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Abstract 

 

Investigating uncertainty within Earth’s complex climate system, as well as within tools used to 

represent system interactions, can contribute to multidisciplinary projects such as model 

benchmarking and scenario planning. In this dissertation, three case studies are presented that 

focus on climate system connections to land management and water quality. First, global soil 

heterotrophic respiration (HR) is a component land flux that drives net carbon exchange between 

the atmosphere and terrestrial ecosystems. Due to observational limitations, it is difficult to 

quantify HR or to evaluate it in global-scale model simulations, leading to error ranges with 

comparable magnitude to recent fossil fuel burning. We analyze three soil model configurations 

that simulate HR fluxes within a biogeochemical testbed and subsequently quantify the effects of 

variation in carbon fluxes on atmospheric CO2 distributions using a three-dimensional 

atmospheric tracer transport model. We show that atmospheric CO2 can provide a useful 

constraint on large-scale patterns of soil heterotrophic respiration. Second, Lake Erie has 

experienced a resurgence of harmful algal blooms (HABs) that is attributed to agricultural 

practices and fertilizer run-off exacerbated by spring rain events. We examine extreme 

precipitation events for the Great Lakes Basin and the Western Lake Erie Basin subregion for 

historical and mid-21st century periods by quantifying changes in precipitation seasonality and 

daily intensity. We utilize three model ensembles that cover a range of spatial scales and future 

emissions scenarios to evaluate the roles of model method and grid resolution within the 

projection output. Third, climate change influences regional drivers of HABs, emphasizing the 

need for usable information in planning and policy. HAB modeling and mitigation actions have 



 xvii 

focused on the agricultural sector to reduce land run-off and nutrient loading in Western Lake 

Erie. Other regional stakeholders, such as drinking water managers, beach managers, marina 

operators, and recreational land owners, respond and adapt to algal blooms once they form, 

representing different data needs from those in the mitigation space. We define sources of 

uncertainty in climate, watershed, and HAB modeling and present four pathways for 

conceptualizing uncertainty across a modeling chain. We further discuss how scenario planning 

can incorporate model uncertainty information and stakeholder knowledge for HAB decision-

making. 



 1 

Chapter 1 Introduction 

 

1.1 Human and climate system interactions 

The global climate system consists of multiple complex components, including atmospheric 

composition, ecosystems on land, and water flow patterns, which interact over a range of spatial 

and temporal scales (IPCC, 2014). Through these interactions there is exchange of many 

quantities including radiation (energy), water, and carbon. Wind, precipitation and ocean 

circulation patterns redistribute energy, forming distinct climate zones that govern ecosystem 

structure and function (Swann et al., 2012). Shifts in energy manifest in local temperature change 

and subsequently water phase changes, which affect seasonal phenomena such as regional 

monsoons (Trenberth, 2000). Precipitation and temperature also introduce variability in carbon 

and nutrient cycling across local and global scales (Friedlingstein, 2014). Humans add more 

complexity to the system by altering these component interactions through activities such as 

deforestation, agriculture, water use, and fossil fuel burning and extraction. These layers of 

climate-human system complexity contain inherent uncertainty. For example, global 

observations for temperature change over 60 years show confidence in the amount of observed 

warming with a relatively small error range compared to the overall magnitude (Figure 1; IPCC 

2013). There is a clear warming contribution from greenhouse gas emissions attributed to human 

(anthropogenic) activity, despite uncertainty in the overall magnitude that arises from detangling 

the response of temperature to individual forcings (see greenhouse gases and other anthropogenic  
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Figure 1.1: Contributions to global surface temperature change from 1951 to 2010 (IPCC, 2013). 

Uncertainty on the magnitude of observed warming is small relative to the magnitude, but 

uncertainty on the attribution of warming is larger. 

 

forcing in Figure 1.1; IPCC 2013). Natural forcing of global surface temperature has a smaller 

overall magnitude compared to that of combined human activity, but retains a similar error range 

–meaning natural systems could amplify or mitigate human-climate feedbacks (Figure 1.1, IPCC, 

2013). Further, these component forcings do not work in isolation. Human activity interacts with 

several natural components of the climate system, which has implications for how uncertainty is 

characterized. 
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Overlap in human and natural systems can be illustrated by considering land management 

strategies (Figure 1.2a; IPCC, 2019). Different types of land management and utilization 

practices, from unmanaged lands to agriculture and forestry, affect the carbon cycle and 

hydrologic cycle as well as chemical reactions and changes to radiative balance in the 

atmosphere (Figure 1.2a; IPCC, 2019). Additionally, deviations from the climate state average, 

or variability, tests the vulnerability of both human and natural systems. For example, above 

average annual temperatures affect agricultural yields, soil health, and ecosystem turnover 

(Koven et al., 2017; Lobell and Field, 2007). Intense rainfall and flooding impacts everything 

from fertilizer application to drinking water to coastal erosion (Lall et al., 2018).  

 

The impact of human activity can also be tracked within estimation of Earth’s carbon budget, 

specifically through deforestation and in the burning of fossil fuels (Figure 1.2b; Le Quéré et al., 

2018). Fossil fuel burning releases formerly stored carbon dioxide (CO2) into the atmosphere, 

which has been documented to alter the radiation imbalance at the top of Earth’s atmosphere 

(IPCC, 2014). The greenhouse gas forcing accounted for in Figure 1.1 arises because 

atmospheric CO2 absorbs infrared radiation (energy) from Earth’s surface and re-emits some of 

this energy back to the surface (Zhong and Haigh, 2013). Ultimately Earth’s surface temperature 

must increase to account for this extra energy and achieve radiative balance at the top of the 

atmosphere. These interactions result in more energy (heat) remaining in Earth’s climate system 

leading to feedbacks that manifests in changes to climate phenomena, including seasonal 

precipitation, growing season length and lake temperatures. Additionally, land cover change 

modifies surface energy balance through reflectivity of radiation, evaporation of water from 

soils, and transpiration of water from plants (Seneviratne et al., 2010). Thus human activity such  
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Figure 1.2: (a) Land management strategies and the interactions with the climate system (IPCC, 

2019). (b) Sources and sinks within the carbon budget (LeQuéré et al., 2018).  
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as deforestation, agriculture, and urban development also affects the transfer of energy (heat) 

into the atmosphere (Figure 1.2a). 

 

The terrestrial biosphere, or the land areas containing living organisms, contributes important 

carbon-climate feedbacks on a timescale relevant to policy making (between 1-100 years). Since 

the mid-20th century, land-based ecosystems have taken up about 25% of human CO2 emissions, 

reducing the total amount of this potent greenhouse gas in the atmosphere and dampening the 

overall severity of climate change (Figure 1.2b; Le Quéré et al., 2018). Variations in the land 

sink are therefore directly reflected in the atmosphere and uncertainty in land sink estimates 

contributes to the total budget imbalance (Figure 1.2b). 

 

Processes making up the terrestrial land sink vary geographically and over seasonal and annual 

timescales. The net flux between terrestrial ecosystems and the atmosphere is a combination of 

both plant and soil level processes which depend on factors such as atmospheric CO2 

accumulation, temperature and growing season length, available organic matter, seasonal rainfall 

and evapotranspiration (Wang et al, 2016; Zhang et al, 2016). Photosynthesis describes the 

processes by which CO2 molecules diffuse through leaf openings and are chemically converted 

to sugars using energy from sunlight (Farquhar et al., 2001; Hind and Olson, 1968). Water is also 

necessary for energy transfer within the light-based chemical reactions of photosynthesis. 

However, CO2 is taken up through openings on the leaf surface, which allows water to escape 

from the plant. In addition to light and water limitations, photosynthesis is regulated by enzyme 

activity which occurs at an optimal temperature. Thus stress from climate extremes such as 

drought and heat waves can inhibit photosynthesis. Sugars created through photosynthesis are 

stored within plants and can be used for growing leaves, stalks, and trunks. When sugars are 
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accessed for plant growth, they are converted back to CO2, and this loss of carbon biomass is 

termed autotrophic respiration (Rautotrophic; Chapin et al., 2011). Similarly autotrophic 

respiration also occurs below the surface in root systems (Rautotrophic (belowground); Chapin et 

al., 2011). Additionally within soils, dead biomass is metabolized by microbes releasing CO2 to 

the atmosphere, termed heterotrophic respiration (HR; Wieder et al., 2018). Microbial 

decomposition of soil organic matter process depends on local climate, soil type, and microbial 

community structure (Wieder et al., 2015). 

 

𝑃ℎ𝑜𝑡𝑜𝑠𝑦𝑛𝑡ℎ𝑒𝑠𝑖𝑠: 𝐶𝑂2 + 𝐻2𝑂 
ℎ𝑣
→  𝐶𝐻2𝑂 + 𝑂2 

𝑁𝑃𝑃 = 𝐺𝑟𝑜𝑠𝑠 𝑃𝑟𝑖𝑚𝑎𝑟𝑦 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 (𝑝ℎ𝑜𝑡𝑜𝑠𝑦𝑛𝑡ℎ𝑒𝑠𝑖𝑠) − 𝑅𝑎𝑢𝑡𝑜𝑡𝑟𝑜𝑝ℎ𝑖𝑐 

𝐻𝑅 = 𝑅𝑠𝑜𝑖𝑙 − 𝑅𝑎𝑢𝑡𝑜𝑡𝑟𝑜𝑝ℎ𝑖𝑐(𝑏𝑒𝑙𝑜𝑤𝑔𝑟𝑜𝑢𝑛𝑑)  

𝑁𝑒𝑡 𝐸𝑐𝑜𝑠𝑦𝑠𝑡𝑒𝑚 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 (𝑛𝑒𝑡 𝑐𝑎𝑟𝑏𝑜𝑛 𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒) = 𝐻𝑅 − 𝑁𝑃𝑃 

 

Drawdown of atmospheric CO2 through photosynthesis occurs dominates during a regional 

growing season (Figure 1.3a). As photosynthesis declines, the impact of respiration becomes 

more pronounced as microbes in soils breakdown organic matter including leaf litterfall (Figure 

1.3b). In available global estimates, total soil respiration can reach fluxes up to 9 times as large 

as current annual fossil fuel burning (~90 PgC yr-1), but is nearly completely offset by 

photosynthesis in the present climate state (Zhao et al., 2017; Lajtha et al., 2018). The error 

range for global heterotrophic respiration is close to 10 PgC yr-1 (Hashimoto et al., 2015; Zhao et 

al., 2017), which is the same order of magnitude as recent annual fossil fuel estimates (9 PgC yr-

1; Bruhwiler et al., 2018), highlighting the need to better constrain component respiration  
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Figure 1.3: (a) Quantities that make up a net flux of carbon between land and the atmosphere. (b) 

Modified from Chapin et al., 2011. Gross primary productivity (GPP) represents a measurable 

estimate of photosynthesis in plant growth. Ecosystem respiration (Recosystem) represents soil 

and plant processes that release CO2. These fluxes evolve over the annual cycle and contribute to 

net carbon exchange between land and the atmosphere. 

 

estimates. Soil heterotrophic respiration is extremely heterogeneous in space and time, and is 

therefore difficult to measure directly or to upscale local measurements to global scale. Often 

total carbon fluxes are inferred at an ecosystem level by measurements of turbulent eddies 

(mixing) in the atmosphere (Baldocchi et al., 2008). Field measurements are used in combination 

with eddy flux measurements to estimate the amount of soil heterotrophic respiration (Zhao et 

al., 2017). 

 

1.2 Climate change and ecosystem services 

Ecosystem services, such as CO2 uptake, forestry, agriculture, and water supply have inherent 

vulnerability to changing climate conditions and human activity (van der Geest et al., 2019). 

Reforestation within the Northern Hemisphere has contributed to the increasing trend of land 

CO2 uptake over the 20th century (Bruhwiler et al., 2018). Currently, North American land is 

(b) (a) 
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estimated to account for about 10% (0.31 PgC yr-1) of the land sink (3.0 ± 0.8 Pg C yr-1; 

Bruhwiler et al., 2018). Tropical rainforests alone may be responsible for up to 50% of the global 

land sink (Schimel, 2014) whereas semi-arid regions are a main contributor to interannual 

variability in the global land sink (Adams and Piovesan, 2005; Ahlström et al., 2015; Huxman et 

al., 2004; Poulter et al., 2014; Zhang et al, 2016). However deforestation in both extratropical 

and tropical rainforests during the late 20th and early 21st centuries may be counteracting land 

carbon gains (Hristov et al., 2018). Agricultural practices around the globe can link to 

deforestation, such as peatland burning, or additional release of greenhouse gases such as 

methane from cattle farming (Bruhwiler et al., 2018; IPCC, 2019). In the United States overall 

agricultural land area has declined slightly, but cropland alone accounts for over 40% of total 

agricultural land use (Hristov et al., 2018). With a growing global population, demand for 

agricultural land may outweigh continued reforestation or natural land management. Further, 

land management practices feedback on climate driven changes to the global land sink. Several 

earth system model projections that either prescribed (used as forcing) or calculated land use 

emissions show land as a net carbon source to the atmosphere by the end of the 21st century 

(Friedlingstein, 2014). 

 

Agricultural management practices can also have cascading impacts to lake water quality 

through seasonal runoff (Michalak et al, 2013). Algal blooms, or densely packed regions of algae 

growth, reoccur annually in coastal waters as well as inland lakes (Hudnell and Dortch, 2008). 

Historically, algal blooms in freshwater lakes and rivers have been tied to lake pollution that 

raised levels of nutrients like phosphorus and nitrogen (Anderson et al., 2002; Watson et al. 

2016). Harmful algal blooms deplete lake oxygen and can include toxin-producing bacteria 
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which affects both in-lake on onshore biodiversity (Paerl et al., 2001; Watson et al., 2016). In the 

Midwest region of the United States, phosphorus and nitrogen fertilizers are applied to 

agricultural land at the start of the growing season. Extreme spring precipitation within the Great 

Lakes Basin then contributes to surface run-off of these fertilizers and increases lake nutrient 

loading, which fuels late-summer harmful algal blooms (Basile et al., 2017; Michalak et al., 

2013; Paerl and Huisman, 2008). In the last 20 years, Lake Erie has experienced a resurgence in 

record breaking HAB events (Rinta-Kanto et al., 2005; Steffen et al., 2014). Great Lakes 

ecosystems services cover several functions including provisioning (commercial fishing, 

drinking water, water for the energy sector) and cultural categories (recreation, nature and 

viewscape enjoyment, historical interests, spiritual fulfilment; Allan et al., 2017). Depending on 

bloom location and toxicity, service risks include drinking water contamination, reduced fishing 

yield, and decreased use of recreational land and water (beaches, campgrounds, and marinas; 

Jetoo et al., 2015; Palm-Forster et al., 2016; Wolf et al., 2017). 

 

1.3 Communication of climate information 

Throughout human history, societies around the globe have made decisions influenced by 

climate conditions. Thus, resilient development involves planning for both changing climate 

mean states and variability. Informed policy and ecosystem planning necessitates actionable 

information from the scientific community. However, layers of complexity across scales can be 

difficult to capture through climate modeling techniques that require some form of simplification 

of the climate system. Communication of climate impacts involves explanation of model and 

expert sources of uncertainty (Patt, 2007). However, uncertainty means different things to 
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different stakeholders with differing perspectives, even for the same environmental issue. Over 

the last 39 years, climate information has largely been communicated through synthesis reports 

from international to local scales. In 1980 the U.S. Department of Energy became a lead sponsor 

for a yearlong study surrounding climate change and its potential impacts, led by physical and 

social scientists. The study was proposed as a thought experiment on climate change by Climate 

Program members of the International Federation of Institutes for Advanced Study (IFIAS) at the 

University of Bonn in 1974, and later in a 1978 workshop co-sponsored by the World 

Meteorological Programme and the United Nations Environment Program. Study findings were 

released in a report called Climate Change and Society, which offered an evaluation of strategies 

to mitigate or avert potential long-term climate change effects, while at the same time making 

social systems more immediately resilient or “climate proof” (Kellogg and Schware, 1981). 

 

Many of the long term strategies designed to deal with a climate warming 

would also make agricultural and other social systems more nearly “climate 

proof” now. They can guard against the adverse effects of the normal short 

term climate fluctuations, giving added insurance in the event of a long term 

climate change. If the public perceives these benefits clearly, then 

implementing the strategies may be more politically acceptable. 

Kellogg and Schware (1981) 

 

Later that decade in 1988, the Intergovernmental Panel on Climate Change (IPCC) was 

established to synthesize the state of climate change research and since has released five reports. 

In the last two decades, the IPCC has expanded the scope of its assessments, specifically to 

address interactions of human and environmental systems leading to the establishment of its 

Working Group on Impacts, Adaptation, and Vulnerability (IPCC, 1997).  
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In the 30 years since its formation, the IPCC has only increased its confidence that post-

industrial era climate change is attributed to human emissions of greenhouse gases (IPCC). 

Evidence of the human impact on the environment is provided by observations of radiative 

imbalance at the top of the atmosphere as well as model simulations of natural climate variability 

that fail to show the global warming trend of the last 200 years. Most recently, in 2018, the IPCC 

fulfilled a mandate from the 2015 Paris Climate Accords (termed the Paris Agreement) by 

releasing a special report on the implications of global mean temperature increases of 1.5°C and 

2°C. The report provided a scientific basis for the rapid reduction of fossil fuel emissions by 

2030 to avert dangerous climate change effects including heat and precipitation extremes, sea 

level rise, increased health risks, threatened water and food supply, and irreversible ecosystem 

degradation (IPCC, 2018). 

 

1.4 Quantification of climate model uncertainty 

Application of climate information requires framing of uncertainty for different disciplines and 

stakeholders (Gettelman and Rood, 2016). Characterizing sources of uncertainty can 

contextualize model output for the decision-making problem, or issue at hand. Using global 

climate model output from the Intergovernmental Panel on Climate Change (IPCC) third 

assessment report Hawkins and Sutton (2009) categorized sources of uncertainty as arising from 

forcing scenario, model structure, and internal variability. Within the IPCC’s fifth assessment 

report, the forcing scenario uncertainty results from possible amounts of 21st century radiation 

measured at the top of the atmosphere, ranging from 2.6 to 8.5 W/m2 beyond the preindustrial 

radiative balance (Hawkins and Sutton, 2009). Climate model structure adds uncertainty in how 
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model components respond to the choice of radiative forcing scenario. Climate models also 

contain their own climate equilibrium state (based on the model structure and input starting state) 

which contributes uncertainty in the simulated variability, or fluctuations from the mean climate 

state (e.g. timing and strength of atmospheric-ocean interactions such as El Niño). Additionally, 

variable probabilities can be used to gauge confidence in the magnitude and sign of future 

change. The IPCC has developed a method of characterizing uncertainty through confidence 

descriptions based on both evidence and expert judgement (IPCC, 2014). 

 

Framing of uncertainty can take shape at different scales and with different goals. Many 

underlying relationships of climate phenomena can be represented in equations derived from the 

laws of physics. Equations for the state of matter and fluid flows, among others, are used in the 

foundation of climate models. However climate simulations are subject to uncertainty since these 

equations have to be discretized to a limited number of model gridpoints. Smaller scale processes 

are not accounted for at the grid level of many established climate models and are represented 

using parameterizations –that is, functional or observed relationships, which are simplifications 

of reality. Beyond dynamical equations and physical parameterizations, model structure can 

contain uncertainty from missing processes and scale mismatches for interacting processes. 

Initialization of model climate states, computational resources to run complex modeling 

experiments, and representations of sub-grid processes push up against limits of model 

development. Regional scale climate models have been developed with finer grid resolution 

aimed at better process representation, however these models also require information from 

global models along domain boundaries.  
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The method used to characterize uncertainty based on model structure is tied to the scale of 

physical processes examined and may require multiple types of simulations. The scientific 

community has tested the role of human activity in climate change through large scale model 

intercomparison projects centered on ensembles of physically-based model projections that 

produce a range of future climate change realizations. Model benchmarking is expanding how 

uncertainty is addressed in model intercomparison projects. For example, the International Land 

Model Benchmarking Project (ILAMB) accounts for regional accuracy in land variables by 

tracking model behavior through performance-based metrics. This focus on a mechanistic 

representation of climate system processes is distinct from recent reliance on emergent 

constraints to test model fidelity, or historical variable relationships that may or may not hold 

under future climate change.  

 

1.5 Application of climate information 

Despite decades of scientific reports, climate action has been slow to materialize despite over 20 

years in international negotiation. The Kyoto Protocol was established in 1997 to cap global 

carbon dioxide emissions, entering into force in 2005 with the first commitment period of 2008 

to 2012 (United Nations Climate Change, https://unfccc.int/kyoto_protocol). However United 

States did not end up ratifying the Protocol, eventually opting out (Siddiqi, 2011). Additionally, 

China and India, two large developing countries, were exempt from the emissions reductions 

(Siddiqi, 2011). In 2011, Canada formally withdrew from the Kyoto Protocol, days after 

international negotiations agreed to move forward with plans for a second commitment period 

(United Nations News, https://news.un.org/en/story/2011/12/398142). In 2015, the Paris 
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Agreement was constructed using climate change mitigation and adaptation actions offered 

directly by participating countries (United Nations Climate Change, https://unfccc.int/process-

and-meetings/the-paris-agreement/the-paris-agreement). Examination of these commitments 

shows there is still an emissions gap between the Paris Agreement and emissions level needed to 

avoid dangerous climate change (IPCC, 2018).  

 

Barriers to the application of climate information arise from the fit of climate information, 

interactions of knowledge producers and users and interplay of existing and new knowledge 

(Lemos et al., 2012). Climate scientists often focus on large scale phenomena, and most climate 

models are run at global scales. In contrast, stakeholders, including local governments, business 

owners, resource managers, and landowners, work within regional boundaries on timescales of 

50 years or less. In 1990, U.S. federal law mandated a National Climate Assessment (NCA) 

carried out by the U.S. Global Change Research Program (USGCRP). Between 1997 and 2018 

four NCA reports were released. As of 2014 the USGCRP has focused on sustaining its 

assessments regionally, and has released special reports on risks to human well-being and the 

U.S. economy. Over the last decade, subnational reports have been released by interdisciplinary 

partnerships which have included state offices, government research laboratories, universities, 

cities, utility companies, and community stakeholders (National Academies of Sciences, 

Engineering, and Medicine, 2019; Kirchhoff et al., 2019). Among these subnational reports, 

scientific basis and stakeholder engagement are common, however there is divergence on the 

inclusion of policy discussion and follow up action (National Academies of Sciences, 

Engineering, and Medicine 2019; Kirchhoff et al., 2019). 
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Figure 1.4: Matrix of decision making tools for system uncertainty versus system controllability 

Figured modified from Peterson et al., 2003. Scenario planning has been used as a tool for 

climate change impact planning. 

 

A further barrier to actionable climate data and projections is that local stakeholders look for 

tailored climate data, however the applicability of model output is limited to the specifications of 

the simulations. Climate modelers and scientists may also lack the sectoral knowledge of 

practitioners, managers or officials needed to develop usable model output. Improved climate 

communication starts with producing legitimate, credible and salient information (Cash et al., 

2003), and includes managing boundaries between knowledge and action (Lemos et al., 2012). 

Co-production, or two-way communication between knowledge producers and users that target 

iteration on science questions, methods or applications, has emerged as a practical way to 

address the lack of usability of climate information (Kirchhoff et al. 2013; Lemos and 

Morehouse, 2005; Lemos et al. 2019). Co-production on climate science knowledge 

encompasses multiple modes of interaction (contractual, consultative, collaborative, and 
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collegial), and can take shape through several research approaches depending on available 

resources such as time, funding and training (Meadow et al., 2015). The climate system contains 

a high degree of uncertainty due to complex interactions, and operates on long timescales 

making real-time experiments difficult to impossible, thus scenario planning is one tool often 

used in forming climate impact strategies (Figure 1.4). Scenario planning, or problem-solving 

through development of possible futures, follows an iterative process involving problem 

identification (orientation), system assessment (exploration), scenario creation (synthesis), and 

scenario testing (action and monitoring; Peterson et al., 2003; Weeks et al., 2011).  

 

1.6 Scope of dissertation work 

This dissertation focuses on aspects of climate change with potential to impact human health and 

ecosystem services, but which also contain substantial uncertainty in measured and or modeled 

values. Carbon cycle prediction requires simplifying the complex structures of soil biology, 

Great Lakes precipitation is represented through sub-model grid processes in a non-uniform area, 

and harmful algal bloom modeling currently relies on historical datasets, without capacity to 

directly incorporate climate change information. The work presented here will discuss three case 

studies of how uncertainty is treated in model parameterization and model coupling for land 

management and ecosystem planning. Three science questions are addressed as: 

I. Can atmospheric CO2 observations be used to analyze regional carbon flux signatures 

based on different soil model representations of microbial activity? 
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The first chapter investigates the imprint of soil heterotrophic respiration on atmospheric CO2 

using three soil models with implicit and explicit microbial representations. Uncertainty in soil 

carbon fluxes is investigated through feedback to the global atmospheric CO2 growth rate and 

regional CO2 variability. The potential use of atmospheric CO2 to constrain soil carbon 

respiration is evaluated for soil model benchmarking. 

II: How can changing precipitation patterns from a range of climate model simulations be 

interpreted for timescales relevant to ecosystem service planning?  

The second chapter quantifies changes to Great Lakes and Western Lake Erie precipitation by 

the mid-21st century using an ensemble of global and regional climate models. Uncertainty in 

projections is quantified through probability in precipitation seasonality and daily intensity. The 

effects of model resolution and lake representation are discussed in context of reducing regional 

precipitation bias. 

III: How can uncertainty be tracked in coupled climate, watershed, and harmful algal 

bloom modeling to inform ecosystem service adaptation decisions? 

The third chapter poses four modeling pathways to conceptualize uncertainty surrounding future 

harmful algal bloom impacts to Western Lake Erie. Modeling pathways capture the 

compounding of simplifying impact of model structure and bias correction. Interdisciplinary 

project designs are presented to address the different data needs of adaptation versus mitigation 

decision-making.
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Chapter 2 Leveraging the signature of heterotrophic respiration on atmospheric CO2 for 

model benchmarking. 

 

N.B: This chapter was submitted for publication in 2019 as 

 

Basile, S. J., Lin, X., Wieder, W.R., Hartman, M.D., and Keppel-Aleks, G.: Leveraging the 

signature of heterotrophic respiration on atmospheric CO2 for model benchmarking, 

Biogeosciences, In Review. 

 

2.1 Introduction 

Atmospheric CO2 observations reflect net exchange of carbon between the land and oceans with 

the atmosphere. Observations of atmospheric CO2 concentration have been collected in situ since 

the late 1950s (Keeling et al., 2011), and global satellite observations have become available 

within the last decade (Crisp et al., 2017; Yokota et al., 2009).  The high precision and accuracy 

of in situ observations and the fact that these measurements integrate information about 

ecosystem carbon fluxes over a large concentration footprint make atmospheric CO2 a strong 

constraint on model predictions of net carbon exchange (Keppel-Aleks et al., 2013). For 

example, at seasonal timescales, atmospheric CO2 can be used to evaluate the growing-season 

net flux, especially in the Northern Hemisphere (Yang et al., 2007). At interannual timescales, 

variations in the atmospheric CO2 growth rate are primarily driven by changes in terrestrial 

carbon fluxes in response to climate variability (Cox et al., 2013; Humphrey et al., 2018; Keppel-

Aleks et al., 2014). Recent studies have hypothesized that soil carbon processes represent one of 

the key processes in driving these interannual variations (Cox et al., 2013; Wunch et al, 2013). 

Moreover, soil carbon processes represent one of the largest uncertainties in predicting future 

carbon-climate feedbacks, in part because non-permafrost soils contain an estimated 1500 to 
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2400 PgC (Bruhwiler et al., 2018), at least a factor of three larger than the pre-industrial 

atmospheric carbon reservoir.   

 

Soil heterotrophic respiration (HR), the combination of litter decay and microbial breakdown of 

organic matter, is the main pathway for CO2 release from soil carbon pools to the atmosphere. 

Currently, insights on HR rates and controls are mostly derived from local-scale observations. 

For example, soil chamber observations can be used to measure soil respiration (which includes 

root and heterotrophic respiration fluxes) at spatial scales on the order of 100 cm2 (Davidson et 

al., 2002; Pumpanen et al., 2004; Ryan and Law, 2005). Ecosystem respiration (combined 

autotrophic and heterotrophic respiration fluxes) can also be backed out from eddy covariance 

net ecosystem exchange observations at spatial scales around 1 km2, but with substantial 

uncertainty (Baldocchi 2008; Barba et al., 2018; Lavigne et al., 1997). Because fine-scale 

variations in environmental drivers such as soil type and soil moisture affect rates of HR, it is 

difficult to scale local respiration observations to zonal or global scales. Even with use of 

advanced techniques such as artificial neural networks, lack of information for remote or under-

sampled zones contributes uncertainty to bottom-up HR estimates (Bond-Lamberty et al., 2018; 

Zhao et al, 2017). 

 

Local-scale observations reveal that HR is sensitive to numerous climate drivers, including 

temperature, moisture, and freeze-thaw state (Baldocchi 2008; Barba et al., 2018; Lavigne et al., 

1997). Because of these links to climate, predicting the evolution of HR and soil carbon stocks 

within coupled Earth system models is necessary for climate predictions. Within prognostic 

models, heterotrophic respiration has been represented as a first-order decay process based on 
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precipitation, temperature, and a linear relationship with available substrate (Jenkinson et al., 

1990; Parton, 1993, Randerson et al., 1996). However, such representations may neglect key 

processes for the formation of soil and persistence of soil organic carbon (SOC) stocks 

(Lehmann and Kleber 2015; Rasmussen et al. 2018; Schmidt et al. 2011). More recently, models 

have begun to explicitly represent microbial processes into global-scale simulations of the 

formation and turnover of litter and SOC (Sulman et al., 2014; Wieder et al., 2013) as well as to 

evaluate microbial trait-based signatures on SOC dynamics (Wieder et al., 2015). These 

advances in the representation of SOC formation and turnover increase capacities to test 

emerging ideas about soil C persistence and vulnerabilities, but also increase the uncertainties in 

how to implement and parameterize these theories in models (Bradford et al. 2016; Sulman et al. 

2018; Wieder et al. 2018).  

 

Given these uncertainties, developing methods to benchmark model representations of HR fluxes 

is an important research goal (Bond-Lamberty et al. 2018b) as model predictions for soil carbon 

change over the 21st century are highly uncertain (Schuur et al., 2018; Todd-Brown et al., 2014). 

A common method for model evaluation is to directly compare spatial or temporal variations in 

model properties (e.g., leaf area index) or processes (e.g., gross primary productivity) against 

observations (Randerson 2009; Turner et al., 2006). Such comparisons assess model fidelity 

under present day climate, but may not ensure future predictivity of the model. The use of 

functional response metrics, which evaluate the relationship between a model process and an 

underlying driver, may ensure that the model captures the sensitivities required to predict future 

evolution (Collier 2018, Keppel-Aleks et al., 2018). A third benchmarking approach is to use 

hypothesis-driven approaches or experimental manipulations to evaluate processes (Medlyn et 
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al., 2015). It is likely that these methods will have maximum utility when combined within a 

benchmarking framework (e.g., Collier, 2018; Hoffman et al., 2016) since they evaluate different 

aspects of model predictive capability.  

 

Here, we hypothesize that atmospheric CO2 data can be used to evaluate simulations of soil 

heterotrophic respiration and differentiate between the chemical and microbial parameterizations 

used in state-of-the-art models. Previous work has shown that atmospheric CO2 observations are 

inherently sensitive to HR across a range of timescales. For example, at seasonal timescales, 

improving the parameterization for litterfall in the CASA model improved its phasing of the 

simulated atmospheric CO2 annual cycle (Randerson et al., 1996). At interannual timescales, 

variations in the Northern Hemisphere CO2 seasonal minimum are hypothesized to arise from 

variations in respiration (Wunch et al., 2013) and variations in the growth rate have been linked 

to tropical respiration and its temperature sensitivity (Anderegg et al., 2015). In this analysis, we 

simulate atmospheric CO2 distributions using three different soil model representations that are 

part of a soil biogeochemical testbed (Wieder et al., 2018). The three sets of HR fluxes, were 

shown in Wieder et al., (2018) to have distinct patterns at seasonal timescales, are used as 

boundary conditions for a 3-dimensional atmospheric transport model. We evaluate temporal 

variability in the resulting CO2 simulations against observations, quantify the functional 

relationships between CO2 variability and temperature variability, and quantify the regional 

influences of land carbon fluxes on global CO2 variability. The methods and results are presented 

in Section 2 and 3, and discussion of the implications for benchmarking and our understanding of 

drivers of atmospheric CO2 variability are presented in Section 3.4.   
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2.2 Data and Methods 

2.2.1 Observations and timeseries analysis 

For this analysis we use reference CO2 measurements from 34 marine boundary layer sites 

(MBL, Table S1) within the NOAA Earth System Research Laboratory sampling network 

(ESRL, Figure 2.1; Dlugokencky et al., 2016). These sites were chosen to minimize the influence 

of local anthropogenic emissions and had at least 50% data coverage over the 29-year period 

between 1982 and 2010. We detrend all timeseries data using a third-order polynomial fit to 

remove the impact of annually increasing atmospheric concentration in our seasonal and 

interannual calculations (SFigure 2.1). Using the detrended CO2 data, we calculate a period 

median annual cycle by averaging all observations for a given calendar month. To calculate CO2 

interannual variability (CO2 IAV), the median annual cycle is subtracted from the detrended 

timeseries (SFigure 2.1, Figure 2.4). We diagnose the magnitude of CO2 IAV using one standard 

deviation, unless otherwise noted. Model simulated CO2 seasonality and interannual variability is 

calculated using the same methods. 

 

Following the approach in Keppel-Aleks et al., 2018, we aggregate site specific CO2 by 

averaging measurement timeseries across six latitude zones (Figure 2.1, solid lines): Northern 

Hemisphere high latitudes (61 to 90°N), midlatitudes (24 to 60°N), tropics (1 to 23°N), Southern 

Hemisphere tropics (0 to 23°S), and extratropics (24 to 60°S and 61 S to 90 S). The global mean 

CO2 timeseries is constructed as an area-weighted average of these six atmospheric zones. 
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Figure 2.1: Tagged flux regions and marine boundary layer CO2 observing sites used in our 

analysis. The 5 tagged flux regions are shown in color fill: Northern High Latitude (NHL), 

Northern Mid-Latitude (NML), Northern Tropics (NT), Southern Tropics (ST) and Southern 

Extratropics (SE). For sampling simulated CO2 consistent with the tagged flux regions, we 

aggregate marine boundary layer sites (filled circles) into 6 latitude bands defined by the black 

lines. 

 

2.2.2 Soil testbed representations of heterotrophic respiration 

We used a soil biogeochemical testbed (Wieder et al., 2018), which generates daily estimates of 

soil carbon stocks and fluxes at global scale without the computational burden of running a full 

land model. The testbed is a chain of model simulations where soil models with different 

structures can be run under the same forcing data, including the same net primary productivity 

(NPP) fluxes, soil temperature, and soil moisture. Each testbed soil model in this analysis 

produces unique gridded heterotrophic respiration (HR) values based on its own underlying 

mechanism and soil C stocks. Currently, we are running with a carbon-only configuration of the 

testbed. From the testbed output we calculate the net ecosystem productivity (NEP) as the 

difference between HR and NPP, specifically HR-NPP, to account for the opposite sign 

convention between the component fluxes. 
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For the simulations described in this paper, the chain starts with the Community Land Model 4.5 

(CLM4.5; Oleson et al., 2013), run with satellite phenology with CRU-NCEP climate reanalysis 

as forcing data (Jones et al., 2013; Kalnay et al., 1996; Le Quéré et al., 2018). In this simplified 

formulation of CLM, a single plant functional type is assumed in each 2° by 2° gridcell. Daily 

values for gross primary productivity (GPP), soil moisture, soil temperature, and air temperature 

from CLM4.5 are passed to the Carnegie-Ames Stanford Approach terrestrial model (CASA-

CNP; Potter et al. 1993; Randerson et al., 1996; Randerson et al., 1997; Wang et al., 2010). The 

CASA-CNP plant model uses the data from CLM4.5 to calculate NPP and carbon allocation to 

roots, wood, and leaves. This module also determines the timing of litterfall. Finally, metabolic 

litter, structural litter, and decomposing coarse woody debris (CWD) are then passed to the soil 

biogeochemical models. 

 

The three soil models make distinct assumptions about microbial processes. More details 

regarding these formulations and their implementation in the testbed are found in Wieder et al. 

(2018), but we provide brief descriptions here. The CASA-CNP soil model computes first-order, 

linear decay rates modified by soil temperature and moisture, implicitly representing microbial 

activity and soil carbon turnover through a cascade of organic matter pools (CASA: Randerson et 

al., 1997; CASA-CNP: CASA carbon cycling with additional nitrogen, and phosphorus cycling, 

Wang et al. 2010). These include metabolic and structural litter, as well as a fast, slow, and 

passive soil carbon pools. The Microbial-Mineralization Carbon Stabilization model (MIMICS; 

Wieder et al., 2014; Wieder et al., 2015) explicitly represents microbial activity with a 

temperature-sensitive reverse Michaelis-Menten kinetics (Buchkowski et al., 2017; Moorhead 
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and Weintraub, 2018) but has no soil moisture controls. The decomposition pathway is set up 

with two litter pools (identical to those simulated by CASA-CNP), three soil organic matter 

pools (available, chemically and physically protected), and two microbial biomass pools for 

copiotrophic (fast) and oligotrophic (slow) microbial functional groups. The Carbon, Organisms, 

Rhizosphere, and Protection in the Soil Environment model (CORPSE) is also microbially 

explicit and uses reverse Michaelis-Menten kinetics, but it assumes different microbial and soil 

carbon pools. Surface litter and soil C pools are considered separately, but only soil C has a 

parallel set of physically protected pools that are isolated from microbial decomposition. 

CORPSE includes a temperature dependent Maximum Reaction Velocity (Vmax) parameter, but 

also includes a term for the soil moisture controls on decomposition rates that uses volumetric 

liquid soil water content. For all three models, soil texture inputs were also derived from the 

CLM surface data set (Oleson et al., 2013). We acknowledge that one potential limitation of the 

approach is a lack of vertical resolution in terms of temperature or frozen fraction of soil 

moisture (Koven et al. 2013).  

 

While this modeling approach contains necessary simplifications, it provides the ability to query 

the role of structure in driving differences in fluxes. Model output includes daily net primary 

production (NPP) from CASA-CNP and HR simulated by CASA-CNP, CORPSE and MIMICS. 

Daily fluxes between 1982 and 2010 are averaged to monthly values and masked into land 

regions that align with the CO2 sampling zones (section 2.2.1, Figure 2.1, color fill): Northern 

Hemisphere high latitudes (NHL; 61 to 90°N), midlatitudes (NML; 24 to 60°N), tropics (NT; 1 

to 23°N), Southern Hemisphere tropics (ST; 0 to 23°S), and extratropics (SE; 24 to 90°S) – here 

the two Southern Hemisphere extratropical regions were combined into one flux area since 
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Antarctic carbon fluxes are negligible. Land-area integrated flux timeseries are then used for 

seasonal and interannual calculations (method described in section 2.2.1). However, the raw 

daily fluxes between 1980 and 2010 are used as boundary conditions to an atmospheric transport 

model, again separated by latitude zones listed above, to simulate the imprint of these different 

soil model configurations on monthly atmospheric CO2. 

 

2.2.3 GEOS-Chem atmospheric transport modeling of CO2  

We simulate the imprint of the testbed fluxes on atmospheric CO2 using GEOS-Chem, a 3-D 

atmospheric transport model. We run the GEOS-Chem v12.0.0 CO2 simulation between 1980 

and 2010 at a resolution of 2.0° in latitude by 2.5° in longitude with 47 vertical levels. The model 

is driven by hourly meteorological fields from the Modern-Era Retrospective analysis for 

Research and Application version 2 (MERRA2) reanalysis data (Gelaro et al., 2017; 

https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/), with the dynamic timestep set to be 600 

seconds. The model is initialized with a globally-uniform atmospheric CO2 mole fraction equal 

to 350 ppm. Results of the first two years (1980 and 1981) are reserved for model spin-up, and 

we analyze the monthly average outputs for the period 1982–2010. To minimize influence of 

land-atmosphere boundary layer dynamics and the influence of anthropogenic emissions, we 

sample the resulting GEOS-Chem simulations at the 3rd vertical level for grid cell points with 

latitude and longitude values closest to 34 marine boundary layer (MBL) sites within the NOAA 

ESRL network. We calculated the latitude zone averaging, median annual cycle and interannual 

variability calculations using the methods described for observed CO2 (see section 2.2.1). 

Aggregating CO2 from individual sites is consistent with our hypothesis that atmospheric CO2 

may provide constraints on large-scale, rather than local, patterns of heterotrophic respiration. As 
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such, averaging simulated and observed CO2 across latitude zones smooths local information 

while retaining information about regional scale fluxes. 

 

We isolate the imprint of NPP and three representations of HR on the spatial and temporal 

evolution of atmospheric CO2 by using daily testbed results as boundary conditions (section 

2.2.2). We also separately tag CO2 originating from the five flux zones delineated in the previous 

section (Figure 2.1). Overall, we track 20 CO2 tracers in total (4 sets of fluxes and 5 flux regions) 

within the GEOS-Chem model. Throughout the manuscript, we refer to CO2 originating from 

these NPP and HR component fluxes as CO2
NPP and CO2

HR, respectively. For the atmospheric 

CO2 simulations, we used the sign convention that a positive flux indicates a flux into the 

atmosphere. Therefore, CO2
NEP, indicating CO2 from net ecosystem production (NEP), is 

calculated from the addition of CO2
NPP and CO2

HR. The same notation will be used to denote the 

testbed ensemble sources. For example, CO2
HR simulated from CORPSE fluxes is defined as 

CO2
CORPSE HR, similarly for CO2

CORPSE NEP. We note that the net CO2 response from the model 

(i.e., CO2
NEP) is approximately equivalent to observations in terms of seasonal and interannual 

variations, although we neglect ocean fluxes and emissions from fossil fuels, land use and land 

cover change, and fire. Previous studies have demonstrated that NEP drives most of the 

atmospheric CO2 seasonality (> 90%; Nevison et al., 2008; Randerson et al., 1997) and 

interannual variability (e.g., Rayner et al. 2008; Battel et al. 2000).  

 

2.2.4 Global temperature sensitivity and separation of regional influences 

For insight on a functional climate response, we investigate the global temperature sensitivity of 

the atmospheric CO2 growth rate and the testbed ensemble fluxes. Variability in the CO2 growth 
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rate anomaly was calculated as the difference between timestep n and n-1 for the monthly and 

annual interannual variability (IAV) timeseries. Testbed flux timeseries were averaged to 

monthly resolution and interpolated (averaged between months) to match the monthly initiation 

of each corresponding CO2 growth rate anomaly timeseries. Following Arora et al. (2013), we 

calculate temperature sensitivity (γ) using an ordinary linear regression for the timeseries of 

temperature interannual variability (T IAV) with 1) atmospheric CO2 growth rate anomalies, and 

2) land flux IAV (see section 2.2.2). For atmospheric CO2 growth rate anomalies, each timeseries 

was converted from ppm y-1 to PgC y-1 based on the global mass of atmospheric dry air. Thus, all 

global sensitivity values are reported in units of PgC y-1 K-1. A reference global temperature 

sensitivity value for the CO2 growth rate was calculated for 1982 to 2010 using ESRL CO2 

observations and the Climatic Research Unit’s gridded temperature product (CRU TS4; Jones et 

al., 2012). The CRU TS4 historical product was used because it consists of directly interpolated 

station data. 

 

We also assess the influence of individual regions on the global mean signal for both component 

land fluxes (NPP, HR) and simulated atmospheric CO2 (CO2
NPP, CO2

HR, CO2
NEP). To quantify 

each region’s contribution to global variability we calculate the ratio of regional IAV magnitude 

to global IAV magnitude, which we define as relative standard deviation (σREL). For each flux 

and CO2 region (NHL, NML, NT, ST, SE), this ratio is calculated from the standard deviation of 

each monthly IAV timeseries. However, for the regional values of simulated CO2 IAV, we 

identify the global mean response to a single region’s fluxes. That is, the CO2 IAV averaged 

across all six CO2 regions but sourced only from testbed fluxes in the NHL, or NML, etc., 

without influence from the other flux regions. We then take the standard deviation of this 
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regionally-selected global mean IAV for the ratio to total global CO2 IAV magnitude (derived 

from all global fluxes). To measure the strength of each region’s impact on global values, we use 

the same regional-global partitioning to calculate correlation coefficients (r) for the timeseries of 

component flux IAV and CO2 IAV. Thus, if an individual region were responsible for all 

observed global flux or CO2 variability, it would have both σREL and r values equal to 1 in this 

comparison. The value for σREL decreases with the magnitude of regional variability, and r 

decreases if the variability is not coherent with the global signal, even if the magnitude of 

variability is high. 

 

2.3 Results 

2.3.1 Seasonal imprint of heterotrophic respiration 

The three soil carbon models in the testbed impart different fingerprints on atmospheric CO2 

variability. Both CO2
NPP and CO2

HR show largest seasonality in the NHL, with seasonal 

amplitudes decaying toward the tropics and Southern Hemisphere. In the NHL, the peak-to-

trough amplitude of CO2
NPP is 39±2 ppm, with a seasonal maximum in April and a seasonal 

minimum in August (Figure 2.2a). The seasonal cycles for CO2
HR simulated from all testbed 

models are out of phase with that of CO2
NPP, and there are large amplitude differences in CO2

HR 

among the model ensemble members. Specifically, the NHL amplitude of CO2
CORPSE HR is 28±3 

ppm, while the amplitudes for CO2
MIMICS HR and CO2

CASA-CNP HR are only 17±1 ppm, accounting 

for about 40-70% of the amplitude from CO2
NPP (Table 2.1). However, in all latitude bands, the 

largest CO2
HR amplitude comes from the microbially explicit models – CORPSE for the 

Northern Hemisphere and MIMICS for the Southern Hemisphere (Table 2.1). The amplitudes of 

CO2
NPP and CO2

HR decrease further south, but the amplitude ratio of CO2
HR to CO2

NPP in NML  
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Figure 2.2: Climatological annual cycle (median) of atmospheric CO2 simulated from individual 

flux components (CO2
NPP, CO2

HR) between 1982 and 2010 for atmospheric sampling bands in 

the Northern Hemisphere (a-c) and Southern Hemisphere (d-f). Note the change in y-axis scale 

between the two hemispheres. 

 

and NT remains about 0.4-0.7 (Figure 2.2b-c; Table 2.1). In the Southern Hemisphere tropics, 

the amplitude of CO2
NPP was smaller than that the Northern Hemisphere, however amplitude of 

CO2
HR was similar to the NT values (Table 2.1). In the Southern Hemisphere extratropics, the 

amplitudes for all components were less 3 ppm (Table 2.1). 
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Table 2.1: Atmospheric CO2 mean annual cycle amplitude (in ppm) simulated from 

heterotrophic respiration (HR), net primary productivity (NPP), and net ecosystem productivity 

(NEP). The median annual cycle amplitudes for observed CO2 (CO2
OBS) averaged over latitude 

bands are also reported. 

 NHL 

61°-90°N 

NML 

24°-60°N 

NT 

0°-23°N 

ST 

1°-23°S 

SE 

24°-60°S 

SE 

61°-90°S 

CO2
CASA-CNP HR 17.6 11.4 4.3 4.3 1.1 1.9 

CO2
CORPSE HR 28.2 16.6 6.4 4.9 1.4 2.2 

CO2
MIMICS HR 17.2 11.8 5.1 4.4 1.9 2.5  

CO2
CASA-CNP NPP 39.3 24.6 11.9 6.0 3.1 3.1 

CO2
CASA-CNP NEP 26.2 16.3 9.3 1.6 2.2  2.2 

CO2
CORPSE NEP 23.4 14.8 8.7 1.3 2.2 2.4 

CO2
MIMICS NEP 32.8 19.0 10.4 1.7 1.9 2.1 

CO2
OBS 15.3 10.6 6.1 0.9 0.8 1.4 

 

The phasing of CO2
HR is an important driver of the overall comparison between CO2

NEP and 

observed CO2 seasonality (Figure 2.3). When the contributions of NPP and HR seasonality are 

considered together (i.e., CO2
HR + CO2

NPP), the simulated amplitude of CO2
NEP is larger than the 

observed CO2 across all latitude bands (Figure 2.3). The largest mismatch is in the NHL zone, 

where the observed mean annual cycle is 15±0.9 ppm, while the peak-to-trough CO2
NEP ranges 

from 23±1.3 ppm for CORPSE to 33±1.4 ppm for MIMICS (Figure 2.3a). The smaller CO2
NEP 

amplitude simulated by CORPSE is due to the large CO2
HR seasonality that counteracts the 

seasonality in NPP (Figure 2.2a-b). Furthermore, CO2
MIMICS HR and CO2

CASA-CNP HR have similar 

amplitudes in the NHL (Figure 2.2a; Table 2.1), but the CO2
NEP amplitude from these two 
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models differs (33±1.2 ppm versus 26±1 ppm, respectively; Figure 2.3a; Table 2.1). This occurs 

because CO2
MIMICS HR peaks one-month later than CO2

CASA-CNP HR, and has a zero-crossing that is 

more closely aligned with the trough of CO2
NPP (Figure 2.2a), leading to the larger amplitude in 

CO2
MIMICS NEP (Figure 2.3a; Table 2.1). Although the amplitude mismatch decreases towards the 

south (Figure 2.3b-f), the overall bias in the Northern Hemisphere suggests that either the 

seasonality of NPP is too large, or that all testbed models underestimate the seasonality of HR. 

Within the ST region, ensemble CO2
HR minima are opposite to that in CO2

NPP, leading to a small 

annual cycle in simulations whereas the double peak in the ESRL observations may reflect fluxes 

not accounted for in our framework (Figures 2.2d, 2.3d). 

 

 2.3.2 Interannual imprint of heterotrophic respiration 

The testbed ensemble reasonably simulates the magnitude and timing of interannual variability 

(IAV) compared with CO2 observations (Figure 2.4). Across the six latitude bands analyzed, 

simulated CO2
NEP IAV generally falls within one standard deviation of the median variation from 

observations for most of the study period (Figure 2.4). Taking a closer look at the CO2 from the 

component fluxes (NPP and HR), across all six latitude bands, the CO2
NPP IAV standard 

deviation is between 0.9 and 1.1 ppm for component fluxes (Figure 2.5a). CO2
CASA-CNP HR IAV 

shows similar standard deviation as CO2
NPP IAV, whereas the standard deviations of CO2

CORPSE 

HR and CO2
MIMICS HR range from 0.7-1.4 ppm and 0.5-1.1 ppm, respectively (Figure 2.5a).  
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Figure 2.3: Climatological annual cycle (median) of CO2 for observations (black) and global net 

ecosystem productivity flux (CO2
NEP, colors) between 1982 and 2010 for six atmospheric 

sampling bands in the Northern Hemisphere (a-c) and Southern Hemisphere (d-f). Note the 

change in y-axis scale between the two hemispheres.  Shading on the observed line represents 

one standard deviation due to interannual variability in the seasonal cycle. 
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Figure 2.4: Interannual variability of CO2 from global net ecosystem productivity (CO2
NEP IAV) 

for testbed models (colors) and marine boundary layer observations from the NOAA ESRL 

network (black). Gray shading outlines one standard deviation of observed CO2 interannual 

variability. High-latitude, mid-latitude and tropical land belts are shown for the Northern 

Hemisphere (a-c) and Southern Hemisphere (d-f). 

 

Combining the CO2 responses from component fluxes to CO2
NEP reveals a latitudinal gradient in 

IAV standard deviation similar to that of ESRL observations, with largest standard deviation 

found in the northern extratropics (Figure 2.5b). Among the three testbed models, the standard 

deviation of CO2
CASA NEP agrees best with observations across all latitude bands (CO2

CASA NEP:  
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Figure 2.5: Magnitude of CO2 interannual variability resulting from (a) individual flux 

components (CO2
NPP IAV, CO2

HR IAV) and (b) global net ecosystem productivity (CO2
NEP IAV). 

Observed CO2 IAV from NOAA ESRL network are shown with black bars whereas colors 

represent simulated data. Errorbars shown on the observed IAV represent two standard 

deviations, calculated as the median magnitude after removing a 12 month sliding window from 

the IAV timeseries. 

 

0.5-0.9 ppm; ESRL: 0.6-1.0 ppm; Figure 2.5b). CO2
CORPSE NEP overestimates IAV by up to 30% 

in NHL and NML, but agrees better with observations in the tropics and Southern Hemisphere. 

CO2
MIMICS NEP overestimates IAV standard deviations across all latitude bands (Figure 2.5b). 

Interestingly, in the NHL, the overestimation is 20% even though CO2
MIMICS HR shows similar 
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IAVs as CO2
NPP (both 1.1 ppm; Figure 2.5). This suggests that the phasing of CO2

MIMICS HR IAV 

relative to CO2
NPP contributes to CO2

MIMICS NEP bias. 

 

Both global NPP and HR fluxes are sensitive to temperature variations at interannual timescales, 

with increased build-up of CO2 in the atmosphere at higher temperatures. Since these 

temperature sensitivities cannot be directly constrained from observations, we calculate 

temperature sensitivities for the CO2 resulting from these component fluxes as well as from NEP. 

For CASA-CNP, the temperature sensitivity (γ) for globally integrated NPP and HR fluxes is 2.5 

PgC yr-1 K-1 and 1.7 PgC yr-1 K-1; respectively (Figure 2.6a). The temperature sensitivity of HR 

was higher for the microbially explicit models: 2.1 PgC yr-1 K-1 for CORPSE and 4.2 PgC yr-1 K-

1 for MIMICS (Figure 2.6a). For any given testbed flux (NPP, HR, or NEP), the temperature 

sensitivity of the resulting global mean CO2 growth rate anomaly is higher than that of the 

underlying flux IAV. For example, the temperature sensitivity of the globally integrated NPP 

flux IAV (γNPP) is 2.5 PgC yr-1 K-1 whereas γCO2
NPP is 3.2 PgC yr-1 K-1. The apparent 

amplification of the temperature sensitivity was even larger for HR. For example, the 

temperature sensitivity of MIMICS HR IAV (γHRMIMICS) was 4.2 PgC yr-1 K-1, whereas 

γCO2
MIMICS HR was 7.7 PgC yr-1 K-1 (Figure 2.6a). The resulting testbed CO2

NEP overestimates the 

temperature sensitivity of the observed atmospheric CO2 growth rate anomaly (6.1±2.5 PgC yr-1 

K-1; Figure 2.6b). CASA-CNP and CORPSE have temperature sensitivities within the range of 

the observed sensitivity, but γCO2
MIMICS NEP is 80% larger than observed value (10.9 PgC yr-1 K-

1; Figure 2.6b). We note that the γHR and γCO2
HR is an emergent property that reflects both 

direct and indirect temperature influences, including the impact of temperature variability on 

NPP and litterfall (Table S2.3).   
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Figure 2.6: Temperature sensitivity (γ) calculated for interannual variability (IAV) of CASA-

CNP air temperature and (a) flux IAV and corresponding CO2 growth rate anomalies, (b) NEP 

IAV and CO2
NEP growth rate anomalies. Reference sensitivity value (black) was calculated using 

NOAA ESRL CO2 and CRU TS4 air temperature. Sensitivity values were calculated as the 

ordinary linear regression coefficient between IAV timeseries for 1982 to 2010. Errorbars 

represent the 95% confidence interval for coefficient values. 

 

2.3.3 Geographic origins of CO2 IAV 

The interannual variability (IAV) in global NPP and HR originate from different geographic 

regions. The IAV in global NPP fluxes are dominated by variations within the NT and ST 
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regions, with relative standard deviation σREL ~ 0.5 and correlation coefficient r ~ 0.6 (Figure 

2.7a-b). The NML region also has a similar contribution to the NT in magnitude, but with a 

lower timing coherence (r = 0.44; Figure 2.7a-b). In contrast to the dominance of the tropics in 

IAV of global NPP, the NML region contributes most to IAV in global HR, with σREL ≥ 0.6 and 

r ~ 0.8 for all three testbed models (Figure 2.7c-d). The NHL region is also important in driving 

global HR flux variability based on CORPSE model results (σREL = 0.59 and r = 0.82; Figure 

2.7c-d). Despite high NPP variability in the tropics, the magnitude of tropical HR variability is 

only about 10-30% of global HR variability, and the timing coherence with the global signal is 

generally low (r < 0.45; Figure 2.7a-b). MIMICS HR IAV is the exception for the ST measuring 

close to 40% of global HR IAV magnitude and relatively high correlation (r = 0.58; Figure 2.7a-

b). Together, the tropics and NML contribute roughly equally to the magnitude of global NEP 

variability (σREL between 0.44-0.55; Figure 2.7e). Although the NML and NT show relatively 

high timing coherence (0.41-0.55), the ST shows the strongest timing coherence with global NEP 

IAV (r > 0.7; Figure 2.7f).   



 46 

 

Figure 2.7: Comparison of regional and global interannual variability (IAV) from land fluxes and 

resulting atmospheric CO2 between 1982 and 2010. (a, c, e) Normalized ratio taken between 

regional IAV and global IAV magnitude. (b, d, f) Linear correlation between regional IAV and 

global IAV. The scatterplot shows a direct comparison of ratio and correlation values for land 

flux values (x-axes) and corresponding CO2 (y-axes). Shapes denote the source regions for both 

land fluxes and CO2 response. 

 

Atmospheric transport modifies patterns of IAV in fluxes, emphasizing tropical flux patterns and 

de-emphasizing northern hemisphere flux patterns. For example, the role of ST in driving global 
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CO2
NPP variability is amplified compared to the underlying fluxes, as the timing coherence with 

the global signal increases from r = 0.64 for flux IAV to r = 0.88 for CO2
NPP IAV for this region 

(Figure 2.7b). Conversely, the role of NML is dampened, with timing coherence decreasing to r 

= 0.33 for CO2
NPP IAV versus r = 0.44 for NPP IAV (Figure 2.7b). Similarly, timing coherence 

for tropical CO2
HR IAV is substantially higher than that for HR fluxes in ST and NT (>0.7), 

although the atmospheric transport impact differs across the three testbed models (Figure 2.7d). 

In contrast to closely aligned NML correlation values for CO2
HR and HR (r ~ 0.8-0.9), NML 

CO2
HR IAV shows σREL between 0.45 and 0.58, a decrease from the HR IAV contribution (NML 

HR IAV σREL range: 0.57 to 0.74; Figure 2.7c). For CO2
NEP IAV, the regional contribution is 

more consistent with similar σREL and r to flux IAV (Figure 2.7e-f).  

 

2.4 Discussion 

Modeled differences in heterotrophic respiration impart discernible signatures on atmospheric 

CO2. We analyzed the atmospheric CO2 response to soil heterotrophic respiration (HR) using a 

soil testbed ensemble with three plausible representations of HR (CASA-CNP, CORPSE, 

MIMICS) and a 3-D atmospheric transport model. Results show that HR phasing is important for 

ecosystem carbon flux (NEP) at both seasonal and interannual timescales. Regional patterns of 

HR variability provide non-negligible contributions to global CO2 variability. Here we discuss 

these findings in more detail as well as implications for the use of CO2 observations for flux 

evaluation and model benchmarking. 

 



 48 

2.4.1 Impacts of heterotrophic respiration on seasonality 

Our evaluation of CO2 simulated using testbed fluxes revealed that all testbed models 

overestimated the mean annual cycle amplitude of atmospheric CO2 observations. In the 

Northern Hemisphere, the bias was largest for MIMICS, as the CO2
MIMICS NEP amplitude was 

overestimated by up to 100% (Figure 2.3). The mismatch was smallest in CO2
CORPSE NEP, which 

was within 70% of the observed annual cycle amplitude where CORPSE simulates the largest 

seasonal HR fluxes (Figure 2.3a-c, Table 2.1). We note that the mismatch across all three testbed 

formulations could be due to overestimation of the NPP flux used by all three testbed models, or 

underestimation of HR seasonality. However, an advantage of the testbed approach is that, 

because all of the models are driven by the same NPP and climate variables, the differences in 

the HR flux amplitudes arise from structural differences in the testbed. In the Southern 

Hemisphere, in contrast to the large differences found in the Northern Hemisphere, the simulated 

CO2 annual cycle amplitudes were similar across all three models, with small absolute 

mismatches (about 1 ppm) compared to observations.   

 

One challenge in using atmospheric CO2 to evaluate HR representation in soil models is the 

influence of productivity (NPP) on both HR fluxes and atmospheric CO2 variations. The seasonal 

diagnostics we present are very sensitive to the phasing of HR fluxes relative to NPP. For 

example, in NHL a one-month lag in the seasonal maximum of CO2
HR between MIMICS and 

CASA-CNP (Figure 2.2) leads to a 7 ppm difference in the overall amplitude of CO2
NEP— this 

despite identical amplitudes of CO2
HR for the two models (Figure 2.3). Although the substantial 

impacts of subtle phase differences complicate benchmarking, the sensitivity reveals interesting 

and important differences related to model structural choices (i.e. first order versus microbially 
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explicit). Wieder et al., (2018) noted that the microbially explicit models in the testbed had 

seasonal HR fluxes that peaked in the fall, about a month later than the HR fluxes simulated by 

CASA-CNP. The timing of CASA-CNP fluxes largely depend on soil temperature (highest HR 

flux when temperature is highest), whereas MIMICS and CORPSE have maximum HR fluxes set 

by trade-offs between the timing of maximal temperature and maximal microbial biomass, which 

is more tightly linked with litterfall (Figure 7 from Wieder et al., 2018). Thus, phasing of HR is a 

sensitive diagnostic for benchmarking, especially if additional constraints on the magnitude and 

phasing of NPP are available. 

 

In this study, determining the unique contribution from HR was possible since NPP was common 

among the three soil models used in the testbed, but the contribution of NPP will need to be 

resolved for model evaluation in other contexts. Long-term records of vegetation productivity at 

regional and global scales have been observed via satellite vegetation indices (Hicke et al., 2002; 

Meroni et al., 2009; Running et al., 2004), and more recently chlorophyll fluorescence 

(Frankenberg et al., 2011; Guan et al., 2016; Kohler et al., 2018; Li et al., 2018). Our study 

underscores the importance of developing methods to use these datasets together with 

atmospheric CO2 to inform the dynamics of carbon cycling and its component fluxes.   

 

2.4.2 Impacts of heterotrophic respiration on interannual variability 

Similar to the analyses on seasonal cycles, the testbed ensemble simulations showed a higher 

CO2 IAV associated with explicit microbial representation (Figure 2.5). This is especially true 

for CO2
CORPSE in the NHL and NML (Figure 2.5a). Interestingly, in the tropics and SE, 

CO2
MIMICS HR IAV is only slightly higher than that of CO2

CASA-CNP HR or CO2
CORPSE HR, but IAV 



 50 

of CO2
MIMICS NEP was 20-30% higher than that of other models. Further, in these regions 

MIMICS HR IAV also shows an inverse, but highly correlated relationship with NPP IAV (R2 > 

0.60, Table S2.3). This suggests that the large IAV of CO2
MIMICS NEP may result from differences 

in phasing between NPP and MIMICS HR fluxes, similar to phasing between MIMICS NPP and 

HR affecting the shape of the CO2
NEP annual cycle in NHL. In the NHL, all testbed models show 

HR IAV is correlated with both NPP IAV and temperature IAV (R2 of 0.32 to 0.77; Table S2.3). 

Additionally, NPP IAV is sensitive to temperature variability (γ = 0.15, R2 = 0.43; Table S2.3). 

Thus better diagnostics for atmospheric CO2 IAV owing to HR requires additional constraints on 

NPP fluxes, especially at high latitudes.  

 

The high IAV in CO2
MIMICS NEP is consistent with this model having the highest global 

temperature sensitivity overestimating observed value by 80% (Figure 2.6b). CORPSE, the other 

microbially explicit model, had a 30% higher temperature sensitivity in CO2
NEP than observed 

globally (Figure 2.6b). This large bias in temperature sensitivity demonstrates the structural 

uncertainty associated with current HR parameterization, and highlights the need for continued 

investigation of model microbial representation to improve the functional relationship with 

temperature in soil models. 

 

2.4.3 Implications for model benchmarking using atmospheric CO2 

Our results provide useful insights for model benchmarking using atmospheric CO2. On a global 

scale, interannual variability (IAV) of simulated atmospheric CO2 was shown to be affected by 

the variability in component fluxes (NPP, HR) from different land regions (Figures 2.5-2.7). The 

tropics dominate IAV in global NPP, while northern extratropics dominate the IAV in global HR 
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(Figure 2.7a-d). Taken together, NEP variability reflects roughly equal contributions from 

northern hemisphere temperate ecosystems (NML) and tropical ecosystems (NT and ST; Figure 

2.7e-f). These results suggest that the interannual variability of atmospheric CO2 results from 

two different processes (respiration and productivity) across multiple ecoclimate regions, 

whereas previous studies have mostly identified tropical (e.g. Cox et al., 2013; Wang et al., 

2013) or subtropical, semi-arid regions (e.g. Ahlstorm et al., 2015; Poulter et al., 2014) as 

dominant controls on the global CO2 IAV. 

 

Our analysis underscores that patterns of variability in atmospheric CO2 are tied not only to 

variabilities in the underlying fluxes, but also to atmospheric transport. For example, we showed 

that the temperature sensitivity of CO2 growth rate anomalies was larger than the sensitivity 

estimated from the fluxes themselves (Figure 2.6). The enhanced temperature sensitivity for 

CO2
HR was larger than for that of CO2

NPP, which suggests that the geographic origin of the fluxes 

relative to dominant patterns of transport affects the result (Figure 2.6a). This transport 

enhancement of the apparent temperature sensitivity of CO2 growth rate anomalies is consistent 

with results from Keppel-Aleks et al. (2018). While these results may be tied to the choice of 

GEOS-Chem to simulate atmospheric transport, they do underscore that (1) atmospheric CO2 

must be simulated from land fluxes to be use as a benchmark and (2) atmospheric observations 

should not be assumed to be a direct proxy for fluxes themselves. 

 

We employed several benchmarking approaches, including timeseries comparison and functional 

response to temperature, to evaluate if CO2 patterns reflect underlying representations of soil 

heterotrophic respiration. We found that soil heterotrophic respiration leaves non-negligible 
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imprints on atmospheric CO2, leaving open the possibility of more explicitly accounting for 

respiration variability using atmospheric CO2 observations. Given that HR links to NPP, soil C 

pools, and temperature, we recommend synergistically using datasets that reflect these variables 

(instead of identifying metrics in isolation). This could provide better model process evaluation if 

implemented in a larger benchmarking framework, such as the International Land Model 

Benchmarking Project (ILAMB; Collier, 2018; Hoffman et al., 2016). Model development will 

be crucial in the next decade of carbon cycle research, but so will tools to test mechanistic 

understanding and elucidate a coherent picture of the land-atmosphere carbon response to a 

changing climate. 

 

2.5 Conclusions 

Soil heterotrophic respiration remains a source of uncertainty in tracking carbon flows between 

terrestrial ecosystems and the atmosphere. Ground observations are limited by geographic region 

and empirical calculations of carbon fluxes. Model representations of microbial communities 

simplify complex biological systems and require evaluation for added predictive capability in 

carbon exchange. The Soil Biogeochemical Testbed offers a foundation for efficient comparison 

of different soil model structures. Here we utilized the Testbed in combination with ESRL 

observations of atmospheric CO2 to gain insight on structural uncertainty as it relates to soil 

heterotrophic respiration and its imprint on atmospheric CO2 variability. We found that structural 

differences, such as explicit microbial pools, are distinguishable in HR output and cascade to 

resulting CO2 patterns, providing a fingerprint by which this flux can be benchmarked at regional 

scales using atmospheric observations. Additionally, comparison of trends at interannual 

timescales revealed regional HR influences on global CO2 and traceable imprints of HR 

parameterization. These results suggest that CO2 observations combined with observational 
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constraints on productivity could be leveraged for insight on soil heterotrophic respiration in a 

model benchmarking setting, expanding the potential to advance mechanistic understanding of 

this important component of the carbon cycle.
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Chapter 3 Projected precipitation changes within the Great Lakes and Western Lake Erie 

Basin: a multi-model analysis of intensity and seasonality 

 

N.B.: This chapter was published in 2017 as 

 

Basile, S. J., Rauscher, S. A. and Steiner, A. L.: Projected precipitation changes within the Great 

Lakes and Western Lake Erie Basin: a multi-model analysis of intensity and seasonality, Int. J. 

Climatol., 37(14), 4864–4879, doi:10.1002/joc.5128, 2017. 

 

3.1 Introduction 

The Laurentian Great Lakes have the largest freshwater lake surface area in the world and 

support a diverse network of agriculture, transportation, and tourism. Precipitation is a key 

element of the water cycle in the Great Lakes Basin (GLB; Gronewold et al., 2013; Gronewold 

and Stow, 2014), and the impacts of shifts in seasonal and daily precipitation have been 

documented across the region (Cherkauer and Sinha,2010; Michalak et al., 2013; Mishra and 

Cherkauer, 2011). The release of greenhouse gases which feedback to a rise in global 

temperatures are associated with changes in precipitation, and are likely to induce more frequent 

heavy rain and flooding events (Karl et al., 2009; Melillo et al., 2014). The most recent National 

Climate Assessment identifies an increasing regional trend in total precipitation over the 

Midwestern United States since 1991 (Melillo et al., 2014). Further, for the Midwest and 

Northeast regions that encompass the Great Lakes, the amount of precipitation falling in very 

heavy events (the heaviest 1% of all daily events) has increased by 37 and 71%, respectively 

over the same period (Melillo et al., 2014). Here, we investigate climate model simulations of 
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precipitation seasonality and intensity in the GLB and how they are projected to change with 

future climate. 

 

Climate model simulation of precipitation depends on a suite of atmospheric and terrain-induced 

physical processes. Both the models’ spatial resolution and the inclusion of complex terrain and 

coastlines such as the Great Lakes have a large impact on simulated precipitation. Many of the 

global climate models in the third Climate Model Intercomparison Project (CMIP3; Meehl et al., 

2007) and the fifth iteration (CMIP5; Taylor et al., 2012) have coarse spatial resolution such that 

they do not explicitly represent the Great Lakes. To increase the resolution in complex 

topographic regions such as the Great Lakes, two common downscaling techniques are 

employed: dynamical downscaling and statistical downscaling (Wilby et al., 1998). Dynamical 

downscaling is a technique that uses high-resolution regional models driven by global climate 

model boundary conditions. For example, the North American Regional Climate Change 

Assessment Program (NARCCAP) ensemble of regional climate model (RCM) simulations was 

driven with initial and lateral boundary conditions obtained from global climate model output 

from the CMIP3 archive (Mearns et al., 2013). In contrast, statistical downscaling relies on 

observed relationships between large-scale variables and local variables over a historical period, 

and applies these relationships to increase the spatial resolution of existing global climate model 

output. While less computationally intensive than dynamical downscaling, a major drawback of 

statistical downscaling is the stationarity assumption, which requires that the statistical 

relationships remain the same in the observed period and in the future. 
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Previous climate and climate impact studies centered around or in the Great Lakes region have 

used either ensembles of global climate model data or downscaled data to understand how future 

precipitation may change in the Great Lakes region. Using a suite of global models from CMIP3, 

a statistical downscaling study suggests that winter and spring precipitation may increase 

between 20 and 30% by the end of century (2070–2099) (Hayhoe et al., 2010). Patz et al. (2008) 

calculated a 10–40% increase in the magnitude of extreme precipitation events in southern 

Wisconsin also based on CMIP3 model projections. A study using the NARCCAP ensemble to 

investigate changes across the agriculturally dominated Canadian prairie regions found up to a 

15% increase in spring and summer precipitation as well as change in return periods for rain-

dominated precipitation extremes (Khaliq et al., 2015). Vavrus and Behnke (2014) compared 

precipitation from global models with statistical and dynamically downscaled model output, and 

found a projected increase of annual precipitation <10% with more seasonal precipitation in all 

seasons except summer, increases in the intensity of daily extreme precipitation events (<30% 

increase in accumulation), and an even larger change in the return periods of extreme events (up 

to −50%). 

 

Dynamically downscaled experiments have improved our understanding of the role of lake–

atmosphere interactions in the present and under future climate conditions. Bryan et al. (2015) 

used dynamical downscaling with RegCM4 for the Great Lakes region to examine land–lake–

atmosphere feedbacks in a high-resolution ensemble under present day conditions, and found that 

the simulation of lake temperature can introduce biases in simulated precipitation. Similar results 

were found when dynamically downscaling with the Weather Research and Forecast (WRF) 

model (Mallard et al., 2014). For future climate, Notaro et al. (2015) used dynamically 
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downscaled simulations to show that cold-season precipitation is projected to increase due to 

reductions in lake ice cover, yet the frequency of the lake effect snowstorms is expected to 

decrease. Gula and Peltier (2012) found that a regional model (WRF) and its global driving 

model [the Community Climate System Model (CCSM)] produced different spatial patterns of 

projected precipitation over the Great Lakes region. The global model (CCSM) projected an 

increase 15–25% in annual precipitation by mid-century (2050–2060), whereas the dynamically 

downscaled WRF simulations showed a precipitation reduction in the southern Great Lakes 

region and an increase in the northern Great Lakes. This difference was attributed to 

atmosphere–lake feedbacks. d’Orgeville et al. (2014) also used WRF with different physics 

parameterizations, and found that precipitation extremes are expected to increase in the Great 

Lakes region. Together, these studies highlight that there may be added value in using high-

resolution simulations that accurately resolve the lake and its physical properties, and that global 

models are not likely to capture these regional nuances. 

 

In this study, we conduct a multi-scale regional analysis of Great Lakes precipitation to 

identify the role of climate model method and grid resolution on precipitation projections. We 

examine the GLB as a whole, which is noted to be difficult to simulate due to the treatment of 

the lakes (Mearns et al., 2013). We also evaluate the specific subregion of the Western Lake 

Erie Basin (WLEB). The WLEB is the subject of ongoing agricultural management studies 

connected to recurring harmful algal blooms in western Lake Erie, and these events are 

influenced by regional precipitation intensity (Michalak et al., 2013). Our analysis utilizes 

modelled output from one global model ensemble and two dynamically downscaled regional 

model ensembles. We compare output between a historical period (1980–1999) and high 
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emissions scenario experiments for a mid-century period (2041–2060). We quantify changes in 

precipitation intensity and seasonality in the defined regions using daily and monthly rates to 

inform future climate change adaptation planning. Moreover, we highlight areas of confidence 

and uncertainty for the different ensembles to summarize the value of the multi-scale analysis. 

3.2 Methods 

The seasonal timing and daily magnitude of precipitation events are two metrics that can be 

used to quantify precipitation impacts. We use a suite of gridded observation products, RCM 

output, and global climate model output to assess present-day and future projections of 

precipitation in the Great Lakes region. We evaluate models during a historical time period, 

defined in this study as 1980–1999 based on overlapping data availability of observations and 

NARCCAP regional climate simulations (Mearns et al., 2013). For the future time period, we 

evaluate 2041–2060 based on NARCCAP time-slice experiment. We evaluate the seasonal 

cycle of precipitation [e.g. December–January–February (DJF), March–April–May (MAM), 

June–July–August (JJA), and September–October–November (SON)] for the historical period 

to understand model biases and also for the mid-century period to understand future changes in 

seasonality. To assess extreme precipitation, we use the maximum 1-day precipitation which is 

a common metric used to understand changes in intensity between the two time periods and 

model ensembles. 

3.2.1  Precipitation observations 

Modelled historical climate data is evaluated with the Climate Prediction Center’s (CPC) Daily 

US Unified Precipitation data set between 1980 and 1999. The CPC Unified Precipitation data 

set uses distance weighting and optimal interpolation methods to resolve observations from over 
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30000 global observation stations to a 0.25
∘
×0.25

∘ 
gridded product (Chen et al., 2008). The 20-

year historical time period was selected based on the revised definition of climatological time 

period by the World Meteorological Organization from a 30-year average to a 20-year average 

(Arguez and Vose, 2011) and the intersection with RCM simulations. 

3.2.2  Global climate model data 

Twelve atmosphere–ocean (AO) models of the CMIP5 (Taylor et al., 2012) comprise the global 

climate model ensemble (Table 3.1), with model data accessed through the Earth System Grid 

Federation’s PCMDI, DKRZ, and NCAR nodes. For the future, we selected the Representative 

Concentration Pathway 8.5 (RCP 8.5) experiment, as present-day emissions are currently 

following this emissions projection (Peters et al., 2013). Only CMIP5 AO models with daily 

temporal output for the present-day and RCP 8.5 experiments were selected. The AO 

configuration is defined to include interactive atmosphere, land surface, ocean, and sea ice 

models as well as aerosol components, and captures water cycle feedbacks with the atmosphere 

(Flato et al., 2013). 

3.2.3  Regional climate model data 

RCMs, i.e. dynamical downscaling, have the potential advantage of preserving physical and 

dynamical relationships between variables, thus reducing the issue of stationarity associated with 

statistical downscaling (Gutierrez et al., 2013). These regional, higher resolution simulations 

require global climate model data or reanalysis data for lateral boundary conditions. For our 

analysis, we use ten regional NARCCAP simulations that provided daily precipitation for the 

present-day and future time periods at 50km resolution for the A2 emissions scenario (Table 

3.1). NARCCAP output was accessed through the Earth System Grid Federation PCMDI and 
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NCAR nodes as 3-h precipitation fluxes, which were converted to daily precipitation rates (mm 

day−1). The full NARCCAP ensemble includes twelve simulations, but two of the simulations 

(WRFG-CCSM and HRM3-GFDL) use different treatment of the lakes in present day and future 

conditions, making the comparison of present day and future precipitation not possible given our 

focus region. In addition to the NARCCAP RCM ensemble, we also evaluate two RCM 

simulations at 25km resolution (RCM-HiRes) with the RegCM4 (Giorgi et al., 2012), which uses 

two different CMIP5 GCM RCP 8.5 simulations as boundary conditions (Bryan et al., 2015) 

(Table 3.1). 

3.2.4  Spatial and temporal averaging 

The gridded observations, global ensembles, and regional ensembles were analysed for the GLB 

(40
∘
–50

∘
N, 75

∘
–95

∘
W), and the WLEB (40

∘
–43

∘
N, 82

∘
–85.5

∘
W; Figure 3.1). Each simulation 

was spatially averaged over the GLB and WLEB regions, with the number of grid cells within 

each region for each simulation detailed in Table 3.1 to highlight the range of resolution within 

the global and regional models. Daily precipitation data were downloaded for the global model 

simulations, and 3-h precipitation data from the NARCCAP and RCM-HiRes were downloaded 

and aggregated to a daily basis for present-day (1980–1999) and future (2041–2060) 

precipitation intensity. We note that two NARCCAP ensemble members (CRCM-CCSM and 

MM5I-CCSM) did not simulate the complete year for 1999 and for these two members we use 

the present-day period of 1980–1998. For seasonal climatology, daily data were averaged to 

monthly for both the historical and future periods. Differences in precipitation rates between the 

present-day and future time periods were calculated from the monthly climatologies. For 

intensity, daily precipitation rate probabilities were sorted into 15 bins ranging from 0 to 90 mm 

day−1. To account for the spatial variability within the GLB and WLEB averaging regions, 
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maximum precipitation rates within each region were also evaluated using 20 bins ranging from 

0 to 500 mm day−1. For the WLEB, seasonal and daily spring biases were calculated for the 

historical period to inform run-off sensitivity modeling for the Maumee watershed located in 

northwestern Ohio. Over the historical period, precipitation events >24 mm day−1 (99th 

percentile) were considered ‘extreme’ for the Maumee watershed based on comparisons with 

daily gauge precipitation data between 1981 and 1999. 

 

3.3 Evaluation of precipitation seasonality and intensity 

3.3.1 Precipitation seasonality 

3.3.1.1 Observed historical precipitation (1980–1999) 

Observed seasonal precipitation for the GLB and the WLEB subregions show a clear unimodal 

pattern with a summer maximum (Figures 3.2(a) and 3.3(a), respectively). For the period 1980–

1999, observed annual precipitation over the GLB is 832.6 mm with an annual minimum during 

late winter (30.6 mm month−1 in February) and maximum during summer (99.0 mm month−1 in 

June and 99.4 mm month−1 in July) (Figure 3.2(a)). The seasonal cycle is similar in the WLEB 

region, with peak precipitation (97.1 and 97.8 mm month−1 in June and July, respectively) and 

the mean minimum precipitation is higher (46.7 mm month−1 in February; Figure 3.3(a)). Over 

the WLEB, total annual precipitation of 908.2 mm is slightly higher than the GLB region 

average. For the GLB, the summer season (JJA) includes the largest fraction (over one-third) of 

the averaged annual precipitation (294.6 mm), with just less than one-fourth annual precipitation 

occurring in spring (198.7 mm; MAM). Summer also contains the highest fraction of WLEB  
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Table 3.1: Global and regional model ensemble details. 

precipitation (284.8 mm), however spring contains over one-fourth of its total precipitation 

(236.9 mm) (Table 3.2). 

 

Model type and 

emission scenario 
Atmospheric 

horizontal 

resolution 

Grid points 

(latitude× 

longitude=total) 

Lake mask Lake temperature Lake icea 

Global, RCP 8.5 
(latitude×longitude, 

∘
) WLEB GLB    

ACCESS1.0 1.25×1.875 3×2=6 9×11=99 No   
ACCESS1.3 1.25×1.875 3×2=6 9×11=99 No   
CCSM4 0.9×1.25 4×3=12 11×17=187 No   
CESM1-CAM5 0.9×1.25 4×3=12 11×17=187 No   
CMCC-CM 0.75×0.75 4×5=20 14×27=378 Yes 1Db Yes 
CMCC-CMS 1.875×1.875 2×2=4 6×11=66 Yes 1D Yes 
CSIRO-Mk3.6.0 1.875×1.875 2×2=4 6×11=66 No   
EC-EARTH 1.125×1.125 2×4=8 9×18=162 Yes Interpc No 
FGOALS-g2 2.8125×2.8125 1×1=1 4×7=28 No   
HadGEM2-AO 1.25×1.875 3×2=6 9×11=99 No   
MIROC5 1.4×1.4 2×2=4 7×14=98 No   
MRI-CGCM3 1.125×1.125 2×4=8 9×18=162 No   

Regional, SRES A2 

(RCM-driving GCM) 
(latitude×longitude, km)      

CRCM-CGCM3 50×50 9×8=72 30×38=1140 Yes 1D Yes 
CRCM-CCSM 50×50 9×8=72 30×38=1140 Yes 1D Yes 
ECP2-GFDL 50×50 9×8=72 31x39=1209 Yes Interp No 
EPC2-HadCM3 50×50 9×8=72 31×39=1209 Yes Interp No 
HRM3-HadCM3 50×50 8×7=56 28×35=980 Yes Interp No 
MM5I-CCSM 50×50 8×6=48 26×33=858 Yes Interp No 
MM5I-HadCM3 50×50 8×6=48 26×33=858 Yes Interp No 
RCM3-CGCM3 50×50 7×7=49 27×34=918 Yes Interp No 
RCM3-GFDL 50×50 7×7=49 27×34=918 Yes Interp No 
WRFG-CGCM3 50×50 8×6=48 26×33=858 Yes Interp Yes 

Regional, RCP 8.5 (latitude×longitude, km)      
RCM4-HadGEM 25×25 15×14=210 53×68=3604 Yes Interp No 
RCM4-GFDL 25×25 15×14=210 53×68=3604 Yes Interp No 

aLake ice present in Great Lakes region. b1D 

lake model for inland water points (Goyette 

et al., 2000). 
cLake surface temperature interpolated from nearest lake point (if in parent GCM) or from the nearest sea 

surface temperature (e.g. from coastal regions). 



 71 

3.3.1.2 Modelled historical precipitation (1980–1999) 

We compare simulated annual and seasonal precipitation from the global and regional ensembles 

with CPC observations averaged over 1980–1999 (Figures 3.2 and 3.3; Table 3.2). For the GLB 

over the historical period, 11 of the 12 CMIP5 members and eight of the ten NARCCAP 

members simulate more annual precipitation than the observed historical value, while both 

RCM-HiRes members have a negative or dry bias. The GLB averaging region has wet biases in 

both spring and winter in all 12 CMIP5 models and all ten NARCCAP models (Figures 3.2a-b). 

In both RCM-HiRes members, the seasonality of the modelled precipitation is relatively flat as 

noted by Bryan et al. (2015), with a positive winter bias and a negative summer bias. All of the 

models in the region exhibit a positive winter bias, while the summer bias in these simulations 

may be due to a weak parameterization of convective precipitation. All ensemble members show 

a wet bias in DJF precipitation ranging from 19.7mm (17.3%) to 108.3mm (95.2%) (Figures 

3.2a-c), although this may be in part attributed to the low observed values in the region 

influenced by gauge error for solid phase precipitation (Legates and Willmott, 1990). For 

example, gauge corrections based on the Legates and Willmott data can increase winter 

precipitation in the Great Lakes region by up to 0.5 mm day−1. The CMIP5 ensemble mean 

overestimates MAM precipitation by 61.0 mm (30.7%), with individual wet model biases 

ranging between 2.3 mm (1.2%) and 112.2 mm (56.5%). Similar to the global models, the 

NARCCAP ensemble mean shows a positive bias in MAM of 50.4 mm (25.4%) but with a 

narrower range in the model bias (18.3–96.0 mm). All NARCCAP models show a late 

spring/early summer (MJJ) peak that is stronger than observed (Figure 3.2b), and indicates that 

this ensemble shifts precipitation earlier in the season than observed and produces too much 

precipitation. In JJA, the inter-ensemble model spread grows, with 14 of the 24 total models  
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Figure 3.1: Boundaries representing the GLB and WLEB. The GLB includes the US Great Lakes 

states (U.S.) and Canada, and the WLEB includes the geographic extent of the watersheds that 

drain into the western basin of Lake Erie, including southeastern Michigan, northwestern Ohio, 

and northeastern Indiana. 

 

exhibiting a summer dry bias and the rest exhibiting a wet bias (Figures 3.2a-c). As the summer 

progresses into fall, the intermodel CMIP5 spread narrows and individual model biases are 

reduced. In late summer/early fall (ASO), the NARCCAP ensemble reduces precipitation closer 

to observed, but then precipitation increases again in the winter, a feature not evident in the 

observations (Figure 3.2b). For the RCM-HiRes simulations, there is very little amplitude in the 

seasonal cycle, as discussed in Bryan et al. (2015). This leads to a comparatively small spring 

dry (negative) bias of 5.8 mm (−2.9%) in the ensemble mean, although this is largely due to the 

flat seasonal cycle relative to the increase in winter to spring precipitation (Figure 3.2c). 
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For the WLEB region, most models also have a wet annual bias with the exception of one 

CMIP5 model (CSIRO), one NARCCAP model (CRCM-CCSM), and the RCM-HiRes 

simulations (Table 3.2; Figures 3.3a-c). The seasonal bias is strongest in MAM for all model 

ensemble means, with a positive bias of 69.9 mm (29.5%) for CMIP5, a positive 60.1 mm 

(25.4%) bias for NARCCAP, and dry bias of 27.8 mm (−11.7%) for RCM-HiRes. The bias of 

individual CMIP5 members is similar to the larger region, falling between 4.7 mm (2.0%) and 

122.9 mm (51.9%), likely due to the differing model processes and wide range of spatial 

resolution in this ensemble. Similar to the GLB, the NARCCAP ensemble produces MAM 

precipitation that ranges close to the CMIP5 models, from 12.1 mm (5.1%) and 112.4 mm 

(47.4%) for individual model members (Figure 3.3c). Unlike the other ensembles, the RCM-

HiRes shows a dry bias over land in the region (Bryan et al., 2015) with individual members 

showing a dry bias of 18.3 mm (−7.7%) and 37.2 mm (−15.7%; Figure 3.3e). 

 

3.3.1.3 Modelled future precipitation (2041–2060) 

With knowledge of the biases in the historical simulations, we examine the relative percent 

change in seasonal precipitation for mid-century (2041–2060) for the GLB and the WLEB, 

respectively (Figures 3.2d-f and 3.3d-f, respectively). For the GLB, the annual relative change in 

precipitation is typically positive and does not differ much between ensembles (CMIP5: −0.7 to 

16.1%, NARCCAP: 4.7–10.6%, RCM-HiRes: 6.7–14.3%; Figures 3.2d-f). The projected 

increase in annual precipitation is similar for the WLEB region, however the increase is slightly 

higher in the global and regional ensembles (CMIP5: −5.4 to 17.8%, NARCCAP: 0.0–13.9%, 

RCM-HiRes: 0.8–12.9%; Figures 3.3d-f). 
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During spring and winter, precipitation is generally projected to increase across all ensemble 

members within both regions (Figures 3.2 and 3.3). Ensemble mean changes in MAM 

precipitation are small (7.0–14.7%) for the GLB, with individual models ranging between 1.4 

and 30.0% for the CMIP5 ensemble, −1.6 to 12.7% for the NARCCAP ensemble, and 12.5–

17.0% for the Hi-Res ensemble. For the WLEB, the spring ensemble mean changes have a 

smaller range (8.4–12.8%) with more member variability (CMIP5: −3.6 to 33.6%, NARCCAP: 

1.5–19.2%, Hi-Res: 9.8–15.8%). The magnitude of winter precipitation change for the CMIP5 

ensemble mean is similar for both regions (GLB: 17.4%; WLEB: 17.9%). The NARCCAP and 

RCM-HiRes ensemble means, present a lower increase than CMIP5 for the GLB (11.1 and 

13.6%, respectively). The regional models’ magnitude of increase is slightly higher for the 

WLEB (11.5, 14.0%; Figures 3.3d-f). 

 

The greatest spread in the simulated future precipitation occurs in JJA, with some models 

showing decreases in future summer precipitation and some showing relative increases 

compared to the historical period (Figures 3.2 and 3.3). Although the ensemble mean changes 

show increases ranging from 0.9 to 8.8% in the GLB, in the WLEB, this range is −1.4 to 

+1.6%. For both the GLB and WLEB, 8 out of the 12 CMIP5 models show an increase in JJA 

precipitation (GLB: 0.2–9.3%, WLEB: 1.3–14.1%), while four show relative decreases (GLB: 

0.2–19.0% decrease, WLEB: 1.0–20% decrease) (Figures 3.2d and 3.3d). For the regional 

NARCCAP ensemble, there is more variability between members although there is a similar 

spread in JJA between regions, with seven models predicting an increase in GLB precipitation 

and four models predicting an increase for the WLEB (GLB: 0.5–13.4%, WLEB: 2.5–16.4%, 

Figures 3.2 and 3.3d). The range of predicted decrease is also similar from three models in the 
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GLB and six models for the WLEB (GLB: 0.3–7.6 decrease, WLEB: 3.5–12.7% decrease, 

Figures 3.2 and 3.3d). The RCM-HiRes simulations are also split on the change in JJA 

precipitation for the WLEB (−8.4 decrease and 9.7% increase), leading to a near zero change in 

precipitation in the ensemble mean whereas they both indicate an increase for the GLB (4.9 

and 12.8%; Figures 3.2 and 3.3f). Overall, the response of seasonal precipitation at the mid-

century time period is similar across both regions with most ensemble members, with ensemble 

means indicating an increase between 8.5 and 12.6% in the spring and 11.5 and 18% in the 

winter for the WLEB (Figures 3.2 and 3.3). The overall response of precipitation to the future 

climate scenarios is more variable during the summer and early fall, depending on the 

ensemble and member. However, we note that this increase is slightly smaller than the model 

bias in these seasons. This result is consistent with Hayhoe et al. (2010), who used two 

statistical downscaling techniques for precipitation in the Chicago and Great Lakes area and 

found that that winter and spring precipitation may increase up to 20% before end of century 

(2070–2099) under the similar A2 (or moderate) emissions scenario. Possible explanations for 

these changes are explored in Section 3.4. 
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Figure 3.2: Monthly averages for the historical period (1980–1999) spatially averaged over the 

GLB for (a) the CMIP5 ensemble, (b) the NARCCAP ensemble, and (c) the RCM-HiRes 

ensemble. Individual model members in coloured lines, the multi-model average in solid black 

lines, and the CPC observed precipitation in black dotted lines. Monthly average changes 

projected for mid-century (2041–2060) normalized to a percent change from the historical period 

for (d) the CMIP5 ensemble, (e) the NARCCAP ensemble, and (c) the RCM-HiRes ensemble. 
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Figure 3.3: As for Figure 3.2, but for the WLEB. 

 

3.3.2  Precipitation intensity 

3.3.2.1 Observed historical period precipitation intensity (1980–1999) 

We examine daily precipitation rates (or precipitation intensity) over the historical period with 

probability density functions, dividing daily precipitation into 15 equally spaced bins spanning 

0–90 mm day−1. We define three categories of events: small (0–5 mm day−1), moderate (6–23 

mm day−1), and extreme events (≥24 mm day−1). Simulated precipitation intensity is compared 
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with daily CPC gridded observations, although we note that using a gridded product for intensity 

may smooth out individual stations that may experience higher, localized rainfall. However, this 

product provides continuous coverage of historical data for evaluation and a daily precipitation 

value that is spatially consistent with a model grid cell. 

 

In the GLB region (Figures 3.4a-d), all ensemble members generally capture the observed 

intensities in all seasons except for DJF, where the models overestimate daily precipitation. For 

DJF, this suggests that the seasonal wet bias (Section 3.3.1.2) is due to both more precipitation 

during the moderate events in most of the models (e.g. 6–23 mm day−1) as well as the simulation 

of higher intensity events by some model members (≥24 mm day−1) (Figure 3.4d). Other seasons, 

such as MAM, show that the models capture the frequency of moderate events (6–23 mm day−1) 

but some model members simulate additional high intensity events (≥24 mm day−1) (Figure 

3.4a). The same pattern is evident in JJA (Figure 3.4b) and SON (Figure 3.4c). When comparing 

the model type in both MAM and DJF, the global models produce more intense events than the 

regional models (Figures 3.4a-d). For the RCM-HiRes ensemble, the spatially averaged 

precipitation shows lower mean probability values, consistent with the previously described 

summer season dry bias (Figure 3.4b). 

 

For the WLEB subregion, simulated intensities are higher (up to 90 mm day−1) than the GLB 

because of spatial averaging techniques (e.g. the WLEB subregion is 3
∘
×3.5

∘ 
and the GLB is 

10
∘
×20

∘
). With fewer grid cells, more of the individual grid intensities are captured with a 

smaller averaging region, increasing the regionally averaged intensity (Figures 3.5a-d). All 

model ensembles generally capture the JJA and SON moderate range intensities (e.g. 6–23 mm  
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Table 3.2: WLEB annual precipitation (mm), spring precipitation (MAM; mm), and spring 

intensity (mm day−1) for observed, global CMIP5 model members, NARCCAP model members, 

and RCM high resolution model members. 

 

day−1) but again have individual members that simulate higher intensity events that reach up to 

83 mm day−1 (Figures 3.5b-c). For MAM and DJF, the models overestimate the observed 

 
Observations 

 

 
mm % mm %  mm day−1 

(≥24 mm day−1) 
 mm day−1 

(≥24 mm day−1)  

CMIP5 

ACCESS1 372.4 41.0 102.9 43.5 1.0 475.0 0.6 
ACCESS3 321.9 35.4 122.9 51.9 1.3 600.0 0.9 
CCSM4 100.5 11.1 39.2 16.6 0.2 75.0 0.0 
CESM1-CAM5 73.4 8.1 17.1 7.2 0.7 300.0 0.3 
CMCC-CM 266.3 29.3 107.3 45.3 2.6 1175.0 0.1 
CMCC-CMS 393.7 43.3 98.0 41.4 2.3 1075.0 2.3 
CSIRO-Mk3-6.0 −16.3 −1.8 52.0 22.0 0.3 125.0 0.8 
EC-Earth 201.3 22.2 92.1 38.9 0.8 375.0 0.2 
FGOALS-g2 85.7 9.4 43.1 18.2 1.3 600.0 0.2 
HadGem2-AO 75.0 8.3 58.5 24.7 0.9 436.7 1.2 
MIROC5 131.0 14.4 4.7 2.0 0.9 425.0 0.9 
MRI-CGCM3 226.9 25.0 101.2 42.7 1.6 725.0 0.4 

NARCCAP 

CRCM(ccsm) −0.5 0.0 72.8 30.7 0.2 110.5 0.1 
CRCM(cgcm3) 108.6 12.0 67.1 28.3 0.3 125.0 0.4 
ECP2(gfdl) 317.8 35.0 57.9 24.5 0.7 325.0 0.3 
ECP2(hadcm3) 108.0 11.9 12.1 5.1 0.4 181.1 0.7 
HRM(hadcm3) 165.2 18.2 66.8 28.2 1.4 666.7 1.8 
MM5I(ccsm) 36.4 4.0 43.2 18.2 0.3 136.8 0.4 
MM5I(hadcm3) 55.3 6.1 53.6 22.6 1.4 666.7 0.7 
RCM3(cgcm3) 303.1 33.4 112.4 47.4 0.6 275.0 0.2 
RCM3(gfdl) 252.1 27.8 73.0 30.8 0.1 50.0 1.3 
WRF(cgcm3) 49.5 5.4 42.6 18.0 0.3 150.0 0.7 

RCM4(HiRes) 

RCM4(gfdl) −114.7 −12.6 −18.3 −7.7 0.3 125.0 0.2 
RCM4(hadgem) −59.5 −6.6 −37.2 −15.7 0.4 181.1 0.1 

 

CPC Annual 
precipitation(mm) 

Spring(MAM) 
precipitation(mm) 

MAMintensity, 
%(  24  mm day  1 ) 

0.2 236.9 908.2 

Models 

Present(1980–1999) Future(2041–2065) 

Annual 
precipitationbias 

MAMprecipitation 
bias 

MAMintensitychange, MAMintensitybias 
 mm day  1 (  24  mm day  1 ) 
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precipitation in the 18–41 mm day−1 range as well as simulating additional, high intensity events 

(Figures 3.5a-d). 

 

For extreme intensity values in the WLEB (≥24 mm day−1, informed by historically modelled 

streamflow data for the Maumee Basin), the relative error in historical spring (MAM) 

probabilities ranged from 75 to 1175% for CMIP5, 50 to 667% for NARCCAP, and 125 to 181% 

for RCM-HiRes (Table 3.2). As in the GLB region, there are several CMIP5 model members that 

show more intense events than the regional models in MAM and JJA (Figures 3.5a-b). Summer 

in the WLEB shows good agreement with historically observed probabilities for small to 

moderate events (≤24 mm day−1), however the simulations include higher events that are not 

present in the observations (Figure 3.5b). The CMIP5 mean exceeds the historical range by eight 

bins, equating to almost 48mm (6mm per bin) or 1.9 inches (Figure 3.5b). However, the 

associated probabilities indicate a low frequency of these events with values close to 0.1%, or 1.8 

events per 20 years (Figure 3.5b). 

 

3.3.2.2 Future Precipitation Intensity (2041–2060) 

We examine the change in daily precipitation rate probabilities between the historical (1980–

1999) and future (2041–2060) periods for the three ensembles (Figures 3.4e-h and 3.5e-h). We 

calculate the change in probability as the difference of the future probability with that of the 

historical probability. For example, from the ∼1800 days included in MAM over 20 years, a 

typical extreme event may have a 1% probability. This is equivalent to about 18 events over 

the 20-year period for that season. If the probability of such an extreme event increased 

relatively by 0.1%, that would increase total MAM extreme events by 1.8 events between the  
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Figure 3.4: Historical (1980–1999) probabilities of precipitation events (binned every 6 mm 

day−1) spatially averaged over the GLB for (a) MAM, (b) JJA, (c) SON, and (d) DJF. Mid-

century (2041–2060) projections of probability change for each bin, calculated as the difference 

from historical values for the GLB for (d) MAM, (e) JJA, (f) SON, and (g) DJF. Precipitation 

bins are averaged for each ensemble, including the CMIP5 ensemble (red), the NARCCAP 

ensemble (green), and the RCM-HiRes ensemble (blue). Numbers above each bin denote the 

total number of model members that simulated precipitation in that bin. CPC observations are 

denoted with a black X. 

 

20-year periods. For small precipitation events, the GLB ensemble means show negative 

changes across all seasons (1.0–3.4% decrease in probability; Figures 3.4e-h). The WLEB 

ensemble means for small events show a similar result for the spring and winter seasons, 

however with a slightly smaller range (0.9–1.9% decrease), while summer and fall have a 

mixed sign of change (Figures 3.5e-h). 
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For each of the GLB ensemble means, moderate daily precipitation events across all seasons 

show the largest positive change (1.0–3.4%), with extreme events showing no change (Figure 

3.4e-h). This is in part due to the spatial averaging used in this study, where averaging over a 

large region causes a relatively sharp drop off in the tail end of the probability distribution 

function (24–90 mm day−1) for each ensemble. As compared to the GLB, the WLEB ensemble 

means show less consensus for the sign of moderate events, with about half of the models 

showing overall positive changes (0.1–0.7%) for spring and winter extreme events. This 

translates to a projected increase of about 1–12 more events over the 20-year mid-century period 

(Figures 3.5e-h). 

 

3.4 Discussion 

To place these results in context, we discuss several factors related to the spatial averaging 

employed in this study, the climate model resolution and the model representation of physical 

processes such as lakes to understand model biases and projections of future precipitation in the 

GLB and WLEB regions. 

 

3.4.1. Spatial averaging effects 

Spatial averaging across regions effectively smooths the extreme daily events, especially for the 

GLB region. For example, GLB intensity values (Figures 3.4a-d) are lower than the WLEB 

(Figures 3.5a-d) and may under-represent the intense events in the overall GLB region, 

suggesting that the larger spatial extent of the GLB may reduce the calculated precipitation  
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Figure 3.5: As for Figure 3.4, but for the WLEB region. 

 

intensity. To understand how the spatial averaging affects the calculation of the extremes, we 

evaluate the maximum daily precipitation rates across each region. The maximum daily 

precipitation intensity is defined as the greatest intensity that occurs within any individual grid 

cell in the region during the selected season over all years. The probability distribution of these 

maxima shows the likelihood of the maximum possible precipitation that can occur within each 

averaging region (Figure 3.6 for the GLB and Figure 3.7 for the WLEB). For example, in the 

GLB in MAM, observations show a 0.05% probability in the 150–174 mm day−1 bin, which 

indicates that at least one grid cell in the GLB reached a daily precipitation value in this range. 
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This probability is equivalent to about one spring event of this intensity over the 20-year 

averaging period (1980–1999). This provides a metric for the spatial distribution of precipitation 

intensity at any point within the region and can be useful to compare with the regional averages 

(Figures 3.4 and 3.5). Over the GLB region, CMIP5 models tend to underestimate the maximum 

probability values (Figures 3.6a-d). Generally, the regional model ensembles (NARCCAP and 

RCM-HiRes) simulate a larger number of extreme events that more accurately captures the 

maximum daily precipitation distribution (Figures 3.6e-l). The dynamically downscaled models 

do tend to have some models that overestimate the maximum intensity, most notably in the 

spring (Figures 3.6e-i) and summer (Figures 3f-j). In the fall, not all NARCCAP ensemble 

members capture the event range and only one model (HRM3-HadCM3) extends beyond the 

historical CPC range (Figure 3.6g) while the HiRes members are split for larger event sizes 

(above 50 mm day−1; Figure 3.6k). In the winter, the NARCCAP ensemble shows a spread 

around historical probabilities (Figure 3.6h) while the HiRes members have more occurrences of 

extreme events above 50 mm day−1 (Figure 3.6l). In the WLEB region (Figure 3.7), the 

dynamically downscaled models also show an improvement over the global models in the 

simulation of intense precipitation. However, NARCCAP extends the range beyond CPC 

probabilities for all WLEB seasons (Figures 3.7e-f), while the HiRes shows a higher intensities 

for WLEB summer and winter (Figures 3.7j-l). The tendency for the NARCCAP models to 

produce large extremes in excess of observed values has been noted in other studies that 

evaluated the model performance over the entire United States (Caldwell, 2010; Kawazoe and 

Gutowski, 2013b; Wehner, 2013). Here, these results show that the regional models produce 

some grid cells with very high intensity events (e.g. >250 mm day−1 in JJA), but overall, the finer 

resolution models better capture the high intensity events across the two regions. 
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Figure 3.6: Maximum probabilities for each precipitation size (bins spaced every 6 mm day−1) 

extracted from the GLB region before averaging. Ensemble probability distribution functions are 

shown for each season; (a–d) CMIP5, (e–h) NARCCAP, and (i–l) RCM-HiRes. CPC 

observations are denoted with a black X. 

 

To further evaluate the effects of area averaging, we also examined the spatial distribution of 

the 99th percentile precipitation (considering rain days on which the precipitation was over 1 

mm day−1) in the WLEB region to determine if certain grid points have substantially higher 
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precipitation extremes. Evaluation of seasonal averages shows no appreciable spatial pattern in 

seasons outside of DJF. Figure 3.8 shows the 99th percentile for the ten NARCCAP models and 

the CPC observations. In several of the NARCCAP members, and to some extent in the 

observations, the 99th percentile precipitation is largest near the lakes, suggesting these larger 

extremes are related to the production of lake effect snow in winter. For some models, the lake 

temperatures are interpolated from the nearest sea surface temperatures (SST). Bryan et al. 

(2015) showed that southern Great Lakes SSTs lake temperatures were biased warm compared 

to observations when using this method, enhancing precipitation near the lake in this model. 

Examination of the patterns of the GCMs did not reveal similar lake effects (not shown), likely 

because the grid spacing is too large to simulate lake-precipitation feedbacks or the lakes are 

absent, as discussed below. 

 

3.4.2 Resolution effects 

Another potential factor in the differences in precipitation intensity is the climate model 

resolution. In the GLB region, the CMIP5 ensemble mean has higher intensities than the 

dynamically downscaled models (Figures 3.4a-d) and this effect is magnified for the WLEB 

(Figures 3.5a-d). Within the CMIP5 ensemble, the CMCC-CMS model consistently places non-

zero probabilities in higher intensity bins beyond those of the historical record for both regions 

(individual model members not shown in Figures 3.4 and 3.5). 

 

For the WLEB we evaluated two simulations with the CMCC model, the CMS version (1.875
∘ 

resolution, which resolves the stratosphere) and the finer CMCC-CM (0.75
∘ 

resolution, the  
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Figure 3.7: Maximum probabilities for each precipitation size (bins spaced every 6 mm day−1) 

extracted from the WLEB region before averaging. Ensemble probability distribution functions 

are shown for each season; (a–d) CMIP5, (e–h) NARCCAP, and (i–l) RCM-HiRes. CPC 

observations are denoted with a black X. 

 

highest resolution CMIP5 model in our ensemble). While these model versions have several 

parameterization differences, the increase in horizontal spatial resolution does not explain the 

historical bias for intense daily events. The two resolution versions show similar bias in the 

spring extreme event probability (1075 and 1175% respectively; Table 3.2). However, CCSM4 
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and CESM1-CAM5 (0.9
∘
×1.25

∘ 
each) are also relatively high resolution in our CMIP5 ensemble 

(187 grid cells for the WLEB), but show a larger difference in extreme event probability bias (75 

and 300%, respectively; Table 3.2). Interestingly, the CSIRO model, which has a coarser 

resolution equal to the CMCC-CMS model (1.875
∘
), has less bias for extreme daily events (125 

and 1075%, respectively; Table 3.2) and also exhibits a lower bias for MAM seasonal 

precipitation than CMCC-CMS (22.0 and 41.4%, respectively; Table 3.2). While it is not 

surprising that the models produce very different precipitation distributions due to large number 

of variable parameterizations in the model (e.g. convective precipitation, microphysics, and land 

surface), the comparison here shows that higher resolution alone within the CMIP5 ensemble 

does not improve the precipitation intensity bias simulated in the region. This is consistent with 

other studies, e.g. Kawazoe and Gutowski (2013a) found that CMIP5 model resolution could not 

explain biases in precipitation intensity over the upper Mississippi region in the winter. 

Additionally, six global models show relatively low bias for spring precipitation (CCSM4 at 

16.6%, CESM1 at 7.2%, CSIRO at 22.0%, FGOALS at 18.2%, HadGEM2 at 24.7%, and 

MIROC at 2.0%, respectively; Table 3.2), which is similar to several of the regional models for 

this metric (about 7–25%; Table 3.2). 

 

For the WLEB spring and summer seasons (Figures 3.5a-b), observed intensities reach up to 

30–35 mm day−1. However, ten of the CMIP5 models place probabilities in the next available 

bin (36–41 mm day−1) for spring, summer, and fall (nine models for winter), showing that most 

of the CMIP5 ensemble overemphasizes the magnitude of intense events by at least 6 mm 

day−1 (0.2 inch day−1) for these seasons. Multiple models go beyond this lower end bias and 

have non-zero probabilities in even higher bin ranges, with half of the CMIP5 ensemble 
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represented in the 42–47 mm day−1 range for spring and fall, eight models for summer and 

three models for winter producing a bias of at least 12 mm day−1 (0.5 inch day−1). Further, 

seven models in the CMIP5 ensemble place non-zero probabilities in the 48–53 mm day−1 

range giving a bias of at least 18 mm day−1 for the summer period. In contrast, the regionally 

averaged RCM simulations overall do not exhibit such a high intensity, with lower average 

probabilities across all seasons in both regions. This suggests that the maximum probabilities 

with very high intensities (Figures 3.6 and 3.7) are likely occurring over a very small number 

of grid cells at different times and locations, and these grid cells do not affect the overall 

regional average (Figures 3.4 and 3.5). For example, HRM-HadCM (Figure 3.8k) shows that a 

grid cell north of Lake Erie (1 of 56 grid cells in the WLEB region in this model, or 1.78% of 

the model grid cells) has the highest precipitation over the WLEB 12% of the time. 
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Figure 3.8: The 99th percentile DJF precipitation ( mm day−1) (for days with >1 mm day−1 of 

precipitation) over the WLEB grid cells for (a) observations and (b–k) the NARCCAP ensemble 

members (Table 3.1), including (b) RCM3-CGCM3, (c) EPC2-HadCM3, (d) WRFG-CGCM3, 

(e) CRCM-CGCM3, (f) RCM3-GFDL, (g) MM5I-HadCM3, (h) HRM3-HadCM3, (i) CRCM-

CCSM, (j) EPC2-GFDL, and (k) MM5I-CCSM. Darker colors indicate higher values of extreme 

precipitation within that grid cell. 
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3.4.3  Lake representation 

Even if topographic features such as the lakes are better resolved at higher resolution, physical 

parameterizations may not result in better evaluation with observations (Caldwell, 2010; 

Rauscher et al., 2010). The representation of lakes in the region is known to play an important 

role in regional precipitation (Notaro et al., 2013; Suriano and Leathers, 2016). One advantage of 

higher resolution models would be to include these important features at the lower model 

boundary condition, but resolution alone does not determine whether or not the surface is 

represented as bodies of water. In most of the global model members of the CMIP5 ensemble (9 

of the 12 models), the Great Lakes are not differentiated from land (Table 3.1). In the 

NARCCAP ensemble, the lakes are represented in terms of land cover but have different 

treatment of lake processes that drive lake temperatures and the presence of ice. For example, 

most of the NARCCAP models do not use a lake model and interpolate lake surface temperatures 

from nearby sea surface temperatures (Table 3.1). As a result, there is no prognostic calculation 

of lake ice coverage. Three members of the NARCCAP ensemble (CRCM-CGCM3, CRCM-

CCSM, and WRFG-CGCM3) simulate dynamic lake ice across the Great Lakes. 

 

We group model members across the multiple ensembles used in this study to understand the role 

of lake representation in the simulation of regional precipitation. The 15 models that represent 

lakes include 3 CMIP5 models (Table 3.1), and all 12 regional scale models (10 NARCCAP and 

2 RCM HiRes). The ensemble without lakes includes the remaining nine CMIP5 models (Table 

3.1). For the historical period, the multi-model average seasonal cycle between the models that 

include lakes versus those that do not is similar over the GLB (Figures 3.9a-c), yet there is much 

more variability among the members of seasonal precipitation in the lake ensemble. Both sets of  
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Figure 3.9: Monthly averages for the historical period (1980–1999) spatially averaged over the 

GLB and WLEB. CPC values displayed in dashed lines. (a, b) Models with lakes; including three 

of the CMIP5 AO models, as well as the complete NARCCAP and Hi-Res ensembles (Table 

3.1). (c, d) Models without lakes; including eight of the CMIP5 AO models (Table 3.1). 

 

models show wet biases in the winter and spring for the GLB, as well as slight dry bias in the 

late summer and early fall. The model bias improvement due to the lakes is inconsistent across 

seasons, with the spring bias slightly reduced by the models that include lakes (from a bias of 

53.9 to 49.3mm, for models without lakes and with lakes, respectively) and the winter bias 

slightly increased (from 52.4 to 64.0mm). 
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For the WLEB, there are greater differences in monthly precipitation between the simulations 

with lakes (Figure 3.9b) and without lakes (Figure 3.9d). The summer–fall transition period 

shows a different response, with a small dry ASO bias for the models with lakes (0.4 mm 

below the historical mean) while the models without lakes have a wet bias of 20.9 mm (Figure 

3.9b-d), suggesting that the lake feedback during this transition period is weak. Both sets of 

models still overestimate winter precipitation across both regions by 54.4 mm for models with 

lakes and 51.0 mm for models without lakes (Figure 3.9c-d). This wet bias could be attributed 

to the lack of dynamic lake ice in many simulations, which would suppress winter precipitation 

(Wright et al., 2013). In addition, the lack of dynamic lake ice could also affect the projected 

change in precipitation, where less ice in the future may lead to greater winter precipitation. 

 

The NARCCAP ensemble also explores the differences between local parameterizations and 

driving large-scale global conditions. For example, the difference in precipitation between the 

two similar RCM3 simulations from the NARCCAP ensemble (RCM3-CGCM3 and RCM3-

GFDL, Figure 3.9b) is larger than between GCM models with lakes, with the RCM3-CGCM3 

showing a large springtime precipitation bias of over 60 mm (Figure 3.9b). Other model pairs 

with different boundary conditions (e.g. ECP2-GFDL and ECP2-HadCM3; CRCM-CCSM and 

CRCM-CGCM3; MM5I-CCSM and MM5I-HadCM3) also show that the driving boundary 

conditions play an important role. In the CRCM simulations that have the most complex lake 

treatment, the summer drying in the WLEB is more pronounced in the CRCM-CCSM simulation 

(47 mm in August as compared to the observed value of 90 mm) than in the CRCM-CGCM3 

simulation (74 mm; Figure 3.9b). Interestingly, the other regional model driven by the CCSM 

(MM5I-CCSM) does not have such a strong summer dry bias and is similar to the CRCM-
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CGCM3 member. This suggests that while the driving global boundary conditions are important, 

the interactions between the regional and local processes may be the dominant driver in 

determining precipitation rates. Overall, this suggests that the inclusion of lakes alone does not 

necessarily improve model simulations of precipitation, and that the accurate representation of 

lake processes (e.g. Notaro et al., 2013; Mallard et al., 2015) and their interactions with large-

scale dynamics are as important as including the lakes themselves. 

 

3.5 Conclusions 

We evaluate the simulation of seasonal and daily precipitation for a suite of climate models at 

varying resolutions for present-day and future conditions, and use resolution and configuration 

options to understand model biases and the range in simulated future changes in precipitation. 

Using seasonality as a metric, each ensemble shows positive (wet) winter and spring biases for 

the historical period, with greater intermodel variability in the summer and fall. At mid-century, 

most models show an increase in spring season precipitation of 7–18%, in agreement with prior 

studies in the Midwest using the CMIP3 ensemble and other RCMs (e.g. Hayhoe et al., 2010; 

Vavrus and Behnke, 2014). All model ensembles including both the global CMIP5 simulations 

and regional simulations show a mixed signal for future summer drying. Compared to historical 

daily precipitation intensity, all models overestimate the observed intense precipitation events in 

winter and spring. Mid-century projection consensus for each region shows small increases in 

moderate and intense daily spring events. 

 

This analysis highlights model biases in the region and informs the application of future climate 

data to specific problems. Potentially, these results highlight the need to understand the 
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springtime bias evident in almost all of the global models and can contribute to improved 

representations of regional processes feedbacks and physical features. The advantage of 

increased resolution between the global and regional ensembles depends largely on location, 

boundary conditions, and physical parameterizations. For the Great Lakes region, increased 

resolution shows benefits in resolving daily precipitation events for the spring period as well as 

for the spring and summer periods in the WLEB. However for other seasons and at longer 

temporal averaging, boundary conditions and physical parameterizations may still play an 

important role in understanding and reducing the regional bias in simulated precipitation. Further 

analysis is needed to determine the dynamical drivers of the spring wet biases that are consistent 

in the global and regional models, understand how these biases affect future projections of 

precipitation in the region, and relay these insights to aid adaptation planning around the GLB.
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Chapter 4 Conceptualizing uncertainty in harmful algal bloom modeling for ecosystem 

service planning in Western Lake Erie. 

 

4.1 Introduction 

4.1.1 Harmful Algal Blooms and the Western Lake Erie Basin 

Algae blooms are prevalent in freshwater and coastal systems across the globe, reoccurring each 

year with a range of societal and environmental impacts (Hudnell and Dortch, 2008). Algal 

blooms can be categorized as “harmful” by growing to sizes that cause a severe reduction in 

oxygen in aquatic systems, or hypoxia events, which damage surrounding biodiversity (Paerl et 

al., 2001; Watson et al., 2016). Harmful algal blooms (HABs) can include toxin-producing 

cyanobacteria, also termed toxic algal blooms or TABs. HABs and TABs put drinking water and 

recreational water at risk of contamination, especially in the North American Great Lakes where 

the cyanobacterium Microcystis dominates – producing the neurotoxin Microcystin (Galen et al., 

in review; Jetoo et al., 2015; Loftin et al., 2016; Carmichael et al., 2016). Algal blooms are 

caused by a range of environmental factors which can be exacerbated directly and indirectly by 

human activity such as local agricultural practices that influence nutrient runoff into waterways, 

and fossil fuel burning which contributes to global climate change. Eutrophication, or the process 

of excess nutrients being loaded into water systems, is one pathway for the enhancement of algae 

growth. Climate change has already begun to influence regional drivers of HABs, as atmospheric 

warming affects summer water temperature and salinity that drive lake circulation dynamics, as 

well as atmospheric dynamics that drive regional weather (Dale et al., 2006; Edwards et al., 

2006; Paerl and Huisman, 2008). Changes in water temperature (Paerl & Huisman, 2008; Kosten 
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et al., 2012), water column mixing (Huber et al., 2012), irradiance (Litchman, 1998), lake 

hydrologic regime and residence time (Elliott, 2010), and introduction of invasive species 

(Vanderploeg et al., 2001) influence bloom size and toxicity. Tracking climate change impacts to 

HABs and TABs will also depend on the response of individual plankton communities (Wells et 

al., 2015). 

 

The Midwest region of the United States is a unique intersection of the factors for HAB growth 

with strong seasonal shifts in temperature and precipitation as well as agricultural lands that 

contribute nutrients connected to Great Lakes water bodies through multiple rivers and 

watersheds. Algae growth and hypoxia events within the Great Lakes peaked in the 1970s, 

declined through the 1990s, and has experienced a resurgence since 2000 (Winter et al., 2011; 

Zhou et al, 2013; Scavia et al., 2014). Specifically, the Western Basin of Lake Erie is prone to 

annual HAB growth in part due to its shallow depth which leads to faster heating and reduced 

vertical mixing of the water. In the last 20 years Western Lake Erie has seen record breaking 

HABs and toxic algal blooms (Rinta-Kanto et al., 2005; Steffen et al., 2014). Agricultural runoff, 

in particular phosphorus and nitrogen laden fertilizer, has been identified as a source of nutrients 

to Lake Erie which can predispose the system to HABs and TABs (Watson et al. 2016). The 

Maumee river is the primary source of nutrients for Western Lake Erie, showing increasing 

trends in nitrates and dissolved phosphorus, despite declines in total phosphorus since 1990 

(Stow et al., 2015). Other total phosphorus sources include the Detroit River, where loading is 

based on shoreline proximity and flow channel, and the St. Clair River where the long-term 

loading trend reflects the decline in Lake Huron (Burniston et al., 2018; Scavia et al., 2019).  

Extreme spring precipitation can contribute regionally to agricultural surface run-off, which 
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loads nutrients into Western Lake Erie, fueling late-summer HABs (Michalak et al., 2013; Basile 

et al., 2017). 

 

HAB location, duration, and toxicity level can have impacts that cascade across ecosystem 

services including provisioning (commercial fishing, drinking water, water for the energy sector) 

and cultural categories (recreation, nature and viewscape enjoyment, historical interests, spiritual 

fulfilment; Allan et al., 2017). For example, Lake Erie provides a source of municipal drinking 

water for 11 million people (United States Environmental Protection Agency, 

https://www.epa.gov/greatlakes/lake-erie). During the summer of 2014, a HAB containing the 

neurotoxin Microcystin surrounded the raw water intake for Toledo, Ohio resulting in a three day 

“do not drink” water ban for city residents (Bullerjahn et al, 2016). Lake Erie also provides 

recreational services which contribute over $10 billion per year to the regional economy 

including $2 billion from sports fishing (Allan et al., 2017). Lake Erie HABs negatively impact 

these recreational services as well. Palm-Forster et al. (2016) modeled beach closures 

surrounding Lake Erie HABs, finding that closure of just 6 western basin beaches of 67 total 

Lake Erie beaches would result in over a quarter of a million dollars lost per day (modeled as 

economic welfare loss in 2015 dollar value). Likewise, Wolf et al., (2017) estimated that 

between 2011 to 2014 fishing license sales in Lake Erie dropped 10% to 13% when algal 

conditions surpassed the World Health's Organization's moderate health risk advisory threshold 

(20,000 cyanobacteria cells/mL).  
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4.1.2 HABs mitigation vs. adaptation for Lake Erie ecosystem services.  

Planning and response actions for Western Lake Erie HABs depends on the stakeholder 

perspective. Interactions between climate and farm management can change the direction of 

future nutrient loading (increase or decrease) by altering the streamflow, crop growth, and 

nutrient loading (Kalcic et al., 2019). Between 2012 and 2018, The Great Lakes Environmental 

Research Laboratory collected water samples across Western Lake Erie for HAB monitoring and 

forecasting. Over that period, average annual values of total dissolved phosphorus ranged from 

45 to 105 µg/L, however maximum annual values reached over 1000 µg/L highlighting 

phosphorus transfer that occurs in large pulses (Figure 4.1a). Consequently the focus on HAB 

mitigation emphasizes actions by stakeholders in the agricultural sector– known as agricultural 

best management practices (BMPs) which help control the amount of soil, water and nutrients in 

run-off from farm fields. Examples of best management practices include cover crops which 

maintain soil structure during non-growing season periods, buffer zones comprising plants 

placed at the edge of fields to limit erosion and provided filtration, and adjustments to tile 

drainage to reduce diminish runoff (Kalcic et al., 2015; Kalcic et al., 2019; Williamson et al., 

2019; USGS, https://www.usgs.gov/centers/glri/science/agriculture-best-management-

practices?qt-science_center_objects=0#qt-science_center_objects). Wetlands and filter strips 

may also be used for adjacent and in-stream filtering of phosphorus, however nutrient saturation 

of wetlands may reduce their effectiveness over time (Currie et al., 2017; Kieta et al., 2018). 

Policies that include harmful algal bloom mitigation include the Canada-USA Great Lakes Water 

Quality Agreement, the Canada-Ontario agreement and the Western Basin of Lake Erie 

Collaborative agreement (Watson et al., 2016; 

https://www.michigan.gov/documents/snyder/Western_Basin_of_Lake_Erie_Collaborative_Agr
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eement--Lieutenant_Governor_491709_7.pdf). In June 2019, government officials from 

Michigan, Ohio and Ontario reaffirmed nutrient reduction targets first announced in 2015: A 

40% total load reduction in total and dissolved reactive phosphorus by 2025 (compared to 2008 

levels) with the interim goal of a 20 percent reduction by 2020 

(https://www.michigan.gov/whitmer/0,9309,7-387-90499-499932--,00.html).  

 

Reoccurring HABs within the Western Lake Erie Basin also necessitate adaptation planning to 

avoid wasted resources from year to year. However, with current forecasting and observation 

techniques, stakeholders have mostly responded with short-term actions once algal blooms form, 

whether through beach and marina closures, adjusting water quality treatment, or in decreased 

tourism and fishing. One issue in communicating algal bloom impacts to regional stakeholders 

(residents, resource managers, business owners, etc.) is the range of definitions used to describe 

the blooms –nuisance, harmful, and toxic. The implications of these definitions have more 

complexity as they can encompass a range of safety thresholds. For example, toxicity impacts 

cross multiple sectors and depend on the level of toxin concentration. In 2015, the Environmental 

Protection Agency’s (EPA) developed drinking water quality thresholds for two cyanotoxins 

(microcystins and cylindrospermopsin) and updated its recreational water quality threshold in 

2018 (EPA, https://www.epa.gov/cyanohabs/epa-drinking-water-health-advisories-cyanotoxins). 

From 2012-2018, between 20-40% of GLERL water samples contained Microcystin 

concentrations that exceeded the EPA limit for infants and pre-school children (0.3 µg/L for 

children 6 years old and younger). This threshold is the most stringent as 1.6 µg/L is the drinking 

water limit for school-age children through adults and the recreational water use threshold is 8.0 

µg/L. 
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Figure 4.1: HAB severity index and water quality data from 2012 to 2018. (See Supplemental for 

number of samples per year and station locations). (a) Annual average total phosphorus sites in 

Western Lake Erie. Minimum and maximum values are shown in gray colorfill. (b) Severity index 

which accounts for spring-summer bioavailable phosphorus to predict peak 30-day bloom 

biomass. Percentage of water samples that exceed EPA safety thresholds. 

 

The large threshold range for water quality advisories and range of possible toxicity impacts can 

be difficult to capture in HAB products, such as the annual HAB severity index in NOAA’s 
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seasonal outlook. Each year, NOAA in partnership with Heidelburg University, LimnoTech and 

the Great Lakes Environmental Research Laboratory, produces a severity forecast for Western 

Lake Erie, taking into account bioavailable phosphorus in late spring and early summer to 

predict peak 30-day bloom biomass. In 2014 a moderate HAB severity index of 6.6 was issued, 

and water quality samples showed that exceedance of the safe drinking threshold was a factor of 

5 higher than that of the recreational water quality threshold (Stumpf, 2019; Figure 4.1b). The 

2014 HAB resulted in the Toledo Water crisis due to the bloom location near a municipal water 

intake area which overwhelmed the treatment facility (Jetoo et al., 2015). In 2015, the HAB 

index indicated a severe bloom year (10.5, highest index from 2001-2018) and twice as many 

samples were taken as in 2014 (Stumpf, 2019; Figure 4.1b, Table 2). The 2015 samples showed 

water quality exceedance at a factor of 3 higher than that for recreational water quality, but at an 

overall low frequency (< 10% of the samples; Figure 4.1b). Note that toxicity levels may 

decrease from the in-lake concentrations after water has been treated for municipal water 

supplies, but measures and compliance vary between plants, facts that prompt discussion of 

centralized water safety planning (Jetoo et al., 2015). Conversely, recreational waters do not 

have large scale containment or treatment measures, and thus rely on warnings system to 

communicate HAB hazards to the public. For example, recreational beaches in Ohio don’t 

officially close due to the presence of HABs, but informational signs are posted at state park 

beaches and boat ramps that describe the blooms and advise people avoid contact with the 

blooms (Ohio EPA, https://epa.ohio.gov/HAB-Algae#147744473-advisories). Depending on the 

cyanotoxin level, additional Ohio public health advisories are posted and drinking water 

warnings may be issued (Ohio EPA, https://epa.ohio.gov/HAB-Algae#147744473-advisories). 

Furthermore, due to the variety of HAB impacts and responses, cross-sectoral communication is 
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infrequent or nonexistent. Thus, public outreach and stakeholder input is vital to understanding 

the range of adaptation actions, knowledge sources, data needs, and consideration of uncertainty 

in HAB impact planning. 

 

4.1.3 Modeling HABs in the Western Lake Erie Basin 

There is a multitude of research surrounding the growth of harmful algal blooms for Western 

Lake Erie. Much of the focus for model prediction and policy has been the mitigation of runoff 

and nutrient loading into the lake. Three projects from this larger field of work directly preceded 

Coastal SEES work to incorporation climate information and stakeholder needs into nutrient load 

projections in Western Lake Erie; 1. the Ecological Forecasting (ECOFOR) project focused on 

Soil Water Assessment Testbed model development for the Maumee watershed, 2. the Water, 

Climate and Sustainability (WCS) project achieved climate-SWAT coupling for the Western 

Lake Erie region, and 3. the NOAA Coastal Ocean Climate Applications (COCA)  brought 

together regional stakeholders to co-develop scenarios for mitigating Maumee basin nutrient 

loading that could be tested using coupled simulations. Specifically, the COCA project included 

three brainstorming workshops, where discussions covered agricultural practices (e.g., crop 

rotations, type and timing, fertilizer applications, adoption of best management practices) in the 

basin as well as feasible scenarios for nutrient management and how to best disseminate research 

outputs (Kalcic et al., 2019). Top scenario priorities identified by stakeholders included fertilizer 

application rate and location, placement of vegetative filter strips and wetlands, as well as cover 

crops type and rotation. Incorporation of stakeholder feedback within the limits of available 

modeling techniques led to changes in how modelers accounted for fertilizer type and seasonal 

application, tile drain density, wetland coverage, filter strip widths and watershed coverage, as 
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well as watershed crop percentages. Modeling scales are currently a challenge for mitigation 

decision making as precipitation and land processes are heavily simplified in model 

representations. However stakeholders found the descriptions of mid-21st century precipitation 

changes to be useful context for discussion of nutrient mitigation actions. 

 

The Coastal SEES project goal is to extending climate-watershed coupling to include HAB 

simulations while engaging stakeholders from the adaptation space. Following the model of 

Lemos et al., 2012, work is being done within the Coastal SEES Lake Erie project to investigate 

user perceptions of HAB forecasts and subsequently the potential of co-production in forecast 

creation. Understanding how forecasts fits users’ decision-making and how forecasts interplay 

with other available information provides a basis to consider the effects of co-production on 

scaling of information and decisions. Workshop feedback shows that information used for HAB 

responses includes peer experiences as well as the NOAA HAB tracker and bulletin (Coastal 

SEES, 2018). Seasonal forecasts were described as potentially useful products to communicate 

the threat of HABs – but not for day to day decisions (Coastal SEES, 2018). To increase 

usability of HAB forecasting, stakeholders described needs for confidence descriptions for late 

season forecasts and a mid-century focus from climate projections (Coastal SEES, 2018). 

Inclusion of toxicity, spring and autumn forecasts, and an increase in the frequency of HAB 

updates were also identified as areas for improvement (Coastal SEES, 2018). This stakeholder 

input captures the mismatch of available HAB information with differing scales and scope of 

adaptation decisions.  
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Current HAB forecasting frameworks incorporate projected nutrient loads with meteorological 

conditions to track the location and size of algal blooms to inform affected stakeholder 

communities, as well as sample to understand the toxicity of the bloom (Wynne et al., 2013). 

However, HAB models are not set up for direct incorporation of climate scenario output. Many 

complex meteorological and hydrological interactions that influence the bloom formation are 

affected by a changing climate. Pulses of nutrients to river and in-lake systems vary from year to 

year with environmental and human drivers. Compounding the effect of seasonal runoff is 

release of previously accumulated dissolved reactive phosphorus (DRP) by within lake processes 

on a decadal scale (Ho and Michalak, 2017). Additionally, nutrient type and reactive state can 

invoke differences in HAB development as some algae communities utilize phosphorus and 

others preferentially use nitrogen, while dissolved reactive phosphorus can be more bioavailable 

for cyanobacterial use (Anderson et al., 2002; Newell et al., 2019). Understanding changes to 

extreme precipitation, and subsequent land runoff, in the Western Lake Erie Basin can inform 

planning for future algal bloom impacts, however this involves resolving processes at different 

scales including cold versus warm season precipitation, lake circulation and moisture flux within 

the region.  

 

New techniques linking model simulations together are being developed to understand the role of 

climate on HAB changes in Western Lake Erie. However each modeling step contains inherent 

uncertainty. Here we discuss configuration of climate, watershed and HAB models as well as 

caveats to current methods aimed at uncertainty management. We propose four pathways to 

conceptualize uncertainty across model coupling. Section 4.2 will focus on model structure, 

sources of uncertainty, and methods of uncertainty management. Section 4.3 will describe 
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conceptual pathways for characterizing climate-watershed-HAB modeling and Section 4.4 will 

discuss strategies to address modeling gaps with stakeholder needs 

 

4.2 Characterizing uncertainty for climate, watershed and HAB modeling  

Satellite and ground observations are available to validate model behavior for a historical period, 

however data availability in both space and time and measurement accuracy can limit both global 

and regional variable comparisons. Alongside model validation, characterizing sources of 

uncertainty allows decision makers to contextualize model output for the issue of concern. 

Moreover, accurate simulation of the historical period does not automatically translate to fidelity 

in model projections, that is, the model could be getting to the correct historical picture for the 

wrong reasons such as the cancellation of variable errors against each other, or incomplete 

understanding of underlying variable interactions. To characterize uncertainty across model 

configurations, we follow the Hawkins and Sutton (2009) categorization of uncertainty by model 

forcing, structure, and internal variability. 

 

4.2.1 Forcing scenario 

Forcing scenario, or the set of conditions around which the model simulations evolve, include 

initial information for simulation spin-up and transient information that is accessed over the full 

time period of the simulation. Climate model simulations have been forced by scenarios based on 

policy, energy, and population choices that affect carbon dioxide concentrations. More recently, 

large scale Earth system model simulations have been guided by radiative pathways for the 21st 

century that detail additional radiation absorbed and re-emitted to Earth’s surface by atmospheric 
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carbon dioxide compared to preindustrial radiative balance at the top of the atmosphere (IPCC, 

2014). 

The Soil and Water Assessment Tool (SWAT), simulates water, sediments and agricultural 

chemical yields based on land use and land management practices (Arnold et al., 2012; Gassman 

et al., 2007). For the Great Lakes region, SWAT includes assumptions about farming practices – 

what they are and where they take place, for example the percent area of the basin with cover 

crops and the type of cover crop can be fixed in the model. Great Lakes simulations using SWAT 

are highly calibrated to local measurements of runoff, streamflow and nutrient loads, with the 

goal of testing land use changes that reduce in-river and in-lake nutrients. Recently SWAT has 

been used to probe best management practices (BMPs) in around the Great Lakes for nutrient 

load reductions over time and how nutrients break down or not in waterways. For example, the 

use of filter strips or wetland to reduce the amount of nutrients at the edge of agricultural fields 

or within the lake (Kalcic et al., 2019; Merriman et al., 2018; Merriman et al., 2018). 

 

4.2.2 Model structure 

Mode structure refers to model components (grid spacing, time-step, variable calculations, sub-

grid process representation) that shape simulation responses to the choice of forcing scenario. 

Earth system models (models with coupled climate system components, i.e. land, atmosphere, 

ocean, etc.), show different responses of global average temperature and precipitation to changes 

in atmospheric radiation as a result of increasing atmospheric carbon dioxide in the 21st century 

(IPCC, 2014). Within regional precipitation projections for the Great Lakes, structural 

uncertainty can manifest in physical parameterizations of lake effect snow, lake ice dynamics, 

and evapotranspiration (Basile et al., 2017; Bryan et al., 2015). Many earth system models do not 
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include representation of inland lake dynamics (Briley et al., 2017). For finer scale models that 

do include lakes, lake parameterization and lake model coupling have been ongoing areas of 

model development for the Great Lakes region (Charusombat et al., 2018; Conrick et al., 2015; 

Mallard et al., 2015; Notaro et al., 2015; Xiao et al., 2016). Structural uncertainty in SWAT 

arises from the use of many input parameters (~100 depending on the watershed), which 

complicates model evaluation and makes knowledge of the individual system of study an asset 

(Arnold et al., 2012). Current research defines cropland agriculture, mussel species filter feeding, 

and lake sedimentation as nutrient sources that predispose the Western Lake Erie Basin to toxic 

algal blooms (Heisler et al., 2008; Newell et al., 2019; Steffen et al., 2014; Vanderploeg et al., 

2001). These small scale and heterogeneous nutrient sources may not be captured in ground 

measurements, thus introducing a layer of uncertainty to toxicity modeling techniques that 

incorporate nutrient loading input (Bertani et al., 2016; Sayers et al., 2019).  

 

4.2.3 Internal variability  

Internal variability is defined as non-forcing related fluctuations within models. For example, 

atmospheric wave oscillations and circulation patterns can affect the Great Lakes region by 

driving changes in lake ice cover and winter temperature extremes (Assel and Rodionov, 1998; 

Bai et al., 2015; Fu and Steinschneider, 2019; Ghanbari and Bravo, 2008; Holman et al., 2014; 

Rodionov and Assel, 2010; Wang et al., 2012). However, earth system models contain climate 

states that are simplifications of reality based on choices of model design and simulation setup. 

Thus, model climate fluctuations may not be timed in the same way that they occur in the real 

world contributing to simulation uncertainty. Further, the Soil Water Assessment Tool (SWAT) 

is calibrated to historical datasets which can lead to uncertainty surrounding streamflow patterns 
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under future climate change. Testing the influence of historical climate period on the SWAT 

model for a Northern Michigan watershed basin revealed that the choice of climatic datasets led 

to differences in parameter validation (Wu et al., 2007). Representing the complex and annually 

varying environmental interactions that affect algae growth rates are challenges for HAB model 

development (Obenour et al., 2014). Algal blooms are traceable once they form, but HAB 

initiation, duration, and toxicity remain sources of uncertainty for forecast modeling that are 

related to environmental variability.  

 

4.2.4 Management of model uncertainty  

Calibration of a full climate model is nearly impossible due to the large amount of simulated 

variables. Further, climate model resolution, or the size of the grid cells, can vary considerably 

across different climate models, leading to uncertainty arising in missing processes. For global 

models, smaller scale processes are not accounted for at the grid level of even the finest 

resolution models, and are added using parameterizations –whereby sub-grid processes are 

represented by an average value or probability of occurrence (McFarlane, 2011). Regional scale 

climate models are examples of dynamical downscaling, where the use of finer grid resolution is 

aimed at better representation of local phenomena. However, regional models do require 

information from global models along domain boundaries.  

 

Climate model uncertainty can compound watershed model uncertainty depending on variable 

responses to climate forcing. Precipitation and temperature changes under a range of future 

climate scenarios have been shown to impact the hydrologic responses in agricultural watersheds 

(Christiansen et al., 2014; Ficklin et al., 2009; Kalcic et al., 2019). Depending on the study 
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timeframe, model simulations can be analyzed when spread in scenario uncertainty is minimal. 

For example, despite following separate forcing scenarios for radiation, Intergovernmental Panel 

on Climate Change (IPCC) climate model projections of temperature mostly align until 2050 

(IPCC, 2014). Additionally, bias correction has been repeatedly used to constrain the structural 

uncertainty of climate model data in watershed studies when reliable observations are available, 

especially for precipitation and temperature input to hydrological models (El-Khoury et al., 

2015; Gao et al., 2019; Glavan et al., 2015; Kang et al., 2015; Liu et al., 2015; Maraun, 2013; 

Shrestha et al., 2017; Teng et al., 2015; Troin et al., 2015; Vaghefi et al., 2013; Wagner et al., 

2015; Zhang et al., 2015) but bias correction is not as consistently used in studies specific to the 

Great Lakes region. Bias correction employs statistical techniques to match modeled variable 

relationships, such as mean and variance to present-day observations. Present day biases are then 

assumed to persist in future model simulations. Common implementations of bias correction of 

climate models include Bias Corrected Spatial Disaggregation (BCSD) that adjusts model data to 

match historical statistical distributions (quantile mapping; Wood et al., 2004; Thrasher et al., 

2013), LOcalized Constructed Analogs (LOCA) by spatial matching daily observations and 

model output (Pierce et al., 2014; Pierce and Cayan, 2016), and Bias Corrected Constructed 

Analogs (BCCA) which first use quantile mapping before constructing analogs (Maurer et al., 

2010). However caution should be used in understanding the final impact of each technique 

(Maraun, 2015; Thrasher et al., 2012), as the climate is not a stationary system.  

 

Over the last decade, satellite data has provided an important observational constraint on the 

shape, size, location and trend of harmful algal blooms in Lake Erie (Becker et al, 2009; Sayers 

et al., 2016; Sayers et al., 2019; Soontiens et al., 2019; Wynne et al., 2008; Wynne et al., 2011; 
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Wynne and Stumpf, 2015;). The Great Lakes Environmental Research Laboratory (GLERL) and 

the Cooperative Institute for Great Lakes Research (CIGLR) run NOAA Great Lakes Harmful 

Algal Blooms (HABs) and Hypoxia program which uses an integrated approach for 

understanding the environmental drivers of HABs and hypoxia for prediction of events. Seasonal 

dynamics are examined using satellite images, remote sensing, buoys, a monitoring program in 

Lake Erie, Saginaw Bay, and Lake Huron, and genetic techniques. Remote sensing data has been 

coupled to HAB transport models, leading to the development of a Lake Erie HAB forecast 

system (Wynne et al., 2013). Manning et al. (2019) used satellite-derived concentrations within a 

statistical model to demonstrate forecasts of sub-basin bloom severity toward better 

understanding of shoreline ecosystem service impact. Algorithms have been developed to 

associate satellite imagery with bloom toxicity by relating image pigmentation to species type 

(Wynne et al., 2011; Vincent et al., 2004), although these methods are still very uncertain with 

limited water samples for validation (Binding et al., 2019; Bridgeman et al., 2013; Stumpf et al., 

2016).  

 

Since current HAB modeling does not explicitly account for climate, co-production could be an 

avenue to managing model uncertainty. Co-production, or two-way communication between 

knowledge producers and users that target iteration on science questions, methods or 

applications, has emerged as a practical way to address the lack of usability of climate 

information (Kirchhoff et al. 2013; Lemos et al. 2019). Co-production moves toward problem 

driven research with high user participation, which is relevant to planning for HAB impacts 

under climate change where different stakeholders have different data needs (Figure 4.2; 

Kirchhoff et al., 2013). Co-production on climate science knowledge encompasses multiple 
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modes of interaction (contractual, consultative, collaborative, and collegial), and can take shape 

through several research approaches depending on available resources such as time, funding and  

 

Figure 4.2: Examples of co-production for HAB impacts. Figure modified from Kirchhoff et al., 

2013.  

 

training (Meadow et al., 2015). Scenario planning, or problem-solving through development of 

possible futures, follows an iterative process involving problem identification (orientation), 

system assessment (exploration), scenario creation (synthesis), and scenario testing (action and 

monitoring; Peterson et al., 2003; Weeks et al., 2011). Scenario creation for HABs is one way to 

incorporate expert judgment on model uncertainty as well as stakeholder knowledge of HAB 

responses  

 

4.2.5 Conceptualizing uncertainty for climate-watershed-HAB model chains 

Communication of climate impacts involves explanation of model and expert sources of 

uncertainty (Patt, 2007). In bridging the gap between HAB modeling decision-making in 
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Western Lake Erie, model coupling must be examined for the ways it treats underlying 

uncertainties. Here we develop an uncertainty framework with four pathways that conceptualize 

uncertainty based on current methods used in modeling chains (Figure 4.3): 

 

Figure 4.3: Conceptual uncertainty in climate-watershed-HAB model chain. Solid lines represent 

uncertainty pathways for compounding model structures, bias correction methods, and scenario 

planning. Confidence range on each pathway is shown in colorfill. A narrower confidence range 

indicates better understanding of the pathway methods or the addition of expert judgement. 

 

 Compounding Structural Uncertainty: In this pathway structural uncertainty from one modeling 

step (climate, watershed, HAB modeling) directly carries over to the next. This type of 

uncertainty could manifest through lake parameterizations in climate models, precipitation 
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magnitude timing, watershed model calibration and parameterizations, and/or timing of peak 

HAB growth. 

 

Climate Bias Correction: By introducing climate bias correction prior to use in watershed 

models, both initial uncertainty and error in the modeling chain increase as future variable 

relationships will likely not be the same as historical trends.  

 

Climate and Nutrient Load Bias Correction: This pathway describes the use of bias corrected 

values for both climate input into watershed modeling, and nutrient load input for HAB 

modeling. Bias correcting at each step increases uncertainty at all modeling stages, and leads to 

the largest error range due to non-stationarity similar to bias correction in pathway #2.  

 

HAB Scenario Planning: The scenario planning pathway combines modeling projections with 

expert judgement from within each field to form descriptions of future change. For example, a 

scenario could provide details such as summer temperature increases, probability of spring 

precipitation intensity, changes to watershed nutrient loads, probability of future HAB duration 

and location, changes to seasonal water use, and potential effects of future policy change (see 

detailed description below). Introducing the enhanced understanding of regional climate and 

watershed dynamics reduces both the overall uncertainty and the amount of error, however there 

is still overlap with the error range of the compounding pathway. 
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4.3 Discussion 

The conceptual HAB uncertainty framework presented here relates confidence intervals to model 

structure, bias correction and expert judgement. The compounding uncertainty pathway shows 

the highest overall uncertainty at the end of the model chain, however the error range is 

constrained because physical processes are explicitly represented in each modeling step –that is 

there is non-negligible error on the uncertainty due to choices of model structure, however the 

error is lower than if uncertainty were managed with statistics (Figure 4.3). Conversely, bias 

correction reduces uncertainty for present-day relationships, but doesn't account for changing 

variable relationships into the future, which increases the error of the final output leading to 

reduced confidence in the technique (Figure 4.3). Dynamical downscaling in climate modeling 

allows for the tracking of structural uncertainty through changes in grid resolution and sub-grid 

parameterization (such as convective precipitation processes), while maintaining some fidelity to 

real world relationships over time with the guiding laws of physics. However dynamical 

downscaling of regional climate models is also subject to errors in guiding global model input 

that should be considered alongside other forms of structural uncertainty. Statistical bias 

correction aims at reducing uncertainty but instead may obscure errors in both historical statistics 

and model simulations under assumptions of stationarity, which has ethical implications for 

decision-making as we move into new and previously unexperienced climate regimes (Hewitson 

et al., 2014).  

 

In the scenario planning pathway, both overall uncertainty and the error range decrease because 

expert judgement can contextualize model structures and scenarios for regional processes. For 

example, within the Great Lakes region, the difference in heating rates between land, water, and 
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air affects circulation patterns and moisture fluxes lead to enhanced cold season precipitation, 

lake effect rain/snow, moisture recycling, and winter cyclone strengthening (Anderson et al., 

2018; Baijnath-Rodino et al., 2018; Corcoran et al., 2019; Fujisaki-Manome et al., 2017; Lang et 

al., 2018; Notaro and Holman, 2013; Scott and Huff, 1996; Wright et al., 2013; Xiao et al., 

2018). Therefore precipitation output could be analyzed and recommend by researchers based on 

evaluation of climate model structure. Stakeholders can also provide expertise on land 

management practices, which improves parameter selection guiding regional watershed model 

simulations. As a result of COCA stakeholder workshops, stakeholder feedback led to changes in 

how SWAT modelers accounted for fertilizer type and application, tile drain density, wetland 

coverage, filter strip widths and watershed coverage, as well as watershed crop percentages 

(Kalcic et al., 2019). Similarly, iterative engagement could potentially lead to co-produced 

seasonal metrics for ranking climate models, SWAT calibration, and development of a HAB 

model ensemble. However HAB adaptation involves stakeholders with varying capacity and 

response options across spatial scales (e.g. closing a beach for multiple days versus moving a 

business to another lake location) which need to be considered in scenario development, 

especially in discussion of model information. 

 

4.4 Conclusions 

Enhanced application of climate information requires framing of uncertainty for different 

disciplines and stakeholders (Gettelman and Rood, 2016). However, a predominant challenge for 

the scientific community is to communicate current and future climate uncertainty to decision 

makers (Webster, 2003). Within the Great Lakes region there are multiple initiatives that work at 

the boundary of HAB research and decision-making, including the Great Lakes Environmental 
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Research Laboratory (GLERL), Heidelburg University, LimnoTech and the Ohio Sea Grant. 

Each year, NOAA and partners include a likely range on the HAB severity forecast for Western 

Lake Erie, and provide past index values dating to 2002 for historical context. During the active 

season (June-October), the HAB Tracker is used to produce bi-weekly bulletins detail current 

cyanobacteria bloom location, as well as 3-day forecasts of bloom development, transport, and 

decline (Rowe et al., 2016; https://tidesandcurrents.noaa.gov/hab/lakeerie.html#). Each bulletin 

contains expert analysis and summary to interpret the forecast and figures presented. However, 

communication of how uncertainty is managed in modeling remains a gap as techniques develop 

to project HAB impacts under climate changes in Western Lake Erie. Multidisciplinary modeling 

has potential to advance the current state of HAB prediction and continue stakeholder 

engagement on adaptation issues. Integrating stakeholder feedback into model simulation output 

is one way to co-produce usable information for HAB decision-making. Characterizing the 

sources of uncertainty in model simulation chains can be utilized for modeler-stakeholder 

discussion on HAB adaptation including HAB scenario planning. However, descriptions 

uncertainty management throughout the coupling process should be used as additional guidance 

for model confidence. Iterative engagement with stakeholders can extend the results of Coastal 

SEES workshop feedback in construction of model chain simulations 



 121 

References 

Agriculture Best Management Practices: https://www.usgs.gov/centers/glri/science/agriculture-

best-management-practices?qt-science_center_objects=0#qt-science_center_objects, last access: 

04 October, 2019. 

Allan, J. D., Manning, N. F., Smith, S. D. P., Dickinson, C. E., Joseph, C. A. and Pearsall, D. R.: 

Ecosystem services of Lake Erie: Spatial distribution and concordance of multiple services, J. 

Great Lakes Res., 43(4), 678–688, doi:10.1016/j.jglr.2017.06.001, 2017. 

Anderson, E. J., Fujisaki-Manome, A., Kessler, J., Lang, G. A., Chu, P. Y., Kelley, J. G. W., 

Chen, Y. and Wang, J.: Ice forecasting in the next-generation Great Lakes Operational Forecast 

System (GLOFS), J. Mar. Sci. Eng., 6(4), doi:10.3390/jmse6040123, 2018. 

Arnold, J. G., Kiniry, J. R., Srinivasan, R., Williams, J. R., Haney, E. B. and Neitsch, S. L.: 

Input/Output Documentation Soil &amp; Water Assessment Tool, available from: 

https://swat.tamu.edu/media/69296/swat-io-documentation-2012.pdf, 2012. 

Assel, R. and Rodionov, S.: Atmospheric teleconnections for annual maximum ice cover on the 

Laurentian Great Lakes, Int. J. Climatol., 18(4), 425–442, doi:10.1002/(sici)1097-

0088(19980330)18:4<425::aid-joc258>3.3.co;2-h, 1998. 

Bai, X., Wang, J., Austin, J., Schwab, D. J., Assel, R., Clites, A., Bratton, J. F., Colton, M., 

Lenters, J., Lofgren, B., Wohlleben, T., Helfrich, S., Vanderploeg, H., Luo, L. and Leshkevich, 

G.: A record-breaking low ice cover over the Great Lakes during winter 2011/2012: combined 

effects of a strong positive NAO and La Niña, Clim. Dyn., 44(5–6), 1187–1213, 

doi:10.1007/s00382-014-2225-2, 2015. 

Baijnath-Rodino, J. A. and Duguay, C. R.: Assessment of coupled CRCM5–FLake on the 

reproduction of wintertime lake-induced precipitation in the Great Lakes Basin, Theor. Appl. 

Climatol., (Eccc 2017), doi:10.1007/s00704-019-02799-8, 2019. 

Baijnath-Rodino, J. A., Duguay, C. R. and LeDrew, E.: Climatological trends of snowfall over 

the Laurentian Great Lakes Basin, Int. J. Climatol., 38(10), 3942–3962, doi:10.1002/joc.5546, 

2018. 

Basile, S. J., Rauscher, S. A. and Steiner, A. L.: Projected precipitation changes within the Great 

Lakes and Western Lake Erie Basin: a multi-model analysis of intensity and seasonality, Int. J. 

Climatol., 37(14), 4864–4879, doi:10.1002/joc.5128, 2017. 

Becker, R. H., Sultan, M. I., Boyer, G. L., Twiss, M. R. and Konopko, E.: Mapping 

cyanobacterial blooms in the Great Lakes using MODIS, J. Great Lakes Res., 35(3), 447–453, 

doi:10.1016/j.jglr.2009.05.007, 2009. 



 122 

Bertani, I., Obenour, D. R., Steger, C. E., Stow, C. A., Gronewold, A. D. and Scavia, D.: 

Probabilistically assessing the role of nutrient loading in harmful algal bloom formation in 

western Lake Erie, J. Great Lakes Res., 42(6), 1184–1192, doi:10.1016/j.jglr.2016.04.002, 2016. 

Binding, C. E., Zastepa, A. and Zeng, C.: The impact of phytoplankton community composition 

on optical properties and satellite observations of the 2017 western Lake Erie algal bloom, J. 

Great Lakes Res., 45(3), 573–586, doi:10.1016/j.jglr.2018.11.015, 2019. 

Bridgeman, T. B., Chaffin, J. D. and Filbrun, J. E.: A novel method for tracking western Lake 

Erie Microcystis blooms, 2002-2011, J. Great Lakes Res., 39(1), 83–89, 

doi:10.1016/j.jglr.2012.11.004, 2013. 

Briley, L.J., Ashley, W.S., Rood, R.B. and Krmenec, A.: The role of meteorological processes in 

the description of uncertainty for climate change decision-making. Theor. Appl. Climatol., 

127(3-4), 643-654, doi:10.1007/s00704-015-1652-2, 2017. 

Bryan, A. M., Steiner, A. L. and Posselt, D. J.: Regional modeling of surface-atmosphere 

interactions and their impact on Great Lakes hydroclimate, J. Geophys. Res., 120(3), 1044–1064, 

doi:10.1002/2014JD022316, 2015. 

Bullerjahn, G. S., McKay, R. M., Davis, T. W., Baker, D. B., Boyer, G. L., D’Anglada, L. V., 

Doucette, G. J., Ho, J. C., Irwin, E. G., Kling, C. L., Kudela, R. M., Kurmayer, R., Michalak, A. 

M., Ortiz, J. D., Otten, T. G., Paerl, H. W., Qin, B., Sohngen, B. L., Stumpf, R. P., Visser, P. M. 

and Wilhelm, S. W.: Global solutions to regional problems: Collecting global expertise to 

address the problem of harmful cyanobacterial blooms. A Lake Erie case study, Harmful Algae, 

54, 223–238, doi:10.1016/j.hal.2016.01.003, 2016. 

Burniston, D., Dove, A., Backus, S. and Thompson, A.: Nutrient concentrations and loadings in 

the St. Clair River–Detroit River Great Lakes Interconnecting Channel, J. Great Lakes Res., 

44(3), 398–411, doi:10.1016/j.jglr.2018.02.005, 2018. 

Carmichael, W. W. and Boyer, G. L.: Health impacts from cyanobacteria harmful algae blooms: 

Implications for the North American Great Lakes, Harmful Algae, 54, 194–212, 

doi:10.1016/j.hal.2016.02.002, 2016. 

Charusombat, U., Fujisaki-Manome, A., Gronewold, A. D., Lofgren, B. M., Anderson, E. J., 

Blanken, P. D., Spence, C., Lenters, J. D., Xiao, C., Fitzpatrick, L. E. and Cutrell, G.: Evaluating 

and improving modeled turbulent heat fluxes across the North American Great Lakes, Hydrol. 

Earth Syst. Sci., 22(10), 5559–5578, doi:10.5194/hess-22-5559-2018, 2018. 

Christiansen, D. E., Walker, J. F. and Hunt, R. J.: Basin-scale simulation of current and potential 

climate changed hydrologic conditions in the Lake Michigan Basin, United States, Sci. Investig. 

Rep., 86, doi:10.3133/sir20145175, 2014. 

Coastal SEES: Notes from a workshop titled The Future of Harmful Algal Blooms held on 

October 26, 2018, Ottawa National Wildlife Refuge, Oak Harbor, OH, 2018. 



 123 

Conrick, R., Reeves, H. D. and Zhong, S.: The dependence of QPF on the choice of boundary- 

and surface-layer parameterization for a lake-effect snowstorm, J. Appl. Meteorol. Climatol., 

54(6), 1177–1190, doi:10.1175/JAMC-D-14-0291.1, 2015. 

Corcoran, M. C., Thomas, E. K. and Boutt, D. F.: Event-Based Precipitation Isotopes in the 

Laurentian Great Lakes Region Reveal Spatiotemporal Patterns in Moisture Recycling, J. 

Geophys. Res. Atmos., 124(10), 5463–5478, doi:10.1029/2018JD029545, 2019. 

Currie, S. J., Vanzomeren, C. M. and Berkowitz, J. F.: Utilizing Wetlands for Phosphorus 

Reduction in Great Lakes Watersheds : A Review of Available Literature Examining Soil 

Properties and Phosphorus Removal Efficiency, U.S. Army Engineer Research and Development 

Center, Vicksburg, MS, Available from: www.erdc.usace.army.mil., 120 pp., 2017. 

Dale, B., Edwards, M. and Reid, P. C.: Climate Change and Harmful Algal Blooms, Ecol. 

Harmful Algae, 189(Hallegraeff 1993), 367–378, doi:10.1007/978-3-540-32210-8_28, 2006. 

Edwards, M., Johns, D. G., Leterme, S.C., Svendsen, E., and Richardson, A.J.: Regional climate 

change and harmful algal blooms in the northeast Atlantic, Limnol. Oceanogr., 51(2), 820–829, 

2006. 

El-Khoury, A., Seidou, O., Lapen, D. R. L., Que, Z., Mohammadian, M., Sunohara, M. and 

Bahram, D.: Combined impacts of future climate and land use changes on discharge, nitrogen 

and phosphorus loads for a Canadian river basin, J. Environ. Manage., 151, 76–86, 

doi:10.1016/j.jenvman.2014.12.012, 2015. 

Elliott, J. A.: The seasonal sensitivity of Cyanobacteria and other phytoplankton to changes in 

flushing rate and water temperature, Glob. Chang. Biol., 16(2), 864–876, doi:10.1111/j.1365-

2486.2009.01998.x, 2010. 

EPA Drinking Water Health Advisories for Cyanotoxins: https://www.epa.gov/cyanohabs/epa-

drinking-water-health-advisories-cyanotoxins, last access: 21 September 2019. 

Ficklin, D. L., Luo, Y., Luedeling, E. and Zhang, M.: Climate change sensitivity assessment of a 

highly agricultural watershed using SWAT, J. Hydrol., 374(1–2), 16–29, 

doi:10.1016/j.jhydrol.2009.05.016, 2009. 

Fu, W. and Steinschneider, S.: A diagnostic-predictive assessment of winter precipitation over 

the Laurentian Great Lakes: Effects of ENSO and other teleconnections, J. Hydrometeorol., 

20(1), 117–137, doi:10.1175/JHM-D-18-0128.1, 2019. 

Fujisaki-Manome, A., Fitzpatrick, L. E., Gronewold, A. D., Anderson, E. J., Lofgren, B. M., 

Spence, C., Chen, J., Shao, C., Wright, D. M. and Xiao, C.: Turbulent heat fluxes during an 

extreme lake-effect snow event, J. Hydrometeorol., 18(12), 3145–3163, doi:10.1175/JHM-D-17-

0062.1, 2017. 



 124 

Gao, J., Sheshukov, A. Y., Yen, H., Douglas-Mankin, K. R., White, M. J. and Arnold, J. G.: 

Uncertainty of hydrologic processes caused by bias-corrected CMIP5 climate change projections 

with alternative historical data sources, J. Hydrol., 568(July 2018), 551–561, 

doi:10.1016/j.jhydrol.2018.10.041, 2019. 

Gassman, P.W., Reyes, M.R., Green, C.H. and Arnold, J.G.: The soil and water assessment tool: 

historical development, applications, and future research directions., Transactions of the 

ASABE, 50(4), 1211-1250, doi:10.13031/2013.23637, 2007. 

Gettelman, A. and Rood, R. B.: Demystifying Climate Models, Earth Syst. Data Model., 

2(2011), 282, doi:10.1007/978-3-662-48959-8, 2016. 

Ghanbari, R. N. and Bravo, H. R.: Coherence between atmospheric teleconnections, Great Lakes 

water levels, and regional climate, Adv. Water Resour., 31(10), 1284–1298, 

doi:10.1016/j.advwatres.2008.05.002, 2008. 

Glavan, M., Ceglar, A. and Pintar, M.: Assessing the impacts of climate change on water 

quantity and quality modelling in small Slovenian Mediterranean catchment - lesson for policy 

and decision makers, Hydrol. Process., 29(14), 3124–3144, doi:10.1002/hyp.10429, 2015. 

Hawkins, E. and Sutton, R.: The potential to narrow uncertainty in regional climate predictions, 

Bull. Am. Meteorol. Soc., 90(8), 1095–1107, doi:10.1175/2009BAMS2607.1, 2009. 

He, X., Liu, Y. L., Conklin, A., Westrick, J., Weavers, L. K., Dionysiou, D. D., Lenhart, J. J., 

Mouser, P. J., Szlag, D. and Walker, H. W.: Toxic cyanobacteria and drinking water: Impacts, 

detection, and treatment, Harmful Algae, 54, 174–193, doi:10.1016/j.hal.2016.01.001, 2016. 

Heisler, J., Glibert, P. M., Burkholder, J. M., Anderson, D. M., Cochlan, W., Dennison, W. C., 

Dortch, Q., Gobler, C. J., Heil, C. A., Humphries, E., Lewitus, A., Magnien, R., Marshall, H. G., 

Sellner, K., Stockwell, D. A., Stoecker, D. K. and Suddleson, M.: Eutrophication and harmful 

algal blooms: A scientific consensus, Harmful Algae, 8(1), 3–13, doi:10.1016/j.hal.2008.08.006, 

2008. 

Hewitson, B.C., Daron, J., Crane, R.G., Zermoglio, M.F. and Jack, C.: Interrogating empirical-

statistical downscaling. Climatic Change, 122(4), 539-554, doi:10.1007/s10584-013-1021-z, 

2014. 

Ho, J. C. and Michalak, A. M.: Phytoplankton blooms in Lake Erie impacted by both long-term 

and springtime phosphorus loading, J. Great Lakes Res., 43(3), 221–228, 

doi:10.1016/j.jglr.2017.04.001, 2017. 

Holman, K. D., Lorenz, D. J. and Notaro, M.: Influence of the background state on Rossby wave 

propagation into the great lakes region based on observations and model simulations, J. Clim., 

27(24), 9302–9322, doi:10.1175/JCLI-D-13-00758.1, 2014. 



 125 

Huber, V., Wagner, C., Gerten, D. and Adrian, R.: To bloom or not to bloom: Contrasting 

responses of cyanobacteria to recent heat waves explained by critical thresholds of abiotic 

drivers, Oecologia, 169(1), 245–256, doi:10.1007/s00442-011-2186-7, 2012. 

Hudnell, H.K. and Dortch, Q.: A synopsis of research needs identified at the interagency, 

international symposium on cyanobacterial harmful algal blooms (ISOC-HAB). in: 

Cyanobacterial harmful algal blooms: state of the science and research needs, Springer, New 

York, NY, 17-43, doi:10.1007/978-0-387-75865-7_2, 2008. 

IPCC: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to 

the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing 

Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151 pp, 2014. 

Jetoo, S., Grover, V. I. and Krantzberg, G.: The toledo drinking water advisory: Suggested 

application of the water safety planning approach, Sustain., 7(8), 9787–9808, 

doi:10.3390/su7089787, 2015. 

Kalcic, M. M., Frankenberger, J. and Chaubey, I.: Spatial Optimization of Six Conservation 

Practices Using Swat in Tile-Drained Agricultural Watersheds, J. Am. Water Resour. Assoc., 

51(4), 956–972, doi:10.1111/1752-1688.12338, 2015. 

Kalcic, M. M., Muenich, R. L., Basile, S., Steiner, A. L., Kirchhoff, C. and Scavia, D.: Climate 

Change and Nutrient Loading in the Western Lake Erie Basin: Warming Can Counteract a 

Wetter Future, Environ. Sci. Technol., doi:10.1021/acs.est.9b01274, 2019. 

Kang, B., Kim, Y. Do, Lee, J. M. and Kim, S. J.: Hydro-environmental runoff projection under 

GCM scenario downscaled by Artificial Neural Network in the Namgang Dam watershed, 

Korea, KSCE J. Civ. Eng., 19(2), 434–445, doi:10.1007/s12205-015-0580-0, 2015. 

Kieta, K. A., Owens, P. N., Lobb, D. A., Vanrobaeys, J. A. and Flaten, D. N.: Phosphorus 

dynamics in vegetated buffer strips in cold climates: A review, Environ. Rev., 26(3), 255–272, 

doi:10.1139/er-2017-0077, 2018. 

Kirchhoff, C.J., Lemos, M.C. and Dessai, S.: Actionable knowledge for environmental decision 

making: broadening the usability of climate science. Annual review of environment and 

resources, 38, doi:10.1146/annurev-environ-022112-112828, 2013. 

Kosten, S., Huszar, V. L. M., Bécares, E., Costa, L. S., van Donk, E., Hansson, L. A., Jeppesen, 

E., Kruk, C., Lacerot, G., Mazzeo, N., De Meester, L., Moss, B., Lürling, M., Nõges, T., Romo, 

S. and Scheffer, M.: Warmer climates boost cyanobacterial dominance in shallow lakes, Glob. 

Chang. Biol., 18(1), 118–126, doi:10.1111/j.1365-2486.2011.02488.x, 2012. 

Lake Erie: https://www.epa.gov/greatlakes/lake-erie, last access: 04 October, 2019. 

Lang, C. E., McDonald, J. M., Gaudet, L., Doeblin, D., Jones, E. A. and Laird, N. F.: The 

influence of a lake-to-lake connection from lake huron on the lake-effect snowfall in the vicinity 



 126 

of Lake Ontario, J. Appl. Meteorol. Climatol., 57(7), 1423–1439, doi:10.1175/JAMC-D-17-

0225.1, 2018. 

Leaders pledge water quality improvements for Lake Erie: 

https://www.michigan.gov/whitmer/0,9309,7-387-90499-499932--,00.html, last access: 04 

October, 2019. 

Lemos, M.C., Wolske, K.S., Rasmussen, L.V., Arnott, J.C., Kalcic, M. and Kirchhoff, C.J.: The 

Closer, the Better? Untangling Scientist–Practitioner Engagement, Interaction, and Knowledge 

Use. Weather Clim. Soc., 11(3), 535-548, doi:10.1175/WCAS-D-18-0075.1, 2019. 

Litchman, E.: Population and community responses of phytoplankton to fluctuating light, 

Oecologia, 117(1–2), 247–257, doi:10.1007/s004420050655, 1998. 

Liu, W., Zhang, A., Wang, L., Fu, G., Chen, D., Liu, C. and Cai, T.: Projecting streamflow in the 

Tangwang River basin (China) using a rainfall generator and two hydrological models, Clim. 

Res., 62(2), 79–97, doi:10.3354/cr01261, 2014. 

Loftin, K. A., Graham, J. L., Hilborn, E. D., Lehmann, S. C., Meyer, M. T., Dietze, J. E. and 

Griffith, C. B.: Cyanotoxins in inland lakes of the United States: Occurrence and potential 

recreational health risks in the EPA National Lakes Assessment 2007, Harmful Algae, 56, 77–

90, doi:10.1016/j.hal.2016.04.001, 2016. 

Mallard, M. S., Nolte, C. G., Bullock, O.R., Spero, T. L., and Gula, J.: Using a coupled lake 

model with WRF for dynamical downscaling, J. Geophys. Res., 119(12), 7193–7208, 

doi:10.1002/2014JD021785, 2014. 

Mallard, M. S., Nolte, C. G., Spero, T. L., Bullock, O. R., Alapaty, K., Herwehe, J. A., Gula, J. 

and Bowden, J. H.: Technical challenges and solutions in representing lakes when using WRF in 

downscaling applications, Geosci. Model Dev., 8(4), 1085–1096, doi:10.5194/gmd-8-1085-2015, 

2015. 

Manning, N. F., Wang, Y. C., Long, C. M., Bertani, I., Sayers, M. J., Bosse, K. R., Shuchman, R. 

A. and Scavia, D.: Extending the forecast model: Predicting Western Lake Erie harmful algal 

blooms at multiple spatial scales, J. Great Lakes Res., 45(3), 587–595, 

doi:10.1016/j.jglr.2019.03.004, 2019. 

Maraun, D.: Bias Correction, Quantile Mapping, and Downscaling: Revisiting the Inflation 

Issue, J. Clim., 26(6), 2137–2143, doi:10.1175/JCLI-D-12-00821.1, 2013. 

Maraun, D.: Bias Correcting Climate Change Simulations - a Critical Review, Curr. Clim. 

Chang. Reports, 2(4), 211–220, doi:10.1007/s40641-016-0050-x, 2016. 

Maurer, E. P., Hidalgo, H. G., Das, T., Dettinger, M. D. and Cayan, D. R.: The utility of daily 

large-scale climate data in the assessment of climate change impacts on daily streamflow in 

California, Hydrol. Earth Syst. Sci., 14(6), 1125–1138, doi:10.5194/hess-14-1125-2010, 2010. 



 127 

McFarlane, N.: Parameterizations: representing key processes in climate models without 

resolving them. Wiley Interdisciplinary Reviews: Climate Change, 2(4), 482-497, 

doi:10.1002/wcc.122, 2011. 

Meadow, A.M., Ferguson, D.B., Guido, Z., Horangic, A., Owen, G. and Wall, T.: Moving 

toward the deliberate coproduction of climate science knowledge. Weather Clim. Soc., 7(2), 179-

191, doi:10.1175/WCAS-D-14-00050.1, 2015. 

Merriman, K. R., Daggupati, P., Srinivasan, R., Toussant, C., Russell, A. M. and Hayhurst, B.: 

Assessing the impact of site-specific BMPs using a spatially explicit, field-scale SWAT model 

with edge-of-field and tile hydrology and water-quality data in the Eagle Creek Watershed, 

Ohio., Water, 10(10), 1299, doi:10.3390/w10101299, 2018. 

Merriman, K. R., Russell, A. M., Rachol, C. M., Daggupati, P., Srinivasan, R., Hayhurst, B. A. 

and Stuntebeck, T. D.: Calibration of a field-scale soil and water assessment tool (SWAT) model 

with field placement of best management practices in Alger Creek, Michigan, Sustain., 10(3), 1–

23, doi:10.3390/su10030851, 2018. 

Michalak, A. M., Anderson, E. J., Beletsky, D., Boland, S., Bosch, N. S., Bridgeman, T. B., 

Chaffin, J. D., Cho, K., Confesor, R., Daloglu, I., Depinto, J. V, Evans, M. A., Fahnenstiel, G. 

L., He, L., Ho, J. C., Jenkins, L., Johengen, T. H., Kuo, K. C., Laporte, E., Liu, X., McWilliams, 

M. R., Moore, M. R., Posselt, D. J., Richards, R. P., Scavia, D., Steiner, A. L., Verhamme, E., 

Wright, D. M. and Zagorski, M. A: Record-setting algal bloom in Lake Erie caused by 

agricultural and meteorological trends consistent with expected future conditions., Proc. Natl. 

Acad. Sci. U. S. A., 110(16), 6448–6452, doi:10.1073/pnas.1216006110, 2013. 

Newell, S. E., Davis, T. W., Johengen, T. H., Gossiaux, D., Burtner, A., Palladino, D. and 

McCarthy, M. J.: Reduced forms of nitrogen are a driver of non-nitrogen-fixing harmful 

cyanobacterial blooms and toxicity in Lake Erie, Harmful Algae, 81(January), 86–93, 

doi:10.1016/j.hal.2018.11.003, 2019. 

Notaro, M., Holman, K., Zarrin, A., Fluck, E., Vavrus, S. and Bennington, V.: Influence of the 

laurentian great lakes on regional climate, J. Clim., 26(3), 789–804, doi:10.1175/JCLI-D-12-

00140.1, 2013. 

Notaro, M., Bennington, V. and Vavrus, S.: Dynamically downscaled projections of lake-effect 

snow in the Great Lakes basin, J. Clim., 28(4), 1661–1684, doi:10.1175/JCLI-D-14-00467.1, 

2015. 

Obenour, D. R., Gronewold, A. D., Stow, C. A. and Scavia, D.: Water Resources Research, J. 

Am. Water Resour. Assoc., 5(3), 2–2, doi:10.1111/j.1752-1688.1969.tb04897.x, 2014. 

Ohio Algae Information for Recreational Waters: https://epa.ohio.gov/HAB-Algae#147744473-

advisories, last access: 04 October, 2019. 



 128 

Paerl, H. W. and Huisman, J.: Blooms like it hot, Science, 320(5872), 57–58, 

doi:10.1126/science.1155398, 2008. 

Paerl, H. W., Fulton, R. S., Moisander, P. H. and Dyble, J.: Harmful freshwater algal blooms, 

with an emphasis on cyanobacteria., Sci. World. J., 1, 76–113, doi:10.1100/tsw.2001.16, 2001. 

Palm-Forster, L. H., Lupi, F. and Chen, M.: Valuing lake erie beaches using value and function 

transfers, Agric. Resour. Econ. Rev., 45(2), 270–292, doi:10.1017/age.2016.15, 2016. 

Patt, A.: Assessing model-based and conflict-based uncertainty, Glob. Environ. Chang., 17(1), 

37–46, doi:10.1016/j.gloenvcha.2006.10.002, 2007. 

Peterson, G.D., Cumming, G.S. and Carpenter, S.R.: Scenario planning: a tool for conservation 

in an uncertain world. Conserv. Biol., 17(2), 358-366, doi:10.1046/j.1523-1739.2003.01491.x, 

2003. 

Pierce, D. W. and Cayan, D. R.: Downscaling humidity with Localized Constructed Analogs 

(LOCA) over the conterminous United States, Clim. Dyn., 47(1–2), 411–431, 

doi:10.1007/s00382-015-2845-1, 2016. 

Pierce, D. W., Cayan, D. R. and Thrasher, B. L.: Statistical downscaling using localized 

constructed analogs (LOCA), J. Hydrometeorol., 15(6), 2558–2585, doi:10.1175/JHM-D-14-

0082.1, 2014. 

Rinta-Kanto, J. M., Ouellette, A. J. A., Boyer, G. L., Twiss, M. R., Bridgeman, T. B. and 

Wilhelm, S. W.: Quantification of toxic Microcystis spp. during the 2003 and 2004 blooms in 

western Lake Erie using quantitative real-time PCR, Environ. Sci. Technol., 39(11), 4198–4205, 

doi:10.1021/es048249u, 2005. 

Rodionov, S. and Assel, R.: Atmospheric teleconnection patterns and severity of winters in the 

Laurentian Great Lakes basin, Atmos. - Ocean, 38(4), 601–635, 

doi:10.1080/07055900.2000.9649661, 2000. 

Rowe, M.D., Anderson, E.J., Wynne, T.T., Stumpf, R.P., Fanslow, D.L., Kijanka, K., 

Vanderploeg, H.A., Strickler, J.R. and Davis, T.W.: Vertical distribution of buoyant Microcystis 

blooms in a Lagrangian particle tracking model for short‐term forecasts in Lake Erie., J. 

Geophys. Res.-Oceans, 121(7), 5296-5314, doi:10.1002/2016JC011720, 2016. 

Sayers, M., Fahnenstiel, G. L., Shuchman, R. A. and Whitley, M.: Cyanobacteria blooms in three 

eutrophic basins of the Great Lakes: a comparative analysis using satellite remote sensing, Int. J. 

Remote Sens., 37(17), 4148–4171, doi:10.1080/01431161.2016.1207265, 2016. 

Sayers, M. J., Grimm, A. G., Shuchman, R. A., Bosse, K. R., Fahnenstiel, G. L., Ruberg, S. A. 

and Leshkevich, G. A.: Satellite monitoring of harmful algal blooms in the Western Basin of 

Lake Erie: A 20-year time-series, J. Great Lakes Res., 45(3), 508–521, 

doi:10.1016/j.jglr.2019.01.005, 2019. 



 129 

Scavia, D., David Allan, J., Arend, K. K., Bartell, S., Beletsky, D., Bosch, N. S., Brandt, S. B., 

Briland, R. D., Daloǧlu, I., DePinto, J. V., Dolan, D. M., Evans, M. A., Farmer, T. M., Goto, D., 

Han, H., Höök, T. O., Knight, R., Ludsin, S. A., Mason, D., Michalak, A. M., Peter Richards, R., 

Roberts, J. J., Rucinski, D. K., Rutherford, E., Schwab, D. J., Sesterhenn, T. M., Zhang, H. and 

Zhou, Y.: Assessing and addressing the re-eutrophication of Lake Erie: Central basin hypoxia, J. 

Great Lakes Res., 40(2), 226–246, doi:10.1016/j.jglr.2014.02.004, 2014. 

Scavia, D., Bocaniov, S. A., Dagnew, A., Long, C. and Wang, Y. C.: St. Clair-Detroit River 

system: Phosphorus mass balance and implications for Lake Erie load reduction, monitoring, and 

climate change, J. Great Lakes Res., 45(1), 40–49, doi:10.1016/j.jglr.2018.11.008, 2019. 

Scott, R. W. and Huff, F. A.: Impacts of the Great Lakes on regional climate conditions, J. Great 

Lakes Res., 22(4), 845–863, doi:10.1016/S0380-1330(96)71006-7, 1996. 

Shrestha, M., Acharya, S. C. and Shrestha, P. K.: Bias correction of climate models for 

hydrological modelling – are simple methods still useful?, Meteorol. Appl., 24(3), 531–539, 

doi:10.1002/met.1655, 2017. 

Soontiens, N., Binding, C., Fortin, V., Mackay, M. and Rao, Y. R.: Algal bloom transport in 

Lake Erie using remote sensing and hydrodynamic modelling: Sensitivity to buoyancy velocity 

and initial vertical distribution, J. Great Lakes Res., 45(3), 556–572, 

doi:10.1016/j.jglr.2018.10.003, 2019. 

Steffen, M. M., Belisle, B. S., Watson, S. B., Boyer, G. L. and Wilhelm, S. W.: Status, causes 

and controls of cyanobacterial blooms in Lake Erie, J. Great Lakes Res., 40(2), 215–225, 

doi:10.1016/j.jglr.2013.12.012, 2014. 

Stow, C. A., Cha, Y., Johnson, L. T., Confesor, R. and Richards, R. P.: Long-Term and Seasonal 

Trend Decomposition of Maumee River Nutrient Inputs to Western Lake Erie, Environ. Sci. 

Technol., 49(6), 3392–3400, doi:10.1021/es5062648, 2015. 

Stumpf, R. P., Davis, T. W., Wynne, T. T., Graham, J. L., Loftin, K. A., Johengen, T. H., 

Gossiaux, D., Palladino, D. and Burtner, A.: Challenges for mapping cyanotoxin patterns from 

remote sensing of cyanobacteria, Harmful Algae, 54, 160–173, doi:10.1016/j.hal.2016.01.005, 

2016. 

Stumpf, R. P.: NOAA_Lake Erie 2002-2018 (HAB Severity Index dataset), NOAA, received 

through email correspondence, 2019. 

Teng, J., Potter, N. J., Chiew, F. H. S., Zhang, L., Wang, B., Vaze, J. and Evans, J. P.: How does 

bias correction of regional climate model precipitation affect modelled runoff?, Hydrol. Earth 

Syst. Sci., 19(2), 711–728, doi:10.5194/hess-19-711-2015, 2015. 

Thrasher, B., Maurer, E. P., McKellar, C. and Duffy, P. B.: Technical Note: Bias correcting 

climate model simulated daily temperature extremes with quantile mapping, Hydrol. Earth Syst. 

Sci., 16(9), 3309–3314, doi:10.5194/hess-16-3309-2012, 2012. 



 130 

Troin, M., Velázquez, J. A., Caya, D. and Brissette, F.: Comparing statistical post-processing of 

regional and global climate scenarios for hydrological impacts assessment: A case study of two 

Canadian catchments, J. Hydrol., 520, 268–288, doi:10.1016/j.jhydrol.2014.11.047, 2015. 

Vaghefi, A S., Mousavi, S. J., Abbaspour, K. C., Srinivasan, R. and Arnold, J. R.: Integration of 

hydrologic and water allocation models in basin-scale water resources management considering 

crop pattern and climate change: Karkheh River Basin in Iran, Reg. Environ. Chang., 15(3), 475–

484, doi:10.1007/s10113-013-0573-9, 2013. 

Vanderploeg, H. A., Liebig, J. R., Carmichael, W. W., Agy, M. A., Johengen, T. H., Fahnenstiel, 

G. L. and Nalepa, T. F.: Zebra mussel (Dreissena polymorpha) selective filtration promoted toxic 

Microcystis blooms in Saginaw Bay (Lake Huron) and Lake Erie, Can. J. Fish. Aquat. Sci., 

58(6), 1208–1221, doi:10.1139/f01-066, 2001. 

Vincent, R. K., Qin, X., McKay, R. M. L., Miner, J., Czajkowski, K., Savino, J. and Bridgeman, 

T.: Phycocyanin detection from LANDSAT TM data for mapping cyanobacterial blooms in Lake 

Erie, Remote Sens. Environ., 89(3), 381–392, doi:10.1016/j.rse.2003.10.014, 2004. 

Wagner, P. D., Reichenau, T. G., Kumar, S. and Schneider, K.: Development of a new 

downscaling method for hydrologic assessment of climate change impacts in data scarce regions 

and its application in the Western Ghats, India, Reg. Environ. Chang., 15(3), 435–447, 

doi:10.1007/s10113-013-0481-z, 2015. 

Wang, J., Bai, X., Hu, H., Clites, A., Colton, M. and Lofgren, B.: Temporal and spatial 

variability of Great Lakes ice cover, 1973-2010, J. Clim., 25(4), 1318–1329, 

doi:10.1175/2011JCLI4066.1, 2012. 

Watson, S. B., Miller, C., Arhonditsis, G., Boyer, G. L., Carmichael, W., Charlton, M. N., 

Confesor, R., Depew, D. C., Höök, T. O., Ludsin, S. A., Matisoff, G., McElmurry, S. P., Murray, 

M. W., Peter Richards, R., Rao, Y. R., Steffen, M. M. and Wilhelm, S. W.: The re-eutrophication 

of Lake Erie: Harmful algal blooms and hypoxia, Harmful Algae, 56, 44–66, 

doi:10.1016/j.hal.2016.04.010, 2016. 

Weeks, D., Malone, P. and Welling, L.: Climate change scenario planning: a tool for managing 

parks into uncertain futures. Park Science, 28(1), 26-33, 2011. 

Wells, M. L., Trainer, V. L., Smayda, T. J., Karlson, B. S. O., Trick, C. G., Kudela, R. M., 

Ishikawa, A., Bernard, S., Wulff, A., Anderson, D. M. and Cochlan, W. P.: Harmful algal 

blooms and climate change: Learning from the past and present to forecast the future, Harmful 

Algae, 49, 68–93, doi:10.1016/j.hal.2015.07.009, 2015. 

Western Basin of Lake Erie Collaborative Agreement: 

https://www.michigan.gov/documents/snyder/Western_Basin_of_Lake_Erie_Collaborative_Agr

eement--Lieutenant_Governor_491709_7.pdf, last access: 04 October, 2019. 



 131 

Williamson, T. N., Dobrowolski, E. G., Meyer, S. M., Frey, J. W. and Allred, B. J.: Delineation 

of tile-drain networks using thermal and multispectral imagery—Implications for water quantity 

and quality differences from paired edge-of-field sites, J. Soil Water Conserv., 74(1), 1–11, 

doi:10.2489/jswc.74.1.1, 2019. 

Winter, J. G., Desellas, A. M., Fletcher, R., Heintsch, L., Morley, A., Nakamoto, L. and Utsumi, 

K.: Algal blooms in Ontario, Canada: Increases in reports since 1994, Lake Reserv. Manag., 

27(2), 105–112, doi:10.1080/07438141.2011.557765, 2011. 

Wolf, D., Georgic, W. and Klaiber, H. A.: Reeling in the damages: Harmful algal blooms’ 

impact on Lake Erie’s recreational fishing industry, J. Environ. Manage., 199, 148–157, 

doi:10.1016/j.jenvman.2017.05.031, 2017. 

Wood, A. W., Leung, L. R., Sridhar, V. and Lettenmaier, D. P.: Hydrologic implications of 

dynamical and statistical approaches to downscaling climate model outputs, Clim. Change, 62(1–

3), 189–216, doi:10.1023/B:CLIM.0000013685.99609.9e, 2004. 

Wright, D. M., Posselt, D. J. and Steiner, A. L.: Sensitivity of lake-effect snowfall to lake ice 

cover and temperature in the great lakes region, Mon. Weather Rev., 141(2), 670–689, 

doi:10.1175/MWR-D-12-00038.1, 2013. 

Wu, K. and Johnston, C. A.: Hydrologic response to climatic variability in a Great Lakes 

Watershed: A case study with the SWAT model, J. Hydrol., 337(1–2), 187–199, 

doi:10.1016/j.jhydrol.2007.01.030, 2007. 

Wynne, T. T., Stumpf, R. P., Tomlinson, M. C., Warner, R. A., Tester, P. A., Dyble, J. and 

Fahnenstiel, G. L.: Relating spectral shape to cyanobacterial blooms in the Laurentian Great 

Lakes, Int. J. Remote Sens., 29(12), 3665–3672, doi:10.1080/01431160802007640, 2008. 

Wynne, T. T., Stumpf, R. P., Tomlinson, M. C., Schwab, D. J., Watabayashi, G. Y. and 

Christensen, J. D.: Estimating cyanobacterial bloom transport by coupling remotely sensed 

imagery and a hydrodynamic model Published by : Wiley on behalf of the Ecological Society of 

America Stable URL : https://www.jstor.org/stable/41416689 Estimating cyanobacterial bloom t, 

, 21(7), 2709–2721, 2011. 

Wynne, T. T., Stumpf, R. P., Tomlinson, M. C., Fahnenstiel, G. L., Dyble, J., Schwab, D. J. and 

Joshi, S. J.: Evolution of a cyanobacterial bloom forecast system in western Lake Erie: 

Development and initial evaluation, J. Great Lakes Res., 39(S1), 90–99, 

doi:10.1016/j.jglr.2012.10.003, 2013. 

Wynne, T. T. and Stumpf, R. P.: Spatial and Temporal Patterns in the Seasonal Distribution of 

Toxic Cyanobacteria in Western Lake Erie from 2002–2014, Toxins, 7(5), 1649–1663, 

doi:10.3390/toxins7051649, 2015. 



 132 

Xiao, C., Lofgren, B. M., Wang, J. and Chu, P. Y.: Improving the lake scheme within a coupled 

WRF-lake model in the Laurentian Great Lakes, J. Adv. Model. Earth Syst., 8(4), 1969–1985, 

doi:10.1002/2016MS000717, 2016. 

Xiao, C., Lofgren, B. M. and Wang, J.: WRF-based assessment of the Great Lakes’ impact on 

cold season synoptic cyclones, Atmos. Res., 214(June), 189–203, 

doi:10.1016/j.atmosres.2018.07.020, 2018. 

Zhang, X., Booij, M. J. and Xu, Y. P.: Improved simulation of peak flows under climate change: 

Postprocessing or composite objective calibration?, J. Hydrometeorol., 16(5), 2187–2208, 

doi:10.1175/JHM-D-14-0218.1, 2015. 

Zhou, Y., Obenour, D. R., Scavia, D., Johengen, T. H. and Michalak, A. M.: Spatial and 

temporal trends in Lake Erie hypoxia, 1987-2007, Environ. Sci. Technol., 47(2), 899–905, 

doi:10.1021/es303401b, 2013.



 133 

Chapter 5 Conclusions 

 

 

There is an ethical urgency to address climate change impacts on society. Communication of 

uncertainty associated with climate model structure can aid interpretation of model output for 

key processes at regional and global scales. However, communication alone is not sufficient; 

iterative collaboration between producers and users of climate information can contribute to 

well-informed mitigation and adaptation strategies. Model uncertainty is tied to the nature of the 

process of interest, the scale of the model simulation, and how processes are simplified from 

reality. This dissertation work has evaluated model uncertainty associated with carbon dioxide 

uptake and release processes on land, regional precipitation patterns under climate change, as 

well as conceptualized uncertainty in coupling techniques for climate-watershed-HAB 

interactions. The following are chapter conclusions and recommended next steps for continued 

research. 

Chapter 2 

A more complete understanding of the land carbon sink – which will ultimately affect the rate of 

climate change – requires the ability to quantitatively simulate soil respiration processes for the 

present climate and the sensitivity of these processes to environmental variables, such as 

temperature. I used carbon fluxes from a novel biogeochemical testbed for input to an 

atmospheric transport model to track the evolution of atmospheric CO2 from net primary 

production and heterotrophic respiration to evaluate three different models for heterotrophic 

respiration. Seasonal timeseries across six regions show that CO2 release from soil heterotrophic 
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respiration contributes substantial spatial and temporal variability to atmospheric CO2, and that 

model parameterization affects the magnitude and timing of these variations in a way that 

atmospheric CO2 observations should be able to discriminate between model parameterizations.   

The CO2 variations resulting from models with explicit microbial processes showed higher than 

observed interannual variability and temperature sensitivity. The variation among model 

formulations has implications for simulations of HR under climate change; if models are too 

sensitive to global temperature there will be larger releases of CO2 to the atmosphere that are 

inconsistent with observed variable relationships. The regional influence of regional HR fluxes 

could also be tracked in patterns of global variability. Results here suggest there is a possible 

path to use atmospheric CO2 observations together with productivity data, such as new 

observations of solar-induced chlorophyll fluorescence from satellites, to constrain hemispheric 

respiration. 

 

Understanding regional sources of soil heterotrophic respiration will be necessary for holistic 

action in both the mitigation and adaptation spaces. Reducing uncertainty in the land sink 

through better measurement of global soil respiration would have policy implications for 

tracking and responding to increase in atmospheric CO2. Through the Paris Agreement, countries 

have committed to mitigate fossil fuel emissions, with some pledging far reaching adaptation 

actions including reforestation and land use management. Regional accounting for land CO2 

uptake will then also have to take into account natural sources of CO2 to the atmosphere for 

continued carbon budgeting and emissions tracking, especially if carbon tax policy is put in 

place.  
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Chapter 3 

Regional problems require specific spatial and temporal information. Understanding changes to 

intense spring precipitation can inform planning for agricultural runoff into waterways and future 

algal bloom impacts within Western Lake Erie. I constructed three climate model ensembles to 

investigate precipitation changes at the mid-21st century over two spatial domains (Great Lakes 

Basin and Western Lake Erie Basin). I examined uncertainty through calculations of 

precipitation seasonality and intensity and investigate the impact of grid resolution on the model 

output. In general precipitation is a difficult process to model because cloud development occurs 

at spatial scales that are smaller than model grid spacing. Probability of historical spring rain 

events dropped off rapidly for the Great Lakes Basin, this is related to size of domain used in 

spatial averaging.  

 

For the Western Lake Erie Basin model ensemble means overestimated the probability of intense 

daily events. Global model ensemble members underestimated historical probability of daily max 

precipitation in the Western Lake Erie Basin, whereas the bias was reduced in the regional model 

ensembles. Unexpectedly, the highest resolution ensemble displayed reduced precipitation 

seasonality and unobserved drying in spring and summer months, supporting the body of 

research that shows model representation of physical processes can factor into regional bias. 

Despite historical model biases for the domains examined, all models are based on principles of 

physics applied to the atmosphere. However, limitations in model structure should be taken into 

account, therefore precipitation changes are calculated in terms of relative change by mid-

century and through shifts in probability distributions. Both global and regional models showed a 

shift in probability toward intense spring precipitation at mid-century, suggesting an increase in 
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the frequency precipitation events with potential to impact fertilizer runoff from agricultural 

land. 

Chapter 4 

Harmful algal blooms impact business, recreational areas, water quality and culture of Western 

Lake Erie. Adaptation planning for harmful algal blooms is distinct from mitigation planning in 

the different sources of data and timescales of action. Climate model data can be used as 

guidance on regional climate change questions however understanding underlying uncertainties 

and limitations is key to application. Current HAB forecasting frameworks do not directly use 

climate information, but new techniques are in development to couple climate projection 

information with watershed and HAB models. Synthesizing the state of harmful algal bloom 

literature and ongoing work from the Coastal SEES Lake Erie project, I posed four pathways for 

conceptualizing uncertainty within the model chain and discuss common methods used for 

uncertainty management, specifically dynamical and statistical downscaling. Statistical 

downscaling, or bias correction, is static to a past climate period which doesn’t capture changing 

climate variable relationships under future conditions. Co-production of land management and 

HAB scenarios between scientists and practitioners can also be used to manage uncertainty while 

supporting creation of usable science.  

 

The research presented in this dissertation includes opportunities for continued multidisciplinary 

collaboration and stakeholder engagement, detailed below. Opportunities also exist for university 

and research institution leadership in innovative coursework, research co-production, network 

building, and community outreach. Universities can strengthen student-driven knowledge 
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creation by funding organizational activities and fostering co-production with community-based 

groups. For example, University Climate Delegations to the provide students and researchers the 

chance to learn about and participate in the United Nations international negotiations (Basile et 

al., 2018 – Appendix C). Researchers also have opportunities to engage with several new climate 

reports in the fourth National Climate Assessment, the special report for Global Warming of 

1.5°C from the Intergovernmental Panel on Climate Change, and the State of the Carbon Cycle 

Report 2018. Project Drawdown and the Global Carbon Project provide example avenues for 

interdisciplinary research applications. Next steps for furthering research into the science 

questions presented here include the following: 

 

Next steps Q1: Can atmospheric CO2 observations be used to analyze regional carbon flux 

signatures based on different soil model representations of microbial activity? 

 

Utilizing CO2 observations as a constraint to soil model respiration will require testing additional 

observational datasets in land model benchmarking and tracking metrics cohesively instead of in 

isolation. For example, incorporating satellite data of productivity and soil stock measurements 

into model validation allow for respiration flux signatures to be identified –while tracking the 

interannual variability and phasing of net primary productivity and respiration moves toward 

better mechanistic understanding of co-varying carbon flux responses to climate drivers. 

Additionally, developing model metrics for plant and root autotrophic respiration has 

implications for the phasing and offsets between productivity and soil heterotrophic respiration. 

Further, tracking the regional respiration into the 21st century under future radiative forcing to 

understand changes in seasonality and changing contributions to global variability. 
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Next steps Q2: How can changing precipitation patterns from a range of climate model 

simulations be interpreted for timescales relevant to ecosystem service planning? 

 

For further quantification of precipitation bias for the Great Lakes, the development of cold 

season precipitation metrics can elucidate links to moisture availability and intense spring 

precipitation events. The comparison of regional parameterization presented here could be 

expanded to the recent iterations of climate model simulations such as the CORDEX regional 

model ensemble and the CMIP6 global model ensemble. 

 

Next steps Q3: How can uncertainty be tracked in coupled climate, watershed, and harmful algal 

bloom modeling to inform ecosystem service adaptation decisions? 

 

Tracking uncertainty through model chain experiments that test the four conceptual pathways 

presented in this dissertation is encapsulated in ongoing work of the Coastal SEES Lake Erie 

project. Developing model metrics, output variables, and report information that is designed in 

conjunction with stakeholders or based on feedback could increase the usability of HAB 

information for ecosystem decision-making. For example, further development of modeling 

HAB toxicity may include more attention to empirical information gathering and engagement 

with water quality managers. There is potential to define future HAB scenarios for Western Lake 

Erie based the incorporation of climate, watershed, and HAB projections. Continued 

collaboration with regional stakeholders would determine a range of impacts for each scenario 
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along with expert guidance to frame uncertainty surrounding future HAB changes in terms of 

confidence.  
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Appendix A: Supplemental to Chapter 2 

 

Table A.1: Marine Boundary Layer (MBL) stations within the NOAA Earth System Research 

Laboratory CO2 sampling network (ESRL). These sites were selected for obtaining at least 50% 

data coverage over the analysis period of 1982 to 2010. 

Region Station Acronym Lat Lon 

60°–90°N Alert, AK ALT 82.5 -62.5 

 Ny-Ålesund, Svalbard ZEP 78.9 11.9 

 Barrow, AK BRW 71.3 -156.6 

 Stórhöfði, Iceland ICE 63.4 -20.0 

23°–60°N Mace Head, Ireland MHD 53.3 -9.9 

 Shemya, AK SHM 52.7 174.1 

 Terceira Island, Azores AZR 38.8 -27.4 

 Tudor Hill, Bermuda BMW 32.3 -64.9 

 Sand Island, Midway MID 28.2 -177.4 

 Key Biscayne, FL KEY 25.7 -80.2 

 Pacific Ocean, 25°N POCN25 25.0 -135.0 

0°–23°N Pacific Ocean, 20°N POCN20 20.0 -139.0 

 Cape Kumukahi, HI KUM 19.5 -154.8 

 Pacific Ocean, 15°N POCN15 15.0 -143.0 

 Mariana Islands, Guam GMI 13.4 144.8 

 Ragged Point, Barbados RPB 13.2 -59.4 

 Pacific Ocean, 10°N POCN10 10.0 -147.0 

 Pacific Ocean, 5°N POCN05 5.0 -151.0 

 Christmas Island CHR 1.7 -157.2 

0°–23°S Seychelles SEY -4.7 55.2 

 Pacific Ocean 5°S POCS05 -5.0 -159.0 

 Ascension Island ASC -8.0 -14.4 

 Pacific Ocean 10°S POCS10 -10.0 -163.0 

 Tutuila American Samoa SMO -14.2 -170.6 

 Pacific Ocean 15°S POCS15 -15.0 -167.0 

 Pacific Ocean 20°S POCS20 -20.0 -171.0 

23°–60°S Pacific Ocean 25°S POCS25 -25.0 -174.0 

 Pacific Ocean 30°S POCS30 -30.0 -177.0 

 Cape Grim, Australia CGO -40.7 144.7 

 Crozet Island CRZ -46.5 51.9 
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60°–90°S Palmer Station, Antarctica PSA -64.0 -64.0 

 Syowa Antarctica SYO -69.0 39.6 

 Halley Bay, Antarctica HBA -75.6 -26.5 

 South Pole SPO -90.0 -24.8 

 

 

 

Table A.2: Coefficient of variation for flux variables by latitude zone. All variables have been 

detrended using a third-order polynomial fit. For NEP, a negative sign represents flux into land 

and a positive sign represents a flux to the atmosphere from land. 

 

 

Region 

 

 

Model Flux 

Mean Flux 

  

 

[Pg C yr-1]   

Flux Standard 

Deviation 

(STD)  

[Pg C yr-1] 

STD : Flux 

 

[%] 

NHL 

61°-90°N 

CASA HR 3.94 0.08 2 

CORPSE HR 4.52 0.23 5 

MIMICS HR 3.96 0.09 2 

 CASA NPP 4.07 0.09 2 

 CASA NEP -0.13 0.05 40 

 CORPSE NEP 0.45 0.16 35 

 MIMICS NEP -0.11 0.08 76 

    0 

NML 

24°-60°N 

CASA HR 22.73 0.24 1 

CORPSE HR 23.06 0.31 1 

MIMICS HR 22.88 0.48 2 

 CASA NPP 23.15 0.28 1 

 CASA NEP -0.42 0.40 96 

 CORPSE NEP -0.09 0.46 505 

 MIMICS NEP -0.27 0.66 245 

    0 

NT 

1°-23°N 

CASA HR 10.63 0.08 1 

CORPSE HR 10.63 0.10 1 

MIMICS HR 10.57 0.22 2 

 CASA NPP 10.66 0.44 4 

 CASA NEP -0.03 0.48 1428 

 CORPSE NEP -0.03 0.47 1571 

 MIMICS NEP -0.09 0.62 732 

    0 

ST 

0°-23°S 

CASA HR 14.26 0.10 1 

CORPSE HR 14.30 0.12 1 

MIMICS HR 14.24 0.29 2 
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 CASA NPP 14.52 0.57 4 

 CASA NEP -0.27 0.61 232 

 CORPSE NEP -0.22 0.58 262 

 MIMICS NEP -0.28 0.84 296 

    0 

SE 

24°-90°N 

CASA HR 3.72 0.05 1 

CORPSE HR 3.74 0.07 2 

MIMICS HR 3.74 0.08 2 

 CASA NPP 3.77 0.26 7 

 CASA NEP -0.05 0.26 518 

 CORPSE NEP -0.03 0.24 810 

 MIMICS NEP -0.03 0.33 1135 

 

 

 

Table A.3: Multiple linear regression coefficients (γ) and R2 are used to model interannual 

variability in heterotrophic respiration as a function of interannual variability in temperature, 

NPP, or preceding year NPP. All variables have been detrended and deseasonalized. We list 

statistically significant predictors of HR IAV, as determined by p-values from ANOVA. 

  HR IAV Regression  

γ* , R2 

Region Model IAV CASA-CNP 

Temperature IAV 

 [Pg C y-1 K-1]  

CASA-CNP NPP 

Current year IAV 

[--] 

CASA-CNP NPP 

Preceding year IAV  

[--] 

NHL 

61°-90°N 

CASA HR 0.16 , 0.64 0.74 , 0.67 -0.14, 0.02 

CORPSE HR 0.42, 0.54 2.22, 0.77 -0.23, 0.01 

MIMICS HR 0.13, 0.32 0.63, 0.40 0.06, 0.00 

 CASA-CNP NPP 0.15, 0.43   

     

NML 

24°-60°N 

CASA HR 0.78, 0.58 0.2, 0.05 0.33, 0.15 

CORPSE HR 1.00, 0.57 -0.28, 0.06 0.32, 0.08 

MIMICS HR 1.74, 0.70 -0.90, 0.27 0.05, 0.00 

 CASA-CNP NPP -0.38, 0.10   

     

NT 

1°-23°N 

CASA HR 0.17, 0.14 -0.10, 0.26 0.12, 0.45 

CORPSE HR 0.00, 0.00 -0.06, 0.07 0.17, 0.61 

MIMICS HR 1.03, 0.68 -0.40, 0.60 -0.03, 0.00 

 CASA-CNP NPP -1.57, 0.42   

     

ST 

0°-23°S 

CASA HR 0.24, 0.17 -0.07, 0.17 0.12, 0.41 

CORPSE HR -0.01, 0.00 -0.01, 0.00 0.17, 0.61 

MIMICS HR 1.50, 0.87 -0.46, 0.79 0.03, 0.00 

 CASA-CNP NPP -2.65, 0.72   
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SE 

24°-90°N 

CASA 0.00, 0.00 0.03, 0.03 0.12, 0.32 

CORPSE -0.07, 0.04 0.09, 0.13 0.17, 0.36 

MIMICS 0.32, 0.42 -0.26, 0.65 -0.08, 0.04 

 CASA-CNP NPP -1.11, 0.52   

*bolded values are statistically significant (p < 0.05) 

 

 

Figure A.1: Depiction of interannual variability (IAV) calculation. (a) Multi-site mean CASA-

CNP CO2
NEP in the Northern Hemisphere high latitudes (NHL) region for 1982 to 2010 (CO2

NEP 

= CO2
HR + CO2

NPP). (b) Detrended CASA-CNP CO2
NEP timeseries after removing a third-order 

polynomit fit. (c) Climatological annual cycle calculated using the median of monthly values 

over the analysis period. (d) CASA-CNP CO2
NEP interannual variability calculated from 

removing the climatological annual cycle from each year in the detrended timeseries.
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Appendix B: Supplemental to Chapter 4 

 

Table B.1: Total number of measurements combined from station water samples in the Western 

Lake Erie Basin. Data collected by NOAA and retrieved from the National Centers of 

Environmental Information. 
 

Total Measurements 

 
2012 2013 2014 2015 2016 2017 2018 

Microcystin  

(particulate + dissolved) 

124 196 252 530 472 514 400 

Total Phosphorus 62 98 126 265 236 257 200 

 

 

 

Table B.2: Harmful Algal Bloom (HAB) from 2002 to 2018. Data provided by Dr. Richard 

Stumpf of NOAA National Centers for Coastal Ocean Science. 
 

Harmful Algal Bloom Severity Index 

2002 0.3 

2003 4.1 

2004 2.7 

2005 0.3 

2006 1.3 

2007 0.9 

2008 6.2 

2009 5.1 

2010 5.8 

2011 10 

2012 2.9 

2013 8.5 

2014 6.6 

2015 10.5 

2016 3.2 

2017 8 



 146 

2018 3 

 

 

Figure B.1: Sampling station locations in Western Lake Erie, figure created by NOAA and 

provided through the National Centers for Environmental Information public online repository.
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Appendix C 

 

Commentary text published as 

Basile, S., Lerner, M., & Rostamnezhad, K.: Boost university voices at COP24 UN climate 

meeting. Nature, 564(7734), 39, doi:10.1038/d41586-018-07610-8, 2018. 

 

University voices in climate negotiations 

Research institutions are appointed to act as official ‘observer’ delegates at international climate 

negotiations that are hosted by the United Nations and are otherwise closed to journalists and the 

outside world (see go.nature. com/2atycmq). As non-party stakeholders, they will provide a layer 

of transparency at this week’s 24th annual Conference of the Parties session, for example. 

Thanks to the University Climate Delegation Coalition (UCDC) that we launched last year, these 

delegates are no longer simply observers: they can now bring a wide range of research voices to 

the table. 

As knowledge producers, climate delegates from research institutions are in a position to provide 

insight into and attention to climate policy. The UCDC aims to engage delegates across US 

institutions on common initiatives. Over several months, researchers talk to their delegate 

representatives about their priorities for climate-related policy topics — for example, for 

emissions inventories, technology transfer, ecosystem management and human rights. 

University delegations therefore provide an opportunity for the broader research community to 

connect with international climate negotiations and with climate advocacy. 
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