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Rényi mutual information with α = 1/2. The densities are jointly Normal, with
non-zero mutual information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

viii



2.11 Comparison of MSE of NNR, RNNR, ENNR and Ensemble KDE estimators of
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ABSTRACT

Information theoretic measures such as Shannon entropy, mutual information, and

the Kullback-Leibler (KL) divergence have a broad range of applications in informa-

tion and coding theory, statistics, machine learning, and neuroscience. KL-divergence

is a measure of difference between two distributions, while mutual information cap-

tures the dependencies between two random variables. Furthermore, the binary

Bayes classification error rate specifies the best achievable classifier performance and

is directly related to an information divergence measure.

In most practical applications the underlying probability distributions are not

known and empirical estimation of information measures must be performed based on

data. In this thesis, we propose scalable and time-efficient estimators of information

measures that can achieve the parametric mean square error (MSE) rate of O(1/N).

Our approaches are based on different methods such as k-Nearest Neighbor (k-NN)

graphs, Locality Sensitive Hashing (LSH), and Dependence Graphs. The core idea

in all of these estimation methods is a unique plug-in estimator of the density ratio

of the samples. We prove that the average of an appropriate function of density ratio

estimates over all of the points converges to the divergence or mutual information

measures. We apply our methods to several machine learning problems such as

structure learning, feature selection, and information bottleneck (IB) in deep neural

networks.

xvi



CHAPTER I

Introduction

1.1 Background and Related Work

In this section we provide the necessary background and the related work of the

contributions of this thesis.

1.1.1 Estimation of Information Measures

Shannon entropy, mutual information, and the Kullback-Leibler (KL) divergence

are the most well-known information theoretic measures [106, 27]. Shannon entropy

can measure diversity or uncertainty of samples, while KL-divergence is a measure

of dissimilarity, and mutual information is a measure of dependency between two

random variables or vectors [28]. Rényi proposed a divergence measure which gener-

alizes KL-divergence [103] and is related to source coding with nonlinear code length.

f-divergence is another general family of information measrues, which has been well

studied, and comprises many important divergence measures such as KL-divergence,

total variation distance, and α-divergence [3, 26]. The divergences belong to the f -

divergence family have a wide range of applications in information and coding theory,

statistics and machine learning [28, 80, 82].

We introduce the two well known Rényi and f-divergence measures. Consider two

density functions fX and fY with support M⊆ Rd. The Rényi divergence between

1
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fX and fY is

Dα (fX(x)||fY (x)) :=
1

α− 1
log

∫
fX(x)αfY (x)1−αdx

=
1

α− 1
log Jα(fX , fY ),(1.1)

where in the second line, Jα(fX , fY ) denotes:

Jα(fX , fY ) := EfY
[(

fX(x)

fY (x)

)α]
.

The f-divergence family, is defined as follows [3]:

Dg (fX(x)||fY (x)) :=

∫
g

(
fX(x)

fY (x)

)
fY (x)dx

= EfY
[
g

(
fX(x)

fY (x)

)]
,(1.2)

where g is a smooth and convex function such that g(1) = 0. KL-divergence,

Hellinger distance and total variation distance are particular cases of this family.

We define mutual information functions in terms of the divergence between the

joint density of X and Y and and their marginals. Let fX(x), fY (y) and fXY (x, y)

be marginal and joint densities of (X, Y ). The Rényi mutual information is defined

as

Iα(X, Y ) = Dα (fX(x)fY (y)‖fXY (x, y)) .(1.3)

Also the general mutual information function based on the f-divergence measure

with a function g is defined as

Ig(X, Y ) = Dg (fX(x)fY (y)‖fXY (x, y)) ,(1.4)

which includes Shannon mutual information function for the choice of g(x) = − log(x).
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A popular class of estimators for information measures are nonparametric estima-

tors, for which minimal assumptions on the density functions are required. This is in

contrast to parametric estimators that assume a parametric model for the underly-

ing density. An approach used for non-parametric estimators is plug-in estimation,

in which we find an estimate of a distribution function and then plug it into the

measure function. The k-Nearest Neighbor (K-NN) and Kernel Density Estimator

(KDE) estimation methods are examples of this approach.

Another approach is graphical estimation, in which we find a relationship be-

tween the measure function and a graph-related functional in Euclidean space. In

a seminal work in 1959, Beardwood et al derived the asymptotic behavior of the

weighted functional of minimal graphs such as K-NN and travelling sales person

(TSP) graph of N i.i.d random points [10]. They showed that the sum of weighted

edges of these graphs converges to the integral of a weighted density function, which

can be interpreted as Rényi entropy. Since then, this work has been of great interest

in the signal processing and machine learning communities [51]. More recent stud-

ies of direct graph theoretical approaches include the estimation of Rényi entropy

using minimal graphs [50], as well as the estimation of Henze-Penrose divergence

using minimal spanning tree (MST) [39, 14]. Yet the extension to information theo-

retic divergence and correlation measures such as Rényi and f-divergences as well as

Rényi and Shannon mutual information functions has remained an open question.

Moreover, among various estimators of information measures, developing accurate

and computationally tractable approaches has often been a challenge. Therefore, for

practical and computational reasons, direct graphical algorithms have received much

attention more in the literature lately.

Several previous works have investigated an estimator for a particular type of
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divergence and mutual information. k-NN [97], KDE [109], and histogram [122] esti-

mators are among the studied plug-in estimators for divergence and mutual informa-

tion functions. In general, most of these estimators suffer from restrictive conditions

such as lack of analytic convergence rates, or high computational complexity.

Recent works have focused on deriving the MSE convergence rates for plug-in

estimators, such as KDE. Singh and Póczos proposed estimators for general density

functionals, Rényi divergence and mutual information, based on the kernel density

plug-in estimator [109, 111]. Their approach achieves the convergence rate of O(1/N)

when the densities are at least d times differentiable. In a similar approach, Kan-

dasamy et al proposed another KDE-based estimator for general density functionals

and divergence measures, which can achieve the convergence rate of O(1/N) when

the densities are at least d/2 differentiable [58]. Moon et al proposed simple kernel

density plug-in estimators using weighted ensemble methods to improve the MSE

rate [83, 79]. The proposed estimator can achieve the optimal convergence rate

when the densities are at least (d+ 1)/2 times differentiable. The main drawback of

these plug-in estimators is handling the bias at the support set boundary. For exam-

ple, use of the estimators proposed in [109, 58] requires knowledge of the densities’

support set, boundary smoothness assumptions, and numerous computations at the

support boundary, which become complicated when the dimension increases. To cir-

cumvent this issue, Moon et al [83] assumed smoothness conditions at the support set

boundary for the ensemble estimator, which may not always be satisfied in practice.

Our basic estimator does not require any smoothness assumptions on the support

set boundary although our ensemble estimator does. Regarding the algorithm time

complexities, our KNN and hash-based estimators respectively spend O(kN logN)

and O(N) time versus the time complexity of KDE based estimators which spend
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O(N2) time.

A rather different method for estimating f-divergences is suggested by Nguyen

et al [90], which is based on a variational representation of f-divergences that con-

nects the estimation problem to a convex risk minimization problem. This approach

achieves the parametric rate of O(1/N) when the likelihood ratio is at least d/2 times

differentiable. However, the algorithm’s time complexity can be worse than O(N2).

Finally, in an independent work, Wisler et al proposed a graph based estimator of

density functionals which resembles our approach in some aspects such as using the

k-NN graph of joint data set and direct estimation of the density ratio based on the

type of neighbor nodes [123]. However, they do not provide any convergence rate for

their estimator.

1.1.2 Estimation of Bayes Error Rate

In any classification problem, the error rate of a classifier might be better than

the human error, but it is always greater than the Bayes error rate. The Bayes

error rate is the best achievable misclassification error rate, and provides a lower

bound on the error rate of any practical classifier. Note that when the labels are

assigned by human based on the generated samples, it doesn’t make sense to observe

a better performance than the human level. However, in cases which the samples are

generated based on the predefined labels, the machine learning performance could

overcome the human level performance.

Consider an observation-label pair (X,T ) takes values in Rd × {1, 2, . . . , λ}. For

class i, the prior probability is Pr{T = i} = pi and fi is the conditional distribution

function of X given that T = i. Let p = (p1, p2, . . . , pλ). A classifier C : Rd →

{1, 2, . . . , λ} maps each d-dimensional observation vector X into one of λ classes.

The misclassification error rate of C is defined as
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(1.5) εC = Pr(C(X) 6= T ),

which is the probability of classification associated with classifier function C. Among

all possible classifiers, the Bayes classifier achieves minimal misclassification rate and

has the form

(1.6) CBayes(x) =1≤i≤λ Pr(T = i|X = x),

The Bayes misclassification error rate is

(1.7) EBayes
p (f1, f2, . . . , fλ) = Pr(CBayes(X) 6= T ).

The Bayes error rate is the best achievable misclassification error rate, and provides

a lower bound on the error rate of any practical classifier. The problem of learning

to bound the Bayes error rate has been a topic of recent interest. Lower and upper

bounds on Bayes error rate are typically estimated by estimating an f -divergence that

measures dissimilarity between the class distributions [15, 92, 78]. The f -divergence

or Ali-Silvey distance, first introduced in [4], is a useful measure of the distribution

distance, which is a key notion in the field of information theory and machine learning

[29]. The f -divergence generalizes several measures like Kullback-Leibler divergences

[69], Lin’s divergences [75], and Rényi divergences [101]. For example, the problem

of learning the Bhattacharya (BC) divergence [57] was addressed in [15, 121, 78].

This divergence is a special form of the Chernoff α-divergence [19] with α = 1/2 and

arises in a number of applications. The BC divergence is defined as

(1.8) I 1
2
(f1, f2) =

∫ √
p1p2f1(x)f2(x)dx,

and the lower and upper bounds on Bayes error rate are given by

(1.9)
1

2
−
√

1

4
− I 1

2
(f1, f2)2 ≤ EBayes

p (f1, f2) ≤ I 1
2
(f1, f2).
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The Henze-Penrose (HP) divergence, first introduced in [48], is another divergence

measure, defined as

Dp(f1, f2) :=

1

4p1p2

[∫
(p1f1(x)− p2f2(x))2

p1f1(x) + p2f2(x)
dx− (p1 − p2)2

]
.(1.10)

In [15], Berisha et. al. provided bounds on the Bayes misclassification error proba-

bility based on the HP divergence:

1

2
−
√

4p1p2Dp(f1, f2) + (p1 − p2)2

≤ EBayes
p (f1, f2) ≤ 2p1p2(1−Dp(f1, f2)).(1.11)

It was demonstrated that (1.11) is tighter than (1.9) when p1 = p2 = 1/2 [15].

1.1.3 Feature Selection

Feature selection is a data processing technique which is widely used in various

areas such as signal processing, machine learning and pattern recognition. In many

machine learning applications, feature selection is mainly considered as a prepro-

cessing stage and has certain computational and performance benefits. By making

the data less redundant, feature selection helps with reducing overfitting in training

algorithms. In addition, it could improve the accuracy by removing the misleading

data. Computationally, feature selection can improve the training runtime of the

algorithms by reducing the dimension of the data [43, 73]. Interpretability is another

advantage that feature selection can bring in to the machine learning approaches.

Feature selection methods can be categorized into one of the following types: wrapper

methods [64, 44], filter methods [62, 107] and embedded methods [70].

Wrapper methods consider different subsets of features and evaluate the perfor-

mance of the selected features based on the resulting performance of the applied
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model. Therefore, any learning model can be used to evaluate the performance of

the selected features. There are three major approaches for the wrapper methods;

subset selection [6], forward selection [72, 44] and recursive feature elimination [44].

Subset selection method performs a brute-force or a greedy search on all possible

subsets of features and chooses the subset with the best performance on the learning

model. Forward selection method starts with an empty set of features, and itera-

tively selects new features based on the performance of the selected set of features. In

contrast, recursive feature elimination method starts with the set of all features and

at each step removes a feature from the selected set so that the resulting performance

is best. Since the search space in the subset selection method is extremely huge it is

not used in practice for large datasets. For most of the cases where the dimension

of the data is large and the final feature size is small, the forward selection method

provides a better computational complexity and therefore it is commonly used in

practice.

In contrast to the wrapper methods, filter methods are independent of any learn-

ing models. In filter methods the features are usually ranked according to a statistical

importance score and then the final set of features are selected based on the feature

ranking. Some common importance scores used in filter methods are chi-square test,

fisher score, correlation coefficient, etc [73]. The third type of feature selection meth-

ods is called embedded approach [70]. This approach makes a trade-off between the

wrapper and filter methods by embedding the feature selection into algorithm learn-

ing. In general these methods are computationally more efficient than the wrapper

methods.
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1.1.4 Applications in Structure Learning

Mutual information has been used for structure learning in graphical models

(GM) [21], which are factorizable multivariate distributions that are Markovian ac-

cording their conditional distributions, representable as a graph [71]. GMs have been

used in fields such as bioinformatics, image processing, control theory, social science,

and marketing analysis. However, structure learning for GMs remains an open chal-

lenge since the most general case requires a combinatorial search over the space of

all possible structures [77, 125]. Furthermore, most nonparametric approaches have

poor convergence rates as the number of samples increases. This has prevented re-

liable application of nonparametric structure learning except for impractically large

sample sizes.

Several structure learning algorithms have been proposed for parametric GMs

including discrete Markov random fields [61], Gaussian GMs [33], and Bayesian net-

works [96]. Recently, the authors of [5] proposed learning latent variable models

from observed samples by estimating dependencies between observed and hidden

variables. Numerous other works have demonstrated that latent tree models can be

learned efficiently in high dimensions (e.g. [20, 89]).

1.2 Contributions

1.2.1 Estimation of Information Measures Based on KNN

In Chapter II we propose a KNN-based method for direct estimations of divergence

and mutual information. Given two sample sets X and Y with respective densities

of f1 and f2, we consider the sets of k-nearest neighbor (k-NN) points among the

joint sample set for each point in Y. We show that the average exponentiated ratio

of the number of points with X type (from X set) to the number of points with Y
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type (from Y set) among all k-NN sets converges to the Rényi divergence. Using this

fact, we design a consistent estimator for the Rényi and f-divergences. Also, based on

the representation of mutual information functions in terms of a divergence measure

between joint and marginal densities, we propose a direct estimator for Rényi and

general mutual information functions.

Unlike most distance-based divergence estimators, our proposed estimator can use

non-Euclidean metrics, which makes this estimator appealing in many information

theoretic and machine learning applications. Our estimator requires no boundary

correction, and surprisingly, the boundary issues do not show up. This is because

the proposed estimator automatically cancels the extra bias of the boundary points

in the ratio of nearest neighbor points. Our approach is also more computationally

tractable than other estimators, with a time complexity of O(kN logN), required to

construct the k-NN graph [119]. For example, for k = O
(
N1/(d+1)

)
the proposed

approach requires computaional complexity of O(N (d+2)/(d+1) logN). We derive the

convergence rates of the proposed estimator for the Hölder smoothness class which

include densities that are not so smooth, as well as for the differentiable densities. We

show that for the class of γ-Hölder smooth functions with 0 < γ ≤ 1, the estimator

achieves the MSE rate of O(N−2γ/(γ+d)). for the optimal choice of k = O
(
N

γ
d+γ

)
.

With the aim of MSE rate improvement, a randomized estimator is also proposed

which can achieve the optimal MSE rates when k = O (logN). Furthermore, by using

the theory of optimally weighted ensemble estimation [83, 82], for density functions

with continuous and bounded derivatives of up to the order d, and some extra con-

ditions at the support set boundary, we derive an ensemble estimator that achieves

the optimal MSE rate of O(1/N), which is independent of the dimension. The cur-

rent work in this thesis is an important step towards extending the direct estimation
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method studied in [114, 127] to more general information theoretic measures.

1.2.2 Estimation of Bayes Error Based on Minimal Graphs

In chapter III we introduce the Henze-Penrose (HP) divergence bound the Bayes

error rate, and investigate the convergence rate of the FR-test statistics. The HP

divergence was defined by Henze [49, 47] as the almost sure limit of the Friedman-

Rafsky (FR) multi-variate two sample test statistic. Thus the FR two sample test

statistic can be interpreted as an asymptotically consistent estimator of the HP

divergence. The FR procedure is as follows. Assume that we have two data-sets X

and Y . The FR test statistic is formed by counting the edges of MST graph of the

joint data set Z := X ∪ Y , which connect dichotomous points, i.e., a point in X to

a point in Y . Later in [47], Henze proposed another similar graph based estimator

that considers k-NN graph instead of the MST graph. However, the main FR test

statistics using MST graph has received more attention than the k-NN variant. The

authors of [47] proved the asymptotic consistency of FR statistics based on type

coincidence, but the convergence rates of these estimators have been elusive. In

Chapter III we investigate the convergence rate of the FR test statistics, providing

an upper bound on the convergence rate.

In the second section of III we propose a new direct estimator of the HP divergence

based on a weighted k-NN graph. We first derive the convergence rates of the k-NN

based FR test statistics, defined as the number of edges in the k-NN graph over

the joint data set Z := X ∪ Y , which connect dichotomous points. We prove that

the bias rate of this estimator is upper bounded by O
(

(k/N)γ/d
)

+ e−ck, where

N and d respectively are the number and dimension of the samples, γ is the Hölder

smoothness parameter of the densities and c is a constant. Note that the convergence

rate of this estimator worsens in higher dimensions and does not achieve the optimal
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parametric rate of O (1/N). Therefore, we propose a direct estimation method based

on a weighted k-NN graph. We refer to this method as the weighted nearest neighbor

(WNN) estimator. The graph includes a weighted, directed edge between any pair

of nodes R and S only if the types of R and S are different (i.e. R ∈ X and S ∈ Y )

and S belongs to the set of kth nearest neighbors of R. We prove that if the edge

weights are obtained from the solution of a certain optimization problem, we can

construct a rate-optimal HP divergence estimator based on the sum of the weights

of the dichotomous edges. The convergence rate of this estimator is established to

be O(1/N), which is both optimal and independent of d. Finally, we emphasize that

the proposed WNN estimator is completely different from the weighted matching

estimator.

1.2.3 Bayes Error Learning to Analyze Classifiers’ Performance

In Chapter IV we proposes a framework for empirical estimation of minimal

achievable classification error, i.e., Bayes error rate, directly from training data,

a framework we call learning to benchmark . Chapter IV presents a method for

learning much tighter bounds on the Bayes error than ever before. In particular,

for binary classification the proposed estimator asymptotically converges to the ex-

act Bayes classification error. Specifically, the contributions of this chapter are as

follows:

• A simple base learner of the Bayes error is proposed for general binary classifi-

cation, its MSE convergence rate is derived, and it is shown to converge to the

exact Bayes error probability (see Theorem IV.4). Furthermore, expressions for

the rate of convergence are specified and we prove a central limit theorem for

the proposed estimator (Theorem IV.5).
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• An ensemble estimation technique based on Chebyshev function approxima-

tion is proposed. Using this method a weighted ensemble of benchmark base

learners is proposed having optimal (parametric) MSE convergence rates (see

Theorem IV.8). As contrasted to the ensemble estimation technique discussed

in [78], our method provides closed form solutions for the optimal weights based

on Chebyshev polynomials (Theorem IV.9).

• An extension of the ensemble benchmark learner is obtained for estimating the

multiclass Bayes classification error rate and its MSE convergence rate is shown

to achieve the optimal rate (see Theorem IV.10).

1.2.4 Bayes Error Based Feature Selection

In chapter V we propose a feature selection method that resembles the forward

selection wrapper methods, yet it is independent of any learning model. The pro-

posed feature selection method uses the Bayes error as a measure of quality of the

features. The Bayes error rates in this method are estimated using the ε-ball estima-

tor proposed in Chapter IV. A set of features have more importance if their Bayes

error rate is smaller. Bayes error rate is defined as the misclassification error of the

optimum Bayes classifier. Similar to the feature quality measures used in the filter

methods, Bayes error is independent of any learning algorithms. However, unlike

most of the filter methods, Bayes error is directly related to the error of the classifi-

cation. The proposed Bayes error based feature selection (BEFS) method consists of

sequential feature selection steps. The method starts with an empty set and at each

step the feature that decreases the Bayes error of the selected feature set the most is

selected and added to the list. Similar to the filter methods, BEFS is computation-

ally efficient. BEFS only involves estimation of the Bayes error rate instead of the
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computationally expensive training process performed at each step in the wrapper

methods.

1.2.5 Hash-based Estimation of Divergence Measure

In Chapter VI we propose a low complexity divergence estimator that can achieve

the optimal MSE rate of O(1/N) for the densities with bounded derivatives of up

to d. Our estimator has optimal runtime complexity of O(N), which makes it an

appropriate tool for large scale applications. Also in contrast to other competing

estimators, our estimator does not require stringent smoothness assumptions on the

support set boundary.

The structure of the proposed estimator borrows ideas from hash based methods

for KNN search and graph constructions problems [129, 76], as well as from the NNR

estimator proposed in [95]. The advantage of hash based methods is that they can

be used to find the approximate nearest neighbor points with lower complexity as

compared to the exact k-NN search methods. This suggests that fast and accurate

algorithms for divergence estimation may be derived from hashing approximations of

k-NN search. Hashing approaches are also used in other problems such as graph clas-

sification and summarization [45], kernel based image classification [42], hierarchical

clustering [63], and genome-wide association study [17].

Noshad et al [95] consider the k-NN graph of Y in the joint data set (X, Y ),

and show that the average exponentiated ratio of the number of X points to the

number of Y points among all k-NN points is proportional to the Rényi divergence

between the X and Y densities. It turns out that for estimation of the density ratio

around each point we really do not need to find the exact k-NN points, but only need

sufficient local samples from X and Y around each point. By using a randomized

locality sensitive hashing (LSH), we find the closest points in Euclidean space. In this
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manner, applying ideas from the NNR estimation and hashing techniques to KNN

search problem, we obtain a more efficient divergence estimator. Consider two sample

sets X and Y with a bounded density support. We use a particular two-level locality

sensitive random hashing, and consider the ratio of samples in each bin with a number

of Y samples. We prove that the weighted average of these ratios over all of the bins

can be made to converge almost surely to f-divergences between the two samples

populations. We also argue that using the ensemble estimation technique provided

in [80], we can achieve the optimal parametric rate of O(1/N). Furthermore, using

a simple algorithm for online estimation method has O(N) complexity and O(1/N)

convergence rate, which is the first optimal online estimator of this type.

1.2.6 Hash-based Estimation of Mutual Information

In Chapter VII we propose a reduced complexity MI estimator called the ensemble

dependency graph estimator (EDGE). The estimator combines randomized locality

sensitive hashing (LSH), dependency graphs, and ensemble bias-reduction methods.

A dependence graph is a bipartite directed graph consisting of two sets of nodes V

and U . The data points are mapped to the sets V and U using a randomized LSH

function H that depends on a hash parameter ε. Each node is assigned a weight

that is proportional to the number of hash collisions. Likewise, each edge between

the vertices vi and uj has a weight proportional to the number of (Xk, Yk) pairs

mapped to the node pairs (vi, uj). For a given value of the hash parameter ε, a

base estimator of MI is proposed as a weighted average of non-linearly transformed

of the edge weights. The proposed EDGE estimator of MI is obtained by applying

the method of weighted ensemble bias reduction [83, 86] to a set of base estimators

with different hash parameters. This estimator is a non-trivial extension of the LSH

divergence estimator defined in [93]. LSH-based methods have previously been used
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for KNN search and graph constructions problems [129, 76], and they result in fast

and low complexity algorithms.

As an application of the optimum estimator of mutual information, we study the

information bottleneck theory of deep learning. Recently, Shwartz-Ziv and Tishby

utilized MI to study the training process in Deep Neural Networks (DNN) [108]. Let

X, T and Y respectively denote the input, hidden and output layers. The authors

of [108] introduced the information bottleneck (IB) that represents the tradeoff be-

tween two mutual information measures: I(X,T ) and I(T, Y ). They observed that

the training process of a DNN consists of two distinct phases; 1) an initial fitting

phase in which I(T, Y ) increases, and 2) a subsequent compression phase in which

I(X,T ) decreases. Saxe et al in [104] countered the claim of [108], asserting that this

compression property is not universal, rather it depends on the specific activation

function. Specifically, they claimed that the compression property does not hold for

ReLu activation functions. The authors of [108] challenged these claims, arguing that

the authors of [104] had not observed compression due to poor estimates of the MI.

We use our proposed rate-optimal ensemble MI estimator to explore this controversy,

observing that our estimator of MI does exhibit the compression phenomenon in the

ReLU network studied by [104].

Our contributions are as follows:

• To the best of our knowledge the proposed MI estimator is the first estimator

to have linear complexity and can achieve the optimal MSE rate of O(1/N).

• The proposed MI estimator provides a simplified and unified treatment of mixed

continuous-discrete variables. This is due to the hash function approach that is

adopted.
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• The proposed dependence graph provides an intuitive way of understanding

interdependencies in the data; e.g. sparsity of the graph implies a strong de-

pendency between the covariates, while an equally weighted dense graph implies

that the covariates are close to independent.

• EDGE is applied to IB theory of deep learning, and provides evidence that the

compression property does indeed occur in ReLu DNNs, contrary to the claims

of [104].

1.2.7 Information Theoretic Structure Learning

Chapter VIII proposes a nonparametric MI-based ensemble estimator for structure

learning that achieves the parametric mean squared error (MSE) rate when the

densities are sufficiently smooth and admits a central limit theorem (CLT) which

enables us to perform hypothesis testing.

We focus on two methods of nonparametric structure learning based on ensemble

MI estimation. The first method is the Chow-Liu (CL) algorithm which constructs

a first order tree from the MI of all pairs of RVs to approximate the joint pdf [21].

Since structure learning approaches can suffer from performance degradation when

the model does not match the true distribution, we propose hypothesis testing via MI

estimation to determine how well the tree structure imposed by the CL algorithm

approximates the joint distribution. The second method learns the structure by

performing hypothesis testing on the MI of all pairs of RVs. An edge is assigned

between two RVs if the MI is statistically different from zero. We demonstrate this

estimator in multiple structure learning experiments.
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1.3 Definitions and Notations

In this section we list the necessary definitions that we need in the statement of

the theorems, and define some notations.



19

1.3.1 Definitions

Definition I.1 (Hölder Continuity). Given a support X ⊆ Rd, a function f : X → R

is called Hölder continuous with smoothness parameter 0 < γ ≤ 1, if there exists a

positive constant Gf , depending on f , such that

(1.12) |f(y)− f(x)| ≤ Gf‖y − x‖γ,

for every x 6= y ∈ X .

Remark I.2. The γ-Hölder smoothness family comprises a large class of continuous

functions including continuously differentiable and Lipschitz continuous functions.

Also note that for γ > 1, any γ−Hölder continuous function on any bounded and

continuous support is constant.

Definition I.3 (Lipschitz Continuity). Given a support X ⊆ Rd, a function f : X →

R is called Lipschitz continuous if there exists a constant Hf > 0 such that

(1.13) |f(y)− f(x)| ≤ Hf‖y − x‖,

for every x 6= y ∈ X .

Definition I.4. (Hölder Class). Let X ⊂ Rd be a compact space. For a vector

α = (α1, ..., αd), αi ∈ N define Dα = ∂|α|

∂x
α1
1 ...∂x

αd
d

where |α| =
∑d

i=1 αi. The Hölder

Class Σ(γ,H) consists of the functions f that satisfy

|Dαf(x)−Dαf(y)| ≤ H‖x− y‖γ−α,(1.14)

for all x, y ∈ X and for all α such that |α| ≤ bγc. Also H is a constant depending

on f .
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1.3.2 Notations

Let T be a random variable, and E [T ] denote the expectation of T . We define

the notations B[T̂ ] = E[T̂ ]− T for bias and V[T̂ ] = E[T̂ 2]− E[T̂ ]2 for variance of T̂ .

1.4 Assumptions

We list the required assumptions on the density functions which are required for

the convergence results of the estimators of divergence, mutual information and Bayes

error rate. Note that assumptions (A.4) and (A.5) which assume further smoother

densities, are not used in base estimators on divergence, mutual information and

Bayes error rate, and are only required for the ensemble estimators which can achieve

the optimal parametric MSE rate of O(1/N).

• (A.1) The densities’ support set is bounded.

• (A.2) The densities are lower bounded by CL > 0 and upper bounded by CU .

• (A.3) The densities are γ-Hölder continuous.

• (A.4) The densities are in the Hölder class Σ(γ, L), where d ≤ γ.

• (A.5) The density derivatives up to order d vanish at the boundary.



CHAPTER II

Estimation of Information Measures Based on KNN

In this chapter, we propose an estimation method for general divergence and mu-

tual information measures based on a direct graph estimation method. Given two

sample sets X and Y with respective densities of f1 and f2, we consider the sets of

k-nearest neighbor (k-NN) points among the joint sample set for each point in Y.

We show that the average exponentiated ratio of the number of points with X type

(from X set) to the number of points with Y type (from Y set) among all k-NN

sets converges to the Rényi divergence. Using this fact, we design a consistent esti-

mator for the Rényi and f-divergences. Also, based on the representation of mutual

information functions in terms of a divergence measure between joint and marginal

densities, we propose a direct estimator for Rényi and general mutual information

functions.

The rest of this chapter is organized as follows: In section 2.1 we discuss estimation

of divergence measures such as Rényi and f-divergences. In section 2.2 we propose

an estimation method for mutual information measures. In section 2.3, we propose

a randomized estimator which can perform slightly better in certain cases, than the

original estimator discussed in the first two parts. In section 2.4, we use the ensemble

estimation technique to improve the convergence rates. Finally in section 2.5 we

21
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provide the numerical results. Proofs and relevant lemmas are given in Appendix.

A.

2.1 Nearest Neighbor Ratio (NNR) Divergence Estimator

Definition II.1 (NNR Estimator). Consider the i.i.d samples X = {X1, ..., XN}

drawn from fX and Y = {Y1, ..., YM} drawn from fY . We define the set Z := X∪Y.

Let Qk(Yi) be the k-NN points for each of the points Yi in the set Z. Let Ni and

Mi be the number of points of from the sets X and Y in {Qk(Yi)}ki=1, respectively.

Then we define the NNR estimator for Rényi divergence as

(2.1) D̃α(X,Y) :=
1

(α− 1)
log

(
ηα

M

M∑
i=1

(
Ni

Mi + 1

)α)
,

where η := M/N . Similarly, using the alternative form in (1.1), we have

(2.2) Ĵα(X,Y) :=
ηα

M

M∑
i=1

(
Ni

Mi + 1

)α
.

Figure ?? represents a simple example of how we consider k-nearest neighbors for

a point and how Ni and Mi are computed.

Note that the estimator defined in (2.1) can be negative and unstable in extreme

cases. To correct this, we propose the NNR estimator for Rényi divergence denoted

by D̂α(X,Y):

(2.3) min

{
max

{
D̃α(X, Y ), 0

}
,

1

|1− α|
log

(
CU
CL

)}
.

The NNR estimator of f-divergence is defined as

(2.4) D̂g(X,Y) := max

{
1

M

M∑
i=1

g̃

(
ηNi

Mi + 1

)
, 0

}
,

where g̃(x) := max{g(x), g (CL/CU)}. Note that we only need the function g(x) to

be Lipschitz continuous; i.e. g is Hölder continuous with γ = 1. Note that none of
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Figure 2.1: k = 6, Mi = 2 and Ni = 4

the other conditions from the f-divergence definition such as convexity nor g(1) = 0

are required for the convergence proof.

The intuition behind the proposed estimators is that, the ratio Ni
Mi+1

can be con-

sidered an estimate of density ratios at Yi. Note that if the densities fX and fY are

almost equal, then for each point Yi, Ni ≈Mi + 1, and therefore both D̂α(X,Y) and

D̂g(X,Y) tend to zero and g(1), respectively. Algorithm. ?? provides a pseudocode

for the NNR divergence estimator.

Algorithm 1: NNR Estimator of Rényi Divergence

Input : Data sets X = {X1, ..., XN}, Y = {Y1, ..., YM}
1 Z← X ∪Y
2 for each point Yi in Y do

/* Set of k-NN points of Yi in Z */

3 Si ← {Q1(Yi), ..., Qk(Yi)}
4 Ri ← |Si ∩X|/|Si ∩Y|

5 D̂α ← 1/(α− 1) log [(ηα
∑
iR

α
i ) /M ]

Output: D̂α
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In the following we provide the convergence analysis of the NNR estimator.

Theorem II.2. Under the assumptions (X1), (X2) and (X3) (defined in Chapter.

I) for the densities, the bias of NNR estimator for Rényi divergence, defined in (2.3),

can be bounded as

D̂α(X,Y) = O

((
k

N

)γ/d)
+O

(
1

k

)
.(2.5)

Here γ is the Hölder smoothness parameter.

Theorem II.3. Under the assumptions (X1) and (X2) for the densities, the variance

of the NNR estimator is

V
[
D̂α(X,Y)

]
≤ O

(
1

N

)
+O

(
1

M

)
.(2.6)

Remark II.4. The same variance bound holds true for the RV Ĵα(X, Y ). Also bias and

variance results easily extend to the NNR estimator of f-divergence with a Lipschitz

continuous function g.

Remark II.5. Note that in most cases, the 1/k term in (6.5) is the dominant error

term. To have an asymptotically unbiased NNR estimator, k should be a growing

function of N . The term 1/k comes from the error of the Poissonization technique

used in the proof. By equating the terms O
(
(k/N)γ/d

)
and O(1/k), it turns out that

for kopt = O
(
N

γ
d+γ

)
, we get the optimal MSE rate of O

(
N
−2γ
d+γ

)
. The optimal choice

for k can be compared to the optimum value k = O
(√

N
)

in [80], where a plug-in

KNN estimator is used. Also considering the average and worst-case computational

complexity of O(kN logN) to construct the k-NN graph [119], we see that there

is a trade-off between MSE rate and complexity for different values of k. In the

particular case of optimal MSE, the computational complexity of this method is

O
(
N

d+2γ
d+γ logN

)
.
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2.2 NNR Mutual Information Estimator

To estimate mutual information measures, we use a similar method as used to

estimate divergence measures. Let Z := (X,Y) be the dX + dY dimensional joint

dataset with N samples. We also define Z⊗ := (X,PY), where P is a random

permutation operator applied on Y. In other words, we shuffle the Y dataset and

consider the rearranged pairs as the samples of Z⊗. Note that the density of the

points in Z is fXY (x, y), and the density of the points Z⊗ are approximately equal

to fX(x)fY (y). So according to the definitions in (1.3) and (1.4) we can apply the

divergence estimator between Z and Z⊗ to estimate the mutual information measure.

This can be formulated as follows:

Î(X,Y) := D̂(Z⊗‖Z),(2.7)

where Î can be the estimated Rényi or general mutual information functions. Algo-

rithm ?? represents a pseudocode for the NNR mutual information estimator.

Algorithm 2: NNR Estimator of Rényi Mutual Information

Input : Data sets X = {X1, ..., XN}, Y = {Y1, ..., YN}
1 Z← (X,Y) /* Z is a N by dX + dY dataset */

2 Z⊗ ← (X,PY) /* Random permutation on Y */

3 W← Z ∪ Z⊗

4 for each point Zi in Z do
/* Set of k-NN points of Zi in W */

5 Si ← {Q1(Zi), ..., Qk(Zi)}
6 Ri ← |Si ∩ Z⊗|/|Si ∩ Z|

7 Î ← 1/(α− 1) log [(ηα
∑
iR

α
i ) /M ]

Output: Î

The convergence results for this estimator are stated in the following theorem,

and are proved in Appendix. A.

Theorem II.6. Under the assumptions (X1), (X2) and (X3) on the densities fX ,
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fY , and fXY , the bias and variance of the NNR estimator of Rényi and general

mutual information measure, defined in (2.7), can be bounded as

Î(X, Y ) = O

((
k

N

)γ/2d)
+O

(
1

k

)
.(2.8)

V
[
Î(X, Y )

]
= O

(
1

N

)
(2.9)

2.3 Randomized NNR (RNNR) Estimator

The error terms in theorems VII.2 and II.6 suggest that for obtaining optimal

rates, one has to set k = O
(
N

γ
d+γ

)
, and for smaller values of k the convergence

rate is slower. This problem arises from the O(1/k) error term in the bias term,

which is due to de-Poissonization in the proof. In a randomized estimator we can

improve the complexity by assuming that k for each node is randomly chosen from

a Poisson distribution, which gives rise to elimination of the 1/k term. Therefore,

the advantage of randomized estimator is that we can obtain the optimal MSE rates

with lower average computational complexity. The RNNR estimator is defined as

follows.

Definition II.7 (RNNR Estimator ). Let Ni and Mi respectively be the number of

points from X and Y among the Ki nearest neighbors of Yi, where Ki is randomly

chosen from Poisson distribution with mean k. Then the RNNR estimator for Rényi

divergence is defined as

(2.10) D̃α(X,Y) :=
1

(α− 1)
log

[
ηα

M

M∑
i=1

(
Ni

Mi + 1

)α]
.

The following theorem states the bias bound for the RNNR estimator of Rényi
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divergence. This bound can also be extended for f-divergence as well as Rényi and

general mutual information measures, in the same way.

Theorem II.8. Under the assumptions (X1), (X2) and (X3) for the densities, bias

and variance of the RNNR estimator for Rényi divergence, proposed in (2.3), can be

bounded as

B
[
D̂α(X, Y )

]
= O

((
k

N

)γ/d)
+O

(
e−vk

)
,

V
[
D̂α(X, Y )

]
= O

(
1

N

)
,(2.11)

where v is a positive constant, and k is the expectation of the Poisson random pa-

rameter.

Note that the optimal bias rate ofO
((

logN
N

)γ/d)
can be obtained for k = O(logN).

Compared to the regular NNR approach, the RNNR estimator has the advantage

of requiring smaller average k, and obtaining better convergence rates for smaller

choices of k. Also using the algorithm in [119], it can easily be shown that the

average complexity is O(kN logN), which is the same as the complexity of NNR.

However, in the worst case scenario, RNNR’s complexity is O(N2), which happens

when Ki = N for all 0 ≤ i ≤ N . Note that the probability that this occurs tends to

zero as N increases. The algorithm for this estimator is shown in Algorithm ??.

Algorithm 3: RNNR Estimator of Rényi Divergence

Input : Data sets X = {X1, ..., XN}, Y = {Y1, ..., YM}
1 Z← X ∪Y
2 for each point Yi in Y do

/* Set of Ki-NN points of Yi in Z */

3 Ki ∼ Poisson(k)
4 Si ← {Q1(Yi), ..., QKi(Yi)}
5 Ri ← |Si ∩X|/|Si ∩Y|

6 D̂ ← 1/(α− 1) log [(ηα
∑
iR

α
i ) /M ]

Output: D̂
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2.4 Ensemble NNR (ENNR) Estimator

Under extra conditions on the densities and support set boundary, we can improve

the bias rate by applying the ensemble theory in [83, 82]. We assume that the density

functions are in the Hölder class Σ(γ, L) defined in Definition. I.4.

Let L := {l1, ..., lL} be a set of index values with li < ce for some constant ce. Let

k(l) :=
⌊
l
√
N
⌋
. The weighted ensemble estimator is defined as

D̂w :=
∑
l∈L

w(l)D̂k(l),(2.12)

where D̂k(l) is the NNR estimator of Rényi or f-divergence, using the k(l)-NN graph

(defined in (2.3) and (6.4)).

Theorem II.9. Let L > d and w0 be the solution to the following optimization

problem:

min
w

‖w‖2

subject to
∑
l∈L

w(l) = 1,

∑
l∈L

w(l)li/d = 0, i ∈ N, i ≤ d.(2.13)

Then under the assumptions (X1), (X2), (X4) and (X5) on the densities fX and fY ,

the MSE rate of the ensemble estimator D̂w0 is O(1/N). The proof is provided in

Appendix D.

Remark II.10. The weighted ensemble mutual information estimator is defined as

Îw0 :=
∑

l∈Lw0(l)Îk(l), where Îk(l) is the NNR mutual information estimator (defined

in (1.3) and (1.4)), and the weight vector w0(l) is the solution to optimization problem

in (2.13). Then under the assumptions (X1), (X2), (X4) and (X5) with the dimension

dx + dY , the MSE rate of the ensemble estimator Îw0 is O(1/N).
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2.5 Numerical Results

In this section we provide numerical results to show the consistency of the pro-

posed estimator and compare the estimation quality in terms of different parameters

such as sample size N and parameter k. In our experiments, we choose i.i.d samples

for X and Y from different independent distributions such as Gaussian, truncated

Gaussian and uniform functions. We perform a variety of experiments for different

types of divergence and information measures with various density functions. Al-

though the convergence results of the estimators are based on the assumption that

the densities have bounded support, by doing some experiments we show that the

proposed estimators have good performance even when the densities are unbounded.

Figure 6.2, shows the mean estimated KL-divergence as N grows for k equal

to 20, 40, 60, using the NNR estimator. The divergence measure is between a 2D

truncated normal RV with mean [0, 0], variance of 2I2, where Id is the identity

matrix of size d, and the support in x, y ∈ [−5, 5], and a uniform distribution with

x, y ∈ [−5, 5]. For each case we repeat the experiment 100 times, and compute the

mean of the estimated value and the standard deviation error bars. For small sample

sizes, smaller k results in smaller bias error, which is due to the
(
k
N

)γ/d
bias term.

As N grows, we get larger bias for small values of k, which is due to the fact that

the (1/k) term dominates. If we compare the standard deviations for different values

of k at N = 4000, they are almost equal, which verifies the fact that variance is

independent of k.

Figure 2.3 shows the MSE of the NNR estimator of the Renyi divergence with

α = 0.5 in terms of k, for two independent, truncated normal RVs. The RVs are 2D

with means µ1 = µ2 = [0, 0] and covariance matrices σ1 = I2 and σ2 = 3I2. Both of
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Figure 2.2: The estimated value for various values of k = 20, 40, and 80 is compared to the true
value for KL-divergence between a truncated normal and a uniform distribution, in
terms of the number of samples.
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Figure 2.3: The MSE of the NNR estimator of Rényi divergence with α = 0.5 for two independent,
truncated normal RVs, as a function of k.

the RVs are truncated with the range x ∈ [−2, 2] and y ∈ [−2, 2]. The experiment

has been run for three different sample size N = 100, 200 and 300. As k increases

initially, MSE decreases due to the O(1/k) bias term. After reaching an optimal

point, MSE increases as k increases, indicating that the other bias terms begin to

dominate. The optimal k increases with the sample size which validates our theory

(Remark II.5).

Figure 2.4 compares the theoretical and experimental MSE of the NNR estimator

of Rényi divergence (α = 2) versus N , for two i.i.d. Normal RVs with the same

mean and σ1 = Id, σ2 = 6Id for two different dimension sizes d = 2 and d = 4. The

parameter k = 90 is also fixed so that the O (1/k) term in the bias can be ignored

in comparison to the O
(
(k/N)γ/d

)
term. As dimension grows, the MSE decreases
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Figure 2.4: The MSE rate of the NNR estimator of the Renyi divergence with α = 2 versus N , for
two i.i.d. Normal RVs truncated at [−10, 10] along each axis.

Figure 2.5: Comparison of the MSE of the NNR and ENNR estimators of Rényi divergence with
α = 3 for the constant number of samples, N = 1000, when we increase the dimension of
densities. The densities are normal, with the same mean and variance of σ1 = σ2 = I2,
truncated within [−10, 10] along each dimension.

almost linearly in the logarithmic scale, which verifies the bias term.

In Figure 2.5, we compare the performance of the NNR and ENNR estimators

of Rényi divergence (α = 3) for the constant number of samples, N = 1000, when

we increase the dimension of the densities. The densities are normal, with the same

mean and variance of σ1 = σ2 = I2, truncated within [−10, 10] along each dimension.

For the NNR estimator, we have set the optimal choice for k. The MSE rate of the

NNR estimator increases as dimension increases. However, the error of the ENNR

estimator has little change as the dimension increases.

In Figure 2.6, we compare the performance of NNR and RNNR estimators of
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Figure 2.6: Comparison of the MSE of the NNR and RNNR estimators of Rényi divergence with
α = 2, when when increase the number of samples and k = O(logN). The densities are
Normal, with the same mean and variance of σ1 = σ2 = I2.

Rényi divergence with α = 2, when we increase the number of samples. The densities

are Normal, with the same mean and variance of σ1 = σ2 = I2. Also we have set

k = O(logN). As discussed in the previous sections, we expect the RNNR estimator

to perform better than NNR for smaller values of k. However, in the next experiments

we will see that if we set an optimal k for the NNR estimator, the performances of

NNR and RNNR are similar.

In Figure 2.7, we compare the performance of the NNR, RNNR and ENNR esti-

mators of Rényi divergence with α = 2 with two of the standard optimal estimators

Ensemble KDE [83] and Mirror KDE [111], which are theoretically proven to achieve

the optimal parametric MSE rate. Also note that since the type of the density kernel

estimator, and the method of boundary correction of the estimators discussed in [58]

and [67] are similar to the one used in [111], we don’t include them in the numerical

comparisons. The densities are Normal, with the means µ1 = [0, 0], µ2 = [0, 1], and

variances of 2σ1 = σ2 = 2I2, truncated within [−2, 2] along each dimension. Also

we have set k = O(
√
N). As shown in the figure, the ENNR has the best MSE

rate among others. Also as discussed before, for the choice of k = O(
√
N), the two
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Figure 2.7: Comparison of the MSE rates of the NNR, RNNR and ENNR estimators of Rényi
divergence with α = 2 with two standard optimal estimators Ensemble KDE [83] and
Mirror KDE [111]. The densities are Normal, with the means µ1 = [0, 0], µ2 = [0, 1],
and variances of 2σ1 = σ2 = 2I2, truncated within [−2, 2] along each dimension.

estimators NNR and RNNR should show almost the same convergence rate, and the

experiment verifies this fact.

One of our main contributions in this chapter is in fact proposing the low compu-

tational complexity estimators. We have discussed this by implementing the NNR

and RNNR estimators and emphasize that they improve the runtime compared to

the previous estimators. We verify our analytical claims above by running an ex-

periment shown in Figure 2.8. In this experiment, we compare the runtime of the

proposed estimators as well as Ensembled KDE and Miror KDE. As shown, the NNR

estimator has the best runtime, while RNNR has a slightly greater runtime compared

to NNR estimator. ENNR has higher practical runtime since it includes a constant

time optimization procedure. Ensemble KDE has longer runtime due to its complex-

ity of O(N2). Finally Mirror KDE has the worst runtime among these estimators.

Note that for d = 2, Mirror KDE method assumes 8N extra points in addition to

the original points, to consider the mirror effect at the boundaries, which makes the

total complexity 81 times slower than the standard KDE method. In general in a

d dimensional system it is O(9d) times slower. Therefore, we do not include Mirror

KDE in our experiments in higher dimensions due to its slow performance.
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Figure 2.8: Comparison of runtime of of NNR, RNNR and ENNR estimators of Rényi divergence
with α = 2 with two of the standard optimal estimators Ensemble KDE [83] and Mirror
KDE [111]. The densities are Normal, with the means µ1 = [0, 0], µ2 = [0, 1], and
variances of 2σ1 = σ2 = 2I2, truncated within [−2, 2] along each dimension.

Figure 2.9: Comparison of MSE in higher dimension. Estimators of Rényi divergence with α = 3/2
of two Normal densities, with the means µ1 = [0, 0, 0, 0], µ2 = [0, 0, 0, 1], variances of
2σ1 = σ2 = 2I4, and truncated at [−5, 5] at each axis.

In Figure 2.9, we compare the performance of these estimators in a relatively

higher dimension, d = 4. The densities are Normal, with the means µ1 = [0, 0, 0, 0], µ2 =

[0, 0, 0, 1], variances of 2σ1 = σ2 = 2I4, and truncated at [−5, 5] at each axis. Also

we set k = O(
√
N). Again, the ENNR has the best MSE rate among others.

In Figures 2.10 and 2.11 we compare the performance of the Rényi mutual infor-

mation estimators with α = 1/2 and α = 3 respectively. In the first experiment, the

mutual information function is non-zero, while in the second experiment the mutual

information function is zero. In Figure 2.10, the densities are jointly Normal, with
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Figure 2.10: Comparison of MSE of NNR, RNNR, ENNR and Ensemble KDE estimators of Rényi
mutual information with α = 1/2. The densities are jointly Normal, with non-zero
mutual information.

Figure 2.11: Comparison of MSE of NNR, RNNR, ENNR and Ensemble KDE estimators of Rényi
mutual information with α = 3. The densities have independent Normal distribution,
with the means µ1 = [0, 0] and µ2 = [0, 1], and variances of 2σ1 = σ2 = 2I2, truncated
at [−5, 5] along each axis.

the mean µ = [0, 0], covariance of Σ =

 1 0.5

0.5 1

, truncated at [−5, 5] at each axis.

For large data sets, the ENNR has the best MSE rate among the others, which is

not surprising, and as before, NNR and RNNR have similar performance.

In Figure 2.11, the densities have independent Normal distribution, with the

means µ1 = [0, 0] and µ2 = [0, 1], and variances of 2σ1 = σ2 = 2I2, truncated at

[−5, 5] at each axis. ENNR performs better than the other estimators, and Ensem-

ble KDE which is also an optimal estimator, has better convergence rate than NNR

and RNNR estimators of mutual information.



36

Figure 2.12: Renyi mutual information with α = 2 between X and Y , where Y = X+aN , versus the
number of samples. X samples are drawn from a 100-dimensional Dirichlet distribution
with the parameter α = [1, 1, ..., 1]. a is constant which controls the level of the noise
and N is a multivariate Normal noise with mean 0 and covariance matrix σ = I100.
The error bars correspond to 0.95 confidence intervals

In Figure 2.12, we perform an experiment on a high-dimensional simulated dataset

with Dirichlet distribution. X samples are drawn from a 100-dimensional Dirichlet

distribution with the parameter α = [1, 1, ..., 1]. Y samples are obtained by adding

a Normal noise to the X samples. we have Y = X + aN , where a is constant which

controls the level of the noise and N is a multivariate Normal noise with mean 0 and

covariance matrix σ = I100. Figure 2.12 shows the Renyi mutual information with

α = 2 between X and Y for two different noise levels.

2.6 Conclusion

In this chapter we proposed a direct approach for estimating general divergence

and mutual information measures, based on the k-NN graph and density ratio es-

timates. We derived the bias and variance of the estimator, and showed that for

the class of γ-Hölder smooth functions, the estimator achieves the MSE rate of

O
(
N−2γ/(γ+d)

)
. A randomized estimator was also proposed which can achieve the

optimal mean square error (MSE) rates when the average k is O (logN). Further-

more, we considered continuous and bounded derivatives up to order d assumption
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along with extra smoothness conditions at the set boundary. This led us to use

a weighted ensemble estimation technique and derive an ensemble estimator with

MSE rate of O(1/N). Finally we applied the proposed estimators on the simulated

datasets and compared the numerical results with the convergence theorems.



CHAPTER III

Estimation of Bounds on the Bayes Error Based on Minimal
Graphs

Bounding the best achievable error probability for binary classification problems

is relevant to many applications including machine learning, signal processing, and

information theory. Many bounds on the Bayes binary classification error rate de-

pend on information divergences between the pair of class distributions. Recently,

the Henze-Penrose (HP) divergence has been proposed for bounding classification

error probability. In this chapter we consider the problem of empirically estimating

the HP-divergence from random samples. We first introduce the HP-divergence and

Friedman-Rafsky (FR) estimator of the HP-divergence, which is related to a mul-

tivariate runs statistic for testing between two distributions. We then provide the

bias and variance rates of the FR-based estimator of HP-divergence. Further, we

give several simulations that validate the theory. In the second part of this chapter

we introduce a KNN based estimator of HP-divergence which can achieve the op-

timal MSE convergence rate of O(1/N). Proofs and relevant lemmas are given in

Appendix. B.

38
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3.1 The Henze-Penrose Divergence Measure

Consider parameters p ∈ (0, 1) and q = 1 − p. We focus on estimating the HP-

divergence measure between distributions f0 and f1 with domain Rd defined by [46]:

(3.1) Dp(f0, f1) =
1

4pq

[∫ (
pf0(x)− qf1(x)

)2

pf0(x) + qf1(x)
dx− (p− q)2

]
.

It can be verified that this measure is bounded between 0 and 1 and if f0(x) = f1(x),

then Dp = 0. In contrast with some other divergences such as the Kullback-Liebler

[68] and Rényi divergences [100], the HP-divergence is symmetrical, i.e., Dp(f0, f1) =

Dq(f1, f0). By invoking (3) in [13], one can rewrite Dp in the alternative form:

Dp(f0, f1) = 1− Ap(f0, f1) =
up(f0, f1)

4pq
− (p− q)2

4pq
,(3.2)

where

Ap (f0, f1) : =

∫
f0(x)f1(x)

pf0(x) + qf1(x)
dx(3.3)

= Ef0

[(
p
f0(X)

f1(X)
+ q

)−1
]

(3.4)

up (f0, f1) = 1− 4pqAp (f0, f1)(3.5)

The term Ap(f0, f1) is refered to as the HP-integral [46]. The HP-divergence

measure belongs to the class of φ-divergences [2]. For the special case p = 0.5, the

divergence (3.1) becomes the symmetric χ2-divergence and is similar to the Rukhin

f -divergence [18], [102].

3.2 The Multivariate Runs Test Statistic

The MST is a graph of minimum weight among all graphs E that span n vertices.

The MST has many applications including pattern recognition [117], clustering [128],
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nonparametric regression [7], and testing of randomness [54]. In this section we focus

on the FR multivariate two sample test statistic constructed from the MST.

Assume that sample realizations from f0 and f1, denoted by X ∈ Rm×d and Y ∈

Rn×d, respectively, are available. Construct an MST spanning the samples from both

f0 and f1 and color the edges in the MST that connect dichotomous samples green

and color the remaining edges black. The FR test statistic Rm,n := Rm,n(Xm,Yn) is

the number of green edges in the MST. Note that the test assumes a unique MST,

therefore all inter point distances between data points must be distinct. We recall

the following theorem from [12] and [13]:

Theorem III.1. As m→∞ and n→∞ such that
m

n+m
→ p and

n

n+m
→ q,

1−Rm,n(X,Y)
m+ n

2mn
→ Dp(f0, f1), a.s.(3.6)

3.2.1 Convergence Rates

We obtain the mean convergence rate bounds for general non-uniform Lebesgue

densities f0 and f1 belonging to the Hölder class Σ(η,K):

Theorem III.2. (Bias Bound) Let d ≥ 2, and Rm,n be the FR statistic for samples

drawn from strong Hölder continuous and bounded density functions f0 and f1 in

Σ(η,K). Then for d ≥ 2,

∣∣∣E[Rm,n]

m+n
− 2pq

∫ f0(x)f1(x)
pf0(x)+qf1(x)

dx
∣∣∣≤ O

(
(m+ n)−η1(x)

)
) ,(3.7)

where the O() notation may contain dependencies to the density functions as well

as their dimensions.

The following variance bound uses the Efron-Stein inequality [34]. Note that in

Theorem III.3, unlike Theorem III.2, we only assume that the density functions are

absolutely continuous and bounded with support on the unit cube [0, 1]d.
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Theorem III.3. The variance of the HP-integral estimator based on the FR statistic,

Rm,n

/
(m+ n) is bounded by

Var

(
Rm,n (X,Y)

m+ n

)
≤ 32c2

dq

(m+ n)
(3.8)

where the constant cd depends only on d.

By combining Theorem III.2 and Theorem III.3 we obtain the MSE rate of the

form O
(
m+ n)−η

2/(d(η+1))
)

+O ((m+ n)−1).

Fig. 3.1 indicates a heat map showing the MSE rate as a function of d and

N = m = n. The heat map shows that the MSE rate of the FR test statistic-based

estimator given in (3.6) is small for large sample size N .

Figure 3.1: Heat map of the theoretical MSE rate of the FR estimator of the HP-divergence based on

Theorems III.2 and III.3 as a function of dimension and sample size when N = m = n. Note

the color transition (MSE) as sample size increases for high dimension. For fixed sample size

N the MSE rate degrades in higher dimensions.
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3.2.2 Bias Proof

In this subsection, we first establish subadditivity and superadditivity properties

of the FR statistic which will be employed to derive the MSE convergence rate

bound. This will establish that the mean of the FR test statistic is a quasi-additive

functional:

Theorem III.4. Let Rm,n(Xm,Yn) be the number of edges that link nodes from

differently labeled samples Xm = {X1, . . . ,Xm} and Yn = {Y1, . . . ,Yn} in [0, 1]d.

Partition [0, 1]d into ld equal volume subcubes Qi such that mi and ni are the num-

ber of samples from {X1, . . . ,Xm} and {Y1, . . . ,Yn}, respectively, that fall into the

partition Qi. Then there exists a constant c1 such that

(3.9) E
[
Rm,n(Xm,Yn)

]
≤

ld∑
i=1

E
[
Rmi,ni

(
(Xm,Yn) ∩Qi

)]
+ 2 c1 l

d−1 (m+ n)1/d.

Here Rmi,ni is the number of dichotomous edges in partition Qi. Conversely, for the

same conditions as above on partitions Qi, there exists a constant c2 such that

(3.10)

E
[
Rm,n(Xm,Yn)

]
≥

ld∑
i=1

E
[
Rmi,ni

(
(Xm,Yn) ∩Qi

)]
− 2 c2 l

d−1 (m+ n)1/d.

The inequalities (3.9) and (3.10) are inspired by the theory of subadditive func-

tionals in [53] and [52]. The full proof is given in Appendix A. The key result in the

proof is the inequality:

Rm,n(Xm,Yn) ≤
ld∑
i=1

Rmi,ni

(
(Xm,Yn) ∩Qi

)
+ 2|D|,

where |D| indicates the number of all edges of the MST which intersect two different

partitions.

Furthermore, we adapt the theory developed in [126, 53] to derive the MSE con-

vergence rate of the FR statistic-based estimator by defining a dual MST and dual

FR statistic, denoted by MST∗ and R∗m,n respectively (see Fig. 3.2):
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Definition III.5. (Dual MST, MST∗ and dual FR statistic R∗m,n) Let Fi be the set of

corner points of the subsection Qi for 1 ≤ i ≤ ld. Then we define MST∗(Xm∪Yn∩Qi)

as the boundary MST graph of partition Qi [126], which contains Xm and Yn points

falling inside the section Qi and those corner points in Fi which minimize total MST

length. Notice it is allowed to connect the MSTs in Qi and Qj through points

strictly contained in Qi and Qj and corner points are taking into account under

the condition of minimizing total MST length. In other words, the dual MST can

connect the points in Qi ∪ Qj by direct edges to pair to another point in Qi ∪ Qj

or the corner the corner points (we assume that all corner points are connected) in

order to minimize the total length. To clarify this, assume that there are two points

in Qi ∪Qj, then the dual MST consists of the two edges connecting these points to

the corner if they are closed to a corner point otherwise dual MST consists of an edge

connecting one to another. Further, we define R∗m,n(Xm,Yn ∩Qi) as the number of

edges in MST∗ graph connecting nodes from different samples and number of edges

connecting to the corner points. Note that the edges connected to the corner nodes

(regardless of the type of points) are always counted in dual FR test statistic R∗m,n.

In Appendix B, we show that the dual FR test statistic is a quasi-additive func-

tional in mean and R∗m,n(Xm,Yn) ≥ Rm,n(Xm,Yn). This property holds true since

MST(Xm,Yn) and MST∗(Xm,Yn) graphs can only be different in their edges con-

nected to the corner nodes, and in R∗(Xm,Yn) we take all of the edges between these

nodes and corner nodes into account.

To prove Theorem III.2, we partition [0, 1]d into ld subcubes. Then by applying

Theorem III.4 and the dual MST we derive the bias rate in terms of partition param-

eter l (see (B.15) in Theorem B.7). See Appendix B and Supplementary Materials

for details. According to (B.15), for d ≥ 2, and l = 1, 2, . . . , the slowest rates as a
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Figure 3.2: The dual MST spanning the merged set Xm (blue points) and Yn (red points) drawn from

two Gaussian distributions. The dual FR statistic (R∗m,n) is the number of edges in the MST∗

(contains nodes in Xm∪Yn∪{2 corner points}) that connect samples from different color nodes

and corners (denoted in green). Black edges are the non-dichotomous edges in the MST∗.

function of l are ld(m+n)η/d and l−ηd. Therefore we obtain an l-independent bound

by letting l be a function of m+ n that minimizes the maximum of these rates i.e.

l(m+ n) = arg min
l

max
{
ld(m+ n)−η/d, l−ηd

}
.

The full proof of the bound in (III.2) is given in Appendix B.

3.2.3 Numerical Experiments

In this section, we apply the FR statistic estimate of the HP-divergence to both

simulated and real data sets. We present results of a simulation study that eval-

uates the proposed bound on the MSE. We numerically validate the theory stated

in Subsection 3.2.1 using multiple simulations. In the first set of simulations, We

consider two multivariate Normal random vectors X, Y and perform three experi-

ments d = 2, 4, 8, to analyze the FR test statistic-based estimator performance as

the sample sizes m, n increase. For the three dimensions d = 2, 4, 8 we generate
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samples from two normal distributions with identity covariance and shifted means:

µ1 = [0, 0], µ2 = [1, 0] and µ1 = [0, 0, 0, 0], µ2 = [1, 0, 0, 0] and µ1 = [0, 0, ..., 0],

µ2 = [1, 0, ..., 0] when d = 2, d = 4 and d = 8 respectively. For all of the following

experiments the sample sizes for each class are equal (m = n). We vary N = m = n
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Figure 3.3: Comparison of the bound on the MSE theory and experiments for d = 2, 4, 8 standard Gaussian

random vectors versus sample size from 100 trials.

up to 800. From Fig. 3.3 we deduce that when the sample size increases the MSE

decreases such that for higher dimensions the rate is slower. Furthermore we com-

pare the experiments with the theory in Fig. 3.3. Our theory generally matches the

experimental results. However, the MSE for the experiments tends to decrease to

zero faster than the theoretical bound. Since the Gaussian distribution has a smooth

density, this suggests that a tighter bound on the MSE may be possible by imposing

stricter assumptions on the density smoothness as in [88].

In our next simulation we compare three bivariate cases: First, we generate sam-

ples from a standard Normal distribution. Second, we consider a distinct smooth
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Figure 3.4: Comparison of experimentally predicted MSE of the FR-statistic as a function of sample size

m = n in various distributions Standard Normal, Gamma (α1 = α2 = 1, β1 = β2 = 1, ρ = 0.5)

and Standard t-Student.

class of distributions i.e. binomial Gamma density with standard parameters and

dependency coefficient ρ = 0.5. Third, we generate samples from Standard t-student

distributions [105]. Our goal in this experiment is to compare the MSE of the HP-

divergence estimator between two identical distributions, f0 = f1, when f0 is one of

the Gamma, Normal, and t-student density function. In Fig. 3.4, we observe that

the MSE decreases as N increases for all three distributions.

We now show the results of applying the FR test statistic to estimate the HP-

divergence using three different real datasets, [74]:

• Human Activity Recognition (HAR), Wearable Computing, Classification of

Body Postures and Movements (PUC-Rio): This dataset contains 5 classes

(sitting-down, standing-up, standing, walking, and sitting) collected on 8 hours

of activities of 4 healthy subjects [118].

• Skin Segmentation dataset (SKIN): The skin dataset is collected by randomly

sampling B,G,R values from face images of various age groups (young, middle,
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and old), race groups (white, black, and asian), and genders obtained from the

FERET and PAL databases [16].

• Sensorless Drive Diagnosis (ENGIN) dataset [9]: In this dataset features are

extracted from electric current drive signals. The drive has intact and defective

components. The dataset contains 11 different classes with different conditions.

Each condition has been measured several times under 12 different operating

conditions, e.g. different speeds, load moments and load forces.

We focus on two classes from each of the HAR, SKIN, and ENGIN datasets.
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Figure 3.5: HP-divergence vs. sample size for three real datasets HAR, SKIN, and ENGIN.

In the first experiment, we computed the HP-divergence and the MSE for the FR

test statistic estimator as the sample size N = m = n increases. We observe in

Fig. 3.5 that the estimated HP-divergence ranges in [0, 1], which is one of the HP-

divergence properties [13]. Interestingly, when N increases the HP-divergence tends

to 1 for all HAR, SKIN, and ENGIN datasets, indicating perfect separation of the

classes. Note that in this set of experiments we have repeated the experiments on

independent parts of the datasets to obtain the error bars. Fig. 3.6 shows that

the MSE expectedly decreases as the sample size grows for all three datasets. Here
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Figure 3.6: The empirical MSE vs. sample size. The empirical MSE of the FR estimator for all three

datasets HAR, SKIN, and ENGIN decreases for larger sample size N .

we have used KDE plug-in estimator [88], implemented on all available samples, to

determine the true HP-divergence. Furthermore, according to Fig. 3.6 the FR test

statistic-based estimator suggests that the Bayes error rate is larger for the SKIN

dataset compared to the HAR and ENGIN datasets.

In our next experiment, we explain the incremental value of adding features 1 to 6

features and evaluate the FR test statistic’s accuracy as an HP-divergence estimator.

Surprisingly, the estimated HP-divergence doesn’t appear to increase for the HAR

sample, however big increases are observed for the SKIN and ENGIN samples, (see

Fig. 3.7).
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Figure 3.7: HP-divergence vs. dimension for three datasets HAR, SKIN, and ENGIN. This figure shows

the incremental value of adding features 1 to 6 features and evaluate the FR test statistic’s

accuracy as an HP-divergence estimator. Surprisingly, the estimated HP-divergence doesn’t

appear to increase for the HAR sample, however big increases are observed for the SKIN and

ENGIN samples.

3.3 Direct k-NN Estimator of HP Divergence

Let X = {X1, ..., XN} and Y = {Y1, ..., YM} respectively denote i.i.d samples with

densities f1 and f2, such that M =
⌊
Nq
p

⌋
. Let Gk(X, Y ) be the graph of k nearest

neighbors of the joint set X ∪ Y . In other words, edges of Gk(X, Y ) are those which

connect the points x ∈ Z to their kth nearest neighbors. Assume that E(X, Y ) is

the set of edges of Gk(X, Y ) connecting different types. Then the K-NN estimator

of HP-divergence, D̂p, is defined as

D̂p(X, Y ) = 1− |E(X, Y )|N +M

2NM
.(3.11)

The idea behind this estimator is similar to the idea of the MST estimator of

HP-divergence proposed by Friedman and Rafsky (FR) [38], in which we count the

number of edges connecting different node types in the minimal spanning tree of the

merged multitype data. If N = M and the densities are almost equal, then with

probability of almost 1/2 every kth nearest neighbor edge belongs to E(X,Y). So



50

|E(X, Y )| ≈ N , and D̂p ≈ 0.

Algorithm 4: k-NN Estimator of HP Divergence

Input : Data sets X = {X1, ..., XN}, Y = {Y1, ..., YM}
1 Z ← X ∪ Y
2 for each point Zi in Z do
3 If (Zi ∈ X and Qk(Zi) ∈ Y )
4 or (Zi ∈ Y and Qk(Zi) ∈ X)
5 then S ← S + 1

Output: 1− SN+M
2NM

Theorem III.6. The bias of the k-NN estimator of HP-divergence can be bounded

as

B
[
D̂p(X, Y )

]
= O

(
(k/N)γ/d

)
+O (C(k)) ,(3.12)

where C(k) := exp(−3k1−δ) for a fixed δ ∈ (2/3, 1). Here γ is the Hölder smoothness

parameter.

Remark III.7. Note that in order to have a asymptotically unbiased estimator, k

needs to grow with N . The optimum bias rate of O
(

logN
N

)γ/d
can be achieved for

k = O(logN).

Theorem III.8. The variance of the k-NN estimator of HP divergence is

V
[
D̂p(X, Y )

]
≤ O

(
1

N

)
.(3.13)

3.3.1 WNN Estimator

Note that the bias term in Theorem VII.2 depends on d. This fact implies that

for higher dimensions the convergence rate is slower. We propose an estimator that

achieves the optimum convergence rate in any dimension using an ensemble estimator

introduced in [113]. Assume that the density functions are in the Hölder space

Σ(γ,B), which consists of functions on X continuous derivatives up to order q =
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bγc ≥ d and the qth partial derivatives are Hölder continuous with exponent γ′ =:

γ − q and constant parameter of B. Further, we need to assume that the density

derivatives up to order d vanish at the boundary. Fix a constant L where L ≥ d. Let

L := {l1, ..., lL} be a set of index values with li < c, where κ =
⌊
c
√
N
⌋
. We further

define K(l) :=
⌊
l
√
N
⌋
.

Definition III.9. Let X = {X1, ..., XN} and Y = {Y1, ..., YM} respectively denote

i.i.d samples with densities f1 and f2, such that M =
⌊
Nq
p

⌋
. Let the weight vector

W := [W (l1),W (l2), ...,W (lL)] be the solution to the following optimization problem:

min
w

‖w‖2

subject to
∑
l∈L

w(l) = 1,

∑
l∈L

w(l)li/d = 0, i ∈ N, i ≤ d.(3.14)

Now define GW
K (X, Y ) as a weighted directed graph with the vertices of the joint

set X ∪Y . There is a directed edge with the weight W (l) between any pair of nodes

R and S, only if the types of R and S are different (i.e. R ∈ X and S ∈ Y ), and S

is the K(l)th nearest neighbor of R for some l ∈ L. We represent the set of edges of

GW
K (X, Y ) by EWK (X, Y ).

Then the WNN estimator D̂W
p , is defined as

D̂W
p (X, Y ) = 1− |EWK (X, Y )|N +M

2NM
.(3.15)

In the following theorem we prove that WNN estimator defined above achieves

the optimal MSE rate of O(1/N):

Theorem III.10. Mean square error of WNN estimator can be bounded by O(1/N).
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Algorithm 5: WNN Estimator of HP Divergence

Input : Data sets X = {X1, ..., XN}, Y = {Y1, ..., YM}
1 Z ← X ∪ Y
2 for l ∈ L do
3 for each point Zi in Z do
4 If (Zi ∈ X and Ql(Zi) ∈ Y )
5 or (Zi ∈ Y and Ql(Zi) ∈ X)
6 then S ← S +W (l)

Output: 1− SN+M
2NM

3.4 Numerical Results

In this section we investigate the behavior of the proposed estimator using a few

numerical experiments and compare them with the theoretical bounds.

The first experiment, in Fig. 3.8, shows the mean estimated HP divergence of

two truncated Normal RVs with the mean vectors [0, 0] and [0, 1] and variance of

σ2
1 = σ2

2 = I2, as a function of number of samples, N , where Id is the identity matrix

with size d. Three different values of k are investigated. For each case we repeat the

experiment 100 times, and compute the expectation of the estimated value and the

standard deviation error bars. As N increases, the expected value of the estimated

divergence measures for any k tend to the true value. The experiments show that

as we increase k the bias also increases, which is due to the
(
k
N

)γ/d
bias term (the

other term is ignorable). However, according to this experiment, variance is almost

independent of k, which verifies the theoretical bound on variance.

Fig. 3.9 shows the MSE of the k-NN estimator for HP divergence between two

identical, independent and truncated Normal RVs. The RVs have the same covari-

ance matrix of Id and are truncated with the range x ∈ [−5, 5] and y ∈ [−5, 5].

The experiment is repeated for three different dimensions of d = 2, 10, 20 for a fixed

k = 5. In agreement with the theoretical bias bound, as d increases, the experiment

shows that MSE rate increases.
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Figure 3.8: Comparison of the estimated values of k-NN estimator with k = 5, 10, 20 for HP diver-
gence between two truncated Normal RVs with the mean vectors [0, 0] and [0, 1] and
variances of σ2

1 = σ2
2 = I2, versus N , the number of samples.

Figure 3.9: MSE of the k-NN estimator for HP divergence between two identical, independent and
truncated Normal RVs, as a function of N .
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Figure 3.10: MSE comparison of the three graph theoretical estimators of HP divergence; MST,
k-NN, and WNN estimators.

In Fig. 3.10 we compare the MSE rates of the three graph theoretical estimators

of HP divergence; MST, k-NN, and WNN estimators. The divergence is considered

between two truncated Normal random variables with d = 2, means of µ1 = [0, 0],

µ2 = [1, 0], and covariance matrices of σ1 = I2 and σ2 = 2I2. This experiment verifies

the advantage of WNN estimator over k-NN and MST estimators, in terms of their

convergence rates. Also the performance of MST estimator is slightly better than

the k-NN estimator. Note that in this experiment we have k = 5.

Fig. 3.11 shows the comparison of the estimators of HP divergence between a

truncated Normal RV with mean [0, 0] and covariance matrix of I2, and uniform RV

within [−5, 5]× [−5, 5], in terms of their mean value and %95 confidence band. The

confidence band is narrower for greater values of N , and WNN estimator has the

narrowest confidence band.

Finally in Fig. 3.12, we compare performance of WNN to k-NN estimators with

k = 5 and k = 10, for a real data set [37, 36]. The data are measurement outcomes

of a set of ultrasound sensors arranged circularly around a robot, which navigates

through the room following the wall in a clockwise direction. There are total number
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Figure 3.11: Comparison k-NN, MST and WNN estimators of HP divergence between a truncated
Normal RV and a uniform RV, in terms of their mean value and %95 confidence band.

Figure 3.12: MSE Comparison of the WNN and k-NN estimator with two different parameters
k = 5 and k = 10 for the robot navigation dataset

of 5456 instances (corresponding to different timestamps), and we use the infor-

mation of four main sensors as the feature space. The instances are associated to

four different classes of actions: move-forward, sharp-right-turn, slight-right-turn and

turn-left. In Fig. 3.12 we consider the divergence between the sensor measurement

for sharp-right-turn and move-forward classes. In general WNN estimator performs

better than k-NN estimator.
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3.5 Conclusion

In this chapter we first derived a bound on the MSE convergence rate for the

Friedman-Rafsky estimator of the Henze-Penrose divergence assuming the densities

are sufficiently smooth. We employed a partitioning strategy to derive the bias

rate which depends on the number of partitions, the sample size m + n, the Hölder

smoothness parameter η, and the dimension d. We validated our proposed MSE

convergence rate using simulations and illustrated the approach for the meta-learning

problem of estimating the HP-divergence for three real-world data sets.

In the second part of this chapter we proposed the k-NN version of the FR test

statistic. We established convergence and proposed an optimum direct estimation

method for HP divergence, based on the ensemble method. We proved that WNN

estimator can achieve the optimum MSE rate of O(1/N), and validated our results

on simulated and real data sets. For future work, one interesting direction would be

to investigate the convergence rate for the k-NN estimator, using fixed k independent

of N .



CHAPTER IV

Learning to Benchmark: Optimum Estimation of Bayes
Error

In this chapter we address the problem of learning to benchmark the best achiev-

able classifier performance. In this problem, the objective is to establish statistically

consistent estimates of the Bayes misclassification error rate without having to learn

a Bayes-optimal classifier. This chapter’s approach improves the previous chapter’s

work on learning bounds on Bayes misclassification rate since it learns the exact

Bayes error rate instead of a bound on error rate. We propose a benchmark learner

based on an ensemble of ε-ball estimators and Chebyshev approximation. Under a

smoothness assumption on the class densities we show that our estimator achieves

an optimal (parametric) mean squared error (MSE) rate of O(N−1), where N is the

number of samples. Experiments on both simulated and real datasets establish that

our proposed benchmark learning algorithm produces estimates of the Bayes error

that are more accurate than previous approaches for learning bounds on Bayes error

probability.

In Section 4.1, we introduce our proposed Bayes error rate estimators for the

binary classification problem. In Section 4.2 we use the ensemble estimation method

to improve the convergence rate of the base estimator. We then address the multi-

class classification problem in Section 4.3. In Section 4.4, we conduct numerical

57
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experiments to illustrate the performance of the estimators. Finally, we discuss the

future work in Section 4.5.

4.1 Benchmark learning for Binary Classification

Our proposed learning to benchmark framework is based on an exact f -divergence

representation (not a bound) for the minimum achievable binary misclassification

error probability. First, in section 4.1.1 we propose an accurate estimator of the

density ratio (ε-ball estimator), and then in section 4.1.2, based on the optimal

estimation for the density ratio, we propose a base estimator of Bayes error rate.

4.1.1 ε-Ball Density Ratio Estimator

Consider the independent and identically distributed (i.i.d) sample realizations

X1 =
{
X1,1, X1,2, . . . , X1,N1

}
∈ RN1×d from f1 and X2 =

{
X2,1, X2,2, . . . , X2,N2

}
∈

RN2×d from f2. Let η := N2/N1 be the ratio of two sample sizes. The problem is to

estimate the density ratio U(x) := f1(x)
f2(x)

at each of the points of the set X2. In this

chapter similar to the method of [94] we use the ratio of counts of nearest neighbor

samples from different classes to estimate the density ratio at each point. However,

instead of considering the k-nearest neighbor points, we use the ε-neighborhood (in

terms of euclidean distance) of the points. This allows us to remove the extra bias

due to the discontinuity of the parameter k when using an ensemble estimation

technique. As shown in Figure. 4.1, ε-ball density ratio estimator for each point Yi

in Y (shown by blue points) is constructed by the ratio of the counts of samples in

X and Y which fall within ε-distance of Yi.

Definition IV.1. For each point X2,i ∈ X2, let N
(ε)
1,i (resp. N

(ε)
2,i ) be the number of

points belonging to X1 (resp. X2) within the ε-neighborhood (ε-ball) of X2,i. Then
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Figure 4.1: ε-ball density ratio estimator for each point Yi in Y (shown by blue points) is con-
structed by the ratio of the counts of samples in X and Y which fall within ε-distance
of Yi.

the density ratio estimate is given by

Û (ε)(X2,i) := ηN
(ε)
1,i

/
N

(ε)
2,i .(4.1)

Sometimes in this chapter we abbreviate Û(X2,i) as Û
(ε)
i .

4.1.2 Base learner of Bayes error

The Bayes error rate corresponding to class densities f1, f2, and the class proba-

bilities vector p = (p1, p2) is

EBayes
p (f1, f2) = Pr(CBayes(X) 6= T )

=

∫
p1f1(x)≤p2f2(x)

p1f1(x)dx+

∫
p1f1(x)≥p2f2(x)

p2f2(x)dx,(4.2)
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where CBayes(X) is the classifier mapping CBayes : X → {1, 2}. The Bayes error (4.2)

can be expressed as

EBayes
p (f1, f2) =

1

2

∫
p1f1(x) + p2f2(x)− |p1f1(x)− p2f2(x)|dx

= p2 +
1

2

∫
(p1f1(x)− p2f2(x))− |p1f1(x)− p2f2(x)|dx

= min(p1, p2)−
∫
f2(x)t

(
f1(x)

f2(x)

)
dx

= min(p1, p2)− Ef2

[
t

(
f1(X)

f2(X)

)]
,(4.3)

where

t(x) := max(p2 − p1x, 0)−max(p2 − p1, 0)

is a convex function. The expectation Ef2

[
t

(
f1(X)
f2(X)

)]
is an f -divergence between

density functions f1 and f2. The f -divergence or Ali-Silvey distance, introduced

in [4], is a measure of the dissimilarity between a pair of distributions. Several

estimators of f -divergences have been introduced [15, 121, 91, 98]. Expressions for

the bias and variance of these estimators are derived under assumptions that the

function t is differentiable, which is not true here. In what follows we will only need

to assume that the divergence function t is Lipschitz continuous.

We make the following assumption on the densities. Note that these are similar

to the assumptions made in the previous work [110, 92, 78].

Assumptions:

A.1. The densities functions f1 and f2 are both lower bounded by CL and upper

bounded by CU with CU ≥ CL > 0;

A.2. The densities f1 and f2 are Hölder continuous with parameter 0 < γ ≤ 1,

that is there exists constants H1, H2 > 0 such that

(4.4) |fi(x1)− fi(x2)| ≤ Hi||x1 − x2||γ,
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for i = 1, 2 and x1, x2 ∈ R.

Explicit upper and lower bounds CU and CL must be specified for the implemen-

tation of the base estimator below. However, the lower and upper bounds do not

need to be tight and only affect the convergence rate of the estimator. We conjecture

that this assumption can be relaxed, but this is left for future work.

Define the base estimator of the Bayes error

(4.5) Êε(X1,X2) := min(p̂1, p̂2)− 1

N2

N2∑
i=1

t̃
(
Ûi

)
,

where t̃(x) := max(t(x), t(CL/CU)), and empirical estimates vector p̂ = (p̂1, p̂2) is

obtained from the relative frequencies of the class labels in the training set. Ûi is the

estimation of the density ratio at point X2,i, which can be computed based on ε-ball

estimates.

Remark IV.2. The definition of Bayes error in (4.2) is symmetric, however, the def-

inition of Bayes error estimator in (4.5) is asymmetric with respect to X1 and X2.

Therefore, we might get different estimations from Êε(X1,X2) and Êε(X2,X1), while

both of these estimations asymptotically converge to the true Bayes error. It is ob-

vious that any convex combination of Êε(X1,X2) and Êε(X2,X1) defined is also an

estimator of the Bayes error (with the same convergence rate). In particular, we

define the following symmetrized Bayes error estimator:

E∗ε (X2,X1) :=
N2

N
Êε(X1,X2) +

N1

N
Êε(X2,X1)

= min(p̂1, p̂2)− 1

N

N∑
i=1

t̃
(
Ûi

)
,(4.6)

where consistent with the definition in (4.1), for the points in X1, Û
(ε)
i is defined as

the ratio of the ε-neighbor points in X2 to the number of points in X1, while for the

points in X2 is defined as the ratio of the points in X1 to the number of points in
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X2:

Û
(ε)
i :=


ηN

(ε)
1,i

/
N

(ε)
2,i 1 ≤ i ≤ N2

N
(ε)
2,i

/
ηN

(ε)
1,i N2 ≤ i ≤ N.

(4.7)

Algorithm 6: Base Learner of Bayes Error

Input : Data sets X = {X1, ..., XN1
}, Y = {Y1, ..., YN2

}
1 Z← X ∪Y
2 for each point Yi in Y do
3 Si: Set of ε-ball points of Yi in Z

4 Ûi ← |Si ∩X|/|Si ∩Y|

5 E∗ε (X2,X1)← min(N1, N2)/(N1 +N2)− 1
N

∑N
i=1 t̃

(
Ûi

)
,

Output: E∗ε (X2,X1)

Remark IV.3. The ε-ball density ratio estimator is equivalent to the ratio of plug-in

kernel density estimators with a top-hat filter and bandwidth ε.

4.1.3 Convergence Analysis

The following theorem states that this estimator asymptotically converges in L2

norm to the exact Bayes error as N1 and N2 go to infinity in a manner N2/N1 → η,

with an MSE rate of O(N−
2γ
γ+d ).

Theorem IV.4. Under the Assumptions on f1 and f2 stated above, as N1, N2 →∞

with N2/N1 → η,

(4.8) Êε(X1,X2)
L2

→ EBayes
p (f1, f2),

where
L2

→ denotes “convergence in L2 norm”. Further, the bias of E(X1,X2) is

B
[
Êε(X1,X2)

]
= O (εγ) +O

(
ε−dN−1

1

)
,(4.9)

where ε is the radius of the neighborhood ball.

In addition, the variance of Êε(X1,X2) is

V
[
Êε(X1,X2)

]
= O (1/min(N1, N2)) .(4.10)
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Proof. Since according to (4.3) the Bayes error rate EBayes can be written as an f -

divergence, it suffice to derive the bias and variance of the ε-ball estimator of the

divergence. The details are given in Appendix. C.1.

In the following we give a theorem that establishes the Gaussian convergence of

the estimator proposed in equation (4.5).

Theorem IV.5. Let ε→ 0 and 1
εdN
→ 0. If S be a standard normal random variable

with mean 0 and variance 1, then,

Pr

 Êε(X1,X2)− E
[
Êε(X1,X2)

]
√

V
[
Êε(X1,X2)

] ≤ t

→ Pr(S ≤ t)(4.11)

Proof: The proof is based on the Slutsky’s Theorem and Efron-Stein inequality

and is discussed in details in Appendix. C.2.

4.2 Ensemble of Base Learners

It has long been known that ensemble averaging of base learners can improve the

accuracy and stability of learning algorithms [30]. In this work in order to achieve the

optimal parametric MSE rate of O(1/N), we propose to use an ensemble estimation

technique. The ensemble estimation technique has previously used in estimation of f -

divergence and mutual information measures [78, 84, 91]. However, the method used

by these articles depends on the assumption that the function f of the divergence

(or general mutual information) measure is differentiable everywhere within its the

domain. As contrasted to this assumption, function t(x) defined in equation (4.3)

is not differentiable at x = p1/p2, and as a result, using the ensemble estimation

technique considered in the previous work is difficult. A simpler construction of the

ensemble Bayes error estimation is discussed in section 4.2.1. Next, in section 4.2.2

we propose an optimal weight assigning method based on Chebyshev polynomials.
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4.2.1 Construction of the Ensemble Estimator

Our proposed ensemble benchmark learner constructs a weighted average of L

density ratio estimates defined in (4.1), where each density ratio estimator uses a

different value of ε.

Definition IV.6. Let Û
(εj)
i for j ∈ {1, ..., L} be L density ratio estimates with dif-

ferent parameters (εj) at point Yi. For a fixed weight vector w := (w1, w2, . . . , wL)T ,

the ensemble estimator is defined as

F(X1,X2) = min(p̂1, p̂2)− 1

N2

N2∑
i=1

[
max(p̂2 − p̂1Û

w
i , 0)−max(p̂2 − p̂1, 0)

]
,(4.12)

where for the weighted density ratio estimator, Ûw
i is defined as

Ûw
i :=

L∑
l=1

wlÛ
(εl)
i .(4.13)

Remark IV.7. The construction of this ensemble estimator is fundamentally differ-

ent from standard ensembles of base estimators proposed before and, in particular,

different from the methods proposed in [78, 91]. These standard methods average

the base learners whereas the ensemble estimator (4.12) averages over the argument

(estimated likelihood ratio f1/f2) of the base learners.

Under additional conditions on the density functions, we can find the weights wl

such that the ensemble estimator in (4.12) achieves the optimal parametric MSE rate

O(1/N). Specifically, assume that 1) the density functions f1 and f2 are both Hölder

continuous with parameter γ and continuously differentiable of order q = bγc ≥ d

,and 2) the q-th derivatives are Hölder continuous with exponent γ′ := γ − q. These

are similar to assumptions that have been made in the previous work [78, 110, 91].

We prove that if the weight vector w is chosen according to an optimization problem,

the ensemble estimator can achieve the optimal parametric MSE rate O(1/N).
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Theorem IV.8. Let N1, N2 →∞ with N2/N1 → η. Also let Û
(εj)
i for j ∈ {1, ..., L}

be L (L > d) density ratio estimates with bandwidths εj := ξjN
−1/2d
1 at the points

Yi. Define the weight vector w = (w1, w2, . . . , wL)T as the solution to the following

optimization problem:

min
w

||w||2(4.14)

subject to
L∑
l=1

wl = 1 and
L∑
l=1

wl · ξil = 0, ∀i = 1, . . . , d.

Then, under the assumptions stated above the ensemble estimator defined in (4.12)

satisfies,

(4.15) F(X1,X2)
L2

→ EBayes
p (f1, f2),

with the MSE rate O(1/N1).

Proof. See Appendix C.3.

One simple choice for ξl is an arithmetic sequence as ξl := l. With this setting

the optimization problem in the following optimization problem:

min
w

||w||2(4.16)

subject to
L∑
l=1

wl = 1 and
L∑
l=1

wl · li = 0, ∀i = 1, . . . , d.(4.17)

Note that the optimization problem in (4.16) does not depend on the data sample

distribution and only depends on its dimension. Thus, it can be solved offline. In

larger dimensions, however, solving the optimization problem can be computation-

ally difficult. In the following we provide an optimal weight assigning approach based

on Chebyshev polynomials that reduces computational complexity and leads to im-

proved stability. We use the orthogonality properties of the Chebyshev polynomials

to derive closed form solutions for the optimal weights in (4.14).
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4.2.2 Chebyshev Polynomial Approximation Method for Ensemble Estimation

Chebyshev polynomials are frequently used in function approximation theory [60].

We denote the Chebyshev polynomials of the first kind defind in interval [−1, 1] by

Tn, where n is the degree of the polynomial. An important feature of Chebyshev

polynomials is that the roots of these polynomials are used as polynomial interpo-

lation points. We define the shifted Chebyshev polynomials with a parameter α as

Tαn (x) : [0, α]→ R in terms of the standard Chebyshev polynomials as

Tαn (x) = Tn(
2x

α
− 1).(4.18)

We denote the roots of Tαn (x) by si, i ∈ {1, ..., n}. In this section we formulate the

ensemble estimation optimization in equation (4.14) in the Chebyshev polynomials

basis and we propose a simple closed form solution to this optimization problem. This

is possible by setting the parameters of the base density estimators εl proportional

to the Chebyshev nodes sl. Precisely, in equation (4.14) we set

ξl := sl.(4.19)

Theorem IV.9. For L > d, the solutions of the optimization problem in (4.14) for

ξl := sl are given as:

wi =
2

L

d∑
k=0

Tαk (0)Tαk (si)−
1

L
∀i ∈ {0, ..., L− 1}.(4.20)

where si, i ∈ {0, ..., L− 1} are roots of TαL (x) given by

sk =
α

2
cos

((
k +

1

2

)
π

L

)
+
α

2
, k = 0, . . . , L− 1(4.21)

Proof. The proof of Theorems IV.9 can be found in Appendix C.4.
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4.3 Benchmark Learning for Multi-class Classification

Consider a multi-class classification problem with λ classes having respective den-

sity functions f1, f2, . . . , fλ. The Bayes error rate for the multi-class classification

is

EBayes
p (f1, f2, . . . , fλ)

= 1−
∫ [

max
1≤i≤λ

pifi(x)

]
dx

= 1− p1 −
λ∑
k=2

∫ [
max
1≤i≤k

pifi(x)− max
1≤i≤k−1

pifi(x)

]
dx

= 1− p1 −
λ∑
k=2

∫
max

(
0, pk − max

1≤i≤k−1
pifi(x)/fk(x)

)
fk(x)dx

= 1− p1 −
λ∑
k=2

∫
tk

(
f1(x)

fk(x)
,
f2(x)

fk(x)
, . . . ,

fk−1(x)

fk(x)

)
fk(x)dx,(4.22)

where

tk(x1, x2, . . . , xk−1) := max

(
0, pk − max

1≤i≤k−1
pixi

)
.

We denote the density fractions fi(x)
fj(x)

in the above equation by U(i/j)(x). Let

Ûw
(i/j)(x) denote the ensemble estimates of U(i/j)(x) using the ε-ball method, similar

to the estimator defined in (C.18). Thus, we propose the following direct estimator

of EBayes
p (f1, f2, . . . , fλ) as follows:

H(X1,X2, . . . ,Xλ) := 1− p1−(4.23)

λ∑
l=2

1

Nl

Nl∑
i=1

t̃

(
Ûw

(1/l)(Xl,i), Û
w
(2/l)(Xl,i), . . . , Û

w
(l−1/l)(Xl,i)

)
,

where

t̃k(x1, x2, . . . , xk−1) := max {tk(x1, x2, . . . , xk−1), tk(CL/CU , . . . , CL/CU)} .

Since t is elementwise Lipschitz continuous, we can easily generalize the argument

used in the proof of Theorem IV.4 to obtain the convergence rates for the multiclass
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case. Similar to the assumptions of the ensemble estimator for the binary case in

section 4.2.1, we assume that 1) the density functions f1, f2, ..., fλ are both Hölder

continuous with parameter γ and continuously differentiable of order q = bγc ≥ d

and 2) the q-th derivatives are Hölder continuous with exponent γ′ := γ − q.

Theorem IV.10. As N1, N2, . . . , Nλ →∞ with Nl/Nj → ηj,l for 1 ≤ j < l ≤ λ and

N∗ = max(N1, N2, . . . , Nλ),

Hk(X1,X2, . . . ,Xλ)
L2

→ EBayes
p (f1, f2, . . . , fλ).(4.24)

The bias and variance of Hk(X1,X2, . . . ,Xλ) are

B [Hk(X1,X2, . . . ,Xλ)] = O
(
λ/
√
N∗
)
,(4.25)

V [Hk(X1,X2, . . . ,Xλ)] = O
(
λ2/N∗

)
.(4.26)

Proof. See Appendix C.5.

Remark IV.11. Note that the estimator Hk (4.23) depends on the ordering of the

classes, which is arbitrary. However the asymptotic MSE rates do not depend on the

particular class ordering.

Remark IV.12. In fact, (4.22) can be transformed into

EBayes
p (f1, f2, . . . , fλ) = 1− p1 −

λ∑
k=2

pk

∫
max (0, 1− hk(x)/fk(x)) fk(x)dx,(4.27)

where hk(x) := max1≤i≤k−1 pifi(x)/pk. That shows that the Bayes error rate is

actually a linear combination of (λ− 1) f -divergences.

Remark IV.13. The function tk is not a properly defined generalized f -divergence

[31], since tk

(
pk
p1
, pk
p2
, . . . , pk

pk−1

)
= 0, while tk(1, 1, . . . , 1) is not necessarily equal to 0.
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4.4 Numerical Results

We apply the proposed benchmark learner on several numerical experiments for

binary and multi-class classification problems. We perform experiments on different

simulated datasets with dimensions of up to d = 100. We compare the bench-

mark learner to previous lower and upper bounds on the Bayes error based on HP-

divergence (1.11), as well as to a few powerful classifiers on different classification

problem. The proposed benchmark learner is applied on the MNIST dataset with

70k samples and 784 features, learning theoretically the best achievable classification

error rate. This is compared to reported performances of state of the art deep learn-

ing models applied on this dataset. Extensive experiments regarding the sensitivity

with respect to the estimator parameter, the difference between the arithmetic and

Chebyshev optimal weights and comparison of the corresponding ensemble bench-

mark learner performances, and comparison to the previous bounds on the Bayes

error and classifiers on various simulated datasets with Gaussian, beta, Rayleigh and

concentric distributions are provided in Appendix C.6.

Figure 4.2 compares the optimal benchmark learner with the Bayes error lower

and upper bounds using HP-divergence, for a binary classification problems with

10-dimensional isotropic normal distributions with identity covariance matrix, where

the means are shifted by 5 units in the first dimension. While the HP-divergence

bounds have a large bias, the proposed benchmark learner converges to the true value

by increasing sample size.

In Figure 4.3 we compare the optimal benchmark learner (Chebyshev method)

with XGBoost, Random Forest and deep neural network (DNN) classifiers, for a

4-class classification problem 20-dimensional concentric distributions. Note that as
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Figure 4.2: Comparison of the optimal benchmark learner (Chebyshev method) with the Bayes error
lower and upper bounds using HP-divergence, for a binary classification problems with
10-dimensional isotropic normal distributions with identity covariance matrix, where
the means are shifted by 5 units in the first dimension. While the HP-divergence
bounds have a large bias, the proposed benchmark learner converges to the true value
by increasing sample size.

shown in (b) the concentric distributions are resulted by dividing a Gaussian distri-

bution with identity covariance matrix into four quantiles such that each class has

the same number of samples. The DNN classifier consists of 5 hidden layers with

[20, 64, 64, 10, 4] neurons and ReLU activations. Also in each layer a dropout with

rate 0.1 is applied to diminish the overfitting. The network is trained using Adam

optimizer and is trained for 150 epochs.

Further, we compute the benchmark learner for the MNIST dataset with 784

dimensions and 60,000 samples. In Table 4.1 we compare the estimated benchmark

learner with the reported state of the art convolutional neural network classifiers

with 60,000 training samples. Note that according to the online report [11] the listed

models achieve the best reported classification performances.

The benchmark learner can also be used as a stopping rule for deep learning

models. This is demonstrated in figures 4.4 and 4.5. In both of these figures we



71

(a) Four classes with concentric distributions

(b) Benchmark learner compared to a 5-layer DNN, XGBoost and Random Forest classifiers
for the concentric distributions

Figure 4.3: Comparison of the optimal benchmark learner (Chebyshev method) with a 5-layer
DNN, XGBoost and Random Forest classifiers, for a 4-class classification problem 20-
dimensional concentric distributions. Note that as shown in (b), the concentric distri-
butions are resulted by dividing a Gaussian distribution with identity covariance matrix
into four quantiles such that each class has the same number of samples. The DNN
classifier consists of 5 hidden layers with [20, 64, 64, 10, 4] neurons and RELU activa-
tions. Also in each layer a dropout with rate 0.1 is applied to diminish the overfitting.
The network is trained using Adam optimizer and is trained for 150 epochs. The bench-
mark learner predicts the Bayes error rate better than the DNN, XGBoost and Random
Forest classifiers.
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Papers Method Error rate

(Cirecsan 2010)[24] Single 6-layer DNN 0.35%
(Ciresan 2011) [25] Ensemble of 7 CNNs and training data expansion 0.27%
(Cirecsan 2012)[23] Ensemble of 35 CNNs 0.23%
(Wan 2013) [120] Ensemble of 5 CNNs and DropConnect regularization 0.21%
Benchmark learner Ensemble ε-ball estimator 0.14%

Table 4.1: Comparison of error probabilities of several the state of the art deep models with the
benchmark learner, for the MNIST handwriting image classification dataset

consider a 3-class classification problem with 30-dimensional Rayleigh distributions

with parameters a = 0.7, 1.0, 1.3. We train a DNN model consisting of 5 layers with

[30, 100, 64, 10, 3] neurons and RELU activations. Also in each layer a dropout with

rate 0.1 is applied to diminish the overfitting. In Figure. 4.4 we feed in different

numbers of samples and compare the error rate of the classifier with the proposed

benchmark learner. The network is trained using Adam optimizer for 150 epochs.

At around 500 samples, the error rate of the trained DNN is within the confidence

interval of the benchmark learner, and one can probably stop increasing the sample

number since the error rate of the DNN is close enough to the Bayes error rate.

In Figure. 4.5 we feed in 2000 samples to the network and plot the error rate for

different training epochs. At around 80 epochs, the error rate of the trained DNN

is within the confidence interval of the benchmark learner, and we can stop training

the network since the error rate of the DNN is close enough to the Bayes error rate.

4.5 Conclusion

In this chapter, a new framework, benchmark learning, was proposed that learns

the Bayes error rate for classification problems. An ensemble of base learners was de-

veloped for binary classification and it was shown to converge to the exact Bayes error

probability with optimal (parametric) MSE rate. An ensemble estimation technique

based on Chebyshev polynomials was proposed that provides closed form expressions
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Figure 4.4: Error rate of a DNN classifier compared to the benchmark learner for a 3-class clas-
sification problem with 30-dimensional Rayleigh distributions with parameters a =
0.7, 1.0, 1.3. We feed in different numbers of samples and compare the error rate of
the classifier with the proposed benchmark learner. The network is trained for about
50 epochs. At around 500 samples, the error rate of the trained DNN is within the
confidence interval of the benchmark learner, and one can probably stop increasing the
sample number since the error rate of the DNN is close enough to the Bayes error rate.

Figure 4.5: Error rate of a DNN classifier compared to the benchmark learner for a 3-class clas-
sification problem with 30-dimensional Rayleigh distributions with parameters a =
0.7, 1.0, 1.3. We feed in 2000 samples to the network and plot the error rate for different
training epochs. At around 40 epochs, the error rate of the trained DNN is within
the confidence interval of the benchmark learner, and we can stop training the network
since the error rate of the DNN is close enough to the Bayes error rate.



74

for the optimum weights of the ensemble estimator. Finally, the framework was ex-

tended to multi-class classification and the proposed benchmark learner was shown

to converge to the Bayes error probability with optimal MSE rates.



CHAPTER V

Bayes Error Based Feature Selection

In order to improve computational complexity and performance of a model in high-

dimensional datasets, it is useful to choose a smaller set of features that provides the

maxumum distinguishability between different classes. This preprocessing phase is

called feature selection. In this chapter we propose a feature selection method based

on Bayes error rate. The proposed method resembles the forward selection wrapper

methods, yet it is independent of any learning model. The proposed feature selection

method uses the Bayes error as a measure of quality of the features. Bayes error rate

is defined as misclassification error of the optimum Bayes classifier. Similar to the

feature quality measures used in the filter methods, Bayes error is independent of

any learning algorithms. However, unlike most of the filter methods, Bayes error is

directly related to the error of the classification.

The proposed Bayes error based feature selection (BEFS) method consists of

sequential feature selection steps. The method starts with an empty set and at

each step we select the feature that decreases the Bayes error feature set the most.

Similar to the filter methods, BEFS is computationally efficient. BEFS only involves

estimation of the Bayes error rate instead of the computationally expensive training

process performed at each step in wrapper methods. We compare the BEFS method

75
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to a few wrapper and filter feature selection methods. The quality of the features

are evaluated based on the estimated Bayes error rate using the ε-ball estimator

defined in equation (4.12). We choose state of the art deep learning and random

forest classifiers as the wrapper models in the forward feature selection method.

The structure of this chapter is as follows. In Section 5.1 we introduce the pro-

posed feature selection method. In Section 5.1 we apply BEFS on three real datasets

regarding cancer prediction, robot navigation and speech activity detection and we

compare the BEFS method to a few wrapper and filter feature selection methods.

5.1 Proposed Feature Selection Method

Assume that the input data, denoted by a random variable X, consists of d

features as X = [X1, ..., Xd] and our task is to select a set of r features (r < d)

that provides the most distinguishability between the classes. Our proposed forward

selection method consists of r steps, where at each step we choose a feature from

{X1, ..., Xd} that reduces the Bayes error the most. The Bayes error rates in this

method are estimated using the ε-ball estimator defined in equation (4.12). The

method starts with an empty set and at each step we select the feature that decreases

the Bayes error feature set the most. The number of the steps could be specified, or

we can continue these steps until the Bayes error rate of the selected features is close

enough to the Bayes error of the Bayes error of the full dataset. The pseudocode

for the proposed Bayes error based feature selection (BEFS) method is given in

Algorithm 7.

Remark: Similar to most of the feature selection methods, BEFS is a greedy

algorithm which finds a sub-optimal set of features, however, we show in Section

5.2 that in practice the selected set of features using this method provides a better
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Algorithm 7: Bayes Error Based Feature Selection (BEFS)

Input : Input dataset, X = {X1, ..., XN}
Labels, Y = {Y1, ..., YN}
Desired number of output features, r

1 F := φ
2 for each i ∈ {1, ..., r} do
3 f ← argmax{BER{F} −BER{F ∪Xj}
4 Add f into F

Output: F

performance.

Remark: The computational complexity of BEFS method (Algorithm 7) is

O(dmrhN logN), where d, m, r, h and N respectively are dimension, number of

classes, number of selected features, the bandwidth of the Bayes error estimator and

the number of samples.

5.2 Experimental Results

We apply BEFS method on three real-datasets: breast cancer Wisconsin (diagnos-

tic) dataset [124], wall-following robot navigation dataset [37] and TIMIT acoustic-

phonetic continuous speech dataset [41]. For each case we compare the quality of the

selected features using BEFS with wrapper and filter methods. The quality of the

features are evaluated based on the estimated Bayes error rate. We choose state of

the art deep learning and random forest as the wrapper models in the forward feature

selection method. Note that choosing a deep neural network as the wrapper model

would take an excessive time since we will have to train the network rd times, where

d and r are respectively the dimension and number of selected feature. However, this

model results in high quality features thanks to the powerful learning model.
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5.2.1 Breast Cancer Prediction

We apply the proposed feature selected method on the breast cancer prediction

dataset [124]. In this dataset there are 30 features, generated from image analysis of

fine needle aspirates (FNA) of breast masses and characterise cell nucleus properties.

The task to classify the patients into the classes malignant or benign breast mass.

The set of measured features are mean, standard deviation and the worst value of

the measures of: Clump thickness, uniformity of cell size, uniformity of cell shape,

marginal adhesion, single epithelial cell size, number of bare nuclei, bland chromatin,

number of normal nuclei, and Mitosis. Each of the features is a real value in the range

[0, 1].

BEFS Results:

We apply BEFS on this dataset to get the first 5 most important features for the

diagnosis. The first 3 feature selection steps of the BEFS method are represented

respectively in Figure 5.1 (a)-(c). In the first step all features are sorted according

to the Bayes error resulted by a single feature. Then the feature radius mean which

provides the minimum Bayes error rate, is selected. In the next steps, the algorithm

sorts all of the remaining features according to the Bayes error resulted by adding

the feature to the selected set features, and the feature with the minimum Bayes

error is added to selected set.

In Figure 5.2 the 5 feature selection steps of the BEFS method are represented.

The selected features are respectively radius mean, frac dim mean, num concave mean,

area max, radius max and the corresponding Bayes error rates achieved at each step

are 0.087, 0.044,0.040, 0.035, 0.033 (shown by orange bars). The blue bars show the

Bayes error rate achieved by all of the 30 features, which is 0.030.

We compare the BEFS results to the wrapper methods with Random Forest and
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(a)

(b)

(c)

Figure 5.1: The first 3 feature selection steps of the BEFS method are represented in (a)-(c).
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Figure 5.2: The 5 feature selection steps of the BEFS method are represented for the breast
cancer dataset. The selected features are respectively radius mean, frac dim mean,
num concave mean, area max, radius max (with the corresponding feature indices
0, 27, 1, 2, 22) and the Bayes error rates achieved at each step are 0.087, 0.044,0.040,
0.035, 0.033 (shown by orange bars). The blue bars show the Bayes error rate achieved
by all of the 30 features, which is 0.030.
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Figure 5.3: The representation of the deep model used as a wrapper forward selection feature se-
lection for the breast cancer prediction.

DNN classifiers, as well as to a filter method with χ-square test score (specified as

the Select-Best-k method). In the following we summarize the result on DNN model.

Deep Learning Model: We train a DNN model with 5 fully connected layers.

The schematic diagram of the model is represented in figure 5.3. We use this DNN

as a wrapper model in the forward selection method. We train the model using

Adam optimizer with the learning rate of 0.001 and batch size of 256. For each of

the probe subsets we train the model for 500 epochs. The forward selection wrapper

method using this network selects the features with the indices 0, 1, 2, 22, 5 and the

classification error rates 0.10, 0.06, 0.07, 0.035, 0.043 are achieved at each step.

The results of BEFS, DNN, Random Forest and Select-Best-k methos are com-

pared in Figure 5.4. The blue bar shows the Bayes error rate achieved using all of the

features, which is 0.030. The orange bars represent the Bayes error rates achieved by

the BEFS, Random Forest, DNN and Select-Best-k methods. The selected features

using BEFS are 0, 27, 1, 2, 22, which result in the Bayes error 0.038. On the other

hand, the selected features using the DNN method are 0, 1, 2, 22, 5, which result in the

classification error 0.043, which is the same as the Bayes error rate achieved by the

selected features. The selected features using the Random Forest wrapper method

are 0, 2, 9, 23, 20, which result in the classification error 0.058 (shown by the red bar),

while the Bayes error rate achieved by the selected features is 0.048. Finally, the se-
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Figure 5.4: The results of BEFS, DNN, Random Forest and Select-Best-k methos are compared.
The blue bar shows the Bayes error rate achieved using all of the features, which is 0.030.
The orange bars represent the Bayes error rates achieved by the BEFS, Random Forest,
DNN and Select-Best-K methods. The features selected using the BEFS method has
the least Bayes error rate among others, which shows the effectiveness of the proposed
method.

lected features using the Select-Best-k filter method are 1, 2, 3, 21, 22. The Bayes

error rate achieved by the selected features is 0.065. Note that the features 0, 1, 2

and 22 are commonly selected by most of the investigated methods. The features

selected using the BEFS method has the least Bayes error rate among others, which

shows the effectiveness of the proposed method.

5.2.2 Wall-Following Robot Navigation Dataset

The second dataset is the wall-following robot navigation data [37]. The data

are measurements of the 24 ultrasound sensors arranged circularly around a robot

(Figure 5.5). The task for the robot is to navigate in a clockwise direction around
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the room, by following the wall. The dataset consists of 5456 recorded timestamps.

At each timestamp, the robot gets the measurements from all of the sensors and

decides which action should it take. The possible actions include one of the four

classes move-forward, sharp-right-turn, slight-right-turn and turn-left.

Figure 5.5: The graphs of the SCITOS G5 robot with 24 ultrasound sensors arranged circularly
around a robot (left), the followed path by the robot (middle), and the positions and
the indexing of the sensors 1 through 24 (right). The task for the robot is to navigate
in a clockwise direction around the room, by following the wall. The dataset consists
of 5456 recorded timestamps. At each timestamp, the robot gets the measurements
from all of the sensors and decides which action should it take. The possible actions
include one of the four directions: move-forward, sharp-right-turn, slight-right-turn and
turn-left.

BEFS Results: In Figure 5.6 the 5 feature selection steps of the BEFS

method are represented. The selected features (sensors) are respectively indexed

as 14, 11, 21, 9, 19 and the corresponding Bayes error rates achieved at each step are

0.22, 0.10,0.049, 0.038, 0.034 (shown by orange bars). The blue bars show the Bayes

error rate achieved by all of the 30 features, which is 0.032.

We compare the BEFS results to the wrapper methods with Random Forest and

DNN models, as well as to the Select-Best-k method. In the following we summarize

the result on DNN model.

Deep Learning Model: We train a DNN model with 5 fully connected layers

with 512, 64, 32, 4 neurons and ELU activations. We use this DNN as a wrapper

model in the forward selection method. We train the model using Adam optimizer
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Figure 5.6: The selected features (sensors) are respectively indexed as 14, 11, 21, 9, 19 and the cor-
responding Bayes error rates achieved at each step are 0.22, 0.10,0.049, 0.038, 0.034
(shown by orange bars). The blue bars show the Bayes error rate achieved by all of the
30 features, which is 0.032.
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with the learning rate of 0.001 and batch size of 256. For each of the probe subsets

we train the model for 500 epochs. The forward selection wrapper method using this

network selects the features with the indices 14, 19, 13, 18, 17 and the classification

error rates 0.21, 0.085, 0.071, 0.070, 0.063 are achieved at each step.

The results of BEFS, DNN, Random Forest and Select-Best-k methos are com-

pared in Figure 5.7. The blue bar shows the Bayes error rate achieved using all of the

features, which is 0.032. The orange bars represent the Bayes error rates achieved by

the BEFS, Random Forest, DNN and Select-Best-k methods. The selected features

using BEFS are 14, 11, 21, 9, 19 which result in the Bayes error 0.034. On the other

hand, the selected features using the DNN method are 14, 19, 13, 18, 17. Using these

features results in the classification error 0.063, which is the same as the Bayes er-

ror rate achieved by the selected features. The selected features using the Random

Forest wrapper method are 14, 18, 10, 13, 23, which result in the classification error

0.037 (shown by the red bar), while the Bayes error rate achieved by the selected

features is 0.036. Finally, the selected features using the Select-Best-k filter method

are 14, 16, 17, 18, 19. The Bayes error rate achieved by the selected features is 0.093.

Note that the features 14, 13 and 18 are commonly selected by most of the investi-

gated methods. The features selected using the BEFS method has the least Bayes

error rate among others, which shows the effectiveness of the proposed method.

5.2.3 Speech Activity Detection

We consider the problem of classifying the speech/non-speech audio. We use the

TIMIT acoustic-phonetic continuous speech dataset [41] and random noise (non-

speech) samples from [55]. The speech dataset contains samples from 16 speakers

from 8 dialect regions (1 male and 1 female from each dialect region). There are

totally 160 sentence recordings (10 recordings per speaker). The audio files are
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Figure 5.7: The results of BEFS, DNN, Random Forest and Select-Best-k methos are compared.
The blue bar shows the Bayes error rate achieved using all of the features, which is 0.030.
The orange bars represent the Bayes error rates achieved by the BEFS, Random Forest,
DNN and Select-Best-K methods. The features selected using the BEFS method has
the least Bayes error rate among others, which shows the effectiveness of the proposed
method.
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single channel, with 16kHz sampling, 16 bit sample, PCM encoding.

Preprocessing: We consider frames with duration of 10ms and we apply the

MFCC feature extraction on each frame which results in 24 features per frame. Each

sample contains the features of 21 frames (including 10 frames before and after the

central frame). We consider 5000 samples from each of the speech and non-speech

classes, where each sample is a 21 × 24 matrix. Thus, the total number of features

is 504. 8000 samples are used for training and 2000 samples are used for testing.

Feature Selection Experiments:

The type of features in this dataset is slightly different from the cancer prediction

and robot navigation datasets. In this dataset, each feature contains a single MFCC

component in all 21 time frames. We are interested in selecting the MFCC features

effective in classification of speech and non-speech audio. In this high-dimensional

dataset we compare the BEFS method to the wrapper method with a DNN model.

The structure of the DNN model is summarized in the following.

BEFS Results: We apply BEFS with 4 steps on the dataset. The error rates

at each step are represented in Figure 5.8. The selected features are respectively

9, 8, 11, 0 and the corresponding Bayes error rates achieved at each step are 0.10,

0.080,0.065, 0.050. Note that the Bayes error rate achieved by using all of the features

is 0.045. Hence, the selected features 9, 8, 11, 0 achieve the Bayes error rate close the

the Bayes error rate achieved by all features.

Deep Learning Model: We train a DNN model with 3 1-D convolutional layers

and 4 subsequent fully connected layers. The schematic of the model is represented in

figure 5.9. We use this DNN as a wrapper model in the forward selection method. We

train the model using Adam optimizer with the learning rate of 0.001 and batch size of

256. After 500 epochs the trained model achieves the test accuracy of %95 using all of
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Figure 5.8: The 4 feature selection steps of the BEFS method are represented. The selected features
are respectively 9, 8, 11, 0 and the corresponding Bayes error rates achieved at each step
are 0.10, 0.080,0.065, 0.050 (shown by orange bars). The blue bars show the Bayes error
rate achieved by all of the 24 features, which is 0.045.
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Figure 5.9: The schematic of the deep model used as a wrapper forward selection feature selection.

the 24 features. The forward selection wrapper method using this network selects the

features 0, 11, 8, 2 with corresponding classification error rates 0.16, 0.14, 0.126, 0.124.

The results of BEFS and DNN methods are compared in Figure 5.10. The blue

bar shows the Bayes error rate achieved by all of the features, which is 0.045. The

orange bars represent the Bayes error rates achieved by the BEFS and DNN methods.

The selected features using BEFS are 9, 8, 11, 0, which result in the Bayes error 0.050.

On the other hand, the selected features using the DNN method are 0, 11, 8, 2, which

result in the classification error 0.12 (shown by the red bar), while the Bayes error

rate achieved by the selected features is 0.065. Note that the features 0, 8, 11 are

commonly selected by both of the methods.

5.3 Conclusion

In this chapter we proposed a new feature selection method based on Bayes error

rate. The proposed method is independent of any learning model. BEFS method

consists of sequential feature selection steps. Similar to the filter methods, BEFS

is computationally efficient. BEFS only involves estimation of the Bayes error rate

instead of the computationally expensive training process performed at each step

in wrapper methods. We applied BEFS on three real datasets regarding cancer

prediction, robot navigation and speech activity detection and we compared the
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Figure 5.10: The results of BEFS and DNN methdos are compared. The blue bar shows the Bayes
error rate achieved by all of the features, which is 0.045. The orange bars represent
the Bayes error rates achieved by the BEFS and DNN methods. The selected features
using BEFS are 9, 8, 11, 0, which result in the Bayes error 0.050. On the other hand, the
selected features using the DNN method are 0, 11, 8, 2, which result in the classification
error 0.12 (shown by the red bar), while the Bayes error rate achieved by the selected
features is 0.065. Note that the features 0, 8, 11 are commonly selected by both of the
methods.

BEFS method to several wrapper and filter feature selection methods.



CHAPTER VI

Hash-based Estimation of Divergence Measure

In this chapter we propose a low complexity divergence estimator that can achieve

the optimal MSE rate of O(1/N) for the densities with bounded derivatives of up

to d. Our estimator has optimal runtime complexity of O(N), which makes it an

appropriate tool for large scale applications. Also in contrast to other competing

estimators, our estimator does not require stringent smoothness assumptions on the

support set boundary. The structure of the proposed estimator borrows ideas from

hash based methods for KNN search and graph constructions problems [129, 76], as

well as from the NNR estimator proposed in II.

Hash based methods have previously been used for KNN search and graph con-

structions problems [129, 76], and they result in fast and low complexity algorithms.

The advantage of hash based methods is that they can be used to find the approxi-

mate nearest neighbor points with lower complexity as compared to the exact k-NN

search methods. This suggests that fast and accurate algorithms for divergence es-

timation may be derived from hashing approximations of k-NN search. In [95] we

considered the k-NN graph of Y in the joint data set (X, Y ), and show that the

average exponentiated ratio of the number of X points to the number of Y points

among all k-NN points is proportional to the Rényi divergence between the X and
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Y densities. It turns out that for estimation of the density ratio around each point

we really do not need to find the exact k-NN points, but only need sufficient local

samples from X and Y around each point. By using a randomized locality sensitive

hashing (LSH), we find the closest points in Euclidean space. In this manner, apply-

ing ideas from the NNR estimation and hashing techniques to KNN search problem,

we obtain a more efficient divergence estimator. Consider two sample sets X and

Y with a bounded density support. We use a particular two-level locality sensitive

random hashing, and consider the ratio of samples in each bin with a number of

Y samples. We prove that the weighted average of these ratios over all of the bins

can be made to converge almost surely to f-divergences between the two samples

populations. We also argue that using the ensemble estimation technique provided

in [80], we can achieve the optimal parametric rate of O(1/N). Furthermore, using

a simple algorithm for online estimation method has O(N) complexity and O(1/N)

convergence rate, which is the first optimal online estimator of its type.

The rest of this chapter is organized as follows. In Section 6.1, we recall the

definition of f-divergence and introduce the Hash-Based (HB) estimator. In sections

6.2 and 6.3, we provide the convergence theorems and propose the Ensemble Hash-

Based (EHB) estimator. In Section 6.4, we propose the online version of the proposed

HB and EHB estimator. In Section 6.5 we give proofs for the convergence results.

Finally, in Section 6.6 we validate our theoretical results using numerical and real

data experiments.

We recall the definition of f -divergence measure in the following: Consider two

density functions f1 and f2 with common bounded support set X ⊆ Rd. From 1.2,
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f-divergence is defined as follows:

Dg (f1(x)||f2(x)) :=

∫
g

(
f1(x)

f2(x)

)
f2(x)dx

= Ef2

[
g

(
f1(x)

f2(x)

)]
,(6.1)

where g is a smooth and convex function such that g(1) = 0. KL-divergence,

Hellinger distance and total variation distance are particular cases of this family.

6.1 Hash-Based Divergence Estimator

Consider the i.i.d samples X = {X1, ..., XN} drawn from f1 and Y = {Y1, ..., YM}

drawn from f2. Define the fraction η := M/N . We define the set Z := X ∪ Y . We

define a positive real valued constant ε as a user-selectable parameter of the estimator

to be defined in 6.4. We define the hash function H1 : Rd → Zd as

H1(x) = [h1(x1), h1(x2), ..., h1(xd)] ,(6.2)

where xi is the projection of x on the ith coordinate, and h1(x) : R→ Z is defined

as

h1(x) =

⌊
x+ b

ε

⌋
,(6.3)

for fixed b. Let F := {1, 2, .., F}, where F := cHN and cH is a fixed real number. We

define a random hash function H2 : Zd → F with a uniform density on the output

and consider the combined hashing H(x) := H2(H1(x)), which maps the points in

Rd to F .

Consider the mappings of the sets X and Y using the hash function H(x), and

define the vectors N and M to respectively contain the number of collisions for

each output bucket from the set F . We represent the bins of the vectors N and M

respectively by Ni and Mi, 1 ≤ i ≤ F .
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Figure 6.1: Hashing the data points to {1,...,F}.

Figure 6.1 represents an example of the hash function H applied on two different

sets of data points.

The hash based f-divergence estimator is defined as

(6.4) D̂g(X, Y ) := max

 1

M

∑
i≤F
Mi>0

Mig̃

(
ηNi

Mi

)
, 0

 ,

where g̃(x) := max{g(x), g (CL/CU)}.

Note that if the densities f1 and f2 are almost equal, then for each point Yi,

Ni ≈ Mi, and thus D̂g(X, Y ) tends to zero, as required. Algorithm 8 shows the HB

estimation procedure. We first find the sets of all hashed points in X and Y (lines

1 and 2). Then the number of collisions is counted (lines 3-5), and the divergence

estimate is computed (line 6).

Similar to most of LSH structures, computing the hashing output in our estimator

is of O(1) complexity, and does not depend on ε. Thus, the computational complexity

this estimator is O(M).

Remark VI.1. The hash function considered in this chapter is a simple histogram



95

Algorithm 8: HB Estimator of f-Divergence

Input : Data sets X = {X1, ..., XN}, Y = {Y1, ..., YM}
/* Find the sets of all hashed points in X and Y */

1 X ′ ← H(X).
2 Y ′ ← H(Y ).
3 for each i ∈ F do

/* Find the number of collisions at bin i */

4 Ni ← |X ′ = i|
5 Mi ← |Y ′ = i|

6 D̂ ← max
{

1
M

∑
Mi>0Mig̃ (ηNi/Mi) , 0

}
,

Output: D̂

binning. In general any other hashing scheme that preserves the locality property

might be used for the proposed estimator. For some datasets including images or

texts, using the simple histogram binning may not be efficient in practice since the

Euclidean metric in the Rd space may not capture the semantic similarity. For these

cases, a hash function which first maps the samples into an appropriate feature

space may work more efficiently compared to the simple histogram binning. Further

analysis regarding this is left for future work.

6.2 Convergence Theorems

In the following theorems we state upper bounds on the bias and variance rates.

Theorem VI.2. Assume that f1 and f2 are density functions with bounded common

support set X ∈ Rd and satisfying γ-Hölder smoothness. The bias of the proposed

estimator for f-divergence with function g can be bounded as

B
[
D̂g(X, Y )

]
= O (εγ) +O

(
1

Nεd

)
.

Remark VI.3. In order for the estimator to be asymptotically unbiased, ε needs to

be a function of N . The optimum bias rate of O
((

1
N

)γ/(γ+d)
)

can be achieved for

ε = O
((

1
N

)γ/(γ+d)
)

.
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In the following we propose an upper bound on the variance that is independent

of ε.

Theorem VI.4. Let η = M/N be fixed. The variance of the estimator (6.4) can be

bounded as

V
[
D̂g(X, Y )

]
≤ O

(
1

N

)
.(6.5)

Remark VI.5. The same variance bound holds for the random variable ρi := Ni
Mi

. The

bias and variance results easily extend to Rényi divergence estimation.

6.3 Ensemble Hash-Based Estimator

We next show that, when f1 and f2 belong to the family of differentiable densities,

we can improve the bias rate by applying the ensemble estimation approach in [83,

82]. The EHB estimator is defined as follows.

Definition VI.6 (Ensemble Hash-Based Estimator). Assume that the density func-

tions have continuous derivatives up to order q ≥ d. Let T := {t1, ..., tT} be a set

of index values with ti < c, where c > 0 is a constant. Let ε(t) := tN−1/2d. The

weighted ensemble estimator is defined as

D̂w :=
∑
t∈T

w(t)D̂ε(t),(6.6)

where D̂ε(t) is the hash based estimator of f-divergence, with the hashing parameter

of ε(t). The following theorem states a sufficient condition for the weight vector w

that ensures that the ensemble estimator (D.6) achieves an MSE rate of O(1/N).
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Theorem VI.7. Let T > d and w0 be the solution to:

min
w

‖w‖2

subject to
∑
t∈T

w(t) = 1,

∑
t∈T

w(t)ti = 0, i ∈ N, i ≤ d.(6.7)

Then the MSE rate of the ensemble estimator D̂w0 is O(1/N).

6.4 Online Divergence Estimation

In this section we study the problem of online divergence estimation. In this

setting we consider two data steams X = {X1, X2, ..., XN} and Y = {Y1, Y2, ..., YN}

with i.i.d samples, and we are interested in estimating the divergence between two

data sets. The number of samples increase over time and an efficient update of the

divergence estimate is desired. The time complexity of a batch update, which uses

the entire update batch to compute the estimate at each time point, is O(N), and it

may not be so effective in cases which we need quick detection of any change in the

divergence function.

Algorithm 9 updates the divergence with amortized runtime complexity of order

O(1). Define the sets XN := {Xi}Ni=1, Y N := {Yi}Ni=1, the number of X and Y sam-

ples in each partition, and the divergence estimate between XN and Y N . Consider

updating the estimator with new samples XN+1 and YN+1. In the first and second

lines of algorithm 9, the new samples are added to the datasets and the values of

Ni and Mi of the bins in which the new samples fall. We can find these bins in

O(1) using a simple hashing. Note that once Ni and Mi are updated, the divergence

measure can be updated, but the number of bins is not increased, by Theorem VII.2,

it is clear that the bias will not be reduced. Since increasing the number of bins re-
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quires recomputing the bin partitions, a brute force rebinning approach would have

order O(N) complexity, and it were updated N times, the total complexity would be

O(N2). Here we use a trick and update the hash function only when N+1 is a power

of 2. In the following theorem, which is proved in appendix D, we show that the

MSE rate of this algorithm is order O(1/N) and the total rebinngn computational

complexity is order O(N).

Theorem VI.8. MSE rate of the online divergence estimator shown in Algorithm 9

is order O(1/N) and the total computational complexity is order O(N).

Algorithm 9: Online Divergence Estimation

Input : XN := {Xi}Ni=1, Y
N := {Yi}Ni=1

D̂ = D̂
(
XN , Y N

)
(Ni,Mi)
(XN+1, YN+1)

1 Add XN+1 and Update Nk s.t H(XN+1) = k.
2 Add YN+1 and Update Ml s.t H(YN+1) = l.
3 If N + 1 = 2i for some i, Then
4 Update ε to the optimum value
5 Re-hash X and Y
6 Recompute Ni and Mi for 0 ≤ i ≤ F
7 Update D̂

Output: D̂

6.5 Convergence Proofs

In this section we derive the bias bound for the densities in Hölder smoothness

class, stated in Theorem VII.2. For the proofs of variance bound in Theorem VII.3,

convergence rate of EHB estimator in Theorem VII.5, and online divergence estima-

tor in Theorem VI.8, we refer to Appendix D.

Consider the mapping of the X and Y points by the hash function H1, and let

the vectors {Vi}Li=1 represent the distinct mappings of X and Y points under H1.

Here L is the number of distinct outputs of H1. In the following lemma we prove an
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upper bound on L.

Lemma VI.9. Let f(x) be a density function with bounded support X ⊆ Rd. Then

if L denotes the number of distinct outputs of the hash function H1 (defined in (7.2))

of i.i.d points with density f(x), we have

L ≤ O

(
1

εd

)
.(6.8)

Proof. Let x = [x1, x2, ..., xd] and define XI as the region defined as

XI := {x| − cX ≤ xi ≤ cX , 1 ≤ i ≤ d},(6.9)

where cX is a constant such that X ⊆ XI .

L is clearly not greater than the total number of bins created by splitting the

region X into partitions of volume εd. So we have

L ≤ (2cX)d

εd
.(6.10)

Proof of Theorem VII.2 Let {N ′i}Li=1 and {M ′
j}Lj=1 respectively denote the

number of collisions of X and Y points in the bins i and j, using the hash function

H1. Ei stands for the event that there is no collision in bin i for the hash function

H2 with inputs {Vi}Li=1. We have

P (Ei) =

(
1− 1

F

)L
+ L

(
1

F

)(
F − 1

F

)L−1

= 1−O
(
L

F

)
.(6.11)

By definition,

D̂g(X, Y ) :=
1

M

∑
i≤F
Mi>0

Mig̃

(
ηNi

Mi

)
.
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Therefore,

E
[
D̂g(X, Y )

]
=

1

M
E

∑
i≤F
Mi>0

Mig̃

(
ηNi

Mi

)
=

1

M

∑
i≤F
Mi>0

P (Ei)E
[
Mig̃

(
ηNi

Mi

)∣∣∣∣Ei]

+
1

M

∑
i≤F
Mi>0

P (Ei)E
[
Mig̃

(
ηNi

Mi

)∣∣∣∣Ei] .(6.12)

We represent the second term in (6.12) by BH . BH has the interpretation as the

bias error due to collisions in hashing. Remember that Ei is defined as the event that

there is a collision at bin i for the hash function H2 with inputs {Vi}Li=1. For proving

as upper bound on BH , we first need to compute an upper bound on
∑L

i=1 E
[
Mi

∣∣Ei].
This is stated in the following lemma.

Lemma VI.10. We have

∑
i≤F
Mi>0

E
[
Mi

∣∣Ei] ≤ O (L)(6.13)

Proof. Define Ai := {j : H2(Vj) = i}. For each i we can rewrite Mi as

Mi =
L∑
j=1

1Ai(j)M
′
j.(6.14)
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Thus,

∑
i≤F
Mi>0

E
[
Mi

∣∣Ei] =
∑
i≤F
Mi>0

E

[
L∑
j=1

1Ai(j)M
′
j

∣∣∣∣∣Ei
]

=
∑
i≤F
Mi>0

L∑
j=1

M ′
jE
[
1Ai(j)

∣∣Ei]

=
∑
i≤F
Mi>0

L∑
j=1

M ′
jP
(
j ∈ Ai|Ei

)

=
∑
i≤F
Mi>0

L∑
j=1

M ′
j

P
(
j ∈ Ai, Ei

)
P (Ei)

,(6.15)

where P
(
j ∈ Ai, Ei

)
and P (Ei) can be derived as

P
(
j ∈ Ai, Ei

)
=

1

F

(
1−

(
F − 1

F

)L−1
)

= O

(
L

F 2

)
,(6.16)

and

P (Ei) = 1− P (Ei) = O

(
L

F

)
.(6.17)

Plugging in (6.16) and (6.17) in (6.15) results in

∑
i≤F
Mi>0

E
[
Mi

∣∣Ei] =
∑
i≤F
Mi>0

L∑
j=1

M ′
jO

(
1

F

)

=
∑
i≤F
Mi>0

O

(
M

F

)
= O (L) ,(6.18)

where in the third line we use η = M/N and F = cHN . In addition, the number

of the terms in the sum is upper bounded by L since L is defined as the number of

distinct outputs of hashing the X and Y points. Now in the following lemma we

prove a bound on BH .
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Lemma VI.11. Let L denote the number of distinct outputs of the hash function H1

of the X and Y sample points. The bias of estimator (6.4) due to hashing collision

can be upper bounded by

BH ≤ O

(
L2

N2

)
(6.19)

Proof. From the definition of BH we can write

BH : =
1

M

∑
i≤F
Mi>0

P (Ei)E
[
Mig̃

(
ηNi

Mi

)∣∣∣∣Ei]

=
P (E1)

M

∑
i≤F
Mi>0

E
[
Mig̃

(
ηNi

Mi

)∣∣∣∣Ei]

≤ P (E1)g̃(Rmax)

M

∑
i≤F
Mi>0

E
[
Mi

∣∣Ei]

=
P (E1)g̃(Rmax)

M
O(L)

= O

(
L2

N2

)
,(6.20)

where in the second line we used the fact that P (Ei) = P (E1). In the third line we

used the upper bound for g̃, and in the fourth line we used the result in equation

(6.18).

Now we are ready to continue the proof of the bias bound in (6.12). Let E be

defined as the event that there is no collision for the hash function H2, and all of its

outputs are distinct, that is, E = ∩Fi=1Ei
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(6.12) can be written as

E
[
D̂g(X, Y )

]
=

1

M

∑
i≤F
Mi>0

P (Ei)E
[
Mig̃

(
ηNi

Mi

)∣∣∣∣Ei]+O

(
L2

N2

)

=
P (E1)

M

∑
i≤F
Mi>0

E
[
Mig̃

(
ηNi

Mi

)∣∣∣∣Ei]+O

(
L2

N2

)

=
P (E1)

M

∑
i≤F
Mi>0

E
[
Mig̃

(
ηNi

Mi

)∣∣∣∣E]+O

(
L2

N2

)
(6.21)

=
P (E1)

M
E

∑
i≤F
Mi>0

Mig̃

(
ηNi

Mi

)∣∣∣∣∣∣∣E
+O

(
L2

N2

)

=
P (E1)

M
E

[
L∑
i=1

M ′
i g̃

(
ηN ′i
M ′

i

)∣∣∣∣∣E
]

+O

(
L2

N2

)
(6.22)

=
1−O(L/F )

M
E

[
M∑
i=1

g̃

(
ηN ′i
M ′

i

)]
+O

(
L2

N2

)
(6.23)

= EY1∼f2(x)E
[
g̃

(
ηN ′1
M ′

1

)∣∣∣∣Y1

]
+O

(
L2

N2

)
,(6.24)

where in (6.21) we have used the fact that conditioned on Ei, Ni and Mi are inde-

pendent of Ej for i 6= j. In (6.22) since there is no collision in H2, M ′
i and N ′i are

equal to Mj and Nj for some i and j. Equation (6.23) is because the values M ′
i and

N ′i are independent of the hash function H2 and its outputs, and finally in equation

(6.24), we used the fact that each set N ′i and M ′
i are i.i.d random variables.

At this point, assuming that the variance of
N ′1
M ′1

is upper bounded by O(1/N) and

using (Lemma 3.2 in [95]), we only need to derive E
[
N ′1
M ′1

]
, and then we can simply

find the RHS in (6.24). Note that N ′i and M ′
i are independent and have binomial

distributions with the respective means of NPX
i and MP Y

i , where PX
i and P Y

i are

the probabilities of mapping X and Y points with the respective densities f0 and f1
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into bin i. Hence,

E
[
N ′1
M ′

1

∣∣∣∣Y1

]
= E [N ′1|Y1]E

[
M ′

1
−1
∣∣∣Y1

]
.(6.25)

Let Bi denote the area for which all the points map to the same vector Vi. E [N ′i ]

can be written as:

E [N ′i ] = N

∫
x∈Bi

f1(x)dx

= N

∫
x∈Bi

f1(Yi) +O(‖x− Yi‖γ)dx

= Nεdf1(Yi) +N

∫
x∈Bi

O(‖x− Yi‖γ)dx

= Nεdf1(Yi) +N

∫
x∈Bi+Yi

O(‖x‖γ)dx,(6.26)

where in the second equality we have used the fact that the density functions satisfy

Hölder smoothness with parameter γ. Let define B′i := 1
ε
Bi + 1

ε
Yi and

(6.27) Cγ(Yi) :=

∫
x′∈B′i

‖x′‖γdx′.

Note that Cγ(Yi) is a constant independent of ε, since the volume of B′i is inde-

pendent of ε. By defining x′ = x/ε we can write∫
x∈Bi+Yi

‖x‖γdx =

∫
x′∈B′i

εγ‖x′‖γ(εddx′) = Cγ(Yi)ε
γ+d(6.28)

Also note that since the number of X and Y points in each bin are independent

we have E [N ′i |Yi] = E [N ′i ], and therefore

E [N ′i |Yi] = Nεdf1(Yi) +O
(
Nεγ+dCγ(Yi)

)
.(6.29)

Next, note that E [M ′
i |Yi] has a non-zero binomial distribution, for which the first

order inverse moment can be written as [131]:
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E
[
M ′

i
−1|Yi

]
=
[
Mεdf2(Yi) +O

(
Mεγ+dC(Yi)

)]−1

×
(

1 +O

(
1

Mεdf2(Yi)

))
=
(
Mεdf2(Yi)

)−1
[
1 +O (εγ) +O

(
1

Mεd

)]
(6.30)

Thus, (A.31) can be simplified as

E
[
N ′1
M ′

1

∣∣∣∣Y1

]
=

f1(Y1)

ηf2(Y1)
+O (εγ) +O

(
1

Mεd

)
.(6.31)

We use (Lemma 3.2 in [95]) and Remark VI.5, and obtain

E
[
g̃

(
ηN ′1
M ′

1

)∣∣∣∣Y1

]
= g

(
f1(Y1)

f2(Y1)

)
+O (εγ)

+O

(
1

Mεd

)
+O(N−

1
2 ).(6.32)

Finally from (6.24) we get

B
[
D̂g(X, Y )

]
= O (εγ) +O

(
1

Mεd

)
+O(N−

1
2 ) +O

(
L2

N2

)
= O (εγ) +O

(
1

Nεd

)
,(6.33)

where in the third line we have used the upper bound on L in Lemma VI.9 and the

fact that M/N = η. Finally note that we can use a similar method with the same

steps to prove the convergence of an estimator for Rényi divergence.

6.6 Discussion and Experiments

In this section we compare and contrast the advantages of the proposed estimator

with competing estimators, and provide numerical results. These show the efficiency

of our estimator in terms of MSE rate and computational complexity.
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Table 6.1: Comparison of proposed estimator to Ensemble NNR [95], Ensemble KDE [83] and
Mirror KDE [111]

Estimator HB NNR Ensemble KDE Mirror KDE

MSE Rate O(1/N) O(1/N) O(1/N) O(1/N)
Computational Complexity O(N) O(kN logN) O(N2) O(N2)
Required Smoothness (γ) d d (d+ 1)/2 d/2
Extra Smooth Boundaries No Yes Yes Yes

Online Estimation Yes No No No
Knowledge about Boundary No No No Yes

Table 6.1 summarizes the differences between the proposed optimum estimator

(EHB) with other competing estimators: Ensemble NNR [95], Ensemble KDE [83]

and Mirror KDE [111]. In terms of MSE rate, all of these estimators can achieve the

optimal parametric MSE rate of O(1/N). In terms of computational complexity, our

estimator has the best runtime compared to others. The smoothness parameter re-

quired for the optimum MSE rate is stated in terms of number of required derivatives

of the density functions. The proposed estimator is the first divergence estimator

that requires no extra smoothness at the boundaries. It is also the first divergence

estimator that is directly applicable to online settings, retaining both the accuracy

and linear total runtime. Finally, similar to NNR and Ensemble KDE estimators,

the proposed estimator does not require any prior knowledge of the support of the

densities.

It is also worthwhile to compare the proposed hash-based estimators (HB and

EHB) to the histogram plug-in estimator. While the histogram estimator performs

poorly when the support set is unknown, the hash based estimator does not rely on

the knowledge about the support set. There is a trade-off between bias and variance

depending on the bin size parameter in histogram estimators that affects conver-

gence rate. In hash-based estimators the variance is independent of the parameter

ε., which results in a better performance. In the hash-based estimator, only bins

for which Mi > 0 are used resulting in reduced memory requirements. Finally, as
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discussed before, the computational and space complexity of the hash-based estima-

tor respectively grows linearly with the size of dimension. On the other hand, the

histogram estimator suffers from exponential time and space complexity with respect

to dimension.

Finally, handling the binning in histogram estimators for the support sets with

complex contours makes histogram estimators difficult to implement, especially in

high dimension. Implementation of our proposed hash-based estimator does not have

this complexity since it does not depend on knowledge of the contours.

We compare the empirical performance of EHB to NNR, and the Ensemble KDE

estimators. The experiments are done for two different types of f-divergence; KL-

divergence and α-divergence defined in [22]. Assume that X and Y are i.i.d. samples

from independent truncated Gaussian densities. Figure 6.2, shows the MSE estima-

tion rate of α-divergence with α = 0.5 of two Gaussian densities with the respective

expectations of [0, 0] and [0, 1], and equal variances of σ2 = I2 for different numbers

of samples. For each sample size we repeat the experiment 50 times, and compute the

MSE of each estimator. While all of the estimators have the same asymptotic MSE

rate, in practice the proposed estimator performs better. The runtime of this ex-

periment is shown in Figure 6.3. The runtime experiment confirms the advantage of

the EHB estimator compared to the previous estimators, in terms of computational

complexity. Figure 6.4, shows the comparison of the estimators of KL-divergence be-

tween two truncated Gaussian densities with the respective expectations of [0, 0] and

[0, 1], and equal covariance matrices of σ2
1 = σ2

2 = I2, in terms of their mean value

and %95 confidence band. The confidence band gets narrower for greater values of

N , and EHB estimator has the narrowest confidence band. In Figure 6.5 the MSE

rates of the three α-divergence estimators are compared in dimension d = 4, α = 2,
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Figure 6.2: MSE comparison of α-divergence estimators with α = 0.5 between two independent,
mean-shifted truncated 2D Gaussian densities, versus different number of samples.

Figure 6.3: Runtime comparison of α-divergence with α = 0.5 between two independent, mean-
shifted truncated 2D Gaussian densities, versus different number of samples.

for two independent truncated Gaussian densities with the expectations µ1 = µ2 and

covariances σ2
1 = σ2

2 = I4, versus different number of samples.

6.7 Conclusion

In this chapter we proposed a fast hash based estimation method for f-divergence.

We obtained bias and variance convergence rates of the base estimator. Then, an en-

semble estimator was proposed which improved the MSE convergence rate toO(1/N).

An algorithm for the online settings was proposed and we analyzed its MSE con-

vergence rate as well as runtime. Further, we validated our results by numerical
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Figure 6.4: Comparison of the estimators of KL-divergence between two mean-shifted truncated
2D Gaussian densities, in terms of their mean value and %95 confidence band.

Figure 6.5: MSE estimation rate of α-divergence with α = 2 between two identical truncated Gaus-
sian densities with dimension d = 4, versus different number of samples.
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experiments. Investigating the convergence rate of the hash-based divergence esti-

mation using different hashing schemes is a worthwhile topic for future work.



CHAPTER VII

Hash-based Estimation of Mutual Information

In this chapter we propose a reduced complexity MI estimator called the ensemble

dependency graph estimator (EDGE). The estimator combines randomized locality

sensitive hashing (LSH), dependency graphs, and ensemble bias-reduction methods.

Assume that we have N i.i.d samples of Zi = (Xi, Yi). Xi and Yi are considered a

partitioning of the feature vector of Zi, where in machine learning methods Xi and Yi

are respectively specified as input (explanatory) and output (response) data vectors.

A dependence graph is a bipartite directed graph consisting of two sets of nodes V

and U . The data points are mapped to the sets V and U using a randomized LSH

function H that depends on a hash parameter ε. Each node is assigned a weight

that is proportional to the number of hash collisions. Likewise, each edge between

the vertices vi and uj has a weight proportional to the number of (Xk, Yk) pairs

mapped to the node pairs (vi, uj). For a given value of the hash parameter ε, a

base estimator of MI is proposed as a weighted average of non-linearly transformed

of the edge weights. The proposed EDGE estimator of MI is obtained by applying

the method of weighted ensemble bias reduction [83, 86] to a set of base estimators

with different hash parameters. This estimator is a non-trivial extension of the LSH

divergence estimator defined in Chapter VI.

111
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In this chapter we represent the mutual informaiton function in a slightly different

form. Let X and Y be Euclidean spaces and let PXY be a probability measure on the

space X × Y . For any measurable sets A ⊆ X and B ⊆ Y , we define the marginal

probability measures PX(A) := PXY (A×Y) and PY (B) := PXY (X ×B). Similar to

[99, 40], the general MI denoted by I(X, Y ) is defined as

D(PXY ‖PXPY ) = E
PXPY

[
g

(
dPXY
dPXPY

)]
,(7.1)

where dPXY
dPXPY

is the Radon-Nikodym derivative, and g : (0,∞) → R is a convex

function with g(1) = 0. Shannon mutual information is a particular cases of (7.1)

for which g(x) = x log x.

The contributions of this chapter can be summarized as follows:

• To the best of our knowledge the proposed MI estimator is the first estimator

to have linear complexity and can achieve the optimal MSE rate of O(1/N).

• The proposed MI estimator provides a simplified and unified treatment of mixed

continuous-discrete variables. This is due to the hash function approach that is

adopted.

• The proposed dependence graph provides an intuitive way of understanding

interdependencies in the data; e.g. sparsity of the graph implies a strong de-

pendency between the covariates, while an equally weighted dense graph implies

that the covariates are close to independent.

• EDGE is applied to IB theory of deep learning, and provides evidence that the

compression property does indeed occur in ReLu DNNs, contrary to the claims

of [104].

The rest of this chapter is organized as follows. In Section 7.2, we introduce the
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Figure 7.1: Sample dependence graph with 4 and 3 respective distinct hash values of X and Y data
jointly encoded with LSH, and the corresponding dependency edges.

hash based MI estimator and give theory for the bias and variance. In section 7.4 we

introduce the ensemble dependence graph MI estimator (EDGE) and show how the

ensemble estimation method can be used to improve the convergence rates. Finally,

in Section 3.2.3 we provide numerical results as well as study the IP in DNNs.

7.1 Dependence Graphs

Consider N i.i.d samples (Xi, Yi), 1 ≤ i ≤ N drawn from the probability mea-

sure PXY , defined on the space X × Y . Define the sets X = {X1, X2, ..., XN} and

Y = {Y1, Y2, ..., YN}. The dependence graph G(X, Y ) is a directed bipartite graph,

consisting of two sets of nodes V and U with cardinalities denoted as |V | and |U |,

and the set of edges EG. Each point in the sets X and Y is mapped to the nodes in

the sets U and V , respectively, using the hash function H, described as follows.

A vector valued hash function H is defined in a similar way as defined in [93].

First, define the vector valued hash function H1 : Rd → Zd as

H1(x) = [h1(x1), h1(x2), ..., h1(xd)] ,(7.2)

where xi denotes the ith component of the vector x. In (7.2), each scalar hash
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function h1(xi) : R→ Z is given by

h1(xi) =

⌊
xi + b

ε

⌋
,(7.3)

for a fixed ε > 0, where byc denotes the floor function (the smallest integer value less

than or equal to y), and b is a fixed random variable in [0, ε]. Let F := {1, 2, .., F},

where F := cHN and cH is a fixed tunable integer. We define a random hash function

H2 : Zd → F with a uniform density on the output and consider the combined

hashing function

H(x) := H2(H1(x)),(7.4)

which maps the points in Rd to F .

H(x) reveals the index of the mapped vertex in G(X, Y ). The weights ωi and ω′j

corresponding to the nodes vi and uj, and ωij, the weight of the edge (vi, uj), are

defined as follows.

ωi =
Ni

N
, ω′j =

Mj

N
, ωij =

NijN

NiMj

,(7.5)

where Ni and Mj respectively are the the number of hash collisions at the vertices vi

and uj, and Nij is the number of joint collisions of the nodes (Xk, Yk) at the vertex

pairs (vi, uj). The number of hash collisions is defined as the number of instances of

the input variables map to the same output value. In particular,

Nij := #{(Xk, Yk) s.t H(Xk) = i and H(Yk) = j}.(7.6)

Fig. 7.1 represents a sample dependence graph. Note that the nodes and edges with

zero collisions do not show up in the dependence graph.
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7.2 The Base Estimator of Mutual Information

7.2.1 Assumptions

The assumptions we consider here are slightly different from the general assump-

tions considered in Chapter .I. Thus, we list the following are the assumptions we

make on the probability measures and g:

A1. The support sets X and Y are bounded.

A2. The following supremum exists and is bounded:

sup
PXPY

g

(
dPXY
dPXPY

)
≤ U.

A3. Let xD and xC respectively denote the discrete and continuous components

of the vector x. Also let fXC (xC) and pXD(xD) respectively denote density and pmf

functions of these components associated with the probability measure PX . The

density functions fXC (xC), fYC (yC), fXCYC (xC , yC), and the conditional densities

fXC |XD(xC |xD), fYC |YD(yC |yD), fXCYC |XDYD(xC , yC |xD, yD) are Hölder continuous.

A4. Assume that the function g in (7.1) is Lipschitz continuous; i.e. g is Hölder

continuous with γ = 1.

7.2.2 Definition of the Base Estimator

For a fixed value of the hash parameter ε, we propose the following base estimator

of MI (7.1) function based on the dependence graph:

(7.7) Î(X, Y ) :=
∑

eij∈EG

ωiω
′
j g̃ (ωij) ,

where the summation is over all edges eij : (vi → uj) of G(X, Y ) having non-zero

weight and g̃(x) := max{g(x), U}.

When X and Y are strongly dependent, each point Xk hashed into the bucket

(vertex) vi corresponds to a unique hash value for Yk in U . Therefore, asymptotically
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ωij → 1 and the mutual information estimation in (7.7) takes its maximum value.

On the other hand, when X and Y are independent, each point Xk hashed into

the bucket (vertex) vi may be associated with different values of Yk, and therefore

asymptotically ωij → ωj and the Shannon MI estimation tends to 0.

Remark VII.1. Similar to most of LSH structures, computing the hashing output

in our estimator is of O(1) complexity, and does not depend on ε. Thus, the com-

putational complexity this estimator is O(N). Also note that the computational

complexity of computing the summation in (7.7) depends on the number of edges.

In general, based on computation of E[Nij] in Lemma E.4 (Appendix), the average

number of the edges of the dependence graph depends on the joint distribution of

PXY as follow:

E[|e|] = O

(∑
ij

1{pij>0}

)
.(7.8)

Note that in the worst case, the number of edges is N , and in the best case, the

number of the edges would be max{LX , LY }. In the latter case, using (E.1), the

computational complexity can be upper bounded by O(ε−d).

7.3 Convergence Rate

In the following theorems we state upper bounds on the bias and variance rates

of the proposed MI estimator (7.7).

Theorem VII.2. Let d = dX + dY be the dimension of the joint random variable

(X, Y ). Under the aforementioned assumptions A1-A4, and assuming that the den-

sity functions in A3 have bounded derivatives up to order q ≥ 0, the following upper



117

bound on the bias of the estimator in (7.7) holds

B
[
Î(X, Y )

]
=


O (εγ) +O

(
1

Nεd

)
, q = 0

∑q
i=1 Ciε

i +O (εq) +O
(

1
Nεd

)
q ≥ 1,

(7.9)

where ε is the hash parameter in (7.3), γ is the smoothness parameter in Chapter I,

and Ci are real constants.

In (7.9), the hash parameter, ε needs to be a function of N to ensure that the

bias converges to zero. For the case of q = 0, the optimum bias is achieved when

ε =
(

1
N

)γ/(γ+d)
. When q ≥ 1, the optimum bias is achieved for ε =

(
1
N

)1/(1+d)
.

Theorem VII.3. Under the assumptions A1-A4 the variance of the proposed esti-

mator can be bounded as V
[
Î(X, Y )

]
≤ O

(
1
N

)
. Further, the variance of the variable

ωij is also upper bounded by O(1/N).

7.4 Ensemble Dependence Graph Estimator (EDGE)

Definition VII.4. Given the expression for the bias in Theorem VII.2, the ensemble

estimation technique proposed in [83] can be applied to improve the convergence rate

of the MI estimator (7.7). Assume that the densities in A3 have continuous bounded

derivatives up to the order q, where q ≥ d. Let T := {t1, ..., tT} be a set of index

values with ti < c, where c > 0 is a constant. Let ε(t) := tN−1/2d. For a given set of

weights w(t) the weighted ensemble estimator is then defined as

Îw :=
∑
t∈T

w(t)Îε(t),(7.10)

where Îε(t) is the mutual information estimator with the parameter ε(t). Using (7.9),

for q > 0 the bias of the weighted ensemble estimator (7.10) takes the form

(7.11) B(Îw) =

q∑
i=1

CiN−
i

2d

∑
t∈T

w(t)ti +O

(
td

N1/2

)
+O

(
1

Nεd

)
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Given the form (7.11), as long as T ≥ q, we can select the weights w(t) to force

to zero the slowly decaying terms in (7.11), i.e.
∑

t∈τ w(t)ti/d = 0 subject to the

constraint that
∑

t∈τ w(t) = 1. However, T should be strictly greater than q in order

to control the variance, which is upper bounded by the euclidean norm squared of

the weights ω.

Theorem VII.5. For T > d let w0 be the solution to:

min
w

‖w‖2

subject to
∑
t∈T

w(t) = 1,

∑
t∈T

w(t)ti = 0, i ∈ N, i ≤ d.(7.12)

Then the MSE rate of the ensemble estimator Îw0 is O(1/N).

7.5 Numerical Results

We use a simulated dataset to compare the proposed estimator to the competing

MI estimators Ensemble KDE (EKDE) [86], and generalized KSG [40]. Both of these

estimators work on mixed continuous-discrete variables.

Fig. 7.2, shows the MSE estimation rate of Shannon MI between the continu-

ous random variables X and Y having the relation Y = X + aNU , where X is a

2D Gaussian random variable with the mean [0, 0] and covariance matrix C = I2.

Here Id denote the d-dimensional identity matrix. NU is a uniform random vector

with the support NU = [0, 1] × [0, 1]. We compute the MSE of each estimator for

different sample sizes. The MSE rates of EDGE, EKDE and KSG are compared

for a = 1/5. Further, the MSE rate of EDGE is investigated for noise levels of

a = {1/10, 1/5, 1/2, 1}. As the dependency between X and Y increases the MSE

rate becomes slower.
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Figure 7.2: MSE comparison of EDGE, EDKE and KSG Shannon MI estimators. X is a 2D
Gaussian random variable with unit covariance matrix. Y = X + aNU , where NU is
a uniform noise. The MSE rates of EDGE, EKDE and KSG are compared for various
values of a.

Fig. 7.3, shows the MSE estimation rate of Shannon MI between a discrete random

variables X and a continuous random variable Y . We have X ∈ {1, 2, 3, 4}, and each

X = x is associated with multivariate Gaussian random vector Y , with d = 4, the

expectation [x/2, 0, 0, 0] and covariance matrix C = I4. In general in Figures 7.2 and

7.3, EDGE has better convergence rate than EKDE and KSG estimators. Fig. 7.4

represents the runtime comparison for the same experiment as in Fig. 7.3. It can

be seen from this graph how fast our proposed estimator performs compared to the

other other methods.

7.6 Information Bottlenekc Theory of Deep Learning

Recently, Shwartz-Ziv and Tishby utilized mutual information measure to study

the training process in Deep Neural Networks (DNN) [108]. Let X, T and Y respec-

tively denote the input, hidden and output layers. The authors of [108] introduced

the information bottleneck (IB) that represents the tradeoff between two mutual in-

formation measures: I(X,T ) and I(T, Y ). They observed that the training process
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Figure 7.3: MSE comparison of EDGE, EDKE and KSG Shannon MI estimators. X ∈ {1, 2, 3, 4},
and each X = x is associated with multivariate Gaussian random vector Y , with d = 4,
the mean [x/2, 0, 0, 0] and covariance matrix C = I4.

Figure 7.4: Runtime comparison of EDGE, EDKE and KSG Shannon MI estimators. X ∈
{1, 2, 3, 4}, and each X = x is associated with multivariate Gaussian random vector
Y , with d = 4, the mean [x/2, 0, 0, 0] and covariance matrix C = I4.
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of a DNN consists of two distinct phases; 1) an initial fitting phase in which I(T, Y )

increases, and 2) a subsequent compression phase in which I(X,T ) decreases. Saxe

et al in [104] countered the claim of [108], asserting that this compression property is

not universal, rather it depends on the specific activation function. Specifically, they

claimed that the compression property does not hold for ReLu activation functions.

The authors of [108] challenged these claims, arguing that the authors of [104] had

not observed compression due to poor estimates of the MI. We apply our proposed

rate-optimal ensemble MI estimator to explore this controversy, observing that our

estimator of MI does exhibit the compression phenomenon in the ReLU network

studied by [104].

Fig. 7.5 represents the information plane of a DNN with 4 fully connected hidden

layers of width 784− 1024− 20− 20− 20− 10 with tanh and ReLU activations. The

sequence of colored points shows different iterations of the training process. Each

gray line connects the points with the same iterations for diferent layers. The left

most sequence of points corresponds to the last hidden layer and the right most

sequence of points corresponds to the first hidden layer. The network is trained with

Adam optimization with a learning rate of 0.003 and cross-entropy loss functions

to classify the MNIST handwritten-digits dataset. We repeat the experiment for

20 iterations with different randomized initializations and take the average over all

experiments. In both cases of ReLU and tanh activations we observe some degree

of compression in all of the hidden layers. However, the amount of compressions is

different for ReLU and tanh activations. The average test accuracy in both of these

networks are around 0.98. This network is the same as the one studied in [104],

for which it is claimed that no compression happens with a ReLU activation. The

base estimator used in [104] provides KDE-based lower and upper bounds on the
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true MI [65]. According to our experiments (not shown) the upper bound is in some

cases twice as large as the lower bound. In contrast, our proposed ensemble method

estimates the exact mutual information with significantly higher accuracy.

Fig. 7.6 represents the information plane for another network with 4 fully con-

nected hidden layers of width 784−200−100−60−30−10 with ReLU activation. The

network is trained with Adam optimization with a learning rate of 0.003 and cross-

entropy loss functions to classify the MNIST handwritten-digits dataset. Again, we

observe compression for this network with ReLU activation.

Finally, we study the information plane curves in a CNN with three convolutioal

ReLU layers and a dense ReLU layer. The convolutional layers respectively have

depths of 4, 8, 16 and the dense layer has the dimension 256. Max-pooling functions

are used in the second and third layers. Note although for a certain initialization of

the weights this model can achieve the test accuracy of 0.99, the average test accu-

racy (over different weight initializations) is around 0.95. That’s why the converged

point of the last layer has smaller I(T, Y ) compared to the examples in Fig. 7.5,

which achieves the average test accuracy of 0.98. Another interesting point about

the information plane in CNN is that the convolutional layers have larger I(T, Y )

compared to the hidden layers in the fully connected models in 7.5 and 7.6, which

implies that the convolutional layers can extract almost all of the useful information

about the labels after small number of iterations.

7.7 Conclusion

In this chapter we proposed a fast non-parametric estimation method for MI based

on random hashing, dependence graphs, and ensemble estimation. Remarkably, the

proposed estimator has linear computational complexity and attains optimal (para-
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Figure 7.5: Information plane estimated using EDGE for a neural network of size 784 − 1024 −
20− 20− 20− 10 trained on the MNIST dataset with tanh (top) and ReLU (bottom)
activations.
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Figure 7.6: Information plane estimated using EDGE for a neural network of size 784−200−100−
60− 30− 10 trained on the MNIST dataset with ReLU activation.

Figure 7.7: Information plane estimated using EDGE for a CNN consisting of three convolutioal
ReLU layers with the respective depths of 4, 8, 16 and a dense ReLU layer with the size
of 256.



125

metric) rates of MSE convergence. We provided bias and variance convergence rate,

and validated our results by numerical experiments. We studied the information

bottleneck theory of deep learning based on the proposed MI estimator. Finally we

proposed a feature quality measure based on the information bottleneck, and applied

it on a real-world prediction problem to study the evolution of the features.



CHAPTER VIII

Information Theoretic Structure Learning

In this chapter we consider another application of an optimum estimation method

of mutual information on structure learning. We introduce a new method for non-

parametric structure discovery that uses weighted ensemble divergence estimators

that achieve parametric convergence rates and obey an asymptotic central limit the-

orem that facilitates hypothesis testing and other types of statistical validation. We

focus on two methods of nonparametric structure learning based on ensemble MI

estimation. The first method is the Chow-Liu (CL) algorithm which constructs a

first order tree from the MI of all pairs of RVs to approximate the joint pdf [21].

Since structure learning approaches can suffer from performance degradation when

the model does not match the true distribution, we propose hypothesis testing via

MI estimation to determine how well the tree structure imposed by the CL algo-

rithm approximates the joint distribution. The second method learns the structure

by performing hypothesis testing on the MI of all pairs of RVs. An edge is assigned

between two RVs if the MI is statistically different from zero. In section 8.1 we intro-

duce factor graph learning. In section 8.2 we propose an estimator of MI based on

KDE plug-in estimator. Section 8.3 convers the convergence results of the proposed

estimator. Finally in section 8.4 we provide the numerical results.

126
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8.1 Factor Graph Learning

We focus on learning a second-order product approximation (i.e. a dependence

tree) of the joint probability distribution of the data. Let X(i) denote the ith com-

ponent of a d-dimensional random vector X. We use similar notation to [21] where

the goal is to approximate the joint probability density p(X) as

(8.1) p′ (X) =
d∏
i=1

p
(
X(mi)|X(mj(i))

)
,

where 0 ≤ j(i) < i, (m1, . . . ,md) is a (unknown) permutation of 1, 2, . . . d, p
(
X(i)|X(0)

)
=

p
(
X(i)

)
, and p

(
X(i)|X(j)

)
(j 6= 0) is the conditional probability density of X(i) given

X(j).

The CL algorithm [21] provides an information theoretic method for selecting the

second-order terms in (8.1). It chooses the second-order terms that minimize the

Kullback-Leibler (KL) divergence between the joint density p(X) and the approxi-

mation p′(X). This reduces to constructing the maximal spanning tree where the

edge weights correspond to the MI between the RVs at the vertices [21].

In practice, the pairwise MI between each pair of RVs is rarely known and must be

estimated from data. Thus accurate MI estimators are required. Furthermore, while

the sum of the pairwise MI gives a measure of the quality of the approximation, it

does not indicate if the approximation is a sufficiently good fit or whether a different

model should be used. This problem can be framed as testing the hypothesis that

p′(X) = p(X) at a prescribed false positive level. This test can be performed using

MI estimation.

In addition, we propose that (8.1) can be learned by performing hypothesis testing

on the MI of all pairs of RVs and assigning an edge between two RVs if the MI is

statistically different from zero. To account for the multiple comparisons bias, we
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control the false discovery rate (FDR) [130].

8.2 Mutual Information Estimation Based on KDE

Information theoretic methods for learning nonlinear structures require accurate

estimation of MI and estimates of its sample distribution for hypothesis testing. In

this section, we employ the ensemble divergence and mutual information estimators

and their conditional forms proposed in [87] and use the CLT to justify a large

sample Gaussian approximation to the sampling distribution. We consider general

MI functionals. Let g : (0,∞) → R be a smooth functional, e.g. g(u) = lnu for

Shannon MI or g(u) = uα, with α ∈ [0, 1], for Rényi MI. Then we recall the definition

of pairwise MI between X(i) and X(j) as

(8.2) Gij =

∫
g

(
p
(
x(i)
)
p
(
x(j)
)

p (x(i), x(j))

)
p
(
x(i), x(j)

)
dx(i)dx(j).

For hypothesis testing, we are interested in the following

(8.3) G (p; p′) =

∫
g

(
p′(x)

p(x)

)
p(x)dx.

We first define the plug-in KDE estimators. The conditional probability density

is defined as the ratio of the joint and marginal densities. Thus the ratio within

the g functional in (8.3) can be represented as the ratio of the product of some joint

densities with two random variables and the product of marginal densities in addition

to p. For example, if d = 3 and p′(X) = p
(
X(1)|X(2)

)
p
(
X(2)|X(3)

)
p
(
X(3)

)
, then

(8.4)
p′(X)

p(X)
=
p
(
X(1),X(2)

)
p
(
X(2),X(3)

)
p (X(2)) p (X(1),X(2),X(3))

.

For the KDEs, assume that we have N i.i.d. samples {X1, . . . ,XN} available from

the joint density p (X). The KDE of p(Xj) is

p̃X,h(Xj) =
1

Mhd

∑
i=1
i 6=j

K

(
Xj −Xi

h

)
,
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where K is a symmetric product kernel function, h is the bandwidth, and M = N−1.

Define the KDEs p̃ik,h

(
X

(i)
j ,X

(k)
j

)
and p̃i,h

(
X

(i)
j

)
(for p

(
X

(i)
j ,X

(k)
j

)
and p

(
X

(i)
j

)
,

respectively) similarly. Let p̃
′

X,h(Xj) be defined using the KDEs for the marginal

densities and the joint densities with two random variables. For example, in the

example given in (8.4), we have

p̃
′

X,h(Xj) =
p̃12,h

(
X

(1)
j ,X

(2)
j

)
p̃23,h

(
X

(2)
j ,X

(3)
j

)
p̃2,h

(
X

(2)
j

) .

For brevity, we use the same bandwidth and product kernel for each of the KDEs

although our method generalizes to differing bandwidths and kernels. The plug-in

MI estimator for (8.3) is then

G̃h =
1

N

N∑
j=1

g

(
p̃
′

X,h(Xj)

p̃X,h(Xj)

)
.

The plug-in estimator G̃h,ij for (8.2) is defined similarly.

8.3 Convergence Results

To apply bias-reducing ensemble methods to the plug-in estimators G̃h and G̃h,ij,

similar to the previous chapters, we need to derive their MSE convergence rates.

As in [87], we assume that 1) the density p(X) and all other marginal densities and

pairwise joint densities are s ≥ 2 times differentiable and the functional g is infinitely

differentiable; 2) p(X) has bounded support set S; 3) all densities are strictly lower

bounded on their support sets. Additionally, we make the same assumption on the

boundary of the support as in [87]: 4) the support is smooth wrt the kernel K(u) in

the sense that the expectation of the area outside of S wrt any RV u with smooth

distribution is a smooth function of the bandwidth h. This assumption is satisfied,

for example, when S is the unit cube and K(x) is the uniform rectangular kernel.

For full technical details on the assumptions, see Appendix F.
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Theorem VIII.1. If g is infinitely differentiable, then the bias of G̃h,ij and G̃h are

B
[
G̃h,ij

]
=

bsc∑
m=1

c5,i,j,mh
m +O

(
1

Nh2
+ hs

)

B
[
G̃h

]
=

bsc∑
m=1

c6,mh
m +O

(
1

Nhd
+ hs

)
.(8.5)

If g (t1/t2) has k, l-th order mixed derivatives ∂k+lg(t1/t2)

∂tk1∂t
l
2

that depend on t1, t2 only

through tα1 t
β
2 for some α, β ∈ R for each 1 ≤ k, l ≤ λ then the bias of G̃h is

B
[
G̃h

]
=

bsc∑
m=1

c6,mh
m +

bsc∑
m=0

bλ/2c∑
q=1

(
c7,1,q,m

(Nhd)q
+
c7,2,q,m

(Nh2)q

)
hm

+O

(
1

(Nhd)λ/2
+ hs

)
.(8.6)

The expression in (8.6) allows us to achieve the parametric MSE rate under less

restrictive assumptions on the smoothness of the densities (s > d/2 for (8.6) com-

pared to s ≥ d for (8.5)). The extra condition required on the mixed derivatives of

g to obtain the expression in (8.6) is satisfied, for example, for Shannon and Rényi

information measures. Note that a similar expression could be derived for the bias

of G̃h,ij. However, since s ≥ 2 is required and the largest dimension of the densities

estimated in G̃h,ij is 2, we would not achieve any theoretical improvement in the

convergence rate.

Theorem VIII.2. If the functional g(t1/t2) is Lipschitz continuous in both of its

arguments with Lipschitz constant Cg, then the variance of both G̃h and G̃h,ij is

O(1/N).

The Lipschitz assumption on g is comparable to assumptions required by other

nonparametric distributional functional estimators [87, 66, 59, 110] and is ensured

for functionals such as Shannon and Rényi informations by our assumption that the

densities are bounded away from zero. The proofs of Theorems VIII.1 and VIII.2
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share some similarities with the bias and variance proofs for the divergence functional

estimators in [87]. The primary differences deal with the product of KDEs. See

Appendix F for the full proofs.

From Theorems VIII.1 and VIII.2, letting h→ 0 and Nh2 →∞ or Nhd →∞ is

required for the respective MSE of G̃h,ij and G̃h to go to zero. Without bias correc-

tion, the optimal MSE rate is, respectively, O
(
N−2/3

)
and O

(
N−2/(d+1)

)
. Using an

optimally weighted ensemble of estimators enables us to perform bias correction and

achieve much better (parametric) convergence rates [87, 113].

The ensemble of estimators is created by varying the bandwidth h. Choose l̄ =

{l1, . . . , lL} to be a set of positive real numbers and let h(l) be a function of the

parameter l ∈ l̄. Define w = {w(l1), . . . , w(lL)} and G̃w =
∑

l∈l̄ w(l)G̃h(l). Theorem

4 in [87] indicates that if enough of the terms in the bias expression of an estimator

within an ensemble of estimators are known and the variance is O(1/N), then the

weight w0 can be chosen so that the MSE rate of G̃w0 is O(1/N), i.e. the parametric

rate. The theorem can be applied as follows. For general g, let h(l) = lN−1/(2d) for

G̃h(l). Denote ψm(l) = lm with m ∈ J = {1, . . . , bsc}. The optimal weight w0 is

obtained by solving

(8.7)

minw ||w||2

subject to
∑

l∈l̄ w(l) = 1,∣∣∑
l∈l̄ w(l)ψm(l)

∣∣ = 0, m ∈ J,

It can then be shown that the MSE of G̃w0 is O(1/N) as long as s ≥ d [81]. This

works by using the last line in (8.7) to cancel the lower-order terms in the bias.

Similarly, by using the same optimization problem we can define a weighted ensemble

estimator G̃w0,ij of Gij that achieves the parametric rate when h(l) = lN−1/4 which

results in ψm(l) = lm for m ∈ J = {1, 2}. These estimators correspond to the ODin1
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estimators defined in [87].

An ODin2 estimator of G (p; p′) can be derived using (8.6). Let δ > 0, assume that

s ≥ (d+δ)/2, and let h(l) = lN−1/(d+δ). This results in the function ψ1,m,q(l) = lm−dq

for m ∈ {0, . . . , (d+ δ)/2} and q ∈ {0, . . . , (d + δ)/δ} with the restriction that

m + q 6= 0. Additionally we have ψ2,m,q(l) = lm−2q for m ∈ {0, . . . , (d + δ)/2} and

q ∈ {1, . . . , (d + δ)/(2(d + δ − 2))}. These functions correspond to the lower order

terms in the bias. Then using (8.7) with these functions results in a weight vector

w0 such that G̃w0 achieves the parametric rate as long as s ≥ (d+ δ)/2. Then since

δ is arbitrary, we can achieve the parametric rate for s > d/2.

We conclude this section by giving a CLT. This theorem provides justification for

performing structural hypothesis testing with the estimators G̃w0 and G̃w0,ij. The

proof uses an application of Slutsky’s Theorem preceded by the Efron-Stein inequality

that is similar to the proof of the CLT of the divergence ensemble estimators in [87].

The extension of the CLT in [87] to G̃w is analogous to the extension required in the

proof of the variance results in Theorem VIII.2.

Theorem VIII.3. Assume that h = o(1) and Nhd →∞. If S is a standard normal

random variable, L is fixed, and g is Lipschitz in both arguments, then

Pr

((
G̃w − E

[
G̃w

])
/

√
V
[
G̃w

]
≤ t

)
→ Pr(S ≤ t).

8.4 Experiments

We perform multiple experiments to demonstrate the utility of our proposed meth-

ods for structure learning of a GM with d = 3 nodes whose structure is a nonlinear

Markov chain from nodes i = 1 to i = 2 to i = 3. That is, out of a possible 6 edges

in a complete graph, only the node pairs (1, 2) and (2, 3) are connected by edges.

In all experiments, X(1) ∼ Unif(−0.5, 0.5), N(i) ∼ N (0, 0.5), and N(1) and N(2) are
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independent. We have N = 500 i.i.d. samples from X(1) and choose an ensemble

of bandwidth parameters with L = 50 based on the guidelines in [87]. To better

control the variance, we calculate the weight w0 using the relaxed version of (8.7)

given in [87]. We compare the results of the ensemble estimators ODin1 and ODin2

(δ = 1 in the latter) to the simple plug-in KDE estimator. All p-values are con-

structed by applying Theorem VIII.3 where the mean and variance of the estimators

are estimated via bootstrapping. In addition, we studentize the data at each node

by dividing by the sample standard deviation as is commonly done in entropic ma-

chine learning. This introduces some dependency between the nodes that decreases

as O (1/N). This studentization has the effect of reducing the dependence of the

MI on the marginal distributions and stabilizing the MI estimates. We estimate the

Rényi-α integral for Rényi MI with α = 0.5; i.e. g(u) = uα. Thus if the ratio of

densities within (8.2) or (8.3) is 1, the Rényi-α integral is also 1.

In the first type of experiments, we vary the signal-to-noise ratio (SNR) of a

Markov chain by varying the parameter a and setting

X(2) =
(
X(1)

)2
+ aN(1),

X(3) =
(
X(2)

)2
+ aN(2).(8.8)

In the second type of experiments, we create a cycle within the graph by setting

X(2) =
(
X(1)

)2
+ aN(1),

X(3) =
(
X(2)

)2
+ bX(1) + aN(2).(8.9)

We either fix b and vary a or vice versa.

We first use hypothesis testing on the estimated pairwise MI to learn the structure

in (8.8). We do this by testing the null hypotheses that each pairwise Rényi-α integral

is equal to 1. We do not use the ODin2 estimator in this experiment as there is no
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Figure 8.1:
The mean FDR from 100 trials as a function of a when estimating the MI between all
pairs of RVs for (8.8) with significance level γ = 0.1. The dependence between X(1)

and X(3) decreases as the noise increases resulting in lower mean FDR.

theoretical gain in MSE over ODin1 for pairwise MI estimation. Figure 8.1 plots

the mean FDR from 100 trials as a function of a under this setting with significance

level γ = 0.1. In ths case, the FDR is either 0 (no false discoveries) or 1/3 (one false

discovery). Thus the mean FDR provides an indicator for the number of trials where

a false discovery occurs. Figure 8.1 shows that the mean FDR decreases slowly for

the KDE estimator and rapidly for the ODin1 estimator as the noise increases. Since

X(3) is a function of X(2) which is a function of X(1), then G13 6= 1. However, as

the noise increases, the relative dependence of X(3) on X(1) decreases and thus G13

approaches 1. The ODin1 estimator tracks this approach better as the corresponding

FDR decreases at a faster rate compared to the KDE estimator.

In the next set of experiments, the CL algorithm estimates the tree structure in

(8.8) and we test the hypothesis that G(p; p′) = 1 to determine if the output of the

CL algorithm gives the correct structure. The resulting mean p-value with error

bars at the 20th and 80th percentiles from 90 trials is given in Figure 8.2. High

p-values indicate that both the CL algorithm performs well and that G(p; p′) is not

statistically different from 1. The ODin1 estimator generally has higher values than

the ODin2 and KDE estimators which indicates better performance.
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Figure 8.2:
The average p-value with error bars at the 20th and 80th percentiles from 90 trials for
the hypothesis test that G(p; p′) = 1 after running the CL algorithm for (8.8). The
graphs are offset horizontally for better visualization. Higher noise levels lead to higher
error rates in the CL algorithm and thus lower p-values.

The final set of experiments focuses on (8.9). In this case, the CL tree does not

include the edge between X(1) and X(3) and we report the p-values for the hypothesis

that G (p; p′) = 1 when varying either a or b. The mean p-value with error bars at the

20th and 80th percentiles from 100 trials are given in Figure 8.3. In the top figure, we

fix b = 0.5 and vary the noise parameter a while in the bottom figure we fix a = 0.05

and vary b. Thus the true structure does not match the CL tree and low p-values

are desired. For low noise in the top figure (fixed dependency coefficient), the ODin

estimators perform better than the KDE estimator and have less variability. In the

bottom figure (fixed noise), the ODin1 estimator generally outperforms the other

estimators.

8.5 Conclusion

We derived the convergence rates for a kernel density plug-in estimator of MI func-

tionals and proposed nonparametric ensemble estimators with a CLT that achieve

the parametric rate when the densities are sufficiently smooth. We proposed two ap-

proaches for hypothesis testing based on the CLT to learn the structure of the data.



136

0.2 0.25 0.3 0.35 0.4 0.45 0.5

Gaussian Noise Coefficient (a)

0

0.2

0.4

p
-v

a
lu

e

KDE

ODin1

ODin2

0.05 0.1 0.15 0.2

Dependency Coefficient (b)

0

0.2

0.4

p
-v

a
lu

e

KDE

ODin1

ODin2

Figure 8.3:
The mean p-value with error bars at the 20th and 80th percentiles from 100 trials for the
hypothesis test that G (p; p′) = 1 for (8.9) when the CL tree does not give the correct
structure. Top: b = 0.5 and a varies. Bottom: a = 0.05 and b varies. The graphs are
offset horizontally for better visualization. Low p-values indicate better performance.
The ODin1 estimator generally matches or outperforms the other estimators, especially
in the lower noise cases.
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The experiments demonstrated the utility of these approaches in structure learning

and demonstrated the improvement of ensemble methods over the plug-in method

for a low dimensional example.



CHAPTER IX

Future Work

In this chapter we discuss the future research on some of the problems and chal-

lenges related to the topics of the previous chapters. In summary, the suggested

future research can be grouped into three categories: Progress in hash-based esti-

mation of divergence and mutual information, progress in estimation of Bayes error

rate, and extensive analysis of deep neural networks using information theory. These

research lines are discussed in details in the following sections.

9.1 Hash-based Estimation of Information Measures

In chapters VI and VII we proposed hash-based estimators of divergence and

mutual inforamation that can achieve the parametric MSE rate of O(1/N) in only

linear time complexity. There are several open problems for possible future work.

First, the performance of the estimators are sensitive to the hyper parameters such

as the bandwidth of the hash-buckets, ε. Although we have derived optimal choices

of ε in terms of the Θ() notation, choosing the right coefficients in practice is still an

open question. In chapter IV we proposed the Chebyshev polynomial approximation

approach for ensemble estimation. It would be an interesting idea to apply the

Chebyshev weight assigning method for the hash-based estimators and investigate

the stability of the results with respect to the hyper-parameters. Another interesting

138
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direction would be to investigate other hashing schemes instead of the simple floor

function. A promising hashing approach that fits the proposed estimation methods

in this thesis would be a supervised hashing, where the hash function depends on the

dataset. Specially for the image type of datasets, supervised hashing schemes, such as

autoencoders, could result in better estimates of divergence and mutual information.

9.2 Estimation of Bayes Error Rate and Applications

In chapter IV we proposed an estimator of the Bayes error rate with optimal

convergence rate based on ε-ball density estimator. Recently training deep neural

networks using information theoretic loss functions has found much attraction in the

machine learning and deep learning community [1]. Similarly, one could possibly

use a loss function based on Bayes error rate. In other words, we can define the

loss function as the Bayes error rate of the last layer of the network, and train the

network by minimizing the proposed loss function. A problem with defining the loss

function based on Bayes error rate is that the proposed Bayes error rate using ε-ball

is not differentialble. Thus we cannot directly use this estimator for training the

network. A possible future work is to find a tight bound on the Bayes error rate

such that its computation method is differentiable, and ca be used for training the

network.

9.3 Analysis of Deep Neural Networks Using Information Theory

We have applied our hash-based estimator of mutual information (EDGE) to study

the information bottleneck theory of deep learning, which was first represented by

Shwartz-Ziv and Tishby [108]. Our experiments confirmed that the compression phe-

nomenon happens for a wider range of activation functions such as ReLU and tanh.

There are yet many open questions in deep learning that can probably be answered
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by information theoretic tools. Some of these questions that we are currently study-

ing are as follows. What information are compressed in each hidden layer? What is

the relation between compression and generalization in DNNs? Can we propose an

information theoretic cost function (information bottleneck) and implement a DNN

based on it, using an efficient estimator of gradient of mutual information?
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APPENDIX A

Proofs of Chapter II

A.1 Bias Proof of NNR Estimator

In this section we prove Theorem VII.2, which states a bound on the bias of NNR

estimator. However, before obtaining the bias bound (VII.2), we need to prove some

lemmas. We first begin with some definitions.

Let ρk(x) be defined as the k-NN distance on the point x. We define the k-NN

ball centered at x as

Sk(x) := {y : d(x, y) ≤ ρk(x)}.(A.1)

Let Vk,N(x) denote the volume of the k-NN ball with N samples. Set

αk(x) :=

∫
Sk(x)∩X dz∫
Sk(x)

dz
.(A.2)

Let XI and XB respectively denote the interior support and boundary of the

support. For a point x ∈ XI we have αk = 1, and for x ∈ XB we have αk < 1. Note

that the definition of interior and boundary points depends on k and N .

We need the following lemmas to get a bound on the moments of k-NN distances.

Lemma A.1. We have the following relation for any t ∈ R and for each point x ∈ XI

with density f(x):
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E
[
ρtk(x)

]
=

(
k

cdNf(x)

)t/d
+O

(
N−t/d

k

)
+ u(x)O

((
k

N

)t/d+2
)

+ o

((
k

N

)t/d+2
)

+O

((
k

N

)t/d
C(k)

)
,(A.3)

where u(x) = g′(f(x))h(x) ,and h is some bounded function of the density which

is defined in [112].

Proof. We start with a result from [112] (A.25). Let g : R+ → R be some arbitrary

function, then we have the following relation

E
[
g

(
k

c0nρdk(x)

)]
= g(f(x))g1(k,N) + g2(k,N)

+ g′(f(x))h(x)(k/N)2 + o((k/N)2) +O(C(k)).(A.4)

where g1 and g2 are bias correction functions which depend on g. We also have

C(k) := exp(−3k1−δ) for a fixed δ ∈ (2/3, 1). For example, if we set k = (log(N))1/(1−δ),

then O(C(k)) = O(1/N3). Note that this term is negligible compared to other bias

terms in our work.

Now according to [112], if we set g(x) = x−β, then we have g1(k,N) = Γ(k)
Γ(k−β)(k−1)β

and g2(k,N) = 0, which yields

E
[
ρtk(x)

]
= f(x)−t/d

Γ(k)

Γ(k − t/d)
c′0N

−t/d + u(x)O((
k

N
)t/d+2)

+ o((
k

N
)t/d+2) +O((

k

N
)t/dC(k)).(A.5)

Finally, using the approximation Γ(k)
Γ(k−β)

= kβ +O(1/k) results in (A.3).

Now for the case of a bounded support, we derive an upper bound on k-NN

distances for the points at the boundary:
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Lemma A.2. For every point x ∈ XB and any t ∈ R we have

E
[
ρtk(x)

]
= O

(
(k/N)t/d

)
+O (C(k)) .(A.6)

Proof. Define Vk,N(x) := k
Nαk(x)f(x)

. Let p(k,N) denote any positive function satis-

fying p(k,N) = Θ
(
(k/N)2/d

)
+
√

6
kδ/2

for some δ > 0. Further consider the event E1

as

E1 := {|Vk,N(X)

Vk,N(X)
− 1| > p(k,N)},(A.7)

and E2 as its complementary event. By using (B.2) in [112] (Appendix B), we have

Pr (E1) = O (C(k)) .(A.8)

Moreover, we can simplify (A.7) as:

|cdρdk(x)− k

Nαk(x)f(x)
| > kp(k,N)

Nαk(x)f(x)
.(A.9)

Further we write E [ργk(x)] as the sum of conditional expectations:

E [ργk(x)] = E [ργk(x)|E1]Pr (E1) + E [ργk(x)|E2]Pr (E2)

= O (C(k)) + E [ργk(x)|E2] (1−O (C(k)))

= O
(
(k/N)γ/d

)
+O (C(k)) ,(A.10)

where in the second line we have used (A.8) and also the fact that ρk(x) is bounded

from above because of the bounded support.
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Lemma A.3. Suppose that the density function f(x) belongs to the γ-Hölder smooth-

ness class. Then if B(x, r) denotes the sphere with center x and radius r = ρk(x),

we have the following smoothness condition:

Eρk(x)

[
sup

y∈B(x,ρk(x))

|f(y)− f(x)|

]
≤ εγ,k,(A.11)

where εγ,k := O
(
(k/N)γ/d

)
+ O (C(k)), and we have C(k) := exp(−3k1−δ) for a

fixed δ ∈ (2/3, 1).

Proof. From definition of Hölder smoothness, for every y ∈ B(x, ρk(x)) we have

(A.12) |f(y)− f(x)| ≤ Gf‖y − x‖γ ≤ Gfρ
γ
k(x).

Using Lemmas A.1 and A.2, results in

Eρk(x)

[
sup

y∈B(x,ρk(x))

|f(y)− f(x)|

]
≤ εγ,k,(A.13)

where O
(
(k/N)γ/d

)
+O (C(k)). Note that all other terms in (A.3) are of higher order

and can be ignored.

Proof of Theorem VII.2:

Now we are at the stage to prove Theorem VII.2. Note that it is easier to work

with Ĵα(X,Y) defined in (2.2), instead of D̂α(X,Y). The following lemma provides

the essential tool to make a relation between B
(
D̂
)

and B
(
Ĵ
)

.

Lemma A.4. Assume that g(x) : X → R is Lipschitz continuous with constant

Hg > 0. If Ẑ is a RV estimating a constant value Z with the bias B[Ẑ] and the

variance V[Ẑ], then the bias of g(Ẑ) can be upper bounded by

|E
[
g(Ẑ)− g(Z)

]
| ≤ Hg

(√
V
[
Ẑ
]

+ |B
[
Ẑ
]
|

)
.(A.14)
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Proof.

|E
[
g
(
Ẑ
)
− g(Z)

]
| ≤ |E

[
g
(
Ẑ
)
− g

(
E
[
Ẑ
])]
|+ |E

[
g
(
E
[
Ẑ
])
− g(Z)

]
|

≤ E
[
|g
(
Ẑ
)
− g

(
E
[
Ẑ
])
|
]

+Hg|E
[
Ẑ
]
− Z|

≤ HgE
[
|Ẑ − E

[
Ẑ
]
|
]

+Hg|E
[
Ẑ
]
− Z|

≤ Hg

(√
V
[
Ẑ
]

+ |B
[
Ẑ
]
|

)
.(A.15)

In the second line we have used triangle inequality for the first term, and Lipschitz

condition for the second term. Again in the third line, we have applied Lipschitz

condition for the first term, and finally in the forth line we have used CauchySchwarz

inequality.

An immediate consequence of this lemma is

|B
[
D̂α(X,Y)

]
| ≤ C|B

[
Ĵα(X,Y)

]
+

√
V
[
Ĵα(X,Y)

]
|,(A.16)

where C is a constant.

From theorem VII.3, V
[
Ĵα(X,Y)

]
= O(1/N), so we only need to bound B

[
Ĵα(X,Y)

]
.

If η := M/N , we have:

E
[
Ĵα(X,Y)

]
=
ηα

M
E

[
M∑
i=1

(
Ni

Mi + 1

)α]

= ηαEY1∼fY (x)E
[(

N1

M1 + 1

)α∣∣∣∣Y1

]
.(A.17)

Now note that N1 and M1 are not independent since N1 + M1 = k. We use the

Poissonizing technique [8][56] and assume that N1 +M1 = K, where K is a Poisson

random variable with mean k. We represent the Poissonized variant of Ĵα(X,Y) by

Jα(X,Y), and we will show that E
[
Ĵα(X,Y)

]
= E

[
Jα(X,Y)

]
+ O(1/k). We first

compute Pr (Qi(Y1) ∈ X) and Pr (Qi(Y1) ∈ Y) as follows:
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Lemma A.5. Let η := M/N and k < min{N,M}. Then for every i ≤ k, the

probability that the point Qi(Y1) respectively belongs to the sets X and Y is equal to

Pr (Qi(Y1) ∈ X) =
fX(Y1)

fX(Y1) + ηfY (Y1)
+O(εγ,k)

Pr (Qi(Y1) ∈ Y) =
ηfY (Y1)

fX(Y1) + ηfY (Y1)
+O(εγ,k),(A.18)

where as defined before, εγ,k := O
(
(k/N)γ/d

)
+O (C(k)).

Proof. Here we prove a more general statement:

Let for any point y ∈ X define ξ1(y) := fX(y)−fX(Y1) and ξ2(y) := fY (y)−fY (Y1).

Then Pr (Qk(Y1) ∈ X) can be derived as

Pr (Qk(Y1) ∈ X) =
fX(Y1)

fX(Y1) + ηfY (Y1)
+ τ1(Y1) + τ2(Y1),(A.19)

where τ1(Y1) and τ2(Y1) are defined as

τ1(Y1) := (fX(Y1) + ηfY (Y1))−1 Ey∼fQk(Y1)
(ξ1(y))

τ2(Y1) :=

Ey∼fQk(Y1)

[(
fX(Y1)

fX(Y1) + ηfY (Y1)
+

ξ1(y)

fX(Y1) + ηfY (Y1)

)
U
(

ξ1(y) + ηξ2(y)

fX(Y1) + ηfY (Y1)

)]
,

and U (x) := 1 +
∑∞

i=1(−1)i (x)i.

To prove this, let B(Qk(Y1), ε) be the sphere with the center Qk(Y1) (the k-NN

point of Y1) and some small radius ε > 0. Also let EX and EZ denote the following

events:

EX := {∃x ∈ X | x ∈ B(Qk(Y1), ε)},

EZ := {∃x ∈ Z | x ∈ B(Qk(Y1), ε)}.(A.20)
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Let use the notation Pr (EX(y)) to denote Pr (EX |Qk(Y1) = y).

Suppose fQk(Y1) be the density function of the RV Qk(Y1). Then Pr (Qk(Y1) ∈ X)

can be written as:

Pr (Qk(Y1) ∈ X) =

∫
X
fQk(Y1)(y)Pr (Qk(Y1) ∈ X|Qk(Y1) = y) ,(A.21)

where Pr (Qk(Y1) ∈ X|Qk(Y1) = y) can be formulated using EX(y) and EY (y) as

Pr (Qk(Y1) ∈ X|Qk(Y1) = y) =
Pr (EX(y))

Pr (EZ(y))
.(A.22)

Let Pf (y, ε) denote the probability of the sphere B (y, ε) with density f . Then

there exist a function real function ∆1(ε) such that for any ε > 0 we have

Pf (y, ε) = f(y)cdε
d + ∆1(ε),(A.23)

where cd is volume of the unit ball in dimension d. From definition of the density

function we have

f(y) = lim
ε→0

Pf (y, ε)

cdεd
.(A.24)

So, from (A.23) and (A.24) we get limε→0 ∆1(ε)/εd = 0.

Now we compute Pr(EX(y)) as

Pr(EX(y)) = 1− (1− PfX (y, ε))N

= NPfX (y, ε) + ∆1(ε) +
N∑
i=2

(−1)i
(
N

i

)
PfX (y, ε)i

= NcdfX (y) εd + ∆2(ε),(A.25)
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where ∆2(ε) := ∆1(ε) +
∑N

i=2(−1)i
(
N
i

)
PfX (y, ε)i. Note that limε→0 ∆2(ε)/εd = 0.

Similarly, for Pr(Ez) we can prove that

Pr(Ez) = NcdfX (y) εd +McdfY (y) εd + ∆′2(ε),(A.26)

where ∆′2(ε) is a function satisfying limε→0 ∆′2(ε)/εd = 0.

From (A.22), and considering the fact that (A.25) and (A.26) hold true for any

ε > 0, we get

Pr (Qk(Y1) ∈ X|Qk(Y1) = y) = lim
ε→0

Pr (EX(y))

Pr (EZ(y))
=

fX(y)

fX(y) + ηfY (y)
,(A.27)

where η = M/N . Considering the Taylor expansion of A+a
B+b

for any real number

A,B, a, b such that a� A and b� B, we have

A+ a

B + b
=

(
A

B
+
a

B

)(
1 +

∞∑
i=1

(−1)i
(
b

B

)i)
=
A

B
+
a

B
+

(
A

B
+
a

B

)
U
(
b

B

)
,

(A.28)

where U (x) :=
∑∞

i=1(−1)i (x)i. Consequently, by using this fact and relation (A.27)

we have

Pr (Qk(Y1) ∈ X) =

∫
X
fQk(Y1)(y)

fX(y)

fX(y) + ηfY (y)
dy

=
fX(Y1)

fX(Y1) + ηfY (Y1)
+ τ1(Y1) + τ2(Y1),(A.29)

and τ1(Y1) and τ2(Y1) are given by
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τ1(Y1) = (fX(Y1) + ηfY (Y1))−1 Ey∼fQk(Y1)
[ξ1(y)]

τ2(Y1) =

Ey∼fQk(Y1)

[(
fX(Y1)

fX(Y1) + ηfY (Y1)
+

ξ1(y)

fX(Y1) + ηfY (Y1)

)
U
(

ξ1(y) + ηξ2(y)

fX(Y1) + ηfY (Y1)

)]
.

Now from Lemma A.3 we can simply write τ1(Y1) = O (() εγ,k) and τ2(Y1) = O (() εγ,k)

which results in:

Pr (Qk(Y1) ∈ X) =
fX(Y1)

fX(Y1) + ηfY (Y1)
+O(εγ,k).(A.30)

Similarly the second line in (A.18) can be proven in the same way, therefore is

omitted.

Now by partitioning theorem for a Poisson random variable with Bernoulli trials of

probabilities Pr (Qi(Y1) ∈ X) and Pr (Qi(Y1) ∈ Y), we argue that N1 and M1 are two

independent Poisson RVs (conditioned on Y1). Using the conditional independence

of N1 and M1 we have

E
[

N1

M1 + 1

∣∣∣∣Y1

]
= E [N1|Y1]E

[
(M1 + 1)−1

∣∣Y1

]
.(A.31)

E [N1|Y1] can be simplified as

E [N1|Y1] =
k∑
i=1

Pr (Qi(Y1) ∈ X)

= k
fX(Y1)

fX(Y1) + ηfY (Y1)
+O(kεγ,k).(A.32)

Also similarly,

E [M1|Y1] =
kηfY (Y1)

fX(Y1) + ηfY (Y1)
+O(kεγ,k).
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Lemma A.6. If U is a Poisson random variable with the mean λ > 1, then

(A.33) E
[
(U + 1)−1

]
=

1

λ

(
1− e−λ

)
.

Proof. From definition of Poisson RV, we can write

E
[
(U + 1)−1

]
=
∞∑
k=0

1

k + 1

(
λke−λ

k!

)
=

1

λ

∞∑
k=0

λk+1e−λ

(k + 1)!
=

1

λ

(
1− e−λ

)
.(A.34)

Using this lemma for M1 yields

E
[
(M1 + 1)−1

∣∣Y1

]
= k−1

[
ηfY (Y1)

fX(Y1) + ηfY (Y1)
+O(εγ,k)

]−1

+O

(
e−vk

k

)
,(A.35)

here v is some positive constant. Therefore, (A.31) becomes

E
[

N1

M1 + 1

∣∣∣∣Y1

]
=

fX(Y1)

ηfY (Y1)
+O(εγ,k) +O

(
e−vk

)
.(A.36)

Using lemma E.9 and theorem VII.3, we obtain

E
[(

N1

M1 + 1

)α∣∣∣∣Y1

]
= η−α

(
fX(Y1)

fY (Y1)

)α
+

+O(εγ,k) +O
(
e−vk

)
+O(N−

1
2 ).(A.37)

By applying an equation similar to (A.17), we get

B
[
Jα(X,Y)

]
= O(εγ,k) +O

(
e−vk

)
+O(N−

1
2 ).(A.38)

Lemma A.7. De-Poissonizing Jα(X,Y) adds extra error of O( 1
k
):

E
[
Ĵα(X,Y)

]
= E

[
Jα(X,Y)

]
+O(1/k).(A.39)

Proof. We use the following theorem from [56] to de-possonize the estimator.
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Theorem A.8. Assume a sequence an is given, and its poisson transform is F (Z):

(A.40) F (z) =
∑
n≥0

an
zn

n!
e−z.

Consider a linear cone Sθ = {z : | arg(z)| ≤ θ, θ < π/2}. Let the following

conditions hold for some constants R > 0, α < 1 and β ∈ R:

• For z ∈ Sθ,

(A.41) |z| > R⇒ |F (z)| = O
(
zβ
)
.

• For z /∈ Sθ,

(A.42) |z| > R⇒ |F (z)ez| = O
(
eα|z|

)
.

Then we have the following expansion that holds for every fixed m:

an =
m∑
i=0

i+m∑
j=0

bijn
iF (j)(n) +O(nβ−m−1/2),(A.43)

where
∑

ij bijx
iyj = exp (x log(1 + y)− xy).

Let Ĵα,k(X,Y) and Jα,k(X,Y) respectively represent the RVs Ĵα(X,Y) and Jα(X,Y)

with the parameter k.

Using the dePoissonization theorem, we take ak := E
[
Ĵα,k(X,Y)

]
and F (k) :=

E
[
Jα,k(X,Y)

]
. Since we are only interested in the values of k, for which limN→∞

k
N

=

0, we can assume F (z) = O(1). So, both the first and second conditions of the The-

orem A.8 are satisfied. Then from (A.43), for m = 1:

E
[
Ĵα,k(X,Y)

]
= E

[
Jα,k(X,Y)

]
+O

(
1

k

)
+

1

2
O

(
1

k2

)
+O

(
k−3/2

)
,(A.44)

where β = 0.
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At this point the bias proof of NNR estimator for Rényi divergence is complete,

and since O
(
e−vk

)
and O

(
N−

1
2

)
are of higher order compared to O (εγ,k), we obtain

the final bias rate in (6.5). The bias proof of NNR estimator for f-divergence is similar,

and by using the lemma E.9 with a Lipschitz continuous function g in equation

(A.36), we can follow the same steps to prove the bias bound.
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APPENDIX B

Proofs of Chapter III

B.1 Proof of Theorem III.4

In this section, we prove the subadditivity and superadditivity for the mean of

FR test statistic. For this, first we need to illustrate the following lemma.

Lemma B.1. Let {Qi}l
d

i=1 be a uniform partition of [0, 1]d into ld subcubes Qi with

edges parallel to the coordinate axes having edge lengths l−1 and volumes l−d. Let Dij

be the set of edges of MST graph between Qi and Qj with cardinality |Dij|, then for |D|

defined as the sum of |Dij| for all i, j = 1, . . . , ld, i 6= j, we have E|D| = O(ld−1 n1/d),

or more explicitly

E[|D|] ≤ C ′ld−1n1/d +O(ld−1n(1/d)−s),(B.1)

where η > 0 is the Hölder smoothness parameter and

s =
(1− 1/d)η

d ((1− 1/d)η + 1)
.

Here and in what follows, denote ΞMST (Xn) the length of the shortest spanning

tree on Xn = {X1, . . . ,Xn}, namely

ΞMST (Xn) := min
T

∑
e∈T

|e|,
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where the minimum is over all spanning trees T of the vertex set Xn. Using the

subadditivity relation for ΞMST in [126], with the uniform partition of [0, 1]d into ld

subcubes Qi with edges parallel to the coordinate axes having edge lengths l−1 and

volumes l−d, we have

ΞMST (Xn) ≤
ld∑
i=1

ΞMST (Xn ∩Qi) + C ld−1,(B.2)

where C is constant. Denote D the set of all edges of MST
( M⋃
i=1

Qi

)
which intersect

two different subcubes Qi and Qj with cardinality |D|. Let |ei| be the length of i-th

edge in set D. We can write

∑
i∈|D|

|ei| ≤ Cld−1 and E
∑
i∈|D|

|ei| ≤ Cld−1,

also we know that

E
∑
i∈|D|

|ei| = ED
∑
i∈|D|

E
[
|ei|
∣∣D].(B.3)

Note that using the result from ([52], Proposition 3), for some constants Ci1 and Ci2,

we have

E|ei| ≤ Ci1n
−1/d + Ci2n

−(1/d)−s, i ∈ |D|.(B.4)

Now let C1 = max
i
{Ci1} and C2 = max

i
{Ci2}, hence we can bound the expectation

(B.3) as

E|D| (C1n
−1/d + C2(n−(1/d)−s)) ≤ Cld−1,

which implies

E|D| ≤ (C1n
−1/d +O(n−(1/d)−s))

≤ C ′ld−1n1/d +O(ld−1n(1/d)−s).
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To aim toward the goal (3.9), we partition [0, 1]d into M := ld subcubes Qi of side

1/l. Recalling Lemma 2.1 in [116] we therefore have the set inclusion:

MST
( M⋃
i=1

Qi

)
⊂

M⋃
i=1

MST (Qi) ∪D,(B.5)

where D is defined as in Lemma B.1. Let mi and ni be the number of sample

{X1, . . . ,Xm} and {Y1, . . . ,Yn} respectively falling into the partition Qi, such that∑
i

mi = m and
∑
i

ni = n. Introduce sets A and B as

A := MST
( M⋃
i=1

Qi

)
, B :=

M⋃
i=1

MST (Qi).

Since set B has fewer edges than set A, thus (B.5) implies that the difference set of

B and A contains at most 2|D| edges, where |D| is the number of edges in D. On

the other word

|A∆B| ≤ |A−B|+ |B − A| = |D|+ |B − A|

= |D|+ (|B| − |B ∩ A| ≤ |D|+ (|A| − |B ∩ A|) = 2|D|.

The number of edge linked nodes from different samples in set A is bounded by the

number of edge linked nodes from different samples in set B plus 2|D|:

Rm,n(Xm,Yn) ≤
M∑
i=1

Rmi,ni

(
(Xm,Yn) ∩Qi

)
+ 2|D|.(B.6)

Here Rmi,ni stands with the number edge linked nodes from different samples in

partition Qi, M . Next, we address the reader to Lemma B.1, where it has been

shown that there is a constant c such that E|D| ≤ c ld−1 (m+ n)1/d. This concludes

the claimed assertion (3.9). Now to accomplish the proof, the lower bound term in

(3.10) is obtained with similar methodology and the set inclusion:

M⋃
i=1

MST (Qi) ⊂MST
( M⋃
i=1

Qi

)
∪D.(B.7)

This completes the proof.
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B.2 Proof of Theorem III.2

As many of continuous subadditive functionals on [0, 1]d, in the case of FR statistic

there exist a dual superadditive functional R∗m,n based on dual MST, MST∗, proposed

in Definition III.5. Note that in MST* graph, the degrees of the corner points are

bounded by cd where only depends on dimension d, and is the bound for degree

of every node in MST graph. The following properties hold true for dual FR test

statistic, R∗m,n:

Lemma B.2. Given samples Xm = {X1, . . . ,Xm} and Yn = {Y1, . . . ,Yn}, the

following inequalities hold true:

(i) For constant cd which depends on d:

R∗m,n(Xm,Yn) ≤ Rm,n(Xm,Yn) + cd 2d,

Rm,n(Xm,Yn) ≤ R∗m,n(Xm,Yn).

(B.8)

(ii) (Subadditivity on E[R∗m,n] and Superadditivity) Partition [0, 1]d into ld subcubes

Qi such that mi, ni be the number of sample Xm = {X1, . . . ,Xm} and Yn =

{Y1, . . . ,Yn} respectively falling into the partition Qi with dual R∗mi,ni. Then

we have

(B.9)

E
[
R∗m,n(Xm,Yn)

]
≤

ld∑
i=1

E
[
R∗mi,ni((Xm,Yn) ∩Qi)

]
+ c ld−1 (m+ n)1/d,

R∗m,n(Xm,Yn) ≥
ld∑
i=1

R∗mi,ni((Xm,Yn) ∩Qi)− 2dcdl
d.

where c is a constant.

(i) Consider the nodes connected to the corner points. Since MST(Xm,Yn) and

MST∗(Xm,Yn) can only be different in the edges connected to these nodes, and in
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R∗(Xm,Yn) we take all of the edges between these nodes and corner nodes into ac-

count, so we obviously have the second relation in (B.8). Also for the first inequality

in (B.8) it is enough to say that the total number of edges connected to the corner

nodes is upper bounded by 2d cd.

(ii) Let |D∗| be the set of edges of the MST∗ graph which intersect two different

partitions. Since MST and MST∗ are only different in edges of points connected

to the corners and edges crossing different partitions. Therefore |D∗| ≤ |D|. By

eliminating one edge in set D in worse scenario we would face with two possibilities:

either the corresponding node is connected to the corner which is counted anyways

or any other point in MST graph which wouldn’t change the FR test statistic. This

implies the following subadditivity relation:

R∗m,n(Xm,Yn)− |D| ≤
ld∑
i=1

R∗mi,ni
(
(Xm,Yn) ∩Qi

)
.

Further from Lemma B.1, we know that there is a constant c such that E|D| ≤

c ld−1 (m+ n)1/d. Hence the first inequality in (B.9) is obtained. Next consider |D∗c |

which represents the total number of edges from both samples only connected to the

all corners points in MST∗ graph. Therefore one can easily claim:

R∗m,n(Xm,Yn) ≥
ld∑
i=1

R∗mi,ni
(
(Xm,Yn) ∩Qi

)
− |D∗c |.

Also we know that |D∗c | ≤ 2dldcd where cd stands with the largest possible degree of

any vertex. One can write

R∗m,n(Xm,Yn) ≥
ld∑
i=1

R∗mi,ni
(
(Xm,Yn) ∩Qi

)
− 2dcdl

d.

The following list of Lemmas B.3, B.4 and B.6 are inspired from [46] and are

required to prove Theorem B.7. See the Supplementary Materials for their proofs.
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Lemma B.3. Let g(x) be a density function with support [0, 1]d and belong to the

Hölder class Σ(η, L), 0 < η ≤ 1, stated in Definition ??. Also, assume that P (x) is

a η-Hölder smooth function, such that its absolute value is bounded from above by a

constant. Define the quantized density function with parameter l and constants φi as

ĝ(x) =
M∑
i=1

φi1{x ∈ Qi}, where φi = ld
∫
Qi

g(x) dx.(B.10)

Let M = ld and Qi = {x,xi : ‖x− xi‖ < l−d}. Then∫ ∥∥∥(g(x)− ĝ(x)
)
P (x)

∥∥∥ dx ≤ O(l−dη).(B.11)

Lemma B.4. Denote ∆(x,S) the degree of vertex x ∈ S in the MST over set S

with the n number of vertices. For given function P (x,x), one obtains

(B.12)

∫
P (x,x)g(x)E[∆(x,S)] dx = 2

∫
P (x,x)g(x) dx + ςη(l, n),

where for constant η > 0,

ςη(l, n) =
(
O
(
l/n
)
− 2 ld/n

)∫
g(x)P (x,x) dx +O(l−dη).(B.13)

Lemma B.5. Assume that for given k, gk(x) is a bounded function belong to Σ(η, L).

Let P : Rd × Rd 7→ [0, 1] be a symmetric, smooth, jointly measurable function, such

that, given k, for almost every x ∈ Rd, P (x, .) is measurable with x a Lebesgue

point of the function gk(.)P (x, .). Assume that the first derivative P is bounded.

For each k, let Zk
1,Z

k
2, . . . ,Z

k
k be independent d-dimensional variable with common

density function gk. Set Zk = {Zk
1,Z

k
2 . . . ,Z

k
k} and Zx

k = {x,Zk
2,Z

k
3 . . . ,Z

k
k}. Then

E
[

k∑
j=2

P (x,Zk
j )1
{

(x,Zk
j ) ∈MST (Zx

k)
}]

=

P (x,x) E
[
∆(x,Zx

k)
]

+
{
O
(
k−η/d

)
+O

(
k−1/d

)}
.
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Lemma B.6. Consider the notations and assumptions in Lemma B.5. Then

(B.14)

∣∣∣k−1
∑∑
1≤i<j≤k

P (Zk
i ,Z

k
j )1{(Zk

i ,Z
k
j ) ∈MST (Zk)} −

∫
Rd
P (x,x)gk(x) dx

∣∣∣
≤ ςη(l, k) +O(k−η/d) +O(k−1/d).

Here MST (S) denotes the MST graph over nice and finite set S ⊂ Rd and η is the

smoothness Hölder parameter. Note that ςη(l, k) is given as before in Lemma B.4

(B.13).

Theorem B.7. Assume Rm,n := R(Xm,Yn) denotes the FR test statistic and den-

sities f0 and f1 belong to the Hölder class Σ(η, L), 0 < η ≤ 1. Then the rate for the

bias of the Rm,n estimator for d ≥ 2 is of the form:

(B.15)

∣∣∣∣∣E
[
Rm,n

]
m+ n

− 2pq

∫
f0(x)f1(x)

pf0(x) + qf1(x)
dx

∣∣∣∣∣ ≤ O
(
ld(m+ n)−η/d

)
+O(l−dη).

The proof and a more explicit form for the bound on the RHS are given in Supple-

mentary Materials.

Now, we are at the position to prove the assertion in (??). Without lose of

generality assume that (m+ n)l−d > 1. In the range d ≥ 2 and 0 < η ≤ 1, we select

l as a function of m+ n to be the sequence increasing in m+ n which minimizes the

maximum of these rates:

l(m+ n) = arg min
l

max
{
ld(m+ n)−η/d, l−ηd

}
.

The solution l = l(m + n) occurs when ld(m + n)−η/d = l−ηd, or equivalently l =

b(m + n)η/(d
2(η+1))c. Substitute this into l in the bound (B.15), the RHS expression

in (??) for d ≥ 2 is established.

B.3 Proof of Theorems III.3

To bound the variance we will apply one of the first concentration inequalities

which was proved by Efron and Stein [34] and further was improved by Steele [115].
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Lemma B.8. (The Efron-Stein Inequality) Let Xm = {X1, . . . ,Xm} be a random

vector on the space S. Let X′ = {X′1, . . . ,X′m} be the copy of random vector Xm.

Then if f : S × · · · × S → R, we have

(B.16) V
[
f(Xm)

]
≤ 1

2

m∑
i=1

E
[(
f(X1, . . . ,Xm)− f(X1, . . . ,X

′
i, . . . ,Xm)

)2
]
.

Consider two set of nodes Xi, 1 ≤ i ≤ m and Yj for 1 ≤ j ≤ n. Without loss

of generality, assume that m < n. Then consider the n −m virtual random points

Xm+1, ...,Xn with the same distribution as Xi, and define Zi := (Xi,Yi). Now for

using the Efron-Stein inequality on set Zn = {Z1, ...,Zn}, we involve another indepen-

dent copy of Zn as Z′n = {Z′1, ...,Z′n}, and define Z
(i)
n := (Z1, ...,Zi−1,Z

′
i,Zi+1, ...,Zn),

then Z
(1)
n becomes (Z′1,Z2, ...,Zn) =

{
(X′1,Y

′
1), (X2,Y2), . . . , (Xm,Yn)

}
=: (X

(1)
m ,Y

(1)
n )

where (X′1,Y
′
1) is independent copy of (X1,Y1). Next define the function rm,n(Zn) :=

Rm,n/(m+ n), which means that we discard the random samples Xm+1, ...,Xn, and

find the previously defined Rm,n function on the nodes Xi, 1 ≤ i ≤ m and Yj for

1 ≤ j ≤ n, and multiply by some coefficient to normalize it. Then, according to the

Efron-Stein inequality we have

V ar(rm,n(Zn)) ≤ 1

2

n∑
i=1

E
[
(rm,n(Zn)− rm,n(Z(i)

n ))2
]
.

Now we can divide the RHS as

(B.17)

1

2

n∑
i=1

E
[
(rm,n(Zn)− rm,n(Z(i)

n ))2
]

=
1

2

m∑
i=1

E
[
(rm,n(Zn)− rm,n(Z(i)

n ))2
]

+
1

2

n∑
i=m+1

E
[
(rm,n(Zn)− rm,n(Z(i)

n ))2
]
.

The first summand becomes
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=
1

2

m∑
i=1

E
[
(rm,n(Zn)− rm,n(Z(i)

n ))2
]

=
m

2 (m+ n)2
E
[
(Rm,n(Xm,Yn)−Rm,n(X(1)

m ,Y(1)
n ))2

]
,

which can also be upper bounded as follows:

∣∣Rm,n(Xm,Yn)−Rm,n(X(1)
m ,Y(1)

n )
∣∣ ≤ ∣∣Rm,n(Xm,Yn)−Rm,n(X(1)

m ,Yn)
∣∣

+
∣∣R(X(1)

m ,Yn)−Rm,n(X(1)
m ,Y(1)

n )
∣∣ .

(B.18)

For deriving an upper bound on the second line in (B.18) we should observe how

much changing a point’s position modifies the amount of Rm,n(Xm,Yn). We consider

two steps of changing X1’s position: we first remove it from the graph, and then add

it to the new position. Removing it would change Rm,n(Xm,Yn) at most by 2 cd,

because X1 has a degree of at most cd, and cd edges will be removed from the MST

graph, and cd edges will be added to it. Similarly, adding X1 to the new position

will affect Rm,n(Xm,n,Ym,n) at most by 2cd. So, we have

∣∣Rm,n(Xm,Yn)−Rm,n(X(1)
m ,Yn)

∣∣ ≤ 4 cd,

and we can also similarly reason that

∣∣Rm,n(X(1)
m ,Yn)−Rm,n(X(1)

m ,Y(1)
n )
∣∣ ≤ 4 cd.

Therefore totally we would have

∣∣Rm,n(Xm,Yn)−Rm,n(X(1)
m ,Y(1)

n )
∣∣ ≤ 8 cd.
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Furthermore, the second summand in (B.17) becomes

=
1

2

n∑
i=m+1

E
[
(rm,n(Zn)− rm,n(Z(i)

n ))2
]

= Km,nE
[
(Rm,n(Xm,Yn)−Rm,n(X(m+1)

m ,Y(m+1)
n ))2

]
,

where Km,n = n−m
2 (m+n)2 . Since in (X

(m+1)
m ,Y

(m+1)
n ), the point X′m+1 is a copy of virtual

random point Xm+1, therefore this point doesn’t change the FR test statistic Rm,n.

Also following the above arguments we have

∣∣Rm,n(Xm,Yn)−Rm,n(Xm,Y
(m+1)
n )

∣∣ ≤ 4 cd.

Hence we can bound the variance as below:

V ar(rm,n(Zn)) ≤ 8c2
d(n−m)

(m+ n)2
+

32 c2
d m

(m+ n)2
.(B.19)

Combining all results with the fact that
n

m+ n
→ q concludes the proof.



164

APPENDIX C

Proofs of Chapter IV

C.1 Proof of Theorem IV.4

Theorem IV.4 consists of two parts: bias and variance bounds. For the bias proof,

from equation (4.5) we can write

E
[
Êε(X1,X2)

]
= E

[
min(p̂1, p̂2)− 1

N2

N2∑
i=1

t̃
(
Ûi

)]

= min(p̂1, p̂2)− 1

N2

N2∑
i=1

E
[
t̃
(
Ûi

)]
= min(p̂1, p̂2)− EX2,1∼f2E

[
t̃
(
Û1

)
|X2,1

]
(C.1)

Now according to equation (33) of noshad2018hash, for any region for which its

geometry is independent of the samples and the largest diameter within the region

is equal to cε, where c is a constant, then we have

E
[
t̃
(
Û1

)
|X2,1 = x

]
= t̃

(
f1(x)

f2(x)

)
+O (εγ) +O

(
1

Nεd

)
.(C.2)

Thus, plugging (C.2) in (C.1) results in

E
[
Êε(X1,X2)

]
= min(p̂1, p̂2)− Ef2

[
t̃

(
f1(X)

f2(X)

)]
+O (εγ) +O

(
1

Nεd

)
,(C.3)
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which completes the bias proof.

Remark C.1. It can easily be shown that if we use the NNR density ratio estimator

(defined in noshad2017direct) with parameter k, the Bayes error estimator defined

in (4.5) achieves the bias rate of O
((

k
N

)γ/d)
+O

(
1
k

)
.

The approach for the proof of the variance bound is similar to the Hash-based

estimator noshad2018hash. Consider the two sets of nodes X1,i, 1 ≤ i ≤ N1 and

X2,j, 1 ≤ j ≤ N2. For simplicity we assume that N1 = N2, however, similar

to the variance proofs in noshad2017direct,noshad2018hash, by considering a num-

ber of virtual points one can easily extend the proof to general N1 and N2. Let

Zi := (X1,i, X2,i). For using the EfronStein inequality on Z := (Z1, ..., ZN1), we

consider another independent copy of Z as Z′ := (Z ′1, ..., Z
′
N1

) and define Z(i) :=

(Z1, ..., Zi−1, Z
′
i, Zi+1, ..., ZN1). In the following we use the EfronStein inequality.

Note that we use the shorthand E(Z) := Êε(X1,X2).

V [E(Z)] ≤ 1

2

N1∑
i=1

E
[(
E(Z)− E(Z(i))

)2
]

=
N1

2
E
[(
E(Z)− E(Z(1))

)2
]

≤ N1

2
E

(
1

N1

N1∑
i=1

t̃

(
ηNi,1

Ni,2

)
− 1

N1

N1∑
i=1

t̃

(
ηN

(1)
1,i

N
(1)
2,i

))2

=
1

2N1

E

(
t̃

(
ηN1,1

N1,2

)
− t̃

(
ηN

(1)
1,1

N
(1)
2,1

))2

=
1

2N
O (1) = O(

1

N
).(C.4)

Thus, the variance proof is complete.
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C.2 Proof of Theorem IV.5

In this section we provide the proof of theorem IV.5. For simplicity we assume

that N1 = N2 and we use the notation N := N1. Also note that for simplicity we

use the notation Ûi := Ûi
(ε)

Using the definition of Êε(X1,X2) we have

√
N
(
Êε(X1,X2)− E

[
Êε(X1,X2)

])
=
√
N

(
1

2
− 1

N

N∑
i=1

t̃
(
Ûi

)
− E

[
1

2
− 1

N

N∑
i=1

t̃
(
Ûi

)])

=
1√
N

N∑
i=1

(
t̃
(
Ûi

)
− E

[
t̃
(
Ûi

)])
=

1√
N

N∑
i=1

(
t̃
(
Ûi

)
− Eī

[
t̃
(
Ûi

)])
+

1√
N

N∑
i=1

(
Eī
[
t̃
(
Ûi

)]
− E

[
t̃
(
Ûi

)])
,(C.5)

where Eī denotes the expectation over all samples X1,X2 except X2,i. In the above

equation, we denote the first and second terms respectively by S1(X) and S2(X),

where X := (X1,X2). In the following we prove that S2(X) converges to a normal

random variable, and S1(X) converges to zero in probability. Therefore, using the

Slutsky’s theorem, the left hand side of (C.5) converges to a normal random variable.

Lemma C.2. Let N →∞. Then, S2(X) converges to a normal random variable.

Proof. Let Ai(X) := Eī
[
t̃
(
Ûi

)]
− E

[
t̃
(
Ûi

)]
. Since for all i ∈ {1, ..., N}, Ai(X)

are i.i.d. random variables, using the standard central limit theorem [32], S2(X)

converges to a normal random variable.

Lemma C.3. Let ε→ 0 and 1
εdN
→ 0. Then, S1(X) converges to 0 in mean square.

Proof. In order to prove that MSE converges to zero, we need to compute the bias
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and variance terms separately. The bias term is obviously equal to zero since

E[S1(X)] = E

[
1√
N

N∑
i=1

(
t̃
(
Ûi

)
− Eī

[
t̃
(
Ûi

)])]

=
1√
N

N∑
i=1

(
E
[
t̃
(
Ûi

)]
− E

[
t̃
(
Ûi

)])
= 0.(C.6)

Next, we find an upper bound on the variance of S1(X) using the Efron-Stein

inequality. Let X′ := (X′1,X
′
2) denote another copy of X = (X1,X2) with the same

distribution. We define the resampled dataset as

X(j) :=

 (X1,1, ..., X1,j−1, X
′
1,j, X1,j+1, ..., X1,N , X2,1, ..., X2,N) if N + 1 ≤ j ≤ 2N

(X1,1, ..., X1,N , X2,1, ..., X2,j−1, X
′
2,j, X2,j+1, ..., X2,N) if 1 ≤ j ≤ N

(C.7)

Let ∆i =: t̃
(
Ûi

)
−Eī

[
t̃
(
Ûi

)]
− t̃
(
Ûi

(1)
)

+ Eī
[
t̃
(
Ûi

(1)
)]

. Using the Efron-Stein

inequality we can write

V [S1(X1,X2)] ≤ 1

2

2N∑
j=1

E
[(
S1(X)− S1(X(j))

)2
]

= NE
[(
S1(X)− S1(X(1))

)2
]

= E

( N∑
i=1

∆i

)2
 ,

=
N∑
i=1

E
[
∆2
i

]
+
∑
i 6=j

E [∆i∆j] .(C.8)

We obtain bounds on the first and second terms in equation (C.8). First, we obtain
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separate bounds on E [∆2
i ] for i = 1 and i 6= 1. We have

E
[
∆2

1

]
= E

[(
t̃
(
Ûi

)
− Eī

[
t̃
(
Ûi

)]
− t̃
(
Ûi

(1)
)

+ Eī
[
t̃
(
Ûi

(1)
)])2

]
= E

[(
t̃
(
Ûi

)
− Eī

[
t̃
(
Ûi

)])2
]

+ E
[(
t̃
(
Ûi

(1)
)
− Eī

[
t̃
(
Ûi

(1)
)])2

]
− 2E

[(
t̃
(
Ûi

)
− Eī

[
t̃
(
Ûi

)])(
t̃
(
Ûi

(1)
)
− Eī

[
t̃
(
Ûi

(1)
)])]

≤ 4E
[(
t̃
(
Ûi

)
− Eī

[
t̃
(
Ûi

)])2
]

(C.9)

≤ 4EX1

[
EX1̄

[(
t̃
(
Ûi

)
− Eī

[
t̃
(
Ûi

)])2 ∣∣∣X1 = x

]]
≤ 4EX1

[
V
[
t̃
(
Ûi

)]]
(C.10)

≤ O(
1

N
).(C.11)

Now for the case of i 6= 1 note that Eī
[
t̃
(
Ûi

)]
= Eī

[
t̃
(
Ûi

(1)
)]

. Thus, we can

bound E [∆2
i ] as

E
[
∆2
i

]
= E

[(
t̃
(
Ûi

)
− t̃
(
Ûi

(1)
))2

]
≤ O

(
εd
) (

1−O
(
εd
))
O

((
1

εdN

)2
)

=
1

N
O

(
1

εdN

)
.(C.12)

Hence, using (C.11) and (C.12) we get

N∑
i=1

E
[
∆2
i

]
≤ O

(
1

εdN

)
.(C.13)

Note that we can similarly prove that the bound
∑

i 6=j E [∆i∆j] ≤ O
(

1
εdN

)
. Thus,

from equation (C.8) we have V [S1(X1,X2)] ≤ O
(

1
εdN

)
, which convergence to zero if

the assumption 1
εdN
→ 0 holds.

C.3 Proof of Theorem IV.8

First note that since N1,1 and N2,1 are independent we can write

E
[
N1,i

N2,i

∣∣∣∣X2,i

]
= E [N1,i|X2,i]E

[
N−1

2,i

∣∣X2,i

]
.(C.14)
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From (37) and (38) of noshad2018hash we have

E [N1,i] = N1ε
d

(
f1(X2,i) +

q∑
l=1

Cl(X2,i)ε
l +O (Cq(X2,i)ε

q)

)
,(C.15)

E
[
(N2,i)

−1
]

= N−1
2 ε−d

[
f2(X2,i) +

q∑
l=1

Cl(X2,i)ε
l +O (Cq(X2,i)ε

q)

]−1

(
1 +O

(
1

N2εdf2(X2,i)

))
,(C.16)

where Ci(x) for 1 ≤ i ≤ q are functions of x. Plugging equations (C.15) and (C.16)

into (C.14) results in

E
[
ηN1,i

N2,i

∣∣∣∣X2,i

]
=
f1(X2,i)

f2(X2,i)
+

q∑
i=1

C ′′i ε
i +O

(
1

Nεd

)
,(C.17)

where C ′′1 , ..., C
′′
q are constants.

Now apply the ensemble theorem (moon2018ensemble, Theorem 4). Let T :=

{t1, ..., tT} be a set of index values with ti < c, where c > 0 is a constant. De-

fine ε(t) :=
⌊
tN−1/2d

⌋
. According to the ensemble theorem in (moon2018ensemble,

Theorem 4) if we choose the parameters ψi(t) = ti/d and φ′i,d(N) = φi,κ(N)/N i/d,

the following weighted ensemble converges to the true value with the MSE rate of

O(1/N):

Ûw
i :=

L∑
l=1

wlÛi,(C.18)

where the weights wl are the solutions of the optimization problem in equation (4.14).

Thus, the bias of the ensemble estimator can be written as

EX̄i
[
Ûw
i

∣∣∣X2,i

]
=
f1(X2,i)

f2(X2,i)
+O(1/

√
N1).(C.19)
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By Lemma 4.4 in noshad2017direct and the fact that function t(x) := |p1x−p2|−

p1x is Lipschitz continuous with constant 2p1,

∣∣∣∣EX̄i [t(Ûw
i )|X2,i]− t

(
f1(X2,i)

f2(X2,i)

)∣∣∣∣ ≤ 2p1

(√
VX̄i [Û

w
i |X2,i] +

∣∣∣BX̄i [Ûw
i |X2,i]

∣∣∣) .
(C.20)

Here B and V represent bias and variance, respectively. By (C.19), we have BX̄i [Û
w
i |X2,i] =

O(1/
√
N1); and by Theorem 2.2 in noshad2017direct, VX̄i [Û

w
i |X2,i] = O(1/N1).

Thus,

EX̄i [t(Û
w
i )|X2,i]− t

(
f1(X2,i)

f2(X2,i)

)
= O(1/

√
N1).(C.21)

So the bias of the estimator F(X1,X2) is given by

B(F(X1,X2)) =

∣∣∣∣∣EX1,X2

[
1

2N2

N2∑
i=1

t(Ûw
i )

]
− 1

2
EX2,i

[
t

(
f1(X2,i)

f2(X2,i)

)]∣∣∣∣∣
=

1

2N2

N2∑
i=1

∣∣∣∣EX2,i

[
EX̄i [t(Û

w
i )|X2,i]− t

(
f1(X2,i)

f2(X2,i)

)]∣∣∣∣ = O(1/
√
N1).(C.22)

Finally, since the variance of Ûw
i can easily be upper bounded by O(1/N) using the

Efron-Stein inequality using the same steps in Appendix. C.1.

C.4 Proof of Theorem IV.9

In order to prove the theorem we first prove that the solutions of the constraint in

(4.14) for ti = si can be written as a function of the shifted Chebyshev polynomials.

Then we find the optimal solutions of wi which minimize ‖w‖2
2.

Lemma C.4. All solutions of the constraint

L−1∑
k=0

ωks
j
k = 0, ∀j ∈ {1, ..., d}

L−1∑
k=0

ωk = 1,(C.23)
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have the following form

wi =
d∑

k=0

2Tαk (0)

L
Tαk (si) +

L−1∑
k=d+1

ckT
α
k (si)−

1

L
∀i ∈ {0, ..., L− 1},(C.24)

for some ck ∈ R, k ∈ {d + 1, ..., L − 1}, and for any ck ∈ R, k ∈ {d + 1, ..., L − 1},

wi given by (C.24) satisfy the equations in (C.23).

Proof. We can rewrite (C.23) as

d∑
j=0

L−1∑
k=0

ωkxjs
j
k = x0 ∀xj ∈ R.(C.25)

Note that setting ∀i ∈ {1, ..., d}, xi = 0 in (C.25) yields the second constraint in

(4.14), and ∀i 6= j, xi = 0 results in the first set of d constraints in (4.14). Using the

fact that
∑

j

∑
k ωkxjs

j
k =

∑
k ωk

∑
j xjs

j
k we can equivalently write the constraint

as

L−1∑
k=0

ωkf (sk) = f(o) ∀f ∈ Pd,(C.26)

where Pd is the family of the polynomials of degree d. One can expand the polynomial

f(x) ∈ Pd defined in [0, α] in the Chebyshev polynomial basis:

f(x) =
d∑
i=0

riT
α
i (x).

Thus, we can write the constraint in (C.26) as

L−1∑
k=0

ωk

d∑
j=0

rjT
α
j (sk) =

d∑
j=0

rjT
α
j (0) ∀rj ∈ R,(C.27)

which can be further formulated as

d∑
j=0

rj

L−1∑
k=0

ωkT
α
j (sk) =

d∑
j=0

rjT
α
j (0) ∀rj ∈ R,(C.28)
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which is equivalent to the following constraint in the Chebyshev polynomials basis:

L−1∑
k=0

ωkT
α
j (sk) = Tαj (0) ∀j ∈ {0, ..., d}.(C.29)

Now we use the Chebyshev polynomial approximation method in order to simplify

the optimization problem in equation (4.14). Define a function f : [0, α] → R such

that f(si) = wi, i ∈ {0, ..., L− 1}.

We can write f(x) in terms of Chebyshev interpolation polynomials with the L

points 0 < s0, ..., sL−1 < 1 as

f(x) =
L−1∑
k=0

ckT
α
k (x)− c0

2
+R(x),(C.30)

where R(x) is the error of approximation and is given by

R(x) =
f (L)(ξ)

L!

L−1∏
j=0

(x− sj) ,(C.31)

for some ξ ∈ [0, α]. Thus we have

wi = f(si) =
L−1∑
k=0

ckT
α
k (si)−

c0

2
∀i ∈ {0, ..., L− 1}.(C.32)

The interpolation coefficients in (C.30) can be computed as follows

(C.33) ck =
2

L

L−1∑
j=0

f (sj)T
α
k (sj) ∀k ∈ {0, ..., L− 1}.

Comparing the equation (C.33) with the constraint in (C.29) we get
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(C.34) ck =
2Tαk (0)

L
∀k ∈ {0, ..., d}.

Thus, we can write equation (C.32) as

wi = f(si) =
d∑

k=0

2Tαk (0)

L
Tαk (si) +

L−1∑
k=d+1

ckT
α
k (si)−

1

L
∀i ∈ {0, ..., L− 1}.

(C.35)

Next, for any ck ∈ R, k ∈ {d + 1, ..., L − 1}, wi given by (C.24) satisfy equation

(C.29), which is an equivalent form of the original constraints in equation (C.23).

Using (C.35) we can write:

L−1∑
i=0

ωiT
α
j (si) =

L−1∑
i=0

Tαj (si)

[
d∑

k=0

2Tαk (0)

L
Tαk (si) +

L−1∑
k=d+1

ckT
α
k (si)−

c0

2

]

=
d∑

k=0

2Tαk (0)

L

L−1∑
i=0

Tαj (si)T
α
k (si)

+
L−1∑
k=d+1

ck

L−1∑
i=0

Tαj (si)T
α
k (si)−

L−1∑
i=0

Tαj (si)
Tα0 (si)

L
,(C.36)

where for the last term we have used the fact that c0 =
2Tα0 (0)

L
=

2Tα0 (si)

L
= 2

L
from

equation (C.34). Now in order to simplify equation (C.36), we use the orthogonality

property of the Chebyshev (and shifted Chebyshev) polynomials. That is, if si are

the zeros of T ∗L, then

L−1∑
i=0

Tαj (si)T
α
k (si) = Kjδkj,(C.37)

where Kj = L for j = 0 and Kj = L/2 for L− 1 ≥ j > 0. Hence, (C.36) simplifies to

L−1∑
i=0

ωiT
α
j (si) =

d∑
k=0

2Tαk (0)

L
Kjδkj +

L−1∑
k=d+1

ckKjδkj −K0δ0j
1

L
.(C.38)
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Thus, for j = 0 we get

L−1∑
i=0

ωiT
α
j (si) = 2Tα0 (0)− 1 = Tα0 (0),(C.39)

and for d ≥ j > 0 we get

L−1∑
i=0

ωiT
α
j (si) = Tαj (0),(C.40)

which shows that wi satisfy the constraint in equation (C.29), which is an equivalent

form of the original constraints in equation (C.23). The proof of the lemma is

complete.

Proof of Theorem IV.9: In (C.24), ck, k ∈ {d+1, ..., L−1} will be determined

such that the term ‖w‖2
2 in the original optimization problem is minimized. Using

(C.24), the objective function of the optimization problem in (4.14) can be simplified

as

‖w‖2
2 =

L−1∑
i=0

w2
i

=
L−1∑
i=0

f(si)
2

=
L−1∑
i=0

A2
i +

L−1∑
i=0

2Ai

L−1∑
k=d+1

ckT
α
k (si) +

L−1∑
i=0

(
L−1∑
k=d+1

ckT
α
k (si)

)2

(C.41)

where Ai :=
∑d

k=0

2T ∗k (0)

L
Tαk (si) − 1

L
. Note that since the first term in (C.41) is

constant, the minimization of ‖w‖2
2 is equivalent to minimization of the following

quadratic expression in terms of the variables {cd+1, ..., cL−1}:

G(cd+1, ..., cL−1) :=
L−1∑
i=0

2Ai

L−1∑
k=d+1

ckT
α
k (si) +

L−1∑
i=0

(
L−1∑
k=d+1

ckT
α
k (si)

)2

.(C.42)
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We first show that the first term in (C.42) is equal to zero.

L−1∑
i=0

2Ai

L−1∑
k=d+1

ckT
α
k (si) =

L−1∑
i=0

2

(
d∑

k=0

2T ∗k (0)

L
Tαk (si)−

1

L

)
L−1∑
k=d+1

ckT
α
k (si)

=
2

L

L−1∑
i=0

d∑
k=0

L−1∑
j=d+1

2T ∗k (0)Tαk (si)cjT
α
j (si)−

L−1∑
i=0

L−1∑
j=d+1

cjT
α
j (si)

=
2

L

d∑
k=0

L−1∑
j=d+1

2T ∗k (0)cj

L−1∑
i=0

Tαk (si)T
α
j (si)

−
L−1∑
j=d+1

cj

L−1∑
i=0

Tαj (si)T
α
0 (si)

= 0.(C.43)

Note that in the third line, we have used the identity T ∗0 (si) = 1. In the fourth

line we have used the orthogonality identity (C.37). Finally, setting cd+1 = ... =

cL−1 = 0 minimizes the second term and as a result G(cd+1, ..., cL−1). Thus, the

optimal solutions of wi are given as

wi =
2

L

d∑
k=0

Tαk (0)Tαk (si)−
1

L
∀i ∈ {0, ..., L− 1},(C.44)

which completes the proof.

C.5 Proof of Theorem IV.10

Bias proof: In the following we state a multivariate generalization of Lemma 3.2

in noshad2017direct.

Lemma C.5. Assume that g(x1, x2, . . . , xk) : X×· · ·×X → R is Lipschitz continuous

with constant Hg > 0, with respect to x1, . . . , xk. If T̂i where 0 ≤ i ≤ k be random

variables, each one with a variance V[T̂i] and a bias with respect to given constant

values Ti, defined as B[T̂i] := Ti − E[T̂i], then the bias of g(T̂1, . . . , T̂k) can be upper
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bounded by

∣∣∣E [g(T̂1, . . . , T̂k)− g(T1, . . . , Tk)
]∣∣∣ ≤ Hg

k∑
i=1

(√
V[T̂i] +

∣∣∣B[T̂i]
∣∣∣) .(C.45)

Proof:

∣∣∣E [g(T̂1, . . . , T̂λ)− g(T1, . . . , Tλ)
]∣∣∣ ≤ λ∑

i=1

∣∣∣E [g(T̂1, . . . , T̂i, Ti+1, . . . , Tλ)− g(T1, . . . , Tλ)
]∣∣∣

≤
λ∑
i=1

Hg

(√
V[T̂i] +

∣∣∣B[T̂i]
∣∣∣) ,(C.46)

where in the last inequality we have used Lemma 3.2 in noshad2017direct, by assum-

ing that g is only a function of T̂i.

Now, we plug Ûw
i defined in (C.18) into T̂i in (C.45). Using equation (C.19) and

the fact that VX̄i [Û
w
i |X2,i] = O(1/N1) (as mentioned in Appendix C.3), concludes

the bias proof.

Variance proof: Without loss of generality, we assume thatNλ = max(N1, N2, . . . , Nλ).

We consider (Nλ − Nl) virtual random nodes Xl,Nl+1, . . . , Xl,Nλ for 1 ≤ l ≤ λ − 1

which follow the same distribution as Xl,1, . . . , Xl,Nl . Let Zi := (X1,i, X2,i, . . . , Xλ,i).

Now we consider Z := (Z1, . . . , ZNλ) and another independent copy of Z as Z′ :=

(Z ′1, . . . , Z
′
Nλ

), where Zi := (X ′1,i, X
′
2,i, . . . , X

′
λ,i).

Let Z(i) := (Z1, . . . , Zi−1, Z
′
i, Zi+1, . . . , ZNλ) and Ek(Z) := Ek(X1,X2, . . . ,Xλ). Let

Bα,i := t̃

(
Ûw

(1/λ)(Xλ,i), Û
w
(2/λ)(Xλ,i), . . . , Û

w
((λ−1)/λ))(Xλ,i)

)
− t̃
(
Ûw

(1/λ)(X
′
λ,i), Û

w
(2/λ)(X

′
λ,i), . . . , Û

w
((λ−1)/λ)(X

′
λ,i)

)
.(C.47)
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We have

1

2

Nλ∑
i=1

E
[(
Ek(Z)− Ek(Z(i))

)2
]

=
1

2Nλ

E

[
Nλ∑
i=1

Bα,i

]2

=
1

2Nλ

Nλ∑
i=1

E[B2
α,i] +

1

2Nλ

∑
i 6=j

E[Bα,iBα,j] =
1

2
E[B2

α,2] +
Nλ

2
E[Bα,2]2.

(C.48)

The last equality follows from E[Bα,iBα,j] = E[Bα,i]E[Bα,j] = E[Bα,i]
2 for i 6= j. With

a parallel argument in the proof of Lemma 4.10 in noshad2017direct, we have

(C.49) E[Bα,2] = O

(
λ

Nλ

)
and E[B2

α,2] = O

(
λ2

Nλ

)
.

Then applying Efron-Stein inequality, we obtain

V[Ek(Z)] ≤ 1

2

M∑
i=1

E
[(
Ek(Z)− Ek(Z(i))

)2
]

= O

(
λ2

Nλ

)
.(C.50)

Since the ensemble estimator is a convex combination of some single estimators, the

proof is complete.

C.6 Supplementary Numerical Results

In this section we perform extended experiments on the proposed benchmark

learner. We perform experiments on different simulated datasets with Gaussian,

beta, Rayleigh and concentric distributions of various dimensions of up to d = 100.

Figure C.1 represents the scaled coefficients of the base estimators and their cor-

responding weights in the ensemble estimator using the arithmetic and Chebyshev

nodes for (a) d = 10 (L = 11) and (b) d = 100 (L = 101). The optimal weights for

the arithmetic nodes decreases monotonically. However, the optimal weights for the

Chebyshev nodes has an oscillating pattern.

In Figures C.2 and C.3 we consider binary classification problems respectively with

4-dimensional and 100-dimensional isotropic normal distributions with covariance
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(a) d = 10

(b) d = 100

Figure C.1: The scaled coefficients of the base estimators and their corresponding optimal weights
in the ensemble estimator using the arithmetic and Chebyshev nodes for (a) d = 10 and
(b) d = 100. The optimal weights for the arithmetic nodes decreases monotonically.
However, the optimal weights for the Chebyshev nodes has an oscillating pattern.
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matrix σI, where the means are separated by 2 units in the first dimension. We plot

the Bayes error estimates for different methods of Chebyshev, arithmetic and uniform

weight assigning methods for different sample sizes, in terms of (a) MSE rate and (b)

mean estimates with %95 confidence intervals. Although both the Chebyshev and

arithmetic weight assigning methods are asymptotically optimal, in our experiments

the benchmark learner with Chebyshev nodes has a better convergence rate for finite

number of samples. For example in Figures C.2 and C.3, for 1600 samples, MSE of

the Chebyshev method is respectively %10 and %92 less than MSE of the arithmetic

method.

In Figures C.4 (a) and (b) we compare the Bayes error estimates for ensemble es-

timator with Chebyshev nodes with different scaling coefficients α = 0.1, 0.3, 0.5, 1.0

for binary classification problems respectively with 10-dimensional and 50-dimensional

isotropic normal distributions with covariance matrix 2I, where the means are sepa-

rated by 5 units in the first dimension.

Figure C.5 compares of the Bayes error estimates for ensemble estimator with

Chebyshev nodes with different scaling coefficients α = 0.1, 0.3, 0.5, 1.0 for a 3-class

classification problems, where the distributions of each class are 50-dimensional beta

distributions with parameters (3, 1), (3, 1.5) and (3, 2). All of the experiments in

Figures C.4 and C.5 show that the performance of the estimator does not significantly

vary for the scaling factor in the range α ∈ [0.3, 0.5] and a good performance can be

achieved for the scaling factor α ∈ [0.3, 0.5].

Figure C.6 compares the optimal benchmark learner with the Bayes error lower

and upper bounds using HP-divergence, for a 3-class classification problem with

10-dimensional Rayleigh distributions with parameters a = 2, 4, 6. While the HP-

divergence bounds have a large bias, the proposed benchmark learner converges to
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(a) Mean square error

(b) Mean estimates with %95 confidence intervals

Figure C.2: Comparison of the Bayes error estimates for different methods of Chebyshev, arith-
metic and uniform weight assigning methods for a binary classification problem with
4-dimensional isotropic normal distributions. The Chebyshev method provides a better
convergence rate.
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(a) Mean square error

(b) Mean estimates with %95 confidence intervals

Figure C.3: Comparison of the Bayes error estimates for different methods of Chebyshev, arithmetic
and uniform weight assigning methods for a binary classification problem with 100-
dimensional isotropic normal distributions. The Chebyshev method provides a better
convergence rate compared to the arithmetic and uniform methods.
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(a) Mean square error

(b) Mean estimates with %95 confidence intervals

Figure C.4: Comparison of the Bayes error estimates for ensemble estimator with Chebyshev nodes
with different scaling coefficients α = 0.1, 0.3, 0.5, 1.0 for binary classification problems
with (a) 10-dimensional and (b) 100-dimensional isotropic normal distributions with
covariance matrix 2I, where the means are shifted by 5 units in the first dimension.
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Figure C.5: Comparison of the Bayes error estimates for ensemble estimator with Chebyshev nodes
with different scaling coefficients α = 0.1, 0.3, 0.5, 1.0 for a 3-class classification prob-
lems, where the distributions of each class are 50-dimensional beta distributions with
parameters (3, 1), (3, 1.5) and (3, 2).

the true value by increasing sample size.

In Figure C.7 we compare the optimal benchmark learner (Chebyshev method)

with XGBoost and Random Forest classifiers, for a 4-class classification problem

100-dimensional isotropic mean-shifted Gaussian distributions with identity covari-

ance matrix, where the means are shifted by 5 units in the first dimension. The

benchmark learner predicts the error rate bound better than XGBoost and Random

Forest classifiers.
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Figure C.6: Comparison of the optimal benchmark learner (Chebyshev method) with the Bayes
error lower and upper bounds using HP-divergence, for a 3-class classification problem
with 10-dimensional Rayleigh distributions with parameters a = 2, 4, 6. While the HP-
divergence bounds have a large bias, the proposed benchmark learner converges to the
true value by increasing sample size.

Figure C.7: Comparison of the optimal benchmark learner (Chebyshev method) with XGBoost and
Random Forest classifiers, for a 4-class classification problem 100-dimensional isotropic
mean-shifted Gaussian distributions with identity covariance matrix, where the means
are shifted by 5 units in the first dimension. The benchmark learner predicts the Bayes
error rate better than XGBoost and Random Forest classifiers.
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APPENDIX D

Proofs of Chapter VII

D.1 Variance Proof

Proof of Theorem VII.3: The proof is based on Efron-Stein inequality. We fol-

low similar steps used to prove the variance of NNR estimator in [95]. Note that

the proof for variance of ρi = Ni/(Mi) is contained in the the variance proof for

D̂g(X, Y ). Assume that we have two sets of nodes Xi, 1 ≤ i ≤ N and Yj for

1 ≤ j ≤ M . Here for simplicity we assume that N = M , however, the extension of

the proof to the case when M and N are not equal, is straightforward, by considering

a number of virtual points, as considered in [95]. Define Zi := (Xi, Yi). For using the

EfronStein inequality on Z := (Z1, ..., ZN), we consider another independent copy

of Z as Z ′ := (Z ′1, ..., Z
′
N) and define Z(i) := (Z1, ..., Zi−1, Z

′
i, Zi+1, ..., ZN). Define

D̂g(Z) := D̂g(X, Y ). By applying EfronStein inequality we have
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V ([) D̂g(Z)] ≤ 1

2

N∑
i=1

E
[(
D̂g(Z)− D̂g(Z

(i))
)2
]

=
N

2
E
[(
D̂g(Z)− D̂g(Z

(1))
)2
]

≤ N

2
E


 1

N

∑
i≤F
Mi>0

Mig̃

(
ηNi

Mi

)
− 1

N

∑
i≤F
Mi>0

M
(1)
i g̃

(
ηN

(1)
i

M
(1)
i

)
2

=
1

2N
E


∑

i≤F
Mi>0

(
Mig̃

(
ηNi

Mi

)
−M (1)

i g̃

(
ηN

(1)
i

M
(1)
i

))
2

=
1

2N
O (1) = O(

1

N
).(D.1)

where in the last line we used the fact that Mi and M ′
i can be different just for two

of i ≤ F , and that difference is just O(1). So, the proof is complete.

D.2 Proof of Theorem VII.5

Assume that the densities have bounded derivatives up to the order q. Then the

Taylor expansion of f(y) around f(x) is as follows

(D.2) f(y) = f(x) +
∑
|i|≤q

Dif(x)

i!
‖y − x‖i +O (‖y − x‖q) .

Therefore, similar to (6.26) and using (6.28) we can write

E [N ′i ] = N

∫
x∈Bi

f1(x)dx

= N

∫
x∈Bi

f(Yi) +
∑
|j|≤q

Djf(Yi)

j!
‖x− Yi‖j +O (‖x− Yi‖q)dx

= Nεdf1(Yi) +N
∑
|j|≤q

Djf(Yi)

j!
Cj(Yi)ε

|j|+d +O
(
NCq(Yi)ε

q+d
)

= Nεd ([) f1(Yi) +

q∑
l=1

C ′l(Yi)ε
l +O (Cq(Yi)ε

q)],(D.3)
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where

C ′|j|(Yi) :=
∑
|j|≤q

Djf(Yi)

j!
Cj(Yi).

Similarly we obtain

E
[
(M ′

i)
−1
]

= M−1ε−d ([) f2(Yi) +

q∑
l=1

C ′l(Yi)ε
l +O (Cq(Yi)ε

q)]−1

(
1 +O

(
1

Mεdf2(Yi)

))
.

(D.4)

The rest of the proof follows by using the same steps as used in equations (6.31)-

(6.33), and we get

B ([) D̂g(X, Y )] =

q∑
i=1

C ′′i ε
i +O

(
1

Nεd

)
,(D.5)

where C ′′1 , ..., C
′′
2 are constants. Now are ready to apply the ensemble theorem ([83],

Theorem 4). Let T := {t1, ..., tT} be a set of index values with ti < c, where c > 0 is a

constant. Let ε(t) :=
⌊
tN−1/2d

⌋
. The proof completes by using the ensemble theorem

in ([83], Theorem 4) with the parameters ψi(t) = ti/d and φ′i,d(N) = φi,κ(N)/N i/d.

So the following weighted ensemble has the MSE convergence rate of O(1/N):

D̂w :=
∑
t∈T

w(t)D̂ε(t).(D.6)

C. Proof of Theorem VI.8

We first argue that amortized runtime complexity of the online estimation algo-

rithm is order O(1) for each update after adding new samples. Note that when we

add a new pair of samples XN+1 and YN+1, if N + 1 6= 2k for some integer k, we only

find H(XN+1) and H(YN+1) and update the corresponding Mi and Ni, which take a
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constant time. But, only when N + 1 = 2k for some integer k, we need O(N) time

complexity to update ε and therefore the hash function. Thus, if we have N = 2k

nodes added to the estimation algorithm, the total complexity due to rehashing, TH ,

is as follows:

TH = 1 + 2 + 22 + ...+ 2k = 2k+1 − 1 = 2N − 1.(D.7)

So, the amortized runtime complexity per each time step is O(2N−1
N

) = O(1). So

overall, the amortized computational complexity is order O(1). Finally, note that

since we update ε when N doubles, it is at most by a factor of 2 away from the

optimum ε. Since constant factor doesn’t affect the asymptotic order of the bias

error, the bias bound always holds for online estimation algorithm.
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APPENDIX E

Proofs of Chapter VIII

E.1 Bias Proof

We first prove a theorem that establishes an upper bound on the number of vertices

in V and U .

Lemma E.1. Cardinality of the sets U and V are upper bounded as |V | ≤ O
(
ε−d
)

and |U | ≤ O
(
ε−d
)
, respectively.

Proof. Let {X̃i}LXi=1 and {Ỹi}LYi=1 respectively denote distinct outputs of H1 with the

N i.i.d points Xk and Yk as input. Then according to [93] (Lemma 4.1), we have

LX ≤ O
(
ε−d
)
, LY ≤ O

(
ε−d
)
.(E.1)

Simply, because of the deterministic feature of H2, the number of its distinct

inputs is greater than or equal to the number of its outputs. So, |V | ≤ LX and

|U | ≤ LY . Using the bounds in (E.1) completes the proof.

The bias proof is based on analyzing the hash function defined in (7.4). The proof

consists of two main steps: 1) Finding the expectation of hash collisions of H1; and

2) Analyzing the collision error of H2. An important point about H1 and H2 is that

collision of H1 plays a crucial role in our estimator, while the collision of H2 adds
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extra bias to the estimator. We introduce the following events to formally define

these two biases:

Eij :The event that there is an edge between the vertices vi and uj.

EE :The event that E is the set of all edges in G, i.e. E = EG.

E>0
vi

:The event that there is at least one vector from {X̃i}LXi=1 that maps to vi using H2 .

E=1
vi

:The event that there is exactly one vector from {X̃i}LXi=1 that maps to vi using H2 .

E>1
vi

:The event that there are at least two vectors from {X̃i}LXi=1 that map to vi using H2 .

(E.2)

E>0
ui

, E=1
ui

and E>1
ui

are defined similarly. Further, let for any event E, E denote the

complementary event. Let E=1
ij := E=1

vi
∩E=1

ui
. Finally, we define E=1 :=

(
∩LXi=1E

=1
vi

)
∩(

∩LYj=1E
=1
uj

)
, which represent the event of no collision.

Consider the notation Ĩ(X, Y ) :=
∑

eij∈EG ωiω
′
j g̃ (ωij) (Notice the difference from

the definition in (7.7)). We can derive its expectation as

E
[
Ĩ(X, Y )

]
= E

 ∑
eij∈EG

ωiω
′
j g̃ (ωij)

∣∣∣∣EG


=
∑

eij∈EG

E
[
ωiω

′
j g̃ (ωij) |Eij

]
=
∑

eij∈EG

P (E=1
ij |Eij)E

[
ωiω

′
j g̃ (ωij)

∣∣E=1
ij , Eij

]
+
∑

eij∈EG

P
(
E=1
ij |Eij

)
E
[
ωiω

′
j g̃ (ωij)

∣∣∣E=1
ij , Eij

]
.(E.3)

Note that the second term in (E.3) is the bias due to collision of H2 and we denote

this term by BH .
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E.1.1 Bias Due to Collision

The following lemma states an upper bound on the bias error caused by H2.

Lemma E.2. The bias error due to collision of H2 is upper bounded as

BH ≤ O

(
1

εdN

)
.(E.4)

Before proving this lemma, we provide the following lemma.

Lemma E.3. P (E=1
ij |Eij) is given by

P (E=1
ij |Eij) = 1−O

(
1

εdN

)
.(E.5)

Proof. Let X̃ = x̃ and Ỹ = ỹ respectively abbreviate the equations X̃1 = x̃1, ..., X̃LX =

x̃LX and Ỹ1 = ỹ1, ..., ỸLY = ỹLY . Let x̃ := {x̃1, x̃2, ..., x̃LX} and ỹ := {ỹ1, ỹ2, ..., ỹLY }.

Define z̃ := x̃ ∪ ỹ and LZ := |z̃|.

P (E=1
ij |Eij) =

∑
x̃,ỹ

P
(
X̃ = x̃, Ỹ = ỹ|Eij

)
P (E=1

ij |Eij, X̃ = x̃, Ỹ = ỹ).(E.6)

Define a = 2 for the case i 6= j and a = 1 for the case i = j. Then we have

P (E=1
ij |Eij) =

∑
x̃,ỹ

P
(
X̃ = x̃, Ỹ = ỹ|Eij

)
O

((
F − a
F

)LZ−a)

=
∑
x̃,ỹ

P
(
X̃ = x̃, Ỹ = ỹ|Eij

)(
1−O

(
LZ
F

))

≤
∑
x̃,ỹ

P
(
X̃ = x̃, Ỹ = ỹ|Eij

)(
1−O

(
LX + LY

F

))

=
∑
x̃,ỹ

P
(
X̃ = x̃, Ỹ = ỹ|Eij

)(
1−O

(
1

εdN

))

=

(
1−O

(
1

εdN

))∑
x̃,ỹ

P
(
X̃ = x̃, Ỹ = ỹ|Eij

)
=

(
1−O

(
1

εdN

))
,(E.7)
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where in the fourth line we have used (E.1).

Proof of E.2. N ′i and M ′
j respectively are defined as the number of the input points

X and Y mapped to the buckets X̃i and Ỹj using H1. Define Ai := {j : H2(X̃j) = i}

and Bi := {j : H2(Ỹj) = i}. For each i we can rewrite Ni and Mi as

Ni =

LX∑
j=1

1Ai(j)N
′
j, Mi =

LY∑
j=1

1Bi(j)M
′
j.(E.8)

Thus,
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BH ≤
∑
i,j∈F

P
(
E>1
ij

)
E
[
1Eijωiω

′
j g̃ (ωij)

∣∣E>1
ij

]
=
∑
i,j∈F

P
(
E>1
ij

)
P
(
Eij|E>1

ij

)
E
[
ωiω

′
j g̃ (ωij)

∣∣E>1
ij , Eij

]
+

P
(
Eij|E>1

ij

)
E
[
ωiω

′
j g̃ (ωij)

∣∣E>1
ij , Eij

]

=
∑
i,j∈F

P (Eij)P
(
E>1
ij |Eij

)
E
[
ωiω

′
j g̃ (ωij)

∣∣E>1
ij , Eij

](E.9)

≤ O

(
U

εdN

) ∑
i,j∈F

P (Eij)E
[
ωiω

′
j

∣∣E>1
ij , Eij

](E.10)

= O

(
U

εdN3

) ∑
i,j∈F

P (Eij)E
[
NiMj

∣∣E>1
ij , Eij

]
= O

(
U

εdN3

)∑
x̃,ỹ

pX̃,Ỹ (x̃, ỹ)
∑
i,j∈F

P (Eij)E
[
NiMj

∣∣∣E>1
ij , Eij, X̃ = x̃, Ỹ = ỹ

]
= O

(
U

εdN3

)∑
x̃,ỹ

pX̃,Ỹ

∑
i,j∈F

P (Eij)E

[(
LX∑
r=1

1Ai(r)N
′
r

)(
LY∑
s=1

1Bj(s)M
′
s

)∣∣∣∣∣E>1
ij , Eij, X̃ = x̃, Ỹ = ỹ

](E.11)

= O

(
U

εdN3

)∑
x̃,ỹ

pX̃,Ỹ

∑
i,j∈F

P (Eij)

LX∑
r=1

LY∑
s=1

E
[
(1Ai(r))

(
1Bj(s)

)∣∣∣E>1
ij , Eij, X̃ = x̃, Ỹ = ỹ

]
E
[
N ′rM

′
s|Eij, X̃ = x̃, Ỹ = ỹ

]
= O

(
U

εdN3

)∑
x̃,ỹ

pX̃,Ỹ

∑
i,j∈F

P (Eij)

LX∑
r=1

LY∑
s=1

P
(
r ∈ Ai, s ∈ Bj

∣∣E>1
ij , Eij, X̃ = x̃, Ỹ = ỹ

)
E
[
N ′rM

′
s|Eij, X̃ = x̃, Ỹ = ỹ

]
,

(E.12)
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where in (E.9) we have used the Bayes rule, and the fact that g̃ (ωij) = 0 condi-

tioned on the event Eij. In (E.10) we have used the bound in Lemma E.3, and

the upper bound on g̃(ωij) . Equation (E.11) is due to (E.8). Now we simplify

P
(
r ∈ Ai, s ∈ Bj

∣∣E>1
ij , Eij, X̃ = x̃, Ỹ = ỹ

)
in (E.12) as follows. First assume that

X̃r 6= Ỹs.

P
(
r ∈ Ai, s ∈ Bj

∣∣E>1
ij , Eij, X̃ = x̃, Ỹ = ỹ

)
≤ P

(
r ∈ Ai, s ∈ Bj

∣∣E>1
vi
, E>1

uj
, X̃ = x̃, Ỹ = ỹ

)
= P

(
r ∈ Ai

∣∣E>1
vi
, X̃ = x̃

)
P
(
s ∈ Bj

∣∣E>1
uj
, Ỹ = ỹ

)
,(E.13)

where the second line is because the hash function H2 is random and independent

for different inputs. P
(
r ∈ Ai

∣∣E>1
vi
, X̃ = x̃

)
in (E.13) can be written as

P
(
r ∈ Ai

∣∣E>1
vi
, X̃ = x̃

)
=
P
(
r ∈ Ai, E>1

vi

∣∣X̃ = x̃
)

P
(
E>1
vi

∣∣X̃ = x̃
) .(E.14)

We first find P
(
E>1
vi

∣∣X̃ = x̃
)

:

P
(
E>1
vi

∣∣X̃ = x̃
)

= 1− P
(
E=0
vi

∣∣X̃ = x̃
)
− P

(
E=1
vi

∣∣X̃ = x̃
)

= 1−
(
F − 1

F

)LX
−

(
LX
F

(
F − 1

F

)Lx−1
)

=
L2
X

2F 2
+ o

(
L2
X

2F 2

)
.(E.15)

Next, we find P
(
r ∈ Ai, E>1

vi

∣∣X̃ = x̃
)

in (E.14) as follows.

P
(
r ∈ Ai, E>1

vi

∣∣X̃ = x̃
)

= P
(
E>1
vi

∣∣r ∈ Ai, X̃ = x̃
)
P
(
r ∈ Ai

∣∣X̃ = x̃
)

=

(
1−

(
F − 1

F

)LX−1
)(

1

F

)
= O

(
LX
F 2

)
(E.16)
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Thus, using (E.15) and (E.16) yields

P
(
r ∈ Ai

∣∣E>1
vi
, X̃ = x̃

)
= O

(
1

LX

)
.(E.17)

Similarly, we have

P
(
s ∈ Bj

∣∣E>1
uj
, Ỹ = ỹ

)
= O

(
1

LY

)
.(E.18)

Now assume the case X̃r = Ỹs. Then since H2(X̃r) = H2(Ỹs), we can simplify

P
(
r ∈ Ai, s ∈ Bj

∣∣E>1
ij , Eij, X̃ = x̃, Ỹ = ỹ

)
in (E.12) as

P
(
r ∈ Ai, s ∈ Bj

∣∣E>1
ij , Eij, X̃ = x̃, Ỹ = ỹ

)
= δijP

(
r ∈ Ai

∣∣E>1
vi
, X̃ = x̃, Ỹ = ỹ

)
.

(E.19)

Recalling the definition z̃ := x̃ ∪ ỹ and LZ := |z̃|, similar to

P
(
r ∈ Ai

∣∣E>1
vi
, X̃ = x̃, Ỹ = ỹ

)
= O

(
1

LZ

)
.(E.20)

By using equations (E.13), (E.17), (E.18) and (E.20) in (E.12), we can write the

following upper bound for the bias estimator due to collision.
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BH ≤ O

(
U

εdN3

)∑
x̃,ỹ

pX̃,Ỹ

∑
i,j∈F

P (Eij)

LX∑
r=1

LY∑
s=1

E
[
N ′rM

′
s|Eij, X̃ = x̃, Ỹ = ỹ

]
(
O

(
1

LXLY

)
+ δijO

(
1

LZ

))
= O

(
U

εdN3

)∑
x̃,ỹ

pX̃,Ỹ

∑
i,j∈F

P (Eij)E

[
LX∑
r=1

N ′r

LY∑
s=1

M ′
s|Eij, X̃ = x̃, Ỹ = ỹ

]
(
O

(
1

LXLY

)
+ δijO

(
1

LZ

))
= O

(
U

εdN3

)∑
x̃,ỹ

pX̃,Ỹ

∑
i,j∈F

P (Eij)N
2

(
O

(
1

LXLY

)
+ δijO

(
1

LZ

))

= O

(
U

εdN3

)∑
x̃,ỹ

pX̃,Ỹ

(
O

(
N2

LXLY

)
+O

(
N

LZ

)) ∑
i,j∈F

P (Eij)

= O

(
U

εdN3

)∑
x̃,ỹ

pX̃,Ỹ

(
O

(
N2

LXLY

)
+O

(
N

LZ

))
E

[∑
i,j∈F

1Eij

]

≤ O

(
U

εdN3

)∑
x̃,ỹ

pX̃,Ỹ

(
O

(
N2

LXLY

)
+O

(
N

LZ

))
(LXLY )

≤ O

(
1

εdN

)
.(E.21)

E.1.2 Bias without Collision

A key idea in proving Theorem VII.2 is to show that the expectation of the edge

weights ωij are proportional to the Radon-Nikodym derivative dPXY /dPXPY at the

points that correspond to the vertices vi and uj. This fact is stated in the following

lemma:

Lemma E.4. Under the assumptions A1-A4, and assuming that the density func-

tions in A3 have bounded derivatives up to order q ≥ 0 we have:

E [ωij] =
dPXY
dPXPY

+ B(N, ε, q, γ),(E.22)
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where

B(N, ε, q, γ) :=


O (εγ) +O

(
1

Nεd

)
, q = 0

∑q
i=1 Ciε

i +O (εq) +O
(

1
Nεd

)
, q ≥ 1,

(E.23)

and Ci are real constants.

Note that since ωij = NijN/NiMj, and Nij, Ni and Nj are not independent vari-

ables, deriving the expectation is not trivial. In the following we give a lemma that

provides conditions under which the expectation of a function of random variables

is close to the function of expectations of the random variables. We will use the

following lemma to simplify E [ωij].

Lemma E.5. Assume that g(Z1, Z2, ..., Zk) : Z1 × ... × Zk → R is a Lipschitz

continuous function with constant Hg > 0 with respect to each of variables Zi, 1 ≤

i ≤ k. Let V [Zi] and V [Zi|X] respectively denote the variance and the conditional

variance of each variable Zi for a given variable X. Then we have

a) |E [g (Z1, Z2, ..., Zk)]− g (E [Z1] ,E [Z2] , ...,E [Zk]) | ≤ Hg

k∑
i=1

√
V [Zi],(E.24)

b) |E [g (Z1, Z2, ..., Zk) |X]− g (E [Z1|X] ,E [Z2|X] , ...,E [Zk|X]) |

≤ Hg

k∑
i=1

√
V [Zi|X].(E.25)
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Proof.

|E [g (Z1, Z2, ..., Zk)]− g (E [Z1] ,E [Z2] , ...,E [Zk]) |

= |E [g (Z1, Z2, ..., Zk)− g (E [Z1] ,E [Z2] , ...,E [Zk])] |

≤ E [|g (Z1, Z2, ..., Zk)− g (E [Z1] ,E [Z2] , ...,E [Zk]) |](E.26)

≤ E[|g (Z1, Z2, ..., Zk)− g (E [Z1] , Z2, ..., Zk) +

+ g (E [Z1] , Z2, ..., Zk)− g (E [Z1] ,E [Z2] , ..., Zk)

+ ...

+ g (E [Z1] ,E [Z2] , ...,E [Zk−1] , Zk)− g (E [Z1] ,E [Z2] , ...,E [Zk]) |]

≤ E
[∣∣∣∣g (Z1, Z2, ..., Zk)− g (E [Z1] , Z2, ..., Zk)

∣∣∣∣]
+ E

[∣∣∣∣g (E [Z1] , Z2, ..., Zk)− g (E [Z1] ,E [Z2] , ..., Zk)

∣∣∣∣]
+ ...

+ E
[∣∣∣∣g (E [Z1] , ...,E [Zk−1] , Zk)− g (E [Z1] , ...,E [Zk])

∣∣∣∣](E.27)

≤ HgE [|Z1 − E [Z1] |] +HgE [|Z2 − E [Z2] |] + ...+HgE [|Zk − E [Zk] |](E.28)

≤ Hg

k∑
i=1

√
V [Zi].(E.29)

In (E.26) and (E.27) we have used triangle inequalities. In (E.28) we have applied

Lipschitz condition, and finally in (E.29) we have used CauchySchwarz inequality.

Since the proofs of parts (a) and (b) are similar, we omit the proof of part (b).

Lemma E.6. Define νij = Nij/N , and recall the definitions ωij = NijN/NiNj,

ωi = Ni/N , and ω′j = Nj/N . Then we can write

E [ωij] =
E [νij]

E [ωi]E
[
ω′j
] +O

(√
1

N

)
(E.30)

Proof. The proof follows by Lemma E.5 and the fact that V [ωij] ≤ O (1/N) (proved

in Lemma E.10).
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Let xD and xC respectively denote the discrete and continuous components of the

vector x, with dimensions dD and dC . Also let fXC (xC) and pXD(xD) respectively

denote density and pmf functions of these components associated with the probability

measure PX . Let S(x, r) be the set of all points that are within the distance r/2 of

x in each dimension i, i.e.

S(x, r) : {x|∀i ≤ d, |Xi − xi| < r/2}.(E.31)

Denote Pr(x) := P (x ∈ S(x, r)). Then we have the following lemma.

Lemma E.7. Let r < sX , where sX is the smallest possible distance in the discrete

components of the support set, X . Under the assumption A3, and assuming that the

density functions in A3 have bounded derivatives up to the order q ≥ 0, we have

Pr(x) = P (XD = xD)rdC (f(xC |xD) + µ(r, γ, q,CX)) ,(E.32)

where

µ(r, γ, q,CX) :=


O (rγ) , q = 0

∑q
i=1Cir

i +O (rq) , q ≥ 1.

(E.33)

In the above equation, CX := (C1, C2, ..., Cq), and Ci are real constants depending

on the probability measure PX .

Proof. The proof is straightforward by using (??) for the case q = 0 (similar to (27)-

(29) in [93]), and using the Taylor expansion of f(xC |xD) for the case q ≥ 1 (similar

to (36)-(37) in [93]).

Lemma E.8. Let H(x) = i,H(y) = j. Under the assumptions A1-A3, and assum-

ing that the density functions in A3 have bounded derivatives up to the order q ≥ 0,

we have
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E
[
ωij|E≤1

ij

]
=

dPXY
dPXPY

(x, y) + µ(ε, γ, q,C′XY ) +O

(
1√
N

)
,(E.34)

where µ(ε, γ, q,C′XY ) is defined in (E.33).

Proof. Define νij = Nij/N , and recall the definitions ωij = NijN/NiNj, ωi = Ni/N ,

and ω′j = Nj/N . Using Lemma E.5 we have

E
[
ωij|E≤1

ij

]
=

E
[
νij|E≤1

ij

]
E
[
ωi|E≤1

ij

]
E
[
ω′j|E

≤1
ij

] +O

(
1√
N

)
(E.35)

Assume that H(x) = i. Let X have dC and dD continuous and discrete compo-

nents, respectively. Also let Y have d′C and d′D continuous and discrete components,

respectively. Then we can write

E
[
ωi|E≤1

ij

]
=

1

N
E
[
Ni|E≤1

ij

]
= P (X ∈ S(x, ε))

= P (XD = xD)εdC (f(xC |xD) + µ(ε, γ, q,CX)) ,(E.36)

where in the third line we have used Lemma E.7. Similarly we can write

E
[
ω′j|E

≤1
ij

]
= P (YD = yD)εd

′
C (f(yC |yD) + µ(ε, γ, q,CX)) ,

E
[
νij|E≤1

ij

]
= P (XD = xD, YD = yD)ε(dC+d′C) (f(xC , yC |xD, yD) + µ(ε, γ, q,CXY )) .

(E.37)

Using (E.36) and (E.37) in (E.35) results in

E
[
ωij|E≤1

ij

]
=
P (XD = xD)P (YD = yD)f(xC |xD)f(yC |yD)

P (XD = xD, YD = yD)f(xC , yC |xD, yD)
+ µ(ε, γ, q,C′XY ) +O

(
1√
N

)
,

(E.38)
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where C′XY depends only on PXY . Now note that using Lemma E.7, dPXY
dPXPY

(x, y)

can be simplified as

dPXY
dPXPY

(x, y) =

dPXY,r
dr

(x, y)
dPX,rPY,r

dr
(x, y)

=

=
P (XD = xD)P (YD = yD)f(xC |xD)f(yC |yD)

P (XD = xD, YD = yD)f(xC , yC |xD, yD)
+ µ(ε, γ, q,C′′XY ).(E.39)

Finally, using (E.39) in (E.38) gives

E
[
ωij|E≤1

ij

]
=

dPXY
dPXPY

(x, y) + µ(ε, γ, q, C̃XY ) +O

(
1√
N

)
,(E.40)

where H(x) = i,H(y) = j.

Proof of Lemma E.4. Lemma E.4 is a simple consequence of Lemma E.8. We

have

E [ωij] = P
(
E≤1
ij

)
E
[
ωij|E≤1

ij

]
+ P

(
E>1
ij

)
E
[
ωij|E>1

ij

]
.(E.41)

Recall the definitions X̃ :=
(
X̃1, X̃2, ..., X̃LX

)
and Ỹ :=

(
Ỹ1, Ỹ2, ..., ỸLY

)
as the

mapped X and Y points through H1. Let Z̃ := X̃ ∪ Ỹ and LZ := |Z̃|. We first find

P
(
E≤1
ij

)
as follows. For a fixed set Z̃ we have

P
(
E≤1
ij

)
= P

(
E=0
vi
∩ E=0

uj

)
+ P

(
E=0
vi
∩ E=1

uj

)
+ P

(
E=1
vi
∩ E=0

uj

)
+ P

(
E=1
vi
∩ E=1

uj

)
=

(F − 2)LZ

FLZ
+
LY (F − 2)LZ−1

FLZ
+
LX (F − 2)LZ−1

FLZ
+
LYLX (F − 2)LZ−2

FLZ

= 1−O
(
LZ
F

)
≤ 1−O

(
LX + LY

F

)
= 1−O

(
1

εdN

)
.(E.42)
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Now note that the second term in (E.41) is the bias due to collision of H2, and similar

to (E.21) it is upper bounded by O
(

1
εdN

)
. Thus, (E.42) and (E.41) give rise to

E [ωij] =
dPXY
dPXPY

(x, y) + µ(ε, γ, q, C̃XY ) +O

(
1√
N

)
+O

(
1

εdN

)
.(E.43)

which completes the proof.

In the following lemma we make a relation between the bias of an estimator and

the bias of a function of that estimator.

Lemma E.9. Assume that g(x) : X → R is infinitely differentiable. If Ẑ is a random

variable estimating a constant Z with the bias B[Ẑ] and the variance V[Ẑ], then the

bias of g(Ẑ) can be written as

E
[
g(Ẑ)− g(Z)

]
=
∞∑
i=1

ξi

(
B
[
Ẑ
])i

+O

(√
V
[
Ẑ
])

,(E.44)

where ξi are real constants.

Proof.

E
[
g
(
Ẑ
)
− g(Z)

]
= g

(
E
[
Ẑ
])
− g(Z) + E

[
g
(
Ẑ
)
− g

(
E
[
Ẑ
])]

=
∞∑
i=1

(
E
[
Ẑ
]
− Z

)i g(i)(Z)

i!
+O

(
E
[
|g
(
Ẑ
)
− g

(
E
[
Ẑ
])
|
])

=
∞∑
i=1

ξi

(
B
[
Ẑ
])i

+O

(√
V
[
Ẑ
])

.(E.45)

In the second line we have used Taylor expansion for the first term, and triangle

inequality for the second term. In the third line we have used the definition ξi :=

g(i)(Z)/i!, and the CauchySchwarz inequality for the second term.

In the following we compute the expectation of the first term in (E.3) and prove

Theorem VII.2.
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Proof of Theorem VII.2. Recall that N ′i and M ′
j respectively are defined as the

number of the input points X and Y mapped to the buckets X̃i and Ỹj using H1.

Similarly, N ′ij is defined as the number of input pairs (X,Y) mapped to the bucket

pair
(
X̃i, Ỹj

)
using H1. Define the notations r(i) := H−1

2 (i) for i ∈ F and s(x) :=

H1(x) for x ∈ X ∪ Y . Then from (E.38) since there is no collision of mapping with

H2 into vi and uj we have

E

[
N ′s(x)s(y)N

N ′s(x)N
′
s(y)

]
=

dPXY
dPXPY

(x, y) + µ(ε, γ, q, C̃XY ) +O

(
1√
N

)
,(E.46)

By using (E.42) and defining h̃(x) = g̃(x)/x we can simplify the first term of (E.3)

as
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∑
i,j∈F

P
(
E≤1
ij

)
E
[
1Eijωiω

′
j g̃ (ωij)

∣∣E≤1
ij

]
=

(
1−O

(
1

εdN

)) ∑
i,j∈F

E
[
1Eijωiω

′
j g̃ (ωij)

∣∣E≤1
ij

]
=
∑
i,j∈F

E
[
1Eij

NiMj

N2
g̃

(
NijN

NiMj

)∣∣∣∣E≤1
ij

]
+O

(
1

εdN

)

=
∑
i,j∈F

E

[
1Eij

N ′r(i)M
′
r(j)

N2
g̃

(
N ′r(i)r(j)N

N ′r(i)M
′
r(j)

)]
+O

(
1

εdN

)

=
∑
i,j∈F

E

[
1Eij

N ′r(i)r(j)
N

h̃

(
N ′r(i)r(j)N

N ′r(i)M
′
r(j)

)]
+O

(
1

εdN

)

=
1

N

∑
i,j∈F

E

[
N ′r(i)r(j)h̃

(
N ′r(i)r(j)N

N ′r(i)M
′
r(j)

)]
+O

(
1

εdN

)
(E.47)

=
1

N
E

[∑
i,j∈F

N ′r(i)r(j)h̃

(
N ′r(i)r(j)N

N ′r(i)M
′
r(j)

)]
+O

(
1

εdN

)

=
1

N
E

[
N∑
i=1

h̃

(
N ′s(X)s(Y )N

N ′s(X)M
′
s(Y )

)]
+O

(
1

εdN

)

=
1

N

N∑
i=1

E

[
h̃

(
N ′s(X)s(Y )N

N ′s(X)M
′
s(Y )

)]
+O

(
1

εdN

)

= E(X,Y )∼PXY

[
E

[
h̃

(
N ′s(X)s(Y )N

N ′s(X)M
′
s(Y )

)∣∣∣∣∣X = x, Y = y

]]
+O

(
1

εdN

)
= E(X,Y )∼PXY

[
dPXY
dPXPY

]
+ µ(ε, γ, q,CXY ) +O

(
1√
N

)
+O

(
1

εdN

)
.(E.48)

(E.49)

(E.47) is due to the fact that N ′r(i)r(j) = 0 if there is no edge between vi and uj. Also,

(E.48) is due to (E.46).

From (E.48) and (E.3) we obtain
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E
[
Ĩ(X, Y )

]
= E

 ∑
eij∈EG

ωiω
′
j g̃ (ωij)

 = E(X,Y )∼PXY

[
dPXY
dPXPY

]
+ µ(ε, γ, q,CXY )+

O

(
1√
N

)
+O

(
1

εdN

)
.(E.50)

Finally using Lemma E.9 results in (7.9).

E.2 Variance Proof

In this section we first prove bounds on the variances of the edge and vertex

weights and then we provide the proof of Theorem VII.3.

Lemma E.10. Under the assumptions A1-A4, the following variance bounds hold

true.

V [ωi] ≤ O

(
1

N

)
, V

[
ω′j
]
≤ O

(
1

N

)
,

V [ωij] ≤ O

(
1

N

)
, V [νij] ≤ O

(
1

N

)
.(E.51)

Proof. Here we only provide the variance proof of ωi. The variance bounds of ω′j,

ωij and νij can be proved in the same way. The proof is based on Efron-Stein

inequality. Define Zi := (Xi, Yi). For using the EfronStein inequality on Z :=

(Z1, ..., ZN), we consider another independent copy of Z as Z′ := (Z ′1, ..., Z
′
N) and

define Z(i) := (Z1, ..., Zi−1, Z
′
i, Zi+1, ..., ZN). Define ωi(Z) as the weight of vertex vi in

the dependence graph constructed by the set Z. By applying EfronStein inequality

[95] we have
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V [ωi] ≤
1

2

N∑
i=1

E
[(
ωi (Z)− ωi

(
Z(j)

))2
]

=
1

2N2

N∑
i=1

E
[(
Ni (Z)−Ni

(
Z(j)

))2
]

≤ 1

2N2
O (N)

≤ O

(
1

N

)
.(E.52)

In the third line we have used the fact that the absolute value of Ni (Z)−Ni

(
Z(j)

)
is at most 1.

Proof of Theorem VII.3 . We follow similar steps as the proof of Lemma E.10.

Define Îg(Z) as the mutual information estimation using the set Z. By applying

EfronStein inequality we have

V
[
Î(X, Y )

]
≤ 1

2

N∑
k=1

E
[(
Î(Z)− Î(Z(k))

)2
]

≤ N

2
E

 ∑
eij∈EG

ωi (Z)ω′j (Z) g̃ (ωij (Z))−
∑

eij∈EG

ωi
(
Z(k)

)
ω′j
(
Z(k)

)
g̃ (ωij)

(
Z(k)

)2

≤ 1

2N3
E
[
(Σn1 + Σn2 + Σm1 + Σm1 +Dn1m1 +Dn2m2)2] .

(E.53)

Note that in equation (E.53), when (Xk, Yk) is resampled, at most two of Ni for

i ∈ F are changed exactly by one (one decrease and the other increase). The same

statement holds true for Mj. Let these vertices be vn1 , vn2 , vm1 and vm2 . Also the

pair collision counts Nij are fixed except possibly Nn1m1 and Nn2m2 that may change

by one. So, in the fourth line Σn1 and Σn2 account for the changes in MI estimation
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due to the changes in Nn1 and Nn2 , and Σm1 and Σm2 account for the changes in

Mm1 and vm2 , respectively. Finally Dn1m1 and Dn2m2 account for the changes in MI

estimation due to the changes in Nn1m1 and Nn2m2 . For example, Σn1 is precisely

defined as follows:

Σn1 :=
∑

j:emj∈EG

NmMj g̃

(
NmjN

NmNj

)
− (Nm + 1)Mj g̃

(
NmjN

(Nm + 1)Mj

)
(E.54)

where we have used the notations Ni and N
(k)
i instead of Ni(Z) and Ni(Z

(k)) for

simplicity. Now note that by assumption A4 we have

|g̃
(
NmjN

NmMj

)
− g̃

(
NmjN

(Nm + 1)Mj

)
| ≤ Gg

∣∣∣∣NmjN

NmMj

− NmjN

(Nm + 1)Mj

∣∣∣∣
≤ O

(
NmjN

N2
mMj

)
.(E.55)

Thus, using (E.55), Σn1 can be upper bounded as follows

Σn1 ≤
∑

j:emj∈EG

O

(
NmjN

N2
m

)
= O

(
N

Nm

)
≤ O(N).(E.56)

It can similarly be shown thatNn2 , Σm1 , Σm2 , Dn1m1 andDn2m2 are upper bounded

by O(N). Thus, (E.53) simplifies as follows

V
[
Î(X, Y )

]
≤ 36O(N2)

2N3
= O(

1

N
).(E.57)

E.3 Optimum MSE Rates of EDGE

In this short section we prove Theorem VII.5.
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Proof of Theorem VII.5. The proof simply follows by using the ensemble theo-

rem in ([83], Theorem 4) with the parameters ψi(t) = ti and φi,d(N) = N−i/2d for

the bias result in Theorem VII.2. Thus, the following weighted ensemble estimator

(EDGE) can achieve the optimum parametric MSE convergence rate of O(1/N) for

q ≥ d.

Îw :=
∑
t∈T

w(t)Îε(t),(E.58)
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APPENDIX F

Proofs of Chapter IX

F.1 Assumptions

In the proofs, in addition to the Hölder smoothness Σ(s,H) on the densities,

we make the following assumptions on the densities and the functional g, which

we adapt from [85], are

• (A.0): Assume that the kernel K is a symmetric product kernel with bounded

support in each dimension.

• (A.1): Assume there exist constants ε0, ε∞ such that 0 < ε0 ≤ p(x) ≤ ε∞ <

∞, ∀x ∈ S and similarly that the marginal densities and joint pairwise densities

are bounded above and below.

• (A.2): Assume that each of the densities belong to Σ(s,H) in the interior of

their support sets with s ≥ 2.

• (A.3): Assume that g (t1/t2) has an infinite number of mixed derivatives wrt t1

and t2.

• (A.4): Assume that
∣∣∣∂k+lg(t1,t2)

∂tk1∂t
l
2

∣∣∣ /(k!l!), k, l = 0, 1, . . . are strictly upper bounded

for ε0 ≤ t1, t2 ≤ ε∞.
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• (A.5): Assume the following boundary smoothness condition: Let px(u) : Rd →

R be a polynomial in u of order q ≤ r = bsc whose coefficients are a function

of x and are r − q times differentiable. Then assume that∫
x∈S

(∫
u:K(u)>0, x+uh/∈S

K(u)px(u)du

)t
dx = vt(h),

where vt(h) admits the expansion

vt(h) =

r−q∑
i=1

ei,q,th
i + o

(
hr−q

)
,

for some constants ei,q,t.

It has been shown that assumption A.5 is satisfied when S is rectangular (e.g. S =

[−1, 1]d) and K is the uniform rectangular kernel [85]. Thus it can be applied to any

densities in Σ(s,H) on this support.

F.2 Proof of Bias Results

We prove Theorem B.7 in this appendix. The proof shares some similarities with

the bias proof of the divergence functional estimators in [85]. The primary differences

lie in handling the possible dependencies between random variables. We focus on

the more difficult case of G̃h as the bias derivation for G̃h,ij is similar.

Recall that p̃
′

X,h is a ratio of two products of KDEs. The numerator is a product of

2-dimensional KDEs while the denominator is a product of marginal (1-dimensional)

KDEs, all with the same bandwidth. Let γ ⊂ {(i, j) : i, j ∈ {1, . . . , d}} denote the

set of index pairs that denote the components of X that have joint KDEs that

are in the product in the numerator of p̃
′

X,h. Let β denote the set of indices that

denote the components of X that have marginal KDEs that are in the product in

the denominator of p̃
′

X,h. Note that |γ| = d− 1 and |β| = d− 2. As an example, in
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the example given in (8.4), we have γ = {(1, 2), (2, 3)} and β = {2}. The bias of G̃h

can then be expressed as

B
[
G̃h

]
= E

[
g

(
p̃
′

X,h(X)

p̃X,h(X)

)
− g

(
p′(X)

p(X)

)]

= E

[
g

(
p̃
′

X,h(X)

p̃X,h(X)

)
− g

( ∏
(i,j)∈γ EX

[
p̃ij,h

(
X(i),X(j)

)]
EX [p̃X,h(X)]

∏
k∈β EX [p̃k,h (X(k))]

)]

+ E

[
g

( ∏
(i,j)∈γ EX

[
p̃ij,h

(
X(i),X(j)

)]
EX [p̃X,h(X)]

∏
k∈β EX [p̃k,h (X(k))]

)
− g

(
p′(X)

p(X)

)]
,(F.1)

where X is drawn from p and EX denotes the conditional expectation given X. We

can view these terms as a variance-like component (the first term) and a bias-like

component, where the respective Taylor series expansions depend on variance-like or

bias-like terms of the KDEs.

We first consider the bias-like term, i.e. the second term in (F.1). The Taylor se-

ries expansion of g

( ∏
(i,j)∈γ EX[p̃ij,h(X(i),X(j))]

EX[p̃X,h(X)]
∏
k∈β EX[p̃k,h(X(k))]

)
around

∏
(i,j)∈γ p

(
X(i),X(j)

)
and

p(X)
∏

k∈γ p(X
(k)) gives an expansion with terms of the form of

BmX

 ∏
(i,j)∈γ

p̃ij,h
(
X(i),X(j)

) =

 ∏
(i,j)∈γ

EX

[
p̃ij,h

(
X(i),X(j)

)]
−
∏

(i,j)∈γ

p
(
X(i),X(j)

)m

,

BmX

[
p(X)

∏
k∈γ

p(X(k))

]
=

(
EX [p̃X,h(X)]

∏
k∈β

EX

[
p̃k,h

(
X(k)

)]
− p(X)

∏
k∈γ

p(X(k))

)m

Since we are not doing boundary correction, we need to consider separately the

cases when X is in the interior of the support S and when X is close to the boundary

of the support. For precise definitions, a point X ∈ S is in the interior of S if for all

X
′
/∈ S, K

(
X−X′

h

)
= 0, and a point X ∈ S is near the boundary of the support if

it is not in the interior. Since K is a product kernel, X ∈ S is in the interior if and

only if all of the components of X are in their respective interiors.

Assume that X is drawn from the interior of S. By a Taylor series expansion of
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the probability density p, we have that

EX [p̃X,h(X)] =
1

hd

∫
K

(
X− x
h

)
p (x) dx

=

∫
K(u)p(X− uh)du

= p(X) +

bs/2c∑
j=1

cX,j(X)h2j +O (hs) .(F.2)

Similar expressions can be obtained for EX

[
p̃ij,h

(
X(i),X(j)

)]
and EX

[
p̃k,h

(
X(k)

)]
.

Now assume that X lies near the boundary of the support S. In this case, we

extend the expectation beyond the support of the density:

EX [p̃X,h(X)]− p(X) =
1

hd

∫
x:x∈S

K

(
X− x
h

)
p(x)dx− p(X)

=

[
1

hd

∫
x:K(X−x

h )>0

K

(
X− x
h

)
p(x)dx− p(X)

]

−
[

1

hd

∫
x:x/∈S

K

(
X− x
h

)
p(x)dx

]
= T1,X(X)− T2,X(X).(F.3)

We only evaluate the density p and its derivatives at points within the support when

we take its Taylor series expansion. Thus the exact manner in which we define the

extension of p does not matter as long as the Taylor series remains the same and

as long as the extension is smooth. Thus the expected value of T1,X(X) gives an

expression of the form of (F.2). For the T2,X(X) term, we perform a similar Taylor

series expansion and then apply the condition in assumption A.5 to obtain

E [T2,X(X)] =
r∑
i=1

eih
i + o (hr) .

Similar expressions can be found for p̃ij,h
(
X(i),X(j)

)
, p̃k,h

(
X(k)

)
, and when (F.3)

is raised to a power t. Applying this result gives for the second term in (F.1),

(F.4)
r∑
j=1

cg,p,jh
j +O (hs) ,
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where the constants cg,p,j depend on the densities, their derivatives, and the func-

tional g and its derivatives.

For the first term in (F.1), a Taylor series expansion of g

(
p̃
′
X,h(X)

p̃X,h(X)

)
around∏

(i,j)∈γ EX

[
p̃ij,h

(
X(i),X(j)

)]
and

EX [p̃X,h(X)]
∏

k∈β EX

[
p̃k,h

(
X(k)

)]
gives an expansion with terms of the form of

ẽq1,h(X) =

 ∏
(i,j)∈γ

p̃ij,h
(
X(i),X(j)

)
−
∏

(i,j)∈γ

EX

[
p̃ij,h

(
X(i),X(j)

)]q

,

ẽq2,h(X) =

(
p̃X,h(X)

∏
k∈β

p̃k,h
(
X(k)

)
− EX [p̃X,h(X)]

∏
k∈β

EX

[
p̃k,h

(
X(k)

)])q

.

To control these terms, we need expressions for EX

[
ẽq1,h(X)

]
and EX

[
ẽq2,h(X)

]
. We’ll

derive the expression only for EX

[
ẽq1,h(X)

]
as the expression for EX

[
ẽq2,h(X)

]
is

obtained in a similar manner.

For simplicity of exposition, we assume that d = 3 and that γ = {(1, 2), (2, 3)}.

Note that our method extends easily to the general case where notation can be

cumbersome. Define

Vi,j(X) = K1

(
X

(1)
i −X(1)

h

)
K2

(
X

(2)
i −X(2)

h

)
K2

(
X

(2)
j −X(2)

h

)
K3

(
X

(3)
j −X(3)

h

)

− EX

[
K1

(
X

(1)
i −X(1)

h

)
K2

(
X

(2)
i −X(2)

h

)]

EX

[
K2

(
X

(2)
j −X(2)

h

)
K3

(
X

(3)
j −X(3)

h

)]

= ηij(X)− EX [ηi(X)]EX

[
η
′

j(X)
]
.

Therefore,

ẽ1,h(X) =
1

(Nh2)|γ|

N∑
i=1

N∑
j=1

Vi,j(X).

By the binomial theorem,

EX

[
Vk
i,j(X)

]
=

k∑
l=0

(
l

k

)
EX

[
ηlij(X)

] [
EX [ηi(X)]EX

[
η
′

j(X)
]]k−l

.
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It can then be seen using a similar Taylor Series analysis as in the derivation of (F.2)

that for X in the interior of S and i 6= j, we have that

EX

[
ηlij(X)

]
= h2|γ|

bs/2c∑
m=0

c2,1,m,l(X)h2m.

Combining these results gives for i 6= j

EX

[
Vk
i,j(X)

]
= h2|γ|

bs/2c∑
m=0

c2,2,m,k(X)h2m +O
(
h4|γ|) .

If i = j, we obtain

EX

[
ηlii(X)

]
= hd

bs/2c∑
m=0

c2,2,m(X)h2m.

This then gives

EX

[
Vk
i,i(X)

]
= hd

bs/2c∑
m=0

c2,m,k(X)h2m +O
(
h4|γ|)

Here the constants c2,i,m,k(X) depend on the density p, its derivatives, and the mo-

ments of the kernels.

Let n(q) be the set of integer divisors of q including 1 but excluding q. Then due

to the independence of the different samples, it can then be shown that

(F.5) EX

[
ẽq1,h(X)

]
=
∑
i∈n(q)

bs/2c∑
m=0

(
c3,1,m,q(X)

(Nh2)(q−i) +
c3,2,m,q(X)

(Nh)(q−i)

)
h2m + o

(
1

N

)
.

By a similar procedure, we can show that

(F.6)

EX

[
ẽq2,h(X)

]
=
∑
i∈n(q)

bs/2c∑
m=0

 |β|∑
j=0

c4,1,j,m,q(X)(
Nhd (Nh)j

)q−i +
c4,2,m,q(X)

(Nh)q−i

h2m + o

(
1

N

)
.

When X is near the boundary of the support, we can obtain similar expressions as

in (F.5) and (F.6) by following a similar procedure as in the derivation of (F.4). The

primary difference is that we will then have powers of hm instead of h2m.
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For general g, we can only guarantee that

c

( ∏
(i,j)∈γ EX

[
p̃ij,h

(
X(i),X(j)

)]
EX [p̃X,h(X)]

∏
k∈β EX [p̃k,h (X(k))]

)
= c

(
p′(X)

p(X)

)
+ o(1),

where c(t1, t2) is a functional of the derivatives of g. Applying this gives the final

result in this case. However, we can obtain higher order terms by making stronger

assumptions on the functional g and its derivatives. Specifically, if c(t1, t2) includes

functionals of the form of tα1 t
β
2 with α, β < 0, then we can apply the generalized bino-

mial theorem to use the higher order expressions in (F.5) and (F.6). This completes

the proof.

F.3 Proof of Variance Results

To bound the variance of the plug-in estmiator, we use the Efron-Stein inequal-

ity [35]: (Efron-Stein Inequality) Let X1, . . . ,Xn,X
′
1, . . . ,X

′
n be independent ran-

dom variables on the space S. Then if f : S × · · · × S → R, we have that

V [f(X1, . . . ,Xn)] ≤ 1

2

n∑
i=1

E
[(
f(X1, . . . ,Xn)− f(X1, . . . ,X

′

i, . . . ,Xn)
)2
]
.

The Efron-Stein inequality bounds the variance by the sum of the expected squared

difference between the plug-in estimator with the original samples and the plug-in

estimator where one of the samples is replaced with another iid sample.

In our case, consider the sample sets {X1, . . . ,Xn} and
{
X
′
1,X2 . . . ,Xn

}
and

denote the respective plug-in estimators as G̃h and G̃
′

h. Using the triangle inequality,

we have

∣∣∣G̃h − G̃
′

h

∣∣∣ ≤ 1

N

∣∣∣∣∣g
(

p̃
′

X,h(X1)

p̃X,h(X1)

)
− g

(
p̃
′

X,h(X
′
1)

p̃X,h(X
′
1)

)∣∣∣∣∣+
1

N

N∑
j=2

∣∣∣∣∣g
(

p̃
′

X,h(Xj)

p̃X,h(Xj)

)
− g

((
p̃
′

X,h(Xj)
)′

(p̃X,h(Xj))
′

)∣∣∣∣∣ ,(F.7)
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where
(
p̃
′

X,h(Xj)
)′

and (p̃X,h(Xj))
′

are the respective KDEs with X1 replaced with

X
′
1. Then since g is Lipschitz continuous with constant Cg, we can write∣∣∣∣∣g

(
p̃
′

X,h(X1)

p̃X,h(X1)

)
− g

(
p̃
′

X,h(X
′
1)

p̃X,h(X
′
1)

)∣∣∣∣∣
≤ Cg

∣∣∣∣∣∣
∏

(i,j)∈γ

p̃ij,h

(
X

(i)
1 ,X

(j)
1

)
−
∏

(i,j)∈γ

p̃ij,h

(
X
′(i)
1 ,X

′(j)
1

)∣∣∣∣∣∣
+ Cg

∣∣∣∣∣p̃X,h(X1)
∏
k∈β

p̃k,h

(
X

(k)
1

)
− p̃X,h(X

′

1)
∏
k∈β

p̃k,h

(
X
′(k)
1

)∣∣∣∣∣ .
To bound the expected squared value of these terms, we split the product of KDEs

into separate cases. For example, if we consider the case where the KDEs are all

evaluated at the same point which occurs M times, we obtain

M

(Mh2)2|γ|

N∑
m=2

E

 ∏
(i,j)∈γ

Ki

(
X

(i)
1 −X

(i)
m

h

)
Kj

(
X

(j)
1 −X

(j)
m

h

)
−

∏
(i,j)∈γ

Ki

(
X
′(i)
1 −X

(i)
m

h

)
Kj

(
X
′(j)
1 −X

(j)
m

h

)2
≤ 1

M2

∏
(i,j)∈γ

||KiKj||2∞.(F.8)

By considering the other |γ| − 1 cases where the KDEs are evaluated at different

points (e.g. 2 KDEs evaluated at the same point while all others are evaluated at

different points, etc.), applying Jensen’s inequality gives

E

∣∣∣∣∣∣
∏

(i,j)∈γ

p̃ij,h

(
X

(i)
1 ,X

(j)
1

)
−
∏

(i,j)∈γ

p̃ij,h

(
X
′(i)
1 ,X

′(j)
1

)∣∣∣∣∣∣
2 ≤ C1

∏
(i,j)∈γ

||KiKj||2∞,

where C1 <∞ is some constant that is O(1). Similarly, we obtain

E

∣∣∣∣∣p̃X,h(X1)
∏
k∈β

p̃k,h

(
X

(k)
1

)
− p̃X,h(X

′

1)
∏
k∈β

p̃k,h

(
X
′(k)
1

)∣∣∣∣∣
2
 ≤ C2||K||2∞

∏
k∈β

||Kk||2∞.

Combining these results gives

(F.9) E

∣∣∣∣∣g
(

p̃
′

X,h(X1)

p̃X,h(X1)

)
− g

(
p̃
′

X,h(X
′
1)

p̃X,h(X
′
1)

)∣∣∣∣∣
2
 ≤ C3,
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where C3 = O(1).

As before, the Lipschitz condition can be applied to the second term in (F.7) to

obtain ∣∣∣∣∣g
(

p̃
′

X,h(Xm)

p̃X,h(Xm)

)
− g

((
p̃
′

X,h(Xm)
)′

(p̃X,h(Xm))
′

)∣∣∣∣∣
≤ Cg

∣∣∣∣∣∣
∏

(i,j)∈γ

p̃ij,h
(
X(i)
m ,X

(j)
m

)
−
∏

(i,j)∈γ

p̃
′

ij,h

(
X(i)
m ,X

(j)
m

)∣∣∣∣∣∣
+ Cg

∣∣∣∣∣p̃X,h(Xm)
∏
k∈β

p̃k,h
(
X(k)
m

)
− p̃

′

X,h(Xm)
∏
k∈β

p̃
′

k,h

(
X(k)
m

)∣∣∣∣∣ .
For the first term, we again consider the |γ| cases where the KDEs are evaluated at

different points. As a concrete example, consider the example given in (8.4). Then

we can write

E

∣∣∣∣∣∣
∏

(i,j)∈γ

p̃ij,h
(
X(i)
m ,X

(j)
m

)
−
∏

(i,j)∈γ

p̃
′

ij,h

(
X(i)
m ,X

(j)
m

)∣∣∣∣∣∣
2 ≤ 4 + 6(M − 2)2

M4
||K1K

2
2K3||2∞.

For more general γ, it can be shown that the LHS of (F.10) is O
(

1
M2

)
. Similarly, we

can check that

E

∣∣∣∣∣p̃X,h(Xm)
∏
k∈β

p̃k,h
(
X(k)
m

)
− p̃

′

X,h(Xm)
∏
k∈β

p̃
′

k,h

(
X(k)
m

)∣∣∣∣∣
2
 = O

(
1

M2

)
.

Applying the Cauchy-Schwarz inequality with these results then gives

(F.10) E

( N∑
j=2

∣∣∣∣∣g
(

p̃
′

X,h(Xj)

p̃X,h(Xj)

)
− g

((
p̃
′

X,h(Xj)
)′

(p̃X,h(Xj))
′

)∣∣∣∣∣
)2
 = O(1).

Combining (F.9) and (F.10) with (F.7) gives

E
[∣∣∣G̃h − G̃

′

h

∣∣∣2] = O

(
1

N2

)
.

Applying the Efron-Stein inequality then gives

V
[
G̃h

]
= O

(
1

N

)
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[118] Wallace Ugulino, Débora Cardador, Katia Vega, Eduardo Velloso, Ruy Milidiú, and Hugo
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