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ABSTRACT

This thesis shows that the coordinate ring of the open Richardson variety ℛ𝑢,𝑤

in type A has the structure of an upper cluster algebra. We begin by deriving in-

equalities related to northwest rank conditions on a general collection of columns

of a matrix in 𝐵´𝑣𝐵`. In the special case where w is the unipeak expression for

𝑤, the chamber minors in Marsh and Rietsch’s generalized chamber ansatz for the

Deodhar torus 𝒟u`,w factor into products of minors Δ
p𝑅𝑗

p𝐶𝑗

, which turn out to be

flag-invariant regular functions. We show that each minor in this change of basis

is either globally nonvanishing on ℛ𝑢,𝑤 or vanishes on precisely one boundary di-

visor. Using augmenting paths in a weighted, oriented bridge diagram, we show

that there is an upper cluster algebra structure on ℛ𝑢,𝑤 with initial cluster given

by the minors Δ
p𝑅𝑗

p𝐶𝑗

and exchange relations induced by the chamber ansatz quiver

defined by Berenstein, Fomin and Zelevinsky.

ix



CHAPTER I

Introduction

The purpose of this thesis is to show that for every open Richardson variety

ℛ𝑢,𝑤 in type A, the coordinate ring Crℛ𝑢,𝑤s has the structure of an upper cluster

algebra.

Fomin and Zelevinsky introduced cluster algebras after their classification of

minimal total positivity tests for double Bruhat cells revealed a beautiful, fractal-

like pattern formed by connecting pairs of total positivity tests which differ by

exchanging a single element.[10] Pairs of elements that are exchanged satisfy bi-

nomial relations of the form 𝑋𝑋 1 “ℳ1`ℳ2, where ℳ1 and ℳ2 are products of

the elements common to both positivity tests.

Total positivity was first studied in the context of matrices whose minors are

all nonnegative real numbers, motivated by applications in data interpolation[20]

and modeling mechanical vibrations.[15] More recent applications of total posi-

tivity include the study of Markov structures in statistics[8] and Ising models of

ferromagnetism in physics.[25]

Gasca and Peña proved that in order to test a matrix for total positivity, it suffices

to check the collection of 𝑛2 minors of the form Δr1,ℎs

r𝑐`1,𝑐`ℎs or Δr𝑟`1,𝑟`ℎs

r1,ℎs , where the

row indices and column indices are given by intervals of consecutive integers and

1



2

each minor contains either the first row or the first column.[16]

On the torus where the minors Δ𝑘 in this positivity test are nonvanishing, de-

terminantal identities of the form 𝑋𝑌 “ 𝐴𝐷 ` 𝐵𝐶 give expansions for the re-

maining matrix minors as Laurent polynomials in the variables Δ𝑘 with positive

coefficients.

Fomin and Zelevinsky characterized minimal total positivity tests for totally

nonnegative invertible matrices stratified by the double Bruhat cell decomposi-

tion in [9]. In 2000, they introduced cluster algebras to formalize the study of total

positivity in algebraic varieties.[10] A cluster algebra is generated by the variables

appearing in a seed pattern. A seed Σ consists of an 𝑛-element cluster (generaliz-

ing a minimal total positivity test), together with a quiver or skew-symmetrizable

matrix encoding subtraction-free binomial exchange relations. Seed mutation is an

involutive operation giving a new seed whose cluster differs from the initial cluster

by a exchanging a single element according to the exchange relations; seeds Σ and

Σ1 are called mutation-equivalent if there is a sequence of mutation operations tak-

ing Σ to Σ1. Fomin and Zelevinsky proved that if Σ and Σ1 are mutation-equivalent

seeds, then the cluster variables of Σ1 are Laurent polynomials in the cluster vari-

ables of the seed Σ. They conjectured that the coefficients in this expansion are

positive; this was later proved by Lee and Schiffler for cluster algebras with skew-

symmetric exchange relations in [24], and by Gross, Hacking, Keel and Kontsevich

for skew-symmetrizable cluster algebras in [18].

Applications of cluster algebras include the study of scattering amplitudes (see

[1]).

In [3], Berenstein, Fomin and Zelevinsky introduced the upper cluster algebra

𝒜pΣq generated by a seed Σ, defined as of the intersection of the Laurent rings



3

in the cluster variables of all seeds mutation equivalent to Σ, and containing the

cluster algebra 𝒜pΣq as a subalgebra. They proved that coordinate rings of double

Bruhat cells have an upper cluster algebra structure. It was later shown by Good-

earl and Yakimov that the upper cluster algebra of a double Bruhat cell coincides

with the cluster algebra in [17].

Our primary goal is to show that there is an upper cluster algebra structure

on open Richardson varieties ℛ𝑢,𝑤 in type A, where the cluster variables in the

initial seed come from a minimal total positivity test for ℛ𝑢,𝑤. It is an open ques-

tion whether the cluster algebra generated by the associated seed pattern is always

equal to the upper cluster algebra.

Lusztig defined total positivity for flags in various Lie types in [26] and con-

jectured a decomposition of the totally nonnegative part of the flag variety into

algebraic cells. In [29], Rietsch proved this conjecture and showed that each cell in

the decomposition is contained in an open Richardson variety ℛ𝑢,𝑤 indexed by a

pair of Weyl group elements 𝑢 and 𝑤.

Given a matrix 𝑔 P 𝐺 “ 𝑆𝐿𝑛pCq, the spans of the first 𝑖 columns of 𝑔 determine

a flag 𝐹 “ 𝐹1 Ă 𝐹2 Ă ¨ ¨ ¨ Ă 𝐹𝑛 where dimp𝐹𝑖q “ 𝑖. Matrices 𝑔1 and 𝑔2 determine

the same flag if and only if 𝑔2 “ 𝑔1𝑏 where 𝑏 is an element of the upper triangular

subgroup 𝐵` Ă 𝑆𝐿𝑛pCq.

Let Δ𝑅
𝐶p𝑀q denote the minor of a matrix 𝑀 with row set 𝑅 and column set 𝐶.

Right multiplication by elements of 𝐵` preserves ratios of left-justified minors: if

𝑔2 “ 𝑔1𝑏, there are nonzero scalars 𝜆1, ¨ ¨ ¨ , 𝜆𝑛´1 so that Δ𝑅
r1,ℎsp𝑔2q “ 𝜆ℎΔ

𝑅
r1,ℎsp𝑔1q.

In particular, for each ℎ, the row sets 𝑅 for which the minor Δ𝑅
r1,ℎs is nonzero is

independent of the flag representative 𝑔. For each flag 𝐹 , there are uniquely deter-

mined permutations 𝑢,𝑤 P S𝑛 so that 𝑢 pr1, ℎsq is the minimal row set withΔ𝑅
r1,ℎs ‰
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0 and 𝑤 pr1, ℎsq is the maximal row set with Δ𝑅
r1,ℎs ‰ 0. Flags with the same north-

west rank conditions as 𝐹 are the opposite Schubert cell 𝐵´ 9𝑢𝐵`{𝐵` and flags with

the same southwest rank conditions are the Schubert cell 𝐵` 9𝑤𝐵`{𝐵`. The open

Richardson variety ℛ𝑢,𝑤 is the intersection 𝐵´ 9𝑢𝐵`{𝐵` X𝐵` 9𝑤𝐵`{𝐵`. When 𝑢 ď 𝑤

in the Bruhat order, ℛ𝑢,𝑤 is a variety of dimension ℓ p𝑤q ´ ℓ p𝑢q; otherwise, ℛ𝑢,𝑤 is

empty.

Let 𝐹 be a flag in the Schubert cell 𝐵` 9𝑤𝐵`{𝐵` and let w “ 𝑠ℎ1
¨ ¨ ¨ 𝑠ℎℓ

be any

reduced word for 𝑤. We write 𝑤p𝑖q “ 𝑠ℎ1
¨ ¨ ¨ 𝑠ℎ𝑖

for the product of the first 𝑖 factors,

where 𝑤p0q “ 1. There is a unique sequence of flags 𝐹 0, 𝐹 1, ¨ ¨ ¨ , 𝐹 ℓ “ 𝐹 satisfying

the following conditions: for each 0 ď 𝑖 ď ℓ, the flag 𝐹 𝑖 is in the Schubert cell

𝐵` 9𝑤p𝑖q𝐵`{𝐵`, and the subspaces 𝐹 𝑖
𝑗 and 𝐹 𝑖´1

𝑗 are equal for all 𝑗 ‰ ℎ𝑖.[27]

Deodhar[7] showed that for each open Richardson variety ℛ𝑢,𝑤 and each re-

duced word w, the sequences of permutations v𝑗 “ 𝑣
p𝑖q which occur as northwest

rank conditions for a sequence 𝐹 0, 𝐹 1, ¨ ¨ ¨ , 𝐹 ℓ with 𝐹 ℓ P ℛ𝑢,𝑤 are the distinguished

subexpressions of w with product 𝑢 (see Definition II.16). Distinguished subexpres-

sions for 𝑢 give a partition of ℛ𝑢,𝑤 into a dense open torus pC˚qℓp𝑤q´ℓp𝑢q and a union

of lower dimensional subvarieties 𝒟vj,w.

Marsh and Rietsch showed in [27] that algebraic cell ℛ𝑢,𝑤
ą0 given by the totally

positive points of ℛ𝑢,𝑤 is contained in the Deodhar torus 𝒟u`,w for any choice of

reduced expression w. They define a minimal total positivity test by regular func-

tions Δ𝑘 giving coordinates on 𝒟u`,w, and provide parametrizations for each sub-

variety in Deodhar’s decomposition.

For each reduced word w for 𝑤 and each distinguished subexpression v, they

define a sequence of coset representatives 𝑔p0q, 𝑔p1q, ¨ ¨ ¨ , 𝑔pℓq for the flags𝐹 0, 𝐹 1, ¨ ¨ ¨ , 𝐹 ℓ P

𝒟v,w using a combination of 1-parameter subgroups and signed transpositions cor-
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responding to crossings in a wiring diagram, which they partition into index sets

𝐽˝v , 𝐽`v and 𝐽´
v𝑗 (see Definition II.18).

The inverse maps Marsh and Rietsch define from 𝒟v,w to pC˚q|𝐽˝v | ˆ pCq|𝐽´v | use

chamber ansatz formulas which closely parallel Berenstein, Fomin and Zelevin-

sky’s chamber ansatz formulas for double Bruhat cells. An important distinction

is that chamber minors for the open torus in ℛ𝑢,𝑤 need not be irreducible.

Example I.1. Letw“ 𝑠3𝑠2𝑠1𝑠4𝑠3𝑠2𝑠3𝑠4 and let 𝑢“ 𝑠3. Then the minorsΔ123
124 andΔ1234

1245

are both chamber minors, but the identity Δ123
124 “Δ12

24Δ
1234
1245 holds everywhere on

ℛ𝑢,𝑤.

Karpman proved that for Deodhar strata 𝒟u`,w which project onto positroid

cells, Marsh and Rietsch’s wiring diagram can be converted into a plabic graph

by first constructing a bridge diagram and then deleting strand endpoints to ob-

tain a bridge graph. We will interpret the partial products 𝑔p𝑖q in Marsh and Ri-

etsch’s parametrization of 𝒟u`,w as weight matrices for Karpman’s bridge dia-

grams, viewed as non-planar weighted networks, in order to express minors as

sums of flow weights via Lindström’s lemma. After reorienting along certain dis-

tinguished flows, the ratios of minors may be computed in terms of weights of

simple augmenting paths. This technique is used by Postnikov in the case of pla-

nar networks mapping to the Grassmannian via the boundary measurement map,

and is also closely related to Ford and Fulkerson’s classic algorithm for finding a

maximal flow in a network with edge capacities.1

Following Berenstein, Fomin and Zelevinsky’s construction of the upper clus-

ter algebra structure on double Bruhat cells,[3] we will show that there are regu-
1In the network flow sense studied by Ford and Fulkerson, paths in a flow need not be vertex-disjoint and the value of

the flow through a given edge need not be integer-valued. A flow in the sense of Lindström, Gessel and Viennot requires
that the flow through each vertex and each edge is either 0 or 1, so that a finite network has a finite number of possible
flows; rather than the value of a flow, the relevant data is the weight of the flow, given by the product of the edge weights.
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lar functions p𝑋1, ¨ ¨ ¨ , 𝑋ℓp𝑤q´ℓp𝑢qq which are pairwise coprime and satisfy the con-

ditions that for each variable 𝑋𝑖, either 𝑋𝑖 is identically nonvanishing on ℛ𝑢,𝑤,

or there is a function 𝑋 1
𝑖 which is regular on ℛ𝑢,𝑤 so that 𝑋 1

𝑖 is relatively prime

to p𝑋1, ¨ ¨ ¨ , 𝑋ℓp𝑤q´ℓp𝑢qq and the functions 𝑋𝑖 and 𝑋 1
𝑖 satisfy the exchange relation

𝑋𝑖𝑋
1
𝑖 “ℳ``ℳ´ for coprime monomials ℳ` and ℳ´ in the variables t𝑋𝑗 : 𝑗 ‰

𝑖u. We will show that the mutated cluster p𝑋1, ¨ ¨ ¨ , 𝑋𝑖´1, 𝑋
1
𝑖, ¨ ¨ ¨ , 𝑋ℓp𝑤q´ℓp𝑢qq gives

coordinates for a new torus.

There are two major ways that our work extends previous work. We provide a

factorization of the chamber minors into products of irreducible minors, allowing

us to define a cluster structure that holds generally, where previous results have

placed restrictions on either the word 𝑤 or the subword 𝑢. This requires us to com-

pute minors in terms of path weights in non-planar graphs.

Similar work has been done by Leclerc[23], using cluster-tilting objects to con-

struct a cluster algebra 𝒜 contained in Crℛ𝑢,𝑤s. Leclerc showed that 𝒜 is equal

to Crℛ𝑢,𝑤s in the special case where 𝑤 has a reduced word of the form w “ vu,

where u is a reduced word for 𝑢. Serhiyenko, Sherman-Bennett and Williams used

Leclerc’s result to show that the coordinate ring of an open Schubert variety in the

Grassmannian is a cluster algebra in [30]. Galashin and Lam[14] generalized this

result, proving that if the open Richardson variety ℛ𝑢,𝑤 projects onto a positroid

cell in the Grassmannian, then Crℛ𝑢,𝑤s has a cluster algebra structure. This holds

when 𝑤 is a Grassmannian permutation, which in particular implies that 𝑤 has a

unique commutation class of reduced words.

We give a further generalization by describing an initial seed Σ for a specific

commutation class of reduced words w with positive subexpression u`, where

𝑤 P S𝑛 is any permutation. A word w is unipeak if its wiring diagram satisfies
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the condition that each strand first rises monotonically to a maximum height and

then falls monotonically. Every permutation 𝑤 P S𝑛 has a unique commutation

class of unipeak words (see [22] on canonical sequences). In the case where the

permutation 𝑤 is not fully commutative, the chamber minors Δ𝑘 from Marsh and

Rietsch’s minimal total positivity test need not be irreducible in Crℛ𝑢,𝑤s. In Chap-

ter V, we describe a construction for factoring each chamber minor into a product

of irreducible minors. An irreducible minor 𝑋𝑗 is obtained from Marsh and Ri-

etsch’s minor Δ𝑗 by removing strands and row indices along a broken-line “path”

traveling left to right through the wiring diagram. We note that there are close par-

allels between this construction and the technique of deleting redundant portions

of strands, used by Galashin and Lam in [14] and defined by Karpman in [21]. The

strand portions removed in our algorithm are in general not redundant in Karp-

man’s sense, and in particular a strand 𝛼 may be removed when solving for the

minor 𝑋𝑗 but retained in solving for some minor 𝑋𝑘 corresponding to a crossing

𝑘 to the right of 𝑗. Another subtle distinction is that we remove strands based on

crossings to the right of a chamber rather than to the left. That is, a chamber mi-

nor which is irreducible for matrices 𝑧 P 𝐵` with 𝑧 9𝑤p𝑖q P ℛ𝑢p𝑖q,𝑤p𝑖q may factor if we

require that 𝑧 9𝑤p𝑘q P ℛ𝑢p𝑘q,𝑤p𝑘q for some 𝑘 ą 𝑖.

Chapter II gives an introduction to the symmetric group, the Schubert and op-

posite Schubert cell decompositions of the flag variety, and the open Richardson

varieties ℛ𝑢,𝑤 under Deodhar’s decomposition.

Chapter III gives background on wiring diagrams with applications to Marsh

and Rietsch’s Chamber Ansatz and describes key characteristics of unipeak wiring

diagrams which will enable us first to find regular functions which are pairwise

coprime, and later to compute entries in a distinguished flag representative and
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verify Laurentness in the mutated cluster.

In Chapter IV, we develop combinatorics for showing when a minor on a col-

lection of columns which is not left justified vanishes due to northwest rank condi-

tions. We show that chambers labeled by minors which vanish on a given divisor

form a simply connected region in the planar projection of the wiring diagram and

are bounded by a connected cycle in the non-planar wiring diagram.

In Chapter V, we give a chamber weighting on the unipeak wiring diagram for

the open Deodhar stratum, so that each minor is a product of irreducible minors

Δ
p𝑅𝑗

p𝐶𝑗 indexed by nearly positive sequences v𝑗 . In particular, the distinguished subex-

pressions giving hypersurfaces in Deodhar’s decomposition are a subset of the v𝑗 .

We show that if v𝑗 is a distinguished subexpression, then the minor Δ
p𝑅𝑗

p𝐶𝑗 vanishes

identically on 𝒟vj,w, and that for any 𝑖 ‰ 𝑗 the minor Δ
p𝑅𝑖

p𝐶𝑖 is generically nonvan-

ishing where Δ
p𝑅𝑗

p𝐶𝑗 “ 0.

In Chapter VI, we lay out the background for computing minors of a weight

matrix for a weighted directed network using augmenting flows in a reoriented

graph and describe Karpman’s bridge diagram construction for identifying Marsh

and Rietsch’s wiring diagrams with weighted directed networks.

In Chapter VII, we recall Berenstein, Fomin and Zelevinsky’s Starfish Lemma

for giving the coordinate ring of a normal variety the structure of an upper cluster

algebra. We define a quiver with vertices indexed by the variables 𝑋𝑗 and arrows

induced by arrows in the chamber ansatz quiver. We use augmenting flows in an

acyclic weighted network to first show that the exchange relations send coordinate

functions on the torus to Laurent polynomials in the new cluster, and later to show

that each exchange variable 𝑋 1
𝑖 can be computed in terms of the special chamber

minor defined by Marsh and Rietsch in the parametrization of the boundary divisor
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𝒟vi,w.



CHAPTER II

Background and Notation

2.1 The symmetric group S𝑛

Definition II.1. An interval r𝑎, 𝑏s in the integers is given by the consecutive integers

𝑖 with 𝑎 ď 𝑖 ď 𝑏.

Definition II.2. The symmetric group S𝑛 is the group of permutations on 𝑛 letters,

where a permutation is a bijection from r1, 𝑛s Ñ r1, 𝑛s. We write 𝑣𝑤 for the compo-

sition 𝑣 ˝ 𝑤 given by 𝑣 ˝ 𝑤p𝑖q “ 𝑣p𝑤p𝑖qq.

Definition II.3. The one-line notation for a permutation 𝑤 P S𝑛 is the sequence of

letters 𝑤p1q𝑤p2q ¨ ¨ ¨𝑤p𝑛q.

The group S𝑛 is generated by the elementary transpositions t𝑠𝑖|1 ď 𝑖 ď 𝑛´ 1u,

where 𝑠𝑖 swaps the letters 𝑖 and 𝑖 ` 1 and fixes 𝑗 R t𝑖, 𝑖 ` 1u, with the following

defining relations.

∙ 𝑠2𝑖 “ 1.

∙ 𝑠𝑖𝑠𝑗 “ 𝑠𝑗𝑠𝑖 when |𝑖´ 𝑗| ą 1.

∙ 𝑠𝑖𝑠𝑖`1𝑠𝑖 “ 𝑠𝑖`1𝑠𝑖𝑠𝑖`1.

Definition II.4. An inversion of 𝑤 P S𝑛 is an ordered pair p𝑖, 𝑗q with 𝑖 ă 𝑗 and

𝑤p𝑖q ą 𝑤p𝑗q. We write inv p𝑤q for the set of inversions of 𝑤.

10



11

Note that inv p𝑠𝑖q “ tp𝑖, 𝑖` 1qu.

Definition II.5. The length of 𝑤 is ℓ p𝑤q “ #inv p𝑤q.

Note that ℓ p𝑤q “ 1 if and only if 𝑤 “ 𝑠𝑖 for some 𝑖.

For any 𝑤 P S𝑛 and any elementary transposition 𝑠𝑖, either ℓ p𝑤𝑠𝑖q “ ℓ p𝑤q ` 1

or ℓ p𝑤𝑠𝑖q “ ℓ p𝑤q ´ 1.[4]

Definition II.6. A word for 𝑤 is a sequence 𝑠𝑖1
, ¨ ¨ ¨ , 𝑠𝑖𝑘

with product 𝑠𝑖1
¨ ¨ ¨ 𝑠𝑖𝑘

“ 𝑤.

A word for 𝑤 is reduced if 𝑘 “ ℓ p𝑤q.

Definition II.7. A subword of 𝑠𝑖1
¨ ¨ ¨ 𝑠𝑖𝑘

is an ordered subsequence 𝑠𝑖𝑗1
¨ ¨ ¨ 𝑠𝑖𝑗𝑚

.

Definition II.8. The permutation matrix corresponding to 𝑤 PS𝑛 is the 𝑛ˆ𝑛 matrix

𝒫p𝑤q with entries 𝒫p𝑤q𝑤p𝑗q,𝑗 “ 1 and 𝒫p𝑤q𝑖𝑗 “ 0 if 𝑖 ‰ 𝑤p𝑗q. This gives an isomor-

phism between S𝑛 and the group of 𝑛ˆ𝑛 matrices with exactly one 1 in each row

and each column and other entries 0.

Definition II.9. Let 𝑀 be an 𝑛ˆ𝑛 invertible matrix and denote the submatrix of 𝑀

with rows 𝐼 and columns 𝐽 by 𝑀 𝐼
𝐽 . We define the northwest and southwest rank

matrices of 𝑀 as follows:

NWRank𝑖𝑗 p𝑀 q “ Rank
`

𝑀 r1,𝑖s

r1,𝑗s

˘

SWRank𝑖𝑗 p𝑀 q “ Rank
`

𝑀 r𝑖,𝑛s

r1,𝑗s

˘

Definition II.10. Let 𝑀 be an 𝑛 ˆ 𝑛 matrix. Let 𝑅 and 𝐶 be subsets of r1, 𝑛s with

|𝑅| “ |𝐶|. We denote the minor of the submatrix 𝑀𝑅
𝐶 by Δ𝑅

𝐶 .

In the case of a permutation matrix 𝒫p𝑤q, the rank of any submatrix is its num-

ber of nonzero entries, so that the entry NWRank𝑖𝑗 p𝒫p𝑤qq is the number of 1s in the

northwest block 𝒫p𝑤qr1,𝑖s
r1,𝑗s

, and the entry SWRank𝑖𝑗 p𝒫p𝑤qq is the number of 1s in the

southwest block 𝒫p𝑤qr𝑖,𝑛s
r1,𝑗s

.
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𝒫p𝑠2q “

¨

˝

1 0 0
0 0 1
0 1 0

˛

‚

NWRank p𝒫p𝑠2qq “

¨

˝

1 1 1
1 1 2
1 2 3

˛

‚

SWRank p𝒫p𝑠2qq “

¨

˝

1 2 3
0 1 2
0 1 1

˛

‚

𝒫p𝑠2𝑠1q “

¨

˝

0 1 0
0 0 1
1 0 0

˛

‚

NWRank p𝒫p𝑠2𝑠1qq “

¨

˝

0 1 1
0 1 2
1 2 3

˛

‚

SWRank p𝒫p𝑠2𝑠1qq “

¨

˝

1 2 3
1 1 2
1 1 1

˛

‚

Figure 2.1: Permutation matrices and rank matrices for the words 𝑢 “ 𝑠2 and 𝑤 “ 𝑠2𝑠1

We say that 𝑢 ď 𝑤 in the Bruhat order if it meets one of the following criteria.

(See Corollary 2.2.3 and Theorem 2.1.5 [4].)

Proposition II.11. Let 𝑢 and 𝑤 be permutations in S𝑛. The following are equivalent:

1. Every reduced word 𝑠𝑖1
¨ ¨ ¨ 𝑠𝑖𝑘

for 𝑤 has a subword that is a reduced word for 𝑢.

2. Some reduced word 𝑠𝑖1
¨ ¨ ¨ 𝑠𝑖𝑘

for 𝑤 has a subword that is a reduced word for 𝑢.

3. For every 𝑖 and 𝑗 in r1, 𝑛s, #t𝑎 P r1, 𝑖s : 𝑢p𝑎q ě 𝑗u ď #t𝑎 P r1, 𝑖s : 𝑤p𝑎q ě 𝑗u.

4. For every 𝑖 and 𝑗 in r1, 𝑛s, SWRank𝑖𝑗 p𝒫p𝑢qq ď NWRank𝑖𝑗 p𝒫p𝑤qq.

5. For every 𝑖 and 𝑗 in r1, 𝑛s, NWRank𝑖𝑗 p𝒫p𝑢qq ě SWRank𝑖𝑗 p𝒫p𝑤qq.

In Figure 2.1, we note that for the words 𝑢 “ 𝑠2 and 𝑤 “ 𝑠2𝑠1, the matrices

NWRank p𝒫p𝑢qq and NWRank p𝒫p𝑤qq agree in columns 2 and 3, and so do the matrices

SWRank p𝒫p𝑢qq and SWRank p𝒫p𝑤qq, while the entries in the first columns satisfy in-

equalities SWRank𝑖1 p𝒫p𝑢qqď SWRank𝑖1 p𝒫p𝑤qq and NWRank𝑖1 p𝒫p𝑢qqě NWRank𝑖1 p𝒫p𝑤qq.

The rank matrices corresponding to pairs of permutations 𝑢 and𝑤 satisfy the same

type of inequalities whenever 𝑢 can be expressed as a subword of a reduced word

for 𝑤.

2.2 Flags

Let 𝐺 denote 𝑆𝐿𝑛pCq, the group of 𝑛ˆ𝑛 matrices with entries in C and determi-

nant 1. Let 𝐵` and 𝐵´ denote the Borel subgroups of upper and lower triangular
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matrices. The type A flag variety ℱℓ𝑛 “ 𝐺{𝐵` is the variety of sequences of sub-

spaces 𝐹 “ 𝐹 1 Ă 𝐹 2 Ă ¨ ¨ ¨ Ă ¨ ¨ ¨𝐹 𝑛 “ C𝑛 satisfying dim𝐹 𝑖 “ 𝑖. Given a matrix

𝑔 P 𝐺, the successive spans of the first 𝑖 columns determine a flag. Matrices 𝑔1

and 𝑔2 determine the same flag if there is an upper triangular matrix 𝑏 P 𝐵` so

that 𝑔1𝑏 “ 𝑔2. We identify a flag 𝐹 with its coset of matrix representatives 𝑔𝐵`.

Since ratios of maximal minors on a given collection of vectors are preserved by

elementary column operations, the following data are independent of the choice

of 𝑔.

1. The condition that Δ𝑅
r1,ℎs ‰0.

2. The value of the ratio
Δ𝑅1

r1,ℎsp𝑔q

Δ𝑅2

r1,ℎsp𝑔q
, where 𝑅2 is chosen so that the denominator is

nonvanishing.

In particular, the matrices NWRank p𝑔q and SWRank p𝑔q are well-defined functions

of 𝑔𝐵`. For each flag 𝑔𝐵`, there are unique permutations𝑢 and𝑤 so that NWRank p𝑔q

“ NWRank p𝒫p𝑢qq and SWRank p𝑔q“ SWRank p𝒫p𝑤qq. In the general linear group𝐺𝐿𝑛pCq

NWRank p𝑔q “ NWRank p𝒫p𝑢qq if and only if 𝑔 “ 𝐿𝒫p𝑢q𝑈 for some lower triangu-

lar 𝐿 and upper triangular 𝑈 , and SWRank p𝑔q “ SWRank p𝒫p𝑤qq if and only if 𝑔 “

𝑈1𝒫p𝑤q𝑈2 for some upper triangular matrices 𝑈1 and 𝑈2 (see Fulton[13]). Since

the determinant of a permutation matrix 𝒫p𝑤q is given by p´1q#ℓp𝑤q “ ˘1, the

matrices 𝒫p𝑢q and 𝒫p𝑤q need not be elements of 𝐺, but there are analogous con-

ditions NWRank p𝑔q “ NWRank p𝑔1q if and only if 𝐵´𝑔𝐵` “ 𝐵´𝑔
1𝐵` and SWRank p𝑔q “

SWRank p𝑔1q if and only if 𝐵`𝑔𝐵` “ 𝐵`𝑔
1𝐵`.

2.2.1 1-parameter subgroups and signed transposition matrices

Following Marsh and Rietsch,[27] we write 𝑦ℎp𝑡q and 𝑥ℎp𝑡q for the 1-parameter

subgroups of 𝐺 whose elements look like the identity matrix with the pℎ, ℎ ` 1q
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diagonal block replaced by the blocks p 1 0
𝑡 1 q and p 1 𝑡

0 1 q.

There is a set-theoretic inclusion of S𝑛 into 𝐺 induced by sending each elemen-

tary transposition 𝑠ℎ to the matrix 9𝑠ℎ “ 𝑦ℎp1q𝑥ℎp´1q𝑦ℎp1q, giving the block p 0 ´11 0 q at

the pℎ, ℎ`1q position. The matrices 9𝑠ℎ have relations 9𝑠ℎ 9𝑠𝑘 “ 9𝑠𝑘 9𝑠ℎ for |ℎ´𝑘| ě 2 and

9𝑠ℎ 9𝑠ℎ`1 9𝑠ℎ “ 9𝑠ℎ`1 9𝑠ℎ 9𝑠ℎ`1; we note that 9𝑠´1ℎ “ 𝑦ℎp´1q𝑥ℎp1q𝑦ℎp´1q, with pℎ, ℎ ` 1q block

so that 9𝑠ℎ is not an involution. For each 𝑤 P S𝑛, let 𝑠ℎ1
¨ ¨ ¨ 𝑠ℎℓ

be a reduced word for

𝑤 and let 9𝑤 be the product 9𝑠ℎ1
¨ ¨ ¨ 9𝑠ℎℓ

. From Deodhar, the matrix 9𝑤 is independent

of the choice of reduced word.[7]

Remark II.12. By construction, the matrices 9𝑤 have the property that the minor on

rows 𝑤pr1, ℎsq and columns r1, ℎs has determinant 1, since a column is multiplied

by ´1 exactly when it introduces an involution.

2.3 Schubert cells, opposite Schubert cells and open Richardson varieties

The flag variety𝐺{𝐵` has two natural decompositions into Schubert cells𝐵` 9𝑤𝐵`{𝐵`

consisting of flags with southwest rank matrix SWRank p𝒫p𝑤qq and opposite Schubert

cells𝐵´ 9𝑢𝐵`{𝐵` corresponding to flags with northwest rank matrix NWRank p𝒫p𝑢qq.

Following Fulton,[13] each flag 𝑔𝐵` in the Schubert cell 𝐵` 9𝑤𝐵`{𝐵` has a unique

coset representative of the form 𝑧 9𝑤, where 𝑧 is upper triangular with diagonal

entries 1 and 𝑧 9𝑤𝑤p𝑖q,𝑗 “ 0 whenever 𝑗 ą 𝑖. The entries indexed by permutation

positions give ℓ p𝑤q independent coordinates on 𝐵` 9𝑤𝐵`{𝐵`.

Remark II.13. It follows immediately that if 𝜆1, ¨ ¨ ¨ , 𝜆𝑛 are scalars satisfying
𝑛
ź

𝑖“1

𝜆𝑖 “

1, there is a unique 𝑧 P 𝐵` so that the flag 𝑧 9𝑤𝐵` “ 𝑔𝐵`, the diagonal entry 𝑧𝑖𝑖 “ 𝜆𝑖

and 𝑧 9𝑤𝑤p𝑖q,𝑗 “ 0 for 𝑗 ą 𝑖.

Definition II.14. The open Richardson variety ℛ𝑢,𝑤 is the intersection 𝐵` 9𝑤𝐵`{𝐵` X

𝐵´ 9𝑢𝐵`{𝐵`.
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From Marsh and Rietsch,[27] whenever 𝑢 ď 𝑤 in the Bruhat order, ℛ𝑢,𝑤 is

nonempty and has dimension ℓ p𝑤q ´ ℓ p𝑢q , while if 𝑢 ď 𝑤, then ℛ𝑢,𝑤 is empty.

We recall that if 𝑢 ď 𝑤, then there exists some index ℎ so that 𝑢pr1, ℎsq ď 𝑤pr1, ℎsq,

so that Δ𝑢pr1,ℎsq

r1,ℎs vanishes identically on 𝐵` 9𝑤𝐵`{𝐵`, while Δ𝑢pr1,ℎsq

r1,ℎs is everywhere

nonvanishing on 𝐵´ 9𝑢𝐵`{𝐵`.

2.4 Flag reductions and Deodhar’s decomposition

Given any reduced wordw“ 𝑠ℎ1
¨ ¨ ¨ 𝑠ℎℓ

, Deodhar[7] showed that the open Richard-

son variety ℛ𝑢,𝑤 breaks down into a disjoint union of simpler strata. The largest

piece is a dense open torus, and the remaining strata are of lower dimension and

isomorphic to products of tori with affine spaces.

Notation II.15. Let w “ 𝑠ℎ1
¨ ¨ ¨ 𝑠ℎℓ

be a reduced expression for 𝑤. We write 𝑤p𝑖q for

the partial product 𝑠ℎ1
¨ ¨ ¨ 𝑠ℎ𝑖

.

Let 𝐹 “ 𝐹1 Ă ¨ ¨ ¨ Ă 𝐹𝑛 be a flag in ℛ𝑢,𝑤 and let w “ 𝑠ℎ1
¨ ¨ ¨ 𝑠ℎℓ

be a reduced

word for 𝑤. There is a unique flag 𝐹 in 𝐵` 9𝑤pℓ´1q𝐵`{𝐵` so that the subspaces

𝐹ℎ “ 𝐹ℎ agree for ℎ ‰ ℎℓ. We say that 𝐹 is the projection of 𝐹 to the Schubert

cell 𝐵` 9𝑤pℓ´1q𝐵`{𝐵`. If 𝑧 is an upper triangular matrix with 𝑧 9𝑤 is a coset represen-

tative for the flag 𝐹 , then 𝑧 9𝑤pℓ´1q is a coset representative for 𝐹 . (See [27].)

Inductively, if 𝑔𝐵` P ℛ𝑢,𝑤, then there is a unique sequence of flags 𝐹 ℓ “ 𝑔𝐵`,

𝐹 ℓ´1, ¨ ¨ ¨ , 𝐹 0 “ 𝐵` obtained by projecting the flag 𝐹 𝑖 in 𝐵` 9𝑤p𝑖q𝐵`{𝐵` to the Schu-

bert cell 𝐵` 9𝑤p𝑖´1q𝐵`{𝐵`. Deodhar considered the sequence of permutations 𝑢p𝑘q so

that the flag 𝐹 𝑘 is in the opposite Schubert cell 𝐵´ 9𝑢p𝑘q𝐵`{𝐵`, and gave the follow-

ing characterization.

Definition II.16. Let w “ 𝑠ℎ1
¨ ¨ ¨ 𝑠ℎℓ

be a reduced expression for 𝑤. A sequence of

permutations v “ 𝑣
p0q, ¨ ¨ ¨ , 𝑣pℓq is a distinguished subexpression of w if 𝑣

p0q “ 1 and for
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each index 𝑖 with 1 ď 𝑖 ď ℓ, the following conditions hold.

1. Either 𝑣
p𝑖q “ 𝑣

p𝑖´1q or 𝑣
p𝑖q “ 𝑣

p𝑖´1q𝑠ℎ𝑖
.

2. Whenever 𝑣
p𝑖´1q𝑠ℎ𝑖

ă 𝑣
p𝑖´1q in the Bruhat order, 𝑣

p𝑖q “ 𝑣
p𝑖´1q𝑠ℎ𝑖

.

We say that v is a distinguished subexpression for 𝑢 if v is a distinguished subex-

pression satisfying 𝑣
pℓq “ 𝑢.

Notation II.17. [27] We use the notation v ă w to mean that v is a distinguished

subexpression of w.

Definition II.18. [27] Let 𝑤 and 𝑢 P S𝑛 with 𝑢 ă 𝑤. Fix a reduced expression w

for 𝑤, and let v ă w be a distinguished subexpression for 𝑢 in w. We define 𝐽˝v

“ t𝑗 : 𝑣
p𝑗q “ 𝑣

p𝑗´1qu, 𝐽`v “ t𝑗 : 𝑣p𝑗q ą 𝑣
p𝑗´1qu and 𝐽´v “ t𝑗 : 𝑣p𝑗q ă 𝑣

p𝑗´1qu.

Notation II.19. [27] Given a reduced expression w “ 𝑠ℎ1
¨ ¨ ¨ 𝑠ℎℓ

, we encode a dis-

tinguished subexpression v by writing 𝑠ℎ𝑖
to indicate that 𝑣

p𝑖q “ 𝑣
p𝑖´1q𝑠ℎ𝑖

.

Theorem II.20. [7] Fix a reduced word w for 𝑤 and let v “ 𝑣
p0q, ¨ ¨ ¨ , 𝑣pℓq be a sequence of

permutations. The locus 𝒟v,w given by t𝑧 9𝑤𝐵` P ℛ𝑢,𝑤 : 𝑧 9𝑤p𝑖q𝐵` P ℛ𝑣
p𝑖q

,𝑤p𝑖q for all 0 ď

𝑖 ď ℓu is non-empty if and only if v is a distinguished subexpression of w. For each distin-

guished subexpression v, 𝒟v,w is isomorphic to pC˚q|𝐽
˝
v | ˆ C|𝐽´v |.

Definition II.21. Let v be a distinguished subexpression of w with product 𝑢. v is

called a positive subexpression if for each 1 ď 𝑖 ď ℓ, we have 𝑣
p𝑖´1q ď 𝑣

p𝑖q.

Marsh and Rietsch proved the following lemma, which implies that the decom-

position of ℛ𝑢,𝑤 corresponding to a reduced word w has a unique maximal torus

𝒟u`,w – pC˚qℓp𝑤q´ℓp𝑢q.

Lemma II.22 (Lemma 3.2[27]). Let 𝑢 ď 𝑤 in the Bruhat order and fix a reduced word

w for 𝑤. There is a unique positive subexpression of w with product 𝑢, obtained by setting

𝑢pℓq “ 𝑢 and taking 𝑢p𝑖´1q “ 𝑢p𝑖q𝑠ℎ𝑖
whenever 𝑢p𝑖q𝑠ℎ𝑖

ă 𝑢p𝑖q.
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One of our initial goals is to show that there are regular functions𝑋1, ¨ ¨ ¨ , 𝑋ℓp𝑤q´ℓp𝑢q

giving a parametrization of𝒟u`,w which satisfy the coprimeness condition that for

each 𝑖 ‰ 𝑗, the locus t𝑋𝑖 “ 0u X t𝑋𝑗 “ 0u has complex codimension ě 2. In partic-

ular, to describe the regular functions on ℛ𝑢,𝑤, it suffices to check regularity on the

torus 𝒟u`,w and on each hypersurface 𝒟vj,w, where v𝑗 is a distinguished subex-

pression of w which gets shorter at a unique index.

Definition II.23. Let u` “ 𝑢p0q, ¨ ¨ ¨ , 𝑢pℓq be the positive subexpression for 𝑢 in w. Let

𝑗 be an index with 𝑢p𝑗´1q “ 𝑢p𝑗q. We define the nearly positive sequence v𝑗 by setting

𝑣𝑗

p𝑘q “ 𝑢p𝑘q for all 𝑘 ě 𝑗, 𝑣𝑗

p𝑗´1q “ 𝑢p𝑗q𝑠ℎ𝑗
and 𝑣𝑗

p𝑖´1q “ 𝑣𝑗

p𝑖q𝑠ℎ𝑗
whenever 𝑣𝑗

p𝑖q𝑠ℎ𝑖
ă 𝑣𝑗

p𝑖q. v𝑗 is

a nearly positive subexpression for 𝑢 if 𝑣𝑗

p0q “ 1.

Corollary II.24. Let v be a distinguished subexpression for 𝑢 in w. The Deodhar stratum

𝒟v,w is a hypersurface if and only if v is the nearly positive subexpression v𝑗 for some

index 𝑗 with 𝑢p𝑗q “ 𝑢p𝑗´1q and 𝑢p0q “ 1.

Proof. We note that if v is a nearly positive subexpression v𝑗 , then by construction

it has ℓ p𝑢q ` 2 factors and hence gives a hypersurface by Theorem II.20. The dis-

tinguished subexpression v gives a hypersurface if and only if there is a unique

index where 𝑣
p𝑗´1q ą 𝑣

p𝑗q. Since v and u` are both distinguished subexpressions for

𝑢, we have 𝑣
pℓq “ 𝑢 “ 𝑢pℓq. For 𝑘 ą 𝑗, both sequences decrease whenever possible,

giving 𝑣
p𝑗q “ 𝑢p𝑗q, and hence 𝑣

p𝑗´1q “ 𝑢p𝑗q𝑠ℎ𝑗
ą 𝑢p𝑗q, so that 𝑢p𝑗´1q “ 𝑢p𝑗q by positivity of

u`. By hypothesis, v𝑗 has ℓ p𝑢q `2 factors, so that 𝑣
p0q, ¨ ¨ ¨ , 𝑣p𝑗´1q must be the unique

positive subexpression for 𝑣
p𝑗´1q “ 𝑢p𝑗´1q𝑠ℎ𝑗

inside 𝑤p0q, ¨ ¨ ¨ , 𝑤p𝑗´1q. So v “ v𝑗 , and

hence v𝑗 must be a distinguished subexpression.

In Example II.25, we compute the nearly positive sequences for the expression

w “ 𝑠4𝑠3𝑠2𝑠1𝑠2𝑠3𝑠4. In general, if 𝑖 P 𝐽˝u` is the index of the first factor of 𝑠ℎ in w,
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the sequence v𝑖 is not a nearly positive subexpression. In this example, we will

see that this is not an equivalence: the sequence v6 fails to be a nearly positive

subexpression. This means that the cluster variable 𝑋6 (as described in Chapter V)

is frozen.

Example II.25. Let w “ 𝑠4𝑠3𝑠2𝑠1𝑠2𝑠3𝑠4, with positive subexpression u` given by the

underlined factor 𝑠2. In sequence notation,u` “ p𝑢p0q, ¨ ¨ ¨ , 𝑢p7qq “ p1, 1, 1, 1, 1, 𝑠2, 𝑠2, 𝑠2q.

The nearly positive sequences of w are given in the following table. We note that

each v𝑖 agrees with u` for indices 𝑖, 𝑖` 1, ¨ ¨ ¨ , ℓ “ 7.

Index 𝑖 P 𝐽˝u` 𝑣𝑖
p𝑖´1q := 𝑢p𝑖´1q𝑠ℎ𝑖

v𝑖 “ p𝑣𝑖
p0q, 𝑣

𝑖
p1q, ¨ ¨ ¨ , 𝑣

𝑖
p7qq

1 𝑠4 p𝑠4, 1, 1, 1, 1, 𝑠2, 𝑠2, 𝑠2q

2 𝑠3 p𝑠3, 𝑠3, 1, 1, 1, 𝑠2, 𝑠2, 𝑠2q

3 𝑠2 p𝑠2, 𝑠2, 𝑠2, 1, 1, 𝑠2, 𝑠2, 𝑠2q

4 𝑠1 p𝑠1, 𝑠1, 𝑠1, 𝑠1, 1, 𝑠2, 𝑠2, 𝑠2q

6 𝑠2𝑠3 p𝑠2𝑠3, 𝑠2𝑠3, 𝑠2𝑠3, 𝑠2𝑠3, 𝑠2𝑠3, 𝑠2, 𝑠2q

7 𝑠2𝑠4 p1, 𝑠4, 𝑠4, 𝑠4, 𝑠2𝑠4, 𝑠2𝑠4, 𝑠2𝑠4, 𝑠2q

The sequence v7 is a nearly positive subexpression of w, since it satisfies the

condition 𝑣7
p0q “ 1. We do not define a nearly positive sequence v5 since the index

5 is in 𝐽`u` , corresponding to the underlined factor 𝑠2.

2.5 Cluster algebras from quivers

Cluster algebras are an algebraic structure introduced by Fomin and Zelevin-

sky, motivated by the study of total positivity. In [9], they characterized minimal

total nonnegativity criteria for matrices in the double Bruhat cell 𝐺𝑢,𝑣. Using deter-

minantal identities, they showed that if the minors indexed by the chambers of a

double wiring diagram for the pair of permutations p𝑢, 𝑣q are nonzero, then every
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minor of the matrix can be expanded as a subtraction-free Laurent polynomial in

the chamber minors. Further, they showed that one set of total positivity criteria

can be transformed to another by a sequence of exchanges, where one function 𝑋 is

exchanged for another function 𝑋 1 obeying a subtraction-free binomial exchange

relation 𝑋𝑋 1 “𝑀1 `𝑀2.

In [10], Fomin and Zelevinsky defined cluster algebras to formalize the study

of the rings generated by clusters related by a similar subtraction-free binomial

exchange recurrence.

We will restrict our attention to cluster algebras from quivers, as described by

Williams in [34].

Definition II.26 (Ice quivers). An ice quiver is a directed multigraph 𝑄 “ p𝑉,𝐸q so

that whenever there is an arrow 𝑒 from 𝑣1 to 𝑣2, there is no arrow from 𝑣2 to 𝑣1,

together with the following data and constraints.

1. Each vertex 𝑣 P 𝑉 is designated either mutable or frozen.

2. For each arrow 𝑒 P 𝐸, at least one endpoint of 𝑒 is mutable.

3. For each mutable vertex 𝑣𝑘, there is a mutation rule 𝜇𝑘 sending 𝑄 to a new

quiver 𝑄1 “ p𝑉, 𝜇𝑘p𝐸qq. The arrows 𝜇𝑘p𝐸q are obtained from 𝐸 as follows.

∙ For any length 2 path 𝑣𝑖
𝑒1
ÝÑ 𝑣𝑘

𝑒2
ÝÑ 𝑣𝑗 in𝑄with at least one of the endpoints

𝑣𝑖 and 𝑣𝑗 mutable, an arrow 𝑣𝑖 Ñ 𝑣𝑗 is added to 𝐸 1.

∙ Arrows starting or ending at 𝑣𝑗 are reversed.

∙ Cycles of length 2 are eliminated by removing pairs of arrows 𝑣𝑖 Ñ 𝑣𝑗 and

𝑣𝑗 Ñ 𝑣𝑖.

The vertices of the ice quiver are labeled by a cluster X of algebraically inde-

pendent indeterminates, given the same designation of frozen or mutable as the
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corresponding vertices. When the quiver is mutated at a mutable vertex 𝑣𝑘, the

variable 𝑋𝑘 is exchanged for a variable 𝑋 1
𝑘, where the product 𝑋𝑘𝑋

1
𝑘 is a binomial

in the other cluster variables encoded by the arrows of the quiver. The elements

of the original cluster X and the mutated cluster 𝜇𝑘pXq generate the same field

extension over C.

Definition II.27. Given an ice quiver𝑄with mutable vertices 𝑣1, ¨ ¨ ¨ , 𝑣𝑁 and frozen

vertices 𝑣𝑁`1, ¨ ¨ ¨ , 𝑣𝑁`𝑀 , a cluster is a tuple of variables indexed by 𝑉 with 𝑋𝑖 des-

ignated mutable if 𝑣𝑖 is mutable and frozen if 𝑣𝑖 is frozen. The pair Σ “ pX, 𝑄q is

called a seed. The seed mutation 𝜇𝑘pΣq is the mutation of 𝑄 at vertex 𝑣𝑘 together with

the cluster mutation 𝜇𝑘pXq “ Xz t𝑋𝑘uYt𝑋
1
𝑘u, where 𝑋𝑘 and 𝑋 1

𝑘 satisfy the exchange

relation 𝑋𝑘𝑋
1
𝑘 “

ź

𝑣𝑘
𝑒
ÝÑ𝑣𝑗

𝑋𝑗 `
ź

𝑣𝑗
𝑒
ÝÑ𝑣𝑘

𝑋𝑗.

For any mutable vertex 𝑣𝑘, the mutation 𝜇𝑘pΣq is an involution. In general, the

mutations 𝜇𝑖 and 𝜇𝑘 do not commute under composition.

Definition II.28 (Mutation equivalence). Two seedsΣ andΣ1 are mutation-equivalent

if there is a sequence of mutations transforming Σ to Σ1. In this case we write

Σ „ Σ1.

Definition II.29 (The cluster algebra generated by an initial seed). Let Σ “ pX, 𝑄q

be a seed. The cluster algebra generated by Σ is the C-algebra 𝒜Σ generated by all

cluster variables appearing in seeds mutation-equivalent to Σ.

Fomin and Zelevinsky proved that whenever Σ “ pX, 𝑄q and Σ1 “ pX1, 𝑄1q are

mutation-equivalent seeds, every cluster variable 𝑋 1
𝑘 in the cluster X1 can be writ-

ten as a Laurent polynomial in the cluster variables X. That is, the cluster algebra

𝒜pΣq is contained in the ring of Laurent polynomials in the variables of any given

cluster X. Given an initial seed Σ, Berenstein, Fomin and Zelevinsky defined the
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upper bound algebra 𝒰pΣq as the intersection of the Laurent rings in the cluster

variables belonging to seeds within one mutation from Σ and the upper cluster

algebra 𝒜pΣq as the ring of functions that are Laurent in the cluster variables of

every seed mutation equivalent to Σ.

Definition II.30 (Upper bounds and upper cluster algebras). Let Σ “ pX, 𝑄q be a

seed. The upper bound forΣ is the algebra given by𝒰pΣq“CrX˘sX
Ş

𝑋𝑘 mutable
Cr𝜇𝑘pXq

˘s.

The upper cluster algebra generated by Σ is given by 𝒜Σ “
Ş

Σ1“pX1,𝑄1q
Σ1„Σ

CrX˘s.

By Theorem 1.5 in [3], the upper bound algebra 𝒰pΣq is equal to the upper clus-

ter algebra in the case where exchange binomials in every seed are pairwise co-

prime.

We will find it computationally convenient to describe the exchange relations

for a cluster variable in the initial seed in terms of the ratio of the two monomials

on the right hand side; that is, the 𝑦-variables defined by Fomin and Zelevinsky in

[11].

Definition II.31 (𝑦-variables). Let 𝑣𝑖 be a mutable vertex. The 𝑦-variable for the clus-

ter variable 𝑋𝑘 is 𝑦𝑘 “

ś

𝑣𝑘
𝑒
ÝÑ𝑣𝑗

𝑋𝑗

ś

𝑣𝑗
𝑒
ÝÑ𝑣𝑘

𝑋𝑗

.



CHAPTER III

Wiring Diagrams

3.1 Wiring diagrams

Wiring diagrams are a combinatorial object for keeping track of where a left-

justified interval r1, ℎs is sent by partial products of the first 𝑖 terms of a word

𝑠ℎ1
¨ ¨ ¨ 𝑠ℎℓ

pr1, ℎsq, which applies in our context to keeping track of which minors

of an upper triangular matrix 𝑧 are determined by ratios of left-justified minors of

the flag 𝑧 9𝑤p𝑖q𝐵`.

We begin with a general discussion of the wiring diagram associated to a word

w.[2] [3]

Let w “ 𝑠ℎ1
¨ ¨ ¨ 𝑠ℎℓ

be a word for 𝑤 (not necessarily reduced). The wiring diagram

associated to w is given by the following procedure: We begin with 𝑛 horizontal

line segments or strands, with endpoints labeled from bottom to top as 𝜆1, ¨ ¨ ¨ , 𝜆𝑛

on the left and 𝜌1, ¨ ¨ ¨ , 𝜌𝑛 on the right. The height of a strand 𝛼 is the number of

strands weakly below it.

For each index 𝑖, we insert a crossing at height ℎ𝑖 corresponding to the transpo-

sition 𝑠ℎ𝑖
by extending the diagram at the right, so that the strands with endpoints

labeled 𝜌ℎ𝑖
and 𝜌ℎ𝑖`1 cross transversely, switching heights.

Notation III.1. We refer to the strand that travels up at crossing 𝑖 as the rising

22
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𝜆1

𝜆2

𝜆3

𝜆4

...
𝜆𝑛

𝜌1

𝜌2

𝜌3

𝜌4

...

𝜌𝑛

Figure 3.1: Wiring diagram for the empty word w “ 1

𝜌1

...

𝜌ℎ𝑖

𝜌ℎ𝑖`1

...

𝜌𝑛

𝛼Õp𝑖q

𝛼Œp𝑖q

𝜌1

...

𝜌ℎ𝑖

𝜌ℎ𝑖`1

...

𝜌𝑛

𝑖
𝛼Õp𝑖q

𝛼Œp𝑖q

𝑠ℎ𝑖

Figure 3.2: Adding a crossing at height ℎ𝑖

strand, denoted by 𝛼Õp𝑖q; the strand that travels down is the falling strand, denoted

by 𝛼Œp𝑖q.

We will also need refer to the set of crossings with a particular rising or falling

strand.

Notation III.2. For each strand 𝛼, we define the ascending indices of 𝛼 to be the set

𝐽Õp𝛼q “ t𝑗 : 𝛼Õp𝑗q “ 𝛼u.

We define the descending indices of 𝛼 to be

𝐽Œp𝛼q “ t𝑗 : 𝛼Œp𝑗q “ 𝛼u.

Notation III.3. We write 𝜆pwq p𝛼q “ ℎ if the strand 𝛼 has left endpoint 𝜆ℎ. We write

𝜌𝑖pwq p𝛼q “ ℎ if 𝛼 has right endpoint 𝜌ℎ after crossing 𝑖 is added (or equivalently,

if 𝛼 is at height ℎ immediately to the right of crossing 𝑖).

The wiring diagram for w “ 𝑠ℎ1
¨ ¨ ¨ 𝑠ℎℓ

is reduced if w is a reduced word, which

is equivalent to the condition that each pair of strands 𝛼 and 𝛽 cross at most once.
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𝜆𝑤p2q

𝜆𝑤p3q

𝜆𝑤p1q

𝜌1

𝜌2

𝜌3

Figure 3.3: Wiring diagram for the reduced word w “ 𝑠2𝑠1
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1234

123

12

1234

124

1

1234
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12

123

𝜆1

𝜆2

𝜆3

𝜆4

𝜆5

𝜌1

𝜌2

𝜌3

𝜌4

𝜌5

123

12

1

1234

124

14

1245

145

4

1345

345

45

𝜆1

𝜆2

𝜆3

𝜆4

𝜆5

𝜌1

𝜌2

𝜌3

𝜌4

𝜌5

Figure 3.4: Upper and lower arrangements for 𝑠3𝑠2𝑠1𝑠4𝑠3
𝑠2𝑠4𝑠3

Definition III.4. A left-to-right path in a wiring diagram is a sequence of strands

𝛼𝑖, ¨ ¨ ¨ , 𝛼𝑚 indexed by consecutive crossings 𝑖 ď 𝑗 ď 𝑚, such that for each 𝑗 ě 𝑖`1,

either 𝛼𝑗 “ 𝛼𝑗´1 or 𝛼𝑗 and 𝛼𝑗´1 cross at index 𝑗. That is, 𝛼𝑖, ¨ ¨ ¨ , 𝛼𝑚 is a left-to-right

path if there is some ℎ P r1, 𝑛s and a subexpression v of w so for each 𝑖 ď 𝑗 ď 𝑚 we

have
`

𝑣
p𝑗q

˘

´1
pℎq “ 𝜌𝑗pwq p𝛼𝑗q . A left-to-right path is connected if for each crossing 𝑗

where 𝛼𝑗 ‰ 𝛼𝑗´1, we have 𝑗 P 𝐽˝.

In general, a left-to-right path may refer to a sequence of edges in the non-planar

graph which projects onto a path.

Definition III.5 (Upper and Lower Arrangements). Let w be a reduced expression

for 𝑤 with distinguished subexpression v. The upper arrangement is the wiring di-

agram with crossings corresponding to the factors of v. The lower arrangement is

the wiring diagram corresponding to w.

Definition III.6. Let 𝑟 be an index with 1 ď 𝑟 ď 𝑛. The geodesic path 𝛾𝑟 is the left-

to-right path in the wiring diagram for w corresponding to the strand in the upper
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arrangement with left endpoint 𝜆𝑟 and right endpoint 𝜌𝑢´1p𝑟q.

Notation III.7. We write 𝜆𝑖pu`q p𝛼q “ 𝑟 if the right endpoint of the strand 𝛼 at

index 𝑖 is at height ℎ where 𝑢p𝑖qpℎq “ 𝑟 (or equivalently, if the right endpoint of 𝛼

at index ℎ is on the geodesic path 𝛾𝑟). We write 𝜌𝑖pu`q p𝑟q “ ℎ if the geodesic path

with left endpoint 𝜆𝑟 has right endpoint 𝜌ℎ at index 𝑖.

Definition III.8. We say that the geodesic path 𝛾𝑟 crosses below the strand 𝛼Õp𝑖q if

either of the following holds:

1. 𝑖 P 𝐽`u` and 𝛾𝑟 follows 𝛼Œp𝑖q immediately to the left and right of crossing 𝑖.

2. 𝑖 P 𝐽˝u` and 𝛾𝑟 follows 𝛼Õp𝑖q to the left of 𝑖 and 𝛼Œp𝑖q to the right of 𝑖.

3.2 Chambers in reduced wiring diagrams

Consider an embedding of the wiring diagram in a rectangle so that the end-

points of the strands are on the boundary of the rectangle.

A closed chamber at height ℎ in a wiring diagram is the bounded region between

consecutive crossings at height ℎ. A left boundary chamber at height ℎ is the region

between the strands with left endpoints 𝜆ℎ and 𝜆ℎ`1 and the left boundary of the

rectangle; a right boundary chamber at height ℎ is enclosed by the strands with end-

points 𝜌ℎ and 𝜌ℎ`1 and the right boundary of the rectangle. The wiring diagram

in Figure 3.5 has a single closed chamber, 𝐶. Chamber 𝐷 is both a left boundary

chamber and a right boundary chamber.

We will use the Korean letterㅊ (“chieut”) to represent a chamber, and we write

Strandspㅊq for the set of strands belowㅊ. We denote the four chambers sur-

rounding the crossing at index 𝑖 byㅊÐp𝑖q,ㅊÒp𝑖q,ㅊÓp𝑖q andㅊÑp𝑖q, as shown

in Figure 3.6.1 The pairs of chambers tㅊÐp𝑖q,ㅊÑp𝑖qu and tㅊÒp𝑖q,ㅊÓp𝑖qu are
1These can be pronounced as “the west chamber of 𝑖” forㅊÐp𝑖q, etc.
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𝐴

𝐵

𝐷

𝐶

𝐸

𝐹

𝜆1

𝜆2

𝜆3

𝜆4

𝜌1

𝜌2

𝜌3

𝜌4

Figure 3.5: Chambers in a wiring diagram

ㅊÐp𝑖q

ㅊÒp𝑖q

ㅊÓp𝑖q

ㅊÑp𝑖q
𝑖

Figure 3.6: Relative indexing for the chambers west, north, south and east of a crossing 𝑖

opposing; we refer to the other pairs of chambers surroundingㅊ as adjacent.

3.3 Unipeak wiring diagrams

In this section, we describe a distinguished class of reduced wiring diagrams

that will enable us to define an initial seed for each open Richardson variety ℛ𝑢,𝑤.

Unipeak diagrams are the wiring diagrams associated to the canonical sequences

studied by Kassel, Lascoux and Reutenauer[22] in the context of factorizations of

the Schubert form representative of a flag in 𝐵` 9𝑣𝐵`.

Definition III.9. A wiring diagram is unipeak if for each strand 𝛼 there is an index

𝑗 so that the sequence 𝜌𝑖pwq p𝛼q is weakly increasing for all 𝑖 ď 𝑗 and weakly

decreasing for all 𝑖 ě 𝑗.

Proposition III.10. Every unipeak wiring diagram is reduced.

Proof. Suppose to the contrary that there is a pair of strands that cross twice. Then

there are indices 𝑖 ă 𝑗 so that 𝛼Õp𝑖q “ 𝛼Œp𝑗q and 𝛼Œp𝑖q “ 𝛼Õp𝑗q, which contradicts



27

the hypothesis that no strand travels up after traveling down.

Proposition III.11. A reduced wiring diagram is unipeak if and only if for every crossing

𝑗, there is no strand 𝛽 which crosses below 𝛼Õp𝑗q to the left of 𝑖 and crosses above 𝛼Œp𝑗q to

the right of 𝑗.

Proof. It is immediate from the definition that if a diagram is unipeak, no such

strand 𝛽 exists since a strand in a unipeak diagram cannot travel up after travel-

ing down. Conversely, if a reduced diagram fails to be unipeak, then choose some

strand 𝛽 so that there are indices 𝑖 ă 𝑘 with 𝛼Œp𝑖q “ 𝛽 “ 𝛼Õp𝑘q. Since the wiring

diagram is reduced, the strand 𝛼Õp𝑖q stays above 𝛽 to the right of 𝑖 and the strand

𝛼Œp𝑘q is above 𝛽 to the left of 𝑘. So there must be some index 𝑗 with 𝑖 ă 𝑗 ă 𝑘 with

𝛼Õp𝑗q “ 𝛼Õp𝑖q and 𝛼Œp𝑗q “ 𝛼Œp𝑖q.

In [22], Kassel, Lascoux and Reutenauer showed that every permutation 𝑤 P S𝑛

has a unique commutation class of unipeak wiring diagrams, which they char-

acterized by the equivalent description from Proposition III.11. They define the

canonical sequence of a permutation𝑤 as follows. For each index ℎwith 1 ď ℎ ď 𝑛,

let 𝑚ℎ “ ℎ ` #tℎ1 : pℎ, 𝑗q P inv p𝑤q u, and let 𝐶ℎ be the cycle 𝑠𝑚ℎ´1 ¨ ¨ ¨ 𝑠ℎ, where

the product is empty if 𝑚ℎ “ ℎ. The canonical sequence for 𝑤 is the expression

w “ 𝐶1 ¨ ¨ ¨𝐶𝑛. Its wiring diagram is unipeak: for the strand 𝛼 ending at target

vertex 𝜌ℎ, the crossings where 𝛼 travels down are precisely the crossings corre-

sponding to the cycle 𝐶ℎ.

Proposition III.12. Let 𝑖 and 𝑘 be crossings in a unipeak wiring diagram with 𝑖 ă 𝑘.

Then the following hold:

1. If 𝛼Õp𝑖q “ 𝛼Õp𝑘q, then

StrandspㅊÐp𝑘qq “ StrandspㅊÐp𝑖qq Y t𝛼Œp𝑗q : 𝑖 ď 𝑗 ă 𝑘, 𝛼Õp𝑗q “ 𝛼Õp𝑖q.
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2. If 𝛼Õp𝑖q “ 𝛼Õp𝑘q, then for all 𝑗 ě 𝑖, 𝜌𝑗pwq p𝛼Œp𝑖qq ă 𝜌pwq p𝛼Œp𝑘qq .

3. If 𝛼Œp𝑖q “ 𝛼Œp𝑘q, then

StrandspㅊÐp𝑘qq “ StrandspㅊÐp𝑖qqzt𝛼Õp𝑗q : 𝑖 ď 𝑗 ă 𝑘, 𝛼Œp𝑗q “ 𝛼Œp𝑖qu.

4. If 𝛼Œp𝑖q “ 𝛼Œp𝑘q, then 𝜆pwq p𝛼Õp𝑖qq ą 𝜆pwq p𝛼Õp𝑘qq.

Proof. We can think of the strands in a chamber of the formㅊÐp𝑘q either as the

collection of strands with targets weakly below 𝛼Õp𝑘q at index 𝑘 ´ 1 or as the col-

lection of strands with targets strictly below 𝛼Œp𝑘q at index 𝑘 ´ 1.

In general, if w is reduced, and 𝛼Õp𝑖q “ 𝛼Õp𝑘q, then

StrandspㅊÐp𝑘qq “ StrandspㅊÐp𝑖qq z t𝛼Õp𝑗q : 𝑖 ă 𝑗 ă 𝑘, 𝛼Œp𝑗q “ 𝛼Õp𝑖qu

Y t𝛼Œp𝑗q : 𝑖 ď 𝑗 ă 𝑘, 𝛼Õp𝑗q “ 𝛼Õp𝑖qu.

If 𝛼Õp𝑘q “ 𝛼Õp𝑖q, then the strand 𝛼Õp𝑖q is traveling strictly up between indices 𝑖 and

𝑘, so that the set t𝛼Õp𝑗q : 𝑖 ă 𝑗 ă 𝑘, 𝛼Œp𝑗q “ 𝛼Õp𝑖qu is empty. The strand 𝛼Œp𝑖q is

traveling strictly down for indices greater than 𝑖, so we must have 𝜌𝑖pwq p𝛼Œp𝑖qq ă

𝜌𝑘pwq p𝛼Œp𝑘qq .

Similarly, if 𝛼Œp𝑖q “ 𝛼Œp𝑘q, then

StrandspㅊÐp𝑘qq “ StrandspㅊÐp𝑖qq z t𝛼Õp𝑗q : 𝑖 ď 𝑗 ă 𝑘, 𝛼Œp𝑗q “ 𝛼Œp𝑖qu

Y t𝛼Œp𝑗q : 𝑖 ă 𝑗 ă 𝑘, 𝛼Õp𝑗q “ 𝛼Œp𝑖qu.

In a unipeak diagram, the set t𝛼Œp𝑗q : 𝑖 ă 𝑗 ă 𝑘, 𝛼Õp𝑗q “ 𝛼Œp𝑖qu is empty, since

𝛼Œp𝑖q cannot cross up over any other strand at an index 𝑗 ą 𝑖.

Since 𝛼Œp𝑖q “ 𝛼Œp𝑘q, then 𝛼Õp𝑖q and 𝛼Õp𝑘q must each be traveling up in the

region to the left of 𝛼Œp𝑖q. In particular, 𝛼Õp𝑖q and 𝛼Õp𝑘q do not cross each other

before crossing 𝛼Œp𝑗q. Since 𝛼Œp𝑖q crosses down over 𝛼Õp𝑖q first, 𝛼Õp𝑖q must be

above 𝛼Õp𝑘q to the left of 𝛼Œp𝑖q.
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Proposition III.13. [31] Let 𝑖 be a crossing in a unipeak wiring diagram. Then the fol-

lowing hold:

1. t𝛼 : 𝜆pwq p𝛼q ď 𝜆pwq p𝛼Õp𝑖qq u Ď StrandspㅊÐp𝑖qq.

2. For each 𝑗 ě 𝑖´ 1, the set t𝛽 : 𝜌𝑗pwq p𝛽q ă 𝜌𝑗pwq p𝛼Œp𝑖qq u Ď StrandspㅊÐp𝑖qq.

Corollary III.14. For each 𝑗 ě 𝑖 ´ 1, the set t𝛼 : 𝜆pwq p𝛼q ď 𝜆pwq p𝛼Õp𝑖qq u Y t𝛽 :

𝜌𝑗pwq p𝛽q ă 𝜌𝑗pwq p𝛼Œp𝑖qq u “ StrandspㅊÐp𝑖qq, where in general the union is not dis-

joint.

Proposition III.15. Let 𝜋 “ 𝛼𝑖, ¨ ¨ ¨ , 𝛼𝑚 be a left-to-right path in a unipeak wiring dia-

gram. If 𝑗 ă 𝑘 are indices so that𝛼𝑗 “𝛼Õp𝑗q and𝛼𝑘“𝛼Õp𝑘q, then𝜆pwq p𝛼𝑗qě𝜆pwq p𝛼𝑘q,

with equality if and only if 𝛼𝑗1 “ 𝛼𝑗 for all 𝑗 ď 𝑗1 ď 𝑘.

Proof. We claim that the sequence t𝜆pwq p𝛼Õp𝑗qq : 𝜋 travels through crossing 𝑗u is

weakly decreasing. Let 𝑗 and 𝑘 be consecutive crossings along 𝜋 . If 𝛼𝑗 “ 𝛼Õp𝑗q,

then either 𝛼Õp𝑘q “ 𝛼Õp𝑗q or 𝛼Õp𝑘q crosses above 𝛼Õp𝑗q so that 𝜆pwq p𝛼Õp𝑘qq ă

𝜆pwq p𝛼Õp𝑗qq. Otherwise, 𝛼Õp𝑗q and 𝛼Õp𝑘q are consecutive strands crossing above

𝛼𝑗, and hence 𝜆pwq p𝛼Õp𝑘qq ą 𝜆pwq p𝛼Œp𝑘qq.

Corollary III.16. Let w be a unipeak word with positive subexpression u`. Let 𝛾𝑟 be a

geodesic path and suppose that there are crossings 𝑖 ă 𝑘 so that 𝛾𝑟 follows 𝛼Õp𝑖q immedi-

ately to the left of 𝑖 and 𝛼Õp𝑘q immediately to the left of 𝑘. If 𝛼Õp𝑖q has left endpoint 𝜆𝑎 and

𝛼Õp𝑘q has left endpoint 𝜆𝑏, then 𝑎 ě 𝑏. In particular, 𝛼Õp𝑘q P StrandspㅊÐp𝑖qq.

Corollary III.17. Let w be a unipeak expression with positive subexpression u`. If 𝑗 ă 𝑘

are indices so that𝜆𝑗pu`q p𝛼Õp𝑗qq“𝜆𝑘pu`q p𝛼Õp𝑘qq, then𝜆pwq p𝛼Õp𝑗qqě𝜆pwq p𝛼Õp𝑘qq,

with equality if and only if 𝜆𝑗1pu`q p𝛼Õp𝑗qq “ 𝜆𝑗pu`q p𝛼Õp𝑗qq for all 𝑗 ď 𝑗1 ď 𝑘.

Corollary III.18. If 𝛼Õp𝑖q “ 𝛼Õp𝑗q and 𝜆𝑗pu`q p𝛼Õp𝑖qq “ 𝑟, then for all crossings 𝑘 ě 𝑗

with 𝜆𝑘pu`q p𝛼Õp𝑘qq “ 𝑟, we have 𝛼Õp𝑘q PㅊÐp𝑖q.
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Proposition III.19. Let w correspond to a unipeak diagram for 𝑤 and let u` be a positive

subexpression of w. Let 𝛼 be a strand in the wiring diagram and let 𝑘 be an index so that

𝜌𝑖pwq p𝛼q is weakly increasing for 𝑖 ď 𝑘 and weakly decreasing for 𝑖 ě 𝑘. Then 𝜆𝑖pu`q p𝛼q

is weakly increasing for 𝑖 ď 𝑘 and weakly decreasing for 𝑖 ě 𝑘.

Proof. Sinceu` is a positive subexpression, for any crossing 𝑖, we have𝜆𝑖´1pu`q p𝛼Õp𝑖qq

ă 𝜆𝑖´1pu`q p𝛼Œp𝑖qq. If 𝑖 P 𝐽˝u` , 𝜆
𝑖pu`q p𝛼Õp𝑖qq “ 𝜆𝑖´1pu`q p𝛼Œp𝑖qq and 𝜆𝑖pu`q p𝛼Œp𝑖qq “

𝜆𝑖´1pu`q p𝛼Õp𝑖qq. If 𝑖 P 𝐽`u` , then𝜆𝑖pu`q p𝛼Õp𝑖qq“𝜆𝑖´1pu`q p𝛼Õp𝑖qq and𝜆𝑖pu`q p𝛼Œp𝑖qq

“ 𝜆𝑖´1pu`q p𝛼Œp𝑖qq.

Lemma III.20 (Forbidden crossings). Fix a unipeak diagram corresponding to u` and

w. Let 𝛼 and 𝛽 be two strands and suppose that for some 𝑖 we have 𝜌𝑖pwq p𝛼q ă 𝜌𝑖pwq p𝛽q

and 𝜆𝑖pu`q p𝛼q ą 𝜆𝑖pu`q p𝛽q. Then 𝜌𝑘pwq p𝛼q ă 𝜌𝑘pwq p𝛽q for all 𝑘 ě 𝑖. (That is, 𝛼 and

𝛽 do not cross at any index 𝑘 ě 𝑖.)

Proof. Assume for contradiction that there is some 𝑘 ą 𝑖 so that 𝜌𝑘´1pwq p𝛼q ă

𝜌𝑘´1pwq p𝛽q and 𝜌𝑘pwq p𝛼q ą 𝜌𝑘pwq p𝛽q ). Let 𝑟𝛼 “ 𝜆𝑖pu`q p𝛼q and let 𝑟𝛽 “ 𝜆𝑖pu`q p𝛽q.

Write 𝑤p𝑘q “𝑤p𝑘´1q𝑠ℎ𝑘
. Since 𝛼 must cross up at index 𝑘, 𝜌𝑗pwq p𝛼q is weakly increas-

ing for 𝑗 ď 𝑘 and so 𝜆𝑘´1pu`q p𝛼q ě 𝑟𝛼 . If 𝜆𝑘´1pu`q p𝛽q ď 𝑟𝛽 ă 𝑟𝛼 , then 𝑢p𝑘´1q𝑠ℎ𝑘
ă

𝑢p𝑘´1q which contradicts positivity ofu`. So𝛼 and 𝛽 cannot cross at 𝑘. If 𝜆𝑘´1pu`q p𝛽q

ą 𝑟𝛽 , then there is some 𝑗 P 𝐽˝u` with 𝑖 ă 𝑗 ă 𝑘, 𝜆𝑗´1pu`q p𝛽q “ 𝑟𝛽 and 𝜆𝑗pu`q p𝛽q

ą 𝑟𝛽 . So 𝜌𝑗pwq p𝛽q ą 𝜌𝑗pwq p𝛼Œp𝑗qq ą 𝜌pwq p𝛼𝑗q with 𝛼Œp𝑗q traveling down. Hence

𝛼 must cross above 𝛼Œp𝑗q at some index 𝑗1 between 𝑗 and 𝑘. But 𝜆𝑗1pu`q p𝛼Œp𝑗qq ď

𝜆𝑗pu`q p𝛼Œp𝑗qq “ 𝑟𝛽 , contradicting positivity of u`. So 𝛼 and 𝛽 do not cross at any

index 𝑘 ą 𝑖.

Corollary III.21. Let 𝑖 P 𝐽`u` and write 𝑟` “ 𝑢p𝑖qpℎ𝑖q and 𝑟´ “ 𝑢p𝑖qpℎ𝑖 ` 1q. Let 𝛼 and

𝛽 be strands so that 𝛾𝑟` follows 𝛼 at some index 𝑘 ą 𝑖 and 𝛾𝑟´
follows 𝛽 at some index
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𝑘1 ą 𝑖. Then the right endpoint of 𝛼 is above the right endpoint of 𝛽.

3.4 Chamber ansatz formulas

In this section, we describe the Chamber Ansatz formulas of Marsh and Rietsch,

which generalize earlier work of Berenstein and Zelevinsky.

From Deodhar’s theorem, given a reduced expression w with distinguished

subexpression v, the Deodhar stratum 𝒟v,w is isomorphic to the product of a torus

pC˚q|𝐽˝v | and an affine space pCq|𝐽´v |, where we recall that 𝐽˝v is the set of indices 𝑖

with 𝑣
p𝑖q “ 𝑣

p𝑖´1q and 𝐽´v is the set of indices 𝑖 with 𝑣
p𝑖q ă 𝑣

p𝑖´1q. Marsh and Rietsch

give the following explicit parametrization of 𝒟v,w.

Formula III.22 (Parametrizing the Deodhar stratum 𝒟v,w[27]). Let w be a reduced

expression for 𝑤 and let v ă w. There is a bijective map from pC˚q|𝐽˝v | ˆ pCq|𝐽´v |

to 𝒟v,w given by p𝑡𝑖q𝑖P𝐽˝v ˆ p𝑚𝑖q𝑖P𝐽´v ÞÑ 𝑔𝐵` where 𝑔 is the coset representative

𝑔 “
ℓ
ź

𝑖“1

𝑔𝑖, with

𝑔𝑖 “

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

𝑦𝑖p𝑡𝑖q 𝑖 P 𝐽˝v

9𝑠𝑖 𝑖 P 𝐽`v

𝑥𝑖p𝑚𝑖q 9𝑠´1
𝑖 𝑖 P 𝐽´v

To construct the inverse map𝒟v,w Ñ pC˚q|𝐽˝v |ˆpCq|𝐽´v |, Marsh and Rietsch define

chamber ansatz formulas, where a flag 𝑔𝐵` P 𝒟v,w is sent to a point described by

ratios of minors of an upper triangular matrix 𝑧 satisfying 𝑧 9𝑤𝐵` “ 𝑔𝐵`.

To each chamberㅊ in the wiring diagram for w and v, Marsh and Rietsch

associate a minor of an upper triangular matrix 𝑧 such that flag determined by 𝑧 9𝑤 is

an element of 𝒟v,w. Rows are determined by the strands in the upper arrangement

below the region containingㅊ, while columns are determined by the strands
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underㅊ in the lower arrangement. For indices 𝑖 with 𝑖 P 𝐽`v or 𝑖 P 𝐽´v , so that

there is a crossing in the upper arrangement at index 𝑖, Marsh and Rietsch also

consider the special minor with columns taken from the chamber to the right of 𝑖

and rows taken from the region to the left of 𝑖 in the upper arrangement.

Notation III.23. We denote the minor of a matrix𝑀 with row set𝑅 and column set

𝐶 by Δ𝑅
𝐶p𝑀q. Except where otherwise specified, row indices and column indices

are taken in increasing order. When no matrix is specified, Δ𝑅
𝐶 refers to a minor of

a fixed upper triangular matrix 𝑧.

Definition III.24 (Chamber minors [27]). Label each region𝑅 in the upper arrange-

ment by the left endpoints of the strands 𝛾 under 𝑅 and label each chamberㅊ

in the lower arrangement with the left endpoints of the strands 𝛼 underㅊ. Fix

an upper triangular matrix 𝑧 with 𝑧 9𝑤𝐵` P 𝒟v,w. The standard chamber minor for a

chamberㅊ “ㅊÑp𝑖q is the minor Δ
𝑣
p𝑖q
pr1,ℎ𝑖sq

𝑤p𝑖qpr1,ℎ𝑖sq
“Δ

𝑣
p𝑖q
pr1,ℎ𝑖sq

𝑤p𝑖qpr1,ℎ𝑖sq
p𝑧q. If 𝑖 P 𝐽`v or 𝑖 P 𝐽´v ,

the special chamber minor forㅊ is the minor Δ
𝑣
p𝑖´1q

pr1,ℎ𝑖sq

𝑤p𝑖qpr1,ℎ𝑖sq
“Δ

𝑣
p𝑖´1q

pr1,ℎ𝑖sq

𝑤p𝑖qpr1,ℎ𝑖sq
p𝑧q.

Marsh and Rietsch observed that the chamber minors obey two relations, im-

plied by an identity proved by Dodgson for minors of a general matrix. We will

use the following form of Dodgson’s identity, as restated by Curtis, Ingerman and

Morrow in [6].

Formula III.25 (Dodgson’s Identity). Let 𝑀 be an 𝑛 ˆ 𝑛-matrix and let 𝑅 and 𝐶 be

subsets of r1, 𝑛s with |𝑅| “ |𝐶|. Let 𝑎, 𝑏 P 𝑅 and let 𝛼, 𝛽 P 𝐶 with 𝑎 ă 𝑏 and 𝛼 ă 𝛽.

Then

Δ𝑅
𝐶Δ

𝑅zt𝑎,𝑏u

𝐶zt𝛼,𝛽u “Δ
𝑅zt𝑎u

𝐶zt𝛼uΔ
𝑅zt𝑏u

𝐶zt𝛽u ´Δ
𝑅zt𝑎u

𝐶zt𝛽uΔ
𝑅zt𝑏u

𝐶zt𝛼u.

For each 𝑖 P 𝐽`v , the special minorΔ
𝑣
p𝑖´1q

pr1,ℎ𝑖sq

𝑤p𝑖qpr1,ℎ𝑖sq
vanishes, so that Dodgson’s iden-
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tity gives the relation

Δ
𝑣
p𝑖´1qpr1,ℎ𝑖`1sq

𝑤p𝑖´1qpr1,ℎ𝑖`1sqΔ
𝑣
p𝑖´1qpr1,ℎ𝑖´1sq

𝑤p𝑖´1qpr1,ℎ𝑖´1sq “Δ
𝑣
p𝑖´1qpr1,ℎ𝑖sq

𝑤p𝑖´1qpr1,ℎ𝑖sq
Δ

𝑣
p𝑖qpr1,ℎ𝑖sq

𝑤p𝑖qpr1,ℎ𝑖sq

for the standard chamber minors indexed by the chambersㅊÐp𝑖q,ㅊÒp𝑖q,ㅊÓp𝑖q

andㅊÑp𝑖q surrounding crossing 𝑖. Similarly, for each 𝑖 P 𝐽´v , the minorΔ
𝑣
p𝑖q
pr1,ℎ𝑖sq

𝑤p𝑖´1qpr1,ℎ𝑖sq

vanishes, so that Dodgson’s identity gives the relation

Δ
𝑣
p𝑖´1qpr1,ℎ𝑖`1sq

𝑤p𝑖´1qpr1,ℎ𝑖`1sqΔ
𝑣
p𝑖´1qpr1,ℎ𝑖´1sq

𝑤p𝑖´1qpr1,ℎ𝑖´1sq “ ´Δ
𝑣
p𝑖´1qpr1,ℎ𝑖sq

𝑤p𝑖´1qpr1,ℎ𝑖sq
Δ

𝑣
p𝑖qpr1,ℎ𝑖sq

𝑤p𝑖qpr1,ℎ𝑖sq

for the standard chamber minors indexed by the chambersㅊÐp𝑖q,ㅊÒp𝑖q,ㅊÓp𝑖q

andㅊÑp𝑖q surrounding crossing 𝑖. The negative sign comes from the condition

that 𝑣
p𝑖´1qpr1, ℎ𝑖sq ą 𝑣

p𝑖qpr1, ℎ𝑖sqwhile 𝑤p𝑖´1qpr1, ℎ𝑖sq ă 𝑤p𝑖qpr1, ℎ𝑖sq.

Definition III.26. A chamber weighting is a function Qpㅊq assigning a monomial

weight to each chamberㅊ in the wiring diagram, satisfying the following condi-

tions.

1. If 𝑖 P 𝐽`u` , then QpㅊÐp𝑖qqQpㅊÑp𝑖qq “ QpㅊÒp𝑖qqQpㅊÓp𝑖qq.

2. If 𝑖 P 𝐽´u` , then QpㅊÐp𝑖qqQpㅊÑp𝑖qq “ ´QpㅊÒp𝑖qqQpㅊÓp𝑖qq.

Formula III.27 (Chamber Ansatz [27]). Let w be a reduced expression for 𝑤 and let

v ă w. Let 𝑧 be an upper triangular matrix so that 𝑧 9𝑤𝐵` P 𝒟v,w. The inverse map

is given by

𝑧 9𝑤𝐵` ÞÑ

¨

˝

Δ
𝜆𝑖´1pvqpr1,ℎ𝑖`1sq

𝜆𝑖´1pwqpr1,ℎ𝑖`1sq
Δ

𝜆𝑖´1pvqpr1,ℎ𝑖´1sq

𝜆𝑖´1pwqpr1,ℎ𝑖´1sq

Δ
𝜆𝑖´1pvqpr1,ℎ𝑖sq

𝜆𝑖´1pwqpr1,ℎ𝑖sq
Δ

𝜆𝑖pvqpr1,ℎ𝑖sq

𝜆𝑖pwqpr1,ℎ𝑖sq

˛

‚

𝑖P𝐽˝v

ˆ

¨

˝´
Δ

𝜆𝑖´1pvqpr1,ℎ𝑖sq

𝜆𝑖´1pwqpr1,ℎ𝑖sq
Δ

𝜆𝑖pvqpr1,ℎ𝑖sq

𝜆𝑖pwqpr1,ℎ𝑖sq

Δ
𝜆𝑖´1pvqpr1,ℎ𝑖`1sq

𝜆𝑖´1pwqpr1,ℎ𝑖`1sq
Δ

𝜆𝑖´1pvqpr1,ℎ𝑖´1sq

𝜆𝑖´1pwqpr1,ℎ𝑖´1sq

´Δ
𝑣
p𝑖´1q

pr1,ℎ𝑖sq

𝑠ℎ𝑖 pr1,ℎ𝑖sq
𝑔p𝑖´1q

˛

‚

𝑖P𝐽´v

We note that if the permutation 𝑤 P S𝑛 is not the order-reversing permutation

𝑤0, there are multiple choices of 𝑧 P 𝐵` which have the same chamber minors
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Figure 3.7: Chamber weightings for the wiring diagram for the word w “ 𝑠3𝑠2𝑠1𝑠4𝑠3𝑠2𝑠4𝑠3 as a
double wiring diagram for the double Bruhat cell 𝐺𝑤,1 and as a decorated wiring di-
agram for the Deodhar stratum 𝒟v,w, where v is given by the underlined factors in
𝑠3𝑠2𝑠1𝑠4𝑠3

𝑠2𝑠4𝑠3

(see [27]). We will work with a canonical choice of 𝑧, satisfying the condition that

𝑧 9𝑤 is the renormalization of Fulton’s canonical form for flags in the Schubert cell

𝐵` 9𝑤𝐵`{𝐵` with minimal nonvanishing minors equal to 1.

Notation III.28. We write ϒ𝑢,𝑤 for the unique coset representative for a flag 𝐹 P

ℛ𝑢,𝑤 satisfying the following conditions.

1. ϒ𝑢,𝑤
𝑤pℎq,𝑗 “ 0 whenever ℎ ă 𝑗.

2. ϒ𝑢,𝑤
𝑖,𝑗 “ 0 whenever 𝑖 ą 𝑤p𝑗q.

3. Δ𝑢pr1,𝑗sq

r1,𝑗s pϒ𝑢,𝑤q “ 1.

Our canonical choice of 𝑧 is the matrix ϒ𝑢,𝑤 9𝑤´1.



CHAPTER IV

Pivots

Marsh and Rietsch’s parametrization of the Deodhar torus 𝒟u`,w uses ratios

of chamber minors which obey certain binomial equations. In Chapter V, we will

give solutions to those equations in terms of parameters 𝑋𝑗 indexed by 𝐽˝u` , which

will be the cluster variables for an initial seed. Recall that in Definition II.23, we

defined nearly positive sequences v𝑗 indexed by 𝐽˝u` , and in Corollary II.24, we

showed that the boundary divisors in Deodhar’s decomposition are of the form

𝒟vj,w, where v𝑗 satisfies the stronger condition of being a nearly positive subex-

pression. The key feature of our change of coordinates is that for each 𝑗, either the

parameter 𝑋𝑗 vanishes on precisely one boundary divisor, indexed by v𝑗 , or 𝑋𝑗 is

nonzero everywhere on ℛ𝑢,𝑤 and v𝑗 does not index a boundary divisor.We will

give a chamber weighting for the Deodhar torus so that for each divisor 𝒟vj,w, the

parameter 𝑋𝑗 divides the weighting of the chamber minors which vanish on 𝒟vj,w.

This requires understanding the relationship between the nonreduced distin-

guished subexpression v𝑗 ă w and the positive subexpression u` ă w. The goal

of this chapter is to describe the rank conditions on the boundary divisor 𝒟vj,w

in terms of rank conditions on collections of columns, which do not necessarily

correspond to chamber minors. We will first need to address the rank conditions

35
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for a general collection of columns of a matrix 𝑀 so that 𝑀𝐵` is in the opposite

Schubert cell 𝐵´ 9𝑣𝐵`{𝐵`.

Notation IV.1. Let 𝑅 and 𝑆 be sets of size 𝑘 for some 𝑘. We say that 𝑅 ď 𝑆 if 𝑅 has

elements 𝑟1 ă 𝑟2 ă ¨ ¨ ¨ ă 𝑟𝑘 and 𝑆 has elements 𝑠1 ă 𝑠2 ă ¨ ¨ ¨ ă 𝑠𝑘 with 𝑟𝑖 ď 𝑠𝑖 for

each index 𝑖 from 1 to 𝑘.

Let 𝑤 P S𝑛 and let 𝑢 ď 𝑤. Let 𝐹 “ 𝑔𝐵` be a flag in ℛ𝑢,𝑤 and let 𝑧 P 𝐵` be an

upper triangular matrix so that 𝑧 9𝑤𝐵` “ 𝐹 . Fix a reduced expression w for 𝑤. By

Deodhar’s theorem, there is a unique distinguished subexpression v𝑗 of w so that

𝑣
pℓq “ 𝑢 and for each 0 ď 𝑖 ď ℓ and 1 ď ℎ ď 𝑛, Δ

𝑣
p𝑖q
pr1,ℎsq

𝑤p𝑖qpr1,ℎsq
p𝑧q ‰ 0 and Δ𝑅

𝑤p𝑖qpr1,ℎsq
p𝑧q

“ 0 for any 𝑅 Ď r1, 𝑛swith |𝑅| “ ℎ and 𝑣
p𝑖q pr1, ℎsq ę 𝑅.

That is, for each 0 ď 𝑖 ď ℓ, the flag 𝑧 9𝑤p𝑖q𝐵` is an element of ℛ𝑣
p𝑖q

,𝑤p𝑖q .

Given a flag 𝐹 P ℛ𝑢,𝑤, there is a canonical matrix ϒ𝑢,𝑤 so that ϒ𝑢,𝑤𝐵` “ 𝐹

as elements of 𝐺{𝐵`, ϒ𝑢,𝑤 9𝑤´1 is upper triangular, and Δ
𝑢pr1,ℎsq
r1,ℎs pϒ

𝑢,𝑤q “ 1 for each

1 ď ℎ ď 𝑛.

If 𝑗 P 𝐽˝u` is an index so that the nearly positive sequence v𝑗 satisfies 𝑣𝑗

p0q“ 1, then

𝒟vj,w is nonempty and has codimension 1 in ℛ𝑢,𝑤. Since v𝑗 is defined recursively

from the formulas 𝑣𝑘
p𝑗q “ 𝑢p𝑘q for 𝑘 ě 𝑗 and 𝑣𝑗´1

p𝑗q “ 𝑢p𝑗´1q𝑠ℎ𝑗
where 𝑢p𝑗´1q ă 𝑢p𝑗´1q𝑠ℎ𝑗

,

it’s clear that ifㅊÐp𝑗q is the chamber to the west of 𝑗 so that 𝜌𝑗´1pwq pㅊÐp𝑗qq “

r1, ℎ𝑗s, the minorΔ𝑢p𝑗´1qpr1,ℎ𝑗sq

𝜆pwqpㅊÐp𝑗qq
pϒ𝑢,𝑤 9𝑤´1q “Δ

𝑢p𝑗´1qpr1,ℎ𝑗sq

r1,ℎ𝑗s

`

ϒ𝑢,𝑤 9𝑤´1 9𝑤p𝑗´1q
˘

vanishes

on 𝒟vj,w. However, the minor Δ𝑢p𝑗´1qpr1,ℎ𝑗sq

𝜆pwqpㅊÐp𝑗qq
pϒ𝑢,𝑤 9𝑤´1q can also vanish on a bound-

ary divisor 𝒟vk,w for some 𝑘 ‰ 𝑗.

We will show that for each nearly positive subexpression v𝑗 , there is a minor

Δ
p𝑅𝑗

𝜆pwqp p𝐶𝑗q
so that Δ

p𝑅𝑗

𝜆pwqp p𝐶𝑗q
vanishes on 𝒟vj,w and Δ

p𝑅𝑗

𝜆pwqp p𝐶𝑗q
is generically nonva-

nishing on 𝒟vk,w for any 𝑘 ‰ 𝑗. In general, p𝐶𝑗 need not satisfy 𝜌𝑘pwq
´

p𝐶𝑗
¯

“ r1, ℎs

for some 𝑘.
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Remark IV.2. In this chapter, we will look at minorsΔ𝑅
𝐶 as functions of 𝑛ˆ𝑛 matri-

ces 𝑀 , rather than functions defined for a flag 𝑧 9𝑤𝐵` in terms of minors of upper

triangular matrices.

Definition IV.3. Let 𝑀 be a matrix and suppose that 𝑀𝑅
𝐶 and 𝑀𝑅1

𝐶1
are square sub-

matrices of size 𝑚. If 𝑅1 ď 𝑅 and 𝐶 1 ď 𝐶, we say that 𝑀𝑅1

𝐶1
is northwest of 𝑀𝑅

𝐶 and

𝑀𝑅
𝐶 is southeast of 𝑀𝑅1

𝐶1
.

Proposition IV.4. Let 𝑅 and 𝐶 be subsets of r1, 𝑛s of size 𝑚. Suppose that there exist sets

𝑅1 ď 𝑅 and 𝐶 1 ď 𝐶 so that 𝒫p𝑣q𝑅
1

𝐶1 is an 𝑚ˆ𝑚 permutation matrix. Then the minor Δ𝑅
𝐶

is generically nonvanishing on 𝐵´ 9𝑣𝐵`. Otherwise, Δ𝑅
𝐶 vanishes identically on 𝐵´ 9𝑣𝐵`.

The following example is an illustration of the property that when a column

set 𝐶 is not an interval of the form r1, ℎs, the minor Δ𝑅
𝐶 can vanish identically on

𝐵´ 9𝑣𝐵` even when the smallest northwest block containing rows 𝑅 and columns

𝐶 has full rank.

Example IV.5. Let 𝑛 “ 4 and let 𝑣 “ 𝑠1𝑠2𝑠1. Then 𝑣 has permutation matrix and

northwest rank matrix given by

𝒫p𝑣q “

¨

˝

0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

˛

‚and NWRank p𝑣q “

¨

˝

0 0 1 1
0 1 2 2
1 2 3 3
1 2 3 4

˛

‚.

Consider the minor Δ12
14. Every northwest block containing the rows t1, 2u and

columns t1, 4u has rank at least 2. However, for all 𝑀 P 𝐵´ 9𝑣𝐵` the minorΔ12
14 van-

ishes, since the submatrix 𝑀12
1 has rank 0. We note that there is no permutation

submatrix of 𝒫p𝑣q northwest of the submatrix 𝒫p𝑣q1214. In contrast,the matrix 𝒫p𝑣q

has permutation submatrices 𝒫p𝑣q1313and 𝒫p𝑣q1223 which are in positions northwest

of Δ13
14 and Δ12

24, respectively. Although for 𝑀 “ 𝒫p𝑣q the minors Δ13
14 and Δ12

24 are

both zero, if
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𝑀 “

¨

˝

0 0 1 1
0 1 0 0
1 0 0 0
0 0 0 1

˛

‚,

then Δ13
14 p𝑀q “ Δ12

24 p𝑀q “ ´1. So the minors Δ13
14 and Δ12

24 are generically non-

vanishing on 𝐵´ 9𝑣𝐵`.

Definition IV.6. Let 𝑣 PS𝑛 and let 𝐶 be a subset of r1, 𝑛s. We define the pivots of 𝐶

with respect to 𝑣 to be the minimal set 𝑅 Ď r1, 𝑛s with |𝑅| “ |𝐶| so that 𝒫p𝑣q has a

|𝐶|ˆ |𝐶| permutation submatrix 𝒫p𝑣q𝑅
1

𝐶1
northwest of 𝒫p𝑣q𝑅

𝐶
. Write 𝑅 “ Pivots𝐶 p𝑣q.

Since the condition that there is a 1 in position p𝑟, 𝑐q in the permutation matrix

𝒫p𝑣q is equivalent to each of the statements 𝑟 “ 𝑣p𝑐q and 𝑐 “ 𝑣´1p𝑟q, the definition

may be restated as follows.

Proposition IV.7 (Minimality criterion). Let 𝑣 P S𝑛 and let 𝐶 be a subset of r1, 𝑛s.

Then Pivots𝐶 p𝑣q “ min
𝐶1ď𝐶

𝑣 p𝐶 1q “ min
𝑅Ăr1,𝑛s

𝑣´1p𝑅qď𝐶

𝑅.

Corollary IV.8 (Partial order reversing rule). Let 𝑣 PS𝑛 and let 𝐶 and 𝐷 be subsets of

r1, 𝑛swith |𝐶| “ |𝐷| and𝐶 ď 𝐷. Then Pivots𝐶 p𝑣q ě Pivots𝐷 p𝑣q and 𝑣´1 pPivots𝑐 p𝑣q q ď

𝑣´1 pPivots𝐷 p𝑣q q .

Corollary IV.9 (Sandwich rule). Suppose that 𝐶 ď 𝐷. The following are equivalent:

1. Pivots𝐶 p𝑣q “ Pivots𝐷 p𝑣q.

2. 𝑣´1pPivots𝐷 p𝑣q q ď 𝐶.

3. If 𝑣´1pPivots𝐶 p𝑣q q ď 𝑆 ď 𝐷, then 𝑣p𝑆q ď Pivots𝐶 p𝑣q .

Proposition IV.10. The set Pivots𝐶 p𝑣q gives the minimal pivots of the column set𝐶 when

generic rightward column operations are applied to the permutation matrix for 𝑣. We have

Pivots𝐶 p𝑣q ď 𝑣 p𝐶q, with equality in the special case where 𝐶 “ r1, ℎs for some ℎ.

Example IV.11. Let𝑛 “ 3 and let 𝑣 “ 𝑠1. Then Pivotst1,3u p𝑣q“ t1, 2u, since 𝑣´1pt1, 2uq “

t1, 2u ď t1, 3u.
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We can apply rightward column operations to the permutation matrix for 𝑠1 to put

columns 1 and 3 in column-echelon form with pivots in rows 1 and 2.
˜

0 1 0
1 0 0
0 0 1

¸

𝐶2`𝐶3Ñ𝐶3
ÝÝÝÝÝÝÝÑ

˜

0 1 1
1 0 0
0 0 1

¸

4.1 Pivot inequalities for subsets

Proposition IV.12. Let 𝑣 P S𝑛 and let 𝐶 and 𝐷 be subsets of r1, 𝑛s with 𝐶 Ď 𝐷. Then

Pivots𝐶 p𝑣q Ď Pivots𝐷 p𝑣q.

Proof. From a linear algebra perspective, if 𝑀 is a generic element of 𝐵´ 9𝑣𝐵`, then

Pivots𝑆 p𝑣q is the set of minimal pivots of the submatrix 𝑀 r1,𝑛s
𝑆 under downward

row operations. If 𝐶 Ď 𝐷, then 𝑀 r1,𝑛s
𝐶 is a submatrix of 𝑀 r1,𝑛s

𝐷 , so the minimal pivots

of 𝑀 r1,𝑛s
𝐶 are a subset of the minimal pivots of 𝑀 r1,𝑛s

𝐷 .

Definition IV.13. Let 𝑣 PS𝑛 and let 𝐶 be a subset of r1, 𝑛s. Write 𝐶 “ 𝑐1ă ¨ ¨ ¨ ă𝑐𝑚.

The ordered pivots of 𝐶 with respect to 𝑣 are given by 𝑟1, ¨ ¨ ¨ , 𝑟𝑚, where 𝑟𝑖`1 is the

unique element of Pivots𝑐1,¨¨¨ ,𝑐𝑖`1
p𝑣q z Pivots𝑐1,¨¨¨ ,𝑐𝑖 p𝑣q.

Proposition IV.14 (Partition property). Suppose that 𝑎, 𝑏 P Pivots𝐶 p𝑣q with 𝑎 ă 𝑏.

Then there is some 𝐶 1 Ă 𝐶 with 𝑎 P Pivots𝐶 p𝑣q and 𝑏 R Pivots𝐶 p𝑣q.

Proof. Write 𝐶 “ 𝑐1ă ¨ ¨ ¨ ă𝑐𝑚 and let 𝑟1, ¨ ¨ ¨ , 𝑟𝑚 be the ordered pivots of 𝐶. Take

𝐶 1 “ t𝑐𝑖 : 𝑟𝑖 ă 𝑏u. Then Pivots𝐶1 p𝑣q “ t𝑟𝑖 : 𝑟𝑖 ă 𝑏u, which contains 𝑎 and does not

contain 𝑏.

In the next few propositions, we derive several inequalities relating pivots of

sets 𝐶 Ď 𝐷.

Proposition IV.15 (Bubble sort property1). Let 𝑣 P S𝑛 and let 𝐶 “ 𝑐1ă ¨ ¨ ¨ ă𝑐ℓ and
1Bubble sort is a sorting algorithm in which larger elements in an array gradually “bubble” to the right via a series of

swaps, notorious for being neither efficient nor intuitive.
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𝐷 “ 𝑑1ă ¨ ¨ ¨ ă𝑑𝑚 be subsets of r1, 𝑛s with 𝐶 Ď 𝐷. Write 𝑟1, ¨ ¨ ¨ , 𝑟ℓ for the ordered pivots

of 𝐶 and write 𝑡1, ¨ ¨ ¨ , 𝑡𝑚 for the ordered pivots of 𝐷. If 𝑐𝑖 “ 𝑑𝑗 , then 𝑟𝑖 ď 𝑡𝑗 .

Proof. Since 𝑟𝑖 and 𝑡𝑗 depend only on 𝑐1ă ¨ ¨ ¨ ă𝑐𝑖 and 𝑑1ă ¨ ¨ ¨ ă𝑑𝑗 , we may assume

𝑖 “ ℓ and 𝑗 “ 𝑚. By induction on |𝐷z𝐶|, we may assume that 𝐶 “ 𝐷zt𝑑𝑗u for some

𝑗, so that 𝑐𝑖 “ 𝑑𝑖 for 𝑖 ă 𝑗 and 𝑐𝑖 “ 𝑑𝑖`1 for 𝑖 ě 𝑗.

For each 𝑖 ě 𝑗, write 𝑡𝑖 for the unique element of Pivots𝑑1,¨¨¨ ,𝑑𝑖 p𝑣q z Pivots𝑐1,¨¨¨ ,𝑐𝑖´1
p𝑣q.

Since Pivots𝑐1,¨¨¨ ,𝑐𝑖´1
p𝑣q Ă Pivots𝑐1,¨¨¨ ,𝑐𝑖 p𝑣q Ă Pivots𝑑1,¨¨¨ ,𝑑𝑖`1

p𝑣q “ Pivots𝑐1,¨¨¨ ,𝑐𝑖´1
p𝑣q Y

t𝑡𝑖, 𝑡𝑖`1u. By minimality of ordered pivots, 𝑟𝑖 “ mint𝑡𝑖, 𝑡𝑖`1u, so that in particular

𝑟ℓ ď 𝑡ℓ`1.

Corollary IV.16. Let 𝑣 P S𝑛 and let 𝐶 “ 𝑐1, ¨ ¨ ¨ , 𝑐𝑚 be a subset of r1, 𝑛s. Let 𝑏 be the

unique element of Pivots𝐶 p𝑣q z Pivots𝐶zt𝑐𝑗u p𝑣q. Then 𝑏 “ maxt𝑟𝑘 : 𝑘 ě 𝑗u.

Corollary IV.17. Let 𝑣 P S𝑛 and let 𝐶 and 𝐷 be subsets of r1, 𝑛s with 𝐶 Ď 𝐷. Let

𝛼 be an element of 𝐶, and let Pivots𝐷 p𝑣q z Pivots𝐷zt𝛼u p𝑣q “ t𝑏u. Then Pivots𝐶 p𝑣q ď

Pivots𝐶zt𝛼u p𝑣q Y t𝑏u.

Proof. It’s equivalent to show that if 𝑎 is the unique element of Pivots𝐶 p𝑣q zPivots𝐶z𝛼 p𝑣q,

then 𝑎 ď 𝑏. Write 𝑟1, ¨ ¨ ¨ , 𝑟ℓ for the ordered pivots of 𝐶 and write 𝑡1, ¨ ¨ ¨ , 𝑡𝑚 for the

ordered pivots of 𝐷. We have 𝑎 “ maxt𝑟𝑗 : 𝑐𝑗 ě 𝛼u and 𝑏 “ maxt𝑡𝑘 : 𝑑𝑘 ě 𝛼u.

Given 𝑗 and 𝑘 with 𝑐𝑗 “ 𝑑𝑘 we have 𝑟𝑗 ď 𝑡𝑘; since t𝑐𝑗 ě 𝛼u Ď t𝑑𝑘 ě 𝛼u, it follows

that maxt𝑟𝑗 : 𝑐𝑗 ě 𝛼u ď maxt𝑡𝑘 : 𝑑𝑘 ě 𝛼u.

4.2 Elementary transpositions and pivots

Let 𝑠ℎ be an elementary transposition. Then 𝑠ℎ acts on subsets of r1, 𝑛s by ex-

changing the letters ℎ and ℎ` 1 and on elements of S𝑛 by right multiplication. In

this section, we consider how pivots can change when a transposition 𝑠ℎ acts on

the index 𝐶, the permutation 𝑣, or both simultaneously.
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Lemma IV.18. Let 𝑣 ă 𝑣𝑠ℎ and let 𝐶 “ 𝑐1ă ¨ ¨ ¨ ă𝑐𝑚 be any collection of indices. Then the

following hold:

1. Pivots𝐶 p𝑣q “ Pivots𝑠ℎp𝐶q p𝑣q.

2. Pivots𝐶 p𝑣q ď Pivots𝐶 p𝑣𝑠ℎq, with equality if ℎ R 𝐶 or ℎ ` 1 P 𝐶.2 If Pivots𝐶 p𝑣q ‰

Pivots𝐶 p𝑣𝑠ℎq, then they differ by exactly one element.

Proof. We will use the criterion Pivots𝐶 p𝑣q“ min
𝐶1ď𝐶

𝑣p𝐶 1q. Write𝐶 1 for the set 𝑣´1pPivots𝐶 p𝑣q q.

Consider the action of 𝑠ℎ on the sets 𝐶 and 𝐶 1.

Since 𝑠ℎ is the transposition that swaps ℎ and ℎ ` 1, 𝑠ℎ acts nontrivially on a set

𝑆 Ď r1, 𝑛s if and only if 𝑆 contains exactly one of the indices ℎ and ℎ ` 1; we have

𝑠ℎp𝑆q ą 𝑆 if ℎ P 𝑆 and ℎ` 1 R 𝑆, 𝑠ℎp𝑆q ă 𝑆 if ℎ R 𝑆 and ℎ` 1 P 𝑆.

First, we show that if ℎ` 1 P 𝐶 1, then ℎ P 𝐶 1, so that 𝐶 1 ď 𝑠ℎp𝐶
1q.

Suppose to the contrary that 𝑠ℎp𝐶
1q “ 𝐶 1ztℎ ` 1u Y tℎu. By transitivity, 𝑠ℎ p𝐶

1q ă

𝐶 1 ď 𝐶. Since 𝑣 ă 𝑣𝑠ℎ and 𝑣pℎq ă 𝑣pℎ ` 1q are equivalent conditions, this implies

that 𝑣 p𝑠ℎ p𝐶
1qq ă 𝑣 p𝐶 1q, contradicting the minimality of 𝑣p𝐶 1q.

We claim that 𝐶 1 ď 𝑠ℎ p𝐶q.

If 𝐶 ď 𝑠ℎ p𝐶q , then 𝐶 1 ď 𝑠ℎ p𝐶q by transitivity.

Suppose that 𝑠ℎp𝐶q ă 𝐶. Then ℎ ` 1 P 𝐶 and ℎ R 𝐶. Let 𝑖 be the index of ℎ ` 1

in 𝐶, so that #t𝑐 P 𝐶 : 𝑐 ă ℎu “ 𝑖 ´ 1. Since 𝐶 1 ď 𝐶, we must have #t𝑐1 P 𝐶 1 : 𝑐1 ă

ℎu ě 𝑖 ´ 1 and #t𝑐1 P 𝐶 1 : 𝑐1 ď ℎ ` 1u ě 𝑖. Combining this with the condition that

if ℎ` 1 P 𝐶 1, then ℎ P 𝐶 1, we obtain that 𝐶 1 has at least 𝑖 elements 𝑐1 with 𝑐1 ď ℎ. So

𝐶 1 ď 𝑠ℎ p𝐶q.

Next, we apply these two inequalities to deduce the statements in the lemma.
2This condition is sufficient but not necessary; in particular if there is at least one ℎ1 ă ℎ with 𝑣pℎ1q ă 𝑣pℎq, then

Pivots𝐶 p𝑣q “ Pivots𝐶 p𝑣𝑠ℎq.
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1. Since 𝐶 1 ď 𝑠ℎ p𝐶q, it suffices to show that if 𝑆 ď 𝑠ℎ p𝐶q then 𝑣p𝑆q ď 𝑣p𝐶 1q.

Suppose 𝑆 ď 𝑠ℎ p𝐶q. If 𝑆 ď 𝐶, then 𝑣p𝐶 1q ď 𝑣p𝑆q by choice of 𝐶 1. Otherwise,

we must have ℎ ` 1 P 𝑆 and ℎ ` 1 R 𝐶, so that 𝑠ℎp𝑆q ă 𝑆 and 𝑠ℎp𝑆q ď 𝐶.

Since 𝑣pℎq ă 𝑣pℎ` 1q, this gives 𝑣p𝐶 1q ď 𝑣p𝑠ℎ p𝑆qq ă 𝑣p𝑆q. By Proposition IV.7,

𝑣p𝐶 1q “ Pivots𝑠ℎp𝐶q p𝑣q.

2. Let 𝑆 Ď r1, 𝑛s be a set with 𝑆 ď 𝐶. Since 𝑠ℎ is an involution, we have 𝑣𝑠ℎp𝑠ℎp𝑆qq

“ 𝑣p𝑆q. If 𝑠ℎ p𝑆q ď 𝐶, then Proposition IV.7 implies that 𝑣𝑠ℎp𝑆q “ 𝑣p𝑠ℎ p𝑆qq “

ě 𝑣p𝐶 1q. If 𝑠ℎp𝑆q ď 𝐶, then we must have 𝑠ℎ p𝑆q “ 𝑆ztℎu Y tℎ ` 1u so that in

particular 𝑣𝑠ℎp𝑆q “ 𝑣p𝑆ztℎu Y tℎ` 1uq ą 𝑣p𝑆q ě 𝑣p𝐶 1q. Since for any 𝑆 ď 𝐶 we

have 𝑣𝑠ℎp𝑆q ě 𝑣p𝐶 1q, min
𝑆ď𝐶

𝑣𝑠ℎ p𝑆q ě 𝑣p𝐶 1q “ Pivots𝐶 p𝑣q. Suppose that ℎ R 𝐶 or

ℎ ` 1 P 𝐶. We claim that 𝑠ℎp𝐶
1q ď 𝐶. If 𝑠ℎp𝐶

1q “ 𝐶 1, this is clear. Otherwise,

we must have ℎ P 𝐶 1 and ℎ` 1 R 𝐶 1 with 𝑠ℎ p𝐶
1q “ 𝐶 1ztℎu Y tℎ` 1u. If ℎ R 𝐶,

then for any 𝑐 P 𝐶 with ℎ ď 𝑐 we have ℎ ` 1 ď 𝑐, so that 𝑠ℎ p𝐶
1q ď 𝐶. If ℎ

and ℎ ` 1 are both elements of 𝐶, write 𝑖 for the index of ℎ ` 1 in 𝐶. Since

there are at least 𝑖 elements 𝑐1 in 𝐶 1 satisfying 𝑐1 ď ℎ ` 1 and ℎ ` 1 R 𝐶 1, we

must have #t𝑐1 P 𝐶 1 : 𝑐1 ă ℎu ě 𝑖 ´ 1. So #t𝑐1 : 𝑠ℎ p𝑐
1q ď ℎu ě 𝑖 ´ 1 and

#t𝑐1 : 𝑠ℎ p𝑐
1q ď ℎ` 1u ě 𝑖, and hence 𝑠ℎ p𝐶

1q ď 𝐶.

Corollary IV.19. Let 𝑣 and 𝑤 be elements of S𝑛 and let 𝑠ℎ1
¨ ¨ ¨ 𝑠ℎℓ

be a reduced word for

𝑤. Suppose that for each 1 ď 𝑖 ď ℓ we have 𝑣 ă 𝑣𝑠ℎ𝑖
. Then the action of 𝑤 on column

indices fixes pivots: for each 𝐶 Ď r1, 𝑛s, Pivots𝑤´1p𝐶q p𝑣q “ Pivots𝐶 p𝑣q.

Example IV.20. Let 𝑛 “ 3 and let 𝑣 and 𝑤 be the permutations 𝑣 “ 𝑠1 and 𝑤 “ 𝑠2𝑠1,

so that 𝑣 has permutation matrix

𝒫p𝑣q “

˜

0 1 0
1 0 0
0 0 1

¸

.
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Consider the set 𝐶 “ t1u. Then Pivots𝐶 p𝑣q “ t𝑣p1qu “ t2u, while Pivots𝑤´1p𝐶q p𝑣q

“ Pivotst2u p𝑣q “ t1u. This does not contradict our corollary since 𝑠2 is a factor of 𝑤

with 𝑣𝑠2 “ 𝑠2𝑠2 “ 1 ă 𝑣.

We remark that ℓ
`

𝑣𝑠ℎ1
¨ ¨ ¨ 𝑠ℎ𝑖

˘

“ ℓ p𝑣q ` 𝑖 for each 1 ď 𝑖 ď ℓ is not a sufficient

condition for the action of 𝑤 on column indices to preserve pivots.

Corollary IV.21. Pivots𝐶 p𝑣q ď Pivots𝑠ℎp𝐶q p𝑣𝑠ℎq, with equality if ℎ` 1 R 𝐶 or ℎ P 𝐶. If

Pivots𝐶 p𝑣q ‰ Pivots𝑠ℎp𝐶q p𝑣𝑠ℎq, then they differ by exactly one element.

Proof. We have Pivots𝐶 p𝑣q “ Pivots𝑠ℎp𝐶q p𝑣q ď Pivots𝑠ℎp𝐶q p𝑣𝑠ℎq. Since the transpo-

sition 𝑠ℎ swaps ℎ and ℎ ` 1, the index ℎ P 𝐶 if and only if ℎ ` 1 P 𝑠ℎ p𝐶q, while

the index ℎ ` 1 P 𝐶 if and only if ℎ P 𝑠ℎ p𝐶q , so that equality holds if ℎ ` 1 R 𝐶 or

ℎ P 𝐶.

Proposition IV.22 (Ordered pivot criterion). Let 𝑣 ă 𝑣𝑠ℎ and let 𝐶 “ 𝑐1ă ¨ ¨ ¨ ă𝑐𝑚 be

a subset of r1, 𝑛s such that ℎ P 𝐶 and ℎ ` 1 R 𝐶, and let 𝑖 be the index of ℎ. Write 𝑅 “

𝑟1, ¨ ¨ ¨ , 𝑟𝑚 for the ordered pivots of 𝐶. The following are equivalent:

1. Pivots𝐶 p𝑣𝑠ℎq ‰ Pivots𝐶 p𝑣q

2. p𝑣𝑠ℎq
´1p𝑅q ď 𝐶.

3. 𝑟𝑖 “ 𝑣pℎq and 𝑣´1p𝑟𝑗q ą ℎ` 1 for all 𝑗 ą 𝑖.

4. 𝑣pℎ` 1q R 𝑅 and |𝑅 X 𝑣pr1, ℎsq| “ 𝑖.

5. Pivots𝑐1,¨¨¨ ,𝑐𝑖 p𝑣𝑠ℎq Ę Pivots𝐶 p𝑣q.

Proof. Since 𝑣 ă 𝑣𝑠ℎ, Pivots𝐶 p𝑣𝑠ℎq ě Pivots𝐶 p𝑣q, with strict inequality if and only if

p𝑣𝑠ℎq
´1p𝑅q ď 𝐶. Given a set 𝑆 “ 𝑠1ă ¨ ¨ ¨ ă𝑠𝑚, we have 𝑆 ď 𝐶 if and only for some

index 𝑗 we have 𝑠𝑗 ą 𝑐𝑗 , which is equivalent to the condition #t𝑠 P 𝑆 : 𝑠 ď 𝑐𝑗u ă 𝑗.
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For any 𝑐 R tℎ, ℎ` 1u and any 𝑟, we have p𝑣𝑠ℎq
´1p𝑟q ď 𝑐 if and only if 𝑣´1p𝑟q ď 𝑐;

hence, if 𝑐𝑗 ‰ ℎ, then #t𝑟 P 𝑅 : p𝑣𝑠ℎq
´1p𝑟q ď 𝑐𝑗u “ #t𝑟 P 𝑅 : 𝑣´1p𝑟𝑗q ď 𝑐𝑗u ě 𝑗.

Since p𝑣𝑠ℎq
´1p𝑟q ď ℎ if and only if either 𝑣´1p𝑟q ă ℎ or 𝑟 “ 𝑣pℎ ` 1q, we have

𝑅 X 𝑣𝑠ℎ pr1, ℎsq “ 𝑅 X 𝑣 pr1, ℎ´ 1sq Y p𝑅 X t𝑣pℎ ` 1quq “ p𝑅 X 𝑣 pr1, ℎsqqzt𝑣pℎqu Y

p𝑅 X t𝑣pℎ ` 1quq. Since p𝑣𝑠ℎq
´1p𝑟𝑗q ă ℎ for 𝑗 ă 𝑖, the set |𝑅 X 𝑣𝑠ℎpr1, ℎsq| ă 𝑖 if and

only if |𝑅X 𝑣pr1, ℎ´ 1sq| “ 𝑖´ 1 and 𝑣pℎ` 1q R 𝑅. Since Pivots𝑐1,¨¨¨ ,𝑐𝑖 p𝑣𝑠ℎq is a set of

size 𝑖 contained in 𝑣pr1, ℎsq, this implies that Pivots𝑐1,¨¨¨ ,𝑐𝑖 p𝑣𝑠ℎq Ę 𝑅.

Corollary IV.23. Suppose that Pivots𝐶 p𝑣𝑠ℎq‰Pivots𝐶 p𝑣q and Pivots𝐶𝛼 p𝑣𝑠ℎq“Pivots𝐶𝛼 p𝑣q.

Then 𝛼 ą ℎ.

Proof. Write 𝐶 “ 𝑐1ă ¨ ¨ ¨ ă𝑐𝑚 and write 𝑅 “ 𝑟1, ¨ ¨ ¨ , 𝑟𝑚 for the ordered pivots of 𝐶.

Write Pivots𝐶𝛼 p𝑣q “𝑅𝑎. Then we must have Pivots𝐶 p𝑣𝑠ℎq “𝑅zt𝑟´uYt𝑎u for some

𝑟´ ă 𝑎. Write ℎ “ 𝑐𝑖. Then 𝑟𝑖 “ 𝑣pℎq and 𝑣´1p𝑟𝑗q ą ℎ` 1 for all 𝑗 ą 𝑖.

Suppose that 𝛼 ă ℎ. The Pivotsp𝐶𝛼qXr1,ℎs p𝑅q is a set of size 𝑖 ` 1 contained in

𝑅𝑎Xpr1, ℎsq. Since |𝑅X𝑣pr1, ℎsq| “ 𝑖, we must have 𝑣´1p𝑎q ă ℎ, so that in particular

𝑅𝑎 does not contain 𝑣pℎ` 1q and |𝑅𝑎X 𝑣pr1, ℎsq| “ 𝑖` 1, which is the index of ℎ in

𝐶𝛼. Hence Pivots𝐶𝛼 p𝑣𝑠ℎq ‰ Pivots𝐶𝛼 p𝑣q, a contradiction.

Definition IV.24. Let 𝑣 ă 𝑣𝑠ℎ. We define the jump set of 𝑣 and 𝑠ℎ to be

𝒥 p𝑣, 𝑠ℎq “ t𝐶 Ă r1, 𝑛s : Pivots𝐶 p𝑣𝑠ℎq ą Pivots𝐶 p𝑣q u.

Lemma IV.25. Let 𝑣 P S𝑛 with 𝑣 ă 𝑣𝑠ℎ. Let 𝐶 be a subset of r1, 𝑛s and suppose that

𝛼 ă 𝛽 are elements of r1, 𝑛s z 𝐶 with Pivots𝐶𝛼 p𝑣q ‰ Pivots𝐶𝛽 p𝑣q. Then

|𝒥 p𝑣, 𝑠ℎq X t𝐶,𝐶𝛼𝛽u| “ |𝒥 p𝑣, 𝑠ℎq X t𝐶𝛼,𝐶𝛽u|.

Proof. Write 𝐽 for the set 𝒥 p𝑣, 𝑠ℎq X t𝐶,𝐶𝛼,𝐶𝛽,𝐶𝛼𝛽u.

We will show that if 𝑃 is one of the sets t𝐶,𝐶𝛼𝛽u and t𝐶𝛼,𝐶𝛽u, then 𝑃 X 𝐽 “ H
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implies that 𝐽 “ H and 𝑃 Ď 𝐽 implies that 𝐽 “ t𝐶,𝐶𝛼,𝐶𝛽,𝐶𝛼𝛽u.

Let𝑅 “ Pivots𝐶 p𝑣q. Since Pivots𝐶𝛼 p𝑣q ‰Pivots𝐶𝛽 p𝑣q, we must have Pivots𝐶𝛼 p𝑣q

“ 𝑅𝑎 and Pivots𝐶𝛽 p𝑣q “ 𝑅𝑏 for some 𝑎, 𝑏 R 𝑅 with 𝑎 ‰ 𝑏. By the order-reversing

property, 𝐶𝛼 ă 𝐶𝛽 implies that 𝑅𝑎 ě 𝑅𝑏, and so 𝑎 ą 𝑏. Since 𝐶𝛼 and 𝐶𝛽 are sub-

sets of 𝐶𝛼𝛽, Pivots𝐶𝛼𝛽 p𝑣qmust contain 𝑅𝑎 and 𝑅𝑏, so by cardinality Pivots𝐶𝛼𝛽 p𝑣q

“ 𝑅𝑎𝑏.

Suppose that Pivots𝐶 p𝑣𝑠ℎq “ 𝑅 and Pivots𝐶𝛼𝛽 p𝑣𝑠ℎq “ 𝑅𝑎𝑏. By the containment

property,𝑅 Ă Pivots𝐶𝛼 p𝑣𝑠ℎq Ă 𝑅𝑎𝑏. Since𝑅𝑎 ą 𝑅𝑏 and Pivots𝐶𝛼 p𝑣𝑠ℎqěPivots𝐶𝛼 p𝑣𝑠ℎq

“𝑅𝑎, we must have Pivots𝐶𝛼 p𝑣𝑠ℎq “𝑅𝑎. Since p𝑣𝑠ℎq
´1p𝑅q ď 𝐶 and p𝑣𝑠ℎq

´1p𝑅𝑎𝑏q ď

𝐶𝛼𝛽, we must have p𝑣𝑠ℎq
´1p𝑅𝑏q ď maxt𝐶𝛼,𝐶𝛽u “ 𝐶𝛽. So Pivots𝑣𝑠ℎ p𝐶𝛽q ď 𝑅𝑏 “

Pivots𝑣 p𝐶𝛽q ď Pivots𝑣𝑠ℎ p𝐶𝛽q .

Suppose that Pivots𝐶𝛼 p𝑣𝑠ℎq “ 𝑅𝑎 and Pivots𝐶𝛽 p𝑣𝑠ℎq “ 𝑅𝑏. By the containment

property, Pivots𝐶 p𝑣𝑠ℎq Ď𝑅𝑎X𝑅𝑏 “ 𝑅 and𝑅𝑎𝑏 Ď Pivots𝐶𝛼𝛽 p𝑣𝑠ℎq , so by cardinality

it follows that Pivots𝐶 p𝑣𝑠ℎq “ 𝑅 and Pivots𝐶𝛼𝛽 p𝑣𝑠ℎq “ 𝑅𝑎𝑏.

Suppose now that 𝐽 is nonempty and contains one of the pairs t𝐶,𝐶𝛼𝛽u or

t𝐶𝛼,𝐶𝛽u. By the ordered pivot criterion, this implies that both elements of the

pair contain ℎ but not ℎ ` 1 and have pivots containing 𝑣pℎq but not 𝑣pℎ ` 1q. In

particular, ℎ P 𝐶 and ℎ ` 1 R 𝐶𝛼𝛽, while 𝑣pℎq P 𝑅𝑎𝑏 and 𝑣pℎ ` 1q R 𝑅𝑎𝑏. Let 𝑖 be

the index of ℎ in 𝐶. Since 𝛼, 𝛽 R 𝐶, neither of them is equal to ℎ. By hypothesis,

𝛼 ă 𝛽. So there are three possible orderings of the indices tℎ, 𝛼, 𝛽u, distinguished

by whether the index ℎ is added at the beginning, middle or end.

If ℎ ă 𝛼 ă 𝛽, then for any 𝐷 P t𝐶,𝐶𝛼,𝐶𝛽,𝐶𝛼𝛽u, the smallest 𝑖 elements of

𝐷 are 𝑐1, ¨ ¨ ¨ , 𝑐𝑖 with 𝑐𝑖 “ ℎ, so that Pivots𝑐1,¨¨¨ ,𝑐𝑖 p𝑣𝑠ℎq Ď Pivots𝐷 p𝑣𝑠ℎq. By the or-

dered pivot criterion, if t𝐶,𝐶𝛼𝛽u Ă 𝐽 , then Pivots𝑐1,¨¨¨ ,𝑐𝑖 p𝑣𝑠ℎq Ę 𝑅 Y 𝑅𝑎𝑏 “ 𝑅𝑎𝑏

and if t𝐶𝛼,𝐶𝛽u Ă 𝐽 then Pivots𝑐1,¨¨¨ ,𝑐𝑖 p𝑣𝑠ℎq Ę 𝑅𝑎 Y 𝑅𝑏 “ 𝑅𝑎𝑏. In particular,
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Pivots𝑐1,¨¨¨ ,𝑐𝑖 p𝑣𝑠ℎq Ę Pivots𝐷 p𝑣q Ď 𝑅𝑎𝑏, and hence Pivots𝐷 p𝑣𝑠ℎq ‰ Pivots𝐷 p𝑣q.

If 𝛼 ă ℎ ă 𝛽, then ℎ has index 𝑖 in 𝐶 and 𝐶𝛽 and has index 𝑖`1 in 𝐶𝛼 and 𝐶𝛼𝛽.

By the ordered pivot condition, 𝐶 and 𝐶𝛼𝛽 are in 𝐽 if and only if |𝑅X𝑣 pr1, ℎsq | “ 𝑖

and |𝑅𝑎𝑏X𝑣 pr1, ℎsq | “ 𝑖`1, while 𝐶𝛽,𝐶𝛼 are in 𝐽 if and only if |𝑅𝑏X𝑣 pr1, ℎsq | “ 𝑖

and |𝑅𝑎X 𝑣 pr1, ℎsq | “ 𝑖` 1, which are equivalent conditions.

If 𝛼 ă 𝛽 ă ℎ, then ℎ has index 𝑖 in 𝐶, index 𝑖 ` 1 in 𝐶𝛼 and 𝐶𝛽 and index

𝑖 ` 2 in 𝐶𝛼𝛽. So 𝐶 and 𝐶𝛼𝛽 are in 𝐽 if and only if |𝑅 X 𝑣 pr1, ℎsq | “ 𝑖 and |𝑅𝑎𝑏 X

𝑣 pr1, ℎsq | “ 𝑖 ` 2, while 𝐶𝛼 and 𝐶𝛽 are in 𝐽 if and only if |𝑅𝑎 X 𝑣 pr1, ℎsq | “ 𝑖 ` 1

and |𝑅𝑏X 𝑣 pr1, ℎsq | “ 𝑖` 1; these conditions are equivalent.

4.3 Pivots and unipeak wiring diagrams

Proposition IV.26. Let w correspond to a unipeak diagram for 𝑤 and let u` be a positive

subexpression of w. Let 𝐶 be a collection of strands and let 𝛼 be a strand with 𝜌𝑗pwq p𝛼q

increasing for 𝑗 ď 𝑘. Let 𝑖 ď 𝑘 be some index and write 𝑅 “ Pivots𝜌𝑖pwqp𝐶q p𝑢p𝑖qq . If

𝜆𝑖pu`q p𝛼q R 𝑅, then 𝜆𝑗pu`q p𝛼q R 𝑅 for any 𝑖 ď 𝑗 ď 𝑘.

Proof. Write 𝑟𝛼 “ 𝜆𝑖pu`q p𝛼q. By Proposition IV.7, if 𝑟 P 𝑅 with 𝜌𝑖pwq p𝛼q ă 𝑢´1
p𝑖q p𝑟q,

then 𝑟 ă 𝑟𝛼 . Since 𝜆𝑗pu`q p𝛼q is weakly increasing for 𝑗 ď 𝑘 and u` is a positive

subexpression, 𝛼 cannot cross above any strand 𝛽 with 𝜆𝑗pu`q p𝛽q P𝑅 before reach-

ing its peak.

Proposition IV.27. Let 𝐶 be a collection of strands and let 𝛽 be a strand so that 𝜌𝑗pwq p𝛽q

is weakly decreasing for 𝑗 ě 𝑖. Write𝑅 “ Pivots𝐶 p𝑢p𝑖qq. If 𝜆𝑖pu`q p𝛽q P𝑅, then 𝜆𝑗pu`q p𝛽q

P 𝑅 for any 𝑗 ě 𝑖.

Proof. Write 𝑟𝛽 “ 𝜆𝑖pu`q p𝛽q . By positivity of u`, if 𝛽 crosses below a strand 𝛼 at

an index 𝑗 ` 1 ą 𝑖, then 𝜆𝑗pu`q p𝛼q ă 𝜆𝑗pu`q p𝛽q ď 𝜆𝑖pu`q p𝛽q. Let 𝑟 “ 𝜆𝑗pu`q p𝛼q.

Since u` is a positive word, we must have 𝑢´1
p𝑖q p𝑟q ă 𝜌𝑖pwq p𝛽q . By Proposition IV.7,
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since 𝑟𝛽 P Pivots𝐶 p𝑢p𝑖qq and 𝑟 ă 𝑟𝛽 with 𝑢´1
p𝑖q p𝑟q ă 𝑢´1

p𝑖q p𝑟𝛽q, we must have 𝑟 P

Pivots𝐶 p𝑢p𝑖qq .

Corollary IV.28 (Pivot stabilization criterion). Let 𝐶 be a collection of strands and let

𝑅 “ Pivots𝐶 p𝑢p𝑖qq . Suppose that 𝐶 satisfies the following closure property: If 𝑗 ě 𝑖 and

𝜆𝑗pu`q p𝛼q P 𝑅, then either 𝛼 P 𝐶 or 𝛼 is traveling down. Then Pivots𝐶 p𝑢p𝑗qq “ 𝑅 for all

𝑗 ě 𝑖.

Definition IV.29. Fix a reduced expression w for 𝑤 with positive subexpression

u`. Let 𝑗 P 𝐽˝u` . The jump chambers of 𝑗 are given by

JCp𝑗q “ tㅊ a chamber in the wiring diagram : 𝜌𝑗´1
pwq pㅊq P 𝒥

`

𝑢p𝑗´1q, 𝑠ℎ𝑗

˘

u.

Definition IV.30. The closure of JCp𝑗q, denoted JCp𝑗q, is the union of the chambers

JCp𝑗q and the strand segments surrounding each of them.

A strand segment 𝑒 between two crossings is adjacent to exactly two chambers,

one above 𝑒 and one below 𝑒.

Definition IV.31. We say that a strand 𝛼 or geodesic path intersects JCp𝑗q if it con-

tains a strand segment 𝑒 which is adjacent to a chamber in JCp𝑗q.

Definition IV.32. The strand segment 𝑒 belongs to the boundary BJCp𝑗q if exactly

one of the adjacent chambers is in JCp𝑗q. The upper boundary of JCp𝑗q, denoted

BÒJCp𝑗q, is the union of all strand segments 𝑒 so that the chamber below 𝑒 is in

JCp𝑗q and the chamber above 𝑒 is not in JCp𝑗q. The lower boundary BÓJCp𝑗q is the

union of strand segments 𝑒 so that the chamber below 𝑒 is not in JCp𝑗q and the

chamber above 𝑒 is in JCp𝑗q. A geodesic path 𝛾𝑟 is an upper boundary geodesic if it

contains a strand segment 𝑒 P BÒJCp𝑗q; 𝛾𝑟 is a lower boundary geodesic if it contains

a strand segment 𝑒 P BÓJCp𝑗q.



48

4.4 The geometry of the region JCp𝑗q in a unipeak wiring diagram

Our goal for this section is to describe the region in a unipeak wiring diagram

consisting of the chambers JCp𝑗q and the strand segments bounding or intersect-

ing them. We will show that whenever the nearly positive sequence v𝑗 is a dis-

tinguished subexpression, there is a simple closed cycle BJCp𝑗q so that a chamber

ㅊ belongs to JCp𝑗q if and only if it is in the interior of BJCp𝑗q. The region JCp𝑗q

is bounded on the right by the descending strand 𝛼Œp𝑗q and the ascending strand

𝛼Õp𝑗q. Each strand segment on BJCp𝑗q can be classified as either belonging to the

upper boundary BÒJCp𝑗q or belonging to the lower boundary BÓJCp𝑗q, where upper

and lower boundary segments follow disjoint collections of strands. We will show

that for each chamberㅊ in JCp𝑗q, the set of pivots of 𝜌𝑗´1pwq pㅊq with respect

to the permutations 𝑢p𝑗´1q and 𝑣𝑗

p𝑗´1q differ by indices 𝑟´ and 𝑟` so that the geodesic

path 𝛾𝑟´
follows a portion of BÓJCp𝑗q, travels underㅊ in JCp𝑗q and eventually

crosses above the strand 𝛼Œp𝑗q, while the geodesic path 𝛾𝑟` follows a portion of

BÒJCp𝑗q, travels overㅊ, and eventually crosses below 𝛼Õp𝑗q.

We begin by showing that every chamber in JCp𝑗q is bounded from the right, and

that the condition that every chamber in JCp𝑗q is bounded from the left is equiva-

lent to the condition that the nearly positive sequence v𝑗 is a distinguished subex-

pression of w (so that v𝑗 indexes a Deodhar hypersurface). Intuitively, chambers

which are open on the right correspond to left-justified minors of the flag, which

must have the upper rank conditions corresponding to 𝐵´ 9𝑢𝐵`{𝐵`, while cham-

bers which are open on the left correspond to left-justified minors of an invertible

upper triangular matrix, and hence the principal minors must be nonvanishing.

Proposition IV.33. Fix a reduced expression w for 𝑤 with positive subexpression u`. Let
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𝑗 P 𝐽˝u` . Then the following hold:

1. Ifㅊ P JCp𝑗q, thenㅊ “ㅊÐp𝑖q for some 𝑖 ď 𝑗.

2. The nearly positive subsequence v𝑗 is a distinguished subexpression of w if and only

if everyㅊ P JCp𝑗q is bounded.

Proof. Suppose thatㅊ is a chamber at height ℎ which is not given byㅊÐp𝑖q

for any 𝑖 ď 𝑗. Then there is some index 𝑘 ě 𝑗 so that 𝜌𝑘pwq pㅊq “ r1, ℎs. Since

𝜌pwq p𝛼Õp𝑗qq ą 𝜌pwq p𝛼Œp𝑗qq for all 𝑘 ě 𝑗, if 𝛼Õp𝑗q Pㅊ then 𝛼Œp𝑗q Pㅊ. So if ℎ𝑗 P

𝜌𝑗´1pwq pㅊq then ℎ𝑗 ` 1 P 𝜌𝑗´1pwq pㅊq and hence Pivots
𝜌𝑗´1pwqpㅊq

`

𝑢p𝑗´1q𝑠ℎ𝑗

˘

“

Pivots
𝜌𝑗´1pwqpㅊq

p𝑢p𝑗´1qq. So everyㅊ P JCp𝑗q must be given byㅊÐp𝑖q for some

𝑖 ď 𝑗.

It follows that any open chamberㅊ P JCp𝑗qmust be on the left boundary of the

wiring diagram. Ifㅊ is an open chamber at heightℎ, then Pivots
𝜌𝑗´1pwqpㅊq

p𝑢p𝑗´1qq

“ r1, ℎs and Pivots
𝜌𝑗´1pwqpㅊq

`

𝑢p𝑗´1q𝑠ℎ𝑗

˘

“ 𝑣0
p𝑗qpr1, ℎsq. The nearly positive subse-

quence v𝑗 is a distinguished subexpression if and only if 𝑣0
p𝑗q “ 1, which is equiva-

lent to the condition 𝑣0
p𝑗qpr1, ℎsq “ r1, ℎs for every 1 ď ℎ ď 𝑛.

We next observe that the region JCp𝑗q is weakly above the ascending strand

𝛼Õp𝑗q and below the descending strand𝛼Œp𝑗q. In the wiring diagram for the partial

word 𝑤p𝑗´1q, this corresponds to the strands below a chamber connecting to right

endpoints indexed by a set 𝐶 that includes ℎ𝑗 and excludes ℎ𝑗 ` 1.

Proposition IV.34. Letㅊ be a chamber satisfyingㅊ P JCp𝑗q and let 𝑖 be a crossing so

thatㅊ is one of the four chambers surrounding 𝑖. Then the chamberㅊ and the crossing

𝑖 are weakly above 𝛼Õp𝑗q and below 𝛼Œp𝑗q. If w is unipeak, this implies that either 𝛼Œp𝑖q

“ 𝛼Œp𝑗q or 𝜌𝑗´1pwq p𝛼Œp𝑖qq ă ℎ𝑗 .

Proof. We must have ℎ𝑗 P 𝜌𝑗´1pwq pㅊq and ℎ𝑗 ` 1 R 𝜌𝑗´1pwq pㅊq , which means
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𝜆1

𝜆2

𝜆3

𝜆4

𝜆5

𝜆6

𝜌1

𝜌2

𝜌3

𝜌4

𝜌5

𝜌6

Figure 4.1: Strands in 𝐶Òp8q are shown in red and strands in 𝐶Óp8q are shown in blue. Immediately
to the left of crossing 8, strands in 𝐶Òp8q are at heightsě ℎ8` 1 and strands in 𝐶Óp8q are
at heights ď ℎ8. The strand beginning at source 𝜆6 does not intersect JCp8q.

that the 𝛼Õp𝑗q is belowㅊ and the strand 𝛼Œp𝑗q is aboveㅊ. By Corollary IV.21,

if Pivots𝜌𝑗´1pwqpㅊq
`

𝑣𝑗

p𝑗´1q

˘

‰ Pivots𝜌𝑗´1pwqpㅊq p𝑢p𝑗´1qq, then ℎ𝑗 P 𝜌𝑗´1pwq pㅊq and

ℎ𝑗 ` 1 R 𝜌𝑗´1pwq pㅊq . We have 𝜌𝑗´1pwq p𝛼Õp𝑗qq “ ℎ𝑗 and 𝜌𝑗´1pwq p𝛼Œp𝑗qq “ ℎ𝑗 ` 1.

A strand which is strictly between 𝛼Õp𝑗q and 𝛼Œp𝑗q at some index 𝑖 ă 𝑗 must ei-

ther cross above 𝛼Œp𝑗q or cross below 𝛼Õp𝑗q to the left of 𝑗; a strand which begins

descending before index 𝑗 must cross below 𝛼Õp𝑗q.

We can partition the set of strands that intersect JCp𝑗q into sets 𝐶Òp𝑗q and 𝐶Óp𝑗q

based on their right endpoints in the wiring diagram for 𝑤p𝑗´1q, and similarly we

partition the geodesic paths that intersect JCp𝑗q into sets 𝑅Òp𝑗q and 𝑅Óp𝑗q.

Definition IV.35. We define 𝐶Òp𝑗q to be the set of strands which intersect JCp𝑗q and

have left endpoints in𝑤p𝑗´1qprℎ𝑗 ` 1, 𝑛sq, and we define𝐶Óp𝑗q to be the set of strands

intersecting JCp𝑗qwith left endpoints in 𝑤p𝑗´1qpr1, ℎ𝑗sq. 3

(See Figure 4.1.)

Definition IV.36. Let 𝑅Óp𝑗q denote the set of indices 𝑟 P 𝑣𝑗

p𝑗´1qpr1, ℎ𝑗sq so that 𝛾𝑟

intersects JCp𝑗q and let 𝑅Òp𝑗q denote the set of indices 𝑟 P 𝑣𝑗

p𝑗´1qprℎ𝑗 ` 1, 𝑛sq so that

𝛾𝑟 intersects JCp𝑗q.
3 That is, immediately to the left of crossing 𝑗, the strands 𝐶Òp𝑗q are at heights in the interval rℎ𝑗 ` 1, 𝑛s and the strands

𝐶Óp𝑗q are at heights in the interval r1, ℎ𝑗s.
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𝜆1

𝜆2

𝜆3

𝜆4

𝜆5

𝜆6

𝜆7

𝜌1

𝜌2

𝜌3

𝜌4

𝜌5

𝜌6

𝜌7

Figure 4.2: Geodesic paths in 𝑅Òp10q are shown in red and geodesics in 𝑅Óp10q are shown in blue.
The geodesic beginning at 𝜆4 is not a boundary geodesic.

(See Figure 4.4.)

A key property of JCp𝑗q is the following statement about chambers surrounding

a crossing 𝑖 P 𝐽`u` , which follows immediately from Lemma IV.25.

Corollary IV.37. Let 𝑖 P 𝐽`u` , and suppose that some chamberㅊ P tㅊÐp𝑖q,ㅊÒp𝑖q,ㅊÓp𝑖q,ㅊÑp𝑖qu

is in JCp𝑗q. Then there is a chamberㅊ1 intersectingㅊ along a strand segment at 𝑖 so

thatㅊ1 is in JCp𝑗q. If a pair of opposite chambers tㅊÐp𝑖q,ㅊÑp𝑖qu or tㅊÒp𝑖q,ㅊÓp𝑖qu

is in JCp𝑗q, then so is the other pair.

We will need to refer to the previous crossings in 𝐽˝u` which share the same

ascending or descending strand as the crossing 𝑗. We will eventually show that

these crossings (where defined) are on the boundary BJCp𝑗q.

Notation IV.38. We denote the index 𝑢p𝑗´1qpℎ𝑗q “ 𝑣𝑗

p𝑗´1qpℎ𝑗`1q by 𝑟˚ and we denote

the index 𝑢p𝑗´1qpℎ𝑗 ` 1q “ 𝑣𝑗

p𝑗´1qpℎ𝑗 ` 1q by 𝑟˚.

Notation IV.39. Let 𝑗´
Õ
“ maxt𝑖 ă 𝑗 : 𝑖 P 𝐽Õp𝛼Õp𝑗qq X 𝐽˝u`u, and let 𝑗´

Œ
“ maxt𝑖 ă

𝑗 : 𝑖 P 𝐽Œp𝛼Œp𝑗qq X 𝐽˝u`u, where we take the maximum of an empty set to be 0.

We will see that if 𝑣𝑗

p0q “ 1, then 𝑗´
Õ
ą 0 while 𝑗´

Œ
may equal 0. Note that there

may be crossings 𝑖 P 𝐽`u` where 𝑖 P 𝐽Õp𝛼Õp𝑗qq and 𝑗´
Õ
ă 𝑖 ă 𝑗 or 𝑖 P 𝐽Œp𝛼Œp𝑗qq
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𝑗´
Œ

𝑗´
Õ

𝑗

𝑗´
Õ

𝑗

Figure 4.3: At left, the strand 𝛼Œp𝑗q joins 𝛾𝑟˚ by traveling down at the index 𝑗´
Œ

. At right, the strand
𝛼Œp𝑗q joins 𝛾𝑟˚ by traveling up.

and 𝑗´
Œ
ă 𝑖 ă 𝑗. That is, between 𝑗´

Õ
and 𝑗 the strand 𝛼Õp𝑗q follows the geodesic

path 𝛾𝑟˚
; for indices in 𝐽Œp𝛼Œp𝑗qq between 𝑗´

Œ
and 𝑗, the strand 𝛼Œp𝑗q follows the

geodesic path 𝛾𝑟˚ .

In the following proposition, we describe the part of BJCp𝑗q on the strand 𝛼Õp𝑗q

and the descending portion of the strand 𝛼Œp𝑗q. We show that this coincides with

the segment where 𝛼Õp𝑗q is traveling up along the geodesic path 𝛾𝑟˚
and the seg-

ment where 𝛼Œp𝑗q is traveling down along the geodesic path 𝛾𝑟˚ , together with the

crossing 𝑗.

Proposition IV.40. Let 𝑖 be an index withㅊÐp𝑖q P JCp𝑗q. If 𝛼Õp𝑖q “ 𝛼Õp𝑗q, then

𝜆𝑖´1pu`q p𝛼Õp𝑖qq “ 𝑟˚. If 𝛼Œp𝑖q “ 𝛼Œp𝑗q, then 𝜆𝑖´1pu`q p𝛼Œp𝑖qq “ 𝑟˚. Conversely, if

𝑖 P 𝐽Õp𝛼Õp𝑗qq and 𝜆𝑖´1pu`q p𝛼Õp𝑗qq “ 𝑟˚ or 𝑖 P 𝐽Œp𝛼Œp𝑗qq and 𝜆𝑖´1pu`q p𝛼Œp𝑗qq “

𝑟˚, thenㅊÐp𝑖q P JCp𝑗q.

Proof. By Lemma III.20, if 𝜆𝑖´1pu`q p𝛼Õp𝑖qq ‰ 𝑢p𝑗´1q pℎ𝑗q, then 𝜌𝑖´1pu`q p𝑢p𝑗´1qq ą ℎ𝑖 so

that 𝑢p𝑗´1qpℎ𝑗q R 𝜆
𝑖´1pu`q pㅊÐp𝑖qq “Pivots𝜌𝑗´1pwqpㅊÐp𝑖qq p𝑢p𝑗´1qq. So 𝜌𝑗´1pwq pㅊÐp𝑖qq

R 𝒥
`

𝑢p𝑗´1q, 𝑠ℎ𝑗

˘

.

Similarly, if 𝜆𝑖´1pu`q p𝛼Œp𝑖qq ‰ 𝑢p𝑗´1qpℎ𝑗 ` 1q, then 𝜌𝑖´1pu`q p𝑢p𝑗´1q pℎ𝑗 ` 1qq ď ℎ𝑖

and so𝑢p𝑗´1qpℎ𝑗 ` 1q PPivots𝜌𝑗´1pwqpㅊÐp𝑖qq p𝑢p𝑗´1qq. So 𝜌𝑗´1pwq pㅊÐp𝑖qq R𝒥
`

𝑢p𝑗´1q, 𝑠ℎ𝑗

˘

.

For the converse, we note that if 𝑖 P 𝐽`u` is an index with 𝑖 ă 𝑗 such that
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𝜌𝑗´1pwq p𝛼Õp𝑖qq “ ℎ𝑗 and 𝜆𝑖´1pu`q p𝛼Õp𝑖qq “ 𝑢p𝑗´1qpℎ𝑗q, then 𝛼Õp𝑖q “ 𝛼Õp𝑗q is travel-

ing up before index 𝑗 with 𝜆pu`q p𝛼Õp𝑖qq “ 𝑢p𝑗´1qpℎ𝑗q between 𝑖 and 𝑗, so that in par-

ticular for all𝛼 PㅊÐp𝑖qwe have 𝜌𝑗´1pwq p𝛼q ďℎ𝑗 and for all 𝑟 PPivots𝜌𝑗´1pwqpㅊÐp𝑖qq p𝑢p𝑗´1qq

“ 𝑢p𝑖´1qpr1, ℎ𝑖sq, we have 𝜌𝑗´1pu`q p𝑟q ď ℎ𝑗 . Since we have ℎ𝑗 P 𝜌𝑗´1pwq pㅊÐp𝑖qq ,

ℎ𝑗 ` 1 R 𝜌𝑗´1pwq pㅊÐp𝑖qq , 𝑢p𝑗´1qpℎ𝑗q P Pivots𝜌𝑗´1pwqpㅊÐp𝑖qq p𝑢p𝑗´1qq and 𝑢p𝑗´1qpℎ𝑗 ` 1q R

Pivots𝜌𝑗´1pwqpㅊÐp𝑖qq p𝑢p𝑗´1qq, we have Pivots𝜌𝑗´1pwqpㅊÐp𝑖qq p𝑢p𝑗´1qqăPivots𝜌𝑗´1pwqpㅊÐp𝑖qq

`

𝑢p𝑗´1q𝑠ℎ𝑗

˘

.

If 𝑖 P 𝐽`u` is an index with 𝑖 ă 𝑗 so that 𝜌𝑗´1pwq p𝛼Œp𝑖qq “ℎ𝑗`1 and𝜆𝑖´1pu`q p𝛼Õp𝑖qq

“ 𝑢p𝑗´1qpℎ𝑗 ` 1q, then for all indices between 𝑖 and 𝑗,𝛼Œp𝑖q “𝛼Œp𝑗q is traveling down

with 𝜆pu`q p𝛼Œp𝑖qq “ 𝑢p𝑗´1qpℎ𝑗q. In particular, if 𝑘 is an intermediate crossing along

𝛼Œp𝑗q, then 𝑘 P 𝐽`u` with𝛼Õp𝑘q PㅊÐp𝑖q and𝜆𝑘pu`q p𝛼Õp𝑘qq PPivots𝜌𝑗´1pwqpㅊÐp𝑖qq p𝑢p𝑗´1qq

“𝑢p𝑖´1qpr1, ℎ𝑖sq so that#t𝑐 P 𝜌𝑗´1pwq pㅊÐp𝑖qq : 𝑐 ď ℎ𝑗u“ #t𝑟 P Pivots𝜌𝑗´1pwqpㅊÐp𝑖qq p𝑢p𝑗´1qq :

𝜌𝑗´1pu`q p𝑟q ď ℎ𝑗u. Since we have ℎ𝑗 P 𝜌
𝑗´1pwq pㅊÐp𝑖qq , ℎ𝑗 ` 1 R 𝜌𝑗´1pwq pㅊÐp𝑖qq ,

𝑢p𝑗´1qpℎ𝑗q PPivots𝜌𝑗´1pwqpㅊÐp𝑖qq p𝑢p𝑗´1qq and 𝑢p𝑗´1qpℎ𝑗 ` 1q RPivots𝜌𝑗´1pwqpㅊÐp𝑖qq p𝑢p𝑗´1qq,

we have Pivots𝜌𝑗´1pwqpㅊÐp𝑖qq p𝑢p𝑗´1qq ăPivots𝜌𝑗´1pwqpㅊÐp𝑖qq

`

𝑢p𝑗´1q𝑠ℎ𝑗

˘

.

In the following two propositions, we show that any chamber in JCp𝑗q except the

chamberㅊÐp𝑗q is connected on the right to another chamber in JCp𝑗q; this goes

back to the condition that if two strands cross before index 𝑗, then the descending

strand has a lower right endpoint at index 𝑗 ´ 1.

Proposition IV.41. Let 𝑖 be an index in 𝐽˝u` with 𝑖 ă 𝑗. Suppose thatㅊÐp𝑖q P JCp𝑗q.

Then the chamberㅊÑp𝑖q is in JCp𝑗q.

Proof. Since 𝑖 P 𝐽˝u` , we may write Pivots
𝜌𝑗´1pwqpㅊÑp𝑖qq

p𝑢p𝑗´1qq“Pivots𝜌𝑗´1pwqpㅊÐp𝑖qq p𝑢p𝑗´1qq

“𝑅. Sincew is a reduced word and 𝑗 ą 𝑖, we have 𝜌𝑗´1pwq pㅊÑp𝑖qq ă 𝜌𝑗´1pwq pㅊÐp𝑖qq

and so Pivots𝜌𝑗´1pwqpㅊÐp𝑖qq

`

𝑢p𝑗´1q𝑠ℎ𝑗

˘

ě Pivots𝜌𝑗´1pwqpㅊÐp𝑖qq

`

𝑢p𝑗´1q𝑠ℎ𝑗

˘

ą 𝑅.

For unipeak wiring diagrams, ifㅊ is a chamber in JCp𝑗q and the strand 𝛼
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JCp𝑗q

𝑗

Figure 4.4: Paths traveling northeast between chambers in JCp𝑗q eventually reach the descending
strand 𝛼Œp𝑗q.

boundsㅊ from the northeast, then either𝛼 is𝛼Œp𝑗q or the chamberㅊ1 northeast

ofㅊ is also in JCp𝑗q. Inductively, there is a sequence of chambers in JCp𝑗q begin-

ning withㅊ and traveling northeast until hitting 𝛼Œp𝑗q (see Figure 4.4). (This is

false in general for a diagram that is not unipeak.)

Proposition IV.42. Let 𝑖 be a crossing of any type. Then the following hold.

1. If the chamberㅊÓp𝑖q P JCp𝑗q and the strand 𝛼Œp𝑖q ‰ 𝛼Œp𝑗q, thenㅊÑp𝑖q P JCp𝑗q.

2. If the chamberㅊÐp𝑖q P JCp𝑗q and the strand 𝛼Œp𝑖q ‰ 𝛼Œp𝑗q, thenㅊÒp𝑖q P JCp𝑗q.

Proof. Since ℎ𝑗 P 𝜌𝑗´1pwq pㅊÓp𝑖qq and ℎ𝑗 ` 1 R 𝜌𝑗´1pwq pㅊÓp𝑖qq , the crossing 𝑖 is

weakly between the strands 𝛼Õp𝑗q and 𝛼Œp𝑗q. If 𝛼Œp𝑖q ‰ 𝛼Œp𝑗q, then it must cross

below 𝛼Õp𝑗q to the left of 𝑗 by the unipeak property. So 𝜌𝑗´1pwq p𝛼Œp𝑗qq ă ℎ𝑘, and

hence by Corollary IV.23, if 𝐶 P 𝒥
`

𝑢p𝑗´1q, 𝑠ℎ𝑗

˘

, then so is 𝐶𝜌𝑗´1pwq p𝛼Œp𝑗qq . Apply

this to the pair with𝐶 “ 𝜌𝑗´1pwq pㅊÓp𝑖qq and𝐶𝜌𝑗´1pwq p𝛼Œp𝑗qq “ 𝜌𝑗´1pwq pㅊÑp𝑖qq

and to the pair with𝐶 “ 𝜌𝑗´1pwq pㅊÐp𝑖qq and𝐶𝜌𝑗´1pwq p𝛼Œp𝑗qq “ 𝜌𝑗´1pwq pㅊÒp𝑖qq .

Corollary IV.43. Suppose that 𝑖 is a crossing where a segment of BÒJCp𝑗qmeets a segment

of BÓJCp𝑗q. Then 𝑖 P 𝐽˝u` and one of the following cases holds.
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1. The chambersㅊÐp𝑖q,ㅊÒp𝑖q andㅊÓp𝑖q are not in JCp𝑗q andㅊÑp𝑖q P JCp𝑗q.

2. The chamberㅊÐp𝑖q is not in JCp𝑗q and the chambersㅊÒp𝑖q,ㅊÓp𝑖q andㅊÑp𝑖q

P JCp𝑗q.

3. The crossing 𝑖 is equal to 𝑗.

Corollary IV.44. Suppose that 𝛼 P 𝐶Òp𝑗q intersects JCp𝑗q only on BÒJCp𝑗q. Then either

𝛼 “ 𝛼Œp𝑗q, or 𝛼 “ 𝛼Õp𝑗
´
Œ
q.

In the following proposition, we show that ifㅊ “ㅊÐp𝑖q is a chamber in

JCp𝑗q and 𝑟` and 𝑟´ are the indices of the pivots added to and removed from

Pivots𝜌𝑗´1pwqpㅊq p𝑢p𝑗´1qq to obtain Pivots𝜌𝑗´1pwqpㅊ1q

`

𝑣𝑗

p𝑗´1q

˘

, then every chamber be-

tween the geodesic paths 𝛾𝑟` and 𝛾𝑟´
immediately to the left of the crossing 𝑖 is in

JCp𝑗q.

Proposition IV.45. Letㅊ P JCp𝑗q and write 𝑟` and 𝑟´ for the indices so that Pivots𝜌𝑗´1pwqpㅊq
`

𝑣𝑗

p𝑗´1q

˘

“ Pivots𝜌𝑗´1pwqpㅊq p𝑢p𝑗´1qq z t𝑟´u Y t𝑟
`u. Writeㅊ “ㅊÐp𝑖q for some 𝑖 ă 𝑗. At index

𝑖´ 1, the paths 𝛾𝑟` and 𝛾𝑟´
are in JCp𝑗q, with 𝛾𝑟` aboveㅊ and 𝛾𝑟´

belowㅊ.

Proof. A geodesic path 𝛾𝑟 is belowㅊ if 𝑟 P Pivots𝜌𝑘´1pwqpㅊ1q p𝑢p𝑘´1qq for 𝑘 ě 𝑖 and

aboveㅊ if and only if 𝑟 R Pivots𝜌𝑘´1pwqpㅊ1q p𝑢p𝑘´1qq for 𝑘 ě 𝑖.

Letㅊ1 be any chamber aboveㅊ, so that Strandspㅊq Ď Strandspㅊ1
q. Then

Pivots𝜌𝑗´1pwqpㅊq
`

𝑣𝑗

p𝑗´1q

˘

ĎPivots𝜌𝑗´1pwqpㅊ1q

`

𝑣𝑗

p𝑗´1q

˘

. Since 𝑟` PPivots𝜌𝑗´1pwqpㅊ1q

`

𝑣𝑗

p𝑗´1q

˘

,

we must have 𝑟` P Pivots𝜌𝑗´1pwqpㅊ1q

`

𝑣𝑗

p𝑗´1q

˘

. So ifㅊ1
R JCp𝑗q, then 𝛾𝑟` is belowㅊ1.

Hence 𝛾𝑟` is in JCp𝑗q at index 𝑖´ 1.

Now suppose thatㅊ1 is a chamber belowㅊ, so that Strandspㅊ1
qĎ Strandspㅊq.

Then Pivots𝜌𝑗´1pwqpㅊ1q

`

𝑣𝑗

p𝑗´1q

˘

Ď Pivots𝜌𝑗´1pwqpㅊq
`

𝑣𝑗

p𝑗´1q

˘

. In particular, ifㅊ1
R JCp𝑗q,

then 𝑟´ R Pivots𝜌𝑗´1pwqpㅊ1q p𝑢p𝑗´1qq, and so 𝛾𝑟´
is aboveㅊ1. So 𝛾𝑟´

is in JCp𝑗q at index

𝑖´ 1.
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In the next few propositions, we will show that 𝛾𝑟` being an upper boundary

geodesic is equivalent to the existence of some chamberㅊ in JCp𝑗q so that 𝑟` is

the “jump” pivot, and 𝛾𝑟´
being a lower boundary geodesic is equivalent to the

existence of a chamberㅊ P JCp𝑗q so that 𝑟´ is the pivot removed when the pivots

ofㅊ jump.

Proposition IV.46. If 𝛾𝑟` is an upper boundary geodesic for JCp𝑗q, then there is some

chamberㅊ P JCp𝑗q so that 𝑟` RPivots𝜌𝑗´1pwqpㅊq p𝑢p𝑗´1qq and 𝑟` PPivots𝜌𝑗´1pwqpㅊq
`

𝑣𝑗

p𝑗´1q

˘

.

If 𝛾𝑟´
is a lower boundary geodesic for JCp𝑗q,then there is some chamberㅊ P JCp𝑗q so

that 𝑟´ P Pivots𝜌𝑗´1pwqpㅊq p𝑢p𝑗´1qq and 𝑟´ R Pivots𝜌𝑗´1pwqpㅊq
`

𝑣𝑗

p𝑗´1q

˘

.

Proof. We first note that 𝛾𝑟` is an upper boundary geodesic if and only if there

are chambersㅊ P JCp𝑗q andㅊ1
R JCp𝑗q and a strand 𝛼 so that Strandspㅊ1

q

“ Strandspㅊq Y t𝛼u and Pivots𝜌𝑗´1pwqpㅊq p𝑢p𝑗´1qq “ 𝑅, Pivots𝜌𝑗´1pwqpㅊ1q p𝑢p𝑗´1qq “

𝑅 Y t𝑟`u. We have Pivots𝜌𝑗´1pwqpㅊq
`

𝑣𝑗

p𝑗´1q

˘

Ď Pivots𝜌𝑗´1pwqpㅊ1q

`

𝑣𝑗

p𝑗´1q

˘

“ 𝑅 Y t𝑟`u

sinceㅊ1
R JCp𝑗q. Sinceㅊ P JCp𝑗q, Pivots𝜌𝑗´1pwqpㅊq

`

𝑣𝑗

p𝑗´1q

˘

‰ 𝑅, so by cardinality

𝑟` P Pivots𝜌𝑗´1pwqpㅊq
`

𝑣𝑗

p𝑗´1q

˘

.

Similarly, 𝛾𝑟´
is a lower boundary geodesic if and only if there are chambers

ㅊ P JCp𝑗q andㅊ1
R JCp𝑗q and a strand 𝛼 so that Strandspㅊq “ Strandspㅊ1

q Y

t𝛼u and Pivots𝜌𝑗´1pwqpㅊ1q p𝑢p𝑗´1qq “ 𝑅, Pivots𝜌𝑗´1pwqpㅊq p𝑢p𝑗´1qq “ 𝑅Yt𝑟´u. Sinceㅊ1

R JCp𝑗q, Pivots𝜌𝑗´1pwqpㅊ1q

`

𝑣𝑗

p𝑗´1q

˘

“𝑅, so that𝑅 Ď Pivots𝜌𝑗´1pwqpㅊq
`

𝑣𝑗

p𝑗´1q

˘

. Sinceㅊ P

JCp𝑗q, Pivots𝜌𝑗´1pwqpㅊq
`

𝑣𝑗

p𝑗´1q

˘

‰𝑅Yt𝑟´u, so by cardinality 𝑟´ R Pivots𝜌𝑗´1pwqpㅊq
`

𝑣𝑗

p𝑗´1q

˘

.

Corollary IV.47. If 𝛾𝑟 is an upper boundary geodesic, then 𝑟 P 𝑅Óp𝑗q, and if 𝛾𝑟 is a lower

boundary geodesic, then 𝑟 P 𝑅Òp𝑗q.

Corollary IV.48. Suppose that 𝑟 P𝑅Óp𝑗q and 𝛾𝑟 is a geodesic path that goes through JCp𝑗q
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but is not an upper boundary geodesic. Then there is an index 𝑟` ă 𝑟 so that 𝛾𝑟` is an

upper boundary geodesic and 𝛾𝑟 crosses below 𝛾𝑟` on BÒJCp𝑗q.

Suppose that 𝑟 P 𝑅Òp𝑗q and 𝛾𝑟 is a geodesic path that goes through JCp𝑗q but is not a

lower boundary geodesic. Then there is an index 𝑟´ ą 𝑟 so that 𝛾𝑟´
is a lower boundary

geodesic and 𝛾𝑟 crosses above 𝛾𝑟´
on BÓJCp𝑗q.

Proof. If 𝛾𝑟 goes through JCp𝑗q but is not a boundary geodesic, then it first enters

the interior of JCp𝑗q by either crossing below an upper boundary geodesic 𝛾𝑟` with

𝑟` ă 𝑟 along some segment of BÒJCp𝑗q or by crossing below a lower boundary

geodesic 𝛾𝑟´
with 𝑟´ ą 𝑟 along some segment of BÓJCp𝑗q. Since crossings on BJCp𝑗q

are to the left of crossing 𝑗, if 𝛾𝑟 crosses below 𝛾𝑟` along BÒJCp𝑗q, then since 𝛾𝑟` P

𝑅Óp𝑗q, we must have 𝛾𝑟 P𝑅
Óp𝑗q. Similarly, if 𝛾𝑟 crosses above 𝛾𝑟´

along BÓJCp𝑗q, then

since 𝛾𝑟´
P 𝑅Òp𝑗q, 𝛾𝑟 is also in 𝑅Òp𝑗q.

Proposition IV.49. Suppose thatㅊ P JCp𝑗q and write

Pivots𝜌𝑗´1pwqpㅊq
`

𝑣𝑗

p𝑗´1q

˘

“ Pivots𝜌𝑗´1pwqpㅊq p𝑢p𝑗´1qq zt𝑟´u Y t𝑟
`
u.

Then 𝛾𝑟` is an upper boundary geodesic and 𝛾𝑟´
is a lower boundary geodesic.

Proof. Writeㅊ “ㅊÐp𝑖q. By the proof of the previous proposition, 𝛾𝑟` and 𝛾𝑟´

are in JCp𝑗q at index 𝑖´1. By the previous corollary, if 𝛾𝑟` is not an upper boundary

geodesic, then there is some 𝑟1 ă 𝑟` so that 𝑟1 P 𝑅Óp𝑗q and 𝑟1 R Pivots𝜌𝑗´1pwqpㅊq p𝑢p𝑗´1qq .

So by minimality 𝑟` R Pivots𝜌𝑗´1pwqpㅊq
`

𝑣𝑗

p𝑗´1q

˘

. If 𝛾𝑟´
is not a lower boundary geodesic,

then there is some 𝑟1 ą 𝑟´ so that 𝑟1 P Pivots𝜌𝑗´1pwqpㅊq p𝑢p𝑗´1qq and 𝑟1 P 𝑅Òp𝑗q. By the

ordered pivot criterion, the unique element of Pivots𝜌𝑗´1pwqpㅊq
`

𝑣𝑗

p𝑗´1q

˘

zPivots𝜌𝑗´1pwqpㅊq p𝑢p𝑗´1qq

is at least 𝑟1, a contradiction.

The following proposition shows that if 𝑖 P 𝐽˝u` is any interior crossing of JCp𝑗q

in a unipeak diagram, then both the ascending strand and the descending strand
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belong to the lower partition 𝐶Óp𝑗q. Note that this implies that if 𝛼 P 𝐶Òp𝑗q, then

while 𝛼 is traveling through the interior of JCp𝑗q, every crossing along 𝛼 is in 𝐽`u` ,

so that 𝛼 follows a single geodesic path.

Proposition IV.50. Suppose that 𝑖 P 𝐽˝u` andㅊÐp𝑖q P JCp𝑗q. Then 𝛼Õp𝑗q P 𝐶
Óp𝑗q.4

Proof. This holds by construction if 𝑖 “ 𝑗, so we may assume that 𝑖 ă 𝑗. By the pre-

vious proposition, since 𝑖 P 𝐽˝u` we must have 𝛼Õp𝑖q ‰ 𝛼Õp𝑗q and 𝛼Œp𝑖q ‰ 𝛼Œp𝑗q,

so that the crossing 𝑖 is strictly below 𝛼Œp𝑗q and strictly above 𝛼Õp𝑗q. Suppose

for contradiction that 𝛼Õp𝑖q P 𝐶Òp𝑗q. SinceㅊÐp𝑖q P JCp𝑗q, by the ordered pivot

criterion we must have that 𝛼Õp𝑗q P StrandspㅊÐp𝑖qq, 𝛼Œp𝑗q R StrandspㅊÐp𝑖qq,

𝑢p𝑗´1qpℎ𝑗q P Pivotsr1,ℎ𝑖s p𝑢p𝑖´1qq and that at index 𝑗 ´ 1, the number of strands in

StrandspㅊÐp𝑖qq with heights at most ℎ𝑗 is equal to the number of geodesics 𝛾𝑟

where 𝑟 P Pivotsr1,ℎ𝑖s p𝑢p𝑖´1qq at heights at most ℎ𝑗 .

Suppose that immediately to the left of crossing 𝑖 the strand 𝛽 is below𝛼Õp𝑗q and

on the geodesic path 𝛾𝑟. Since 𝛼Õp𝑗q is in StrandspㅊÐp𝑖qq with 𝑖 ă 𝑗 and the dia-

gram is unipeak, the strand 𝛽 is in both StrandspㅊÐp𝑖qq and StrandspㅊÐp𝑗qq and

𝛾𝑟 is below bothㅊÐp𝑖q andㅊÐp𝑗q, so that 𝑟 is in both Pivots𝜌𝑖´1pwqpㅊÐp𝑖qq p𝑢p𝑖´1qq

and Pivots𝜌𝑗´1pwqpㅊÐp𝑗qq p𝑢p𝑗´1qq. It therefore suffices to consider the number of strands

and geodesic paths which cross below 𝛼Õp𝑗q between indices 𝑖 and 𝑗.

Suppose that 𝑟 P Pivots𝜌𝑖´1pwqpㅊÐp𝑖qq p𝑢p𝑖´1qq and the geodesic path 𝛾𝑟 does not

cross below 𝛼Õp𝑗q to the left of crossing 𝑗. Since the crossing 𝑖 is below 𝛼Œp𝑗q and

above 𝛼Õp𝑗q, 𝛾𝑟 must cross above 𝛼Œp𝑗q at some index 𝑘 to the left of crossing 𝑗. It

follows that 𝛼Õp𝑘q is a strand in StrandspㅊÐp𝑖qqwhich does not cross below 𝛼Õp𝑖q

to the left of crossing 𝑗.

Since 𝛼Õp𝑖q P 𝐶
Òp𝑗q, we must have that 𝛼Õp𝑖q crosses above 𝛼Œp𝑗q to the left of

4This is false if the diagram is not unipeak.
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𝑗. Because 𝑖 P 𝐽˝u` , 𝜆𝑖pu`q p𝛼Õp𝑖qq R Pivots𝜌𝑖´1pwqpㅊÐp𝑖qq p𝑢p𝑖´1qq and hence by Propo-

sition IV.26, the crossing where 𝛼Õp𝑖q crosses above 𝛼Œp𝑗q is on a geodesic path 𝛾𝑟

with 𝑟 R Pivots𝜌𝑖´1pwqpㅊÐp𝑖qq p𝑢p𝑖´1qq .

In particular, there are strictly more geodesic paths 𝛾𝑟 below 𝛼Õp𝑗q at index 𝑗´1

such that 𝑟 P Pivots𝜌𝑖´1pwqpㅊÐp𝑖qq p𝑢p𝑖´1qq than there are strands 𝛽 below 𝛼Õp𝑗q at

index 𝑗 ´ 1, a contradiction.

In the next proposition, we show that if a crossing 𝑖 is on the left boundary

of JCp𝑗q, then the ascending strand 𝛼Õp𝑖q is in the upper partition 𝐶Òp𝑗q and the

descending strand 𝛼Œp𝑗q is in the lower partition 𝐶Óp𝑗q.

Proposition IV.51. Suppose that for some 𝑖we haveㅊÐp𝑖q R JCp𝑗q andㅊÑp𝑖q P JCp𝑗q.

Then 𝛼Õp𝑖q P 𝐶
Òp𝑗q and 𝛼Œp𝑖q P 𝐶

Óp𝑗q.

Proof. SinceㅊÐp𝑖q R JCp𝑗q andㅊÑp𝑖q P JCp𝑗q, the crossing 𝑖 is between the strands

𝛼Œp𝑗q and 𝛼Õp𝑗q so that the strands 𝛼Õp𝑖q and 𝛼Œp𝑖qmust each be in one of the sets

𝐶Òp𝑗q and 𝐶Óp𝑗q depending on whether they cross above 𝛼Œp𝑗q or below 𝛼Õp𝑗q to

the right of 𝑖. Since the diagram is unipeak, 𝛼Œp𝑖q travels strictly down to the right

of 𝑖, and hence𝛼Œp𝑖q P𝐶Óp𝑗q. We claim that if𝛼Õp𝑖q P𝐶Óp𝑗q andㅊÑp𝑖q P JCp𝑗q, then

ㅊÐp𝑖q P JCp𝑗q. If 𝑖 P 𝐽˝u` , then Pivots𝜌𝑗´1pwqpㅊÐp𝑖qq p𝑢p𝑗´1qq“Pivots𝜌𝑗´1pwqpㅊÑp𝑖qq p𝑢p𝑗´1qq

and the sets StrandspㅊÐp𝑖qq and StrandspㅊÑp𝑖qqhave the same number of strands

below height ℎ𝑗 at index 𝑗´1, so that by the ordered pivot criterionㅊÐp𝑖q P JCp𝑗q

if and only ifㅊÑp𝑖q P JCp𝑗q. So if 𝑖 P 𝐽˝u` withㅊÐp𝑖q R JCp𝑗q andㅊÑp𝑖q P JCp𝑗q,

then 𝛼Õp𝑖q P 𝐶Òp𝑗q. Suppose that 𝑖 P 𝐽`u` . If 𝛼Õp𝑖q is an upper boundary strand,

then there is some index 𝑖1 P 𝐽˝u` with 𝑖1 ă 𝑖 and 𝛼Õp𝑖
1q “ 𝛼Õp𝑖q so thatㅊÐp𝑖

1q P

JCp𝑗q andㅊÑp𝑖
1q R JCp𝑗q. So 𝛼Õp𝑖q P 𝐶

Òp𝑗q. Otherwise, the strand 𝛼Œp𝑖q is a lower

boundary strand. Write 𝑟 “ 𝑢p𝑖qpℎ𝑖`1q and 𝑟´ “ 𝑢p𝑖qpℎ𝑖q, where 𝑟 ă 𝑟´. Then 𝛾𝑟´
is a
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Figure 4.5: Since JCp𝑗q is simply connected, any discontinuity of the boundary BJCp𝑗q would cor-
respond to switching strands at a crossing 𝑖 P 𝐽`u` , so that JCp𝑗q would contain an odd
number of the chambers surrounding 𝑖.

lower boundary geodesic, so that 𝑟´ P 𝑅Òp𝑗q. If 𝛼Õp𝑖q R𝐶Òp𝑗q, then 𝛼Õp𝑖qmust cross

below 𝛼Õp𝑗q, and hence must cross below the geodesic path 𝛾𝑟´
to the right of the

crossing 𝑖. This violates Lemma III.20, so that we must have 𝛼Õp𝑖q P 𝐶
Òp𝑗q.

Corollary IV.52. Suppose thatㅊÐp𝑖q R JCp𝑗q andㅊÑp𝑖q P JCp𝑗q. Write 𝑟 for 𝑢p𝑖qpℎ𝑖`

1q, so that the geodesic path 𝛾𝑟 follows 𝛼Õp𝑖q at index 𝑖. Let 𝑘 be the index where 𝛼Õp𝑖q

crosses above 𝛼Œp𝑗q , where we have 𝑖 ă 𝑘 ă 𝑗. Then 𝛾𝑟 follows 𝛼Õp𝑖q between the indices

𝑖 and 𝑘.

Proof. The strand 𝛼Õp𝑖q is in 𝐶Òp𝑗q and hence travels strictly up between indices 𝑖

and 𝑘. If 𝑖1 is the index of some crossing with 𝛼Õp𝑖
1q “ 𝛼Õp𝑖q andㅊÐp𝑖q P JCp𝑗q,

then 𝑖 P 𝐽`u` , so that the geodesic path 𝛾𝑟 follows 𝛼Õp𝑖q until it first crosses above

BÒJCp𝑗q. Every connected component of BÒJCp𝑗q which is not on 𝛼Œp𝑗q is a portion

of a strand in 𝐶Òp𝑗q which travels strictly up before crossing above 𝛼Œp𝑗q, so 𝛼Õp𝑖q

cannot cross above the upper boundary before crossing 𝛼Œp𝑗q.

Proposition IV.53. The region JCp𝑗q is a simply connected region bounded by the closed

cycle BJCp𝑗q.

Proof. By Proposition IV.42, given any chamberㅊ in JCp𝑗q, there is a path in JCp𝑗q

traveling northeast until reaching 𝛼Œp𝑗q. Traveling southeast along 𝛼Œp𝑗q gives a

path fromㅊ toㅊÐp𝑗q. So JCp𝑗q is path-connected. The region JCp𝑗q cannot have

any holes; otherwise, there must be some crossing 𝑖 bounding a hole from the left,
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so thatㅊÓp𝑖q P JCp𝑗q andㅊÑp𝑖q R JCp𝑗q. By Corollary IV.43, crossings where

BÒJCp𝑗qmeets BÓJCp𝑗q are in 𝐽˝u` (so that the strands meet at a point). At any crossing

𝑖 where an upper boundary component or lower boundary component switches

from following one strand to another, an odd number of the surrounding chambers

are in JCp𝑗q, so that 𝑖 P 𝐽˝u` . It follows that the boundary BJCp𝑗q is a connected

cycle.



CHAPTER V

Regularity of Cluster Variables

In the previous chapter, we described the collection of chambers JCp𝑗qwhere 𝑗 P

𝐽˝u` . In this chapter, we introduce a chamber weighting for a unipeak expression w

with positive subexpression u`, where the weight of each chamber is a product of

algebraically independent indeterminates 𝑋𝑗 where 𝑗 ranges over 𝐽˝u` . We will use

pivot combinatorics to show that each of these variables 𝑋𝑗 is given by Δ
p𝑅𝑗

𝜆pwqp p𝐶𝑗q

for some collection of strands p𝐶𝑗 and rows p𝑅𝑗 “ Pivots𝜌pwqp p𝐶𝑗q p𝑢qwhereΔ
p𝑅𝑗

𝜆pwqp p𝐶𝑗q

vanishes identically on the Deodhar stratum 𝒟vj,w corresponding to the nearly

positive subexpression v𝑗 .

5.1 Nearly positive sequences and chamber weightings

Proposition V.1. Let w be a unipeak expression with positive subexpression u`. Then

there is a valid chamber weighting given by Qpㅊq “
ź

𝑗:ㅊPJCp𝑗q

𝑋𝑗 .

Proof. Since u` is a positive subexpression, the set 𝐽´u` is empty, so it suffices to

show that for each 𝑖 P 𝐽`u` , we have QpㅊÒp𝑖qqQpㅊÓp𝑖qq “ QpㅊÐp𝑖qqQpㅊÑp𝑖qq.

We must show that for each 𝑗 P 𝐽˝u` , the monomials QpㅊÒp𝑖qqQpㅊÓp𝑖qq and

QpㅊÐp𝑖qqQpㅊÑp𝑖qq have the same degree in the variable 𝑋𝑗 . If 𝑗 ă 𝑖, then for

any chamberㅊ incident to 𝑖, we haveㅊ R JCp𝑗q and so 𝑋𝑗 does not divide

62
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Qpㅊq. We note that there is no variable 𝑋𝑖 since 𝑖 P 𝐽`u` . Suppose that 𝑗 ą

𝑖. By Lemma IV.28, for each chamberㅊ incident to 𝑖, Pivots𝜌𝑗´1pwqpㅊq p𝑢p𝑗´1qq “

Pivots𝜌𝑖pwqpㅊq p𝑢p𝑖qq, so we have Pivots𝜌𝑗´1pwqpㅊÐp𝑖qq p𝑅q “ 𝑢p𝑖´1qpr1, ℎ𝑖sq ‰ 𝑢p𝑖qpr1, ℎ𝑖sq

“ Pivots𝜌𝑗´1pwqpㅊÑp𝑖qq p𝑅q. By Corollary IV.37,

|tㅊÒp𝑖q,ㅊÓp𝑖qu X JCp𝑗q| “ |tㅊÐp𝑖q,ㅊÑp𝑖qu X JCp𝑗q|.

So the products QpㅊÒp𝑖qqQpㅊÓp𝑖qq and QpㅊÐp𝑖qqQpㅊÑp𝑖qq have the same de-

gree in 𝑋𝑗 .

Iterating over all t𝑗 : 𝑗 P 𝐽˝u` , 𝑗 ą 𝑖uwe have QpㅊÒp𝑖qqQpㅊÓp𝑖qq“QpㅊÐp𝑖qqQpㅊÑp𝑖qq.

Corollary V.2. If 𝜆pwq pㅊq “ r1, ℎs for some ℎ, then for each factor𝑋𝑗 dividing Qpㅊq,

the nearly positive subsequence v𝑗 has 𝑣0
p𝑗q ‰ 1. If 𝜌ℓpwq pㅊq “ r1, ℎs, then Qpㅊq “ 1.

We write X for the tuple p𝑋𝑗 : 𝑗 P 𝐽˝u`q. Given 𝑖 P 𝐽˝u` , we write 𝑡𝑖pXq for the

ratio QpㅊÒp𝑖qqQpㅊÓp𝑖qq

QpㅊÐp𝑖qqQpㅊÑp𝑖qq
from Marsh and Rietsch’s chamber ansatz formula.

We will now show that assignments of nonzero scalar values to the 𝑋𝑗 is in

bijection with right-normalized chamber weightings for the Deodhar torus, and

therefore with Marsh and Rietsch’s coordinates 𝑡𝑗 . This will imply that the 𝑋𝑗 are

well-defined regular functions on the torus 𝒟u`,w, given by ratios of chamber mi-

nors. We will eventually show that the functions 𝑋𝑗 can be extended to regular

functions on ℛ𝑢,𝑤.

Proposition V.3. Let w be a unipeak word with positive subexpression u`. The change of

coordinates
`

𝑋𝑗 : 𝑗 P 𝐽
˝
u`

˘

Ñ
`

𝑡𝑗 : 𝑗 P 𝐽
˝
u`

˘

is invertible.

Proof. From the proof of Proposition 8.1 in [27],
´

Δ𝜆pu`qpㅊÐp𝑗qq

𝜆pwqpㅊÐp𝑗qq
: 𝑗 P 𝐽˝u`

¯

Ñ
`

𝑡𝑗 : 𝑗 P 𝐽
˝
u`

˘

is an isomorphism. It therefore suffices to show that the map
`

𝑋𝑗 : 𝑗 P 𝐽
˝
u`

˘

Ñ
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Figure 5.1: The first row shows the weighting Q
`ㅊ˘

“
ź

ㅊPJCp𝑘q
𝑋𝑘 together with the chamber

labeling for the Deodhar torus 𝒟u`,w. The second row shows the chamber labelings for
the boundary divisors 𝒟v5,w and 𝒟v8,w.

´

Δ𝜆pu`qpㅊÐp𝑖qq

𝜆pwqpㅊÐp𝑖qq
: 𝑖 P 𝐽˝u`

¯

is invertible. For each 𝑖 P 𝐽˝u` , we have Δ𝜆pu`qpㅊÐp𝑖qq

𝜆pwqpㅊÐp𝑖qq
“

QpㅊÐp𝑖qq “
ź

𝑗:ㅊÐp𝑖qPJCp𝑗q

𝑋𝑗 . We have thatㅊÐp𝑖q P JCp𝑖q and for each 𝑗 with

ㅊÐp𝑖q P JCp𝑗q, 𝑗 ě 𝑖. So the matrix giving the change of coordinates is a lower

unitriangular matrix with rows and columns indexed by 𝐽˝u` and entry p𝑗, 𝑖q “ 1

ifㅊÐp𝑖q P JCp𝑗q. Row 𝑗 is the bit vector representing the set t𝑖 P 𝐽˝u` :ㅊÐp𝑖q P

JCp𝑗qu and column 𝑖 is the exponent vector for QpㅊÐp𝑖qq.

One of our primary goals for this chapter is to give an algorithm for writing

the parameter 𝑋𝑖 as an irreducible minor in the case where the weighting on the

chamberㅊÐp𝑖q is given by a nontrivial product QpㅊÐp𝑖qq “𝑋𝑖

ź

𝑘ą𝑖
ㅊÐp𝑖qPJCp𝑘q

𝑋𝑘. We

first consider the following example, where QpㅊÐp𝑖qq has the form 𝑋𝑖𝑋𝑘 and the

parameter𝑋𝑖 can be recovered by deleting a single row and column from the minor

Δ
𝑢p𝑖´1qpr1,ℎ𝑖sq

𝜆pwqpㅊÐp𝑖qq
.

Example V.4. Let w be the unipeak expression 𝑠3𝑠2𝑠1𝑠4𝑠3𝑠2𝑠3𝑠4 from our running

example. In Figure 5.2, the chamber to the left of crossing 5 is given a weight of
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Figure 5.2: At crossing 7, the strand 𝛼Õp7q with left endpoint 𝜆1 and the geodesic path 𝛾3 cross
above the strand 𝛼Õp5q. The minor Δ123

124 and the minor Δ12
24 obtained by deleting row

3 and column 1 satisfy the same scalar relation Δ𝑅zt3u

𝐶zt1u “
∆𝑅

𝐶
𝑋8

as the pairs of chamber
minors surrounding crossing 7.

𝑋5𝑋8, where 𝑋5 does not appear in any other chamber weights. On the Deod-

har torus 𝒟u`,w, 𝑋5 is a regular function with formula given by 𝑋5 “
Δ123

124

Δ1234
1245

.

This formula does not extend to the boundary divisor 𝒟v8,w, where the function

𝑋8 “ Δ1234
1245 vanishes. However, we may extend 𝑋5 to a regular function on ℛ𝑢,𝑤

by showing that there is a non-chamber minor which is equal to 𝑋5 on 𝒟u`,w.

We note that at index 7, the strand 𝛼Õp5q crosses down over the strand 𝛼Õp7q.

The minors in the four chambers surrounding crossing 7 are related by a common

scalar, with Δ124
245

Δ1234
1245

“
Δ12

45

Δ123
145

“ 1
𝑋8

. We will show that this property that removing

column 1 and row 3 corresponds to dividing by 𝑋8 also applies to the minor Δ123
124

“ 𝑋5𝑋8, so that Δ12
24 “ 𝑋5.

For the specific upper triangular matrix 𝑧 “ ϒ𝑢,𝑤 9𝑤´1, we have

Δ12
24 “ det

˜

𝑋2`𝑋3𝑋5

𝑋6
1

𝑋2

𝑋3

𝑋6

𝑋3

¸

“ 𝑋2

𝑋3
`𝑋5 ´

𝑋2

𝑋3
“ 𝑋5.

While the formula 𝑋5 “
Δ123

245

Δ1234
1245

expressing 𝑋5 as a regular function on the Deodhar

torus is not defined on the boundary divisor𝒟v8,w,𝑋5 can be extended to a regular

function on ℛ𝑢,𝑤 by setting 𝑋5 “Δ12
24.
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5.2 The left-to-right path 𝜋𝑖

In this chapter, we prove that for each index 𝑖 P 𝐽˝u` in a unipeak wiring di-

agram, the variable 𝑋𝑖 is a regular function on ℛ𝑢,𝑤 by expressing 𝑋𝑖 as a mi-

nor of the upper triangular matrix ϒ𝑢,𝑤 9𝑤´1. Given 𝑖, there is a collection of rows

p𝑅𝑖 Ď 𝜆𝑖´1pu`q pㅊÐp𝑖qq and a collection of strands p𝐶𝑖 Ď StrandspㅊÐp𝑖qq so that

Δ
p𝑅𝑖

𝜆pwqp p𝐶𝑖q
“ 𝑋𝑖.

We begin with an outline of our proof strategy.

Consider the collection of strands p𝐶𝑖
𝑖 :“ StrandspㅊÐp𝑖qq and the collection of

row indices p𝑅𝑖
𝑖 :“𝑢p𝑖´1qpr1, ℎsq, so that p𝑅𝑖

𝑖“Pivots𝜌𝑖´1pwqp p𝐶𝑖
𝑖q
p𝑢p𝑖´1qq“Pivots𝜌pwqp p𝐶𝑖

𝑖q
p𝑢q.

We note thatΔ
p𝑅𝑖
𝑖

𝜆pwqp p𝐶𝑖
𝑖q
“QpㅊÐp𝑖qq“𝑋𝑖

ź

𝑘ą𝑖
ㅊÐp𝑖qPJCp𝑘q

𝑋𝑘 “ 𝑋𝑖

ź

𝑘ą𝑖
𝜌𝑘´1pwqp p𝐶𝑖

𝑖qP𝒥 p𝑢p𝑘´1q,𝑠ℎ𝑘q

𝑋𝑘.

Following Example V.4, we will iteratively define collections of strands p𝐶𝑖
𝑗 and

row indices p𝑅𝑖
𝑗 by deleting one strand and one row index at a time. We will use the

following criteria for performing a deletion.

1. The crossing 𝑗 is in 𝐽`u` and the strands 𝛼Õp𝑗q and 𝛼Œp𝑗q are in p𝐶𝑖
𝑗´1.

2. The set p𝐶𝑖
𝑗´1 is contained in StrandspㅊÒp𝑗qq.

3. The row index 𝑟 “ 𝜆𝑗´1pu`q p𝛼Õp𝑗qq is in p𝑅𝑖
𝑗´1.

In this case, we will delete the strand 𝛼Õp𝑗q from the set p𝐶𝑖
𝑗´1 and the row index

𝑟 “ 𝜆𝑗pu`q p𝛼Õp𝑗qq from p𝑅𝑖
𝑗´1 to obtain the sets p𝐶𝑖

𝑗 and p𝑅𝑖
𝑗 . We will show that

the minors Δ
p𝑅𝑖
𝑗´1

𝜆pwqp p𝐶𝑖
𝑗´1q

and Δ
p𝑅𝑖
𝑗

𝜆pwqp p𝐶𝑖
𝑗q

are related by the identity
Δ

p𝑅𝑖
𝑗´1

𝜆pwqp p𝐶𝑖
𝑗´1q

Δ
p𝑅𝑖
𝑗

𝜆pwqp p𝐶𝑖
𝑗q

“

Δ
𝜆pu`qp𝑗´1qpr1,ℎ𝑗`1sq

𝜆pwqpㅊÒp𝑗qq

Δ
𝜆pu`qp𝑗qpr1,ℎ𝑗sq

𝜆pwqpㅊÑp𝑗qq

“
QpㅊÒp𝑗qq

QpㅊÑp𝑗qq
.

We will also show by induction that for each 𝑗 ě 𝑖, the minor Δ
p𝑅𝑖
𝑗

𝜆pwqp p𝐶𝑖
𝑗q

is equal



67

to 𝑋𝑖 times the correction factor
ź

𝑘ą𝑗

𝜌𝑘´1pwqp p𝐶𝑖
𝑗qP𝒥 p𝑢p𝑘´1q,𝑠ℎ𝑘q

𝑋𝑘. In particular, for 𝑗 “ ℓ,

the minor Δ
p𝑅𝑖
𝑗

𝜆pwqp p𝐶𝑖
𝑗q

will be equal to 𝑋𝑖.

Since strands and row indices are deleted only at crossings 𝑗 where the strand

𝛼Œp𝑗q is in p𝐶𝑖
𝑗´1 and the set p𝐶𝑖

𝑗´1is contained in the set StrandspㅊÒp𝑗qq, we need

only consider the crossings where the uppermost strand in the collection p𝐶𝑖
𝑗´1 trav-

els down. We will therefore consider the left-to-right path 𝜋𝑖 consisting of the up-

permost strand segment in the collection p𝐶𝑖
𝑘 for each 𝑘 ě 𝑖; the crossings 𝑗 P 𝐽`u`

where the strand 𝛼Õp𝑗q and row index 𝑟 “ 𝜆𝑗pu`q p𝛼Õp𝑗qq are deleted will be pre-

cisely those crossings where 𝜋𝑖 crosses down over a geodesic path 𝛾𝑟 where 𝑟 P

p𝑅𝑖
𝑗´1. We emphasize that 𝜋𝑖 is not a connected left-to-right path; while it switches

from one strand to another only at crossings, consecutive strand segments need

not meet at a common vertex.

Definition V.5. Let 𝑖 P 𝐽˝u` . We define 𝜋𝑖 as follows: 𝜋𝑖 follows 𝛼Õp𝑖q until it begins

to travel down (necessarily at some index 𝑗 ą 𝑖). For crossings 𝑘 ą 𝑖, 𝜋𝑖 travels up

whenever possible. If the strand 𝜋𝑖 is following crosses down at some crossing 𝑘,

𝜋𝑖 continues to follow the strand 𝛼Œp𝑘q if 𝜆𝑘pu`q p𝛼Õp𝑘qq is in Pivots𝜌pwqpㅊÐp𝑖qq p𝑢q,

and otherwise switches strands.

That is, 𝜋𝑖 travels greedily up, subject to the constraint that it follows only geodesic

paths 𝛾𝑟 where 𝑟 R Pivots𝜌pwqpㅊÐp𝑖qq p𝑢q. It is immediate that 𝜋𝑖 can travel down only

at indices 𝑗 P 𝐽`u` . By Proposition III.16, since 𝜋𝑖 never switches from an ascending

strand to a descending strand at a crossing, if 𝜋𝑖 follows a segment of a strand 𝛼,

then 𝛼 PㅊÐp𝑖q.

Definition V.6. We define the sets p𝐶𝑖
𝑘 and p𝑅𝑖

𝑘 as follows. Let p𝐶𝑖
𝑖 “ StrandspㅊÐp𝑖qq
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𝜋2 𝜋9

Figure 5.3: The crossings 2 and 9 have the same rising strand 𝛼Õp2q “ 𝛼Õp9q, but give rise to differ-
ent paths 𝜋2 and 𝜋9.

and let p𝑅𝑖
𝑖 “ Pivots

p𝐶𝑖
𝑖
p𝑢q “ 𝑢p𝑖´1qpr1, ℎ𝑖sq. For each 𝑘 ě 𝑖, there are two cases.

1. If 𝜋𝑖 follows the strand 𝛼Œp𝑘q immediately to the right of 𝑘, we take p𝐶𝑖
𝑘 “

p𝐶𝑖
𝑘´1

z t𝛼Õp𝑘qu and p𝑅𝑖
𝑘 “

p𝑅𝑖
𝑘´1 z t𝜆

𝑘pu`q p𝛼Õp𝑘qqu.

2. Otherwise, we take p𝐶𝑖
𝑘 “

p𝐶𝑖
𝑘´1 and p𝑅𝑖

𝑘 “
p𝑅𝑖
𝑘´1.

Example V.7. Let w “ 𝑠7𝑠6𝑠5𝑠4𝑠3𝑠2𝑠1𝑠8𝑠7𝑠6𝑠5𝑠4𝑠3𝑠2𝑠7𝑠6𝑠5𝑠4𝑠3𝑠6𝑠5𝑠9𝑠8𝑠7𝑠9. Figure 5.3

shows the paths 𝜋2 and 𝜋9 corresponding to crossings with the same rising strand.

Since 𝜋2 never travels down, we have p𝑅2“ 𝜆1pu`q pㅊÐp2qq “ t1, 2, 3, 4, 5, 6u and p𝐶2

“ 𝜆1pwq pㅊÐp2qq “ t1, 2, 3, 4, 5, 6u, so that 𝑋2 “Δ123456
123456. Since 𝜋9 travels down at

crossings 15 and 20, p𝑅9 “ 𝜆8pu`q pㅊÐp9qq z t𝜆
15pu`q p𝛼Õp15qq , 𝜆

20pu`q p𝛼Õp20qqu “

t1, 2, 3, 4, 5, 6, 7u z t7, 6u and p𝐶9“𝜆8pwq pㅊÐp9qq z t𝜆
15pwq p𝛼Õp15qq , 𝜆

20pwq p𝛼Õp20qqu

“ t1, 2, 3, 4, 5, 6, 8u z t5, 3u. This gives 𝑋9 “Δ12345
12468.

We note that the operation taking a chamberㅊÐp𝑖q to a minor Δ
p𝑅𝑖

p𝐶𝑖 does not

preserve containments of row and column indices or even relative sizes of minors:

in this case, the strands belowㅊÐp2q are a subset of the strands belowㅊÐp9q,

but 𝑋9 is given by a 5ˆ 5-minor and 𝑋2 is given by a 6ˆ 6-minor.
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5.3 Deletion of strands and geodesics crossing above the path 𝜋𝑖

Our main goal for this section is to show by induction on 𝑗 ą 𝑖 that the minor

Δ
p𝑅𝑖
𝑗

𝜆pwqp p𝐶𝑖
𝑗q

is equal to 𝑋𝑖

ź

𝑘ą𝑗

𝜌𝑘´1pwqp p𝐶𝑖
𝑗qP𝒥 p𝑢p𝑘´1q,𝑠ℎ𝑘q

𝑋𝑘. In order to determine for which

𝑘 ą 𝑗 we have 𝜌𝑘´1pwq
´

p𝐶𝑖
𝑗

¯

P 𝒥
`

𝑢p𝑘´1q, 𝑠ℎ𝑘

˘

, we will first need to show that the set

𝜌𝑘´1pwq
´

p𝐶𝑖
𝑗

¯

has pivots Pivots𝜌𝑘´1pwqp p𝐶𝑖
𝑗q
p𝑢p𝑘´1qq “ p𝑅𝑖

𝑗 .

Proposition V.8. Fix an index 𝑘 ě 𝑖, and let ℎ be the height of 𝜋𝑖 at index 𝑘. Then the

following hold.

1. Suppose that 𝛼 P StrandspㅊÐp𝑖qq. Then 𝜌𝑘pwq p𝛼q ď ℎ if and only if 𝛼 P p𝐶𝑖
𝑘.

2. Suppose that 𝑟 P Pivots𝜌pwqpㅊÐp𝑖qq p𝑢q . Then 𝑟 P 𝑢p𝑘qpr1, ℎsq if and only if 𝑟 P p𝑅𝑖
𝑘.

Proof. Suppose that a strand 𝛽 crosses above 𝜋𝑖 at a crossing 𝑘 P 𝐽`u` . We claim

that 𝛽 stays above 𝜋𝑖 for all 𝑘1 ą 𝑘. To see this, note that 𝜋𝑖 “partitions” the di-

agram in the following way: Write 𝑟˚ “ 𝜆𝑗pu`q p𝛼Õp𝑖qq. By Lemma III.20, if 𝑟 P

Pivots
𝜌pwqpㅊÐp𝑖qq

p𝑢q and 𝑟 ą 𝑟˚, since 𝜆𝑗pu`q p𝛼Œp𝑗qq “ 𝑟˚, for all 𝑘 ě 𝑗 we have

𝑢´1
p𝑘qp𝑟q ă 𝜌𝑘pwq p𝛼Œp𝑗qq ă 𝜌𝑘pwq p𝜋𝑖q . So if 𝑘 ą 𝑖 is the index of a crossing (𝛽,𝛼) along

𝜋𝑖 where 𝑢p𝑘qp𝛽q P Pivots𝜌pwqpㅊÐp𝑖qq p𝑢q so that 𝛽 “escapes” from 𝜋𝑖, then 𝜆𝑘pu`q p𝛽q

ă 𝑟˚.

For any 𝑘 ą 𝑖, we claim that 𝜆pu`q p𝑘qp𝜋𝑖
𝑘q ě 𝑟˚.

We note that if 𝜌𝑗pwq p𝛼q ă 𝜌𝑗pwq p𝛼Õp𝑖qq , then 𝜆𝑗pu`q p𝛼q ă 𝑟˚ implies that

𝜆𝑗pu`q p𝛼q PPivots𝜌pwqpㅊÐp𝑖qq p𝑢q. Suppose that for some 𝑘 ě 𝑗 we have that𝜆𝑘´1pu`q p𝜋
𝑖q

ě 𝑟˚ and if 𝜌𝑘´1pwq p𝛼q ă 𝜌𝑘´1pwq p𝜋𝑖q , then𝜆𝑘´1pu`q p𝛼qă 𝑟˚ implies that𝜆𝑘´1pu`q p𝛼q

P Pivots𝜌pwqpㅊÐp𝑖qq p𝑢q. If the crossing 𝑘 is not on 𝜋𝑖 or if 𝑘 P 𝐽˝u` and 𝜋𝑖 switches

strands at 𝑘, then𝜆𝑘´1pu`q p𝜋
𝑖q“𝜆𝑘pu`q p𝜋

𝑖q and𝑢p𝑘qpr1, 𝜌
𝑘pwq p𝜋𝑖q sq“𝑢p𝑘qpr1, 𝜌

𝑘´1pwq p𝜋𝑖q sq,

so that the statement also holds for 𝑘.
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If 𝑘 P 𝐽`u` and 𝜋𝑖 switches strands at 𝑘, then 𝜌𝑘´1pwq p𝛼Õp𝑘qq ă 𝜌𝑘´1pwq p𝜋𝑖q and

𝜆𝑘´1pu`q p𝛼Õp𝑘qq R Pivots𝜌pwqpㅊÐp𝑖qq p𝑢q, so that 𝜆𝑘pu`q p𝜋
𝑖q “ 𝜆𝑘´1pu`q p𝛼Õp𝑘qq ě 𝑟˚

and 𝑢p𝑘qpr1, 𝜌
𝑘pwq p𝜋𝑖q sq “ 𝑢p𝑘´1qpr1, 𝜌

𝑘´1pwq p𝜋𝑖q sq.

If 𝜋𝑖 travels up at 𝑘, then𝜆𝑘´1pu`q p𝛼Œp𝑘qqą𝜆𝑘´1pu`q p𝜋
𝑖qě 𝑟˚ so that𝑢p𝑘qpr1, 𝜌𝑘pwq p𝜋𝑖q sq

“ 𝑢p𝑘qpr1, 𝜌
𝑘´1pwq p𝜋𝑖q sq Y t𝜆𝑘´1pu`q p𝛼Œp𝑘qq u and 𝜆𝑘pu`q p𝜋

𝑖q ě 𝜆𝑘´1pu`q p𝜋
𝑖q.

If 𝑘 P 𝐽`u` is a crossing where 𝜋𝑖 travels down, then 𝜆𝑘pu`q p𝜋
𝑖q “ 𝜆𝑘´1pu`q p𝜋

𝑖q

and 𝑢p𝑘qpr1, 𝜌
𝑘pwq p𝜋𝑖q sq “ 𝑢p𝑘´1qpr1, 𝜌

𝑘´1pwq p𝜋𝑖q sq.

So 𝜆𝑘pu`q p𝜋
𝑖q ě 𝑟˚ and if 𝜌𝑘pwq p𝛼q ă 𝜌𝑘pwq p𝜋𝑖q , then 𝜆𝑘pu`q p𝛼q “ 𝑟˚ implies

that 𝜆𝑘pu`q p𝛼q P Pivots𝜌pwqpㅊÐp𝑖qq p𝑢q.

By Lemma III.20, it follows that if a strand 𝛼 crosses above the path 𝜋𝑖 at a cross-

ing 𝑘 and 𝑟1 “ 𝜆𝑘pu`q p𝛼q, then 𝑟1 ă 𝑟˚ and for all 𝑘1 ą 𝑘, we have 𝜌𝑘1pwq p𝛼q ě

𝑢´1
p𝑘´1qp𝑟

1q ą 𝜌𝑘1pwq p𝜋𝑖q .

In the next proposition, we remark that for any subset 𝑆 of the strands be-

low height ℎ at some index 𝑗, the pivots of 𝑆 with respect to 𝑢p𝑘q is contained in

𝑢p𝑗qpr1, ℎsq.

Proposition V.9. Let u` be a positive subexpression of a reduced expression w. Let 𝑆

be a collection of strands with 𝜌𝑗pwq p𝑆q Ď r1, ℎs for some index 𝑗 and height ℎ. Let 𝑟 R

𝑢p𝑗qpr1, ℎsq. Then 𝑟 R Pivots𝜌pwqp𝑆q p𝑢q.

Proof. Let𝑇 be the collection of strands with 𝜌𝑗pwq p𝑇 q “ r1, ℎs. We have Pivots𝜌pwqp𝑆q p𝑢q

Ď Pivots𝜌pwqp𝑇 q p𝑢q “ 𝑢p𝑗qpr1, ℎsq S 𝑟.

Corollary V.10. We have Pivots𝜌pwqp p𝐶𝑖
𝑘q
p𝑢q “ p𝑅𝑖

𝑘.

Suppose now that for some index 𝑗 ě 𝑖, the collection of strands p𝐶𝑖
𝑗´1 satisfies

the condition Δ
p𝑅𝑖
𝑗´1

𝜆pwqp p𝐶𝑖
𝑗´1q

“ 𝑋𝑖

ź

𝑘ą𝑗´1

𝜌𝑘´1pwqp p𝐶𝑖
𝑗qP𝒥 p𝑢p𝑘´1q,𝑠ℎ𝑘q

𝑋𝑘. In order to prove the in-
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duction step, we must check that several conditions are satisfied. If 𝑗 P 𝐽`u` is an

index where we obtain the collections p𝐶𝑖
𝑗 and p𝑅𝑖

𝑗 by deleting the strand 𝛼Õp𝑗q from

p𝐶𝑖
𝑗´1 and the row index 𝑟 “ 𝜆𝑗pu`q p𝛼Õp𝑗qq from p𝑅𝑖

𝑗´1, we must show the following.

1. The minors Δ
p𝑅𝑖
𝑗

𝜆pwqp p𝐶𝑖
𝑗q

and Δ
p𝑅𝑖
𝑗´1

𝜆pwqp p𝐶𝑖
𝑗´1q

satisfy the equation

Δ
p𝑅𝑖
𝑗´1

𝜆pwqp p𝐶𝑖
𝑗´1q

Δ
p𝑅𝑖
𝑗

𝜆pwqp p𝐶𝑖
𝑗q

“

Δ
𝜆pu`qp𝑗´1qpr1,ℎ𝑗`1sq

𝜆pwqpㅊÒp𝑗qq

Δ
𝜆pu`qp𝑗qpr1,ℎ𝑗sq

𝜆pwqpㅊÑp𝑗qq

.

(See Proposition V.11.)

2. For any 𝑘 ą 𝑗, the condition that 𝜌𝑘´1pwq
´

p𝐶𝑖
𝑗´1

¯

P𝒥
`

𝑢p𝑘´1q, 𝑠ℎ𝑘

˘

and 𝜌𝑘´1pwq
´

p𝐶𝑖
𝑗

¯

R 𝒥
`

𝑢p𝑘´1q, 𝑠ℎ𝑘

˘

is equivalent to the condition thatㅊÒp𝑗q P JCp𝑘q andㅊÑp𝑗q

R JCp𝑘q.

3. For any 𝑘 ą 𝑗, the condition that 𝜌𝑘´1pwq
´

p𝐶𝑖
𝑗´1

¯

R𝒥
`

𝑢p𝑘´1q, 𝑠ℎ𝑘

˘

and 𝜌𝑘´1pwq
´

p𝐶𝑖
𝑗

¯

P 𝒥
`

𝑢p𝑘´1q, 𝑠ℎ𝑘

˘

is equivalent to the condition thatㅊÒp𝑗q R JCp𝑘q andㅊÑp𝑗q

P JCp𝑘q.

We will prove this in more generality for a collection of strands𝑆 Ă StrandspㅊÑp𝑗qq

so that the pivots of the sets 𝜌pwq p𝑆q and 𝜌pwq p𝑆 Y t𝛼Õp𝑗quq differ by the row in-

dex 𝑟 “ 𝜆𝑗pu`q p𝛼Õp𝑗qq . On the other hand, if 𝑗 P 𝐽˝u` , then no strand or row index

deletions are performed, so that p𝐶𝑖
𝑗 “

p𝐶𝑖
𝑗´1 and p𝑅𝑖

𝑗 “
p𝑅𝑖
𝑗´1; we must therefore show

that 𝜌𝑗´1pwq
´

p𝐶𝑖
𝑗

¯

R 𝒥
`

𝑢p𝑗´1q, 𝑠ℎ𝑗

˘

.

Fix 𝑗 P 𝐽`u` and let 𝑟 be the row index 𝜆𝑗pu`q p𝛼Õp𝑗qq . Let 𝑆 be a subset of

StrandspㅊÑp𝑗qq, and write Pivots𝜌𝑗pwqp𝑆q p𝑢p𝑗qq. The condition that𝑆 Ď StrandspㅊÑp𝑗qq

implies that 𝑟 R Pivots𝜌𝑗pwqp𝑆q p𝑢p𝑗qq . The following proposition shows that if the set

𝜌𝑗pwq p𝑆 Y 𝛼Õp𝑗qq has pivots𝑅Yt𝑟u, then the minorsΔ𝑅
𝜆pwqp𝑆q andΔ

𝑅Yt𝜆𝑗pu`qp𝛼Õp𝑗qqu

𝜆pwqp𝑆Y𝛼Õp𝑗qq

are related by the same scalar factor as the minors Δ𝑢p𝑗qpr1,ℎ𝑗`1sq

𝜆pwqpㅊÑp𝑗qq
and Δ

𝑢p𝑗qpr1,ℎ𝑗sq

𝜆pwqpㅊÒp𝑗qq
.
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Proposition V.11. Fix 𝑗 P 𝐽`u` and let 𝑟 be the row index 𝑢p𝑗qpℎ𝑗q “ 𝜆𝑗pu`q p𝛼Õp𝑗qq .

Let 𝑆 be a subset of StrandspㅊÑp𝑗qq, and let 𝑅 be the set Pivots𝜌𝑗pwqp𝑆q p𝑢p𝑗qq. The con-

dition that 𝑆 Ď StrandspㅊÑp𝑗qq implies that 𝑟 R Pivots𝜌𝑗pwqp𝑆q p𝑢p𝑗qq . Suppose that

Pivots𝜌𝑗pwqp𝑆Y𝛼Õp𝑗qq p𝑢p𝑗qq “ 𝑅 Y t𝑟u. Then the minors Δ𝑅
𝜆pwqp𝑆q and Δ𝑅Yt𝑟u

𝜆pwqp𝑆Y𝛼Õp𝑗qq

satisfy the relation
Δ

𝑅Yt𝑟u

𝜆pwqp𝑆Y𝛼Õp𝑗qq

Δ𝑅
𝜆pwqp𝑆q

“

Δ
𝑢p𝑗qpr1,ℎ𝑗sq

𝜆pwqpㅊÒp𝑗qq

Δ
𝑢p𝑗qpr1,ℎ𝑗`1sq

𝜆pwqpㅊÑp𝑗qq

on 𝒟u`,w.

Proof. Let 𝑚 “ |StrandspㅊÑp𝑗qqz𝑆| and apply induction on 𝑚. Let 𝑆𝑚 “ 𝑆 Ă

𝑆𝑚´1 Ă ¨ ¨ ¨ Ă 𝑆0 “ StrandspㅊÑp𝑗qq be a nested sequence of sets so that for each

𝑑 the set 𝑆𝑑 is obtained from 𝑆𝑑´1 by adding a single strand. Write 𝑅𝑑 for the set

Pivots𝜌𝑗pwqp𝑆𝑑q
p𝑢p𝑗qq. Since 𝑆𝑑 Ď StrandspㅊÑp𝑗qq the index 𝑟 is not in 𝑅𝑑; since 𝑆 Y

t𝛼Õp𝑗qu Ď 𝑆𝑑 Y t𝛼Õp𝑗qu, we must have Pivots𝜌𝑗pwqp𝑆𝑑Yt𝛼Õp𝑗quq
p𝑢p𝑗qq “ 𝑅𝑑 Y t𝑟u.

For the base case, we take 𝑑 “ 0. Since 𝑆0 “ StrandspㅊÑp𝑗qq and 𝑆0 Y 𝛼Õp𝑗q

“ StrandspㅊÒp𝑗qq, the statement Δ𝑅𝑑

𝜆pwqp𝑆𝑑q
“
Δ

𝜆pu`qpㅊÑp𝑗qq
𝜆pwqpㅊÑp𝑗qq

Δ
𝜆pu`qpㅊÒp𝑗qq

𝜆pwqpㅊÒp𝑗qq

Δ𝑅𝑑Yt𝑟u

𝜆pwqp𝑆𝑑Yt𝛼Õp𝑗quq
holds

trivially for 𝑑 “ 0. For the induction step, suppose that for some 𝑑 ă 𝑚 we have

Δ𝑅𝑑

𝜆pwqp𝑆𝑑q
“

Δ
𝜆pu`qpㅊÑp𝑗qq
𝜆pwqpㅊÑp𝑗qq

Δ
𝜆pu`qpㅊÒp𝑗qq

𝜆pwqpㅊÒp𝑗qq

Δ𝑅𝑑Y𝑟
𝑆𝑑Yt𝛼Õp𝑗qu

. Let 𝛽 be the unique strand in 𝑆𝑑 z 𝑆𝑑`1 and

let 𝑎 be the unique row index in 𝑅𝑑 z 𝑅𝑑`1. By Corollary IV.16, we note that 𝑎 must

be larger than 𝑟. By Dodgson’s identity,

Δ𝑅𝑑`1Yt𝑟u

𝜆pwqp𝑆𝑑`1Yt𝛼Õp𝑗quq
Δ𝑅𝑑`1Yt𝑎u

𝜆pwqp𝑆𝑑`1Yt𝛽uq
´Δ𝑅𝑑`1Yt𝑟u

𝜆pwqp𝑆𝑑`1Yt𝛽uq
Δ𝑅𝑑`1Yt𝑎u

𝜆pwqp𝑆𝑑`1Yt𝛼Õp𝑗quq

“Δ𝑅𝑑`1

𝜆pwqp𝑆𝑑`1q
Δ𝑅𝑑`1Yt𝑟,𝑎u

𝜆pwqp𝑆𝑑`1Yt𝛼Õp𝑗q,𝛽uq
.

Δ𝑅𝑑`1Yt𝑟u

𝜆pwqp𝑆𝑑`1Yt𝛼Õp𝑗quq
Δ𝑅𝑑

𝜆pwqp𝑆𝑑q
´Δ𝑅𝑑`1Yt𝑟u

𝜆pwqp𝑆𝑑q
Δ𝑅𝑑`1

𝜆pwqp𝑆𝑑`1q

“Δ𝑅𝑑

𝜆pwqp𝑆𝑑q
Δ𝑅𝑑`1Yt𝑟u

𝜆pwqp𝑆𝑑`1Yt𝛼Õp𝑗quq

Since 𝑎 ą 𝑟, we have that 𝑅𝑑`1 Y t𝑟u ł Pivots𝜌𝑗pwqp𝑆𝑑q
p𝑢p𝑗qq “ 𝑅𝑑`1 Y t𝑎u. Since a

minor of the form Δ𝑅
𝜆pwqp𝑆q vanishes on 𝒟u`,w if there is any index 𝑗 where 𝑅 ł
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Pivots𝜌𝑗pwqp𝑆q p𝑢p𝑗qq , we must have Δ𝑅𝑑`1Yt𝑟u

𝜆pwqp𝑆𝑑q
“ 0. So

Δ𝑅𝑑`1

𝜆pwqp𝑆𝑑`1q
“

Δ𝑅𝑑

𝜆pwqp𝑆𝑑q

Δ𝑅𝑑Yt𝑟u

𝜆pwqp𝑆𝑑Yt𝛼Õp𝑗quq

Δ𝑅𝑑`1Yt𝑟u

𝜆pwqp𝑆𝑑`1Yt𝛼Õp𝑗quq
,

which is equal to
Δ

𝑢p𝑗qpr1,ℎ𝑗`1sq

𝜆pwqpㅊÑp𝑗qq

Δ
𝑢p𝑗qpr1,ℎ𝑗sq

𝜆pwqpㅊÒp𝑗qq

Δ𝑅𝑑`1Yt𝑟u

𝑆𝑑`1Yt𝛼Õp𝑗qu
by the induction hypothesis.

Combining the previous results,

Δ
p𝑅𝑖
𝑗

𝜆pwqp p𝐶𝑖
𝑗q
“Δ𝜆pu`qpㅊÐp𝑖qq

𝜆pwqpㅊÐp𝑖qq

ź

𝑗1ď𝑗
p𝐶𝑖
𝑗1
‰ p𝐶𝑖

𝑗1´1

ΔㅊÑp𝑗1q

ΔㅊÒp𝑗
1q

“ 𝑋𝑖

¨

˚

˚

˝

ź

𝑘ą𝑖
ㅊÐp𝑖qPJCp𝑘q

𝑋𝑘

˛

‹

‹

‚

¨

˚

˚

˚

˚

˝

ź

𝑗1ď𝑗
p𝐶𝑖
𝑗1
‰ p𝐶𝑖

𝑗1´1

ΔㅊÑp𝑗1q

ΔㅊÒp𝑗
1q

˛

‹

‹

‹

‹

‚

.

All 𝑗1 appearing in the second product satisfy 𝑗1 ą 𝑖, so the chamber weightings

ofㅊÒp𝑗
1q andㅊÑp𝑗

1q are monomials in t𝑋𝑘 : 𝑘 ą 𝑖u. In particular,

Δ
p𝑅𝑖
𝑗

𝜆pwqp p𝐶𝑖
𝑗q
“ 𝑋𝑖ℳ

where ℳ is a Laurent monomial in t𝑋𝑘 : 𝑘 ą 𝑖u.

We will show that

ℳ “

ź

𝑘ą𝑖
𝜌𝑘´1pwqp p𝐶𝑖

𝑗qP𝒥 p𝑢p𝑘´1q,𝑠ℎ𝑘q

𝑋𝑘

“

ź

𝑘ą𝑗

𝜌𝑘´1pwqp p𝐶𝑖
𝑗qP𝒥 p𝑢p𝑘´1q,𝑠ℎ𝑘q

𝑋𝑘.

Suppose that 𝑗 P 𝐽`u` is an index with 𝑗 ą 𝑖 and𝑆 ĎㅊÑp𝑗qwith Pivots𝑆 p𝜌𝑗pwq p𝑢p𝑗qq q

“𝑅 and Pivots𝜌𝑗pwqp𝑆Yt𝛼Õp𝑗quq p𝑢p𝑗qq “𝑅Yt𝑟uwhere 𝑟 “ 𝜆𝑗pu`q p𝛼Õp𝑗qq. The follow-

ing lemma shows that if Δ𝑅Yt𝑟u

𝜆pwqp𝑆Yt𝛼Õp𝑗quq
“ 𝑋𝑖

ź

𝑘ą𝑖
𝜌𝑘pwqp𝑆Yt𝛼Õp𝑗quqP𝒥 p𝑢p𝑘´1q,𝑠ℎ𝑘q

𝑋𝑘, then
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Δ𝑅
𝜆pwqp𝑆q satisfies the weaker condition Δ𝑅

𝜆pwqp𝑆q “ 𝑋𝑖ℳ, where ℳ is a squarefree

monomial in t𝑋𝑘 : 𝑘 ą 𝑖u.

Lemma V.12. Let 𝑗 P 𝐽`u` and let 𝑟´ “ 𝜆𝑗´1pu`q p𝛼Õp𝑗qq ă 𝜆𝑗´1pu`q p𝛼Œp𝑗qq “ 𝑟`.

Then the following hold:

1. If Pivots𝜌pwqpㅊÒp𝑗qq

`

𝑣𝑘
p𝑘´1q

˘

‰Pivots𝜌pwqpㅊÒp𝑗qq
p𝑢p𝑘´1qq and Pivots𝜌pwqpㅊÑp𝑗qq

`

𝑣𝑘
p𝑘´1q

˘

“ Pivots𝜌pwqpㅊÑp𝑗qq p𝑢p𝑘´1qq, then for any 𝑆 ĎㅊÒp𝑗q with 𝑟´ P Pivots𝑆 p𝑢p𝑘´1qq, we

have Pivots𝑆
`

𝑣𝑘
p𝑘´1q

˘

‰ Pivots𝑆 p𝑢p𝑘´1qq.

2. Suppose that for some 𝑘 ą 𝑗 we have Pivots𝜌pwqpㅊÒp𝑗qq

`

𝑣𝑘
p𝑘´1q

˘

“Pivots𝜌pwqpㅊÒp𝑗qq
p𝑢p𝑘´1qq

and Pivots𝜌pwqpㅊÑp𝑗qq

`

𝑣𝑘
p𝑘´1q

˘

‰Pivots𝜌pwqpㅊÑp𝑗qq p𝑢p𝑘´1qq. Then 𝑢p𝑘´1qp𝜌
𝑘´1pwq p𝛼Œp𝑘qq q

“ 𝑟´, and for any 𝑆 Ď ㅊÒp𝑗q with 𝑟´ P Pivots𝑆 p𝑢p𝑘´1qq we have Pivots𝑆
`

𝑣𝑘
p𝑘´1q

˘

“

Pivots𝑆 p𝑢p𝑘´1qq.

Proof. 1. We have

Pivots𝜌pwqpㅊÒp𝑗qq

`

𝑣𝑘

p𝑘´1q

˘

Ě Pivots𝜌pwqpㅊÑp𝑗qq

`

𝑣𝑘

p𝑘´1q

˘

“ Pivots𝜌pwqpㅊÑp𝑗qq p𝑢p𝑘´1qq “ Pivots𝜌pwqpㅊÒp𝑗qq
p𝑢p𝑘´1qq zt𝑟´u.

Since Pivots𝜌pwqpㅊÒp𝑗qq

`

𝑣𝑘
p𝑘´1q

˘

‰ Pivots𝜌pwqpㅊÒp𝑗qq
p𝑢p𝑘´1qq, we must have 𝑟´ R

Pivots𝜌pwqpㅊÒp𝑗qq

`

𝑣𝑘
p𝑘´1q

˘

. So if 𝑟´ PPivots𝑆 p𝑢p𝑘´1qqwith𝑆 ĎㅊÒp𝑗q, then Pivots𝑆
`

𝑣𝑘
p𝑘´1q

˘

Ď Pivots𝜌pwqpㅊÒp𝑗qq

`

𝑣𝑘
p𝑘´1q

˘

S 𝑟, and hence Pivots𝑆
`

𝑣𝑘
p𝑘´1q

˘

‰ Pivots𝑆 p𝑢p𝑘´1qq.

2. We have

Pivots𝜌pwqpㅊÑp𝑗qq

`

𝑣𝑘

p𝑘´1q

˘

Ď Pivots𝜌pwqpㅊÒp𝑗qq

`

𝑣𝑘

p𝑘´1q

˘

“ Pivots𝜌pwqpㅊÒp𝑗qq
p𝑢p𝑘´1qq “ Pivots𝜌pwqpㅊÑp𝑗qq p𝑢p𝑘´1qq Y t𝑟u,

so if Pivots𝜌pwqpㅊÑp𝑗qq

`

𝑣𝑘
p𝑘´1q

˘

‰Pivots𝜌pwqpㅊÑp𝑗qq p𝑢p𝑘´1qq, then Pivots𝜌pwqpㅊÑp𝑗qq

`

𝑣𝑘
p𝑘´1q

˘

“ Pivots𝜌pwqpㅊÑp𝑗qq p𝑢p𝑘´1qq z t𝑎u Y t𝑟´u for some 𝑎 ă 𝑟´.
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So either 𝜌𝑘pwq p𝛼Œp𝑘qq𝑢p𝑘´1q“ 𝑟´ or 𝜌𝑘pwq p𝛼Œp𝑘qq𝑢p𝑘´1qą 𝑟´ RPivots𝜌pwqpㅊÒp𝑗qq
p𝑢p𝑘´1qq.

Suppose that𝑢p𝑘´1qp𝜌
𝑘pwq p𝛼Œp𝑘qq qą 𝑟´. Writing𝑚 for the index of 𝜌𝑘´1pwq p𝛼Õp𝑘qq

in 𝜌𝑘´1pwq pㅊÑp𝑗qq and 𝑟1, ¨ ¨ ¨ , 𝑟|ㅊÑp𝑗q| for Pivots𝜌pwqpㅊÑp𝑗qq

`

𝑣𝑘
p𝑘´1q

˘

, we must

have 𝑟𝑚 “ 𝑟 and

#t𝛼 PㅊÑp𝑗q : 𝜌
𝑘´1
pwq p𝛼q ă ℎ𝑘u “ #t𝑟 P Pivots𝜌pwqpㅊÑp𝑗qq p𝑢p𝑘´1qq : 𝑢´1

p𝑘´1q p𝑟q ď ℎ𝑘u.

But 𝑟𝑚 “ 𝑟´ implies that 𝜌𝑘´1pwq p𝛼Õp𝑗qq ď 𝑢´1
p𝑘´1qp𝑟´q ă 𝜌𝑘´1pwq p𝛼Õp𝑘qq , so

#t𝛼 PㅊÒp𝑗q : 𝜌
𝑘´1
pwq p𝛼q ă ℎ𝑘u “ #t𝛼 PㅊÑp𝑗q : 𝜌

𝑘´1
pwq p𝛼q ă ℎ𝑘u ` 1

“ #t𝑟 P Pivots𝜌pwqpㅊÑp𝑗qq p𝑢p𝑘´1qq Y t𝑟´u : 𝑢
´1

p𝑘´1q p𝑟q ď ℎ𝑘u

“ #t𝑟 P Pivots𝜌pwqpㅊÒp𝑗qq
p𝑢p𝑘´1qq : 𝑢´1

p𝑘´1q p𝑟q ď ℎ𝑘u.

So Pivots𝜌pwqpㅊÑp𝑗qq

`

𝑣𝑘
p𝑘´1q

˘

‰ Pivots𝜌pwqpㅊÒp𝑗qq
p𝑢p𝑘´1qq, a contradiction.

Suppose that 𝑟´ PPivots𝑆 p𝑢p𝑘´1qq. The condition 𝑢p𝑘´1qp𝜌
𝑘pwq p𝛼Œp𝑘qq q PPivots𝑆 p𝑢p𝑘´1qq

implies that Pivots𝑆
`

𝑣𝑘
p𝑘´1q

˘

“ Pivots𝑆 p𝑢p𝑘´1qq.

It follows immediately from the the second part of this lemma that if for some

𝑗 P 𝐽`u` and 𝑘 P 𝐽˝u` we have 𝜌𝑘´1pwq
´

p𝐶𝑖
𝑗´1

¯

R 𝒥
`

𝑢p𝑘´1q, 𝑠ℎ𝑘

˘

but 𝜌𝑘´1pwq
´

p𝐶𝑖
𝑗

¯

P

𝒥
`

𝑢p𝑘´1q, 𝑠ℎ𝑘

˘

, then the crossing 𝑘 is above 𝜋𝑖
𝑘 so that in particular p𝐶𝑘

𝑖 R𝒥
`

𝑢p𝑘´1q, 𝑠ℎ𝑘

˘

.

Corollary V.13. Let 𝑗 P 𝐽`u` be a crossing where 𝜋𝑖 travels down, so that p𝐶𝑖
𝑗 “

p𝐶𝑖
𝑗´1

z t𝛼Õp𝑗qu and p𝑅𝑖
𝑗 “

p𝑅𝑖
𝑗´1 z t𝑟u where 𝑟 “ 𝜆𝑗´1pu`q p𝛼Õp𝑗qq. If 𝑘 is an index so that

Pivots
p𝐶𝑖
𝑗´1

`

𝑣𝑘
p𝑘´1q

˘

“ Pivots
p𝐶𝑖
𝑗´1
p𝑢p𝑘´1qq but Pivots

p𝐶𝑖
𝑗

`

𝑣𝑘
p𝑘´1q

˘

‰ Pivots
p𝐶𝑖
𝑗
p𝑢p𝑘´1qq, then the

strand 𝛼Õp𝑘q is in p𝐶𝑖
𝑗 , the row index 𝜆𝑘´1pu`q p𝛼Õp𝑘qq is in p𝑅𝑖

𝑗 , and at index 𝑘 ´ 1 the

strand 𝛼Õp𝑘q is strictly above 𝜋𝑖. In particular, the strand 𝛼Õp𝑘q is not in the collection

p𝐶𝑖
𝑘´1 and the row index 𝜆𝑘´1pu`q p𝛼Õp𝑘qq is not in p𝑅𝑖

𝑘´1.
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Lemma V.14. Let 𝑗 P 𝐽`u` , and let 𝑟´ “ 𝜆𝛼Õp𝑗qpu`q p𝑗 ´ 1q. Suppose that for some 𝑘 ą 𝑗

one of the following conditions holds.

1. Neither of the chambersㅊÒp𝑗q andㅊÑp𝑗q is in JCp𝑗q.

2. Both of the chambersㅊÒp𝑗q andㅊÑp𝑗q are in JCp𝑗q.

Let 𝑆 be a subset of StrandspㅊÑp𝑗qq satisfying the pivot stabilization criterion from

Corollary IV.28, and write 𝑅 “ Pivots𝑆 p𝑢q . Suppose that Pivots𝜌pwqp𝑆Yt𝛼Õp𝑗quq p𝑢q “

𝑅Y t𝑟´u. Then 𝜌𝑘´1pwq p𝑆q is in 𝒥
`

𝑢p𝑘´1q, 𝑠ℎ𝑘

˘

if and only if 𝜌𝑘´1pwq p𝑆 Y t𝛼Õp𝑗quq is

in 𝒥
`

𝑢p𝑘´1q, 𝑠ℎ𝑘

˘

.

Proof. Suppose that neither of the chambersㅊÒp𝑗q andㅊÑp𝑗q is in JCp𝑗q, so that

𝑟´ is the unique element of Pivots𝜌𝑘´1pwqpㅊÒp𝑗qq

`

𝑣
p𝑘´1q

˘

z Pivots𝜌𝑘´1pwqpㅊÑp𝑗qq

`

𝑣𝑘
p𝑘´1q

˘

.

We first consider the case where 𝜌𝑘´1pwq p𝑆q is not in the set 𝒥
`

𝑢p𝑘´1q, 𝑠ℎ𝑘

˘

, so

that Pivots𝜌𝑘´1pwqp𝑆q

`

𝑣𝑘
p𝑘´1q

˘

“ 𝑅. By Corollary IV.17, the set Pivots𝜌𝑘´1pwqp𝑆Yt𝛼Õp𝑗quq

`

𝑣𝑘
p𝑘´1q

˘

is weakly dominated by the set 𝑅 Y t𝑟´u “ Pivots𝜌𝑘´1pwqp𝑆Yt𝛼Õp𝑗quq
p𝑢p𝑘´1qq . On the

other hand, since𝑢p𝑘´1q ă 𝑣𝑘
p𝑘´1q in the Bruhat order, we must have Pivots𝜌𝑘´1pwqp𝑆Yt𝛼Õp𝑗quq

p𝑢p𝑘´1qq

ďPivots𝜌𝑘´1pwqp𝑆Yt𝛼Õp𝑗quq

`

𝑣𝑘
p𝑘´1q

˘

. So equality holds, and hence 𝜌𝑘´1pwq p𝑆 Y t𝛼Õp𝑗quq

is not in 𝒥
`

𝑢p𝑘´1q, 𝑠ℎ𝑘

˘

.

Conversely, if 𝜌𝑘´1pwq p𝑆q is in the set 𝒥
`

𝑢p𝑘´1q, 𝑠ℎ𝑘

˘

, then Pivots𝜌𝑘´1pwqp𝑆q

`

𝑣𝑘
p𝑘´1q

˘

is of the form 𝑅zt𝑟𝑎u Y t𝑟
𝑏u. Since 𝑆 is a subset of StrandspㅊÑp𝑗qq, the index 𝑟𝑏

must be an element of Pivots𝜌𝑘´1pwqpㅊÑp𝑗qq

`

𝑣𝑘
p𝑘´1q

˘

, which does not contain the index

𝑟´. So Pivots𝜌𝑘´1pwqp𝑆q

`

𝑣𝑘
p𝑘´1q

˘

contains an index 𝑟𝑏 which is not in the set 𝑅Yt𝑟´u “

Pivots𝜌𝑘´1pwqp𝑆Yt𝛼Õp𝑗quq
p𝑢p𝑘´1qq , and hence Pivots𝜌𝑘´1pwqp𝑆Yt𝛼Õp𝑗quq

`

𝑣𝑘
p𝑘´1q

˘

also con-

tains the index 𝑟𝑏. So Pivots𝜌𝑘´1pwqp𝑆Yt𝛼Õp𝑗quq
p𝑢p𝑘´1qq‰Pivots𝜌𝑘´1pwqp𝑆Yt𝛼Õp𝑗quq

`

𝑣𝑘
p𝑘´1q

˘

,

and thus 𝜌𝑘´1pwq p𝑆 Y 𝛼Õp𝑗qq is in 𝒥
`

𝑢p𝑘´1q, 𝑠ℎ𝑘

˘

.

Suppose now that both of the chambersㅊÒp𝑗q andㅊÑp𝑗q are in JCp𝑗q. We

claim that 𝑢´1
p𝑘qp𝑟´q “

`

𝑣𝑘
p𝑘´1q

˘

´1
p𝑟´q; that is, 𝑟´ is not one of the indices 𝑢p𝑘´1qpℎ𝑘q and
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𝑢p𝑘´1qpℎ𝑘`1q. By Corollary IV.21, the index𝑢p𝑘´1qpℎ𝑘`1q is not in Pivots𝜌𝑘´1pwqpㅊÒp𝑗qq
p𝑢p𝑘´1qq

and the index𝑢p𝑘´1qpℎ𝑘q is in Pivots𝜌𝑘´1pwqpㅊÑp𝑗qq p𝑢p𝑘´1qq. Since 𝑟´ is in Pivots𝜌𝑘´1pwqpㅊÒp𝑗qq
p𝑢p𝑘´1qq,

we must have 𝑟´ ‰ 𝑢p𝑘´1qpℎ𝑘 ` 1q; since 𝑟´ is not in Pivots𝜌𝑘´1pwqpㅊÑp𝑗qq p𝑢p𝑘´1qq, we

must have 𝑟´ ‰ 𝑢p𝑘´1qpℎ𝑘q.

Since 𝑢´1
p𝑘´1qp𝑅q ď 𝜌𝑘´1pwq p𝑆q and 𝑢´1

p𝑘´1qp𝑅 Y t𝑟´uq ď 𝜌𝑘´1pwq p𝑆 Y t𝛼Õp𝑗quq

and 𝑢´1
p𝑘´1qp𝑟´q “

`

𝑣𝑘
p𝑘´1q

˘

´1
p𝑟´q, we have

`

𝑣𝑘
p𝑘´1q

˘

´1
p𝑅q ď 𝜌𝑘´1pwq p𝑆q if and only if

`

𝑣𝑘
p𝑘´1q

˘

´1
p𝑅Yt𝑟´uq ď 𝜌𝑘´1pwq p𝑆 Y t𝛼Õp𝑗quq . By Proposition IV.22, this implies that

Pivots𝜌𝑘´1pwqp𝑆q

`

𝑣𝑘
p𝑘´1q

˘

“ 𝑅 if and only if Pivots𝜌𝑘´1pwqp𝑆Yt𝛼Õp𝑗quq

`

𝑣𝑘
p𝑘´1q

˘

“ 𝑅Yt𝑟´u.

Taking the contrapositive of this statement, we have that 𝜌𝑘´1pwq p𝑆q is in the set

𝒥
`

𝑢p𝑘´1q, 𝑠ℎ𝑘

˘

if and only if 𝜌𝑘´1pwq p𝑆 Y 𝛼Õp𝑗qq is in the set 𝒥
`

𝑢p𝑘´1q, 𝑠ℎ𝑘

˘

.

5.4 The variable 𝑋𝑖 is regular on ℛ𝑢,𝑤 and vanishes on the Deodhar divisor
𝒟vi,w

Lemma V.15. Let 𝑖 P 𝐽˝u` and let 𝑗 ě 𝑖. Then we have Pivots
𝜌𝑗
1´1pwqp p𝐶𝑖

𝑗q

´

𝑣𝑗1

p𝑗1´1q

¯

“

Pivots
𝜌𝑗
1´1pwqp p𝐶𝑖

𝑗q
p𝑢p𝑗1´1qq for all 𝑗1 ď 𝑗 with 𝑗1 ‰ 𝑖, and

Δ
p𝑅𝑖
𝑗

𝜆pwqp p𝐶𝑖
𝑗q
“ 𝑋𝑖

ź

𝑘ą𝑖
𝜌𝑘´1pwqp p𝐶𝑖

𝑗qP𝒥 p𝑢p𝑘´1q,𝑠ℎ𝑘q

𝑋𝑘.

Proof. Apply induction on 𝑗. For 𝑗 “ 𝑖, the set of strands p𝐶𝑖
𝑗 is given by StrandspㅊÐp𝑖qq

and the row indices are p𝑅𝑖
𝑗 “Pivots𝜌pwqpㅊÐp𝑖qq p𝑢p𝑖´1qq, so that statement follows triv-

ially from our choice of chamber weighting Qpㅊq.

Suppose that for some 𝑗 ą 𝑖, we have Pivots
p𝐶𝑖
𝑗´1

´

𝑣𝑗1

p𝑗1´1q

¯

“ Pivots
p𝐶𝑖
𝑗´1
p𝑢p𝑗1´1qq for

all 𝑗1 P 𝐽˝u` with 𝑖 ă 𝑗1 ă 𝑗 ´ 1 and Δ
p𝑅𝑖
𝑗´1

𝜆pwqp p𝐶𝑖
𝑗´1q

“ 𝑋𝑖

ź

𝑘ą𝑖
𝜌𝑘´1pwqp p𝐶𝑖

𝑗´1qP𝒥 p𝑢p𝑘´1q,𝑠ℎ𝑘q

𝑋𝑘.

Suppose that p𝐶𝑖
𝑗 “

p𝐶𝑖
𝑗´1. If 𝑗 P 𝐽`u` , the statement follows trivially.

If 𝑗 P 𝐽˝u` , it suffices to show that Pivots𝜌𝑗´1pwqp p𝐶𝑖
𝑗´1q

`

𝑣𝑗

p𝑗´1q

˘

“Pivots𝜌𝑗´1pwqp p𝐶𝑖
𝑗´1q

p𝑢p𝑗´1qq.

Suppose otherwise. Then 𝜆𝑗´1pu`q p𝛼Õp𝑗qq P Pivots𝜌𝑗´1pwqp p𝐶𝑖
𝑗´1q

p𝑢p𝑗´1qq,
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𝜆𝑗´1pu`q p𝛼Œp𝑗qq R Pivots𝜌𝑗´1pwqp p𝐶𝑖
𝑗´1q

p𝑢p𝑗´1qq, and

#t𝛼 P p𝐶𝑖
𝑗´1 : 𝜌

𝑗´1
pwq p𝛼q ď ℎ𝑗 ` 1u “ #t𝑟 P p𝑅𝑖

𝑗´1 : 𝑢
´1

p𝑗´1q p𝑟q ď ℎ𝑗 ` 1u.

Suppose that p𝐶𝑖
𝑗 “

p𝐶𝑖
𝑗´1 z 𝛼Õp𝑗q. Then Δ

p𝑅𝑖
𝑗

𝜆pwqp p𝐶𝑖
𝑗q
“ Δ

p𝑅𝑖
𝑗´1

𝜆pwqp p𝐶𝑖
𝑗´1q

Δ
PivotsㅊÑp𝑗q

p 9𝑢q

ㅊÑp𝑗q

Δ
PivotsㅊÒp𝑗q

p 9𝑢q

ㅊÒp𝑗q

so that 𝑋𝑘 divides Δ
p𝑅𝑖
𝑗

𝜆pwqp p𝐶𝑖
𝑗q

if and only if either 𝑋𝑘 divides Δ
p𝑅𝑖
𝑗´1

𝜆pwqp p𝐶𝑖
𝑗´1q

and di-

vides both or neither of Δ
Pivots𝜌pwqpㅊÑp𝑗qq

p𝑢q

ㅊÑp𝑗q
and Δ

Pivots
𝜌pwqpㅊÒp𝑗qq

p𝑢q

ㅊÒp𝑗q
or 𝑋𝑘 divides

Δ
Pivots𝜌pwqpㅊÑp𝑗qq

p𝑢q

ㅊÑp𝑗q
and does not divideΔ

p𝑅𝑖
𝑗´1

𝜆pwqp p𝐶𝑖
𝑗´1q

orΔ
Pivots

𝜌pwqpㅊÒp𝑗qq
p𝑢q

ㅊÒp𝑗q
. For 𝑘 ‰ 𝑖,

these are precisely the conditions for when Pivots
p𝐶𝑖
𝑗

`

𝑣𝑘
p𝑘´1q

˘

‰Pivots
p𝐶𝑖
𝑗
p𝑢p𝑘´1qq (“

p𝑅𝑖
𝑗).

Lemma V.16. Δ
p𝑅𝑖
ℓ

𝜆pwqp p𝐶𝑖
ℓq
“ 𝑋𝑖.

Proof. Δ
p𝑅𝑖
ℓ

𝜆pwqp p𝐶𝑖
ℓq
“𝑋𝑖

ź

𝑘ąℓ
𝜌pwqp p𝐶𝑖

ℓqP𝒥 p𝑢p𝑘´1q,𝑠ℎ𝑘q

𝑋𝑘, where the product is empty since there

are no crossings 𝑘 with 𝑘 ą ℓ.

Lemma V.17. Let 𝑖 P 𝐽˝u` be an index with 𝑣0
p𝑖q “ 1. Then Δ

p𝑅𝑖
ℓ

𝜆pwqp p𝐶𝑖
ℓq

vanishes identically

on the Deodhar boundary divisor 𝒟vi,w.

Proof. The relation

Δ
p𝑅𝑖
ℓ

p𝐶𝑖
ℓ

“Δ
Pivots𝜌pwqpㅊÐp𝑖qqp𝑢q
ㅊÐp𝑖q

ź

𝑘ą𝑖
𝜋𝑖
𝑘‰𝜋

𝑖
𝑘´1

Δ
Pivots𝜌pwqpㅊÑp𝑘qq

p𝑢q

𝜆pwqpㅊÑp𝑘qq

Δ
Pivots

𝜌pwqpㅊÒp𝑘qq
p𝑢q

𝜆pwqpㅊÒp𝑘qq

holds on the dense open subset 𝒟u`,w and hence holds wherever the minors

Δ
Pivots

𝜌pwqpㅊÒp𝑘qq
p𝑢q

ㅊÒp𝑘q
are all nonzero. But these are chamber minors to the right of 𝑗 in

the wiring diagram for𝒟vi,w and hence are nonzero on𝒟vi,w. On𝒟vi,w,Δ
Pivots𝜌pwqpㅊÐp𝑖qq

p𝑢q

ㅊÐp𝑖q

“ 0 and hence

Δ
p𝑅𝑖
ℓ

p𝐶𝑖
ℓ

pϒ𝑤
𝑢 q “Δ

Pivots𝜌pwqpㅊÐp𝑖qqp𝑢q
ㅊÐp𝑖q

ź

𝑘ą𝑖
𝜋𝑖
𝑘‰𝜋

𝑖
𝑘´1

Δ
Pivots𝜌pwqpㅊÑp𝑘qq

p𝑢q

ㅊÑp𝑘q

Δ
Pivots

𝜌pwqpㅊÒp𝑘qq
p𝑢q

ㅊÒp𝑘q
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𝑋1

𝑋2

𝑋3

𝑋5

𝑋4𝑋8

𝑋6

1

𝑋8

𝑋8

1

1

1
𝜆1

𝜆2

𝜆3

𝜆4

𝜆5

𝜌1

𝜌2

𝜌3

𝜌4

𝜌5

Figure 5.4: Chamber weights for the non-unipeak expression w “ 𝑠2𝑠1𝑠3𝑠2𝑠4𝑠3𝑠2
𝑠1

“ 0 ¨
ź

𝑘ą𝑖
𝜋𝑖
𝑘‰𝜋

𝑖
𝑘´1

Δ
Pivots𝜌pwqpㅊÑp𝑘qq

p𝑢q

ㅊÑp𝑘q

Δ
Pivots

𝜌pwqpㅊÒp𝑘qq
p𝑢q

ㅊÒp𝑘q

“ 0.

Corollary V.18. Let 𝑖 P 𝐽˝u` with 𝑣𝑖
p0q “ 1 and suppose that Pivots𝜆pwqpㅊq

`

𝑣𝑖
p𝑖´1q

˘

‰

Pivots𝜆pwqpㅊq p𝑢p𝑖´1qq. Then 𝑋𝑖 does not divide Δ
Pivots𝜆pwqpㅊqp𝑣

𝑖
p𝑖´1qq

𝜆pwqpㅊq .

Proof. By Deodhar’s theorem, the minorΔ
Pivots𝜆pwqpㅊqp𝑣

𝑖
p𝑖´1qq

𝜆pwqpㅊq is nonzero everywhere

on 𝒟vi,w. We note that if 𝑋𝑖 divided Δ
Pivots𝜆pwqpㅊqp𝑣

𝑖
p𝑖´1qq

𝜆pwqpㅊq in our parametrization of

𝒟u`,w, then Δ
p𝑅𝑖

p𝐶𝑖 would divide Δ
Pivots𝜆pwqpㅊqp𝑣

𝑖
p𝑖´1qq

𝜆pwqpㅊq on ℛ𝑢,𝑤 and hence we would

have Δ
Pivots𝜆pwqpㅊqp𝑣

𝑖
p𝑖´1qq

𝜆pwqpㅊq “ 0 on 𝒟vj,w.

Remark V.19. The formula we describe for obtaining 𝑋𝑗 by removing strands and

pivots along the path 𝜋𝑗 is specific to unipeak wiring diagrams. In Figure 5.4, we

show the chamber weightingw“ 𝑠2𝑠1𝑠3𝑠2𝑠4𝑠3𝑠2𝑠1, which has a “univalley diagram”

corresponding to the vertical reflection of our running example. The upper trian-

gular matrix ϒ𝑢,𝑤 9𝑤´1 corresponding to the weighting Qpㅊq on 𝒟u`,w is given

by

ϒ𝑢,𝑤 9𝑤´1 “

¨

˚

˚

˚

˚

˚

˚

˚

˝

𝑋2 0 𝑋8 ´𝑋2𝑋3`𝑋1𝑋6

𝑋3𝑋4
1

0 𝑋1

𝑋2

𝑋4𝑋8

𝑋2
´𝑋1𝑋6

𝑋2𝑋3

𝑋4

𝑋2

0 0 𝑋3

𝑋1
0 𝑋1`𝑋3

𝑋1𝑋8

0 0 0 𝑋5

𝑋3

𝑋3`𝑋4𝑋5

𝑋3𝑋6

0 0 0 0 1
𝑋5

˛

‹

‹

‹

‹

‹

‹

‹

‚

.
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Although the variable 𝑋4 cannot be expressed as a minor obtained by removing

row and column indices from QpㅊÐp4qq “ Δ12
13 “ 𝑋4𝑋8, it is given by the mi-

nor Δ12
15 obtained by replacing the column index 𝜆pwq p𝛼Õp8qq “ 3 with the col-

umn index 𝜆pwq p𝛼Œp8qq “ 5 while keeping the same row set. We have verified

that for unipeak diagrams, the variable 𝑋𝑗 can be expressed as a minor with rows

𝜆pu`q pㅊÐp𝑗qq and columns obtained by iteratively “uncrossing” strands of the

form 𝛼Õp𝑘q and 𝛼Œp𝑘q to rescale the minor by the ratio QpㅊÑp𝑘qq

QpㅊÐp𝑘qq
, and we believe

this construction applies to any reduced wiring diagram with positive subexpres-

sion. In general, this procedure requires uncrossing strands along multiple paths

in the diagram, and removed strands may be reintroduced later.



CHAPTER VI

Flows in Oriented Bridge Diagrams

In order to describe the structure of the coordinate ring Crℛ𝑢,𝑤s, we will need to

compute some additional minors of the matrices 𝑔p𝑖q given by Marsh and Rietsch’s

parametrization of the Deodhar strata 𝒟u`,w. In the first part of this chapter, we

recall a lemma originally due to Lindström for computing minors of the weight

matrix of a weighted, directed graph in terms of flows. We will need the version

proved by Fomin and Zelevinsky in [9] for non-planar graphs.

We will use Karpman’s bridge diagram construction to convert the wiring dia-

gram for the pair p𝑢p𝑘q, 𝑤p𝑘qq into a weighted, directed network 𝒢𝑘 with weight ma-

trix 𝑔p𝑘q. After reversing the edges of 𝒢𝑘 along a flow, we can expand the relevant

minors of 𝑔p𝑘q as weights of simple augmenting paths between boundary vertices 𝜆𝑎

and 𝜆𝑏.

6.1 Weighted networks, flows and augmenting paths

Weighted networks are used extensively in the study of total positivity. In the

case of a planar, acyclic weighted network, every minor of the weight matrix 𝑀

can be expressed as a subtraction-free polynomial in the edge weights rather than

an alternating sum in the entries 𝑀𝑖𝑗 . Fomin and Zelevinsky gave several classes

of weighted networks parametrizing the totally nonnegative matrices in [9].
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We adopt their hypothesis that a weighted network has no directed cycles. In

the more general case, Talaska [33] and Postnikov [28] gave formulas for expressing

minors of a weight matrix in terms of rational functions in the edge weights.

Definition VI.1 (Weighted networks and weight matrices). A weighted network 𝐺 “

p𝑉,𝐸q is a directed acyclic graph with source vertices 𝜆1, ¨ ¨ ¨ , 𝜆𝑛 and target vertices

𝜌1, ¨ ¨ ¨ , 𝜌𝑛, equipped with a weighting function 𝜔 on the edges 𝐸. The weight of a

path 𝜋 is the product of edge weights 𝜔p𝜋q “
ź

𝑒P𝜋

𝜔p𝑒q. The weight matrix 𝑀 is the

matrix with entries given by summing the weights of all paths from source 𝜆𝑖 to

target 𝜌𝑗, so that 𝑀𝑖𝑗 “
ÿ

𝜆𝑖

𝜋
ÝÑ𝜌𝑗

𝜔p𝜋q.

When the entries 𝑀𝑖𝑗 are sums of path weights for paths 𝜆𝑖 Ñ 𝜌𝑗, the minors

Δ𝐼
𝐽p𝑀q can be expressed in terms of weights of flows from sources indexed by 𝐼 to

targets indexed by 𝐽 .

Definition VI.2 (Flows). Let 𝐼 and 𝐽 be collections of vertices in a directed acyclic

graph with |𝐼| “ |𝐽 |, and fix orderings of 𝐼 and 𝐽 . A flow ℱ : 𝐼 Ñ 𝐽 is a collection

of pairwise vertex-disjoint paths 𝜋1, ¨ ¨ ¨ , 𝜋|𝐼| so that every vertex in 𝐼 is the start of

some 𝜋𝑖 and and every vertex in 𝐽 is the end of some 𝜋𝑖. We write 𝑒 P ℱ if 𝑒 is an

edge in one of the paths 𝜋𝑖. The weight of a flow is 𝜔pℱq “
ź

𝑒Pℱ

𝜔p𝑒q, and the sign

sgnpℱq of a flow is the sign of the permutation determined by the reordering of

the endpoints.

We refer to Fomin and Zelevinsky’s proof of Lindström’s lemma.

Formula VI.3 (Lindström’s lemma[9]). Let 𝒢 be a weighted network with weight

matrix 𝑀 , and let 𝑅 and 𝐶 be subsets of r1, 𝑛s with |𝑅| “ |𝐶|. The minor Δ𝑅
𝐶p𝑀q

is given by

Δ𝑅
𝐶p𝑀q “

ÿ

ℱ :𝑅Ñ𝐶

sgnpℱq𝜔pℱq.
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We are interested in computing ratios of minors of the form Δ𝑅
r1,ℎ𝑘s

p𝑔p𝑘qq, which

correspond to ratios of minors on the column set indexed by the chamberㅊÑp𝑘q.

Although every Δ𝑅
r1,ℎ𝑘s

p𝑔p𝑘qq can be computed using flows in the oriented bridge

diagram 𝒢𝑘 which we will discuss in Section 6.2, it suffices for our purposes to

compute minors where the row set 𝑅 has the form 𝑆zt𝑠u Y t𝑟u, where 𝑆 is one of

the sets 𝑢p𝑘qpr1, ℎ𝑘sq or 𝑤p𝑘qpr1, ℎ𝑘sq.

To simplify our computations, we will use the standard technique of reversing

edges along a ℱ : 𝑆 Ñ 𝑇 in a graph 𝐺 and identifying augmenting paths 𝜋 : 𝑟 Ñ 𝑠

in the resulting graph p𝐺 with flows ℱ 1 : 𝑆zt𝑠u Y t𝑟u Ñ 𝑇 in the original graph 𝐺.

Definition VI.4 (Augmenting paths). Let 𝐺 be a directed acyclic graph and let

ℱ : 𝑆 Ñ 𝑇 be a flow. Let p𝐺 be the graph obtained from 𝐺 by reversing edges along

ℱ . For vertices 𝑠 P 𝑆 and 𝑟 R 𝑆 Y 𝑇 , an augmenting path from 𝑟 to 𝑠 is a directed

path 𝜋 : 𝑟 Ñ 𝑠 in p𝐺. Let ℱ𝜋 :“ t𝑒 : 𝑒 P ℱ , 𝑒 R 𝜋u Y t𝑒 : 𝑒 P 𝜋, 𝑒 R ℱu. Then ℱ𝜋 is a

flow from 𝑆zt𝑠u Y t𝑟u to 𝑇 in 𝐺, denoted the augmentation of ℱ along 𝜋 .

Augmenting paths are used in Ford and Fulkerson’s algorithm for finding a

maximal flow in a directed network with edge capacities[12] and Hopcroft and

Karp’s maximal bipartite matching algorithm[19]. In the context of total positivity

for Grassmannians, Postnikov showed that for a perfectly oriented planar network,

the boundary measurement map is preserved when we reverse all edges along a

flow and invert their weights.

More generally, if both the directed graph 𝐺 and the graph p𝐺 obtained by re-

versing edges along a flow ℱ : 𝑆 Ñ 𝑇 are acyclic, then there is a bijection between

augmenting paths 𝜋 : 𝑟 Ñ 𝑠 in p𝐺 and flows ℱ : 𝑆zt𝑠u Y t𝑟u Ñ 𝑇 in 𝐺. A suffi-

cient condition is that 𝐺 is acyclic and there is a unique flow ℱ : 𝑆 Ñ 𝑇 in 𝐺. For

completeness, we include the following proof, outlined by Speyer in an email.
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Proposition VI.5. [32] Let 𝐺 be a directed acyclic graph, and let 𝑆 and 𝑇 be collections of

vertices such that there is a unique flow ℱ from 𝑆 to 𝑇 . Let p𝐺 be the graph obtained from 𝐺

by reversing all edges in ℱ . Then p𝐺 is acyclic, and for each 𝑠 P 𝑆 and 𝑟 R 𝑆 Y 𝑇 , there is a

bijection between paths t𝜋 : 𝑟 Ñ 𝑠u in p𝐺 and flows tℱ 1 : 𝑆zt𝑠uY t𝑟uu given by 𝜋 Ø ℱ𝜋 .

Proof. Without loss of generality, we may assume that the sets 𝑆 and 𝑇 are disjoint;

if 𝑣 is a vertex in 𝑆 X 𝑇 , the path from 𝑣 to 𝑣 in ℱ has no edges by acyclicity of 𝐺.

Suppose that 𝐶 is a directed cycle in p𝐺. Write 𝐶1 for the edges of 𝐶 which have

the same orientation in 𝐺 and p𝐺 and write 𝐶2 for the edges of 𝐶 which have oppo-

site orientations. Since 𝐺 is acyclic, both 𝐶1 and 𝐶2 must be nonempty: otherwise,

either 𝐶 “ 𝐶1 is a cycle in 𝐺, or 𝐶 “ 𝐶2 so that the reverse of 𝐶 is a cycle in 𝐺.

Hence, there is a flowℱ 1 from𝑆 to 𝑇 obtained fromℱ by using the edges𝐶1 instead

of the edges 𝐶2, contradicting uniqueness of ℱ . So p𝐺 is acyclic.

Fix 𝑠 P 𝑆 and 𝑟 R 𝑆 Y 𝑇 . If 𝜋 is a path from 𝑟 to 𝑠 in p𝐺, then ℱ𝜋 is a flow from

𝑆zt𝑠uY t𝑟u in 𝐺. Conversely, if ℱ 1 : 𝑆zt𝑠uY t𝑟u Ñ 𝑇 is a flow in 𝐺, consider the set

of edges 𝐸 in the symmetric difference between ℱ and ℱ 1. We claim that in p𝐺, the

edges of 𝐸 form an oriented path from 𝑟 to 𝑠. It is immediate from the definition

that a flow in 𝐺 uses exactly one inbound edge and one outbound edge for each

non-source, non-target vertex it contains. For an acyclic graph, a flow with disjoint

source and target sets uses one outbound edge for each source and one inbound

edge for each target. It follows that in p𝐺, for each vertex 𝑣 contained in both ℱ and

ℱ 1, 𝐸 contains an edge of ℱ 1 directed toward 𝑣 if and only if it contains an edge of

ℱ directed away from 𝑣, and vice versa. Begin at the vertex 𝑟 and follow a path 𝜋

that alternates between edges of ℱ 1zℱ and edges of ℱzℱ 1 whenever possible. By

the previous statement, 𝜋 must eventually either revisit a vertex or arrive at the

vertex 𝑠. Since 𝑠 is a source of ℱ in 𝐺 and 𝑠 R ℱ 1, the vertex 𝑠 has no outbound
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edges in 𝐸. Because p𝐺 is acyclic, 𝜋 must reach 𝑠 and terminate.

We claim that 𝜋 uses all the edges of 𝐸. Otherwise, choose an edge 𝑒 in 𝐸 which

was not used by 𝜋 and form a maximal alternating path 𝜋1 using edges of 𝐸. We

claim that 𝜋1 uses no edges of 𝜋 . Otherwise, consider the first edge 𝑒 “ p𝑣1, 𝑣2q

where 𝜋 and 𝜋1 agree. The edge 𝑒 cannot be the first edge of 𝜋1 by hypothesis, and

it cannot be the first edge of 𝜋 since there are no inbound edges to the vertex 𝑟 in

p𝐺. So 𝜋 and 𝜋1 arrive at 𝑣1 from different inbound edges, and hence one uses an

inbound edge from ℱ and the other uses an inbound edge from ℱ 1. But both 𝜋 and

𝜋1 are alternating, so they cannot both leave 𝑣1 using 𝑒. Hence 𝜋1 does not share any

edges with 𝜋 , and so it cannot reach 𝑠. It follows that 𝜋1 eventually self-intersects,

contradicting acyclicity of p𝐺.

Under the hypotheses of Proposition VI.5, we will define the weight of an aug-

menting path 𝜋 to be the ratio of the signed weights of ℱ𝜋 and ℱ .

Definition VI.6 (Weight of an augmenting path). Let𝐺 be a directed acyclic graph,

and let 𝑆 and 𝑇 be collections of vertices such that there is a unique flow ℱ from 𝑆

to 𝑇 . Let p𝐺 be the graph obtained from 𝐺 by reversing all edges in ℱ . Let 𝜋 : 𝑠Ñ 𝑡

be an augmenting path. We define the weight of 𝜋 to be the ratio sgnpℱ𝜋 q𝜔pℱ𝜋 q

sgnpℱq𝜔pℱq .

6.2 Converting a wiring diagram to a weighted network

Fix a reduced expression w with positive subexpression u`. Karpman gave the

following construction for converting the wiring diagram for 𝒟u`,w to a weighted,

directed acyclic network, or oriented bridge diagram.[21]

1. For each 𝑖 P 𝐽˝u` , replace the crossing 𝑖 with a vertical bridge of weight 𝑡𝑖 di-

rected down from level ℎ𝑖 ` 1 to ℎ𝑖, as in Figure 6.1.
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𝑡𝑖
𝑡𝑖

Figure 6.1: Blocks in the wiring diagram and oriented bridge diagram corresponding to 𝑖 P 𝐽˝u` .

1 ´1

Figure 6.2: Blocks in the wiring diagram and oriented bridge diagram corresponding to 𝑖 P 𝐽`u` .

2. For each 𝑖 P 𝐽`u` , add vertices on either side of the crossing 𝑖, giving a non-

planar block with horizontal and inclined edges oriented left-to-right between

heights ℎ𝑖 and ℎ𝑖`1, as in Figure 6.2. Assign weight´1 to the upward-inclined

edge and weight 1 to the downward-inclined edge.

3. Strand segments between crossings are horizontal edges of weight 1, directed

from left to right.

We note that a block containing a bridge has weight matrix 𝑔𝑖 “ 𝑦ℎ𝑖
p𝑡𝑖q and

a block containing inclined edges has weight matrix 9𝑠ℎ𝑖
. Following Fomin and

Zelevinsky’s discussion of weighted networks[9], concatenating these blocks from

left to right corresponds to multiplying their weight matrices from left to right.

For each index 𝑘 with 0 ď 𝑘 ď ℓ, let 𝒢𝑘 denote the oriented bridge diagram

for the first 𝑘 indices of w and u`. It follows that 𝒢𝑘 has the weight matrix 𝑔p𝑘q “

𝑔1𝑔2 ¨ ¨ ¨ 𝑔𝑘 from Marsh and Rietsch’s parametrization.

Since Karpman’s bridge diagrams are non-planar in general, the path permu-

tation on the endpoints of a flow need not be the identity, so that some flows ℱ

may have sgnpℱq “ ´1. However, when the targets of ℱ are indexed by a left-

justified interval r1, ℎs, the inversions of the path permutation of ℱ are in bijection

with upward-inclined edges used by ℱ . Since upward-inclined edges have weight

´1, the term sgnpℱq𝜔pℱq has coefficient 1 as a monomial in the 𝑡𝑖. This is consis-
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tent with the result of Marsh and Rietsch that every left-justified minor of 𝑔p𝑘q is a

subtraction-free polynomial in the variables t𝑡𝑖 : 𝑖 ď 𝑘u.[27]

By Lemma 7.4 in [27], for each 𝒢𝑘, the unique flow ℱ𝑢p𝑘q from the source vertices

𝜆𝑢p𝑘qp1q
, ¨ ¨ ¨ , 𝜆𝑢p𝑘qpℎ𝑘q

to targets 𝜌1, ¨ ¨ ¨ , 𝜌ℎ𝑘
has weight Δ𝑢p𝑘qpr1,ℎ𝑘sq

r1,ℎ𝑘s

`

𝑔p𝑘q
˘

“ 1, and the

unique flow ℱ𝑤p𝑘q from source vertices 𝜆𝑤p𝑘qp1q
, ¨ ¨ ¨ , 𝜆𝑤p𝑘qpℎ𝑘q

to targets 𝜌1, ¨ ¨ ¨ , 𝜌ℎ𝑘
has

weight Δ𝑤p𝑘qpr1,ℎ𝑘sq

r1,ℎ𝑘s

`

𝑔p𝑘q
˘

, where these minors are related to minors of the upper

triangular matrix 𝑧 by the equation

1

Δ
𝑤p𝑖qpr1,ℎ𝑘sq

r1,ℎ𝑘s

`

𝑔p𝑘q
˘

“
Δ

𝑢p𝑘qpr1,ℎ𝑘sq

r1,ℎ𝑘s

`

𝑔p𝑘q
˘

Δ
𝑤p𝑘qpr1,ℎ𝑘sq

r1,ℎ𝑘s

`

𝑔p𝑘q
˘

“
Δ𝜆pu`qpㅊÑp𝑘qq

𝜆pwqpㅊÑp𝑘qq

Δ𝜆pwqpㅊÑp𝑘qq

𝜆pwqpㅊÑp𝑘qq

.

Definition VI.7 (The graphs p𝒢
u`

𝑘 and p𝒢
w

𝑘 ). Fix 𝑘 with 0 ď 𝑘 ď ℓ. We denote the

graph obtained from 𝒢𝑘 by reversing the edges of ℱ𝑢p𝑘q by p𝒢
u`

𝑘 and we denote the

graph obtained from 𝒢𝑘 by reversing the edges of ℱ𝑤p𝑘q by p𝒢
w

𝑘 .

We note that an augmenting path in one of the graphs p𝒢
u`

𝑘 or p𝒢
w

𝑘 is a nonempty

directed path 𝜋 : 𝜆𝑎 Ñ 𝜆𝑏 beginning and ending on the left edge of the rectangle

bounding the planar projection of 𝒢𝑘.

Proposition VI.8. The weight of an augmenting path 𝜋 in p𝒢
w

𝑘 is given by the ratio
ś

𝑖P𝐽˝u`X𝜋

𝑖 is oriented down

𝑡𝑖

ś

𝑖P𝐽˝u`X𝜋

𝑖 is oriented up

𝑡𝑖

. The weight of an augmenting path 𝜋 in p𝒢
u`

𝑘 is given by 𝜔p𝜋q “
ź

𝑖P𝜋X𝐽˝u`

𝑡𝑖.

Proof. For each flow ℱ in tℱ𝑤p𝑘q ,ℱ𝑢p𝑘qu, we have that sgnpℱ𝜋q𝜔pℱ𝜋q “
ź

𝑖Pℱ𝜋X𝐽˝u`

𝑡𝑖

and sgnpℱq𝜔pℱq “
ź

𝑖PℱX𝐽˝u`

𝑡𝑖. The augmenting path 𝜋 travels down bridge 𝑖 if and

only if ℱ𝜋 uses 𝑖 and ℱ does not use 𝑖, while 𝜋 travels up bridge 𝑖 if and only if

ℱ𝜋 does not use 𝑖 and ℱ uses 𝑖. In p𝒢
w

𝑘 , the bridge 𝑖 is oriented up if 𝑖 P ℱ𝑤p𝑘q and

oriented down otherwise. In p𝒢
u`

𝑘 , all bridges are oriented down since ℱ𝑢p𝑘q uses no
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bridges.

6.3 Graph theoretic properties of JCp𝑗q in an oriented bridge diagram

In this section, we will use our results from Section 4.4 to give a graph theoretic

description of the region JCp𝑗q in the oriented bridge diagram 𝒢𝑘 for 𝑘 ě 𝑗.

Proposition VI.9. For 𝑘 ě 𝑗, BJCp𝑗q is a simple closed cycle in the underlying undirected

graph of 𝒢𝑘.

Proof. By Proposition IV.53, the planar projection of JCp𝑗q is a simply connected

region, and the boundary BJCp𝑗q is a cycle which switches strands only at crossings

𝑖 P 𝐽˝u` . Replacing a crossing 𝑖 P 𝐽˝u` with a bridge takes a connected cycle to a

connected cycle. We note that the crossing 𝑗 is the rightmost crossing on BJCp𝑗q.

Definition VI.10 (Interior vertices of JCp𝑗q). Let 𝑣 be a vertex in 𝒢𝑘. We say that 𝑣

is an interior vertex of JCp𝑗q if either 𝑣 is a vertex on some bridge 𝑖 where all three

chambers incident to 𝑖 are in JCp𝑗q or 𝑣 is an endpoint of an inclined edge where

both chambers incident to 𝑣 are in JCp𝑗q.

Definition VI.11. We say that a vertex 𝑣 is in JCp𝑗q if either 𝑣 is on BJCp𝑗q or 𝑣 is

an interior vertex of JCp𝑗q. We say that an edge 𝑒 is an interior edge of JCp𝑗q if both

endpoints are in JCp𝑗q and at least one endpoint is an interior vertex.

We say that an inclined edge 𝑒 enters JCp𝑗q or escapes from JCp𝑗q if exactly one of

its endpoints is an interior vertex of JCp𝑗q.

Definition VI.12 (𝑋𝑗-degrees). Let𝐺 be a weighted directed graph and let 𝑒 P 𝐺 be

a directed edge with weight 𝜔p𝑒q. Write 𝜔p𝑒q “𝑋𝑑
𝑗𝑀p𝑋q, where 𝑀p𝑋q is a Laurent

monomial in the variables t𝑋𝑖 : 𝑖 ‰ 𝑗u. We say that the edge 𝑒 has 𝑋𝑗-degree 𝑑 and

write deg𝑋𝑗
p𝑒q “ 𝑑. Similarly, we define the 𝑋𝑗-degree of a path or flow as the
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Figure 6.3: Forbidden boundary segments for reduced wiring diagrams.

Figure 6.4: Forbidden boundary segments for unipeak wiring diagrams.

power of 𝑋𝑗 dividing its weight, or equivalently as the sum of the 𝑋𝑗-degrees of

its edges.

It is immediate from the definition that if the edge 𝑒 is not a bridge or if 𝑒 is

vertex-disjoint from BJCp𝑗q, then 𝑒 has degree 0 in any orientation.

Definition VI.13. An edge 𝑒 is BJCp𝑗q-incident if at least one of its vertices is on the

cycle BJCp𝑗q.

Definition VI.14. Fix 𝑗 P 𝐽˝u` with 𝑣𝑗

p0q “ 1. Let 𝑖 ď 𝑗 be an index with 𝑖 P 𝐽˝u`

and suppose that PivotsㅊÐp𝑖q

`

𝑣𝑗

p𝑗´1q

˘

“ PivotsㅊÐp𝑖q p𝑢p𝑗´1qq and PivotsㅊÑp𝑖q

`

𝑣𝑗

p𝑗´1q

˘

‰ PivotsㅊÑp𝑖q p𝑢p𝑗´1qq. Let 𝑟` “ 𝜆𝑖´1pu`q p𝛼Œp𝑖qq and let 𝑟´ “ 𝜆𝑖pu`q p𝛼Œp𝑖qq. We say

that 𝑖 is a convex left corner of JCp𝑗q if 𝑟` P 𝑣𝑗

p𝑗´1qpr1, ℎ𝑗sq and 𝑟´ P 𝑣
𝑗

p𝑗´1qprℎ𝑗 ` 1, 𝑛sq.

We say that 𝑖 is a concave left corner if 𝑟` P 𝑣𝑗

p𝑗´1qprℎ𝑗 ` 1, 𝑛sq and 𝑟´ P 𝑣
𝑗

p𝑗´1qpr1, ℎ𝑗sq.

Figure 6.5: Bridges with 𝑋𝑗-degree `1 when oriented down and 𝑋𝑗-degree ´1 when oriented up.
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Figure 6.6: Bridges with 𝑋𝑗-degree ´1 when oriented down and 𝑋𝑗-degree `1 when oriented up.

Figure 6.7: Boundary-incident edges of 𝑋𝑗-degree 0.

Proposition VI.15. Let 𝑖 be a BJCp𝑗q-incident bridge. If 𝑖 is an upper or lower boundary

edge, then deg𝑋𝑗
p𝑖q “ 0.

Otherwise, the degree of 𝑖 in 𝑋𝑗 is as follows.1

1. If 𝑖 is directed toward BÒJCp𝑗q or away from BÓJCp𝑗q, then deg𝑋𝑗
p𝑖q “ 1.

2. If 𝑖 is directed away from BÒJCp𝑗q or toward BÓJCp𝑗q, then deg𝑋𝑗
p𝑖q “ ´1.

Proof. If 𝑖 is a BJCp𝑗q-incident bridge which is not an upper or lower boundary

edge, then either 𝑖 satisfies description 1 when oriented down and description 2

when oriented up or vice versa. Since the weight of a bridge 𝑖 is 𝑡𝑖 if 𝑖 is directed

down and 1
𝑡𝑖

if 𝑖 is directed up, it suffices to verify the claim for downward oriented

bridges. For a unipeak wiring diagram, the possible types of bridges with nonzero

weight in 𝑋𝑗 are as follows:

1Mnemonically, going to the upper boundary makes the power of 𝑋𝑗 go up; going to the lower boundary makes the
power of 𝑋𝑗 lower.
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ㅊÐp𝑖q ㅊÒp𝑖q ㅊÓp𝑖q ㅊÑp𝑖q deg𝑋𝑗
p𝑡𝑖q

deg𝑋𝑗
pQpㅊqq 1 0 0 0 -1

0 1 0 0 1

0 0 1 0 1

1 1 1 0 1

1 1 0 1 -1

0 0 0 1 -1
Case 1 occurs only for 𝑖 “ 𝑗; for unipeak expressions, case 3 occurs only for

𝑖 “ 𝑗´
Œ

.

Corollary VI.16. Let 𝑖 be a bridge so that at least one vertex of 𝑖 is in JCp𝑗q. Let 𝛾𝑟 and

𝛾𝑟1 be the geodesic paths containing the endpoints of 𝑖. Then the degree of 𝑖 is as follows.

1. If 𝑟, 𝑟1 P 𝑅Óp𝑗q or 𝑟, 𝑟1 P 𝑅Òp𝑗q, then deg𝑋𝑗
p𝑖q “ 0.

2. If 𝑟 P 𝑅Óp𝑗q and 𝑟1 R 𝑅Óp𝑗q, then the bridge 𝑖 has degree 1 when directed toward 𝛾𝑟

and degree ´1 otherwise.

3. If 𝑟 P 𝑅Òp𝑗q and 𝑟1 R 𝑅Òp𝑗q, then the bridge 𝑖 has degree ´1 when directed toward 𝛾𝑟

and degree 1 otherwise.

Proof. Every lower boundary component follows a union of geodesic paths in𝑅Òp𝑗q,

every upper boundary component follows a union of geodesic paths in 𝑅Óp𝑗q, and

every bridge between geodesic paths 𝛾𝑟 P𝑅
Òp𝑗q and 𝛾𝑟1 P𝑅

Òp𝑗q is incident to BJCp𝑗q.

If both 𝑟, 𝑟1 P 𝑅Òp𝑗q, then the bridge 𝑖 must be on BÓJCp𝑗q and hence has degree 0

in 𝑋𝑗 for both orientations. If both 𝑟, 𝑟1 P 𝑅Óp𝑗q, then either 𝑖 is on BÒJCp𝑗q or 𝑖 is an

interior bridge, so that 𝑖 has degree 0 in 𝑋𝑗 .
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Corollary VI.17. Let x𝒢𝑘 be any weighted, directed graph obtained from 𝒢𝑘 by reversing

some of the edges and inverting their weights. If 𝜋 “ 𝑣0, ¨ ¨ ¨ , 𝑣𝑚`1 is a directed path in 𝒢𝑘

so that 𝑣1, ¨ ¨ ¨ , 𝑣𝑚 is contained in JCp𝑗q, and if 𝑒𝑖1 , ¨ ¨ ¨ , 𝑒𝑖𝑚 “ p𝑣𝑖1 , 𝑣𝑖1`1q, ¨ ¨ ¨ , p𝑣𝑖𝑚 , 𝑣𝑖𝑚`1q

is the subsequence of edges with deg𝑋𝑗
p𝑒q ‰ 0, then deg𝑋𝑗

`

𝑒𝑖𝑑`1

˘

“ ´deg𝑋𝑗
p𝑒𝑖𝑑q so that

deg𝑋𝑗
p𝜋q P t´1, 0, 1u.

Proof. Each geodesic path 𝛾𝑟 intersecting JCp𝑗q satisfies exactly one of 𝑟 P 𝑅Òp𝑗q and

𝑟 P 𝑅Óp𝑗q, and the path 𝜋 switches from one geodesic path to another exactly when

it crosses a bridge. Since 𝜋 is a path, it cannot go from 𝑅Òp𝑗q to 𝑅Óp𝑗q twice without

going from 𝑅Óp𝑗q to 𝑅Òp𝑗q in between, and vice versa.

Corollary VI.18. Let x𝒢𝑘 be any weighted, directed graph obtained from 𝒢𝑘 by reversing

some of the edges and inverting their weights. Suppose that 𝜋 “ 𝑣0, ¨ ¨ ¨ , 𝑣𝑚`1 is a directed

path in 𝒢𝑘 so that 𝑣1, ¨ ¨ ¨ , 𝑣𝑚 is contained in JCp𝑗q. Let 𝑑 be an index with 1 ď 𝑑 ď 𝑚`1,

and let 𝑣𝑑 be on the geodesic path 𝛾𝑟. Then the 𝑋𝑗-degree of the first 𝑑 edges of 𝜋 is given

by

deg𝑣𝑑
p𝑣0q “

$

’

’

’

&

’

’

’

%

𝜖 𝑟 P 𝑅Òp𝑗q

𝜖` 1 𝑟 P 𝑅Óp𝑗q

where 𝜖 P t´1, 0u.



CHAPTER VII

Regularity of Mutated Variables

In this chapter, we will describe the exchange relations corresponding to the

cluster given by the regular functions 𝑋𝑗 described in Chapter V. We will verify

that the initial cluster variables together with the mutated variables 𝑋 1
𝑗 satisfy the

conditions of Berenstein, Fomin and Zelevinsky’s Starfish Lemma, giving the co-

ordinate ring Crℛ𝑢,𝑤s of the open Richardson variety the structure of an upper

cluster algebra.

Using our geometric description of the region JCp𝑗q from Chapter IV, we will

consider the exchange relations obtained by multiplying the 𝑦-variables correspond-

ing to Berenstein, Fomin and Zelevinsky’s chamber ansatz quiver. We will show

that for each mutable variable 𝑋𝑗 , the term p𝑌𝑗 “
ℳ`

ℳ´
is the unsigned path weight of

a simple cycle around the boundary BJCp𝑗q. By analyzing possible paths between

boundary vertices under certain perfect orientations of oriented bridge diagrams,

we will show that on 𝒟u`,w, the coordinates of the Schubert form ϒ𝑢,𝑤 are Laurent

polynomials in the variables t𝑋𝑖 : 𝑖 ‰ 𝑗u Y t𝑋 1
𝑗u. This will allow us to show that

the mutated cluster variables 𝑋 1
𝑗 are globally regular functions on ℛ𝑢,𝑤 and to ver-

ify coprimeness conditions for pairs of distinct variables 𝑋𝑖 and 𝑋𝑗 in the initial
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cluster as well as pairs of variables 𝑋𝑖 and 𝑋 1
𝑗 .

7.1 Starfish Lemma

In Theorem 2.10 and Lemma 2.12 from [3], Berenstein, Fomin and Zelevinsky

prove that the coordinate ring Cr𝐺𝑢,𝑣s of the double Bruhat cell 𝐺𝑢,𝑣 “ 𝐵`𝑢𝐵` X

𝐵´𝑣𝐵´ has the structure of the upper cluster algebra, where any reduced double

wiring diagram for 𝑢, 𝑣 determines an initial seed with cluster variables given by

the chamber minors and exchange relations given by a quiver structure they de-

fined. Their proof uses the property that 𝐺𝑢,𝑣 is a normal algebraic variety, so that

the coordinate ring Cr𝐺𝑢,𝑣s contains all functions 𝑓 with singular locus of complex

codimension ě 2. Berenstein, Fomin and Zelevinsky begin with an initial seed Σ

and consider the “starfish” of seeds Σ1 “ 𝜇𝑖pΣq obtained from Σ by a single cluster

mutation. They show that the initial cluster variables and the mutated variables are

globally regular functions, with frozen variables everywhere nonvanishing, and

that for the initial seed Σ and each of the neighboring seeds Σ1 “ 𝜇𝑖pΣq, the locus

where all cluster variables are nonzero is isomorphic to a torus pC˚q𝑁`𝑀 . For dis-

tinct mutable variables𝑋𝑖 and 𝑋𝑗 in the initial cluster, they show that the functions

𝑋𝑖 and 𝑋𝑗 are coprime—that is, the hypersurfaces t𝑋𝑖 “ 0u and t𝑋𝑗 “ 0u intersect

in codimension ě 2. Similarly, they show that the mutated variables 𝑋 1
𝑖 “ 𝜇𝑖p𝑋𝑖q

and the initial cluster variables 𝑋𝑗 are pairwise coprime. It follows that Cr𝐺𝑢,𝑣s

consists of all functions which are regular on all the tori determined by the seeds

Σ and Σ1, so that Cr𝐺𝑢,𝑣s is the upper bound algebra 𝒰pΣq given by the intersec-

tion of the Laurent rings CrX˘s and Cr𝜇𝑖pXq
˘s for all mutable 𝑋𝑖. We will use the

following restatement of the Starfish Lemma.

Lemma VII.1. [3] Let 𝒱 be a normal algebraic variety with coordinate ring Cr𝒱s. Sup-
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pose that there are regular functions 𝑋1, ¨ ¨ ¨ , 𝑋𝑁 , 𝑋𝑁`1, ¨ ¨ ¨ , 𝑋𝑁`𝑀 and an ice quiver

with mutable vertices 𝑣1, ¨ ¨ ¨ 𝑣𝑁 and frozen vertices 𝑣𝑁`1, ¨ ¨ ¨ , 𝑣𝑁`𝑀 so that the following

conditions hold.

1. The map 𝒱 Ñ C𝑁`𝑀 given by 𝑔 ÞÑ p𝑋1p𝑔q, ¨ ¨ ¨ , 𝑋𝑁`𝑀p𝑔qq restricts to a biregular

isomorphism t𝑋1, ¨ ¨ ¨ , 𝑋𝑁`𝑀 ‰ 0u Ñ pC˚q𝑁`𝑀 .

2. The functions 𝑋𝑁`1, ¨ ¨ ¨ , 𝑋𝑁`𝑀 are nonvanishing on 𝒱 .

3. If 1 ď 𝑖, 𝑗 ď 𝑁 with 𝑖 ‰ 𝑗, then the locus 𝑋𝑖 “ 𝑋𝑗 “ 0 has complex codimension

ě 2.

4. For each 1 ď 𝑖 ď 𝑁 , there is a regular function 𝑋 1
𝑖 so that 𝑋𝑖𝑋

1
𝑖 “ℳ𝑖

` `ℳ𝑖
´.

5. The map𝒱 Ñ C𝑁`𝑀 given by 𝑔 ÞÑ p𝑋1p𝑔q, ¨ ¨ ¨ , 𝑋𝑖´1p𝑔q, 𝑋
1
𝑖p𝑔q, 𝑋𝑖`1p𝑔q, ¨ ¨ ¨ , 𝑋𝑁`𝑀p𝑔qq

restricts to a biregular isomorphism t𝑋1, ¨ ¨ ¨ , 𝑋𝑖´1, 𝑋
1
𝑖, 𝑋𝑖`1, ¨ ¨ ¨ , 𝑋𝑁`𝑀 ‰ 0u Ñ

pC˚q𝑁`𝑀 .

6. For any 𝑖 and 𝑗 with 1 ď 𝑖, 𝑗 ď 𝑁 , the locus 𝑋 1
𝑖 “ 𝑋𝑗 “ 0 has complex codimension

ě 2.

Then Cr𝒱s is isomorphic to the upper cluster algebra 𝒜p𝑋1, ¨ ¨ ¨ , 𝑋𝑁`𝑀q.

Brion gave a proof that the open Richardson variety ℛ𝑢,𝑤 is a normal algebraic

variety in [5]. In order to show that the coordinate ring Crℛ𝑢,𝑤s is isomorphic to an

upper cluster algebra, it therefore suffices to give an initial cluster and quiver and

verify the conditions of Berenstein, Fomin and Zelevinsky’s Starfish Lemma. We

have shown that for each 𝑤 P S𝑛 and each 𝑢 ă 𝑤 in the Bruhat order, the wiring

diagram for the unipeak expression w for 𝑤 with positive subexpression u` for 𝑢

gives dimℛ𝑢,𝑤 “ ℓ p𝑤q ´ℓ p𝑢q regular functions 𝑋𝑖 indexed by the crossings 𝐽˝u` so

that the evaluation map gives a birational isomorphism from the locus t𝑋𝑖 ‰ 0 :

𝑖 P 𝐽˝u`u to pC˚q|𝐽
˝
u`
|. We have also shown that the function 𝑋𝑖 is nowhere vanishing
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on ℛ𝑢,𝑤 if and only if the nearly positive expression v𝑖 fails to be a distinguished

subexpression of w, so that 𝑋𝑖 divides the chamber weighting Qpㅊq for some

open chamberㅊ at the left boundary of the wiring diagram.

We will now describe a quiver structure inherited from Berenstein, Fomin and

Zelevinsky’s Chamber Ansatz quiver. We will verify that for each 𝑗 P 𝐽˝u` such

that the nearly positive sequence v𝑗 is a distinguished subexpression of w, there is

a regular function 𝑋 1
𝑗 P Crℛ𝑢,𝑤s so that 𝑋𝑗𝑋

1
𝑗 “ℳ``ℳ´, where ℳ` and ℳ´ are

the monomials defined by the outbound and inbound arrows incident to the vertex

corresponding to 𝑋𝑗 in the quiver. Specifically, the function 𝑋 1
𝑗 is proportional to

a binomial in the expansion of the special chamber minor Δ
𝑣𝑗
p𝑗´1q

pr1,ℎ𝑗sq

𝜆pwqpㅊÑp𝑗qq
appearing in

Marsh and Rietsch’s Chamber Ansatz for the Deodhar hypersurface 𝒟vj,w. As an

intermediate step, we will show that for distinct indices 𝑖 and 𝑗, the variables 𝑋𝑖

and 𝑋𝑗 are coprime. At the end of the chapter, we will show that the variables 𝑋𝑖

and 𝑋 1
𝑗 are also coprime.

Berenstein, Fomin and Zelevinsky defined the following ice quiver structure on

the chambers of a wiring diagram in [3].

1. In each chamberㅊ in the wiring diagram, draw a vertex 𝑣ㅊ, designated

mutable ifㅊ is a closed chamber and frozen ifㅊ is an open chamber.

2. For each crossing 𝑖, draw a left-to-right horizontal arrow from 𝑣ㅊÐp𝑖q to 𝑣ㅊÑp𝑖q,

and draw a right-to-left inclined arrow between each pair of chambers that

meet along a strand segment.

3. Erase 2-cycles and arrows between frozen vertices.

Definition VII.2 (Richardson quiver). The induced quiver on ℛ𝑢,𝑤 is as follows.

1. Draw one vertex 𝑣𝑗 for each t𝑋𝑗 : 𝑗 P 𝐽
˝
u`
u, with 𝑋𝑗 designated mutable if the
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𝐵

𝐶

𝐴

𝐷

𝐺

𝐸

𝐹
𝑖 𝑗

Figure 7.1: The 𝑦-variable for the chamber 𝐷 is 𝐴𝐶𝐹
𝐵𝐸𝐺 , which is equal to the ratio 𝑡𝑖

𝑡𝑗
.

nearly positive sequence v𝑗 is a distinguished subexpression of w and frozen

otherwise. (Equivalently, 𝑋𝑗 is frozen if and only if there is an open chamber

ㅊ so that 𝑋𝑗 divides Qpㅊq.)

2. For each pair of distinct vertices 𝑣𝑖 and 𝑣𝑗 , draw one arrow from 𝑣𝑖 to 𝑣𝑗 for

each arrow 𝑒 : 𝑣ㅊ Ñ 𝑣ㅊ1 in the chamber ansatz quiver so that 𝑋𝑖 divides

Qpㅊq and 𝑋𝑗 divides Qpㅊ1q.

3. Erase loops, 2-cycles and arrows between frozen vertices.

We note that the 𝑦-variables for the chamber ansatz quiver are given by the

following formula.

Formula VII.3. Letㅊ be a chamber in a wiring diagram bounded on the left and

right by crossings 𝑖 ă 𝑗 where ℎ𝑖 “ ℎ𝑗 “ ℎ and for all 𝑖 ă 𝑖1 ă 𝑗 we have ℎ𝑖1 ‰ ℎ. The

𝑦-variable forㅊ with respect to the chamber ansatz quiver is given by p𝑦 pㅊq “

ΔㅊÒp𝑖q
ΔㅊÓp𝑖q

ΔㅊÑp𝑗q

ΔㅊÐp𝑖qΔㅊÒp𝑗q
ΔㅊÓp𝑗q

“
𝑡𝑖
𝑡𝑗

(where if 𝑘 P 𝐽`u` we define 𝑡𝑘 “ 1).

This is easiest to see by example. In Figure 7.1, the ratio 𝑡𝑖
𝑡𝑗

for the crossings 𝑖

and 𝑗 to the left of 𝐷 is given by 𝑡𝑖
𝑡𝑗
“ 𝑡𝑖𝑡

´1
𝑗 “ 𝐴𝐶

𝐵𝐷
𝐷𝐹
𝐸𝐺

“ 𝐴𝐶𝐹
𝐵𝐸𝐺

“

ś

𝐷Ñ𝑋

𝑋

ś

𝑋Ñ𝐷

𝑋

, which is the

𝑦-variable for the chamber 𝐷. Note that p𝑦 pㅊq has a natural interpretation as the

path weight of a counterclockwise cycle around the boundary of the chamberㅊ,

where traveling up at a crossing corresponds to inverting the edge weight.

The outbound and inbound arrows for the vertex labeled by 𝑋𝑗 are computed
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by taking the net number of outbound and inbound arrows for the chambers in

JCp𝑗q, which corresponds to multiplying the 𝑦-variables from the chamber ansatz

quiver.

Formula VII.4. Let 𝑗 P 𝐽˝u` be an index with 𝑣𝑗

p0q “ 1. The 𝑦-variable for the variable

𝑋𝑗 is given by p𝑌𝑗 “
ź

ㅊPJCp𝑗q

p𝑦 pㅊq .

Since the region JCp𝑗q is simply connected, the product of the path weights of

the counterclockwise cycles around each chamber in JCp𝑗q is the weight of the

counterclockwise cycle around BJCp𝑗q.

7.2 The upper cluster algebra 𝒜pΣq is the upper bound 𝒰pΣq for the initial seed

At the end of this chapter we will verify thatCrℛ𝑢,𝑤s is equal to the upper bound

algebra𝒰pΣq for the initial seedΣ “ pX, 𝑄q. In order to conclude thatCrℛ𝑢,𝑤s is the

upper cluster algebra 𝒜pΣq, we will need to show that the algebras 𝒜pΣq Ď 𝒰pΣq

coincide.In [3], Berenstein, Fomin and Zelevinsky give a criterion for equality of

the upper bound and the upper cluster algebra in terms of the rank of a matrix

�̃�p𝑄q describing the exchange relations of a quiver 𝑄.

Definition VII.5. Let 𝑄 be a quiver. The signed adjacency matrix of 𝑄 is the matrix

𝐴p𝑄q “ p𝑎𝑖𝑗q “ #p𝑣𝑖 Ñ 𝑣𝑗q ´#p𝑣𝑗 Ñ 𝑣𝑖q,

where the rows and columns are indexed by the vertices of 𝑄 and the entry 𝑎𝑖𝑗 is

the net number of arrows from 𝑣𝑖 to 𝑣𝑗 . The �̃�-matrix of 𝑄 is the submatrix �̃�p𝑄q

consisting of the columns of 𝐴p𝑄q indexed by mutable variables.

By Corollary 1.9 in [3], if the matrix �̃�p𝑄q has full rank, then for any seed Σ the

upper bound 𝒰pΣq is equal to the upper cluster algebra 𝒜pΣq. Combining this with
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their result that the chamber ansatz quiver 𝑄0 satisfies the condition �̃�p𝑄0q is full

rank, we show that the Richardson quiver 𝑄 also has a full rank �̃�-matrix.

The proof of the following proposition is due to Speyer.

Proposition VII.6. Let 𝑄 be the Richardson quiver. The matrix �̃�p𝑄q has full rank.

Proof. Write 𝐽 “ 𝐽˝u` Y 𝐽`u` for the index set of the crossings in the wiring diagram

of w, and write 𝐽 𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟 for the set t𝑗 P 𝐽 : D𝑗´ ă 𝑗, ℎ𝑗´ “ ℎ𝑗u. That is, 𝐽 𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟 is the

index set for the mutable vertices in the chamber ansatz quiver. Let 𝐽˝,𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟u`
be the

set t𝑗 P 𝐽˝u` : D𝑗´ ă 𝑗, ℎ𝑗´ “ ℎ𝑗u. Let 𝐿 be the lattice Z𝐽 and let 𝐿𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟 be the sub-

lattice Z𝐽𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟 . We may think of a point 𝑣 P 𝐿 as the exponent vector of a Laurent

monomial in some weighting on the chambers of the wiring diagram, where an

index 𝑗 P 𝐽 gives the exponent for the weight of the chamberㅊÐp𝑗q. Let 𝑀 Ă 𝐿

be the lattice Z𝐽˝u` , and let 𝑀 𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟 be the sublattice of 𝑀 with index set 𝐽˝,𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟u`
.

Let𝑄0 be the chamber ansatz quiver. The matrix𝐴p𝑄0q gives a skew form x , y on𝐿,

and the matrix �̃�p𝑄0q gives a map from 𝐿𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟 to the dual lattice 𝐿qcorresponding

to restricting the form x , y. Let𝑄 be the Richardson quiver. For each 𝑖 P 𝐽`u` , let 𝑖Ò, 𝑖Ó

and 𝑖Ñ denote the crossings to the right of the chambersㅊÒp𝑖q,ㅊÓp𝑖q andㅊÑp𝑖q.

Let 𝜙𝑖 P 𝐿
qbe the weight vector that looks like p1,´1,´1, 1q𝑖,𝑖Ò,𝑖Ó,𝑖Ñ . The dual lattice

𝑀qis the quotient of𝐿qby𝑀K :“ Spanp𝜙𝑖q𝑖P𝐽`u`
, which corresponds to the condition

that chambers surrounding a crossing 𝑖 in 𝐽`u` must satisfy Dodgson’s identity.

Write 𝐵𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟p𝑄q for the submatrix of 𝐴p𝑄qwith columns indexed by 𝐽˝,𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟u`
,

so that �̃�p𝑄q is a submatrix of 𝐵𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟p𝑄q. The following diagram commutes.
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𝑀K

𝐿𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟 𝐿 𝐿q

𝑀 𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟 𝑀 𝑀q

�̃�p𝑄0q

𝐴p𝑄0q

𝐵𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟p𝑄q

𝐴p𝑄q

We note that in order to show that �̃�p𝑄q is full rank, it suffices to show that

𝐵𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟p𝑄q is full rank.

Consider the map 𝐵𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟p𝑄q : 𝑀 𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟 Ñ 𝑀q and suppose that �⃗� P 𝑀 𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟

is an element of the kernel. Viewing �⃗� as an element of the larger lattice 𝐿 and

identifying crossings 𝑖 with the chambersㅊÐp𝑖q, choose 𝑖 to be minimal so that

�⃗� is supported onㅊÑp𝑖q. Then 𝑖 must be in 𝐽˝u` , since if 𝑖 were in 𝐽`u` then the

condition that 𝜙𝑖p�⃗�q “ 0 for �⃗� P𝑀 would imply that �⃗� be supported on at least one

ofㅊÒp𝑖q andㅊÓp𝑖q, contradicting the minimality of 𝑖.

Write 𝑗 for the index so thatㅊÑp𝑖q “ㅊÐp𝑗q. Let 𝑁 ‰ 0 be the value of �⃗�𝑗 . By

hypothesis, 𝐵𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟p𝑄q�⃗� “ 0. So there must be an element
ÿ

𝑘P𝐽`u`

𝜆𝑘𝜙𝑘 P 𝑀
K so that

�̃�p𝑄0q�⃗� `
ÿ

𝑘P𝐽`u`

𝜆𝑘𝜙𝑘 “ 0. Now the conditionㅊÑp𝑖q “ㅊÐp𝑗q implies that �̃�p𝑄0q

has entry 𝑏𝑖𝑗 “ 1, so �̃�p𝑄0q�⃗�𝑖 “ 𝑁 . By minimality of 𝑖, �̃�p𝑄0q�⃗�𝑖1 “ 0 for all 𝑖1 ă 𝑖. In

particular, this holds for all 𝑖1 so thatㅊÐp𝑖
1q is below the strand 𝛼Œp𝑖q and above

the strand 𝛼Õp𝑖q. So the sum
ÿ

ㅊÐp𝑖1q below 𝛼Œp𝑖q
and above 𝛼Õp𝑖q

p�̃�p𝑄0q�⃗�q𝑖1 “ 𝑁 . Since the crossing 𝑖 is

in 𝐽˝u` , for any crossing 𝑘 in 𝐽`u` the components of the weight vector 𝜙𝑘 indexed

by chambers above the strand 𝛼Õp𝑖q and below the strand 𝛼Œp𝑖qmust sum to zero.

So any weight vector of the form 𝜔 “ �̃�p𝑄0q�⃗�`
ÿ

𝑘P𝐽`u`

𝜆𝑘𝜙𝑘 satisfies the condition

ÿ

𝑖1

𝜔𝑖1 “ 𝑁 , where 𝑖1 ranges over the crossings that are between 𝛼Œp𝑖q and 𝛼Õp𝑖q. In
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particular, 𝜔 cannot be the zero weight vector, since summing over a subset of the

components gives a nonzero sum 𝑁 .

This is a contradiction, so the matrix 𝐵𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟p𝑄q is full rank, and hence �̃�p𝑄q is

full rank.

7.3 Coordinate functions of 𝒟u`,w are Laurent in the mutated variables

In this section, we will use augmenting paths in the family of graphs p𝒢
w

𝑘 to

show that whenever the variable𝑋𝑗 vanishes on a Deodhar hypersurface𝒟vj,w, the

restriction of any Schubert coordinate to 𝒟u`,w is Laurent in the variables t𝑋𝑖 : 𝑖 ‰

𝑗uY t𝑋 1
𝑗u. It will be convenient to work with the left-normalized Schubert coordinates

described by Fulton in [13], corresponding to entries in the upper unitriangular

matrix 𝑧 with 𝑧 “ 𝑧 diag p𝑧𝑖𝑖q .

By the following result of Kassel, Lascoux and Reutenauer, for any unipeak ex-

pression w, the entries of 𝑧 satisfy a stabilization property.

Theorem VII.7 (Left-normalized Schubert coordinates in unipeak diagrams, Kas-

sel, Lascoux and Reutenauer[22]). Let w be a unipeak expression for 𝑤. Let 𝐹 be a

flag in 𝐵` 9𝑤𝐵`{𝐵` and let 𝑧 be the upper unitriangular matrix so that the matrix 𝑧 9𝑤

has zeros to the right of each permutation position and 𝑧 9𝑤𝐵` “ 𝐹 . Then the matrix

𝑧 9𝑤 “

ℓ
ź

𝑖“1

𝑥ℎ𝑖
p𝑓𝑖q 9𝑠ℎ𝑖

. Write 𝑧𝑗 for the upper unitriangular matrix

˜

𝑗
ź

𝑖“1

𝑥ℎ𝑖
p𝑓𝑖q 9𝑠ℎ𝑖

¸

9𝑤´1
p𝑗q .

Write 𝜆𝑎 for the left endpoint of 𝛼Õp𝑘q and write 𝜆𝑏 for the left endpoint of 𝛼Œp𝑘q. Then

the entry 𝑧𝑗𝑎𝑏 is given by

𝑧𝑗𝑎𝑏 “

$

’

’

’

&

’

’

’

%

0 if 𝑗 ă 𝑘

𝑧𝑎𝑏 if 𝑗 ě 𝑘.
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By Proposition VI.5, the ratio of minors
Δ

𝑤p𝑘qpr1,ℎ𝑘sqzt𝑏uYt𝑎u

r1,ℎ𝑘s
p𝑔p𝑘qq

Δ
𝑤p𝑘qpr1,ℎ𝑘sq

r1,ℎ𝑘s
p𝑔p𝑘qq

“ ˘ 𝑧𝑎𝑏 is given

by
Δ

𝑤p𝑘qpr1,ℎ𝑘sqzt𝑏uYt𝑎u

r1,ℎ𝑘s
p𝑔p𝑘qq

Δ
𝑤p𝑘qpr1,ℎ𝑘sq

r1,ℎ𝑘s
p𝑔p𝑘qq

“

ÿ

ℱ :𝜆𝑎Ñ𝜆𝑏

𝜔pℱq,

where the sum is over augmenting paths from 𝜆𝑎 to 𝜆𝑏 in the directed graph p𝒢
w

𝑘 .

We note that 𝑧𝑎𝑏 “ 𝑧𝑎𝑏𝑧𝑏𝑏 where 𝑧𝑏𝑏 is a ratio of frozen variables t𝑋𝑖 : 𝑣
𝑖
p0q ‰ 1u, so

that for any mutable variable 𝑋𝑗 , the 𝑋𝑗-degree of an augmenting path from 𝜆𝑎 to

𝜆𝑏 in p𝒢
w

𝑘 is the same as the 𝑋𝑗-degree in the corresponding term in the expansion

of 𝑧𝑎𝑏.

Our main goal for this section is to give a characterization of augmenting paths

of negative degree in 𝑋𝑗 in the graph p𝒢
w

𝑘 .

By Proposition VI.17, if 𝜋 “ 𝑣0, ¨ ¨ ¨ , 𝑣𝑚`1 is a directed path in p𝒢
w

𝑘 so that the

vertices 𝑣1, ¨ ¨ ¨ , 𝑣𝑚 are contained in JCp𝑗q, then the 𝑋𝑗-degrees of the edges of 𝜋

satisfy a weak alternation property so that deg𝑋𝑗
p𝜋q is either ´1, 0 or 1.

The following elementary proposition shows that we can decompose any aug-

menting path ℱ into segments which either satisfy this property or are vertex-

disjoint from JCp𝑗q, and therefore have degree 0 in 𝑋𝑗 .

Proposition VII.8 (Partitioning an augmenting path ℱ). Let ℱ : 𝜆𝑎 Ñ 𝜆𝑏 be an

augmenting path in p𝒢
w

𝑘 . Then ℱ has a unique decomposition into a sequence of consecutive

directed paths 𝜋1, ¨ ¨ ¨ , 𝜋𝑐 satisfying the following conditions.

1. Either 𝜋𝑑 is vertex-disjoint from JCp𝑗q or the vertices of 𝜋𝑑 can be enumerated as

𝜋𝑑 “ 𝑣0, ¨ ¨ ¨ , 𝑣𝑚`1, where the vertices 𝑣0, 𝑣𝑚`1 R JCp𝑗q and 𝑣1, ¨ ¨ ¨ , 𝑣𝑚 P JCp𝑗q, with

𝑚 ą 0.

2. If 𝜋𝑑 is vertex-disjoint from JCp𝑗q, then 𝜋𝑑`1 intersects JCp𝑗q.
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Proof. Every vertex of p𝒢
w

𝑘 either belongs to JCp𝑗q or to the complement of JCp𝑗q, and

the vertices 𝜆𝑎 and 𝜆𝑏 are not in JCp𝑗q. Split up the path ℱ at each vertex 𝑣𝑖 R JCp𝑗q

so that one of the vertices 𝑣𝑖´1 or 𝑣𝑖`1 P JCp𝑗q.

We will now introduce some notation for the paths intersecting JCp𝑗q in this

decomposition of an augmenting path.

Definition VII.9 (JCp𝑗q-path components). Letℱ : 𝜆𝑎 Ñ 𝜆𝑏 be an augmenting path

in p𝒢
w

𝑘 . We say that a path 𝜋 contained in ℱ is a

JCp𝑗q-path component of ℱ if 𝜋 “ 𝑣0, ¨ ¨ ¨ , 𝑣𝑚`1 where 𝑚 ą 0, the vertices 𝑣0, 𝑣𝑚`1 R

JCp𝑗q and all vertices 𝑣1, ¨ ¨ ¨ , 𝑣𝑚 P JCp𝑗q.

Definition VII.10 (BJCp𝑗q-path components). Let 𝜋 “ 𝑣0, ¨ ¨ ¨ , 𝑣𝑚`1 be a

JCp𝑗q-path component of an augmenting path. If 𝑣0, ¨ ¨ ¨ , 𝑣𝑚 Ă BJCp𝑗q, we say that 𝜋

is a BJCp𝑗q-path component and designate 𝜋 as clockwise or counterclockwise depend-

ing on the orientation of the boundary arc 𝑣0, ¨ ¨ ¨ , 𝑣𝑚.

We will also refer to a path 𝜋 as being a JCp𝑗q-path component or a

BJCp𝑗q-path component, leaving the augmenting path or paths containing 𝜋 im-

plicit. This should always be understood to mean that there is at least one directed

path from 𝜆𝑎 to 𝑣0 and at least one directed path from 𝑣𝑚`1 to 𝜆𝑏. The following

proposition shows that we can reduce the task of characterizing augmenting paths

ℱ with deg𝑋𝑗
pℱq ă 0 to the more local task of describing JCp𝑗q-path components

of 𝑋𝑗-degree ´1.

Proposition VII.11. Let ℱ : 𝜆𝑎 Ñ 𝜆𝑏 be an augmenting path in p𝒢
w

𝑘 , and suppose

that deg𝑋𝑗
pℱq is negative. Then ℱ has a JCp𝑗q-path component 𝜋 “ 𝑣0, ¨ ¨ ¨ , 𝑣𝑚`1 so that

deg𝑋𝑗
p𝜋q “ ´1.
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𝑣𝑚
𝑣1𝑚1

𝑣𝑚`1

𝑣1𝑚1`1

𝑣0 𝑣10

𝑣1 𝑣11

JCp𝑗q

𝜋

𝜋1

Figure 7.2: Flipping a negative weight JCp𝑗q-path component

Proof. Let 𝜋1, ¨ ¨ ¨ , 𝜋𝑐 be the decomposition ofℱ from Proposition VII.8. Then deg𝑋𝑗
pℱq

“

𝑐
ÿ

𝑖“1

deg𝑋𝑗
p𝜋𝑖q. If 𝜋𝑖 is vertex-disjoint from JCp𝑗q, then all edges 𝑒 P 𝜋𝑖 have degree

0 in 𝑋𝑗 and so deg𝑋𝑗
p𝜋𝑖q “ 0.

If 𝜋𝑖 is a JCp𝑗q-path component ofℱ , then by Corollary VI.17, the edges of nonzero

𝑋𝑗 degree are of alternating signs, so that deg𝑋𝑗
p𝜋𝑖q P t´1, 0, 1u. In particular, if

𝑐
ÿ

𝑖“1

deg𝑋𝑗
p𝜋𝑖q ă 0, then at least one JCp𝑗q-path component 𝜋𝑖 must have deg𝑋𝑗

p𝜋𝑖q “

´1.

We wish to show that whenever ℱ is an augmenting path from 𝜆𝑎 to 𝜆𝑏 with

deg𝑋𝑗
pℱq ă 0, there exists an augmenting path ℱ 1 from 𝜆𝑎 to 𝜆𝑏 so that 𝜔pℱq `

𝜔pℱ 1q “𝑀ℳ``ℳ´

𝑋𝑗
where 𝑀 is a Laurent monomial in Cr𝑋˘

𝑖 : 𝑖 ‰ 𝑗s. 1

The overall strategy we use is as follows. Given an augmenting path ℱ : 𝜆𝑎 Ñ 𝜆𝑏

in the graph p𝒢
w

𝑘 , let 𝜋 be a JCp𝑗q-path component of ℱ as in Proposition VII.8 and

suppose that deg𝑋𝑗
p𝜋q “ ´1. We will show that knowing the path 𝜋 completely

determines the orientation of JCp𝑗q in p𝒢
w

𝑘 . In particular, we will prove the following.

1. The path 𝜋 “ 𝑣0, ¨ ¨ ¨ , 𝑣𝑚`1 is a BJCp𝑗q-path component.

2. The vertices 𝑣1 and 𝑣𝑚 partition BJCp𝑗q into a clockwise arc and a counterclock-
1It is not obvious a priori that every augmenting path with negative degree in 𝑋𝑗 has degree ´1 in 𝑋𝑗 ; it’s false in

general for the subset of the open torus inside ℛ1,𝑤 parametrized by the specialized chamber weighting Qpㅊq.
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wise arc.

3. If �̃� is any JCp𝑗q-path component in p𝒢
w

𝑘 with deg𝑋𝑗
p�̃�q “ ´1, then �̃� is either 𝜋

or the path 𝜋1 which travels from 𝑣0 to 𝑣𝑚`1 along the complementary arc of

BJCp𝑗q.

Combining this result with the acyclicity of the orientation, we will conclude

that if ℱ is an augmenting path from 𝜆𝑎 to 𝜆𝑏, then deg𝑋𝑗
pℱq ě ´1, and when

equality holds, there is an augmenting pathℱ 1 which differs fromℱ by an oriented

cycle around BJCp𝑗q, so that 𝜔pℱq ` 𝜔pℱ 1q is divisible by ℳ``ℳ´

𝑋𝑗
.

We begin with some observations about the oriented graph p𝒢
w

𝑘 .

Paths in the flow ℱ𝑤p𝑘q in the oriented bridge diagram 𝒢𝑘 join source vertices

𝜆𝑤p𝑘qpℎq
where 1 ď ℎ ď ℎ𝑘 to target vertices 𝜌ℎ1 where 1 ď ℎ1 ď 𝑘; a path switches

from one strand to another if it reaches a bridge 𝑖 where both 𝛼Õp𝑖q and 𝛼Œp𝑖q have

targets in the interval r1, ℎ𝑘s. In particular, a bridge 𝑖 is an edge of ℱ𝑤p𝑘q (and hence

directed up in the graph p𝒢
w

𝑘 ) if and only if 𝛼Õp𝑖q ends at a target in the interval

rℎ𝑘 ` 1, 𝑛s and 𝛼Œp𝑖q ends at a target in the interval r1, ℎ𝑘s.

Proposition VII.12. Let 𝛼 be a strand directed left-to-right in p𝒢
w

𝑘 . Then the following

hold for indices 𝑖, 𝑖1 ď 𝑘.

1. Suppose that 𝑖 and 𝑖1 are indices in 𝐽Õp𝛼qwith 𝑖 ă 𝑖1. If𝛼Œp𝑖1q is oriented right-to-left,

then so is 𝛼Œp𝑖q.

2. If 𝑖 P 𝐽Œp𝛼q, then 𝛼Õp𝑖q is oriented left-to-right.

Proof. If 𝛽 is a strand with right endpoint 𝜌ℎ, then 𝛽 is oriented right-to-left if ℎ ď ℎ𝑘

and left-to-right if ℎ ě ℎ𝑘 ` 1.

1. The strands 𝛼Œp𝑖q and 𝛼Œp𝑖
1q cannot cross each other after crossing below 𝛼,

so the right endpoint of 𝛼Œp𝑖q is lower than the right endpoint of 𝛼Œp𝑖1q.
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Figure 7.3: A unipeak wiring diagram and the orientation of its bridge diagram obtained by re-
versing edges along the flow from sources t𝜆𝑤p1q, 𝜆𝑤p2qu to targets t𝜌1, 𝜌2u. Every edge
incident to or above the red path to the right of the dotted line is oriented left-to-right.

2. If 𝑖 P 𝐽Œp𝛼q, the strand 𝛼Õp𝑖q crosses above 𝛼 and hence has a higher right

endpoint.

Corollary VII.13. Let 𝛼 be a strand directed left-to-right in p𝒢
w

𝑘 . Let 𝑖 be a crossing along

𝛼 such that both strands are directed left-to-right. Then the portion of p𝒢
w

𝑘 above the strand

𝛼Œp𝑖q to the right of the crossing 𝑖 is oriented left-to-right.

Corollary VII.14. Let ℱ be an augmenting path in p𝒢
w

𝑘 . Whenever the path ℱ switches

directions, it must travel up a bridge.

Proof. Horizontal and inclined edges on a single strand 𝛼 are either all left-to-right

or all right-to-left, so that ℱ must switch from one strand to another in order to

change directions. Strands in p𝒢
w

𝑘 meet at a vertex exactly when they have a bridge in

common; if𝛼Õp𝑖q and𝛼Œp𝑖q have opposite orientations, then the bridge 𝑖 is directed

up.

We will now describe several types of directed edges that are never used by any

augmenting path 𝜋 in p𝒢
w

𝑘 , since augmenting the flow ℱ𝑤p𝑘q along 𝜋 : 𝜆𝑎 Ñ 𝜆𝑏 must

give a left-justified flow with targets r1, ℎ𝑘s in the oriented bridge diagram 𝒢𝑘. In

particular, a directed path through JCp𝑗q containing any of these forbidden edges

fails to be a JCp𝑗q-path component.
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Figure 7.4: Directed edges which are never used by an augmenting path in p𝒢
w

𝑘 .

Proposition VII.15 (Forbidden edges). Let 𝜋 : 𝜆𝑎 Ñ 𝜆𝑏 be an augmenting path in p𝒢
w

𝑘 .

If 𝑒 is any of the following types of directed edges, then 𝑒 is not in 𝜋 . (See Figure 7.4.)

1. The edge 𝑒 “ p𝑠, 𝑡q is a left-to-right horizontal edge at height ℎ where either 𝑡 is a sink

vertex or there is an edge p𝑡, 𝑡1q where 𝑡1 is a vertex at level ℎ´ 1.

2. The edge 𝑒 “ p𝑡, 𝑡1q is a bridge directed down from height ℎ to height ℎ´ 1, where the

horizontal edge p𝑠, 𝑡q is directed left-to-right.

3. The edge 𝑒 “ p𝑠, 𝑡q is an inclined edge directed southeast.

4. The edge 𝑒 “ p𝑠, 𝑡q is an inclined edge oriented northeast and the corresponding edge

p𝑠1, 𝑡1q is oriented southeast.

5. The edge 𝑒 “ p𝑠, 𝑡q is an inclined edge oriented northwest and the corresponding edge

p𝑠1, 𝑡1q is oriented northeast.

Proof. For the first three cases, every edge reachable after following 𝑒 is directed

left-to-right, so if ℱ uses one of these edges then ℱ cannot end at the vertex 𝜆𝑏.

In the last two cases, there is a crossing 𝑖 P 𝐽`u` where the flow ℱ𝜋 obtained by

augmentingℱ𝑤p𝑘q along the path 𝜋 uses an upward inclined edge without using the

corresponding downward inclined edge. This does not occur for any flow through

the oriented bridge diagram 𝒢𝑘 which has left-justified endpoints 𝜌1, ¨ ¨ ¨ , 𝜌ℎ𝑘
.

Proposition VII.16. , Let 𝑖 “ p𝑣´, 𝑣`q be a bridge directed upward from 𝛾𝑟´
to 𝛾𝑟` in

p𝒢
w

𝑘 . Then there are connected left-to-right paths 𝜋´ and 𝜋` in the wiring diagram for 𝑤p𝑘q

so that 𝜋´ travels from 𝑣´ to a target vertex 𝜌ℎ´
where ℎ´ ď ℎ𝑘, 𝜋` travels from 𝑣` to a
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𝑗

Figure 7.5: Types of directed edges arriving at JCp𝑗q that either follow a geodesic 𝛾𝑟 where 𝑟 P 𝑅Óp𝑗q
or follow a bridge toward a geodesic 𝛾𝑟 where 𝑟 P 𝑅Òp𝑗q. In the first three diagrams on
the left, the red edges arriving at JCp𝑗q are forbidden.

𝑗´
Œ

𝑗

Figure 7.6: Types of directed edges leaving JCp𝑗q that either follow a geodesic 𝛾𝑟 where 𝑟 P 𝑅Òp𝑗q
or follow a bridge away from a geodesic 𝛾𝑟 where 𝑟 P 𝑅Óp𝑗q. In the diagram on the far
right, the red edge leaving JCp𝑗q on 𝛾𝑟˚

is forbidden.

target vertex 𝜌ℎ` with ℎ` ě ℎ𝑘 ` 1, and 𝜋´ travels only down at bridges while 𝜋` travels

only up at bridges.

Proof. Since the bridge 𝑖 is oriented up in p𝒢
w

𝑘 , the strand 𝛼Õp𝑖q has right endpoint in

the interval rℎ𝑘 ` 1, 𝑛s and the strand 𝛼Œp𝑖q has left endpoint in the interval r1, ℎ𝑘s.

Take the path 𝜋´ to follow 𝛼Œp𝑖q to the right of 𝑖 and let 𝜋` follow 𝛼Õp𝑖q initially

and travel up whenever possible and down only at inclined edges. The strand𝛼Õp𝑖q

has right endpoint in the interval r1, ℎ𝑘s, and traveling maximally up in a reduced

wiring diagram weakly increases the right endpoint.

In order for the JCp𝑗q-path component 𝜋 to have degree ´1 in 𝑋𝑗 , there are

two requirements that must be satisfied. First, for the indices where the vertex

𝑣𝑑 P JCp𝑗q, if 𝑣𝑑 is on the geodesic path 𝛾𝑟, the value of deg𝑋𝑗
p𝑣0, ¨ ¨ ¨ , 𝑣𝑑q must be

´1 when 𝑟 P 𝑅Òp𝑗q and 0 when 𝑟 P 𝑅Óp𝑗q. This is equivalent to the condition that

the edge p𝑣0, 𝑣1q is either a horizontal or inclined edge on a geodesic path 𝛾𝑟 where

𝑟 P 𝑅Óp𝑗q or a bridge directed toward a geodesic path 𝛾𝑟 where 𝑟 P 𝑅Òp𝑗q (see Fig-

ure 7.5). In the notation of Proposition VI.18, we will say that 𝜋 has 𝜖 “ ´1. Second,
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Ó

𝑗𝑒

𝑗´
Õ

𝑗´
Œ

𝑗

𝑒Ò𝑗

Figure 7.7: Augmenting paths with negative 𝑋𝑗-degree arrive at JCp𝑗q from one of the red edges
𝑗´
Õ

or 𝑒Ò𝑗 and leave JCp𝑗q using one of the blue edges 𝑗´
Œ

or Ó𝑗𝑒.

if the vertex 𝑣𝑚 is on 𝛾𝑟 where 𝑟 P 𝑅Òp𝑗q, then p𝑣𝑚, 𝑣𝑚`1q must be a horizontal or

inclined edge on the geodesic 𝛾𝑟, and if 𝑟 P 𝑅Óp𝑗q, then p𝑣𝑚, 𝑣𝑚`1qmust be a bridge

directed away from 𝛾𝑟 (see Figure 7.6). In this case, we say that 𝜋 has 𝑋𝑗-degree 𝜖.

Definition VII.17. We define the upper left corner of JCp𝑗q to be the minimal index

𝑖 so thatㅊÑp𝑖q P JCp𝑗q and

𝛼Õp𝑖q “

$

’

’

’

&

’

’

’

%

𝛼Œp𝑗q if 𝑗´
Œ
“ 0

𝛼Õp𝑗
´
Œ
q if 𝑗´

Œ
‰ 0

.

Note that this index 𝑖 is necessarily in 𝐽˝u` .

Notation VII.18. Let 𝑖 be the upper left corner of JCp𝑗q. We denote the horizontal

edge on 𝛼Õp𝑖q to the left of 𝑖 by Ó

𝑗𝑒. We denote the horizontal edge on 𝛼Õp𝑗q to the

right of 𝑗 by 𝑒Ò𝑗 .

Proposition VII.19. Suppose that 𝑖 is a crossing incident to JCp𝑗q. If 𝛼Õp𝑖q ‰ 𝛼Œp𝑗q,

then the left endpoint of 𝛼Õp𝑖q is below the left endpoint of 𝛼Œp𝑗q.

Proof. The region JCp𝑗q is below the strand 𝛼Œp𝑗q, so that if a strand 𝛽 starts above

𝛼Œp𝑗q then it must cross below𝛼Œp𝑗q at some point weakly to the left of the crossing
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where it first intersects JCp𝑗q. Since w is unipeak, if 𝛽 “ 𝛼Õp𝑖q for some 𝑖 incident

to JCp𝑗q, then it does not travel down before index 𝑖.

Corollary VII.20. Suppose that 𝑖 is a crossing on BÓJCp𝑗qwith 𝛼Õp𝑖q ‰ 𝛼Õp𝑗q and 𝛼Õp𝑖q

P 𝐶Óp𝑗q. Then the strand 𝛼Õp𝑖q is below 𝛼Œp𝑗q for all indices 0 ď 𝑘 ď ℓ.

Corollary VII.21. Suppose that 𝛼 ‰ 𝛼Õp𝑗q is a strand with 𝛼 “ 𝛼Õp𝑖q for some crossing

𝑖 on BÓJCp𝑗q. Let 𝛽 be a strand in 𝐶Òp𝑗q. If 𝛽 starts below 𝛼, then 𝛽 crosses above 𝛼 at some

index between 𝑖 and 𝑗. Otherwise, 𝛽 stays above 𝛼 for all 0 ď 𝑘 ď ℓ.

Proposition VII.22. Let 𝜋 “ 𝑣0, ¨ ¨ ¨ , 𝑣𝑚`1 be a JCp𝑗q-path component, and suppose that

𝜖 “ ´1. Suppose that the edge p𝑣0, 𝑣1q is not an edge of 𝛼Õp𝑖q. Then deg𝑋𝑗
p𝜋q “ 0.

Proof. The edge p𝑣0, 𝑣1qmust be either a bridge with upper vertex on BÓJCp𝑗q or an

inclined edge crossing BÓJCp𝑗q traveling northwest. In particular, the edge p𝑣0, 𝑣1q

is an edge of a crossing 𝑖 where the strand 𝛼Õp𝑖q is a lower boundary strand for

JCp𝑗qwith right endpoint in the interval rℎ𝑘 ` 1, 𝑛s, and the strand 𝛼Œp𝑖q has right

endpoint in the interval r1, ℎ𝑘s. Suppose that the crossing 𝑖 is a bridge. Since p𝑣0, 𝑣1q

is not on the strand 𝛼Õp𝑗q, we have 𝛼Õp𝑖q ‰ 𝛼Õp𝑗q. Suppose that 𝛽 P𝐶Òp𝑗q. We claim

that either 𝛽 is oriented left-to-right, or there is no directed path from the edge

p𝑣0, 𝑣1q to 𝛽 in JCp𝑗q. By Corollary VII.21, if 𝛽 crosses a portion of BÓJCp𝑗q above

and to the left of the crossing 𝑖, then 𝛽 must be oriented left-to-right.

Suppose that the edge p𝑣0, 𝑣1q is an inclined edge corresponding to the crossing

𝑖 P 𝐽`u` . If 𝛼Õp𝑖q ‰ 𝛼Õp𝑗q, the same argument shows that every strand 𝛽 P 𝐶Òp𝑗q

is either directed left-to-right or cannot be reached by a JCp𝑗q-path component be-

ginning with the edge p𝑣0, 𝑣1q.

Suppose that 𝛼Õp𝑖q “ 𝛼Õp𝑗q. We note that every strand in 𝐶Òp𝑗q starts above

𝛼Õp𝑗q. By definition of 𝐶Òp𝑗q, if 𝛽 P 𝐶Òp𝑗q then 𝛽 does not cross below 𝛼Õp𝑗q to
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the left of 𝑗. By Lemma III.20, if 𝛽 R t𝛼Œp𝑗q, 𝛼Õp𝑗´Œqu, then 𝛽 stays above 𝛼Õp𝑗q. By

Proposition VII.16, there is some connected left-to-right path in the wiring diagram

traveling up and to the right from the vertex 𝑣0; by Corollary III.21, this path cannot

cross the strand 𝛼Œp𝑗q and hence cannot cross 𝛼Õp𝑗´Œq. Hence every strand in 𝐶Òp𝑗q

is oriented left-to-right, and so the JCp𝑗q-path component 𝜋 has 𝑋𝑗-degree 𝜖` 1 “

0.

Proposition VII.23. Suppose that every strand in the set 𝐶Òp𝑗q z t𝛼Õp𝑗qu Y t𝛼Œp𝑗qu

is oriented right-to-left and every strand in the set 𝐶Óp𝑗q z t𝛼Œp𝑗q, 𝛼Õp𝑗
´
Œ
qu is oriented

left-to-right. Then the following hold.

1. Exactly one of the edges 𝑗´
Õ

and 𝑒Ò𝑗 is oriented toward BJCp𝑗q.

2. Exactly one of the edges 𝑗´
Œ

and Ó

𝑗𝑒 is oriented toward BJCp𝑗q.

3. Writing 𝑣1 and 𝑣𝑚 for the endpoints of these edges which are on BJCp𝑗q, the vertices

𝑣1 and 𝑣𝑚 partition BJCp𝑗q into a clockwise arc and a counterclockwise arc.

4. No path from 𝑣1 to 𝑣𝑚 that stays inside JCp𝑗q goes through the interior of JCp𝑗q.

Proof. 1. Since 𝛼Õp𝑗
´
Õ
q “ 𝛼Õp𝑗q and 𝛼Œp𝑗

´
Õ
q P 𝐶Óp𝑗q, the bridge 𝑗´

Õ
is directed up

and toward BÓJCp𝑗q if and only if 𝛼Õp𝑗q is oriented left-to-right, while 𝑒Ò𝑗 is

oriented toward BJCp𝑗q if and only if 𝛼Õp𝑗q is oriented right-to-left.

2. Suppose that 𝑗´
Œ
‰ 0 so that it indexes a bridge. Since the strand𝛼Œp𝑗

´
Œ
q “𝛼Œp𝑗q

is oriented right-to-left, the bridge 𝑗´
Œ

is directed up and away from BÒJCp𝑗q if

and only if the strand 𝛼Õp𝑗
´
Œ
q is oriented left-to-right (so that Ó

𝑗𝑒 is oriented

toward BJCp𝑗q). If 𝑗´
Œ
“ 0, then there is no bridge 𝑗´

Œ
, while Ó

𝑗𝑒 is an edge of

𝛼Œp𝑗q and hence oriented right-to-left and away from BJCp𝑗q.

3. By Proposition IV.51, if 𝑖 ‰ 𝑗 is a bridge on BJCp𝑗q, then 𝛼Õp𝑖q P 𝐶Òp𝑗q and

𝛼Œp𝑗q P 𝐶
Óp𝑗q; if 𝑖 is a BJCp𝑗q-incident bridge that is not on BJCp𝑗q, then either



112

𝑖 “ 𝑗´
Œ

(and hence both 𝛼Õp𝑖q and 𝛼Œp𝑖q are in 𝐶Òp𝑗q) or both 𝛼Õp𝑖q and 𝛼Œp𝑖q

are in 𝐶Óp𝑗q. Since a bridge 𝑖 is oriented up if and only if 𝛼Õp𝑖q is left-to-right

and 𝛼Œp𝑖q is right-to-left, we have that the portion of BJCp𝑗q not on the strands

𝛼Õp𝑗q, 𝛼Œp𝑗q or 𝛼Õp𝑗´Œq is oriented clockwise. The boundary portion BÒJCp𝑗q X

𝛼Œp𝑗q is oriented counterclockwise, and BÒJCp𝑗q X 𝛼Õp𝑗
´
Œ
q is counterclockwise

if 𝛼Õp𝑗´Œq is right-to-left, clockwise if 𝛼Õp𝑗´Œq is left-to-right, while BÓJCp𝑗q X

𝛼Õp𝑗q is counterclockwise if 𝛼Õp𝑗q is left-to-right, clockwise if 𝛼Õp𝑗q is right-

to-left.

4. Suppose that 𝑒 is an edge with one vertex on BJCp𝑗q and one edge in the in-

terior of JCp𝑗q. If 𝑒 is a bridge 𝑖, then the strands 𝛼Õp𝑖q and 𝛼Œp𝑖q are strands

in 𝐶Óp𝑖q z t𝛼Õp𝑗qu, so that they are both directed right-to-left and the bridge

𝑖 is directed down. Since the boundary vertex is necessarily on BÓJCp𝑗q, the

edge 𝑒 is directed toward BJCp𝑗q. Similarly, if 𝑒 is a horizontal edge on a strand

𝛼Œp𝑖q where 𝑖 is a boundary bridge, then the strand 𝛼Œp𝑖q P 𝐶
Óp𝑖q so that 𝑒 is

directed right-to-left toward BJCp𝑗q. If 𝑒 is a horizontal edge on a strand 𝛼Õp𝑖q

where 𝑖 is a boundary bridge, then there are no bridges on the strand 𝛼Õp𝑖q to

the right of 𝑖 and in JCp𝑗q.

Proposition VII.24. Let 𝜋 “ 𝑣0, ¨ ¨ ¨ , 𝑣𝑚`1 be a JCp𝑗q-path component and suppose that

deg𝑋𝑗
p𝜋q “ ´1. Then the following hold.

1. The edge p𝑣0, 𝑣1q is on the strand 𝛼Õp𝑗q so that either p𝑣0, 𝑣1q is the bridge 𝑗´
Õ

, directed

up, or p𝑣0, 𝑣1q is the horizontal edge at height ℎ𝑗 ` 1 immediately to the right of 𝑗.

2. The edge p𝑣𝑚, 𝑣𝑚`1q is either the bridge 𝑗´
Œ

, directed up, or the horizontal edge below

and to the left of the upper left corner of JCp𝑗q.
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3. The path 𝜋 is a BJCp𝑗q-path component, and there is a BJCp𝑗q-path component 𝜋1 “

𝑣10, ¨ ¨ ¨ , 𝑣
1
𝑚1`1 with p𝑣10, 𝑣11q “ p𝑣0, 𝑣1q and p𝑣1𝑚1 , 𝑣1𝑚1`1q “ p𝑣𝑚, 𝑣𝑚`1q which follows

the complementary arc of BJCp𝑗q.

Proof. 1. Since deg𝑋𝑗
p𝜋q “´1, the path 𝜋 must have 𝜖 “ ´1, and hence either the

first edge p𝑣0, 𝑣1q is on the strand 𝛼Õp𝑗q or it is a bridge directed to BÓJCp𝑗q or

inclined edge traveling northwest over BÓJCp𝑗q. By Proposition VII.22, p𝑣0, 𝑣1q

must be on 𝛼Õp𝑗q.

2. Since 𝜋 must have 𝑋𝑗-degree 𝜖, either the edge p𝑣𝑚, 𝑣𝑚`1q is on a right-to-left

strand 𝛼 P 𝐶Òp𝑗q, or p𝑣𝑚, 𝑣𝑚`1q crosses BÒJCp𝑗q by traveling northeast over the

strand 𝛼Œp𝑗q at some crossing 𝑖 P 𝐽`u` . We claim that if 𝛼 R t𝛼Œp𝑗q, 𝛼Õp𝑗´Œqu,

then 𝛼 is oriented left-to-right in p𝒢
w

𝑘 .

If p𝑣0, 𝑣1q is the bridge 𝑗´
Õ

, then 𝛼Õp𝑗q is directed left-to-right. Ifp𝑣0, 𝑣1q is the

horizontal edge 𝑒 to the right of 𝑗, then by Proposition VII.16, there is a con-

nected left-to-right path in the wiring diagram traveling from 𝑒 to a target ver-

tex 𝜌ℎ whereℎ ě ℎ𝑘`1. By Corollary III.21, if𝛼 P𝐶Òp𝑗q and𝛼 R t𝛼Œp𝑗q, 𝛼Õp𝑗
´
Œ
qu,

then the strand 𝛼 must end above height ℎ𝑘 ` 1 and so 𝛼 is oriented left-to-

right. So p𝑣𝑚, 𝑣𝑚`1q is either an edge on one of the strands t𝛼Œp𝑗q, 𝛼Õp𝑗´Œqu or

an inclined edge crossing 𝛼Œp𝑗q traveling northeast at a crossing 𝑖 P 𝐽`u` . By

Corollary VII.14, since every augmenting path containing 𝜋 must eventually

turn left, there must be an upward oriented bridge on the strand 𝛼Õp𝑖q to the

right of 𝛼Œp𝑗q, so that there is a connected left-to-right path in the wiring dia-

gram from the strand segment corresponding to the edge p𝑣𝑚, 𝑣𝑚`1q to a tar-

get vertex 𝜌ℎ with ℎ ď ℎ𝑘. But this path must cross below the left-to-right path

from 𝛼Œp𝑗q ending in the interval rℎ𝑘 ` 1, 𝑛s, contradicting Corollary III.21.

Hence, the edge p𝑣𝑚, 𝑣𝑚`1qmust be on one of the strands t𝛼Œp𝑗q, 𝛼Õp𝑗´Œqu.
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3. We note that 𝑘 ě 𝑗, since the strand 𝛼Õp𝑗q or some strand crossing above it to

the right of 𝑗 ends at height ě ℎ𝑘 ` 1 while the strand 𝛼Œp𝑗q and possibly the

strand 𝛼Õp𝑗
´
Œ
q ends at heightď ℎ𝑘. The claim follows from Proposition VII.23.

Corollary VII.25.
ÿ

ℱ :𝜆𝑎Ñ𝜆𝑏

𝜔pℱq “ 𝑃1𝑋
1
𝑗 ` 𝑃2,

where 𝑃1 P Cr𝑋˘
𝑖 : 𝑖 ‰ 𝑗s and 𝑃2 P Cr𝑋˘

𝑖 : 𝑖 ‰ 𝑗sr𝑋𝑗s.

Proof. If every augmenting path from 𝜆𝑎 to 𝜆𝑏 has nonnegative degree in 𝑋𝑗 , then

this is clear. Otherwise, fix some JCp𝑗q-path component 𝜋 “ 𝑣0, ¨ ¨ ¨ , 𝑣𝑚`1 of degree

´1 in 𝑋𝑗 , and let 𝜋1 be the JCp𝑗q-path component following the complementary arc

of BJCp𝑗q. By Proposition VII.24, every JCp𝑗q-path component of degree ´1 in 𝑋𝑗

is either 𝜋 or 𝜋1 and hence has starting vertex 𝑣0 and ending vertex 𝑣𝑚`1. Since p𝒢
w

𝑘

is acyclic, an augmenting path ℱ can contain at most one JCp𝑗q-path component

of degree ´1, and hence deg𝑋𝑗
pℱq ě ´1. So if ℱ : 𝜆𝑎 Ñ 𝜆𝑏 is an augmenting path

with deg𝑋𝑗
pℱq “ ´1, then there is an augmenting pathℱ 1 ‰ ℱ obtained fromℱ by

replacing 𝜋 with 𝜋1 or vice versa, and we have 𝜔pℱq`𝜔pℱ 1q “𝑀ℳ``ℳ´

𝑋𝑗
where 𝑀

is some Laurent monomial in the variables t𝑋𝑖 : 𝑖 ‰ 𝑗u. Pairing augmenting paths

of degree ´1 in 𝑋𝑗 gives
ÿ

ℱ :𝜆𝑎Ñ𝜆𝑏

𝜔pℱq “ 𝑃1𝑋
1
𝑗 `𝑃2 for some 𝑃1 P Cr𝑋˘

𝑖 : 𝑖 ‰ 𝑗s and

𝑃2 P Cr𝑋˘
𝑖 : 𝑖 ‰ 𝑗sr𝑋𝑗s.

Lemma VII.26. Let 𝑗 P 𝐽˝u` be an index with 𝑣𝑗

p0q “ 1. On the Deodhar torus 𝒟u`,w,

the entries of the Schubert form ϒ𝑢,𝑤 are Laurent polynomials in the variables t𝑋𝑖 : 𝑖 ‰

𝑗u Y t𝑋 1
𝑗u.

Proof. On 𝒟u`,w, the entries of ϒ𝑢,𝑤 are Laurent in the variables t𝑋𝑖 : 𝑖 P 𝐽
˝
u`
u and

𝑋 1
𝑗 “

ℳ``ℳ´

𝑋𝑗
. By Theorem VII.7, it suffices to show that if 𝑘 is any index with
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Figure 7.8: The chamber ansatz quiver and the induced Richardson quiver

1 ď 𝑘 ď ℓ, then writing 𝑎 “ 𝑤p𝑘qpℎ𝑘q and 𝑏 “ 𝑤p𝑘qpℎ𝑘 ` 1q, the ratio of minors
Δ

𝑤p𝑘qpr1,ℎ𝑘sqzt𝑏uYt𝑎u

r1,ℎ𝑘s
p𝑔p𝑘qq

Δ
𝑤p𝑘qpr1,ℎ𝑘sq

r1,ℎ𝑘s
p𝑔p𝑘qq

“
ÿ

ℱ :𝜆𝑎Ñ𝜆𝑏

in p𝒢w
𝑘

𝜔pℱq is Laurent in t𝑋𝑖 : 𝑖 ‰ 𝑗u Y t𝑋 1
𝑗u. Apply

Corollary VII.25 for each 1 ď 𝑘 ď ℓ.

7.4 Mutated variables as terms in the special chamber minors

In the previous section, we showed that if 𝑗 P 𝐽˝u` is an index so that the func-

tion 𝑋𝑗 “ Δ
p𝑅𝑗

p𝐶𝑗

P ℛ𝑢,𝑤 vanishes on a Deodhar hypersurface 𝒟vj,w, the Schubert

coordinate functions are Laurent in the variables t𝑋𝑖 : 𝑖 ‰ 𝑗u Y t𝑋 1
𝑗 “

ℳ``ℳ´

𝑋𝑗
u on

the torus 𝒟u`,w. It remains to show that 𝑋 1
𝑗 extends to a regular function on ℛ𝑢,𝑤.

That is, we have shown that if there are terms in the expansion of the Schubert

coordinates on 𝒟u`,w which have negative degree in 𝑋𝑗 , then they are unique up

to multiplication by Laurent polynomials in the variables t𝑋𝑖 : 𝑖 ‰ 𝑗u, but we have

not yet shown that such terms exist. We will need to show that there is a globally

regular function Δ so that on 𝒟u`,w, the coefficient of 𝑋 1
𝑗 in the expansion of Δ is

a nonzero Laurent monomial in the t𝑋𝑖 : 𝑖 ‰ 𝑗u.

Example VII.27. Let w “ 𝑠3𝑠2𝑠1𝑠4𝑠3𝑠2𝑠3𝑠4. Figure 7.8 shows the chamber ansatz

quiver and induced Richardson quiver. The chamber weights are minors of the
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upper triangular matrix

𝑧 “ ϒ𝑢,𝑤 9𝑤´1 “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

𝑋3
𝑋2`𝑋3𝑋5

𝑋6
´
p𝑋1`𝑋2q𝑋3

𝑋2𝑋8
1 ´𝑋2𝑋4`𝑋3𝑋5𝑋4`𝑋1𝑋6

𝑋4𝑋5𝑋6

0 𝑋2

𝑋3
0 𝑋6

𝑋3
´𝑋2𝑋4`𝑋1𝑋6

𝑋3𝑋4𝑋5

0 0 𝑋1

𝑋2

𝑋5𝑋8

𝑋2
´𝑋1𝑋8

𝑋2𝑋4

0 0 0 𝑋4

𝑋1
0

0 0 0 0 1
𝑋4

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

The exchange relations for the mutable variables are𝑋5𝑋
1
5 “ 𝑋2𝑋4`𝑋1𝑋6,𝑋6𝑋

1
6 “

𝑋2 `𝑋3𝑋5, and 𝑋8𝑋
1
8 “ 𝑋1 `𝑋2. In the following table, we compute the special

minorΔ
𝑣𝑗´1
p𝑗q

pr1,ℎ𝑗sq

𝜆pwqpㅊÑp𝑗qq
for the Deodhar boundary stratum𝒟vj,w for each mutable vari-

able 𝑋𝑗 .

𝑋𝑗 𝑋 1
𝑗 Δ

𝑣𝑗´1
p𝑗q

pr1,ℎ𝑗sq

𝜆pwqpㅊÑp𝑗qq

𝑋5
𝑋2𝑋4`𝑋1𝑋6

𝑋5
Δ124

145 “
𝑋2𝑋4`𝑋1𝑋6

𝑋1𝑋5

𝑋6
𝑋2`𝑋3𝑋5

𝑋6
Δ13

45 “
p𝑋2`𝑋3𝑋5q𝑋8

𝑋2𝑋6

𝑋8
𝑋1`𝑋2

𝑋8
Δ1245

2345 “
𝑋1`𝑋2

𝑋1𝑋8

In this particular case, each of the minorsΔ
𝑣𝑗´1
p𝑗q

pr1,ℎ𝑗sq

𝜆pwqpㅊÑp𝑗qq
has the form𝑀𝑋 1

𝑗 , where

𝑀 is a ratio of variables t𝑋𝑘 : 𝑘 ‰ 𝑗u. In general,Δ
𝑣𝑗´1
p𝑗q

pr1,ℎ𝑗sq

𝜆pwqpㅊÑp𝑗qq
“𝑀𝑋 1

𝑗`𝑃 for some

𝑃 P Cr𝑋˘
𝑘 : 𝑘 ‰ 𝑗sr𝑋𝑗s.

In this section, we will use augmenting paths in the graph p𝒢
u`

𝑗 to show that the

function 𝑋 1
𝑗 P Cr𝒟u`,ws has an alternate formula which is regular on a dense open

subset of 𝒟vj,w. We will show that on 𝒟u`,w, a multiple of 𝑋 1
𝑗 “

ℳ``ℳ´

𝑋𝑗
appears in

the expansion of the minor Δ
𝑣𝑗
p𝑗´1q

r1,ℎ𝑗s

𝜆pwqpㅊÑp𝑗qq
, which is a special chamber minor in Marsh

and Rietsch’s Chamber Ansatz for the Deodhar hypersurface 𝒟vj,w. At the end of

the chapter, we will use specialized chamber weightings to show the following,

thus verifying the last unchecked conditions for the Starfish Lemma.
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1. If 𝑋𝑖 and 𝑋𝑗 are distinct mutable variables in the initial cluster, then the locus

t𝑋𝑖 “ 𝑋𝑗 “ 0u has complex codimension ě 2.

2. If 𝑋𝑗 is a mutable variable, then the function 𝑋 1
𝑗 is globally regular on ℛ𝑢,𝑤.

3. If 𝑋𝑖 and 𝑋𝑗 are mutable variables in the initial cluster, then the locus t𝑋𝑖 “

𝑋 1
𝑗 “ 0u has complex codimension ě 2.

We begin with a roadmap of our proof strategy.

By Proposition VI.5, since 𝑣𝑗

p𝑗´1qpr1, ℎ𝑗sq “ 𝑢p𝑗qpr1, ℎ𝑗sqzt𝑟˚u Y t𝑟
˚u andㅊÑp𝑗q is

the chamber above the strands with right endpoints r1, ℎ𝑗s in the oriented bridge

graph 𝒢𝑗 , the special chamber minor Δ
𝑣𝑗
p𝑗´1q

pr1,ℎ𝑗sq

𝜆pwqpㅊÑp𝑗qq
is given by

Δ
𝑣𝑗
p𝑗´1qpr1,ℎ𝑗sq

𝜆pwqpㅊÑp𝑗qq
“ QpㅊÑp𝑗qq

ÿ

ℱ :𝜆
𝑟˚
Ñ𝜆𝑟˚

𝜔pℱq,

where the sum is over augmenting paths in the directed graph p𝒢
u`

𝑗 . Since the cham-

berㅊÑp𝑗q is not in JCp𝑗q, QpㅊÑp𝑗qq has degree 0 in 𝑋𝑗 so that the path weight

𝜔pℱq and the corresponding term QpㅊÑp𝑗qq𝜔pℱq in the expansion ofΔ
𝑣𝑗
p𝑗´1q

pr1,ℎ𝑗sq

𝜆pwqpㅊÑp𝑗qq

have the same degree in 𝑋𝑗 .

We will show that there are distinguished augmenting paths ℱ𝐿 and ℱ𝑅 which

have degree´1 in𝑋𝑗 and differ by a cycle around BJCp𝑗q, withℱ𝐿 following the left

portion of BJCp𝑗q andℱ𝑅 following the right portion of BJCp𝑗q. For any augmenting

path ℱ ‰ ℱ𝑅, we will show that ℱ stays weakly to the left of the ℱ𝐿 and that the

degree difference deg𝑋𝑗
pℱq ´ deg𝑋𝑗

pℱ𝐿q is the number of times that ℱ leaves ℱ𝐿.

Since the vertices 𝜆𝑟˚ and 𝜆𝑟˚
have valence 1, every augmenting path from 𝜆𝑟˚ to

𝜆𝑟˚
has the same first and last edges. Hence, if ℱ is an augmenting path other than

ℱ𝐿 and ℱ𝑅 then deg𝑋𝑗
pℱq is nonnegative.

This shows that the remainder term
ÿ

ℱ :𝜆
𝑟˚
Ñ𝜆𝑟˚

ℱ‰ℱ𝐿,ℱ𝑅

𝜔pℱq is polynomial in 𝑋𝑗 .
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There are several important consequences of the fact that the graph p𝒢
u`

𝑗 is ob-

tained from 𝒢𝑗 by reversing edges along the flow ℱ 𝑗 , which follows the geodesic

paths 𝛾𝑟 where 𝑟 P 𝑢p𝑗´1qpr1, ℎ𝑗sq, and in particular uses no bridges of 𝒢𝑗 .

Like paths in the oriented bridge diagram 𝒢𝑗 , directed paths 𝜋 in 𝒢𝑗 always go

from higher-indexed geodesic paths to lower-indexed geodesic paths.

Proposition VII.28. Let 𝜋 be a directed path in p𝒢
u`

𝑗 . Let 𝑒1, ¨ ¨ ¨ , 𝑒𝑚 be the subsequence

of non-bridge edges of 𝜋 and write 𝛾𝑟𝑑
for the geodesic path containing the edge 𝑒𝑑. Then

the sequence 𝑟1, ¨ ¨ ¨ , 𝑟𝑚 is weakly decreasing.

Proof. The path 𝜋 travels from one geodesic path to another exactly when it follows

a bridge 𝑖. Since u` is a positive subexpression of w, whenever 𝑖 is a bridge from 𝛾𝑟

to 𝛾𝑟1with 𝛾𝑟 above 𝛾𝑟1 , we have 𝑟 ą 𝑟1. All bridges in p𝒢
u`

𝑗 are oriented down, so that

whenever 𝜋 uses a bridge 𝑖 the index of the geodesic path it follows decreases.

Proposition VII.29. Let 𝑣 be a vertex in p𝒢
u`

𝑘 for some 𝑘, and suppose that 𝑣 is not a vertex

of the form 𝜆ℎ or 𝜌ℎ1 . If 𝑣 is the upper vertex of a bridge, it has one inbound edge and two

outbound edges, while if 𝑣 is the lower vertex of a bridge, it has two inbound edges and one

outbound edge. Otherwise, 𝑣 has one inbound edge and one outbound edge.

Proof. Every vertex not of the form 𝜆ℎ or 𝜌ℎ1 is incident to two edges on the same

geodesic path and possibly one bridge. Edges on a single geodesic path are either

oriented left-to-right or right-to-left, while all bridges are oriented down.

Proposition VII.30. Let ℱ : 𝜆𝑟˚ Ñ 𝜆𝑟˚
be an augmenting path in p𝒢

u`

𝑗 . Then ℱ X JCp𝑗q

Ď BJCp𝑗q.

Proof. Assume for contradiction that the augmenting path ℱ crosses BJCp𝑗q, and

let 𝑒 be the first edge of ℱ containing an interior vertex of JCp𝑗q. Then 𝑒 cannot be
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a bridge, since all bridges with one endpoint on BJCp𝑗q and one endpoint in the

interior of JCp𝑗q are oriented down toward BÓJCp𝑗q.

Similarly, all inclined edges crossing the upper right boundary are oriented

from the interior of JCp𝑗q to the outside, and inclined edges crossing the lower

right boundary are inaccessible from the left.

So 𝑒 must be a left-to-right edge crossing the left boundary.

Proposition VII.31. Consider the augmenting paths from 𝜆𝑟˚ to 𝜆𝑟˚
in p𝒢

u`

𝑗 . There are

two distinguished augmenting paths ℱ𝑅 and ℱ𝐿, so that the following hold.

1. ℱ𝑅 travels clockwise around the right boundary of JCp𝑗q and ℱ𝐿 travels counterclock-

wise around the left boundary of JCp𝑗q.

2. 𝜔pℱ𝑅q “ 𝑡𝑗 and 𝜔pℱ𝐿q “ p𝑌𝑗𝑡𝑗 .

3. If ℱ : 𝜆𝑟˚ Ñ 𝜆𝑟˚
is an augmenting path other than ℱ𝑅 and ℱ𝐿, then ℱ stays weakly

to the left of ℱ𝐿.

Proof. Since 𝑟˚ “ 𝑢p𝑗qpℎ𝑗 ` 1q and 𝑟˚ “ 𝑢p𝑗qpℎ𝑗q, the geodesic path 𝛾𝑟˚ is directed

left-to-right and the geodesic path 𝛾𝑟˚
is directed right-to-left, and the bridge 𝑗 is

directed down from to the geodesic path 𝛾𝑟˚
. Take ℱ𝑅 to be the path that follows

𝛾𝑟˚ until reaching bridge 𝑗 and then follows 𝛾𝑟˚
back to 𝜆𝑟˚

. The weight of ℱ𝑅 is

𝜔p𝑖q “ 𝑡𝑖.

By Proposition IV.47, if 𝛾𝑟 is an upper boundary geodesic of JCp𝑗q, then 𝑟 P

𝑣𝑗

p𝑗´1qpr1, ℎ𝑗sq, while if 𝛾𝑟 is a lower boundary geodesic, then 𝑟 P 𝑣𝑗

p𝑗´1qprℎ𝑗 ` 1, 𝑛sq.

Since 𝑣𝑗

p𝑗´1q “ 𝑢p𝑗´1q𝑠ℎ𝑗
, upper boundary geodesics other than 𝛾𝑟˚ are oriented right-

to-left while lower boundary geodesics other than 𝛾𝑟˚
are oriented left-to-right.

Since we also have that bridges are oriented down, it follows that the left boundary
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of JCp𝑗q is oriented counterclockwise, so that there is an augmenting pathℱ𝐿 which

differs from ℱ𝑅 by traveling counterclockwise around JCp𝑗q rather than clockwise.

So the ratio 𝜔pℱ𝐿q

𝜔pℱ𝑅q
is the weight of a counterclockwise cycle around JCp𝑗q and hence

equal to p𝑌𝑗 , and so 𝜔pℱ𝐿q “ p𝑌𝑗𝑡𝑗 .

Suppose that ℱ : 𝜆𝑟˚ Ñ 𝜆𝑟˚
is an augmenting path with ℱ ‰ ℱ𝑅. By Proposi-

tion VII.30, ℱ X JCp𝑗q Ď BJCp𝑗q; since an augmenting path that uses an edge of the

right boundary must agree with ℱ𝑅, the edges of ℱ X JCp𝑗q must consist of left

boundary edges. So ℱ stays weakly to the left of the left boundary of JCp𝑗q, hence

weakly to the left of ℱ𝐿.

Proposition VII.32. Let ℱ : 𝜆𝑟˚ Ñ 𝜆𝑟˚
be an augmenting path that stays weakly to the

left of ℱ𝐿. If 𝑒1 and 𝑒2 are consecutive edges of ℱ so that 𝑒1 R ℱ𝐿 and 𝑒2 P ℱ𝐿, then one of

the following holds.

1. The edges 𝑒1 and 𝑒2 are horizontal edges on a lower boundary geodesic 𝛾𝑟 for some

𝑟˚ ă 𝑟 ă 𝑟˚, with 𝑒2 P BÓJCp𝑗q.

2. The edge 𝑒2 is a horizontal edge on 𝛾𝑟˚
and 𝑒1 is a bridge, with 𝑒2 vertex-disjoint from

JCp𝑗q. The edge 𝑒1 is either vertex disjoint from JCp𝑗q or has 𝑋𝑗-degree 1.

Proof. Let 𝑒11 be the edge of ℱ𝐿 preceding 𝑒2, where by hypothesis 𝑒11 ‰ 𝑒1. Since the

edges 𝑒1, 𝑒
1
1 and 𝑒2 intersect at a trivalent vertex 𝑣, one of them must be a bridge

and the others horizontal edges on the same geodesic path. Since the paths ℱ and

ℱ 1 converge, by Proposition VII.29 the bridge must be one of the edges 𝑒1 or 𝑒11. So

the edge 𝑒2 is horizontal. By Proposition VII.28, ℱ cannot leave and rejoin 𝛾𝑟˚ , so

𝑒2 R 𝛾𝑟˚ . Since 𝑒2 Pℱ𝐿, it can either be on BJCp𝑗q or on 𝛾𝑟˚
. By Corollary IV.47, every

lower boundary geodesic 𝛾𝑟 satisfies 𝑟 P 𝑅Òp𝑗q and every upper boundary geodesic

𝛾𝑟 satisfies 𝑟 P 𝑅Óp𝑗q. So every lower boundary geodesic except 𝛾𝑟˚
is oriented left-
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to-right and every upper boundary geodesic except 𝛾𝑟˚ is oriented right-to-left. The

path ℱ stays weakly to the left of ℱ𝐿, so if 𝑒1 is a horizontal edge it must be directed

left-to-right, and hence it must be an edge on a lower boundary geodesic 𝛾𝑟 where

𝑟˚ ă 𝑟 ă 𝑟˚. Since 𝑟 ‰ 𝑟˚, the edge 𝑒2 must be on BJCp𝑗q. If the edge 𝑒1 is a bridge,

it must either be directed toward BJCp𝑗q or toward 𝛾𝑟˚
. Every bridge incident to

BÒJCp𝑗q and weakly below 𝛾𝑟˚ is on BJCp𝑗q. If 𝑖 is a bridge with lower endpoint on

BÓJCp𝑗q, then either 𝑖 is on BJCp𝑗q or the upper endpoint of 𝑖 is an interior vertex

of JCp𝑗q. Since ℱ cannot go through the interior of JCp𝑗q, if the edge 𝑒1 is a bridge

then 𝑒2 must be an edge on 𝛾𝑟˚
. Since ℱ𝐿 leaves BJCp𝑗q as soon as it reaches 𝛾𝑟˚

, the

condition that ℱ stays weakly to the left of ℱ𝐿 implies that the edge 𝑒2 is vertex-

disjoint from JCp𝑗q. We note that if 𝑒1 is a bridge with upper endpoint on BJCp𝑗q

and lower endpoint on 𝛾𝑟˚
but not on BJCp𝑗q, then 𝑒1 is directed away from BÓJCp𝑗q

and hence has 𝑋𝑗-degree 1.

Proposition VII.33. Let ℱ : 𝜆𝑟˚ Ñ 𝜆𝑟˚
be an augmenting path that stays weakly to the

left of ℱ𝐿. If 𝑒1 and 𝑒2 are consecutive edges of ℱ so that 𝑒1 P BJCp𝑗q and 𝑒2 R ℱ𝐿, then

one of the following holds.

1. The edge 𝑒1 is a horizontal edge on 𝛾𝑟˚ and 𝑒2 is a bridge, with 𝑒1 and 𝑒2 vertex-disjoint

from JCp𝑗q.

2. The edges 𝑒1 and 𝑒2 are horizontal edges on an upper boundary geodesic 𝛾𝑟 for some

𝑟˚ ă 𝑟 ă 𝑟˚, with 𝑒1 P BÒJCp𝑗q.

3. The edge 𝑒1 is a horizontal edge on a lower boundary geodesic 𝛾𝑟 for some 𝑟˚ ă 𝑟 ă 𝑟˚

and 𝑒2 is a bridge with lower endpoint outside JCp𝑗q.

Proof. Write 𝑒12 for the edge following 𝑒1 inℱ𝐿. The edges 𝑒1, 𝑒2 and 𝑒12 must intersect

at a trivalent vertex 𝑣 with one inbound edge and two outbound edges, so that the
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edge 𝑒1 is a horizontal edge on some geodesic path 𝛾𝑟 and one of the edges 𝑒2, 𝑒
1
2

is the following edge on 𝛾𝑟 while the other is a bridge with upper vertex on 𝛾𝑟.

By Proposition VII.28, the edge 𝑒1 cannot be on 𝛾𝑟˚
since an augmenting path that

leaves 𝛾𝑟˚
cannot rejoin it. Since ℱ stays weakly to the left of ℱ𝐿, the edges 𝑒2 and

𝑒12 must both be weakly to the left of JCp𝑗q. The leftmost bridge from 𝛾𝑟˚ to a vertex

in JCp𝑗q is on the path ℱ𝐿, so if 𝑒2 is a bridge leaving 𝛾𝑟˚ it must be vertex disjoint

from JCp𝑗q. If the edge 𝑒1 is not on 𝛾𝑟˚ , then 𝑒1 P BJCp𝑗q. The geodesic path 𝛾𝑟

containing 𝑒1 must satisfy 𝑟˚ ă 𝑟 ă 𝑟˚. So if 𝛾𝑟 is an upper boundary geodesic

then it is oriented right-to-left, while if 𝛾𝑟 is a lower boundary geodesic then it is

oriented left-to-right. We note that the leftmost edge leaving the vertex 𝑣 is the

horizontal edge to the left of 𝑣 if 𝛾𝑟 is oriented right-to-left and the bridge if 𝛾𝑟 is

oriented left-to-right. In the latter case, the lower endpoint of the bridge 𝑒2 must be

outside JCp𝑗q because the upper vertex is on BJCp𝑗q and the region JCp𝑗q is simply

connected.

Corollary VII.34. Let ℱ “ 𝑣1, ¨ ¨ ¨ , 𝑣|ℱ | be an augmenting path from 𝜆𝑟˚ to 𝜆𝑟˚
. Suppose

that for some 𝑚 and 𝑚1 with 𝑚 ă 𝑚1 the path ℱ leaves ℱ𝐿 via the edge p𝑣𝑚, 𝑣𝑚`1q and

rejoins ℱ𝐿 via the edge p𝑣𝑚1 , 𝑣𝑚1`1q, so that 𝑣𝑚 P ℱ𝐿 and 𝑣𝑚`1 R ℱ𝐿 while 𝑣𝑚1 R ℱ𝐿

and 𝑣𝑚1`1 P ℱ𝐿. Let 𝛾𝑟 be the geodesic path containing 𝑣𝑚 and let 𝛾𝑟1 be the geodesic path

containing 𝑣𝑚1`1. Then 𝑟1 ă 𝑟.

Proof. From Proposition VII.33, either the edge p𝑣𝑚, 𝑣𝑚`1q is a bridge oriented down,

so that the index of the geodesic path followed by ℱ decreases, or ℱ travels left at

a horizontal edge while ℱ𝐿 travels down a bridge to a lower-indexed geodesic.

Since the indices of the geodesics followed by ℱ and ℱ𝐿 respectively are weakly

decreasing, we must have 𝑟1 ă 𝑟.
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In the following proposition, we combine the previous results to show that if

ℱ : 𝜆𝑟˚ Ñ 𝜆𝑟˚
is an augmenting path in p𝒢

u`

𝑗 that stays weakly to the left of ℱ𝐿, then

enumerating the edges of ℱ as ℱ “ 𝑒1, ¨ ¨ ¨ , 𝑒|ℱ |, we have deg𝑋𝑗
pℱq “ ´ 1 `#t𝑑 :

𝑒𝑑´1 P ℱ𝐿, 𝑒𝑑 R ℱ𝐿u, so that the weight of every augmenting path other than ℱ𝐿

and ℱ𝑅 is polynomial in 𝑋𝑗 .

Proposition VII.35. Letℱ : 𝜆𝑟˚ :Ñ 𝜆𝑟˚
be an augmenting path in p𝒢

u`

𝑗 . Suppose thatℱ is

not one of the distinguished augmenting paths ℱ𝐿 and ℱ𝑅. Then deg𝑋𝑗
pℱq is nonnegative.

Proof. Write the edges of ℱ as 𝑒1, ¨ ¨ ¨ , 𝑒|ℱ | and let 𝑑 be the minimal index so that

𝑒𝑑 R ℱ𝐿. We claim that the path 𝑒1, ¨ ¨ ¨ , 𝑒𝑑 has degree 0 in 𝑋𝑗 . The edges 𝑒1, ¨ ¨ ¨ , 𝑒𝑑´1

are the first 𝑑 ´ 1 edges of ℱ𝐿. Consider the cases from Proposition VII.32. If the

edge 𝑒𝑑´1 is an edge of 𝛾𝑟˚ and 𝑒2 is a bridge that is vertex-disjoint from JCp𝑗q, then

all of the edges 𝑒1, ¨ ¨ ¨ , 𝑒𝑑 are vertex-disjoint from JCp𝑗q and hence have degree 0

in 𝑋𝑗 . If 𝑒𝑑´1 and 𝑒𝑑 are horizontal edges on an upper boundary geodesic 𝛾𝑟 with

𝑟 ă 𝑟˚, then the path 𝑒1, ¨ ¨ ¨ , 𝑒𝑑´1 has degree 0 in 𝑋𝑗 . If 𝑒𝑑´1 is a horizontal edge on

a lower boundary geodesic 𝛾𝑟 and 𝑒𝑑 is a bridge directed away from 𝛾𝑟, then the

path 𝑒1, ¨ ¨ ¨ , 𝑒𝑑´1 has degree ´1 and the bridge 𝑒𝑑 has degree 1 so that 𝑒1, ¨ ¨ ¨ , 𝑒𝑑

has degree 0.

Suppose now that 𝑚 is an index so that 𝑒𝑚´1 R ℱ𝐿 while 𝑒𝑚 P ℱ𝐿 and the

path 𝑒1, ¨ ¨ ¨ , 𝑒𝑚´1 has nonnegative degree in 𝑋𝑗 . By Proposition VII.32, the edge

𝑒𝑚 is a horizontal edge on a lower boundary geodesic 𝛾𝑟 (where 𝑟 may equal 𝑟˚),

so that the path of ℱ𝐿 ending with 𝑒𝑚 has degree ´1 and deg𝑋𝑗
p𝑒1, ¨ ¨ ¨ , 𝑒𝑚q “

deg𝑋𝑗
p𝑒1, ¨ ¨ ¨ , 𝑒𝑚´1q. In particular, if ℱ continues to follow ℱ𝐿 for indices 𝑚 ď

𝑖 ď 𝑚1 ´ 1, then deg𝑋𝑗
p𝑒1, ¨ ¨ ¨ , 𝑒𝑚1q ě deg𝑋𝑗

p𝑒1, ¨ ¨ ¨ , 𝑒𝑚´1q, with strict inequality

if 𝑒𝑚1 R ℱ𝐿. Inductively, if ℱ is an augmenting path other than ℱ𝐿 and ℱ𝑅, then

deg𝑋𝑗
pℱq ě 0.
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Proposition VII.36. Letㅊ“ㅊÑp𝑖q be a chamber in JCp𝑗q. Let𝑅 “ Pivots𝜌𝑗´1pwqpㅊq p𝑢p𝑗´1qq

and write Pivots𝜌𝑗´1pwqpㅊq p𝑢p𝑗´1qq “ 𝑅zt𝑟´u Y t𝑟
`u. Then the minor Δ𝑅zt𝑟´uYt𝑟`u

𝜆pwqpㅊq has a

term of degree 0 in 𝑋𝑗 . Further, if 𝑟𝑎 P 𝑅 and 𝑟𝑏 R 𝑅 are indices with 𝑟´ ď 𝑟𝑎 and 𝑟𝑏 ď 𝑟`

and at least one of the inequalities is strict, then every term of Δ𝑅zt𝑟𝑎uYt𝑟𝑏u

𝜆pwqpㅊq has positive

degree in 𝑋𝑗 .

Proof. Consider the graph p𝒢
u`

𝑖 . We have that Δ𝑅zt𝑟𝑎uYt𝑟𝑏u

𝜆pwqpㅊq “ Qpㅊq
ÿ

ℱ :𝜆
𝑟𝑏
Ñ𝜆𝑟𝑎

𝜔pℱq,

where the sum is over augmenting paths in p𝒢
u`

𝑖 . By hypothesis, Qpㅊq has 𝑋𝑗-

degree 1. By Marsh and Rietsch, if ℱ is an augmenting path from 𝜆𝑟𝑏 to 𝜆𝑟𝑎 , then

the path weight 𝜔ℱ is nonnegative as a Laurent monomial in the 𝑋𝑘, so there is

no cancellation of terms. So 𝑋𝑗 divides the minor Δ𝑅zt𝑟𝑎uYt𝑟𝑏u

𝜆pwqpㅊq if and only if every

augmenting path ℱ from 𝜆𝑟𝑏 to 𝜆𝑟𝑎 satisfies deg𝑋𝑗
pℱq ě 0.

We claim that there is at least one augmenting path from 𝜆𝑟` to 𝜆𝑟´
with 𝑋𝑗-

degree ´1. In particular, we claim that there is an augmenting path ℱ that follows

𝛾𝑟` until reaching JCp𝑗q and then travels clockwise along BJCp𝑗q until joining 𝛾𝑟´
.

By Proposition VI.18, such a path ℱ would have deg𝑋𝑗
pℱq “ ´1.

Let 𝑣` be the leftmost vertex on 𝛾𝑟` that is on BJCp𝑗q, and let 𝑣´ be the leftmost

vertex of 𝛾𝑟´
on BJCp𝑗q. We must show that between the vertices 𝑣` and 𝑣´, every

portion of BÒJCp𝑗q is oriented right-to-left and every portion of BÓJCp𝑗q is oriented

left-to-right. The indices of the boundary geodesics along BJCp𝑗q are weakly de-

creasing between 𝛾𝑟˚ and 𝛾𝑟˚
, so that if 𝛾𝑟 intersects BJCp𝑗q between 𝑣` and 𝑣´ then

𝑟´ ă 𝑟 ă 𝑟`. Since 𝑟` must be the minimal index in 𝑅Óp𝑗q with 𝛾𝑟` aboveㅊ, if

𝛾𝑟 is an upper boundary geodesic intersecting BJCp𝑗q between 𝑣` and 𝑣´ then 𝛾𝑟

is belowㅊ, hence oriented right-to-left. Since 𝑟´ must be the maximal index in

𝑅Òp𝑗q with 𝛾𝑟´
belowㅊ, if 𝛾𝑟 is a lower boundary geodesic intersecting BJCp𝑗q

between 𝑣` and 𝑣´, 𝛾𝑟 is aboveㅊ and hence oriented left to right. So BJCp𝑗q is
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oriented clockwise between 𝑣` and 𝑣´ and hence there is an augmenting path ℱ

from 𝜆𝑟` to 𝜆𝑟´
of 𝑋𝑗-degree ´1.

Now suppose that 𝑟𝑏 and 𝑟𝑎 are indices with 𝑟𝑎 P 𝑅 and 𝑟𝑏 R 𝑅 so that the

inequalities 𝑟´ ď 𝑟𝑎 and 𝑟𝑏 ď 𝑟` hold. Suppose that ℱ : 𝜆𝑟𝑏 Ñ 𝜆𝑟𝑎 is an augmenting

path in p𝒢
u`

𝑖 . By positivity of u`, the pathℱ cannot cross above 𝛾𝑟` and cannot cross

below 𝛾𝑟´
. Suppose that ℱ has negative degree in 𝑋𝑗 . Then there must be some

segment 𝜋 “ 𝑣0, ¨ ¨ ¨ , 𝑣𝑚`1 of ℱ so that the vertices 𝑣0 and 𝑣𝑚`1 are not in JCp𝑗q, all

vertices 𝑣1, ¨ ¨ ¨ , 𝑣𝑚 P JCp𝑗q and deg𝑋𝑗
p𝜋q “ ´1. Since all bridges are oriented down

in p𝒢
u`

𝑖 , the edge p𝑣0, 𝑣1q must be an edge on a geodesic path 𝛾𝑟 where 𝑟 P 𝑅Óp𝑗q

and the edge p𝑣𝑚, 𝑣𝑚`1qmust be an edge on a geodesic path 𝛾𝑟 where 𝑟 P 𝑅Òp𝑗q. In

particular, the path 𝜋 must meet or cross BJCp𝑗q somewhere between the vertices 𝑣`

and 𝑣´. Since the vertices 𝑣0 and 𝑣𝑚`1 must be to the left of BJCp𝑗q, the edge p𝑣0, 𝑣1q

must be left-to-right and the edge p𝑣𝑚, 𝑣𝑚`1qmust be right-to-left. This implies that

p𝑣0, 𝑣1q is on 𝛾𝑟` and p𝑣𝑚, 𝑣𝑚`1q is on 𝛾𝑟´
. Since the indices of the geodesic paths

used by ℱ are weakly decreasing, we must have 𝑟𝑏 ě 𝑟` and 𝑟𝑎 ď 𝑟´. Hence if

either of the inequalities is strict, then every term in the expansion of Δ𝑅zt𝑟𝑎uYt𝑟𝑏u

𝜆pwqpㅊq

has positive degree in 𝑋𝑗 .

7.5 Regularity and coprimeness conditions

We are now ready to show that the locus where distinct variables 𝑋𝑖 and 𝑋𝑗

vanish has codimension ě 2 in ℛ𝑢,𝑤. We will explicitly construct a path in the

Deodhar torus 𝒟u`,w where 𝑋𝑗 “ ´𝜖 for a parameter 𝜖 P C˚ and the variables

t𝑋𝑖 : 𝑖 ‰ 𝑗u are constants with values ˘1 and verify that the limit of this path is a

flag in the divisor 𝒟vj,w.
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𝑋1

𝑋2

𝑋3

𝑋4

𝑋5𝑋8
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Figure 7.9: In the chamber weighting at right, the variables p𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋5, 𝑋6, 𝑋8q indexed
by crossings in 𝐽˝u` specialize to p1,´1,´1, 1, 1,´1,´𝜖q. Letting 𝜖 approach zero gives
a path through the Deodhar torus 𝒟u`,w with limit in the boundary divisor 𝒟v8,w.

Lemma VII.37. Let 𝑖 and 𝑗 be distinct indices in 𝐽˝u` with 𝑣𝑗

p0q “ 1. Then the minor Δ
p𝑅𝑖

p𝐶𝑖

does not vanish identically on the Deodhar stratum 𝒟vj,w.

Proof. We will show that there is an element 𝐹 Pℛ𝑢,𝑤 so thatΔ
p𝑅𝑗

p𝐶𝑗 “ 0 and for every

𝑖 ‰ 𝑗 we haveΔ
p𝑅𝑖

p𝐶𝑖 “˘1. The Deodhar torus𝒟u`,w is an open subvariety ofℛ𝑢,𝑤, so

every assignment of nonzero values to the variables 𝑋𝑖 gives an element of ℛ𝑢,𝑤.

We will construct a 1-parameter family of flags in 𝒟u`,w where we set 𝑋𝑗 “ ´𝜖

and fix the values of the other 𝑋𝑖 as˘1 in such a way that taking the limit as 𝜖 Ñ 0

gives an element of 𝒟vj,w.

Specialize the chamber weighting as follows. Ifㅊ is a chamber above 𝛼Õp𝑗q

and below 𝛼Œp𝑗q, then the weighting ofㅊ is´𝜖deg𝑋𝑗
pQpㅊqq. Otherwise, the weight-

ing ofㅊ is 1. (See Figure 7.9.) For each 𝑖 ‰ 𝑗, writing 𝑑 “ deg𝑋𝑗
p𝑡𝑖q for the standard

chamber weighting, the parameter 𝑡𝑖 specializes to 𝜖𝑑. The parameter 𝑡𝑗 specializes

to ´1
𝜖
.

We have 𝑋𝑗 “Δ
p𝑅𝑗

p𝐶𝑗 “ ´ 𝜖, since

Δ
p𝑅𝑗

p𝐶𝑗 “ QpㅊÐp𝑗qq
ź

𝑘ą𝑗: p𝐶𝑘
𝑖 ‰

p𝐶𝑘´1
𝑖

QpㅊÑp𝑘qq

QpㅊÒp𝑘qq
“ ´𝜖

ź

𝑘ą𝑗
p𝐶𝑘
𝑖 ‰

p𝐶𝑘´1
𝑖

1.

Suppose that 𝑖 P 𝐽˝u` is an index with 𝑖 ‰ 𝑗. We haveΔ
p𝑅𝑖

p𝐶𝑖 “ QpㅊÐp𝑖qq
ź

𝑘ą𝑖
p𝐶𝑘
𝑖 ‰

p𝐶𝑘´1
𝑖

QpㅊÑp𝑘qq
QpㅊÒp𝑘qq

.

Under this specialization, all factors in the product are either ˘𝜖,˘1
𝜖

or ˘1. Since
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Δ
p𝑅𝑖

p𝐶𝑖 has degree 0 in𝑋𝑗 on𝒟u`,w, it has degree 0 in 𝜖 under the given specialization.

So Δ
p𝑅𝑖

p𝐶𝑖 “ ˘1.

We note that the distinguished augmenting pathsℱ𝐿 andℱ𝑅 in p𝒢
u`

𝑗 have weight

1
𝜖

and ´1
𝜖
, so that p𝑌𝑗 “

ℳ`

ℳ´
“ ´1 and so 𝑋 1

𝑗 “
ℳ``ℳ´

𝑋𝑗
“ 0.

By Proposition VII.25, every entry of ϒ𝑢,𝑤 can be written in the form 𝑃1𝑋
1
𝑗 ` 𝑃2

where 𝑃1 is Laurent in the variables t𝑋𝑖 : 𝑖 ‰ 𝑗u and 𝑃2 P Cr𝑋˘
𝑖 : 𝑖 ‰ 𝑗sr𝑋𝑗s.

Since 𝑋 1
𝑗 “ 0 under this specialization, the entries of ϒ𝑢,𝑤 are polynomial in 𝑋𝑗 ,

so that evaluating at 𝜖 “ 0 gives an element of ℛ𝑢,𝑤. We have Δ
p𝑅𝑗

p𝐶𝑗 “ ´𝜖 “ 0 and

for each 𝑖 ‰ 𝑗, Δ
p𝑅𝑖

p𝐶𝑖 “ ˘1 ‰ 0.

Ifㅊ is a chamber which is not in JCp𝑗q, soㅊ has the same row labels𝜆pv𝑗q pㅊq

“ 𝜆pu`q pㅊq in the upper arrangements for v𝑗 and u`, then Δ𝜆pu`qpㅊq
𝜆pwqpㅊq is identi-

cally ˘1 for all 𝜖. Ifㅊ P JCp𝑗q, by Proposition VII.36 the minor Δ𝜆pv𝑗qpㅊq
𝜆pwqpㅊq has a

term of degree zero in 𝑋𝑗 on 𝒟u`,w, so under this specialization we haveΔ𝜆pv𝑗qpㅊq
𝜆pwqpㅊq

“ 𝜖𝑃 ` 𝑚 where 𝑃 is polynomial in 𝜖 and 𝑚 is an integer. The Δ𝜆pv𝑗qpㅊq
𝜆pwqpㅊq can be

expanded as path weights of augmenting paths which all have the same sign as

monomials in the parameters t𝑡𝑖 : 𝑖 ă 𝑗u. Under our specialization, 𝑡𝑗 is the only

parameter which is negative as a Laurent monomial in 𝜖, so there can be no can-

cellation of terms. It follows that the integer 𝑚 is nonzero.

So in the limit as 𝜖Ñ 0, the minor Δ𝜆pv𝑗qpㅊq
𝜆pwqpㅊq approaches a nonzero integer 𝑚.

On the other hand, if 𝑅 is a collection of row indices with 𝜆pu`q pㅊq ă 𝑅 ă

𝜆pv𝑗q pㅊq , then by Proposition VII.36, Δ𝑅
𝜆pwqpㅊq specializes to 𝜖𝑃 where 𝑃 is a

polynomial in 𝜖, and hence in the limit as 𝜖Ñ 0 the minor Δ𝑅
𝜆pwqpㅊq approaches 0.

Hence, this specialized chamber weighting gives a path through 𝒟u`,w so that the

limit as 𝜖Ñ 0 is a flag in the Deodhar divisor 𝒟vj,w.
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By upper triangularity in the parameters 𝑡𝑖, we may change the sign of a param-

eter 𝑡𝑖 with 𝑖 ą 𝑗 to obtain a different path to the Deodhar divisor 𝒟vj,w.

Corollary VII.38. Let t𝑡𝑖,𝜖 : 𝑖 P 𝐽˝u`u be the specialization of parameters from the proof of

Lemma VII.37. Suppose that t𝑡1𝑖,𝜖 : 𝑖 P 𝐽˝u`u satisfies 𝑡1𝑖,𝜖 “ 𝑡𝑖,𝜖 for all 𝑖 ď 𝑗 and 𝑡1𝑖,𝜖𝑗 “ ˘ 1

for 𝑖 ą 𝑗. Then the entries of ϒ𝑢,𝑤 under this specialization are polynomial in 𝜖 and taking

the limit as 𝜖 Ñ 0 gives an element of ℛ𝑢,𝑤 with 𝑋𝑗 “ 0 and all other 𝑋𝑖 “ ˘1.

Proof. The 𝑦-variable p𝑌𝑗 depends only on values 𝑡𝑖 where 𝑖 ď 𝑗, and the variables

𝑋𝑘 are ratios of the 𝑡𝑖 with coefficient 1.

Lemma VII.39. Let 𝑗 P 𝐽˝u` be an index with 𝑣𝑗

p0q “ 1. Then 𝑋 1
𝑗 is a regular function on

ℛ𝑢,𝑤.

Proof. It suffices to show that the singular locus of 𝑋 1
𝑗 has codimension at least 2.

On 𝒟u`,w, we have 𝑋 1
𝑗 “

ℳ``ℳ´

𝑋𝑗
“ 𝑀Δ

𝑣𝑗
p𝑗´1q

pr1,ℎ𝑗sq

ㅊÑp𝑗q
´ 𝑃 where 𝑀 is a Laurent

monomial in t𝑋𝑖 : 𝑖 ‰ 𝑗u and 𝑃 is polynomial in 𝑋𝑗 and Laurent in t𝑋𝑖 : 𝑖 ‰ 𝑗u.

Since all the𝑋𝑖 are regular functions onℛ𝑢,𝑤, ℳ``ℳ´

𝑋𝑗
is regular on the locus where

𝑋𝑗 ‰ 0. 𝑀Δ
𝑣𝑗
p𝑗´1q

pr1,ℎ𝑗sq

ㅊÑp𝑗q
´𝑃 is regular on 𝒟vj,w except where some 𝑋𝑖 appearing in

the denominator of 𝑀 or 𝑃 vanishes. Since 𝑖 ‰ 𝑗 implies that 𝑋𝑖 does not vanish

identically on 𝒟vj,w, the locus of 𝒟vj,w where 𝑀Δ
𝑣𝑗
p𝑗´1q

pr1,ℎ𝑗sq

ㅊÑp𝑗q
´ 𝑃 is singular has

codimension 2 in ℛ𝑢,𝑤.

Lemma VII.40. Let 𝑋𝑖 be any variable in the initial cluster. Then the locus where 𝑋𝑖 “ 0

and 𝑋 1
𝑗 “ 0 has complex codimension ě 2.

Proof. It’s straightforward to show that the variable 𝑋𝑖 is generically nonvanishing

when 𝑋 1
𝑗 “ 0. In particular, all the variables 𝑋𝑖 are nonzero on the Deodhar torus
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𝒟u`,w; in the proof of Lemma VII.37, we gave a family of flags in 𝒟u`,w satisfying

𝑋 1
𝑗 “ 0.

To show that 𝑋 1
𝑗 is generically nonzero when 𝑋𝑖 “ 0, we will need to consider

several cases.

First, we consider the case where 𝑖 “ 𝑗. By Lemma V.17, 𝑋𝑗 vanishes identically

on the the Deodhar stratum 𝒟vj,w. We will show that the mutated variable 𝑋 1
𝑗 is

generically nonzero on 𝒟vj,w. Write 𝑋 1
𝑗 in the form 𝑀Δ

𝑣𝑗
p𝑗´1q

pr1,ℎ𝑗sq

ㅊÑp𝑗q
´ 𝑃 , where 𝑀

is a Laurent monomial in t𝑋𝑖 : 𝑖 ‰ 𝑗u and 𝑃 is polynomial in 𝑋𝑗 and Laurent in

t𝑋𝑖 : 𝑖 ‰ 𝑗u, so that this formula is generically defined on 𝒟vj,w. By Marsh and

Rietsch’s Chamber Ansatz formula in [27], there is a birational isomorphism from

pC˚qℓp𝑤q´ℓp𝑢q´2 ˆ C to 𝒟vj,w so that the inverse map gives

𝑚𝑗 “
Δ

𝑣𝑗
p𝑗´1q

pr1,ℎ𝑗sq

𝜆pwqpㅊÐp𝑗qq

Δ
𝑣𝑗
p𝑗´1q

pr1,ℎ𝑗`1sq

𝜆pwqpㅊÒp𝑗qq
Δ

𝑣𝑗
p𝑗´1q

pr1,ℎ𝑗´1sq

𝜆pwqpㅊÓp𝑗qq

Δ
𝑣𝑗
p𝑗´1qpr1,ℎ𝑗sq

𝜆pwqpㅊÑp𝑗qq
´Δ

𝑣𝑗
p𝑗´1q

𝑠ℎ𝑗 pr1,ℎ𝑗sq

`

𝑔p𝑗´1q
˘

,

where the minors on the chambersㅊÒp𝑗q,ㅊÐp𝑗q andㅊÓp𝑗q are nonvanishing

on𝒟u`,w and determined by the parameters t𝑡𝑖 : 𝑖 ă 𝑗u and the termΔ
𝑣𝑗
p𝑗´1q

𝑠ℎ𝑗 pr1,ℎ𝑗sq

`

𝑔p𝑗´1q
˘

is also determined by the t𝑡𝑖 : 𝑖 ă 𝑗u.

Rearranging terms, we have

Δ
𝑣𝑗
p𝑗´1qpr1,ℎ𝑗sq

𝜆pwqpㅊÑp𝑗qq
“

Δ
𝑣𝑗
p𝑗´1q

pr1,ℎ𝑗`1sq

𝜆pwqpㅊÒp𝑗qq
Δ

𝑣𝑗
p𝑗´1q

pr1,ℎ𝑗´1sq

𝜆pwqpㅊÓp𝑗qq

Δ
𝑣𝑗
p𝑗´1q

pr1,ℎ𝑗sq

𝜆pwqpㅊÐp𝑗qq

˜

𝑚𝑗 `Δ
𝑣𝑗
p𝑗´1q

𝑠ℎ𝑗 pr1,ℎ𝑗sq

`

𝑔p𝑗´1q
˘

¸

.

Substituting into the formula for 𝑋 1
𝑗 , we have

𝑋 1
𝑗 “𝑀

Δ
𝑣𝑗
p𝑗´1q

pr1,ℎ𝑗`1sq

𝜆pwqpㅊÒp𝑗qq
Δ

𝑣𝑗
p𝑗´1q

pr1,ℎ𝑗´1sq

𝜆pwqpㅊÓp𝑗qq

Δ
𝑣𝑗
p𝑗´1q

pr1,ℎ𝑗sq

𝜆pwqpㅊÐp𝑗qq

˜

𝑚𝑗 `Δ
𝑣𝑗
p𝑗´1q

𝑠ℎ𝑗 pr1,ℎ𝑗sq

`

𝑔p𝑗´1q
˘

¸

` 𝑃

“𝑀 1

˜

𝑚𝑗 `Δ
𝑣𝑗
p𝑗´1q

𝑠ℎ𝑗 pr1,ℎ𝑗sq

`

𝑔p𝑗´1q
˘

¸

` 𝑃
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“𝑀 1𝑚𝑗 `𝑅

where 𝑀 1 and 𝑅 are determined by t𝑡𝑖 : 𝑖 ă 𝑗u and 𝑀 1 is generically nonvanishing

on 𝒟vj,w. Since the parameter 𝑚𝑗 takes values in C, the function 𝑋 1
𝑗 “𝑀 1𝑚𝑗 `𝑅 is

generically nonvanishing on 𝒟vj,w.

Now suppose that 𝑋𝑖 is a mutable variable with 𝑖 ‰ 𝑗. The exchange mono-

mials ℳ` and ℳ´ were defined as the numerator and denominator of a Laurent

monomial in reduced form, so they do not have a common factor. Suppose that

𝑋𝑖 divides one of the exchange monomials—without loss of generality, ℳ`. Then

ℳ` vanishes on the locus t𝑋𝑖 “ 0u, while there is a dense open subset of t𝑋𝑖 “ 0u

where all the variables t𝑋𝑘 : 𝑘 ‰ 𝑖u are nonzero, so that in particular 𝑋𝑗 and ℳ´

are nonzero. On this locus, we have 𝑋 1
𝑗 “

ℳ``ℳ´

𝑋𝑗
“

0`ℳ´

𝑋𝑗
“

ℳ´

𝑋𝑗
‰ 0.

Suppose now that 𝑖 ‰ 𝑗 and 𝑋𝑖 does not divide ℳ` or ℳ´, so that deg𝑋𝑖

´

p𝑌𝑗

¯

“ 0. We will show that there is a flag in 𝒟vi,w where 𝑋 1
𝑗 “ ˘2. Consider the special-

ized chamber weighting corresponding to setting 𝑋𝑖 “ ´𝜖 and the other 𝑋𝑘 “ ˘1,

from the proof of Lemma VII.37. Then the parameter 𝑡𝑖 specializes to 1
𝜖
, with other

𝑡𝑘 specializing to 𝜖𝑑 where deg𝑋𝑖
p𝑡𝑘q “ 𝑑. Since p𝑌𝑗 is a ratio of parameters 𝑡𝑘 and by

hypothesis deg𝑋𝑖

´

p𝑌𝑗

¯

“ 0, under this specialization we must have

p𝑌𝑗 “

$

’

’

’

&

’

’

’

%

1 if the bridge 𝑖 is not an edge of BJCp𝑗q

´1 if the bridge 𝑖 is an edge of BJCp𝑗q
.

The condition that 𝑋𝑘 “ ˘1 if 𝑘 ‰ 𝑖 implies that the monomials ℳ` and ℳ´ have

value ˘1, so that

𝑋 1
𝑗 “

$

’

’

’

&

’

’

’

%

˘2 if p𝑌𝑗 “ 1

0 if p𝑌𝑗 “ ´1

.
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So if the bridge 𝑖 is not an edge of BJCp𝑗q, then 𝑋 1
𝑗 specializes to ˘2, and letting

𝜖Ñ 0 gives a flag in 𝒟vi,w with 𝑋 1
𝑗 “ ˘2 ‰ 0.

On the other hand, if 𝑖 is an edge of BJCp𝑗q, then since 𝑗 is the rightmost cross-

ing of BJCp𝑗q we must have 𝑗 ą 𝑖 so that 𝑡𝑗 specializes to 1. By Corollary VII.38,

changing the specialization to set 𝑡𝑗 “ ´1 gives another family of flags in 𝒟u`,w

so that 𝑋𝑘 “ ˘1 for 𝑘 ‰ 𝑖 and taking the limit as 𝜖 Ñ 0 gives an element of 𝒟vi,w.

Since changing the value of 𝑡𝑗 from 1 to ´1 changes the sign of p𝑌𝑗 , this revised

specialization has p𝑌𝑗 “ ˘1, so that 𝑋 1
𝑗 “ ˘2.

We have shown that the variables 𝑋𝑗 and the mutated variables 𝑋 1
𝑗 are globally

regular functions on ℛ𝑢,𝑤, and that the complement of the locus where all clus-

ter variables are nonzero for at least one cluster in the “starfish” about the initial

cluster has codimension ě 2 in ℛ𝑢,𝑤. Since 𝒜pXq is the ring of functions that are

Laurent in every cluster mutation equivalent to X, given any 𝑓 P 𝒜pXq, we can ver-

ify that 𝑓 is globally regular on ℛ𝑢,𝑤 by expressing it as a Laurent polynomial in

each of the clusters X, 𝜇𝑗pXq to show that it is regular on the locus where the vari-

ables from the given cluster are nonzero. In the following lemma, we verify that

the coordinate ring of ℛ𝑢,𝑤 is contained in the upper cluster algebra determined

by the initial seed pX, 𝑄q where 𝑄 is the quiver corresponding to the variables p𝑌𝑗 .

The proof technique was outlined by Speyer in an email.

Lemma VII.41. [32] LetX “ t𝑋𝑗 : 𝑗 P 𝐽
˝
u`
u be the initial cluster for a unipeak expression

w with exchange relations given by tp𝑌𝑗 : 𝑗 P 𝐽
˝
u`

,v0r𝑗s “ 1u. Then Crℛ𝑢,𝑤s Ď 𝒜pXq.

Proof. By [3], the upper cluster algebra 𝒜pXq “
Ş

X1„X

CrpX1q
˘
s determined by the

initial seedΣ “ pX, 𝑄q is equal to the upper bound algebra𝒰pΣq“
Ş

𝑋𝑗 mutable
X1“𝜇𝑗pXq

CrpX1q
˘
s.

So we must show that for each cluster X1 P tX, 𝜇𝑗pXq : 𝑋𝑗 mutable u, the Lau-
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rent ring CrpX1q˘s is the ring of regular functions on the locus where all cluster

variables in X1 are nonvanishing.

For X1 “ X, this is clear. Marsh and Rietsch showed in [27] that the coordi-

nate ring of 𝒟u`,w is isomorphic to the Laurent ring Cr𝑡˘𝑖 : 𝑖 P 𝐽˝u`s. Applying the

chamber ansatz formulas to our weighting Qpㅊq shows that the 𝑡𝑖 are Laurent

monomials in the 𝑋𝑗 , while Lemma V.16 shows that the 𝑋𝑗 are Laurent monomi-

als in the 𝑡𝑖. Suppose that 𝑓 P Crℛ𝑢,𝑤s is any function. Then the restriction of 𝑓 to

the Deodhar torus 𝒟u`,w is Laurent in the cluster variables X. We claim that 𝑓 is

Laurent in the cluster variable 𝜇𝑗pXq. It suffices to show that there is a generating

set forCrℛ𝑢,𝑤s so that all generators restrict to Laurent polynomials in the variables

𝜇𝑗pXq.

By [13] and [22], the coordinate ring of the Schubert cell 𝐵` 9𝑤𝐵`{𝐵` is gener-

ated by the entries 𝑧𝑖𝑗 , where 𝑧 is the upper unitriangular matrix so that 𝑧 9𝑤 has

zeros to the right of permutation positions.Let 𝑌 be the intersection of the Schu-

bert cell 𝐵` 9𝑤𝐵`{𝐵` with the opposite Schubert variety 𝐵´ 9𝑢𝐵`{𝐵` “ t𝑔𝐵` :

NWRank p𝑔q 𝑖𝑗 ď NWRank p𝑢q 𝑖𝑗u. Since 𝑌 is a closed subvariety of 𝐵` 9𝑤𝐵`{𝐵`, the

coordinate ring Cr𝑌 s is a quotient of Cr𝐵` 9𝑤𝐵`{𝐵`s, and hence generated by the

𝑧𝑖𝑗 . The open Richardson variety is the locus of 𝑌 where all left-justified minors

Δ𝑢pr1,ℎsq

r1,ℎs p𝑔q are nonzero for flag representatives 𝑔 with 𝑔𝐵` P ℛ𝑢,𝑤, so that Crℛ𝑢,𝑤s

“ Cr𝑌 srpΔ𝜆pu`qpr1,ℎsq

𝜆pwqpr1,ℎsq 𝑧q
´1s so that in particular Crℛ𝑢,𝑤s is generated by the entries

𝑧𝑖𝑗 and the reciprocals of minors pΔ𝜆pu`qpr1,ℎsq

𝜆pwqpr1,ℎsq 𝑧q
´1. The matrix 𝑧 differs from the

matrix 𝑧 “ ϒ𝑢,𝑤 9𝑤´1 by the gauge transformation 𝑧 “ 𝑧diag
`

𝑧´1𝑖𝑖

˘

where the 𝑧𝑖𝑖 are

ratios of frozen variables 𝑋𝑖. It follows that Crℛ𝑢,𝑤s is generated by the entries 𝑧𝑖𝑗

and the inverses of the frozen variables 𝑋𝑖.

By Proposition VII.26, the entries 𝑧𝑖𝑗 are Laurent polynomials in the cluster vari-
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ables 𝜇𝑗pXq for all mutable 𝑋𝑗 , so that in particular there is a set of ring genera-

tors for Crℛ𝑢,𝑤s contained in the intersection of Laurent rings
Ş

𝑋𝑗 mutable
X1“𝜇𝑗pXq

CrpX1q
˘
s “

𝒜pXq.



CHAPTER VIII

Conclusions

In this thesis, we constructed an upper cluster algebra structure on the coordi-

nate ring of the open Richardson varietyℛ𝑢,𝑤 in type A. Points in the open Richard-

son variety are flags, so that regular functions must be expressible in terms of ra-

tios of minors on a left-justified collection of minors. Since ℛ𝑢,𝑤 is contained in the

Schubert cell 𝐵` 9𝑤𝐵`{𝐵`, if we choose an ordered basis for a flag 𝐹 of the form

𝑧 9𝑤 where 𝑧 is an upper triangular matrix, ratios of minors on columns indexed

by chambers in a wiring diagram for a reduced expression for 𝑤 are independent

of 𝑧. Each choice of reduced expression w gives a different decomposition of ℛ𝑢,𝑤

into disjoint Deodhar strata indexed by the distinguished subexpressions of the

expression w which have product 𝑢. In particular, there is a unique distinguished

subexpression u` ă w that is a reduced expression for 𝑢. Marsh and Rietsch de-

fined a parametrization of each Deodhar stratum 𝒟v,w with inverse given by a

generalized chamber ansatz. Each chamber is labeled by a minor Δ𝑅
𝐶 , where the

column set 𝐶 is indexed by the left endpoints of the strands below the chamber

and the row set 𝑅 is minimal so that the minor is nonvanishing on 𝒟v,w.

If a distinguished subexpression v ă w is non-reduced, then there is at least

one chamberㅊ which has additional rank conditions on 𝒟v,w than on the torus

134
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𝒟u`,w. In particular, if 𝑖 is an index where the partial product 𝑣
p𝑖q becomes shorter,

then the chamber to the left of the 𝑖𝑡ℎ crossing receives different row labels. In

general, if a chamber is labeled by the minor Δ𝑅
𝐶 for the Deodhar torus, the minor

Δ𝑅
𝐶 may vanish on multiple boundary divisors.

We showed that given a unipeak expression w, the chamber minors for 𝒟u`,w

can be factored into products of minors Δ
p𝑅𝑗

p𝐶𝑗

indexed by nearly positive sequences

v𝑗 , which generalize the distinguished subexpressions giving boundary divisors.

Although the minors Δ
p𝑅𝑗

p𝐶𝑗

are not always chamber minors, we showed that they

are well-defined regular functions on ℛ𝑢,𝑤 using determinantal identities. Using

augmenting paths in the oriented bridge diagrams defined by Karpman, we veri-

fied that when the vanishing locus of a minorΔ
p𝑅𝑗

p𝐶𝑗

is nonempty, it contains a single

boundary divisor 𝒟vj,w. We showed that defining an initial seed with cluster vari-

ables 𝑋𝑗 “ Δ
p𝑅𝑗

p𝐶𝑗

and quiver obtained from Berenstein, Fomin and Zelevinsky’s

chamber ansatz quiver gives an upper cluster algebra structure to the coordinate

ring Crℛ𝑢,𝑤s.
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