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Abstract 
 

Mercury (Hg) is a global pollutant that poses a public health threat because exposure 

through consumption of fish or rice can lead to adverse neurological and immunological effects. 

Despite decades of research there are significant gaps in the understanding of Hg biogeochemistry 

and the measurement of Hg stable isotopes has proven to be an effective tool for answering some 

of the outstanding questions. Mass-dependent fractionation (MDF, reported as δ202Hg) and mass-

independent fractionation (MIF, reported as Δ199Hg) of Hg isotopes occur during many 

biogeochemical processes and can be diagnostic of specific chemical reactions.  

This dissertation enhances our understanding of key pathways that control Hg toxicity in 

marine waters and pinpoints the key dissolved Hg species that may limit Hg methylation and 

bioaccumulation. The overarching goal of this research was to investigate the biogeochemical 

cycle of Hg in marine waters with a focus on enhancing the understanding of the photochemical 

decomposition of Hg in surface marine waters, which reduces the pool of Hg available for 

incorporation into the marine foodweb. With this goal in mind, Hg stable isotopes were used to 

investigate Hg cycling in North Pacific Ocean. This resulted in the first Hg stable isotope analysis 

of marine particles, zooplankton and open ocean precipitation (Chapter 2, 3, 5). In order to fully 

interpret the Hg stable isotopic composition of natural samples associated with Hg photochemistry, 

a number of Hg photochemistry studies were conducted on the rooftop of a laboratory building 

and onboard the research vessel R/V Kilo Moana in the North Pacific Subtropical Gyre (Chapter 

4,5). Finally, to connect the Hg stable isotopes studies with the photochemical decomposition 



 xi 

mechanism, a series of high-level electronic structure calculations of environmentally relevant 

complexes were conducted (Chapter 6). 

The body of research presented in this dissertation highlights the advantages of utilizing Hg stable 

isotopes to study Hg cycling in the environment, bypassing the limitations of traditional field and 

laboratory experiments. The environmental isotope measurements indicated that precipitation is 

the main source of Hg to surface marine waters, that both methylation and demethylation of Hg 

takes place in the water column, that surface marine zooplankton record a diurnal Δ199Hg variation 

indicative of methylmercury (MeHg) photochemistry, and that there is seasonal variability in the 

Hg isotope composition of particulate Hg. The MeHg photochemistry isotope experiments 

demonstrated that the photodecomposition of MeHg in marine waters may be controlled 

intracellularly by phytoplankton or by reactive inorganic MeHg complexes (e.g MeHgOH) but not 

by dissolved organic matter as previously hypothesized. The isotope experiments indicate that 

direct photolysis of Hg may be the dominant photochemical mechanism for decomposition and 

reduction in aquatic ecosystems, which is contrary to previous investigations. Finally, the high-

level computational simulations demonstrate that spin-orbit coupling may not quench mass-

independent fractionation (Δ199Hg) and that the magnetic isotope effect is a plausible mechanism 

for the Δ199Hg recorded in natural samples around the world.  Specifically, the simulations indicate 

that spin-orbit coupling may limit mass-independent isotope fractionation for divalent inorganic 

Hg(II) complexes (e.g. Hg(thiol)2), but that spin-orbit coupling does not have any effect on mass-

independent isotope fractionation of MeHg complexes. 
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Chapter 1 Introduction 

1.1 Mercury: A historical perspective  

Mercury (Hg) has captivated the curiosity of countless individuals since the Middle Ages. 

This shiny “water-silver” liquid was a central part of alchemy, a philosophical tradition that greatly 

influenced modern chemistry. It is well known that alchemists believed that Hg was key to creating 

the philosopher stone to achieve transmutation of metals to gold or silver, but what is less known 

is the role Hg played in the Scientific Revolution.1,2 The Scientific Revolution was a series of 

events that marked the beginning of modern science in the 18th century. To understand the role Hg 

had we need to go back a few centuries, to the publication of the third book of Aristotle’s treatise 

Meteorology3; this book contains the justification for the belief that metals are composed of two 

principle components, later identified as Hg and sulfur. These ideas were solidified in the 13th 

century by the Latin corpus attributed to Geber4,5 and it was from these principles that alchemists 

set out to understand the fundamental truths by means of experiment with natural materials.4,5 In 

the Summa Perfectionis, Geber investigated in great detail the relationship between Hg and sulfur 

and it was from his observations of Hg-sulfur mixtures’ resistance to heat that he concluded that 

Hg and sulfur made a “very strong composition” 4. Geber described this interaction as very small 

particles coming together to form strong discreate corpuscles. This idea of corpuscles made up of 

Hg and sulfur could be interpreted as an early description of a chemical bond.1,5  

The notion that Hg and sulfur were central to the composition of metals was so pervasive 

that in the 16th century Paracelsus von Hohenheim proposed the concept that three principle 

components (tria prima), mercury, sulfur, and salt (likely cinnabar) contained the poisons 
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contributing to all diseases.6 Paracelsus von Hohenheim is considered the father of toxicology7 

and was an avid alchemist8 often credited for the use of Hg to treat syphilis.7,9 This was one of the 

early applications of Hg in medicine, in subsequent years Hg would be seen as a miracle drug and 

was used to combat other ailments including bronchitis and cancer. Hg salts were routinely used 

as topical antiseptics to treat minor wounds until 1998 when they were discontinued in the United 

States, but it may still be available in some other countries10.  

 We know now that the theory of sulfur and Hg was incorrect and that Hg does not have 

any beneficial medical purposes. On the contrary, Hg is a known neurotoxin in all of its chemical 

forms. Yet, it is remarkable that ancient philosophers realized that Hg and sulfur had such high 

affinities resulting in and extremely stable chemical bond. But despite centuries of investigation 

on Hg and sulfur, their relationship in natural environments remains poorly understood. Many 

aspects of my dissertation highlight the need for a greater understanding of the Hg coordination to 

sulfur-bearing organic ligands to be able to comprehend the biogeochemical cycle of this 

neurotoxin in a changing environment.  

In our current day, anthropogenic emissions from mining and coal combustion have 

significantly increased the amount of Hg in the atmosphere. Hg has a long residence time in the 

atmosphere and is mobilized into every corner of the Earth after it has been emitted, making it a 

global pollutant. This poses a great public health concern because once Hg is deposited from the 

atmosphere it may get methylated to the potent neurotoxin monomethyl-Hg (MeHg), which 

biomagnifies in aquatic food webs, reaching elevated concentrations in fish11,12. Hg poisoning has 

been linked to IQ deficits in prenatally exposed children13,14 and may include cardiovascular 

effects in adults.15 And even more recently, it has been demonstrated that exposure to inorganic 

Hg (IHg) may lead to immunotoxicity16,17 and increased antibiotic resistance.18 But Hg poisoning 
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is more than a health hazard, it is also an economic burden due to the lost wages and medical costs 

from IQ deficits and nonfatal heart attacks.19,20 

 Despite many decades of research on Hg many details remain unclear about how and in 

which environments MeHg is produced and degraded. The limited understanding of the Hg cycle 

has been in part due to technical challenges associated with tracking and measuring different 

chemical forms of Hg in the environment. To facilitate the investigation of complex 

biogeochemical cycles, researches seek ways to fingerprint the key pathways that control its 

mobility. Light-element stable isotope ratios have been an efficient tool to fingerprint complex 

biogeochemical cycles in the environment, for example, sulfur stable isotopes were key to 

determining timing of the great oxygenation event, and nitrogen isotopes in the understanding of 

food webs. However, it had been long hypothesized that elements heavier than Z=4021 would never 

exhibit isotope effects because the relative mass differences of the isotopes would be too small to 

detect isotope effects. But centuries later Hg keeps on surprising us; in 2001 technological 

innovations in mass spectrometry allowed the accurate measurements of Hg stable isotope ratios 

demonstrating significant mass dependent isotope effects (MDF).22 In 2007 Hg surprised us yet 

again, when Bergquist and Blum23 identified a phenomenon whereby magnetic isotopes of Hg 

react during photochemical reactions at different rates from the even-mass isotopes, resulting in 

mass independent isotopes effects (MIF). Since then, Hg stable isotopes have been instrumental in 

the investigation of critical aspects of the global biogeochemical cycle of Hg. For example, Hg 

stable isotopes have elucidated Hg methylation in the marine water column24 and mechanisms of 

polar atmospheric Hg deposition25,26. 

Although Hg stable isotopes have been proven to be powerful tools for investigating the 

biogeochemical cycle of Hg, it is still challenging to interpret Hg stable isotope signatures in 
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biological samples due to the limited understanding of the underlaying isotope fractionation 

mechanisms. Over a decade after the first measurements, it is still not fully understood why a 

heavy element like Hg would exhibit MDF and MIF. The MDF of heavy elements is thought to be 

controlled by the nuclear volume effect,21,27 however, the theory has never been extended to kinetic 

reactions28. The elevated MIF of Hg has  been attributed to photochemical transformations of Hg 

mediated by the magnetic isotope effect (MIE)23. While the MIE is widely considered the cause of 

photochemical isotope fractionation signatures, it has been long theorized that heavy elements 

would not express MIE due to the relativistic effects inherent to heavy elements.29 Thus, little is 

known about the photochemical transformation of Hg that occur in the environment and expresses 

the MIE.  

 Inspired by the rich history of this neurotoxic global pollutant and the scientific mysteries 

surrounding Hg stable isotope fractionation, the overarching goal of my dissertation was to 

understand the underlying chemistry of the major forms of this unusual element in the 

environment. To accomplish this, I took a multidisciplinary approach combing state-of-the-art 

quantum mechanical calculations to investigate the role of relativistic effects in the photochemistry 

of Hg, Hg stable isotope photochemistry experiments in natural sunlight, and marine field 

collections and isotopic analyses to reconstruct the marine Hg biogeochemical cycle.  

1.2 Mercury Stable Isotopes 

Hg stable isotope ratios exhibit traditional mass dependent fractionation (MDF; represented by 

δ202Hg values in ‰; Equation 1; Figure 1) during all abiotic and biotic physicochemical reactions 

that have been investigated, where the lighter isotope reacts faster than the heavy one in kinetic 

reactions, and heavier isotopes are accumulated in the stiffer bond in equilibrium reactions.30 In 

addition to MDF, Hg isotope ratios exhibit large magnitude (≥ 0.4‰) MIF of odd-mass isotopes 
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(MIF; represented by Δ199Hg and Δ201Hg values in ‰, Equation 2; Figure 1) that has been 

attributed to photochemical transformations of Hg. In addition, MIF of even isotopes (even-MIF; 

represented by Δ200Hg and Δ204Hg values) is sometimes observed, particularly in rain and snow 

samples, and it is potentially linked to atmospheric photo-oxidation reactions31,32. 

δ202Hg (‰) = ([(202Hg/198Hg)unknown/(202Hg/198Hg)SRM3133] − 1) x 1000                        (Equation 1) 

  ΔxxxHg = δxxxHg − (δ202Hg x ß)                                             (Equation 2) 

 

Figure 1: Hg stable isotopes of Hg and relative abundance. On the left mass dependent isotope 
fractionation and on the right mass independent fractionation of the odd isotope of Hg (199Hg and 
201Hg).  
 

The production of Hg MIF isotope signatures in conjunction with MDF signatures has made 

Hg stable isotope ratios a powerful environmental fingerprinting tool because marine organisms 

preserve the Δ199Hg values associated with photochemical reduction of Hg prior to its 

incorporation into the marine food-web. Δ199Hg sigantures are preserved because there is no 

Δ199Hg associated with trophic transfer or microbial reactions33,34. In addition, ratios of Δ199Hg to 

Δ199Hg and δ202Ηg values have been shown to be sensitive to the chemical bonding environment35, 

wavelength of light36, and types and amounts of DOM37,38. The sensitivity of Δ199Hg to reaction 

conditions has allowed the investigation of photochemical reactions of Hg within phytoplankton39 

and the elucidation of a diurnal MeHg photochemistry cycle in marine surface water 
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zooplankton.40 However, it is challenging to interpret Δ199Hg values in biological samples due to 

the limited understanding of the controlling isotope fractionation mechanism(s).  

1.3 Theoretical Considerations for photochemical isotope effects 

The theoretical framework developed for kinetic MDF is inadequate for investigating 

photochemical reactions because MDF assumes that the chemical reaction follows a unique 

potential energy trajectory during bond dissociation30, however, this does not apply to 

photochemical reactions41. In a photochemical transformation a photon of light promotes an 

electron from the ground state to an excited one, and this newly excited state is described by a 

different potential energy trajectory. This explains why all MIF signatures of stable isotopes 

recorded today are associated with photochemical reactions, for example Δ33S from SO2 photolysis 

in the atmosphere42,43 or Δ17O from destruction of ozone by photolysis44. The MIF signatures of 

MeHg (Δ199Hg and Δ201Hg) in marine biological samples have been proposed to be inherited from 

partial direct photolysis of Hg complexes in surface waters by MIE23. Direct photolysis occurs via 

the absorption of a photon by MeHg-ligand complexes and leads to homolytic cleavage of Hg-

ligand bonds. While the MIE is widely considered the cause of photochemical isotope fractionation 

signatures, similar to the mechanism proposed for the fractionation of the lighter elements (e.g., 

C, N, S)45 during photolysis, it is unlikely for heavy elements to exhibit MIE due the relativistic 

effects inherent to heavy elements and the chemical complexity.46 

As such, to accurately interpret Δ199Hg and Δ201Hg signatures in nature we must investigate 

the susceptibility of environmentally relevant MeHg complexes to undergo direct photolysis and 

evaluate the role of relativistic effects in the mechanism for the MIE. The appropriate theoretical 

description of the MIE for heavy elements, such as Hg, requires the inclusion of relativistic effects, 

but no theoretical model has accounted for these effects. Relativistic effects can be divided 
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between scalar relativistic effects, associated with the relativistic mass increase of the electron, 

and spin-orbit interaction. The latter effect may change reaction paths potentially altering or 

inhibiting the MIE.  

1.4 Dissertation Narrative 

 In our quest to understand the environmental chemistry of Hg in aquatic ecosystems and 

expand our understanding of stable isotope fractionation signatures of heavy elements, we set out 

to reconstruct the marine biogeochemical cycle of Hg. Our emphasis on determining the 

photochemical reaction involving Hg that is behind the MIF preserved in pelagic fish. This 

dissertation enhances our understanding of key pathways that control Hg toxicity in marine waters 

and pin point the key dissolved Hg species that may limit Hg methylation and bioaccumulation. 

The worked presented here also raises questions about the biogeochemical cycle of Hg and our 

understanding of the environmental chemistry of Hg (Chapter 7). 

 In Chapter 2 (published in Global Biogeochemical Cycles) we used Hg isotope ratios and 

total Hg concentrations to explore Hg biogeochemistry in oligotrophic marine environments in the 

open ocean north of Hawaii. We present the first measurements of the vertical water column 

distribution of Hg concentrations and the Hg isotopic composition in precipitation, marine 

particles, and zooplankton at Station ALOHA (22°45’ N 158° W). Our results reveal production 

and demethylation of methylmercury in both the euphotic (0-175 m) and mesopelagic zones (200-

1000 m). We document a strong relationship between Hg isotopic composition and depth in 

particles, zooplankton and fish in the water column, and diurnal variations of Δ199Hg values in 

zooplankton sampled near the surface (25 m). Based on these observations and stable Hg isotope 

relationships in the marine foodweb, we suggest that the Hg found in large pelagic fish at Station 

ALOHA was originally deposited mainly by rainfall, transformed into methyl-Hg and 
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bioaccumulated in situ in the water column. Our results highlight how Hg isotopic compositions 

reflect abiotic and biotic production and degradation of methyl-Hg throughout the water column, 

and the importance of particles and zooplankton in the vertical transport of Hg.  

 After reporting the strong relationship between Δ199Hg values in zooplankton and pelagic 

fish in the North Pacific Ocean, we sought to use Δ199Hg values in flying fish tissue containing Hg 

mostly in the form of MeHg to assess the relative degree of photochemical decomposition across 

the world’s oceans (Chapter 3 in review at Marine Chemistry). The photochemical decomposition 

of this neurotoxin limits its bioaccumulation, but the spatial pattern of demethylation in the oceans 

is not well understood. The reaction mechanism is also uncertain and there is currently no way of 

monitoring the degree of photochemical degradation in pelagic waters across the oceans. Here, we 

show that the Hg isotopic composition of flying fish allows us to investigate and monitor the 

controlling factors for the photodecomposition of residual methylmercury available for 

bioaccumulation in the food web of marine pelagic fish, which is the dominant source of 

methylmercury that humans are exposed to. In 19 specimens of flying fish, the magnitude of MIF 

varies by a factor of ~2. We estimate that 56 to 80% of MeHg was photo-degraded prior to entering 

the food web, depending on the location. The proportion of MeHg degradation does not correlate 

with latitude, solar radiation or estimates of the concentration of DOC or chlorophyll at the 

collection sites, but it does correlate with proxies for water clarity. The ratio of MIF for the two 

odd mass isotopes, Δ 199Hg/ Δ 201Hg, is constant in all flying fish sampled (1.20±0.03) suggesting 

that there is a common mechanism for photodegradation of MeHg in surface waters across oceans 

and hemispheres. The ratio of Δ 199Hg to δ202Hg is generally consistent with photochemical 

degradation but is more variable (2.71±0.14), suggesting that there is minimal internal 
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demethylation of MeHg and that variable amounts of MDF occur at different locations in the 

ocean, likely driven by variable rates of methylation and demethylation of Hg in the water column. 

 In Chapter 4 (in review at Physical Chemistry A), we report on laboratory photochemistry 

experiments. In Chapter 2 and 3 we demonstrated that Δ199Hg values were excellent proxies from 

investigating Hg in marine ecosystems and monitoring the degree of photochemical degradation 

in open ocean waters. However, the mechanisms behind MIF and the role of photochemical 

degradation of HgX2 (Hg(II); X=S, N, O organic ligands) remained unclear and limited our 

interpretation of MIF. The photochemical reduction of Hg(II) is an important pathway in the 

environmental Hg cycle because it competes with Hg methylation and potentially limits the 

formation of neurotoxic MeHg. This study investigated Hg isotope fractionation during the 

photochemical reduction of Hg(II) complexed to organic ligands representative of the available 

binding sites in natural dissolved organic matter. Our Hg stable isotope results suggest that MDF 

and MIF are induced at different steps in the overall photochemical reduction reaction, and that 

MIF does not depend on the rate determining step, but instead on photophysical aspects of the 

reaction, such as intersystem crossing and hyperfine coupling. The behavior of Hg isotopes 

reported here will allow for a better understanding of the underlying reaction mechanisms 

controlling the Hg isotope signatures recorded in natural samples. 

 In Chapter 5 (Submitted to Nature Geoscience) we build upon our marine measurements 

at Station ALOHA and our laboratory photochemistry experiments, and provide a 

multidisciplinary approach to determine MeHg photodecomposition and incorporation in marine 

plankton. We use ab initio methods to investigate the photoreactivity of MeHg complexes in 

seawater, together with mercury stable isotope ratios from laboratory and shipboard 

photodegradation experiments and in zooplankton from the central tropical and subtropical North 
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Pacific Ocean. Until recently, it has been assumed that dissolved MMHg is either photodegraded 

in the water column or taken up by phytoplankton, but that little to no degradation of MMHg 

occurs after incorporation in phytoplankton. This assumption is an oversimplification of the 

biogeochemical cycle of Hg in the ocean. We trace the pathways by which MeHg is incorporated 

into planktonic organisms at the base of pelagic marine food webs. Significant differences in the 

Hg stable isotope composition (δ202Hg, Δ199Hg, and Δ201Hg) between small versus intermediate 

and large size classes are documented for zooplankton from the upper layer of the photic zone (25 

m) of the North Pacific Ocean. Our results suggest that much of the MeHg accumulated by 

phytoplankton and small zooplankton in the upper layers of the ocean's photic zone is not 

transferred to large consumers, while MeHg accumulated by phytoplankton and zooplankton 

living at the base of the euphotic zone is retained in the planktonic food web and effectively 

transferred to higher trophic level consumers. These results illuminate a critical link in the 

accumulation of MeHg in oceanic food webs and inform efforts to trace the accumulation of 

pollutant Hg in marine seafood. 

 In Chapters 2 through 5 we demonstrated that Hg stable isotope measurements can 

elucidate reaction mechanisms, ligands associated with Hg, and many complex environmental 

processes involving Hg. However, one big question remained: what is the underlying chemical 

mechanism of the MIF that produces Δ199Hg anomalies? It is still impossible to fully grasp which 

aspects of the photochemical reaction that formation of Δ199Hg values represents due to the lack 

of information about Hg complexes available for direct photolysis or reaction mechanisms in 

natural waters. In Chapter 6 (in preparation for submission to JACS communications) we use high 

level electronic structure methods to evaluate the potential photochemical mechanisms for MIF 

effects in HgX2 and CH3HgX (X= Cl, Br, I, and SCH3).  Here we demonstrate that the spin-orbit 
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coupling for the electronic transitions available for geminate recombination to the ground state are 

smaller than anticipated for HgX2 and CH3HgX (X=Cl and SCH3) and therefore photochemical 

decomposition may result in magnetic isotope effects. This was unexpected because it has been 

long hypothesized that heavy elements could not undergo magnetic isotope fractionation29 due to 

radical spin relaxation inhibiting geminate recombination mediated by spin-orbit coupling. The 

simulations presented here show that photochemical reduction of HgX2 complexes can result in 

positive or negative MIEs, while CH3HgX complexes exclusively result in positive MIE, 

explaining the MIE recorded in natural samples. 
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Abstract: The oceans are an important global reservoir for mercury (Hg) and marine fish 

consumption is the dominant human exposure pathway for its toxic methylated form.  A more 

thorough understanding of the global biogeochemical cycle of Hg requires additional information 

on the mechanisms that control Hg cycling in pelagic marine waters. In this study, Hg isotope 

ratios and total Hg concentrations are used to explore Hg biogeochemistry in oligotrophic marine 

environments north of Hawaii. We present the first measurements of the vertical water column 

distribution of Hg concentrations and the Hg isotopic composition in precipitation, marine 

particles, and zooplankton near Station ALOHA (22°45’ N 158° W). Our results reveal production 

and demethylation of methylmercury in both the euphotic (0-175 m) and mesopelagic zones (200-

1000 m). We document a strong relationship between Hg isotopic composition and depth in 

particles, zooplankton and fish in the water column, and diurnal variations in Δ199Hg values in 

zooplankton sampled near the surface (25 m). Based on these observations and stable Hg isotope 

relationships in the marine foodweb, we suggest that the Hg found in large pelagic fish at Station 

ALOHA was originally deposited largely by precipitation, transformed into methyl-Hg and 

bioaccumulated in situ in the water column. Our results highlight how Hg isotopic compositions 
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reflect abiotic and biotic production and degradation of methyl-Hg throughout the water column, 

and the importance of particles and zooplankton in the vertical transport of Hg.  

2.1 Introduction 

 Mono-methylmercury (MMHg) is one of the most toxic forms of the global pollutant 

mercury (Hg) and is strongly retained at each trophic level in marine food webs, reaching high 

concentrations in piscivorous fish, the main source of exposure of MMHg to humans (Morel et al., 

1998). Despite decades of research on Hg many details remain unclear about how, at what depths 

in the ocean, and in which marine environments, Hg transforms to the neurotoxic MMHg form 

and bioaccumulates in marine organisms. The current understanding of the biogeochemical cycle 

of Hg suggests that Hg exists in several forms including Hg(II), gaseous elemental mercury 

(Hg(0)) and methylated Hg (MeHg), both as MMHg and dimethyl-Hg. The major forms of Hg in 

aquatic ecosystems are Hg(II) complexed to organic ligands, chloride or sulfide, and organic 

mercury in the form of MMHg (Morel et al., 1998; Fitzgerald et al., 2007). Within the marine 

water column, Hg transformations include not only methylation of Hg(II) by abiotic and biotic 

processes (Munson et al., 2018; Sunderland et al., 2009), but also degradation of MMHg to Hg(II) 

and Hg(0) by photochemical and dark biotic processes (Fitzgerald et al., 2007; Sunderland et al., 

2009). The limited understanding of the marine cycle of Hg is in part because of technical 

challenges associated with tracking and measuring different chemical forms of Hg in marine 

environments, especially in organisms like plankton at the base of the food web.  

Plankton communities are known to be an important link between marine particles and 

higher trophic level pelagic marine organisms (See Figure 1 and references therein). However, 

there have been few studies of Hg speciation (e.g., MMHg, Hg(II)) in zooplankton, phytoplankton, 

or marine particles (Hammerschmidt et al., 2013; Gosnell and Mason, 2015), or the chemical and 
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biological pathways that control Hg speciation near the base of the foodweb (Morel et al., 1998; 

Munson et al., 2015). Although dissolved total Hg (THg = Hg(II) + MeHg) concentrations have 

been reported in marine pelagic waters (Sunderland et al., 2009; Hammerschmidt and Bowman, 

2012; Munson et al., 2015), details concerning the sources, transformations, and bioavailability of 

this Hg pool for uptake and bioaccumulation remain elusive. In the Pacific Ocean, elevated 

dissolved Hg concentrations are generally known to occur in oxygen deficient waters (Sunderland 

et al., 2009; Hammerschmidt and Bowman, 2012). Elevated oceanic Hg concentrations have been 

attributed to evasion from sediments (Monperrus et al., 2003; Hammerschmidt et al., 2006), 

emission from seafloor hydrothermal vents (Lamborg et al., 2006), and horizontal advection from 

coastal areas (Hammerschmidt and Bowman, 2012). Elevated MMHg in the water column has 

been attributed to biotic methylation of Hg(II) on marine particles (Sunderland et al., 2009; Cossa 

et al., 2011; Blum et al., 2013) and abiotic methylation in the water column (Munson et al., 2018). 

Thus, the biogeochemical pathway(s) for MMHg production in the open ocean are complex and 

remain uncertain.  

Our study investigates the biogeochemical and photochemical pathways that control the 

distribution and speciation of Hg in the marine pelagic food web utilizing THg concentrations and 

Hg stable isotope ratios that vary following mass-dependent fractionation (MDF) and mass-

independent fractionation (MIF). Hg isotope ratios have proven to be effective at tracking the 

sources and sinks of Hg in a number of estuarine and marine ecosystems (e.g., Li et al., 2016; 

Kwon et al., 2015; Strok et al., 2015; Senn et al., 2010) and for exploring physicochemical 

reactions within the water column including reduction, photodegradation, oxidation, and 

methylation (e.g., Bergquist and Blum, 2007; Kritee et al., 2009; Chandan et al., 2015). Hg stable 

isotope ratios exhibit mass dependent fractionation (represented by δ202Hg values) during all 
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abiotic and biotic physicochemical reactions that have been investigated. In addition to MDF, Hg 

isotope ratios exhibit large magnitude (≥ 0.4‰) MIF of odd-mass isotopes (odd-MIF; represented 

by Δ199Hg and Δ201Hg values) that has been attributed to photochemical transformations of Hg 

(Bergquist and Blum, 2007). Finally, MIF of even isotopes (even-MIF; represented by Δ200Hg and 

Δ204Hg values) is sometimes observed, particularly in rain and snow samples (e.g., Gratz et al., 

2010; Chen et al., 2012), and it is strongly linked to atmospheric sources of Hg.  

The objective of this study is to better understand the pathways of methylation and 

demethylation for the pool of Hg available for incorporation and bioaccumulation into marine 

foodwebs. To achieve this, we have analyzed Hg concentrations and stable isotope compositions 

of major components of the marine Hg cycle including precipitation, marine particles, 

zooplankton, and fish. We examine dissolved THg and MeHg concentrations, the relationship 

between the Hg isotopic composition of precipitation and surface marine particles, and Hg 

methylation in the water column, from the THg isotopic composition of marine particles and 

pelagic fish with depth. To assess Hg incorporation and bioaccumulation at the base of the 

foodweb, we examine THg concentrations and isotopic composition of marine zooplankton in 

three different size classes with depth. Finally, to investigate photochemical degradation of MMHg 

in surface waters we measure THg isotopic composition in zooplankton and pelagic fish.  

The location of this study is Station ALOHA (22°45’ N 158° W), the site of the Hawaiian 

Ocean Time Series located in oligotrophic waters about 100 km north of the Hawaiian island of 

Oahu in the North Pacific Subtropical Gyre (NPSG). This station is characterized by little seasonal 

variability in salinity, temperature or dissolved oxygen, resulting in a relatively stable thermocline 

and halocline (range 40 – 100 m) throughout the year. However, a rapid particle export pulse is 

typically observed from mid-July to mid-August and thus delivers bulk carbon (PC) and nitrogen 
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at an increased rate to below the mixed layer (150 m) and into the deep ocean (4000 m; Karl et al. 

2012, Böttjer et al. 2017). Station ALOHA is near locations where previous work collected and 

analyzed pelagic fish for Hg concentrations and isotopic compositions (Choy et al., 2009; Blum et 

al., 2013).  

2.2 Materials and methods 

Sample types analyzed in this study include rainfall collected on-board the R/V Kilo Moana 

and on the Island of Hawaii, seawater from the surface to 1000 m depth, small (1-53 µm) and large 

(>53 µm) marine particles sampled at depths ranging from 25 to 700 m, and marine zooplankton 

in five size classes (ranging from 0.2 mm to >5 mm) collected from the surface to 1500 m depth. 

Marine samples were collected during three research cruises on board the R/V Kilo Moana at 

Station ALOHA (22.45°N, 158°W) in the NPSG in winter (KM 14-07, 19–28 February) of 2014, 

summer (KM 14-18, 29 August– 11 September) of 2014, and spring (KM 15-06, 2–11 May) of 

2015. Measurements of water column dissolved oxygen and fluorescence were monitored during 

all sampling seasons using a Seabird SBE 9/11plus CTD deployed with two Sea-Bird SBE 3P 

temperature sensors, two Sea-Bird SBE 4C conductivity sensors, two Sea-Bird SBE 43 dissolved 

oxygen sensors and a Wetlabs ECO FLNTU Chlorophyll Fluorometer & Turbidity sensor. All 

reagents used in the laboratory and at sea were trace metal grade unless otherwise noted 

2.2.1. Precipitation collection and analysis  

Open ocean precipitation was collected during the summer season on an event basis using 

a manual collection method (Landis and Keeler, 1997). All of the Teflon and Pyrex glass 

components of the system were acid cleaned. The 1L sample bottles were deployed with 20 mL of 

1% (wt/v) HCl to prevent reduction of Hg(II). Collection funnels were uncovered only when it 

was raining and the ship was steaming into a head wind to reduce possible contamination from 
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ship emissions. Due to infrequent precipitation, three separate rain events were combined into one 

sample to obtain sufficient Hg for isotope analysis. Additional samples were collected on land on 

the windward coast of the Island of Hawaii where trade winds bring moisture directly from the 

open ocean. These samples were collected at Hakalau Wildlife Refuge in December of 2005 (18 

km from the coastline) on private property near the Waipio Valley lookout at the top of a cliff (300 

m above the shoreline), and at the Nature Conservancy Ka’u Preserve (6 km inland from the ocean 

at shoreline level). Procedural field blanks were collected periodically during the sampling 

campaign using 1L of de-ionized water.  

All precipitation samples were further oxidized with 1% BrCl (wt/v), which was allowed 

to react with the water sample in dark, refrigerated storage for a minimum of one month. The 

oxidized precipitation samples were subsequently reduced, purged and trapped into 1% KMnO4 in 

10% H2SO4 (wt/wt) solution for isotope analysis, following the procedure described by Washburn 

et al. (2017). Approximately 1L of previously acidified and oxidized sample was weighed into an 

acid-clean 2L borosilicate glass bottle and treated with 10 mL of 4.32 M NH2OH-HCl to destroy 

free halogens, capped tightly, and allowed to react for a minimum of 30 minutes. Through one port 

of a three-port Teflon transfer cap, 100 mL of 10% SnCl2 (wt/wt) in 20% HCl (wt/wt) was 

delivered to the reaction bottle via a peristaltic pump, at a rate of ~3.3 mL/min. Another port 

delivered Hg-free air (Au-filtered) into the reactor via an internal sparger, while the final port was 

connected to a sparger inserted into a borosilicate glass trap containing between 5.5 and 6.5 g of 

1% KMnO4 trapping solution. Samples were purged for 3 hours while reactor contents were mixed 

vigorously using an acid cleaned (10% wt/v HCl) Teflon stir bar. THg content of each sample 

bottle was determined by analyzing a small aliquot using cold vapor- atomic fluorescence 

spectrophotometry (CV-AFS; RA-3320FG+, Nippon Instruments). To determine Hg recovery the 
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THg concentration of small aliquots of each 1%KMnO4 trapping solution was determined prior to 

transfer into a secondary trapping solution. The average purge and trap recoveries in precipitation 

samples was 93.7 ± 6.1% (1SD, n = 8) and procedural blanks yielded between 22.7 and 39.4 pg of 

Hg (n = 4), representing less than 1.4% of Hg in sample trap solutions. Periodically, procedural 

blanks and procedural standards (NIST-UM-Almadén) were prepared and analyzed in tandem with 

precipitation samples. 

2.2.2 Dissolved Hg and particulate Hg collection and analysis 

 Seawater was collected for dissolved THg and MeHg analyses during the summer cruise 

using acid-cleaned (10% wt/v HCl) Go-Flo bottles deployed on an Amsteel line (Noble et al., 

2012). THg dissolved concentrations were analyzed by dual Au-amalgamation cold vapor atomic 

fluorescence spectrometry (Tekran 2600) and dissolved MeHg concentrations were analyzed using 

ascorbic acid-assisted direct methylation (method adapted from Munson et al., 2015; Lamborg et 

al., 2012). Small (1-53 µm) and large (>53 µm) marine particles were sampled on all three cruises 

using in situ pumps (WTS-LV, standard, 8 L min-1; McLane Research Laboratories, East 

Falmouth); water was passed sequentially through 53 µm pore-size nylon mesh and 1 µm pore-

size quartz microfiber (QMA) filters with 142 mm diameter using a mini-MULVFS filter holder 

(Bishop et al., 2012). On the spring cruise, one pump was equipped with a pump head and motor 

with a maximum flow rate of 30 L min-1, and high volume samples of particles >53 µm were 

collected. The large particles collected on the nylon mesh were sonicated and concentrated into a 

pre-combusted 47 mm QMA filter. The QMA filters of the small and large particles were digested 

using microwave assisted acid digestion and aliquots of the digestions were measured for THg by 

cold vapor atomic fluorescence spectrophotometry (CV-AFS; RA-3320FG+, Nippon 

Instruments). Details of the dissolved and particulate Hg analyses can be found in the supporting 
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information section 1.  

In order to obtain enough Hg from small particles for isotope analysis, multiple 142 mm 

QMA filters were pooled from single depth horizons (± 15 m). For samples from 25 m, two filters 

containing particles from ~4000 L of filtered water were sufficient. In contrast, at all other depths 

(150, 400, and 690 m) larger numbers of filters representing particles from >6500 L of filtered 

water, were necessary (SI; Table S4a,b). Even more extensive pooling of material was required to 

obtain enough Hg from the >53 µm particles for a single isotope analysis. In the spring, a combined 

volume of ~ 35,000 L of water were filtered through 53 µm nylon mesh filters (n = 10 samples) at 

30 L min-1 flow rates from 157 m. The combined nylon filters were rinsed onto three 47 mm 

diameter QMA filters (details in supporting material and references within). Following 

lyophilization, QMA filters from the same depth were processed together, and Hg was released 

from the particle matrix by two-stage combustion and trapping into an oxidizing solution (1% 

KMnO4 in 10% H2SO4 (wt/wt)) (Biswas et al., 2008). A small aliquot of the trap solution was 

measured for THg concentration by CV-AFS (RA-3320FG+, Nippon Instruments). Combustion 

performance was monitored with procedural blanks, microfiber quartz filter blanks and 

combustion blanks (Table S4a,b).  

For stable isotope ratio measurements of Hg the initial KMnO4 trap solutions were 

chemically reduced with NH2OH-HCl and SnCl2 and Hg(0) was purged  into smaller secondary 

traps containing 6 g of 1% KMnO4 (wt/v) prepared in 10% H2SO4 (v/v) for additional purification 

and preconcentration.  

2.2.3 Zooplankton collection and analysis  

 Zooplankton were collected in summer and spring at Station ALOHA using a 1 m2 

MOCNESS (Multiple Opening/Closing Net and Environmental Sensing System; Wiebe et al., 
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1985) equipped with nine sampling nets. Most of the zooplankton were collected in summer during 

the day (n = 2 tows) and night (n = 3 tows). Each tow collected material from nine depth intervals 

spanning the ocean surface to 1500 m (0-50 m, 50-100 m, 100-150 m, 150-200 m, 200-300 m, 

300-500 m, 500-700 m, 700-1000 m, 1000-1500 m). In spring, four separate net tows were 

conducted to collect additional samples from a single depth interval (500-700 m). This was done 

to provide enough sample material to assess variability in Hg content and isotopic composition in 

a pool of material well constrained in terms of depth, areal extent, and time. Following collection, 

the cod ends of each net were retrieved and immediately immersed in chilled surface seawater. 

Zooplankton samples collected in the cod ends were wet sieved into 5 separate size fractions using 

stacked 0.2, 0.5, 1.0, 2.0 and 5.0 mm mesh sieves, and the separated size fractions were filtered 

onto acid-cleaned, pre-weighed 47 mm diameter 0.2 mm synthetic nylon mesh filters. To make 

sure that the dominant species were zooplankton our smallest sieve was 0.2 mm, which in the 

oligotrophic gyre excludes nearly all phytoplankton species (Pasulka et al., 2013). Briefly, the 

dominant zooplankton in the 0.2 to 1 mm size fractions were copepods and ostracods, and the 5 

mm size fraction included euphaeids, amphipods and chaetognaths. All samples were lyophilized 

and then homogenized using an acid cleaned agate mortar and pestle (Hannides et al., 2016).  

  For THg determination about 10 mg of zooplankton from each tow and size fraction was 

digested in reverse aqua regia (0.1 mL HCl:0.3 ml HNO3; Optima, Fisher Scientific) overnight. 

Digest solutions were brought to a final volume of 4 mL with sequential additions of BrCl, H2O2 

(Suprapur; MilliporeSigma, VWR Scientific) and deionized water. Multiple preparations of acid 

matrix blanks, combustion blanks, and certified reference material (TORT-2, National Research 

Council Canada) were analyzed for quality control.  
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For zooplankton, limited availability of bulk material necessitated pooling of samples for 

measurement of THg stable isotopic compositions, especially from depths below the euphotic zone 

(> 175 m; Table S2). Within each of six target depth intervals (Table S2) four zooplankton size 

fractions were combined to produce samples representing small (0.2-1 mm) and intermediate (1-5 

mm) size zooplankton. The fifth and largest size class (> 5 mm), which included occasional small 

fish as well as large zooplankton, was analyzed separately. All samples measured for Hg isotope 

ratios included material from more than one tow. For the 3 depth intervals at 500 m and above 

(e.g., 0-50 m, 100-150 m, 300-500 m) day and night samples of the small, intermediate, and large 

size classes were measured separately for Hg isotope ratios. For the 3 depth intervals below 500 

m (500-700 m, 700-1000 m, 1000-1500 m) separate day and night results could be obtained only 

for the intermediate and large size classes. Results for the small size class from the 3 depth intervals 

below 500 m include material combined from both day and night tows. Zooplankton samples were 

placed in ceramic boats in a two-stage combustion furnace, combusted similarly to the large and 

small particle QMA filters, and trapped in a 1% KMnO4 solution for isotope analysis.  

2.2.4 Fish collection and analysis  

Twelve individual fish samples were analyzed for THg, from which ten THg isotopic 

measurements were obtained. Three different individuals of the Lampris sp. were combined to 

obtain enough Hg for isotope analysis; details can be found in the supplementary tables (Table 

S1a). Lyophilized fish samples were combusted similarly to the particles and zooplankton and 

trapped in a 1% KMnO4 solution for isotope analysis.  

2.2.5 Hg isotope analysis 

Each combusted sample trapped in 1% KMnO4 solution was purged into a secondary 1% 

KMnO4 trapping solution to remove matrix interferences from combustion residues and to 
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concentrate THg for isotopic analysis (Blum and Johnson, 2017). All samples were pre-

concentrated in a 1% KMnO4 solution and analyzed for Hg stable isotope compositions using a 

multiple collector inductively coupled plasma mass spectrometer (MC-ICP-MS; Nu Instruments) 

with a continuous flow cold vapor generation inlet system with SnCl2 reduction (Lauretta et al., 

2001; Blum and Bergquist, 2007). Prior to isotope analysis, the Hg concentrations of the 1% 

KMnO4 sample trap solutions were matched to the bracketing standards (SRM NIST 3133) for 

each of the mass spectrometry sessions. The THg concentrations of the 1% KMnO4 sample trap 

solutions for all samples are provided in Tables S1a-e.  

 Mass dependent fractionation (MDF) of Hg isotopes is reported as δ202Hg values in permil 

(‰) relative to NIST SRM 3133 (Equation 1). Mass independent fractionation (MIF) of Hg 

isotopes is calculated as the difference between the measured δ202Hg value and that which would 

be predicted based on mass dependence for a given isotope. It is reported as ΔxxxHg in ‰ (Equation 

2), where xxx is the mass of each Hg isotope, i.e., 199, 200, 201, 204, and β is the mass 

proportionality constant (0.2520, 0.5024, 0.7520, 1.493, respectively) (Blum and Bergquist, 2007).  

δxxxHg (‰) = ([(202Hg/198Hg)unknown/(202Hg/198Hg)SRM3133] − 1) x 1000           (Equation 1) 

  ΔxxxHg = δxxxHg − (δ202Hg x ß)                                (Equation 2) 

Procedural process blanks and standard reference materials (TORT-2 and DORM-3 for 

combusted samples, and UM-Almadén for purge and trap samples) were processed alongside 

samples in an identical manner (Table S1a-f). Process yields from secondary purge and trapping 

of the 1% KMnO4 trap solutions averaged 97% ± 8% (1SD, minimum = 85.5%). The long-term 

analytical uncertainty of Hg isotopic composition of the samples, most of which could be measured 

only once, was estimated as ± 2SD based on repeated measurements across runs of the appropriate 

standard reference materials (UM-Almadén, DORM-3, ERM-CE464, NIST-CRM1947, and 
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TORT-2) (Table S1b). When comparing specific samples with each other or a population of 

samples, ± 1SD is reported (Blum and Bergquist, 2007). For data analysis the majority of statistical 

tests were completed using the Wilcoxon test (unless otherwise noted) because the sample size 

was usually too small for a t-test. Linear regressions were completed using the York regression, 

which considers errors in both the X and Y axes (York 1969). 

2.3 Results 

 For all seasons the oxygen minimum was located at ~700 m and dissolved oxygen ranged 

from 25 to 34 µmol/kg. Fluorescence was lowest in February and highest in September and the 

deep chlorophyll maximum was at ~125 m for all seasons (0.4-0.9 mg m-3). The mixed layer depth 

was ~100 m for the winter and ~45 m for the spring and summer.   

  Vertical profiles of dissolved THg and MeHg measured at Station ALOHA during the 

summer are similar to results previously published by Munson et al. (2015) at 17°N 154°W and 

Sunderland et al. (2009) at 23°N 152°W and ranged from 0.07 to 0.43 ng/L for THg and 5.0x10-3 

to 2.5x10-2 ng/L for MeHg (Figure S1). Small particles (1-53 µm) collected at Station ALOHA 

had the highest THg at the surface and declined with depth reaching an average of 4.57x10-3±7.5 

x10-4 ng/L (1SD, n=5;S2). Large particles were orders of magnitude lower in THg than the smaller 

fraction at the same depths (150 m) and ranged from 1.70x10-4 ng/L in September to 6.66x10-4 

ng/L in May (Figure S2). Additional details regarding the vertical profiles are found in the 

supplementary material and all mercury isotope data and THg concentrations are presented in 

Supplementary Tables S1-4. 

2.3.1 Precipitation 

 The average THg of samples collected on the Island of Hawaii was 11.8 ± 7.5 ng/L (n = 8, 

1SD). For these land-based samples, the average isotopic values are δ202Hg= 0.07±0.08‰, 
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Δ199Hg=0.33±0.24‰, and Δ200Hg=0.14±0.05‰ (n=7; 1SD). The THg concentration of open ocean 

precipitation (9.6±2.6 ng/L; 1SD, n=2) was within uncertainty of the land-based samples. The Hg 

stable isotope composition of the single open ocean precipitation sample was δ202Hg=0.15‰, 

Δ199Hg= -0.02‰, and Δ200Hg=0.08‰. This is within uncertainty of the average δ202Hg and Δ200Hg 

values determined for precipitation from the Island of Hawaii. The Δ199Hg value was slightly more 

negative, however limited sampling does not allow for a general conclusion that open ocean 

precipitation has more negative Δ199Hg than precipitation collected on land. The lack of distinction 

in isotopic composition between open ocean and land-based precipitation is supported by the 

observation that Δ201Hg values from the samples collected on the island of Hawaii 

(Δ201Hg=0.32±0.23‰, 1SD, n=7) overlap with the single open ocean sample within analytical 

uncertainty (Δ201Hg=0.10‰).  

2.3.2 THg Isotopic Composition of Marine Particles  

 At the shallowest depth of 25 m, δ202Hg values for small particles were on average 

-0.10±0.01‰ (1SD, n=3) (Figure 2a; Table S1c), and there were no seasonal differences. At 150 

m, values were statistically lower than at all other depths (-0.27 to -0.14‰, n = 4, 1SD=0.06‰, 

average=-0.20‰), and there was no statistically significant seasonal variation at this depth 

(Wilcoxon test, W=33, p<0.01). At 400 m, values ranged from δ202Hg=-0.22‰ in February to 

δ202Hg=0.08‰ in May. There was no sample collected in September. The February value from 

400 m is statistically identical to the average at 150 m (Wilcoxon test, W=18, p<0.03), while the 

September value from 400 m has a similar value to the single sample analyzed from May at 690 

m (δ202Hg=0.17 ‰). 

 The Δ199Hg values in the small particles were relatively constant in the upper 150 m across 

seasons (Figure 2b, 0.06 to 0.18‰, average=0.12±0.05‰, 1SD, n=7) and the standard deviation 
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of the average value was equal to the measurement uncertainty (Almaden, 2SD Δ199Hg±0.10). The 

deeper samples from all seasons, collected from 400 and 690 m, had significantly higher Δ199Hg 

values than those from the upper 150 m (25-150 m average = 0.12‰; 400-690 m average = 0.27‰, 

Wilcoxon test, W=23, p < 0.03). The δ202Hg and Δ199Hg values for the large particles (>53 µm) 

collected in May at 150 m are nearly the same as for the small particles collected in the same 

season at the same depth (δ202Hg=-0.17‰ and Δ199Hg=0.11‰). The Δ200Hg values for all the 

particles were nearly the same throughout the water column (Figure S3, Δ200Hg=0.05±0.05‰, 

1SD, n=12) 

2.3.3 Zooplankton 

In the upper 125 m, THg concentrations in zooplankton are highest for the smallest size 

class by an average of 7.5 ng/g relative to the larger size classes (0.5-1, 1-2, and >5 mm, Wilcoxon 

test, W=127, p<0.01), and THg increases with depth to 500-700 m for all size classes (Figure 3; 

Table S3). Below 700 m, THg within the smallest size class decreases with depth, while in the 

larger size classes (2 to >5 mm) THg increases with depth. There were significant THg diurnal 

variations within the mesopelagic (200 to 1500 m); zooplankton collected at night had significantly 

higher THg concentrations than samples collected during the day (Figure 3; Day-Night paired, 

Wilcoxon test, W=137, p<0.01). To examine the effects of zooplankton diel migration on 

mobilization of Hg within the water column we normalized zooplankton Hg content to the volume 

of seawater filtered by each net (in units of ng Hg/Lseawater; Figure 3b). The Hg/L depth profiles of 

the zooplankton follow the same trend as for summer 2014 migrant zooplankton biomass 

(Hannides et al., 2016).  

The Hg isotope composition of zooplankton clearly differs between size classes and 

between depth of collection over the six target mean depth intervals (0-50, 100-150, 300-500, 500-
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700, 700-1000, 1000-1500 m; see Figure 2, Figure S4a,b, Table S1d). The δ202Hg values decline 

with depth for all the size classes and there was no statistical difference in the rate of decline of 

δ202Hg values with depth between the size classes (Figure S4a, average slope δ202Hg/Km =-0.42 

± 0.06, n=4, 1SD, p<0.02), with the exception of the > 5 mm size fraction, where there was no 

relationship with depth for the samples collected during the day (Wilcoxon test, W=15, p=0.05). 

At each depth the range of δ202Hg values across the different size classes is ~0.35‰. In surface 

waters both small and large size classes, respectively, have the highest (0.26‰) and lowest 

(-0.02‰) δ202Hg values. At greater depths (100 to 1500 m) δ202Hg values are lowest for the small 

size class (δ202Hg average=-0.31±0.15‰), higher for the intermediate size class (δ202Hg average 

= -0.22±0.16‰), and highest for the >5 mm size class (δ202Hg average = -0.11±0.13‰). 

In contrast to δ202Hg values, surface water Δ199Hg values varied more broadly, differing by 

2‰ across size classes. The smallest size fraction had the highest Δ199Hg values, and the samples 

collected during the day had higher Δ199Hg values than those collected at night (Figure 2b, Figure 

S4b; Table S1d). Samples from greater depths (125-1250 m) had statistically lower Δ199Hg values 

than those from the surface (Wilcoxon test, W=15, p<0.02) and had smaller ranges in Δ199Hg. 

Unlike δ202Hg values, there were no significant changes in Δ199Hg values below 125 m (100 -1500 

m, average slope, Δ199Hg/Km =-0.04, n=27) and there was no diurnal signature (Wilcoxon test, 

W=40.5, p>0.1).  

Zooplankton samples did not have a significant trend in Δ200Hg with depth, and averaged 

0.07±0.08‰ (1SD, n=33). There was a small diurnal contrast in Δ200Hg values obtained from the 

shallowest samples and from samples collected at 400 m (Figure S3). However, there was no 

diurnal contrast in Δ204Hg values (which is also produced by even-MIF), suggesting that the 

negative values for Δ200Hg at 400 m are likely due to an analytical artifact. Δ204Hg values are 
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typically inversely correlated with Δ200Hg values (Demers et al 2010; Blum and Johnson, 2016) 

and, therefore, negative Δ200Hg and Δ204Hg values are very rare (Blum et al., 2014). In addition, 

the magnitude of even-MIF is small relative to the measurement uncertainty for standard reference 

material TORT-2 (Δ200Hg±0.13‰ and Δ204Hg±0.09‰; 2SD, n=31). 

Replicate collections of material from a single depth range were obtained to determine the 

variability in zooplankton Hg isotopic composition (Table S1e, 500-700 m). For the intermediate 

fraction, the variability associated with average δ202Hg, Δ199Hg, and Δ200Hg values was 0.05‰, 

0.07‰, and 0.06‰ (1SD), respectively. For the large fraction the 1SD of average δ202Hg, Δ199Hg 

and Δ200Hg values was 0.14‰, 0.2‰, and 0.04‰, respectively. Limited availability of <1mm 

zooplankton material prevented determination of external reproducibility for the small size class 

fraction. Instead, two single analyses were performed on < 1mm zooplankton material pooled from 

all four nets, but separated into <0.5 mm and 0.5-1mm sub-fractions. Small differences between 

these two sub-fractions for δ202Hg (0.04‰), Δ199Hg (0.11‰), and Δ200Hg (0.02‰) suggests that 

within-class variability in the small size class (0.2-1 mm) is comparable to, or smaller than, that of 

the intermediate size class (1-5 mm). 

2.3.4 Pelagic Fish  

Dry-mass THg concentrations in fish range from less than 100 to more than 2000 ng/g. In 

the large pelagic species (Lampris sp. and Thunnus obesus) THg concentrations were a factor of 

10 to 100 higher than THg concentrations in zooplankton from comparable depths. Small 

micronekton that feed in upper mesopelagic waters (~400 m, Idiacanthus fasciola) had average 

THg content less than a factor of two higher than zooplankton from comparable depths. However, 

deeper feeding micronekton (700 - >1000 m, Anoplogaster cornuta, Cyclothone pallida, 

Melanocetus johnsonii) had THg content almost an order of magnitude higher than zooplankton 
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from similar depths. Estimates of external variability associated with fish isotope results is 

hampered by the small number of individuals sampled per species. However, the results obtained 

from multiple individuals and the averages of 1SD uncertainties associated with species replicate 

δ202Hg, Δ199Hg, and Δ200Hg values are 0.12‰, 0.13‰, and 0.03‰ respectively (Table S1e). δ202Hg 

and Δ199Hg values in Figure 2a,b illustrate that for the pelagic fish, δ202Hg and Δ199Hg values 

decline with depth. In contrast, there were no statistically significant differences with depth in 

Δ200Hg values, which averaged 0.09±0.04‰. A single sample of Idiacanthus fasciola at 400 m 

had an anomalous Δ200Hg value of -0.16‰, which may be an analytical artifact. The pelagic fish 

samples with a depth of occurrence between 225-400 meters had a similar Hg isotopic composition 

to fish samples from the NPSG at similar depths. Fish from greater depths (700-1000 m) also 

follow the same trend reported by Blum et al. (2013).  

2.4. Discussion  

Here we integrate measurements of the stable isotopic composition of Hg in components 

of the marine biogeochemical cycle in order to address some of the outstanding questions in marine 

Hg biogeochemistry. Our main focus is on understanding Hg dynamics in the pelagic food web, 

abiotic and biotic production and degradation of MMHg throughout the water column, and the 

importance of particles and zooplankton to the marine biogeochemical cycle of Hg. We report that 

in the NPSG, at the base of the marine food-web, the fraction of THg associated with marine 

particles or zooplankton per liter of water is very small relative to dissolved THg. For example, 

between 150-175 m dissolved THg (0.15 Hg ng/L) accounts for 96% of THg and is 5 orders of 

magnitude greater than zooplankton (0.2-> 5 mm; 1.24x10-5±0.50x10-5 ng/L, 1SD, n=16), 3 orders 

of magnitude greater than small particles (1-53 µm; 6.46x10-3±1.84x10-3 Hg ng/L, n=3), and about 

4 orders of magnitude greater than large particles (>53 µm; 4.18x10-4 Hg ng/L, n=2). To guide our 
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discussion, we provide a graphic that displays our conceptual model of the marine Hg cycle (Figure 

1).   

2.4.1 Dissolved THg and MeHg vertical profiles 

The vertical profiles of dissolved THg and MeHg (MMHg+dimethyl-Hg) that we measured 

at Station ALOHA are similar to those of other North Pacific Ocean profiles (Sunderland et al., 

2009; Hammerschmidt and Bowman, 2012, Munson et al., 2015; Laurier et al., 2004). In our study, 

surface water MeHg was within the range of values reported by Sunderland et al. (2009) at 23°N 

155°W but was somewhat greater than the values reported by Munson et al. (2015) at 17°N 155°W. 

This variability in surface ocean MeHg concentrations is likely the result of spatial variation in 

MeHg production and degradation rates as well as differences in partitioning of dissolved MeHg 

between water and particle surfaces due to seasonal changes in productivity (Laurier et al., 2004; 

Sunderland et al., 2009). Vertical profiles of dissolved Hg in the NPSG have been well 

characterized in previous work (Laurier et al., 2004; Sunderland et al., 2009; Hammerschmidt and 

Bowman, 2012; Munson et al., 2015) and will not be discussed further here. Details of the 

dissolved Hg speciation at Station ALOHA are found in the supporting information and references 

therein (SI section 2)  

2.4.2 Hg isotope ratios as indicators of Hg transformation in the NPSG 

2.4.2.1 Hg isotope ratios in surface waters (upper 25 m) 

As a starting point for the interpretation of the Hg isotope ratios in our study we assume 

that a significant portion of the Hg available for bioaccumulation in the water column was 

originally derived from precipitation, as this is considered to be the major source of Hg to the 

surface ocean (Figure 1; Sunderland et al., 2009; Mason and Sheu, 2002; Fitzgerald et al., 2007). 

It is challenging to fully link the Hg isotopic composition of precipitation to that of Hg entry to the 
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food-web, because 50-70% of Hg in precipitation is potentially emitted back to the atmosphere 

(Strode et al., 2007; Andersson et al., 2011). The remaining dissolved Hg may undergo further 

transformation, including methylation, particle sorption, or additional photochemical reduction. 

There is also limited understanding of photochemical degradation of Hg(II), the potential uptake 

of gaseous Hg(0) in surface marine waters, and the impact of associated isotopic fractionation on 

the Hg isotopic composition of the dissolved Hg pool. This is because in ocean water the fraction 

of Hg complexed to organic ligands may not be the dominant form of THg (Lamborg et al., 2003) 

and it has been demonstrated that Hg stable isotope signatures associated with Hg(II) 

photoreduction depends on the complexing ligand (Zheng and Hintelmann, 2010). It is also 

difficult to evaluate the role of evasion and uptake of Hg(0) because a portion of Hg(0) may be re-

oxidized in the marine boundary layer (Laurier et al., 2004; Hedgecock and Pirrone, 2001; 

Sprovieri et al., 2010) or re-deposited to the ocean in precipitation. Finally, direct measurements 

of Hg isotopic composition in the dissolved pool of THg are difficult due to the low THg 

concentrations in pelagic waters and the challenge associated with concentrating sufficient 

quantities of dissolved Hg for analysis. The Hg isotopic composition of seawater has been 

measured in only one study, in a costal location (Štrok et al., 2015). The Δ199Hg values for 

dissolved THg from Arctic coastal waters (Δ199Hg average=0.22±0.06‰, 1SD) are within the 

range of values measured for marine particles in the NPSG. In contrast, the δ202Hg values of the 

dissolved THg in the Arctic are considerably more negative (δ202Hg average=-2.08±0.61‰, 1SD) 

than particles in the NPSG. This is not surprising because the Canadian Artic Archipelago not only 

has Hg inputs from precipitation but also from riverine discharge (Sunderland and Mason, 2007; 

Fisher et al., 2012; Cossa et al., 2018).   
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Measurements of the Hg isotopic composition of precipitation and marine particles allow 

a reasonable estimation of the Hg isotopic composition of the bioavailable Hg pool. In surface 

waters, Hg enters the foodweb when phytoplankton incorporate dissolved THg from passive 

uptake or when zooplankton graze on marine particles or phytoplankton. This results in Δ200Hg 

and Δ204Hg values in surface zooplankton that retain a positive Δ200Hg and negative Δ204Hg 

signature of Hg from precipitation (zooplankton: Δ200Hg=0.11±0.09‰ and Δ204Hg=-0.07±0.08‰, 

1SD, n=6; precipitation: Δ200Hg=0.13±0.05‰ and Δ204Hg=-0.26±0.17‰, n=8; Figure S3). The 

THg isotopic composition of marine particles in surface waters likely represent the THg isotopic 

composition that is exported to the ocean interior. Below the mixed layer POM is the primary 

pathway by which Hg is transported to depth in the ocean, and is the source of Hg that is available 

to enter the pelagic foodweb (Figure 1; Zaferani et al., 2018; Sunderland et al., 2009; Lamborg et 

al., 2016). This is because metazoans rely on marine particles as food resources, and dissolved Hg 

would have to be either sorbed to particles or assimilated by phytoplankton in order to be 

transferred higher in the food-web as illustrated in Figure 1.  

The size classes of particles we collected contain both phytoplankton biomass and other 

particles, such as marine snow and detritus, and both small and large particles have been identified 

as food sources for zooplankton and micronekton at station ALOHA (Choy et al., 2015; Gloeckler 

et al., 2018; Hannides et al., 2016). The δ202Hg values show a small negative offset (0.18‰) 

between precipitation (n = 8) and small particles (n = 3)(Figure 2a,b); this offset is consistent with 

the MDF of Hg that occurs during binding to thiol functional groups associated with organic matter 

and sorption to particles (Wiederhold et al., 2010; Jiskra et al., 2012). The 0.18‰ offset in δ202Hg 

is small compared to the offset observed in experimental sorption studies (Wiederhold et al., 2010; 

Jiskra et al., 2012), but this is not surprising because experiments used pure goethite or thiol 
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ligands, and Hg sorption experiments do not take into consideration the effects of the high ionic 

strength of seawater. The Δ199Hg and Δ200Hg values of precipitation overlap with those of the 

particles, however, the range of Δ199Hg and Δ200Hg is narrow suggesting that isotopic variability 

attributed to individual precipitation events may be homogenized in the surface ocean as Hg 

undergoes exchange with particles.  

2.4.2.2. Hg stable isotope ratios in the lower epipelagic and upper mesopelagic (150-700 m 

depth) 

Below the mixed layer even-MIF values support the idea that the main source of Hg to the 

marine foodweb is particulate Hg. The even-MIF isotopic composition of the particles is nearly 

the same throughout the water column and is similar to the surface water particulate matter isotopic 

signature (average, Δ200Hg=0.06±0.03‰ and Δ204Hg=-0.10±0.06‰, n=9; 1SD). The zooplankton 

have a very narrow range of even-MIF values below the mixed layer (Δ200Hg=0.06±0.07‰ and 

Δ204Hg=-0.06±0.07‰, n=9; 1SD) compared to precipitation, and the zooplankton overlap with 

the Δ200Hg and Δ204Hg values of the particles. This is because below the mixed layer metazoans 

primarily consume POM (Hannides et al., 2016). As a consequence, the average even-MIF of 

pelagic fish in NPSG  (Δ200Hg=0.07±0.05‰ and Δ204Hg=-0.11±0.06‰, n=9; 1SD) is also similar 

to the particles and zooplankton.  

The THg δ202Hg values of the particles below the mixed layer also reflect significant 

changes in particulate Hg with depth. For example, at 150 m the THg to bulk particulate carbon 

ratio (THg/PC) increases abruptly (Table S4a,b; Umhau et al., 2016), which is indicative of 

preferential organic carbon degradation (Close et al., 2014, 2015) or an increase in THg sorption 

that results in an enrichment of THg in particles. At this depth, δ202Hg values of marine particles 

were more negative than surface samples, which suggests that the particulate increase in THg 
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relative to PC is due to THg sorption to POM. (Figure 2a; Wiederhold et al., 2010; Jiskra et al., 

2012). At greater depths (400-690 m), δ202Hg values show seasonal differences that are likely 

driven by temporal changes in marine particle export at Station ALOHA (Umhau et al., 2016). 

Samples collected in May coincided with the beginning of a period of increased productivity, while 

samples collected in September coincided with the middle to end of the commonly observed 

seasonal bloom at ALOHA, which is marked by higher concentrations of PC and bulk nitrogen 

across small and large particle size classes and high particle export fluxes (Umhau et al., 2016; 

Church et al., 2013). The increase in δ202Hg values of particles sampled at 400-690 m in May and 

September (Figure 2a) likely reflects this period of increased productivity at Station ALOHA 

(Umhau et al., 2016; Church et al., 2013). This interpretation agrees with the findings of Hannides 

et al. (2016), who provided evidence for increased microbial reworking of small particles in 

September and May relative to zooplankton grazing.  

2.4.3 Methylation of Hg in the water column 

The THg isotopic composition of marine particles serves as a marker of the Hg available 

for methylation and subsequent bioaccumulation, and as such, it can also be used as a proxy for 

examining Hg methylation. The specific mechanism for methylation of Hg(II) in the open ocean 

water column is uncertain, but is likely microbially mediated, as it is in freshwater and terrestrial 

ecosystems (Morel et al., 1998; Sunderland et al., 2009; Cossa et al., 2009,1997). There is, 

however, also evidence from filtered seawater experiments (Munson et al., 2018) for non-cellular 

or extracellular methylation in the water column in the oligotrophic Pacific. Methylation of Hg in 

the water column was also shown to be consistent with patterns of Hg isotope variation with the 

depth of marine fish feeding (Blum et al., 2013). Here, we use measured particle THg 

concentrations and isotopic compositions to infer the isotopic composition of MMHg available for 
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consumption. Although we lack direct measurements of particle MMHg abundance and isotopic 

composition, previous experimental work has shown that the MMHg produced has lower δ202Hg 

values compared to that of reactant Hg(II) (Janssen et al., 2016; Rodriguez-Gonzalez et al., 2009). 

If the extent of methylation is high enough, residual Hg(II) will have detectably higher δ202Hg than 

reactant Hg(II). Experimental studies have also demonstrated that methylation of Hg by microbial 

processes results in MDF but not MIF (Janssen et al., 2016; Rodriguez-Gonzalez et al., 2009). 

In order to aid in the interpretation of Hg isotope measurements made in this study, within 

the context of Hg methylation in the water column, we have listed five assumptions that we have 

made based on previous research on the biological pump and Hg stable isotope behavior: 

1) The difference in δ202Hg values between precipitation and particles in surface waters results 

from MDF of Hg(II) during sorption to particles (Wiederhold et al., 2010; Jiskra et al., 

2012) and equilibration with the existing pool of Hg(II) in the surface ocean.  

2) The main zone of particle production at Station ALOHA is within the mixed layer and 

maximum particle remineralization occurs immediately below the deep chlorophyll 

maximum (Figure S1; Benitez-Nelson et al., 2001; Steinberg et al., 2008), which in this 

study was at ~125 m. 

3) In the mesopelagic zone, large particles (> 53 µm) are exploited as a food resource by 

zooplankton during all seasons and small particles (1-53 µm) become an important source 

during the winter (Hannides et al., 2016).   

4) MMHg accumulated in particles by methylation of Hg(II) is efficiently bioaccumulated by 

consumers and incorporated in the pelagic food web by zooplankton grazing. The Hg(II) 

that is not bioaccumulated is excreted as fecal pellets at depth (Mason et al., 1996) leading 

to a relative increase of Hg(II) in the large particles at depth. These large fecal pellets can 
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also be modified by sloppy feeding from zooplankton (Steinberg and Landry, 2017) 

resulting in an increase of Hg(II) in the small particles at depth. 

5) Photochemical degradation of MMHg in sunlit surface water results in elevated Δ199Hg 

values. Since there are no known mechanisms in aquatic systems for erasing that MIF, 

except by dilution with newly formed MMHg at depths below the euphotic zone that does 

not have elevated Δ199Hg values, observed decreases in Δ199Hg (and δ202Hg) values in 

marine organisms with depth requires Hg methylation below the euphotic zone (Cossa et 

al., 2009; Blum et al., 2013). 

Evidence that newly methylated Hg carried by particles enters the pelagic marine food web is 

illustrated by the δ202Hg values in Figure 2a. We observe significantly higher δ202Hg values 

associated with particles collected in deeper waters (400-700 m, Figure 2a) relative to δ202Hg 

values measured in particles from the upper 150 m around the period of the rapid particle export 

pulse below the mixed layer (150 m) typically observed at Station ALOHA (Karl et al. 2012, 

Böttjer et al. 2017). We propose that the increased productivity at these depths (Church et al., 2013; 

Hannides et al., 2016) may stimulate methylation of Hg resulting in an increase in δ202Hg values 

at this depth between May and September. An increase in δ202Hg values is supported by findings 

from microbial methylation experiments (Janssen et al., 2016, Rodriguez-Gonzalez et al., 2009) 

and the fact that below 150 m the concentration of particulate THg is similar regardless of the 

season (Fig S2), whereas the MMHg content has been observed to increase (Munson et al., 2014; 

Hammerschmidt and Bowman, 2012). For zooplankton and fish, lower δ202Hg values are also 

observed with increasing depth (Figures 2a, Figure S4a). This is consistent with zooplankton 

preferentially bioaccumulating MMHg and discarding Hg(II) in their fecal matter (Mason et al., 

1996); the newly formed MMHg with lower δ202Hg values deeper in the water column is 
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preferentially assimilated leaving the residual particulate Hg(II) with increasingly higher δ202Hg 

values. Residual Hg is continuously incorporated into the POM shifting the Hg isotopic 

composition to higher δ202Hg values at depth. Our results are consistent with the argument by Blum 

et al (2013) that the decreasing δ202Hg and Δ199Hg values in predatory fish provides evidence that 

new MMHg formed at depth is incorporated into the foodweb. 

While Δ199Hg values of pelagic fish decrease with depth (indicating Hg methylation), the 

Δ199Hg values of zooplankton collected at and below the chlorophyll maximum display minimal 

variation with depth or time of day (Figure 2b, Figure S4b). We suggest that the invariant Δ199Hg 

values of zooplankton with depth are a result of diurnal migration and MMHg demethylation (See 

section 4.4.3). Zooplankton occupy an intermediate trophic position between marine particles and 

fish resulting in a mixture of Hg(II) and MMHg that may obscure any methylation or 

demethylation signal of Hg because both pools are represented in the THg isotope composition of 

the zooplankton, and they have complementary Δ199Hg values. As such, the migration of 

zooplankton from greater depths to surface waters likely results in mixing of THg in the water 

column by predation and digestion. The mixed pool of Hg in the zooplankton and the continuous 

incorporation of surface material at depth, with Δ199Hg values fractionated by photodegradation, 

obscures the relationship of Δ199Hg and depth. An exception to constant Δ199Hg values with depth 

is at 400 m for the intermediate and large zooplankton (Figure 2b, Figure S3b), where the Δ199Hg 

value from the intermediate and large-size zooplankton collected at night is higher than the value 

measured in the sample collected during the day. This Δ199Hg diurnal variation coincides with 

greater δ202Hg values during the day for the large zooplankton size fraction (Figure 2b, Figure 

S4b). These diurnal isotope signatures at 400 m also coincide with elevated THg concentrations 

within the intermediate and large size fractions sampled at night (Figure 3b); and this is the depth 
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interval where there is elevated migrant biomass of zooplankton (Hannides et al., 2016). This 

indicates that the Hg isotopic composition of zooplankton in this depth range is likely affected by 

diurnal migration, but it is unclear how it results in greater Δ199Hg values. A more complete 

understanding of Hg in zooplankton is needed to fully evaluate the pathways affecting these Hg 

isotope signatures. It is important to note that the large size fraction also contains some small fish 

(e.g., Cyclothone), which may further complicate isotope patterns, as small fish are likely to 

migrate differently than zooplankton.   

2.4.4 Demethylation of MMHg in the water column 

Demethylation occurs by either photochemical degradation, which leaves residual MMHg 

in the reactant pool with higher Δ199Hg values and higher δ202Hg values (Bergquist and Blum, 

2007), or by microbial degradation, which also results in higher δ202Hg values for residual MMHg 

but does not change Δ199Hg values (Kritee et al., 2009). Although photo-demethylation is an 

important process, it only occurs in the upper euphotic zone where there is significant light 

penetration; microbial demethylation is expected to occur throughout the water column and is the 

dominant process that breaks down MMHg in deeper waters. 

2.4.4.1 Photochemical demethylation within the mixed layer 

In surface waters the photochemical degradation of MMHg is the dominant pathway for 

breakdown of MMHg to Hg(II) and Hg(0) (Mason et al., 2012), but the exact mechanism and rate 

controlling factors remain uncertain (Inoko, 1981; Suda et al., 1993; Hammerschmidt and 

Fitzgerald, 2006; Lehnherr and St. Louis, 2009; Zhang and Hsu-Kim, 2010; Black et al., 2012). 

Based on Hg stable isotope experimental and field data (Bergquist and Blum, 2007; Chandan et 

al., 2015) the Δ199Hg/Δ201Hg ratio has been shown to be diagnostic of photochemical reactions of 

Hg mediated by a radical pair mechanism. For example, in experiments with natural organic 
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matter, photoreduction of Hg(II) produced Δ199Hg/Δ201Hg =1.00 and photoreduction of MMHg 

produced Δ199Hg/Δ201Hg =1.36 (Bergquist and Blum, 2007). Other Hg(II) photoreduction 

experiments with cysteine and serine showed that the ratio of Δ199Hg to Δ201Hg values is sensitive 

to the binding ligand, reaction conditions, and specifically to radical pair intermediates (Zheng and 

Hintelmann, 2010). For Station ALOHA the Δ199Hg/Δ201Hg ratio (Figure 4a) for all samples 

measured, with the exception of precipitation, was 1.21±0.003 (York Regression, 1SD). This slope 

from the NPSG samples is similar to other marine and estuary fish studies (1.23±0.01 1SD; Senn 

et al., 2010; Gehrke et al., 2011; Kwon et al., 2015; Li et al., 2016; Sackett et al., 2017) suggesting 

that the MIF values were produced by similar MMHg photochemical degradation mechanisms. 

This is supported by the good correlation between Δ199Hg and δ202Hg with a slope of 2.68±0.12 

(Figure 4b, 1SD), which agrees with the experimentally derived photochemical degradation slope 

for MMHg of 2.43±0.10 (Bergquist and Blum, 2007). The Δ199Hg values reported here can be used 

to examine the photodegradation of MMHg available for uptake at the base of the food-web, but 

because we did not measure the Hg isotopic composition of dissolved MMHg we are unable to 

fully characterize the isotopic signature for degradation of dissolved MMHg. Many pathways for 

the photodegradation of MMHg have been identified but not all of these may represent the MMHg 

pool that is taken up by pelagic fish. For example, residual photodegraded MMHg associated with 

high molecular weight DOM is not available for passive uptake by phytoplankton (See Figure 1; 

Mason et al., 1996; Gorski et al., 2006; Lee and Fisher, 2017) and it is likely not representative of 

the THg isotopic signatures of the small zooplankton, which feed on phytoplankton in surface 

waters (Steinberg and Landry, 2012; Lee and Fisher, 2016).  

Δ199Hg values presented here can be used to track the photochemical degradation of 

biologically active MMHg that enters the marine food web in surface waters. The high δ202Hg and 
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Δ199Hg values measured in samples from each zooplankton size-class and in fish from the 

shallowest waters at Station ALOHA are consistent with the accumulation of Hg that has been 

photochemically modified in surface waters (Figure 2a,b). The Δ199Hg values of surface (25 m) 

zooplankton display a clear diurnal pattern, where Δ199Hg values are greater during the day than 

at night, and their isotopic composition is significantly higher than deeper samples (125-1250 m, 

Wilcoxon test, W=15, p<0.01). A diurnal cycle of Δ199Hg values in zooplankton is expected given 

the recent reports that marine phytoplankton and bacterioplankton can photochemically degrade 

Hg (Grégoire and Poulain, 2016; Kritee et al., 2017; Lee and Fisher, 2018). We suggest the Δ199Hg 

value in surface zooplankton represents the isotopic composition of photodegraded MMHg in 

phytoplankton or particle-associated MMHg that has been photo-demethylated before entering the 

food web. Elevated Δ199Hg values of small zooplankton relative to the other size fractions are 

attributed to a tight linkage between zooplankton (0.06-0.2 and 0.2-0.5 mm) and primary 

productivity in surface waters at Station ALOHA, because surface water small zooplankton (e.g., 

copepods) obtain most of their MMHg from an algal dietary source (Lee and Fisher, 2017).  Larger 

zooplankton may also exploit large POM as a dietary source resulting in lower Δ199Hg values 

(Figure 1; Hannides et al., 2016), because the Δ199Hg values associated with POM are very low. 

There is also a possibility that Δ199Hg values at the surface are altered by diel migration, where 

migrant zooplankton bring to the surface new Hg with low Δ199Hg values during the night resulting 

in day/night variations at the surface. However, a simple mixing model demonstrates that migrant 

associated Hg contributions would need to be about 53-55% and 95% of the total Hg in large and 

intermediate zooplankton, respectively. Such large contributions are unlikely given that at Station 

ALOHA night biomass is only about 1.7 times higher than the zooplankton biomass that is 
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measured during the day (Hannides et al., 2016; See supporting information and references therein 

for details).  

2.4.4.2 Demethylation below the mixed layer 

Patterns in Δ199Hg values with depth for marine particles and zooplankton (Figure 2b) are 

consistent with active dark demethylation of Hg below the mixed layer, which was also suggested 

by Munson et al. (2018) based on an experimental study in the Pacific Ocean. The Δ199Hg values 

of THg within particles is relatively constant with depth as expected in the absence of light, with 

the exception of samples from 400 m and one sample from 690 m. At these depths the particles 

have significantly higher Δ199Hg values (by 0.26‰ in Feb, 0.37‰ in Sept and 0.18‰ in May) 

compared to all the samples collected at 25-150 m from all three seasons (average= 0.12 ±0.05‰, 

1SD, n=8). A possible explanation for the increase in Δ199Hg values in marine particles with depth 

is demethylation of MMHg within the water column. MMHg is expected to have elevated Δ199Hg 

values (relative to the Hg(II)) from photo-decomposition, as indicated by the THg isotopic 

composition of pelagic fish, which usually contain >95% MMHg. This suggests that the Hg(II) 

newly formed from MMHg will have elevated Δ199Hg values compared to the Hg(II) derived from 

precipitation, and we propose that this product Hg(II) may be incorporated into marine particles 

with depth. 

There is incomplete understanding of the sources and sinks of Hg at depth, and this makes 

it difficult to specify with certainty a single mechanism for demethylation. Migrating zooplankton 

may also contribute to the increase in Δ199Hg values within particles by adding fecal pellets with 

elevated THg. It has been shown that zooplankton primarily bioaccumulate MMHg and discard 

Hg(II) in their fecal pellets, which are an important source to POM below the twilight zone (Figure 

1; Mason et al., 1996). However, demethylation of MMHg to Hg(II) within the water column is 
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supported by the constant values for Δ199Hg in zooplankton with depth (Figures 2b, S4b), since 

THg in zooplankton is a combination of MMHg and Hg(II), and the THg isotopic composition of 

zooplankton represents a weighted average of the two end members. The proportion of MMHg 

within zooplankton is expected to increase with depth, because dissolved MMHg and MMHg in 

pelagic fish has been shown to also increase with depth. The increasing MMHg concentrations 

with depth suggest that if only methylation and diel migration were altering the pool of Hg 

available to the food web, we would find lower values of Δ199Hg with increasing depth in the 

zooplankton, as is the case with pelagic fish. 

 

2.5. Conclusions 

At Station ALOHA in the North Pacific Ocean, Hg stable isotope ratios and concentrations indicate 

that Hg from precipitation represents the major source of Hg to marine pelagic waters. After 

deposition, a portion of this Hg is sorbed to marine particles. This is supported by an overlap in 

Δ199Hg values between precipitation and marine particles in surface waters and the consistent 

difference in δ202Hg values between precipitation and particles, which we attribute to MDF 

accompanying sorption. The negative shift in δ202Hg values in particles at 150 m compared to 

surface particles corresponds to a sharp increase in the ratio of THg to PC within marine particles 

(Umhau et al., 2016). Δ199Hg values measured in particles between 400-700 m and the invariant 

Δ199Hg values in zooplankton at various depths below the photic zone demonstrate that the 

production and degradation of MMHg occurs throughout the water column. The isotopic trends 

demonstrate a tight link in Hg uptake between particles and zooplankton and that the 

bioaccumulation of MMHg depends on particle formation and degradation as well as the activity 

of zooplankton (both vertically migrating and resident) that mobilize and modify the THg content 
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of sinking and suspended particles. The nearly constant Δ199Hg/Δ201Hg ratios throughout the 

marine foodweb suggests that the pool of bioaccumulated MMHg is partially photochemically 

degraded by a process that includes radical pair formation and that is ubiquitous in marine 

ecosystems. Our results highlight the importance and impact that particles and zooplankton have 

in the marine biogeochemical cycle of Hg. Additional detailed studies of Hg isotope ratios in 

marine foodwebs are needed and should include seasonal studies as well as studies in non-

oligotrophic environments. A more complete understanding of the mechanisms controlling Hg 

isotope variations in the pelagic ocean will allow better modeling of the biogeochemical cycle of 

Hg.  
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Figure 2.1. Biogeochemical cycle of Hg at Station ALOHA. The zooplankton and phytoplankton dynamics are 

explained in detail by Steinberg and Landry, 2012. The zooplankton and phytoplankton interactions with Hg are 

explained in Mason et al. (1995,1996), Watras and Bloom, (1992), Lee and Fisher, (2016). Particle and zooplankton 

dynamics at station ALOHA are explained in detail by Hannides et al., (2016), Umhau et al., (2016), Close et al., 

(2014,2015).  
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Figure 2.2. (A) δ202Hg and (B) Δ199Hg values of samples as a function of depth in meters. Green triangles are 

precipitation samples collected on the island of Hawaii and the pink triangle is a ship-board precipitation sample.  

The magenta circles are small particles and the diamonds are large particles. The open blue diamonds are pelagic 

fish from the NPSG near Hawaii published by Blum et al (2013) and the filled blue diamonds are additional samples 

from Station ALOHA. The open gray symbols are zooplankton collected during the day and the filled black symbols 

are zooplankton collected during the night. Measurement uncertainty Almaden Δ199Hg±0.05 and TORT-2 

δ202Hg±0.10 2SD) 
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Figure 2.3. Vertical profiles of total Hg recovered from zooplankton biomass sampled during day (open symbols) 

and night (closed symbols). (A) normalized to zooplankton dry weight and (B) normalized to total water volume 

sampled by MOCNESS tows. 
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Figure 2.4. A) Δ201Hg versus Δ199Hg and B) δ202Hg versus Δ199Hg for samples analyzed in this study. The symbols 

and measurement uncertainty are the same as for Figure 2A,B. 
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2.6 Supporting Information 

2.6.1. Additional Methods  

2.6.1.1. Dissolved Hg: Water samples were filtered on board the R/V Kilo Moana in a “clean area 

bubble” constructed from plastic sheeting inside laboratory designated space and supplied with 

HEPA-filtered air. All samples for dissolved Hg measurements were passed through acid cleaned 

(10% HCl wt/vol) 0.2 µm polyethersulfone filters (Supor). The seawater was filtered into acid-

cleaned 2 L amber polycarbonate bottles for MeHg analysis and acid-cleaned 250 mL glass bottles 

(I-Chem) for THg analysis. The MeHg samples were acidified to 0.5% vol/vol with concentrated 

H2SO4. The THg samples were immediately oxidized with 0.2 mL of BrCl solution (~0.09M, 

Brooks Rand) after collection. Samples were stored at 4°C and analyzed at Woods Hole 

Oceanographic Institution (WHOI). Seawater samples for THg measurement were neutralized 

with NH2OH-HCl (0.2 mL 30% wt/vol) and then reduced with SnCl2 and analyzed by dual Au-

amalgamation cold vapor atomic fluorescence spectrometry (Tekran 2600), using both gaseous Hg 

and aqueous standards (method adapted from Munson et al., 2015; Lamborg et al., 2012). The 

seawater samples for MeHg analysis were analyzed using ascorbic acid-assisted direct ethylation 

(Munson et al., 2014). All reagents were prepared according to U.S. EPA method 1630 (EPA, 

1998).  

2.6.1.2. Particulate Hg: Submersible pumps were deployed for 3-6 hours in order to filter up to 

2500 L of seawater. In deployments where pumps malfunctioned (failed to turn on) filters were 

used as process blanks. Particles larger than 53µm were trapped on acid-cleaned synthetic nylon 

mesh (53 µm Nitex, Wildlife Supply Company) and smaller particles ranging down to 1 µm were 

collected on combusted (for minimum of 6 hours at 450°C) high purity quartz (SiO2) microfiber 

filters (Whatman QMA). Additional 142 mm QMA filters used during the summer cruise were 
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acid cleaned (10% HCl wt/vol). On all cruises multiple pump-casts were employed to collect small 

particles. On the spring cruise, one pump was equipped with a pump head and motor with a 

maximum flow rate of 30 L min-1, and only particles > 53 µm were sampled. The increased flow 

rate plus the pooling of samples collected from the same depth using multiple pump-casts 

facilitated the collection of large particles from >35,000 L of seawater for Hg isotope 

measurement. The quartz microfiber filters and nylon mesh were prepared for deployment and 

sampled in a laminar flow hood in a “clean area bubble”. The samples were then stored at -80°C 

on board the R/V Kilo Moana, shipped frozen, and analyzed for THg concentrations and isotopic 

composition at the University of Michigan.  

Digestion of small particles trapped on QMA filters for THg content was accomplished 

using microwave assisted acid digestion (MARS5, CEM Corporation). The lyophilized 142 mm 

diameter QMA filters were folded with acid cleaned tweezers into digestion vessels and submerged 

in reverse aqua regia (7 ml; HCl:HNO3, 1:3, vol:vol) overnight, then digested for 35 minutes at a 

maximum pressure of 350 psi. Aliquots of the digestions were measured for THg by cold vapor 

atomic absorption spectroscopy (CV-AAS, MA-2000, Nippon Instruments). Calibration was 

obtained using dilutions of the standard NIST-SRM-3133, and it was also measured after every 

three samples. A Hg standard solution from Inorganic Ventures was also used as a secondary 

standard to further verify the calibration. The large particles collected on the nylon mesh were 

sonicated for 8 minutes in filtered seawater prior to concentration onto a pre-combusted 47 mm 

QMA filter by gravity filtration under clean room conditions. These filters were then lyophilized 

and Hg was released from the particle matrix by two-stage combustion and trapping into an 

oxidizing solution (1% KMnO4 in 10% H2SO4 (wt/wt)) (Biswas et al., 2008). A small aliquot of 

the trap solution was measured for THg concentration by CV-AAS (Nippon MA-2000). 
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Combustion performance was monitored with procedural blanks and microfiber quartz filter 

blanks (Table S3a,b).  

2.6.2. Discussion 

2.6.2.1. Dissolved THg and MeHg Concentration Profiles: Vertical profiles of dissolved THg 

and MeHg that we measured at Station ALOHA (Figure S1) are similar to those of other N. Pacific 

Ocean profiles (Sunderland et al., 2009; Hammerschmidt and Bowman, 2012; Munson et al., 2015; 

Laurier et al., 2004). In our study the surface water MeHg concentrations (0.02 ng/L) were within 

the range of values reported by Sunderland et al (2009) at 23°N 155°W but were greater than the 

values reported by Munson et al (2015) at 17°N 155°W. This variability in MeHg concentration 

in the surface ocean is likely the result of spatial variation in MeHg production and degradation 

rates as well as differences in partitioning of dissolved MeHg between water and particle surfaces 

due to seasonal changes in productivity (Laurier et al., 2004; Sunderland et al., 2009).  

Of all depths sampled at Station ALOHA, dissolved MeHg concentrations were most 

elevated at the surface and at 400 m (within the N. Pacific intermediate waters) as well as in the 

oxygen minimum zone (725–825 m). Previous studies have recorded enrichment in MeHg in 

oxygen depleted waters in many ocean basins and this has been attributed to enhanced methylation 

of Hg(II) by heterotrophic microorganisms in the water column (Cossa et al., 2009; Sunderland et 

al., 2009; Heimbürger et al., 2010). The reason for the MeHg maxima in NPIW is less clear, mostly 

because previous research has shown that particles add little Hg to NPIW at 140 º W, 30ºN 

(Hammerschmidt and Bowman, 2012) or to the Eastern North Pacific Ocean (Sunderland et al., 

2009).  It has been suggested that intermediate waters (300-700 m) transport THg by lateral 

circulation of the NPIW and may be an important source of THg to the North Pacific Ocean 

(Sunderland et al., 2009; Hammerschmidt and Bowman, 2012). NPIW originates when surface 
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waters at the convergence between the Oyashio and Kuroshio currents sink and are mixed with 

deeper waters, after which the NPIW travels eastward along a similar trajectory as the North 

Pacific current (Talley, 1993; Ueno et al., 2007). However, the importance of the horizontal 

transport of Hg is difficult to evaluate because the lifetimes of MeHg and Hg(II) appear to be 

relatively short (Munson et al., 2018; Monperrus et al., 2007), but recently it has been shown that 

a fraction of surface THg from the Canadian Artic Archipelago is carried to the Labrador Sea by 

the Labrador Current, and at depth via the Western Boundary Current (Cossa et al., 2018).  

Finally, dimethyl-Hg may play an important role in the dissolved THg content of the water 

column and degradation of dimethyl-Hg at depth may contribute to the pool of MeHg available 

for uptake. Although we did not measure dimethyl-Hg, it does not bioaccumulate in the food-web 

(Morel et al., 1997) and likely does not contribute to the Hg isotope signatures in marine 

organisms.  

2.6.2.2 Marine particulate THg vertical profiles: Station AHOLA was once considered to be a 

relatively stable environment seasonally (McGowan and Walker, 1979), but recently it has been 

shown that in surface waters primary production varies on an annual cycle (Church et al, 2013). A 

consequence of periods of higher productivity is faster particle export below the mixed layer to 

the ocean interior, which is typically observed from mid-July to mid-August (Karl et al., 2012; 

Böttjer et al., 2017). Small particles (1-53 µm) collected at Station Aloha had the highest THg at 

the surface and declined with depth reaching an average of 4.57x10-3±0.75 x10-3 ng/L (1SD, n=5; 

Fig S2). The surface THg was highest in September (1.75x10-2 ng/L), followed by February 

(1.43x10-2  ng/L), and then May (1.15x10-2  ng/L). Large particles (>53 pm) were orders of 

magnitude lower in THg than the smaller fraction at the same depths (150 m) with a THg of 

1.70x10-4 ng/L in September and 6.66x10-4 ng/L in May. In February THg of large particles ranged 
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from 6.51x10-4 ng/L at 25 m to 2.84x10-4 ng/L at 400 m. (Fig S2). Umhau et al. (2016) normalized 

particle THg/Lseawater to bulk particulate carbon (PC) content to determine differences in Hg 

bioaccumulation versus surface sorption. At Station ALOHA particulate inorganic carbon was 

minimal and only accounted for up to 10% of the PC. Thus, even though both Hg and PC decline 

with depth, the increase in the Hg/PC ratio right below the chlorophyll maximum is driven by a 

reduction in PC. THg/Th ratios do not appear to be driven by differences in volume to surface area 

ratio like PC/Th (Benitez-Nelson et al., 2001), but rather by aggregation and disaggregation 

processes (Umhau et al., 2016), similarly to what has been observed in the Atlantic Ocean 

(Lamborg et al., 2016). 
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Figure S2.1 Vertical Profiles of (A) dissolved total Hg and (B) dissolved methylmercury. The concentrations are 

reported in ng/L. The euphotic zone, north Pacific intermediate water and oxygen minimum zone are shown as labeled 

grey regions. Seawater was collected for dissolved THg and MeHg analysis during the summer cruise. 
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Figure S2.2. (A) Vertical profile of total Hg concentration in small (1-53 µm, circles) and large (>53 µm, diamonds) 

particles per liter of water filtered.  
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Figure S2.3. (A) Δ200Hg and (B) Δ204Hg values of samples as a function of depth in meters. Green triangles are precipitation 

samples collected on the island of Hawaii and the pink triangle is a ship-board precipitation sample.  The magenta circles are 

small particles and the diamonds are large particles. The open blue diamonds are pelagic fish from the NPSG near Hawaii 

published by Blum et al (2013) and the filled blue diamonds are additional samples from Station ALOHA. The open gray 

symbols are zooplankton collected during the day and the filled black symbols are zooplankton collected during the night. 

Measurement uncertainty Δ200Hg±0.10 and Δ204Hg±0.09 
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Figure S2.4 (A) δ202Hg and (B) Δ199Hg values of total Hg in zooplankton with depth. The magenta triangles are the large fraction 

(>5 mm), the blue squares are the intermediate fraction (1-5 mm), and the green diamonds are the small fraction (0.2-1 mm). The 

open symbols represent the samples collected during the day and the filled symbols during the night.  
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2.6.3 Isotope Mixing Models  

Zooplankton-Marine particles mass balance for 400-700 m 

A simple mass balance equation was used for determining the contribution of surface Hg to 

marine particles between 400-690 m by migrating zooplankton.  

∆"##𝐻𝑔&'().(,--./#-0)

= 𝐹&'().(45."5-0)∆"##𝐻𝑔&'().(45."5-0)

+	𝐹899:(;<=>).45	0)∆"##𝐻𝑔899:(;<=>).450) 

 

1 = 𝐹&'().(45."5-0) + 𝐹899:(;<=>).450) 

The Δ199Hg values used to calculate the percent contribution of surface derived THg mediated by 

zooplankton diel migration 

Δ199Hgpart(25-150m)=Average:0.11‰ (n=5) 

Δ199Hgzoop(night, >5 mm, 25 m)= 1.22‰ 

Δ199Hgzoop(night, 1-5 mm, 25 m) =0.73‰  
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2.6.4 Supporting Tables 

Table S2.1a Marine Fish Isotope Ratios and THg  

  

Sample ID Taxonomic ID THg Run Solution (ng/g) Feeding Depth (m)
Session 

Date THg (ng/g) δ202Hg Δ204Hg Δ201Hg Δ200Hg Δ199Hg

B-Opah-062 Lampris  sp. (small-eye) 5.00 225 24-Jul-13 747 0.91 -0.08 1.78 0.07 2.09

B-Opah-063 Lampris  sp. (small-eye) 5.00 225 24-Jul-13 946 0.79 -0.08 1.74 0.08 2.07

B-Opah-063 Lampris  sp. (small-eye) 5.00 225 24-Jul-13 949 0.76 -0.13 1.71 0.08 2.05

Average Opah-063 Lampris  sp. (small-eye) 948 0.78 -0.11 1.72 0.08 2.06

KM1407 BE Tuna 246 5ppb Thunnus obesus 5.00 200 28-Jan-16 496 0.63 -0.10 1.69 0.08 2.04

Combined FIWF059+128+130 1.44ppb* Idiacanthus fasciola 1.44 400 29-Jan-16 0.13 -0.26 1.40 -0.16 1.49

01-2-0035 Anoplogaster cornuta 1.80 713 24-Jul-13 233 -0.37 -0.07 0.85 0.18 1.12
04-3-0440A Cyclothone pallida 3.90 800 24-Jul-13 603 -0.27 0.02 0.69 0.05 0.82

06-3-0847-B Cyclothone pallida 3.90 800 24-Jul-13 367 -0.16 -0.20 0.64 0.15 0.83

FITF192 5ppb Melanocetus johnsonii 5.00 1000 28-Jan-16 2058 -0.09 -0.13 1.04 0.09 1.34
FIWF030 Melanocetus johnsonii 5.00 1000 12-Apr-16 559 -0.43 -0.06 0.71 0.07 0.90

*Separte Muscle Tissue from Idiacanthus fasciola
Sample ID THg (ng/g)
FIWF059 91
FIWF128 34

FIWF130 23



 69 

 

 

Table S2.1b Mercury isotopic data for reference materials used for process quality control and 
evaluation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reference Material Range of Sessions Average ± 2SD n* δ202Hg 2SD Δ204Hg 2SD Δ201Hg 2SD Δ200Hg 2SD Δ199Hg 2SD

UM-Almaden 24Jul2013-12Dec2016 All 11 -0.56 0.07 0.00 0.04 -0.04 0.05 0.01 0.03 -0.02 0.05

4.3-5 ng/g 8 -0.55 0.07 0.00 0.03 -0.03 0.05 0.00 0.03 -0.02 0.03

1.9-3.3 ng/g 3 -0.59 0.06 0.02 0.01 -0.05 0.04 0.02 0.04 -0.03 0.10

DORM-3 24Jul2013-28Jan2016 All 2 0.44 0.09 -0.05 0.00 1.49 0.06 0.05 0.08 1.81 0.12

ERM-CE464 24Jul2013-12Dec2016 All 3 0.60 0.13 -0.10 0.04 1.99 0.04 0.09 0.09 2.43 0.08

NIST CRM1947 24-Jul-13 All 2 1.18 0.26 -0.18 0.08 4.30 0.01 0.10 0.00 5.47 0.03

TORT-2 9Jul2013-28Jan2016 All 12 0.09 0.10 -0.11 0.13 0.61 0.08 0.10 0.09 0.77 0.05

5ng/g 4 0.08 0.04 -0.07 0.03 0.62 0.05 0.09 0.03 0.79 0.04

1.4-3.7 ng/g 8 0.09 0.12 -0.13 0.14 0.61 0.09 0.10 0.11 0.76 0.05

n= the number of sessions; in each session on average the Almaden was analyzed 5 times
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Table S2.1c Small and Large Particles THg Isotope Ratios  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mean Depth (m) THg run solution (ng/g) δ202Hg Δ199Hg Δ201Hg Δ200Hg Δ204Hg

1-53 um
Feb-14
25 2.5 -0.09 0.17 0.16 0.03 -0.09
150 2.5 -0.23 0.06 0.08 0.00 -0.07
400 4.7 -0.22 0.26 0.3 0.06 -0.09

Sep-14
25 3.6 -0.11 0.18 0.06 0.05 -0.11
150 4.3 -0.27 0.18 0.09 0.07 -0.10
150 4.3 -0.23 0.15 0.11 0.06 0.01
400 4.3 0.08 0.37 0.23 0.11 -0.08

May-15
25 3.15 -0.11 0.05 0.06 0.05 -0.09
150 3.02 -0.14 0.11 0.12 0.09 -0.19
150 5.12 -0.13 0.10 0.05 0.06 -0.14
690 2.27 0.17 0.18 0.32 0.06 -0.16

>53 um
May-15
150 3.7 -0.17 0.11 0.04 0.08 -0.07
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Table S2.1d Zooplankton THg Isotope Ratios  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Day Zooplankton ID
THg Run Solution (ng/g) Mean Depth (m) Size δ202Hg Δ204Hg Δ201Hg Δ200Hg Δ199Hg

T6+10N9S.2+.5 5ppb 5.00 25 0.5 0.26 -0.06 2.39 0.12 2.78

T6+10N9S1+2 4.1ppb 4.10 25 2 0.18 -0.02 1.38 0.26 1.75

T6+10N9S5 1.8ppb 1.80 25 5 -0.02 -0.02 1.21 0.18 1.63

T6+10N7S0.2+0.5 2.6ppb 2.60 125 0.5 -0.08 0.01 0.07 0.14 0.36

T6+10N7S1+2 3.3ppb 3.30 125 2 0.04 -0.05 0.50 0.09 0.61

T6+10N7S5 0.7ppb 0.70 125 5 -0.24 0.04 0.48 0.08 0.77

T6+10N4S0.2+0.5 3.3ppb 3.30 400 0.5 -0.32 -0.18 0.24 -0.01 0.32
T6+10N4S1+2 5ppb 5.00 400 2 -0.04 -0.14 0.42 -0.11 0.39
T6+10N4S5 5ppb 2.28 400 5 0.08 -0.14 0.48 -0.05 0.57

T6+10N3S1+2 2.28ppb 5.00 600 2 -0.12 -0.03 0.59 0.08 0.75
T6+10N3S5 5ppb 4.10 600 5 0.00 -0.11 0.95 0.16 1.24
T6+10N2S1+2 4.1ppb 5.00 850 2 -0.33 -0.05 0.55 0.19 0.83
T6+10N2S5 5ppb 5.00 850 5 -0.22 -0.02 0.86 0.11 1.01
T6+10N1S1+2 2.6ppb 2.60 1250 2 -0.42 0.02 0.63 0.08 0.78
T6+10N1S5 5ppb 5.00 1250 5 -0.18 -0.06 0.84 0.14 1.07

Night Zooplankton ID THg Run Solution (ng/g) Mean Depth (m) Size δ202Hg Δ204Hg Δ201Hg Δ200Hg Δ199Hg
T8+9N9S0.2+0.5 5ppb 5.00 25 0.5 0.19 -0.01 1.21 0.04 1.42
T8+9N9S1+2 5ppb 5.00 25 2 0.08 -0.13 0.54 0.02 0.73
T8+9N9S5 3.08ppb 3.08 25 5 0.19 -0.20 0.93 0.07 1.22
T8+9N7S0.2+0.5 2.28ppb 2.28 125 0.5 -0.16 -0.08 0.27 0.04 0.24
T8+9N7S1+2 5ppb 5.00 125 2 -0.04 0.03 0.44 0.09 0.53
T8+9N7S5 2.28ppb 2.28 125 5 0.09 -0.07 0.58 -0.03 0.80
T7-9N4S0.2+0.5 4.19ppb 4.19 400 0.5 -0.23 -0.16 0.35 0.09 0.43
T8+9N4S1+2 5ppb 5.00 400 2 -0.29 -0.11 0.54 0.08 0.72
T8+9N4S5 5ppb 2.28 400 5 0.02 -0.04 1.00 0.10 1.24
T6-10N3S0.2+0.5 2.28ppb 1.39 600 0.5 -0.40 -0.05 0.31 0.01 0.31
T7-9N3S1+2 1.39ppb 5.00 600 2 -0.21 -0.17 0.49 0.06 0.69
T7-9N3S5 5ppb 5.00 600 5 -0.27 -0.05 0.74 0.08 0.88
T6-10N2S0.2+0.5 1.39ppb 1.39 850 0.5 -0.52 -0.13 0.31 0.08 0.60
T7-9N2S1+2 2.28ppb 2.28 850 2 -0.30 0.04 0.63 0.08 0.81
T7-9N2S5 4.55ppb 4.55 850 5 -0.17 0.01 0.53 0.10 0.76
T6-10N1S0.2+0.5 1.39ppb 1.39 1250 0.5 -0.49 -0.15 0.31 -0.09 0.36
T7-9N1S1+2 4.19ppb 4.19 1250 2 -0.45 -0.06 0.49 0.07 0.63
T7-9N1S5 3.08ppb 3.08 1250 5 -0.21 -0.04 0.71 0.05 0.89
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Table S2.1e Daytime zooplankton THg concentrations and Hg stable isotope ratios – May 2015  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sample ID (mean depth 600m) THg Run Solution (ng/g) Size Class THg (ng/g) δ202Hg Δ204Hg Δ201Hg Δ200Hg Δ199Hg

T1N2-8S0.2 2.16ppb 2.16 0.2 44 -0.26 -0.26 0.37 0.08 0.48
T1N2-8S0.5 3.1ppb 3.10 0.5 55 -0.3 -0.1 0.4 0.1 0.59

T1N2S1 4ppb 4.00 1 48 -0.17 -0.14 0.49 0.02 0.69
T1N4S1 5ppb 5.00 1 49 -0.21 -0.08 0.45 0.04 0.62
T1N6S1 4ppb 4.00 1 53 -0.13 -0.1 0.5 0.07 0.61
T1N8S1 5ppb 5.00 1 51 -0.06 -0.1 0.45 0.07 0.69

T1N2S2 5ppb 5.00 2 57 -0.19 -0.2 0.71 0.05 0.89
T1N4S2 5ppb 5.00 2 48 -0.13 -0.08 0.67 0.05 0.79
T1N6S2 5ppb 5.00 2 60 -0.23 -0.05 0.53 0.13 0.63

T1N8S2 5ppb 5.00 2 54 -0.18 -0.08 0.61 0.07 0.8
T1N2S5 5ppb 5.00 5 59 -0.04 -0.06 0.9 0.02 1.13
T1N4S5 5ppb 5.00 5 105 0.28 -0.11 1.13 0.05 1.42

T1N6S5 5ppb 5.00 5 58 -0.06 -0.11 0.66 0.06 0.97
T1N8S5 5ppb 5.00 5 72 -0.03 -0.15 0.71 0.03 0.91
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Table S2.1f Precipitation THg concentrations and Hg isotope ratios 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

Sample ID THg (ng/L) THg run solution (ng/g) δ202Hg Δ204Hg Δ201Hg Δ200Hg Δ199Hg

Island of Hawaii
HKL_41_2.32ppb_2005 15.7 2.3 0.17 -0.22 0.31 0.15 0.37
HKL_42_2.32ppb_2005 21.7 2.3 0.05 -0.23 0.26 0.18 0.26
HKL_5_1.22ppb_2005 20.7 1.2 0.20 -0.53 0.52 0.14 0.40
PAH#1-2_1.0ppb_2014 5.4 1.0 0.06 -0.22 -0.03 0.13 0.35
PAH#3-4_1.0ppb_2014 16.0 1.0 0.01 -0.31 0.41 0.15 0.62
WAI#1-2_1.4ppb_2014 5.5 1.4 -0.04 -0.06 0.12 0.03 -0.15
WAI#5-6_2.2ppb_2014 6.7 2.2 0.05 -0.46 0.64 0.21 0.49
WAI#3-4_0.4ppb_2014 2.8 -
Open Ocean Station Aloha
Open_Ocean14_P1-2-3_1.0ppb 7.7 1.0 0.15 -0.06 0.10 0.08 -0.02
Open Ocean14_P4-5-6_0.4ppb* 11.4 - N/A N/A N/A N/A N/A
* Not enough precipiaition for isotope analysis 

NOT ENOUGH PRECIPIATION
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Chapter 3 Mercury Stable Isotopes in Flying Fish as Flying Fish as a Monitor of 
Photochemical Degradation of Methylmercury in the Atlantic and Pacific Oceans 

 

Co-authored with Joel D. Blum, Brian N. Popp, Jeffrey C. Drazen, and Hilary G. Close. Isotopes 
in Flying Fish as a Monitor of Photochemical Degradation of Methylmercury in the Atlantic and 
Pacific Oceans. Marine Chemistry. In Revision 
 

Abstract: The photochemical degradation of the neurotoxin methylmercury (MeHg) in marine 

surface waters is of great interest because it reduces the amount of MeHg available for uptake and 

bioaccumulation in marine aquatic food webs. Studies have shown that the dominant cause of odd 

isotope mass independent fractionation (odd-MIF) of Hg in marine foodwebs is the photo-

degradation of MeHg. Residual MeHg is then incorporated into low trophic level organisms and 

bio-accumulated without additional mass independent fractionation. Based on this understanding 

of Hg isotope fractionation we sought to use Hg isotope measurements of fish tissues containing 

Hg mostly as MeHg to assess the relative degree of photochemical decomposition across the 

world’s oceans. In 19 samples of flying fish, the magnitude of odd-MIF varies by a factor of ~2. 

We estimate that 56 to 80% of MeHg was photo-degraded prior to entering the food web depending 

on location. The proportion of MeHg degradation does not correlate with latitude, solar radiation 

or estimates of the concentration of DOC or chlorophyll at the collection sites, but it does correlate 

with proxies for water clarity. The ratio of odd-MIF for 199Hg compared to 201Hg is constant in all 

flying fish sampled (1.20±0.03) suggesting that there is a common mechanism for photo-

degradation of MeHg in surface waters across oceans and hemispheres. The ratio of odd-MIF to 

mass dependent fractionation (MDF) is generally consistent with photochemical degradation but 
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is more variable (2.71±0.14), suggesting that there is minimal internal demethylation of MeHg and 

that variable amounts of MDF occur at different locations in the ocean, likely driven by variable 

rates of methylation and demethylation of Hg in the water column.  

3.1 Introduction 

 Methylmercury (MeHg) is a toxic form of the global pollutant Hg that poses a threat to 

human health because it biomagnifies in aquatic food webs, reaching elevated concentrations in 

predatory fish 1. Despite decades of research on MeHg in marine waters there is still incomplete 

understanding of its biogeochemical cycle, including the process by which it degrades. The 

photochemical degradation of MeHg reduces the amount of MeHg available for bioaccumulation 

by transforming it into inorganic Hg(II) or gaseous elemental Hg(0) 2. In this study, we used the 

Hg stable isotope composition in flying fish (Exocoetidae) in the South Atlantic (n=10), North 

Pacific (n=6), and coastal Pacific Oceans (n=3) to better understand MeHg photodegradation 

averaged over large areas of the ocean. Hg stable isotopes have previously proven to be an effective 

tool for investigating and estimating the relative photochemical degradation of MeHg in aquatic 

ecosystems 3,4.  

Experimental degradation of MeHg in the laboratory and in field incubations has 

demonstrated clear correlations between degradation rates of MeHg and both light intensity and 

wavelength 5–9. These studies have pointed to degradation of MeHg complexes by both direct and 

indirect photolysis reaction mechanisms. Direct photolysis occurs via the absorption of a photon 

by the Hg complex and homolytic cleavage of the Hg-C bond 6,10. Indirect photolysis involves a 

secondary reaction with a photochemically generated reactive intermediate, such as reactive 

oxygen species, which attacks the MeHg complex7,8,11. The wide variety and number of reactions 

identified and proposed has led to the hypothesis that multiple reaction pathways for MeHg 
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degradation exist, and that their importance depends on the specifics of water chemistry and the 

wavelength of light that is present. However, there are well known drawbacks to applying 

laboratory and field incubation experiments to marine environments 9. First, in laboratory 

experiments it is difficult to fully simulate conditions in the open ocean to get a complete 

understanding of the parameters controlling MeHg degradation. Second, while in situ experiments 

are successful at estimating degradation rates and studying MeHg degradation under 

environmentally relevant conditions, it has been challenging to compare the results between 

different published experiments due to diverging environmental conditions and methods 9. These 

shortcomings have made it difficult to identify the key pathways for photodegradation of the pool 

of MeHg available for bioaccumulation, and have led to somewhat contradictory conclusions about 

the role of dissolved organic matter (DOM) 11–13, photoactive trace metals 7,14, reactive oxygen 

species 7,11,15–17, and ultimately reaction mechanisms 6,7,11,18. 

In this study, we investigated the photochemistry of MeHg by analyzing organisms living 

in the surface ocean for their Hg stable isotopic composition. We utilized total Hg (THg) isotope 

signatures in flying fish (Exocoetidae) from the Atlantic and Pacific Oceans to examine 

photochemical pathways of MeHg degradation in the open ocean. We chose flying fish as a proxy 

because they live in the upper 10 meters of the ocean, and Hg in pelagic fish tissue is mostly MeHg 

(~95%; 19). Another advantage of the use of flying fish is that they only live for ~2 years 20–22 and 

based on tagging studies 20 they have a relatively small migratory range (~100-400 km) compared 

to other pelagic species. The flying fish habitats ranged from subtropical gyres to the equatorial 

ocean, including the Costa Rica dome, which is known for its high productivity 23,24. 

We had two overarching goals in this study. First, to estimate the proportion of MeHg that 

was photochemically degraded before being introduced to the base of the food web in large areas 
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of the world’s oceans using Hg stable isotopic compositions. Second, to use Hg mass independent 

isotope signatures to elucidate important photochemical pathways in the degradation of MeHg. Hg 

stable isotope ratios have been shown to be effective for exploring physiochemical reactions 

relevant to changes in speciation within the water column, such as reduction, photodegradation, 

oxidation, and methylation 25–30. This technique is enabled by the observation that the isotope 

fractionation of Hg in the environment displays mass dependent fractionation (MDF; represented 

by δ202Hg values) during all abiotic and biotic chemical reactions that have been investigated. In 

contrast, large magnitude (≥0.4‰) mass independent fractionation of odd-mass isotope ratios 

(odd-MIF; represented by Δ199Hg and Δ201Hg values) has been observed exclusively during 

photochemical reduction and degradation of Hg 25,28. Thus biological processes (e.g., 

bioaccumulation, methylation, demethylation, trophic transfer) do not produce MIF of Hg and 

elevated MIF is believed to be generated only through a photochemical radical pair reaction 

mechanism 25,26.  

3.2 Materials and Methods 

 Flying fish samples were collected from the decks of research ships, with surface net tows 

or at night by dipnet. Western Atlantic Ocean samples were collected on board the R/V Knorr and 

the Equatorial Pacific Ocean samples were collected on board the R/V Kilo Moana. The samples 

from the Gulf of California and the Costa Rica dome were provided by the University of Hawaii. 

North Pacific Subtropical Gyre (NPSG) fish analyses are from Blum et al (2013) and analysis of a 

single fish from the coast of eastern Japan is from Madigan et al. (2018). See Figure 1 for sample 

locations and supporting information for study details. Regression calculation used to examine 

isotopic relationships followed procedures described by York 32,33, which considers errors in both 

X and Y axes. 
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3.2.1 Flying fish sampling and preparation 

Fish were either collected whole and frozen at -20°C until tissue sampling in the laboratory, 

or a small muscle tissue sample was taken from freshly-collected fish and frozen at -20°C 

shipboard. Samples were transferred to the laboratory frozen and were then lyophilized and 

measured for THg concentrations and Hg stable isotopic composition. 

3.2.2 THg analysis  

For THg determination, samples and a National Research Council Canada (NRCC) 

reference material DORM-3 were combusted in a two-stage furnace by placing them in the first 

stage and slowly heating to 750°C for over 6 hours while the second stage furnace was held at 

1000°C. The released Hg(0) was trapped online into a solution of 1% KMnO4 (w/w) in 10% H2SO4 

(v/v) 34. For the flying fish samples, about 0.5-0.1 g of dried sample was combusted for a target 

solution concentration of 4-5 ng/g for Hg isotope analysis (Table S1). Aliquots of the KMnO4 

solution were analyzed for total Hg by cold vapor atomic absorption spectroscopy (CV-AAS; 

Nippon MA–2000). Calibration was obtained using NIST SRM 3133 as a standard, and it was 

checked every three samples. A Hg standard solution from Inorganic Ventures was also used as a 

secondary standard to verify the calibration. The THg concentrations of the flying fish could not 

be analyzed by other methods to check for combustion recoveries because there was not sufficient 

sample available, however, the DORM-3 reference material yielded an average recovery of 90% 

(n=6).  

3.2.3 Hg stable isotope analysis  

 All the samples were pre-concentrated into 1% KMnO4 solutions to be analyzed for Hg 

stable isotope composition using a multiple collector inductively coupled plasma mass 

spectrometer (MC-ICP-MS; Nu Instruments) with a continuous flow cold vapor generation inlet 



 79 

system with SnCl2 reduction 25,35. Prior to isotope analysis, the Hg concentrations of the samples 

were matched (within 5%) to bracketing standards (SRM NIST 3133) for each of the mass 

spectrometry run sessions.  

 MDF of Hg isotopes is reported as δ202Hg in permil (‰) relative to NIST SRM 3133 

(equation 1). MIF of Hg isotopes is calculated as the difference between the measured δ202Hg value 

and that which would be predicted based on mass dependence for a given isotope, and is reported 

in ΔxxxHg notation in permil (‰) (equation 2), where xxx is the mass of each Hg isotope 199, 200, 

201, 204 and β is the mass proportionality constant (0.252, 0.502, 0.752, 1.492, respectively22).  

                                          

                        

 Procedural process blanks and standard reference materials (TORT-2 and DORM-3, 

NRCA) were processed alongside samples in an identical manner (Table S3). Recovery during the 

secondary purge and trap of the 1% KMnO4 solution trap was 94±7% (1SD, n=16, minimum = 

87%). The long-term analytical uncertainty of the Hg isotopic composition was characterized using 

UM-Almaden as a secondary standard during all analytical sessions (Table S1-3). 

3.2.4 Environmental Modeled Satellite Data 

 Average annual surface solar irradiance 36 and ~10 m depth chlorophyll 37 data were 

retrieved from the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite, and 

dissolved organic carbon content was estimated from the Massachusetts Institute of Technology 

ocean general circulation model (MITgcm model; Zhang et al., 2015). The in-situ % beam 

transmittance was obtained from a Seabird SBE 9/11plus CTD.  Annual average water clarity was 
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estimated for each sample collection location (reported as equivalent Secchi Disk depth) from the 

global map of seasonal time series based on the semi-analytic algorithm from data retrieved from 

the Sea-Viewing Wide Field of View Sensor (SeaWiFS; He et al., 2017) satellite. The penetration 

of ultraviolet (UV) radiation was estimated for each sample collection location from the global 

map of the climatologically averaged period 1998-2009 in April at 305 nm (UVB) 40. It is difficult 

to measure annual global UV penetration for the ocean because the current generation of ocean 

color satellites (e.g., SeaWiFS or MODIS) only estimate radiation in the visible part of the 

spectrum.  

3.2.5 The Magnetic Isotope Effect: Theoretical Considerations 

 Hg undergoes several types of mass independent isotope fractionation that follow different 

physico-chemical mechanisms. These include nuclear volume effects, even-MIF during 

photochemical oxidation of Hg in the atmosphere (Chen et al., 2012; Gratz et al., 2010; represented 

as Δ200Hg and Δ204Hg values), and odd-MIF by the magnetic isotope effect during photochemical 

degradation or reduction in aquatic systems 25,27,43. In this study we focus on odd-MIF. The 

magnetic isotope effect was first reported in Hg by Bergquist and Blum (2007) who measured 

large Δ199Hg and Δ201Hg values (>0.4‰) for the photochemical reduction of Hg(II) and MeHg. 

They also showed that MIF values were preserved during trophic transfer of MeHg in aquatic food 

webs. Subsequent studies 3,4,44,  have also observed that odd-MIF in living organisms is a signature 

inherited from MeHg dissolved in waters before it was incorporated into food webs. The preserved 

Δ199Hg and Δ201Hg values in biological tissues have been a powerful tool for studying the Hg cycle 

because they can track MeHg sources prior to bioaccumulation 45.  

Bergquist and Blum (2007) proposed the magnetic isotope effect (MIE) as a potential 

fractionation mechanism for odd-MIF. The unpaired neutron in the nucleus of odd isotopes 
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produces nonzero nuclear spin, nuclear magnetic moments, and hyperfine splitting--which are 

required for the MIE 46. To fractionate odd from even isotopes a direct photochemical reaction is 

needed to produce a Hg-centered radical pair 46,47; in this Hg radical pair the unpaired electron in 

the Hg fragment can couple with the Hg nucleus via hyperfine interactions. This electron-nucleus 

hyperfine interaction is selective to odd-isotopes and does not conserve the electron multiplicity 

of these radical pair intermediates. This means that hyperfine interactions can change the rates of 

direct photochemical reactions that discriminate the odd from even isotopes 46.  

 Even though the mechanism for the MIE is not well understood, especially as it applies to 

heavy elements 48, Hg stable isotope photochemical experiments have yielded results that allow 

odd-MIF measurements of natural materials to provide important new information. For example, 

it has been shown that Δ199Hg and Δ201Hg are sensitive to the Hg bonding environment 28,49, 

ultraviolet and visible light conditions 43, and types and amounts of DOM 27. In this study we use 

measurements of Δ199Hg and Δ201Hg in flying fish as a proxy to investigate the 

photodecomposition of MeHg in surface waters. Our main objective is to explore the relative 

degree of photochemical reduction of MeHg across the world’s oceans and to explore possible 

relationships with environmental factors that might affect the abundance and penetration of 

sunlight into the water column and thus influence the amount of photodegradation of MeHg.  

A potential limitation of Hg stable isotopes as a proxy for photodecomposition of MeHg is 

that there are studies of photochemical reduction of MeHg in the literature that point to 

photochemical pathways that do not meet the requirements for MIE (for instance, secondary 

photolysis; Black et al., 2012; Zhang and Hsu-Kim, 2010). As a result MIE may not track all the 

photodegradation occurring in the water column 43. However, MIE is an effective tool for 

investigating the relative extent of direct photolysis in the presence of UV light 43, and it has been 
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suggested UV light accounts for up to 73% of the MeHg loss in marine waters 9.  

3.3 Results and Discussion 

3.3.1 The magnetic isotope effect and photochemical degradation of MeHg 
  
 High values of mass independent isotope fractionation of the odd isotopes of Hg (odd-MIF 

>0.4‰, Δ 199Hg and Δ 201Hg) are only known to occur during the photochemical degradation of 

Hg in surface waters, particularly during the photodegradation of MeHg (e.g., Blum et al., 2014). 

The experimental photochemical degradation of MeHg with freshwater DOM has been shown to 

yield a Δ199Hg/Δ201Hg slope of 1.36 ± 0.04 25,27,43, and a Δ199Hg/Δ201Hg slope ranging from 1.27 

to 1.33 has been recorded in living organisms in freshwater systems 50–53. However, the majority 

of living organisms in a wide range of marine and estuarine food-webs have an average 

Δ199Hg/Δ201Hg slope of 1.23 ± 0.02 (2SD).3,4,31,44,54–56 The Δ199Hg/Δ201Hg slope close to 1.2 likely 

represents the residual MeHg from photochemical degradation in marine waters, where the MeHg 

is preferably coordinated to thiol ligands. The experimental Δ199Hg/Δ201Hg slope of 1.36 likely 

represents MeHg coordinated to O or N ligands in freshwater DOM 49, while in marine waters, the 

elevated Cl concentrations would limit MeHg complexation to N or O ligands in DOM 57. 

Consistent with these studies, the flying fish discussed here have a combined Δ199Hg/Δ201Hg slope 

of 1.20±0.03 (Fig. 2a, R2=0.99) indicating MeHg photodegradation. This Δ199Hg/Δ201Hg slope is 

likely not impacted by Hg(II) photoreduction because in marine waters Hg(II) speciation is likely 

dominated by HgCl2 or Hg-thiol complexes due to the high Cl and DOM concentrations 57. HgCl2 

that is not available for direct photolysis and photoreduction of Hg-thiol complexes yields negative 

MIF 28. This is supported by the negative MIF from the photoreduction of Hg(II) in marine DOM 

derived from phytoplankton 58. Negative MIF is not expected for MeHg-thiol complexes because 

the direct photolysis does not cleave the Hg-thiol bond, instead it cleaves the Hg-C bond59; this is 
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in agreement with MeHg photodegradation experiments in marine plankton derived DOM that 

resulted in positive MIF 58. The potential photodecomposition of dimethylmercury in marine 

waters should not have any significant impact on the Hg isotopic composition of the flying fish 

because it is not available for direct photolysis in natural sunlight 59 and it is not incorporated in 

the food-web 60.  

We suggest that the linear relationship of Δ199Hg to Δ201Hg across all of the samples 

discussed in this study, from both the Atlantic and Pacific Oceans (Fig. 2b), indicates that the 

MeHg being bioaccumulated in the flying fish was photodegraded by a common mechanism. The 

Δ199Hg/Δ201Hg not only indicates a unique reaction pathway, but specifically points to primary 

photolysis mediated by a MeHg centered radical intermediate 46–48,61. After considering the 

theoretical framework for MIE (see section 2.1 above), we suggest that the Δ199Hg/Δ201Hg slope 

of 1.2 is representative of the unique hyperfine interaction of 199Hg and 201Hg nuclei with the 

unpaired electron in the radical pairs generated from methylated Hg complexes during direct 

photodegradation. Therefore, the ratio of Δ199Hg/Δ201Hg appears to be fingerprinting a specific 

primary photochemical reaction 46,61. Although MIE for heavy elements has not been well studied, 

there is experimental evidence indicating that odd-MIF is sensitive to reaction conditions (i.e., 

binding ligands, wavelength, and DOM; Rose et al., 2015; Zheng and Hintelmann, 2010, 2009).  

 The strong correlation between Δ199Hg and Δ201Hg found in flying fish across wide regions 

of the Atlantic and Pacific Oceans and in fish of a variety of species and feeding depths in the 

North Pacific Subtropical Gyre (NPSG; Blum et al., 2013), leads us to conclude that the role of 

solar irradiance, DOM, and water chemistry in the degradation of MeHg in surface marine waters 

may alter the reaction kinetics but not the reaction mechanism. This may suggest that the 

contradictory evidence about the rate controlling factors of the reaction 7,14–16 is likely due to 
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reaction kinetics. For example, the kinetics of a radical pair mediated photochemical reaction are 

sensitive to photophysical quenching 46, which can increase or decrease the rate of reaction. DOM, 

molecular oxygen, and other reactive dissolved species are known radical pair quenchers that 

decrease reaction rates but do not change the reaction mechanisms6,12,47. If there were multiple 

MeHg photodecomposition pathways in open ocean marine waters, we argue that flying fish would 

not display a strong correlation between Δ199Hg to δ202Hg (Fig 2), because δ202Hg values would 

vary with the different decomposition pathways.  

3.3.2 Δ199Hg/ δ202Hg spatial trends  

 Previous pelagic ocean studies have found a strong linear relationship between Δ199Hg and 

δ202Hg values with a slope of 2.68±0.25 for zooplankton and other pelagic organisms that feed at 

a wide range of depths in the NPSG 3,62. Our results show that the ratio of Δ199Hg to δ202Hg for 

flying fish is 2.71±0.21 (Fig 2, R2=0.62), which is close to previous pelagic ocean studies. The fish 

collected near the eastern coast of Japan and at the Costa Rica Dome do not follow this trend and 

we suggest that these samples have higher δ202Hg values relative to the open ocean samples due to 

an increase in microbial demethylation of Hg in these high productivity regions.26,31 The eastern 

coast of Japan is in the Oyashio Current, which has nutrient-rich waters63, and the Costa Rica 

Dome is a nutrient rich upwelling zone.23,24 The Δ199Hg and δ202Hg relationship of the oceanic 

flying fish is within uncertainty of the photochemical degradation experimental Δ199Hg/δ202Hg 

slope of 2.43±0.10 25. Deviation of flying fish from the 2.71 slope has been suggested to be 

indicative of different relative amounts of biotic methylation and demethylation of Hg at each 

location superimposed onto the photochemical degradation signal 3. The scatter around the slope 

of 2.7 can also be attributed to some internal demethylation of MeHg prior to incorporation into 

muscle tissue 64. However, this is unlikely to be a dominat factor because internal demethylation 
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would result in greater δ202Hg values in the residual MeHg incorporated in the fish tissue resulting 

in a lower Δ199Hg/δ202Hg slope. This is supported by the Hg isotopic composition of marine tilefish 

and tusk fish, which have a significantly depressed Δ199Hg/δ202Hg slope consistent with potential 

demethylation 65,66.  

Because the flying fish Δ199Hg/δ202Hg is within uncertainty of the experimental 

photodegradation Δ199Hg/δ202Hg slope, we can estimate the δ202Hg values of MeHg prior to 

photochemical degradation, in a similar manner as has been done in previous fresh and seawater 

studies.44,45,55,67 We use the MeHg photodecomposition experimental slope of Δ199Hg/δ202Hg at 1 

mg/L DOC, because DOC in the sample sites was on average 0.89±0.07 mg/L (Table S2). The 

δ202Hg source values were calculated in the following way: 1) we determined the Δ199Hg intercept 

from the Δ199Hg/δ202Hg slope using the Δ199Hg values in the muscle tissue of the flying fish by 

setting δ202Hg to zero; and 2) the Δ199Hg intercept values were then used to calculate the source 

δ202Hg value at Δ199Hg equal to zero. Our estimated values for δ202Hg of MeHg prior to 

photochemical degradation are given in Table S2 and Figure 2b.   

  The estimated range in δ202Hg values of MeHg available for uptake prior to photochemical 

degradation has average δ202Hg of -0.68±0.23‰, n=17, 1SD. The two samples from high 

productivity zones have more positive δ202Hg values (Costa Rica Dome δ202Hg=0.04; Coast of 

Japan δ202Hg=0.38). The open ocean sample δ202Hg values are more negative than average 

precipitation δ202Hg values measured in the central Pacific Ocean 62. It is generally assumed that 

precipitation is the major source of Hg to the surface pelagic ocean 19,68,69 and we suggest that once 

Hg enters the ocean ligand exchange and/or sorption to DOM/POM imprints negative MDF 

fractionation on sorbed Hg(II) 29,30. In contrast to the pelagic ocean, high productivity zones likely 
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stimulate microbial demethylation resulting in sources of Hg to the marine food-web that have 

positive δ202Hg values 70,71; but additional work is needed to confirm this hypothesis.  

3.3.3 Relative photochemical degradation of MeHg and controlling environmental factors 

 We used Δ199Hg values in the flying fish to estimate the relative proportion of MeHg 

photochemically degraded prior to bioaccumulation, and investigated the correlation of Δ199Hg 

values with environmental factors that have been mapped for the global oceans, including water 

clarity, solar irradiance, chlorophyll content, and DOM, to test whether the reaction pathway for 

photochemical degradation is dependent on specific environmental conditions. We find that 

Δ199Hg/Δ201Hg ratios (Fig 2a) do not correlate well with environmental factors (including solar 

irradiance and primary productivity) at specific locations.  

3.3.3.1 Relative degree of photochemical degradation of MeHg  

To estimate the relative photochemical degradation of MeHg from the Δ199Hg values in 

flying fish, we used the fractionation factor (in epsilon notation) for the photochemical degradation 

of MeHg 72 in 1 mg of DOC/L (ε =-3.33). This fractionation factor was chosen because the 

Δ199Hg/δ202Hg experimental slope for that reaction was in close agreement with the slope for the 

open ocean data in the NPSG 3,62. Additionally, based on modeled annual average DOC at 0-10 

meters, the concentration of DOC at the sample locations is expected to range from 0.77-1.00 mg 

C/L, which is consistent with the experimental conditions. The relative percentage of 

photochemical degradation of MeHg in the North Pacific and South Atlantic Oceans is estimated 

to range from 56-80%. The greatest values for the relative amount of photochemical degradation 

were found in the NPSG and the lowest relative percent degradation was near the equator in the 

Atlantic Ocean and in coastal samples (Fig 3a; Table S2). 
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A potential explanation for the higher percentage degradation of MeHg in oligotrophic 

waters of the S. Atlantic and N. Pacific subtropical gyres could be that surface waters in the 

subtropical gyres are more highly stratified in comparison with equatorial waters, affecting the 

residence time of MeHg in the water column 73. Flying fish are expected to integrate seasonal 

variability because they live for about 2 years, reside in the upper 10 meters, and have a migratory 

range of only ~100-400 km 20. Another possible explanation is that the Δ199Hg values and the 

relative percent degradation of MeHg are a function of water clarity and UV penetration, as both 

variables are highest and least variable at the subtropical gyres 39,40. A relationship between Δ199Hg 

values and light penetration was observed by Sherman and Blum (2013) among multiple lakes in 

Florida, where they showed that fish inhabiting lakes with greater light penetration showed higher 

Δ199Hg values.  

3.3.3.2 Factors controlling the photochemical degradation of MeHg 

 Previous studies of photochemical degradation of MeHg in freshwater have suggested that 

the photochemical degradation of MeHg can be dependent on a range of factors including solar 

irradiance, water clarity (Secchi depth), DOM, reactive metals, and primary productivity 7,9,11. 

Recently a study in the Pacific Ocean suggested that MeHg photodegradation is driven by UV 

instead of PAR, opposite to conclusions of studies of coastal and freshwater environments 9. 

Therefore, we tested for correlations between Δ199Hg values of the flying fish and relevant 

variables for which data are available including water clarity, solar irradiance (PAR, 

Einsteins/m2/day), penetration depth of UV radiation (m), annual mean chlorophyll (mg/m3*102), 

and annual mean dissolved organic carbon (mg/L) (Figure 3a-c, and Table S2). Some MeHg 

photodegradation experiments have shown that hydroxyl radicals formed from the photolysis of 

nitrate may degrade MeHg in solution. We did not, however, test for the concentrations of any 
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radical species or nitrate 15 because secondary photochemical reactions that are mediated by 

reactive oxygen species are not expected to yield MIE anomalies based on the radical pair 

mechanism. There were no significant correlations between Δ199Hg values and solar irradiance 

(R2=0.05, p=0.42), annual mean chlorophyll (R2=0.21, p=0.05), or annual mean dissolved organic 

carbon (R2=0.09, p=0.22). There was, however, a significant relationship with water clarity 

(y=0.09±0.01, R2=0.77, p<0.001, n=18) and UV penetration at 305 nm wavelength, which is 

representative of UVB (y=2.371±0.22, R2=0.77, p<0.001, n=18). These results support our 

hypothesis that elevated Δ199Hg values and the relative percent of MeHg photo-degradation at the 

subtropical gyres are due to the effects of light penetration in the water column. There was, 

however, one clear outlier sample collected off the coast of Brazil (Fig. 3c, FF02). The outlier is 

probably due to the low resolution of the SeaWiFs satellite near this seamount region, resulting in 

an overestimation of the Secchi depth 74,75. An overestimation of the water clarity is supported by 

the percent beam transmittance from CTD data from the cruises on which the open ocean samples 

were collected (Fig 3d). The lack of correlation between Δ199Hg values with either PAR or DOC 

is probably because, unlike freshwater systems, the range of DOC and PAR in the surface ocean 

is relatively small (DOC=0.89±0.07 mg/L and PAR=41.5±2.96 Ein/m2/day) across the sample 

sites (Table S2). The poor negative correlation of Δ199Hg values with chlorophyll may be due to 

the fact that primary productivity inhibits photodegradation of MeHg by attenuating light 

penetration 9. For the sample locations where chlorophyll concentrations and Δ199Hg values were 

low, we speculate that this was because water clarity was compromised by other factors such as 

high-water turbidity near the equatorial Atlantic (Fig 3b,d) and because surface satellite 

chlorophyll data is not a good predictor of productivity at depth 74. Additional experiments on Hg 

isotope fractionation in seawater with variable water quality parameters will be of benefit in 
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understanding the different controlling factors for photodegradation of MeHg in pelagic waters. 

We conclude that the Hg stable isotope composition of marine biological samples in surface waters 

may serve as a good avenue for investigating MeHg photochemical decomposition, because it 

avoids many drawbacks of traditional laboratory approaches since Hg stable isotope values reflect 

the natural conditions at the time of photodegradation. 
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Figure 3.1. Sample locations.  
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Figure 3.2  (a) Plot of Δ199Hg versus Δ201Hg (both are MIF) and (b) Plot of MIF (Δ199Hg) versus MDF (δ202Hg). The 

2.71 slope was calculated using the open ocean flying fish (n=16); we excluded coastal fish (n=3) and the estimated 

MeHg δ202Hg values from regressions. The triangles are the isotopic values for the biological tissue of the flying fish 

and the squares are the estimated isotopic values for the MeHg source prior to photochemical degradation. The 

magenta symbols are samples from the Pacific Ocean, the blue are from the Atlantic Ocean, the green from the coastal 

N. Pacific (Gulf of California and off Japan), and the red symbol is from the Costa Rica Dome. The oval shows the 

range of isotope values for precipitation from the open ocean at Station ALOHA and the Island of Hawaii (Motta et 

al., 2019) 
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Figure 3.3. (a) Δ199Hg plotted against absolute latitude (deg) and (b) Δ199Hg plotted against UV penetration in meters 

at 305 nm wavelength, from the month of April (1998-2009). (c) Δ199Hg plotted against modelled Secchi depth 

(SeaWiFs satellite).  Sample FF02 is an outlier and is not included in the regression for (b) and (c). FF02 is located 

near the Vitoria-Trinidad seamounts, some of which rise close to the surface and alter primary productivity locally. 

Upwelling at these sites, if visited by flying fish in the region, would result in reduced Δ199Hg and/or reductions in 

water clarity that might not be captured in the model used. (d) Δ199Hg plotted against % beam transmission at 5 meters 

from CTD data. The CTD data was not available for the coastal samples or Costa Rica. 
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3.4 Supporting Information 

Table S3.1 Flying Fish collection data, THg concentration, and THg isotope ratios 
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Table S3.2 Calculated photochemical parameters, modeled environmental variables, and 
reference materials  

 
a.  Average annual surface solar irradiance was retrieved from the Moderate 
Resolution Imagining Spectroradiometer (MODIS) satellite 36 
b. Dissolved organic carbon content was estimated from the Massachusetts 
Institute of Technology ocean general circulation model (MITgcm model; 
Zhang et al., 2015) 
c. Average annual chlorophyll was retrieved from the Moderate Resolution 
Imagining Spectroradiometer (MODIS) satellite37 

d. Annual average water clarity was estimated for each sample collection 
location (reported as equivalent Secchi Disk depth) from the global-map of 
seasonal time series based on the semi-analytic algorithm from data retrieved 
from the Sea-Viewing Wide Field of View Sensor (SeaWiFS) satellite 39 
e. UV depth (m) penetration at 305 nm representative of UVB radiation of 
the month of April averaged over 1999-2009 (error ±1.5 m)40 
d. The in-situ % beam transmittance was obtained from a Seabird SBE 
9/11plus CTD, from the research cruses where the flying fish samples were 
collected.  
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Chapter 4 Mercury Isotope Fractionation During the Photochemical reduction of Hg(II) 
Coordinated with Organic Ligands 

 
Co-authored with K. Kritee, Joel D. Blum, Martin Tsz-Ki Tsui, and John Reinfelder. Mercury 
Isotope Fractionation During the Photochemical Reduction of Hg(II) Coordinated With Organic 
Ligands. Journal of Physical Chemistry A. In revision 
 
Abstract: The photochemical reduction of Hg(II) is an important pathway in the environmental 

Hg cycle because it competes with Hg methylation and potentially limits the formation of 

neurotoxic methylmercury. Hg stable isotope systematics have been proven to be an effective tool 

for investigating the transport, transformation, and bioaccumulation of Hg, and the dominant cause 

of mass independent isotope fractionation (MIF) of Hg in nature is the photochemical reduction of 

various species of Hg(II). However, it is difficult to fully interpret Hg stable isotope signatures in 

natural samples due to the lack of mechanistic information about which Hg compounds are 

susceptible to MIF, and why. This study investigated Hg isotope fractionation during the 

photochemical reduction of Hg(II) complexed to organic ligands representative of the available 

binding sites in natural dissolved organic matter. Mass dependent isotope fractionation (MDF) of 

specific Hg(II)−organic complexes followed the same relationship regardless of pH, wavelength 

of light, or dissolved oxygen content, while MIF varied with all of these variables. The 

photochemical reduction of Hg(II) in the presence of cysteine resulted in both negative and 

positive MIF in residual Hg(II), where the sign depended on pH and dissolved oxygen. In the 

presence of serine, either nuclear volume or magnetic isotope effects were observed depending on 

the wavelength of light and the extend of Hg(II) complexation by serine. In the presence of 
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ethylenediamine, MIF was negative. Our Hg stable isotope results suggest that MDF and MIF are 

induced at different steps in the overall photochemical reduction reaction, and that MIF does not 

depend on the rate determining step but on photophysical aspects of the reaction, such as 

intersystem crossing and hyperfine coupling. The behavior of Hg isotopes reported here will allow 

for a better understanding of the underlying reaction mechanisms controlling the Hg isotope 

signatures recorded in natural samples. 

4.1 Introduction 

Mercury (Hg) is a toxic global pollutant that is strongly retained at each trophic level in aquatic 

food webs, reaching high concentrations in fish and leading to public health concerns1. Despite 

decades of research there is still an incomplete understanding of the transformations of Hg that 

may limit its uptake and bioaccumulation in food webs, due to the complexity of its 

biogeochemical cycle. Hg stable isotopes have been an effective tool for investigating Hg, but 

there is limited experimental and theoretical information on isotope fractionation mechanisms that 

result in mass independent isotope anomalies in the odd isotopes of Hg (MIF; measured as Δ199Hg 

and Δ201Hg). These MIF signatures have only been recorded during photochemical reactions of 

Hg complexes, and existing experimental studies have suggested that the isotope fractionation 

pattern is consistent with the magnetic isotope effect (MIE)2–4. Of the photochemical reactions of 

Hg that exhibit MIE, the photochemical reduction of inorganic Hg(II) complexes is among the 

most important pathways in natural waters because it may compete with Hg methylation, limiting 

the amount of bioavailable and neurotoxic methylmercury. In the present work we focus our 

attention on various aspects of photochemical reduction of Hg(II) complexed to low molecular 

weight organic ligands (LMWOL) representative of different dissolved organic matter (DOM) 

binding sites that may alter the MIE. The limited understanding of the controlling factors of MIE 
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hinder the interpretation of Hg isotopic composition in natural environments, specifically in marine 

environments where the composition and availability of DOM is significantly different from 

freshwaters.  

It is difficult to interpret MIE in the environment because the reaction mechanisms 

involved in the photochemical reduction of Hg(II) in natural waters are uncertain, and both direct 

and indirect photolysis reactions have been proposed3–8. Direct photolysis occurs via the 

absorption of a photon by Hg complexes and leads to homolytic cleavage of Hg−ligand bonds. In 

contrast, indirect photolysis involves the reaction of a Hg complex with a photochemically 

generated reactant, such as reactive oxygen species. Since Hg(II) is largely complexed by 

dissolved organic matter (DOM) in natural waters, the role of such complexation in the 

photochemical reduction of Hg(II) has received special attention 3,4,6–10. Hg(II) is primarily bound 

to thiol groups in DOM, but in excess will also bind to O and N binding sites such as carboxylic 

acid and amine functional groups11–15. It has been demonstrated that Hg stable isotope signatures 

associated with Hg(II) photoreduction depend largely on the complexing ligand3, but the isotopic 

signatures may also vary with reaction conditions, such as wavelength of light, pH, and dissolved 

oxygen (DO), because these may alter the pathways or mechanisms of direct and indirect 

photochemical reactions.  

To investigate the mechanisms of MDF and MIF of Hg isotopes during photochemical 

reduction of Hg(II), we broke down the reaction into constituent parts including photophysical, 

photochemical, and thermally induced processes16. Photophysical processes are interactions of 

light with molecules resulting in net physical changes, such as a change in electronic multiplicity 

of an excited state. Photochemical processes, on the other hand, involve the interaction of light 

with molecules that results in net chemical changes, like bond dissociation and formation of 
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radicals. Lastly, thermal processes occur when photochemically generated reactive species like 

radical pairs, undergo conventional chemical processes to produce the observed product without 

interactions with light; typically these reactions are known as secondary thermal or secondary 

(indirect) photochemical processes16.  

Because MIE depends directly on the reactivity and spin multiplicity of reactive 

intermediates, and since MIE arises from the formation of radical pairs17,18, we hypothesize that 

photophysical aspects of the reaction control the rate and extent of MIE during the photoreduction 

of Hg(II). The essential features of these photophysical effects are illustrated in Figure 1, and are 

as follows: 

1. A ground state precursor “XHgX (X= O, S, or N ligand)” is photoexcited to produce an 

excited state with the same multiplicity as the ground state. All Hg complexes have a singlet 

ground state multiplicity.   

2. The singlet excited state can undergo intersystem crossing to a triplet state mediated by 

spin−orbit coupling common to heavy elements.  

3. The excited triplet (singlet) state will evolve into a correlated triplet (singlet) radical pair 

(RP) whose electron spins will be well−defined in an overall spin−state inside a solvent 

cage.  

4. A portion of the triplet (singlet) RPs can interconvert to singlet (triplet) RPs by an 

intramolecular magnetic field arising from hyperfine coupling (HFC) between the unpaired 

electron and magnetic nuclei (e.g. 199Hg, 201Hg). 

5. The newly formed singlet RPs can undergo spin−selective recombination to the ground 

state precursor, which competes with the HFC mediated interconversion T↔S. Triplet RPs 

cannot undergo recombination to the ground state because it is spin forbidden.  
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6. A competing step is the escape or diffusion of the triplet (singlet) RPs from the solvent 

cage to free radicals. Once the RPs have escaped, all spin correlation is lost and HFC can 

no longer have an effect.  

7. The free radicals can then undergo secondary thermal reactions to the products.  

The MIE originates from the preferential spin interconversion of the separated RPs containing 

odd mass isotopes induced by HFC (step 4). However, the sign of MIE in residual Hg(II) will 

depend on the efficiency of intersystem crossing of the excited singlet state (step 2), because 

efficient intersystem crossing will result in a RP in a triplet state (step 3), where HFC will induce 

preferential spin interconversion of the magnetic isotopes to a singlet state, increasing the 

population of RPs with 199Hg and 201Hg isotopes. These newly formed singlet RPs, enriched in 

magnetic isotopes, have a greater probability of geminate recombination to the ground state 

precursor because the ground state has a singlet character (Figure 1; + MIE). Meanwhile, if there 

is not efficient intersystem crossing (step 2), the RP will evolve in the singlet state and HFC will 

induce selective spin interconversion of the magnetic isotopes to the triplet state, as indicated in 

parentheses in the outlined steps. This will result in RPs with singlet character to be depleted in 

magnetic isotopes, resulting in preferential geminate recombination of RPs to the ground state 

resulting in depletion in the magnetic isotopes (Figure 1; (−) MIE).  

Within the theoretical framework outlined here, reaction conditions such as DO, wavelength 

of light, and pH may alter the rate and sign of MIE. Molecular oxygen is a known triplet state 

radical quencher16,19,20 and it has been reported to affect the rate of photochemical decomposition 

of monomethylmercury (MeHg) complexes5,21. The wavelength of light may affect MIE because 

the excitation of the ground state precursor of the Hg(II) complex depends directly on it, and the 

pH may alter the solvent cage altering the efficiency of spin interconversion by HFC.  
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All the photochemical reactions of Hg investigated to date also exhibit kinetic mass dependent 

isotope fractionation (MDF: measured as δ202Hg). Traditionally, kinetic isotope theory (producing 

MDF) describes exclusively thermally induced processes, because it was derived from transition 

state theory with the assumption that the reaction takes place in a single potential energy surface 

defined by equilibrium statistical mechanisms22. The assumptions for MDF do not apply to 

photochemical reactions in which the excitation of an electron by a photon involves the jump from 

a ground state to an excited state described by the RP mechanism17,18,22. This excited reactive 

intermediate RP will occupy a different potential energy surface that is far from equilibrium 

(Figure 1)18 and cannot be described within equilibrium statistical mechanics22. Kinetic isotope 

theory involving heavy elements is also not well understood, and it has been suggested that the net 

effect will depend on both the nuclear volume effect (NVE) and the masses of the isotopes23–25. 

The kinetic theory for the NVE has not been developed, but it has been proposed to be analogous 

to NVE equilibrium exchange reactions23,24. When NVE arises from the interaction of electrons 

with the nucleus, nuclei with large volumes will overlap with a greater share of the electron density 

than nuclei with small volumes, resulting in electrons being more weakly bound by large rather 

than small nuclei. The effects of the nuclear volume on the binding energy of the electron results 

in a relatively small MIF of Hg isotopes (Δ199Hg <0.5‰), because the mean square radius of the 

nucleus does not scale linearly with the number of neutrons26.  

Based on these theoretical considerations about MDF and MIF, there are still many open 

questions about the photochemical transformations of Hg(II) that occur in the environment and 

exhibit MIF (NVE and MIE). To improve our ability to catalog MIF signatures in nature, we 

examined the effects of pH, DO, and wavelength of light (UV and Visible) on Hg stable isotope 

fractionation during the photochemical reduction of Hg(II) coordinated to the LMWOLs L−serine, 
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L−cysteine, and ethylenediamine, representative of binding sites in natural DOM. A more in depth 

understanding of the controlling factors of the Hg stable isotope fractionation during 

photoreduction of Hg(II) will facilitate the identification of key reaction mechanisms and organic 

ligands involved in the reduction of Hg(II) in natural waters prior to methylation and incorporation 

into aquatic foodwebs.  

4.2 Materials and Methods 

4.2.1 Experimental materials  

All photochemical reduction experiments were performed in 1 L, UV−transparent 

fluorinated ethylene propylene (FEP, Nalgene Teflon), narrow−mouth bottles (which transmit 

66% UVB, 82% UVA and 99% visible light27) under natural sunlight at Rutgers University, New 

Brunswick, New Jersey, USA (40.4769 N 74.4387 W). Aqueous stock solutions of Hg(II) (100 

µg/g) were made from powdered Sigma−Aldrich mercuric nitrate monohydrate or mercuric 

chloride. The mercuric chloride stock was used for all anoxic experiments to avoid the oxidant 

nitrate. Purified (≥99%, HPLC–grade Sigma Aldrich) L−serine, L−cysteine, and ethylenediamine 

were used to prepare solutions of LMWOL, and are referred to as ser, cys, and en, respectively. 

The experimental reactors were continuously purged with ultra−pure N2 (AirGas, NJ) or Hg−free 

air from a zero gas generator (Tekran model 1100, ON Canada) to remove gaseous Hg(0) (See 

Table S1 for experiment dates and details).  

4.2.2 Photochemical Reduction of Hg(II)   

All photochemical reduction experiments were conducted during clear days (no cloud 

cover) and the average outdoor temperature ranged from 24 to 30 °C, with the exception of the 

May experiments when temperatures were cooler (as low as 18 °C). Most incubations were 

exposed to the full spectrum of natural sunlight. In some incubations (referred to as “Vis”), UV 
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radiation was blocked using Lee 226 filters, which absorb 96−100% of light at wavelengths below 

378 nm. The experiments in which reactor bottles were exposed to both UV and Vis radiation are 

referred to as UV−Vis.  

The experiments were conducted with an initial average Hg(II) concentration of 0.17±0.04 

µM in about 700 mL of deionized water. The Hg(II) was incubated in the dark with the 

corresponding organic compounds, 0.4 mM cysteine, 4 and 0.4 mM serine, and 4 mM 

ethylenediamine in ultra−pure deionized water for 12 hours to let the Hg(II) fully equilibrate with 

each organic ligand, while being purged with ultra−pure air or N2 to remove any potential trace 

amounts of Hg(0) produced in the dark. The LMWOL concentrations were chosen to ensure that 

Hg speciation was dominated (90% to >99%) by complexation to the LMOWL, and an additional 

experimental condition (with 0.4 mM serine) was employed to allow a direct comparison with the 

results of Zheng and Hintelmann (2010)3. Low pH incubations of Hg(II) with serine and cysteine 

were conducted at pH 3.8 and 3.2, respectively, and additional experiments were conducted with 

cysteine and serine in which the pH was adjusted to 7.2 with a phosphate buffer (sodium phosphate 

salts, Sigma Aldrich). Ethylenediamine experiments were only conducted at pH 7.4. For anoxic 

experiments bottles were purged with ultra−pure Ar, while for oxic experiments bottles were 

purged with Hg−free air.  

The speciation of Hg(II) in each treatment was estimated using a thermodynamic modelling 

program (ChemEQL28; see Table S2 for calculation details). In the incubations with 0.4 mM 

cysteine at both pH 3.2 and 7.2, Hg(II) was estimated to have been present as Hg(HCys)2 (96%), 

Hg(Cys)22− (3.5%), Hg(Cys)34− (<1%), and Hg(Cys)46− (<1%).  For the incubations with 4 mM 

serine at pH 3.8, Hg(II) was estimated to have been present as Hg(Ser)22− (50%), and HgSer (40%) 

and at pH 7.2 was 99.9% Hg(Ser)2. The speciation of Hg(II) in the incubations with 0.4 mM serine 
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was estimated to have included HgSer (19.4%, 91.3%) and Hg(Ser)2 (2.3%, 0.3%), at pH 3.8 and 

7.2, respectively. In oxic treatments, the balance of Hg(II) was estimated to have been present as 

Hg(OH)2, while in anoxic treatments, the balance of Hg(II) was estimated to have been present as 

Hg(OH)2 and Hg(Cl)2. For incubations with 4 mM ethylenediamine, Hg(II) was estimated to have 

been present as [Hg(en)2]+2 (70.6%), [HgOH(en)2]+2 (29%), and [HgH(en)2]+2 (0.3%).   

For incubations longer than 10 hours, reactors were purged in the dark at 18 °C during the 

night and exposed to sunlight the next day at 7:30 am; no detectable change in the concentration 

of Hg(II) occurred during the night. Samples taken of the reactant Hg(II) from each reactor were 

immediately weighed and preserved with 10% wt/vol BrCl, to avoid any Hg(II) loses and 

breakdown any matrix effects29. See Table S1 for complete reaction conditions. 

4.2.3 Hg concentration and Isotope Analysis  

The Hg concentrations in the aliquots of preserved experimental solutions were analyzed 

for total Hg by cold vapor atomic absorption spectroscopy (CV−AAS, MA−2000, Nippon 

Instruments). Calibration was obtained using NIST−SRM−3133 as a standard, which was also 

measured as a check standard after every third sample. An additional Hg standard solution from 

Inorganic Ventures was used as a secondary standard to verify the calibration.  

For Hg stable isotope analysis all the samples were neutralized with hydroxylamine, further 

reduced with SnCl2, and purged and trapped into 1% KMnO4 in 10% H2SO4 (wt/wt) solution to 

remove matrix interferences for isotope analysis (Blum and Johnson, 2017). Trapping recovery in 

1% KMnO4 was 96.8±5% (1SD, minimum = 87%).  The 1% KMnO4 solutions were analyzed for 

Hg stable isotope composition using a multiple collector inductively coupled plasma mass 

spectrometer (MC−ICP−MS; Nu Instruments) with a continuous flow cold vapor generation inlet 

system with SnCl2 reduction (Lauretta et al., 2001; Blum and Bergquist, 2007). Prior to isotope 
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analysis, the Hg concentrations of the samples were adjusted and matched to the bracketing 

standard within 5% (SRM NIST 3133). Instrumental mass discrimination was corrected using a Tl 

internal standard and sample standard bracketing30. 

 Mass dependent fractionation (MDF) of Hg isotopes is reported as δ202Hg values in per mil 

(‰) relative to NIST SRM 3133 (equation 1). Mass independent fractionation (MIF) of Hg 

isotopes is calculated as the difference between the measured δxxxHg value and that which would 

be predicted based on mass dependence for a given isotope, and is reported in ΔxxxHg notation in 

‰ (equation 2), where xxx is the mass of each Hg isotope 199, 200, 201, 204 and β is the mass 

proportionality constant (0.2520, 0.5024, 0.7520, 1.493, respectively)30.  

                                          

                 

 Procedural process blanks and a standard reference material (UM−Almadén) were 

processed alongside samples in an identical manner. The long−term analytical uncertainty of the 

Hg isotopic composition was characterized using UM−Almadén as a secondary standard during 

all isotope analysis sessions. All the stable isotope data from this study are listed on Table S3a−e.  

 The Hg isotope fractionation throughout the experiments was quantified as the difference 

between reactant and instantaneous product at any given time by isotopic fractionation factors (ε) 

in ‰ units assuming Rayleigh fractionation30 using the Hg stable isotope composition of the Hg(II) 

remaining in solution. Here we did not measure the Hg stable isotope composition of the gaseous 

product given that previous work with microbial reduction of Hg(II) in similar reactors has shown 

that the results (i.e., fractionation  factors) based on isotopic composition of the Hg remaining in 
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the reactor versus on the isotopic composition of the Hg vapor product trapped in KMnO4 

oxidizing solutions are similar even when there is some loss of Hg(0)29. Also, KMnO4 base traps 

do not maintain their oxidizing function over a few hours and the majority of the experiments ran 

for several hours to days. Isotopic fractionation caused by MDF was quantified by the isotope 

enrichment factor (εMDFHgreactant/product) in units of ‰, where ε is related to fractionation factors (α 

= Rreactant/Rproduct) by (α−1)x1000. The εMDF factor was calculated from the slope between 

δ202Hgfinal− δ202Hginitial of the residual Hg(II) and ln(f), where f is the fraction of Hg(II) remaining 

following Rayleigh distillation. Rayleigh distillation is a reasonable assumption because the 

instantaneous product (gaseous Hg) is continuously being purged from the reaction3,29,31. The 

εMIEHgreactant/product  factor caused by MIE was quantified in a similar manner as MDF from a plot 

of Δ199Hgf− Δ199Hginitial versus ln(f), in units of ‰. The Rayleigh plot slopes and standard errors 

were calculated using least squares regression, and for the three isotope relationships we used York 

regressions with correlated errors32 to account for errors in both axes.  

4.3 Results 

4.3.1 Reaction Kinetics 

All Hg(II) reduction rates followed pseudo−first order kinetics and there were no statistical 

differences in the rate constants between different dates of experiments with the same ligands 

(Table S1). In the cysteine experiments, there was no reduction of Hg(II) in the dark or in 

incubations exposed only to visible light. The lack of reduction of Hg(HCys)2 under visible light 

results from the thermodynamic stability of this complex11,14, which is only subject to direct 

photolysis near its absorption maxima in the UVB-C region at 245−310 nm5. With cysteine, the 

Hg(II) reduction rate was on average greater in the neutral treatment (pH=7; oxic, 1.13±0.21 day−1, 
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1SD, n=3, outlier 0.18 day−1; anoxic, 0.59±0.04 day−1 1SD, n=2) compared to the acidic ones 

(pH=3.2; oxic, 0.24±0.06 day−1 1SD, n=2; anoxic 0.49±0.14 day−1 1SD, n=3).  

Unlike with cysteine, Hg(II) in the presence of serine was degraded under visible light, but in 

all cases the reduction was faster with UV light than with only visible light. The highest rate of 

Hg(II) reduction was recorded for pH 7 with high DO conditions and the full sunlight spectrum 

(UV−Vis, oxic=29.94±4.23 day−1, n=2 1SD), but there was a significant reduction in the rate after 

3 hours (>3 hours, oxic, 1.27±0.29 day−1, n=3 1SD), to rates comparable to those in the cysteine 

incubations. The reduction rates at these pH’s were also affected by the presence of DO (anoxic = 

6.10, n=2), but there was no effect on reduction rates with two different serine concentrations (0.4 

mM and 4 mM). There also were no significant effects of DO or UV light on the degradation rates 

of Hg(II) in the pH=3 treatments.  

The photochemical reduction rate of Hg(II) with ethylenediamine was about twice that in the 

cysteine experiments (pH 7 oxic, 2.80±0.36 day−1, n=2 1SD), but lower than all the serine 

experiments.    

4.3.2 Mercury stable isotope fractionation during photochemical reduction of Hg(II) in the 

presence of cysteine 

Under all conditions, the photochemical reduction of Hg(II) in the presence of cysteine resulted 

in MDF (Figure 2a; δ202Hg versus ln(f); Table S4) that followed a Rayleigh fractionation pattern. 

The resulting fractionation factor for this reaction (εMDF=1.04±0.09‰, n=5) is lower than the 

previously reported value (εMDF=1.32±0.07‰, n=1)3. However, at pH 7 and under oxic conditions, 

MDF was suppressed after about 42% of the Hg(II) had been reduced, indicating that the initial 

rate limiting step was no longer causing the fractionation of Hg isotopes; no suppression of MDF 

was recorded in the pH 3 experiments.  
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The εMIF and sign (±) of MIF as recorded by Δ199Hg versus ln(f), varied depending on pH and 

DO (Figure 2d). For example, under acidic and anoxic conditions, Δ199Hg values were negative 

and in close agreement with the previously reported Rayleigh fractionation factor 

(εMIF=−0.90±0.2‰), while under neutral anoxic conditions, Δ199Hg values were positive with a 

fractionation factor of εMIF=1.15±0.11‰. For the neutral oxic experiments, significant negative 

MIF was only recorded after about 42% of the Hg(II) had been reduced and this coincided with 

the suppression of MDF, resulting in a very small MIF fractionation factor of 

εMIF=−0.25±8x10−2‰.  

Because the reduction of Hg(II) with cysteine under acidic and oxic conditions was very slow, 

it was difficult to accurately determine the extent of Hg isotope fractionation in this treatment. 

Results for the only sample in which Hg was significantly fractionated indicate that under these 

reaction conditions Hg(II) reduction followed the same MDF Rayleigh fractionation as in the other 

treatments and exhibited positive Δ199Hg similar to that in the incubation at pH 7 under anoxic 

conditions.  

4.3.3 Mercury stable isotope fractionation during photochemical reduction of Hg(II) in the 

presence of serine  

The photochemical reduction of Hg(II) in the presence of serine resulted in MDF of Hg 

isotopes that followed a similar δ202Hg fractionation relative to ln(f) regardless of experimental 

conditions (Figure. 2b). The average fractionation factor for these reactions was 

εMDF=1.81±0.04‰, which was slightly higher than the previously reported value (ε 

=1.71±0.03‰3). For the UV−Vis neutral conditions there was a clear suppression of MDF after 

74% of Hg(II) was reduced with 4 mM serine, and after 58% was reduced with 0.4 mM serine, 

resulting in an average εMDF of 0.43±0.3‰.  
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In the serine experiments, DO had no effect on Hg stable isotope values, but two types of MIF 

were recorded depending on the wavelength of light. The experiments that were only exposed to 

visible light resulted in relatively small negative Δ199Hg values in the remaining reactant (Figure 

2e; average Δ199Hg=−0.11±0.06‰, n=34). However, while incubations exposed to UV−Vis had 

small negative Δ199Hg values (~Δ199Hg=−0.20‰) during the first few hours, after 3−5 hours, when 

a significant amount of the Hg(II) had been reduced (41−74%), large positive MIF values were 

recorded in the residual Hg(II) (Δ199Hg >0.4‰). The extent of Hg(II) reduction that occurred at 

the change in MIF varied with serine concentration and pH. For example, in the anoxic experiment 

with 4 mM serine at pH 3 the MIF change started after 41% of the Hg had been reduced, while at 

pH 7 it was after 76% reduction (See Table S3e for details).   

4.3.4 Mercury stable isotope fractionation during photochemical reduction of Hg(II) in the 

presence of ethylenediamine 

  The photochemical reduction of Hg(II) in the presence of ethylenediamine resulted in a 

δ202Hg fractionation factor of  εMDF=2.11±0.2‰, and there was suppression of MDF after ~50% 

of the Hg(II) had been reduced (Figure 2c; ). During these incubations, Δ199Hg values of the 

remaining reactant Hg(II) were negative by up to −0.52‰ with a fractionation factor of  

εMIE=−0.16±0.03‰ (Figure 2f).  

4.4 Discussion 

The limited understanding of Hg isotope effects during photochemical reactions makes it 

difficult to interpret Hg MDF and MIF and their relationship to each other (e.g Δ199Hg to δ202Hg 

and Δ199Hg to Δ201Hg) in natural samples. Based on the experimental results presented here, it 

appears that MDF and MIF are controlled by different physical and chemical factors, which may 

explain why values for εMDF were similar for all the reactions with the same ligand while εMIF 
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varied depending on reaction conditions including DO and wavelength of light (Figure 2). Our 

results also demonstrate that the sign and rate of MIE does not directly depend on the binding 

ligand and negative MIE is not exclusive to thiol ligands. Here we discuss the Hg stable isotope 

signatures during photochemical reduction of Hg(II) bound to various LMWOLs, the possible 

relationship between MDF and MIF, and the environmental importance of these results.  

4.4.1 Photochemical reduction of Hg(II) in the presence of LMWOL 

4.4.1.1 Cysteine experiments  

The Hg stable isotope fractionation photoreduction experiments with  Hg(HCys)2 demonstrate 

that negative MIF does not depend on the binding ligand, but instead depends on the reaction 

conditions. The Hg(HCys)2 complex was estimated to be dominant under all experimental 

conditions, but MIF varied in sign and rate with pH and DO (Figure 2d). MIF was negative for 

anoxic pH=3 and oxic pH=7 conditions, whereas it was positive for anoxic pH=7 conditions. The 

elevated Δ199Hg values are a clear indication that the dominant isotope effect was MIE, as NVE 

can only result in small Δ199Hg values (<0.4‰3). The sign of MIE represents the spin multiplicity 

of the excited state precursor such that (−) MIE indicates that the radical pair was formed in the 

singlet state, whereas (+) MIE indicates radical pair formation in the triplet state17 (See Figure. 1).  

For Hg cysteine complexes at pH=7, it appears that DO may have quenched the excited triplet 

state to a singlet before the evolution of the RP (step 2, Figure 1) in the neutral experiments, and 

therefore caused a change in sign of MIE (Figure 2d). Molecular oxygen is a known triplet state 

radical quencher that photophysically changes the multiplicity of the electronically excited state, 

and it has been reported to alter the rate of photodecomposition of methylmercury−thiol 

complexes5,21. For the oxic pH 7 experiment there was also a strong suppression of MDF 

concomitant with an increase in MIE after 42% of the Hg had been reduced. The change in isotope 
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fractionation (both MDF and MIF) did not correlate with a change in reduction rates, suggesting 

that a change in reaction mechanism is unlikely. Instead, the suppression of MDF indicates that 

the initial rate limiting step was no longer causing the fractionation of Hg isotopes; this may 

suggest a change in the availability of the reactive intermediate species for the thermal process 

that may induce MDF. The suppression of MDF is not expected to have any effects on the MIE 

because these two isotope effects are not expected to be induced in the same reaction step based 

on theoretical considerations outlined herein.  

An opposite effect of DO was observed for the photoreduction of cysteine−bound Hg(II) at 

pH=3; under anoxic conditions it yielded negative MIE. As such, the role of pH remains unclear 

in the photochemical degradation of cysteine−bound Hg. However, based on the changes in the 

sign of MIE, pH likely alters the photophysical aspects of the reaction resulting in changes in the 

dynamics of the RP. A plausible explanation for this behavior is that solvent polarity and pH alter 

the efficiency of the solvent cage and hyperfine coupling constants33–35; but more research is 

needed to test this hypothesis.  

Even though εMIE values and the sign of MIE varied with experimental conditions, MDF 

remained unchanged (Figure 2a). A potential explanation for this is that the pathway that leads to 

MIE is not a major pathway of photodegradation, as suggested by Chandan et al. (2015)31 for the 

degradation of monomethylmercury (MeHg) with different concentrations of DOM. Chandan et 

al. reported variable slopes (εMIE ) of Δ199Hg versus ln(f), but constant εMDF values from δ202Hg 

versus ln(f). Based on these results, they concluded that photodegradation of MeHg likely did not 

involve a RP intermediate, and that indirect photolysis was likely the dominant photochemical 

pathway. However, in our Hg(II) photoreduction experiments the results indicate that pH and DO 

did not affect the rate−limiting step, but changed the rate and sign of MIE. This may reflect the 
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fact that the evolution of a coherent RP and interconversion of spin multiplicity between triplet 

and singlet states are photophysical effects, where no bond is broken or created17,18,36,37. Indirect 

photolysis is also unlikely for our experimental conditions because there was no DOM to initiate 

the reaction, and cysteine does not absorb light in the UVA/B or visible region (absorption 

maximum=190 nm, tail=260 nm38). As such, we demonstrate that DO and pH affect the sign and 

extent of MIE, but not MDF, and the overall reaction mechanism is similar for all conditions. The 

differential dependence of the magnitude of mass independent fractionation (εMIE) on the aqueous 

chemical environment indicates that the MIE is induced at a different reaction step than MDF (See 

section 4.2; Figure 1). 

4.4.1.2 Serine experiments 

The rate of Hg(II) reduction in the presence of serine varied with the speciation of Hg(II), 

the pH, and the wavelength of light (See Table S1). Reduction rates were greatest in all 

experiments exposed to the full spectrum of sunlight (UV−Vis) compared to only visible light. 

This was expected as UV light has been reported to enhance the photochemical transformation of 

Hg species in solution8,39,40. The reduction of Hg(II) was also faster at pH 7, where the Hg was  

99.9% Hg(Ser)22−, in comparison to acidic conditions (50% Hg(Ser)22− and 40% HgSer with 4 mM 

serine and 2.3% Hg(Ser)22− and 19% HgSer with 0.4 mM serine); this may suggest that Hg(Ser)22− 

complexes are more likely to undergo direct photolysis. There was also a sudden decrease in 

reaction rates in the pH 7 UV−Vis experiments after significant Hg(II) had been reduced. This 

suggests a change in reaction mechanism, as was previously demonstrated3, but this sudden change 

in kinetics was not apparent in the pH 3 experiments with UV−Vis.   

A change in reaction mechanism in the course of the experiments with UV light is 

supported by the Hg isotope signatures. The Hg(II) experiments with serine resulted in two 
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different MIF effects. NVE was observed under all reaction conditions, whereas MIE was only 

exhibited in experiments with UV light after significant Hg(II) had been reduced (Figure 2e; Table 

S3e), and where the onset of MIE was also dependent on pH. We agree with the hypothesis from 

a previous study3 that the change in kinetics and MIF suggests that the dominant reaction 

mechanism changed from indirect photoreduction by reactive radicals to direct photolysis of the 

Hg complex. We observe that the change in MIF from NVE to MIE seems to depend on multiple 

factors, such as, pH, DO, and the speciation of Hg(II) in solution (Table S3b). For example, at 

pH=3 under anoxic conditions and with 4 mM serine, MIE was induced after 40% of the Hg(II) 

had been reduced, while at pH=7 under anoxic conditions MIE was induced after 76% reduction 

(Figure 2e; Table S3b). We do not have a clear explanation for the effects of pH on the onset of 

MIE in the reaction, but we suggest that it may correlate with the dissolved Hg(II) species in 

solution at different pH values (See Table S2). MIE may be limited by the availability of Hg−serine 

complexes in solution, which can undergo direct photolysis favoring indirect photolysis and 

resulting in fast reduction rates in the early stages of the reaction. This is supported by Zheng and 

Hintelmann (2010)3, where MIE was only observed after a much larger proportion of Hg(II) had 

been reduced (~98%) compared to any of our experiments. This may have been due to excess Cl−, 

low pH, or low serine concentration (0.4 mM), all of which could have limited complexation of 

Hg(II) by serine compared to our experiments.  

During the phase of the UV−Vis experiments characterized by large positive Δ199Hg values, 

the εMDF and εMIE also appear to depend on pH and by inference, the speciation of Hg in solution. 

For the pH=7 experiments there was a suppression of MDF concomitant with the onset of MIE, 

while this was not recorded in the pH=3 experiments. Differential timing of εMDF and εMIE may 

indicate that MDF and MIE do not arise from the same steps in the photochemical reaction. By 
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inspecting the relationship between Δ199Hg and δ202Hg values, we report that both pH 3 and 7 

experiments plot within uncertainty of the same slope (1.84±0.11; Figure 3 inset(a)). It is unclear 

why both experimental conditions have similar Δ199Hg/δ202Hg slopes, but the overlap suggests that 

the direct photolysis of Hg(II)−serine complexes has a similar reaction mechanism at pH 3 and 7. 

We suggest that Δ199Hg reflects the photophysical aspects of the reaction, while δ202Hg reflects 

the rate limiting step of the thermal aspects. More research is needed to fully determine the 

significance of the Δ199Hg to δ202Hg relationship in these experiments.  

In the Vis experiments and the early hours of the UV−Vis experiments the slightly negative 

Δ199Hg and Δ201Hg values (up to −0.3‰, Figure 2e inset) but positive δ199Hg and δ201Hg values 

are a clear sign of NVE by indirect photolysis of Hg(II) by reactive radicals3. The fractionation 

factors with δ values (Table S5) also showed the characteristic odd−even staggering of NVE3,41. 

Despite the variable reduction rates of Hg(II) in these experiments, the εMDF  values were the same 

for all the reactions (Figure 2b) suggesting that the indirect photolysis mechanism was similar for 

all reaction conditions. The εMDF fractionation factor was identical even for solutions where HgCl2 

was the dominant species of Hg in solution (pH 3, anoxic, 0.4 mM serine). This further supports 

our hypothesis that the Hg stable isotope values during this part of the reaction may represent 

indirect photolysis, because HgCl2 does not absorb light in the natural sunlight spectrum42,43 and 

cannot exhibit MIE in natural sunlight. This suggests that the isotopic signatures of indirect 

photolysis are insensitive to the complexing ligand (Figure 2b and 2e−inset). However, it is 

difficult to ascertain the radical precursor for the indirect photolysis because serine, with an 

absorption maxima of 168 nm, does not absorb natural sunlight38.  

4.4.1.3 Ethylenediamine experiments  
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Hg has a high affinity for organic thiols, however, when thiols are saturated, Hg will bind to N 

ligands preferentially to O ligands in DOM13,14. Hg−en complexes are thermodynamically very 

stable11 resulting in photoreduction rates that are slightly faster than those for Hg−cysteine 

complexes, but slower than in all of our experiments with Hg−serine complexes. The slow reaction 

rate and the absence of NVE suggests that there was no secondary photolysis. Moreover, the large 

negative Δ199Hg values (Figure 2f), which are characteristic of MIE, may indicate direct photolysis 

during the reduction of en−bound Hg(II). The (−) sign of MIE may indicate that the excited state 

precursor was formed in a singlet state (See Figure. 117). In this case, it is possible that molecular 

oxygen quenched the excited triplet state to a singlet state as proposed for the photoreduction of 

cysteine−bound Hg(II) in the presence of oxygen, however, no ethylenediamine experiments were 

conducted under anoxic conditions. Similarly to the cysteine experiments there was an apparent 

suppression of MDF after 74% of the Hg had been reduced. The suppression suggests that the 

initial rate limiting step was no longer fractionating the Hg isotopes in the thermal stage of the 

reaction likely due to the availability of a reactive intermediate. As in the cysteine experiments the 

suppression of MDF should not affect the extent of MIE because these two isotope effects are not 

expressed in the same reaction step.  

4.4.2 Photophysical control of MIE during the photochemical reduction of Hg(II) complexes  

 Based on our results and the theoretical frameworks for MDF and MIE, we suggest that 

these isotope effects may not occur in the same reaction step during the photochemical reduction 

of Hg(II). Δ199Hg values are expected to arise from intersystem crossing of the solvent separated 

RP (Figure 1, step 4), with no significant δ202Hg. And δ202Hg values are expected to arise from the 

rate limiting step of a thermally induced process, with no significant Δ199Hg. This explains why 

MDF Rayleigh plots for the incubations of Hg(II)−cysteine followed the same slope (εMDF) 
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regardless of pH prior to any MDF suppression (Figure 2a). Yet in the same experiments, εMIE 

varied with reaction conditions (Figure 2d) resulting in variable MIE rates and sign. The variable 

εMIE with different pH and DO may be a result of changes in the solvation and reactivity of the RP 

intermediate. It has been demonstrated that MIE enrichment factors for C, S, and Si may change 

with varying viscosity44–46, triplet sensitizers17,47, excited state quenchers46, and the bonding 

environment31,36,45 for the same reaction mechanism. As such, the interaction of photophysical 

factors likely determines the sign and extent of MIE during light−driven reduction of Hg(II). In 

the serine experiments, photophysical effects on the MIE were obscured by large differences in 

Hg(II) speciation in the UV−Vis experiments.  

4.4.3 Environmental implications 

Hg isotope measurements in natural samples have been proven to be effective tools for 

elucidating important transformations of Hg in the environment2,48,49, and MIF signatures from 

photochemical reduction of Hg(II) have served as a useful way to track Hg in the 

environment31,50,51. This is because once Hg is incorporated into higher trophic level organisms it 

is not available for photochemical degradation52. The Hg isotope trends reported here allow for an 

enhanced interpretation of Hg MIF signatures in the environment (Figure 4). For example, our 

experiments where HgCl2 was the major species in solution suggest that in marine environments, 

where more than 50% of Hg(II) may be complexed to Cl53, photochemical reduction will be 

dominated by indirect photolysis resulting in NVE effects with small negative Δ199Hg values 

(Figure 4). The photolysis of HgCl2 cannot yield MIE because it is not available for direct 

photolysis in natural sunlight. In contrast, in surface freshwaters where most Hg(II) is expected to 

be complexed to DOM12–14, our results indicate that the photoreduction of Hg(II) may 

preferentially result in negative MIE, because in surface oxygenated waters Hg will preferentially 
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bind to S− or N− type functional groups in DOM. This contradicts the results of previous 

experiments with Hg(II) and DOM2,4, which resulted in large (+) Δ199Hg values in residual Hg(II). 

This difference may be due to the elevated Hg concentrations used in previous experiments. 

Elevated Hg to DOM ratios favor Hg(II) complexation to O−type ligands, which have greater 

reduction rates and exhibit positive Δ199Hg values.4 Recent experiments with DOM derived from 

marine phytoplankton exhibited negative MIF similar to our cysteine experiments27.  

Finally, it has been suggested that the Δ199Hg/Δ 201Hg (Figure 5) slope could be used to 

determine whether inorganic Hg(II) or MeHg is the substrate of photochemical reactions leading 

to MIF in the environment. However, the Δ199Hg and Δ201Hg values reported here indicate that the 

slope is sensitive to the complexing ligand and that it does not exclusively discriminate between 

MeHg and Hg(II) type complexes. We have shown that the Δ199Hg/Δ201Hg ratio for MIE can range 

from 0.85 to 1.46, with serine, ethylenediamine, and neutral cysteine experiments having a 

Δ199Hg/Δ201Hg ratio close to 1 (0.85−1.11), while acidic cysteine experiments have a 

Δ199Hg/Δ201Hg ratio of 1.30 in this study and 1.46 in the previous study3. This contradicts the 

assumption that Hg(II) photochemical reduction may exclusively yield a Δ199Hg/Δ201Hg ratio of 

1.00 ± 0.012. In addition to the Δ199Hg/Δ201Hg ratio for MIE, the deviation from the hypothesized 

NVE 1.6 slope41 in the serine visible experiments indicates that NVE may vary depending on 

reactions conditions and dissolved Hg species in solution (Figure 4, inset). This is supported by 

Δ199Hg/Δ201Hg NVE slopes ranging from 1.5−1.6 for nonphotochemical degradation of Hg 

coordinated to natural DOM41, 1.64 during the photochemical oxidation of gaseous Hg by Br 

radicals54, and 2.0 for Hg liquid−vapor equilibrium55 . We propose that examining even−odd 

patterns in the fractionation factors of the Hg isotopes is a better indicator of NVE41 than the 

Δ199Hg/Δ201Hg slope.  
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In summary, we demonstrate that during the photoreduction of Hg(II) bound to various 

LMWOLs, the occurrence of Hg stable isotope fractionation by the NVE or MIE mechanisms 

depends on Hg(II) speciation and wavelength of light, while the sign and rate of MIE depends on 

the complexing ligand, DO, and pH (Figure 4). MDF and MIE are induced at different steps in the 

reactions and specifically highlight the potential role of photophysical processes on MIE. 

However, to better interpret MIF signatures preserved in aquatic organisms additional experiments 

are needed to explore the role of pH and photophysical quenchers on MIE and investigate the 

relationships between Δ199Hg and δ202Hg in photochemical transformations of Hg, particularly 

concentrating on potential implications of excited state non−equilibrium isotope effects56.   

ABBREVIATIONS 

Ser, Serine; Cysteine, Cys; En, Ethylenediamine; MDF, Mass dependent isotope fractionation; 

MIF, Mass independent isotope fractionation; Nuclear volume effects, NVE; Magnetic isotope 

effect, MIE.  
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Figure 4.1. Radical Pair mechanism for magnetic isotope effect for the XHgX complex, where 
X=−S, −N, or −O bearing ligand17,37. The steps are described in the introduction. Briefly, MIE 
arises from the nonzero nuclear spin and nuclear magnetic moment produced by the presence of 
an unpaired neutron in the nucleus of odd mass isotopes that results in hyperfine splitting. The 
origin of MIE comes from the spin coherent evolution of the correlated solvent separated radical 
pair in step 3, where hyperfine coupling affects the rate of spin state interconversion T↔S (step 
4). The correlated radical pair must be solvent separated for electron exchange interactions to be 
minimized (step 4), and the magnitude and preference for odd to even isotope enrichment in the 
ground state will be determined by the spin multiplicity of the excited state precursor prior to the 
evolution of the RP (step 3−5)17,18  
 
 
 
 
 

XHgX

1XHgX*
3XHgX*

XHg• + X•

Ph
ot

oe
xc

ita
tio

n
Fl

uo
re

sc
en

ce

Ground-state
Precursors 

Solvent Separated 
Radical Pair

Products

Free
Radicals

1

2

3

4

5

6

7

196Hg 198Hg 200Hg 
202Hg 204Hg

199Hg 201Hg

1(XHg•I•X)               3(XHg•I•X)
196Hg 198Hg 200Hg 

202Hg 204Hg

199Hg 201Hg
4

XHg• + X•

6

Products

7

5

3

(-
)M

IE
En

ric
h 

in
 e

ve
n

is
ot

op
es

(+)M
IE

Enrich in odd isotopes

1(XHg•I•X)              3(XHg•I•X)

Excited Singlet State
Negative Magnetic Isotope Effect

Excited Triplet State
Positive Magnetic Isotope Effect

A B



 124 

 
Figure 4.2. Rayleigh distillation plots of the mass−dependent (MDF, A−C) and mass−independent 
fractionation (MIF, D−F) of Hg stable isotopes during the photochemical reduction of Hg(II) bound to 
various ligands.  For the reduction of Hg(II) in the presence of cysteine (A and D), circles are results from 
the present study. For the serine experiments (B and E), grey circles are for all of the experiments with 
only visible light, blue circles are for the pH 3 anoxic treatments, and red circles are for the pH 7 
anoxic/oxic treatments. For ethylenediamine (C and E), yellow circles represent the two pH 7 oxic 
experiments. The inset in panel E shows the small extent of (−)MIF by NVE.  
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Figure 4.3. Three−isotope plots illustrating correlations between MIF (Δ199Hg) and MDF (δ202Hg) for the serine 
experiments. The symbols are the same as in Figure 2. Inset the values were normalized to the onset of MIE (see text 
section 4.1.2 for details).  
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Figure 4.4. Summary diagram showing the expected effects of environmental factors (wavelength of light, pH, and 
dissolved oxygen) on the type (nuclear volume effect, NVE or magnetic isotope effect, MIE) and sign of MIF in 
residual Hg(II) during the photochemical reduction of Hg−Xn (n is the number of ligands; X=SR, OR, NR organic 
ligands, or Cl) . Briefly, when Hg(II) is complexed with thiol ligands, the sign of MIE will depend on pH and DO, 
but more observations are needed to verify that pH3/oxic conditions yields (+) MIE in residual Hg(II). The 
photoreduction of Hg(II) complexed to OR type ligands with UVA−B radiation will yield (+) MIE regardless of pH 
or DO. The MIE of residual photoreduced Hg(II)−NR complexes will yield negative MIE at pH7 with UV−Vis 
radiation, but other pH values, DO concentrations, or wavelengths of light were not examined with this ligand. 
Lastly, the photochemical reduction of Hg(II) complexed to Cl under UV−Vis or to OR under visible light will only 
yield small, negative (Δ199Hg > −0.4‰) extents of MIF in residual Hg(II) indicative of NVE.  
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Figure 4.5. Three isotope plot illustrating correlation between Δ199Hg and Δ201Hg (both MIF). The purple 
circles are for the cysteine pH 7 anoxic experiments, red circles are for the serine UV−Visible oxic and anoxic 
experiments, black circles are for the ethylenediamine pH 7 oxic experiments, green circles are for the cysteine 
pH 7 oxic experiments, and blue circles are for the pH 3 anoxic experiments. The inset shows the small extent 
of (−) MIF due to NVE during the early stages of the serine experiments in the presence of visible (grey 
circles) or UV−visible (red circles) light. 
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4.5 Supporting Information 

Table S4.1. Experimental details of Hg(II) photoreduction experiments in the presence of serine, 
cysteine, and ethylenediamine 

 

 

 

 

 

 

 

 

 

 

 

 

Ligand Date Treatment
Expt. 

Duration 
(hr)

%Reduction 
Rate 

Constant 
(day-1)

Secondary 
Reaction 

Rate (day-1)
Avg. T (°C) Max T (°C)

pH 7 Oxic 10.82 31.54 0.84
pH 7 Oxic Vis 10.81 0.04 0.00

pH 7 Oxic 18.28 13.91 0.18
pH 7 Anoxic 18.35 39.04 0.62
pH 3 Oxic 18.23 21.09 0.27

pH 3 Anoxic 18.38 31.73 0.39
pH 7 Oxic 7.03 46.54 1.19

pH 7 Anoxic 6.55 13.75 0.56
pH 3 Oxic 15.03 13.53 0.21

pH 3 Anoxic 6.55 16.10 0.59
Aug-23-2012 pH 7 Oxic 60.45 96.78 1.36 25 30

low- pH 7 Oxic 8.72 89.95 Not Determined Not Determined

low-pH 7 Anoxic 8.62 79.11 6.10 0.064 a

low-pH 7 Oxic Vis 8.92 27.51 0.87
low-pH 7 Anoxic Vis 8.80 52.23 2.05

low pH 3 Anoxic 8.50 80.92 4.81
low pH 3 Anoxic Vis 8.68 5.62 0.16

pH 7 Oxic 10.83 93.20 32.94 1.61
pH 7 Oxic Vis 10.82 83.09 4.21 Not Determined

pH 7 Oxic 7.70 87.25 26.95 1.11

pH 7 Anoxic 6.73 81.66 6.10 0.064 a

pH 7 Oxic Vis 8.13 70.45 3.69
pH 7 Anoxc Vis 7.93 70.57 3.43

pH 3 Anoxic 7.68 55.85 2.62
pH 3 Anoxic Vis (nitrate) 8.15 19.23 0.65

Aug-23-2012 pH 7 Oxic 26.87 99.41 Not Determined 1.08 25 30

pH 7 Oxic 18.22 71.17 2.54
pH 7 Oxic 17.53 89.66 3.06

a  the secondary reduction rate was determined as an average of both experiments

24 27

Ethylenediamine 
4.0 mM

May-18-2012 18 23

34

Serine 0.4 mM Sept-10-2011 24 27

Serine 4.0 mM

Jun-30-2011 24 30

Sept-10-2011

Cysteine  0.4 mM

Jun-30-2011 24 30

May-18-2012 18 23

Jul-17-2013 30
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Table S4.2 Dissolved Hg(II) species in solution 

 

 

 

 

 

 

 

 

 

 

 

pH 7 Oxic pH 7 Anoxic pH 3 Oxic pH 3 Anoxic
Hg(HCys)2 96.5 96.5 96.5 96.5

[Hg(Cys)2]-2 3.5 3.5 3.5 3.5
[Hg(Cys)3]-4 2.6x10-10 2.6x10-10 1.1x10-17 1.1x10-17

Hg(Cys)4 4.6x10-17 4.6x10-17 8.5x10-32 8.5x10-32

HgCys 1.3x10-21 1.31x10-21 2.64x10-14 2.64x10-14

HgCl2 0 1.9x10-35 0 6.3x10-06

Hg(OH)2 8.0x10-20 8.0x10-20 1.7x10-12 1.7x10-12

Hg(NO3)2 1.9x10-35 0 1.0x10-17 0
HgSer 0.3 0.3 19.4

[Hg(Ser)2]-2 91.3 91.3 2.3
HgCl2 0 1.2 76.8

Hg(OH)2 8.37 8.27 0.2
Hg(NO3)2 2.02x10-15 0 0

HgSer 3.3x10-2 3.3x10-2 40
[Hg(Ser)2]-2 99.9 99.9 50

HgCl2 0 1.3x10-2 16
Hg(OH)2 9.1x10-2 9.1x10-2 4.0x10-2

Hg(NO3)2 2.0x10-17 0 0
Hg(en)+2 2.3x10-2

[Hg(en)2]+2 70.6
[HgOH(en)2]+2 29
[HgH(en)2]+2 0.3

HgCl2 0
Hg(OH)2 4.7x10-3

Hg(NO3)2 1.2x10-18

Stock Hg(II) solutions
250 ppm

100 ppmHg(NO3)2, preserved in 2% HNO3

HgCl2, preserved in 1 % BrCl

Ligand Hg Species Treatment (%Hg Species)

0.4 mM Cysteine

0.4 mM Serine

4 mM Serine

4 mM Ethylanediamine
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Table S4.3a. Hg stable isotope values for cysteine experiments  

 

 

 

Date Treatment time(hrs) [Hg] ng/g [Hg] uM f δ202Hg δ204Hg δ200Hg δ201Hg δ199Hg Δ199Hg Δ201Hg
0.00 39.40 0.20 1.00

10.81 39.20 0.20 0.99
0.00 48.62 0.24 1.00 -0.66 -0.97 -0.35 -0.58 -0.22 -0.05 -0.08
9.95 34.96 0.17 0.72 -0.21 -0.38 -0.06 -0.22 -0.12 -0.06 -0.06

15.28 28.26 0.14 0.58 -0.23 -0.29 -0.12 -0.31 -0.24 -0.18 -0.13
36.02 10.82 0.05 0.22 -0.26 -0.32 -0.14 -0.63 -0.47 -0.40 -0.44
60.45 1.56 0.01 0.03 -0.09 -0.16 -0.04 -0.93 -0.92 -0.90 -0.86
0.00 38.68 0.19 1.00 -0.46 -0.69 -0.21 -0.37 -0.12 0.00 0.00
0.54 38.06 0.19 0.98
2.21 33.32 0.17 0.86
4.38 34.35 0.17 0.89
7.03 28.18 0.14 0.73

12.30 20.68 0.10 0.53 -0.20 -0.15 -0.13 -0.07 0.24 -0.08 -0.06
0.00 42.55 0.21 1.00
1.42 40.47 0.20 0.95

10.15 38.60 0.19 0.91
15.28 37.26 0.19 0.88
18.28 36.63 0.18 0.86
0.00 39.00 0.19 1.00
1.33 38.40 0.19 0.98 -0.84 -1.25 -0.45 -0.67 -0.17 0.04 -0.04
4.87 30.60 0.15 0.78 -0.72 -1.09 -0.34 -0.54 -0.17 0.02 0.02
6.33 31.20 0.16 0.80 -0.55 -0.81 -0.25 -0.43 -0.12 0.01 -0.02
9.42 28.20 0.14 0.72 -0.42 -0.63 -0.18 -0.33 -0.12 -0.01 -0.01

10.82 26.70 0.13 0.68 -0.44 -0.69 -0.18 -0.39 -0.14 -0.03 -0.06
0.00 43.36 0.22 1.00 -0.46 -0.69 -0.21 -0.37 -0.12 0.00 0.00
0.46 43.00 0.21 0.99
2.13 41.68 0.21 0.96
4.30 38.99 0.19 0.90
6.55 37.40 0.19 0.86 -0.19 -0.22 -0.11 -0.04 0.12 0.168 0.10
0.00 38.24 0.19 1.00 -0.91 -1.36 -0.43 -0.68 -0.22 0.01 0.01
5.22 33.35 0.17 0.87 -0.85 -1.36 -0.46 -0.53 -0.08 0.133 0.11

10.30 30.81 0.15 0.81
12.75 28.76 0.14 0.75 -0.64 -1.01 -0.35 -0.19 0.20 0.37 0.29
15.47 26.10 0.13 0.68 -0.50 -0.79 -0.22 -0.02 0.41 0.54 0.36
18.35 23.31 0.12 0.61 -0.49 -0.64 -0.16 0.12 0.39 0.52 0.49
0.00 44.87 0.22 1.00 -0.46 -0.69 -0.21 -0.37 -0.12 0.00 0.00
2.15 42.47 0.21 0.95
6.55 37.65 0.19 0.84 -0.30 -0.39 -0.17 -0.36 -0.26 -0.182 -0.131
0.00 39.95 0.20 1.00 -0.93 -1.45 -0.48 -0.75 -0.16 0.07 -0.06
5.08 36.05 0.18 0.90 -0.91 -1.38 -0.50 -0.77 -0.26 -0.03 -0.08

10.25 32.70 0.16 0.82
15.40 30.40 0.15 0.76
18.38 27.27 0.14 0.68 -0.61 -0.98 -0.29 -0.52 -0.30 -0.147 -0.06
0.00 40.50 0.20 1.00 -0.44 -0.97 -0.29 -0.44 -0.15 0.01 0.02
0.51 40.30 0.20 0.99
2.21 39.80 0.20 0.98
4.28 39.10 0.19 0.97
7.03 38.50 0.19 0.95

15.03 35.02 0.17 0.86 -0.34 -0.81 -0.27 -0.34 -0.05 0.10 0.08
0.00 43.00 0.21 1.00
0.58 42.67 0.21 0.99
5.08 41.80 0.21 0.97

10.25 36.87 0.18 0.86
15.37 35.11 0.18 0.82
18.23 33.93 0.17 0.79

May-18-2012

pH 7 Oxic

pH 7 Anoxic

pH 3 Anoxic

pH 3 Oxic

Jun-30-2011

Jul-17-2013

May-18-2012

Jul-17-2013

May-18-2012

Jul-17-2013

Jun-30-2011

Αug-23-2012

Jul-17-2013

May-18-2012

pH 7 Oxic Vis
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Table S4.3b Hg stable isotope values for the serine experiments at 400 mM and low serine at 0.4 mM 
 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Date Treatment time(hrs) [Hg] ng/g [Hg] uM f δ202Hg δ204Hg δ200Hg δ201Hg δ199Hg Δ199Hg Δ201Hg
0.00 33.80 0.17 1.00 -0.46 -0.69 -0.25 -0.43 -0.11 0.00 -0.08
1.35 5.30 0.03 0.16 2.64 4.03 1.34 2.24 0.89 0.23 0.25
3.03 3.90 0.02 0.12 2.65 3.93 1.32 2.56 1.31 0.64 0.56
4.88 3.20 0.02 0.09 2.69 4.04 1.32 2.73 1.45 0.78 0.71
9.40 2.40 0.01 0.07 2.77 4.17 1.36 2.78 1.54 0.84 0.70

10.83 2.30 0.01 0.07 2.83 4.26 1.42 2.82 1.66 0.95 0.69
0.00 37.45 0.19 1.00 -0.26 -0.40 -0.14 -0.26 -0.10 -0.04 -0.07
5.27 1.32 0.01 0.04 3.56 5.28 1.78 4.58 2.93 2.03 1.91
6.70 1.20 0.01 0.03 3.45 5.23 1.68 4.55 2.91 2.04 1.96

15.95 0.31 0.00 0.01 2.82 4.33 1.51 5.83 4.92 4.21 3.71
21.20 0.25 0.00 0.01 2.51 3.90 1.21 5.24 4.40 3.77 3.35
26.87 0.22 0.00 0.01
0.00 33.70 0.17 1.00 -0.52 -0.88 -0.19 -0.44 -0.09 0.04 -0.05
3.07 24.60 0.12 0.73 0.07 0.07 0.03 0.04 -0.01 -0.07 -0.06
4.88 15.00 0.07 0.45 1.40 2.08 0.75 1.00 0.28 -0.02 -0.01
6.37 12.70 0.06 0.38 1.48 2.28 0.74 1.04 0.22 -0.15 -0.08
8.12 7.60 0.04 0.23 2.51 3.80 1.25 1.79 0.52 -0.11 -0.10

10.82 5.70 0.03 0.17 2.79 4.19 1.37 2.06 0.65 -0.06 -0.04
0.00 17.80 0.09 1.00 0.80 1.12 0.46 0.52 0.14 -0.06 -0.09
0.42 12.40 0.06 0.70 1.21 1.91 0.54 0.72 0.08 -0.22 -0.19
0.82 7.10 0.04 0.40 2.19 3.27 1.09 1.56 0.39 -0.17 -0.09
3.15 2.80 0.01 0.16 3.04 4.53 1.47 2.49 0.93 0.16 0.20
7.70 2.27 0.01 0.13 3.01 4.47 1.50 2.42 1.01 0.25 0.16
0.00 28.27 0.14 1.00 -0.59 -0.95 -0.31 -0.48 -0.14 0.01 -0.04
8.72 2.84 0.01 0.10 1.10 1.67 0.57 5.28 5.09 5.54 5.18
0.00 26.21 0.13 1.00 -0.12 -0.19 -0.02 -0.13 -0.01 0.02 -0.04
0.88 9.95 0.05 0.38 2.07 3.15 1.02 1.48 0.45 -0.08 -0.07
3.10 5.02 0.03 0.19 2.89 4.38 1.43 2.481 0.98 0.25 0.30
4.92 4.47 0.02 0.17 3.03 4.53 1.47 2.73 1.27 0.45 0.51
6.73 5.02 0.03 0.19 2.97 4.31 1.50 2.52 1.10 0.36 0.29
0.00 23.94 0.12 1.00 -0.56 -0.87 -0.29 -0.48 -0.17 -0.03 -0.06
0.92 16.70 0.08 0.70 0.15 0.32 0.07 -0.04 -0.17 -0.21 -0.16
3.98 5.10 0.03 0.21 1.14 1.68 0.55 5.32 5.04 4.75 4.46
8.62 5.00 0.02 0.21 1.29 1.95 5.86 6.14 0.62 5.54 5.18
0.00 17.60 0.09 1.00 0.42 0.67 0.16 0.28 0.02 -0.08 -0.03
1.43 13.40 0.07 0.76 1.01 1.54 0.49 0.67 0.07 -0.18 -0.09
2.75 10.40 0.05 0.59 1.43 2.17 0.75 0.95 0.20 -0.16 -0.13
5.73 6.20 0.03 0.35 2.36 3.55 1.16 1.62 0.37 -0.23 -0.16
8.13 5.20 0.03 0.30 2.39 3.57 1.21 1.72 0.42 -0.18 -0.08
0.00 26.90 0.13 1.00 -0.56 -0.70 -0.34 -0.43 -0.17 -0.03 -0.01
4.27 23.70 0.12 0.88 -0.21 -0.31 -0.11 -0.23 -0.14 -0.09 -0.07
8.92 19.50 0.10 0.72 0.30 0.40 0.15 0.17 0.02 -0.05 -0.05
0.00 35.00 0.17 1.00 -0.79 -1.20 -0.37 -0.63 -0.24 -0.04 -0.03
1.52 20.70 0.10 0.59 0.51 0.75 0.26 0.30 0.07 -0.06 -0.09
2.80 18.00 0.09 0.51 0.69 1.01 0.29 0.41 0.09 -0.09 -0.11
4.27 14.70 0.07 0.42 1.12 1.65 0.53 0.74 0.13 -0.15 -0.10
5.77 12.60 0.06 0.36 1.45 2.21 0.72 1.03 0.22 -0.14 -0.06
7.93 10.30 0.05 0.29 1.90 2.84 0.91 1.34 0.305 -0.18 -0.09
0.00 27.63 0.14 1.00 -0.62 -1.02 -0.29 -0.43 -0.14 0.01 -0.10
2.53 22.10 0.11 0.80 -0.09 -0.14 -0.01 -0.32 -0.28 -0.25 -0.26
5.47 16.40 0.08 0.59 0.40 0.50 0.16 0.03 -0.16 -0.26 -0.27
8.80 13.20 0.07 0.48 1.09 1.59 0.58 0.81 0.26 -0.01 -0.03
0.00 31.03 0.15 1.00 -0.45 -0.74 -0.22 -0.37 -0.12 -0.01 -0.03
0.82 28.30 0.14 0.91 -0.34 -0.59 -0.19 -0.37 -0.19 -0.11 -0.10
3.10 21.80 0.11 0.70 0.26 0.44 0.15 0.17 -0.01 -0.08 -0.02

5.87 15.70 0.08 0.51 0.95 1.49 0.50 1.13 0.72 0.48 0.41
7.68 13.70 0.07 0.44 1.31 1.89 0.66 1.94 1.37 1.04 0.96
0.00 30.67 0.15 1.00 -0.70 -1.04 -0.31 -0.51 -0.18 0.00 0.01
0.83 29.50 0.15 0.96 -0.53 -0.81 -0.26 -0.50 -0.24 -0.10 -0.10
4.27 14.50 0.07 0.47 1.17 1.67 0.57 0.95 0.38 0.09 0.07
8.50 5.85 0.03 0.19 2.26 3.39 1.15 3.50 2.36 1.79 1.80
0.00 28.86 0.14 1.00 -0.39 -0.54 -0.18 -0.39 -0.08 0.01 -0.09
3.15 26.50 0.13 0.92 -0.31 -0.45 -0.13 -0.22 -0.17 -0.09 0.02
4.62 24.10 0.12 0.84 0.00 0.01 0.01 -0.07 -0.02 -0.09 0.02
5.98 24.30 0.12 0.84 -0.04 -0.01 0.03 -0.04 -0.04 -0.03 -0.01
8.15 23.31 0.12 0.81 0.05 0.17 0.03 -0.05 -0.08 -0.09 -0.09
0.00 33.80 0.17 1.00 -0.86 -1.30 -0.43 -0.66 -0.18 0.03 -0.02
4.08 33.30 0.17 0.99 -0.79 -1.12 -0.38 -0.61 -0.23 -0.03 -0.02
8.68 31.90 0.16 0.94 -0.51 -0.77 -0.28 -0.40 -0.17 -0.04 -0.02

Sept-10-2011

pH 7 Oxic

low pH 7 Oxic

pH 7 Anoxic

low pH 7 Anoxic

pH 7 Oxic Vis

low pH 7 Oxic Vis

pH 7 Anoxic Vis

low pH 7 Anoxic Vis

pH 3 Anoxic

low pH 3 Anoxic

pH 3 Anoxic Vis (nitrate)

low pH 3 Anoxic Vis

pH 7 Oxic Vis

Jun-30-2011

Aug-23-2012

Jun-30-2011

pH 7 Oxic
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Table S4.3c Hg stable isotope values for the ethylenediamine experiments. Reference standard Hg isotope 
data. Percent of Hg reduced at the shift between NVE to MIE in the serine experiments  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Date Treatment time(hrs) [Hg] ng/g [Hg] uM f δ202Hg δ204Hg δ200Hg δ201Hg δ199Hg Δ199Hg Δ201Hg
0.0 15.91 0.08 1.00 -0.22 -0.38 -0.05 -0.11 -0.02 0.04 0.06
3.5 6.06 0.03 0.38

10.63 4.58 0.02 0.29
18.22 4.59 0.02 0.29 2.63 3.89 1.30 1.76 0.39 -0.28 -0.22
0.00 22.19 0.11 1.00 0.17 0.15 0.07 0.05 0.01 -0.03 -0.08
0.50 18.90 0.09 0.85 0.48 0.48 0.32 0.28 0.02 -0.11 -0.08
3.00 9.58 0.05 0.43 1.46 2.21 0.79 1.01 0.16 -0.20 -0.08

10.00 5.80 0.03 0.26 1.84 2.76 0.89 1.16 0.20 -0.26 -0.22
11.98 3.20 0.02 0.14 1.85 2.49 0.83 0.77 -0.05 -0.52 -0.61
17.53 2.29 0.01 0.10 1.86 2.85 0.95 1.00 0.16 -0.31 -0.40

May-18-2012 pH 7 Oxic

Sessions Total Replicates d204 2SD d202 2SD d201 2SD d200 2SD d199 2SD D204 2SD D201 2SD D200 2SD D199 2SD
16 90 -0.86 0.08 -0.57 0.07 -0.47 0.06 -0.28 0.04 -0.16 0.05 0.00 0.10 -0.04 0.02 0.01 0.02 -0.02 0.04

Average

Date Treatment % Reduced (onset of MIE)
Jun-30-2011 pH 7 Oxic 73.69
Aug-23-2012 pH 7 Oxic 70.83

pH 7 Oxic 76.44
pH 7 Anoxic 75.92

low pH 7 Oxic 57.73
low pH 7 Anoxic 57.73

pH 3 Anoxic 40.52
low pH 3 Anoxic 58.79

Sept-10-2011
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Table S4.4 MDF and MIF Fractionation factors for all experiments 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ligand Treatment εMDF (‰) εMIF (‰)
pH 7 Oxic 1.15±0.11

PH 7 Anoxic 0.25±8E-2
pH 3 Oxic 0.09±0.20

pH 3 Anoxic 
pH 7 Oxic

pH 7 Anoxic
pH 7 Oxic Vis

pH 7 Anoxic Vis
pH 3 Anoxic Vis (nitrate)

Ethylenediamine pH 7 Oxic 2.11±0.2 0.16±0.03

1.04±0.09

1.81±0.04

Not enough redcuction of Hg(II)

Cysteine

Serine 
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Table S4.5 Summary of fractionation factors for visible serine experiments.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Isotope Pair εMDF Standard Deviation R2

199/198 0.39 0.03 0.86
200/198 0.93 0.03 0.96
201/198 1.41 0.04 0.96
202/198 1.81 0.04 0.98
204/198 2.94 0.08 0.97
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Chapter 5 Methylmercury Photodecomposition and Incorporation in Marine Plankton 

Co-authored with Joel D. Blum, Brian N. Popp, John R. Reinfelder, Paul M. Zimmerman, and 
Marcus W. Johnson. Methylmercury photodecomposition and incorporation in marine plankton. 
Nature Geoscience. Submitted 
 

Abstract: Monomethylmercury (MeHg) is a highly toxic form of mercury (Hg) that accumulates 

in marine food webs reaching high enough levels in fish to be a public health concern. Despite 

decades of research, there is still an incomplete understanding of the marine biogeochemical cycle 

of MeHg, including how it enters and accumulates in pelagic food webs. Here we use ab initio 

methods to investigate the photoreactivity of MeHg complexes in seawater, together with mercury 

stable isotope ratios from laboratory and shipboard photodegradation experiments and in 

zooplankton from the central tropical and subtropical North Pacific Ocean. We trace the pathways 

by which MeHg is incorporated into planktonic organisms at the base of pelagic marine food webs. 

Significant differences in the Hg stable isotope composition (δ202Hg, Δ199Hg, and Δ201Hg) between 

small versus intermediate and large size classes are documented for zooplankton from the upper 

layer of the photic zone (25 m) of the N. Pacific Ocean. Our results suggest that much of the MeHg 

accumulated by phytoplankton and small zooplankton in the upper layers of the ocean's photic 

zone is not transferred to large consumers, while MeHg accumulated by phytoplankton and 

zooplankton living at the base of the euphotic zone is retained in the planktonic food web and 

effectively transferred to higher trophic level consumers. These results illuminate a critical link in 
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the accumulation of MeHg in oceanic food webs and inform efforts to trace the accumulation of 

pollutant Hg in marine seafood.  

5.1 Introduction   

Seafood is the primary route of human exposure to MeHg and consumption advisories for 

fish with the highest levels of MeHg are currently in place around the world1. Concentrations of 

MeHg in marine fish are controlled in part by the accumulation of dissolved MeHg in planktonic 

marine organisms, which represents the largest enrichment step in marine food webs2,3. 

Understanding the environmental and biological controls of MeHg in fish therefore depends on 

tracing the uptake of MeHg in marine plankton. This is challenging because of incomplete 

knowledge concerning the transformations and bioavailability of various forms of dissolved MeHg 

in seawater and the complexity of marine planktonic food webs. Some of these challenges may be 

overcome through the use of Hg stable isotopes to trace the transformations and bioaccumulation 

of Hg in the marine environment.4–10  

Hg stable isotopes display mass dependent fractionation (MDF; represented by δ202Hg 

values) during a wide range of abiotic and biotic chemical reactions. Hg also undergoes odd-

isotope mass independent fractionation (MIF, represented by Δ199Hg values) caused by the nuclear 

volume effect or the magnetic isotope effect. Photochemical reactions involving Hg result in large 

Δ199Hg and Δ201Hg values (>0.4‰) in products or reactants via the magnetic isotope effect (MIE).6 

It has been demonstrated that Δ199Hg and Δ201Hg values in fish are inherited from the partial 

photodecomposition of MeHg in surface waters prior to incorporation at the base of aquatic food 

webs.4,5,11 This suggests that Δ199Hg values preserved in marine fish may be used to identify the 

bioavailable pools and therefore the sources of MeHg to marine organisms. However, the isotopic 

compositions of various complexes of MeHg are currently unknown, and all of the Hg stable 
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isotope photochemistry experiments carried out prior to this study used fresh water, terrestrial 

DOM, and relatively high concentrations of MeHg, which may not accurately represent 

photochemical degradation in marine ecosystems.  

Here we investigate the mechanisms of MeHg photochemical decomposition in pelagic 

marine waters by: 1) performing high level electronic structure calculations12,13 of environmentally 

relevant MeHg complexes to determine their photochemical reactivities; 2) conducting 

photodegradation experiments in seawater; and 3) analyzing the Hg isotopic compositions of 

zooplankton from the Central North Pacific Ocean. Our results provide insight into the 

mechanisms by which various chemical forms of MeHg undergo photodecomposition in marine 

waters, and in so doing, identify the bioavailable forms of MeHg and the dominant pathways by 

which MeHg is accumulated in planktonic organisms at the base of pelagic marine food webs. 

5.2 Photochemically reactive complexes of MeHg in seawater 

In our efforts to understand the accumulation of MeHg by marine organisms it is important 

to understand the dominant photochemical mechanism(s) that degrade(s) the pool of available 

MeHg. The photodecomposition of MeHg has been thought to be mediated by DOM, especially 

the thiol binding sites, but residual photodegraded MeHg coordinated with DOM is not readily 

taken up by phytoplankton.14–18 In marine waters the elevated ionic strength, salinity, and low 

DOM concentrations may inhibit Hg coordination to DOM19 and the photodecomposition may be 

controlled by low molecular weight (LMW) MeHg species. In seawater, the majority of MeHg 

may be in the MeHgCl form,19 but fast ligand exchange of MeHg complexes20,21 may result in 

equilibrium with MeHgOH, MeHg+, MeHgBr  and MeHgOH2+. Experimental and environmental 

observations show that the photodegradation of aqueous complexes of MeHg results in odd-MIF 

due to the magnetic isotope effect (MIE), however, there is a lack of information about the 
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photophysics of relevant complexes of MeHg in seawater. MeHg complexes may be degraded by 

either direct or indirect photolysis. Indirect photolysis involves a secondary reaction with a 

photochemically generated reactive intermediate, such as singlet oxygen22, while direct photolysis 

occurs via the absorption of a photon by the MeHg complex leading to homolytic cleavage of the 

Hg-C bond.23,24  Theoretical considerations and experimental results6,25 show that direct photolysis 

leading to the formation of correlated solvent-separated radical pair intermediates26,27 is required 

to produce the large extents of odd-MIF (>0.04 ‰) associated with MIE during photochemical 

transformations of Hg, while other reaction pathways (e.g. NVE) do not produce such large odd-

MIF signatures.27,28 Using high level electronic structure simulations12,13 we determined the 

absorption energies of various MeHg complexes (Table 1) to examine the plausibility of their 

reaction by direct photolysis.  

The results of these simulations demonstrate that MeHgX halides (X=Cl or Br) and 

MeHgOH2+ are not available for direct photolysis because they do not absorb light in the natural 

sunlight spectrum (290-780 nm) and will not result in the MIE. While MeHgOH and MeHg+ are 

available for direct photolysis, these complexes have peak excitation energies to the singlet state 

(210 and 226 nm, respectively) slightly outside of the range of natural sunlight, but it has been 

documented that the absorption peaks of MeHgOH and MeHg+ complexes in water are broad (±45 

nm24). In addition, the triplet states (227 and 366 nm, respectively) of these complexes are within 

or close to the UVA region and may mix with the singlet state, due to high spin-orbital coupling 

predicted for Hg.29,30 These results are supported by recent experiments that demonstrated fast 

photodegradation of MeHg in deionized water with 280-320 nm wavelengths.31  

Our electronic structure simulations also demonstrate that MeHg-thiols are available for 

direct photolysis in natural sunlight. The excitation energies of MeHg complexed to a single 
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cysteine are slightly outside the range of sunlight (singlet 263 nm and triplet 270 nm), however, 

due to extensive peak broadening it has been shown that the absorption tail of MeHg-thiol 

complexes extends to >290 nm.24 Using SCH3 as a truncated thiol model of cysteine, we find that 

the singlet and triplet transitions of MeHg(SCH3)2 and MeHg(SCH3)3 are within the natural light 

spectrum (Table 1). There is very limited information about the complexation constants of MeHg 

to multiple thiol ligands, but there is strong evidence that, at elevated thiol concentrations and 

alkaline conditions, Hg will tend to form higher coordination complexes.32 It is unlikely that there 

is a high enough thiol concentration or sufficient S moieties in natural waters for MeHg to form 

higher coordination number complexes with DOM. However, marine phytoplankton have elevated 

intracellular thiol concentrations33,34 and this may produce appropriate conditions to mediate 

photodegradation. 

5.3 Photochemical MeHg decomposition experiments  

To apply our theoretic predictions of which complexes of MeHg are likely to produce large 

odd-MIF effects, we investigated MeHg photodecomposition kinetics and isotope fractionation in 

a series of photochemistry experiments conducted in synthetic seawater on a rooftop at Rutgers 

University and in natural seawater on the deck of a research vessel in the North Pacific Ocean. All 

experiments were carried out in 1L UV-transparent Teflon bottles (fluorinated ethylene propylene, 

FEP) under natural sunlight conditions on cloudless days. For each experiment MeHg was added 

to either synthetic seawater, freshly collected natural seawater, or ultrafiltered surface seawater in 

which dissolved organic carbon (DOC) was only present as low molecular weight (LMW) DOC 

(<1 KDa). For the synthetic seawater experiments specific LMW organic ligands were also added 

to the experimental solutions. Finally, experiments in the dark and with ultrapure deionized water 

were included as controls.  
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The photodecomposition of MeHg followed pseudo first order kinetics with reaction rate 

constants (range 0.092 to 0.40 d-1; Table S1a,b) similar to those for freshwaters35–37 (0.17 to 0.59 

d-1), and to that previously measured in the North Pacific Ocean38 (0.87 d-1). The Δ199Hg and 

δ202Hg values (Table S2) from these experiments plot along two different lines with slopes of 

4.1±0.9 (R2=0.69; p<0.01) and 11.3±1.18, (R2=0.74; p<0.01) (Fig 1a). We interpret this to mean 

that there were two distinct pools of MeHg available for photochemical decomposition in our 

experiments, and by inference in marine waters. The group of experiments with a Δ199Hg/δ202Hg 

ratio of 4.1 includes all of those in synthetic seawater with added ligands, plus an experiment with 

unfiltered natural surface seawater and an elevated concentration of MeHg, where MeHgCl was 

likely the dominant dissolved MeHg species. The photochemical degradation of intracellular 

MeHg in marine phytoplankton also yielded a similar slope of Δ199Hg/δ202Hg slope of 6.339 (Fig. 

1b). We suggest that Δ199Hg and δ202Hg values for all of the experiments in which MeHg was 

complexed by LMW-organic ligands (e.g., cysteine, serine) likely follow the same slope because 

homolytic cleavage of the Hg-C bond proceeds by the same mechanism during the direct 

photolysis of these MeHg complexes regardless of the ligand.23,24 Our results with MeHg-organic 

ligands are consistent with those showing that photodecomposition of MeHg complexed with 

HMW freshwater DOM under natural sunlight6 also plot along a slope of 4.1 (Fig 1b).   

The group of experiments with a Δ199Hg/δ202Hg slope of 11.3 includes those in unfiltered 

natural surface seawater with a relatively low concentration of added MeHg, those in natural 

seawater with LMW-DOC, and those in deionized water. This much higher slope represents the 

photochemical decomposition of photochemically reactive inorganic complexes of MeHg (MeHg+ 

and MeHgOH) because the other major dissolved MeHg species present in deionized water cannot 

undergo photochemical decomposition under natural sunlight  (See Table 123). This is in agreement 
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with the arguments that MeHg will not bind marine DOC due to the elevated Cl or that MeHg-

DOM reacts by a different mechanism that does not yield high levels of odd-MIF. Thermodynamic 

equilibrium calculations using ChemEQL40 indicate that ~18% of MeHg in the deionized water 

was in the form of free MeHg+ and ~2% was present as MeHgOH. While it is difficult to determine 

the hydration of MeHg+ in seawater or deionized water based on ab initio calculations, it was 

recently reported that MeHg+ interacts with only one H2O in solution forming a bond slightly 

stronger than a water-water hydrogen bond41.  

For convenience will refer to the two groups of photochemically reactive MeHg species as 

MeHg-ligand for those with a slope of 4.1 and reactive MeHgi (MeHgOH or MeHg+) for those 

with a slope of 11.3.  

5.4 MeHg uptake and bioaccumulation at the base of oceanic marine food webs 

Based on the large difference in odd-MIF of Hg isotopes between the reactive MeHgi and 

MeHg-ligands pools of MeHg, we can use the extent of odd-MIF to identify the MeHg species 

accumulated by plankton at the base of the pelagic marine food web. This assumes minimal mixing 

of isotopic signatures between reactive-MeHgi and MeHg-ligand pools prior to uptake by 

phytoplankton, which is reasonable given that uptake of MeHg+ and MeHgOH is likely faster than 

the dissociation of MeHg-DOC complexes, as is generally the case for transition metals42, and 

MeHg will preferentially bind Cl over DOM give the low concentrations of DOM in natural 

seawater.19  

To assess the relative accumulation of the two pools of MeHg at the base of pelagic marine 

food webs, we compared Hg stable isotope compositions in various size classes of zooplankton 

from the tropical and subtropical N. Pacific Ocean (Fig. 2; Table S2c). Zooplankton were collected 

in day and night net tows through the upper mixed layer (<50 m) at 5°N, 155°W and 8°N, 155°W 
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in August and September, 2015 on board the R/V Kilo Moana. Additional Hg stable isotope 

measurements in zooplankton from surface and deep tows in the North Pacific Subtropical Gyre 

at Station ALOHA (22°45′N, 158°W) are from Motta et al.43 The nighttime and larger surface 

zooplankton (>1 mm) plot within the region of all previously published N. Pacific marine 

organisms (Fig 2), while the small surface day zooplankton (0.2-1 mm) have statistically higher 

Δ199Hg values (Wilcoxon test, p<0.01). It is important to point out that although MeHg accounts 

for 6-60% of the total Hg (THg = Hg(II)+MeHg; Table S3) in surface zooplankton from the North 

Pacific38,44, Δ199Hg values in oceanic zooplankton are largely controlled by the large, positive 

Δ199Hg signature of MeHg. This is because the photochemical reduction of HgCl2 (~50% of 

dissolved Hg(II)19,45) does not result in large, positive Δ199Hg values, and the slower 

photoreduction of Hg(II) complexed by organic ligands (most of the remainder), results in large, 

negative Δ199Hg values.25,39 As such, Δ199Hg values for THg in zooplankton reflect the signature 

of MeHg photodegradation that is partially diluted by lower values associated with the 

photoreduction of Hg(II).  

To evaluate the Δ199Hg values in surface zooplankton associated with MeHg, we 

performed a mass balance calculation using the MeHg concentration in the surface zooplankton 

and the Hg isotopic composition of precipitation from the open ocean (and Hawai’i) as the 

Hg(II) source (Fig 2). This is a good assumption given that Motta et al43 found (using Hg stable 

isotopes) that Hg from precipitation was incorporated into surface marine zooplankton at Station 

ALOHA. The estimated Δ199MeHg values of the small surface zooplankton are statistically 

different from the larger and deeper zooplankton (Wilcoxon test, p<0.005), which plot within the 

range of all published N. Pacific marine organisms. The surface zooplankton from the NPSG 
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have the highest Δ199MeHg values due to the elevated MeHg photodegradation in the subtropical 

gyres compared to the equatorial ocean.46  

The elevated Δ199Hg/δ202Hg ratios recorded in the daytime zooplankton (0.2-5 mm) 

compared to deeper-living zooplankton and fish are likely due to differences in MeHg 

photochemistry. To evaluate this hypothesis, we compared Δ199Hg/Δ201Hg slopes, which record 

differences in reaction mechanism20, for our MeHg photodegradation experiments with those 

preserved in zooplankton and pelagic fish (Fig. 3). The photochemical transformation of the 

MeHg-ligand pool of MeHg had a similar slope (Δ199Hg/Δ201Hg; 1.19±0.001) to that in all 

marine and estuarine organisms analyzed to date (Δ199Hg/Δ201Hg; 1.23±0.02).4,5,10,11,43,47,48 In 

contrast, the reactive MeHgi pool of MeHg had a significantly lower slope of 1.11±0.003 

(p<0.01). This adds additional support to our hypothesis that there are two distinct pools of 

photochemically reactive MeHg in marine surface waters, and confirms that MeHg accumulated 

in marine food webs originates from the residual MeHg produced during the photochemical 

decomposition of MeHg complexed to LMW organic ligands. We specify LMW because the 

Δ199Hg/Δ201Hg slope for the MeHg-Ligand experiments is statistically from experiments where 

MeHg was complexed to freshwater high molecular weight DOM (Δ199Hg/Δ201Hg 1.38±0.01 

n=95).6,8,49  

The Δ199Hg/Δ201Hg slope for small surface-dwelling zooplankton (1-50 m; 0.2-5 mm; Fig 

3b Δ199Hg/Δ201Hg 1.11±0.03) indicates the accumulation of MeHg from the reactive MeHgi 

pool. In contrast, large, surface-dwelling zooplankton (>5 mm; slope=1.27±0.02) and 

zooplankton from the lower euphotic zone (50-100 m; 0.2-5 mm; slope=1.20±0.02) plot within 

uncertainty of the slope for the photodegradation of MeHg in the MeHg-ligand pool 

(1.19±0.001) or that of intracellular MeHg in marine phytoplankton (1.18±0.013). While DOM 
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and thiol concentrations in seawater are likely too low50 to form the most photochemically 

active, high coordination number complexes of MeHg, such complexes are expected to form in 

phytoplankton cells were much higher concentrations of thiols are found33,34. These observations 

strongly indicate that large size classes of zooplankton and pelagic fish accumulate and preserve 

the odd-MIF signature produced during the photoreduction of intracellular MeHg complexed to 

LMW, thiol ligands. It is unlikely that the Hg isotopic signatures of zooplankton and pelagic fish 

are produced during the photochemical degradation of MeHg coordinated with HMW marine 

DOM, which is unavailable to phytoplankton.15,16,18 In addition, even if intermediate and large 

zooplankton have access to other sources of Hg than marine phytoplankton through consumption 

of marine particles, marine particles have minimal values of MIF and thus cannot significantly 

affect the Δ199Hg/Δ201Hg ratio.43  

5.5 Conclusions 

 Based on the Hg stable isotope values associated with residual photodegraded MeHg and 

the Hg isotopic composition of small and large zooplankton from the central North Pacific 

Ocean, we have developed a conceptual model for Hg cycling in pelagic marine ecosystems (Fig. 

3). The Hg isotope data shown here indicates that the pool of MeHg complexed to marine DOM 

is not available for incorporation into the marine foodweb; this is supported by the fact that the 

Δ199Hg/Δ201Hg  slope of MeHg complexed to HMW-DOM (1.38)6,8,44 has never been measured 

in marine organisms. Therefore, the photodegradation of MeHg-DOM does not reduce the pool 

of bioavailable MeHg that can be taken up by the marine foodweb and photodecomposition rates 

of MeHg-DOM are inadequate to account for the MeHg in pelagic fish. We suggest that small 

MeHg species (e.g MeHgCl, MeHgOH, MeHg+) are the main source of MeHg to the marine 

foodweb. This is because in the upper 50 m of the ocean the Δ199Hg/Δ201Hg slope of the reactive 
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MeHgi pool (1.11±0.03) is preserved in the small daytime non-migrating zooplankton. 

Presumably motile larger zooplankton feed at depths greater than UVB penetration and deeper-

dwelling migrating zooplankton are in the upper 50 m only at night. The photolysis of the 

reactive-MeHgi pool is limited by UVB penetration (~33 m) inhibiting MIF in deeper waters. 

Small non-migrating zooplankton have a tight trophic link with phytoplankton in the euphotic 

zone (Hannides et al., in review). It has been shown that copepods may also uptake MeHg from 

the dissolved phase18 and this may also be the case for small zooplankton. Below the UVB 

penetration depth (50-100 m) the photolysis of MeHg is likely dominated by intracellular 

photolysis of phytoplankton, where the reactive-MeHgi species that are available to 

phytoplankton do not have significant Δ199Hg values. Elevated intracellular thiol concentrations 

facilitate the complexation of MeHg in phytoplankton cells by sulfur-bearing ligands, which 

leads to high extents of odd-MIF during photodegradation and a Δ199Hg/Δ201Hg slope (1.19) that 

is identical to that of the MeHg-ligand reactions (1.19) and is preserved in large surface-living 

zooplankton (>5 mm), deep-dwelling zooplankton (50-100 m) and pelagic marine fish. Since it 

has been shown that visible light can lead to MIE during the photodegradation of MeHg in 

phytoplankton48, we propose that the Δ199Hg/Δ201Hg slope of 1.19 is preserved in the marine 

food web because, as shown by experiment and theoretical calculations (Table 1), MeHg 

complexed to multiple thiol ligands can be photodegraded by visible light. Visible light reaches 

greater depths in the water column than UV light, while reactive MeHgi can only be degraded by 

UVB. 

In summary, our results show that the MeHg-ligand isotopic signature by phytoplankton 

dominates biomass and it is the most important mechanism for MeHg decomposition in marine 

environments. Reactive MeHgi is important in the upper-most ocean and is probably limited by 
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UVB light penetration. Understanding the environmental and biological factors that control these 

processes are critical for predicting the accumulation of pollutant Hg in pelagic marine food 

webs and the seafood they produce.  

5.6 Methods 

5.6.1 Rooftop Experiments. We performed rooftop experiments at Rutgers University in 

Brunswick NJ, USA. Photoreduction of MeHg was studied in synthetic seawater in the presence 

of synthetic low molecular weight (LMW) ligands including cysteine, serine, and ethylenediamine, 

which are representative of binding sites in seawater, and corresponding dark controls. We 

conducted the following control experiments: synthetic seawater without additional ligands (to 

mimic MeHgCl) and dark experiments in synthetic seawater with the corresponding LMW ligands. 

All of these experiments had an average starting MeHg concentration of 2.62±0.33 mM.  

5.6.2 Shipboard Experiments. These experiments were performed on the R/V Kilo Moana in the 

central North Pacific Ocean at Station ALOHA (22° 45'N, 158° 00'W) in unfiltered surface 

seawater (from 10 m depth; with 7.9x10-2±3.0x10-3 mM DOC) and in ultrafiltered surface seawater 

where the only dissolved organic carbon (DOC) was marine LMW-DOC (DOM <1 KDa; with 

6.4x10-2±3.0 x 10-3 mM DOC). Most marine DOM (60-90%) is LMW, and readily permeates 

through the ultrafiltration system51. All the experiments had an average MeHg concentration of 

2.62±0.33 mM. We also conducted the following control experiments: dark control in unfiltered 

seawater (0.07 mM MeHg), elevated MeHg concentration in unfiltered seawater (6.49 mM MeHg) 

to mimic the photochemical degradation of MeHg, and an ultra-pure water deionized water 

experiment (with 1.80 mM MeHg).  

5.6.3 Zooplankton Analyses. We analyzed Hg concentrations and Hg stable isotope compositions 

of zooplankton from the Central Pacific for three different size fractions (0.5-1 mm), (1-5 mm) 
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and (>5 mm) (Fig 3b). Zooplankton Hg stable isotope measurements from Station ALOHA are 

from Motta et al.43, and surface zooplankton (<50 m) from 8°N, 155°W and 5°N, 155°W were 

collected between August-September 2015 on board the R/V Kilo Moana using the same methods 

outlined by Motta et al.43. 

5.6.4 Electronic Structure Simulations. To identify the plausible MeHg species that may 

undergo primary photolysis in the photochemical experiments and marine zooplankton, we 

conducted high level electronic structure simulations13,52 of possible MeHg complexes in solution 

to determine excitation energies (Table 1).  
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Table 5.1 Vertical excitation energies using the first principles EOM-CCSD12,47 level of theory and 
corrected for water solvation using TDDFT. The T1 state of MeHg+ was confirmed using incremental 
Full Configuration Interaction13 (iFCI). (See Supporting Information for full computational details) 

Molecule S (EOM-CCSD) T(EOM-CCSD) T (iFCI) λmax λtail 

CH3HgCl 191(1.56E-02) 210 - 20648 24048 

CH3HgBr 209(2.21E-02) 217 - 21048 24648 

CH3Hg+ 226(3.71E-01) 366 338 20824 26024 

CH3HgOH2
+ 178(4.96E-01) 235 - - - 

CH3HgOH 210(2.77E-02) 227 - 20224 26024 

CH3HgCysteine 263(1.20E-03) 270 - - 30024 

CH3HgSCH3 270(8.76E-05) 275 - - - 

CH3Hg(SCH3)2 287(4.99E-02) 296 - - - 

CH3Hg(SCH3)3 343(2.78E-02) 343 - - - 

Sunlight Spectrum (nm)       
 

UVB 290-315          
UVA 315-380         

Visible 380-780         
EOM-CCSD - Equation of motion coupled cluster with singlets and doublets 
TDDFT-Time depended density functional theory 
iFC incremental full configuration interaction  
λ experimental absorption wavelengths 
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Figure 5.1. Plot of Δ199Hgt−Δ199Hgt=0 
versus δ202Hgt−δ202Hgt=0. A) Shipboard: 
deionized water control, marine DOC is 
ultrafiltered surface seawater (>1KDa); 
surface water= unfiltered seawater; 
unfiltered seawater with high MeHg. 
Rooftop: synthetic seawater with low 
molecular weight organic ligands. The 
negative δ202Hg at the beginning of the 
photodecomposition of MeHg in the 
shipboard experiments was observed 
during the dark incubation period and 
likely corresponds to ligand exchange 
during equilibration49. This was not 
observed in the rooftop experiments B) 
High MW, freshwater DOC 
photochemistry MeHg experiments6, and 
phytoplankton experiments for reference37  
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Figure 5.2. Plot of Δ199Hg versus δ202Hg. Flying fish50, pelagic and bottom fish10,41,51, zooplankton from Station Aloha41, and 
zooplankton from the North Pacific Ocean. The red and black symbols are the measured THg isotopic composition of the surface 
water zooplankton. The blue and grey symbols are the calculated MeHg isotopic composition of the surface zooplankton. Refer 
to text for calculation details.  
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Figure 5.3. A) Plot of Δ199Hgt−Δ199Hgt=0 versus Δ201Hg t− Δ201Hgt=0. The black circles and black dotted line are the MeHg 
photochemistry experiments with freshwater DOC6,8,44. The green triangles and green dotted line are the rooftop 
experiments from this study. The red circles and red dotted line are the shipboard experiments and deionized water. B) 
Plot of Δ199Hg versus Δ201Hg and the dashed lines represent the MeHg experiments from plot A. The green diamonds 
are the phytoplankton experiments37; the red diamonds are the surface small zooplankton; the yellow circles are surface 
large zooplankton; the green circles are the mesopelagic zooplankton from Station ALOHA41. 
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Figure 5.4. Diagram of MeHg photodecomposition, uptake, and incorporation of MeHg in the marine food web. In 
the diagram the MeHg systematics have been simplified to emphasize incorporation of the MIF Hg signatures (see 
conclusion). Not shown is that MeHgCl and MeHgOH2+ are also available for uptake and incorporation into the 
foodweb, but these complexes are not available for photodecomposition under natural sunlight and will not exhibit 
any considerable MIF. There is no significant MIF associated with the photodegradation of MeHg in natural waters 
with limited UV light44, while marine phytoplankton can photodegrade MeHg intracellularly in visible light and that 
results in significant MIF37. Marine zooplankton also have access to particulate matter as a source for Hg, but it has 
been shown that marine particles do not have significant MIF41. The Hg isotopic composition of zooplankton with 
depth at station ALOHA are detailed in Motta et al., (2019)41  
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5.7 Supporting Information 

5.7.1 Rooftop experiments  

All experiments were conducted on clear days (no cloud cover) with average temperatures for 

the September 2012 experiments of 19±1°C, and for the May 2013 experiments of 28.5±0.5°C. 

All the experiments (except controls) were exposed to the full spectrum of sunlight on the roof of 

Foran Hall at Rutgers University, Brunswick NJ. A stock solution made from powdered Crescent 

Chemical company methylmercury chloride was used for all the experiments and purified (≥99%, 

HPLC–grade Sigma Aldrich) L-serine, L-cysteine, and ethylenediamine were used in the 

experiments. MMHg was incubated separately with the corresponding organic compound: 0.4 mM 

cysteine, 4 mM serine, and 4 mM ethylenediamine in synthetic ocean water (SOW). 

The speciation of MMHg in each treatment was estimated using the thermodynamic modelling 

program ChemEQL1. In the incubations with 0.4 mM cysteine MMHg was estimated to be 

predominately complexed to cysteine as MMHg(HCyst) (97%) and MMHg(Cyst)-1 (2%), for the 

incubations with 400 mM serine, MMHg was estimated to be present as MMHgHSer (90%) and 

MMHgCl (10%), finally for the incubations with 400 mM ethylenediamine, MMHg was estimated 

to be present as MMHg(en)+ (22.18%), MMHg(Hen)2+ (23.88%), and MMHgCl (53.81%). As a 

control experiment we used SOW where the dominant species was estimated to be MMHgCl 

(99%). Once the solutions were prepared the reactors were placed in the dark for 12-20 hours to 

let the MMHg fully equilibrate with each organic ligand, while being purged with pure air to 

remove any Hg(0) that might have been produced in the dark. For incubations longer than 10 hours, 

reactors were purged in the dark during the night and exposed to sunlight the next day at 7:30 am. 

There were no detectible changes in the total Hg concentrations during the night. See Table S1 for 

all reaction conditions 
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5.7.2 Shipboard experiments at Station ALOHA 

Similar to the laboratory experiments, all the experiments were conducted during clear days in 

February 2014 and September 2014 onboard of the R/V Kilo Moana. The average temperature was 

25±1.5 °C in February and 28±2.0 °C in September, and all experimental conditions were 

conducted with MMHgCl stock solution from Brooks Rand Instruments. There is no definitive 

information about MMHg complexation in open marine waters or to marine organic matter, but it 

has been hypothesized that in coastal marine waters Hg(II) is not fully complexed to DOC due to 

the elevated concentrations of Cl in the water2. For the ultra-pure deionized water experiment 

MMHg was estimated to be present as MMHgCl (75-80%), MMHg+ (18%), and MMHgOH (2%), 

and in the high MMHg experiment we expect most of MMHg to be complexed to Cl due to the 

high concentration of MMHg to DOC. The experimental solutions were prepared as described 

above for the rooftop laboratory experiments.  

5.7.3 Marine zooplankton samples  

Marine zooplankton Hg stable isotope measurements from Station ALOHA are from Motta et 

al., (2019)3, and the surface zooplankton from 8N-155W and 5N-155W were collected between 

August-September 2015 on board of the R/V Kilo Moana using the same methods outlined 

previously by Motta et al., (2019)3. Briefly, zooplankton were collected using a 1 m2 Multiple 

Opening/Closing Net and Environmental Sensing System4 equipped with nine sampling nets. Each 

tow collected material from 0-50 m depth and all samples were lyophilized and homogenized using 

an acid cleaned agate mortar and pestle.  

The limited availability of bulk material necessitated pooling of samples for measurement of 

THg stable isotopic compositions, where four zooplankton size fractions were combined in pairs 

to produce samples representing small (0.2-1 mm) and intermediate (1-5 mm) size zooplankton. 
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The pooled zooplankton samples were placed in ceramic boats in a two-stage combustion system, 

where the Hg was released from the biotic matrix into an oxidizing solution (1% KMnO4 in 10% 

H2SO4 (wt/wt))5. A small aliquot of the trap solution was measured for THg concentration by CV-

AFS (Nippon MA-2000). Combustion performance was monitored with procedural blanks, 

microfiber quartz filter blanks and combustion blanks. Prior to measurement of Hg stable isotope 

ratios additional purification and pre-concentration of the Hg was accomplished by reduction with 

SnCl2, and purging into a reducing trap with 1% KMnO4 trap.  

5.7.4. Hg stable isotope analysis 

Samples from a secondary 1% KMnO4 trap used for pre-concentration and purification6 were 

analyzed for Hg stable isotope composition using a multiple collector inductively coupled plasma 

mass spectrometer (MC-ICP-MS; Nu Instruments) with a continuous flow cold vapor generation 

inlet system with SnCl2 reduction7,8. The concentrations of the samples were matched to the 

bracketing standard (SRM NIST 3133) within 5% for each of the mass spectrometry sessions.  

Mass dependent fractionation (MDF) of Hg isotopes is reported as δ202Hg values in permil 

(‰) relative to NIST SRM 3133 (equation 1). Mass independent fractionation (MIF) of Hg 

isotopes is calculated as the difference between the measured δ202Hg value and that which would 

be predicted based on mass dependence for a given isotope and is reported in ΔxxxHg notation in 

‰ (equation 2), where xxx is the mass of each Hg isotope 199, 200, 201, 204 and β is the mass 

proportionality constant (0.2520, 0.5024, 0.7520, 1.493, respectively (Blum and Bergquist, 2007).  

δxxxHg(‰) = ([(202Hg/198Hg)unknown/(202Hg/198Hg)SRM3133] − 1) x1000           (1) 

  ΔxxxHg = δxxxHg − (δ202Hgxß)                           (2) 

 Procedural process blanks and standard reference materials (TORT-3 for the zooplankton 

samples, and UM-Almadén for the photochemistry experiments) were processed alongside 
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samples in an identical manner (Table S2). Process yields from secondary purge and trap of the 

1% KMnO4 trap solutions averaged 94%±5% (1SD, minimum = 84%). The long-term analytical 

uncertainty of Hg isotopic composition of the samples, most of which could be measured only 

once, was estimated as 2SD of the results from UM-Almadén (measured multiple times in each 

mass-spectrometry session) or reference material (TORT-3) processed multiple times (Table S2). 

All the linear regressions for this study were completed using York regressions9  which consider 

errors in both the X and Y axes. It is important to note that to accurately evaluate the Δ199Hg/δ202Hg 

or Δ199Hg/Δ201Hg relationship for the photochemistry experiments fully correlated errors have to 

be considered. This is because a specific reaction with a known starting Hg isotopic composition 

is being evaluated. All Hg stable isotope data is available in TableS2a-c 

5.7.5. Zooplankton MeHg Concentration analysis 

MeHg in the marine zooplankton was determined by digesting a minimum of 4.0 mg of freeze-

dried zooplankton in a maximum 3 ml of trace metal clean 30% HNO3 (wt/vol) for 11.5 hours in 

a heated bath at 60° C. A maximum aliquot of 0.3 ml from the digested zooplankton was used for 

MeHg analysis by derivatization using cold sodium tetraethylborate by CV-AFS (MERX-M, 

Brooks Rand Instruments) as described by Bloom10. Standard reference material TORT-3 was 

processed alongside samples in an identical manner with process yields of 85-105%. 

5.7.6. Computational Details  

We investigated the excitation energies of environmentally relevant MMHg complexes to 

determine the species of MMHg available for photochemical decomposition under natural 

sunlight. All our calculations were conducted using the double zeta, polarized def2-VPD basis sets 

and the corresponding pseudo-potential for Hg. Geometries were optimized using second order 

Møller-Plesset perturbation theory method (Table S5a-i) and the low-lying singlet and triplet state 
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energies were determined by high level electronic structure simulations using Equation-of-Motion-

Coupled-Cluster with singles and doubles (EOM-CCSD)11,12 as implemented in GAMESS13,14. 

Due to the absence of detailed experimental information about the excited states of Hg compounds, 

ground triplet energies of MMHg+ were calculated using incremental Full Configuration 

Interaction,15 a benchmark level of theory that provides high accuracy confirmation of the EOM-

CCSD results.  

To get accurate vertical excitation energies of Hg compounds we estimated the influence of 

the solvent using the polarizable continuum model (PCM) with time-dependent density functional 

theory (TDDFT) using the LRC-ωPBE functional, which has been shown to be very accurate for 

the calculation of vertical excitation energies16. To estimate the solvent effects in vertical 

excitations, we must consider non-equilibrium solvation because during the electronic transition 

the solute undergoes a sudden change in its charge distribution. To describe this non-equilibrium 

solvent effects, we used the linear response and state specific approach pt(LR+SS), which has been 

shown to be the most accurate when considering charge transfer transitions16. See Table S6 for 

solvation effects.  

Additional Results and Discussion  

5.8.7. MMHg photochemical decomposition kinetics  

All the MMHg decomposition rates followed pseudo first order kinetics. For the MMHg-

shipboard experiments at Station ALOHA there were no statistical differences between the 

duplicate surface water experimental reduction rates (average 0.092 d-1; n=2), and the rates were 

very similar to the high MMHg experiment from September (0.094 d-1). The photochemical 

decomposition of MMHg was fastest with isolated LMW-DOC (0.30 d-1). For the MMHg-

Rooftop experiments the reduction rates for all the experiments were statistically similar 
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regardless of the day or complexing ligand (range 0.14-0.22 d-1), with the exception of the serine 

experiment where the photodecomposition rate constant was 0.40 d-1. The photochemical 

decomposition rates with SOW were faster than the surface seawater experiments, but, similar to 

the isolated DOC experiment. The reaction rate constants in this study were similar to the reaction 

rates in freshwaters17–19 (0.17-0.59d-1), and close to the Pacific Ocean photodecomposition rate of 

MMHg20 (0.87 d-1). (See Table S1 for summary of degradation rate constants). 

5.8.8. The Δ199Hg and fraction remaining of MMHg relationship  

It is important to note that there was not a trend in the plot of Δ199Hg versus the fraction 

remaining in the reactor (fHg; Fig S1), in contrast to the Δ199Hg versus δ202Hg values (Fig 1). This 

is because Δ199Hg values do not depend on the overall rate limiting step of the reaction as has been 

observed for δ202Hg21. The fractionation of magnetic isotopes (199Hg and 201Hg) is driven by the 

radical pair mechanism, where the fractionation is mediated by intersystem crossing22. Intersystem 

crossing induced by hyperfine coupling is a photophysical effect, which does not alter the chemical 

composition of the radial species and depends on properties such as magnetic field, 

photosensitizers, and solvent cage effects22–25. It has been demonstrated that for the same 

photochemical reaction, changes in the aforementioned properties will alter the MIE fractionation 

factor22,24,26–29. As such, the MIE as a function of fHg is not a good indicator of reaction mechanisms 

and, therefore, is not discussed further in this paper.  
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Figure S5.1. Plot of Δ199Hgt−Δ199Hgt=0 versus ln(fraction remaining) for all the MMHg photochemistry experiments.  
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Table S5.1 Experimental details and environmental conditions  
Location  Experiment Expt. Duration (hr) %Reduction  

Rate Constant 
(day-1) Avg. T (°C) Max T (°C) 

Shipboard 
Natural 

Seawater  

Unfiltered Seawater #1 47.92 16.30 0.08 24.5±0.5 28±0.8 
Unfiltered Seawater #2 56.75 17.91 0.08 24.5±0.5 28±0.8 

Surface LMW-DOC 35.75 35.23 0.25 24.5±0.5 28±0.8 
Unfiltered Seawater High MMHg 59.83 23.24 0.09 28±1.1 31.7±0.9 

Deionized ultra-pure water  59.92 49.59 0.20 24.5±0.5 28±0.8 

Rooftop 
Synthetic 
Seawater  

Cysteine #1 42.83 29.03 0.15 27±1 31±0.5 
Cysteine #2 75.38 53.29 0.81 26.3±0.5 29.5±1.1 

Serine  38.32 46.62 0.40 27±1 31±0.5 
Ethylenediamine  42.83 37.76 0.22 26.3±0.5 29.5±1.1 

Synthetic Seawater  42.83 30.22 0.21 26.3±0.5 29.5±1.1 
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Table S5.2a Shipboard experiments Hg stable isotope data and concentrations  
Treatment Hours of 

Sunlight 
[Hg] w/o BrCl 

(ng/g) 
fraction 

remaining ln(f) δ202Ηg Δ199Ηg Δ201Ηg Δ204Ηg Δ200Ηg 

Surface 
Seawater 

#1 

Dark 5.44     -0.95 -0.11 -0.03 0.00 -0.11 
0.00 5.19 1.00 0.00 -1.02 0.08 0.06 0.02 -0.01 
3.09 5.09 0.98 -0.02           
7.75 5.11 0.98 -0.02 -0.88 1.87 1.65 -0.02 0.01 

10.58 5.11 0.98 -0.02 -0.84 2.15 1.86 -0.05 0.00 
13.92 5.09 0.98 -0.02           
17.09 5.41 1.04 0.04 -0.90 3.32 3.10 0.03 0.00 
23.00 4.72 0.91 -0.10 -0.68 4.26 3.83 0.02 -0.06 
26.33 4.46 0.86 -0.15 -0.73 4.77 4.28 -0.07 0.01 
30.30 4.79 0.92 -0.08           
35.58 4.86 0.94 -0.07 -0.62 5.17 4.58 0.03 -0.02 
39.00 4.64 0.89 -0.11           
46.25 4.59 0.88 -0.12 -0.66 5.24 4.70 0.01 0.00 
47.92 4.35 0.84 -0.18 -0.44 5.94 5.34 -0.11 -0.06 

Surface 
Seawater 

#2 

Dark 5.54     -0.95 -0.11 -0.03 0.00 -0.11 
0.00 5.25 1.00 0.00 -0.83 0.03 -0.04 0.104 0.07 
7.37 5.24 1.00 0.00 -1.01 0.82 0.72 -0.01 0.05 

10.58 4.93 0.98 -0.02 -0.98 0.96 0.84 -0.02 0.03 
13.83 4.94 0.95 -0.05 -0.87 1.72 1.54 -0.03 0.00 
19.75 4.92 0.95 -0.05 -0.87 2.21 2.01 -0.04 -0.05 
23.08 4.77 0.91 -0.10           
32.33 4.80 0.95 -0.05 -0.77 2.76 2.40 -0.07 0.10 
35.75 4.65 0.90 -0.11 -0.77 3.30 2.91 -0.03 0.00 
56.75 4.02 0.82 -0.20 -0.64 3.72 3.36 0.03 -0.07 

LMW-DOC 
(<1KDa) 

Dark 7.44     -0.95 -0.11 -0.03 0.00 -0.11 
0.00 7.63 1.00 0.00 -1.04 0.13 0.10 -0.01 0.01 
4.50 6.81 0.89 -0.11           
7.37 6.44 0.84 -0.17 -0.98 1.37 1.21 -0.06 -0.02 

10.67 5.70 0.75 -0.29 -1.01 1.56 1.38 -0.01 0.04 
19.75 5.94 0.78 -0.25           
23.08 5.15 0.67 -0.39 -0.65 3.95 3.47 0.02 -0.02 
32.33 5.31 0.70 -0.36           
35.75 4.94 0.65 -0.43 -0.56 5.30 4.74 0.05 -0.02 

Surface 
Seawater 

High 
MMHg 

Dark                 
0.00 30.12 1.00 0.00 -1.05 0.09 0.01 0.00 0.01 

12.33 30.03 1.00 0.00           
22.25 29.35 0.97 -0.03 -1.00 0.24 0.12 0.00 0.04 
36.17 29.33 0.97 -0.03           
48.00 26.95 0.89 -0.11 -0.98 0.32 0.28 0.06 -0.03 
59.83 23.12 0.77 -0.26 -0.85 0.42 0.31 0.01 -0.01 

Deionized 
ultra-pure 

water 

Dark 8.39     -0.95 -0.11 -0.03 0.00 -0.11 
0.00 8.34 1.00 0.00 -1.08 0.09 0.06 -0.01 0.01 
7.75 6.70 0.80 -0.23 -0.98 1.42 1.61 0.00 0.04 
8.58 7.08 0.84 -0.17 -1.07 1.49 1.39 0.07 0.00 

13.83 6.96 0.83 -0.19 -0.99 1.32 1.16 0.03 0.01 
22.67 6.76 0.81 -0.22 -0.87 2.83 2.47 0.06 0.06 
38.33 6.34 0.76 -0.28           
51.00 5.54 0.66 -0.42           
59.92 4.23 0.50 -0.69 -0.45 3.41 2.99 -0.08 -0.08 

Surface 
Seawater 

- Dark 
Control 

0.0 3.26 1.00 0.00           
81.2 3.22 0.99 -0.01           

108.8 3.25 1.00 0.00           
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Table S5.2b Laboratory experiments Hg stable isotope data and Hg 

Treatment Hours of 
Sunlight 

[Hg] w/o 
BrCl 

(ng/g) 

fraction 
remaining ln(f) δ202Ηg Δ199Ηg Δ201Ηg Δ204Ηg Δ200Ηg 

Cysteine #1 

0.00 12.65 1.00 0.00 -1.07 0.12 0.02 0.03 0.02 
7.17 12.69 1.00 0.00 -0.99 0.15 0.12 0.05 0.02 

14.00 12.43 0.98 -0.02           
20.00 12.20 0.93 -0.07 -1.08 0.19 0.10 0.01 0.02 
38.33 11.71 0.93 -0.07 -1.03 0.35 0.24 0.05 0.02 
42.83 8.84 0.71 -0.34 -0.83 0.78 0.56 -0.03 0.03 

Cysteine #2 

0.00 11.62 1.00 0.00 -0.88 0.11 0.08 -0.06 0.04 
5.88 11.50 0.99 -0.01           
7.55 11.43 0.98 -0.02 -0.97 0.07 -0.02 -0.11 0.07 

40.38 10.95 0.94 -0.06 -1.06 0.28 0.12 0.03 -0.01 
75.38 5.43 0.47 -0.76 -0.63 0.90 0.68 -0.04 0.02 

Serine 

0.00 11.21 1.00 0.00 -0.88 0.12 0.10 -0.12 0.04 
0.83 11.10 0.99 -0.01           
6.67 10.42 0.93 -0.07 -0.92 0.35 0.33 0.03 0.11 

17.83 8.39 0.75 -0.29 -0.79 0.91 0.76 0.09 0.03 
38.32 5.98 0.53 -0.63 -0.56 1.22 1.11 -0.02 0.04 

Ethylenediamine 

0.00 14.27 1.00 0.00 -1.07 0.03 0.06 0.07 0.02 
7.17 11.29 0.79 -0.23           

14.00 10.84 0.76 -0.28 -1.06 0.50 0.37 0.04 0.03 
20.00 10.45 0.73 -0.31 -0.90 1.06 0.86 0.03 0.03 
28.33 10.63 0.74 -0.30           
42.83 8.88 0.62 -0.47 -0.78 1.52 1.25 -0.02 0.03 

Synthetic  Seawater 

0.00 12.13 1.00 0.00 -1.15 0.12 0.08 -0.03 0.01 
7.17 11.64 0.96 -0.04 -0.99 0.42 0.31 0.06 0.00 

14.00 11.25 0.93 -0.08 -1.01 0.53 0.42 0.01 -0.02 
17.17 10.26 0.85 -0.17 -0.99 0.71 0.61 0.02 0.04 
20.00 9.84 0.81 -0.21 -1.01 0.53 0.42 0.03 0.02 
28.33 9.43 0.78 -0.25           
42.83 8.46 0.70 -0.36 -0.71 1.32 1.11 0.00 -0.01 

Cysteine Dark 
Control 

0.00 13.25 1.00 0.00           
10.00 13.20 1.00 0.00           
50.00 13.22 1.00 0.00           

Serine Dark Control 
0.00 12.32 1.00 0.00           

12.50 12.27 1.00 0.00           
20.00 12.29 1.00 0.00           

Synthetic Seawater 
Dark Control 

0.00 13.10 1.00 0.00           
32.00 13.03 1.00 0.00           
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Table S5.2c Zooplankton Hg stable isotope data and bulk Hg concentrations 
Location Time of 

Day 
[Hg] Bulk 

(ng/g) Size (mm) δ202Hg Δ199Hg Δ200Hg Δ201Hg Δ204Hg 

8 N 

Day 

46 0.2-1  0.29 2.93 0.11 2.54 -0.17 
8 N 77 2.0-5.0 -0.10 1.06 0.12 0.88 -0.04 
5N 40 0.2-1  0.36 1.99 0.06 1.76 -0.16 
5N 59 2.0-5.0 -0.01 0.92 0.17 0.80 -0.32 
8 N 

Night 

50 0.2-1  0.41 1.53 0.08 1.28 -0.11 
8 N 54 2.0-5.0 0.12 1.13 0.13 0.94 0.00 
5N 55 0.2-1  0.52 0.90 0.11 0.73 -0.14 
5N 99 2.0-5.0 0.21 0.42 0.11 0.29 -0.17 
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Table S5.3 Surface zooplankton THg and MeHg concentrations and calculated MeHg isotopic 
composition 

Location Time of Day Size (mm) [Hg] Bulk 
(ng/g) 

[MeHg] 
(ng/g) 

Percent 
MeHg δ202MeHg Δ199MeHg 

NPSG 

Day 

0.2-1  24* 2.1 9% 2.09 27.92 
NPSG 2.0-5.0 21* 6.7 32% 0.38 4.87 
NPSG >5.0 23* 9.3 41% -0.16 3.55 
8 N 0.2-1  46 15.0 33% 0.73 8.39 
8 N 2.0-5.0 77 36.0 47% -0.30 1.92 
5N 0.2-1  40 8.0 20% 1.51 8.90 
5N 2.0-5.0 59 32.7 55% -0.07 1.43 

NPSG 

Night 

0.2-1  29* 1.8 6% 1.94 19.10 
NPSG 2.0-5.0 21* 3.7 12% 0.12 3.94 
NPSG >5.0 19* 6.6 34% 0.41 3.04 
8 N 0.2-1  50 8.3 17% 2.05 7.72 
8 N 2.0-5.0 54 17.7 33% 0.19 2.82 
5N 0.2-1  55 4.1 8% 5.88 8.39 
5N 2.0-5.0 99 9.9 10% 1.40 1.56 

Precipitation* 
Avg. δ202Hg SD δ202Hg Avg. Δ199Hg SD 

Δ199Hg 
      

      
0.08 0.08 0.29 0.24       

*Data from Motta et al., 2019           
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Tables S5.4 – Hg complexes optimized geometries  
Table S4a: Cartesian coordinates of MeHgCl in angstroms 
ATOM                           X                      Y                     Z 
 Hg                     0.0382261760   0.0001272781   0.0001842408 
 C                       2.1025587875  -0.0000243404   0.0000096174 
 H                       2.4629030056  -0.5878792006   0.8535624868 
 H                       2.4631629235  -0.4450989191  -0.9357577874 
 H                       2.4632761173   1.0329047999   0.0825560939 
 Cl                     -2.3012482922   0.0005362453  -0.0001649229 
 
Table S4b: Cartesian coordinates of MeHgBr 
ATOM                           X                      Y                     Z 
 Hg                     0.0350873974   0.0006288249   0.0002208685 
 C                       2.1081154296  -0.0001033105  -0.0000914816 
 H                       2.4676362234  -0.5893769397   0.8529083832 
 H                       2.4674081895  -0.4443707327  -0.9369199140 
 H                       2.4680571459   1.0331231448   0.0835970463 
 Br                     -2.4234186126   0.0016174157   0.0006034577 
 
Table S4c: Cartesian coordinates of MeHg+ 

ATOM                           X                      Y                     Z 
Hg                    -0.2945432510  -0.4939307889   0.0948812275 
 C                      1.7368736652   0.0261728114  -0.2998891979 
 H                      1.6403769483   0.7117143731  -1.1489046573 
 H                      2.1863033059  -0.9471203140  -0.5252633953 
 H                      2.0474281776   0.4839611058   0.6456917736 

 

Table S4d: Cartesian coordinates of MeHgOH2+ 

ATOM                           X                      Y                     Z 
Hg                  0.1236992833   0.0046817119   0.2313890604 
 C                   2.0487693774  -0.3019850337  -0.4405783924 
 H                   2.1444290752   0.2708607273  -1.3695850459 
 H                   2.1495000725  -1.3811547907  -0.6002636942 
 H                   2.7111321298   0.0685397370   0.3495909260 
 O                   -1.9705750883   0.3251312873   0.9632136657 
 H                   -2.7704989518   0.3217947641   0.4156069257 
 H                   -2.2264642045   0.5673033532   1.8663644597 
 
 
Table S4e: Cartesian coordinates of MeHgOH 

ATOM                           X                      Y                     Z 
Hg                     0.0084415323   0.0053563011   0.2425074630 
 C                      1.9338524565  -0.2870415828  -0.4134700186 
 H                      2.0941409825   0.2617393331  -1.3506550906 
 H                      2.1107908564  -1.3567104298  -0.5852066565 
 H                      2.6395921448   0.0794333569   0.3436366653 
 O                     -1.8371931936   0.2992600325   1.0033746730 
 H                     -2.5131688807   0.3058313920   0.3091864098 
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Table S4f: Cartesian coordinates of MeHgCysteine 
ATOM                       X                      Y                     Z 
 C                  6.6315054436   0.1203937439   1.9750885468 
 C                  8.0594304289  -0.0006845034   2.4941939558 
 C                  9.0188302200   0.6947867576   1.5359142987 
 O                 10.1778568589  1.0269296957  2.1575849201 
 O                 8.8260283504   0.8900009962   0.3521754681 
 S                  5.4626463070  -0.5776262091   3.2221871983 
 H                 6.5403871711  -0.4222505912   1.0230667260 
 H                 6.4113803783   1.1787466353   1.7826520846 
 N                 8.4243685819  -1.4030219430   2.6732025231 
 H                 8.1374140484   0.4899204229   3.4759147173 
 H                 9.3359180115  -1.5066675771   3.1134061132 
 H                 8.4362400489  -1.9005190245   1.7836503219 
 HG              3.4801630873   0.4904782497   2.4919905825 
 C                 1.7203055375   1.4212825158   1.8700412158 
 H                 10.7661567030 1.4072058545   1.4829467223 
 H                 1.4274019671   1.0422492887   0.8818347748 
 H                 1.8735569496   2.5072421512   1.8129901868 
 H                 0.9203694757   1.2068732945   2.5915041263 
 
Table S4g: Cartesian coordinates of MeHgSCH3 
ATOM                        X                      Y                        Z 
Hg               -0.2990659617      0.2941402756     -0.0213292977                  
C                 -2.3767145643      0.4811139345      0.0009670757                  
H                 -2.7345167725      0.5520111048      1.0368239184                  
H                 -2.8287322817     -0.3972732156     -0.4794957961                  
H                 -2.6736359323      1.3844144417     -0.5489117439                  
S                   2.0535028942      0.0464009569     -0.0490621489                  
C                  2.5762994989      1.8100416303      0.0070007766                  
H                  3.6738899243      1.8141214618      0.0020981651                  
H                  2.2329988961      2.3077209107      0.9227304826                  
H                  2.2249744817      2.3670383778     -0.8708189763        
 
Table S4h: Cartesian coordinates of MeHg(SCH3)2 
ATOM                X                          Y                         Z 
C              1.9229823174     -2.0704201912     -0.9468109523                  
C             -2.9297784731     -0.2048017679      0.6442802948                  
S             -2.3996584214     -0.9213209176     -0.9631575858                  
C             -0.6918047143      2.1675898329      0.3463506076                  
S              0.4922229982      0.9175963669      0.9941997025                  
Hg             0.0126462425     -1.1782149718     -0.6473232387                  
H             -3.5053553771     -0.9490631748      1.2125613657                  
H             -2.0524153046      0.1032721022      1.2308893495                  
H             -0.1482761384      3.0427854428     -0.0396619576                  
H             -1.3018100010      1.7492947129     -0.4694851297                  
H             -3.5678804611      0.6725540096      0.4624719381                  
H             -1.3727347292      2.5125714783      1.1408071830                  
H              1.8642152312     -3.0570639104     -1.4283526026                  
H              2.4104701017     -2.1693742298      0.0338529229                  
H              2.5278962259     -1.3963034663     -1.5705011709             
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Table S4i: Cartesian coordinates of MeHg(SCH3)3 
ATOM                X                          Y                         Z 
C               1.2042943822     -2.0168712828     -1.5809522533                  
C               1.8342819990      2.7979042308      0.1276330138                  
S               1.7906453788      1.3899356785      1.3091647486                  
C              -1.7696044533      1.8989370812     -0.0877508439                  
S              -0.9622025215      1.3130304664     -1.6357331312                  
C              -2.1504368665     -1.9900801397     -0.0639581107                  
S              -1.1644413092     -1.5499168296      1.4291529357                  
Hg              0.7786749020     -0.3755906509     -0.2211488606                  
H               2.7535454136      2.7861833656     -0.4807807060                  
H               0.9710014642      2.7414670183     -0.5546605344                  
H              -2.0447735033      1.0407047512      0.5463150578                  
H              -1.0796317217      2.5268265455      0.5005873078                  
H              -2.3394371288     -1.0947376903     -0.6781828041                  
H              -1.6093224050     -2.7146132367     -0.6957725981                  
H               1.8020357651      3.7482600858      0.6861162975                  
H              -2.6729038921      2.4898585261     -0.3165137022                  
H              -3.1163129396     -2.4406669368      0.2220639080                  
H               2.1860355117     -1.9111757960     -2.0705787819                  
H               0.4165883356     -2.0241561400     -2.3494399107                  
H               1.1774470211     -2.9614556239     -1.0151517512                  
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Table S5.5. Vertical excitation energies of Hg complexes in nm. In the gas phase at the EOM-CCSD level of 
theory and energy correction in nm for non-equilibrium solvation effects using the TDDFT/pt(SS+LR)-PCM 
method. 

  

Gas phase - EOM-
CCSD 

Non-
equilibrium TDDFT/ 

pt(SS+LR)-PCM 
Molecule  S T S  T 
CH3HgCl 189 209 2.6 0.8 
CH3HgBr 205 216 3.2 0.6 
CH3Hg+ 220 358 5.6 7.6 

CH3HgO2H+ 174 233 4.1 2.0 
CH3HgOH 209 225 0.6 1.8 

CH3HgCysteine 259 268 4.4 2.8 
CH3HgSCH3 265 272 4.6 2.9 

CH3Hg(SCH3)2 281 294 5.9 2.0 
CH3Hg(SCH3)3 338 343 4.6 0.6 

                                           All the energies are in nm 
                                           T triplet state 
                                           S singlet state 
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Chapter 6 Mercury Magnetic Isotope Effect: A Plausible Photochemical Mechanism 
 
Co-authored with Alan D. Chien, Alan S. Rask, and Paul M. Zimmerman. Mercury Magnetic 
Isotope Effect: A Plausible Photochemical Mechanism. In prep for Journal of American 
Chemical Society Communication 
 
“Those who are in love with practice without theoretical knowledge are like a sailor who goes 
onto a ship without rudder or compass and who never can be certain whither he is going – 
Practice must always be funded on sound theory” Leonardo Da Vinci (1510 – Leonardo’s 
Notebooks) 
 
Abstract: Large mass-independent fractionation signatures in Hg have been observed in the 

laboratory and the environment, prompting deep questions about the chemical reasons behind 

these signatures. Since the relative lack of mechanistic information about Hg chemistry in the 

environment has precluded explanations of these isotope effects, the present study uses high-

level electronic structure methods to evaluate possible photochemical mechanisms for mass-

independent isotope effects in HgX2 and CH3HgX (X = Cl, Br, I, SCH3). The results show that 

spin-orbit coupling wipes out the potential of mass-independent isotope effects (MIE) for Hg 

bound to Br or I, but that complexes involving lighter elements, HgX2 and CH3HgX (X=Cl and 

SCH3) have relatively small spin-orbit couplings upon photolysis. This unexpected finding 

shows that magnetic isotope fractionation due to hyperfine coupling is possible, depending on 

the identity of the Hg complex. By examination of the photolysis potential energy profiles, this 

study shows that HgX2 complexes can have positive or negative MIEs (depending on reaction 

conditions), while CH3HgX complexes exclusively result in positive MIE. These findings agree 

with MIE recorded in natural samples, demonstrating a plausible mechanism for the surprising 

mass-independent fractionation of Hg in the environment. 
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6.1 Introduction 

A growing number of studies over the last decade have shown that isotope signatures can provide 

useful information to inform Hg transformations in the environment.1–3 More specifically, Hg 

compounds have been shown to have anomalous fractionation of the odd isotopes (199Hg and 

201Hg), and these signatures are preserved in biologic tissue of pelagic fish from around the world.1 

The ubiquity of Hg compounds in the aquatic food web gives these signatures paramount 

importance towards understanding the Hg cycle in the environment. The interpretation of these 

isotopic signatures is difficult, however, due to the limited information about the possible 

transformations of the relevant Hg compounds in nature. Though the mechanisms that control the 

fractionation remain unclear, they are postulated to occur during photochemical decomposition,4  

with the isotope signatures being measured in the residual, undecomposed Hg species.  

 Experimental studies suggest the isotope fractionation patterns follow the magnetic isotope 

effect.4–6 Magnetic isotope effects typically arise from the formation of long-lived, solvent-

separated radical pair intermediates upon direct photolysis, mediated by the radical pair 

mechanism.7–9 While magnetic isotope effects are considered the cause of the isotopic signatures 

of photolysis, it is unclear how it applies to heavy elements like Hg, because elevated spin-orbit 

coupling (SOC) may induce spin relaxation or phosphorescence that inhibits the formation of a 

separated radical pair at dissociation.10,11 It is also difficult to evaluate the source of isotope effects 

because the photochemical reaction mechanism for Hg compounds in natural waters remains 

uncertain. For example, while hydroxyl radicals were implicated as photochemical initiators for 

decomposition of Hg complexes,12 singlet oxygen was later proposed as the reaction initiator 

because the concentration of hydroxyl radicals in natural waters is too low.13 Recently Black et 

al.14 reported that neither singlet oxygen nor hydroxyl radicals were involved in the photochemical 



 186 

decomposition of CH3Hg compounds in natural waters by employing various reactive oxygen 

species scavengers. This uncertainty has led to the hypothesis that multiple reaction pathways for 

Hg-compound photodegradation are operative, with somewhat contradictory conclusions about the 

role of dissolved organic matter,13,15,16 photoactive trace metals,14,17 and ultimately, reaction 

mechanism.13,14,18–20   

The magnetic isotope effect arises from the radical pair mechanism, which depends directly 

on the formation, reactivity, and spin multiplicity of the radical pair intermediates.9 In this 

mechanism the two electronic states of radical pairs (excited and ground state) become quasi-

degenerate as the two radical centers separate, and the spin state of the radical pair will control the 

sign of MIE in the residual Hg compound.7 The essential features of these photophysical effects 

are illustrated in Figure 1. The magnetic isotope effect arises from the spin coherent evolution of 

a solvent-separated radical pair where hyperfine coupling (HFC) effects alter the rate of 

intersystem crossing (ISC) T↔S for odd isotopes. When separated radical pairs are generated in a 

singlet state, the magnetic isotopes (e.g. 199Hg, 201Hg) induce HFC to convert these into a triplet 

state (Fig 1a). The resulting triplet radical pairs cannot recombine to remake their photolyzed bond, 

but the singlet radical pairs (e.g. from non-magnetic isotopes) may recombine. The triplet Hg 

complexes thus degrade, while the singlet Hg survives photolysis. For radical pairs initially 

generated as singlet states, the overall effect will result in odd isotope depletion (– MIE). In the 

reverse case, radical pairs generated in the triplet state will experience HFC in magnetic isotopes, 

resulting in return to the singlet state and positive MIE (Fig 1b). The relevance of the MIE 

mechanism depends on low SOC in the dissociated complexes, where high SOC would otherwise 

overwhelm the HFC interactions. 
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6.2 Results and Discussion 

In natural waters Hg tends to form divalent linear complexes with dissolved ions in solution 

or with dissolved organic matter,21–25 where the speciation is dominated by HgX2 and to a lesser 

extent by CH3HgX where X = OH, halides, or organic S, N, or O ligands. The CH3Hg species in 

particular are of major importance since they bioaccumulate in aquatic foodwebs, and ultimately 

are environmental toxins. Despite the importance of the photodecomposition of CH3Hg species in 

the biogeochemical cycle of Hg, there have been no experimental or theoretical studies on the 

electronic structure of the low-lying excited states of CH3Hg complexes.26,27 Therefore we 

employed a range of high-level electronic structure methods to investigate the plausibility of 

magnetic isotope effects in CH3Hg and HgX2 complexes, to inform whether MIE could be due to 

photolysis of Hg in natural waters. 

CH3HgCl has a C3v symmetry and the ground state (11A1) has a valence orbital 

configuration (1𝑎"4, 1𝑒CD, 2𝑎"CD4 3𝑎"∗-2𝑒∗-4𝑎"∗-). CH3HgCl has a manifold of ligand to metal charge 

transfer (LMCT; Figure 2 and Table S1) states, where the lowest singlet is a LMCT transition from 

the Cl to the Hg (πσ* 11E) and the lowest triplet LMCT transition from the C to Hg (σσ* 13A1)   is 

degenerate with the Cl to Hg (πσ* 13E) triplet transition. Photodissociation of CH3HgCl prefers to 

cleave the Hg-C bond, which is energetically more favorable by 17 kcal/mol compared to Hg-Cl 

cleavage (SI section 4; Fig S1 and 2). This agrees with photodecomposition studies of CH3Hg 

halides that show the same preference.20 As the Hg-C bond breaks, the triplet σσ* transition 

becomes quasi-degenerate with the singlet ground state (Figure 2). A cross-section of the potential 

energy surface as a function of the C-Hg-Cl bond angle (Fig 1b) from C3v (180°) to C1 (70°) 

demonstrates that excited states involving transitions to the σ* prefer nonlinear geometries,28,29 

resulting in the triplet σσ* state having a bent equilibrium geometry (Table S2).  
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For CH3HgCl photolysis to result in magnetic isotope effects the triplet σσ* state needs to be 

populated near the time of initial photoexcitation of the complex. Marcus theory30,31 (see SI section 

3 for details), predicts that after photoexcitation of CH3HgCl to the lowest singlet state (πσ*) there 

is efficient ISC (𝜏 = 0.12 ps, SOC 528.4 cm-1; Figure 3) to the triplet πσ* 13E state, which is 

degenerate with the triplet σσ*. Internal conversion to the lower triplet state is therefore highly 

plausible, allowing dissociation of CH3HgCl into a radical pair on the triplet σσ* manifold.  

Although the Hg-C dissociation via the triplet σσ* state results in a separated radical pair, it 

has been suggested that there is no spin barrier to recombination when heavy elements are 

involved, and thus the reactivity of these species will be independent of the spin state.32 While this 

argument relies on the SOC being high in the radical pair, Figure 3a shows that the SOC between 

the triplet σσ* and the ground state rapidly decrease as the Hg-C dissociates. Spin relaxation to 

other states is also unlikely because as the Hg-C ruptures there is an increasing energy gap between 

these states (Fig 2). Thus there are only two states available at dissociation for CH3HgCl, and these 

are uncoupled by SO effects, making it unlikely that SO interactions will completely suppress the 

radical pair formation necessary for magnetic isotope effects.  

The separated triplet radical pair, 3[ClHg•  •CH3], can undergo HFC-mediated ISC to the 

singlet radical pair whenever magnetic isotopes of Hg are involved. The resulting singlet radical 

pairs will then undergo recombination to the ground state, resulting in (+) MIE (Fig 1b).  

Having investigated methyl-Hg complexes, the photolysis of HgCl228,29,33 was examined to 

elucidate possible magnetic isotope effects by HgX2 species (Fig 4a,b) with the 

𝜎=K4𝜋MCD	,𝜋=CD	,𝜎MKCD	4𝜎=K∗-𝜋M∗-𝜎MK∗- orbital configuration. The lowest singlet excited state of HgCl2 

is the dark 11Πg (πuσ*g)1 state and the lowest bright state is 11Πu (πuσ*u)1, which is degenerate with 

the 13Σ+u (σuσ*g)3 state (Fig 4). As the Hg-Cl bond ruptures, the 11,3Πg (πuσ*g)1,3 , 13Σ+u (σuσ*g)3 , 
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and the ground state become degenerate, indicating the possibility of dissociation into a triplet or 

singlet radical pair. Although the 11,3Πg (πuσ*g)1,3 and 13Σ+u (σuσ*g) transitions are symmetry or 

spin forbidden, there is considerable SOC between the first bright singlet state 11Πu and 13Πu 

(598.19 cm-1) with estimated ISC average time constants of 0.65 ps. 13Πu and 13Σ+u states cross 

near the Frank-Condon region, allowing a route for population of the 13Σ+u state (Fig 4).  

Since triplet and singlet states are degenerate for the separated radical pair, the photolysis of 

HgCl2 may result in either (+) or (–) MIE. The sign of MIE will therefore depend on specifics of 

the recombination and degradation kinetics. Though quantifying these relative rates is beyond the 

scope of the present study, triplet state quenchers could selectively deactivate the 13Πg and 13Σ+u 

states, and MIE would then only be possible via the singlet (11Πg) channel. This is in contrast to 

CH3HgCl, where the only decay channel available for MIE is a triplet state. Therefore (+) or (–) 

MIE may in principle be seen for HgCl2, the (–) MIE channel may be operative under triplet state 

quenching conditions. 

While photolysis of HgCl2 is plausible via triplet and singlet radical pair states, dissociation of 

CH3HgCl occurs primarily from the triplet radical pair (3σσ*). The difference between the two lies 

in the accessibility and availability of lone pair orbitals for charge transfer, in the separated radical 

pair structure. The vertical electronic transitions of CH3HgCl (Fig 6) include LMCT from the lone 

pair Cl π orbitals to the antibonding Hg-C σ* (11,3E) and connect to four-fold degenerate separated 

radical pair states (two triplet, one excited singlet, and the ground state singlet), similar to HgCl2 

(Fig 4a). The four-fold degeneracy only occurs with rupture of the Hg-Cl bond, however, since the 

Hg-C bond dissociation is preferred (Fig 2) the Cl πσ* LMCT transitions are too high in energy to 

be relevant. The πσ* LMCT states therefore are photo physically most relevant in the absence of 

the CH3 group, which does not contribute to π LMCT. Instead CH3HgCl has only the triplet σσ* 
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LMCT state available upon dissociation of the Hg-C bond, because the singlet σσ* is not 

dissociative (Fig 2a). This qualitative difference in electronic states upon photolysis of Hg 

complexes is therefore a function of ligand (Cl vs CH3) electronic structure, and dictates the 

possible channels for magnetic isotope effects. 

The results so far have examined photolysis of CH3HgCl and HgCl2, but these are model 

systems for Hg photochemistry in the sense that they do not absorb solar photons, and cannot be 

responsible for the MIE recorded in natural samples. In natural waters, however, Hg will 

preferentially complex with thiol ligands due to their high affinities. Since it is known that 

Hg(thiol)2 and CH3Hg(thiol) complexes absorb in the sunlight spectrum, they are good candidates 

for control of Hg photolysis in natural waters.13,18,34 To determine the likelihood that Hg-thiol 

complexes may be responsible for MIE in natural samples, the low-lying excited states for 

CH3HgSCH3 and Hg(SCH3)2 were thus investigated.  

Hg pseudohalides, such as Hg-thiol complexes, have similar physical properties27,35–37 and 

HOMO and LUMO molecular orbital configurations27,36 as Hg halides. Their ground state 

configurations are similar to the chloride counterparts, for CH3HgSCH3 it is 

(𝜋4, 𝜎4, 𝜎4, 𝜋CD4 , 𝜋-∗𝜎-∗𝜋-∗𝜎-∗) and for Hg(SCH3)2 it is (𝜋,, 𝜎4, 𝜎CD4 , 𝜋CD, , 𝜎-∗, 𝜋-∗, 𝜎-∗). 

Computed lowest singlet states for CH3HgSCH3 and Hg(SCH3)2 have energies that match the 

absorption maxima of Hg thiol complexes in the UVB/A region (Figure 6).18,34,38,39 At dissociation 

of the Hg-S bond in Hg(SCH3)2 the 1,3πσ* and 3σσ* states are degenerate with the ground state, 

similar to the case of HgCl2 photolysis. For CH3HgSCH3 only the 3σσ* state is degenerate with the 

ground state, just as in CH3HgCl. Since these are the states available (Fig 7) for potential radical-

radical recombination and subsequent magnetic isotope effects, it is interesting to see that they 

closely parallel the Hg halides, except for being accessible via excitation within the solar spectrum.   
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Just as the excited state character of CH3HgSCH3 resembles CH3HgCl, the mechanism for 

photolysis is also similar. During photolysis of CH3HgSCH3, the T4 3σσ* state can be populated 

through internal conversion and ISC near the Frank-Condon geometry (Fig 7). This is supported 

by the large SOC between the bright S1 state and T3 (884.8 cm-1), and T3 is quasi-degenerate with 

T4 and therefore accessible through internal conversion. Since the T4 state rapidly drops in energy 

as the Hg-C bond ruptures, it is likely that it becomes the dominantly populated state for the 

resulting radical pair (Fig 2,7). At dissociated Hg-C bond distances, the SO 3σσ* states have 

minimal SOC with the ground state. Just like CH3HgCl, these findings suggest that the photolysis 

of CH3HgSCH3 may yield a (+) MIE.  

 The lowest bright singlet state of Hg(SCH3)2 (πσ*) leads directly to photodissociation and 

also is close in energy with the lowest triplet state (πσ*), which can be populated through ISC 

(SOCME = 71.6 cm-1, ΔE = 0.08 eV). And as the Hg-S bond ruptures, the (πσ*)1,3 states become 

degenerate with T2 (σσ*), so all these states are likely populated and may result in the formation 

of the separated radical pair. The probability of mixing between these states is affirmed by the 

SOC between (πσ*)3 and (πσ*)1, which is 171.5 cm-1 at the Hg-S separated geometry (4.0 Å). Like 

HgCl2, Hg(SCH3)2 may therefore yield (+) or (–) MIE depending on the reaction conditions. This 

agrees with recent experiments showing Hg(cysteine)2 yielded (–) MIE in the presence of 

dissolved oxygen, while in anoxic conditions it resulted in (+) MIE.40 Dissolved oxygen is a well-

known triplet state quencher and may inhibit the formation of radical pairs in the triplet state, 

resulting instead in MIE via HFC of the singlet. 

The electronic structure simulations indicate that photolysis of CH3HgX complexes can 

result in (+) MIE, while the photolysis of HgX2 may yield (+) or (–) MIE depending on reaction 

conditions (X = Cl and SCH3). To further test this hypothesis, the low-lying excited states of two 
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additional CH3Hg and Hg halides (Br and I) were investigated to determine if they follow similar 

mechanisms. The complexes share with their chlorides and thiols counterparts with the same 

vertical transitions at the Frank-Condon geometry and similar dissociation profiles. SOC with the 

ground state, however, is much higher for these complexes, being on average 670 cm-1 for 

CH3HgBr and HgBr2 and 2060 cm-1 on average for CH3HgI and HgI2. These couplings will result 

in significant triplet-singlet mixing compared to mercuric chloride counterparts (see Table S4,5, 

and 6), and these complexes are unlikely to exhibit magnetic isotope effects due to the inhibition 

of radical pair formation. This inhibition is supported by time-resolved liquid X-Ray diffraction 

experiments, which found that over 60% of excited HgBr2 or HgI2 decay to the ground state on 10 

ps time scales.41,42 

Having examined the detailed electronic structure for photolysis of Hg complexes, the 

results suggest that photolysis in natural waters may result in magnetic isotope effects, which in 

turn can explain isotope signatures recorded in natural samples. By specifically measuring the 

degree of SOC in various Hg complexes, it is clear that complexes containing Br or I are unlikely 

to exhibit MIE due to strong SOC, but Cl and SCH3 complexes have small SOC at separated radical 

pair geometries, permitting nuclear magnetic effects to come into play. For the potentially 

magnetic isotope effect-active complexes, HgX2 may exhibit (+) or (–) MIE due to the availability 

of 4 degenerate electronic states in the radical pair, while CH3HgCl only has 2 such states, which 

give rise to a (+) MIE. This explains the observed fractionation of natural samples of 199Hg and 

201Hg, including why HgX2 type complexes have significantly smaller anomalous isotope effects 

than CH3HgX complexes.1 The (+) MIE will be most obvious in CH3Hg complexes because the 

3σσ* LMCT  state is energetically separated from other excited states in the radical pair, and 

therefore is prevented from transition to competing electronic states that may inhibit magnetic 
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isotope effects. As such, photolysis of the C-Hg of CH3Hg maximizes magnetic isotope effects 

and results exclusively in (+) MIE, explaining why (–) MIE has never been recorded in natural 

samples of CH3Hg.1  

6.3 Environmental Implications 

Finally, the anomalous (+) MIE that has been recorded in biological tissue of pelagic fish 

from around the world can likely be explained by photolysis of CH3Hg(thiol) complexes.1 It has 

been suggested that CH3Hg in natural waters is predominately coordinated to thiol ligands21–25 and 

the lowest singlet transition of CH3HgSCH3 is available for photolysis in the UVB/A 

range.18,34,38,39 The magnetic isotope effect mechanism substantiated herein therefore can be used 

as a lens to examine the Hg cycle in the environment, providing deep insight into how biological 

samples of CH3Hg are fractionated to mass-independent distributions. 
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Figure 6.1. The radical pair mechanism for the magnetic isotope effect. The origin of MIE comes from 
the spin coherent evolution of the correlated solvent separated RP where hyperfine coupling affects may 
alter the rate of spin interconversion T↔S of odd isotopes. At separated distances, SOC is not sufficient 
to induce T↔S ISC because it requires some orbital overlap of the two radical centers to induce 
relaxation to the ground state, but when electron exchange (J) is close to zero at the dissociation the 
overlap is also close to zero.43  
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Figure 6.2. Potential energy curves of low-lying excited states of CH3HgCl. The solid lines represent the 
singlet states and the dash lines the triplet states A) PEC as a function of the Hg–C bond length in C3v 

symmetry. B) PEC as a function of C-Hg-Cl bending angle. As the C-Hg-Cl bends the πσ* will split into 
two states. Calculations at the MS-CASPT2(8,8)-IPEA(0.25 a.u)/ANO-RCC-VTZP level of theory from 
the ground state equilibrium geometry calculated at the MP2 level of theory. C) CASSCF orbitals for the 
triplet state dissociation transition 32a13a1* (3σσ*).  
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Figure 6.3. Absolute values of complex SO-Hamiltonian matrix elements over spin components of spin-
free eigenstates (RASSI/MS-CASPT2) for CH3HgCl. A) Matrix elements between the low-lying excited 
states and also the ground state as a function of Hg-C bond distance. B) Matrix elements between the low-
lying triplet states and the ground states as a function of bond angle C-Hg. Inset matrix elements between 
the 3σσ* transition and the ground state with bending angle at dissociated Hg-C bonf distances (4.0 Å)  
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Figure 6.4. Potential energy curves of low-lying excited states of HgCl2. The solid lines represent the 
singlet states and the dash lines the triplet states. A) PEC as a function of the Hg–Cl bond length. 
Excitation to the lowest singlet state (solid blue, 1πgσg) is symmetry forbidden, the lowest bright singlet 
state is 1πuσg (solid purple). B) PEC as a function of Cl-Hg-Cl bending angle. As the Cl-Hg-Cl bends the 
πσg* states will split into two states. Calculations at the MS-CASPT2(8,8)-IPEA(0.25 a.u)/ANO-RCC-
VTZP level of theory from the ground state equilibrium geometry calculated at the MP2 level of theory. 
C) CASSCF orbitals for the triplet and singlet states dissociation transitions 3σuσg* and 1,3πgσg*.   
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Figure 6.5. Absolute values of complex SO-Hamiltonian matrix elements over spin components of spin-
free eigenstates (RASSI/MS-CASPT2) for HgCl2. A) Matrix elements between the of low-lying excited 
states and also the ground state as a function of Hg-Cl bond distance. B) Matrix elements between triplet 
dissociative states and the ground states as a function of bond angle Hg-Cl.  
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Figure 6.6. Low lying electronically excited states during Hg-Cl dissociation for CH3HgCl. Left: Hg-Cl 
bond breaking. Middle: ground state equilibrium geometry. Right: Hg-C dissociation 4.0 Å. Energies for 
dissociated states are based on 4.0Å separation. 
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Figure 6.7. Vertical excitation energies at the ground state equilibrium geometry and at bond dissociated 
distances (4.0 Å) for A) SCH3HgCH3 and B) Hg(SCH3)2. Calculated at the MS-CASPT2(8,8)-IPEA(0.25 
a.u)/ANO-RCC-VTZP level of theory from the ground state equilibrium geometry calculated at the MP2 
level of theory. 
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6.4 Supporting Information 
 
6.4.1 Computational Details 

The CASSCF1/MS-CASPT22,3/SO-RASSI4 with the third order Douglas-Kroll and Hess 

(DKH3)5,6 Hamiltonian and the atomic-natural-orbital relativistic-correlation-consistent (ANO-

RCC) basis set of valence triple-ζ plus polarization quality (ANO-RCC-VTZP) as implemented in 

OPENMOLCAS were used to investigate the photodissociation of the low-lying excited states of 

HgX2 and CH3HgX (X = Cl, Br, I, and SCH3). For the HgX2 calculations an active space of 12 

active electrons over 10 natural orbitals (CAS, 12,10) 𝜎=K4𝜋MCD	,𝜋=CD	,𝜎MKCD	4𝜎=K∗-𝜋M∗-𝜎MK∗-, which 

was shown to be effective for describing their excited states in previous studies.7 For the CH3Hg 

calculations a CAS(8,8) with the following configuration 1𝑎"4, 1𝑒CD, 2𝑎"CD4 3𝑎"∗-2𝑒∗-4𝑎"∗- was 

chosen and the performance was compared with that of a CAS(12,10) taking into account 

additional 5d occupied orbitals of Hg.  

For the state-average CASSCF computations of HgX2 at the equilibrium geometry 8 average 

roots in all irreps of the subgroup of D∞h group D2h were calculated to get an accurate description 

of the singlet-triplet mixing and overall Spin-Orbit (SO) states. Upon breaking or bending the Cl-

Hg-Cl bond 25 singlet and 25 triplets were calculated without symmetry. For the CH3Hg 

complexes 25 singlets and 25 triplets were calculated without symmetry because C3v is a non-

abelian symmetry point group. 30 average roots were also tested for CH3Hg to analyze possible 

contributions of higher-energy states.  Finally, dynamic electron correlation was computed using  

the CASPT2 method with an imaginary level shift of 0.2 a.u to avoid any intruder states and 

ionization potential electron affinity (IPEA) shift of 0.25 a.u as suggested by previous studies of 

the Hg halide excited states. The interaction between the individual CASPT2 states was evaluated 

with the MS-CASPT2 method. To account for spin-orbit effects an all-electron basis set was used 
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with the third-order Douglas-Kroll and Hess Hamiltonian was used. To SOC matrix elements 

(SOCMEs) and SO excited states were evaluated with the restricted-active-space state-iteration 

(RASSI) method using the atomic mean-field approximation (AMFI).   

The ground-state equilibrium geometries were optimized at MP2 level using DKH3 and ANO-

RCC-VTZP basis sets imposing the constrains of D2h for the mercuric halides and the experimental 

C3v geometries were used as reference for the CH3Hg halides.  

6.4.2 Non-equilibrium water solvation 

To get accurate vertical excitation energies of the Hg complexes we estimated the influence of 

water as a solvent using the polarizable continuum model (PCM) with and without explicit waters 

with time-dependent density functional theory (TDDFT) using the LRC-ωPBE functional, which 

has been shown very accurate for the calculation of vertical excitation energies8. To estimate the 

solvent effects in vertical excitations, we must consider non-equilibrium solvation because during 

the electronic transition the solute undergoes a sudden change in its charge distribution. To 

describe this non-equilibrium solvent effect, we used the linear respond and state specific approach 

pt(LR+SS), which has been shown to be the most accurate when considering charge transfer 

transitions8. See Table SX for solvation effects. 

6.4.3 Marcus Rate for Intersystem Crossing  

Here we estimated a Marcus rate for ISC by direct SOC driven by the electronic character of 

the states and the vibrational density of states by using the Franck-Condon weighted density of 

states (FCWD), assuming the high temperature limit.9 The FCWD accounts for the reorganization 

energy (λ) and the adiabatic energy difference (ΔE) between the initial and final states at their 

respective minima. The λ accounts  for the energy variation in the initial excited state when 

switching from the equilibrium geometry to the geometry of the state of interest. For states with 



 203 

similar shaped PES the transition probability will depend exponentially on the adiabatic energy 

difference (λ=0), while states with divergent PES ISC will depend on the ΔE+ λ. The El-Sayed’s 

rules do not directly apply to the photolysis of Hg complexes because they only address the purely 

electronic aspects of ISC and also do not account for the multiconfigurational character of the low-

lying states of Hg complexes (Table S1,2, MS-CASPT2 wavefunctions).9 The reorganization 

energy was estimated using the equilibrium excited geometries derived from the potential energy 

surface of HgCl2 and CH3HgCl (Table X).   

𝑘OPQOR =
2𝜋
ℏ
〈 𝛹|𝛨X9| 𝛹RYZ
" 〉 ∙ 𝐹𝐶𝑊𝐷 

𝐹𝐶𝑊𝐷 =	
1

√4𝜋𝜆𝑅𝑇
𝑒d.

(efKg)
,ghi j 

6.4.4 Photodissociation of the Hg-Cl bond in CH3HgCl 

From the vertical excitation energies at the ground state geometry, it is unclear if the 

photodissociation of CH3HgCl cleaves the C or Cl bond, however, Hg-C bond dissociation is 

energetically more favorable (17 kcal/mol; Fig 2, Fig S1). 

 

Figure S6.1. Potential energy curves of low-lying excited states of CH3HgCl. The solid lines represent the singlet 
states and the dashed lines the triplet states A) PEC as a function of the Hg–Cl bond length in C3v symmetry. 
Calculations at the MS-CASPT2(8,8)-IPEA(0.25 a.u)/ANO-RCC-VTZP level of theory from the ground state 
equilibrium geometry calculated at the MP2 level of theory. B) CASSCF orbitals for the triplet state dissociation 
transition 32a13a1* (3σσ*) and 1,31enb3a1* (1,3πσ*).  
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6.6 Supporting Tables  

Table S6.1. Vertical electronic transitions of CH3HgCl computed at the DKH3-SOC-MS-
CASPT2-(8,8)/ANO–RCC–VTZP level of theory at the ground state geometry computed at the 
DKH3-MP2. Vertical excitation in eV (ΔE) and oscillator strengths (f) for the spin-free (SF) and 
spin-orbit (SO) states (left and right parts, respectively), the main orbital excitation which 
characterizes the SF states (column 2, only weights larger than 5% are given), and the main SF 
states contributing to the SO states (column 6, only weights larger than 3% are provided). 
Incremental full configuration vertical excitation energies at the ground state equilibrium geometry 
for the lowest triplet states computed at the Def2-TZVP level.  
 

Spin-free States Spin Orbit States Exp. 

SF 
State 

Weight 
(%) 

Excitatio
n 

ΔΕ 
(eV) 

f (au) iFCI 
ΔΕ 

(eV) 

SF-Weight (%) ΔΕ 
(eV) 

f (au) ΔΕ 
(eV) 

13A1 68 
24  

σ2→σ 
σ1→σ  

6.07   6.17   6.07 2.32E-08   
  98 13E 6.08 4.81E-04   
    6.08 4.76E-04   

13E 94 π→σ 6.33 
 

 94 23E - 3 41E 6.27 1.61E-06    
6.17 86 23E - 3 11E1 6.30 5.98E-04    

 93 23E  6.36 6.12E-04   
11E 92 π→σ 6.53 1.04E-02  80 11E - 5 23E - 8 43E 6.50 7.46E-03 6.26a 
23E 79 

8  
σ2→π 
σ1→π  

     95 33E - 3 11E1 6.61 3.13E-02   
6.83    68 33E - 28 21E 6.73 1.89E-02   

     99 33E 7.07 9.11E-07   
13A1 95 π→π       68 13A1 - 20 13A2 - 7 11E 6.85 1.37E-03   

6.94    67 13A1 - 20 13A2 - 8 11E 6.86 1.59E-03   
     57 13A1 - 14 41E - 10 43E - 9 11A2 - 5 23E 6.92 4.45E-05   

33E 95 π→π 
  

     40 43E - 34 41E - 10 13A1 6.92 3.38E-05   
7.11    90 43E - 7 11E 7.00 4.28E-04   

     99 43E 7.31 3.85E-05   
21E 40 σ2→σ 6.98    80 21E - 9 13A2 - 6 33E  7.01  1.32E-01   

38 π→π 2.12E-01    
11 σ1→σ      

31E  73 σ2→π 7.02 5.75E-02   70 31E - 29 33E  7.17 3.57E-02   
15 σ1→π    

41E 90 π→π 7.13 5.98E-04  50 41E - 47 43E 7.30 1.76E-04   
21A1 95 π→π 7.20 3.74E-05  73 21A1 - 16 13A1 - 8 13A2 7.40 9.28E-03   
13A2 95 π→π 7.25   

  
  

 77 13A2 - 10 21E - 7 21A   7.30 -   

 76 13A2 - 24 13A1 7.43 -   
 76 13A2 - 24 13A1 7.43 -   

Bond length Hg-C (Å) 2.047 
  

 
   

2.061b,c 

Bond length Hg-Cl (Å) 2.283 
  

 
   

2.282b,c 
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Table S6.2. Vertical electronic transitions of HgCl2 computed at the DKH3-SOC-MS-CASPT2-
(12,10)/ANO–RCC–VTZP level of theory at the ground state geometry computed at the DKH3-
MP2. Vertical excitation in eV (ΔE) and oscillator strengths (f) for the spin-free (SF) and spin-
orbit (SO) states (left and right parts, respectively), the main orbital excitation which characterizes 
the SF states (column 2, only weights larger than 5% are given), and the main SF states 
contributing to the SO states (column 7, only weights larger than 3% are provided).  

Spin Free States Spin Orbit States Exp. 
SF 

State 
Weight 

(%) 
Excitation ΔΕ 

(eV) 
f (au) ANO-RCC-

VQZPa 
SO Term 
Symbol 

SF-Weight (%) ΔΕ 
(eV) 

f (au) ΔΕ (eV) 

13Πg   
88 

  

 
πg→σg 

  

5.11     
5.15 

  

2g 99 13Πg 5.07 - 
 

  1g 97 13Πg 3 11Πg 5.11 - 
 

  0+
g 99 13Πg 5.17 - 

 

  0-g 99 13Πg 5.17 - 
 

11Πg 90 πg→σg 5.39   5.23 1g 97 11Πg - 3 13Πg 5.41 - 
 

13Πu 87 
 
  

πu→σg       2u 99 1 3Πu 5.78 - 
 

5.82   5.85 1u 80 13Πu - 20 11Πu 5.82 6.56E-04 
 

      0-
u 99 13Πu 5.88 - 

 

      0+u 99 13Πu 5.88 1.53E-04 
 

13Σ+
u 92  σu→σg 6.11   6.22 1u 91 13Σ+

u - 3 11Πu   6.11 7.52E-03 
 

        0- 98 13Σ+
u 6.13 - 

 

11Πu 88 πu→σg  6.13 1.73E-02 5.92 1u 66 11Πu - 20 13Πu - 3 
13Σ+

u 
6.17 1.94E-02 6.21b 

13Σ+
g 

  
82 
6  

σg→σg 
πu→ πu  

      1g 99 13Σ+
g 6.93 - 

 

6.92   7.00 0-
g 99 13Σ+

g 6.93 - 
 

      0+g 99 13Σ+
g 6.93 - 

 

11Σ+
u  50 πg→πu 6.99  8.29E-02  6.96  0+

u 86 11Σ+
u - 16 13Σ-

u   
6.95 

4.87E-02 
 

40 σu→σg 
 

23Σ+
u  90  πg→πu  7.02   7.02 1u+ 71 23Σ+

u - 3 11Σ-
u 6.85 - 

 
  

      0u- 71% 23Σ+
u - 3 11Σ-

u 6.94 - 
 

13∆u 
  

90  πg→πu        2u 46 11∆u - 54 13∆u 6.91 - 
 

7.16   7.18 1u 99 13∆u 6.99 1.06E-04 
 

      3u 99 13∆u 7.37 - 
 

11∆u 90 πg→πu 7.21   7.20 2u 54 11∆u - 49 13∆u 7.49 - 
 

Bond Length Hg-Cl (Å)    2.238  
 

          2.240c 

2.252d 
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Table S6.3. Vertical electronic transitions of CH3HgX (X = Cl, Br, I, and SCH3) computed at the 
DKH3-SOC-MS-CASPT2-(12,10)/ANO–RCC–VTZP level of theory at 4.0 Å Hg-C separated 
distances from the ground state geometry. Vertical excitation in eV (ΔE) and oscillator strengths 
(f) for the spin-free (SF) and spin-orbit (SO) states (left and right parts, respectively), the main 
orbital excitation which characterizes the SF states (column 3, only weights larger than 1% are 
given), and the main SF states contributing to the SO states (column 7, only weights larger than 
3% are provided). 

Molecule Spin Free States Spin Orbit States 
SF State Weight (%) Excitation ΔΕ (eV) SF- weight (%) ΔΕ (eV) 

CH3HgCl  S0  90 Closed shell 
3.29 100 S0 3.30 2 σ2→σ 

T1  83 
4 

σ2→σ 
σ1→σ 3.59  

100 T-1 3.61 
100 T0 3.61 
100 T+1 3.61 

S1  51 π→σ 6.26 80 S1 18 T2 6.26 
22 N/A 

CH3HgBr S0  90 Closed shell 
3.16 S0 100 3.18 4 σ2→σ 

T1  88 
3 

σ2→σ 
σ1→σ  3.36 

100 T1 3.37 
100 T1 3.37 
100 T1 3.37 

S1  44 π→σ 5.72  55 S1 44 T2 
 

44 NA 5.61 
CH3HgI S0  89 Closed shell 

3.05 99 S0 3.06 3 σ2→σ 
3 σ1→σ 

T1  90 
3 

σ2→σ 
σ1→σ  3.23  

99 T1 3.24 
99 T1 3.24 
99 T1 3.24 

S1 43 pi-sig 5.27  53 S1 48 T2 
5.03 

51 NA  

CH3HgSCH3 S0 80 Closed shell 
3.06  100 S0 3.07 14 σ2→σ 

T1 93 
2 

σ2→σ 
σ1→σ  3.25 

100 T1 3.27 
100 T1 3.27 
100 T1 3.27 

S1 38 π→σ 5.10  99 S1 5.11 
60 N/A 
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Table S6.4. Vertical electronic transitions of HgX2 (X = Cl, Br, I, and SCH3) computed at the 
DKH3-SOC-MS-CASPT2-(12,10)/ANO–RCC–VTZP level of theory at 4.0 Å Hg-X separated 
distances from the ground state geometry. Vertical excitation in eV (ΔE) and oscillator strengths 
(f) for the spin-free (SF) and spin-orbit (SO) states (left and right parts, respectively), the main 
orbital excitation which characterizes the SF states (column 3, only weights larger than 1% are 
given), and the main SF states contributing to the SO states (column 7, only weights larger than 
3% are provided). 

Molecule 
Spin Free States Spin Orbit States 

SF State Weight (%) Excitation ΔΕ (eV) SF- weight (%) ΔΕ 
(eV) 

HgCl2 

S0 
34 closed shell 3.52 S0 98% S0 3.52 56 σu→σg  

S1 90 πg→σg 3.79 S1 64% S1 34% T1 1% T2 3.77 

T1 90 πg→σg 
3.80 T-1 99% T1 3.78 

 T0 51% T2 38% T1 11% S1 3.79 
 T+1 54% T2 45% T1 3.79 

T2 91 σu→σg 
3.83 T-1 98% T1 3.85 

 T0 48% T2 24% S1 28% T1 3.89 
 T+1 45% T2 54% T1 3.89 

HgBr2 

S0 
20 closed shell 3.16 S0 84 S0 16 T1 3.10 73 σu→σg  

S1 92 πg→σg 3.34 S1 65 S1 29 T1 3.23 

T1 92 πg→σg 
3.37 T-1 99 T1 3.24 

 T0 58 T2 37 T1 4 S1 3.26 
 T+1 64 T2 35 T1 3.26 

T2 92 σu→σg 
3.39 T-1 83 T1 16 S1 3.60 
 T0 37 T2 30 S1 33 T1 3.66 
 T+1 35 T2 64 T1 3.67 

HgI2 

S0 21 closed shell 2.97 S0 74 S0 25 T1 2.79  68 σu→σg  
S1 90 πg→σg 3.12 S1 51 S1 47 T1 2.89 

T1 90 πg→σg 
3.13 T-1 98 T1 2.89 

 T0 64 T2 19 T1 16 S1 2.91 
 T+1 64 T2 34 T1 2.91 

T2 90 σu→σg 
3.15 T-1 73 T1  25 S0 3.68 

 T0 34 T2 32 S1 32 T1 3.75 
  T+1 34 T2 64 T1 3.75 

Hg(SCH3)2 

S0 
20 closed shell 2.70 S0 99 S0 2.71 71 σu→σg  

S1 92 πg→σg 2.94 S1 78 S1 21 T1 2.93 

T1 92 πg→σg 
2.97 T-1 87 T1 12 T2 2.97 

 T0 87 T1 12 T2 2.97 
 T+1 78 T1 21 S1 2.99 

T2 91 σu→σg 
3.01 T-1 99 T2 3.03 

 T0 87 T2 12 T1 3.03 
 T+1 27 T2 12 T1 3.03 
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Table S6.5. Vertical electronic transitions of CH3HgBr computed at the DKH3-SOC-MS-
CASPT2-(8,8)/ANO–RCC–VTZP level of theory at the ground state geometry computed at the 
DKH3-MP2. Vertical excitation in eV (ΔE) and oscillator strengths (f) for the spin-free (SF) and 
spin-orbit (SO) states (left and right parts, respectively), the main orbital excitation which 
characterizes the SF states (column 2, only weights larger than 5% are given), and the main SF 
states contributing to the SO states (column 6, only weights larger than 3% are provided). The 
bolded SO spin free percent contribution indicates significant singlet and triplet mixing and 
it is no longer possible to determine the singlet versus triplet states.  

Spin Free States Spin Orbit States Exp. 
SF 

State 
Weight 

(%) Excitation ΔΕ 
(eV) f (au) SF-Weight (%) ΔΕ 

(eV) f (au)  ΔΕ (eV) 

13E 94  π→σ  5.70  
 
  

95 13E 5.55 3.29E-06  
73 13E - 18 21E - 4 23E 5.60 2.60E-03  

83 13E - 13 23E 5.88 4.86E-03  

23E 60 
21  

σ2→σ 
σ1→σ 

5.71 
 73 23E - 25 13E 5.68 4.38E-06  
 82 23E - 14 11E 5.70 3.31E-03  
 82 23E - 14 11E 5.70 3.28E-03  

11E 95 π→σ 5.88 1.50E-02 58 11E - 22 13E - 12 23E - 5 33E 5.98 7.24E-03 6.19a 

13A1 93 π→π  

  66 13A1 - 25 13A2 - 5% 11E 6.21 8.42E-04  
6.39  66 13A1 - 25 13A2 - 5% 11E 6.21 9.18E-04  

  78 13A1 - 5 33E - 4 21A1 6.41 2.12E-06  

33E 95 π→π 6.55  

 49 33E 43% 31E - 2 13E* 6.27 5.06E-06  
 66 33E 15% 41E - 12 43E 6.47 8.38E-05  
 92 33E 3% 41E - 3 43E 6.65 7.40E-04  

21E 
21 
53 
15 

σ2→σ 
6.55 

 

89 21E - 8 43E 

   

π→π 7.87E-02 6.56 8.66E-02  

σ1→σ     

31E 94 π→π 6.61 6.98E-06 31 31E - 26 33E - 10 12A2 - 18 43E* 6.91 1.60E-04  

Bond length Hg-C (Å) 2.055     2.073b,c 

Bond Length Hg-Br (Å) 2.407     2.406b,c 
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Table S6.6. Vertical electronic transitions of CH3HgI computed at the DKH3-SOC-MS-CASPT2-
(8,8)/ANO–RCC–VTZP level of theory at the ground state geometry computed at the DKH3-MP2. 
Vertical excitation in eV (ΔE) and oscillator strengths (f) for the spin-free (SF) and spin-orbit (SO) 
states (left and right parts, respectively), the main orbital excitation which characterizes the SF 
states (column 2, only weights larger than 5% are given), and the main SF states contributing to 
the SO states (column 6, only weights larger than 3% are provided). The bolded SO spin free 
percent contribution indicates significant singlet and triplet mixing and it is no longer 
possible to determine the singlet versus triplet states.  

Spin Free States Spin Orbit States Exp. 
SF 

State 
Weight 

(%) Excitation ΔΕ 
(eV) f (au) SF Weight (%) ΔΕ 

(eV) f (au) ΔΕ 
(eV) 

13E 93  π→σ 5.19 
 97 13E – 2 33E 4.92 5.73E–08  
 65 13E – 30 11E* 4.98 2.73E–03  
 74 13E – 16 23E 5.50 2.80E–02  

23E 60 
21 

σ2→σ 
σ1→σ 

5.27 
 65 23E – 32 13E 5.13 1.95E–07  
 72 23E – 21 11E* 5.14 1.69E–03  
 72 23E – 21 11E* 5.14 1.69E–03  

11E 93 π→σ 5.36 8.96E–03 32 11E – 25 23E – 11 13E – 4 13A1* 5.75 2.13E–03 5.39a,b 

13A1 93  π→π 
  59 13A1 – 30 13A2 – 10 11E 5.61 1.21E–03  

5.93  59 13A1 – 30 13A2 – 10 11E 5.61 1.21E–03  
  76 13A1 – 12 43E – 10 13E 5.93 3.71E–08  

33E 95 π→π 
  51 33E 46 11E* 5.66 1.75E–06  

6.07  56 33E – 18 41E – 12 41E* 6.00 1.74E–03  
  99 33E 6.06 8.15E–06  

21E 
14 σ2→σ 

6.12 

     

68 π→π 1.64E–02 48 21E – 34 43E – 16 13A2* 6.11 2.72E–05 6.01a,b 

11 σ1→σ      

31E 94 π→π 6.13 4.82E–06 30 33E – 33 313E – 32 43E* 6.45 5.78E–06  

Bond length Hg–C (Å) 2.064     2.087c,d 

Bond Length Hg–I (Å) 2.580     2.528c,d 
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Table S6.7. Vertical electronic transitions of HgBr2 computed at the DKH3-SOC-MS-CASPT2-
(8,8)/ANO–RCC–VTZP level of theory at the ground state geometry computed at the DKH3-MP2. 
Vertical excitation in eV (ΔE) and oscillator strengths (f) for the spin-free (SF), the main orbital 
excitation which characterizes the SF states (column 2, only weights larger than 5% are given). 
For SO states and SF contributions please see ref7 

SF 
State 

Weight 
(%) 

Excitati
on 

ΔΕ 
(eV) 

f (au) ANO-RCC-
VQZPa 

Expt.  

13Πg 90 πg→σg 4.57 
 

4.56   
11Πg 90 πg→σg 4.83 

 
4.75   

13Πu 88 πu→σg 5.18 
 

5.17   
13Σ+

u 93 σu→σg 5.44 
 

5.46   
11Πu 88 πu→σg 5.45 2.01E-02 5.34 5.48b 

23Σ+
u 91 πg→πu 6.47 

 
6.47   

11Σ+
u 50 

40 
πg→πu 
σu→σg 

6.41  1.15E-01 6.35 6.58b 

13∆u 91 πg→πu 6.61 
 

6.61   
11∆u 90 πg→πu 6.64 

 
6.63   

13Σ+
g 54 

36 
σg→σg 
πu→πu 

6.68  
 

6.70    
  

Bond Length Hg-Br (Å) 2.369       2.374c 
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Table S6.8. Vertical electronic transitions of HgI2 computed at the DKH3-SOC-MS-CASPT2-
(8,8)/ANO–RCC–VTZP level of theory at the ground state geometry computed at the DKH3-MP2. 
Vertical excitation in eV (ΔE) and oscillator strengths (f) for the spin-free (SF), the main orbital 
excitation which characterizes the SF states (column 2, only weights larger than 5% are given). 
For SO states and SF contributions please see ref7 

SF 
State 

Weight 
(%) 

Excitati
on 

ΔΕ 
(eV) 

f (au) ANO-RCC-
VQZPa 

Expt.  

13Πg 90 πg→σg 3.90 
 

4.04   
11Πg 88 πg→σg 4.12 

 
4.17   

13Πu 92 πu→σg 4.34 
 

4.53   
13Σ+

u 92 σu→σg 4.60 
 

4.87   
11Πu 87 πu→σg 4.58 7.75E-03 4.65 4.69b 

23Σ+
u 90 πg→πu 5.85 

 
5.83   

11Σ+
u 42 

48 
πg→πu 
σu→σg 

5.67 1.70E-01 5.73 5.96b 

13∆u 89 πg→πu 5.98 
 

5.96   
11∆u 90 πg→πu 6.01 

 
5.96   

13Σ+
g 25 

64 
σg→σg 
πu→πu 

6.06 
 

6.12    
  

Bond Length Hg-I (Å) 2.369       2.554,2.559c 
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Chapter 7 Conclusion 

The investigation of mercury (Hg) extends back to antiquity, and was carried out by alchemists 

vying to transmute base metals into gold and doctors working to treat disease. Hg continues to be 

used in modern times in manufacturing applications such as batteries and lightbulbs and in 

artisanal gold mining activities throughout the world. Despite the long and rich history of “element 

80,” many aspects of the underlying environmental chemistry remain poorly understood. The study 

of the environmental photochemistry of Hg reported in this dissertation has expanded our 

understanding and applicability of Hg stable isotope measurements. Our work has also opened 

new avenues of future research. Based on the body of work presented here, the authors hope to 

inspire the investigation of the excited states of environmentally relevant Hg complexes to gain a 

better understanding of the global biogeochemical cycle of Hg and of its unusual MIF behavior 

and underlying mechanisms.  

7.1 Summary of Key Findings 

7.1.1 The marine biogeochemical cycle of Hg 

 Throughout the course of the research reported in this dissertation, a number of important 

advancements have been realized in our understanding of the marine biogeochemical cycle of Hg. 

These break-throughs were possible by the collaborative effects of isotope geochemists at the 

University of Michigan, oceanographers at the University of Hawai’i, and biologists and 

microbiologists at Rutgers University. Our collective efforts resulted in the first measurements of 

open ocean precipitation, marine particles, and zooplankton.  
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 At Station ALOHA in the North Pacific Subtropical Gyre (Chapter 2), we demonstrated 

that rainfall represents the major source of Hg to marine pelagic waters. We also found that the 

main source of Hg below the mixed layer is particulate Hg, that the isotopic composition of 

zooplankton and particles indicates demethylation of MeHg in the water column, and that surface 

zooplankton track diurnal photochemical degradation of MeHg. 

Intrigued by the diurnal and elevated Δ199Hg signatures in surface zooplankton we 

investigated the incorporation of MeHg into marine zooplankton in the Central and North Pacific 

Ocean. Zooplankton are the entry point of MeHg in the marine foodweb (Chapter 4). The 

zooplankton isotopic composition demonstrates that only small inorganic complexes of MeHg are 

available for uptake and bioaccumulation in marine waters.  MeHg coordinated to larger organic 

complexes are not bioavailable to plankton, and therefore photochemical degradation of Hg 

complexed to dissolved organic matter does not reduce the pool of MeHg that ends up in pelagic 

fish. Instead, the pool of MeHg available for bioaccumulation is predominately reduced by 

intracellular photochemical degradation by phytoplankton. Finally, we have greatly expanded our 

understanding of the marine Hg cycle and we have identified key mechanisms that control the 

mobility and toxicity of MeHg prior to bioaccumulation in marine fish.  

7.1.2 Photochemical decomposition and reduction of Hg 

 In addition to building a greater understanding of the marine biogeochemical cycle of Hg, 

the research presented here has elucidated important aspects of the photochemical transformations 

of Hg that lead to the Δ199Hg values preserved in biological samples. These results have improved 

our ability to catalog Hg stable isotopes signatures in natural environments, while also increasing 

our understanding of the controlling factors of photochemical decomposition and reduction of Hg 

that limit the Hg available to aquatic foodwebs in surface waters.  
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 First, we investigated the photochemistry of MeHg by analyzing the isotopic composition 

of flying fish living in the surface ocean (Chapter 3). There are well known drawbacks to applying 

laboratory and field experiments to investigate chemical reactions in marine environments. 

Laboratory experiments cannot fully simulate the conditions of the open ocean, and this it is 

difficult to get a complete understanding of the controlling parameters of naturally occurring 

chemical reactions. While in situ field experiments may be successful at estimating degradation 

rates in realistic environmental conditions, the experiments are not adequate to fully constrain the 

controlling factors of the reaction. The Hg stable isotope composition of natural samples record a 

unique photochemistry signature that incorporates all the intricacies of the environment. The 

strong correlation between Δ199Hg and Δ201Hg found in flying fish across wide regions of the 

Atlantic and Pacific Ocean and in zooplankton and pelagic fish in the North Pacific Subtropical 

Gyre1,2 suggest that the role of solar irradiance, dissolved organic matter, and water chemistry may 

alter the MeHg photodecomposition kinetics but not the reaction mechanism. We suggest that if 

there were multiple MeHg photodecomposition pathways the open ocean flying fish would not 

display a strong complementary correlation between Δ199Hg to δ202Hg (Fig 2), because δ202Hg 

would vary with the different decomposition pathways. 

 Motivated by the strong correlations between Δ199Hg and Δ201Hg, and between Δ199Hg and 

δ202Hg in natural samples we investigated the Hg isotope fractionation during the photochemical 

reduction of Hg(II) complexed to organic ligands or chlorine (Chapter 4). Our experiments 

demonstrated that the sign and rate of magnetic isotope effects (MIE) depend on the complexing 

ligand, dissolved oxygen, and pH. Importantly, we found that MDF and MIE are induced at 

different steps in the reaction, highlighting the potential role of photophysical processes in MIE. 

Finally, we demonstrated that in environments with elevated Cl concentrations, where HgCl2 
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species dominate, photochemical reduction does not yield MIE. This implies that in surface marine 

waters the photoreduction of inorganic Hg will not result in significant MIE.  

 In our efforts to understand the dominant mechanism that degrades the pool of Hg available 

to marine organisms and results in the elevated Δ199Hg, we investigated the photochemical 

decomposition of MeHg in seawater (Chapter 5). The Δ199Hg and δ202Hg from these experiments 

suggest there are two distinct pools of MeHg available for photochemical decomposition in marine 

waters. The experiments of MeHg coordinated to organic ligands resulted in a Δ199Hg/δ202Hg slope 

of 4.1, while the group of experiments that included natural seawater from Station ALOHA and 

deionized water had a Δ199Hg/δ202Hg slope of 11.3. This much higher slope represents the 

photochemical decomposition of reactive inorganic complexes of MeHg (MeHg+ and MeHgOH). 

Large zooplankton and flying fish have a Δ199Hg/δ202Hg slope closer to 4.1 suggesting that the 

isotopic signatures preserved in marine organisms are controlled by photodecomposition of MeHg 

coordinated to organic ligands. We concluded that these Hg isotopic signatures are a result of 

intracellular photodecomposition of MeHg by phytoplankton, because in open ocean waters there 

are not enough thiol organic ligands to coordinate with Hg in seawater. 

7.1.3 The Hg magnetic isotope effect  

 Δ199Hg and Δ201Hg signatures have been proven to be excellent tools for tracking and 

investigating the biogeochemical cycle of Hg. However, it was unclear why Hg complexes were 

susceptible to this type of MIF and what aspects of photochemistry Δ199Hg values represented. In 

Chapter 6, we investigated computationally the photolysis of CH3HgX and HgX2 complexes (X = 

Cl, Br, I, and SCH3). Our simulations demonstrated that CH3HgX will typically result in (+) MIE, 

while the photolysis of HgX2 may yield (+) and (-) MIE. This explains why (-) MIE associated 

with CH3Hg complexes has never been recorded experimentally or in natural samples, while (-) 
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MIE has been exclusively recorded in samples associated with HgX2 type complexes (Blum et al., 

2014 see figure 2).3 Our results also demonstrate that Hg complexes with heavy atoms like Br and 

I may not exhibit MIE due to significant spin-orbit coupling compared to Cl and SCH3. Finally, 

we suggest that the photolysis of CH3HgSCH3 and Hg(SCH3)2 may contribute to the MIE recorded 

in nature because these complexes absorb light in the sunlight spectrum. However, the MIE by 

Hg(SCH3)2 may be limited by intersystem crossing induced by spin-orbit interactions at Hg-S bond 

separated distances. The competition between spin-orbit coupling and hyperfine coupling in 

separated radical pairs explain why in natural samples the anomalies in 199Hg and 201Hg associated 

with the photolysis of HgX2 type complexes are significantly reduced compare to MeHgX.3 

 

7.2 Future Directions 

 The results of this dissertation raise a number of new and exciting scientific questions that 

need to be addressed to advance our understanding of the biogeochemical cycle of Hg. We 

presented substantial evidence for, and highlight the importance of, gaining a greater 

understanding of dissolved Hg speciation in marine waters, intracellular photodecomposition of 

MeHg by phytoplankton, and the mechanism controlling the magnetic isotope effect. In our goal 

of understanding the environmental chemistry of Hg we propose a multidisciplinary approach 

combining experiment, theory and field observations.  

7.2.1 Experimental: Photochemistry and Phytoplankton Isotope Experiments 

 Throughout this dissertation, we indicated that once dissolved MeHg is inside 

phytoplankton the elevated intracellular thiol concentrations facilitate multivalent complexation to 

thiol ligands to MeHg(thiol)2-3 similarly to the Hg(II) species4, which leads to photodegradation 

resulting in the same isotopic signature preserved in surface large zooplankton and pelagic marine 
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fish.2 However, there are not any experimental studies of higher order MeHgthiol complexes or 

photodegradation; and phytoplankton intracellular photodegradation of MeHg has only been 

investigated for one strain of marine phytoplankton (Isocrysis galbana).5 

To understand MeHg transformations at the base of the food web and to test the hypothesis 

that phytoplankton intracellular MeHg photodegradation is mediated by MeHg(thiol)2-3 

complexes, we propose to investigate the Hg MIF signatures during the photochemical degradation 

of multiple MeHg(thiol)1-3 complexes and to catalog the Hg stable isotope signatures of 

intracellular photodegradation of a wide range of species of phytoplankton. In particular, it is 

important to extend the study of intracellular photodegradation of MeHg to marine diatoms, the 

most abundant species of phytoplankton in marine waters.  

It is also critical to enhance our investigations of MeHg speciation in marine waters and in 

phytoplankton. There has been some research using X-ray absorption fine structure spectroscopy 

(using synchrotron radiation) to investigate the complexation of inorganic Hg(II) in dissolved 

organic matter.6–8 We suggest this would be an appropriate technique for investigating the 

speciation of MeHg within marine phytoplankton to ascertain whether MeHg may form higher 

multivalent coordination complexes with thiols ligands.  

7.2.2 Theoretical: Mass Independent Hg Stable Isotope Fractionation  

 To accurately interpret Δ199Hg and Δ201Hg signatures in nature we must investigate the 

susceptibility of environmentally relevant MeHg complexes to undergo direct photolysis and 

evaluate the role of relativistic effects on the mechanism for the MIE. We propose detailed studies 

of the photochemical decomposition of MeHg coordinated to multiple thiol complexes using high 

level quantum chemical ab initio methods with relativistic effects. This will allow us to determine 

the likelihood of the MIE by conducting quantum dynamic calculations to determine non-adiabatic 
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couplings (e.g conical intersection and intersystem crossing). Subsequently, we believe 

investigations of the role of hyperfine coupling with inclusion of relativistic effects is crucial for 

determining the extend and rate of the MIE in natural samples.  

7.2.3 Field observations: Analysis of Hg Concentrations and Isotopes of Marine 

Phytoplankton and Zooplankton 

 To date there have not been any Hg stable isotope measurements of marine phytoplankton 

and marine phytoplankton are a critical part of the biogeochemical cycle of Hg. It has been shown 

in the North Pacific Ocean that small surface dwelling (25 m; 0-2 mm) zooplankton exhibit a 

Δ199Hg diurnal signature and that Hg stable isotope signatures (Δ199Hg, Δ201Hg, and δ202Hg) are 

quite different than the larger (1-5 mm) and deeper (125-1250 m) zooplankton.2 Apart from the 

different bulk Hg isotopic composition, the larger and deeper zooplankton do not exhibit any 

diurnal trends and Δ199Hg values are invariant below the twilight zone. These results warrant 

further study to determine the role of phytoplankton, up to the depths that small zooplankton 

exhibit diurnal trends, and why surface large zooplankton have a substantially different Hg stable 

isotopic composition than small zooplankton.  

7.2.4 Final Remarks 

The research work presented here suggests that Hg stable isotopes could be used to investigate key 

aspects of photochemical reactions occurring in nature, in a similar manner as C and H isotopes 

have been used for determining reaction mechanisms relevant to environmental ansd biomedical 

science.9–12 This will ameliorate a major limitation in the study of biogeochemical cycles, where 

laboratory experiments cannot mimic complex natural environments and thus limits the 

interpretation of environmental data. To develop this methodology, it is imperative to improve Hg 

stable isotope theory in conjunction with specific experiments; this will allow the scientific 
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community to use Hg stable isotopes in organisms to determine chemical reaction mechanisms, 

rates, and relevant Hg species in the environment. A better understanding of the MIE will also 

have significant impact in chemistry by improving our understanding of the radical pair 

mechanism. The radical pair mechanism is thought to mediate the light-dependent magnetic 

compass in birds13 and operate in photosynthetic reaction centers of phytoplankton.14 However, no 

studies of the radical pair mechanism has incorporated relativistic effects or heavy elements. 

Finally, our research suggests that it is of great importance to improve our understanding of MeHg 

and thiol ligands in natural environments, given their central role in controlling the mobility and 

toxicity of Hg. Centuries after Geber formulated one of the first descriptions of a chemical bond 

by sublimating Hg and sulfur15, we still have much to learn about these two elements. 
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