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ABSTRACT 

Optimal anemia management strategies for end-stage kidney disease patients treated 

with hemodialysis are unknown, with controversies over how best to utilize 

erythropoiesis-stimulating agents (ESA) and intravenous iron to support hemoglobin 

levels and minimize adverse events. With large randomized trials rare in nephrology, it 

is thus crucial that research questions are clearly defined, study designs are 

appropriately selected, and analytic techniques are properly implemented when using 

observational data. The three aims of this dissertation attempt to address current 

controversies in anemia management using innovative statistical methods, leveraging 

data from the Dialysis Outcomes and Practice Patterns Study (DOPPS), an international 

prospective cohort study of hemodialysis patients.  

Aim 1 focused on anemia management during the transition period to hemodialysis. 

Among patients who initiated hemodialysis with hemoglobin <10 g/dL, the highest (vs. 

low) doses of ESA and intravenous iron were each associated with elevated mortality. 

To assess the impact of pre-dialysis anemia treatment, a seemingly counterintuitive 

design – restricting to patients who achieved target hemoglobin (>=10 g/dL) four months 

later – was used to limit inclusion of patients whose low hemoglobin at hemodialysis 

initiation was likely confounded by poor health status. Even in this subset, anemia at 

hemodialysis initiation was common and associated with elevated mortality. A more 

proactive approach to anemia management prior to end-stage kidney disease may thus 
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avoid aggressive correction of hemoglobin levels during the early dialysis period and 

improve survival. 

Aim 2 focused on how hemoglobin response to ESA therapy may be blunted by 

inflammation. Hemoglobin and ESA doses were compared over the 3 months before 

and after detection of new inflammation, defined as an acute C-reactive protein increase 

from <=5 to >10 mg/L. Confounding due to baseline characteristics, whether measured 

(age, sex, comorbidity history) or unmeasured (genetic or environmental factors), was 

avoided by this longitudinal self-matched design. Patients experiencing new 

inflammation had both higher ESA doses and lower hemoglobin (vs. pre-inflammation 

levels), supporting the hypothesis that inflammation increases resistance to ESA 

treatment. Quicker recognition of new inflammation in hemodialysis patients could help 

identify the cause of worsening anemia and guide ESA and intravenous iron dosing 

decisions more proactively.  

Aim 3 focused on applying the parametric g-formula, an extension of standardization to 

longitudinal data, to replicate a randomized trial using observational data. DOPPS data 

were used to compare iron supplementation strategies, with the goal of mimicking the 

recently published PIVOTAL randomized trial. Comparing the proactive high-dose vs. 

reactive low-dose strategy, 1-year mortality risk was 20% greater under the parametric 

g-formula simulation, but similar in the PIVOTAL trial. Simulated differences for all 

secondary outcomes were directionally consistent but of lesser magnitude than in the 

PIVOTAL trial. Success in mimicking the PIVOTAL trial was mixed, and potential 

explanations for the divergent results include model misspecification and/or differences 

in the study populations. This example illustrates the potential of the parametric g-
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formula to evaluate many variations of complex interventions across different 

populations, which could prove enormously informative in the age of big data. 

This dissertation outlines critical gaps in the literature on anemia management in 

hemodialysis patients, and describes three studies that utilize innovative designs and 

complex statistical analyses to address these gaps. These studies attempt to advance 

both the optimization of anemia management strategies in hemodialysis patients and 

the use of causal inference principles to guide epidemiologic research using 

observational data. 
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CHAPTER I 

Introduction 

 

Anemia in Chronic Kidney Disease 

For patients with chronic kidney disease (CKD) who progress to end-stage kidney 

disease (ESKD), the most common treatment in the United States (US) is in-center 

hemodialysis (HD) for 3-4 hours three times per week. During HD treatment, a filter is 

used to clean toxins from the blood to maintain electrolyte balance and remove extra 

fluid from the body to avoid the dangerous complications of kidney failure. These 

complications include (1) fluid overload, leading to swelling, high blood pressure, and 

fluid in the lungs, (2) hyperkalemia, leading to life-threatening arrhythmia, (3) 

cardiovascular disease, leading to stroke or heart attack, (4) mineral and bone disorder, 

leading to bone fractures and vascular calcification, and (5) anemia, which is discussed 

in detail below.1,2  

When blood oxygen levels are low, a signal is sent to the kidneys to make erythropoietin 

(EPO), stimulating the bone marrow to create more red blood cells by using the body’s 

iron.3,4 Thus, requisite levels of both EPO and iron are needed to avoid anemia, which is 

reflected by a low red blood cell count. However, damaged kidneys do not produce 

enough EPO, hampering the erythropoiesis process.5,6 Further, ESKD impacts iron 

levels on two fronts: by impairing dietary iron absorption, and by increasing iron losses 
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through frequent blood draws, gastrointestinal bleeds, and through the HD process 

itself, with total negative iron balance of about 3 grams per year.7–9 Without enough 

EPO and/or iron to support erythropoiesis, many CKD patients suffer from anemia, 

which is defined as hemoglobin levels below 13 g/dL (in men) or 12 g/dL (in women).5 

Anemia can result in symptoms such as fatigue, weakness, and dizziness, and also 

lead to cardiovascular complications.6 

The first-line treatment for anemia of CKD prior to the late 1980’s was frequent blood 

transfusions,10 which had side effects including iron overload, infections, and 

sensitization that could potentially impede transplantation.3 Recombinant human EPO, 

an erythropoiesis stimulating agent (ESA), was introduced in 1989, revolutionizing 

anemia treatment in ESKD.11 EPO production declines with severity of CKD, and most 

HD patients now require ESA treatment to promote erythropoiesis; only 2% of patients 

maintain hemoglobin > 12 g/dL without any ESA therapy over 4 months.12 ESA’s work 

by utilizing more of the body’s iron to create red blood cells, thereby reducing iron 

levels.13 Iron deficient HD patients do not respond well to ESA therapy due to the 

shortage of available iron for erythropoiesis, and thus iron supplementation is often 

prescribed in combination with an ESA. By 1998, 60% of US HD patients were receiving 

intravenous (IV) iron, up from <1% in 1992.14 Iron deficiency can be described as 

absolute or functional, and is most often quantified by two markers: serum ferritin, a 

measure of iron stores, and transferrin saturation (TSAT), a measure of available iron. 

Low levels of both ferritin and TSAT reflect an absolute iron deficiency, while a low 

TSAT plus high ferritin reflect a functional iron deficiency.4,9,10,15 In both cases, the iron 

supply to the bone marrow is inadequate, obstructing the process of erythropoiesis.  
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Changes in anemia management strategies 

Early studies showed that ESA administration was effective in raising hemoglobin 

levels11 and avoiding blood transfusions.16 Uptake of the drug was swift and by 1992, 

70% of HD patients in the US were receiving an ESA; by 2002, the proportion was 

90%.14 As a result, transfusions decreased by more than 50% from 1992 to 2005.14 

However, concerns with ESA toxicity began in 1998 with the Normal Hematocrit Cardiac 

Trial (NHCT), which showed higher mortality in HD patients who were ESA-treated to 

higher hemoglobin targets (14 vs. 10 g/dL).17 Additional randomized trial results 

published in 2006 also failed to demonstrate a benefit of higher hemoglobin targets in 

non-dialysis CKD: the Cardiovascular Risk Reduction by Early Anemia Treatment with 

Epoetin Beta (CREATE) trial showed no difference in risk of cardiovascular events or 

CKD progression in patients treated to a hemoglobin target of 13.0-15.0 vs. 10.5-11.5 

g/dL,18 while the Correction of Hemoglobin and Outcomes in Renal Insufficiency 

(CHOIR) trial showed an increased risk of death in CKD patients treated to a higher 

hemoglobin target (13.5 vs. 11.3 g/dL).19 In 2009, another randomized study in non-

dialysis CKD, the Trial to Reduce Cardiovascular Events with Aranesp Therapy 

(TREAT), showed an increased risk of stroke for patients treated to a hemoglobin target 

of 13 g/dL vs. placebo with rescue therapy at 9 g/dL.20 

In the US, there was a strong regulatory response to this growing evidence base 

pointing to the potential harm of a more complete correction of hemoglobin to levels 

considered normal in the general population. Starting in 2011, a new “bundled” payment 

system for dialysis patients was implemented by the Centers for Medicare and Medicaid 

Services (CMS) so that medications administered intravenously at the dialysis facility – 
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including ESA and iron – were no longer separately billable.21 Later in 2011, the Food 

and Drug Administration (FDA) modified the ESA label, replacing the hemoglobin target 

of 10-12 g/dL with a recommendation to use the lowest ESA dose needed to avoid 

transfusions.22 The Quality Incentive Program (QIP) introduced with the bundle that 

rewarded dialysis facilities based on performance metrics later switched from penalizing 

facilities with an excessive fraction of patients with hemoglobin too low (<10 g/dL) to 

penalizing facilities with too many patients with hemoglobin too high (>12 g/dL).23 

The potential impact of these regulatory changes – particularly the bundled payment 

system – in the US garnered great interest in the nephrology community because 

dialysis facilities were provided a financial incentive to rely less on expensive ESA 

therapy to support hemoglobin levels.24,25 The result was an immediate and dramatic 

decrease in ESA dosing.26–29 Predictably, mean hemoglobin levels also decreased due 

to less ESA support,26–29 though hemoglobin may not be a valid surrogate for clinical 

outcomes.24,30,31 Two studies that analyzed the impact of the bundled payment system 

on clinical outcomes both found that trends in all-cause and cardiovascular-related 

mortality rates were unchanged, while stroke rates decreased.26,28 An increase in 

transfusions rates, as might be expected with lower hemoglobin levels, was also 

observed by both studies,26,28 although the bundled payment system coincided with an 

increase in the number of fields available on each Medicare claim, creating uncertainty 

in the interpretation of trends in transfusion rates.32  

A continuum of strategies for treating anemia in HD patients are available: higher doses 

of ESA with lower doses of iron, or lower doses of ESA with higher doses of iron.33 IV 

iron is less expensive than ESA therapy and often results in reduced ESA dose 
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requirements;34,35 thus an increase in IV iron dosing was observed following 

implementation of the bundled payment system in 2011.36 TSAT levels were largely 

unchanged, but serum ferritin levels increased dramatically.29 While the increase in IV 

iron dosing was transient, the ferritin increase was sustained; this pattern was partially 

explained by the lower ESA dosing, resulting in patients utilizing less iron for 

erythropoiesis and thus more iron remaining in stores.36 Increasing acceptance of 

higher ferritin and/or TSAT targets at many US centers may have also contributed to the 

increased prevalence of high ferritin levels. These historically high ferritin levels 

prompted concern that ESA toxicity was being replaced with iron toxicity, citing 

theoretical long-term safety issues with IV iron dosing.37–39  

Anemia treatment options today 

While serum ferritin was found to be the best marker of iron stores based on hepatic 

MRI in a study of dialysis patients excluding those with overt inflammation,40 others 

have argued that ferritin has several disadvantages as an index of iron status and is 

inadequate for guiding iron repletion therapy.10,41–43 Serum ferritin is elevated when 

patients are inflamed, leading to strong correlations with C-reactive protein (CRP) and 

other markers of acute illness.44–47 Kalantar-Zadeh et al.48 showed that while high 

ferritin levels were strongly associated with elevated mortality in a crude analysis, this 

association was almost eliminated after adjustment for patient characteristics and 

markers of malnutrition and inflammation. The utility of a single measurement of serum 

ferritin as a marker of iron stores may be further limited by extreme within-patient 

variability over time.49,50 These issues complicate recommended guidelines that advise 

holding IV iron when ferritin levels reach a certain threshold.5,51–53 
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Randomized trials have consistently shown harmful effects of administering large doses 

of ESA to reach and maintain higher hemoglobin levels,54 but controversy remains in 

identifying optimal strategies for iron supplementation in CKD and ESKD.8,55–60 The 

Dialysis Patients’ Response to IV Iron with Elevated Ferritin (DRIVE) trial demonstrated 

that IV iron effectively raised hemoglobin levels in patients with functional iron deficiency 

(TSAT < 25% and ferritin 500-1200 ng/ml).61 The DRIVE II study, a 6 week 

observational extension of the DRIVE trial, showed that patients treated with IV iron 

required lower ESA doses to maintain hemoglobin levels.34 Large cohort studies 

investigating the association between IV iron dosing and adverse events in HD patients 

have yielded mixed results.48,62–64 Higher mortality risk with larger doses of IV iron was 

observed by Bailie et al.62 (≥300 mg/month) and Kalantar-Zadeh et al.48 (>400 

mg/month). In contrast, no association between IV iron dose and all-cause mortality was 

observed by Miskulin et al.63 and Feldman et al.64 While the threshold for iron toxicity is 

unclear, Horl33 notes that there has been no epidemic of iron overload in HD patients 

with many years of high ferritin levels.  

The long-term safety of IV iron was recently assessed in the Proactive IV Iron Therapy 

in Haemodialysis Patients (PIVOTAL) study, a large, open-label, UK-based randomized 

controlled trial.65 In PIVOTAL, the IV iron dose assigned each month depended on the 

most recent values of ferritin and TSAT. In the proactive high-dose arm, 400 mg IV iron 

was administered monthly unless upper thresholds of ferritin (>700 ng/mL) or TSAT 

(>40%) were reached. In the reactive low-dose arm, lower IV iron doses (100 or 200 

mg/month) were administered unless lower thresholds of ferritin (<200 ng/mL) or TSAT 

(<20%) were reached. Comparing the high vs. low dose arms, the authors observed a 
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hazard ratio (HR) of 0.85 (95% CI: 0.73, 1.00) for the composite primary end point of 

nonfatal myocardial infarction, nonfatal stroke, hospitalization for heart failure, or death 

over the 42-month follow-up period, and concluded that a proactive high-dose IV iron 

treatment regime was superior to a reactive low-dose regime.65 

Despite potential warning signs of harm due to high ESA doses, some patients still 

receive very high doses due to a lack of hemoglobin response to lower doses. This 

hyporesponsiveness to ESA affects about 10% of HD patients66 and is commonly 

defined as one of (1) a decrease in hemoglobin level at constant ESA dose; (2) an 

increase in ESA dose to preserve a similar hemoglobin level; or (3) a failure to raise 

hemoglobin into target range despite large ESA doses.67 Inflammation, most often 

measured in population studies by high CRP, is a strong predictor of mortality.47 CRP 

elevations can be transient in many HD patients,68 but high levels could be sustained in 

cases of chronic inflammation. CRP level is also associated with morbidity and acute 

illnesses, which may worsen response to ESA therapy.69  

Anemia management guidelines 

Formal clinical practice guidelines for anemia management in ESKD are released every 

few years by a variety of organizations: Kidney Disease Improving Global Outcomes 

(KDIGO) worldwide, with follow-up commentary from Kidney Disease Outcomes Quality 

Initiative (KDOQI) in the US; European Renal Best Practice (ERBP) in Europe; National 

Institute for Health and Social Care (NICE) in the UK; Caring for Australasians with 

Renal Impairment (CARI) in Australia; and Japanese Society for Dialysis Therapy 

(JSDT) in Japan. Because it is well-established that targeting high hemoglobin levels 

with large ESA doses can lead to serious adverse events,17,19,20,54 guidelines relating to 
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ESA doses and hemoglobin levels are in general agreement, with hemoglobin targets 

settling in the 10-11 g/dL range.5,51–53 For patients who start HD with very low 

hemoglobin levels, often due to inadequate treatment in CKD stages 4 and 5, ESA 

dosing to avoid transfusions is recommended.22 In contrast to ESA therapy, iron 

supplementation strategies remain controversial.8,55–60 

There is great regional heterogeneity in upper targets for ferritin levels at which 

discontinuing IV iron is advised. Ferritin levels are recommended to be kept very low in 

Japan (median 73 ng/mL70); in Europe, values are higher,71,72 with guidelines 

recommending to discontinue IV iron at an upper ferritin target of 500 ng/mL;52 in the 

US, the 2013 KDOQI commentary51 on the 2012 KDIGO guidelines5 expressed a 

comfort with IV iron dosing up to a ferritin level of 800 ng/mL. This threshold may have 

been regularly exceeded in practice at many facilities, resulting in a historically high 

median ferritin of 810 ng/mL as of June 2017.29  

Rationale 

The three aims of this dissertation address current controversies in anemia 

management practices for HD patients using innovative methods in observational data 

to minimize confounding. The regular schedule of maintenance HD (typically three times 

per week) provides a great opportunity to explore large databases of longitudinal 

information on patient condition, treatments, and laboratory measurements. To address 

these specific aims, data from the Dialysis Outcomes and Practice Patterns Study 

(DOPPS), a multiphase prospective cohort study of center-based, adult chronic 

hemodialysis patients in >20 countries ongoing since 1996, will be leveraged.  
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Aim 1 is to determine whether it is beneficial to manage anemia in advanced CKD 

(before starting HD). A substantial proportion of patients initiate HD with severe 

anemia73 and the most likely causes include (1) lack of any pre-ESKD nephrologist 

care, (2) lack of adequate anemia treatment despite nephrologist care, (3) lack of 

responsiveness to anemia treatment, and (4) generally poor health or acute illness. The 

optimal strategy to treat these patients is unknown, as reflected by the variation in 

practice during the first few months of HD, especially across global regions.74 Some 

nephrologists may choose to administer very high doses of ESA and/or large bolus 

doses of IV iron to quickly achieve hemoglobin increases into target range, but these 

rapid hemoglobin increases from ESA therapy may be potentially harmful.75 Others may 

instead provide moderate amounts of ESA and/or IV iron, achieving hemoglobin 

increases more slowly to avoid adverse events that have been linked with higher 

hemoglobin targets.17,19,20 While ESA and IV iron doses among long-term HD patients 

have likely been titrated based on individual patient responsiveness to treatment, doses 

among new HD patients may be more likely driven by nephrologist practice patterns and 

regional guidelines, creating an opportunity to leverage these discretionary practices 

analytically.5,51–53 Evaluation of these anemia treatment strategies during the early 

months of HD is needed, specifically whether a more aggressive approach may lead to 

better short-term surrogate outcomes (i.e., swift increase of hemoglobin) but worse 

clinical outcomes due to large, and potentially harmful, doses of ESA and/or IV iron. 

Further, while patients who initiate HD with very low hemoglobin levels have higher 

mortality rates on HD, it’s unknown whether this disadvantage is sustained even among 

patients whose hemoglobin was corrected into target range within 4 months on HD. 
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Using a seemingly counterintuitive approach by restricting on patients who were able to 

achieve hemoglobin ≥10 g/dL after 4 months on HD helps avoid bias by excluding 

cases in which hemoglobin was low at HD initiation due to lack of responsiveness to 

anemia treatment or generally poor health, and thus attempts to isolate the reason 

related to the question of interest – lack of anemia treatment prior to ESKD. 

Aim 2 is to find out whether, and to what extent, new inflammation impairs 

responsiveness to ESA therapy in HD patients. Cross-sectional analyses have 

consistently shown that patients with higher CRP have greater ESA resistance,76–78 but 

prospective studies have been less frequent and yielded mixed results using a variety of 

analytic approaches.79–82 Financial incentives and clinical risk mitigation strategies to 

reduce ESA doses motivate the need to distinguish between HD patients who require 

higher ESA doses to achieve hemoglobin ≥10 g/dL and those who are over-treated. A 

better understanding of how ESA dose requirements may change in response to 

inflammation occurrences could lead to more proactive changes in ESA utilization. A 

self-matched longitudinal design to quantify the magnitude of within-patient changes in 

hemoglobin and ESA dose in patients who experienced a rise in CRP, relative to pre-

inflammation levels, will help address this research question in a manner that avoids 

confounding due to fixed patient characteristics, e.g., sex, baseline age, and 

comorbidity history, as well as other unmeasured confounders such as genetic or 

environmental factors. 

Aim 3 is to replicate key findings from a randomized trial of IV iron supplementation by 

applying the parametric g-formula to longitudinal data from a large prospective cohort 

study. The recently published PIVOTAL trial65 showed that a proactive high-dose (vs. 
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reactive low-dose) IV iron treatment regime resulted in lower ESA doses and fewer 

adverse events. While randomized controlled trials are the gold standard for causal 

inference, they are generally inflexible to different selection criteria and intervention 

protocols. One practical alternative is to apply the parametric g-formula, an extension of 

standardization to longitudinal data, to compare complex and dynamic treatment 

strategies using observational data.83 Cohort studies of HD patients are particularly 

suitable for g-formula analyses that depend on rich longitudinal data. While the ultimate 

goal is to assess a broad spectrum of IV iron treatment strategies using this method, an 

important first step is to mimic the PIVOTAL trial using real-world data. This proof-of-

concept could then be extended to treatment strategies that remain unaddressed by 

randomized trials, which are generally designed to test only one or two specific 

hypotheses. If trial results can be replicated in this g-formula simulation, the potential to 

evaluate many variations of complex intervention strategies across different populations 

could prove to be enormously informative in the age of big data. 

This dissertation outlines critical gaps in the literature on anemia management in HD 

patients, and stresses the importance of clearly defining the research question and 

choosing the appropriate study design. The three unique aims utilize novel applications 

of complex statistical analyses to contribute meaningfully to the literature, and may 

ultimately help optimize anemia management strategies in HD patients. 
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CHAPTER II 

Low Hemoglobin at Hemodialysis Initiation: An International Study of Anemia 

Management and Mortality in the Early Dialysis Period 

Coauthors who contributed to this work include: Hal Morgenstern, Sandra Waechter, 

Nancy L. Fleischer, Raymond Vanholder, Stefan H. Jacobson, Manish M. Sood, 

Douglas E. Schaubel, Masaaki Inaba, Ronald L Pisoni, and Bruce M. Robinson.  

 

INTRODUCTION 

Most chronic kidney disease (CKD) patients suffer from anemia due to deficiencies in 

iron and erythropoietin, often resulting in fatigue, weakness, and an increased risk of 

cardiovascular complications.5,84 A substantial proportion of CKD patients reach end-

stage kidney disease (ESKD) with very low hemoglobin levels.73 The most likely causes 

include: (1) uremic intoxication inhibiting erythropoiesis; (2) lack of pre-ESKD 

nephrology care; (3) lack of adequate anemia treatment, despite nephrologist care, 

including insufficient correction of iron deficiency, as illustrated by low levels of serum 

ferritin or transferrin saturation (TSAT); or (4) lack of responsiveness to anemia 

treatment, often due to poor general health or acute illness. Regular treatments with 

intravenous (IV) iron and erythropoiesis-stimulating agents (ESA) are standard for 

thrice-weekly in-center hemodialysis (HD) patients, but are more difficult to carry out for 

non-dialysis CKD patients who receive care intermittently. 
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ESA and IV iron therapy are effective in raising hemoglobin levels and avoiding blood 

transfusions.11,16,61,85 However, concerns regarding ESA toxicity emerged following a 

number of randomized clinical trials (RCT).17–20 Studies have consistently demonstrated 

harmful effects of administering large doses of ESA to reach and maintain higher 

hemoglobin levels,54 resulting in clinically acceptable hemoglobin targets that are now 

generally in the range of 10-12 g/dL.5,51–53,86 The practice of starting anemia therapy at 

9.5-10.0 g/dL, based on results from the Time to Reconsider Evidence for Anemia 

Treatment (TREAT) trial (glomerular filtration rate [GFR] 20-60),20 may not be directly 

applicable to the dialysis transition period. Further, two recent studies showed 

conflicting results regarding whether there may be a benefit87 or no benefit88 to starting 

dialysis therapy with a higher hemoglobin level. Controversy also remains in identifying 

optimal strategies for iron supplementation in non-dialysis CKD and ESKD.55,57,58,60,89 In 

the non-dialysis CKD setting, the efficacy of IV iron to raise or sustain hemoglobin levels 

has been well-established, but most RCTs do not have sufficient follow-up to evaluate 

long-term safety.90 In the HD setting, large cohort studies of IV iron and mortality have 

yielded mixed results.48,62–64,91,92 While the recently published Proactive IV Iron Therapy 

in Haemodialysis Patients (PIVOTAL) RCT65 demonstrated non-inferiority of a proactive 

high IV iron dose strategy, results may not be generalizable to all Dialysis Outcomes 

and Practice Patterns (DOPPS) countries – especially not the US, where average iron 

doses and ferritin levels are greater than even the high IV iron dose PIVOTAL arm.29  

ESA and IV iron doses among long-term HD patients have likely been titrated based on 

individual patient responsiveness to treatment, but doses in the early HD period may 

more likely be driven by nephrologist practice patterns and regional guidelines.5,51–53 
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Some nephrologists may choose to administer very high doses of ESA and/or large 

bolus doses of IV iron to quickly achieve hemoglobin increases and avoid the symptoms 

and potential consequences of severe anemia. However, ESA labels warn that rapid 

hemoglobin increases may increase risk of adverse cardiovascular events.75,93 It is also 

possible that patients who start HD with low hemoglobin experience worse outcomes on 

HD irrespective of HD treatment strategy.  

We hypothesize that management of anemia before the start of dialysis improves 

survival after HD start by avoiding the potential harms of chronic anemia, high doses of 

ESA and IV iron in the early months of HD, and/or a rapid hemoglobin rise. To test this 

hypothesis, we will investigate: (1) the association between anemia at HD start and all-

cause mortality through 1 year of HD; and (2) mortality rates for different doses of IV 

iron and ESA during the early dialysis period. 

METHODS 

Data Source 

The DOPPS is a large, international prospective cohort study of patients age ≥18 years 

treated with in-center HD in 21 countries. Maintenance HD patients were randomly 

selected from national samples of dialysis facilities in each country; detailed information 

is included in prior publications94,95 and at http://www.dopps.org. Study approval and 

patient consent were obtained as required by national and local ethics committee 

regulations. This analysis included DOPPS phase 4 (2009-2011) and phase 5 (2012-

2015) patients who enrolled in the DOPPS within 30 days after initiating HD.  

Variables 
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Information on age, sex, post-dialysis weight, body mass index (BMI), comorbid 

conditions (diabetes, hypertension, congestive heart failure [CHF], peripheral vascular 

disease [PVD], cancer), and catheter use were abstracted from medical records at 

DOPPS enrollment. Monthly data on medication prescriptions (ESA and IV iron) were 

also abstracted from medical records. To convert ESA doses to units of IV epoetin, we 

used conversion factors of 250:1 for darbepoetin,96 208:1 (250/1.2) for pegylated 

epoetin-β,97 and 1.15:1 for subcutaneous injections.98 Laboratory values (hemoglobin, 

TSAT, ferritin, albumin, phosphorus) are described as “month 1” when measured 0-30 

days after starting HD (first measurement recorded in DOPPS) and “month 4” when 

measured 91-120 days after starting HD.  

Study Design 

In our primary analysis, we estimated the effect of month 1 hemoglobin on all-cause 

mortality from month 4 through month 12. We restricted to patients with hemoglobin 

≥10.0 g/dL in month 4 to facilitate a comparison of mortality rates between patients with 

similar hemoglobin levels 4 months after HD initiation (Figure 1). This allows us to 

investigate whether the hypothesized harm of starting HD with low (vs. higher) 

hemoglobin is sustained even after a rapid hemoglobin increase into target range. While 

hemoglobin targets, specifically upper targets, are controversial86 and have varied over 

time and by region,5,51–53 we chose a restriction of ≥10 g/dL at month 4. Patients with 

low hemoglobin at HD start due to severe comorbidity or a lack of responsiveness to 

pre-ESKD anemia therapy are less likely to experience an hemoglobin increase to ≥10 

g/dL in the subsequent months; those with hemoglobin ≥10 g/dL after 4 months on HD 

would have theoretically been able to start HD with a higher hemoglobin, with active 
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anemia management prior to starting HD. By excluding patients poorly responsive to 

anemia treatment after dialysis start, our study is thus designed to include an exposure 

variable that should mostly reflect differences in pre-ESKD anemia care. Among 5726 

patients with hemoglobin measured in month 4, we excluded 1122 (20%) with 

hemoglobin <10 g/dL. The remaining 4604 patients were eligible for the primary 

analysis (Figure 2); 447 from DOPPS phase 4 and 4157 from DOPPS phase 5, when 

more emphasis was placed on enrolling incident HD patients. 

Figure 1. Illustration of study design and timing of data collection 

Hemoglobin (Hgb) values in month 1 were measured 0-30 days after starting HD. Hgb values in month 4 
were measured 91-120 days after starting HD. The primary exposure is month 1 Hgb. The primary 
analysis was restricted to 4604 patients with Hgb ≥10 g/dL in month 4, with mortality follow-up beginning 
after Hgb measurement in month 4, and ending after 12 months on HD. A secondary analysis of ESA and 
IV iron dose and mortality was restricted to 5959 patients with no Hgb restriction in month 4.  
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Figure 2. Flow diagram of patient selection with inclusion/exclusion criteria 

 

 

Statistical Analysis 

Cox regression was used to estimate the effect of month 1 hemoglobin on all-cause 

mortality, restricted to patients with month 4 hemoglobin ≥10.0 g/dL. Left-truncated Cox 

models were used, with time on dialysis as the time scale; time at risk started after the 

hemoglobin measurement in month 4 and ended at the time of death, 7 days after 

leaving the facility due to transfer or change in kidney replacement therapy modality, 

loss to follow-up, end of study phase, or 1 year after initiating HD (whichever event 

occurred first). Hemoglobin was categorized to explore the functional form of 

association with mortality. Cox models were stratified by DOPPS phase and country, 

and by dialysis chain affiliation in the United States (US). Within-facility clustering was 

accounted for by using robust sandwich covariance estimators. Covariates selected for 

adjustment included age, sex, BMI, history of five comorbidities (diabetes, hypertension, 

CHF, PVD, cancer), catheter use at study enrollment, serum albumin and phosphorus in 

month 1 and month 4, and hemoglobin in month 4.  
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We performed several sensitivity analyses to test the robustness of the findings. First, 

we additionally adjusted for ESA and IV iron dose over the first 3 months of HD to 

investigate the role of these potential mediators on causal pathways between low 

hemoglobin at HD initiation and mortality. Second, we used hemoglobin measured in 

the month prior to initiating HD as the exposure rather than month 1 hemoglobin. Third, 

we excluded patients dialyzing with a catheter at study enrollment as a proxy for 

minimal pre-ESKD nephrology care. Fourth, we additionally adjusted for an indicator of 

>1 month of pre-ESKD nephrology care in a subset of 29% of patients for whom the 

data were available. Fifth, we varied the month 4 hemoglobin restriction from ≥10.0 to 

≥10.5 and ≥11.0 g/dL because some ESA hyporesponsive patients could be treated to 

hemoglobin ≥10.0 g/dL, but not readily to higher hemoglobin levels. Sixth, we excluded 

patients not receiving any ESA therapy during the first 3 months of HD, an indicator of 

likely endogenous erythropoietin production in most patients.  

In a secondary analysis not restricted to month 4 hemoglobin ≥10 g/dL, we illustrated 

the distribution of ESA and IV iron dose over the first 3 months of HD therapy by month 

1 hemoglobin, TSAT, and ferritin across three regions (Europe, Japan, US). Countries 

outside of these three regions were included in the mortality models but were not shown 

in these descriptive analyses due to small sample sizes. In this population, we also 

estimated the effects of average ESA and IV iron dose administered over the first 3 

months of HD on all-cause mortality. Cox regression models were implemented as in 

the primary analysis, with additional adjustment for hemoglobin, TSAT, and ferritin in 

month 1, but without adjustment for month 4 hemoglobin, a potential mediator. We 

repeated this analysis in a subgroup of patients with hemoglobin <10.0 g/dL in month 1 
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to better inform optimal treatment practices for patients who initiated HD with low 

hemoglobin.  

We used multiple imputation, assuming data were missing at random, to impute missing 

covariate values using the Sequential Regression Multiple Imputation Method by 

IVEware.99 Results from 20 such imputed data sets were combined for the final analysis 

using Rubin’s formula.100 The proportion of missing data was below 10% for all 

covariates, with the exception of month 1 laboratory measures (ferritin 28%; TSAT 27%; 

albumin 16%; phosphorus 11%) and the five comorbidities (10%-21%). All analyses 

were conducted using SAS software, version 9.4 (SAS institute, Cary, NC). 

RESULTS 

Patient Characteristics 

Our primary analysis included 4604 patients with hemoglobin ≥10.0 g/dL in month 4 

after starting HD. Among these patients, 53% had hemoglobin <10.0 g/dL in month 1, 

including 6% with hemoglobin <8.0 g/dL, and 20% had hemoglobin ≥11.0 g/dL in month 

1, including 7% with hemoglobin ≥12.0 g/dL and 2% ≥13.0 g/dL. The mean hemoglobin 

in month 4 was between 11.3 and 11.6 g/dL across the five groups of month 1 

hemoglobin (from <8.0 to ≥11.0 g/dL). Patients with lower hemoglobin in month 1 were 

younger, more likely to dialyze with a catheter, and had higher ESA doses over the 

subsequent 3 months, but only marginally higher IV iron doses (Table 1). Patients with 

lower hemoglobin in month 1 also had lower TSAT, higher serum ferritin, and lower 

serum albumin in month 1, but all of these differences were minimized by month 4. The 

prevalence of comorbidities varied minimally by month 1 hemoglobin.  
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Table 1. Patient characteristics by hemoglobin in month 1 after starting HD, restricted to patients with hemoglobin ≥10.0 
g/dL in month 4 after starting HD 

    All Hemoglobin (g/dL) in month 1 after HD start 

Patient characteristic < 8.0 8.0-8.9 9.0-9.9 10.0-10.9 ≥ 11.0 

N patients 4604 283 (6%) 822 (18%) 
1260 
(28%) 

1209 
(27%) 897 (20%) 

Baseline  characteristics and 
treatments       
 Age (years) 64.1 ± 14.5 59.2 ± 16.1 62.7 ± 14.9 64.4 ± 14.7 65.1 ± 14.2 64.9 ± 13.7 
 Sex (% male) 60% 56% 60% 57% 60% 66% 
 Post-dialysis weight (kg) 80.4 ± 22.8 75.9 ± 22.9 78.3 ± 22.1 80.7 ± 23.3 80.6 ± 21.3 81.8 ± 23.5 

 BMI (kg/m2) 28.1 ± 6.9 26.8 ± 6.3 27.2 ± 6.5 28.4 ± 7.2 28.3 ± 6.6 28.4 ± 7.0 
 Catheter use (%) 59% 65% 63% 60% 59% 51% 
 Hemodiafiltration (%) 3% 2% 3% 3% 3% 4% 
 Single pool Kt/V 1.33 ± 0.35 1.28 ± 0.37 1.33 ± 0.37 1.35 ± 0.35 1.33 ± 0.35 1.33 ± 0.35 

Laboratory values < 30 days after starting HD      
 Hemoglobin (g/dL) 9.9 ± 1.3 7.4 ± 0.5 8.5 ± 0.3 9.5 ± 0.3 10.4 ± 0.3 11.8 ± 0.8 
 TSAT (%) 20.5 ± 9.8 18.9 ± 9.3 19.4 ± 10.1 20.2 ± 9.5 20.4 ± 9.4 22.6 ± 10.2 
 Ferritin (ng/mL) 337 ± 334 402 ± 365 366 ± 368 336 ± 325 331 ± 333 305 ± 305 
 Serum albumin (g/dL) 3.4 ± 0.5 3.1 ± 0.5 3.3 ± 0.6 3.4 ± 0.5 3.5 ± 0.5 3.6 ± 0.5 
 Serum phosphorus (mg/dL) 4.7 ± 1.5 5.0 ± 2.0 4.7 ± 1.5 4.6 ± 1.4 4.6 ± 1.4 4.8 ± 1.5 

Laboratory values 91-120 days after starting HD      
 Hemoglobin (g/dL) 11.5 ± 1.0 11.3 ± 1.0 11.5 ± 1.0 11.4 ± 1.0 11.4 ± 0.9 11.6 ± 1.1 
 TSAT (%) 26.6 ± 11.7 26.6 ± 12.5 25.7 ± 12.4 26.4 ± 11.4 26.7 ± 11.4 28.0 ± 11.9 
 Ferritin (ng/mL) 428 ± 377 388 ± 361 402 ± 352 439 ± 398 454 ± 372 424 ± 398 
 Serum albumin (g/dL) 3.7 ± 0.4 3.6 ± 0.5 3.6 ± 0.5 3.6 ± 0.5 3.7 ± 0.4 3.7 ± 0.4 
 Serum phosphorus (mg/dL) 5.2 ± 1.5 5.5 ± 1.6 5.4 ± 1.7 5.2 ± 1.5 5.2 ± 1.4 4.9 ± 1.3 

Anemia treatment during first 3 months of HD      
 ESA use (%, any during 3 months) 92% 98% 98% 98% 91% 77% 
 ESA dose (1000 units/week) 12.7 ± 10.4 19.6 ± 13.6 16.7 ± 11.0 13.8 ± 10.1 10.8 ± 8.3 8.0 ± 8.9 
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IV iron use (%, any during 3 
months) 86% 86% 87% 87% 86% 82% 

 IV iron dose (mg/month) 416 ± 292 445 ± 308 449 ± 301 428 ± 286 412 ± 281 364 ± 291 
Comorbid conditions (%)       
 Diabetes 62% 60% 61% 63% 63% 59% 
 Hypertension 87% 87% 88% 85% 88% 88% 
 CHF 27% 25% 25% 30% 27% 26% 
 Peripheral vascular disease 16% 16% 14% 18% 16% 17% 

  Cancer (non-skin) 11% 9% 12% 12% 12% 9% 
Mean ± SD or % shown; mean ESA and IV iron doses averaged over 3 months and treat non-users as 0 dose; note columns do not sum to the 
total due to 133 (3%) patients missing month 1 Hgb data. Abbreviations: BMI, body mass index; CHF, congestive heart failure; ESA, 
erythropoiesis-stimulating agents; HD, hemodialysis; Hgb, hemoglobin; IV, intravenous; SD, standard deviation; TSAT, transferrin saturation. 
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Hemoglobin and Mortality 

Among the 4604 patients, we observed 277 deaths and a mortality rate of 0.105/year 

during follow-up. Patients with lower month 1 hemoglobin – those who experienced a 

rapid hemoglobin increase to ≥10.0 g/dL during the subsequent 3 months – had higher 

mortality rates than patients who started HD with higher hemoglobin (Table 2). 

Compared with hemoglobin ≥11.0 g/dL, the adjusted hazard ratio (HR; 95% confidence 

interval [CI]) was 1.99 (1.18-3.38) for hemoglobin <8.0 g/dL and ranged from 1.18 to 

1.35 for hemoglobin 8.0-10.9 g/dL (Table 2, Model 3). As a continuous variable, month 

1 hemoglobin was inversely associated with mortality (adjusted HR for 1 g/dL higher 

hemoglobin = 0.89; 95% CI: 0.81-0.97; p for trend = 0.01). In sensitivity analyses, the 

HR for 1 g/dL higher hemoglobin was generally consistent when: (1) adjusting for 

potential mediators, ESA and IV iron dose over the subsequent 3 months (HR=0.89); (2) 

using hemoglobin measured in the month prior to initiating HD as the exposure 

(HR=0.90); (3) excluding catheter users (HR=0.84); (4) adjusting for >1 month of pre-

ESKD nephrology care (HR=0.87); (5) varying the month 4 hemoglobin restriction of 

≥10.0 to ≥10.5 (HR=0.87) and to ≥11.0 (HR=0.89) g/dL; and (6) excluding patients not 

treated with ESA during the first 3 months of HD (HR=0.89).  
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Table 2. HR of mortality for hemoglobin measured in month 1 after starting HD, by level 
of covariate adjustment, among patients with hemoglobin ≥10.0 g/dl in month 4 after 
starting HD 
 
Exposure N (%) Model 1 Model 2 Model 3 
Hemoglobin (g/dL) in month 1 after HD start, categories  
 < 8.0 283 (6%) 1.81 (1.07-3.05) 2.10 (1.25-3.54) 1.99 (1.18-3.38) 
 8.0-8.9 822 (18%) 1.23 (0.81-1.86) 1.30 (0.87-1.95) 1.23 (0.83-1.84) 
 9.0-9.9 1260 (28%) 1.52 (1.06-2.18) 1.39 (0.96-2.01) 1.35 (0.93-1.95) 
 10.0-10.9 1209 (27%) 1.28 (0.89-1.85) 1.26 (0.86-1.84) 1.18 (0.81-1.73) 
  ≥ 11.0 897 (20%) 1 (Ref.) 1 (Ref.) 1 (Ref.) 
Hemoglobin (g/dL) in month 1 after HD start, continuous  
  per 1 g/dL -- 0.91 (0.83-0.99) 0.88 (0.81-0.97) 0.89 (0.81-0.97) 

HR (95% CI) of all-cause mortality in left-truncated Cox model (vintage time scale) from month 4 through 
month 12 of HD; all Cox models stratified by DOPPS phase, country, and US dialysis chain affiliation; 
Model 1: unadjusted; Model 2: adjusted for age, sex, BMI, 5 comorbidities (diabetes, hypertension, CHF, 
PVD, cancer) and catheter use; Model 3: further adjusted for serum albumin and phosphorus in month 1 
and month 4, and hemoglobin in month 4. Abbreviations: BMI, body mass index; CHF, congestive heart 
failure; CI, confidence interval; DOPPS, Dialysis Outcomes and Practice Patterns Study; HD, 
hemodialysis; HR, hazard ratio; PVD, peripheral vascular disease. 
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Description of ESA and IV Iron Dosing 

We also studied 5959 patients who survived to month 4 (to measure ESA and IV iron 

dose administered over the first 3 months of HD), but not restricting to patients with 

hemoglobin ≥10.0 g/dL in month 4, to illustrate the variation in dosing patterns. Patients 

with lower month 1 hemoglobin had greater ESA doses over the subsequent 3 months, 

reflecting indication for the treatment and/or pre-ESKD ESA hyporesponsiveness 

(Figure 3a). Patients with lower month 1 hemoglobin had greater IV iron doses over the 

subsequent 3 months in Europe, but not in the US, where a median dose of 450-500 

mg/month was observed regardless of hemoglobin level (Figure 3b). IV iron doses in 

the first 3 months of HD were higher among patients initiating HD with lower TSAT and 

lower ferritin in all regions (Figure 4). However, relatively high IV iron doses were still 

observed among many patients with ferritin levels ≥800 ng/mL. Overall, ESA and IV iron 

doses in the first 3 months of HD were highest in the US, followed by Europe, and 

lowest in Japan across all strata. 
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Figure 3. Distribution of: (a) ESA dose; and (b) IV iron dose administered over the first 
3 months of HD therapy, by region and hemoglobin during the first month of HD  
 

 

In contrast to primary analysis, these data were not restricted to patients with Hgb ≥10 g/dL in month 4 
after starting HD. Europe: Belgium, France, Germany, Italy, Spain, Sweden, United Kingdom. Data from 
other regions (Canada, Australia, New Zealand, China, Russia, Turkey, Gulf Cooperation Council) were 
suppressed in this figure due to small sample sizes, but were included in other analyses. Abbreviations: 
ESA, erythropoiesis-stimulating agents; HD, hemodialysis; Hgb, hemoglobin; IV, intravenous  
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Figure 4. Distribution of IV iron dose administered over the first 3 months of HD 
therapy, by region and (a) TSAT and (b) ferritin measured during the first month of HD 

 

In contrast to primary analysis, these data were not restricted to patients with Hgb ≥10 g/dL in month 4 
after starting HD. Europe: Belgium, France, Germany, Italy, Spain, Sweden, United Kingdom. Japanese 
data were suppressed in subgroups with ferritin ≥500 ng/mL due to insufficient sample size. Data from 
other regions (Canada, Australia, New Zealand, China, Russia, Turkey, Gulf Cooperation Council) were 
suppressed in this figure due to small sample sizes, but were included in other analyses. Abbreviations: 
HD, hemodialysis; Hgb, hemoglobin; IV, intravenous; TSAT, transferrin saturation.  
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Anemia Treatment and Mortality 

Among this population of 5959 patients who survived to month 4, 92% were prescribed 

an ESA, and 83% were prescribed IV iron at some point during the first 3 months on 

HD. The associations of both ESA dose and IV iron dose over the first 3 months of HD 

on all-cause mortality from month 4 through month 12 are shown in Table 3. We 

observed elevated mortality at only very high ESA doses; the adjusted HR (95% CI) 

was 1.43 (1.02-2.01) for >25,000 (12% of patients) versus 5000-10,000 units/week. In a 

subgroup analysis of 3378 patients with month 1 hemoglobin <10.0 g/dL, the pattern 

was similar. The adjusted association between IV iron dose and mortality was U-

shaped, with the lowest mortality rate observed for patients receiving 200-399 

mg/month in both the whole sample and subgroup with month 1 hemoglobin <10.0 g/dL 

(Table 3). 
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Table 3. HR of mortality for ESA and IV iron dose over the first 3 months of HD without 
restricting to patients with hemoglobin ≥10 g/dL in month 4, (a) overall, and (b) among a 
subset of patients with hemoglobin <10.0 g/dL in month 1 of HD 
 

    
(a) All HD patients (b) Restricted to subset with Hgb 

< 10.0 g/dL in first month of HD 

Exposure N (%) 
Adjusted HR 

(95% CI) N (%) 
Adjusted HR 

(95% CI) 
Average ESA dose (units/week) over first 3 months on HD  
 None 479 (8%) 0.94 (0.59-1.51) 103 (3%) 0.63 (0.22-1.82) 
 < 5K 711 (12%) 0.84 (0.54-1.29) 253 (8%) 0.56 (0.25-1.27) 
 5K-10K 1543 (26%) 1 (Ref.) 836 (25%) 1 (Ref.) 
 10K-15K 1203 (21%) 0.89 (0.64-1.24) 773 (23%) 0.85 (0.56-1.27) 
 15K-25K 1223 (21%) 0.97 (0.71-1.33) 818 (25%) 0.80 (0.53-1.20) 
  > 25K 699 (12%) 1.43 (1.02-2.01) 537 (16%) 1.54 (1.01-2.36) 
Average IV iron dose (mg/month) over first 3 months on HD  
 None 1008 (17%) 1.50 (1.05-2.15) 549 (17%) 1.74 (1.08-2.79) 
 < 200 741 (13%) 1.08 (0.72-1.62) 407 (12%) 1.25 (0.74-2.10) 
 200-399 1157 (20%) 1 (Ref.) 605 (18%) 1 (Ref.) 
 400-599 1359 (23%) 1.11 (0.78-1.57) 783 (24%) 1.39 (0.88-2.18) 
  ≥ 600 1604 (27%) 1.24 (0.87-1.76) 975 (29%) 1.29 (0.80-2.07) 

HR (95% CI) of all-cause mortality in left-truncated Cox model (vintage time scale) from month 4 through 
month 12 of HD; Cox models stratified by DOPPS phase, country, and US dialysis chain affiliation; 
Adjustments: age, sex, BMI, 5 comorbidities (diabetes, hypertension, CHF, PVD, cancer), catheter use, 
serum albumin and phosphorus in month 1 and month 4, Hgb, TSAT, and ferritin in month 1; Note this 
analysis was not restricted to patients with Hgb ≥10 g/dL in month 4. Abbreviations: BMI, body mass 
index; CHF, congestive heart failure; CI, confidence interval; DOPPS, Dialysis Outcomes and Practice 
Patterns Study; ESA, erythropoiesis-stimulating agents; HD, hemodialysis; Hgb, hemoglobin; HR, hazard 
ratio; IV, intravenous; PVD, peripheral vascular disease; TSAT, transferrin saturation. 
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DISCUSSION 

Among patients with hemoglobin levels ≥10.0 g/dL in month 4 of HD, 53% of patients 

had hemoglobin <10.0 g/dL in month 1 after HD initiation, and lower hemoglobin in 

month 1 of HD was associated with a higher mortality rate in months 4-12. While we 

expected to observe a greater mortality rate for patients who initiated HD with low 

hemoglobin, this elevated rate was still observed among patients achieving hemoglobin 

≥10.0 g/dL in the early HD period. In secondary analyses not restricted to hemoglobin 

≥10.0 g/dL in month 4 of HD, we found a U-shaped association between IV iron dose 

over the first 3 months of HD and mortality, and elevated mortality for patients receiving 

the largest doses of ESA (>25,000 units/week).  

Our primary result (Table 2, Model 3) is consistent with our hypothesis that 

management of anemia before the start of dialysis improves survival after HD start, 

although there are many possible explanations for these findings. One potential 

explanation is that intense anemia treatment and/or a rapid hemoglobin rise in the early 

HD period may be responsible for the elevated mortality rate. Patients who started HD 

with the lowest hemoglobin levels received the largest ESA doses over the first 3 

months of HD. However, additional adjustment for ESA and IV iron doses (potential 

mediators) had minimal impact on the association between hemoglobin at HD initiation 

and mortality, thus making this explanation unlikely, though we did not conduct a formal 

mediation analysis.101 Another possibility is that anemia treatment prior to ESKD has 

long-term benefits compared with initiating anemia therapy after HD start. Among 

patients with hemoglobin ≥10.0 g/dL in month 4 of HD, mean hemoglobin levels in 

month 4 were similar for patients who initiated HD with hemoglobin ≥11.0 (11.6 g/dL) 
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versus hemoglobin <8.0 (11.3 g/dL) g/dL. The subsequent mortality rate was twice as 

high for patients who started HD with hemoglobin <8.0 vs. ≥11.0 g/dL, despite also 

having a similar comorbidity profile (Table 1). This striking difference in mortality may 

point to a lingering effect of untreated anemia in CKD. We also found an 18%-35% 

greater mortality rate between hemoglobin 8.0-10.9 versus ≥11.0 g/dL, though 

surprisingly minimal difference within the range of 8.0-10.9 g/dL. It’s possible that a 

“step function” exists, with low-, medium-, and high-risk groups, though our study is not 

powered to detect the exact hemoglobin cutpoints. In addition, a non-causal explanation 

is that the association may be biased due to residual confounding, possibly because 

patients with higher hemoglobin at HD start adhered more to prescribed treatments and 

recommendations and/or received better overall quality of care before HD initiation. We 

adjusted for catheter use at study enrollment as a proxy for this latter potential 

confounder, and also excluded catheter users in a sensitivity analysis.  

The relation between anemia management during the transition period to ESKD and 

post-dialysis outcomes is challenging to assess and often requires an innovative study 

design. McCausland et al.88 performed a post-hoc follow-up analysis of TREAT among 

the subset (only 15%) of randomized patients who reached ESKD.20 Mean hemoglobin 

at dialysis start was higher in the darbepoetin intervention (11.3 g/dL) versus the control 

(9.5 g/dL) group, but no all-cause mortality benefit (HR=1.16; 95% CI: 0.69-1.93) was 

observed from HD start (when anemia therapy switched from protocol-driven to 

physician-driven) through 6 months; differences with our study may be explained by the 

study design and/or selection criteria. An increased stroke rate was observed in the 

intervention group, although paradoxically, it is likely ESA doses were much higher (by 
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indication) during the at-risk period in the control group. The authors concluded there is 

no apparent benefit from starting dialysis therapy with a higher hemoglobin level, but 

acknowledged other factors (e.g., avoiding transfusions) should help inform whether to 

treat mild-to-moderate anemia with ESA in CKD patients preparing for dialysis. A recent 

study by Wetmore et al.,87 using United States Renal Data System (USRDS) data, in 

contrast to McCausland et al.,88 drew similar conclusions as our study when analyzing 

US Medicare patients over 66 years old at dialysis initiation. The 1-year mortality rate 

was slightly lower (HR=0.88) among patients treated with ESA prior to dialysis start and 

who maintained hemoglobin ≥9.0 g/dL during the 3 months before and after dialysis 

start versus patients with hemoglobin <9.0 g/dL before dialysis start who then received 

ESA after HD start and experienced an hemoglobin increase to ≥9.0 g/dL. It is 

encouraging that the current DOPPS study achieved similar findings as the USRDS 

study while using a different data source (international sample with no age restriction) 

and a different analytical approach to address the question of interest.  

Results from large observational studies102,103 are consistent with our finding that 

patients receiving the highest ESA doses in the early HD period had worse survival. 

Following patients soon after HD initiation may better capture dosing patterns (practice 

preferences) before patients transition to a more individualized steady-state dosing 

protocol, at which point observed associations between ESA dose and mortality are 

more likely attributable to confounding factors that drive ESA dose requirements than a 

causal effect.104,105  

While our main focus was on hemoglobin levels, we also investigated IV iron dosing. IV 

iron dose over the first 3 months of HD was generally greater in patients who initiated 
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HD with low levels of ferritin and TSAT, as expected. Patients starting HD with lower 

(vs. higher) hemoglobin received more IV iron in the next 3 months, but this pattern was 

not observed in the US, where a high median dose of 450-500 mg/month was observed 

regardless of hemoglobin at HD start. This may reflect the practice of bolus IV iron 

dosing in many US facilities, where doses of at least 100 mg are administered in 

consecutive HD sessions.106,107 Michels et al.108 found that a low-dose (vs. bolus dose) 

IV iron strategy in the early HD period may be beneficial by reducing ESA doses and 

risk of mortality. While we did not assess specific dosing patterns, we similarly observed 

a greater mortality rate at high doses of IV iron that would generally characterize a bolus 

dosing strategy, with the lowest mortality rate observed at 200-399 mg/month. Our 

results were also consistent with Kuo et al.,109 who demonstrated that a low-dose IV iron 

strategy was optimal for incident HD patients. The recent PIVOTAL trial randomized 

patients to a proactive high IV iron dose (400 mg/month IV iron; discontinue if ferritin 

>700 ng/mL or TSAT >40%) or reactive low IV iron dose (100-400 mg/month IV iron; 

discontinue if ferritin >200 ng/mL and TSAT >20%) and demonstrated non-inferiority of 

the high IV iron dose strategy;65 however, these “high” doses were lower than the 

median dose of 450-500 mg/month we observed in the US, and the upper ferritin 

threshold of 700 ng/mL in the “proactive” arm was lower than the median serum ferritin 

levels observed in the US.29 Generalizability of these findings in the context of the high 

levels of serum ferritin and IV iron dosing observed in the US remains an open question. 

This analysis had some limitations. First, to address potential residual confounding due 

to better pre-ESKD care (unrelated to anemia), we adjusted for catheter use at study 

enrollment, a proxy for lack of pre-ESKD nephrology care. Regarding potential residual 



33 

confounding due to health status, it is reassuring that the distribution of key risk factors 

(e.g., serum albumin at month 4) and prevalence of comorbidities was similar by 

hemoglobin level at HD initiation (Table 1). Second, we were unable to determine 

history of anemia therapy – including usage or dosage – prior to HD start, which would 

have helped inform the causes(s) of initiating HD with low hemoglobin (e.g., lack or 

treatment or hyporesponsiveness); this limitation prompted us to restrict to patients with 

hemoglobin ≥10 g/dL in month 4, excluding patients whose low month 1 hemoglobin 

was likely due to poor general health or ESA hyporesponsiveness, thus using low 

hemoglobin at HD start as a proxy for lack of pre-ESKD anemia treatment. Third, data 

on potentially important variables were not available for a majority of patients, including 

transfusions, C-reactive protein (not measured in North America), and residual kidney 

function. Finally, our exposure variable was hemoglobin measured within 30 days after 

initiating HD (median=13 days), but hemoglobin could have changed in the days 

immediately after starting HD. We thus performed a sensitivity analysis in a subset of 

patients for which data was available on hemoglobin levels immediately prior to starting 

HD. 

This analysis also had some key strengths. We considered mortality as the primary 

outcome rather than a surrogate outcome, such as change in hemoglobin, which is 

often used in smaller RCTs with short follow-up to demonstrate effectiveness, but not 

safety, of pre-ESKD anemia therapies. Further, the large international DOPPS sample 

reflected a wide range of anemia management practices in the early HD period. In 

particular, we observed that IV iron prescription patterns did not appear to be driven by 
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hemoglobin levels in the US, where doses were very high in the first 3 months of HD 

(median 450-500 mg/month).  

In this study, we found that, even among patients who achieved hemoglobin ≥10.0 g/dL 

within 4 months of starting HD, low hemoglobin at HD initiation was common (53% 

below 10.0 g/dL) and was associated with elevated mortality. Compared with 

hemoglobin ≥11.0 g/dL at HD start, we observed a two-fold greater mortality rate for 

hemoglobin <8.0 g/dL and an 18%-35% greater mortality rate for hemoglobin 8.0-10.9 

g/dL. A more proactive approach to anemia management in advanced CKD may thus 

improve first-year survival on HD, though long-term prospective studies examining 

anemia treatments and adverse events starting in the non-dialysis CKD setting are 

needed. 
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CHAPTER III 

The Effect of New Inflammation on Hyporesponsiveness to Erythropoiesis-

Stimulating Agent Therapy in Hemodialysis Patients: A Self-Matched Longitudinal 

Study of Anemia Management in the DOPPS 

 

Coauthors who contributed to this work include: Hal Morgenstern, Nancy L Fleischer, 

Raymond C Vanholder, Nafeesa N Dhalwani, Elke Schaeffner, Douglas E Schaubel, 
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INTRODUCTION 

Best practice guidelines for anemia management in hemodialysis (HD) patients, 

including use of erythropoiesis-stimulating agents (ESA), have varied over time and by 

international region, but physicians have now generally agreed on a lower hemoglobin 

target of 10 g/dL.5,51–53,67,86 Randomized trials have demonstrated cardiovascular harm 

of targeting higher hemoglobin levels in anemic chronic kidney disease (CKD) 

patients,17–20 but the mechanism remains unclear. Financial incentives and clinical risk 

mitigation strategies to reduce ESA doses also motivate the need to distinguish 

between HD patients who may require higher ESA doses to achieve hemoglobin ≥10 
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g/dL and those who may be over-treated. ESA hyporesponsiveness is thought to be 

present in about 10% of HD patients110,111 and is commonly defined as one of the 

following: (1) a decrease in hemoglobin level at constant ESA dose; (2) an increase in 

ESA dose to preserve a similar hemoglobin level; or (3) a failure to raise hemoglobin 

into the target range despite large ESA doses (2). 

Inflammation, easily identified clinically by a high C-reactive protein (CRP) level, is 

common in HD patients and associated with increased mortality.47,69,112,113 Inflammation 

may also blunt the haematopoetic response of ESA therapy to produce hemoglobin by 

decreasing bone marrow response to ESA, altering iron regulation through hepcidin, 

and/or by causing hemolysis of red cells/erythrocytes.69,110,114,115 It is possible that 

inflamed HD patients could benefit from proactive adjustment of anemia medications or, 

in the future, from anemia therapies such as hypoxia-inducible factor prolyl hydroxylase 

inhibitors (HIF-PHI) that may be effective despite inflammation.116–118  

Several cross-sectional analyses have shown a positive correlation between CRP and 

ESA dose, but may be confounded by patient health status.66,76–78,119 Longitudinal 

studies have been less frequent and have yielded mixed results using a variety of 

analytic approaches.79–82 In this study, we focus on newly developed inflammation and 

aim to quantify the magnitude of within-patient changes in hemoglobin and ESA dose 

relative to pre-inflammation levels. We hypothesized that patients are more likely to be 

ESA hyporesponsive, with lower hemoglobin levels and/or larger ESA doses in the 3 

months following an increase in CRP (from ≤5 to >10 mg/L), compared to the 3 months 

preceding this increase. 
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METHODS 

Data source 

The Dialysis Outcomes and Practice Patterns Study (DOPPS) is an international, 

multiphase prospective cohort study of patients ≥18 years old treated with in-center HD 

in 21 countries. Maintenance HD patients were randomly selected from national 

samples of HD facilities in each country; detailed information is included in prior 

publications94,95 and at http://www.dopps.org. Study approval and patient consent were 

obtained as required by national and local ethics committee regulations. Information on 

patient demographics and comorbidity history was abstracted from medical records at 

DOPPS enrollment in each phase. Monthly data on measured laboratory values and 

medication prescriptions were abstracted from medical records at baseline and during 

follow-up. 

This analysis included HD patients from ten DOPPS countries where monthly CRP data 

were widely available: Japan, Australia, and New Zealand (ANZ), and seven countries 

in Europe: Belgium, France, Germany, Italy, Spain, Sweden, and the UK. No data from 

the US or Canada were used because routine measurement of CRP in the HD setting 

remains rare in North America.120 Countries were included only during phases when 

data on laboratory values and medications were collected monthly: all ten countries in 

DOPPS phase 4 (2009-2011), all countries except Belgium and Sweden in phase 5 

(2012-2015), and only Japan in phase 6 (2015-2018).  

  

http://www.dopps.org/
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Study design 

Our goal was to assess whether newly developed inflammation led to increased ESA 

resistance. To operationalize this hypothesis, we used a self-matched before-after study 

design as illustrated in Figure 5 to assess within-patient changes in hemoglobin, ESA 

dose, and ESA hyporesponsiveness from the “before” period (little or no inflammation) 

to the “after” period (following the onset of inflammation). This self-matched design 

prevents confounding due to fixed patient characteristics, e.g., sex, baseline age, and 

comorbidity history, as well as other unmeasured confounders such as genetic or 

environmental factors.  

 

Figure 5. Illustration of before-after study design  

For a given patient, average hemoglobin and ESA dose was observed during the 3 months following an 
increase in CRP from low (≤5 mg/L) to high (>10 mg/L). Time-varying confounders were included during 
the month preceding the “Before” period (C1) and the month preceding the CRP increase (C2). 
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Because longitudinal ascertainment of CRP was required, we excluded patients 

dialyzing in facilities that did not routinely assess CRP (measured less than once every 

4 months on average) and patients with fewer than two CRP measurements during 

DOPPS follow-up. The remaining patients were potentially eligible for inclusion. We 

then identified instances of high CRP (>10 mg/L), considered “month 0.” These 

instances needed to meet four additional criteria to be included in the matched analysis: 

(1) the patient was enrolled in DOPPS ≥4 months prior to month 0; (2) CRP was 

measured at least once during the 3 months prior to month 0; (3) all available CRP 

values were low (≤5 mg/L) during the 3 months prior to month 0; and (4) the patient 

remained in DOPPS ≥3 months following month 0. Detailed information on the number 

excluded for various reasons is shown in the flow diagram (Figure 6).  

Figure 6. Flow chart illustrating inclusion/exclusion criteria 

*Routine measurement of CRP by a facility defined as ≥25% of patient-months with a CRP measurement, 
i.e., CRP measured at least once every 4 months on average. Note that the 194,917 CRP measurements 
from 12,389 patients were used as the basis to report the distribution of CRP in Figure 7. 
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Statistical analyses 

We first summarized the distribution of CRP levels by country. After applying the 

inclusion/exclusion criteria above, we summarized both time-fixed and time-varying 

patient characteristics of the study sample used in the matched analysis. In descriptive 

analyses to illustrate trends in hemoglobin, ESA dose, and ESA hyporesponsiveness 

over the 3 months before and after the CRP increase, the mean and standard error (SE) 

were calculated in each month. To convert ESA doses to units of IV epoetin, we used 

conversion factors of 250:1 for darbepoetin,96 208:1 (250/1.2) for pegylated epoetin-β ,97 

and 1.15:1 for subcutaneous injections.98  

ESA hyporesponsiveness, the main binary outcome, was defined in each 3-month 

period as low hemoglobin (<10 g/dL) plus high ESA dose, where the threshold for high 

ESA dose was lower in Japan (>6000 units/week) than in Europe/ANZ (>8000 

units/week) due to generally lower ESA doses in Japan. Hemoglobin levels and ESA 

doses were averaged over each 3-month period. To estimate the unadjusted 

prevalence ratio (PR) of ESA hyporesponsiveness in the after vs. before period, we 

used Mantel-Haenszel methods for matched designs121 to analyze the 2x2 table. To 

incorporate potential time-varying confounders, we used an extension of the modified 

Poisson regression approach for correlated binary data.122  

The two secondary outcomes were hemoglobin level and ESA dose, each averaged 

over the 3 months before and after the increase in CRP. We used a natural log 

transformation of ESA dose due to skewness of the distribution, but we also modeled 

the untransformed ESA dose. For these continuous outcomes, we used mixed-effects 

linear regression with an indicator variable for “after” (vs. “before”) as the exposure 
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contrast of interest. Because multiple inflammation events per patient could be eligible, 

we used a random intercept to account for within-facility and within-patient clustering.  

Factors that are constant within patients (e.g., sex) or change uniformly over time (e.g., 

age) cannot be confounders in this analysis because they are “matched” perfectly within 

patients. Within-patient factors that changed between the “before” and “after” periods 

(e.g., laboratory values, medications) could plausibly confound the estimated effect of 

rising CRP on each outcome. We adjusted for several of these potential confounders to 

exclude alternative sources of changes in hemoglobin or ESA dose; we included a set 

of covariates measured at two time points: 4 months prior to the high CRP and 1 month 

prior to the high CRP (C1 and C2 as illustrated in Figure 5). By measuring potential 

confounders before high CRP was observed, the covariates cannot be affected by the 

new inflammation (thus avoiding controlling for a mediator on the causal pathway), while 

they may still plausibly impact hemoglobin and ESA dose during the “before” (C1) and 

“after” (C2) periods. Our models thus included adjustment for DOPPS phase, country, 

age, sex, vintage (time since HD initiation), BMI, and history of 13 comorbidities (listed 

in Table 4), plus the following time-dependent variables measured at 4 months and 1 

month prior to the observed high CRP: serum albumin, white blood cell count, serum 

phosphorus, cinacalcet use, IV iron dose, hospitalization, and catheter use. 

We performed subgroup analyses to assess heterogeneity between Japan and the 

other countries (due to population differences in CRP levels) and effect modification by 

patient characteristics. We also performed sensitivity analyses to assess the robustness 

of our results: (a) varying the number of CRP measurements during the 3-month 

“before” period; (b) varying the thresholds used to define “low” and “high” CRP; (c) 
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varying the length of the outcome assessment period; (d) varying the longevity of the 

CRP increase as sustained (CRP >10 mg/L throughout 3-month “after” period) vs. 

transient (CRP ≤5 mg/L throughout 3-month “after” period); and (e) varying the ESA 

dose threshold used to define ESA hyporesponsiveness.  

We used multiple imputation, assuming data were missing at random, to impute missing 

covariate values using the Sequential Regression Multiple Imputation Method by 

IVEware.99 Results from 20 such imputed data sets were combined for the final analysis 

using Rubin’s formula.100 The proportion of missing data was below 10% for all 

covariates, with the exception of white blood cell count (12%). All analyses were 

conducted using SAS software, version 9.4 (SAS institute, Cary, NC).  

RESULTS 

Prevalence of high CRP, by country 

As shown in Figure 6, 12,389 patients potentially eligible for inclusion had a total of 

194,917 CRP measurements; the median number of measurements was 13 

(interquartile range [IQR]: 6, 24). The CRP distribution in this population is reported by 

country in Figure 7. The prevalence of high CRP (>10 mg/L) was greatest in the UK 

(43%) and 30%-40% across other Europe/ANZ countries; median CRP was 6-8 mg/L 

across Europe/ANZ. The prevalence of CRP >10 mg/L was much lower in Japan (10%), 

where 57% of CRP measurements were ≤1 mg/L.  
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Figure 7. CRP distribution, by country 

 
 
N pats = number of patients with CRP measurements who are potentially eligible for inclusion (as 
described in Figure 6); N obs = number of monthly CRP measurements available from these patients 
(denominators for the figure). A/NZ = Australia / New Zealand. 
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Self-matched analysis: Patient characteristics 

After applying the inclusion/exclusion criteria as in Figure 6, we identified 3,568 

instances of high CRP (month 0) from 2,839 patients eligible for the primary analysis: 

1,659 from DOPPS phase 4, 1,316 from phase 5, and 593 from phase 6. Baseline 

patient characteristics treated as time-fixed are shown in Table 4 for patients eligible for 

the before-after analysis, by region. Compared to Europe/ANZ, patients in Japan tended 

to have longer vintage, lower BMI, and were less likely to have several comorbid 

conditions. Time-varying patient characteristics collected longitudinally are shown in 

Table 5. In the 3 months after vs. before an increase in CRP, patients in both regions 

tended to experience modest decreases in transferrin saturation (TSAT) and serum 

albumin and modest increases in ferritin and white blood cell (WBC) count. The 

proportion of patients prescribed IV iron and their respective doses changed minimally. 

In Europe/ANZ, patients were more likely to receive a red blood cell transfusion (6% vs. 

3%) or experience an inpatient hospitalization (26% vs. 19%) in the 3 months after vs. 

before an increase in CRP, but differences were minimal in Japan. The median (IQR) 

CRP was 19 (14, 37) in Europe/ANZ and 20 (14, 36) in Japan during the reference 

month, then dropped to 6 (3, 14) in Europe/ANZ and 3 (1, 7) in Japan during the after 

period, illustrating that in most cases the rise in CRP to >10 mg/L was not sustained.  
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Table 4. Summary statistics for time-fixed patient characteristics, by region 

    Europe/ANZ Japan 
N eligible instances of high CRP 1530 2038 
N patients 1293 1546 
Age (years) 67.3 (14.5) 68.1 (11.5) 
Sex (% male) 62% 71% 
Time on dialysis (years) 3.5 (1.7, 6.9) 6.5 (3.0, 12.5) 
Body mass index (kg/m2)   
 < 18 4% 16% 
 18-25 45% 71% 
 25-30 34% 12% 
 ≥ 30 17% 2% 

Comorbidities (%)   
 Coronary artery disease 38% 33% 
 Heart failure 21% 23% 
 Cerebrovascular disease 17% 15% 
 Other cardiovascular disease 33% 30% 
 Cancer (non-skin) 16% 13% 
 Diabetes 38% 45% 
 Gastrointestinal bleeding 5% 5% 
 Hypertension 87% 84% 
 Lung disease 13% 3% 
 Neurologic disease 13% 7% 
 Psychiatric disorder 19% 5% 
 Peripheral vascular disease 31% 17% 

  Recurrent cellulitis, gangrene 7% 5% 
Mean (standard deviation), median (interquartile range), or % shown; Age, time on dialysis, and body 
mass index were captured at the time of the CRP increase (month 0, as defined in Figure 5); 
Comorbidities were captured at DOPPS enrollment; A/NZ = Australia / New Zealand 
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Table 5. Summary statistics for time-varying patient characteristics before and after the CRP increase from ≤5 to >10 
mg/L, by region 
 
    Europe/ANZ   Japan 
N eligible instances of high CRP 1530  2038 
N patients 1293  1546 

Time-varying characteristic 
3 months 
"before" 

3 months 
"after"   

3 months 
"before" 

3 months 
"after" 

 CRP (mg/L) 3 (2, 4) 6 (3, 14)  2 (1, 3) 3 (1, 7) 
 TSAT (%) 29.6 (12.3) 27.7 (11.9)  25.2 (11.1) 24.1 (11.1) 
 Serum ferritin (ng/mL) 402 (223, 613) 452 (259, 689)  77 (37, 147) 83 (42, 172) 
 Serum albumin (g/dL) 3.8 (0.4) 3.7 (0.5)  3.7 (0.4) 3.6 (0.4) 
 Serum phosphorus (mg/dL) 4.9 (1.4) 4.9 (1.5)  5.2 (1.2) 5.1 (1.2) 

 Mean WBC count (103 cells/mm3) 6.7 (1.9) 6.9 (2.1)  5.9 (1.8) 6.1 (1.9) 
 IV iron use (%, any during 3 mo) 75% 74%  31% 33% 
 IV iron dose (mg/month) 261 (145, 435) 272 (145, 435)  116 (58, 174) 116 (58, 174) 
 Cinacalcet use (%, any during 3 mo) 18% 19%  26% 27% 
 Catheter use (%, any during 3 mo) 25% 25%  1% 1% 
 Transfused (%, any during 3 mo) 3% 6%  2% 3% 

  Hospitalized (%, any during 3 mo) 19% 26%   16% 17% 
Mean (standard deviation), median (interquartile range), or % shown among all eligible instances of high CRP; "before" = 3 months before the 
CRP increase and "after" = 3 months after the CRP increase; Monthly lab measures averaged over 3 months; IV iron dose averaged over 3 
months among users; A/NZ = Australia / New Zealand, TSAT=transferrin saturation, WBC=white blood cell, IV=intravenous 
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Self-matched analysis: Descriptive results 

In Figure 8, we present unadjusted monthly (a) mean hemoglobin, (b) mean ESA dose, 

and (c) proportion ESA hyporesponsive over the 3 months “before” and “after” the high 

CRP was observed (month 0), by region. In the two regions, hemoglobin changes 

paralleled each other during the 7-month study period. In Europe/ANZ, mean 

hemoglobin was 11.6-11.7 g/dL in the 3 months prior to the CRP increase, decreased to 

11.2 g/dL in month 0 (concurrent with the CRP increase), then rebounded to 11.5 g/dL 3 

months later. In Japan, mean hemoglobin was about 10.8 g/dL in the 3 months prior to 

the CRP increase, decreased to 10.6 g/dL in month 0, then rebounded back to 10.8 

g/dL 3 months later. Mean ESA dose in Europe/ANZ was about 7,800 units/week in the 

3 months prior to the CRP increase, then steadily increased to about 8,500 units/week, 

starting 1 month following the CRP increase. In Japan, mean ESA dose was about 

5,200 units/week in the 3 months prior to the CRP increase; in contrast to Europe/ANZ, 

ESA dose started to increase in month 0 (immediately following the CRP increase) and 

rose to over 6,000 units/week 2 months after the CRP increase. ESA 

hyporesponsiveness in both regions increased in month 0, peaked in month 1, and then 

started to decline towards pre-inflammation levels by month 3.  
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Figure 8. (a) Mean monthly hemoglobin, (b) mean monthly ESA dose, and (c) % ESA 
hyporesponsive in the 3 months before and after a CRP increase from ≤5 to >10 mg/L, 
by region  
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Mean hemoglobin and ESA dose were calculated as the average across all patients at each time point. 
Months during which ESA was not prescribed are considered 0 units/week. ESA hyporesponsive defined 
as hemoglobin <10 g/dL and ESA dose > 6000 (Japan) or > 8000 (Europe/ANZ) units/week. A/NZ = 
Australia / New Zealand. 
 

Self-matched analysis: Model results 

The main findings of this self-matched analysis are shown in the top row of Table 6. 

The adjusted prevalence ratio of ESA hyporesponsivenes of 1.68 (95% CI: 1.48, 1.91) 

indicates that patients were much more likely to be hyporesponsive during the 3 months 

after vs. before the rise in CRP. The unadjusted prevalence ratio was also 1.68 (95% 

CI: 1.48, 1.91), providing strong evidence that our self-matched design adequately 

accounted for time-fixed and time-varying confounders. Results from the adjusted 

mixed-effects linear regression models showed that hemoglobin levels were on average 

0.26 g/dL lower (95% confidence interval [CI]: 0.22, 0.30) in the 3 months “after” vs. 

“before” the rise in CRP. The average within-patient change in log(ESA dose) was 
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0.080 (95% CI: 0.057, 0.104), which, after exponentiating, can be interpreted as an 

approximate 8.4% (95% CI: 5.8%, 11.0%) increase in ESA dose. In absolute terms, the 

average within-patient increase in ESA dose was 588 units/week (95% CI: 403, 773). 

Table 6 also shows that results from several subgroup analyses by region, catheter 

use, sex, and age were all directionally consistent with the primary analysis.  

Table 7 illustrates the robustness of our results to several sensitivity analyses. Results 

were consistent when requiring three CRP measurements during the “before” period (a). 

Increasing the contrast when defining low and high CRP (e.g., from ≤3 to >20 mg/L) (b) 

resulted in a similar decrease in hemoglobin but a larger increase in ESA dose (14.7%). 

Reducing the length of the “after” period (e.g., from 3 to 1 month) (c) resulted in a larger 

hemoglobin decrease (0.42 g/dL) but smaller ESA dose increase (4.4%), as also 

reflected in the descriptive results (illustrated in Figure 8). We observed much larger 

changes among patients whose CRP increase was sustained >10 mg/L (0.70 g/dL 

decrease in hemoglobin and 14.2% increase in ESA dose) throughout the 3-month 

"after" period, compared to those with a transient CRP increase (d). Finally, the 

adjusted prevalence ratio for ESA hyporesponsiveness was consistent (1.71 vs. 1.68) 

when increasing the ESA dose thresholds from 6000 to 7500 units/week in Japan and 

8000 to 10000 units/week in Europe/ANZ (e). 
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Table 6. Within-patient changes (95% CI) in hemoglobin, ESA dose, and ESA hyporesponsiveness from the 3 months 
before vs. after the CRP increase from ≤5 to >10 mg/L, overall and by subgroup 
 

Subgroup 
Instances of 

high CRP 
Change in 

hemoglobin (g/dL) 
Relative change in 

ESA dose (%) 
Prevalence ratio of ESA 

hyporesponsiveness 

Overall 3568 -0.26 (-0.30, -0.22) 8.4 (5.8, 11.0) 1.68 (1.48, 1.91) 

By region     

 Europe/ANZ 1530 -0.34 (-0.41, -0.27) 5.2 (1.5, 9.0) 2.09 (1.60, 2.74) 

 Japan 2038 -0.20 (-0.25, -0.16) 10.8 (7.4, 14.3) 1.54 (1.34, 1.78) 

By catheter use during "before" period    

 Any catheter use 372 -0.50 (-0.62, -0.37) 9.8 (2.0, 18.3) 3.16 (1.74, 5.76) 

 No catheter use 2908 -0.23 (-0.27, -0.19) 8.0 (5.4, 10.8) 1.54 (1.35, 1.77) 

By sex     

 Male 2389 -0.25 (-0.30, -0.20) 7.2 (4.1, 10.4) 1.63 (1.40, 1.90) 

 Female 1177 -0.29 (-0.36, -0.22) 10.8 (6.3, 15.4) 1.81 (1.45, 2.27) 
By age (years)     

 < 60 874 -0.23 (-0.31, -0.15) 9.2 (4.1, 14.4) 1.51 (1.14, 1.98) 

 60-75 1559 -0.27 (-0.33, -0.21) 7.8 (3.9, 11.8) 1.79 (1.47, 2.17) 
  > 75 1135 -0.28 (-0.35, -0.21) 8.9 (4.7, 13.3) 1.66 (1.35, 2.04) 

Linear mixed model with random facility and patient intercepts to calculate mean changes in hemoglobin and ESA dose, and modified Poisson 
regression to calculate prevalence ratio of ESA hyporesponsiveness; baseline adjustment for DOPPS phase, country, age, sex, vintage, BMI, and 
13 comorbidities, and adjustment for serum albumin, WBC count, serum phosphorus, cinacalcet use, IV iron dose, hospitalization, and catheter 
use at 4 months and 1 month prior to the CRP increase. ESA hyporesponsiveness defined as hemoglobin <10 g/dL and ESA dose >6000 (Japan) 
or >8000 (Europe/ANZ) units/week; primary analysis includes patients with CRP ≤ 5 mg/L during 3 month "before" period, increased to > 10 mg/L, 
then followed up during 3 month "after" period; ANZ = Australia / New Zealand 
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Table 7. Within-patient changes (95% CI) in hemoglobin, ESA dose, and ESA hyporesponsiveness from the 3 months 
before vs. after the CRP increase: Sensitivity analyses 
 

Sensitivity analysis 
Instances of 

high CRP 
Change in 

hemoglobin (g/dL) 
Relative change in 

ESA dose (%) 
Prevalence ratio of ESA 

hyporesponsiveness 

Primary analysis 3568 -0.26 (-0.30, -0.22) 8.4 (5.8, 11.0) 1.68 (1.48, 1.91) 

(a) CRP measurements during 3 month "before" period    

 CRP measured all 3 months 2312 -0.26 (-0.30, -0.21) 9.9 (6.7, 13.1) 1.65 (1.42, 1.93) 

 CRP measured in 1 or 2 of the 3 months 1256 -0.28 (-0.36, -0.21) 5.9 (1.8, 10.2) 1.76 (1.41, 2.20) 

(b) Varying thresholds for "low" and "high" CRP    

 CRP increase from ≤ 10 to > 20 mg/L 3008 -0.27 (-0.32, -0.23) 10.2 (7.4, 13.1) 1.56 (1.35, 1.80) 

 CRP increase from ≤ 5 to > 20 mg/L 1703 -0.30 (-0.36, -0.24) 11.7 (8.0, 15.6) 1.70 (1.39, 2.07) 

 CRP increase from ≤ 3 to > 20 mg/L 1053 -0.27 (-0.34, -0.19) 14.7 (9.7, 19.8) 1.66 (1.29, 2.15) 

 CRP increase from ≤ 3 to > 10 mg/L 2178 -0.27 (-0.32, -0.22) 11.1 (7.8, 14.5) 1.73 (1.46, 2.05) 

 CRP increase from ≤ 3 to > 5 mg/L 4230 -0.18 (-0.22, -0.15) 6.4 (4.2, 8.7) 1.43 (1.25, 1.63) 

 CRP increase from ≤ 1 to > 5 mg/L 1624 -0.18 (-0.23, -0.12) 10.9 (7.2, 14.7) 1.36 (1.10, 1.68) 

(c) Vary length of "after" period for assessing outcome    

 1 month "after" period 3958 -0.42 (-0.46, -0.37) 4.4 (1.9, 6.9) 1.91 (1.68, 2.17) 

 2 month "after" period 3755 -0.34 (-0.39, -0.30) 7.7 (5.3, 10.2) 1.82 (1.60, 2.08) 

(d) By longevity of CRP increase in "after" period    

 Sustained: CRP > 10 mg/L in "after" period 352 -0.70 (-0.85, -0.55) 14.2 (4.7, 24.5) 2.89 (1.97, 4.24) 

  Transient: CRP ≤ 5 mg/L in "after" period 1652 -0.14 (-0.19, -0.09) 5.6 (2.1, 9.1) 1.22 (1.00, 1.48) 

(e) Vary thresholds for ESA hyporesponsiveness    

 
ESA dose >7500 (Japan) or >10000 
(Europe/ANZ) units/week 3568 N/A N/A 1.71 (1.49, 1.96) 

Linear mixed model with random facility and patient intercepts to calculate mean changes in hemoglobin and ESA dose, and modified Poisson 
regression to calculate prevalence ratio of ESA hyporesponsiveness; baseline adjustment for DOPPS phase, country, age, sex, vintage, BMI, and 
13 comorbidities, and adjustment for serum albumin, WBC count, serum phosphorus, cinacalcet use, IV iron dose, hospitalization, and catheter 
use at 4 months and 1 month prior to the CRP increase. ESA hyporesponsiveness defined as hemoglobin <10 g/dL and ESA dose >6000 (Japan) 
or >8000 (Europe/ANZ) units/week unless otherwise specified; primary analysis includes patients with CRP ≤ 5 mg/L during 3 month "before" 
period, increased to > 10 mg/L, then followed up during 3 month "after" period; ANZ = Australia / New Zealand 
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DISCUSSION 

This self-matched longitudinal (“before-after”) design and analysis tracked real-world 

changes in anemia control and ESA dosing in an international sample of HD patients 

over the 3 months before and after detection of new inflammation by routine CRP 

measurement. The results supported our hypothesis of a hemoglobin decrease and 

ESA dose increase, resulting in greater ESA resistance and exposing patients to the 

potential risks of larger ESA doses.17–20 The associations were particularly strong 

among patients whose CRP increase was sustained over the subsequent 3 months, 

further supporting a causal relation between inflammation and ESA 

hyporesponsiveness.  

Our results were generally consistent with other longitudinal studies,79,80,82 but differed 

from an observational extension of the Dialysis Patients’ Response to IV Iron with 

Elevated Ferritin (DRIVE) trial.81 The DRIVE authors found that CRP was not 

associated with hemoglobin response, though they did observe a lower likelihood of 

hemoglobin response to IV iron therapy when CRP was >14.1 mg/L.81 These divergent 

results could be explained by the restricted selection criteria for DRIVE (e.g., 

hemoglobin ≤11 g/dl, TSAT <25%, ferritin 500-1200 ng/ml, 22,500 units/week ESA),81 

which likely included many participants who had previously experienced a hemoglobin 

drop in response to inflammation. Bradbury et al.79 observed that elevated CRP led to 

larger ESA doses at the same hemoglobin levels. However, the authors acknowledged 

the potential for selection bias in their US HD sample because only about 1% of patients 

had CRP measured. These patients were likely selected for CRP measurement due to 

suspicion of inflammation, as the median CRP (20 mg/L) was much higher than 
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reported in other HD populations.47,77,78 Gillespie et al.82 conducted a case-crossover 

study of ESA hyporesponsiveness defined as hemoglobin <10 g/dL and ESA dose 

>median dose of 80 units/kg/week, which they observed in 672 European HD patients. 

Among the many exposures Gillespie et al. examined, they found a positive association 

with CRP (adjusted odds ratio for highest vs. lowest quartile [no values provided] = 2.02, 

95% CI: 1.20-3.38). Kimachi et al.80 used Japanese DOPPS data from phases 2-4 

(2002-2011) to evaluate the cumulative incidence of ESA hyporesponsiveness 

(hemoglobin <10 g/dL and >9000 units/week ESA) by baseline CRP. Those authors 

found that the risk of ESA hyporesponsiveness was highest at CRP >10 mg/L, but also 

elevated at CRP 3-10 mg/L (vs. CRP <1 mg/L).  

The proportion of CRP measurements >10 mg/L was much lower in Japan (10%) than 

in Europe/ANZ (34%), consistent with prior research.47,77,80 Japanese HD practices may 

help explain this discrepancy, including the use of ultrapure dialysate fluid to keep 

endotoxins low, and the avoidance of central venous catheters, which can cause 

infections and inflammatory reactions.120 However, CRP levels are also lower in Asians 

than in whites outside the HD setting,123 suggesting dietary, environmental, and/or 

genetic factors as likely contributors to differences in CRP levels.112  

In our analysis, hemoglobin began to decline in the same month that CRP rose. 

Elevated CRP is generally considered a marker of inflammation, so new inflammation 

may alter hemoglobin levels roughly concurrent with its effect on CRP. In Japan the 

increase in ESA dose occurs in the same month that hemoglobin began to decline (i.e., 

month 0), but in Europe/ANZ the initial ESA dose increase lags by 1 month. Increases 

in CRP from ≤5 to >10 mg/L were also less likely to be sustained for 3+ months in 
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Japan (5%) than in Europe/ANZ (18%). These findings suggest either that clinicians in 

Japan respond more rapidly to decline in hemoglobin than in Europe/ANZ or that 

Japanese providers are reacting proactively to rises in CRP below the 10 mg/L 

threshold used in this analysis. 

CRP is relatively inexpensive and convenient to routinely measure in the HD setting;124 

this is generally done in Europe and Japan, but not in North America. Routine 

measurement of CRP can potentially help to better identify causes of, and inform 

targeted strategies to reduce, inflammation in HD patients. For example, a rise in CRP 

may prompt examination for source of infection (e.g., dental and diabetic foot exams) 

and timely initiation of antimicrobial therapy when indicated. Other longer-term 

strategies to limit or reduce inflammation include removing old non-functioning 

arteriovenous grafts,125,126 transplant nephrectomy,127 using ultrapure dialysate 

fluid,110,112 and improving diet and exercise.113 Specific to anemic patients, quicker 

recognition of new inflammation can help identify the cause of worsening anemia and 

guide reactive ESA and IV iron dosing decisions. Further, frequent assessment of 

inflammation can help identify patients who may be candidates for new alternative 

anemia therapies, such as HIF-PHIs, that may be less susceptible to the effects of 

inflammation than current ESA and IV iron-based treatment regimens.116–118  

This study had some limitations. First, because measurement frequency of CRP varies 

across HD facilities, patients in facilities that measure CRP only every 3 months may 

experience a transiently high CRP that is not detected; however, a sensitivity analysis 

limited to patients with CRP measured at least monthly during the 3-month “before” 

period was consistent with the primary analysis, suggesting that this may not be a 
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concern. Second, if patients excluded due to <3 months of data post-inflammation were 

more likely to have experienced ESA hyporesponsiveness following their high CRP, the 

true effect may be underestimated; however, that bias is likely minimal because of the 

small proportion (14%) of excluded patients. Third, while we adjusted for several time-

varying confounders, it is possible that our estimates suffered from residual confounding 

by unmeasured time-varying risk factors for ESA hyporesponsiveness. However, 

because the extensive covariate adjustments in our models had little impact on our 

estimates in this self-matched study, the likelihood of bias due to unmeasured 

confounding is low.  

Several strengths distinguish this analysis from other longitudinal studies of 

inflammation and ESA hyporesponsiveness.79,80,82 First, the longitudinal study design 

focuses on incident inflammation to avoid the temporal ambiguity of cross-sectional 

designs. By matching patients to themselves and measuring outcomes before and after 

the detection of elevated CRP, this design does not require a comparison group of 

patients who did not experience an increase in CRP. Indeed, the self-matching seems 

to have controlled adequately for potential confounders—both fixed and time-varying 

factors—as evidenced by the unchanged estimates after additional adjustment. Future 

studies, however, could perform between-patient comparisons that we did not 

investigate. Second, we utilized a large international sample of HD patients from 

facilities that routinely measured CRP, the best available marker of inflammation, to 

avoid bias in which a clinical indication for measuring CRP also affects the outcome (a 

phenomenon we call “measurement-by-indication bias”). Third, in addition to a single 

ESA hyporesponse outcome, we treated the two components of that outcome, 
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hemoglobin and ESA dose, as separate continuous outcomes, allowing us to better 

explore relative changes in ESA sensitivity without relying on the flawed erythropoietin 

resistance index.104,128  

This study demonstrates that new inflammation, as detected by an increase in CRP, is 

associated with development of ESA resistance and reduction in hemoglobin levels 

under current anemia treatment paradigms. These findings speak to a potentially 

important role for anemia therapies that are less susceptible to the effects of 

inflammation. 
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CHAPTER IV 

Replicating Randomized Trial Results with Observational Data using the 

Parametric g-formula: An Application to Intravenous Iron Treatment in 

Hemodialysis Patients 

Coauthors who contributed to this work include: Hal Morgenstern, Nancy L Fleischer, 

and Bruce M Robinson. 

 

INTRODUCTION 

Large high-quality randomized trials are costly, time-consuming, and inflexible to 

different selection criteria and intervention protocols. While a practical alternative is to 

utilize observational data, confounding can be difficult to overcome, particularly in the 

presence of treatment-confounder feedback loops. Marginal structural models can 

handle these time-dependent confounders, but are more efficient for estimating the 

effect of static treatment regimens.129–131 The g-formula, an extension of standardization 

to longitudinal data, is better suited to evaluate the complex and dynamic treatment 

strategies in a “target trial”.83,132,133 The g-formula can consistently estimate the 

probability of the outcome under a hypothetical intervention by estimating a weighted 

sum of the risk across all risk factor histories, as in ordinary non-parametric 

standardization with categorical variables.121 The parametric version of the g-formula is 

an appealing approach that utilizes modeling to avoid sparse cells,131 but 
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implementation in practice has lagged for reasons ranging from software and data 

limitations to unfamiliarity or lack of confidence in the method.  

Cohort studies of patients with end-stage kidney disease undergoing hemodialysis 3 

times/week in hemodialysis centers with standardized treatment protocols are 

particularly suitable for g-methods that depend on rich longitudinal data. Most 

hemodialysis patients are anemic and require erythropoiesis stimulating agent (ESA) 

therapy to maintain hemoglobin levels in target range – generally 10.0-11.5 g/dL.86 

Intravenous (IV) iron is often administered to complement ESA treatment and avoid iron 

deficiency by replacing the iron utilized for erythropoiesis.9 Conflicting evidence from 

observational data exists regarding the safety of high-dose IV iron supplementation in 

hemodialysis patients.48,62–64,91,134 IV iron dosing decisions are, in the context of 

hemoglobin level, guided primarily by serum ferritin, a marker of iron stores, and 

transferrin saturation (TSAT), a marker of circulating iron.15 Many hemodialysis patients 

with high ferritin but low TSAT levels may still be functionally iron deficient and 

experience a hemoglobin increase in response to IV iron;61 discontinuing IV iron in 

these patients may have deleterious effects, including need for higher doses of 

expensive135 and potentially harmful17–20 ESA therapy. On the other hand, continuing 

high-dose IV iron therapy despite elevated serum ferritin may improve surrogate 

outcomes such as hemoglobin and ESA dose, but result in greater risk of mortality. 

Investigators of the recently published Proactive IV Iron Therapy in Haemodialysis 

Patients (PIVOTAL) study, a large UK-based randomized controlled trial, concluded that 

a proactive high-dose (vs. reactive low-dose) IV iron treatment regime was superior.65  



60 
 

The first goal of our study is to replicate findings from the PIVOTAL trial by applying the 

parametric g-formula to hemodialysis patients in the European arm of the Dialysis 

Outcomes and Practice Patterns Study (DOPPS), where anemia management practices 

are relatively similar to the UK (and much different than in North America or Japan).136 

The second goal is to simulate the PIVOTAL study in a similar trial population by 

applying the parametric g-formula to DOPPS patients restricted according to PIVOTAL 

inclusion criteria. We aim to provide a proof-of-concept for extending the parametric g-

formula target-trial approach to research questions that remain unaddressed by 

randomized trials, which are generally designed to test only one or two specific 

hypotheses. If the hypothetical target trial we emulate is similar enough to the actual 

trial, the PIVOTAL findings should be replicable in our simulation. The potential to 

evaluate many variations of complex intervention strategies across different populations 

could prove to be enormously informative in the age of big data.  

METHODS 

Data source 

The DOPPS is a prospective cohort study of center-based, adult chronic hemodialysis 

patients in 21 countries, ongoing since 1996 in multiple phases. Study sites and patients 

are randomly selected to achieve nationally representative samples in each country. 

Details on study design and objectives are included in prior publications94,95 and at 

https://www.DOPPS.org/. This analysis included a cohort of hemodialysis patients from 

7 European countries (Belgium, France, Germany, Italy, Spain, Sweden, UK) in DOPPS 

phase 4 (2009-2011) and phase 5 (2012-2015). Information on patient demographics 

and comorbidity history was abstracted from medical records at DOPPS enrollment. 

https://www.dopps.org/
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Measured laboratory values and medication prescriptions were abstracted from medical 

records at baseline and monthly during follow-up.  

Treatment strategies 

As in the PIVOTAL trial,65 the IV iron dose assigned each month depended on the most 

recent values of ferritin and TSAT (Table 8). In the proactive high-dose arm, 400 mg IV 

iron was administered monthly unless upper thresholds of ferritin (>700 ng/mL) or TSAT 

(>40%) were reached. In the reactive low-dose arm, lower IV iron doses (100 or 200 

mg/month) were administered with progressively lower thresholds for ferritin. 

 

Table 8. Summary of treatment strategies per PIVOTAL65 trial protocol 

 TSAT (%) 

Ferritin (ng/mL) < 20 20-40 > 40 

     < 100 400 400 0 

     100-200 Low: 200 
High: 400 

Low: 200 
High: 400 0 

     200-700 Low: 100 
High: 400 

Low: 0 
High: 400 0 

     > 700 0 0 0 

Intravenous (IV) iron dose (mg) administered in the following month based on most recent value of serum 
ferritin and transferrin saturation (TSAT) under the proactive “High” dose vs. reactive “Low” dose 
treatment strategy; cells without a Low/High designation indicates that the dose was the same for both 
strategies. 
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Statistical analysis 

To test the high vs. low-dose IV iron treatment strategies, we implemented the 

parametric g-formula to account for the treatment (IV iron) – confounder (ferritin, TSAT) 

feedback loop (Figure 9). The two primary steps of the parametric g-formula are (1) 

modeling the joint distribution of all variables and (2) simulating variables over the 

follow-up period using the estimates from Step 1. These steps are described in more 

detail below. Additional details related to the formulae and assumptions have been 

previously reported.132,137  

 

Figure 9. Illustration of longitudinal data collection and hypothesized relationships 

  
 
Baseline characteristics captured at study enrollment; Laboratory values measured monthly; updated 
prescriptions captured at the end of each month; Patients followed up continuously for mortality events 
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Step 1: Parametric models 

To estimate the coefficients used in the Step 2 simulation, we first modeled the joint 

distribution of all relevant variables, specified as either time-fixed (captured once at 

study enrollment) or time-updated (measured monthly). We fit separate regression 

models for each time-updated variable – including treatments, potential confounders, 

and outcomes – for all patient-months with available data. All models in month k 

included the following variables: 

(1) Time-fixed covariates: indicators for DOPPS phase and country; sex; age and 

time since hemodialysis initiation (updated monthly); weight; and 14 indicators for 

summary comorbidities. 

(2) Values from months k-1 and k-2 for the following time-updated covariates: 

indicators for hospitalization (any during month) and catheter use for vascular 

access (status at month end); serum phosphorus; hemoglobin; ESA dose; and IV 

iron dose. 

(3) Value from month k-1 (carried forward up to 2 months) for the following time-

updated covariates: C-reactive protein (CRP); serum albumin; ferritin; and TSAT. 

Because these variables were only assessed every 3 months in some 

hemodialysis facilities, we carry forward to represent the most recent chart 

information available to the prescribing physician; to help counter potential biases 

with this approach, models also included indicator variables for whether each lab 

was most recently measured 1, 2, or 3 months prior. DOPPS facilities that did not 

routinely measure ferritin or TSAT (in <25% of patient-months) were excluded. 
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Table 9 provides details on how each time-updated variable was parameterized when 

used as the outcome and when used as an exposure. Model choices were intuitively 

linked to the distribution (e.g., logistic regression for binary, linear regression for 

normally distributed, log-transform if skewed). IV iron doses were primarily limited to a 

small number of discrete prescriptions (e.g., 25, 50, 62.5, or 100 mg/week). We thus 

categorized doses into 4 groups (0, 1-35, 35-63, >63 mg/week), with each category 

roughly corresponding to 1 of the 4 doses assigned per clinical protocol in PIVOTAL (0, 

100, 200, 400 mg/month).  

Table 9 also describes the sequential model ordering. Model 1 (hospitalization as the 

outcome) includes all predictors described in the previous paragraph (1-3), then Model 

2 (CRP) includes all variables described above, plus an indicator for hospitalization in 

the current month, then Model 3 adds CRP in the current month, etc. The model 

numbering indicates a natural ordering within each month: hospitalizations occurring 

during the month, then laboratory measurements, then catheter use and prescription of 

medications at month end. Laboratory values are generally measured simultaneously 

and thus the lab ordering is largely arbitrary. However, medication prescriptions at 

month end depend on the current month’s lab values (not vice versa), illustrating the 

importance of a “causal” ordering.  
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Table 9. Summary of Step 1 models and covariates 

Model Variable 

Regression 
model when used 

as outcome 
Functional form when used 

as predictor 

1 Hospitalization Logistic Binary (yes/no) 
2 C-reactive protein Linear (log-scale) Log-linear 
3 Serum albumin Linear Linear 

4 Serum 
phosphorus Linear (log-scale) Categories (3.5, 5.5, 7.0 

mg/dL) 

5 Hemoglobin Linear Categories (9, 10, 11, 12, 13 
g/dL) 

6 Serum ferritin Linear (log-scale) Categories (100, 200, 400, 
700, 1000 ng/mL) 

7 TSAT Linear (log-scale) Categories (15, 20, 25, 30, 
35, 40%) 

8 Catheter use Logistic Binary (yes/no) 

9 IV iron dose Multinomial logistic Categories (0, 35, 63 
mg/week) 

10+11 ESA dose Logistic, linear 
(log-scale) 

Categories (0, 3000, 6000, 
9000, 15000 units/week) 

12 Died next month Logistic N/A 
Categories: indicates cut-points used; IV iron doses were largely discrete, and so the 3 non-zero 
categories of 1-35 (mostly 25), 35-63 (mostly 50 or 62.5), and >63 (mostly 100) mg/week generally 
correspond to 100, 200, and 400 mg/month, respectively; For ESA dose, separate models were used to 
first model use (yes/no), and then the dosage among the users 
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Step 2: Simulation 

In the next step, we simulated variables and outcomes using output from the Step 1 

models. We began by designating each patient’s third month of follow-up as month 1; 

this is the month we began the simulation because data from the prior 2 months are 

needed to serve as inputs. We augmented our data by re-sampling patients with 

replacement (N=10,000) to obtain more stable estimates as recommended by Keil et 

al.138  

Starting with Model 1 (hospitalization) in Table 9, we calculated the predicted probability 

(𝑝̂𝑝) of hospitalization for each patient by applying model coefficients from Step 1 to the 

observed covariates. We then moved to Model 2 (CRP) and calculated the predicted 

value for CRP by similarly applying model coefficients from Step 1 to the observed 

covariates and the newly predicted binary hospitalization indicator. This process was 

repeated iteratively for each modeled outcome in Table 9 through Model 10, when we 

calculated the predicted probability that the patient died in the following month, based 

on all of the newly predicted values plus patient characteristics and 2-month risk factor 

history.  

Rather than assign values deterministically, error terms were added to every predicted 

value. For continuous outcomes, we added the square root of the model mean squared 

error (root MSE) multiplied by a randomly drawn value from a normal (0,1) distribution. If 

the updated predicted value falls outside the range of observed data, we re-drew the 

random value until it fell within the boundaries. For binary outcomes, we compared 𝑝̂𝑝 

with a randomly drawn value (U) from a uniform (0,1) distribution, assigning a value of 1 

if 𝑝̂𝑝 > U and 0 if 𝑝̂𝑝 < U. For multinomial outcomes, we divided the space between 0 and 
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1 proportionally based on the predicted probability of each category, then randomly 

drew a value from a uniform (0,1) distribution, assigning the value to whichever “bucket” 

the random number falls.  

After predicting values for all modeled variables in month 1, we removed patients who 

were simulated to have died in that month and replaced the observed k-2 values with 

observed k-1 values, and replaced the k-1 values with the newly predicted month k 

values. Starting again with Model 1, we predicted values in month 2 for hospitalization, 

CRP, etc. This process was iterated for 12 months to simulate 1 year of follow up. This 

simulation is defined as the “natural course” because all variables – including the 

exposure of interest (IV iron dose) – were assigned probabilistically. Assuming 

independent censoring, the simulated risk factor histories and risk of death under the 

natural course should match the observed data because the joint distribution for the 

simulated population should be equal to the study population; any departures may 

signify potential model misspecification.  

We performed this 12-month simulation three times: once under the “natural course” 

and then again under the proactive high-dose and reactive low-dose IV iron treatment 

strategies to simulate what would occur if the entire study population were treated under 

each protocol. For the latter approaches, we assigned IV iron deterministically, under 

the protocols detailed in Table 8, based on the most recent values of each patient’s 

ferritin and TSAT levels.   
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Subset analysis 

For our second objective, we attempt to more closely emulate results from the PIVOTAL 

trial by restricting our DOPPS sample based on PIVOTAL inclusion criteria. Prior to 

Step 1, for each patient, we select as the new “baseline” the first month that the patient 

met PIVOTAL eligibility criteria.139 Figure 10 summarizes these criteria and how we 

attempted to replicate each criterion in DOPPS. Step 1 models included the baseline 

month and all subsequent patient-months for eligible patients; Step 2 was then carried 

out as in the primary analysis.  

 

Figure 10. Flow diagram with PIVOTAL65 exclusion criteria 

 
 
PIVOTAL exclusion criteria derived from Table 2 in Macdougall et al.139 and divided into 3 groups: (1) 
objective criteria we could implement directly in DOPPS; (2) criteria for which we did not capture enough 
information in DOPPS (living-donor transplant scheduled within 12 months; current active malignancy; 
chronic liver disease; pregnancy or breast feeding; history of acquired iron overload; previous severe 
hypersensitivity reactions to IV iron sucrose; compromised ability to give written informed consent and/or 
comply with study procedures); and (3) *criteria that did not correspond directly with DOPPS data, but 
were estimated using available data as follows: (i) active infection: hospitalized with infection in previous 
month; (ii) advanced heart failure: hospitalized with heart failure in previous 2 months; (iii) life expectancy 
<12 months per judgement of the investigator: predicted death risk >5% (>96th percentile) in next month 
in Step 1 models  
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Summarizing results 

We reported 12-month trajectories for all modeled variables and cumulative risk of 

mortality for (1) observed DOPPS data; (2) natural course simulation; (3) PIVOTAL 

high-dose simulation; and (4) PIVOTAL low-dose simulation. We sought to make three 

comparisons: observed data vs. natural course simulation (1 vs. 2) to check for model 

misspecification; PIVOTAL high vs. low-dose (3 vs. 4) simulations to assess the 

treatment strategies; and simulated PIVOTAL strategies vs. the published PIVOTAL trial 

data65 to assess how closely our parametric g-formula results matched a real 

randomized trial. From our simulations, we reported the 1-year mortality risk ratio (RR) 

and risk difference (RD) comparing the two PIVOTAL strategies.  

Confidence intervals (CIs) were estimated by combining multiple imputation with 

bootstrapping.140 We first applied multiple imputation to deal with missing data using the 

Sequential Regression Multiple Imputation Method by IVEware.99 Information from both 

between-patient and within-patient (using each of the 3 prior months) was incorporated 

into the imputation. We then resampled patients with replacement 100 times and 

performed Step 1 and Step 2 on each resample. This process was repeated for 10 

imputations, resulting in 1000 datasets. We then derived the 95% CI as the 2.5th and 

97.5th percentile of the estimator distribution from these datasets based on the “MI boot 

(pooled sample)” procedure described by Schomaker and Heumann.140  

In general, we relied on published g-formula analyses by Taubman et al.141 and 

others,132,137,138,142,143 following their step-by-step approach to help guide our analysis. 

Although sample code was provided in this previous research, we coded from scratch 



70 
 

using SAS version 9.4 (SAS institute, Cary, NC) to avoid a “black box” implementation 

without a full understanding of the mechanics. 

RESULTS 

Study sample 

Models in Step 1 utilized data from 97,044 patient-months across 6325 patients; the 

median (interquartile range [IQR]) number of months contributed by each patient was 15 

(9, 26). Table 10 shows baseline patients characteristics for (1) the full DOPPS sample 

used in our primary analysis (N=6325); (2) the DOPPS subset after restricting based on 

PIVOTAL eligibility criteria (N=1508); and (3-4) PIVOTAL patients randomized to the 

high-dose and low-dose IV iron treatment protocols. Note that blank cells in the 

PIVOTAL columns represent variables not reported in the PIVOTAL Table 1.65 There 

were several key differences between DOPPS patients and PIVOTAL participants: 

DOPPS patients were older, had been on hemodialysis for a longer period, weighed 

less, had higher levels of serum ferritin, TSAT, and hemoglobin, and were more likely to 

have a history of heart failure, hypertension, and peripheral vascular disease. Some of 

these differences were neutralized by further restriction of the DOPPS data based on 

PIVOTAL eligibility criteria (e.g., time since hemodialysis start, ferritin, TSAT), but others 

were not (e.g., age, weight, hemoglobin, comorbidity history). 
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Table 10. Summary of baseline patient characteristics in the DOPPS (by type of 
analysis) and the PIVOTAL trial65 (by treatment group) 
 
    DOPPS observational data PIVOTAL trial data 

Patient characteristics 
Primary 
analysis 

PIVOTAL- 
restricted 

Proactive high 
dose arm 

Reactive low 
dose arm 

N patients 6325 1508 1093 1048 

Time-fixed variables     

 
Age (years) 65.9 ± 15.1 66.0 ± 15.4 62.7 ± 14.9 62.9 ± 15.1 

 
Sex (% male) 61% 62% 65% 66% 

 

Time since HD start 
(months) 23.0 (6.1, 62.0) 4.1 (2.5, 6.5) 4.9 (2.8, 8.4) 4.8 (2.8, 8.1) 

 
Weight (kg) 72.0 ± 16.8 75.3 ± 17.6 81.3 ± 21.0 82.9 ± 20.9 

Anemia-related variables     

 
Serum ferritin (ng/mL) 357 (183, 581) 179 (99, 276) 214 (132, 305) 217 (137, 301) 

 
TSAT (%) 24 (18, 33) 19 (15, 24) 20 (16, 24) 20 (16, 24) 

 
Hemoglobin (g/dL) 11.4 ± 1.4 11.2 ± 1.4 10.6 ± 1.4 10.5 ± 1.4 

 
ESA use (%) 88% 100% 100% 100% 

 

ESA dose (1000 
units/week) 7.8 (4.8, 12.5) 8.6 (5.0, 13.0) 8.0 (5.0, 10.0) 8.0 (5.0, 12.0) 

 
IV iron use (%) 70% 81% -- -- 

 
IV iron dose (mg/month) 383 ± 232 439 ± 245 -- -- 

Other time-updated 
variables     

 
Serum albumin (g/dL) 3.7 ± 0.5 3.7 ± 0.5 -- -- 

 

Serum phosphorus 
(mg/dL) 4.9 ± 1.6 5.1 ± 1.5 -- -- 

 

C-reactive protein 
(mg/L) 6.0 (2.9, 13.4) 5.0 (2.9, 10.5) 6.0 (3.3, 13.9) 7.0 (4.0, 15.0) 

 

Hospitalized in last 
month (%) 10% 10% -- -- 

 
Catheter use (%) 28% 35% 41% 41% 

Comorbidity history (%)     

 
Coronary artery disease 34% 33% -- -- 

 
Heart failure 21% 21% 4% 4% 

 

Cerebrovascular 
disease 16% 15% -- -- 



72 
 

 

Other cardiovascular 
disease 31% 28% -- -- 

 
Cancer (non-skin) 17% 17% -- -- 

 
Diabetes 36% 42% 45% 44% 

 
Hepatitis B or C 5% 0% 0% 0% 

 

Gastrointestinal 
bleeding 5% 6% -- -- 

 
Hypertension 87% 89% 74% 72% 

 
Lung disease 14% 14% -- -- 

 
Neurologic disease 12% 11% -- -- 

 
Psychiatric disorder 17% 14% -- -- 

 

Peripheral vascular 
disease 30% 28% 8% 9% 

  
Recurrent cellulitis, 
gangrene 9% 7% -- -- 

Mean ± standard deviation, median (IQR), or % shown; Median ESA dose restricted to users; PIVOTAL 
trial data derived from Table 1 in Macdougall et al.,65 with variables shown as “--” if not reported; 
PIVOTAL-restricted DOPPS patients are a subset of the patients included in the primary analysis, but 
further restricted to emulate PIVOTAL exclusion criteria. 
 

Natural course vs. Observed data 

For the 6325 DOPPS patients included in our primary analysis, we first compared 

observed data (i.e., mean or median levels for up to 12 months of DOPPS follow-up) 

with our natural course simulation. Trends across the 12 months for key variables were 

generally similar for the observed data vs. natural course (Figure 11).  
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Figure 11. Comparison of observed DOPPS data vs. natural course simulation 
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DOPPS data observed over the 12 months after baseline; Natural course simulation based on 12 
simulated months using the parametric g-formula; Outcomes: (a) all-cause mortality, (b) hemoglobin, (c) 
serum ferritin, (d) TSAT, (e) ESA dose, (f) IV iron dose. 
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Comparing simulated interventions 

The 1-year mortality risk in parametric g-formula simulations was 0.120 vs. 0.101 under 

the high vs. low IV iron dose simulated interventions (Figure 12a); the corresponding 

RR was 1.20 (95% CI: 1.07, 1.33), and the RD was 0.020 (95% CI: 0.008, 0.031). 

Differences in secondary outcomes under the two interventions over the 12-month 

simulation were as follows: Mean hemoglobin was 0.13 (95% CI: 0.09, 0.17) g/dL higher 

for the high vs. low dose strategy (Figure 12b). Median ferritin was 357 ng/mL at 

baseline and increased to 475 ng/mL under the high-dose strategy while decreasing to 

292 ng/mL under the low-dose strategy, a difference at 12 months of 182 (95% CI: 171, 

196) ng/mL (Figure 12c). Median TSAT was 25% and decreased slightly to 23.9% 

under the low-dose strategy, and gradually increased to 27.5% under the high-dose 

strategy, a difference of 3.6% (95% CI: 3.2%, 4.0%) (Figure 12d). Median ESA dose 

was 506 (95% CI: 287, 718) units/week lower (6.7% lower) under the high vs. low dose 

strategy at 12 months (Figure 12e). Mean assigned IV iron dose (including 0 doses) 

was much greater under the high vs. low IV iron dose strategy (253 vs. 80 mg/month) at 

12 months (Figure 12f). Comparing cumulative dosing over the 12-month period, 

patients assigned to the high vs. low dose strategy received 5.8% (95% CI: 3.3%, 8.1%) 

less ESA and three times as much IV iron (3166 vs. 981 mg) (Figure 13). 
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Figure 12. Comparison of proactive high-dose vs. reactive low-dose IV iron treatment 
strategy over 12 months using the parametric g-formula 
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RR=Risk ratio; RD=Risk difference; High dose and low dose strategies defined by PIVOTAL65 trial 
protocol as described in Table 8; Outcomes: (a) all-cause mortality, (b) hemoglobin, (c) serum ferritin, (d) 
TSAT, (e) ESA dose, (f) IV iron dose. 
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Figure 13. Proactive high-dose vs. reactive low-dose IV iron treatment strategy: 
Comparison of cumulative doses of ESA and IV iron over 12 months using the 
parametric g-formula 
 

 

High dose and low dose strategies defined by PIVOTAL65 trial protocol as described in Table 8; 
Outcomes: (a) cumulative ESA dose; (b) cumulative IV iron dose  
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Restricting to a PIVOTAL-like subset 

In our second objective attempting to emulate the PIVOTAL population by further 

restriction of the DOPPS data as illustrated in Figure 10, our sample size was reduced 

from 6325 to 1508 patients. In this subset, we found no major departures from the 

observed data in our natural-course simulation (Figure 14).  

The 1-year mortality risk was 0.098 vs. 0.083 under the high vs. low IV iron dose 

simulated interventions (Figure 15a); the corresponding RR and RD was 1.19 (95% CI: 

0.84, 1.59) and 0.015 (95% CI: -0.015, 0.041) – very similar to the primary result 

(Figure 12a), albeit with less precision. Baseline levels of hemoglobin, ferritin, and 

TSAT were much lower in this subset compared to the primary analysis (Table 10); 

subsequent rises are illustrated under both treatment strategies – though more 

pronounced under the high-dose strategy – and after 12 months, the differences 

between strategies (Figure 15b-d) were comparable to those observed in the primary 

analysis (Figure 12b-d). Median ESA dose was higher at baseline in this subset; doses 

declined under both treatment strategies over the 12-month period but more 

precipitously under the high-dose strategy (Figure 15e). Mean assigned IV iron dose 

also started higher in this subset – per protocol to more proactively treat the lower 

ferritin and TSAT levels – and then eventually reached a steady-state with doses under 

the two strategies (Figure 15f) similar to the primary analysis (Figure 12f).  
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Figure 14. Comparison of observed DOPPS data vs. natural course simulation, 
restricted to PIVOTAL-like patients 
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DOPPS data observed over the 12 months after baseline; Natural course simulation based on 12 
simulated months using the parametric g-formula; N=1508 PIVOTAL-like DOPPS patients restricted to 
emulate PIVOTAL exclusion criteria; Outcomes: (a) all-cause mortality, (b) hemoglobin, (c) serum ferritin, 
(d) TSAT, (e) ESA dose, (f) IV iron dose 
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Figure 15. Comparison of proactive high-dose vs. reactive low-dose IV iron treatment 
strategy over 12 months using the parametric g-formula, restricted to PIVOTAL-like 
patients 
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RR=Risk ratio; RD=Risk difference; High dose and low dose strategies defined by PIVOTAL65 trial 
protocol as described in Figure 10; N=1508 PIVOTAL-like DOPPS patients restricted to emulate 
PIVOTAL exclusion criteria; Outcomes: (a) all-cause mortality, (b) hemoglobin, (c) serum ferritin, (d) 
TSAT, (e) ESA dose, (f) IV iron dose. 
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Comparisons with PIVOTAL 

Table 11 summarizes our parametric g-formula results (primary and restricted) in 

comparison to the PIVOTAL randomized trial. The 1-year mortality risk was about 0.08 

in both PIVOTAL arms, whereas we observed a risk difference of 0.019 (primary) and 

0.015 (restricted) under the high vs. low dose simulation. After 12 months, the 

difference in the mean cumulative IV iron dose assigned under the high vs. low-dose 

strategy was ~2000 mg in the PIVOTAL trial and in both our simulations. We found that 

median cumulative ESA dose was 20,000-30,000 units lower under the high vs. low 

dose strategy after 12 months; this difference was smaller than the 90,000 units lower 

median cumulative ESA dose reported in the PIVOTAL trial. Similarly, differences in 

laboratory values after 12 months under the high vs. low-dose strategy in the full 

DOPPS simulations (0.13 g/dL higher mean hemoglobin, 183 ng/mL higher median 

ferritin, 3.6% higher median TSAT) were directionally consistent with PIVOTAL findings, 

but smaller in magnitude (as estimated from Figure S5, S7, S8 in Macdougall et al.65: 

~0.2 g/dL higher mean hemoglobin, ~450 ng/mL higher median ferritin, ~7% higher 

median TSAT). 
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Table 11. Summary of findings: Comparing PIVOTAL trial with DOPPS simulation 

    
PIVOTAL trial: 

Randomized results 
DOPPS simulation: 

Full sample 
DOPPS simulation: 
PIVOTAL-Restricted 

Outcomes 
High-
dose 

Low-
dose Difference High-

dose 
Low-
dose Difference High-

dose 
Low-
dose Difference 

N patients 1093 1048 -- 6325 6325 -- 1508 1508 -- 
Laboratory values at baseline          
 Mean hemoglobin (g/dL) 10.6 10.5 -- 11.39 11.39 -- 11.16 11.16 -- 
 Median ferritin (ng/mL) 214 217 -- 357 357 -- 184 184 -- 
 Median TSAT (%) 20.0 20.0 -- 25.0 25.0 -- 20.0 20.0 -- 

Laboratory values after 12 months*          
 Mean hemoglobin (g/dL) 11.1 10.9 0.2 11.54 11.41 0.13 11.46 11.35 0.11 
 Median ferritin (ng/mL) 580 130 450 475 292 183 435 268 167 
 Median TSAT (%) 26 19 7 27.5 23.9 3.6 27.0 23.4 3.6 

Cumulative dose through 12 months*         
 Median ESA dose (100K units) 380 470 -90 342 364 -22 353 379 -26 
 Mean IV iron dose (mg) 3800 1800 2000 3166 981 2185 3460 1267 2193 

All-cause mortality*          
  1-year cumulative risk 0.08 0.08 0 0.120 0.101 0.019 0.098 0.083 0.015 

PIVOTAL trial data derived from Macdougall et al.;65 *indicates numbers were approximated from figures; PIVOTAL-restricted DOPPS patients are 
a subset of the patients included in the primary analysis, but further restricted to emulate PIVOTAL exclusion criteria. 
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DISCUSSION 

In the DOPPS cohort of hemodialysis patients, we implemented the parametric g-

formula to compare patient outcomes under two simulated IV iron treatment regimens 

defined by the protocol used in the recently published PIVOTAL randomized trial.65 We 

found that after 12 months, the proactive high-dose vs. reactive low-dose strategy 

resulted in much higher serum ferritin levels, slightly higher levels of hemoglobin and 

TSAT, and slightly lower ESA doses, but a higher risk of mortality. Thus, our simulated 

findings in both the main and restricted analyses (Figures 12 and 15) do not suggest a 

preference for the proactive high IV iron dose in hemodialysis patients. 

These findings, summarized in Table 11, were directionally consistent with PIVOTAL 

results with the critical exception of all-cause mortality. PIVOTAL authors observed a 

hazard ratio (HR) of 0.85 (95% CI: 0.73, 1.00) for their primary composite outcome over 

the full 42-month follow-up period for the high-dose vs. low-dose arm, although Figure 

2b in Macdougall et al.65 appears to show no difference (HR~1) in all-cause mortality 

after the first 12 months of follow-up. Our simulated differences in laboratory values 

after 12 months under the high vs. low-dose strategy were directionally consistent with 

the PIVOTAL trial, but smaller in magnitude.  

One possibility as to why our results did not match PIVOTAL more closely, in terms of 

both all-cause mortality and secondary outcomes, is that incident hemodialysis patients 

could be immediately randomized to a treatment protocol in the PIVOTAL trial, while the 

parametric g-formula requires 2 previous months of data to inform the models and 

simulations; this functionally limits us to patients with 3+ months on hemodialysis 

therapy, after low hemoglobin levels are likely to have been mostly corrected.144 If 
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anemia treatments provide an initial boost to levels of hemoglobin, ferritin, and TSAT in 

previously untreated incident hemodialysis patients that dissipates once patients enter 

more of a steady-state, this may help explain why the effect sizes we found for these 

laboratory measures were smaller than in the PIVOTAL trial. Another possibility is 

model misspecification in Step 1. Similarities in the trajectories of our natural course 

simulation vs. the observed data (Figure 11) were encouraging, as any departures may 

signify potential model misspecification. However, if we are consistently underestimating 

the effect of IV iron on intermediate outcomes (i.e., hemoglobin, ferritin, TSAT), any 

biases in Step 1 models may affect predictions of ESA dose and mortality risk in the 

Step 2 simulation. We adjusted for numerous time-fixed and time-updated confounders, 

but we acknowledge the potential remains for residual confounding due to unmeasured 

or misspecified risk factors. A third possibility is that IV iron may have different effects 

on iron measures and survival in the generally healthier patients selected for the trial.139 

There were clear differences in the DOPPS cohort vs. PIVOTAL participants, many of 

which remained even after we attempted to restrict our sample to PIVOTAL-like patients 

(Table 10). While we were able to restrict on unambiguous lab cut-offs (e.g., ferritin 

<400 ng/mL), we were limited in our ability to restrict on other more subjective criteria 

(e.g., “life expectancy <12 months per the judgement of the investigator”).  

To address the generalizability of the PIVOTAL trial to a broader target population, we 

performed the g-formula analysis in two samples. In the subset analysis, we attempted 

to mimic the PIVOTAL trial exclusion criteria as closely as possible to demonstrate the 

proof-of-concept. While results were mixed, we also simulated the comparison of 

strategies in a more representative sample of DOPPS hemodialysis patients in Europe. 
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This latter analysis is more relevant for generalizing PIVOTAL findings and was thus 

considered the primary analysis because the IV iron treatment strategies evaluated in 

PIVOTAL would in practice be implemented across all hemodialysis patients. 

Some observational studies found that higher IV iron doses were associated with 

elevated risk of adverse events,48,62,134 and some did not.63,64,91 However, all of these 

studies considered IV iron as a static rather than dynamic treatment strategy; thus, we 

cannot quantitatively compare those effect estimates to ours. Most of these studies 

were conducted in the US, where ferritin levels are much higher than in Europe.136 In 

PIVOTAL,65 the ferritin threshold at which to discontinue IV iron in the proactive high-

dose arm was 700 ng/mL, lower than the median value observed in the US,29 limiting 

generalizability of our analysis – and PIVOTAL itself – regarding optimal treatment for 

patients with ferritin >700 ng/mL.  

A key strength of our study is that utilization of the parametric g-formula allowed us to 

emulate a “target trial”133 that compares well-defined dynamic treatment strategies. 

Rather than ask whether patients who received >400 vs. 200-399 mg of iron over a 

specified time period had better outcomes, our research question is more consistent 

with the complexities of clinical practice, where IV iron prescriptions depend on time-

updated ferritin and TSAT levels. This study design, in contrast to a randomized trial, is 

flexible to many potential interventions (e.g., altering the ferritin/TSAT criteria) and 

inclusion criteria. Second, this method properly accounts for a treatment-confounder 

feedback loop (e.g., ferritin  IV iron  ferritin),61 but without the possibility that 

unstable weights will drive results, as with inverse probability weighting 

methods.132,142,143 Third, using a European cohort has two advantages: (1) we were able 
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to adjust for CRP, a marker of inflammation with a strong positive association with both 

ferritin and mortality that is not routinely measured in the US;47 and (2) we avoided 

violations of positivity (when certain subgroups always or never receive the treatment), 

which would occur in other regions where IV iron dosing strategies are either more 

aggressive than the high-dose arm (US) or more conservative than the low-dose arm 

(Japan).136 Finally, while a small sample size can be augmented in Step 2,138 our large 

sample allows for improved precision of the Step 1 coefficient estimation.  

Our study had some limitations shared by all parametric g-formula analyses. First, the 

parametric g-formula can account for time-dependent confounders, but only to the 

extent they are measured accurately. Second, under the “g-null paradox,”132 we may 

still observe an association seemingly due to a treatment effect when the causal null 

hypothesis is true, given a large enough sample size; however, there is no evidence this 

occurs in practice.145 Lastly, reliance on many parametric models creates more 

opportunity for bias, as misspecification in one model may reverberate throughout the 

simulation.  

We could not replicate all PIVOTAL findings, and the following limitations and obstacles 

to using large databases to mimic randomized trials should be appreciated. We were 

unable to narrow our cohort to a PIVOTAL-like population through restriction alone, 

despite attempts to implement the trial exclusion criteria. Our analysis assumed perfect 

adherence with the treatment strategy; while this is reasonable from one perspective (IV 

medications routinely and conveniently administered at each hemodialysis treatment 

3x/week), participating clinics may not have adhered to the assigned strategies and 

patients sometimes miss treatment sessions. However, PIVOTAL findings were very 
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similar when analyzed per-protocol vs. intent to treat,65 making this limitation unlikely. 

Some model misspecification likely played a role in the discrepancies. The basic 

principal of the non-parametric g-formula as an extension of standardization is 

appealing for many reasons; but standard nonparametric standardization through 

stratification is not practical in most multivariable datasets, and extension to the 

parametric g-formula requires extensive modeling that, in practice, is unlikely to fully 

account for the many unknown associations and interactions between variables. 

While we had mixed success with our goal of mimicking the PIVOTAL trial,65 the ability 

to evaluate, rather than only speculate, on how closely our simulated results mirrored 

actual trial results was extremely valuable and distinguishes this study from prior 

applications of the parametric g-formula. Because the hypothetical target trial we 

emulated was not identical to the published PIVOTAL trial, we may not necessarily 

expect the same answer to these slightly different research questions.133 This gap can 

be minimized, but will always exist due to the limits of both observational data (and 

methods) and trial data, which often represent a highly specialized population that may 

not be generalizable to the target population of interest. The greatest advantage of the 

target trial approach using the parametric g-formula is the ability to evaluate many 

variations of complex intervention strategies within a single cohort study. We 

encountered some obstacles in implementation and other general limitations in using 

observational data to mimic a randomized trial, including discrepancies in study 

populations and potential model misspecification. On balance, however, our results 

were promising and illustrate the potential of the parametric g-formula to efficiently 

evaluate multiple dynamic treatment strategies across different populations.  
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CHAPTER V 

Conclusion 

Overview 

There are fewer randomized trials in nephrology than many other medical 

specialties,146,147 leading to a weaker evidence base that results in conflicting treatment 

guidelines.55 However, this can also be considered an opportunity for high-quality 

observational research to make an impact; in particular, the g-methods131 and other 

epidemiologic designs that mimic a “target trial”133 can best address causal questions 

within cohort studies. While observational data certainly has limitations, proper analytic 

methods can mitigate a great deal of the potential biases. In the hemodialysis (HD) 

setting, patients typically travel to the HD facility three times per week for four hours. 

Medications administered intravenously are convenient, promote patient compliance, 

and are easily recorded by the HD facility. The regular HD schedule also provides a 

great opportunity for creating and updating vast databases of longitudinal information on 

patient condition, treatments, and laboratory measurements, making the Dialysis 

Outcomes and Practice Patterns Study (DOPPS) well-suited to address the three aims 

of this dissertation.  

A key advantage of the DOPPS is the inclusion of international data from three major 

regions: North America, Europe, and Japan. Anemia management strategies for HD 

patients vary widely across regions, as illustrated by the descriptive data from Aim 1 
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(Figures 3-4). Both ESA and IV iron doses are highest in North America, followed by 

Europe, and lowest in Japan, even within strata of hemoglobin, ferritin, and TSAT. Any 

recommendations should thus be viewed through a region-specific lens. In Aim 2, we 

observed that acute inflammation, as measured by a rise in C-reactive protein (CRP), 

was more quickly controlled in Japan than in Europe; while there are opportunities for 

improvement in Europe, providers in North America must take the first step of routinely 

measuring CRP. In Aim 3, the contrast between PIVOTAL strategies is mainly relevant 

in Europe; in Japan, IV iron dosing is more conservative than the PIVOTAL low-dose 

arm, while in the US, IV iron dosing is more aggressive than the PIVOTAL high-dose 

arm. Future applications of the g-formula using Japan-only or US-only data would 

ideally assess region-specific protocols to reflect observed treatment strategies. 

Summary of findings: Aim 1 

Aim 1 focuses on anemia management strategies before (treated vs. untreated) and 

after (intensity of treatment) the transition period to HD. The relation between anemia 

management during the transition period to HD and post-dialysis outcomes is 

challenging to assess and often requires an innovative study design. Our primary 

analysis examined the association between hemoglobin levels at HD start and first-year 

HD mortality, among patients who had hemoglobin levels ≥10 g/dL after 4 months on 

HD. While at first it may be counter-intuitive to make this restriction after the exposure 

variable is defined, this strategy of measuring month 1 exposure status retrospectively 

and following patients from month 4 through month 12 allows for a fairer comparison of 

hemoglobin levels at HD start. Patients with low hemoglobin at HD start due to severe 

comorbidity or a lack of responsiveness to anemia therapy will likely not experience a 
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hemoglobin increase to target range (≥10 g/dL) in the subsequent months, while those 

who did experience an increase to target range would have theoretically been able to 

start HD with a higher hemoglobin with proper anemia management prior to starting HD. 

Our study thus includes an exposure variable that should largely reflect differences in 

pre-dialysis anemia care.  

Our results showed that even among patients with hemoglobin ≥10 g/dL four months 

later, anemia at HD initiation was common and associated with elevated mortality. While 

we expected to observe a greater mortality rate for patients who initiated HD with low 

hemoglobin, this elevated rate was still observed among patients achieving hemoglobin 

≥10.0 g/dL in the early HD period, a subset of patients whose low hemoglobin levels at 

HD start could have theoretically been corrected by pre-dialysis treatment. This is 

consistent with our hypothesis that a more proactive approach to anemia management 

in advanced CKD may improve survival on HD, though there are other possible 

explanations for these results. It is possible that intense anemia treatment in the early 

HD period may be responsible for the elevated mortality rate, though additional 

adjustment for erythropoiesis-stimulating agent (ESA) and intravenous (IV) iron doses 

(potential mediators) had minimal impact on the primary result, making this explanation 

unlikely. It is also possible that the association may be biased due to residual 

confounding because patients with higher hemoglobin at HD start are generally 

healthier and/or have likely received better overall quality of care before HD initiation.  

Also in this first aim, we compared mortality rates by intensity of anemia treatment 

approaches in the early dialysis period. This study provides a unique perspective by 

focusing on patients who start HD with severe anemia (hemoglobin <10 g/dL), a group 
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that is likely treated based on nephrologist practice patterns and regional guidelines5,51–

53 because transition to a more individualized steady-state ESA dose, when the 

association between ESA dose and mortality is more likely reflective of confounding 

factors that drive ESA dose requirements,104,105 has not yet occurred.  

We observed a U-shaped association between IV iron dose over the first three months 

of HD and mortality, with the lowest mortality rate observed at 200-399 mg/month. 

Patients initiating HD with lower hemoglobin generally received more IV iron, but this 

pattern was not observed in the US, where a high median dose of 450-500 mg/month 

was observed regardless of hemoglobin at HD start. While the recent Proactive IV Iron 

Therapy in Hemodialysis Patients (PIVOTAL) trial65 demonstrated the superiority of a 

high vs. low dose IV iron treatment strategy, the “high” doses were lower than the 

median doses administered in the US, and the upper ferritin threshold of 700 ng/mL in 

the “proactive” arm was lower than the median serum ferritin levels observed in the 

US.29 Generalizability of the PIVOTAL findings in the context of the high levels of serum 

ferritin and IV iron dosing observed in the US thus remains an open question.  

We also observed elevated mortality for patients receiving the largest doses of ESA 

(>25,000 units/week) during the first three months of HD. Following patients soon after 

HD initiation may better capture dosing patterns (practice preferences) before patients 

transition to a more individualized steady-state dosing protocol, at which point observed 

associations between ESA dose and mortality are more likely attributable to 

confounding factors that drive ESA dose requirements than a causal effect.104,105  
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Summary of findings: Aim 2 

Aim 2 focuses on hemoglobin response to ESA therapy, and the degree to which it may 

be blunted by inflammation, as measured by CRP. Rather than attempt to estimate a 

simple, but potentially biased, cross-sectional association between CRP and ESA 

responsiveness, we investigated how within-patient changes in inflammation status lead 

to changes in hemoglobin and ESA dose. This innovative self-matched longitudinal 

(“before-after”) design and analysis improves upon previous between-patient analyses 

of CRP and ESA resistance by eliminating confounding due to baseline patient 

characteristics (e.g., age, sex, comorbidity history). We tracked real-world changes in 

anemia control and ESA dosing in an international sample of HD patients over the 3 

months before and after detection of new inflammation by routine CRP measurement. 

Either greater ESA doses at the same hemoglobin level, or lower hemoglobin levels at 

the same ESA dose, would be indicative of ESA resistance. 

Results showed that patients experiencing new inflammation had both higher ESA 

doses and lower hemoglobin levels, doubly supporting the hypothesis that inflammation 

increases resistance to ESA treatment and thus exposes patients to the potential 

cardiovascular risks of larger ESA doses.17–20 While CRP, and the underlying 

inflammation, is not easily modifiable, a better understanding of how ESA dose 

requirements may change in response to inflammation occurrences could be valuable 

for clinicians. This information may help optimize ESA utilization by achieving 

hemoglobin targets while using less ESA. These findings also speak to a potentially 

important role for anemia therapies such as hypoxia-inducible factor prolyl hydroxylase 

inhibitors (HIF-PHIs) that may be effective despite inflammation.116–118  
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These implications point to the importance of measuring and monitoring inflammation 

through routine CRP assessment; this is done in most European and Japanese HD 

centers, but not in North America. Routine CRP measurement is relatively inexpensive 

and convenient to measure,124 and can help better identify causes of, and inform 

targeted strategies to reduce, inflammation. Quicker recognition of new inflammation in 

HD patients could also help identify the cause of worsening anemia and guide reactive 

ESA and IV iron dosing decisions.  

Additional results and study design characteristics all further support a causal relation 

between inflammation and ESA hyporesponsiveness. First, we restricted to HD facilities 

that routinely measured CRP to avoid bias in which a clinical indication for measuring 

CRP also affects the outcome. Second, the longitudinal study design focuses on 

incident inflammation to avoid the temporal ambiguity of cross-sectional designs. Third, 

by matching patients to themselves and measuring outcomes before and after the 

detection of elevated CRP, this design does not require a comparison group of patients 

who did not experience an increase in CRP. Fourth, while residual confounding by 

unmeasured time-varying risk factors for ESA hyporesponsiveness is possible, the 

likelihood of this bias is low when considering how the self-matching seems to have 

controlled adequately for both time-fixed and time-varying confounders, as evidenced 

by minimal changes in the effect estimates after adjustment for time-varying 

confounders. Finally, the associations were particularly strong among patients whose 

CRP increase was sustained over the subsequent 3 months, consistent with the 

hypothesized mechanism.  
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Summary of findings: Aim 3 

Aim 3 focuses on the controversy37–39,56,59,60,148 regarding IV iron supplementation and 

upper ferritin targets in the context of the recently published PIVOTAL trial,65 and more 

generally investigates how closely observational data can mimic an actual randomized 

trial using the parametric g-formula. The PIVOTAL trial65 randomized HD patients to a 

proactive high dose (400 mg/month; discontinue if ferritin > 700 ng/mL or TSAT >40%) 

vs. reactive low dose (100-200 mg; discontinue if ferritin <200 ng/mL and TSAT >20%) 

IV iron strategy. After 42 months of follow-up, the hazard ratio for the composite primary 

end point of nonfatal myocardial infarction, nonfatal stroke, hospitalization for heart 

failure, or all-cause mortality in the PIVOTAL trial was 0.85 (95% CI: 0.73, 1.00) for the 

high vs. low dose arm. PIVOTAL results for all-cause mortality were similar, although no 

differences between the high and low dose arm were observed during the first year of 

follow-up. PIVOTAL authors also found that the high-dose group had lower ESA doses 

and higher levels of hemoglobin, TSAT, and ferritin over the first 12 months.  

We performed the parametric g-formula analysis using DOPPS data to mimic two 

hypothetical target trials. In the primary analysis, we compared PIVOTAL treatment 

strategies in the full DOPPS sample (i.e., nationally representative samples of HD 

patients in seven European countries), with the goal of extending PIVOTAL findings 

outside of the narrow trial inclusion criteria. In the subset analysis, we attempted to 

simulate the PIVOTAL trial as closely as possible, by implementing the marginal 

exclusion criteria applied to the PIVOTAL trial,139 to demonstrate the proof-of-concept. 

In both analyses, we found that the proactive high-dose vs. reactive low-dose strategy 

resulted in much higher serum ferritin levels, slightly higher levels of hemoglobin and 
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TSAT, and slightly lower ESA doses, but a higher risk of mortality. Our simulated 

differences in laboratory values after 12 months under the high vs. low-dose strategy 

were directionally consistent with PIVOTAL, but smaller in magnitude. Our mortality 

findings (RR=1.20 for high vs. low dose strategy), however, were not consistent with 

PIVOTAL. Potential explanations for these divergent results include model 

misspecification and/or differences in the study populations.  

Results from some observational studies have shown that a higher IV iron dose was 

associated with an elevated risk of adverse events48,62,134 and some have not.63,64,91 

However, all of these studies considered IV iron as a static rather than dynamic 

treatment strategy, and thus we cannot quantitatively compare our effect estimates. 

Rather than ask whether patients who received >400 vs. 200-399 mg of iron over a 

specified time period had better outcomes, our research question is more consistent 

with the complexities of clinical practice, where IV iron prescriptions depend on time-

updated ferritin and TSAT levels. Further, most of these other observational studies 

were conducted in the US, where ferritin levels and cumulative IV iron doses are much 

higher than in Europe.136 In the PIVOTAL trial,65 the ferritin threshold at which to 

discontinue IV iron in the proactive high-dose arm was 700 ng/mL, lower than the 

median value observed in the US,29 limiting generalizability of our analysis – and the 

PIVOTAL trial itself – regarding optimal treatment for patients with ferritin >700 ng/mL to 

US populations.  

We implemented the parametric g-formula to properly account for the treatment-

confounder feedback loop (i.e., ferritin  IV iron  ferritin)61 that would cause standard 

analytic methods to fail.129 Time-dependent confounding is challenging because models 
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may be biased with or without adjustment for these confounders (because they are also 

mediators), and information on exposures and key confounders must be measured 

frequently during follow-up. A marginal structural model was another option to handle 

this time-dependent confounding, but unstable weights can often drive results when 

using inverse probability weighting methods;132,142,143 further, marginal structural models 

tend to be inefficient when comparing dynamic treatment strategies.130,149,150 

Nonetheless, we acknowledge encountering some obstacles in implementation of the g-

formula. This multivariate longitudinal extension of standardization to the parametric g-

formula requires extensive modeling that, in practice, is unlikely to fully account for the 

many unknown associations and interactions between variables. Our stated goal of 

simulating PIVOTAL65 findings was also hampered by our inability to accurately 

duplicate the trial population even after restricting the DOPPS sample based on 

marginal exclusion criteria applied to the PIVOTAL trial.139 This ability to evaluate, rather 

than only speculate, on how closely our simulated results mirrored actual trial results 

was a strength and distinguishes this study from prior applications of the parametric g-

formula. 

Future directions 

This dissertation research comes at a key, and potentially transitionary, time with 

respect to anemia management strategy in dialysis. For many years, ESA and IV iron 

have been the dominant drugs used to reach and maintain target hemoglobin levels in 

HD patients. New therapies, however, that may compliment or even replace ESA and IV 

iron have either been recently approved or will be available soon.57 Rather than receive 

iron intravenously, iron deficient patients may be treated by various oral iron 
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formulations, such as iron-containing phosphate binders. These medications may 

reduce IV iron and/or ESA doses by including iron in a phosphate binder,151,152 a 

medication that over 80% of HD patients already require.29 These new iron formulations, 

already on the market, are promising and have the potential to lower costs, but should 

be used cautiously until they prove to be safe and effective.148 Additionally, a new class 

of anemia drugs, HIF-PHIs, is currently in phase 3 trials in many countries, with recent 

approval for use in China. HIF-PHIs stimulate endogenous erythropoietin production 

while simultaneously coordinating iron bioavailability, thus raising hemoglobin 

levels.116,117 Early trials153,154 have shown HIF-PHIs to be effective at raising hemoglobin 

without causing serious adverse events, but there are theoretical safety concerns, 

primarily in tumor growth, that the relatively short follow-up periods may not have been 

able to capture.116,117 Oral administration of HIF-PHIs, compared to the injectable 

administration of all current ESA’s, may provide a major advantage in their effectiveness 

in non-dialysis CKD patients who do not visit the HD facility three times per week, 

particularly in low- and middle-income countries where access to IV or subcutaneous 

medications may be limited. Another potential advantage of these drugs is to better 

prepare patients for the transition from non-dialysis CKD to dialysis; as shown in the 

Aim 1 research, the consequences of initiating HD with severe anemia are sustained 

even among patients with hemoglobin treated into target range in the early HD period. 

Further, while patients tend to become ESA hyporesponsive when inflamed, as shown 

in the Aim 2 research, HIF-PHIs may remain effective in the presence of 

inflammation.155 With HIF-PHIs not yet on the market in most countries, and only very 

recent uptake of alternative iron supplementation routes, only data on more traditional 
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anemia therapies, ESA and IV iron, were available for the research questions 

addressed in this dissertation. 

A theme across all three aims was the importance of clearly defining the research 

question, and choosing the appropriate study design. We encountered challenges along 

the way but were able to consistently develop appropriate solutions. In Aim 1, we 

attempted to assess the impact of pre-dialysis anemia management while limited to a 

cohort of HD patients with no information on pre-dialysis treatment history. We 

developed an approach – that might at first seem counterintuitive and lead to selection 

bias– of restricting the data based on information four months after the exposure 

variable was defined to better align the analysis with the hypothesis. This restriction was 

not done after exposure status was measured in the first month of HD; but rather, 

exposure status was measured retrospectively at HD initiation after eligible patients 

were selected after four months of HD treatment. In Aim 2, we sought to assess the 

impact of inflammation on ESA hyporesponsiveness, and developed an elegant self-

matched longitudinal design and analysis to minimize confounding due to differences in 

patient characteristics. In Aim 3, we attempted to compare dynamic treatment 

strategies in the presence of potentially severe time-dependent confounding – causing 

standard methods to fail whether or not the confounders are included in the model– and 

identified the parametric g-formula, which is known to many epidemiologists but rarely 

implemented, as the best approach. Using observational data to emulate a “target 

trial”133 comparing well-defined dynamic treatment strategies that are consistent with the 

complexities of clinical practice is very appealing, and becoming more feasible in the 

era of big data. The advantages are clear – including the ability to evaluate many 
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variations of complex intervention strategies across differing inclusion criteria within a 

single cohort study – particularly in settings where randomized trials may be impractical 

or unethical. However, the limitations to doing so in practice should be appreciated, 

including residual confounding and discrepancies between the study cohort and target 

trial populations. When the target trial emulated is not identical to the idealized target 

trial, we do not necessarily expect the same answer to these slightly different research 

questions.133 This gap can be minimized, but will always exist due to the limits of both 

observational data (and methods) and trial data, which often represent a highly 

specialized population that may not be generalizable to the target population of interest. 

Future studies of interest related to anemia management in CKD and dialysis would 

ideally apply similarly innovative analytic techniques to assess the real-world safety and 

effectiveness of some of the new classes of medications, including iron-containing 

phosphate binders and HIF-PHIs. New-user designs would best align the conceptual 

hypothesis with the operational hypothesis in most cases, leading to methods that 

address clearly defined research questions. While the advantages of new-user designs 

to avoid biases are clear, the number of initiators available often limits statistical power. 

However, when analyzing treatments new to the market, most users will be new users, 

leading to increased feasibility of such analyses if longitudinal data are collected 

frequently enough to accurately model predictors of treatment initiation and avoid 

confounding by indication bias. With sufficient data collected, the g-methods,131 

including inverse probability weighting and the parametric g-formula, could then be used 

to emulate hypothetical trials of these treatments in a real-world setting. The largest 

obstacle to implementing these approaches may be the barrier to entry; the g-formula 
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knowledge base and SAS code developed for this dissertation will greatly reduce the 

amount of effort required to implement these analyses in practice. Potential projects 

may include evaluating alternative non-PIVOTAL protocols within the Aim 3 framework, 

or designing a comparative effectiveness target trial around treatment strategies with 

new anemia medications vs. the traditional therapies (ESA and IV iron). Finally, while 

dialysis data are uniquely positioned to facilitate implementation of these methods for 

reasons described above, researchers outside of nephrology could and should move 

toward applying these methodological principles when the observational data structure, 

size, and availability allow. 

Conclusions 

This dissertation outlines critical gaps in the literature on anemia management in HD 

patients, and describes three studies that utilize innovative designs and complex 

statistical analyses to address these gaps. The resultant manuscripts represent a 

meaningful contribution to the literature, and attempt to advance both the optimization of 

anemia management strategies in HD patients and the use of causal inferences 

principles to guide epidemiologic research using observational data. 
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