % Sets initial probe radius to Debye length ratio 
jj = 1;                          % Sets initial index value  
R0 = cell(1,nfiles);     % Creates cell for storing results 
  
% Solves the correction factor for rp <= 4.6 - value is constant 
eta0 = TLP_Correction_Factor(M,Rp); 
  
% Outputs the linear fit values of Te as a function of Vd for rp <= 4.6 
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P0 = TLP_Corrected_Te(eta0); 
  
% Main for-loop that loads MAT-files and analyze them one at a time 
for j = fstart:fend 
    disp(j) 
  
    % Loads MAT-files 
    filename = ['Test_',num2str(j),'.mat']; 
    data = load(fullfile(Data_Folder,filename)); 
    data = cell2mat(struct2cell(data)); 
     
    % Assigns data column vectors from MAT-file to new variables 
    tstamp = data(:,1);  % Time stamp data 
    Vd = data(:,2);        % Potential between positive and floating probes 
    Vdrop = data(:,3);   % Measured voltage drop across load resistor 
     
    % Data corrections/conversions 
    VdropC = Vdrop-Vnoise;      % Subtracts average DAQ noise from Vdrop 
    dL = data(:,1).*v-d;                % Converts time stamps to distance 
     
    % Smooths out data through a moving mean 
    Vd = movmean(Vd,1000); 
    VdropC = movmean(VdropC,1000); 
     
    % Calculates the electron temperature and density without correction 
    % factor - Sin-Li Chen 1965 
    Te = Vd./log(2);                                                        % Electron temperature [eV] 
    I = 1e6.*VdropC./RL;                                               % Current through load resistor [µA] 
    f = 1.05e9.*Te.^(-0.5).*(exp(log(2))-1).^(-1);          % Intermediate calculation 
    ne = M^0.5.*I.*f./S;                                                  % Electron density [cm-3] 
     
    % Calculates probe radius to Debye length ratio for correction factor 
    D_L = 7434.*(Te./ne).^0.5;     % Debye length [mm] 
    rp = round(r./D_L,1);               % Probe radius to Debye length ratio 
     
    % Downsample data to reduce runtime of code - no data features are lost 
    Vd = downsample(Vd,3); 
    I = downsample(I,3); 
    rp = downsample(rp,3); 
    dL = downsample(dL,3); 
    Te = downsample(Te,3); 
     
    % Corrects the electron temperature and density assuming rp <= 4.6 at 
    % all measured locations - Sin-Li Chen 1971 
    TeC = polyval(P0,Vd);                                                    % Corrected electron temperature [eV] 
    lwf = lambertw(2*exp(2/eta0+1)/(eta0*k^2));                 % Lamber-W Function 
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    Vf = (2+eta0-eta0.*lwf)./(2*eta0);             % Intermediate calculations 
    df = exp(Vd./TeC)-(1-eta0.*Vd./TeC).^0.5;                     
    f =  1.05e9.*TeC.^(-0.5).*(1-eta0.*Vf+eta0/2).^0.5./df;  
    neC = M^0.5.*I.*f./S;                                                       % Corrected ne [cm-3] 
     
    % Additional corrections for results where rp > 4.6 - Sin-Li Chen 1971 
    ndx = rp>4.6;             % Creates logical array based on rp > 4.6 
    if max(ndx)                % Makes additional corrections if ndx is "True" 
        subRp = rp(ndx);    % Creates array with rp values where ndx is "True" 
        subVd = Vd(ndx);  % Creates array with Vd values where ndx is "True" 
        subI = I(ndx);         % Creates array with I values where ndx is "True" 
         
        % Creates arrays to store corrected Te and ne values 
        subne = zeros(1,length(subRp)); 
        subTe = zeros(1,length(subRp)); 
  
        % Solves for correction factor corresponding to subRp(1) 
        eta1 = TLP_Correction_Factor(M,subRp(1)); 
         
        % Outputs the linear fit values of Te(Vd) for subRp(1) 
        P1 = TLP_Corrected_Te(eta1); 
         
        % Initial value to conditional statement 
        rp_chk = subRp(1); 
         
        % Determines # of iterations to be performed 
        m = length(subRp); 
  
        % Loop for additional corrections corresponding to rp > 4.6   
        for kk = 1:m 
            disp(kk) 
  
            % Skips recalculating eta1 and P1 if subRp does not change 
            if rp_chk == subRp(kk) 
                subTe(kk) = polyval(P1,subVd(kk));  % Corrected Te [eV] 
                lwf = lambertw(2*exp(2/eta1+1)/(eta1*k^2)); 
                Vf = (2+eta1-eta1*lwf)/(2*eta1); 
                df = subTe(kk).^(0.5).*(exp(subVd(kk)./subTe(kk))... 
                     -(1-eta1.*subVd(kk)./subTe(kk)).^0.5); 
                f =  1.05e9*(1-eta1.*Vf+eta1/2)^0.5./df; 
                subne(kk) = M^0.5.*subI(kk).*f./S;   % Corrected ne [cm-3] 
  
            % Recalculates eta1 and P1 for new subRp value 
            else 
                eta1 = TLP_Correction_Factor(M,subRp(kk)); 
                P1 = TLP_Corrected_Te(eta1); 
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                subTe(kk) = polyval(P1,subVd(kk));                           % Corrected Te [eV]         
                lwf = lambertw(2*exp(2/eta1+1)/(k^2*eta1)); 
                Vf = (2+eta1-eta1.*lwf)./(2*eta1); 
                df = subTe(kk).^(0.5).*(exp(subVd(kk)./subTe(kk))... 
                    -(1-eta1.*subVd(kk)./subTe(kk)).^0.5); 
                f =  1.05e9.*(1-eta1.*Vf+eta1/2).^0.5./df; 
                subne(kk) = M^0.5.*subI(kk).*f./S;                             % Corrected ne [cm-3] 
            end 
  
            rp_chk = subRp(kk); 
        end 
         
        % Updates corrected values in main results vector 
        TeC(ndx) = subTe; 
        neC(ndx) = subne; 
    end 
  
    % Flips distance column to account for the direction the probe is moving 
    if mod(j,2) == 0        % RL - Direction 
        % Do nothing 
    else 
        dL = flipud(dL);   % LR - Direction 
    end 
     
    % Stores all results in cell 
    R0{jj} = [dL,TeC,neC]; 
     
    jj = jj+1; 
end  
toc 
clearvars -except R0 
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Function 1 of 2: 
 
% Correction factor, eta, for triple probe measurements 
function eta = TLP_Correction_Factor(M,Rp) 
  
me = 9.109e-31;  % mass of electron in kg 
  
k = 0.65*(1.67e-27*M/me)^0.5; 
k1 = 0.73*(1.67e-27*M/me)^0.5; 
  
% Ion sheath radius to probe radius ratio 
q = [1 1.01 1.02 1.04 1.06 1.08 1.1 1.15 1.2 1.3 1.4 1.5 1.6 1.7 1.8... 
    1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 3.2 3.4 3.6 3.8 4]; 
  
% Values for corresponding q - Langmuir (1923) 
B = [0 0.0001 0.0004 0.00159 0.00356 0.00630 0.00980 0.02186 0.03849 ... 
    0.08504 0.14856 0.2282 0.3233 0.4332 0.5572 0.6947 0.8454 1.0086 ... 
    1.1840 1.3712 1.5697 1.7792 1.9995 2.2301 2.4708 2.7214 2.9814 ... 
    3.5293 4.1126 4.7298 5.3795 6.0601]; 
  
% Fit polynomial to B^2 for 1 < q < 4.1  
p = polyfit(q',B',8);  
  
% New table of values for q and B^2 
q1 = (1:0.001:2)'; 
q1_2 = q1.^2; 
  
B1 = polyval(p,q1); 
B1 = abs(B1); 
  
if Rp < 4.7 
    % For rp < 4.7, eta is apprx. constant 
    eta = 1/(lambertw(2*k1^2)); 
  
else 
    % For rp >=4.7, eta changes exponentially 
    y = (0.97*Rp^2.*B1.*q1).^(2/3)+0.5; 
  
    yf = (0.5:0.01:10)'; 
    qf = k./exp(yf); 
    qf_2 = qf.^2; 
  
    [zx0,zy0] = intersections(y,q1_2,yf,qf_2,false); 
  
    xf = (0:0.1:20)'; 
    y1 = zx0+0.5; 
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    y1 = y1.*ones(size(xf)); 
    y2 = zx0-0.5; 
    y2 = y2.*ones(size(xf)); 
  
    [~, zy1] = intersections(y,q1_2,y1,xf,false); 
    [~, zy2] = intersections(y,q1_2,y2,xf,false); 
  
    eta = (zy1-zy2)/zy0; 
end 
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Function 2 of 2: 
 
% Calculates the Te and ne with correction factor 
function P = TLP_Corrected_Te(eta)  
  
T_min = 0.5; 
T_max = 4; 
T = (T_min:0.01:T_max).'; 
  
Vd3 = 37.20; 
Vd2_min = 1; 
Vd2_max = 2; 
  
Vd2 = (Vd2_min:0.01:Vd2_max).'; 
[m,~] = size(Vd2); 
TeC = ones(size(Vd2)); 
  
  
for j = 1:m 
LS = exp(-Vd2(j,1)./T).*(sqrt(1-eta.*Vd2(j,1)./T)... 
    +sqrt(1+eta.*(Vd3-Vd2(j,1))./T)); 
RS = ones(size(T)); 
  
[T1,~] = intersections(T,LS,T,RS,false); 
  
TeC(j,1) = T1; 
  
end 
  
P = polyfit(Vd2,TeC,1); 
  
clearvars -except P 
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Appendix B 

Modifications to Biloiu’s Model 

Modified version of the N2Spectra.m script used in Biloiu’s model. 

% This code is written for the paper  
% 'Gas Temperature Determination from fits of the 0-0,1-0, and 2-0 
% bands of the first positive system of nitrogen' of C.Biloiu et al 
% by X. Sun (xsun@mix.wvu.edu), Mar. 2006 
  
%============================================== 
%----------------------------- Modifications ------------------------------ 
%============================================== 
% Modified by: Adrian Lopez, May 2019 
% E-mail:     alopz@umich.edu 
 
% - Removes Ar I lines from 2-0 band and replace it with numerically 
%   generated data from input guesses 
%    - Use the 771.3 and 773.0 nm lines as reference for fitted guess 
% - Changed lsqcurvefit to nlinfit 
%    - Needed for error bar calculations of Tr 
% - Outputs the 95% confidence interval for the Tr parameter 
% - Removed unnecessary commands 
  
%============================================ 
%-------------------------------------------------------------------------- 
%============================================ 
  
function [coef,data,cinterval]=N2Spectra(band,data_exist, fitting,... 
                        parameters,J_ranges,coef_init,lambda, real_intens) 
  
global param head_num J_stsp 
param = parameters;  
head_num = band;  
J_stsp = J_ranges; 
  
% Create a zero array with same size as real_intens 
fitting_intens = zeros(size(real_intens)); 
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% coef: rotation temperature,background level, wvlngth shift, strength 
coef = coef_init;                       % Initial guess 
coef(4) = 1500; 
strength = coef(4); 
cal_intens = Trans_XTo0(coef, lambda);  % Theoretical calculation 
  
% Find the peak value of band head 
if (head_num == 0) 
    bh_wvlngth = 1051.00; 
end 
if (head_num == 1) 
    bh_wvlngth = 891.24; 
end 
if (head_num == 2) 
    bh_wvlngth = 775.32; 
end 
[lngth, ~] = size(lambda); 
delta_lambda = (lambda(lngth)-lambda(1))/lngth; 
index_pos = 1; 
while (lambda(index_pos)<bh_wvlngth) 
    index_pos = index_pos+1; 
end 
  
% Normalize intensities to the peak value of the band head 
low_range = index_pos - fix(0.5/delta_lambda); 
up_range = index_pos + fix(0.5/delta_lambda); 
peak_bandhead = max(real_intens(low_range:up_range)); 
norm_real_intens = real_intens *100.0 / peak_bandhead; 
peak_bandhead2 = max(cal_intens(low_range:up_range)); 
norm_cal_intens = cal_intens *100.0 / peak_bandhead2; 
  
%=================================================================== 
%----------------------------------------------- Removes Ar I Peaks ---------------------------------------- 
%=================================================================== 
[~,n0] = max(norm_real_intens); 
ndx_min = n0-30; 
ndx_max = n0+28; 
norm_real_intens(ndx_min:ndx_max) = norm_cal_intens(ndx_min:ndx_max); 
%=================================================================== 
%---------------------------------------------- End of Modification ----------------------------------------- 
%=================================================================== 
cinterval = 0; 
% Calculates best fit spectra for input spectra 
if (fitting == 1) 
    % guess the strength 
    coef(4) = strength*100.0/peak_bandhead2; 
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%=================================================================== 
%-------------------------- Modified Fit and Confidence Interval Calculation -------------------------- 
%=================================================================== 
    % Added options for increased accuracy of the fit 
    opts = statset('nlinfit'); 
    opts.MaxIter = 1000; 
    opts.TolFun = 1e-10; 
    opts.TolX = 1e-10; 
     
    [coef,residual,~,covP] = nlinfit(lambda,norm_real_intens,... 
                               @Trans_XTo0, coef,opts); 
    fitting_intens = Trans_XTo0(coef, lambda); 
    cinterval = nlparci(coef,residual,'covar',covP); 
end 
%=================================================================== 
%---------------------------------------------- End of Modification ----------------------------------------- 
%=================================================================== 
 
% plotting the original data 
    plot(lambda, norm_cal_intens, 'b'); 
    hold on 
  
if (data_exist == 1) 
    plot(lambda,norm_real_intens, 'r'); 
    hold on 
end 
  
if (fitting == 1) 
    plot(lambda,fitting_intens, 'k'); 
    sse = sum(residual.^2);  
    sst = sum((norm_real_intens-mean(norm_real_intens)).^2); 
    r_square = 1-sse/sst; 
    strcat('R_Square is :', num2str(r_square)) 
end 
hold off 
 
%save 
data = [lambda'; norm_real_intens'; fitting_intens']; 
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