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Abstract 
 
 

Iron is a metal micronutrient that is required by all living organisms, from single 

cell bacteria to complex, multicellular organisms that include humans. Systemic iron 

handling in mammals requires, i) the liver-derived, endocrine hormone, hepcidin, and ii) 

the iron/oxygen sensitive intestinal transcription factor, hypoxia-inducible factor (HIF)-

2α. The function of hepcidin is to bind to the only mammalian iron exporter, ferroportin, 

resulting in ferroportin internalization from the plasma membrane, intracellular 

degradation, and a reduction of iron export into circulation. At the intestinal level, HIF-2α 

controls iron absorption by regulating the transcription of apical and basolateral iron 

transporters.  

This dissertation focuses on the integration of hepcidin/ferroportin/HIF-2α 

signaling in iron homeostasis at the systemic and cellular level, in physiological and 

pathological contexts. The data in this work unveil a hetero-tissue crosstalk mechanism, 

whereby hepatic hepcidin regulated intestinal HIF-2α during states of systemic iron 

deficiency, anemia, and iron overload. I show that the hepcidin target, ferroportin, 

controlled cell-autonomous iron efflux to stabilize and activate HIF-2α by regulating the 

activity of iron-dependent intestinal prolyl hydroxylase domain enzymes. 

Pharmacological blockade of HIF-2α using a clinically relevant and highly specific 

inhibitor successfully treated iron overload in a mouse model of hepcidin-deficiency.  

In addition to iron overload, over one billion people worldwide suffer from iron-

deficiency anemia (IDA), a state of systemic iron insufficiency that limits the production 
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red blood cells and leads to tissue hypoxia and intracellular iron stress. Using a novel 

genetic mouse model of tamoxifen-inducible intestinal ferroportin deletion, I revealed a 

robust phenotype of progressive IDA that developed in as little as three months. At end-

stage IDA, tissue-specific transcriptional stress responses were observed, whereby the 

heart showed little to no hypoxic and iron stress as compared to other peripheral 

organs. However, morphometric and echocardiographic analysis revealed massive 

cardiac hypertrophy and chamber dilation, albeit with increased cardiac output at very 

low basal heart rates. These data revealed a model of end-stage IDA that can be used 

in future studies to investigate IDA progression and cell-specific responses to hypoxic 

and iron stress. 

We lastly investigated mechanisms of local iron handling and extra-hepatic 

hepcidin expression in the context of colorectal cancer (CRC), a disease in which 

cellular iron metabolism is perturbed to enhance growth and survival. I revealed that 

epithelial cells in CRC produce an ectopic source of hepcidin that is necessary and 

sufficient to control CRC tumorigenesis. Hepcidin promoter analysis demonstrated that 

hypoxia and its downstream transcription factor, HIF-2α, are sufficient to activate the 

hepcidin promoter in CRC-derived cell lines. These data suggest that HIF-2α induces 

hepcidin in the tumor epithelium to establish a paracrine/autocrine axis to degrade local 

ferroportin and sequester iron in colorectal tumors in order to maintain iron-dependent 

cancer cell metabolism.  

Overall, the data presented in this dissertation unveil mechanisms by which 

systemic iron handling interacts and integrates with local iron handling, providing insight 

into targeted therapies for iron related disorders and adjuvant strategies for cancers. 
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Chapter 1 

Introduction 

1.1 Background 

Iron is an essential metal micronutrient that sustains life, from single cell bacteria 

to multicellular organisms, including humans. Nearly 70% of the iron in humans can be 

found within the heme of hemoglobin in red blood cells (RBCs), where it functions to 

deliver molecular oxygen to every tissue and cell in the body. The other 30% is found 

ubiquitously as intracellular iron, where iron-containing proteins and free labile iron 

orchestrate energy metabolism, mitochondrial function, and DNA synthesis, among 

other basic cellular functions. Humans evolved in tremendous iron scarcity and are 

devoid of a system for iron excretion. Instead, elaborate mechanisms operate to recycle 

bodily iron. Iron recycling accounts for over 90% of daily iron demand (20 – 25 mg) and 

occurs mainly from the turnover of iron in hemoglobin in dying RBCs via splenic 

macrophages of the reticuloendothelial system; the remaining daily iron demand is met 

through the intestinal absorption of dietary iron (about 1 mg) (1). Duodenal enterocytes 

of the proximal small intestine mediate the majority of iron absorption, whereby dietary 

iron is reduced and either stored intracellularly or exported through the basolateral 

surface into systemic circulation. Once in circulation, the serum iron cargo protein, 

transferrin, delivers iron to all cells by interacting with its ubiquitous receptor, TfR1 (2). 

Despite these robust systems, iron related disorders persist as a tremendous 

global health concern. Over two million people worldwide suffer from iron deficiency and 
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over one million are affected by iron-deficiency anemia (IDA) (3). In IDA, iron absorption 

and mobilization is limited to an extent that restricts the production of RBCs, ultimately 

leading to decreased transport of systemic oxygen and the development of intracellular 

iron stress (4). Conversely, diseases of iron overload are among the most common 

genetic disorders in humans, affecting over one million people in the United States (5). 

The prevalence of genetic diseases of iron overload can be explained in part by the 

survival advantage that systemic iron surplus confers during dietary iron insufficiencies 

and following blood loss (i.e. these diseases were poorly selected against). In addition 

to canonical iron overload, several hemoglobinopathies affect the population with high 

penetrance, including sickle cell disease and β-thalassemia, which are characterized by 

RBC deformities, decreased oxygen transport, and tissue iron accumulation (6). 

Iron homeostasis at the systemic level requires multiple organs working in 

concert to maintain cellular iron concentrations for metabolism and RBC levels for 

oxygen transport. Advances in the understanding of tissue- and cell-type specific 

mechanisms of iron metabolism have begun to redefine the ways in which peripheral 

organs participate in systemic iron homeostasis while also protecting organ function via 

cell-autonomous mechanisms during states of iron deficiency. This dissertation 

focusses on the basic mechanisms of iron metabolism at the cellular and systemic level, 

expanding on previous work and defining new ways to understand iron homeostasis 

during physiology and in various disease states.  

 

1.2 Hepcidin/ferroportin signaling 
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 The last two decades of research has established that the master regulator of 

systemic iron homeostasis and metabolism in mammals is hepcidin, a small, endocrine 

peptide hormone that is mainly synthesized and secreted by the liver. Due to its cystine-

rich structure, which is a hallmark of the defensin and protegrin antimicrobial peptide 

families, hepcidin was initially discovered in human blood ultrafiltrate and urine during a 

screen for liver-derived secreted proteins involved in host defense (7, 8). In these 

original investigations, hepcidin exhibited antifungal activity against Candida albicans, 

Aspergillus fumigatus, and Aspergillus niger and antibacterial activity against 

Escherichia coli, Staphylococcus aureus, Staphylococcus epidermidis, and group B 

Streptococcus (7, 8). Hepcidn mRNA (encoded by Hamp) was also shown to be 

responsive to changes in iron concentrations and inflammation (9). Concurrent with 

these discoveries, the USF2 gene was under investigation for its role in glucose and 

lipid metabolism when investigators discovered that mice devoid of Usf2 developed 

spontaneous iron overload and expressed low levels of the hepcidin transcript (10). 

However, subsequent work revealed that this original strategy to delete Usf2 also 

disrupted the nearby hepcidin gene, whereas mice deficient for Hamp but intact for Usf2 

continued to develop iron overload (11). Conversely, overexpression of Hamp led to 

severe iron deficiency and erythrocyte abnormalities, solidifying the essential role for 

hepcidin in the maintenance of systemic iron concentrations (12). 

Despite these advances, it took several more years for the complete molecular 

mechanism of hepcidin action to become clear. A pivotal study in 2004 uncovered that 

hepcidin binds to extracellular residues on the mammalian plasma membrane iron 

exporter, ferroportin, resulting in ferroportin internalization from the membrane, 
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intracellular degradation, and an increase in intracellular iron concentrations (Figure 1.1) 

(13). Ferroportin is predominately expressed and regulated in tissues that maintain 

systemic iron homeostasis, namely, intestine, liver, and macrophages of the 

reticuloendothelial system (14). Therefore, in the presence of hepcidin, ferroportin is 

continually internalized from the membrane and iron mobilization into circulation is 

limited. In the absence of hepcidin, ferroportin is rapidly stabilized and iron is exported 

into plasma. Liver hepcidin is the central sensor and first responder to changes in 

systemic iron levels, whereas decreases in systemic iron concentrations reduce Hamp 

expression in order to stabilize ferroportin and mobilize iron. On the other hand, high 

levels of systemic iron lead to an increase in hepcidin expression, ferroportin 

internalization and degradation, and a decrease in iron export into circulation.  

The molecular mechanisms by which hepcidin/ferroportin signaling responds to 

changes in systemic iron concentrations begins with a cascade of interactions between 

plasma membrane proteins in hepatocytes. Serum iron loading onto TfR1 initiates 

signaling that involves HFE, BMPRI/II, HJV, and TfR2, which results in downstream 

activation of SMAD and an increase in Hamp transcription (15-18). Hepatocyte non-cell-

autonomous mechanisms also exist to regulate hepcidin, whereby liver sinusoidal cells 

and other nonparenchymal cells mainly secrete a source of BMP6, but also BMP2 and 

BMP7, that are essential for hepatocyte hepcidin expression (19-22). In addition to iron 

sensing, hepcidin expression is sensitive to a variety of inflammatory stimuli, particularly 

IL6, which induces Hamp via intracellular activation of JAK/STAT3 signaling (23-25). 

This inflammatory component of hepcidin regulation is a conserved mechanism to limit 

extracellular iron as a general defense mechanism against infections by withholding iron 
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from invading pathogens (26). However, prolonged activation of this pathway during 

chronic diseases and/or states of persistent inflammation engenders profound anemia 

due to continual ferroportin internalization from the plasma membrane and insufficient 

iron concentrations being mobilized into circulation, referred to as anemia of chronic 

disease (27, 28).  

The canonical mechanism by which ferroportin is regulated in the context of 

systemic iron homeostasis is at the posttranslational level following interaction with 

hepcidin. However, ferroportin transcription and translation is also regulated by 

intracellular signaling that includes reactive oxygen species, inflammation, and hypoxia 

(14). For example, the redox-sensitive transcription factor, Nrf2, transcriptionally 

activates ferroportin, whereas inflammatory stimuli such as LPS leads to a decrease in 

ferroportin mRNA (29). These mechanisms, among others, enable cells to control cell-

autonomous iron concentrations by modulating iron export in different physiological and 

pathological contexts.  

The significance of hepcidin/ferroportin signaling is underscored by decades of 

research to show that mutations that disrupt hepcidin/ferroportin production or function 

give rise to genetic diseases of iron overload or deficiency in humans. In the context of 

iron overload, known as hemochromatosis, the direct loss of HAMP, or mutations that 

render ferroportin unresponsive to hepcidin-mediated degradation, cause 

hemochromatosis in humans (30, 31). This results from unrestricted ferroportin 

stabilization and chronic, pathological mobilization of iron into circulation. The majority 

of cases of hemochromatosis in humans result from mutations that affect the complex of 

iron-sensing, membrane proteins in hepatocytes that control HAMP expression. For 
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example, the prevalence of mutations to HFE is between 1:200 – 300 in Caucasians, 

though patients across the globe also present with mutations to HJV and TfR2 (32-35). 

Each of these mutations result in varied intensity of the hemochromatosis phenotype. 

Direct mutations to HAMP or HJV are characterized by early onset and severe 

phenotype, historically referred to as juvenile hemochromatosis; a more mild, adult 

onset hemochromatosis is observed in patients with mutation to TfR2 (5). Missense 

mutations on ferroportin that disrupt the hepcidin/ferroportin interaction are referred to 

as ferroportin disease, which give rise to a pathological phenotype distinct from all other 

known forms of hemochromatosis because these patients have intact liver hepcidin 

production (36). Interestingly, these genetic defects do not affect reproduction and 

confer evolutionary advantages against iron deficiency, offering insight into the 

prevalence of hemochromatosis in modern human populations. More recently, genetic 

mutations that give rise to an increase in HAMP expression were discovered, namely 

TMPRSS6  (37, 38). This gene encodes a negative regulator of hepcidin production; 

when lost, chronic degradation of ferroportin and a progressive and robust IDA 

phenotype ensues. 

Given that the iron core of RBC hemoglobin is required for efficient oxygen 

transport, mammals have evolved intricate mechanisms that link iron and oxygen 

metabolic pathways. Systemic hypoxia triggers erythropoiesis to expand the RBC pool 

and increase oxygen transport. This is achieved, in part, via the hypoxic activation of 

erythropoietin (encoded by Epo), a kidney-derived glycoprotein hormone that induces 

RBC production in bone marrow. To facilitate this increase in RBC numbers, a 

reciprocal increase in systemic iron levels is essential to maintain hemoglobin 
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production. Liver hepcidin serves as a central mediator of iron and oxygen metabolism 

because, in addition to the iron and inflammation sensing pathways mentioned above, 

hepcidin expression is potently repressed by systemic hypoxia. Shortly after the 

discovery of hepcidin, it was shown in vitro and in vivo that hypoxia decreases the 

transcription of Hamp (39). Furthermore, it was shown in paired human blood samples 

at sea level and following exposure to high-altitude that serum hepcidin concentrations 

are rapidly decreased during systemic hypoxia (40).  

The mechanisms by which systemic hypoxia mobilizes iron stores via hepcidin 

repression are complex and involve both erythropoietin-dependent and –independent 

processes. Early findings found that activation of liver hypoxic machinery indirectly 

suppresses Hamp via induction of Epo transcription, using genetic deletion of Epo in 

mice and erythropoietin neutralizing antibodies (41, 42). This phenomenon is explained, 

in part, by inhibition of the transcription factor C/EBPa downstream of the hepatocyte 

erythropoietin receptor, resulting in blockade of Hamp transcription (43, 44). Moreover, 

numerous reports demonstrate that erythropoietin-induced erythropoiesis can inhibit 

hepcidin expression via erythroid-derived molecules. These secreted factors include 

growth differentiation factor 15 (GDF15), which is induced during erythroblast 

differentiation (45). However, Hamp mRNA was still decreased when primary 

hepatocytes were treated with GDF15-depleted serum, indicating the presence of other 

circulating erythroid-derived factors (45). Several years later, TWSG1 was discovered 

as another erythroid-derived factor that can inhibit hepcidin expression through a 

mechanism that involves inhibition of BMP/SMAD signaling (46). Most recently, the 

erythroblast produced erythroferrone (also known as FAM132B) was discovered, which 
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is stimulated by erythropoietin-mediated activation of JAK2/STAT5 signaling in 

erythroblasts (47). Mice that are deficient for erythroferrone fail to suppress hepcidin 

following injections of recombinant erythropoietin or hemorrhage (47). Erythroferrone 

acts as a natural ligand trap for BMPs in order to dampen downstream activation of 

SMAD1/5/8 phosphorylation and inhibit hepcidin in contexts of erythropoiesis (48). 

Future work will need to characterize the relative contribution of these erythroid-derived 

factors in hepcidin repression during erythropoiesis. Furthermore, the complete 

molecular mechanism of hepcidin transcriptional inhibition in hepatocytes by erythroid-

derived factors remains unclear.  

 

1.3 Intestinal regulation of systemic iron homeostasis 

 The intestine serves as the gateway of iron entry into the body. In both 

physiological and pathological contexts, systemic iron abundance is primarily controlled 

by the absorption of dietary iron. Moreover, hyper- or hypo-activation of intestinal iron 

uptake gives rise to profound iron overload or deficiency in humans. The vast majority of 

human iron absorption takes place in the proximal small intestine, referred to as the 

duodenum. Here, absorptive duodenal enterocytes reduce dietary ferric iron (Fe3+) into 

ferrous iron (Fe2+) by the apical ferric reductase, duodenal cytochrome b (DcytB) (49, 

50). Ferrous iron is then suitable for apical import via divalent metal transporter-1 

(DMT1) (51). Once inside the cytoplasm of enterocytes, iron is either, i) stored and 

bound to the ubiquitous, intracellular iron storage protein, ferritin, or ii) exported out the 

basolateral surface into systemic circulation via the sole mammalian iron exporter, 

ferroportin (52). The expression of duodenal DcytB, DMT1, and ferroportin is massively 
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upregulated during contexts of iron demand, namely systemic iron deficiency and 

contexts of erythropoietic drive (53-55). Furthermore, these intestinal players also 

mediate the hyperabsorption of dietary iron that leads to systemic iron accumulation in 

diseases of iron overload, including hemochromatosis, β-thalassemia, and sickle cell 

disease (56-58). 

The molecular mechanism governing the intestinal iron response was unclear 

until a series of papers discovered a central role for intestinal hypoxic machinery in iron 

absorption. Hypoxia, or the decreased oxygen tension of tissues and cells, promotes the 

canonical activation of hypoxia-inducible transcription factors (HIF)s. HIFs are basic 

helix-loop-helix-per-arnt-sim (bHLH-PAS) containing transcription factors that consist of 

a heterodimer of an oxygen-sensitive a subunit (HIF-1a, HIF-2a, and HIF-3a) and a 

constitutively expressed β subunit (ARNT) (59). HIF-1a is ubiquitously expressed 

whereas HIF-2a and HIF-3a expression is more tissue restricted (60-62). HIF-a 

subunits are regulated by post-translational hydroxylation of proline residues by prolyl 

hydroxylase domain-containing (PHD-containing) enzymes that are enzymatically 

dependent on oxygen, iron, and 2-oxoglutarate for their function. HIF hydroxylation 

leads to association with the von-Hippel Lindau (VHL) tumor suppressor/E3 ubiquitin 

ligase complex, ubiquitin conjugation, and 26s proteasomal degradation. In contexts 

that limit PHD activity, such as intracellular oxygen or iron depletion, HIFs are stabilized, 

dimerize with ARNT, and translocate to the nucleus to regulate transcription of target 

genes.  

Given the intimate connection between oxygen and iron metabolism, it was 

shown that intestinal HIF-2α, but not other HIFs, is critical to regulate genes that encode 
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for iron import (Figure 1.2) (53, 55, 63). These reports unveiled that HIF-2α is an 

intracellular oxygen and iron sensor by directly activating DcytB, DMT1, and ferroportin 

transcription and serving as the master regulator of iron absorption (53, 55, 63). Genetic 

deletion of HIF-2α in intestinal epithelial cells prevents the induction of DcytB, DMT1, 

and ferroportin mRNA in mice on a low-iron diet, which leads to profound iron deficiency 

and eventually anemia (53, 55, 63). The adaptive increase in DcytB, DMT1, and 

ferroportin that is observed in contexts of increased erythropoiesis is also lost in mice 

that are deficient for intestinal epithelial HIF-2α (54). The dependence on HIF-2α to 

maintain systemic iron homeostasis is also seen during pregnancy and the early 

postnatal period because maternal mice deficient for intestinal epithelial HIF-2α fail to 

maintain iron concentrations in breast milk, which leads to neonatal anemia and long-

term cognitive defects (64). Conversely, overexpression of HIF-2α in intestinal epithelial 

cells increases the expression of DcytB, DMT1, and ferroportin in mice (53, 65). The 

fundamental role of intestinal HIF-2α in iron uptake is also seen in pathologies that are 

characterized by dietary iron hyperabsorption, whereby genetic deletion or 

pharmacological inhibition of HIF-2α decreases systemic iron accumulation in models of 

hemochromatosis, β-thalassemia, and sickle cell disease (56-58). 

For many years, intestinal HIF-2α stabilization during contexts of systemic iron 

demand was thought to be triggered by discrete, local environmental cues. PHDs 

require both oxygen and iron for their function; therefore, context-dependent substrate 

depletion was assumed to activate intestinal HIF-2α during hypoxia that triggers 

erythropoiesis (i.e. intestinal oxygen depletion) and systemic iron deficiency (i.e. 

intestinal iron depletion). However, the work presented in Chapter 2 of this thesis 
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unveils the complete molecular cues that initiate and maintain intestinal HIF-2α during 

physiology and in disease by demonstrating direct integration of liver hepcidin and 

intestinal HIF-2α pathways. It was shown that liver hepcidin restricts intestinal HIF-2α 

activity. Moreover, as shown in Chapter 2, inducible, genetic deletion of hepcidin 

exclusively in hepatocytes dramatically stabilizes the intestinal HIF-2α protein and 

drives the expression of HIF-2α-dependent genes that are necessary and sufficient to 

increase iron absorption (e.g. Dcytb, Dmt1, and Ferroportin). Deletion of the hepcidin 

target, ferroportin, in the intestinal epithelium completely prevents the canonical 

activation of HIF-2α during contexts of systemic iron deficiency, erythropoiesis, and in 

IDA. The mechanism by which hepcidin/ferroportin kinetics regulate HIF-2α is via cell-

autonomous iron efflux that decreases the activity of iron-dependent PHD enzymes, 

even in contexts of decreased oxygen availability. Furthermore, pharmacological 

blockade of HIF-2α using an orally delivered HIF-2α  inhibitor decreased systemic iron 

accumulation in a mouse model of hepcidin-deficiency iron overload. These collective 

data now suggest a model that the intestine is completely downstream of liver hepcidin. 

Moreover, intestinal ferroportin stabilization that follows a decrease in hepcidin serves to 

activate HIF-2α and transcriptionally drive iron absorption during systemic iron demand 

and in iron overload. Lastly, this Chapter demonstrates that the canonical intestinal HIF-

2α response is regulated primarily by intracellular intestinal epithelial iron levels 

downstream of hepcidin/ferroportin kinetics and not context-dependent depletion of 

PHD substrates (i.e. oxygen or iron).  

In addition to hepcidin and HIF-2α, another mammalian iron-sensing axis exists 

via iron-regulatory protein (IRP) and iron-response element (IRE) machinery. There are 
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two IRPs: IRP1 and IRP2. The IRP/IRE system modulates translation via the binding of 

IRPs with IREs that exist in the 5′- or 3′-UTR of target transcripts involved in cellular iron 

handling. This interaction can either block translation or increase mRNA stability in 

order to alter the stability of iron handling proteins. Decreases in intracellular iron 

availability activate IRPs, whereas increases in iron levels inhibit IRP function (66).  

The gene that encodes ferroportin (SLC40A1) contains a 5’-UTR IRE that serves 

to reduce translation and decrease ferroportin protein abundance during contexts of 

intracellular iron stress (67, 68). However, intestinal cells can express SLC40A1 mRNA 

from an alternate promoter that generates a transcript devoid of IREs, thereby enabling 

ferroportin expression in contexts of intracellular iron deficiency (69). This isoform in the 

intestine unveils discrepancies between intestinal iron dynamics and iron handling in 

peripheral organs and cells. Moreover, the short-lived intestinal epithelium 

(approximately 3-5 days) is capable of depleting local iron stores and increasing 

import/export in order to spare systemic organs during contexts of iron demand. 

Conversely, the peripheral response is a more “selfish” feedback loop that decreases 

SLC40A1 translation in order to trap existing iron stores during systemic iron stress. The 

gene that encodes DMT1 (SLC11A2) can also be driven by alternate promoters, further 

suggesting organ and cell-type specific iron handling responses (70). 

In addition to mRNAs that encode for direct iron handling proteins, HIF-2α mRNA 

also contains a 5’ UTR IRE that limits translation during intracellular iron depletion (71-

74). One of the hypothesized functions of the HIF-2α IRE is to limit HIF-2α-induced Epo 

transcription during states of IDA, when erythropoiesis is futile in the face of severe iron 

insufficiencies. However, in context with work to show that intracellular iron depletion 
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induces HIF-2α protein stabilization, more research will need to be done to fully 

understand the interaction between IRP/IRE systems and other iron sensing machinery 

axis during systemic iron demand (56). 

 Despite these many advances in our understanding of intestinal iron biology, 

many unanswered questions remain. As shown in Chapter 2 of this thesis, using 

unbiased, high-throughput RNA-Seq that there are subsets of genes in the intestine that 

are regulated by either liver hepcidin-deficiency or systemic iron deficiency. In 

combination with data to show that there are nearly 200 uncharacterized HIF-2α-target 

genes that are activated in the intestine during systemic iron demand, much work 

remains in order to define the complete biological function of intestinal HIF-2α in 

systemic iron homeostasis (53). It also remains unclear as to whether a 

hepcidin/ferroportin/HIF-2α axis functions in cells other than the intestinal epithelium, 

which would establish a model in which liver hepcidin controls iron-dependent 

transcriptional programs in peripheral organs. Lastly, the complete mechanism by which 

ferroportin-mediated iron efflux selectively stabilized HIF-2α over HIF-1α in Chapter 2 

remains unknown, but would provide major insight into the intersection of intracellular 

oxygen and iron sensing pathways. 

 

1.4 Paracrine and autocrine hepcidin/ferroportin dynamics 

 Since the discovery of hepcidin/ferroportin signaling, this interaction has primarily 

been thought of as a liver-derived, endocrine system that acts on major ferroportin 

expressing cells to control systemic iron mobilization (i.e. hepatocytes, intestinal 

enterocytes, and splenic macrophages). However, recent reports have started to reveal 
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extra-hepatic, functional sources of hepcidin that act in paracrine and/or autocrine 

fashions on local ferroportin (75-77). The ferroportin protein had been hypothesized to 

be expressed at lower levels in tissues that do not maintain systemic iron handling, 

namely in cardiomyocytes (78). However, it was not until 2015 that a functional 

characterization of cardiac ferroportin was executed (75). This report demonstrated 

profound consequences of genetic ferroportin deletion in cardiomyocytes, which results 

in massive intracellular iron accumulation and decreased survival of mice (75). 

Furthermore, ferroportin-dependent iron retention gave rise to dilated cardiomyopathy 

with left ventricular dysfunction (75). Interestingly, this report showed that hepcidin-

deficient iron overload gave rise to massive iron deposition in non-cardiomyocytes and 

did not impact survival to the extent of cardiomyocyte ferroportin deletion (75). This 

finding shows the critical importance of maintaining cardiomyocyte iron homeostasis, 

which seems to be protected even in contexts of iron overload. 

Following this report, the race was on to understand the complete molecular 

mechanisms of cardiac ferroportin regulation. In a seminal paper, investigators 

published the following year that cardiac ferroportin is primarily regulated by a local, 

cell-autonomous source of hepcidin (76). Embryonic deletion of cardiomyocyte hepcidin 

in mice leads to intracellular iron depletion, contractile defects, and metabolic alterations 

that decrease mitochondrial activity, all of which results in massively decreased survival 

(76). These observations were phenocopied in mice that expressed a form of ferroportin 

that is resistant to hepcidin interaction, specifically in the heart, and was rescued by 

exogenous iron supplementation (76). Recent work revealed that a cell-autonomous 

hepcidin/ferroportin axis exists in cell types other than cardiomyocytes, namely 
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pulmonary arterial smooth muscle cells (77). Other data suggests that 

hepcidin/ferroportin dynamics might control iron trafficking across the blood brain-

barrier, using co-cultures of human brain microvascular endothelial cells and an 

astrocytic cell line (79). Hepcidin has also been reported in the human kidney and 

placenta (80, 81), while ferroportin has been shown to exert a functional role in 

erythroblasts and mature RBCs (82, 83).  

In context with the systemic liver hepcidin/intestinal HIF-2α axis, these peripheral, 

cell-autonomous iron regulatory networks raise important questions regarding systemic 

vs. local iron handling and basic principles about hepcidin/ferroportin biology. First, it is 

essential to establish the mechanisms by which endocrine, paracrine, and autocrine 

hepcidin/ferroportin signaling interact with each other. It remains unclear whether 

cardiac ferroportin responds to changes in liver-derived, endocrine hepcidin. Moreover, 

during states of systemic iron demand, it is unknown if the cardiac ferroportin protein 

responds to changes in liver hepcidin, or whether a concomitant increase in local, 

cardiac hepcidin secretion counteracts all action by liver hepcidin. Interestingly, a report 

on suckling mice unveiled that the intestine expresses a variant of the ferroportin protein 

that is of smaller molecular weight and is hypo-responsive to hepcidin-mediated 

degradation (84). However, following weaning, a ferroportin protein of higher molecular 

weight is expressed in the intestine and normal hepcidin sensitivity is restored (84). 

These investigators hypothesized that a post-translational modification on ferroportin 

might support increased iron absorption during the neonatal period to maintain iron 

levels for development and cognitive function (64). This paradigm raises important 

questions about structural differences of the ferroportin protein in peripheral tissues 
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compared to tissues that maintain systemic iron load, as well as their relative hepcidin 

responsiveness. Furthermore, it remains to be shown whether the hepcidin that is 

produced in peripheral tissues is identical to liver-derived hepcidin, or if there are 

structural and functional differences. Lastly, an enticing question remains as to whether 

peripheral hepcidin and/or ferroportin exert iron-independent functions. Hepcidin was 

originally discovered as an antimicrobial peptide and it is possible that local 

accumulation of hepcidin continues to exert this role. Future research will need to 

carefully answer these questions in detail to provide a more complete picture of the 

integration between systemic-level and cellular-level iron homeostasis. 

 

1.5 Local iron metabolism in cancer 

 In addition to physiological, organ-specific mechanisms of iron homeostasis, 

diseases such as cancer operate unique pathways that modulate cell-autonomous iron 

handling and local iron metabolism. Mutations and aberrant gene expression networks 

in cancer are known to drive energy production and metabolite concentrations that 

afford tumors a growth and survival advantage. Iron is an essential metal micronutrient 

in cellular processes that are fundamental to cancer cell metabolism and cell 

proliferation.   

A recent pan-cancer analysis of 14 cancer types revealed robust and conserved 

gene expression signatures that increase intratumoral iron levels and decrease patient 

survival (85). Furthermore, there is a large body of human epidemiological data that 

correlates iron levels with cancer risk, particularly in colorectal cancer (CRC). Red meat 

intake, which is high in heme iron, and mutations to HFE that cause iron overload both 
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associate with an increase risk of CRC (86-88). Interestingly, CRC is the only 

malignancy that maintains access to two sources of iron acquisition: i) systemic uptake 

via transferrin, and ii) intestinal lumen uptake. Accordingly, colon tumors massively 

upregulate apical iron import by overexpressing DMT1 in a HIF-2α-dependent manner 

(Figure 1.3) (89, 90). Furthermore, mice deficient for HIF-2α in the intestine develop 

fewer tumors that have lower intratumoral iron stores (89, 90). In addition to hyper-

activating the many physiological functions of iron, cancers can use iron in unique ways 

to directly activate oncogenic STAT3 pathways, WNT signaling, DNA-synthesis, ROS-

induced cell damage, and modulate P53 (91-94). 

 A burgeoning question is in understanding the mechanisms that enable tumors to 

hold onto and trap large iron stores. Ferroportin is the only mechanism by which 

mammals can export intracellular iron. Recent data has begun to demonstrate that 

cancers can activate cell-autonomous hepcidin/ferroportin dynamics to decrease iron 

efflux and increase intratumoral iron concentrations. Ferroportin protein abundance is 

reduced in breast cancer cells compared to nonmalignant breast epithelial cells, and 

breast cancer cells overexpressing ferroportin exhibited significantly reduced growth 

after orthotopic implantation (95). Several additional reports show that breast cancers 

can activate their own source of local hepcidin (96, 97). Reports have also 

demonstrated decreased expression of ferroportin and concomitant increases in ectopic 

hepcidin expression in prostate cancer (98, 99). Lastly, investigators show increases in 

hepcidin mRNA and protein in human CRC (90, 99). Future studies will need to expand 

on these correlative findings and solidify the functional role of cell-autonomous 
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hepcidin/ferroportin signaling in cancer. A major focus of Chapter 4 of this dissertation 

was to begin to address this question in the context of CRC. 

 Another key question is understanding the molecular basis by which cancer cells 

activate ectopic hepcidin expression. Reports have implicated a range of intratumoral 

molecules, including BMP4/7, IL6, Wnt, and GDF15, however, none of these findings 

have been functionally verified in vivo (96, 97, 99). A hallmark of the tumor 

microenvironment is hypoxia, as tumors outgrow their blood supply and are challenged 

by increased metabolic demand and inflammation (100). Interestingly, reports have 

shown that hypoxia can activate cardiac hepcidin mRNA in rats following 24 hour 

exposure to 6% oxygen (101). The hypoxia activated molecule, HIF-2α, maintains 

essential roles in both iron metabolism and CRC progression (56, 90). Future work will 

need to explore the role of intratumoral hypoxia in hepcidin/ferroportin signaling.  

In the years to come, it will be advantageous to use cancer as a model system to 

understand basic mechanisms of local hepcidin/ferroportin dynamics. Given the intimate 

link between oxygen and iron metabolism, the possibility remains that intracellular 

hypoxia signaling is a regulator of local iron handling in normal physiology. 

 

1.6 Conclusion and Perspectives 

 Iron is a metal micronutrient that is fundamental to both cellular metabolism and 

systemic biological processes that include oxygen transport and detoxification reactions. 

Whole organism iron homeostasis requires a symphony of organs working together to 

maintain iron levels. This process is controlled by two integrated players: i) the liver-

derived, endocrine hormone, hepcidin, and ii) local intestinal regulation by the 
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transcription factor, HIF-2α. In addition to this systemic axis, recent work has unveiled 

complex organ-specific and cell-autonomous mechanisms of local iron handling. These 

networks include peripheral expression and regulation of hepcidin/ferroportin signaling 

that are separate from liver/intestine dynamics. Here, organs such as the heart are 

capable of modulating local iron levels during states of systemic iron deficiency. 

Furthermore, disease states, such as cancers, sequester massive iron stores and co-

opt hepcidin, ferroportin, and HIF-2α to modulate local iron levels for a growth and 

survival advantage, particularly in colon cancer.  

The purpose of this dissertation is to define the molecular mechanisms of iron 

metabolism in physiology and disease at both the systemic and cellular level. The work 

presented in this dissertation unveils a hetero-tissue crosstalk mechanism between liver 

hepcidin/intestinal HIF-2α that controls systemic iron levels in iron deficiency, anemia, 

and iron overload (Chapter 2). This work also characterizes the kinetics by which IDA 

progresses and unveils tissue-specific hypoxic and iron stress responses (Chapter 3). 

Lastly, I identify mechanisms by which colon cancer establishes ectopic 

hepcidin/ferroportin signaling to trap intracellular iron stores that are necessary for 

growth and survival of tumors (Chapter 4). Future studies should be directed towards 

understanding the mechanisms by which systemic iron handling interacts and integrates 

with local iron handling, which may lead to targeted therapies for iron related disorders 

and adjuvant strategies for cancers.  
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Figure 1.1. Hepcidin-mediated ferroportin degradation. During states of normal/high 
systemic iron, hepcidin is secreted by the liver into circulation in high quantities. 
Hepcidin binds to the iron exporter and its only molecular target, ferroportin. This 
interaction leads to rapid ubiquitination, internalization, and intracellular degradation of 
ferroportin, all of which limits iron export into circulation. However, under states of low 
systemic iron, or systemic iron demand, hepcidin production and release from the liver 
is potently repressed. This leads to downstream stabilization of ferroportin and 
increased iron mobilization from stores into circulation. Ferroportin is predominately 
expressed on tissues that regulate systemic iron handling, namely intestine, 
macrophages, and liver.   
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Figure 1.2. HIF-2α is necessary and sufficient to control intestinal iron absorption 
by transcriptionally regulating apical iron import and basolateral iron export. 
Absorptive duodenal enterocytes reduce dietary ferric iron (Fe3+) into ferrous iron (Fe2+) 
by the apical ferric reductase, duodenal cytochrome b (DcytB). Ferrous iron is then 
suitable for apical import via divalent metal transporter-1 (DMT1). Once inside the 
cytoplasm of enterocytes, iron is either, i) stored, or ii) exported out the basolateral 
surface into systemic circulation via the sole mammalian iron exporter, ferroportin. Once 
iron is exported via ferroportin, it becomes oxidized back to ferric iron and is circulated 
throughout the body. HIF-2α an intestinal iron sensor that transcriptionally upregulates 
Dmt1, Dcytb, and Ferroportin during states of systemic iron demand.   
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Figure 1.3. Colon tumors perturb local iron handling to trap intracellular iron and 
increase growth and survival. Compared to the normal adjacent colon, colon tumors 
massively upregulate the apical iron importer, DMT1, and downregulate the basolateral 
iron exporter, ferroportin. This leads to iron sequestration that is essential for colon 
tumor growth and survival. Recent data suggests that cancers, including colorectal 
cancer, can produce an ectopic source of hepcidin that acts in a paracrine/autocrine 
manner to downregulate the ferroportin protein in tumors. 
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Chapter 21 

Hepatic Hepcidin/Intestinal HIF-2α Axis Maintains Iron Absorption During Iron 

Deficiency and Overload 

 
Abstract 

          Iron-related disorders are among the most prevalent diseases worldwide. 

Systemic iron homeostasis requires hepcidin, a liver-derived hormone that controls iron 

mobilization through its molecular target ferroportin (FPN), the only known mammalian 

iron exporter. This pathway is perturbed in diseases that cause iron overload. 

Additionally, intestinal HIF-2α is essential for the local absorptive response to systemic 

iron deficiency and iron overload. Our data demonstrate a hetero-tissue crosstalk 

mechanism, whereby hepatic hepcidin regulated intestinal HIF-2α in iron deficiency, 

anemia, and iron overload. I show that FPN controlled cell-autonomous iron efflux to 

stabilize and activate HIF-2α by regulating the activity of iron-dependent intestinal prolyl 

hydroxylase domain enzymes. Pharmacological blockade of HIF-2α using a clinically 

relevant and highly specific inhibitor successfully treated iron overload in a mouse 

model. These findings demonstrate a molecular link between hepatic hepcidin and 

intestinal HIF-2α that controls physiological iron uptake and drives iron hyperabsorption 

during iron overload.  

                                                
1 This chapter represents a published manuscript: Schwartz AJ, Das NK, Ramakrishnan SK, 
Jain C, Jurkovic MT, Wu J, Nemeth E, Lakhal-Littleton S, Colacino JA, Shah YM. Hepatic 
Hepcidin/Intestinal HIF-2a Axis Maintains Iron Absorption During Iron Deficiency and Overload, 
Journal of Clinical Investigation, 2019 
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Introduction 

 More than 1 billion people worldwide are affected by iron overload, iron 

deficiency, and states of malnutrition that perturb iron homeostasis (1). Diseases of iron 

overload are among the most common genetic disorders in humans (2). The morbidity 

and mortality of patients with genetic iron overload are a result of the pathological 

hyperabsorption of dietary iron, which leads to systemic iron accumulation and iron-

induced oxidant damage (3). The master regulator of systemic iron metabolism in 

mammals is hepcidin, a highly conserved peptide hormone that is predominately 

synthesized and secreted by the liver. The function of hepcidin is to bind to the only 

mammalian iron exporter, ferroportin (FPN), resulting in FPN occlusion, internalization 

from the plasma membrane, and intracellular degradation (4). In states of normal 

systemic iron and oxygen levels, hepcidin is abundantly produced, FPN is degraded, 

and iron mobilization into the plasma is limited. Conversely, during iron demand or 

systemic hypoxia, hepcidin production is repressed to enable FPN stabilization and iron 

mobilization into the circulation (5). FPN is predominately expressed and regulated in 

tissues that maintain systemic iron homeostasis, namely, intestine, liver, and 

macrophages of the reticuloendothelial system (6). Hepcidin-FPN interaction is the 

essential mechanism by which physiological iron homeostasis is maintained. Genetic 

mutations that disrupt the hepcidin/FPN axis give rise to all known forms of iron 

overload in mammals, referred to as hereditary hemochromatosis (2, 3, 5, 6). These 

data have fueled much research over the past decade on the molecular mechanisms 

that regulate hepatic hepcidin production in order to gain insight into how systemic iron 

homeostasis is maintained.  
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 In addition to hepcidin, local intestinal regulation of iron handling plays an 

essential role in the maintenance of systemic iron homeostasis. HIF-2α is also sensitive 

to cellular iron and oxygen levels as the master intestinal transcriptional regulator of 

apical and basolateral iron transporters and is essential for maintaining postnatal 

systemic iron levels (7, 8). HIF-2α is necessary and sufficient to mediate the adaptive 

increase in iron absorption during both systemic iron deficiency and erythropoietic 

demand under systemic hypoxia through direct transcriptional activation of the iron 

absorptive machinery (9–11). HIF-2α also controls the hyperabsorption of dietary iron 

that leads to systemic iron accumulation in diseases of iron overload, such as β-

thalassemia and sickle cell disease (12–14). However, the precise molecular cues that 

initiate and maintain intestinal HIF-2α during normal physiology and in disease are 

poorly understood. Moreover, it is unclear whether there is a concerted molecular 

integration of the systemic hepcidin pathway to local intestinal HIF-2α signaling in the 

regulation of iron homeostasis.  

 This study establishes that intestinal HIF-2α signaling is regulated by hepatic 

hepcidin dynamics. Through temporal in vivo and in vitro models of hepcidin and FPN 

modulation, this work demonstrates that the hepatic hepcidin and intestinal HIF-2α 

crosstalk is essential during iron overload, systemic iron deficiency, and anemia. 

Through unbiased whole-genome RNA-Seq analysis, I demonstrated that the canonical 

HIF-2α transcriptional response in the intestine is mediated by hepatic hepcidin. 

Mechanistically, the hepcidin/FPN axis controls HIF-2α in a cell-autonomous fashion by 

limiting the activity of iron-dependent prolyl hydroxylase domain (PHD) enzymes. A 

pharmacological inhibitor of HIF-2α that is in clinical phase II trials for clear-cell renal 
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cell carcinoma (NCT03108066; ClinicalTrials.gov) demonstrated reversal of iron 

overload in a mouse model.  
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Methods 

Animals 

 For temporal, hepatocyte-specific disruption of hepcidin, mice floxed for Hamp1 

(Hampfl/fl) on a C57BL/6J background were crossed with C57BL/6J mice harboring 

CreERT2 recombinase under the control of the serum albumin promoter (AlbCreERT2) to 

generate AlbCreERT2;Hampfl/fl mice. VilCreERT2;Fpnfl/fl and VilCreERT2;Dmt1fl/fl mice are on a 

129S4/SvJae background. Wild-type littermates were used as controls for all animal 

studies (Hampfl/fl, Fpnfl/fl, and Dmt1fl/fl), and analysis began on mice that were between 2 

and 2.5 months of age for each of the respective experiments. Mice were injected i.p. 

with tamoxifen (Sigma-Aldrich) at a dose of 100 mg/kg body weight for 3 consecutive 

days to ensure Cre-mediated recombination. Phz (Sigma-Aldrich) was administered via 

i.p. injection at a dose of 60 mg/kg body weight, as described previously (9). PT2385 

(MedChemExpress) was prepared and administered daily via oral gavage at a dose of 

20 mg/kg body weight, as described previously (45). All mice were fed ad libitum and 

maintained under a 12-hour light/12-hour dark cycle. All mice were fed either a standard 

chow diet (Research Diets) or a purified AIN-93G iron-replete (350 ppm) or low- iron (<5 

ppm) diet (Dyets). All mice were housed in the Unit for Laboratory Animal Management 

(ULAM) at the University of Michigan.  

 

Cell culture 

 Stable doxycycline-inducible human FPNGFP HEK293 cells were generated 

previously (20). To generate stable doxycycline-inducible human FPNGFP IEC-6 cells, 

IEC-6 cells were purchased from the American Type Culture Collection (ATCC). pLenti 
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rtTA3 (Addgene) and pLVX-Tight-Puro hFpnGFP plasmids (20) were prepared into 

lentivirus by the University of Michigan Vector Core, co-infected into IEC-6 cells, and 

selected with 10 μg/ml blasticidin and 1 μg/ml puromycin. Cells were maintained at 

37°C in 5% CO2 and 21% O2. Cells were cultured in DMEM supplemented with 10% 

FBS and 1% antibiotic/antimycotic. NCOA4-knockout cells were generated with the 

lentiCRISPR v2 construct (Addgene) using 2 unique sgRNAs against NCOA4 (NCOA4 

sg1 and NCOA4 sg2, respectively) (Table 2.1). Briefly, oligonucleotides were subcloned 

into the lentiCRISPRv2 backbone. Empty vector, NCOA4 sg1, and NCOA4 sg2 

constructs were prepared into lentivirus by the University of Michigan Vector Core. 

FPNGFP cells were infected at a MOI of 10 and selected with 1 μg/ml puromycin. 

Knockout cells were verified by sequencing. The PHD enzyme activity luciferase 

reporter was previously described (46). Briefly, FPNGFP cells were infected at 10 MOI 

overnight and treated the next day with 250 ng/ml doxycycline, 100 μM FG4592 

(Selleckchem), 200 μM ferric ammonium citrate (FAC) (Sigma-Aldrich), and/or 1 mg/ml 

human recombinant hepcidin (Bachem) or 200 μM DFO (Sigma-Aldrich). The HIF-2α 

IRE luciferase construct was generated previously (24).  

 

Hematological and iron analysis 

 The Unit for Laboratory Animal Medicine Pathology Core at The University of 

Michigan performed the complete blood count analysis. Non-heme iron was quantified 

as described previously (12).  

 

Quantitative reverse transcription PCR  
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 mRNA was measured by quantitative reverse transcription PCR (qPCR) (Life 

Technologies, Thermo Fisher Scientific). The primers used are listed in Table 2.1. 

Quantification cycle (Cq) values were normalized to β-actin and expressed as the fold 

change.  

 

Whole-genome RNA-Seq and analysis 

 RNA-Seq libraries were prepared using the TruSeq RNA Library Prep Kit v2 

(Illumina) according to the manufacturer’s recommended protocol. The libraries were 

sequenced using single-end, 50-cycle reads on a HiSeq 2500 sequencer (Illumina) at 

the University of Michigan’s DNA Sequencing Core Facility. RNA-Seq analysis was 

performed as described previously (18). Briefly, quality control of raw FastQ files was 

performed using FastQC, version 0.11.5. FastQ files were mapped to the mouse 

genome (mm10) using STAR-2.5.3.a with the options “outFilterMultimapNmax 10” and 

“sjdb- Score 2.” Gene expression levels were quantified using the Subread 

featureCounts (version 1.5.2) package. Differential expression testing was conducted 

with the Bioconductor package edgeR, version 3.16.5, using glmLRT. To reduce the 

dispersion of the data set due to lowly expressed genes, genes with a mean aligned 

read count of less than 5 across all samples were excluded from the analysis. Genes 

with an FDR of less than 0.01 or 0.1 were considered differentially expressed, to yield 

high- and low-stringency approaches. The sequencing data are publicly available 

through ArrayExpress (accession number E-MTAB-7329).  

 

Western blot analysis 
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 Whole-cell, nuclear, and membrane lysates were prepared as described 

previously (10, 47). In brief, lysates were separated by SDS-PAGE, transferred onto 

nitrocellulose membranes, and probed overnight at 4°C with antibodies against FPN 

(MTP11-A, Alpha Diagnostic International [ADI]), DMT1 (NRAMP21-A, ADI), DCYTB 

(DCYTB-11A, ADI), and TFR1 (13-6800, Invitrogen, Thermo Fisher Scientific) for 

mouse tissue lysates; FPN (NBP1-21502, Novus), FTH1 (3998S, Cell Signaling 

Technology), GAPDH (sc-47724, Santa Cruz Biotechnology), GFP (sc-996, Santa Cruz 

Biotechnology), lamin A/C (3A6-4C11, Active Motif), HIF-2α (BL-95-1A2, Bethyl), and 

HIF- 1α (179483, Abcam) for human lysates; and actin (60008-1, Proteintech) for 

mouse tissue and rat cell lysates.  

 

ELISA 

 High-binding polystyrene microtiter plates were coated with the protein lysates 

overnight. The plates were then washed in 1×PBS with 0.1% Tween-20 (PBST), 

blocked with 5% BSA, and incubated with primary antibodies against HIF-2α (AF2997, 

Novus) and HIF- 1α (179483, Abcam). Next, the plates were washed in PBST, 

incubated with the appropriate HRP-conjugated secondary antibodies, developed, and 

read at 450 nm in a plate reader.  

 

Luciferase assay 

 Cells were lysed in reporter lysis buffer (Promega), and firefly luciferase activity 

was measured as described previously (48).  
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Statistics 

 Results are expressed as the mean ± SEM. Significance between 2 groups was 

tested using a 2-tailed, unpaired t test. Significance among multiple groups was tested 

using a 1-way or 2-way ANOVA followed by Tukey’s post hoc test for multiple 

comparisons. A P value of less than 0.05 was considered statistically significant. 

GraphPad Prism 7.0 was used to conduct the statistical analyses. 

 

Study approval 

 All animal procedures were approved by the IACUC of the University of 

Michigan.  
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Results 

Inducible deletion of hepatic hepcidin leads to the activation of intestinal HIF-2α 

and rapid iron accumulation  

 To understand the molecular connection between hepatic hepcidin and intestinal 

HIF-2α, mice that express a tamoxifen-inducible CreERT2 fusion protein under the 

control of the serum albumin promoter (Alb) were crossed with hepcidin 1–floxed 

(Hamp-floxed) mice (AlbCreERT2;Hampfl/fl), giving rise upon tamoxifen administration to 

mice null for hepatic hepcidin (HampΔLiv) (Figure 2.1A). This inducible model allows for 

temporal, in vivo study of hepcidin action on HIF-2α, without the confounding effects 

that arise in later stages of hepcidin deficiency iron overload, namely, the accumulation 

of ROS (15). Moreover, hepatocyte-specific deletion of hepcidin leaves intact the 

sources of hepcidin that exist outside of the liver, such as in the heart, where cell-

autonomous regulation of cardiac iron homeostasis has recently been shown to exist 

(16). In this model, the hepcidin transcript Hamp was significantly decreased in livers as 

early as 2 weeks after tamoxifen treatment (Figure 2.1B). Interestingly, liver expression 

of the serum iron uptake receptor transferrin receptor (Tfrc) was significantly decreased 

at 4 weeks, while the FPN transcript (Fpn) was increased at 2 weeks (Figure S2.1A). 

Prussian blue staining revealed progressive liver iron overload. Liver iron accumulation 

at 2 weeks was minimal, but I detected a time-dependent increase at 4 and 12 weeks. 

Histological analysis revealed minimal morphological differences across all time points 

(Figure 2.1C). An iron assay revealed a significant increase in serum iron as soon as 

within 2 weeks, with no further increase at 4 or 12 weeks, suggesting that serum iron is 

rapidly saturated following disruption to hepcidin (Figure 2.1D). A major complication for 
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patients with hemochromatosis is cardiac dysfunction (17). I found that Prussian blue 

staining did not detect heart iron accumulation at 2 or 4 weeks following hepcidin 

deletion but observed significant iron accumulation and disruptions in cellularity and 

tissue architecture by 12 weeks (Figure S2.1B). I observed similar tissue iron loading in 

the heart and pancreas (Figure 2.1, E and F, and Figure S2.1B). In order to assess the 

regulation of intestinal HIF-2α by hepatic hepcidin prior to confounding effects that are 

associated with iron overload, I performed immunohistochemical analysis on duodenal 

sections 2 weeks after tamoxifen treatment. I detected a robust increase in HIF-2α 

protein expression (Figure 2.1G). Consistent with these data, I also observed activation 

of iron-absorptive, HIF-2α–specific target genes and proteins duodenal cytochrome b 

(Dcytb, also known as Cybrd1), divalent metal transporter 1 (Dmt1, also known as 

Slc11a2), Fpn, and Ankrd37, as well as the expression of duodenal Tfrc, an indicator of 

low cellular iron status (Figure 2.1, H and I) (10). I detected no change in the expression 

of HIF-1α target genes (Figure S2.1C) or HIF-2α inflammatory target genes (Figure 

2.1D) (18, 19). Furthermore, I observed no change in HIF-2α–regulated transcripts in 

the kidneys or spleen, while Tfrc expression was decreased in both organs, suggesting 

that the hepcidin/HIF-2α axis was specific to the intestine (Figure S2.2, A and B). These 

data indicate that changes to hepcidin regulate HIF-2α stability and activity in physiology 

and disease.  

 

FPN is necessary for the activation of intestinal HIF-2α during systemic iron 

deficiency 
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 To address the molecular mechanism by which hepatic hepcidin regulates 

intestinal HIF-2α, I investigated the intestinal iron exporter and only target of hepcidin, 

FPN, in a context of systemic iron demand. Fpn-floxed mice were bred with mice that 

express a tamoxifen-inducible CreERT2 fusion protein under the control of the villin (Vil) 

promoter (VilCreERT2;Fpnfl/fl), giving rise upon tamoxifen administration to mice null for 

FPN in the intestinal epithelium (FpnΔIE). Fpnfl/fl and VilCreERT2 Fpnfl/fl mice were 

placed on a 350-ppm (iron-replete) diet or on a diet of less than 5-ppm iron (low-iron) for 

1 week, injected with tamoxifen on 3 consecutive days, and sacrificed after an additional 

week on the respective diets (Figure 2.2A). This model mimics hepcidin excess at the 

intestinal level and leads to iron retention in intestinal epithelial cells, despite a state of 

systemic iron demand (Figure 2.2B). Duodenal Fpn was significantly decreased 

following tamoxifen treatment (Figure 2.2C), and duodenal iron retention was detected 

by Western blotting for the intracellular iron storage protein ferritin (FTH1) (Figure 2.2D). 

I found that hepcidin (Hamp) transcript levels were significantly decreased in mice on 

the low-iron diet and in FpnΔIE mice (Figure 2.2E). This time point did not induce 

anemia, as RBC numbers, hemoglobin (HB) counts, hematocrit (HCT) levels, mean 

corpuscular hemoglobin (MCH) levels, and mean corpuscular volume (MCV) were all 

unchanged across the cohorts (Figure 2.2F and Figure S2.3A). As complete blood 

count parameters were unaffected, this model dissociated the enterocyte cellular 

response to iron deficiency from hypoxia. As expected, I found that duodenal HIF-2α 

was stabilized and that HIF-2α–specific iron- absorptive genes were increased in Fpnfl/fl 

mice on a low-iron diet. These responses were abrogated in FpnΔIE mice (Figure 2.2, G 

and H). I also observed no changes in the expression of HIF-1α target genes or HIF-2α 
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inflammatory target genes (Figure S2.3, B and C). These data demonstrate that the 

intestinal HIF-2α response to systemic iron demand occurs downstream of the 

hepcidin/FPN axis.  

 

FPN is essential for the intestinal HIF-2α response to erythropoietic demand 

 Intestinal HIF-2α is critical for the adaptive increase in iron absorption that 

enables efficient erythropoiesis (9, 10). This increase in erythropoiesus has been 

postulated to be regulated by changes in intestinal epithelial oxygen levels. I used a 

phenylhydrazine (Phz) hemolytic anemia model, which stimulates massive 

erythropoiesis. Fpnfl/fl and VilCreERT2;Fpnfl/fl mice were injected with tamoxifen and 

allowed to recover for 1 week. Two consecutive injections of either vehicle or Phz were 

administered, and the mice were sacrificed 48 hours later (Figure 2.3A). I found that the 

erythropoietin (Epo) transcript levels were significantly elevated in the kidneys of Phz-

treated mice, indicating a state of erythropoietic drive and systemic hypoxia (Figure 

2.3B). Hepcidin (Hamp) transcript levels were significantly decreased in the Phz-treated 

mice and vehicle-treated FpnΔIE mice (Figure 2.3C). I found that duodenal ferritin 

abundance was decreased following Phz treatment in Fpnfl/fl mice, indicating the 

mobilization of intestinal iron, while this response was blunted in FpnΔIE mice (Figure 

2.3D). Interestingly, and consistent with the low-iron response, the activation of 

intestinal HIF-2α and HIF-2α–specific iron-absorptive genes during stress erythropoiesis 

was completely dependent on intact intestinal FPN (Figure 2.3, E and F). I also detected 

no change in the expression of HIF-1α target genes or HIF-2α inflammatory target 
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genes (Figure S2.4, A and B). These data demonstrate that the hepcidin/FPN axis is 

essential for the response of intestinal HIF-2α to low systemic oxygen levels.  

 

Intestinal epithelial iron regulates the HIF-2α response to changes in systemic 

iron and oxygen 

 To clearly demonstrate that enterocyte iron flux was the major mechanism by 

which the hepcidin/FPN axis regulated HIF-2α, I sought to modulate luminal versus 

enterocyte iron levels. To modulate luminal enterocyte levels, Dmt1-floxed mice were 

bred with mice that express a tamoxifen-inducible CreERT2 fusion protein under the 

control of the villin (Vil) promoter (VilCreERT2;Dmt1fl/fl), giving rise upon tamoxifen 

administration to mice null for DMT1 in the intestinal epithelium (Dmt1ΔIE). Enterocyte 

iron levels were modulated using FpnΔIE animals, as explained above. Long-term 

disruption of DMT1 or FPN gave rise to a state of systemic iron deficiency anemia, with 

differences seen only in the compartment of iron trapping (i.e., luminal vs. enterocytic 

iron retention) (Figure 2.4A). VilCreERT2;Fpnfl/fl, VilCreERT2;DMT1fl/fl, and their littermate 

controls were assessed 3 months after tamoxifen treatment. I found that Fpn and Dmt1 

transcripts levels were significantly decreased in FpnΔIE and Dmt1ΔIE mice, respectively 

(Figure 2.4B). Fpn transcript levels were significantly elevated in Dmt1ΔIE mice, while I 

detected no change in Dmt1 transcript levels in FpnΔIE mice. As expected, the hepcidin 

(Hamp) transcript was potently repressed in the FpnΔIE and DMT1ΔIE cohorts as 

compared with the Fpnfl/fl and Dmt1fl/fl mice, respectively (Figure 2.4C). Furthermore, I 

detected decreased RBC numbers, HB counts, HCT levels, MCH, and MCV in the 

FpnΔIE and Dmt1ΔIE mice compared with their littermate controls, which indicated a state 
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of systemic iron deficiency anemia (Figure 2.4D and Figure S2.5A). Duodenal ferritin 

abundance was decreased in Dmt1ΔIE mice, with the opposite response observed in 

FpnΔIE mice (Figure S2.5B). Immunohistochemical analysis revealed significant 

stabilization of the HIF-2α protein in Dmt1ΔIE mice, with no change in these protein 

levels in FpnΔIE mice (Figure 2.4E). Moreover, expression levels of the HIF-2α–specific 

iron genes Dcytb and Ankrd37 were significantly elevated in Dmt1ΔIE mice, but not in 

FpnΔIE mice (Figure 2.4F). I found that Tfrc expression was unchanged in FpnΔIE mice 

and significantly increased in Dmt1ΔIE mice compared with expression levels in their 

littermate controls (Figure 2.4F). These data convincingly show that intestinal epithelial 

iron levels regulate HIF-2α during systemic iron and oxygen deficiency and during iron 

deficiency anemia.  

 

The intestinal transcriptome during systemic iron demand matches the intestinal 

response to hepcidin deficiency  

 The data thus far suggested that the entire intestinal HIF-2α response to 

systemic iron and erythropoietic demand was controlled by hepatic hepcidin. However, 

the outputs for these experiments relied on the measurement of canonical HIF-2α target 

genes involved in intestinal iron handling. I used an unbiased, high-throughput RNA-

Seq approach to compare the duodenal transcriptome during systemic iron demand 

with that of hepcidin deficiency iron overload. Hampfl/fl and AlbCreERT2;Hampfl/fl mice were 

placed on iron-replete and low-iron diets and sacrificed 2 weeks after tamoxifen 

treatment (Figure 2.5A). Hepcidin transcript levels were significantly decreased in 

Hampfl/fl mice on a low-iron diet and in both HampΔLiv cohorts (Figure 2.5B). To assess 
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the most significantly changed transcripts when comparing genotype and diet 

interactions, samples were clustered hierarchically in an unsupervised manner on the 

basis of the expression of genes that were differentially expressed between conditions 

at a high-stringency FDR of less than 0.01. I found that the iron-replete Hampfl/fl 

samples clustered separately from the iron-replete HampΔLiv, low-iron Hampfl/fl, and low-

iron HampΔLiv samples (Figure 2.5C). This demonstrated in an unbiased fashion that the 

intestinal transcriptomes during systemic iron demand and iron overload were 

statistically similar to one another, because the 9 treatment samples did not segregate 

into discrete experimental clusters. I then generated a heatmap, plotting scaled gene 

expression of the same differentially expressed genes to assess the identity of the 

genes used for unsupervised hierarchical clustering (Figure 2.5D). Importantly, I 

identified the canonical HIF-2α iron–regulated genes (i.e., Slc11a2, Cybrd1, and 

Ankrd37). In order to identify novel transcripts in the RNA-Seq data set, I performed a 

lower-stringency differential expression analysis (FDR < 0.1). Using this approach, I 

identified genes that were exclusively regulated by iron deficiency (e.g., Nos2, Ccl20, 

and Serpine1) and hepcidin deficiency (e.g., Wdr72, A4gn7, and Gkn3), as well as 

novel target genes regulated in both contexts (e.g., Mir7082, Slc34a2, and Itpr1) (Figure 

2.5E). Collectively, these data demonstrate that the most robustly changed intestinal 

transcripts during systemic iron demand resemble those in primary hepcidin deficiency 

iron overload.  

 

FPN activates HIF-2α in a cell-autonomous manner that is dependent on 

intracellular iron efflux 
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 To interrogate the molecular mechanism of HIF-2α stabilization downstream of 

the hepcidin/FPN axis, I used an in vitro system that models the cellular response to low 

levels of systemic hepcidin. Most cell lines express very low levels of the FPN protein, 

and some cell lines appear to be resistant to hepcidin-mediated FPN degradation (10). I 

assessed hepcidin-sensitive, doxycycline-inducible human FPNGFP HEK293 cells, as 

described previously (20). Upon doxycycline treatment, I detected robust FPNGFP 

expression by Western blot analysis (Figure 2.6A). This mimicked a cellular 

environment of low systemic hepcidin, comparable to that in the intestine, as the fold 

induction of FPN protein in the FPNGFP HEK293 cells was similar to that observed in 

duodenums of HampΔLiv mice (Figure S2.6, A and B). To determine whether the 

regulation of HIF-2α by hepcidin-FPN is cell autonomous, I treated FPNGFP cells with 

doxycycline for 24 hours and generated cytosolic and nuclear fractions. For a positive 

control, I also treated cells with FG4592, a 2-oxoglutarate analog and chemical inhibitor 

of the PHD-containing enzymes that regulate HIF. I found that HIF-2α was robustly 

stabilized in the nucleus of FPNGFP cells (Figure 2.6B). Importantly, HIF-2α protein was 

stabilized to the same extent as that seen with FG4592 treatment, suggesting maximal 

activation. The HIF-2α response was blunted by iron loading with ferric ammonium 

citrate (FAC) and recombinant hepcidin treatment, indicating that the activity of HIF-2α 

in FPNGFP cells was dependent on intracellular iron concentration, downstream of 

hepcidin-mediated FPN degradation (Figure 2.6C). Together, these data demonstrate 

cell-autonomous activation of HIF-2α by iron efflux. This mechanism shows some 

differences as compared with HIF activation by intracellular iron chelation using 

compounds such as deferoxamine (DFO), which disrupts mitochondrial function and 
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results in significant cell death (Figure S2.6C) (21–23). The protein stability of HIF-2α is 

regulated by PHD enzymes. I found that PHD enzymes were downstream of hepcidin-

FPN in the regulation of HIF-2α, as FG4592 restored the HIF-2α response in FPNGFP 

cells following FAC or recombinant hepcidin treatment (Figure 2.6D). PHD enzymes 

require both iron and oxygen for their function. In order to address whether PHD 

enzyme activity was decreased following FPN stabilization, an adenovirus-based 

reporter construct to measure PHD enzyme activity was generat- ed by fusing luciferase 

to a canonical PHD hydroxylation domain (PHD reporter) (Figure 6E). I detected a 

significant increase in luciferase activity in FPNGFP cells following doxycycline 

treatment, and this increase was similar to that seen with chemical inhibition of PHD 

enzymes by FG4592 treatment (Figure 6F). This response was rescued by loading with 

FAC and by treatment with recombinant hepcidin. These data demonstrated that 

stabilization of FPN in the context of low hepatic hepcidin leads to cellular iron efflux, 

decreased PHD enzyme activity, and, ultimately, cell-autonomous stabilization of HIF-

2α. PHD enzymes regulate both HIF-2α and HIF-1α. However, HIF-1α protein was 

stabilized submaximally following FPN overexpression compared with treatment with 

FG4592, suggesting selectivity of the hepcidin/FPN axis for HIF-2α over HIF-1α (Figure 

S2.6D). HIF-2α contains a 5′-UTR iron-responsive element (IRE) that is responsible for 

translational inhibition during decreases in intracellular iron (24). Using a HIF- 2α IRE 

luciferase construct, I demonstrated HIF-2α inhibition following FPN overexpression via 

doxycycline, with DFO and FAC as controls, suggesting a negative feedback 

mechanism on FPN-mediated activation of HIF-2α (Figure S2.6E). There are 2 major 

pools of intracellular iron: (a) labile “free” iron, and (b) iron bound by the intracellular iron 
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storage protein ferritin. The mobilization of ferritin-bound iron requires the lysosomal 

degradation of ferritin via the rate-limiting cargo protein nuclear receptor coactivator 4 

(NCOA4) (25, 26). To address which pool of iron is limited for PHD enzymes by FPN, 2 

unique NCOA4-KO cell lines were generated and sequence verified in FPNGFP cells. 

FPN overexpression led to ferritin degradation in an NCOA4-dependent manner (Figure 

2.6G). However, NCOA4 deletion did not prevent the decreased PHD enzyme activity 

following FPN overexpression (Figure S2.6F). While doxycycline-inducible FPNGFP 

HEK293 cells have been widely used to study hepcidin-FPN dynamics (20, 27, 28), I 

sought to interrogate the hepcidin/FPN/HIF-2α axis in an intestinal epithelial cell line. 

IEC-6 cells are a normal rat small intestinal cell line, and a doxycycline-inducible human 

FPNGFP IEC-6 cell line was generated. FPNGFP IEC-6 cells showed FPN stabilization 

after doxycycline treatment to a degree similar to that observed in duodenums of 

HampΔLiv mice (Figure S2.6B). Moreover, I found that FPNGFP IEC-6 cells were highly 

sensitive to hepcidin (Figure 2.6H). Several HIF-2α antibodies that were tested did not 

detect a specific HIF-2α band by Western blot analysis of rat lysates (data not shown). I 

used an ELISA approach with a HIF-2α antibody that could detect native recombinant 

HIF-2α. I observed robust HIF-2α stabilization following FPN overexpression via 

doxycycline treatment and found that co-treatment with doxycycline and hepcidin 

completely rescued this response, with DFO serving as a positive control (Figure 2.6I). 

Similar to what was observed in vivo, I detected no increase in HIF-1α following FPN 

overexpression in the IEC-6 FPNGFP cells, while DFO treatment significantly increased 

HIF-1α expression, further indicating a difference in the mechanism of action of iron 

efflux through FPN and iron chelation by DFO (Figure S2.6G). The mechanism of HIF-
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2α activation by FPN overexpression in IEC-6 cells was the same as in HEK293 cells, 

as PHD enzyme activity was decreased by FPN overexpression in an iron- and 

hepcidin-dependent manner (Figure 2.6J). Collectively, these data demonstrate that in 

the absence of hepcidin, stabilization of membrane FPN regulates HIF-2α in a cell-

autonomous manner by depleting the cellular labile iron pool and limiting the activity of 

PHD enzymes.  

 

Inhibition of HIF-2α with PT2385 decreases systemic iron accumulation in 

hepcidin-deficient iron overload  

 Current therapeutic approaches for patients with iron overload rely on iron 

chelators and phlebotomy, which lead to significant off-target effects and cause fatigue. 

I sought to determine whether the hepatic hepcidin/intestinal HIF-2α axis can be 

therapeutically targeted to treat iron overload. The HIF-2α–specific inhibitor PT2385 was 

recently developed (29). PT2385 binds to HIF-2α and prevents its heterodimerization 

with aryl hydrocarbon receptor nuclear translocator (ARNT), thus preventing the 

transcriptional activity of HIF-2α (29). PT2385 is currently in a phase II clinical trial for 

the treatment of clear-cell renal cell carcinoma (NCT03108066; ClinicalTrials.gov). 

Hampfl/fl and AlbCreERT2;Hampfl/fl mice were injected with tamoxifen, and 2 weeks later, 

the HampΔLiv mice were orally gavaged with vehicle or PT2385 daily for 2 weeks (Figure 

2.7A). I observed no change in body weight during the treatment period (Figure S7A). 

The hepcidin transcript levels were decreased in both HampΔLiv cohorts (Figure 2.7B). 

Decreased intestinal iron absorption in mice with a genetic disruption of intestinal HIF-

2α leads to anemia (10). Thus, I sought to determine whether prolonged treatment with 
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PT2385 would lead to systemic anemia. I found that kidney Epo transcript levels were 

decreased in vehicle-treated HampΔLiv mice, while this decrease was abrogated in 

PT2385-treated HampΔLiv mice (Figure 2.7B). I noted a significant expansion of RBC 

numbers and increased HB and HCT in vehicle-treated HampΔLiv mice, and these 

increases were rescued in the PT2385 cohort (Figure 2.7C). MCV and MCH levels were 

unchanged among all groups (Figure S2.7B). Membrane stabilization of the HIF-2α iron 

absorptive targets FPN, DMT1, and DCYTB was elevated in the HampΔLiv mice but was 

completely absent in the PT2385-treated HampΔLiv mice (Figure 2.7D). Prussian blue 

staining for iron in the liver was decreased in the PT2385-treated HampΔLiv mice 

compared with that seen in the vehicle-treated mice (Figure 2.7E). Additionally, 

quantitative iron assays revealed significant decreases in serum, liver, and pancreatic 

iron content, with a trend toward a decrease of iron in the heart in PT2385-treated 

HampΔLiv mice (Figure 2.7F). These data show that HIF-2α is a potential 

pharmacological target downstream of the hepcidin/FPN axis in patients with iron 

overload (Figure 2.7G).  
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Discussion 

 Systemic iron homeostasis requires multiple organs working in concert to 

maintain cellular iron concentrations for metabolism and RBC levels for systemic 

oxygen transport. Research over the past decade has shown that this system is 

centrally regulated by the liver-derived hormone hepcidin and requires intestinal iron 

absorption for the maintenance of postnatal systemic iron levels. However, a complete 

biological link between the liver and intestine during iron deficiency and in diseases of 

iron overload has remained unclear. The present work demonstrates that the liver 

controls the intestine through a hepatic hepcidin/intestinal HIF- 2α axis that regulates 

physiological iron uptake during systemic iron deficiency and drives pathological iron 

absorption during iron overload caused by hepcidin deficiency. Paradoxically, using 

unbiased, high-throughput RNA-Seq, I show that the intestinal response to systemic 

iron deficiency and hepcidin deficiency– mediated iron overload is largely the same. The 

physiological repression of hepcidin during iron demand and the perturbation of 

hepcidin during genetic iron overload directly trigger iron efflux through intestinal FPN to 

limit the activity of iron-dependent PHD enzymes. This stabilizes intestinal HIF-2α to 

activate genes that are necessary and sufficient for intestinal iron absorption. 

Interestingly, HIF-2α activation downstream of hepcidin was intestine specific, as HIF-

2α–dependent transcript levels were unchanged in the kidney and the spleen following 

hepatic hepcidin deletion. Potential explanations include the presence of intestine-

specific coactivators and/or genetic suppressors and enhancers. Consistent with data 

showing that HIF-2α is necessary for the adaptive increase in intestinal FPN during iron 

deficiency (10), the present data suggest a feed-forward loop, whereby intestinal FPN 
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stabilization following a decrease in hepcidin activates HIF-2α to maintain FPN 

transcript levels during systemic iron demand and in iron overload. Although the 

hepcidin/FPN/HIF-2α axis is the major trigger for the intestinal transcriptional response 

following iron demand, the discovery of smaller subsets of genes that are either 

regulated by systemic iron deficiency or hepcidin deficiency indicates differences in the 

intestinal response to a decrease in dietary iron compared with iron hyperabsorption 

during iron overload. A recent report indicated that the HIF response can be modulated 

by microbiota-derived short-chain fatty acids, which could partly explain the difference 

between luminal and systemic cues to the intestine (30). More work needs to be done to 

understand the regulation of this small subset of genes.  

 Previous studies showed a critical role for HIF-2α in the hyperabsorption of iron 

in primary and secondary hemochromatosis (12–14). However, the field has relied 

largely on germline knock- out strategies to study hepcidin disruption, which gives rise 

to iron loading that begins during embryonic development and can cause ROS that are 

known inducers of HIF. Furthermore, full-body hepcidin deficiency disrupts sources of 

hepcidin outside of the liver that have recently been shown to establish a cell-

autonomous mechanism of local iron regulation, particularly in the heart, an organ 

critical for systemic oxygen transport (31). The use of our inducible model of hepatic 

hepcidin deletion has characterized, for the first time to our knowledge, the kinetics by 

which iron overload progresses. There are data to show that iron overload is toxic to 

RBC survival at later stages of hemoglobinopathies (12, 32), while our data 

demonstrate that there is a significant expansion of the RBC pool in early stages of iron 

overload, which occurs in a HIF-2α–dependent manner as PT2385 treatment rescues 
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this response. Recent work has revealed erythroid-derived factors that regulate hepcidin 

to facilitate erythropoiesis (33–35). The present data conversely suggest that hepcidin 

restricts the RBC pool, potentially by limiting intestinal iron absorption or through the 

direct regulation of signaling downstream of FPN- mediated cellular iron efflux in other 

organs and cell types. Future studies will need to determine the mechanism by which 

this RBC expansion occurs and whether it is a physiologically relevant process of iron 

storage during early iron overload.  

 The dioxygenase superfamily of PHD enzymes regulate the protein stability of 

both HIF-2α and HIF-1α. However, our laboratory, among others, has demonstrated 

that intestinal HIF-2α, but not HIF-1α, is stabilized, transcriptionally active, and 

necessary and sufficient for iron absorption during systemic iron demand (7, 8). Recent 

reports have demonstrated that certain PHD isoforms, namely PHD3, show selectivity 

for HIF-2α over HIF-1α (36). Furthermore, small intestinal HIF-2α is more sensitive to 

pharmacological inhibition of all PHD isoforms than is HIF-1α (37). This selectivity could 

explain the differential activation of small intestinal HIF-2α over HIF-1α downstream of 

hepcidin/FPN/PHDs. Future work will need to establish the Km value of intestinal PHD 

enzymes for iron to determine whether iron efflux through FPN limits the activity of a 

HIF-2α–specific PHD.  

 In addition to hepcidin and HIF-2α, another mammalian iron-sensing axis exists 

via iron-regulatory protein (IRP) and IRE machinery. This system modulates translation 

via the binding of IRPs with IREs that exist in the 5′- or 3′-UTR of target transcripts 

involved in cellular iron handling. Duodenal enterocytes produce a FPN transcript that 

evades IRP-mediated repression in settings of low intracellular iron by lacking an IRE 
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(38). This variant might function alongside HIF-2α–mediated transcriptional upregulation 

of Fpn to maintain FPN protein levels following intestinal iron efflux. Interestingly, IRP1 

is activated following decreases in intracellular iron to negatively regulate HIF-2α 

translation via action on an IRE in the 5′-UTR of the HIF-2α mRNA, which was shown 

both in vitro (24) and in vivo (39–41). Recently, this pathway was shown to be 

pharmacologically targeted to treat HIF-2α–induced polycythemia (42). I also observed 

repression of the HIF-2α IRE in our in vitro model following FPNGFP stabilization. 

Taken together, these data show that the hepcidin/FPN/PHD axis may control HIF-2α 

during systemic iron deficiency and that IRP1-mediated repression of HIF-2α translation 

may limit the level of activation. More work will need to be done to fully understand the 

interaction between the IRP and IRE systems and the hepcidin/FPN/PHD/HIF-2α axis 

during systemic iron demand.  

 Iron chelators have been shown for decades to regulate HIF, although these 

molecules dramatically disrupt mitochondrial function and can strip iron from iron-

containing proteins. To our knowledge, these data are the first to show that cell-

autonomous, biologically relevant iron efflux regulates intestinal HIF-2α–mediated iron 

absorption in vivo, in contexts of both systemic iron deficiency and low systemic oxygen. 

The present work shows that the FPN-mediated efflux of iron is a cell-autonomous 

trigger to stabilize HIF-2α. Moreover, this finding demonstrates in vivo that a liver- 

derived endocrine signal plays an essential role in the activity of intestinal enzymes that 

regulate HIF-2α. Numerous reports have recently begun to characterize the function of 

FPN in organs that do not play a role in maintaining systemic iron homeostasis (16, 43, 

44). It will therefore be vital to determine whether FPN- mediated iron efflux directly 
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regulates iron-dependent proteins and downstream signaling pathways in other cell 

types, either triggered by changes to hepatic hepcidin or other factors.  

 Patients with iron overload currently rely on iron chelators and/or phlebotomy to 

decrease systemic iron levels. However, these therapies often result in suboptimal 

patient adherence, because iron chelators have off-target effects and chronic 

phlebotomy can cause fatigue. A selective inhibitor of HIF-2α, PT2385, has recently 

been developed and is currently in phase II clinical trials for patients with clear-cell renal 

cell carcinoma (NCT03108066; ClinicalTrials.gov). Here, I sought to address whether 

oral administration of PT2385 could be used to blunt intestinal iron absorption for the 

treatment of iron overload. Our data demonstrated that within as little as 2 weeks of 

PT2385 treatment, systemic iron levels were decreased in mice with established iron 

overload. This finding provides an exciting impetus for the use of PT2385 in the 

treatment of human diseases of iron overload, many of which are characterized by 

dysfunction of the hepcidin/ FPN axis and intestinal iron hyperabsorption.  

 In conclusion, our work demonstrates that systemic iron deficiency and hepcidin 

deficiency–mediated iron overload activate the same hepatic hepcidin/intestinal HIF-2α 

axis. Moreover, I show that cellular iron efflux through the hepcidin target FPN regulates 

the activity of iron-dependent enzymes and directly activates HIF-2α. Finally, these data 

suggest that a therapeutic agent currently in development for humans should be 

repurposed for the treatment of patients with iron overload.  
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Figure 2.1. Temporal disruption of hepatic hepcidin activates intestinal HIF-2α 
and leads to rapid iron accumulation. (A) Schematic representation of mice with 
temporal disruption of hepatocyte hepcidin. (B) qPCR analysis of hepatic hepcidin 
(Hamp) transcript expression levels (n = 3–8 per group). (C) Representative Prussian 
blue iron staining and H&E staining of liver tissue from HampΔLiv mice. Original 
magnification, ×20 (n = 3 per group). (D–F) Serum (D), heart (E), and pancreatic iron 
content (F) (n = 3–14 per group). (G) Representative HIF-2α staining of duodenal 
sections 2 weeks after tamoxifen injection into Hampfl/fl and HampΔLiv mice. Original 
magnification, ×20 (n = 3 per group). (H) Western blot analysis of FPN, DMT1, DCYTB, 
and TFR1 expression in duodenal membrane fractions (n = 2–3 per group). (I) qPCR 
analysis of duodenal HIF-2α–specific and iron-handling transcripts 2 weeks after 
tamoxifen injection into Hampfl/fl and HampΔLiv mice (n = 5–8 per group). Data represent 
the mean ± SEM. Male samples are designated as squares, and female samples are 
designated as circles. Significance was determined by 1-way ANOVA with Tukey’s post 
hoc test (B and D–F) or 2-tailed, unpaired t test (I). *P < 0.05, ***P < 0.001, and ****P < 
0.0001 versus the Hampfl/fl group.  
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Figure 2.2. Intestinal epithelial FPN is necessary for the activation of intestinal 
HIF-2α during systemic iron deficiency. (A and B) Schematic representation of the 
experimental design (A) and of intestinal epithelial iron retention following FPN deletion 
(B). (C) qPCR analysis of duodenal Fpn transcript levels (n = 4–7 per group). (D) 
Western blot analysis of duodenal FTH1 (n = 3 per group). (E) qPCR analysis of Hamp 
transcript levels (n = 4–7 per group). (F) Analysis of RBC, HB, and HCT (n = 4–7 per 
group). (G) Representative HIF-2α staining in duodenal sections. Original magnification, 
×20 (n = 3 per group). (H) qPCR analysis  
of HIF-2α–specific and iron-handling transcripts in duodenal samples (n = 4–6 per 
group). Male samples are designated as squares, and female samples are designated 
as circles. Data represent the mean ± SEM. Statistical significance was determined by 
2-way ANOVA with Tukey’s post hoc test. ***P < 0.001 and ****P < 0.0001 versus iron-
replete Fpnfl/fl; ##P < 0.01 and ####P < 0.0001 versus low-iron Fpnfl/fl; †P < 0.05 versus 
iron-replete FpnΔIE.  
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Figure 2.3. Deletion of intestinal epithelial FPN blocks the intestinal HIF-2α 
response to erythropoietic demand. (A) Experimental design for Phz-induced 
hemolytic anemia model. (B and C) qPCR analysis of kidney Epo (B) and liver Hamp 
(C) transcript levels (n = 5–9 per group). (D) Western blot analysis of duodenal FTH1 (n 
= 3 per group). (E) Representative HIF-2α staining of duodenal sections. Original 
magnification, ×20 (n = 3 per group). (F) qPCR analysis of HIF-2α–specific and iron-
handling transcripts in duodenal samples (n = 5–7 per group). Male samples are 
designated as squares, and female samples are designated  
as circles. Data represent the mean ± SEM. Statistical significance was determined by 
2-way ANOVA with Tukey’s post hoc test. *P < 0.05, **P < 0.01, and ****P < 0.0001 
versus vehicle Fpnfl/fl; #P < 0.05 and ####P < 0.0001 versus vehicle Fpnfl/fl.  
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Figure 2.4. The intestinal HIF-2α response to changes in systemic iron and 
oxygen is driven by epithelial iron levels. (A) Schematic of 3-month, inducible iron 
trapping in animals lacking intestinal epithelial FPN (FpnΔIE) or DMT1 (Dmt1ΔIE). (B) 
qPCR analysis of Fpn and Dmt1 transcript levels (n = 4 per group). (C) qPCR analysis 
of hepatic Hamp transcript expression levels (n = 4 per group). (D) Analysis of RBC, 
HB, and HCT (n = 3–5 per group). (E) Representative HIF-2α staining of duodenal 
sections. Original magnification, ×20 (n = 3 per group). (F) qPCR analysis of HIF-2α–
specific and iron-handling transcripts in duodenal samples (n = 4 per group). Male 
samples are designated as squares, and female samples are designated as circles. 
Data represent the mean ± SEM. Statistical significance was determined by 2-tailed, 
unpaired t test. *P < 0.05, **P < 0.01, and ****P < 0.0001 compared between Fpnfl/fl and 
FpnΔIE cohorts; #P < 0.05, ##P < 0.01, and ####P < 0.0001 compared between Dmt1fl/fl 

and Dmt1ΔIE cohorts.  
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Figure 2.5. The intestinal transcriptome during systemic iron deficiency 
resembles that of hepcidin deficiency–mediated iron overload. (A) Experimental 
design for the samples used in whole-genome RNA-Seq. (B) qPCR analysis of liver 
Hamp transcript levels in mice on an iron-replete (IR) or low-iron (LI) diet (n = 8–9 per 
group). (C) Dendrogram comparing genotype-diet interactions following unsupervised 
hierarchical clustering of genes differentially expressed at a high-stringency FDR of less 
than 0.01 (n = 3 per group). (D) Heatmap of genes used for unsupervised hierarchical 
clustering (n = 3 per group). (E) Lower-stringency differential expression analysis at a 
FDR of less than 0.1 to uncover transcripts in the RNA-Seq data set unique to iron 
deficiency and hepcidin deficiency. Genes highlighted in red are novel intestinal 
transcripts regulated by both low iron and hepcidin deficiency (n = 3 per group). Male 
samples are designated as squares, and female samples are designated as circles. FC, 
fold change. Data represent the mean ± SEM. Statistical significance was determined 
by 2-way ANOVA with Tukey’s post hoc test. ****P < 0.0001 versus iron-replete 
Hampfl/fl.  
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Figure 2.6. FPN activates HIF-2α in a cell-autonomous manner that is dependent 
on efflux of the cellular labile iron pool. (A) Western blot analysis of FPNGFP 
HEK293 cells following a 24-hour doxycycline treatment. (B) Western blot analysis of 
cytosolic and nuclear fractions of FPNGFP HEK293 cells treated with vehicle (V), 250 
ng/ml doxycycline (D), or 100 μM FG4592 (FG) for 24 hours. (C and D) Western blot 
analysis of cytosolic and nuclear fractions of FPNGFP HEK293 cells treated with vehicle 
(V), doxycycline (D), doxycycline and 200 μM FAC (D+F), or doxycycline and 1 mg/ml 
hepcidin (D+H) for 24 hours (C). Separate doxycycline plus FAC and doxycycline plus 
hepcidin conditions were also cotreated with FG4592 for 24 hours, as indicated (D). (E) 
Schematic of the luciferase-based PHD enzyme activity reporter. (F) Fold change of 
luciferase activity in FPNGFP HEK293 cells infected with the PHD reporter and treated 
with vehicle, doxycycline, FG4592, FAC and doxycycline, or doxycycline and hepcidin 
for 24 hours. (G) Western blot analysis of FPNGFP HEK293 cells stable for empty 
lentiCRISPRv2 (Empty) or unique NCOA4 short guide RNAs (NCOA4 sg1 and NCOA4 
sg2). Cells were treated with FAC for 24 hours and then with doxycycline for 24 hours. 
(H) Western blot analysis of FPNGFP IEC-6 cells treated with vehicle, doxycycline, or 
doxycycline and hepcidin for 24 hours. (I) ELISA of lysates from FPNGFP IEC-6 cells 
treated with vehicle, doxycycline, doxycycline and hepcidin, or DFO for 24 hours. (J) 
Fold change of luciferase activity in FPNGFP IEC-6 cells infected with the PHD reporter 
and treated with vehicle, doxycycline, FAC and doxycycline, or doxycycline and 
hepcidin for 24 hours. All cell culture experiments were repeated at least 3 times. Data 
represent the mean ± SEM. Statistical significance was determined by 1-way ANOVA 
with Tukey’s post hoc test. **P < 0.01 and ****P < 0.0001 versus vehicle; #P < 0.05, ##P 
< 0.01, and ####P < 0.0001 versus doxycycline.  
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Figure 2.7. Inhibition of HIF-2α using PT2385 reverses iron accumulation in 
multiple tissues in hepcidin-deficient hemochromatosis. (A) Experimental design 
for oral gavage of vehicle or PT2385 in HampΔLiv mice. (B) qPCR analysis of hepatic 
Hamp and kidney Epo transcript levels (n = 5–7 per group). (C) Analysis of RBC, HB, 
and HCT (n = 5–7 per group). (D) Western blot analysis of FPN, DMT1, and DCYTB in 
duodenal membrane fractions (n = 3 per group). (E) Representative Prussian blue 
staining for iron in liver tissues. Original magnification, ×20 (n = 3 per group). (F) Serum, 
liver, heart, and pancreatic iron content (n = 5–7 per group). (G) Schematic 
representation of hepatic hepcidin/intestinal HIF-2α axis. Male samples are designated 
as squares, and female samples are designated as circles. Data represent the mean ± 
SEM. Statistical significance was determined by 1-way ANOVA with Tukey’s post hoc 
test. *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001 versus vehicle Hampfl/fl; #P 
< 0.05, ##P < 0.01, and ###P < 0.001 versus vehicle HampΔLiv. PT, PT2385; Veh, 
vehicle.  
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Figure S2.1. Temporal deletion of liver hepcidin alters iron homeostasis and does 
not affect intestinal HIF-1a target genes or HIF-2a inflammatory targets. (A) qPCR 
analysis of transferrin receptor (Tfrc) and ferroportin (Fpn) in livers of HampΔLiv mice (n 
= 3 to 8 per group). (B) Representative Prussian blue iron stain and H&E analysis of 
hearts and pancreata from HampΔLiv mice. Images, 20x (n = 3 per group). (C) qPCR 
analysis for HIF-1aspecific transcripts in duodenal samples two-weeks after tamoxifen 
injection in Hampfl/fl and HampΔLiv mice (n = 5 to 8 per group). (D) qPCR analysis for 
HIF-2a-specific inflammatory transcripts in duodenal samples two-weeks after tamoxifen 
injection in Hampfl/fl and HampΔLiv mice (n = 5 to 8 per group). Male samples are 
designated as squares and female samples are designated as circles. Mean ± SEM are 
plotted. Significance determined using either one-way ANOVA with Tukey’s post hoc (A) 
or 2-tailed unpaired t test (C and D). *p < 0.05; **p < 0.01 compared to Hampfl/fl group. 
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Figure S2.2. Inducible deletion of liver hepcidin does not affect HIF-2a-specific 
genes in the kidney and spleen. (A and B) qPCR analysis for HIF-2a-specific and iron 
handling genes in kidney (A) and spleen (B) samples of Hampfl/fl and HampΔLiv mice. 
Male samples are designated as squares and female samples are designated as 
circles. Mean ± SEM are plotted. Significance determined using 2-tailed unpaired t test. 
*p < 0.05; **p < 0.01 compared to Hampfl/fl group. 
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Figure S2.3. The response of intestinal epithelial FPN to systemic iron deficiency 
does not activate intestinal HIF-1a or HIF-2a inflammatory targets. (A) Analysis of 
mean corpuscular hemoglobin (MCH) and mean corpuscular volume (MCV). (B) qPCR 
analysis for HIF-1a-specific transcripts in duodenal samples. (C) qPCR analysis for HIF-
2a-specific inflammatory transcripts in duodenal samples. Male samples are designated 
as squares and female samples are designated as circles. Mean ± SEM are plotted. 
Significance determined using two-way ANOVA with Tukey’s post hoc. 
  



	 71 

 
 

 
Figure S2.4. Intestinal epithelial FPN does not mediate activation of intestinal HIF-
1a or HIF-2a inflammatory targets in response to systemic erythropoietic 
demand. (A) qPCR analysis for HIF-1a-specific transcripts in duodenal samples. (B) 
qPCR analysis for HIF-2a-specific inflammatory transcripts in duodenal samples. Male 
samples are designated as squares and female samples are designated as circles. 
Mean ± SEM are plotted. Significance determined using two-way ANOVA with Tukey’s 
post hoc. 
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Figure S2.5. Temporal deletion of FPN and DMT1 for three months both lead to 
iron-deficiency, microcytic and hypochromic anemia with differences in intestinal 
iron mobilization. (A) Analysis of mean corpuscular hemoglobin (MCH) and mean 
corpuscular volume (MCV). (B) Western blot analysis for duodenal ferritin (Fth1) in 
Fpnfl/fl, FpnΔIE, Dmt1fl/fl, and Dmt1ΔIE mice. Male samples are designated as squares and 
female samples are designated as circles. Mean ± SEM are plotted. Significance 
determined using 2-tailed unpaired t test. ****p < 0.0001 compared between Fpnfl/fl and 
FpnΔIE cohorts. ####p < 0.0001 compared between Dmt1fl/fl and Dmt1ΔIE cohorts. 
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Figure S2.6. Iron efflux through FPN is physiologically relevant and selective for 
HIF-2a. (A) Western blot analysis for FPN in FPNGFP HEK293 cells treated with vehicle 
or 250 ng/mL doxycycline for 24-hours. (B) Relative densitometry to calculate fold 
induction of FPN protein in in vivo and in vitro models using data from Figure 1H, Figure 
6I, and Supplemental Figure 6A. (C) Quantitation of dead cells using trypan blue 
following treatment of FPNGFP HEK293 cells with doxycycline or 200 µM deferoxamine 
(DFO) for 48-hours. (D) Western blot analysis in cytosolic and nuclear fractions of 
FPNGFP HEK293 cells treated with vehicle (V), doxycycline (D), or 100 µM FG4592 (FG) 
for 24-hours. (E) Relative luciferase activity in FPNGFP HEK293 following treatment with 
vehicle (V), doxycycline (D), DFO, or 200 µM ferric ammonium citrate (FAC) (F). Fold 
change in luciferase activity in Empty, NCOA4 sg1, and NCOA4 sg2 FPNGFP HEK293 
cells infected with the PHD reporter and treated with doxycycline for 24-hours (G) 
ELISA in lysates from FPNGFP IEC-6 cells treated with vehicle (V), doxycycline (D), 
doxycycline and 1mg/mL hepcidin (D+H), or DFO for 24-hours. Mean ± SEM are 
plotted. Significance determined using one-way (C, E, G) or two-way (F) ANOVA with 
Tukey’s post hoc. **p < 0.01; ***p < 0.001; ****p < 0.0001 compared to vehicle. #p < 
0.05 compared to doxycycline. $p <0.05 compared to Empty doxycycline. ^^^p<0.001 
compared to NCOA4 sg1 doxycycline.  
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Figure S2.7. Administration of PT2385 does not affect body weight or red blood 
cell size. (A) Body weight measurements of mice during two-week administration of 
either vehicle or PT2385. (B) Analysis of mean corpuscular volume (MCV) and mean 
corpuscular hemoglobin (MCH). Male samples are designated as squares and female 
samples are designated as circles. Mean ± SEM are plotted. Significance determined 
using one-way ANOVA with Tukey’s post hoc. 
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Table 2.1. Chapter 2 qPCR and cloning primers. 
 

Gene Primer Sequence 

Hamp1 F CTATCTCCATCAACAGATGAGACAGA 

Hamp1 R AACAGATACCACACTGGGAA 

Dcytb F CATCCTCGCCATCATCTC 

Dcytb R GGCATTGCCTCCATTTAGCTG 

DMT1 F TTGGCAATCATTGGTTCTGA 

DMT1 R CTTCCGCAAGCCATATTTGT 

Ferroportin F ATGGGAACTGTGGCCTTCAC 

Ferroportin R TCCAGGCATGAATACGGAGA 

Ankrd37 F CGGCCTTGCGTGCTTT 

Ankrd37 R TGGTTGAGGTCAGCACCTGTT 

Transferrin Receptor F CAGTCCAGCTGGCAAAGATT 

Transferrin Receptor R GTCCAGTGTGGGAACAGGTC 

PDK1 F TTACTCAGTGGAACACCGCC  

PDK1 R GTTTATCCCCCGATTCAGGT 

PGK1 F CAAATTTGATGAGAATGCCAAGACT 

PGK1 R TTCTTGCTGCTCTCAGTACCACA 

HK1 F GAATTTCATCAGAGAGCCGC 

HK1 R GCGAGGACAGGCTGTAGATG 

STEAP4 F GGAAACTCATCTGCATGTGCT  

STEAP4 R CTAGAAGGCAGAGCCCACC  

CXCL1 F TCTCCGTTACTTGGGGACAC 

CXCL1 R CCACACTCAAGAATGGTCGC 

Erythropoietin F CATCTGCGACAGTCGAGTTCTG 

Erythropoietin R CACAACCCATCGTGACATTTTC 
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Short Guide RNA for CRISPR/Cas9 

Human NCOA4 sg1 CAGTTGCATAAGCCGTCACC  

Human NCOA4 sg2 GTCTTAGAAGCCGTGAGGTA  
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Chapter 32 

A Genetic Mouse Model of Severe Iron-Deficiency Anemia Reveals Tissue-

Specific Transcriptional Stress Responses and Cardiac Remodeling 

 
Abstract 

Iron is a micronutrient fundamental for life. Iron homeostasis in mammals 

requires sustained postnatal intestinal iron absorption that maintains intracellular iron 

concentrations for central and systemic metabolism, as well as for erythropoiesis and 

oxygen transport. More than one billion people worldwide suffer from iron-deficiency 

anemia (IDA), a state of systemic iron insufficiency that limits the production of red 

blood cells (RBCs) and leads to tissue hypoxia and intracellular iron stress. Despite this 

tremendous public health concern, there are very few genetic models of IDA are 

available to study its progression. Here, I developed and characterized a novel, genetic 

mouse model of IDA. I found that tamoxifen-inducible deletion of the mammalian iron 

exporter, ferroportin (Fpn), exclusively in intestinal epithelial cells leads to loss of 

intestinal iron absorption. Ferroportin ablation yielded a robust phenotype of progressive 

IDA that develops in as little as three months following disruption of intestinal iron 

absorption. I noted that at end-stage IDA, tissue-specific transcriptional stress 

                                                
2 This chapter represents a published manuscript: Schwartz AJ, Converso-Baran K, Michele DE, 
Shah YM. A Genetic Mouse Model of Severe Iron-Deficiency Anemia Reveals Tissue-Specific 
Transcriptional Stress Responses and Cardiac Remodeling, Journal of Biological Chemistry, 
2019. 
 



	 78 

responses occur in which the heart shows little to no hypoxic and iron stress as 

compared to other peripheral organs. However, morphometric and echocardiographic 

analysis revealed massive cardiac hypertrophy and chamber dilation, albeit with 

increased cardiac output at very low basal heart rates. I propose that our intestine-

specific ferroportin knockout mouse model of end-stage IDA could be used in future 

studies to investigate IDA progression and cell-specific responses to hypoxic and iron 

stress. 
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Introduction 

Iron is an essential micronutrient to sustain life, from single-cell bacteria to 

complex, multi-cellular organisms. In mammals, systemic iron homeostasis requires 

multiple organs working in concert to maintain red blood cell (RBC) levels for oxygen 

transport and intracellular iron concentrations for redox and metabolic reactions (1). 

More than two billion people are affected by iron deficiency worldwide and one billion 

suffer from iron-deficiency anemia (IDA) (2). In IDA, iron absorption is limited to an 

extent that restricts the production of RBCs, ultimately leading to decreased transport of 

systemic oxygen and the development of intracellular iron stress (3). IDA is more 

common in developing countries, where it is mainly caused by the inadequate dietary 

consumption of iron, but also from blood loss due to intestinal worm colonization (4). In 

more developed countries, dietary eating habits, such as vegetarianism, as well as 

pathologic conditions that cause bleeding or malabsorption, are common causes (4). 

Patients with IDA are typically treated with dietary iron. A significant number of IDA 

patients are refractory to oral iron supplementation, known as iron-refractory IDA 

(IRIDA) (5). IRIDA patients require intravenous iron supplementation. If uncorrected, 

IDA can result in severe fatigue, weakness, and pathological cardiac complications 

(6,7).  

Our group, among others, has unveiled that systemic iron homeostasis is 

regulated in mammals by a hetero-tissue crosstalk mechanism involving the liver-

derived hormone hepcidin and the intestinal transcription factor hypoxia-inducible factor-

2a (HIF-2a) (8-12). The function of hepcidin is to bind to the only mammalian iron 

exporter, ferroportin (Fpn), resulting in internalization from the plasma membrane, 
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intracellular degradation, and an increase in intracellular iron levels (13). Intestinal HIF-

2a is a cellular iron sensor that transcriptionally activates machinery essential for iron 

absorption in normal physiology and in disease (14). I recently identified that these 

pathways are integrated, whereby HIF-2a activity is controlled by hepcidin/ferroportin 

dynamics in the intestine following downstream changes to intestinal epithelial iron 

concentrations (9). Therefore, in states of normal systemic iron and oxygen, hepatic 

hepcidin is abundantly produced and HIF-2a-mediated intestinal iron absorption is 

restricted. Conversely, during iron demand or systemic hypoxia, hepcidin production is 

repressed, intestinal ferroportin is stabilized, and intestinal HIF-2a becomes 

transcriptionally active and upregulates genes that drive iron absorption. The 

hepcidin/ferroportin/HIF-2a axis is perturbed in nearly all known iron related disorders 

(9,14). In the context of IDA, a genetic origin was recently discovered that is 

characterized by hyperactivation of this pathway following mutation to TMPRSS6, in 

both mice and humans (15,16). TMPRSS6 is a negative regulator of hepcidin 

production that, when lost, leads to chronic degradation of ferroportin and progressive 

and robust IRIDA.  

Despite the public health significance of IDA, very little is understood about the 

kinetics of disease progression and the impact that extreme iron and hypoxic stress 

exerts on different cell types. Several reports have investigated the role of low iron 

during development and in the early postnatal period (17,18), however, these 

manipulations result in developmental abnormalities and cognitive defects that confound 

analysis. Further, there are few and poorly characterized genetic models that give rise 

to severe IDA in mice. Long term dietary manipulation of iron levels in adult mice can 
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lead to IDA, but this model is variable and difficult to generate a state of end-stage IDA 

(11). Recent reports have uncovered organ-specific regulatory mechanism of iron 

homeostasis, particularly in the heart, where a local source of hepcidin is produced to 

specifically regulate cardiac ferroportin and organ-specific iron homeostasis (19). 

However, a systematic analysis of cardiac structure, function, and iron and hypoxia 

sensing during IDA has not been reported. It also remains unclear whether other organs 

respond similarly through unique mechanisms in IDA.  

This paper established an inducible and novel model of progressive, end-stage 

IDA in mice in as little as three months. Through temporal in vivo deletion of ferroportin 

exclusively in the intestinal epithelium, this work characterized the kinetics by which IDA 

progresses following ablation of intestinal iron absorption. In end-stage IDA, tissue-

specific hypoxic and iron stress responses were observed, whereby the heart shows 

relatively little direct hypoxic or iron stress responses, despite the development of 

cardiomegaly and cardiac chamber dilation. Echocardiogram analysis in these mice 

established that IDA decreases heart rate but with increased stroke volume, cardiac 

output, and ejection fraction. Collectively, these data characterized organ specific stress 

responses and the cardiac pathologies of IDA in detail. This novel model of IDA can be 

used to study disease progression and organ-specific responses to iron and hypoxic 

stress, as well as therapies for IRIDA. 
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Methods 

Animals and treatments 

VilCreERT2;Fpnfl/fl mice were described previously (9). Analysis began on mice that 

were either 2.5 weeks or 8 weeks of age, as indicated. Mice were injected with 

tamoxifen (Sigma-Aldrich, St. Louis, MO) at 100 mg/kg of body weight via i.p. for three 

consecutive days to ensure Cre-mediated recombination. All mice were fed with 

standard chow (Research Diets, New Brunswick, NJ) unless indicated as being fed a 

purified AIN-93G iron-replete (350 PPM) or low-iron (< 5 PPM) diet (Dyets, Bethlehem, 

PA). For intestinal protein and RNA analysis, duodenal epithelial scrapes were 

performed, whereby the intestine was opened flat and a microscope slide was used to 

scrape and collect epithelial cells, leaving behind the submucosa. All mice were housed 

at the Unit for Laboratory Animal Management (ULAM) at the University of Michigan 

(IACUC protocol number: PRO00008292). 

 

Hematological and iron analysis 

The Unit for Laboratory Animal Medicine Pathology Core at The University of 

Michigan performed complete blood count analysis. Non-heme iron was quantified as 

described previously (9). Briefly, tissues were homogenized at 100 μL/10 mg in de-

ionized water and incubated with an equal volume of an acid digestion solution (i.e. 1M 

HCl and 10% trichloroacetic acid (Sigma-Aldrich, St. Louis, MO)) for one hour at 95°C. 

Homogenates were spun at full speed for 10 minutes and 50 μL of supernatant was 

mixed with 50 μL of a substrate containing 1:1 1 mM ferrozine: 3M sodium acetate and 

1% mercaptoacetic acid. Reactions were read at 562 nm. 
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Quantitative reverse-transcription PCR  

mRNA was extracted using Trizol (Thermo Scientific, Waltham, MA) per the 

manufacturer’s  instructions. The mRNA was measured by real-time RT-PCR (Life 

Technologies, Carlsbad, CA) using SYBR Green mix (Alkali Scientific, Fort Lauderdale, 

FL). Primers are listed in Table 3.1. Quantification cycle (Cq) values were normalized to 

β-actin and expressed as fold change.  

 

Western blot 

Whole-cell lysates were prepared in RIPA buffer as described previously (9). In 

brief, lysates were separated by SDS-PAGE, transferred to nitrocellulose membrane, 

and probed overnight at 4°C with antibodies for ferritin (FTN) (Cell Signaling, Danvers, 

MA) or GAPDH (Santa Cruz, Dallas, TX). Secondary antibodies were purchased from 

Santa Cruz (Dallas, TX) and membranes were developed using enhanced 

chemiluminescence substrate (Thermo Scientific, Waltham, MA).  

 

Histological and immunohistochemical analysis 

Bright-field histologic analysis was performed on H&E and Picrosirius red-stained 

formalin-fixed paraffin-embedded sections, using reagents from Sigma-Aldrich (St. 

Louis, MO). In brief, for Picrosirius red staining, slides were de-paraffinized and 

incubated with Picrosirius red for 1 hour and washed with an acid solution containing 

0.5% acetic acid. Immunohistochemical analysis was performed on frozen sections, 

following fixation with 10% buffered formalin and blocking with 5% goat serum, using 
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antibodies against ferroportin (MTP11-A, ADI, San Antonio, TX) or  HIF-2a (100-122, 

Novus, St. Louis, MO). For reticulocyte analysis, a 1% methylene blue (Sigma, St. 

Louis, MO) solution was mixed with equal volumes of blood and incubated at room 

temperature for 10 minutes and then smeared onto a microscope slide. 

 

Echocardiogram analysis  

Echocardiography was performed as previously described (37). Briefly, induction 

of anesthesia was performed in an enclosed container filled with 6% isoflurane. After 

induction, the mice were placed on a warming pad to maintain body temperature. 1 – 

1.5% isoflurane was supplied via a nose cone to maintain a surgical plane of 

anesthesia. In all studies, the isoflurane was delivered with 100% oxygen carrier gas 

and the mice were anesthetized for less than 30 minutes total to collect the functional 

data and limit any isoflurane effect that may confound experimental results. The hair is 

removed from the upper abdominal and thoracic area with depilatory cream. ECG is 

monitored via non-invasive resting ECG electrodes. Transthoracic echocardiography 

was performed in the supine or left lateral position. Two-dimensional, M-mode, Doppler 

and tissue Doppler echocardiographic images were recorded using a Visual Sonics’ 

Vevo 2100 high resolution in vivo micro-imaging system with a MS 550D transducer 

which has a center frequency of 40 MHz and a bandwidth of 22-55 MHz. I measured LV 

ejection fraction from the two-dimensional long axis view. I measured systolic and 

diastolic dimensions and wall thickness by M-mode in the parasternal short axis view at 

the level of the papillary muscles. Fractional shortening and ejection fraction were also 

calculated from the M-mode parasternal short axis view. Diastolic function was 
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assessed by conventional pulsed-wave spectral Doppler analysis of mitral valve inflow 

patterns (early [E] and late [A] filling waves). Doppler tissue imaging (DTI) was used to 

measure the early (Ea) diastolic tissue velocities of the septal annulus of the mitral valve 

in the apical 4-chamber view. 

 

Statistics 

Results are expressed as mean ± SEM. Significance between two groups was 

calculated by unpaired t test. Prism 7.0 software (GraphPad Software, La Jolla, CA) 

was used to conduct analyses. 
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Results 

Inducible deletion of intestinal epithelial ferroportin in adult mice leads to end-

stage iron-deficiency anemia 

To study the kinetics by which IDA progresses in mice with loss of intestinal iron 

absorption, Fpn-floxed mice were bred to mice that express a tamoxifen-inducible, 

intestinal epithelium-specific Cre recombinase (VilCreERT2;Fpnfl/fl), giving rise upon 

tamoxifen treatment to mice null for ferroportin in the intestinal epithelium (FpnΔIE) (9). 

Adult, two-month old Fpnfl/fl and VilCreERT2;Fpnfl/fl mice were injected with tamoxifen (n = 

4, respectively), bled three months later to assess blood iron parameters, and then 

closely monitored until visible, phenotypic symptoms of IDA arose (Figure 3.1A). Six 

months following tamoxifen injection, FpnΔIE mice began to lose their hair and develop 

white, translucent paws; all animals were therefore sacrificed at this time point (Figure 

3.1B). The ferroportin protein was still absent in duodenal sections of FpnΔIE mice six 

months following tamoxifen treatment, as compared to Fpnfl/fl mice (Figure 3.1C). 

Complete blood count analysis at three and six months following tamoxifen injection 

revealed robust, progressive IDA, as red blood cell (RBC) numbers, hemoglobin (HB) 

counts, and hematocrit (HCT) were significantly decreased in FpnΔIE mice compared to 

Fpnfl/fl littermates, whereas mean corpuscular volume (MCV) and mean corpuscular 

hemoglobin (MCH) increased from the three to six month time point, indicating 

expansion of the reticulocyte pool (Figure 3.1D). Methylene blue staining confirmed a 

marked expansion of reticuluocytes and an overall decrease in cellularity in FpnΔIE mice. 

(Figure 3.1E). These data demonstrate that complete ablation of intestinal iron 
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absorption by intestinal epithelial ferroportin deletion in adult mice results in severe IDA 

in six months. 

 

Severe iron-deficiency anemia leads to inflammation and necrosis in the liver but 

spares other organs involved in iron homeostasis 

 To assess the effect of end-stage IDA on organs involved in maintaining 

systemic iron homeostasis, the liver, spleen, and duodenum were histologically 

analyzed by H&E. The spleen was devoid of its red pulp in FpnΔIE mice (Figure 3.2A). 

Interestingly, the duodenum was unaffected, potentially explained by the short lifespan 

of the intestinal epithelium, which is approximately 3 to 5 days (Figure 3.2A). 

Interestingly, the liver exhibited robust morphological damage, including signs of 

inflammation and necrosis (Figure 3.2A). To further assess this phenotype, higher 

magnification images were taken of liver H&Es and coupled to picrosirius red staining to 

reveal collagen deposition and fibrosis. As shown in Fig. 2B, FpnΔIE mice displayed 

marked collagen deposition, particularly surrounding and extended from central veins. 

Further assessment of the liver revealed inflammatory foci and necrotic areas (Figure 

3.2C). An assessment of inflammatory transcripts indicated that IDA primarily activates 

Tgfβ and Il6 expression in the liver (Figure 3.2D). Collectively, these data demonstrate 

that, among the major players in systemic iron homeostasis, end-stage IDA mostly 

impacts the liver, resulting in inflammation, necrosis, and activation of Tgfβ and Il6. 

 

End-stage iron-deficiency anemia activates a hypoxic transcriptional response in 

the intestine 
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 IDA starves tissues and cells of both iron and oxygen, which are substrates that 

control the protein stability of HIF-1a and HIF-2a (20). Intestinal iron absorption requires 

HIF-2a, the master intestinal transcriptional regulator of apical and basolateral iron 

transport. I recently showed that the canonical intestinal HIF-2a response is 

downstream of liver hepcidin kinetics during both iron deficiency and iron overload (9). 

This axis selectively activates HIF-2a during systemic iron demand, and not HIF-1a, via 

ferroportin-mediated iron efflux, a response that can be blunted by intracellular iron 

retention. This work suggests that intestinal epithelial iron levels are the primary 

stimulus that controls the oxygen-sensitive transcription factor, HIF-2a, during states of 

systemic hypoxia. In this present study, I sought to investigate the transcriptional 

response of intestinal hypoxic machinery in end-stage IDA. The duodenal ferroportin 

(Fpn) transcript was significantly reduced in FpnΔIE mice (Figure 3.3A), confirming 

efficient recombination 6 months following tamoxifen treatment. Interestingly, activation 

of iron-absorptive HIF-2a-specific iron target genes was observed, Dcytb, Dmt1, and 

Ankrd37, while there was no change in the expression of duodenal transferrin receptor 

(Tfrc), an indicator of cellular iron status (Figure 3.3A). Staining of duodenal sections 

revealed that the HIF-2a protein was massively stabilized in FpnΔIE mice (Figure 3.3B). 

The intracellular iron storage protein ferritin (FTN) was elevated in FpnΔIE mice, 

confirming iron retention despite systemic IDA (Figure 3.3C). HIF-1a-specific target 

genes, Pdk1, Pgk1, Bnip3, and Ndufa4l2, which are readouts of intracellular hypoxia, 

were all elevated (Figure 3.3D). Lastly, there was no change in HIF-2a-regulated 

inflammatory genes (Figure 3.3E). These data indicate that, despite intestinal epithelial 

iron retention, end-stage IDA generates a state of intestinal hypoxia that is sufficient to 
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activate HIF-2a-specific iron target genes and HIF-1a-specific target genes, but not 

HIF-2a-regulated inflammatory target genes.  

 

Severe iron-deficiency anemia leads to tissue-specific hypoxic and iron stresses 

that spare the heart 

In response to low intracellular oxygen, cells upregulate anaerobic glycolysis to 

sustain energy production, a process that is primarily mediated by the transcriptional 

upregulation of glycolytic genes via HIF-1a activity (21). The transcriptional response to 

low intracellular iron is regulated primarily by HIF-2a (14). I sought to address the HIF-

1a and HIF-2a transcriptional response in peripheral tissues during IDA to assess 

relative oxygen and iron stress responses. In general, there was significant activation of 

HIF-1a and HIF-2a target genes in all tissues other than the heart (Figures 3.4A,B). Of 

note, erythropoietin expression (Epo), a hormonal signal that increases RBC production, 

was significantly elevated in the kidneys of FpnΔIE mice, which is a process thought to 

be repressed during IDA (22-24). Recent literature has demonstrated that the heart 

maintains iron homeostasis by producing a local source of hepcidin that controls cell-

autonomous ferroportin and cardiomyocyte iron levels. I did not observe a significant 

increase in hepcidin gene (Hamp) expression in the heart during IDA (Figure 3.4C). 

Collectively, these data demonstrate that IDA engenders hypoxic and iron stress across 

peripheral tissues other than the heart, which further confirms a unique, local 

mechanism of iron homeostasis in cardiomyocytes. 
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Iron-deficiency anemia leads to cardiac remodeling and pathologies in cardiac 

structure and function 

 Patients that suffer from IDA develop cardiac complications (6,7). Given the 

unique iron regulatory mechanisms in the heart, I sought to characterize this phenotype 

by in vivo echocardiogram technology 6 months after tamoxifen administration. Forty-

eight hours before sacrifice, M-mode echocardiographic analysis revealed increases in 

septum and posterior wall thickness, as well as thickening of papillary muscles, in 

FpnΔIE mice (Figure 3.5A). Quantitatively, cardiac structure was tremendously altered, 

with increases in left ventricular mass, left ventricular volume, interventricular septum, 

and posterior wall thickness at diastole, as well as ascending aorta diameter (Figure 

3.5B). Interestingly, heart rate was decreased in the FpnΔIE mice, despite increase in 

stroke volume, cardiac output, ejection fraction, and the peak velocity in the aorta, 

confirming disruption to cardiac function (Figure 3.5C). Heart iron content was 

decreased by about 50%, despite a quadrupling of left ventricular mass (Figure 3.5D). 

Decreases in liver, spleen, and kidney iron content were also observed (Figure 3.5D). 

These data, in connection with the data above, demonstrate that IDA does not lead to 

cardiac hypoxia or iron stress despite tremendous cardiomegaly and perturbation of 

cardiac function. 

 

Ablation of intestinal epithelial ferroportin in young mice leads to a more rapid 

iron-deficiency anemia  

To determine if there was an age effect on the development of IDA following loss 

of intestinal ferroportin, 2.5 week old Fpnfl/fl and VilCreERT2;Fpnfl/fl mice were injected with 
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tamoxifen and closely monitored (Figure 3.6A). By three months following treatment, 

FpnΔIE mice began to display similar phenotypic changes to the aforementioned adult 

cohort (e.g. hair loss, white paws, etc.) and were thus euthenized. The ferroportin 

protein was absent in duodenal sections of FpnΔIE mice (Figure 3.6B). Furthermore, the 

ferroportin transcript was significantly decreased in this FpnΔIE cohort (Figure 3.6C). 

Complete blood count analysis revealed robust IDA, as RBC, HB, HCT, MCH, and MCV 

were all significantly decreased in FpnΔIE mice compared to Fpnfl/fl littermates, to the 

same extent as adult mice six months following treatment (Figure 3.6D). Furthermore, 

heart mass normalized to tibia length was increased already at 3 months post tamoxifen 

injection, indicating cardiac hypertrophy (Figure 3.6E). These data demonstrate that 

young mice progress to IDA more rapidly by intestinal ferroportin ablation than adult 

mice and this genetic model of severe IDA with cardiomegaly can be made more rapid 

by treating young VilCreERT2;Fpnfl/fl  mice with tamoxifen.  
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Discussion 

 A constant influx of postnatal intestinal iron is critical to maintain intracellular iron 

concentrations for metabolism and erythropoiesis for systemic oxygen transport in 

mammals. However, iron deficiency remains the most common nutrient deficiency in 

humans, affecting nearly two billion people worldwide (4). Of these, over one billion 

people suffer from IDA, a state of iron insufficiency that limits the production of RBCs 

and results in systemic tissue hypoxia and intracellular iron stress (2). Few model 

systems exist to study the kinetics of IDA and the effect of extreme iron and oxygen 

stress on peripheral tissues. This present work demonstrates a temporal model of 

severe IDA in mice via the tamoxifen-inducible ablation of ferroportin in the intestinal 

epithelium. In as little as three months, severe, end-stage IDA is observed when 2.5 

week old VilCreERT2;Fpnfl/fl mice are treated with tamoxifen. I discovered tissue-specific 

activation of hypoxic and iron transcriptional stress responses, whereby the heart is 

largely spared as compared to other peripheral organs. This transcriptional 

phenomenon was observed despite the quadrupling of left ventricular mass, significant 

increases in cardiac output, and the development of cardiomegaly as revealed by in 

vivo echocardiogram. I also demonstrate that severe IDA can activate the HIF-2a iron 

absorptive transcriptional program in the intestine despite a surplus of intracellular iron. 

Collectively, this work reveals a robust and reliable model to study IDA, tissue-specific 

responses to iron and oxygen stress, and the mechanisms of cardiac remodeling in iron 

related disorders. 

 Previous models that give rise to IDA in mice have utilized strategies of dietary 

iron manipulation or genetic deletion of iron handling in the embryo (6,11,17,18). 
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However, mice are extremely resistant to IDA when placed on iron deficient diets (9,11). 

This can be explained, at least in part, by iron contamination in proprietary diets. The 

ubiquitous nature of iron-containing proteins complicates the ability to remove iron from 

these diets, leaving behind sufficient iron levels to maintain systemic iron homeostasis 

for extended periods of time. Genetic models that manipulate intestinal iron absorption 

have relied on embryonic knockout strategies (18,25). These models dramatically 

disrupt embryonic and postnatal development, as disruption to iron homeostasis early in 

life can affect organ development and overall cognitive function (17). Our present model 

of IDA allows for postnatal development and the establishment of proper iron 

homeostasis before inducing a disease state. Surprisingly, mice survival appeared 

unaffected despite mean hemoglobin levels of <5g/dL and  mean hematocrits <12%. 

The lowest observed hematocrit was 6.5%. Previous experiments in anesthetized 

animals with isovolumic anemia have shown that oxygen delivery can be maintained to 

approximately similar Hb concentrations (3-5g/DL) and hematocrits (10-15%), but organ 

function starts to decline near these values and is correlated with development of lactic 

acidosis (26). Furthermore, the progressive nature of this genetic model allows for the 

temporal characterization of IDA in ways never executed before. This model is limited, 

however, because it recapitulates IRIDA, a rare phenotype of IDA that is refractory to 

oral iron supplementation due to the inability to absorb intestinal iron. Future work will 

need to carefully describe IDA progression and more clearly define the mechanisms 

behind disparate intracellular stress responses in peripheral tissues. 

 In addition to the hepcidin/ferroportin/HIF-2a axis that regulates systemic iron 

homeostasis, there exists a ubiquitous cell-autonomous mechanism of intracellular iron 
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sensing and regulation via iron-regulatory protein (IRP) and iron response element 

(IRE) machinery. This system controls cellular iron homeostasis by modulating the 

translation of mRNAs involved in iron handling via the binding of IRPs with IREs in the 

5’- or 3’- untranslated region (UTR) of these transcripts. Erythropoietin (EPO), an 

endocrine hormone produced by the kidney to drive RBC production in the bone 

marrow, is a classical HIF-2a-target gene regulated by systemic hypoxia (24,27). HIF-

2α contains a 5′-UTR IRE that is responsible for translational inhibition during states of 

iron deficiency (22-24). This IRP/IRE interaction is thought to serve as a molecular 

brake on HIF-2a-mediated kidney EPO expression to restrict RBC production when iron 

levels are limited for hemoglobin synthesis. Surprisingly, I find in this work that the Epo 

transcript is induced 1000-fold, despite severe kidney iron deficiency in IDA. This finding 

might indicate that the IRP/IRE system is an insufficient mechanism to dampen HIF-2a 

in the kidney during the severe disease state of IDA. Moreover, high EPO production in 

IDA is likely a pathological feature in which red blood cell production is continually 

attempted despite insufficient circulating iron levels. This finding may explain the 

expansion of reticulocytes that I observe in this manuscript. In addition to IRE/IRP 

machinery, HIF-2a is also regulated at the post-transcriptional level by PHD enzymes, 

whereby intracellular iron deficiency limits PHD enzyme activity to stabilize the HIF-2a  

protein (9). It is therefore possible that a hepcidin/ferroportin/PHD axis may exist in EPO 

producing cells in the kidney, similar to the intestine, whereby the 

hepcidin/ferroportin/PHD induction of HIF-2a outweighs the IRP/IRE break on HIF-2a in 

contexts when both pathways are active. In the intestine, the dominance of the 

hepcidin/ferroportin/PHD axis over IRP/IRE machinery enables HIF-2α protein 
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stabilization and an increase in iron absorption during states of iron deficiency. 

However, in the kidney during IDA, the interplay between these pathways appears to be 

pathological given the inappropriate, sustained, and paradoxical production of EPO. 

More work will need to be done to understand the complete molecular mechanisms of 

Epo expression during normal physiology and in disease states such as IDA. 

 Transcriptional stress responses to states of low intracellular oxygen are 

mediated by the family of hypoxia inducible factors, namely HIF-1a and HIF-2a. These 

transcription factors activate unique and overlapping target genes to upregulate 

anaerobic glycolysis and modulate cellular metabolism in order to survive in low oxygen 

environments (14,20,21). Our lab, among others, has shown that HIF-2a, but not HIF-

1a, is a direct cellular iron sensor (10,12). More recently, I revealed that intestinal HIF-

2a is primarily regulated by intracellular iron levels during states of systemic iron 

demand, whereby the canonical and physiological HIF-2a response can be blunted by a 

state of intracellular iron excess (9). Interestingly, I show in this present work that the 

intestinal HIF-2a iron absorptive transcriptional program is active during severe IDA, 

despite excess intracellular iron following ferroportin ablation. This finding suggests that, 

while intestinal HIF-2a is mainly responsive to intracellular iron levels in physiological 

iron demand, HIF-2a maintains an oxygen sensing capacity during severe tissue 

hypoxia in IDA. Interestingly, HIF-2a transcriptional targets involved in inflammation 

were not active, despite activation of iron absorptive genes. This finding is in line with 

recent work to show that HIF-2a functions with cofactors and other transcriptional 

partners to regulate subsets of target genes once the protein is stabilized (28,29). 

Future work will need to define how specific HIF target genes are regulated during 



	 96 

unique environmental ques, as well as the relative contribution of HIF-2a oxygen and 

iron sensing in different cells and tissues. 

Cardiac structure and function is perturbed in iron related disorders, including 

iron deficiency, iron overload, and anemia. In IDA in humans, the heart undergoes 

massive cardiac hypertrophy and remodeling to increase cardiac output and prolong 

survival when systemic oxygen transport becomes limiting (30,31). A recent study 

comparing genetic models of sickle cell anemia with diet induced IDA in adult mice 

showed that after 3 months of anemia (5-9 g/dL Hb with a IDA target of 7.5 g/dL Hb) 

both models develop a high output functional state in the heart (32). However, while the 

sickle cell anemia produced a more severe restrictive cardiomyopathy with fibrotic 

remodeling, this study reported 3 months of IDA beginning at 5 months of age failed to 

produce significant cardiac hypertrophy (32). This is consistent with our findings of a 

more slowly progressive IDA phenotype in adult mice and suggests hemoglobin 

concentrations <5g/DL and hematocrits <15% in IDA are required for inducing 

significant cardiac hypertrophy.  Interestingly, the cardiac hypertrophy in IDA can be 

explained, at least in part, simply by decreases in cardiac iron stores because genetic 

disruption to the serum uptake of iron exclusively in cardiomyocytes leads to cardiac 

hypertrophy (33). Using in vivo echocardiogram, I detail in this present work the 

structural and functional changes that occur in the heart during severe IDA. I observed 

structural changes that include the quadrupling of left ventricular mass and increases in 

left ventricular volume and posterior wall thickness at diastole. I also observed 

increases in cardiac output and stroke volume, despite a decrease in heart rate and 

total heart iron content. Interestingly, in spite of these pathophysiological changes, the 
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heart was largely spared from transcriptional stress responses downstream of HIF that 

would demonstrate tissue hypoxia and iron stress. Recent literature has revealed that 

cardiomyocytes rely on cell-autonomous mechanisms to control iron homeostasis in the 

heart that are distinct from systemic mechanisms of iron homeostasis (19). While 

normal mice do not normally show lower arterial blood oxygen saturation or heart rate 

under the 1-1.5%  isoflurane conditions used here for the cardiac functional studies (34-

36), I cannot rule out that IDA mice are more susceptible to subtle effects of isoflurane 

on arterial blood oxygen saturation.   I note that the mice in this present work were 

maintained on 1-1.5% isoflurane delivered in 100% oxygen carrier gas even though 

room air is sufficient to maintain arterial oxygen saturation in isoflurane anesthetized 

wild-type mice (35). Taken together, these data might suggest that cell-autonomous 

mechanisms of cardiac iron handling are sufficient to prevent overt iron and oxygen 

stress during IDA. Moreover, it is possible that the heart is somehow spared by 

peripheral organs and that serum iron and oxygen are redirected to the heart during 

stress. Future work will need to identify the signaling pathways that mediate the robust 

cardiac remodeling that is observed in IDA, as well as the complete molecular 

mechanisms of cardiac iron homeostasis that prevent hypoxic and iron transcriptional 

stress responses. 

 In conclusion, our work demonstrates a novel, robust, and inducible model of IDA 

in mice. I provide new insights into the molecular mechanisms of HIF signaling and 

IRP/IRE kinetics. I also characterize the cardiac changes of IDA and unveil unique 

tissue-specific transcriptional stress responses across peripheral tissues during hypoxic 

and iron stress.  
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Table 3.1. Chapter 3 qPCR Primers. 

Gene Primer Sequence 

Dcytb F CATCCTCGCCATCATCTC 

Dcytb R GGCATTGCCTCCATTTAGCTG 

DMT1 F TTGGCAATCATTGGTTCTGA 

DMT1 R CTTCCGCAAGCCATATTTGT 

Ferroportin F ATGGGAACTGTGGCCTTCAC 

Ferroportin R TCCAGGCATGAATACGGAGA 

Ankrd37 F CGGCCTTGCGTGCTTT 

Ankrd37 R TGGTTGAGGTCAGCACCTGTT 

Transferrin Receptor F CAGTCCAGCTGGCAAAGATT 

Transferrin Receptor R GTCCAGTGTGGGAACAGGTC 

PDK1 F TTACTCAGTGGAACACCGCC  

PDK1 R GTTTATCCCCCGATTCAGGT 

PGK1 F CAAATTTGATGAGAATGCCAAGACT 

PGK1 R TTCTTGCTGCTCTCAGTACCACA 

Bnip3 F TGAAGTGCAGTTCTACCCAGG  

Bnip3 R CCTGTCGCAGTTGGGTTC 

Ndufa4I2 F AGTCTAGGGACCCGCTTCTAC 

Ndufa4I2 R TGTACTGGTCATTGGGACTCA 

STEAP4 F GGAAACTCATCTGCATGTGCT  

STEAP4 R CTAGAAGGCAGAGCCCACC  

CXCL1 F TCTCCGTTACTTGGGGACAC 

CXCL1 R CCACACTCAAGAATGGTCGC 

Erythropoietin F CATCTGCGACAGTCGAGTTCTG 

Erythropoietin R CACAACCCATCGTGACATTTTC 

Hamp1 F CTATCTCCATCAACAGATGAGACAGA 
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Hamp1 R AACAGATACCACACTGGGAA 

Tnfα F AGGGTCTGGGCCATAGAACT 

Tnfα R CCACCACGCTCTTCTGTCTAC 

Tgfβ F CAACCCAGGTCCTTCCTAAA 

Tgfβ R GGAGAGCCCTGGATACCAAC 

CXCL5 F TGCATTCCGCTTAGCTTTCT  

CXCL5 R CAGAAGGAGGTCTGTCTGGA 

Cox 2 F GGCGCAGTTTATGTTGTCTGT 

Cox 2 R CAAGACAGATCATAAGCGAGGA 

Il6 F ACCAGAGGAAATTTTCAATAGGC 

Il6 R TGATGCACTTGCAGAAAACA 

Il1β F AAGAGCTTCAGGCAGGCAGTATCA 

Il1β R TGCAGCTGTCTAGGAACGTCA 

Il22 F TCGCCTTGATCTCTCCACTC 

Il22 R GCTCAGCTCCTGTCACATCA  

IL23 F GCTCCCCTTTGAAGATGTCA 

Il23 R GACCCACAAGGACTCAAGGA 
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Figure 3.1. Intestinal epithelial ferroportin deletion in adult mice gives rise to 
progressive and end-stage iron-deficiency anemia. (A) Schematic of experimental 
design, (B) Gross images of Fpnfl/fl and FpnΔIE mice 6 months after tamoxifen 
administration, (C) Representative ferroportin staining in duodenal sections of Fpnfl/fl 
and FpnΔIE mice, images at 40x, (D) Analysis of red blood cells (RBC), hemoglobin 
(HB), hematocrit (HCT), mean corpuscular hemoglobin (MCH), and mean corpuscular 
volume (MCV) at 3 and 6 months following tamoxifen injection, (E) Representative 
methylene blue staining for reticulocytes, images at 60x. Mean ± SEM are plotted. **p < 
0.01; ***p < 0.001; ****p < 0.0001 compared between Fpnfl/fl and FpnΔIE cohorts within 
each time point, using 2-tailed unpaired t test. #p < 0.05; # #p < 0.01 compared 
between individual FpnΔIE mice at 3 month and 6 month time points, using 2-tailed 
paired t test.  
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Figure 3.2. Histological analysis of peripheral organs involved in iron 
homeostasis reveals inflammation and necrosis in the liver. (A) Representative 
H&E analysis of liver at 5x and spleen and duodenum at 20x from Fpnfl/fl and FpnΔIE 

cohorts, (B) Representative H&E and Picrosirius Red analysis of liver from Fpnfl/fl and 
FpnΔIE cohorts, images at 20x, (C) Additional representative H&E images of liver from 
FpnΔIE cohorts, images at 20x (D) qPCR analysis of inflammatory genes in livers of 
Fpnfl/fl and FpnΔIE cohorts. All data here is from mice 6 months post-tamoxifen treatment. 
Mean ± SEM are plotted. Significance determined using 2-tailed unpaired t test. *p < 0.5 
compared between Fpnfl/fl and FpnΔIE cohorts. 
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Figure 3.3. Iron-deficiency anemia leads to transcriptional activation of iron and 
hypoxic target genes in the intestine despite intestinal epithelial iron retention. 
(A) qPCR analysis for duodenal HIF-2a-specific and iron-handling transcripts, (B) 
Representative HIF-2a staining in duodenal sections of Fpnfl/fl and FpnΔIE mice, images 
at 40x, (C) Western blot analysis and quantification for duodenal ferritin (FTN) 
abundance, (D) qPCR analysis for duodenal HIF-1a-specific transcripts, (E) qPCR 
analysis for duodenal HIF-2a-specific and inflammatory transcripts. All data here is from 
mice 6 months post-tamoxifen treatment. Mean ± SEM are plotted. Significance 
determined using 2-tailed unpaired t test. *p < 0.5; **p < 0.01; ***p < 0.001; ****p < 
0.0001 compared between Fpnfl/fl and FpnΔIE cohorts. 
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Figure 3.4. The heart is spared from hypoxic and iron stresses that affect 
peripheral tissues during iron-deficiency anemia. (A) qPCR analysis for HIF-2a-
specific and iron-handling transcripts in liver, heart, spleen, and kidney, (B) qPCR 
analysis for HIF-1a-specific transcripts in liver, heart, spleen, and kidney, (C) qPCR 
analysis for hepcidin (Hamp) in liver, heart, spleen, and kidney. All data here is from 
mice 6 months post-tamoxifen treatment. Mean ± SEM are plotted. Significance 
determined using 2-tailed unpaired t test. *p < 0.5; **p < 0.01; ****p < 0.0001 compared 
between Fpnfl/fl and FpnΔIE cohorts within each tissue group.  
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Figure 3.5. Echocardiogram analysis of iron-deficiency anemia reveals 
cardiomegaly and disruption to cardiac function. (A) M-mode images from 
echocardiogram analysis in Fpnfl/fl and FpnΔIE mice at end-stage iron-deficiency anemia, 
(B) Quantification of cardiac structure parameters, left ventricular mass (LV Mass), left 
ventricular volume at diastole (LV Vol. Diastole), interventricular septum width at 
diastole (IVS Diastole), posterior wall thickness at diastole (PW Diastole), and 
ascending aorta diameter (AoV Diam.), (C) Quantification of cardiac function 
parameters, heart rate (HR), stroke volume (SV), cardiac output (CO), ejection fraction 
(EF), and aorta velocity peak gradient (Ao Peak Vel.), (D) heart, liver, spleen, and 
kidney iron content. All data here is from mice 6 months post-tamoxifen treatment. 
Mean ± SEM are plotted. Significance determined using 2-tailed unpaired t test. *p < 
0.5; **p < 0.01; ****p < 0.0001 compared between Fpnfl/fl and FpnΔIE cohorts. 
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Figure 3.6. End-stage iron-deficiency anemia develops more rapidly when 
induced in young mice. (A) Schematic of experimental design, (B) Representative 
ferroportin staining in duodenal sections of Fpnfl/fl and FpnΔIE mice, images at 40x, (C) 
qPCR analysis of the duodenal ferroportin (Fpn) transcript in Fpnfl/fl and FpnΔIE mice, (D) 
Analysis of red blood cells (RBC), hemoglobin (HB), hematocrit (HCT), mean 
corpuscular hemoglobin (MCH), and mean corpuscular volume (MCV), dashed line 
indicate six month values observed in experiment in FpnΔIE adult mice reported in Figure 
1, (E) heart mass normalized to tibia length. All data here is from mice 3 months post-
tamoxifen treatment. Mean ± SEM are plotted. Significance determined using 2-tailed 
unpaired t test. **p < 0.01; ***p < 0.001;  ****p < 0.0001 compared between Fpnfl/fl and 
FpnΔIE cohorts.  
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Chapter 4 

 

The Colon Tumor Epithelium Produces an Ectopic Source of Hepcidin that 

Controls Iron-Dependent Cancer Cell Metabolism and Tumorigenesis 

 

Abstract 

Human epidemiological studies have shown a correlation between dietary iron 

intake and/or systemic iron levels and colorectal cancer (CRC) risk. Iron is sequestered 

in colorectal tumor tissue, leading to massive intratumoral iron stores that are essential 

for growth and survival. However, the complete molecular mechanisms of local iron 

handling in CRC remain largely unknown. At the systemic level, iron homeostasis is 

maintained by the liver-derived, endocrine hormone, hepcidin. Hepcidin binds to the 

only known mammalian iron exporter, ferroportin, resulting in internalization and 

degradation of ferroportin.  The present work revealed that the ferroportin protein is 

expressed in adjacent normal colon tissue but is absent in colon tumor tissue. A cellular 

enrichment strategy demonstrated that tumor epithelial cells produce a major source of 

ectopic, intratumoral hepcidin in CRC that portends poor patient survival. Mice deficient 

for the hepcidin gene specifically in colon tumor epithelium exhibited significant 

decreases in tumor number, burden, and size compared to wild-type littermates in a 

sporadic model of CRC, whereas hepcidin overexpression increased tumor size in an 

orthotopic model. Hepcidin promoter analysis demonstrated that hypoxia and its 
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downstream transcription factor, hypoxia inducible (HIFs) factors-2α, are sufficient to 

activate the hepcidin promoter in CRC-derived cell lines. Furthermore, intratumoral 

hepcidin was necessary for iron-dependent activation of the STAT3 pathway. These 

data suggest that the HIF-2α induction of hepcidin in the tumor epithelium establishes 

an axis to degrade ferroportin and sequester iron in colorectal tumors in order to 

maintain iron-dependent cancer cell metabolism and drive tumorigenesis. 
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Introduction 

 Colorectal cancer (CRC) is the third most common type of cancer and it is the 

third leading cause of cancer-related death in the United States (1). A hallmark of CRC 

is the process by which these tumors deregulate cellular energetics in ways that afford a 

growth and survival advantage (2). Tremendous attention has been given to 

understanding how macromolecules, such as glucose, lipids, proteins, and nucleic 

acids, are used differently by CRC cells than adjacent normal cells (3-5). However, the 

production of macromolecules is achieved via redundant systems that offer tumors a 

multitude ways to evolve resistance to therapeutics that target these pathways. 

Micronutrients are exogenously derived, essential elements that are required by 

organisms in small quantities for ubiquitous cellular processes (6). Despite the fact that 

micronutrients are central to cellular metabolism and growth promoting pathways, very 

little is known about the direct molecular role of micronutrients in cancer cell 

metabolism. 

 Iron is a metal micronutrient that is required by all living organisms, from single 

cell bacteria to complex, multicellular organisms that include humans (7). On the cellular 

level, iron orchestrates basic energy metabolism, mitochondrial function, and DNA 

synthesis, among other functions (8, 9). Interestingly, epidemiological data has 

correlated iron levels with CRC risk. Individuals with high red meat intake, which 

contains large quantities of heme iron, and patients with disease of iron overload are at 

an increased risk of developing CRC (10-12). Moreover, CRC cells sequester massive 

iron stores relative to adjacent normal cells (13). CRC is the only malignancy that 

maintains access to two sources of iron acquisition: i) systemic uptake from iron in 
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circulation, and ii) intestinal lumen iron uptake. Accordingly, human colon tumors 

capitalize on this unique environment by upregulating iron import from the intestinal 

lumen via overexpression of the apical iron transporter, divalent metal transporter-1 

(DMT1) (13, 14). In addition to hyper-activating the many physiological metabolic 

pathways that require iron, cancers can also use iron in unique ways to directly activate 

oncogenic STAT3 pathways, WNT signaling, DNA-synthesis, reactive oxygen species, 

and modulate P53 (13, 15-18). Intratumoral iron stores and iron-dependent oncogenic 

signaling pathways are essential to CRC growth and survival, as genetic disruption to 

CRC iron uptake decreases tumor number, burden, and size (13, 14). 

 Despite these data, an important, unaddressed paradox is the molecular 

mechanism by which CRC sequesters massive iron stores. On the systemic level, iron 

handling is regulated by a liver-derived, endocrine hormone, hepcidin (19). The 

molecular function of hepcidin is to bind to the only mammalian iron exporter, 

ferroportin, resulting in ferroportin internalization from the membrane, intracellular 

degradation, and an increase in intracellular iron concentrations (20). Ferroportin is 

predominately expressed on cells that regulate systemic iron handling, namely 

hepatocytes, intestinal enterocytes, and macrophages of the reticuloendothelial system 

(8). Therefore, in the presence of hepcidin, ferroportin is continually internalized from 

the membrane and iron mobilization into circulation is limited; in the absence of 

hepcidin, ferroportin is rapidly stabilized and iron is exported into plasma.  

Interestingly, in addition to these canonical sources of hepcidin and ferroportin, 

recent reports have shown that these proteins can be produced at lower levels in 

peripheral tissues that are not involved in systemic iron metabolism (8). Moreover, a 
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recent investigation unveiled that hepcidin can be produced locally by cardiomyocytes 

to establish a cell-autonomous axis that regulates cardiac ferroportin and maintains 

cardiomyocyte iron levels for cardiac function (21). In the context of cancer, reports 

have also begun to speculate whether hepcidin and/or ferroportin are utilized to 

modulate local iron handling inside of tumors (22-25). In this report, I demonstrate that 

colon tumors produce a local source of extra-hepatic hepcidin that controls iron-

dependent tumorigenesis and cancer cell metabolism. High levels of intratumoral 

hepcidin expression portend a significant decrease in overall patient survival and 

correlate with a decrease in ferroportin protein abundance. Using a cellular enrichment 

strategy in combination with genetic mouse models, I confirm that the majority of local, 

intratumoral hepcidin in CRC is produced by epithelial cells. Unlike hepatocytes, 

intratumoral hepcidin in CRC is not regulated by iron, but is a direct target of hypoxia 

inducible factor-2a. Lastly, hepcidin is necessary and sufficient to drive tumorigenesis 

and activation of iron-dependent STAT3 signaling in CRC. Collectively, these findings 

unveil basic mechanisms by which local iron handling is modulating in CRC and unveil 

potential avenues for adjuvant therapeutics in cancer treatment. 
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Methods 
 

Animals 

For embryonic, colon epithelial-specific disruption of hepcidin, mice floxed for 

Hamp1 (Hampfl/fl) were crossed to mice harboring Cre recombinase under the control of 

the CDX2 promoter (CDX2Cre) to generate CDX2Cre;Hampfl/fl mice. This line was then 

crossed to APCfl/+ mice to generate a sporadic model of CRC with concomitant hepcidin 

deletion (i.e. CDX2Cre;APCfl/+;Hampfl/fl mice). All other mouse models (i.e. 

CDX2CreER;APCfl/fl;KRASG12DLSL;p53fl/fl, CDX2ER; HIF-2aOE, CDX2ER;APCfl/fl;HIF-2aOE, 

CDX2ER;APCfl/+;HIF-2afl/fl) have been previously used (13, 26, 27). Littermates wild-type 

for the gene of interest were used as controls for all animal studies and analysis began 

on mice that were between 2 and 2.5 months of age for each of the respective 

experiments. Mice were injected i.p. with tamoxifen (Sigma-Aldrich) at a dose of 100 

mg/kg BW for 3 consecutive days to ensure Cre-mediated recombination. For the 

inflammation-associated model of colorectal cancer, animals were injected 

intraperitoneally with 10 mg/ kg azoxythmethane, then cycled on and off 2% 

(weight/volume) dextran sulfate sodium in their drinking water for 100 days, as 

previously described (28). For the orthotopic tumor model, colon cancer CT26 cells 

were injected subcutaneously at 6 × 106 cells in BABL/C mice and animals were 

euthanized 14 days after implantation. All mice were fed ad libitum and maintained 

under a 12-hour light/12-hour dark cycle. All mice were fed either a standard chow diet 

(Research Diets) or a purified AIN-93G iron-replete (350 ppm) or low- iron (<5 ppm) diet 

(Dyets). All mice were housed in the Unit for Laboratory Animal Management (ULAM) at 

the University of Michigan.  
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Cell culture 
 

Doxycycline-inducible FPNGFP HEK293 and IEC6 cells were generated 

previously (19). To generate stable doxycycline- inducible human FPNGFP colon 

cancer-derived cell lines, pLenti rtTA3 (Addgene) and pLVX-Tight-Puro hFpnGFP 

plasmids were prepared into lentivirus by the University of Michigan Vector Core, 

coinfected into cells, and selected with 10 μg/ml blasticidin and 1 μg/ml puromycin. 

Stable, hepcidin overexpressing cell lines were generated by transfecting a mouse 

hepcidin pLentiLoxIres construct into CT26 cells and selection with 1 μg/ml puromycin. 

Cell growth analysis was performed using live cell imaging (BioSpa, BioTek, Winooksi, 

VT). The truncated human hepcidin luciferase promoter construct disrupted for hypoxia 

response elements was generated using primers listed in Supplemental Table 4.1. The 

following concentrations were used for cell treatments: 250 ng/ml doxycycline, 100 μM 

FG4592 (Selleckchem), 1 mg/ml human recombinant hepcidin (Bachem), 200 μM DFO 

(Sigma-Aldrich), 10 μM 5AZA (Cayman, Ann Arbor, MI), 10 ng/mL LPS (Sigma-Aldrich). 

Cells were maintained at 37°C in 5% CO2 and 21% O2. Cells were cultured in DMEM 

supplemented with 10% FBS and 1% antibiotic/antimycotic.  

 

Luciferase assay 
 

Cells were lysed in reporter lysis buffer (Promega) and firefly luciferase activity 

was measured as described previously (19). 

 

Quantitative reverse transcription PCR 

mRNA was measured by quantitative reverse transcription PCR (qPCR) (Life 
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Technologies, Thermo Fisher Scientific). The primers used are listed in Table 4.1. 

Quantification cycle (Cq) values were normalized to β-actin and expressed as the fold 

change.  

Western blot analysis 

Lysates were generated as previously described (19). In brief, lysates were 

separated by SDS-PAGE, transferred onto nitrocellulose membranes, and probed 

overnight at 4°C with antibodies against GFP (66002-1-Ig, Proteintech, Rosemont, IL), 

phospho-STAT3 (9145 Cell Signaling, Danvers, MA) or Actin (66009-1-Ig, Proteintech, 

Rosemont, IL). 

 

Epithelial enrichment 

The mice were sacrificed and the tumors were pooled from each respective 

mouse. All plasticware was precoated with 0.1% bovine serum albumin (BSA) and all 

steps were carried out on ice unless otherwise specified. The tissue was homogenized 

with a scalpel and then was incubated in 10 mM DTT for 15 min at room temperature, 

changing to fresh DTT every 5 min. The tissue was rinsed in DPBS, rinsed once with 8 

mM EDTA, and then incubated/rotated in 8 mM EDTA at 4°C for 75 min. The EDTA was 

removed and the tissue was washed three times with DPBS. The tissue was then 

“snap-shaken” 10 times to manually separate the colon tumor epithelium. The 

epithelium-containing supernatant was immediately added to 1.5 ml of cold FBS in a 

BSA-coated 50-ml tube, and the shaking step was repeated twice more. The epithelium 

was spun at 40 × g for 2 min at 4°C. The tissue that was not broken free into the 

supernatant was considered the stromal fraction. The epithelial pellet was washed in 
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DPBS and spun again at 40 × g for 2 min at 4°C. Both cell pellets were then directly 

resuspended in Trizol for RNA analysis. 

 

Mouse- and patient-derived enteroids 

Mouse- and patient-derived colorectal tumor enteroids were generated as 

previously described (29). 

 

Meta-analysis of CRC samples 

CRC gene expression data sets along with the patient survival were identified in 

GEO using the search keywords “colon,” “cancer,” and “microarray” 

(www.ncbi.nlm.nih.gov/geo/). Only publications providing raw data and clinical 

survival information and containing at least 30 patients were included. The gene chips 

were MAS 5.0–normalized in the R statistical environment (www.R-project.org) using 

the Bioconductor package affy (www.bioconductor.org). Survival analysis using Cox 

proportional hazards regression was performed as previously described (30). The most 

reliable probe sets for each gene were selected using Jetset. Kaplan-Meier survival 

plots were generated using WinSTAT for Excel (Robert K. Fitch Software). Methylation 

data was generated from the online UALCAN resource 

(www.ualcan.path.uab.edu/analysis).  

 

Histology, tissue iron staining, and immunohistochemistry 
 

Tissue iron detection was performed in formalin-fixed, paraffin-embedded 

sections stained with Prussian blue and signal was enhanced with 3,3′-
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Diaminobenzidine tetrahydrochloride (DAB). For immunohistochemical analysis, frozen 

sections were probed with polyclonal rabbit anti–ferroportin antibody (21502, Novus). 

 

Metabolite extraction and bacteria treatment 

Metabolites from mouse feces were extracted by 80% methanol [methanol:water 

(80:20; v/v)] extraction as described previously (31). For treatment with live and heat-

killed bacteria, one mouse fecal pellet was suspended in 1 mL of PBS. For heat-killed, 

this homogenate was boiled for 5 minutes. Either live or heat-killed bacteria were then 

added to cell culture media at 20 μL/mL. 

 

Statistics 

Results are expressed as the mean ± SEM. Significance between 2 groups was 

tested using a 2-tailed, unpaired or paired t test, as indicated. Significance among 

multiple groups was tested using a 1-way ANOVA followed by Tukey’s post hoc test for 

multiple comparisons. A P value of less than 0.05 was considered statistically 

significant. GraphPad Prism 7.0 was used to conduct the statistical analyses.  

 

Study approval 

All animal procedures were approved by the IACUC of the University of 

Michigan.  
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Results 

Local hepcidin expression is increased in many cancers, including colorectal 

cancer 

We sought to investigate which cancer types express an ectopic, local source of 

hepcidin using human microarray data made available through The Cancer Genome 

Atlas. Comparing hepcidin mRNA abundance (encoded by HAMP) between normal and 

tumor tissue, I found that hepcidin was significantly upregulated in colorectal cancer, as 

well as brain, breast, kidney, lung, ovarian, and prostate cancer (Figure 4.1). No change 

was observed in bladder, cervical, head/neck, leukemia, liver, lymphoma, and pancreas 

cancer (Figure 4.1). These data indicate that human colorectal tumors, among several 

other cancer types, upregulate local HAMP expression relative to adjacent normal 

tissue. Collectively, these data suggest that specific cancers might rely on a local 

source of hepcidin to modulate intratumoral iron handling.  

 

The colon tumor epithelium produces a local source of hepcidin that associates 

with decreased patient survival 

 To assess the role of iron in CRC, primary human CRC biopsies were stained for 

iron. CRC tumor tissue exhibited a significant increase in iron content when compared 

to adjacent normal tissue (Figure 4.2A and B). To address the mechanism by which iron 

sequestration occurs in CRC, I found that the iron exporter, ferroportin, was completely 

absent from tumor tissue, but highly present in adjacent normal tissue using samples 

from a sporadic mouse model of CRC (Figures 4.2C). Tumor-specific ferroportin protein 

depletion suggested that this was due to local, intratumoral mechanisms and not 
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endocrine action by the circulating, liver-derived ferroportin ligand, hepcidin. Kaplan-

Meier survival analysis generated from 530 human CRC biopsies showed that high 

levels of intratumoral hepcidin expression portend a significant decrease in overall 

patient survival (Figure 4.2D). This increase in local, extra-hepatic hepcidin mRNA was 

phenocopied in mouse models of both sporadic and inflammation-associated CRC 

(Figures 4.2E and F). To determine which cell type is responsible for driving 

intratumoral hepcidin expression in CRC, I first utilized immunohistochemistry 

approaches using hepcidin antibodies. However, these antibodies could never be 

validated using primary hepatocytes from Hampfl/fl mice treated with a Cre-expressing 

adenovirus in vitro, despite a significant decrease in Hamp transcript abundance (Figure 

S4.1A and B). This non-specific signaling was also seen in liver samples from mice 

treated with a low-iron diet (< 5 PPM) for 7 days, which is known to potently decrease 

liver Hamp transcription (Figure S4.1C). To circumvent antibody-based approaches, I 

utilized an epithelial enrichment strategy (Figure 4.2G). In three separate experiments, 

the Hamp transcript was highest in the tumor epithelium fraction (Figure 4.2H). Epcam 

mRNA, a marker of epithelial cells, was higher in our epithelial fraction, which confirmed 

the efficiency of this strategy (Figure 4.2H). These data collectively demonstrate that the 

colon tumor epithelium produces a local, extra-hepatic source of hepcidin that correlates 

with decreased ferroportin protein abundance and portends poor patient survival.  

 

Hypoxia signaling via HIF-2a drives hepcidin expression in CRC 

 We next sought to address the molecular mechanism by which extra-hepatic 

hepcidin is activated in CRC. Hepatic hepcidin is canonically regulated via iron sensing 
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machinery. To address whether colon hepcidin is regulated by iron levels, mice were 

placed a low-iron diet (< 5 PPM) for three months and compared to an iron-replete diet 

(350 PPM). Interestingly, there was no change in Hamp expression (Figure 4.3A). The 

most common genetic mutations that are selected for in human CRC are loss of 

function for APC and p53 and gain of function to KRAS. Mice harboring a tamoxifen-

inducible Cre recombinase under the control of a colon-specific promoter (CDX2CreER) 

were bred to mice floxed for APC and p53 and knocked-in for a constitutively active 

KRASG12D construct in the ROSA26 locus, preceded by a loxP-STOP-loxP cassette (i.e. 

CDX2CreER;APCfl/fl;KRASG12DLSL;p53fl/fl), referred to as CDX2TripleMutant . To determine if 

dysplasia and/or mutation to canonical oncogenic pathways in CRC are sufficient to 

activate colonic hepcidin, CDX2TripleMutant mice were treated with tamoxifen and 

sacrificed 10 days later. Massive colonic dysplasia was observed when pathways were 

acutely altered in the colon epithelium of mice, by as quickly as 10 days. However, no 

change in Hamp mRNA was observed (Figure 4.3B). Therefore, I deduced that some 

element of the bona fide tumor microenvironment must be responsible for activating 

hepcidin, as dysplasia alone was not sufficient. A hallmark of the tumor 

microenvironment is hypoxia. Hypoxia promotes the activation of hypoxia-inducible 

transcription factors (HIF)s.  HIFs are transcription factors that consist of a heterodimer 

of an oxygen-sensitive a subunit (HIF-1a, HIF-2a, and HIF-3a) and a constitutively 

expressed β subunit (ARNT). Previous studies have shown that exclusively HIF-2a, but 

not other HIFs, plays an important role in CRC tumorigenesis and progression. 

Interestingly, using a sporadic model of CRC, mice deficient for HIF-2a in the colon 

epithelium exhibited significantly lower intratumoral Hamp mRNA as compared to wild-
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type littermates (Figure 4.3C). To address whether this was a direct effect by HIF-2a, I 

generated a luciferase reporter construct consisting of 1.7 kb of the human hepcidin 

promoter fused to a luciferase construct. Of note, there are three canonical hypoxia 

response elements (HREs) within this region of the human hepcidin promoter (Figure 

4.3D). Exposure of CRC-derived cell lines to hypoxia (1% oxygen) for 16 hours 

significantly activated the HAMP promoter, as compared normoxic cells (21% oxygen) 

(Figure 4.3E). Transfection of an oxygen stable HIF-2a construct also significantly 

activated the human hepcidin promoter in two CRC-derived cell lines (Figure 4.3F). 

Furthermore, this effect appeared to be a direct response, as truncation of the luciferase 

reporter construct to remove canonical HREs prevented activation by HIF-2a (Figure 

4.3G). However, treatment of CRC-derived cells with FG4592 for 16 hours, which is a 

chemical activator of HIF, did not induce endogenous HAMP transcription (Figure 

S4.2A). Enteroids are three-dimensional intestinal models derived from the intestinal 

epithelium that recapitulate the in vivo intestinal microenvironment better than traditional 

two-dimensional cell culture techniques. I therefore generated colon enteroids from 

CDX2TripleMutant mice and treated these cultures with FG4592 for 16 hours, but failed to 

induce endogenous Hamp transcription when compared to vehicle treatment (Figure 

S4.2B).  

To determine if there is some element of the in vivo colon that is lost using these 

in vitro systems, I bred mice in which Cre recombinase is expressed under the control of 

an intestinal epithelial-specific promoter (VillinCre) to mice knocked-in for an oxygen 

stable HIF-2a construct in the ROSA26 locus, preceded by a loxP-STOP-loxP cassette 

(HIF-2aLSL), giving rise to intestinal epithelial HIF-2a overexpressing mice (referred to 
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as HIF-2aOE following tamoxifen induction). However, there was no change in the Hamp 

transcript in HIF-2aOE mice as compared to wild-type, littermate controls (Figure S4.2C). 

I next considered that some additional element of the CRC environment must be 

necessary for HIF-2a to activate endogenous hepcidin transcription. About 80-90% of 

CRC patients present with mutation to APC (32). I therefore overexpressed HIF-2a in 

the colon epithelium in combination with loss of APC (i.e. CDX2ER;APCfl/fl;HIF-2aOE), 

however, there was no change in hepcidin expression (Figure S4.2D). Hepatic hepcidin 

is increased by a range of inflammatory stimuli that includes IL6, IL1β, among others 

(7). To determine in an unbiased fashion if canonical inflammatory molecules are 

sufficient to activate hepcidin in CRC-derived cells, I generated conditioned media (CM) 

from RAW macrophages stimulated with LPS for 16 hours and then treated CRC cells 

with this CM for 24 hours. However, there was no change in Hamp mRNA abundance, 

as compared to control RPMI media (Figure S4.2E). Hepcidin was originally discovered 

because of its cystine-rich structure, which is a hallmark of the defensin and protegrin 

antimicrobial peptide families. To determine if hepcidin is regulated by bacteria in CRC, 

I treated CRC-derived cells with live bacteria and heat-killed bacteria, but failed to 

observed any induction of the human hepcidin luciferase promoter construct (Figure 

S4.2F). In vivo, bacteria of the intestinal microbiome secrete an array of metabolites that 

affect host metabolism and cellular function. Treatment of CRC-derived cells with 

bacterial-derived metabolites did not activate the human hepcidin luciferase promoter 

construct (Figure S4.2G). DNA methylation is a canonical mechanism by which 

promoters are regulated and plasmids such as the luciferase reporter used in these 

studies are typically hypomethylated relative to endogenous DNA. Interestingly, the 
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human hepcidin promoter is significantly hypomethylated in CRC (Figure S4.2H). To 

determine if DNA methylation status could explain activation of the endogenous 

hepcidin promoter by hypoxia signaling, I treated CRC-derived cells with 5AZA, which 

inhibits DNA methyltransferase and results in significant reduction of DNMT1 protein 

abundance over a 72 hour treatment (Figure S4.2I). However, co-treatment of CRC-

derived cells with 5AZA and FG4592 still did not induce transcription of HAMP (Figure 

S4.2J). Lastly, I sought to investigate HAMP regulation in human-derived CRC 

enteroids. I collected human CRC normal adjacent and tumor tissue (Figure 4.3H). As I 

observed in the TCGA, HAMP expression was elevated in paired normal adjacent and 

tumor samples (Figure 4.3I). However, when comparing matched in vivo tumor tissue 

with tumor enteroids generated from the same patient, I observed a significant reduction 

in HAMP mRNA abundance (Figure 4.3I). Furthermore, there was no change in HAMP 

expression when comparing unpaired enteroids generated from normal adjacent and 

tumor tissue (Figure 4.3I). These data indicate that HAMP expression is lost when the 

tumor epithelium is isolated alone and place in culture, suggesting that there is a non-

epithelial element of the tumor microenvironment that acts in a cell non-autonomous 

fashion to drive epithelial HAMP expression. Collectively, all of these data demonstrate 

that HIF-2a is necessary but not sufficient to drive the endogenous intratumoral 

hepcidin response and that there is likely a non-epithelial paracrine factor that is 

required by HIF-2a to drive HAMP transcription.  

 

Inducible ferroportin-mediated iron efflux decreases cell growth and blunts 

STAT3 signaling 
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 High levels of intratumoral hepcidin serve to downregulate the hepcidin-target, 

ferroportin. I therefore sought to inducibly overexpress ferroportin in CRC-derived cells 

to mimic an environment of low hepcidin and to determine the functional effect of iron 

efflux on CRC cell growth. I attempted to generate doxycycline inducible, ferroportinGFP 

overexpressing cells (i.e. FPNGFP) in various human and mouse CRC-derived cell lines, 

as described previously (19). Interestingly and consistently, I observed doxycycline 

induction of FPNGFP in early passages in these cells, which was completely lost in 

subsequent “late” passages (Figure 4.4A). This effect was not observed in two normal, 

non-CRC cell lines, which continued to overexpress the FPNGFP construct following 

doxycycline treatment in late passages (Figure 4.4B). Analysis for ferroportin expression 

in these cell lines revealed that all CRC-derived cell lines expressed markedly lower 

ferroportin mRNA following doxycycline treatment as compared to the two normal, non-

CRC cell lines (Figure 4.4C). Although induction of the FPNGFP plasmid is doxycycline 

dependent, a lower, basal expression most likely occurs in the absence of doxycycline 

treatment, as these constructs tend to be somewhat leaky. Collectively, these 

observations suggest that CRC-derived cells are exquisitely more sensitive to iron loss 

via FPNGFP than normal cells. Generation of CRC-derived stable cells was initially 

successful, but as these lines are passaged cells with a lower copy number of FPNGFP 

integration likely outcompeted those with high copy number because they retained 

intracellular iron more efficiently. Therefore, the FPNGFP protein and mRNA response 

was lost over time, per our observation. To assess the overall effect of ferroportin-

mediated iron efflux on general cell growth, I utilized stable, doxycycline inducible IEC6 

FPNGFP cells, which is a normal intestinal epithelial cell line. Doxycycline treatment 
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decreased cell growth by as quickly as 36 hours following treatment, a response that 

was completely rescued by co-treatment with recombinant hepcidin (Figure 4.4D). I also 

treated these cells with the iron chelator, deferoxamine (DFO), which decreased cell 

growth more quickly and efficiently than FPNGFP overexpression (Figure 4.4D). Previous 

research has shown that intratumoral iron in CRC activates the phosphorylation of 

STAT3, a known oncogenic factor in CRC (13). Overexpression of FPNGFP decreased 

phospho-STAT3 levels by as quickly as 16 hours in IEC6 FPNGFP cells. In total, these 

data demonstrate that CRC-derived cell lines are more sensitive to iron loss than 

normal cells and that hepcidin/ferroportin signaling is essential to maintain overall 

proliferation and STAT3 activation.  

 

Colon epithelial hepcidin is necessary and sufficient for CRC tumorigenesis and 

is required for STAT3 target gene activation 

 To determine the functional role of hepcidin in CRC formation and progression in 

vivo, mice harboring Cre recombinase under the control of a colon-specific promoter 

(CDX2Cre) were bred to mice floxed for both Hamp1 (Hampfl/fl) and for one allele of APC 

(APCfl/+), giving rise to CDX2Cre; APCfl/+;Hampfl/fl mice (Figure 4.5A). This is a sporadic 

model of CRC, whereby mice spontaneously develop colon tumors by four months of 

age. Mice deficient for colon epithelial hepcidin exhibited decreased tumor number, 

burden, and size, as compared to wild-type litter mates (Figure 4.5B). Importantly, the 

Hamp transcript was significantly elevated in wild-type tumors, a response that was 

abrogated in the hepcidin-deficient mice, confirming that the majority of intratumoral 

Hamp is produced by the colon tumor epithelium (Figure 4.5C). There was no observed 
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change in the Ferroportin transcript, suggesting that ferroportin is regulated at the 

protein level by hepcidin (Figure 4.5C). Previous work has shown that intratumoral iron 

in CRC affects the local immune response (13). I observed a decrease in expression of 

the macrophage marker, F480, in hepcidin-deficient tumors while no other immune 

marker was different between these groups (Figure 4.5D). However, I did observe 

blunted activation of the STAT3 target genes, CyclinD1 and Bcl2, in hepcidin-deficient 

tumors, which are iron-dependent in CRC (Figure 4.5E). To investigate whether 

increased hepcidin expression is sufficient to increase tumorigenesis in CRC, I 

generated stable CT26 hepcidin overexpressing cells (Figure 4.5F). Subcutaneous 

implantation of these cells in vivo in BALB/C mice led to an increased tumor weight by 

as quickly as 14 days (Figure 4.5G). Collectively, these data demonstrate that epithelial 

hepcidin is necessary and sufficient to drive tumorigenesis in CRC and activates iron-

dependent STAT3 signaling. 
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Discussion 

 Cancers such as CRC evolve an array of mechanisms to enable efficient growth 

and survival in the nutrient scarce tumor microenvironment. Research efforts have 

largely focused on understanding how macronutrients, such as glucose, lipids, proteins, 

and nucleic acids, are metabolized differently in CRC to rewire intracellular energetics 

(32-34). However, very little is known about micronutrients, which are exogenously 

derived elements that are essential in a multitude of metabolic pathways. Iron is a metal 

micronutrient that is required for energy metabolism, mitochondrial function, and DNA 

synthesis, among other functions (35). Epidemiological data has correlated systemic 

iron levels with CRC risk, namely red meat intake and in patients that have iron 

overload (10-12). Colon tumor tissue also sequesters massive intracellular iron stores 

that are required for cancer cell growth (13, 14). The present work demonstrates that 

CRC modulates local, oncogenic iron handling by ectopically expressing the liver-

derived, iron-regulatory hormone, hepcidin, in order to downregulate ferroportin. High 

levels of intratumoral hepcidin expression portend a significant decrease in overall 

patient survival. Using a cellular enrichment strategy, the majority of local, intratumoral 

hepcidin in CRC is produced by epithelial cells. Using a genetic mouse model of 

sporadic CRC, and an orthoptic model of CRC, I show that CRC-derived hepcidin is 

necessary and sufficient to drive tumor number, size, and burden. Unlike hepatocytes, 

intratumoral hepcidin in CRC is not regulated by iron, but is a direct target of the 

hypoxia sensitive HIF-2a transcription factor. Hepcidin/ferroportin signaling is also 

necessary and sufficient to drive tumorigenesis and activation of iron-dependent STAT3 

signaling in CRC. In combination with previous work, this current model reveals that 
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HIF-2a is utilized by CRC cells to simultaneously increase intestinal lumen iron uptake 

via DMT1 overexpression and to decrease iron export by activating autocrine/paracrine 

hepcidin-mediated ferroportin degradation. Collectively, this work unveils the pathways 

of local iron handling in CRC, provides insight into mechanisms of ectopic hepcidin 

transcriptional activation, and reveals nutrient vulnerabilities in CRC that can be 

targeted therapeutically. 

 Since the discovery of hepcidin/ferroportin signaling, this interaction has primarily 

been thought of as a liver-derived, endocrine system that acts on major ferroportin 

expressing cells to control systemic iron mobilization (i.e. hepatocytes, intestinal 

enterocytes, and splenic macrophages) (8). However, recent reports have started to 

reveal extra-hepatic, functional sources of hepcidin that act in paracrine and/or 

autocrine fashions on local ferroportin. This new paradigm was catalyzed by reports 

showing that ferroportin is expressed on cardiomyocytes and it is primarily regulated by 

a local, cell-autonomous source of hepcidin (21). Embryonic deletion of cardiomyocyte 

hepcidin in mice leads to intracellular iron depletion, contractile defects, and metabolic 

alterations that decrease mitochondrial activity, all of which results in massively 

decrease survival (21). A similar model has been proposed in cancer, as 

ferroportin protein abundance is reduced in breast cancer cells compared to 

nonmalignant breast epithelial cells (23). Several additional reports have shown that 

both breast and prostate cancers can activate their own source of local hepcidin, while 

investigators have observed increases in hepcidin mRNA and protein in human CRC 

(24, 36, 37). These investigations of cancer hepcidin/ferroportin kinetics are mostly 

correlative and have been limited by a lack of genetic and functional data. I definitively 
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show that ectopic hepcidin exerts a functional role in CRC tumorigenesis, growth, and 

survival by regulating intratumoral iron handling. I also demonstrate that cell proliferation 

is markedly decreased following ferroportin-mediated iron efflux by as quickly as 36 

hours. While I observe dampening of known iron-dependent oncogenic signaling 

pathways in this model (i.e. STAT3), future work will need to carefully understand the 

mechanisms by which iron metabolism integrates with general cancer cell metabolism. 

Moreover, it will be important to understand whether iron is a necessary cofactor for 

enzymes involved in cell division, or whether there is a central iron sensor in cells that 

halts proliferation when intracellular iron stores are limited.   

Another key question in the field of extra-hepatic hepcidin/ferroportin signaling is 

understanding the transcriptional regulation of hepcidin in non-hepatocytes. Reports 

have implicated a range of intratumoral molecules, including BMP4/7, IL6, Wnt, and 

GDF15, however, none of these findings have been functionally verified in vivo (22, 24, 

36). A hallmark of the tumor microenvironment is hypoxia, as tumors outgrow their 

blood supply and are challenged by increased metabolic demand and inflammation 

(38). Interestingly, reports have shown that hypoxia can activate cardiac hepcidin 

mRNA in rats following 24 hour exposure to 6% oxygen (39). Furthermore, although 

systemic hypoxia inhibits hepatocyte hepcidin, reports have shown that this mechanism 

is indirect via erythropoietin action on hepatocytes and that hypoxia signaling actually 

activates hepcidin in erythropoietin-deficient mice (40). The hypoxia-inducible factor, 

HIF-2α, maintains essential roles in both iron metabolism and CRC progression (13). 

Using a luciferase reporter construct, I show in this present work that HIF-2α is 

necessary to activate the human hepcidin promoter in vitro and in vivo. However, HIF-
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2α is not sufficient to drive transcription of the endogenous hepcidin gene in CRC-

derived cell lines, three-dimensional intestinal mini gut enteroid models, or in mice that 

overexpress colon epithelial HIF-2α. These findings suggest that there is a cell non-

autonomous molecule that is necessary for HIF-2α-mediated activation of hepcidin in 

CRC. Future work will need to explore the mechanism by which hypoxia activates local 

hepcidin/ferroportin signaling in CRC and to determine if there are similar mechanisms 

that take place in physiological cell-autonomous hepcidin regulation, namely in the 

heart. 

 Previous work has established that HIF-2α, but not other HIFs, is necessary and 

sufficient to drive CRC tumorigenesis (26, 41). HIF-2α exerts both iron-independent and 

–dependent mechanisms in CRC. HIF-2α transcriptionally upregulates the chemokine 

CXCL1 to promote the influx of pro-tumorigenic, intratumoral neutrophils in CRC (26). 

HIF-2α has also been shown to potentiate oncogenic yes-associated protein 1 (YAP1) 

activity and drive oncogenic cyclooxgenase-2 (COX2) expression in CRC (42, 43). In 

the context of iron metabolism, HIF-2α has been shown to drive tumor iron uptake via 

DMT1 hyper-transcription (13, 14). HIF-2α-dependent intratumoral iron stores are used 

to directly activate a CDK1/JAK1/STAT3 axis that is necessary for CRC growth (13). 

Iron has also been implicated in STAT3 signaling in glioblastoma (44). I show in this 

work that, in addition to DMT1, HIF-2α also drives the transcription of hepcidin in CRC 

to downregulate ferroportin and trap intratumoral iron stores. Moreover, HIF-2α actively 

increases iron uptake and decreases iron export in CRC to maintain intracellular iron 

concentrations that are necessary for STAT3 activation. Work has shown that there are 

nearly 200 uncharacterized iron-related HIF-2α-target genes in the intestine (45). 
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Therefore, future work must characterize the complete iron metabolic transcriptional 

program of HIF-2α in CRC. 

 In conclusion, this work shows that the colon tumor epithelium produces an 

ectopic, extra-hepatic source of local hepcidin that is necessary and sufficient for CRC 

growth. Intratumoral hypoxia via HIF-2α drives this source of hepcidin, which maintains 

intracellular iron levels and activates oncogenic STAT3 signaling. Finally, these data 

demonstrate the molecular mechanisms by which colon tumors modulate local iron 

handling and reveal vulnerabilities that can be targeted for therapeutic benefit in CRC. 
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Figure 4.1. Hepcidin expression is increased across many cancer types. Hepcidin 
transcript abundance in normal and tumor tissue across 14 cancers, made available via 
microarray data through The Cancer Genome Atlas. Log2 median centered ratio is 
plotted. Data represent the mean ± SEM. Significance was determined by 2-tailed, 
unpaired  t test. *P < 0.05, **P < 0.01,  ***P < 0.001, and ****P < 0.0001 compared to 
normal tissue. 
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Figure 4.2. Colorectal cancer produce an extra-hepatic source of hepcidin that 
portends decreased patient survival. (A) Representative DAB-enhanced Prussian 
blue iron staining of human colorectal tumor and normal adjacent tissue, images 20x. 
(B) Quantification of Prussian blue area as a percent of total tissue. (C) Representative 
staining for ferroportin in colorectal tumor and normal adjacent tissue from a mouse 
model of sporadic colorectal cancer, images 20x. (D) Kaplan-Meier survival analysis 
generated from 530 human CRC biopsies, stratified on high vs. low hepcidin transcript 
from the median. (E and F) qPCR analysis for hepcidin (Hamp) expression in normal 
and tumor tissue in sporadic (E) and inflammation-associated (F) mouse models of 
colorectal cancer. (G) Experimental design for tumor epithelium vs. stroma enrichment. 
(H) qPCR analysis for Hamp in epithelium vs stroma compartments of normal and tumor 
tissue from three independent mice with sporadic colorectal cancer. Data represent the 
mean ± SEM. Significance was determined by 2-tailed, unpaired (B) or paired (E and F) 
t test. *P < 0.05  



	 138 

 
Figure 4.3. Hypoxia via HIF-2a activates hepcidin expression in CRC. (A) qPCR 
analysis for hepcidin (Hamp) in the colon of mice that were on iron replete (350 PPM) or 
low iron (< 5 PPM) diets for three months. (B) qPCR analysis for Hamp in the colon of 
mice with inducible, colon epithelial deletion of APC and p53 and activation of KRAS for 
ten days. (C) qPCR analysis for Hamp in normal and tumor tissue from a sporadic 
model of colorectal cancer in mice that were either wild-type for or deficient of HIF-2a. 
(D) Schematic of luciferase reporter construct of 1.7 kb of the human hepcidin promoter, 
indicating location of hypoxia response elements (HREs). (E and F) Hepcidin luciferase 
reporter activity in colorectal cancer-derived HCT116 and SW480 cells treated with 
either normoxia (21% oxygen)/hypoxia (1% oxygen) for 16 hours (E) or an oxygen 
stable HIF-2a construct (HIF2TM) (F). (G) Relative luciferase activity of the hepcidin 
promoter following transfection with HIF2TM as wild-type (WT) or deleted for HREs 
(ΔHRE) in SW480 and HCT116 cells. (H) Schematic of sample collection and utilization 
from primary colorectal cancer (CRC) patients. (I) qPCR analysis for HAMP in paired 
human normal and tumor tissue, paired tumor tissue and enteroid line generated from 
the same patient, and between all primary normal and tumor enteroid lines. Data 
represent the mean ± SEM. Significance was determined by 2-tailed, unpaired (A and 
B) or paired (I) t test, or by 1-way ANOVA with Tukey’s post hoc (C, E-G). *P < 0.05, 
***P < 0.001, and ****P < 0.0001 comparing within a treatment group. # P < 0.05, # # P 
< 0.05,  # # # P < 0.001 comparing between treatment groups.  
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Figure 4.4. Colon cancer-derived cell lines are exquisitely sensitive to ferroportin-
mediated iron loss, which decreases cell growth and blunts STAT3 signaling. (A) 
Western blot analysis for GFP in early and late passages of colon cancer-derived cell 
lines that were made stable for a doxycycline (dox) inducible ferroportinGFP 

overexpression construct, following 16 hour treatment with dox (250 ng/mL). (B) 
Western blot analysis for GFP in stable, normal ferroportinGFP overexpressing cell lines 
following 16 hour treatment with dox (250 ng/mL). (C) qPCR analysis for the ferroportin 
transcript in late passages cells that were made stable for a doxycycline (dox) inducible 
ferroportinGFP overexpression construct, following 16 hour treatment with dox (250 
ng/mL). (D) Cell growth assay in intestinal IEC6 ferroportin (FPN)GFP cells treated with 
vehicle, dox (250 ng/mL), dox (250 ng/mL) and recombinant hepcidin (1 μg/mL), or 
deferoxamine (DFO) 200 μM [we need to out in significance]. (E) Western blot analysis 
for phospho-STAT3 in IEC6 FPNGFP cells overexpressing ferroportin (FpnOE) following 
dox (250 ng/mL) treatment for 16 hours. Data represent the mean ± SEM. Significance 
was determined by 2-tailed, unpaired t test. *P < 0.05 and ****P < 0.0001 comparing 
within each cell line (C), or by by 1-way ANOVA with Tukey’s post hoc, ****P < 0.0001  
comparing to vehicle (D). 
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Figure 4.5. Hepcidin is necessary and sufficient to drive colon cancer growth. (A) 
Schematic of experimental design in this figure, using a sporadic model of colon cancer 
in mice deficient or wild-type for hepcidin in the colon epithelium four months after birth. 
(B) Tumor number, size, and burden in these mice. (C-E) qPCR analysis in normal and 
tumor tissue of mice deficient or wild-type for hepcidin, (C) iron genes, hepcidin (Hamp) 
and ferroportin, (D) inflammatory mediators, F480, Cd11b, Cd68, Cxcl, and Il1β, and (E) 
STAT3 target genes, CyclinD1 and Bcl2. (F) Hamp expression in mouse colon cancer-
derived CT26 cells that stably overexpress hepcidin or a scrambled construct. (G) 
Tumor weight (mg) of CT26 orthotopic tumors that were implanted in BALB/C mice for 
14 days. Significance was determined by 2-tailed, unpaired t test. *P < 0.05, **P < 0.01  
and ***P < 0.001 comparing with each genotype or treatment group. 



	 141 

 
 

Figure S4.1. Detection of the hepcidin protein by immunohistochemistry is 
ineffective. (A and B) Primary hepatocytes were generated from Hampfl/fl mice and 
treated in vitro with adenoviruses expressing either GFP or Cre recombinase for 48 
hours. These cells were analyzed for hepcidin (Hamp) expression by qPCR analsysis 
(A) and were stained for hepcidin protein, images 40x (B). (C) Hepcidin staining in mice 
that were placed on either an iron replete (350 PPM) or low iron (< 5 PPM) for seven 
days. Data represent the mean ± SEM. Significance was determined by 2-tailed, 
unpaired t test. **P < 0.01. 
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Figure S4.2. Activation of HIF-2a is not sufficient to drive hepcidin expression in 
vitro or in vivo, nor is inflammatory stimuli, bacteria, or DNA de-methylation. (A 
and B) qPCR analysis for hepcidin (Hamp) after treatment with FG4592 (100 μM) or 
vehicle for 16 hours in (A) colorectal cancer-derived HCT116 cells and (B) enteroids 
generated from mice with inducible, colon epithelial deletion of APC and p53 and 
activation of KRAS. (C) qPCR analysis of Hamp in the colon of mice with embryonic, 
intestinal epithelial-specific overexpression of HIF-2a (HIF-2aOE) compared to wild-type 
mice (HIF-2aWT). (C) qPCR analysis of Hamp in the colon of colon epithelial-specific 
HIF-2aWT and HIF-2aOE mice that are also deficient for APC for 30 days. (E) qPCR 
analysis of Hamp in HCT116 cells treated for 24 hours with conditioned media (CM) 
from RAW 264.7 macrophages that had been treated with 10 ng/mL LPS for 16 hours. 
(F and G) Relative luciferase activity of the human hepcidin promoter treated with (F) 
vehicle (Veh), live bacteria (Live), or heat-killed bacteria (HK), or (G) vehicle (Veh) or 
bacteria-derived metabolites (metabolites). (H) Methylation status of the human 
hepcidin promoter in human colorectal cancer tissue. (I and J) HCT116 cells were 
treated with vehicle (Veh) or 5AZA (10 μM) for 72 hours and then treated with vehicle 
(Veh) and/or FG4592 (100 μM) for 16 hours and analyzed via (I) Western blot analysis 
for DNA methyltransferase 1 (DNMT1) and (J) qPCR analysis for HAMP expression. 
Data represent the mean ± SEM. Significance was determined by 2-tailed, unpaired t 
test. ****P < 0.0001. 
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Table 4.1. Chapter 4 qPCR and cloning primers. 
 

Gene Primer sequence 
mβ-Actin F GTTGTCGACGACGAGCG 
mβ-Actin R GCACAGAGCCTCGCCTT 
mHamp1 F CTATCTCCATCAACAGATGAGACAGA 
mHamp1 R AACAGATACCACACTGGGAA 
hHAMP F CTCCTTCGCCTCTGGAACAT 
hHAMP R AGTGGCTCTGTTTTCCCACA 
mEpcam F CCAGTTTGGAGCAAATGACA 
mEpcam R CCGCGGCTCAGAGAGACT 

mFerroportin F ATGGGAACTGTGGCCTTCAC 
mFerroportin R TCCAGGCATGAATACGGAGA 

mF480 F AGGACTGGAAGCCCATAGCCAA 
mF480 F GCATCTAGCAATGGACAGCTG 

mCd11b F ATGGACGCTGATGGCAATACC 
mCd11b R TCCCCATTCACGTCTCCCA 
mCd68 F ACCGCCATGTAGTCCAGGTA 
mCd68 R ATCCCCACCTGTCTCTCTCA 
mCxcl1 F TCTCCGTTACTTGGGGACAC 
mCxcl1 R CCACACTCAAGAATGGTCGC 
m1l1β F AAGAGCTTCAGGCAGGCAGTATCA 
m1l1β R TGCAGCTGTCTAGGAACGTCA 

CyclinD1 F GGGTGGGTTGGAAATGAAC 
CyclinD1 R TCCTCTCCAAAATGCCAGAG 

mBcl2 F GGTCTTCAGAGACAGCCAGG 
mBcl2 F GATCCAGGATAACGGAGGCT 

Hepcidin HRE 
truncation F ATACATCTCGAGGGCTCCCCAGATGGCTG 

Hepcidin HRE 
truncation F ATACATAAGCTTCTTGAGCTTGCTCTGGT 
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Chapter 5 

Conclusion 

 

5.1 Summary 

 Iron is a fundamental metal micronutrient that sustains life, from single cell 

bacteria to complex multicellular organisms that include humans. On the cellular level, 

iron is utilized for an array of biochemical processes that maintain energy balance, 

mitochondrial function, DNA synthesis, and redox homeostasis. On the systemic level, 

iron controls tissue oxygen delivery within the heme of hemoglobin in RBCs. As a 

whole, mammalian iron metabolism depends on multiple organs working in concert to 

maintain iron concentrations for these physiological and biological functions. Advances 

in the understanding of tissue- and cell-type specific mechanisms of iron metabolism 

have begun to redefine the ways in which peripheral organs participate in systemic iron 

homeostasis while also protecting organ function via cell-autonomous mechanisms 

during states of iron overload and deficiency. Furthermore, recent investigations have 

unveiled intimate links between iron and oxygen sensing pathways that explain the 

molecular mechanisms of intracellular iron trafficking and oxygen consumption.  

5.2 Hepcidin and HIF-2α in iron homeostasis 

 The work presented in Chapter 2 redefines the way in which systemic iron 

homeostasis and iron handling is understood. Research over the past decade has 

shown that, i) systemic iron handling is centrally regulated by the endocrine source of 
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hepatic hepcidin, and ii) intestinal iron absorption is necessary for the maintenance of 

postnatal systemic iron levels. Chapter 2 demonstrates that the liver controls the 

intestine through a hepatic hepcidin/intestinal HIF- 2α axis that regulates physiological 

iron uptake during systemic iron deficiency and drives pathological iron absorption 

during iron overload caused by hepcidin deficiency. High-throughput RNA-Seq revealed 

that the transcriptional responses in the intestine to systemic iron deficiency and 

hepcidin deficiency–mediated iron overload are largely the same. Both physiological 

repression of hepcidin and the genetic perturbation of hepcidin directly trigger iron efflux 

through intestinal ferroportin to limit the activity of iron-dependent PHD enzymes. This 

stabilizes intestinal HIF-2α to activate genes that are necessary and sufficient for 

intestinal iron absorption.  

Interestingly, I reveal in Chapter 2 that acute loss of hepatic hepcidin gives rise to 

a HIF-2α-dependent expansion of the RBC pool (Figure 2.7C). Possible explanations for 

this observation include that, i) hepatocyte deletion of hepcidin triggers HIF-2α-

dependent intestinal iron hyperabsorption; therefore, increases in systemic iron levels 

enhance RBC production and/or survival, or ii) similar to the intestine, hepcidin 

dampens HIF-2α activation in the bone marrow or in another peripheral cell type; 

therefore, deletion of hepcidin leads to a HIF-2α-dependent transcriptional response 

that triggers an increase in RBC production and/or survival. To test the first hypothesis, I 

executed a pilot experiment and generated systemic iron overload in wild-type mice by 

weekly intraperitoneal injections of iron dextran coupled to complete blood count 

analysis at 1, 3, and 5 weeks (Figure 5.1A). Contrary to the hepcidin deletion 

experiments, I find that there is no change in RBC numbers when comparing vehicle to 
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iron dextran treatment over time (Figure 5.1B). There was also no change in other blood 

parameters, namely hemoglobin, hematocrit, mean corpuscular hemoglobin, and mean 

corpuscular volume (Figure 5.1C). To confirm that this model successfully generated 

systemic iron overload, I assessed liver iron content, which was about 20-fold higher in 

the iron dextran treated group than the vehicle group (Figure 5.1D). This level of liver 

iron overload is similar to what was observed in the hepcidin deletion experiments in 

Chapter 2. Lastly, I observed no change in kidney erythropoietin transcript abundance 

(Figure 5.1E). These data collectively demonstrate that increases in systemic iron 

concentrations are not sufficient to trigger expansion of the RBC pool. Moreover, in 

combination with the data in Chapter 2, it appears that a hepcidin/HIF-2α axis might 

exist in a peripheral cell type(s) that regulates RBCs. Recent data has shown that RBCs 

express the ferroportin protein and that ferroportin-mediated iron efflux controls RBC 

survival (1, 2). It is therefore possible that an interaction exists between ferroportin and 

HIF-2α in RBCs to increase RBC survival. It will be critical in future work to understand 

the molecular mechanisms by which hepcidin/HIF-2α control RBCs and whether this 

axis operates in other peripheral cell types as well.  

Another unanswered paradox in the regulation of HIF-2α is the mechanism by 

which ferroportin stabilization selectively activates HIF-2α over HIF-1α. As shown in 

Figures 2.6I and S2.6G, ferroportin overexpression in intestinal epithelial IEC6 cells 

leads to marked stabilization of the HIF-2α protein but no induction of HIF-1α. HIFs are 

regulated by post-translational hydroxylation of proline residues by PHDs that are 

enzymatically dependent on oxygen, iron, and 2-oxoglutarate for their function. HIF 

hydroxylation leads to association with the von-Hippel Lindau (VHL) tumor 
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suppressor/E3 ubiquitin ligase complex, ubiquitin conjugation, and 26s proteasomal 

degradation. In contexts that limit PHD activity, such as intracellular oxygen or iron 

depletion, HIF protein becomes stabilized. Given the current dogma of HIF protein 

regulation, intracellular depletion of iron should stabilize both HIF-1α and HIF-2α due to 

inhibition of PHD activity, however, this was not observed following ferroportin 

overexpression. Moreover, treatment of IEC6 cells with the iron chelator, deferoxamine, 

massively stabilized HIF-1α, suggesting that intracellular iron depletion, but not 

ferroportin overexpression, is sufficient to activate HIF-1α (Figure S2.6G). 

Several biological phenomena could explain this observation, including, i) an 

intestinal PHD isoform that is both selective for HIF-2α over HIF-1α hydroxylation and is 

exquisitely sensitive to decreases in intracellular iron concentrations, ii) a ferroportin-

interacting protein that directly activates HIF-2α over HIF-1α following ferroportin 

stabilization, and/or iii) a ferroportin-independent iron-sensing protein that directly 

activates HIF-2α over HIF-1α. To begin to address these paradigms in vivo, I have 

preliminary data using a genetic mouse model that is devoid of the VHL protein 

exclusively in the intestinal epithelium (VhlΔIE). VHL is downstream of PHDs and is the 

rate limiting protein in HIF-1α and HIF-2α post-translational regulation, whereby deletion 

of VHL leads to maximal stabilization of HIFs and activation of all downstream target 

genes. I placed VhlΔIE mice on 350 PPM (iron replete) and <5 PPM (iron deficient) iron 

diets for two weeks and compared to Vhlf/lfl wild-type littermates on a 350 PPM diet. 

Interestingly and surprisingly, I found that the canonical HIF-2α iron-sensitive target 

genes, Dcytb, Dmt1, and Fpn, were potentiated in the iron deficient group compared to 

the iron replete group (Figure 5.2A). No potentiation was observed for canonical HIF-1α 
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target genes, Pdk1, Pgk1, and Aldoc (Figure 5.2B). These data confirm that there are 

VHL-independent mechanisms by which HIF-2α is selectively activated by a drop in 

intracellular iron levels. Moreover, seeing as VHL is downstream of PHDs, PHD 

selectively/sensitivity to iron cannot explain these observation in VhlΔIE. Recent work 

has revealed that SMAD3 and SMAD4 repress HIF-2α-dependent iron-regulatory genes 

through an unknown mechanism (3). Future work needs to carefully interrogate the 

complete molecular mechanisms by which HIF-2α is activated by intracellular iron 

deficiency. Collectively, these questions will provide insight into the mechanisms by 

which basic intracellular oxygen and iron sensing pathways are integrated. 

 

5.3 Organ-specific transcriptional stress responses to iron and oxygen deficiency 

 Research over the last few years has reshaped ways to think about local iron 

handling and oxygen metabolism. The work presented in Chapter 3 builds upon 

previous work by characterizing a novel genetic mouse model of iron-deficiency anemia 

(IDA). Our data reveal a robust phenotype of progressive IDA that develops in as little 

as three months following disruption to intestinal iron absorption. At end-stage IDA, 

tissue-specific transcriptional stress responses were observed, whereby the heart 

shows little to no hypoxic or iron stress as compared to other peripheral organs. 

However, morphometric and echocardiographic analysis revealed massive cardiac 

hypertrophy and chamber dilation, albeit with increased cardiac output at very low basal 

heart rates. Collectively, these data demonstrate a rapid mouse model of end-stage IDA 

that can be used to study disease progression and cell-specific responses to iron and 

oxygen stress. 
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 There are several experimental findings from Chapter 3 that need to be 

addressed in future work, including the observation that erythropoietin (encoded by 

Epo) was induced 1000-fold, despite severe kidney iron deficiency in IDA (Figure 3.4A). 

Epo is a classical HIF-2a-target gene regulated by systemic hypoxia (4). HIF-2α 

contains a 5′-UTR iron response element (IRE) that is responsible for translational 

inhibition during states of iron deficiency (5). This iron regulatory protein (IRP)/IRE 

interaction is thought to serve as a molecular brake on HIF-2a-mediated kidney EPO 

expression, to restrict RBC production when iron levels are limited for hemoglobin 

synthesis. The finding that Epo is massively induced in IDA might indicate that the 

IRP/IRE system is an insufficient mechanism to dampen HIF-2a in the kidney during the 

severe disease state of IDA. It is also possible that a mechanism of hepcidin/ferroportin 

sensing may exist in EPO producing cells in the kidney similar to the intestine, whereby 

the hepcidin/ferroportin induction of HIF-2a outweigh the IRP/IRE break on HIF-2a in 

contexts when both pathways are active. More work is needed to understand the 

complete molecular mechanisms of Epo expression during normal physiology and in 

disease states such as IDA. 

 Future experiments must also follow up on the observation that the heart is 

spared from severe iron and oxygen stress in IDA. Recent investigations have shown 

the heart controls cell-autonomous iron handling by establishing a local 

hepcidin/ferroportin axis (6). However, the molecular mechanisms that govern this local 

axis are still poorly defined. It is also unclear as to why a hypoxic transcriptional 

program is not activated in the heart during IDA, as was the case in other peripheral 

organs. It is possible that the heart is somehow spared by peripheral organs and that 
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serum iron and oxygen are redirected to the heart during stress. These are all important 

areas of investigation in the contexts of iron and oxygen biology that must be addressed 

in the coming years. 

 

5.4 Cell-autonomous mechanisms of iron handling in cancer 

In Chapter 4, I revealed that colon tumors can produce their own source of 

ectopic hepcidin to control ferroportin and trap intratumoral iron levels. Iron becomes 

sequestered in colorectal tumor tissue, leading to massive intratumoral iron stores that 

are essential for growth and survival. Human data from epidemiological studies have 

shown a correlation between dietary iron intake and/or systemic iron levels and CRC 

risk. I revealed in Chapter 4 that the ferroportin protein is highly expressed in adjacent 

normal colon tissue but is absent in colon tumor tissue. Furthermore, intratumoral 

hepcidin in CRC that portends poor patient survival. Kaplan-Meier survival analysis 

generated from 530 human CRC biopsies showed that high levels of intratumoral 

hepcidin expression portend a significant decrease in overall patient survival. Mice 

deficient for the hepcidin gene specifically in colon epithelium exhibited significant 

decreases in tumor number, burden, and size compared to wild-type littermates in a 

sporadic model of CRC, whereas hepcidin overexpression increased tumor size in an 

orthotopic model. A luciferase-based reporter construct of the human hepcidin promoter 

revealed that HIF-2α is sufficient to activate the hepcidin promoter in CRC-derived cell 

lines. Furthermore, intratumoral hepcidin was necessary for iron-dependent activation of 

the STAT3 pathway. These data suggest that intratumoral hypoxia in CRC activates 

HIF-2α to drive hepcidin transcription in the tumor epithelium. This ectopic hepcidin 
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establishes an axis to degrade ferroportin and sequester iron in colorectal tumors in 

order to maintain iron-dependent cancer cell metabolism. These data advance our 

understanding about how cancer cells use iron handling mechanisms differently than 

normal cells to enhance their growth and survival. Furthermore, these data provide 

insight into the mechanisms by which ectopic, extra-hepatic hepcidin is regulated, which 

might provide information into basic physiological processes that take place in other 

organs, namely the heart. 

One major unanswered question from this work is in the mechanism by which 

iron metabolism links to general cancer cell metabolism. There is strong evidence to 

show that iron is necessary to activate oncogenic STAT3 signaling in CRC (7). 

However, intracellular iron is utilized for an array of biochemical processes and it will be 

important to define the complete iron metabolome in cancer. To begin to address this 

question, I have preliminary data from two non-cancerous, doxycycline inducible 

ferroportin overexpressing cell lines (i.e. HEK293 and IEC6 FerroportinGFP), as I were 

unsuccessful in generating stable ferroportin overexpressing CRC-derived cells in 

Chapter 4. I treated these cell lines with doxycycline for 16 hours. Using snapshot 

metabolomics, I found that nearly two-thirds of the metabolites with differential 

abundance in both cell lines following ferroportin overexpression were involved in 

nucleotide metabolism (Figure 5.3A and B). Furthermore, I found that many key 

metabolites that are involved in de novo pyrimidine biosynthesis are significantly lower 

following doxycycline treatment, but completely rescued by co-treatment with 

recombinant hepcidin. Figure 5.3C outlines these changes, using representative data 

from IEC6 cells that were also observed in HEK293 cells. De novo pyrimidine 
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biosynthesis converges with a salvage, “recycling” pathway at uridine 5-

monophosphate, which was significantly elevated following ferroportin overexpression in 

both HEK293 and IEC6 cells (Figure 5.3C). These data collectively indicate that 

ferroportin-mediated iron efflux selectively decreases de novo pyrimidine production and 

activates the pyrimidine salvage pathway because uridine 5-monophostphate is 

elevated. However, salvage pathways are inefficient mechanisms to maintain nucleotide 

metabolism, and overall cell proliferation is halted in each of these cell lines when 

ferroportin is stabilized. It will be essential in future work to determine if these iron-

dependent mechanisms are also observed in CRC-derived cell lines and in in vivo 

tumors. Furthermore, on a mechanistic basis, it will also be important to understand how 

intracellular iron depletion via ferroportin disrupts nucleotide metabolism. Possible 

explanations include, i) iron is a necessary substrate for enzymes involved in de novo 

nucleotide production, or ii) there is an iron sensing protein that directly inhibits 

nucleotide production following ferroportin stabilization. These findings will provide key 

insights into cancer cell metabolism and may reveal vulnerabilities to launch 

therapeutics against for cancer treatment. 

 

5.5 Hepcidin-mediated ferroportin degradation 

One essential but unanswered paradox in iron biology is the complete molecular 

mechanism by which hepcidin initiates ferroportin-mediated degradation. Previous work 

has shown that the hepcidin/ferroportin interaction results in rapid ubiquitination, 

internalization, and intracellular degradation of ferroportin. Due to the retraction of a key 

seminal paper in understanding this mechanism, zero papers have been published that 
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provide mechanistic insight into how ferroportin is degraded by hepcidin (8). Studying 

the molecular mechanisms of the hepcidin/ferroportin degradation axis is fundamental 

to understanding i) hepcidin/HIF-2α crosstalk, which depends on ferroportin 

degradation, and ii) basic processes of systemic and cellular iron handling in mammals. 

Several species of ferroportin have been described in the literature, which is likely due 

to a posttranslational modification on ferroportin (7). In our system of doxycycline 

inducible ferroportinGFP overexpression, I observe a functional difference between the 

two protein species: the higher molecular weight ferroportin is sensitive to hepcidin-

mediated degradation as quickly as two hours following treatment, while the lower 

molecular weight ferroportin remains hepcidin-resistant (Figure 5.4A).  

Our preliminary data on the larger, hepcidin-sensitive band demonstrates that 

hepcidin-mediated ferroportin degradation occurs within the lysosome (Figure 5.4B). 

The lysosomal degradation of cellular content is canonically thought to occur through a 

process known as macroautophagy (9). Interestingly, our data suggests that the 

lysosomal degradation of ferroportin occurs independent of canonical macroautophagic 

machinery, as treatment with known pharmacological inhibitors of this process do not 

rescue ferroportin in the presence of hepcidin (Figure 5.4C). To address the complete 

mechanism of hepcidin-mediated ferroportin degradation in an unbiased manner, I have 

performed co-immunoprecipitation and mass spectrometry-based proteomic 

experiments using anti-GFP beads in our FerroportinGFP cells following vehicle or 

hepcidin treatment. I identified heat shock 70 kDa protein 8 (HSC70), which is the rate 

limiting cargo protein involved in a process of selective and substrate-specific lysosomal 

degradation that is discrete from macroautophagy, known as chaperone-mediated 
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autophagy (CMA) (9). CMA has received much attention over the last few decades as a 

targeted pathway for lysosomal degradation that is responsive to many of the broad 

metabolic and cellular cues that are known to regulate macroautophagy (10, 11). In 

CMA, factors such as metabolic and nutrient deprivation trigger HSC70 to seek a 

conserved motif in its target substrates (10). HSC70 then transports its cargo directly to 

the lysosome for docking with the rate-limiting receptor in this pathway, lysosome-

associated membrane protein type 2A (LAMP2A), at which point cargo is internalized 

and degraded in the lysosomal lumen (10). I have confirmed using an exogenous 

HSC70-V5 expression construct that ferroportin interacts with HSC70 (Figure 5.4D). 

Future work will need to define the role of CMA machinery in hepcidin-mediated 

degradation of ferroportin by the lysosome. Furthermore, more research will need to 

investigate the mechanisms by which iron, oxygen, and autophagic pathways integrate 

in cellular homeostasis.  

5.6 Perspectives 

Through a collection of three experimental works, this dissertation advances the 

field of iron biology forward by enhancing our understanding of systemic and cellular 

iron metabolism. This dissertation defines the basic processes of iron metabolism inside 

of cells and the ways in which organs communicate across the body, expanding on 

previous work and defining new ways to understand iron homeostasis during physiology 

and in various disease states. The work presented in this dissertation also shifts our 

understanding of, i) direct liver/intestinal dynamics that regulate systemic iron levels, ii) 

organ and cell-type specific iron and/or oxygen stress responses, and iii) the ways in 

which iron and oxygen metabolism are alerted in cancer to enable efficient growth and 
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survival. These data will serve as a framework to define new approaches for the design 

and implementation of therapies to treat diseases of iron metabolism and cancer.  
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Figure 5.1. Iron overload does not trigger an increase in red blood cell numbers. 
(A) Schematic of iron dextran-induced iron overload in wild-type mice. (B and C) Time 
course analysis of complete blood count parameters in vehicle and iron dextran treated 
groups, showing (B) red blood cell count (RBC), and (C) hemoglobin (Hb), hematocrit 
(HCT), mean corpuscular hemoglobin (MCH), and mean corpuscular volume (MCV). (D) 
Liver iron concentrations. (E) qPCR analysis for erythropoietin (Epo). Data represent the 
mean ± SEM. Significance was determined by 2-tailed, unpaired t test or one-way 
ANOVA followed by Tukey’s post hoc. *P < 0.05, ****P < 0.0001 compared to 1 week 
vehicle or vehicle groups. 
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Figure 5.2. A VHL-independent mechanism for activation of intestinal HIF-2α but 
not HIF-1α during iron demand. Mice deficient for the VHL protein exclusively in the 
intestinal epithelium (VHLΔIE) were placed on iron-replete (350 PPM iron) or iron-
deficient (< 5PPM iron) diets for two weeks and compared to wild-type Vhlfl/fl littermates 
on a 350PPM diet. (A) qPCR analysis of canonical HIF-2α-specific iron absorptive 
genes. (B) qPCR analysis of canonical HIF-1α glycolytic genes. Data represent the 
mean ± SEM. Significance was determined by one-way ANOVA followed by Tukey’s 
post hoc. *P < 0.05, ***P < 0.001 compared to 350 PPM VHLfl/fl mice. 
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Figure 5.3. Ferroportin-mediated iron efflux blunts de novo pyrimidine synthesis. 
(A) Heatmap of metabolites of differential abundance in HEK293 and IEC6 doxycycline-
inducible ferroportin overexpressing cell lines treated with doxycycline (D) as compared 
to vehicle (V) for 16 hours. Only changes at p < 0.05 compared to V are shown. (B) Pie 
chart showing the proportion of metabolites of differential abundance in both HEK293 
and IEC6 ferroportin overexpressing cells that are involved in nucleotide metabolism. 
(C) Pathway of de novo pyrimidine biosynthesis, depicting metabolites that were 
significantly changed in both HEK293 and IEC6 ferroportin overexpressing cells treated 
with vehicle (V), doxycycline, (D), or doxycycline and recombinant hepcidin for 16 hours. 
Representative data from IEC6 cells are shown. Data represent the mean ± SEM. 
Significance was determined by one-way ANOVA followed by Tukey’s post hoc. *P < 
0.05, **P < 0.01, ****P < 0.0001 compared to V.  
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Figure 5.4. Hepcidin interaction with ferroportin leads to binding with HSC70 and 
lysosomal degradation, independent of canonical macroautophagic machinery. 
Stable, doxycycline-inducible human ferroportinGFP HEK293 cells (FPNGFP) were treated 
with vehicle or doxycycline for 16 hours, followed by (A) recombinant hepcidin for the 
indicated time points (minutes), (B) a pre-treatment for 1 hr. with the proteosomal 
inhibitor, MG-132, the lysosomal inhibitor, chloroquine (CQ), or vehicle before treatment 
with recombinant hepcidin for 4 hrs, or (C) pre-treatment for 1 hr. with inhibitors of 
macroautophagy, wortmannin (Wort.) or verteporfin (VP), the lysosomal inhibitor, 
bafilomycin A1 (BA1), or vehicle before treatment with recombinant hepcidin for 4 hrs. 
(D) FPNGFP cells were transfected with an HSC70-V5 expression construct, treated with 
doxycycline, and recombinant hepcidin or vehicle for 2 hrs. before lysis for co-IP with 
anti-GFP beads. 
 


