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Abstract 
 

Colorectal cancer (CRC) is the third leading cause of cancer related deaths 

worldwide. Cancer cells modify normal cell functions to adapt to the surrounding tumor 

microenvironment. Autophagy is a basic cell function used to degrade organelles, 

aggregated proteins, and nutrients to recycle for cellular use. In cancer, autophagy is 

known to play both tumor promoting and suppressive roles. In colon cancer, autophagy 

can enhance or inhibit tumor growth and the function is often tumor stage and context 

dependent. A more in-depth understanding of how autophagy alters tumor growth is 

necessary to better develop treatments for patients with colon cancer.  

 Previous literature has shown a cross-talk between epithelial autophagy and the 

intestinal immune response. This dissertation uncovers a novel cell-autonomous role for 

autophagy in colon cancer independent of the immune system. While autophagy is 

classically known to provide nutrients to the cell, the cellular components that are targeted 

for breakdown and under what context they are targeted is not known in colon cancer. 

Tumor cell growth is inhibited following autophagy loss, but normal colon epithelia are not 

impacted by inhibition suggesting a tumor selective reliance on autophagy. Under nutrient 

stress tumor cells employ mitophagy, a selective form of autophagy that targets 

mitochondria for breakdown. Inhibition of PINK/PRKN directed mitophagy significantly 

reduces cell growth.  
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Lastly, I assessed cell type specificity of autophagy in CRC. Autophagy is known 

to have differential roles in epithelial sub-types. In inflammatory bowel disease, loss of 

autophagy specifically alters Paneth cell function. To explore the role of autophagy in 

colon cancer, I utilized single-cell RNA sequencing to investigate changes in autophagy 

in epithelial cells in colon cancer. In a sporadic tumor model with loss of Apc, p53, and 

KrasG12D I performed single-cell analysis on colon tissue. I found that enterocytes express 

genes associated with increased autophagy in comparison to goblet cells or 

enteroendocrine cells. This data suggests a specific increase in autophagy in tumor 

enterocytes. Further single-cell analysis at different stages of tumor development and 

focus on different cell types will begin to uncover how colon tumors are modulated by 

autophagy.  

This dissertation uncovers the cell type specificity and cell-autonomous role for 

autophagy in colon cancer. Further in-depth studies are needed to assess the role of 

tumor stage and mutational load in the requirement of autophagy in colon cancer. I have 

identified that tumor cells rely on mitophagy for growth and lay the foundation for therapies 

targeting autophagy or mitophagy in CRC 
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Chapter 11 

 

 Introduction 

 

 
Colorectal cancer (CRC) is the third leading cause of cancer related deaths in the 

United States. It is estimated that in 2018 over 140,000 people were diagnosed with CRC 

[1]. Survival rates have improved in the last three decades due to early detection, however 

patients diagnosed at later stages of disease have a 5-year survival rate of 14% [2, 3]. 

Treatments available for these patients are limited, therefore it is important to better 

understand tumor development and identify targeted therapies to improve overall patient 

care. Sporadic CRCs are typically marked by the initial loss of the adenomatous polyposis 

coli (APC) gene. APC is a scaffold protein that leads to proteasomal degradation of β-

catenin. Under active cell states, WNT ligands bind to its receptor frizzled and prevent β-

catenin degradation and activate target genes. Loss of APC constitutively activates β-

catenin and causes uncontrolled epithelial proliferation. Mutations in APC are typically 

followed by sequential mutations in tumor protein p53 (p53), and mutations in KRAS 

leading to spontaneous tumor development and progression [4]. It is well known that 

chronic inflammatory diseases such as Crohn’s Disease or ulcerative colitis increase risk 

of developing colon cancer, referred to as colitis-associated cancer (CAC) [5, 6]. CACs 

developed from inflammatory bowel diseases (IBD) are a rare subset. Moreover, p53 

                                                 
1  This chapter represents a publish manuscript.  Devenport SN and Shah YM. Functions and 
Implications of Autophagy in Colon Cancer. Cells 8(11) Oct 30, 2019.  
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mutations occur earlier in the progression of CAC and APC mutations are less frequent 

and are found in late stage tumors in comparison to sporadic CRC [7]. However, CAC 

provides a clear link between inflammation and tumor initiation.  

Autophagy is a highly regulated process that degrades and recycles cellular 

components. Dysregulation of autophagy is implicated in many diseases (as reviewed in 

[8]). Under several different cell stressors, autophagy is activated through kinase 

signaling and transcriptional activation by serine/threonine protein kinase 1 (ULK1) and 

transcription factor EB (TFEB). This activates a cascade of autophagy-related genes 

(ATG) [9], and formation of a spherical double layer membrane termed the 

autophagosome. The autophagosome delivers key cytoplasmic cargo such as 

organelles, foreign bodies, and cellular components to the lysosome for degradation into 

macromolecules that can be utilized by the cell. In CRC, autophagy is known to play tumor 

promoting and tumor suppressive roles [10, 11], but the underlying mechanisms are not 

well understood. Studies have found conflicting functions of autophagy in tumors. These 

discrepancies are typically due to differences in the cells and tumor models that are 

utilized [12-15]. Further study of autophagy and its prevalence in CRC will uncover its 

potential therapeutic use [16]. Here we highlight cellular pathways that regulate 

autophagy, selective forms of autophagy, and how these mechanisms target different 

cargo for degradation.    

2. Autophagy subtypes 

Autophagy can be classified into three major subtypes; macro-autophagy, micro-

autophagy, and chaperone-mediated autophagy. There is a need for better 
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understanding of cellular cues and cell-dependent context by which autophagic subtypes 

are co-opted in cancer cells for growth and survival.  

Chaperone-mediated autophagy 

Chaperone-mediated autophagy (CMA) differs from macro-autophagy in that select 

proteins are targeted for degradation by direct targeting to the lysosome. Proteins are 

recognized by heat shock cognate protein 70 (HSC70). HSC70 interacts with lysosome-

associated membrane protein type 2A (LAMP-2A) to internalize proteins into the 

lysosome. CMA substrates contain a specific motif, KFERQ, which is essential for HSC70 

binding [17]. Relevant to cancer, inhibition of macro-autophagy enhances CMA-

dependent degradation of mutant p53 [18]. Increased expression of LAMP-2A 

demonstrated activated CMA in CRC [19]. These functions highlight a potential role of 

CMA in tumor development. However, these processes have not been well studied in 

CRC.  

Micro-autophagy 

 Micro-autophagy is the direct engulfment of cellular components by invagination 

of the late endosome (Figure 1.1). Broadly, the implications of micro-autophagy have not 

been studied in many cancer types. There is evidence in lung cancer that amino acid 

starvation, an important factor in cancer growth (discussed below), induces micro-

autophagy [20]. However, the role of micro-autophagy in CRC has not been investigated 

in detail.  
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Macro-autophagy  

Macro-autophagy can be broken down in to two subcategories that target cellular 

components for degradation; non-selective and selective. Non-selective macro-

autophagy engulfs bulk cytosolic components and selective autophagy targets specific 

cargo for degradation (e.g. organelles and protein aggregates). For macro-autophagy, 

the phagophore, a precursor to the autophagosome, forms. Several ATG protein 

complexes are involved in early and late autophagosome formation [21]. . As the 

membrane is forming, microtubule associated protein 1 light chain 3 beta (LC3-I) is 

conjugated with phosphatidylethanolamine and is processed into LC3-II [22]. Following 

fusion of the autophagosome with the lysosome, which contains the required enzymes 

for cargo degradation, LC3-II is broken down by the lysosome [23]. The turnover of LC3-

II is often used as a readout of autophagic activity [24]. Here we have provided a highly 

simplified overview of the complex process of macro-autophagy. This extremely 

coordinated event of cytoplasmic engulfment is generally activated in states of cell stress 

such as starvation. Anding and Baehrecke review the important role of selective-

autophagic processes in maintaining cellular homeostasis in response to stress [25]. 

Below we highlight the known selective-autophagic pathways and their potential role in 

CRC (Figure 1.1). 

Mitophagy 

Mitophagy is a process that selectively degrades mitochondria [26-29]. Mitophagy is 

highly evolutionarily conserved [30] and is known to be activated in yeast under starvation 

[31]. Therefore, highly proliferative cells under nutrient stress and starvation, such as 
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cancer cells, may activate mitophagy. This process can be modulated by different 

pathways as discussed below.  

 

Parkin-mediated mitophagy  

Under normal cell homeostasis, PTEN induced kinase 1 (PINK1) is maintained on 

the inner mitochondrial membrane. Upon damage or stress, PINK1 moves to the outer 

membrane and phosphorylates parkin (PRKN). This phosphorylation allows for 

ubiquitination of PRKN1 and targeting to the autophagosome. Poly-ubiquitination is 

recognized by adapters that direct mitochondria to the autophagosome. Known adapters 

include sequestosome (SQSTM1), neighbor of BRCA1 (NBR1), optineurin, nuclear 

domain 10 protein 52, and TAX1 binding protein; although, NBR1 is found to be non-

essential for PRKN-mediated mitophagy [26, 32, 33]. Through this mechanism, a recent 

study found that in intestinal cancers, activation of mitophagy increased CD8+ T cells 

[34]. The upregulation of mitophagy causes an accumulation of iron followed by 

permeabilization of the lysosome. This permeabilization causes the release of proteases 

into the cytosol that induces presentation of MHC class I on the cell surface. This 

presentation elicits and an anti-tumor immune response by induction of CD8+ T-cells. In 

colitis, pharmacological induction of mitophagy through PRKN is found to inactivate 

inflammasomes in macrophages and ameliorate the impact of colitis [35-37]. While there 

are implications for PRKN mediated mitophagy in CRC, one study found around 33% of 

colon tumors harbor PARK2 (the gene that encodes for PRKN) DNA copy number loss 

[38]. Interestingly, some colorectal cancer cell lines contain mutated forms of PRKN and 

may use alternate mechanisms to activate mitophagy [38]. Research is starting to 
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investigate how PRKN may be used as a prognostic marker in CRC as it may correlate 

with invasion and overall survival [39]. 

 

Parkin-independent mitophagy 

Alternatively to PRKN directed mitophagy, interaction of LC3 to FUN14 domain 

containing 1 (FUNDC1) protein located on the outer mitochondrial membrane can also 

initiate mitophagy [40]. Another PRKN-independent mechanism includes BCL2 

interacting protein 3 (BNIP3), a critical receptor for mitophagy [41]. In breast cancer, 

BNIP3 loss promoted tumor progression and metastasis [42]. BNIP3 is induced by 

hypoxia signaling, a critical micro-environmental stressor in CRC (discussed below)[43]. 

The impact of BNIP3 and mitophagy in CRC have not been studied in detail. The known 

function in breast cancer, and BNIP3’s relationship with hypoxia signaling provides a 

foundation to investigate the role in CRC. Mitochondria may also be recruited to the 

autophagosome by FKBP8, a member of the FK506-binding protein family. FKBP8 is 

located on the outer membrane and has an anti-apoptotic role by interacting with Bcl-2 

[44]. PRKN-independent mitophagy can be initiated by binding of LC3A to FKBP8 [45]. 

Additional mechanisms of PRKN-independent mitochondrial control are reviewed by 

Stockum et al. [46]. PRKN-independent mechanisms, and the evidence of mutated PRKN 

discussed above in CRC highlight the potential importance of investigating PRKN- 

independent mitophagy in CRC.  

Pharmacological targeting of mitochondria with Mito-CP or Mito-Met10 in KRAS 

mutant colorectal cancers induced mitophagy and decreased cell proliferation [47]. In 

colon cancer, treatment with a BH3 mimetic, which inhibits Bcl-2 anti-apoptotic proteins, 
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induced mitophagy. Treatment with the mimetic, in combination with an mitophagy 

inhibitor, reduced CRC cell growth [48]. However, conflicting roles of mitophagy have 

been noted in cancer (Reviewed in [49]). Treatment with the mitophagy inhibitor liensinine 

increased breast cancer cell death [50]. Conversely, activation of mitophagy with 

ceramide, a molecule involved in sphingolipid metabolism, reduced tumor burden in acute 

myeloid leukemia [51].  In-depth understanding of mitophagy in CRC is needed in order 

to develop better therapies that can target mitophagy to reduce tumor growth.  

Ribophagy 

Ribophagy is the breakdown of ribosomes in cells, which constitute 10% of total 

cellular protein. Ribophagy is extremely low basally in cells [52]. Initiation of ribophagy 

occurs by the binding of nuclear FMR1 interacting protein 1 (NUFIP1) to ribosomes. This 

interaction leads to autophagosome recruitment by LC3 [53]. Starvation or molecular 

target of rapamycin complex 1  (mTORC1) inhibition induced NUFIP1 activity and 

increased ribophagy [53]. Breakdown of ribosomes under starvation underscores the 

importance of ribophagy for cellular nutrient maintenance. However, non-selective bulk 

degradation of ribosomes may also be utilized [52]. Little information is known about 

ribophagy in cancer. However, ribosomes contain a large amount of amino acids and 

nucleotides and can potentially serve as a nutrient store in the tumor environment.  

Proteophagy 

Clearance of proteasomes through autophagy is known as proteophagy. Cross-talk 

between the proteasome and autophagy is found under nitrogen starvation in cells 

wherein autophagy degrades ribosomes (and proteasomes) under nutrient starvation 
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[54]. One of the earliest citations of proteophagy suggests that this process occurs 

through a chaperone-mediated mechanism where the proteasome is targeted to the 

lysosome by HSC73 [55]. More recent work uncovers the sequestration of the 

proteasome in autophagosomes under cell stress, suggesting proteophagy can occur in 

a macro-autophagy or CMA driven fashion [56]. Currently there is no data to suggest that 

proteophagy is activated in cancer.  

Pexophagy 

Peroxisomes are small organelle structures that break down fatty acids in the 

cytoplasm. The degradation of these products through autophagy requires SQSTM1 and 

NBR1 [57]. In healthy liver, loss of autophagy through ATG7 led to a buildup of 

peroxisomes [58]. Under starvation conditions, ubiquitination of peroxisomes occurred by 

peroxisomal biogenesis factor 2 (PEX2) in HeLa cells and mouse embryonic fibroblasts 

[59]. To our knowledge, the utilization of pexophagy in CRC has yet to be investigated. 

However, hypoxia inducible factor-2α (HIF-2α), an important transcription factor in CRC 

(discussed below), was found to promote pexophagy in hepatocytes [60]. While these 

findings were not investigated in colon tissue, the activation of pexophagy under 

starvation and hypoxia highlights the potential importance of studying pexophagy in CRC.  

Ferritinophagy 

Iron storage protein ferritin is broken down by the lysosome for iron release and 

cellular iron utilization. This degradation is directed by the nuclear receptor coactivator 4 

(NCOA4) [61]. Interestingly, ferritinophagy is required for induction of ferroptosis, a form 

of cell death that requires iron [62, 63]. Certain cancers have shown a sensitivity to 
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ferroptosis [64] and pharmacological induction of ferroptosis is found to reduce pancreatic 

and hepatic cancer cell growth [63, 65]. While little work has been done to investigate the 

importance of ferritinophagy in CRC, the essential role of iron in CRC growth [66] and the 

sensitivity of different cancer types to ferroptosis [67] highlights the importance in studying 

ferritin turnover in CRC.   

Xenophagy 

Xenophagy is a process initiated by the cell for protection against pathogens. 

Phagophores engulf pathogens and fuse to autophagosome for breakdown by 

autophagy. Xenophagy can play a particularly important role in the colon due to the host-

microbiome interaction. Protection from intestinal epithelial infection requires the 

autophagy gene ATG16L1 [68]. Recent screening of xenophagy effectors identified a V-

ATPase and ATG16L1 mechanism to specifically activate xenophagy under bacterial 

infiltration [69]. Certain bacteria can be targeted by SQSTM1, an important protein in 

autophagy [70]. In Crohn’s Disease, the stimulation of xenophagy using resveratrol 

reduced Salmonella Typhimurium, an enteric pathogen associated with Crohn’s Disease 

[71]. When colon cancer cells are treated with two mircoRNAs, MIR106B and MIR93, 

reduced ATG16L1 prevented removal of intracellular bacteria from epithelial cells via 

autophagy [72]. As mentioned, patients with Crohn’s Disease have an increased risk of 

developing CAC and this is partially due to bacterial infiltration. Understanding the role of 

xenophagy in host-microbiome homeostasis may be essential in characterizing the 

microbiota-tumor interaction.  
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3. Role of Autophagy in CRC  

It is important to understand the role of autophagy at different stages and under 

different mutational loads to properly target tumors. A clinical study observed down-

regulation of ATG5 in CRC patients. However, increased expression correlated with 

increased incidence of invasion [73]. Conversely, expression of LC3B and SQSTM1 

correlated with poor prognosis [74]. In mouse models, loss of Atg7 in intestinal epithelial 

cells inhibited tumor growth through an immune response elicited by the microbiome [75]. 

Additionally, receptor for activated C kinase 1 ( RACK1), a commonly found mutation in 

cancer, induced autophagy and promoted proliferation while inhibiting apoptosis in colon 

cancer [76]. Autophagy also modulated the degradation of the transcription factor 

FOXO3a in CRC. Inhibition of autophagy elevated levels of FOXO3a and led to 

transcriptional upregulation of pro-apoptotic genes [77]. Apoptosis also increased when 

autophagy was inhibited in CRC cells following activation of p53 and endoplasmic 

reticulum stress [78]. Conversely, treatment with Brevlin A increased autophagy and 

decreased tumor size [79]. This brief overview emphasizes the complexity of autophagy 

in CRC. It remains unclear if autophagy is anti- or pro- tumorigenic and in-depth 

mechanistic studies are needed. Table 1.1 outlines some of the opposing roles of 

autophagy in CRC.  

An understanding of mutations in autophagy associated genes, how autophagy is 

altered by increased mutational load, or via specific tumor suppressors or oncogenes is 

essential in assessing its role in tumor development. In CRC, there is low frequency of 

mutations in autophagy associated genes [80]. In a small cohort of patient samples, 

tumors expressed decreased levels of ATG5, however increased expression correlated 
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with invasion into lymphovascular tissue [73]. A study demonstrated that 95% of colon 

tumors expressed higher Beclin-1 compared to normal tissue [81]. These studies suggest 

that autophagy is important in cancer development. Similarly, in mutant KRAS cancers, 

autophagy induction occurred under starvation. Inhibition of KRAS reduced autophagy in 

these cells and inhibited cell growth [82]. In CRC-derived cell lines, p53 promoted the 

degradation of LC3 allowing for stable autophagic flux [83]. With loss of p53, LC3 

accumulated and led to apoptosis. In CRCs with high microsatellite instability, 27% of the 

cancers harbored at least one mutation in either ATG2B, ATG5, ATG9B, or ATG12 [84]. 

Additionally, a study aimed to understand responsiveness to therapy in BRAF (a protein 

involved in RAS/MAPK signaling) mutant colon cancers found that treatment with EGFR 

antibodies and checkpoint inhibitors induced autophagy and combining these treatments 

with an autophagy inhibitor reduced CRC cell growth [85].  Patients with Crohn’s Disease 

have an increased chance of developing CAC. Deficiencies in the response to bacterial 

sensing and invasion were observed following loss of autophagy through impairment in 

nucleotide-binding oligomerization domain (NOD1/2) signaling [86]. Loss of autophagy or 

mutations in autophagic genes may increase bacterial infiltration, which can impact the 

development of CAC. Mutations in autophagy associated genes, or regulation of 

autophagy through mutations in genes such as KRAS and p53, demonstrate the 

important role of this mechanism in CRC. To begin addressing how autophagy can be 

used clinically, researchers have found a gene signature based on nine autophagy related 

genes that can accurately predict survival in colon cancer [87].  

Histone deacetylase inhibitors as stand-alone or adjuvant therapies are currently 

used in several cancers [88]. In colorectal cancer cells, inhibition of autophagy through 
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chloroquine, in combination with the histone deacetylase inhibitor vorinostat, led to an 

accumulation of ubiquitinated proteins and increased cell death [89]. Additionally, chemo-

resistance required decreased autophagy in 5-fluorouracil (a common chemotherapeutic 

for CRC) resistant cells [90]. The authors speculated, that this observation was due to 

low autophagy resulting in accumulation of tumor promoting oxidative stress, 

inflammation, and damaged mitochondria. 

CRC consist of multiple epithelial cell types as well as infiltrating immune cells. In IBD 

it is clear that dysregulation of autophagy in Paneth cells impacts tissue injury and 

inflammation [91]. However, cell type specificity of autophagy in tumor growth is unclear.  

Immune cell autophagy: The anti-tumor immune response can directly kill cancer 

cells. As the tumor progresses, the microenvironment shifts to a highly 

immunosuppressive state and many of the immune cells potentiate tumor growth. 

Immunosuppression is essential in enhancing tumor progression, and immune cells can 

employ autophagy to perform standard functions including antigen presentation and 

cytokine production (Reviewed in [92]). In tumor-associated macrophages (TAM)s, 

upregulation of autophagy reduced tumor growth and increased apoptosis in CRC cells. 

Moreover, radiosensitization of CRC required increased autophagy in TAMs [93]. 

Conversely, when autophagy is lost in regulatory T-cells by disrupting Atg7, there was 

impaired ability of the antitumor immune response to CRC cells [94]. This was due in part 

by increased apoptosis in the T-cells. While not specifically studied in colon cancer, 

different immune cells including neutrophils, macrophages, B-cells, and natural killer cells 

rely on autophagy for their development and function (Reviewed in [95]). Immune cell 
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specific autophagy underscore the importance of investigating this pathway in different 

cell types to better develop strategies for modulating tumor growth.  

Epithelial autophagy: Tumor epithelial autophagy in KRAS driven cancers alters 

inflammatory mediators to suppress the immune response [96]. Furthermore, inhibition of 

autophagy in cancer cells blocked interferon gamma-mediated cell death [97]. The role 

of the immune system and its interaction with the gut microbiota is important in tumor 

development. Cell autonomous autophagy in healthy epithelial cells altered barrier 

function by breaking down junctional proteins such as claudin 2 [98]. Impaired barrier 

function can lead to increased bacterial infiltration to cause inflammation and damage in 

the gut. Recent work demonstrated tumor stage specific changes in bacterial infiltration, 

inflammatory signaling and cancer progression and growth in CRC [99]. This suggests a 

possible role of epithelial xenophagy in CRC. In CRC tumors, regulatory T-cell infiltration 

inversely correlated with SQSTM1 expression [100]. The utilization of autophagy in 

epithelial cells may alter recruitment or function of the immune response. In summary 

there are major differences in the direct impact of autophagy in epithelial cells, immune 

cells, or the heterocellular cross-talk between these cells that can impact CRC growth 

and progression (Figure 1.2). Understanding the changes in autophagy and how it 

impacts tumor response will allow researchers to further understand these mechanisms 

in different cell types.  

4. Cellular cues for autophagic activation in cancer   

Starvation  

The highly proliferative nature of tumors leads to a reduction in availability of nutrients 

in the microenvironment. In cancer, hyper-activation of mTORC1, a known pathway of 
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nutrient sensing, contributes to cell proliferation and tumor progression. mTORC1 is 

activated in about 50% of CRC tumors. Figure 1.3A outlines the known mechanistic 

cross-talk in CRC between autophagy and mTORC1. In conditions where amino acids 

are abundant, mTORC1 is localized to the lysosomal membrane (Reviewed in [101]). 

Hypoxic induction of DNA damage inducible transcript 4 (REDD1) signaling has been 

shown to regulate mTORC1 through truncation of the hemartin (Tsc1/Tsc2) complex 

[102]. Since mTORC1 is activated by available nutrients, a feedback loop exists between 

these two mechanisms wherein autophagy generates new macromolecules to activate 

mTORC1. The cross-talk between these two mechanisms are essential in maintaining 

cell growth and proliferation [102]. Importantly, mTORC1 is integrated to the autophagic 

pathway via activation of TFEB and ULK1-ATG13-FIP200 (Family kinase-interacting 

protein of 200kDa) complex [103, 104]. Independent of mTORC1, AMPK activated the 

ULK1 complex under starvation [105]. Under nutrient rich conditions mTORC1 

phosphorylated ULK1 and inhibited the ULK1-AMPK interaction to block autophagy [105]. 

It is important to consider that the TFEB, ULK1, and AMPK pathways are known to be 

regulated by amino acids, which contributes to another mode of autophagy regulation 

[106]. In a model of lung cancer, amino acid starvation led to an induction of non-selective 

macro-autophagy. However, amino acid starvation has been shown independent of 

mTORC1 to induce micro-autophagy that directly engulfs receptors of selective 

autophagy including NCOA4, LC3B, and SQSTM1 into endosomes [20]. The authors 

suggest these functions may prevent selective macro-autophagy and promote non-

selective autophagy under starvation. Interestingly, under leucine starvation, a cleaved 

form of SQSTM1 is generated by the protease caspase-8. Under starvation when 
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autophagy is active, a portion of the available SQSTM1 is cleaved. In nutrient replete 

conditions, this cleaved protein activates mTORC1 to increase leucine sensing [107]. The 

cleaved SQSTM1 is not able to participate in autophagy preventing opposing functions 

between mTORC1 and autophagy. Moreover, in ovarian cancer cells, arginine deprivation 

activated autophagy to promote cell survival [108]. Inhibition of autophagy both chemically 

or genetically significantly reduced cell growth. While these studies were not in CRC, 

these findings highlight the potential of combinatorial therapeutics with autophagy 

inhibitors and treatments such as arginase for tumors that rely on arginine for growth 

[108]. Glucose uptake plays a critical role in the growth of many cancer types, including 

CRC. In glucose-free conditions, knock-down of autophagy associated genes increased 

cell death [109]. Similarly, when colon cancer spheroids were stressed under restricted 

glucose or serum an increase in autophagy was observed [110]. Under similar starvation 

conditions, Kras mutant tumors require autophagy for oxidative metabolism [111].  

Starvation also affected expression of claudin 1 in colon cancer. Expression of claudin 1 

was higher in tumor tissue and showed co-staining with lysosomal markers LAMP1 and 

2 with increased autophagy. Under starvation, claudin 1 expression increased mediating 

a reduction in SQSTM1. This supression suggests claudin 1 cross-talks with autophagy 

under starvation [112]. When and how nutrient availability impacts autophagy is essential 

in understanding its function in CRC tumors (Figure 1.3B).  

Hypoxia  

Hypoxia plays a key role in CRC development and progression. Hypoxia 

signaling is mediated by two conserved transcription factors hypoxia-inducible factor 

(HIF)-1 and HIF-2, which have overlapping and distinct functions. In CRC, HIF-2 
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(not HIF-1) is essential for CRC growth and progression [113]. Hypoxia is a well 

conserved cell stress that activates autophagy [43]. In tumor hypoxic foci, autophagy 

levels are highly elevated but rapidly subside upon establishment of a blood supply 

[114]. In colon cancer there is a known connection between hypoxia and mitophagy. 

Hypoxia disrupted mitochondrial respiration leading to increased mitophagy (Figure 1.2) 

[115]. Moreover, HIF-1α upregulated BNIP3 to induce mitophagy [43]. In patient derived 

CRC cells, inhibition of autophagy with 3-Methyladenin in combination with hypoxia, 

increased apoptotic death in cancer cells [116]. Moreover, the micro RNA miR-20a was 

found to inhibit hypoxia induced autophagy [117]. Additionally, in glioblastoma, HIF-1 

induced autophagy and drove tumor growth [118]. HIF-1 does not alter CRC 

tumorigenesis in mouse models [113], however it will be interesting to assess if HIF-2 

has overlapping roles in the context of autophagy. 

Microbiota  

As highlighted briefly above, autophagy can play an important role through 

xenophagy in managing the host-microbiome interaction. Moreover, dysregulation of 

autophagy is well characterized in IBD. New work studying chronic colitis suggests that 

autophagy protected cells by reducing apoptosis through upregulation of tumor necrosis 

factor- [119]. As discussed above, the importance of autophagy specifically in Paneth 

cells is known [91]. In healthy tissue, induction of autophagy in Paneth cells induced 

interferon gamma to protect against microbiota. However, when this mechanism is lost, 

intestinal inflammation is exacerbated [120]. Consistent with data from IBD, the 

heterocellular cross-talk with microbiota is a major factor in tumor-elicited inflammation in 

CRC. When microbiome composition is altered under chronic inflammation or barrier 
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defects, changes in the inflammatory response altered tumorigenesis [121, 122]. The 

cross-talk between the microbiota and immune system highlights the complexity of the 

tumor microenvironment in the colon [123, 124]. The importance of these mechanisms 

have been studied in depth [125, 126]. Loss of autophagy in healthy colon epithelial cells 

through Atg5 disruption altered the composition of the gut microbiota and the gut immune 

response suggesting implications in chronic colitis [127]. Similarly, loss of Atg7 in 

intestinal epithelial cells and tumor tissue led to infiltration of anti-tumor immune cells 

decreasing tumor burden [75]. Treatment with antibiotics attenuated this response, further 

supporting a novel integration of microbiota and autophagy in tumor growth. It is important 

to highlight that this work utilized an Apc model where tumor suppressor p53 was intact. 

In many cancers however, p53 is deleted or mutated thus these findings may only be 

applicable to patients with wild-type p53 [75]. In summary, the above findings highlight 

the cross-talk between the microbiota and autophagy. Further mechanistic studies may 

uncover novel therapeutic approaches targeting autophagy and microbiota.  

5. Autophagic Substrates 

The broad use of autophagy to meet metabolic demands is reviewed by Rabinowitz 

and White [128]. Autophagy in normal cell physiology is critical to maintain amino acid 

levels [129]. While it is thought the products of autophagic degradation are recycled for 

use in cancer, in CRC the substrates targeted for autophagy and how the degradative 

products are utilized is not clear. In cancer, autophagy can degrade macromolecules for 

nutrients, and degrade tumor suppressors or oncogenes to alter growth. Below we outline 

both of these functions.  
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Previous literature has found an increase in autophagy in CRC spheroids under 

glucose or serum restriction [110]. However, the degradative products of this process are 

unknown. A study investigated this question by studying loss of ATG5 in RAS driven 

cancer cells. Loss of ATG5 showed global changes in the proteome. Inhibition of 

autophagy, in combination with starvation, increased endoplasmic reticulum chaperones, 

proteins involved in DNA replication, and Rig-I like receptor signaling pathway. However, 

proteins that are known to be essential in stress survival were not altered with autophagy 

inhibition under starvation conditions [96]. This work uncovers how autophagy impacts 

cellular response to stresses such as starvation that are observed in the tumor 

microenvironment. Additionally, in RAS driven cancers, autophagy drove glycolysis [130]. 

Degradation of cellular components into amino acids is essential for cancer utilization. 

Thomas and colleagues demonstrated that amino acid levels in starved breast cancer 

cells increased with activated autophagy, whereas normal cells maintained amino acid 

levels under starvation. It is hypothesized that this is due to the high nutrient demand to 

maintain the proliferation rates of the cancer cells [131]. While this study was not in CRC 

this underscores the importance of understanding how autophagy is used for nutrient 

acquisition.  

While autophagy may be employed to acquire nutrients, it has been shown to break 

down proteins that activate or block tumor growth.  Autophagy can cause the degradation 

of dishevelled in colon cancer and contribute to the activation of Wnt signaling, thus 

promoting tumor growth [132]. Similarly in CRC, the cancerous inhibitor of protein 

phosphatase 2a (CIP2A) is overexpressed [133]. CIP2a is involved in Myc protein 

stability. Temsirolimus, an FDA approved mTORC1 inhibitor that activates autophagy led 
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to degradation of CIP2a and cell death in CRC [134]. In colon cancer, CyclinD1 is highly 

expressed and contributes to hyper-proliferation. Estrogen receptor beta was shown to 

activate autophagy and cause the breakdown of CyclinD1 causing cell cycle arrest and 

tumor death [135]. To prevent growth, treatment with 4-hydroxytamoxifen caused 

degradation of KRAS through autophagy in colon cancer [136]. As mentioned previously, 

basal autophagy breaks down FOXO3a to prevent apoptosis in CRC, to promote tumor 

growth [77]. While some work has been done, the process of breaking down proteins to 

inhibit or promote tumor growth are not well studied. A thorough understanding of 

autophagy in the context of CRC is important in targeting these mechanisms. 

 

6. Conclusions and Future Perspectives  

In general, non-selective autophagy is used for nutrient stress while selective 

autophagy is used for cell maintenance. However, in the context of tumor growth in CRC 

or CAC, these roles may change. Understanding the autophagic substrates that are 

recycled and how those substrates are utilized in tumor growth and development will 

identify ideal targets for treatments. While we have discussed mechanisms by which 

tumor cells may obtain nutrients through autophagy, these mechanisms are not clearly 

defined in CRC. The cross-talk between hypoxia and mitophagy underscores the 

importance of these mechanisms in CRC. Identifying the role of selective autophagy for 

tumor growth will allow the development of targeted therapeutics for CRC. The potential 

importance of mitophagy in cell stress and nutrient availability highlights a potential target 

in cancers. Moreover, if tumor cells employ selective autophagy for growth and survival, 

these mechanisms may be targets for vulnerability in CRC. Some of these approaches 
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are reviewed by Martins and Baptista [137]. Additionally, we have highlighted the cell type 

specific contributions of autophagy and more precise work on cell type specific 

dependency on autophagy will shed light on the mechanistic role of autophagy in tumor 

development. More directly, the pathways activated or inhibited during nutrient stress and 

how autophagic substrates are being utilized in cancer cells will be critical to 

understanding the pleiotropic role of autophagy in cancer growth and progression.  
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Figure 1.1. Overview of autophagy subtypes; macro-autophagy, micro-autophagy, 
and CMA. Specifically, highlighting examples of selective macro-autophagy.  
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A. 

 

 

Table 1.1A. Autophagy performs tumor promoting and tumor suppressive roles 
in CRC. Functions of autophagy in CRC. A. Observation/Autophagy indicates what 
mechanisms are observed in CRC tumors and if autophagy is active or inactive. Tumor 
response is a summary of whether or not the autophagy activity indicated generates a 
pro- or anti- tumor response. B. Summary of therapies and their modulation of autophagy. 
Treatment- Which therapy was employed. Autophagy- how the stated therapy modulated 
autophagy activation. Tumor response- how manipulation of autophagy via therapeutic 
treatment impacted tumor growth.  

Observation Autophagy  Tumor response  Reference  

Activated chaperone 
mediated autophagy 

in tumors  
Active  Pro-tumor  19 

Epithelial mitophagy 
increases CD8+T-

Cells  
Active  Anti-tumor  34 

Loss of PARK2 
accelerates tumor 

development  
Inactive  Pro-tumor  38 

Decreased ATG5 in 
CRC patients  

Inactive  Pro-tumor  73 

Increased ATG5 
yields increased 

invasion  
Active  Pro-tumor  73 

Active autophagy 
through LC3B and 

SQSTM1 
Active  Pro-tumor  74 

Loss of ATG7 Inactive  Anti-tumor  75 

RACK1 induces 
autophagy 

Active  Pro-tumor  76 

High Beclin-1 in CRC  Active  Pro-tumor  81 

Increased LC3 with 
loss of p53 

Active  Anti-tumor  83 

Autophagy 
suppresses immune 
response in KRAS 

cancer  

Active  Pro-tumor  96 

Autophagy drives 
glycolysis in RAS 

cancers  
Active  Pro-tumor  130 
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Table 1.1B. 

 

 

 

Treatment  Autophagy  Tumor response  Reference  

Mito-CP or Mito-
Met10  

Active  
Anti-Tumor; Decreased 

proliferation in KRAS mutant 
cancers.  

47 

BH3 mimetic and 
chloroquine 

Inactive  Anti-Tumor; Induced apoptosis. 48 

Bafilomycin A1 or 
chloroquine 

Inactive  
Anti-Tumor; Elevated FOXO3a 
and transcriptional upregulation 

of pro-apoptotic genes.  
77 

 Brevlin A  Active  
Anti-Tumor; Promoted 

expression of LC3-II and 
induced autophagy. 

79 

KRAS siRNA Inactive  
Anti-Tumor; Inhibiting mutant 
Kras inhibits autophagy and 

induces apoptosis. 
82 

Vorinostat with 
chloroquine 

Inactive  Anti-Tumor; Induced apoptosis. 89 

 5-Fluorouracil and 
chloroquine 

Inactive  

Anti-Tumor; 5-FU treatment 
induced autophagy for 
resistance. Inhibition of 

autophagy reduced growth. 

90 

Temsirolimus  Active  
Anti-Tumor; Inhibited mTOR to 

activate autophagy and 
degrade CIP2A. 

134 

Estrogen Receptor 
Beta  

Active  
Anti-Tumor; Autophagy 

directed CyclinD1 degradation 
inhibited growth. 

135 

4-Hydroxytamoxifen   Active  
Anti-Tumor; Degradation of 
KRAS through autophagy 

induced cel death.  
136 
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Figure 1.2. Cell-autonomous and non-autonomous cures of autophagy in 
CRC. Schematic of the tumor microenvironment highlighting the impact of 
autophagy. Cell autonomous roles of autophagy in immune, epithelial or, the 
cross-talk between cell types in colorectal cancer. 
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Figure 1.3. Mechanisms of mTOR and nutrient modulation impacted by 
autophagy. Schematic summarizing A) Simplified overview of mechanisms of 
mTORC1 regulation. and B) how nutrient modulation impacts autophagy. Bolded 
mechanisms indicate data from non-CRC samples. Please refer to text for 
detailed mechanisms.  
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Chapter 2

 

Colorectal Cancer Cells Rely on Mitophagy for Tumor Growth. 

Abstract  

 

Cancer cells re-program cellular metabolism to maintain adequate nutrient pools 

to sustain proliferation.  Moreover, autophagy is a regulated mechanism to breakdown 

dysfunctional cellular components and recycle cellular nutrients.  However, the 

requirement for autophagy and the integration in cancer cell metabolism is not clear in 

colon cancer.  Here we show a cell-autonomous dependency of autophagy for cell 

growth in colorectal cancer. Loss of epithelial autophagy inhibits tumor growth in both 

sporadic and colitis associated cancer models. Genetic and pharmacological inhibition 

of autophagy inhibits cell growth in colon cancer-derived cell lines and patient-derived 

enteroid models. Importantly, normal colon epithelium and patient-derived normal 

enteroid growth was not decreased following autophagy inhibition.  To couple the role of 

autophagy to cellular metabolism, a cell culture screen in conjunction with metabolomic 

analysis was performed.  We identified a critical role of autophagy to maintain 

mitochondrial metabolites for growth. Under stress, cancer cells activate mitophagy to 

                                                           
2 This chapter represents a submitted manuscript: Devenport SN, Singhal R, Taranto JG, Kerk 

S, Oravecz-Wilson K, Greenson JK, Soleimanpour SA, Reddy P, Lyssiotis CA, Shah YM. 

Colorectal cancer cells employ mitophagy for nutrient acquisition under cell stress. Under 
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access nutrients for growth. Loss of mitochondrial recycling through inhibition of 

mitophagy hinders colon cancer cell growth. These findings have revealed a novel cell-

autonomous role of autophagy that plays a critical role in regulating nutrient pools in 

vivo and in cell models and provides new therapeutic targets for colon cancer. 
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Introduction 

 
Autophagy is an important process involved in maintaining cellular homeostasis. 

Autophagy removes defective organelles and proteins through lysosomal break down. 

This process can occur via macro-autophagy (herein autophagy); the non-selective 

engulfment of cytoplasmic contents, or through selective autophagy which targets 

specific cargo. In colon cancer, autophagy is found to have both pro- and anti- tumor 

functions in cancer-derived cell lines [1-3]. Consistent with this data, studies have also 

found both beneficial and deleterious roles of autophagy in clinical outcomes in 

colorectal cancer (CRC) patients [4-6]. Therefore, the function of autophagy in 

colorectal cancer (CRC) currently remains unclear. In mouse models of colon cancer, 

intestinal epithelial disruption of Atg7, a gene involved in formation of the 

autophagosome membrane, led to decreased tumors [7]. The work demonstrated that 

intestinal epithelial inhibition of autophagy promoted an anti-tumor immune response via 

alterations in the commensal microbiota population. This data is consistent with 

changes in the basal gut microbiota following intestinal epithelial Atg5 disruption [8].  

The tumor microenvironment increases cell stress caused by decreased oxygen 

availability, reduced nutrient supply, and anti-tumor immune response. To adapt to 

limited oxygen and nutrients, cancer cells modify metabolic pathways to maintain 

growth. One mechanism is through utilizing autophagic products to replenish nutrient 

pools in cancer [9-15]. However, all of this work has been done in KRAS mutant tumors 

and very little is known with respects to contribution and integration of cellular 

autophagy to colon cancer cell metabolism and growth.   
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In the current study, we identified a cell-autonomous dependency of autophagy in 

colon cancer cell lines, patient-derived enteroids, and mouse models. Loss of epithelial 

autophagy in murine tumor models reduced overall tumor number, tumor burden, and 

proliferation. Consistent with these data, tumor growth and proliferation were 

significantly decreased in CRC-patient derived enteroid models, but not in normal 

enteroids.  In nutrient starved environments, colon cancer cells require autophagy to 

maintain cellular nutrient pools. Through metabolomics and lysosomal proteomics, 

mitophagy was rapidly initiated in low nutrient conditions and recycling of mitochondrial 

metabolites was observed.  Temporal knockdown of mitophagy led to decreased colon 

cancer cell growth in nutrient rich cell culture conditions. These data demonstrate that 

CRCs are addicted to mitophagy to maintain cell growth. There are several clinical trials 

targeting autophagy for cancer treatment, and this work establishes a critical role of 

mitophagy in CRC growth [16]. 
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Results 

Intestinal epithelial disruption of autophagy inhibits colon tumor growth. 

Atg5fl/fl mice were crossed to mice expressing Cre recombinase from the Villin 

promoter to specifically target intestinal epithelial cells. The azoxymethane (AOM) and 

dextran sulfate sodium (DSS) model is an established colitis associated cancer (CAC) 

model that specifically develops colon tumors. In the AOM/DSS model, Atg5fl/fl  and 

VillinCre;Atg5fl/fl mice showed no significant difference in body weight, although a slight 

decrease was noted in the VillinCre;Atg5fl/fl mice during the final cycle of DSS (Figure 

2.1A). The VillinCre;Atg5fl/fl mice demonstrated a decrease in tumor number, size, and 

burden (Figure 2.1B). Tumors from VillinCre;Atg5fl/fl mice had reduced proliferation as 

measured by Ki67 staining (Figure 2.1C&D). However, we did observe in the few rare  

large tumors from the VillinCre;Atg5fl/fl, that proliferation was comparable to Atg5fl/fl mice 

(Figure 2.1C&D). Previous work investigating loss of Atg7 in intestinal epithelial cells 

highlighted the impact of the immune response and gut microbiota in tumors [7]. 

Cytokines and chemokines mRNA were measured and no change was found between 

the Atg5fl/fl or VillinCre;Atg5fl/fl mice (Figure 2.1E). Similarly, loss of intestinal epithelial 

autophagy did not alter disease susceptibility to acute colitis induced by DSS. No 

changes in weight, colon length, or inflammation score as determined by a blinded 

pathologist were noted (Figure S2.1 A-D&F). Expression of cytokines and chemokines 

was not altered with loss of autophagy (Figure S2.1E). Transcription factor EB (TFEB) 

activates genes involved in autophagosome formation, cargo recognition, and fusion 

with the lysosome. When autophagy was disrupted by loss of TFEB in a tamoxifen 

inducible Vil-ERT2;Tfebfl/fl model, there was no change in weight, colon length, or 
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inflammation score (Figure S2.1 G-J&L). However, select inflammatory mediators 

including Tnfα, Cxcl1, Cxcl2, Il10, and Cdllb were significantly increased (Figure 

S2.1K). While we did not observe effects of autophagy loss on the response to acute 

colitis, others have clearly demonstrated a role for intestinal epithelial autophagy in 

colitis severity [17-19]. Genome wide association studies have linked polymorphisms of 

many known autophagic genes to susceptibility for ulcerative colitis or Crohn’s Disease 

[20, 21]. Moreover, the data from the Vil-ERT2Cre;Tfebfl/fl  model showed increased pro-

inflammatory mediators following injury. Therefore, the development of tumors through 

AOM/DSS is confounded by an inflammation driven tumor development. A sporadic 

colon tumor model was generated by crossing the Apcfl/fl or the double Apcfl/fl;Atg5fl/fl 

mice to a tamoxifen-inducible colon specific Cdx2-ERT2Cre [22].  Mice were induced 

with a single dose (50mg/kg) of tamoxifen and 6-weeks following injections, tissues 

were collected. Mice showed no difference in body weight (Figure 2.2A). The Cdx2-

ERT2Cre;Apcfl/fl;Atg5fl/fl  showed a significant reduction in tumor number and burden 

compared to Cdx2-ERT2Cre;Apcfl/fl mice (Figure 2.2B). Proliferation measured by Ki67 

was reduced with loss of Atg5 (Figure 2.2C). Adjacent normal tissue showed no 

difference in proliferation with autophagy loss (Figure 2.2D). To investigate if infiltration 

of immune cells was altered in the sporadic model following loss of autophagy, flow 

cytometry analysis of abundant immune populations were assessed. Two weeks 

following tamoxifen induction, immune cells were isolated from the colon. No difference 

was observed between the relative monocyte, T-cell, or neutrophil populations (Figure 

2.2E). In inflammatory bowel disease (IBD), Paneth cells are particularly impacted by 

changes in autophagy [23, 24]. Therefore, we performed gene expression analysis of 
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Paneth cell markers in our Cdx2-ERT2Cre;Apcfl/fl;Atg5fl/fl  cohort and found no changes in 

Paneth cells with loss of autophagy in either tumor or matched normal tissue (Figure 

S2.1M).  

Autophagy loss inhibits tumor proliferation in a cell-autonomous manner. 

CRISPR/CAS9 mediated disruption of TFEB in CRC-derived HCT116 cells 

(Figure 2.3A) showed a marked reduction in growth as assessed by MTT and long-term 

clonogenic cell survival assays (Figure 2.3B-D). In addition, doxycycline inducible 

shRNAs for TFEB in HCT116 and SW480 cell lines demonstrated reduced growth 

(Figure 2.3E-K). Empty vector controls are not impacted by treatment with doxycycline 

(Figure S2.2A). ATG4B is an essential regulator of autophagy [25]. Stable HCT116 

cells expressing a dominant negative ATG4BC74A mutant demonstrated decreased 

growth by MTT and clonogenic analysis (Figure S2.2 B&C) [26]. Pharmacological 

inhibition of autophagy is currently in clinical trials for a number of cancers 

(NCT02333890; NCT02378532; NCT03400865). To understand the impact of 

pharmacological inhibition, growth in CRC-derived cell lines was measured following 

treatment with chloroquine, a lysosomal inhibitor. In CRC-derived cell lines (SW480, 

HCT116, DLD1), increasing doses of chloroquine led to marked reduction in cell growth 

(Figure 2.4A). Similar response was observed in CRC-derived HT29, RKO, and mouse 

MC38, and CT26 cell lines (Figure S2.3A). Autophagy can be activated by serine, 

threonine protein kinase 1 (ULK1) [27]. Inhibition of ULK1 with SBI-0206965 also 

reduced cell growth similar to chloroquine (Figure S2.3B). Cell growth was rescued 

when low dose (but not high dose) chloroquine was removed (Figure S2.3C).  
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To assess if the impact of autophagy loss to cell growth was selective to tumor 

cells, four patient-derived tumor enteroids and two normal colon enteroids were 

assessed [28]. Enteroids 282,584, and 590 are adenomas located in the ascending 

colon and enteroid 245 is an adenoma: sessile serrated from the cecum. Patient-

derived tumor enteroids demonstrated significant growth inhibition following chloroquine 

treatment, where normal colon enteroids did not demonstrate any growth defects 

following inhibition of autophagy (Figure 2.4B-C and S2.3D). It is interesting to note 

that a sessile serrated tumor enteroid did not respond to autophagy inhibition. Sessile 

serrated tumors are a recently recognized class of colon cancers that present with 

BRAF mutations compared to APC mutations that are seen in the majority of colon 

cancer [29, 30]. The inhibition of growth highlights a dependency on autophagy in tumor 

cells that is not observed in normal tissue.  

 

Tumor cells rely on autophagy under states of limited nutrient availability. 

To understand if the dependency of autophagy in tumor cells is linked to cellular 

metabolic demands, we established a low dose of chloroquine or low nutrient conditions 

that did not alter cell growth (Figure 2.5A&B and S2.4A). Cells cultured in a low 

nutrient condition in combination with low dose chloroquine significantly decreased cell 

growth (Figure 2.5C) compared to either treatment alone. To understand the cellular 

metabolic demand that require autophagy, we heat inactivated serum at 95 C (herein 

SerumHI) compared to the standard 52 C to remove heat labile nutrients. Similar to 

reduced serum, SerumHI combined with autophagy loss reduced cell growth (Figure 

2.5D). Glucose or iron depletion did not have an additive or synergistic effect on cell 
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growth in combination with autophagy inhibition (Figure S2.4B&C). Moreover, 

supplementing insulin and epidermal growth factor (EGF) did not rescue the growth 

defect (Figure 2.5E&F). The additive effect of autophagy loss with SerumHI was similar 

following ULK1 inhibition (Figure S2.5A). To identify which metabolites were impacted 

under autophagy loss in combination with nutrient stress, the intracellular metabolomes 

of SW480 cells treated with SerumHI or chloroquine at 2.5µg/mL or co-treated with 

SerumHI or chloroquine for 2-days were analyzed via liquid chromatography/mass 

spectrometry (LC/MS) (Figure 2.5G). This time point was selected as no change in 

growth is observed at 2-days (Figure 2.5D). Interestingly, we found only slight changes 

in the metabolome with either treatment alone, consistent with our growth data 

However, co-treatment led to significant changes in several metabolites. Metabolites 

which were significantly changed in the SerumHI and chloroquine group were analyzed 

for pathway analysis using Metaboanalyst [31]. A significant mitochondrial metabolite 

signature was found (Figure 2.5G-H). However, supplementation of individual 

metabolites did not rescue the growth defects (Figure S2.6A). This suggests that a 

combination of metabolites is important in altering cell growth.  

 

Colorectal cancer cells use mitophagy to meet cellular metabolic demands.  

Alterations in metabolites involved with the TCA cycle suggested an impact on 

mitochondria. Mitochondria can be targeted by autophagy through a process of 

selective autophagy known as mitophagy [32]. To assess if mitophagy is essential in 

CRC to meet the metabolic demands for proliferation, mitophagy flux was assessed in 

CRC-derived cell lines. The mitochondrial specific protein cyctochrome c oxidase 
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subunit 8 (COX8) fused to two fluorescent reporters, mCherry and green fluorescent 

protein (GFP) (COX8-mcherry-GFP) was used. If mitochondrial are targeted to the 

lysosomes GFP fluorescence is quenched upon a change in pH, where mCherry 

fluorescence remains (Figure 2.6A) [33]. Using flow cytometry in HCT116 and SW480 

expressing Cox8-mCherry-GFP and cultured in SerumHI conditions demonstrated an 

increased flux in mitophagy following nutrient stress (Figure 2.6B). To further validate 

this observation, proteomic analysis was performed in lysosomes in control or SerumHI 

conditions. A stable TMEM192 expressing HCT116 cell line was established to enrich 

for lysosomes via immunoprecipitation using a LysoIP method (Figure 2.6C&D) [34]. 

Lysosomal proteomics demonstrated an enrichment of mitochondrial proteins in the 

cells under SerumHI (Figure 2.6E). The total lysosomal proteome content consisted of 

~8% mitochondrial proteins, in which 90% of all mitochondrial proteins identified where 

higher in the lysosomes of SerumHI treated cells. This data demonstrates that mitophagy 

is integrated with the cellular nutrients needs and is upregulated during nutrient stress.  

 

Mitophagy is essential for CRC growth.  

To understand the contribution of mitochondrial targeting to the lysosome for 

CRC growth mitophagy was genetically inhibited. PTEN-induced kinase 1 (PINK1) is 

important for inducing mitophagy [35]. PINK1 is involved in PINK1/Parkin (PRKN) 

mediated mitophagy and phosphorylates PRKN which is then polyubiquitinated and 

targeted for autophagic degradation. We generated doxycycline inducible shRNA 

constructs targeting PINK1 in SW480, HCT116, and RKO cells (Figure 2.7A-C). 

Knockdown of PINK1 in these cell lines significantly reduced growth when assessed by 
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MTT assay (Figure 2.7A-C and S2.7E). Similarly, knockdown of PRKN in HCT116 and 

RKO significantly reduced growth when assessed by MTT and clonogenic assay 

(Figure S2.7A-E). 
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Discussion  

Autophagy is a cellular process that allows for the sequestration and breakdown 

of organelles and cellular components. Autophagy is found to be both pro-and anti-

tumorigenic [36-38]. Heterocellular crosstalk exists between tumor epithelium and the 

microenvironment, and current work in CRC mouse models demonstrates an important 

role of epithelial autophagy in sustaining an immunosuppressive environment via gut 

commensals [7]. Importantly, the activation of autophagy in colon cancer is found to be 

context dependent on microbial infiltration, inflammation, and tumor stage [7, 39-42]. 

While autophagy is often thought to be a mechanism for nutrient recycling, or 

degradation of dysfunctional organelles, the precise role in colon cancer is not known. 

Specifically, the metabolic cues which activate autophagy, and the cellular metabolites 

which autophagy provide to maintain growth have not been investigated in colon 

cancer. We have shown that loss of autophagy through ATG5 inhibits tumor growth in a 

cell-autonomous fashion in inflammation-driven (AOM/DSS), sporadic (Apc), and patient 

derived in vitro models of CRC. Mechanistically we show that under nutrient stress 

autophagy is directly integrated to meet nutrient demands via mitophagy.  

In two CRC tumor models, we observed no changes in immune cell infiltration or 

immune signaling as previously described [7]. The lack of immune response in our 

models could potentially be due to the differences in the functions of ATG5 and ATG7. 

Autophagy associated genes, including ATG7 are found to have autophagy 

independent functions [43]. Other differences may be attributed to experimental design. 

For our experiments we use littermate controls and standardized the microbiome by 

mixing the bedding prior to tumor induction to prevent potential microbiota differences 

[44]. It is also documented that microbiota differ based on housing facilities [45]. While 
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other studies have identified immune differences, our experimental design and potential 

microbial differences allowed us to highlight the cell-autonomous role of autophagy in 

tumor development.  

The hyper-proliferative nature of tumor cells reprograms cellular metabolism and 

activate pathways to replenish nutrient pools in tumor cells. In pancreatic cancer, cells 

scavenge for extracellular proteins to acquire amino acids [46]. Breast cancer utilizes 

autophagy under starvation to maintain amino acid levels [47]. In our study, we have 

identified autophagy as a key function that colorectal cancer cells rely on for 

proliferation. Our in vitro cell models are cultured in a highly nutrient rich medium. Upon 

a challenge with pharmacological or genetic autophagy inhibition, growth is dramatically 

reduced. This suggests that colon cancer cells are addicted to autophagy for growth 

and have adapted to rely on this mechanism for proliferation. To integrate autophagy to 

cellular metabolic demands, we found that loss of heat labile nutrients in serum, (but not 

iron or glucose), led to a robust decrease in cell growth in combination with autophagy 

inhibition. However, these results suggest that nutrients acquired through autophagy, 

and more specifically, mitophagy are required for general cell maintenance in tumors. 

This is supported by the basal levels of mitophagy that we observed in CRC cells under 

nutrient rich culture conditions. While we were unable to rescue growth with individual 

supplementation of nutrients, it is possible that the combination of nutrients acquired 

through mitophagy are required for cell proliferation. The metabolomics data, the rapid 

decrease in cell growth when autophagy and mitophagy are inhibited, and a potentiation 

of reduced cell growth in combination with nutrient stress suggest that a major role of 

mitophagy is to replenish the nutrient pool in cancer cells. However, a decrease in 
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growth could also be due to reduced recycling of defective mitochondria. Moreover, 

autophagy is essential in regulation of proteins critical for cell growth [48]. Future work is 

focused on decoupling the importance of nutrient recycling to other autophagic functions 

in colon cancer cell growth.  

To clearly understand the role of autophagy in CRC, patient-derived enteroid 

models and adjacent normal enteroids were utilized. Patient-derived tumor enteroids 

[28] treated with chloroquine showed a marked decrease in growth when compared to 

patient derived normal enteroids. The tumor selective response further highlights the 

essential role of autophagy modulation in tumor growth. Interestingly, we observed no 

growth inhibition in the BRAF mutant (Val600Glu) enteroid model. BRAF mutations are 

present in about 10% of patients [49]. This particular enteroid was generated from a 

sessile serrated tumor [28] and BRAF mutations are known to be drivers for this tumor 

type [29, 30]. We are not aware of any literature that investigates the functional role of 

autophagy in sessile tumors but this finding uncovers the importance of understanding 

autophagy under different mutational burdens. Furthermore, it is important to consider 

the mutational load present within the models used in our study and others. p53 is 

mutated in about 50% of colon cancers [49].  However, the ATG7 model discussed 

above [7], and our AOM/DSS and sporadic tumor models, typically do not harbor p53 

mutations [50, 51].  Extensive work is needed to understand the genotypic variability in 

CRC to autophagy inhibition.  

We have identified mitophagy as an important selective pathway for nutrient 

acquisition in colon tumors. Mitophagy is a newly studied modulator of cancer growth 

and its particular role in colon cancer is not well understood. A study identified DNA 
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copy number loss of PRKN (PARK2 gene) in about 33% of the colon tumors screened. 

PRKN deletion enhanced tumor growth in Apc+/Min mice.  In addition to PRKN being 

important in mitophagy, PRKN is an E3 ubiquitin ligase for cyclin E.  Loss of PRKN led 

to an increase in cyclin E and progression of the cell cycle [52]. Moreover, mitophagy in 

tumor epithelium was shown to activate CD8+T-cells to reduce tumor burden in the 

colon [53].  The cell-autonomous role of mitophagy was not directly assessed on cell 

growth. Here, our work outlines a novel role for PINK/PRKN mediated mitophagy in an 

immune cell-independent context. Clinically, the expression of PRKN is prognostic in 

patient outcome. Decreased PRNK expression is correlated with increased survival [54], 

however increased expression is found with enhanced invasion in tumors [54]. It is 

possible that the role of mitophagy varies dependent on stage or spectrum of mutations 

in CRC. It is also important to consider that PINK1-PRKN independent mechanisms of 

mitophagy exist [55-57]. The use of pharmacological tools to target mitophagy are 

already in development for cancer treatments. In Kras mutant CRC, treatment with 

pharmacological inhibitors of mitochondria, Mito-CP and Mito-Met10, decrease cell 

proliferation [58].  

This work underscores the importance of autophagy in nutrient acquisition in 

colon cancer and the potential for mitophagy inhibition to be used alone or in 

combination with other chemotherapeutics to improve overall colon cancer outcomes.  
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Methods 

Mouse experiments: For all experiments, male and female mice, 6 to 8-weeks of age 

were used. All mice are a C57BL/6 background. ATG5 TM1a conditional ES cells were 

acquired from Riken and the mice were generated by the University of Michigan 

Transgenic core. Microbiome was normalized for 1-2 weeks prior to experiment initiation 

by combining bedding and distributing evenly among experimental mice.  DSS 

experiments were completed by placing mice on 2.0% DSS in water for 7-days followed 

by a 3-day recovery on regular drinking water. For AOM/DSS experiments, mice were 

injected intraperitoneally (I.P.) with 10mg/kg of AOM. Five days after injection, mice 

were cycled on and off 2.0% DSS in their drinking water for one week followed by a two-

week recovery as previously described [59]. Weights were taken daily. For spontaneous 

tumors (CdxERT2;Apcfl/fl;Atg5fl/fl), mice were injected with a single dose (50mg/kg) of 

tamoxifen. Six weeks later tissue was collected. Tumor burden is a summation of total 

tumor volume per mouse.  

 

Histology and immunofluorescence: Histological analysis was scored by a blinded 

pathologist as previously described [60]. Tissues were collected and fixed in 10% 

formalin for 24-hours followed by embedding in paraffin. 5M sections were stained for 

H&E. Immunofluorescence of Ki67 (1:100; Vector Labs), was completed using antigen 

retrieval in sodium citrate (Tri-sodium citrate 11.4mM, pH 6.0, 0.05% Tween-20) and 

labelled with (Alexa 488, ThermoFisher). Tissue was mounted with ProLong Gold with 

DAPI (Invitrogen). Images were quantified using ImageJ software as percent positive 

Ki67 area to DAPI positive. 
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RNA isolation and qPCR analysis: RNA was isolated using TRIzol chloroform 

extraction. RNA was reverse transcribed using MMLV reverse transcriptase 

(ThermoFisher). qPCR analysis was done using the listed primers (Table S2.1) and 

Radiant Green qPCR master mix (Alkali Scientific Inc.).  

 

Enteroid Culture: Enteroids were cultured as previously described [28]. Lines 87 and 89 

were cultured in completed LWRN medium. Additional lines (282,584,590,245) were 

cultured in Kerotinocyte Growth Medium (ThermoFisher). Cultures were plated in 

Matrigel (Corning) and allowed to establish for at least 3 days. Following establishment 

cells were treated either with control (Sterile PBS) or chloroquine at 75µg/mL (in PBS) 

for 3 days. Images were taken at 24 and 72-hours post treatment. Measurements were 

completed by normalizing the relative area of an individual enteroid to day 0. All 

measurements were completed by a blinded observer.  

 

Flow Cytometry: Analysis was done using FlowJo software. For Cox8-mCherry-eGFP, 

BioRad Ze5 Cell Analyzer was used. Cells were first sorted for mCherry positivity 

followed by eGFP. Flow cytometry analysis of immune cells was done using the 

Beckman Coulter MoFlo Astrios, immune cells from the colon were isolated by 25mM 

EDTA digestion to remove epithelial cells followed by a 0.5mg/mL collagenase IV 

digestion and were enriched for using a 40% to 70% percoll gradient. Immune cells 

were stained for with CD45 Alexa Fluor 780, 1:200 (eBioscience) , CD4 PECy7 1:300 

(Affymetrix), Cdllc FITC 1:200 (Biolegend), Cdllb APC 1:250 (eBioscience), Ly6C V450 
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1:300 (BD Bioscience), Ly6G PE 1:300 (BD Bioscience), F4/80 BV510 1:100 (BD 

Bioscience), 7AAD Percp Cy 5.5 1:300 (BD Bioscience).  

 

MTT assays: 24-hours following plating a Day 0 reading was taken. Cells were 

incubated for 45 minutes with Thiazolyl Blue Tetrazolium Bromide (Sigma) then 

solubilized with dimethyl sulfoxide. Absorbance was read at 570nm. Following the Day 0 

read, the corresponding treatment and readings were taken every 24-hours for 72-hour 

assay or every other day for 6-day assay. All reads were taken in technical triplicates.  

 

Protein isolation and Western Blotting: All protein samples were separated by SDS-

PAGE and transferred on to nitrocellulose membrane. Antibodies were used as follows. 

TFEB 1:1000 (Bethyl), LC3B 1:1000 (Cell Signaling), ATG5 1:1000 (Cell Signaling), HA-

Tag 1:1000 (Abcam), LAMP1 1:1000 (Cell Signaling), Lamin AC 1:1000 (Active Motif), 

GAPDH 1:1000 (Santa Cruz), β-actin 1:1000 (Proteintech), PRKN 1:1000 (Cell 

Signaling). 

 

Cell lines: All cell lines were cultured in DMEM with 10% fetal bovine serum unless 

otherwise noted. Stable TFEB knockout line was generated using gRNA in Lenticrispr 

V2 ( Feng Zhang; Addgene plasmid 49535) [61] using the guides listed (Table 2.1). 

Constructs for doxycycline inducible shRNA were generated using the Tet-pLKO-puro 

(Dmitri Wiederschain; Addgene plasmid #21915). Plasmids were generated and 

inserted in to a lenti-viral vector for stable transfection. Knockdown was induced using 

200ng/mL of doxycycline for 48-hours. The HCT116 cells used for tracking mitophagy 
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were generated from the pCLBW Cox8-mCherry-EGFP plasmid (David Chan;Addgene 

plasmid #78520). ATG4B mutant expressing cell line was developed by stable 

expression of pmStrawberry-Atg4BC74A (Tamotsu Yoshimori; addgene plasmid #21076). 

We generated the HCT116 LysoIP line using the pLJC5-Tmem192-3xHA (David 

Sabatini ;Addgene plasmid # 102930). Cells were treated chloroquine diphosphate 

(Sigma) and SBI-0206965 (Cayman Chemical) using concentration and time as shown 

in the figure.   

Metabolomics: Polar metabolites were extracted in ice cold 80% methanol on dry ice for 

10 minutes. Proteins and cell debris were precipitated by centrifugation at 13k rpm for 

10 minutes at 4C. Metabolite supernatants were dried on a SpeedVac and submitted for 

steady state metabolomics profiling [62, 63]. An Agilent 1290 Infinity II LC -6470 Triple 

Quadrupole (QqQ) tandem mass spectrometer (MS/MS) system was used. For negative 

ion acquisition, a Waters Acquity UPLC BEH amide column (2.1 x 100mm, 1.7µm) was 

used with the mobile phase (A) consisting of 97% water, 3% methanol 10 mM 

tributylamine, 15 mM acetic acid, and 5 µM Agilent infinity lab deactivator additive and 

mobile phase (B) 10mM tributylamine, 15mM glacial acetic acid, 5 µM Agilent infinity lab 

deactivator additive. Pump A and C deliver buffer A and B respectively. Pump D 

delivers acetronitrile to wash the column at the end of the run. The following gradient 

was used: 0-2.5 min, 100% A at 0.25 mL/min (till 27 min for the analytical run); at 7.5 

min, 80% A; at 13 min 55% A; at 20 min, 1% A and kept to 24.0 min; at 24.05-27 min, 

1%A and 99% D; at 27.05-31.35 min, 1%A and 99% D at 0.8 mL/min flow rate; at 32.25 

to 39.9 min, 100%A at 0.40 mL/min flow rate; at 40 min 100%A, 0.25 mL/min. The 

column was kept at 40 ºC and 3 µL of sample was injected into the LC-MS/MS with a 
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flow rate of 0.2 mL/min. Tuning and calibration of the QqQ was achieved through 

Agilent ESI Low Concentration Tuning Mix. 

The MassHunter Metabolomics Dynamic MRM Database and Method was used for 

target identification. Key parameters of AJS ESI were: Gas Temp: 150 ̊C, Gas Flow 13 

L/min, Nebulizer 45 psi, Sheath Gas Temp 325 ̊C, Sheath Gas Flow 12 L/min, Capillary 

2000 V, Nozzle 500 V. Detector Delta EMV(-) 200. 

The QqQ data were pre-processed with Agilent MassHunter Workstation Quantitative 

Analysis Software (B0700). Each metabolite was median normalized across all samples 

for proper comparisons, statistical analyses, and visualizations among metabolites. The 

statistical significance test was done by a two-tailed t-test with a significance threshold 

level of 0.05. 

Proteomics: Cells were kept in control or media with SerumHI for six days. Cell were 

lysed and lysosomes were isolated as previously described [34] with anti-HA tag 

(Thermo Fisher #88836). Beads were washed twice with TBS-T and twice with PBS. 

The beads were resuspended in 50 mL of 0.1M ammonium bicarbonate buffer (pH~8). 

An overnight digestion with 1 g sequencing grade, modified trypsin was carried out at 

37 C with constant shaking in a Thermomixer. Digestion was stopped by acidification 

and peptides were desalted using SepPak C18 cartridges using manufacturer’s protocol 

(Waters). Samples were completely dried using vacufuge. Resulting peptides were 

dissolved in 8 mL of 0.1% formic acid/2% acetonitrile solution and 2 mL of the peptide 

solution were resolved on a nano-capillary reverse phase column (Acclaim PepMap 

C18, 2µm, 50 cm, ThermoScientific) using a 0.1% formic acid/2% acetonitrile (Buffer A) 
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and 0.1% formic acid/95% acetonitrile (Buffer B) gradient at 300 nL/min over a period of 

180 min (2-25% buffer B in 110 min, 25-40% in 20 min, 40-90% in 5 min followed by 

holding at 90% buffer B for 10 min and requilibration with Buffer A for 30 min). Eluent 

was directly introduced into Q exactive HF mass spectrometer (Thermo Scientific, San 

Jose CA) using an EasySpray source. MS1 scans were acquired at 60K resolution 

(AGC target=3x106; max IT=50 ms). Data-dependent collision induced dissociation 

MS/MS spectra were acquired using Top speed method (3 seconds) following each 

MS1 scan (NCE ~28%; 15K resolution; AGC target 1x105; max IT 45 ms). 

Proteins were identified by searching the MS/MS data against UniProt H Sapiens 

database (20331 entries; downloaded on 12/04/2018) using Proteome Discoverer (v2.1, 

Thermo Scientific). Search parameters included MS1 mass tolerance of 10 ppm and 

fragment tolerance of 0.2 Da; two missed cleavages were allowed; 

carbamidimethylation of cysteine was considered fixed modification and oxidation of 

methionine, deamidation of asparagine and glutamine were considered as potential 

modifications. False discovery rate (FDR) was determined using Percolator and 

proteins/peptides with a FDR of ≤1% were retained for further analysis. Samples were 

normalized to the unbound fraction and relative peptide spectral matches were 

compared between control and SerumHI.   

Statistical Analysis: Statistical analysis was calculated by student’s t-test, one-way, or 

two-way anova. Error bars represent the standard error of the mean. 
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Table 2.1 qPCR and cloning primers  
 
 

Gene Primer 

PRKN 
shRNA Fw  

CCGGGCTTAGACTGTTTCCACTTATCTCGAGATAAGTG 
GAAACAGTCTAAGCTTTTT 

PRKN 
shRNA 1 Rv  

AATTAAAAAGCTTAGACTGTTTCCACTTATCTCGAGATA 
AGTGGAAACAGTCTAAGC 

PRKN 
shRNA 2 Fw  

CCGGGGAATGTAAAGAAGCGTACCACTCGAGTGGTAC 
GCTTCTTTACATTCCTTTTT 

PRKN 
shRNA 2 Rv  

AATTAAAAAGGAATGTAAAGAAGCGTACCACTCGAGTG 
GTACGCTTCTTTACATTCC 

Lysozyme 
Fw  

ATGGAATGGCTGGCTACTATGGAG 

Lysozyme 
Rv  

CTCACCACCCTCTTTGCACATTG 

Cryptidins 
Fw  

AGGAGCAGCCAGGAGAAG 

Cryptidins 
Rv  

ATGTTCAGCGACAGCAGAG 

MMP7 Fw  CAGACTTACCTCGGATCGTAGTGG 

MMP7 Rv  GTTCACTCCTGCGTCCTCACC 

TFEB 
shRNA 1 Fw  

CCGGGTCCGAGACCTATGGGAACAACTGCAGTT 

GTTCCCATAGGTCTCGGACTTTTT 

TFEB 
shRNA 1 Rv  

AATTAAAAAGTCCGAGACCTATGGGAACAACTGC 

AGTTGTTCCCATAGGTCTCGGAC 

TFEB 
shRNA 2 Fw 

CCGGCCTCTGTGGATTACATCCGGAGGATCTGC 

AGATCCTCCGGATGTAATCCACAGAGGTTTTT 

TFEB 
shRNA 2 Rv  

AATTAAAAACCTCTGTGGATTACATCCGGAGGATCTGCA

GATCCTCCGGATGTAATCCACAGAGG 
 

TFEB gRNA 
1 Fw  

CACCGATTGGGAGCACTGTTGCCAG 

 

TFEB gRNA 
1 Rv  

AAACCTGGCAACAGTGCTCCCAATC 

TFEB gRNA 
2 Fw  

CACCGGGACGACTCACTGCTACCGC 

TFEB gRNA 
2 Rv  

AAACGCGGTAGCAGTGAGTCGTCCC 
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Cxcl2 Fw  TCCAGGTCAGTTAGCCTTGC 

Cxcl2 Rv  CGGTCAAAAAGTTTGCCTTG 

Il4 Fw  GGT CTC AAC CCC CAG CTA GT 

Il4 Rv  GCC GAT GAT CTC TCT CAA GTG AT 

Il6 Fw  ACCAGAGGAAATTTTCAATAGGC 

Il6 Rv  TGATGCACTTGCAGAAAACA 

Il1B Fw  AAGAGCTTCAGGCAGGCAGTATCA 

Il1B Rv  TGCAGCTGTCTAGGAACGTCA 

TNFa Fw  AGGGTCTGGGCCATAGAACT 

TNFa Rv CCACCACGCTCTTCTGTCTAC 

Il10 Fw 
AGACACCTTGGTCTTGGAGC  
 

Il10 Rv 
TTTGAATTCCCTGGGTGAGA 
 

B220 Fw  TTCAGAAGCTGAACGTTGCACA 

B220 Rv TCTTCAGGAACCCCATGGTCTG 

Il17 Fw  
TGAGCTTCCCAGATCACAGA 
 

Il17 Rv 
TCCAGAAGGCCCTCAGACTA  
 

Cdllb Fw  ATGGACGCTGATGGCAATACC 

Cdllb Rv TCCCCATTCACGTCTCCCA 

Cd4 Fw  TCCTAGCTGTCACTCAAGGGA  

CD4 Rv  TCAGAGAACTTCCAGGTGAAGA  

Ym1 Fw  CACCATGGCCAAGCTCATTCTTGT  

Ym1 Rv  TATTGGCCTGTCCTTAGCCCAACT  
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Cdllc Fw  CTGGATAGCCTTTCTTCTGCTG  

Cdllc Rv  GCACACTGTGTCCGAACTCA 

SAA4 Fw  CTCTGTTCTTTGTTCCTGGGAG 

SAA4 Rv  CTAGGTTGTCCCGATAGGCTC 

PINK1 
shRNA 1 Fw  

CCGGGAAATCTTCGGGCTTGTCAATCTCGAGATTGA 
CAAGCCCGAAGATTTCTTTTT 

PINK1 
shRNA 1 Rv  

AATTAAAAAGAAATCTTCGGGCTTGTCAATCTCGAGA 
TTGACAAGCCCGAAGATTTC 

PINK1 
shRNA 2 Fw  

CCGGGCCGCAAATGTGCTTCATCTACTCGAGTAGAT 

GAAGCACATTTGCGGCTTTTT 

PINK1 
shRNA 2 RV  

AATTAAAAAGCCGCAAATGTGCTTCATCTACTCGAGT 
AGATGAAGCACATTTGCGGC 

PINK1 Fw  CATGCCTACATTGCCCCAGA 

PINK1 Rv  TGACTGCTCCATACTCCCCA 
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Figure 2.1 Epithelial loss of autophagy inhibits tumor growth in colitis associated 
cancer model. A. Body weights, B. tumor number, size, and burden, C. quantification 
of Ki67, (non-significant large tumor denoted in orange) D. images of Ki67 staining and  

E. qPCR analysis of cytokines and chemokines following AOM/DSS in colon specific 
Atg5fl/fl  and VillinCre; Atg5fl/fl mice on AOM/DSS * p <0.05, ** p <0.01. Scale bar 200µm 
Error bars represent standard error of the mean (SEM).   
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Figure 2.2 Epithelial loss of autophagy inhibits tumor growth in a sporadic colon 
cancer model. A. Body weights, B. tumor number, size, and burden, C. quantification 
and images of Ki67 stained tumor tissue, D. quantification of Ki67 in normal tissue and 
E. flow cytometry of immune cells in Cdx2-ERT2Cre;Apcfl/fl, and Cdx2-
ERT2Cre;Apcfl/fl;Atg5fl/fl mice. Tumors were assessed at 6-weeks following tamoxifen 
treatment, where flow cytometry was assessed at 2-weeks following tamoxifen 
treatment.   * p <0.05, ** p <0.01. Scale bar 200µm. Error bars represent SEM.  
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Figure 2.3 Cell-autonomous inhibition of autophagy inhibits cell growth. A. 
Western blot analysis, B. MTT assay, C. representative images of clonogenic assay and 
D. quantification by blinded observers in stable HCT116 expressing empty vector (EV) 
or two different gRNAs specific for TFEB (Guide 1 and Guide 2). E. Western blot 
analysis, F. MTT assay (EV not shown), G. representative images of clonogenic assay 
and H. quantification of clonogenics by blinded observers in doxycycline inducible 
shRNA specific for TFEB (shRNA 1 and shRNA 2) or EV in HCT116. I. MTT assay (EV 
not shown), J. representative images of clonogenic assay and K. quantification of 
clonogenics by blinded observers in doxycycline inducible shRNA specific for TFEB 
(shRNA 1 and shRNA 2) or EV in SW480. * p <0.05, ** p <0.01 , *** p< 0.001. Error 
bars represent SEM.  
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Figure 2.4 Pharmacological inhibition of autophagy inhibits CRC growth A. MTT 
assay in colon cancer-derived cell lines (SW480, HCT116 and DLD1) with chloroquine 
treatment. B. Representative images and C. growth quantification of normal and colon 
cancer patient derived enteroids treated with chloroquine for three days. Scale bar 
500µm * p <0.05, ** p <0.01, **** p <0.0001. Error bars represent SEM.  
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Figure 2.5 Nutrient stress requires autophagy to maintain cell growth A. Western 

blot and, B. quantification of chloroquine dose to inhibit autophagy in HCT116 and 

SW480.  C. MTT assay, cells were cultured in DMEM with 5% or 10% serum and in 

combination with chloroquine at 2.5µg/mL D. MTT assay, cells were cultured in DMEM 

with normal or SerumHI in combination with chloroquine at 2.5µg/mL. E. 

Supplementation of cells treated with SerumHI and chloroquine with insulin (10nM) in 

HCT116 and SW480 or, F. hEGF (50nM) in HCT116 G. Summary of Snapshot 

Metabolomics of SW480 cells with control or SerumHI or co-treated with vehicle or  

chloroquine. H. Metaboanalyst analysis of metabolites in SerumHI  with chloroquine. * p 

<0.05, ** p <0.01. *** p <0.001. Error bars represent SEM.  
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Figure 2.6 CRC cells employ mitophagy under nutrient stress. A. Schematic of 
Cox8-mCherry-GFP flow cytometry. B. Flow cytometry analysis of mitophagy following 
two-day treatment with SerumHI in SW480 and HCT116 cells. C. Western blot 
confirmation of TMEM192-3xHA expressing HCT116 cells. D. Western blot of 
immunoprecipitation of TMEM192-3xHA cells in control or SerumHI. WC- whole cell 
lysate, UB- unbound fraction, IP- bound sample. * represents degraded GAPDH product 
E. Relative change in peptide spectral matches to total and mitochondria specific 
proteins following treatment with SerumHI.   
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Figure 2.7 Mitophagy is necessary for CRC cell growth A. qPCR analysis of PINK1 
shRNA knockdown and MTT assay (EV shown in Figure S7E) in SW480. B. qPCR 
analysis of PINK1 shRNA knockdown and MTT assay (EV shown in Figure S7E) in 
HCT116. C. qPCR analysis of PINK1 shRNA knockdown and MTT assay (EV shown in 
Figure S7E) in RKO.  * p <0.05, ** p <0.01, *** p< 0.001. Error bars represent SEM.  
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Figure S2.1 Autophagy loss does not impact acute colitis or Paneth cells in 
sporadic CRC. A. Western blot of Atg5fl/fl  and VillinCre; Atg5fl/fl mice. B. Weights, C. 
colon length, and D.  inflammation score of Atg5fl/fl  and VillinCre; Atg5fl/fl mice following 7-
day DSS with 3 day recovery. E. Panel of cytokines and chemokines following DSS in 
Atg5fl/fl  and VillinCre; Atg5fl/fl. F. H&E staining of control versus DSS treated mice. G. 
Western blot of Tfebfl/fl and Vil-ERT2 mice. H. Weights, I. colon length, and J.  
inflammation score of Tfebfl/fl and Vil-ERT2; Tfebfl/fl  mice following 7-day DSS with 3 day 
recovery. K. Panel of cytokines and chemokines following DSS in Tfebfl/fl and Vil-ERT2. 
L. H&E staining of control versus DSS treated mice. M. qPCR analysis of Paneth cell 
markers in Cdx2-ERT2Cre;Apcfl/fl;Atg5fl/fl  following 6 weeks of tumor formation. N- 
normal tissue, T- tumor tissue. *p <0.05. Scale bar 200µm. Error bars represent SEM 
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Figure S2.2 ATG4B inhibition reduces CRC growth. A. Analysis of empty vector 
constructs for doxycycline inducible shRNA constructs treated with doxycycline for 6 
days. B. Image of mStrawberry expressing HCT116 ATG4BC74A expressing cells and 
MTT assay of HCT116 ATG4BC74A mutant. B. Representative image and quantification 
of clonogenic assay for ATG4BC74A HCT116 cells. Scale bar 200µm. ** p<0.01. Error 
bars represent SEM.  
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Figure S2.3 CRC cells are sensitive to pharmacological autophagy inhibition. A. 
MTT assay upon treatment with chloroquine in MC38, HT29, CT26, and RKO. B. MTT 
assay upon treatment with SBI-0206965 in HCT116 cells. C. MTT assay of HCT116 and 
SW480 cells treated for 3-days with chloroquine and measured for 3-days after removal 
of chloroquine. D. Western blot of LC3 expression in patient derived enteroids. * p<0.05, 
** p<0.01, **** p<0.0001. Error bars represent SEM.  
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Figure S2.4 Nutrient challenge of iron or glucose loss with autophagy inhibition 
does not slow cancer cell growth. A. MTT dose response of chloroquine treatment in 
SW480 and HCT116 cells. B. MTT in iron deplete media and rescue with iron. C. MTT 
in glucose free media and rescue with glucose. Error bars represent SEM.  
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Figure S2.5 ULK inhibition stunts CRC growth. A. MTT of SBI-0206965 (iULK) 

treatment with SerumHI. * p < 0.05. Error bars represent SEM.  
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Figure S2.6 Metabolite modulation under SerumHI and chloroquine does not 
rescue growth A. MTT assay of rescue with amino acids, riboflavin, and dimethyl 
succinate following treatment with SerumHI with chloroquine. Error bars represent SEM. 
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Figure S2.7 Mitophagy is necessary for CRC cell growth. A.  Western blot analysis 
of PRKN knockdown in HCT116. B. MTT analysis of HCT116 PRKN knockdown (EV 
not shown) C. MTT analysis of RKO PRKN knockdown (EV not shown). D. 
Quantification of clonogenics by blinded observers in doxycycline inducible shRNA for 
PRKN in HCT116, and E. representative image of clonogenic assay. * p< 0.05, **p 
<0.01. Error bars represent SEM 
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Chapter 3 

Single Cell Sequencing Reveals Epithelial Sub-Type Activation of Autophagy. 

Abstract 

The tumor environment is comprised of a heterogeneous mix of epithelium, fibroblasts, 

and immune cells that each contribute to tumor growth. Understanding cell specific 

signals in colon cancer will provide information to design targeted therapies for treatment. 

It is known in inflammatory bowel disease that Paneth cells are uniquely impacted by 

autophagy. While it is known that autophagy can modulate tumor growth, the cell type 

specificity of autophagy in colon cancer is not known. Bulk tissue RNA-sequencing can 

mechanistically be informative, but the cell types these transcriptional changes arise from 

are unclear. Here I utilize Seq-Well, a low-cost platform for single-cell transcriptome 

analysis to investigate the complex molecular role of autophagy in colon tumor cells. 

Single-cell RNA sequencing of a sporadic tumor model harboring Apc, p53, and KrasG12D 

mutations uncovered an epithelial sub-type specificity of autophagy. Specifically, 

enterocytes express elevated levels of autophagy activating genes compared to goblet 

and enteroendocrine cells. This work reveals cell type specificity of autophagy activation 

in colon tumor development. Extensive work to investigate cell type changes in autophagy 

during tumor progression will guide the development of therapies that target specific cell 

types to better treat patients with cancer.  
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Introduction 

RNA-sequencing is a powerful technique allowing for the full transcriptomic 

analysis of tissue or cell samples. The Cancer Genome Atlas (TCGA) is a collaborative 

cancer program between the National Cancer Institute and the National Human Genome 

Research Institute. Over the past decade, TCGA has gathered genomic, transcriptomic, 

and protein data that provides clinicians and researchers with tools to better study and 

treat cancer.  Next-generation sequencing methods are also used to determine gene 

signatures and mutation burden that confer with  growth, progression, and metastasis [1, 

2]. Next-generation sequencing used in these publicly available databases typically 

involves sequencing patient biopsies. The tissue includes a combination of epithelial cells, 

fibroblasts, tumor associated immune cells, and tumor stroma. Bulk sequencing 

techniques have uncovered inflammatory signatures that are utilized to identify immune 

changes in tumors [3-6]. Over the past decade, there has been an emergence of the 

importance of tumor cell heterogeneity and stromal contribution to tumor growth [7]. 

Recent literature in colon cancer underscores the importance of cross-talk between tumor 

cells and tumor infiltrating immune cells [8]. Unfortunately, bulk transcriptomics do not 

provide researchers with the tools to understand the impact of immune cell populations 

or different epithelial cells in the colon. The rapid development of single-cell resolution 

techniques affords researchers the ability to evaluate cell type specific changes.   

Methods for capture of single-cell whole-transcriptome (scRNA-seq) data began 

to appear about a decade ago [9]. Single cell sequencing methods have developed to 

investigate genomic, and transcriptomic changes. For transcriptomic analysis, methods 

typically involve isolation of a single cell into a chamber in which reverse transcription and 
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whole transcriptome amplification are carried out. Below is a review of the most commonly 

available methods, Drop-Seq, 10x Genomics Chromium System, and Seq-Well for single-

cell RNA-sequencing.  One of the earliest available methods was the Fluidigm C1 system 

which was previously widely used. Unfortunately, the small cell number output limits this 

technique as new approaches have become available.  

Drop-Seq 

Single-cell sequencing became more available to general users after introduction 

of the Drop-seq system developed by the McCarroll lab in 2015 [10]. Cells are passed 

through a “co-flow” microfluidic device that combines the flow of an oil channel with two 

aqueous solutions to generate nanoliter-sized droplets.  One of the aqueous solutions 

has a microscopic nucleotide coated bead. The beads are generated using split-pool oligo 

methods. Synthesis occurs from 5’ to 3’ where the 3’ end is available for binding of mRNA. 

Each bead contains four regions, (1) an identical sequence on each bead that is used for 

primer binding that is important during the PCR step that will be described later. (2) A 

unique “cell barcode”, (3) a unique molecular identifier (UMI) that is used to differentiate 

duplicate sequences from the PCR step, and (4) an identical region that is used to capture 

polyadenylated mRNA [10]. Barcoding allows the user to identify which reads come from 

an individual cell and following amplification, the original number of transcripts. The 

microfluidic system combines a bead, cell, and lysis solution. Once the cells are lysed, 

the droplets are broken and subjected to reverse transcription. Beads that contain cDNA 

are referred to as STAMPS (single-cell transcriptomes attached to microparticles).  Once 

cDNA is generated, sequencing can be performed. For this method, paired-end 
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sequencing is required to capture the barcode information and transcript information. It is 

estimated that the cost for constructing the system to perform Drop-Seq in the lab is 

around $6,000. One of the major pitfalls to this system is the high cell input number due 

to a capture rate of around 12%. The fluidics system creates a high number of droplets 

containing only a cell or only a bead requiring large input amounts, an approach that is 

not optimal for small or precious samples.  This method is great for individual labs as the 

materials are obtainable but the complex fluidics may cause difficulty in use.  

10x genomics  

The most recent fluidics method available is the 10x Genomics Chromium System 

[11]. The Chromium System works in a similar method to Drop-Seq wherein a single cell 

is captured in what is termed a gel bead in emulsion (GEM). This setup contains a bead 

and a cell in a droplet that contains the reverse transcription reagents in the solution. The 

bead is similarly coated in oligo sequences containing an identical primer sequence. A 

unique cell barcode, and a UMI followed by a poly (dT) region. Similar to Drop-Seq, the 

cells are passed through a microfluidics system and then matched with a bead and placed 

in oil that partitions them into individual cell, bead droplets. Cell capture efficiency is 

significantly improved and ranges around 50%. Unfortunately, the 10x Chromium System 

requires the purchase of the controller system which was introduced at $50,000. This 

limits the use to certain users. In addition to instrumentation, a single sample can range 

around $6,000 dollars making it double the cost of Drop-Seq. A benefit to this approach 

is the time from cell isolation to lysis. Immediately after capture in the GEM cell lysis 

begins. One chip of the 10x system can hold 8 samples, each with a maximum target of 
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10,000 cells per sample. Cost to run the system will vary depending on the institution, at 

the University of Michigan, the cost is approximately $1,800 before sequencing.   

Seq-Well  

One of the major pitfalls to utilizing fluid-based techniques is the high cell number 

required for input in to the system, as well as the requirement to pass potentially sensitive 

cells through a fluidics system. To address these issues, the Seq-well system was 

designed by the Shalek lab at MIT [12]. This system utilizes a micro-well based technique. 

Cells are plated on an array that contains about 86,000 sub-nanoliter wells.  Only 10,000 

cells are needed to load the array. Arrays are loaded via slowly pipetting cell solution over 

the arrays, therefore there is no need for a fluidic system. Cells via gravity fall in to the 

wells that also contain beads as described in the section above. Once cells are collected, 

the array is sealed with a polycarbonate membrane. This membrane is unique in that it 

allows for the diffusion of fluids for lysis and hybridization but traps RNA in the well. When 

the membrane is attached, cells are lysed on the array followed by a hybridization of the 

RNA to the beads. A particular benefit to this method is the availability to gain protein 

information in parallel with sequencing data. Before cells are loaded on to the array, 

proteins may be labelled with conjugated antibodies. Then, the array can be imaged and 

quantified for protein level changes and can be compared to the transcriptomic data. The 

beads are manually removed from the array and are put through a reverse transcription. 

Following reverse transcription, a single stranded DNA digestion is performed. A whole 

genome amplification is done and the sample is removed from the micro-beads and 

submitted for RNA sequencing. A second advantage to this system is the flexibility of use. 
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While functionalizing arrays requires some special equipment, arrays can be shipped to 

any location and the protocol then only requires the arrays, membranes, pipettes, and 

reagents. This is in comparison to the other systems described here which require 

specialized equipment to run.  

The above methods each have unique benefits and pitfalls. When selecting a 

method, the cost, cell type, and efficiency that is desired can go in to choosing a system. 

Another key aspect is the data output from each platform. The number of transcripts and 

genes captured from each cell is essential in gathering enough information to determine 

differences between cell types. Each of these platforms are generally comparable for 

gene and transcript output. The general workflow of each assay is comparable with main 

differences occurring at the cell capture step and whether each step is automated or 

manually completed (Figure 3.1). The output and cost of each platform is outlined in  

Table 3.1.   

When preparing samples for scRNA-seq it is important to consider how isolation 

methods and origin of tissue may impact cell signature. Immediately after excising tissue, 

transcriptional changes and degradation of RNA molecules occurs. Attention to how 

tissues are collected, dissociated, enriched, and processed for single cell capture is 

essential in reducing technical variation [13]. Following generation of a single cell dataset, 

analysis is a significant feature in identifying single-cell variance.   

Analysis of scRNA-seq   
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One of the largest challenges to performing single-cell RNA analysis is parsing the 

data to understand the relationship between cell types and function. With the 

development of better techniques for generating data sets, bioinformaticians are creating 

new ways to perform analysis to visualize data from thousands of cells. Tools are 

available to detect changes between healthy and disease states and predict cell fate 

during development [14]. As of March 2019, around 385 tools for scRNA-seq analysis 

exist [15]. The challenge surrounding single cell analysis is the availability of different 

platforms and standardization of best practices. Below I discuss general processing steps 

involved in the pre-processing of raw reads, data analysis, and general considerations for 

scRNA-seq analysis.  

Sequencing: To appropriately capture sequence from methods such as Drop-Seq 

and Seq-Well, paired-end sequencing must be performed. Read1 can be completed with 

a 26- base pair (bp) read. This 26bp read captures the UMI and cell barcode. A 50bp 

Read2 on the 3’ end captures enough bp’s that can be used to determine the transcript. 

It is important when sequencing to ensure that the average size of the products is greater 

than 420bp. This requirement prevents the potential reading of poly-A tail reads that 

would occur if sequences were shorter. While this sequencing depth was used for this 

dissertation, deeper sequencing can be performed to gather more information from 

individual samples.  

Pre-processing: When sequencing with barcoded beads the reads are first 

organized by their UMI and cellular barcodes. Sequences are then filtered to remove any 

cell or molecular barcodes that are below a base quality threshold. This will prevent 
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matching any reads with the incorrect cell. SMART adapter sequences are trimmed that 

may be present at the 5’ end of the read so they are not present during sequence 

alignment to the genome of interest. While library preparation enriches for sequences 

with longer length, it is possible to obtain sequences with poly-A reads. Any reads with 

more than 6 sequential adenine bases are removed. The library is then aligned to the 

genome and annotated. Any reads that overlap with an exon are tagged and exported for 

analysis.   

Data Analysis: Once the sequences are organized by cell and aligned to the 

genome, an initial quality check is performed. The quality check includes observing the 

number of genes per cell, number of transcripts per cell and mitochondrial genes [16]. 

Cells with high mitochondrial reads or low gene count can be filtered out. High 

mitochondrial reads may indicate that cellular mRNA has leaked out of a damaged 

membrane leaving behind only mtRNA. Cells high in gene counts may be indicative of 

doublets where two cells were captured on one bead. It is important to consider that some 

cell types may be highly proliferative or quiescent which will impact their counts. 

Downstream analysis can be variable based on the user approach and dataset. Analysis 

typically outputs cells in to clusters which groups cells based on the similarity of their gene 

expression. Differential expression between a group of cells and all of the remaining cells 

in the dataset can be used to determine the gene differences in the cluster of interest. 

Cell clustering will vary based on parameters set during analysis [17]. The tool used in 

this dissertation for analysis is Seurat, developed by the Satija lab at MIT [18]. Using 

Seurat, the resolution of clusters can be modified to define more or less clusters. This 

number will vary based on the small versus broad changes that researchers want to 
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determine in a dataset. With the rise of single-cell sequencing reference databases are 

being generated so that clusters can be annotated using a reference data set rather than 

de novo and determined by known markers [19]. However, due to experimental 

differences, using gene expression from the data is always an important approach. In 

order to reduce technical noise, spike-ins of RNA can be measured and analyzed to 

compensate for variation [20]. Considerations must be made when analyzing changes in 

cell types in differentiation or dynamic models. One approach is using the trajectory 

inference method. This process takes a snap-shot of data and interprets it as a path or 

trajectory [21].  An example of this application is determining the trajectory of sperm 

differentiation [22]. Analysis may also compare changes between treatment groups or 

disease states.  With the emergence of new approaches of analysis there are unique and 

beneficial ways to analyze data. A review of some of these computational approaches 

and methods can be found here [23].  

Single cell analysis in the colon  

The colon is comprised of multiple cell types that play important roles in tissue 

homeostasis. The colon is a highly proliferative organ that constantly regenerates. Stem 

cells are the driving factor that supports this high tissue turnover. Colonic stem cells 

located in the base of the crypts are typically identified by Leucine-rich repeat-containing 

G-protein coupled receptor 5 (LGR5) positivity [24]. They differentiate to generate 

enteroendocrine, enterocytes, goblet cells, and the other diverse cell types of the colon 

that are discussed below.  
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Enteroendocrine  

These cells control enzyme secretion, secrete peptides, and can control appetite. 

Subclasses of enteroendocrine cells exist based on their secretory products [25]. They 

function in chemosensing and nutrient sensing in the gut and can help to provide signals 

to the brain [25, 26]. Based on the diversity of sub-types of enteroendocrine cells, they 

can be identified by a wide range of markers with a main marker being claudin-4 [27, 28].  

Goblet Cell  

Goblet cells are the primary mucin forming cell of the colon. The secretion of 

mucins provides a protective barrier from the gut associated microbiota. These cells are 

marked by intestinal trefoil factor 3 (TFF3) [29]. Subtypes of mucinous cells exist that add 

complexity to the cell type [30].  

Enterocytes 

Enterocytes are a primary absorptive cell in the colon. Enterocytes are involved in 

processing antigens to present to the immune system. One of the major mechanisms to 

perform this function is through lysosomal degradation [31]. Enterocytes also play a role 

in nutrient and water absorption.   

Differences in the cell types discussed above were examined in the small intestine 

using single cell sequencing [32]. These different cell types can be identified with single 

cell sequencing by known markers. Cells were grouped by Slc12a2, Arg2, TFF3 and 

Defa24 [32]. This study was performed in the small intestine and while the cell types are 
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similar in the large intestine it is important to consider that expression signatures may 

change. 

Little work has been done to assess the transcriptome differences between colonic 

cell types, particularly in colon cancer. Sequencing of 34 colorectal cancer cell lines 

revealed differences in DNA copy number, mRNA, miRNA, and protein analysis between 

different patients [33]. The study provides information about a model system to study 

colon cancer. This system is useful in that you get a gene signature specific to epithelial 

cells. The caveat to this approach is that surrounding supportive cells including fibroblasts 

and immune cells are lost with line establishment. Studies have revealed the 

transcriptional changes between patient derived tissue and their matched cell lines [34]. 

It is important to note that over time, when serial passages are done on cell lines that the 

transcriptional landscape continues to change [34].  

Understanding tumor cell of origin may help researchers to identify potential 

targets to treat colon cancer. In one study of two patient derived samples, normal and 

colon tissue from non-hereditary colon cancer was examined with bulk and single-cell 

whole exome sequencing. Analysis revealed sub-clonal populations with somatic 

mutations [35]. These observations were not available in bulk samples which may hide 

potential hits due to the multiplicity of cell types in the sample. It is important to know that 

these mutational calls were made on 25 single cells. Due to the heterogeneity of the colon, 

certain cell populations may be missed with this small sample pool.  

As highlighted in Chapter 1, understanding the function of autophagy in different 

cell types can provide novel insight on the impact of autophagy in CRC. With bulk 
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sequencing, parsing out signals of autophagy is near to impossible. The single cell 

approach will allow researchers to understand the immune versus epithelial changes in 

autophagy as well as changes between different types of colon cancer cells. Here I utilize 

a sporadic model of colorectal cancer to explore changes in autophagy between colonic 

cell types. Colon cancer patients typically harbor mutations in APC, p53, and KRAS. I 

obtained a triple mutant mouse model that is colon specific (Cdx2-CreERT2; Apcfl/fl; 

Tp53fl/fl;KrasG12D) herein the ‘TripleMut’ to investigate sporadic colon cancer changes. 

When mutations are induced in this model there is a high level of dysplasia present and 

mice typically die within 10 days due to severe dehydration. The dysplasia causes a high 

influx of immune cells and hyper-proliferation of epithelial cells. I chose to utilize this 

model to investigate changes in the autophagy signature in different colonic cell types 

under this high mutational load that more closely recapitulates human mutational burden.  
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Results 

TripleMut mice were induced with tamoxifen at 100mg/kg for 3-days. Due to the 

highly proliferative nature of this model the ratio of epithelial to immune cells would mask 

any immune cell populations and make it difficult to detect them via single-cell 

sequencing. I optimized a protocol to enrich for immune cells. I optimized enrichment of 

immune cells and validated using flow cytometry that I could extract viable, CD45+ 

immune cells (Figure 3.2). Isolated tissue was subjected to single-cell sequencing using 

the Seq-Well platform (Figure 3.3) [12].  

Single cell sequencing revealed both immune and epithelial subtypes (Figure 3.4). 

Populations identified include fibroblasts, enteroendocrine, enterocytes, goblet cells, B-

cells, macrophages, and red blood cells. When the cluster of absorptive cells was 

compared to the enteroendocrine cell types, an increased expression of Itgb4, Itga6, 

Hsp90ab1, Myc was observed (Figure 3.5). Increases in these autophagy genes 

correlate with activated autophagy [36-38]. Similarly, there is a decrease in expression of 

SQSTM1 which correlated with increased autophagy [39]. When comparing absorptive 

cells to goblet cells, there is a decrease in Birc5 suggesting an autophagy increase [40, 

41].                                                                                                                                          

 When compared to bulk RNA-seq from proximal colon of TripleMut mice compared 

to controls, there is no difference observed in these autophagy markers (Figure 3.5). This 

highlights the observed changes that can be found with single cell sequencing that cannot 

be detected with bulk sequencing. However, changes in SQSTM1 can be found 
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compared to control suggesting an overall upregulation of autophagy in highly dysplastic 

mice bearing these mutations.  
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Discussion 

Here I have begun the first investigation to understand the cell type specific 

modulations of autophagy in colon cancer. The TripleMut mice closely model the 

mutational burden seen in human CRC compared to models such as the 

Azoxymethane/Dextran Sulfate Sodium inflammation model. I wanted to investigate both 

immune and epithelial populations in the colon. Due to the highly proliferative nature of 

the TripleMut model, I performed an enrichment for immune cells. This protocol is a 

mixture of of mechanical dissociation, enzymatic digestion, and enrichment via 

centrifugation occur. While I have worked to optimize the shortest method possible, the 

isolation takes approximately 3 hours. This timing and cell stress of dissociation can have 

an impact on the gene signatures observed. For example, while Hsp90ab1 was 

significantly increased in the enterocyte population compared to the enteroendocrine cells 

it was highly expressed in all cell types. This is possibly due to an increase in cell stress 

[42].            

 Unfortunately for this study I did not account for the high amount of red blood cells 

that are present in the sample. The large population present may be due to the high ratio 

of these cells in the sample. Therefore, I further optimized the protocol to include a red 

blood cell lysis step which will enrich further for the cell type of interest. Removal may 

also increase capture of other immune cell types to add diversity and numbers to the 

comparisons. Additionally, the disadvantage to a well system based on gravity is 

differences in cell size. When loading the cells, the standard protocol is to wait 

approximately 10 minutes for cells to fall in to a well. For smaller cells this may take a 

longer period. Optimizing the protocol with this in mind is important for future experiments. 
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The lack of ability to call certain populations may be contributed to the differentiation 

process of cells in the colon. Intermediate cell types include oligomucous cells that 

differentiate to goblet cells, low granule enteroendocrine cells, and midcrypt columnar 

cells that differentiate in to villus columnar cells [43]. Performing analysis with a higher 

resolution may allow for the separation of more clusters that could define these 

intermediate populations. However, it would be best to perform the analysis with a larger 

cell pool to ensure positive identification in smaller populations. For example, analysis of 

a mouse dataset with over 90,000 cells could identify rare populations in 132 cell clusters 

[18].            

 The importance of being able to call intermediate populations is emphasized by 

the development of the Human Cell Atlas which aims to catalog the genomic and 

phenotypic landscape of every cell type in the body. The consortium hopes to define how 

these cells change under developmental and diseased states. Due to the sensitivity of 

identifying each cell type and during different stages of age and health it is important to 

utilize a method that reduces technical variability. Due to the automated and hands-off 

function of the 10x system it has been used to begin generating libraries for the Human 

Cell Atlas. Because multiple users will contribute to the database around the world, a 

highly functionalized system is useful. The pitfalls for Seq-Well and Drop-Seq are the user 

error that can be input.          

 The TripleMut model used here is a valuable tool for future research. For this 

particular experiment mice were induced at a high dose of tamoxifen and euthanized 

almost 10 days after. Mice die at this time point due to hyper-proliferation of the colon. 

This hyper-proliferative phenotype may impact the gene signature discussed here and 
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may not accurately model what is observed in CRC patients. I have identified a low dose 

of tamoxifen (single dose 25mg/kg) that allows mice to survive past 6-weeks and develop 

individual tumors rather than a highly dysplastic colon. In mice that have been induced 

with a low dose of tamoxifen, tumors can be collected at early, middle, and late stages of 

tumor development and single-cell changes can be observed within different cell types. 

An important comparison is also the progressive accumulation of mutations within the 

colon. The TripleMut mice should be simultaneously compared to mice with Apc only, or 

Apc;p53 mutations to better understand how mutation load impacts development. While 

here I have primarily focused on autophagy there is a breadth of information that can be 

acquired from databases generated in these studies. Overall changes in immune markers 

can be investigated to better understand single-cell changes and mice can be challenged 

with different therapeutics to monitor response.  Autophagy models such as the Apcfl/fl 

;Atg5fl/fl model can be used to investigate how loss of autophagy impacts tumor epithelial 

cells.             

 To fully utilize scRNA-seq it is important to know the capabilities of the technique  

when approaching a new question. In cases where researchers may wish to identify new 

areas of focus or ask broad questions, performing a single round of 10x sequencing may 

be beneficial. Typically, a trained technician will be able to process the samples allowing 

for limited troubleshooting and ease of use. However, if a project is aimed at 

understanding timing or spatial changes in a disease or healthy state that simultaneously 

requires multiple samples, a platform where multiple samples can be run in parallel such 

as Seq-Well is more efficacious. Similarly, for the generation of larger datasets, platforms 

such as Drop-Seq and Seq-Well are more desirable due to reduced cost. The available 
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access to a 10x Chromium system, the fluidics for Drop-Seq, or reagents for Seq-Well 

will also impact the choice of platform.         

 Single-cell transcriptomics is a powerful tool that provides insight on a cell by cell 

basis that is not detectible through other methods. Limited information is available for 

scRNA-seq in healthy colon and in diseased states such as CRC. This work only begins 

to uncover differences between colonic cell types in tumor development. Single-cell 

sequencing of different models throughout tumor development will provide insight on 

changes in autophagy. In the future, single-cell sequencing should also be applied to 

patient samples to uncover information not detected in currently available models. Single 

cell resolution will provide in-depth information that can be used in research to improve 

our understanding of CRC biology.  
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Methods  

Mice: Mice were housed in standard housing conditions and fed ad libitum. Both male 

and female mice were used. Cdx2-CreERT2 Apcflox p53flox KrasG12D TripleMut mice were 

injected with three doses of 100mg/kg of tamoxifen. Nine days following the first injection, 

mice were euthanized using CO2. Colons are removed and washed in phosphate buffered 

saline.  

Tissue Isolation: Tissue is cut in to 1cm pieces and shook at 150 rotations per minute at 

37ºC in 10mM EDTA. Following incubation, tissues are vortexed to release epithelial cells. 

The tissue is then minced in to 1mm pieces and placed in a collagenase solution 

(0.5mg/mL Collagenase type IV in RPMI) and shook at 250rpm at 37C. Tissues are then 

vortexed and collected for further isolation. The cell pellet is passed through a 100µM 

filter to remove large debris and then mixed in 40% percoll and laid over 70% percoll. The 

cells are spun and the middle, immune cell enriched layer is collected. Cells are then 

passed through a 40µM filter and are ready for array loading.  

Flow Cytometry: Cells were isolated as described above. Cells were stained using CD45 

Alexa Fluor 780, 1:200 (eBioscience), and CalceinAM (1:200). Analysis was performed 

on the MoFlo Astrios (Beckman Coulter). 

RNA isolation and qPCR analysis: RNA was isolated using TRIzol chloroform extraction. 

RNA was reverse transcribed using MMLV reverse transcriptase (ThermoFisher). qPCR 

analysis was done using the listed primers (Table 3.2) and Radiant Green qPCR master 

mix (Alkali Scientific Inc.).  
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Array Functionalization: Arrays are functionalized in the following fashion. First, 

Polydimethylsiloxane is poured in to the array mold containing glass slides. Following 

heating at 70C for 2-hours arrays are removed. To functionalize the arrays for use they 

are first plasma cleaned to remove any organic matter from the surface of the array and 

add hydroxyl groups to the surface. Then they are dried and submerged in acetone to 

reduce the surface tension of the array to allow the micro-wells to fill. Arrays are then 

soaked in (3-Aminopropyl) triethoxysilane for silanization which will add amines to the 

hydroxyls. Arrays are then incubated in a mixture of dimethylformamide which acts as a 

solvent with pyridine and p-phenylene diisothiocyanate (PDITC). Because the PDITC 

solution is hydrophobic the next incubation with a chitosan solution prevents the chitosan 

from entering the microwells. Then only the surface of the array is coated. Following 

incubation in a vacuum, arrays are then quenched with an L-aspartic acid, NaCl, and 

Sodium Carbonate solution. This mixture coats the wells to prevent binding of mRNA’s to 

the surface of the array. However, the chitosan coating allows for sealing and unsealing 

of the the polycarbonate membrane has a 10nm pore size which allows for the flow of 

buffers but not RNA transcript.  

Single-cell Library Preparation: Single cell libraries were prepared following the published 

Seq-Well protocol [12]. In summary, 10,000 cells are loaded on to an array and sealed 

with a functionalized polycarbonate membrane. Cells are subjected to lysis and 

hybridization. STAMPS are removed from the array and put through reverse transcription 

overnight. The sample was then put through exonuclease digestion, second strand 
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synthesis, and whole transcriptome amplification. Samples were then tagmented using 

the Illumina NexteraXT kit. 

Sequencing: Samples were sequenced on the Illumina Next-Seq 500 with 26bp Read1 

and 50bp Read 2. Raw data was processed using Picard (Broad Institute, MIT)[44]. Cell 

and molecular barcodes were sorted and any sequences with a phred score of less than 

10 are removed. Any potential extra adapter sequence is removed. PolyA sequences are 

trimmed based on any sequence with more than 6 sequential A sequences. The data set 

was then aligned to the GRCm38 (mm10) genome. After tagging the reads for digital gene 

expression analysis the sample was analyzed using Seurat [45]. First, any genes with an 

average expression less than 5 are removed from analysis. Any cells with less than 150 

genes were filtered out, any cells with higher than 30 percent mitochondrial reads were 

filtered. The sample is then normalized using global-scaling normalization. Then the data 

goes through linear transformation to scale the dataset. Principal component analysis is 

then performed. The elbow method was used to determine significance of PC’s and the 

first 15 PC’s were used in analysis. Clusters are then determined with a resolution of 0.5 

and visualized using t-SNE. Cluster identity was determined by known population 

markers. These include but are not limited to the following. RBC’s (Hbb-bt, Hbb-bs, Hba-

a1), B-cells (Immunoglobulin genes and Mzb1), Monocyte (Macrophages); (Lyz2, Cxcl2, 

Il1β),  Enterocytes (Clca4, Cdh17, Hnf, reduced Tff3), Enteroendocrine (multiple protease 

genes, Reg4,), Goblet (Tff3), Fibroblasts (col3a1, col1a2, col1a1, col14a1, col5a1). Two 

populations were too small to distinguish a cell type and one epithelial population did not 

have enough distinct features to categorize.  
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Table 3.1 Comparison of popular scRNA-seq platforms. Values for capture 

efficiency, doublet rate, genes/cell, and transcripts/cell are based off of data 

reported by individual platforms. Cost may vary based on sequencing costs and 

number of cells sequenced.  

Drop-Seq 

10x 

Genomics;Chromium 

System 

Seq-Well

Capture Efficiency 
12.80% 50% 80%

Cost 
~$0.26 ~$0.60 ~$0.13

Doublet Rate 
0.36%-11% ~9% 1.8-11%

Genes/cell
~6,700 ~4,500 ~6,100

Transcripts/cell 
~44,000 ~27,000 ~32,000
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Figure 3.1 Workflow of single-cell sequencing platforms. Overview of automated and 
manual steps of single-cell platforms. RT; reverse transcription. WTA; whole 
transcriptome amplification.  
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Figure 3.2 Validation of viable isolated CD45+ immune cells.  Flow 

cytometry validation of Calcein+/CD45+ immune cells from colon of TripleMut 

mice.  
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Figure 3.3 Functionalized and loaded Seq-Well array. Image of array mold and 

microscopic view of loaded seq-well array. Image of individual well containing 

larger barcoded bead and smaller cell.   
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Figure 3.4 Identification of colon cell types with scRNA-seq. t-SNE plot 

of single cells from TripleMut mice after immune cell enrichment.  
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Abs Ent Abs Ent Abs Ent Abs Ent 

Abs Goblet 

Figure 3.5 Enterocytes upregulate autophagy in CRC. Expression level 

comparison of significantly different autophagy associated genes between 

absorptive (Abs) and enteroendocrine (Ent) cells and Abs and Goblet cells.  
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Figure 3.6. Autophagy differences are undetectable via bulk RNA 

analysis when compared to normal tissue.  qPCR of autophagy 

genes from bulk colon tissue in TripleMut mice. ** p<0.01. Error bars 

represent SEM 
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Table 3.2 qPCR primers  

Gene Primer 

BIRC5 Fw  GAACCCGATGACAACCCGAT 

BIRC5 Rv  TGGCTCTCTGTCTGTCCAGT 

HSP90AB1 Fw  ATGATCGGGCAGTTTGGTGT 

HSP90AB1 Rv  CACCACTTCCTTGACCCTCC 

ITGa6B Fw  ACCTCAATGCAGATGGGTGG 

ITGA6B Rv  TAAACTGCACCCCCGACTTC 

SQSTM1 Fw  TCTGGGGTAGTGGGTGTCAG 

SQSTM1 Rv  AGAATGTGGGGGAGAGTGTG 
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Chapter 4 

 

Conclusions 

The tumor microenvironment is a highly complex and heterogeneous mix of cell 

types with pro- and anti-tumor signals. Tumors are comprised of tumor cells, tumor 

associated fibroblasts, immune cells, and extracellular signals from blood supply and 

oxygen availability. A major factor that determines tumor growth is the availability of 

extracellular and intracellular nutrients. In addition to cellular metabolic re-programming 

tumor cells utilize a number of mechanisms to maintain a nutrient pool for proliferation [1-

4]. It is well known in cancer that autophagy can impact not only growth, but resistance 

to drugs, and ability to metastasize [5]. Unfortunately, conflicting literature suggests pro- 

and anti-tumor roles of autophagy in colon cancer [6-9]. 

 This dissertation outlines a novel cell-autonomous role for autophagy in nutrient 

acquisition to promote tumor growth. I have shown that colon cancer cells rely on 

autophagy and specifically employ mitophagy for proliferation. In both sporadic and colitis 

associated cancer models, autophagy loss significantly reduces tumor growth. The 

reduction is not due to microenvironmental factors, rather an intrinsic reliance on 

autophagy. In the overall context of studying autophagy in tumor development, my work 

highlights the significance of understanding internal cellular cues for growth. I discuss 

these findings in the context of available literature to underscore the importance of 
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considering tumor stage and mutational load when studying the impact of autophagy on 

growth or response to therapy.   

Cell-autonomous role of autophagy  

Chapter 1 outlines the conflicting data in the field in which autophagy performs 

both tumor promoting and tumor suppressive roles. Signaling in the tumor environment 

provides non-autonomous cues for tumor progression. Non-cell autonomous cross-talk 

from modulating epithelial autophagy is known to impact the microbiome and immune 

system to modify tumor growth in CRC [10]. Moreover, in pancreatic cancer, cells signal 

to pancreatic stellate cells to induce autophagy to release alanine into the extracellular 

space that can be taken up by cancer cells for growth [4]. However, there is little evidence 

of the cell-autonomous roles of autophagy in colon cancer. I first assessed how loss of 

autophagy through Atg5 deletion decreased tumor number, size, and proliferation in 

sporadic (Cdx2-ERT2Cre;Apcfl/fl;Atg5fl/fl) and colitis (AOM/DSS) associated cancer. The 

sporadic and colitis models do not show changes in immune markers or immune cell 

infiltration. This is possibly due to housing differences and standardizing the microbiome. 

Interestingly, when autophagy was inhibited after tumor development in Vil-ERT2;Atg5fl/fl 

mice, tumor burden was not significantly different with loss of Atg5. These findings 

suggest that autophagy may be important in early tumorigenesis but this observation 

should be studied in more depth (Figure 4.1A&B). Available literature identifies the 

importance of autophagy in preventing tumor development [11]. For example, autophagy 

may prevent DNA damage and tumor initiation [12]. Differences in the stage of tumor 

development may explain discrepancies between studies in CRC. Future work must place 
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an emphasis on understanding the impact of autophagy at different stages in tumor 

development.  

I sought to uncover what cell-autonomous mechanisms inhibited tumor growth. 

Both monolayer and 3D cell culture methods showed a sensitivity to both genetic and 

pharmacological inhibition to autophagy suggesting a reliance on autophagy for survival. 

One study found that HCT116 and SW480 cells do not respond to autophagy inhibition 

similarly in vivo. Contrasting responses may suggest extracellular cues that impact 

autophagy. While this is a possibility, the limitation to this study is the use of the 

chorioallantoic membrane assay to assess growth which may impact cell growth due to 

species cross-reactivity [13].  Overall, cancer derived cell lines and patient-derived 

organoid models in this study showed a cell-autonomous dependency on autophagy, but 

the mechanism remained unknown.   

Available literature on autophagy suggests that the process is utilized for nutrient 

acquisition under stress. However, little is known on exactly what nutrients are targeted 

or used by autophagy in colon cancer. To address this question, I screened cell growth 

in limiting nutrient growth conditions and found that loss of heat labile proteins in 

combination with autophagy inhibition reduced growth. To assess what nutrients were 

dependent on autophagy, I performed metabolomic analysis. The most strongly impacted 

pathway was a decrease in metabolites associated with the TCA cycle. Further work is 

necessary to clearly identify the autophagic dependent nutrients essential to promote cell 

proliferation either individually or in combination. Moreover, analysis of the top hits 

showed a significant decrease in cysteine and methionine metabolism under SerumHI. 

Cysteine is a well-known amino acid that can be oxidized by reactive oxygen species 
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(ROS) [14]. A potential cause of the observed growth inhibition could be due to increased 

ROS due to a reduction in cysteine. I did investigate whether supplementation with N-

acetyl-cysteine, a precursor to cysteine, could rescue growth inhibition. Treating cells with 

N-acetyl-cysteine did not rescue cell growth (data not shown). Similar to cysteine, 

methionine can affect redox reactions and is also known to impact nucleotide metabolism 

in cancer [15].  Because of the high nutrient demand in cancer cells, the requirement of 

several metabolites may be necessary to rescue growth.   

An important limitation to consider when assessing these studies is that the tumor 

microenvironment and the nutrients available are significantly different than that in cell 

culture conditions. For example, cancer cells consume different amounts of glutamine 

based on their in vitro versus in vivo culture [16]. In lung cancer, environmental cysteine 

impacts cells reliance on glutamine and this difference is observed in culture versus in 

the tumor [16]. New tools to eliminate artifacts from cell culture media such as more 

physiological relevant media are being generated to allow for more accurate assessment 

of colon cancer response to available nutrients [17].   

It is important to confirm the cell-autonomous role of autophagy in nutrient 

acquisition in in vivo models. Dietary nutrients contribute to the development of colon 

cancer and have been used as supplement to therapeutic treatments. Diet and nutrient 

interaction in colon tumors is an active area of research. Intermittent fasting and caloric 

restriction can impact tumor growth and progression [18, 19]. Iron is known to increase 

risk of colon cancer [20]. A high fat diet increases the risk of colon cancer development 

[21-23]. Additionally, increase in dietary glucose and fructose also increase risk for colon 

cancer [24, 25]. It is possible that an overabundance of nutrients allows colon cancer cells 
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to bypass the need for autophagy. Under stress and changes in the tumor 

microenvironment, cells upregulate autophagy to acquire nutrients. 

Since nutrient restriction is found to impact tumor growth, I assessed if nutrient 

restriction, in combination with autophagy loss, could synergistically reduce tumor growth. 

To investigate the role of nutrient limitation in combination with autophagy loss I used 

xenograft models where mice were placed on caloric restriction for a week. The mice 

were injected with MC38 mouse adenocarcinoma cell line, 10 days later, injected once 

daily with chloroquine. Mice on 25% caloric restriction with chloroquine did not show a 

significant reduction in tumor growth (Figure 4.2A&B). In many of the previous models 

investigating caloric restriction and tumor growth, mice were calorie restricted significantly 

longer than the present study. Many of the tumors in the present study developed 

ulcerations leading to the shortened timeline. Tumor size did decrease in the caloric 

restriction/autophagy cohort so it is possible that with longer treatment I may observe a 

more robust phenotype. In a second model, the TripleMut mice showed no difference 

after two weeks of chloroquine treatment (Figure 4.3A-D). Dysplastic foci were not 

changed after chloroquine treatment. However, due to the highly proliferative nature at 

two weeks following induction in the TripleMut mice it may be more advantageous to 

perform these experiments following a low dose of tamoxifen.  Similarly, low dose 

tamoxifen should be done in combination with longer treatment of chloroquine. However, 

in order to observe autophagy loss on developed tumors, treatment should be started at 

a timepoint after tumors have developed.  

I have shown a reliance on autophagy and susceptibility to growth inhibition with loss of 

nutrients in SerumHI. It is still unclear how the cell senses this nutrient limitation and 
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signals for autophagy, or mitophagy to be upregulated. A main contributor to nutrient 

sensing in the cell is molecular target of rapamycin (mTOR) [26]. Nutrient signals from 

glucose and amino acids can activate or inhibit mTOR [27]. Autophagy and mTOR have 

a dynamic relationship in which the activity of one impacts the other [28]. The nutrients 

sensed through mTOR may regulate autophagy activation or manipulation of the 

mechanisms between these two pathways may alter normal cell homeostasis [29]. 

Investigation of the cross talk between these pathways may shed light on the mechanisms 

activating autophagy. mTOR regulation should be assessed under different nutrient 

stresses such as SerumHI. When amino acids are abundant, mTOR is activated on the 

lysosomal surface. Loss of available amino acids will inhibit its activation. The acquisition 

of mitochondrial metabolites through mitophagy does impact cell growth as discussed in 

Chapter 2. However, there was an overall increase in peptides present in the lysosome 

under nutrient stress. It is possible that reduced growth is partially attributed to overall 

reduced nutrients and inhibition of mTOR. Another caveat to consider with chloroquine 

treatment is that the mTOR activation on the lysosomal surface may be hindered by the 

pH change induced by chloroquine[30].  

This work primarily focused on the role of autophagy and cell growth. However, 

autophagy is known to modulate metastasis and response to chemotherapeutics. 

Common chemotherapeutics may modulate the activity of autophagy and whether or not 

it enhances or blocks tumor growth. Combination therapy with autophagy inhibition and 

chemotherapy may prove efficacious for some patients. Similarly, dietary modulation in 

combination with chemotherapeutics may positively impact autophagy to suppress tumor 

growth.  
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Mitophagy in colon cancer  

  Mitophagy has similar conflicting data where it is both pro- and anti-tumorigenic 

[31, 32]. Activation of mitophagy may also be dependent on location within a tumor, either 

the deep tumor or invasive front [33]. The present study defines mitophagy as a pro-tumor 

function in epithelial cells to support proliferation. When PRKN or PINK1 are knocked 

down in colon cancer cell lines, a profound loss of cell growth is observed even in nutrient 

rich conditions. The data suggests that colon cancer cells have adapted to employ 

mitophagy in nutrient rich environments. There are different mechanisms outside of the 

PRKN/PINK1 mediated pathway that induce mitophagy and it is possible that colon 

cancer cells employ alternate mechanisms [34, 35]. Conversely to the data in this thesis, 

one study identified that activation of mitophagy via treatment with Mito-Met10 (a complex 

I inhibitor) can abrogate cell growth [36]. Mito-Met10 can also act on AMPK and cell cycle 

regulators which may explain the decrease in growth compared to mitophagy inhibition 

alone.  

A limitation to this dissertation is the models used to explore mitophagy in colon 

cancer. Due to the differences between in vitro and in vivo models the utilization of a 

tumor model will provide tools to better study this mechanism in tumor development. I 

have crossed a Prknfl/fl mouse with the Cdx2-ERT2Cre; Apcfl/fl model and a Clec16afl/fl  

mouse with the Cdx2-ERT2Cre; Apcfl/fl. Clec16a modulates NRDP1-PRKN regulation. The 

loss of Clec16a enhances expression of PRKN to increase mitophagy [37]. With these 

mice, sporadic tumor development can be studied with the presence or absence of 

mitophagy. Similarly, the Prknfl/fl and Clec16afl/fl mice can be placed on the AOM/DSS 

protocol to observe loss or activation of mitophagy prior to tumor development or after 
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tumors have been developed. These models allow for the assessment of tumor number, 

size, and burden. While I did not observe immune cell changes in the autophagy models 

used in this dissertation, immune cell infiltration should be assessed. Mitophagy is found 

to impact innate immunity in the cell underscoring the importance of investigating different 

facets of mitophagy in the cell [38, 39]. However, since this model utilizes a colon specific 

Cre-recombinase, any changes observed in immune cells will be due to changes in 

cellular cues from epithelial cells. One limitation to these models is that they impact the 

PINK1/PRKN mediated form of mitophagy. When alternate mechanisms of mitophagy in 

colon cancer are identified, mouse models to study these pathways in tumor development 

may be useful.  

  While the Atg5 models I used in this study uncovered a cell-autonomous role for 

autophagy, complete loss of macro-autophagy through Atg5 depletion may impact tumor 

growth differently than that of mitophagy alone. It is possible that a combination of 

nutrients taken up in the lysosome in addition to mitophagy are contributing to the growth 

inhibition. Inducible shRNA for PRKN or PINK1 can be designed to target mouse 

PRKN/PINK1 and stably transfected in to mouse CT26 or MC38 cells. The same cell lines 

can simultaneously be transfected with TMEM192-3xHA. Using these cell lines, 

xenografts of TMEM192-3xHA/PRKN shRNA expressing cells can be induced with or 

without doxycycline and lysosomes can be isolated. Proteomic or metabolomic analysis 

will allow for exploration of changes in lysosomal content following mitophagy inhibition. 

This experiment will also provide further insight on tumor growth with or without 

mitophagy.  
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This dissertation uncovered the role of mitophagy in CRC but other selective forms 

of autophagy may be utilized in the cell as discussed in Chapter 1. It is possible that 

mitophagy is primarily employed by specific cell types within the colon epithelium. In colon 

cancer stem cells, resistance to doxyrubicin was attributed to an influx in mitophagy. 

Mitophagy was increased in cancer stem cells compared to the parental cells and led to 

their increased resistance [40]. Mitophagy induction was through a BNIP3 directed 

fashion further underscoring the importance of PRKN-independent mitophagy. In colon 

cancer stem cells, mitochondrial oxidative phosphorylation is increased to maintain their 

proliferative function [41]. Mitophagy may help to maintain the balance of oxidative 

phosphorylation and reduced ROS in these cells. While mitophagy has not been 

investigated in stem cells, future work to understand if basal levels of mitophagy are used 

in this cell population for maintenance may highlight a new clinical target. 

When the cell utilizes autophagy to break down organelles and proteins, the products are 

recycled for cellular use. This dissertation has identified mitochondria as one of the 

degradative substrates to target. However, what these metabolites are used for following 

release in to the cell is not known. Mitochondrial metabolites are known to contribute to 

cellular functions outside of the TCA cycle [42]. It is possible to utilize isotope tracing to 

assess differences in mitochondrial metabolites under nutrient stress [43]. However, this 

will not provide information on where the metabolites are being used in the cell, rather 

what metabolites are being generated.  

 One potential impact of inhibiting macro-autophagy or selective mitophagy is the 

accumulation of dysfunctional mitochondria. The cytotoxicity of these mitochondria may 

reduce cell growth and lead to cell death. Under these conditions it would be important to 
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measure mitochondrial respiration using assays such as Sea Horse developed by Agilent. 

Mitochondria function can also be assessed using immunofluorescence and common 

mitochondrial markers can be compared to measure dysfunctional mitochondria. Further 

investigation on the role of mitophagy is needed in CRC.  

 

Single-cell modulations of autophagy 

The epithelial cell specificity discussed in this dissertation outlines the importance 

of elucidating the mechanistic role of pathways in the hetero-cellular tumor environment. 

While I have identified a cell-autonomous role of autophagy in colon cancer growth, 

autophagy modulation in different colon epithelial cells has not been investigated.  

In a mouse model with loss of Apc, p53, and a mutant KrasG12D I isolated colon 

tissue and performed single-cell sequencing using the Seq-well platform. I identified 

multiple colonic epithelial cell types including secretory and absorptive cells in addition to 

different immune cell types. Within the tumor tissue, increased autophagic gene 

expression was higher in absorptive compared to secretory cells. No changes in immune 

cell-autonomous autophagy was observed. One possibility for the cell type specific 

autophagy expression is that absorptive cells are essential in nutrient uptake from the 

extracellular environment and employ autophagy for breakdown and use. As previously 

discussed, Paneth cell autophagy impacts the intestine in inflammatory bowel disease 

[44]. Moreover, histological analysis determined that goblet cells are found to be enlarged 

following autophagy inhibition in the colon [45]. Single-cell transcriptomic analysis is 

unable to inform researchers about morphological changes which is why this observation 

may not have been found in this study. Single-cell sequencing may be used in 
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combination with new advanced techniques that provide in-depth spatial information [46]. 

Importantly, many of the autophagic changes with single-cell resolution were not 

detectable in bulk RNAseq analysis. When comparing the autophagy signature in whole 

tissue RNA sample, many of the markers were not different when compared to controls. 

This is in part due to the presence of immune cells and the heterogeneous mixture of 

epithelial cells.  

Future studies should aim to understand how autophagy is modulated temporally 

through tumor development. The work in this dissertation and previous literature highlight 

the fluctuation of autophagy in the tumor. While mouse models of colon cancer are an 

invaluable tool for cancer research, often times they do not recapitulate the mutational 

landscape in patients [47]. Common mutations in colon cancer include APC, p53, and 

KRAS among others, but each patient has a unique mutational load. For patients, 

treatment strategies will vary based on mutations, stage, and location of tumor [48]. 

Chapter 1 briefly outlines autophagy mutations present in colon cancer as a prognostic 

tool [49]. Autophagy specific mutations in combination with other common mutations in 

CRC may modulate the impact of how autophagy modulates tumor growth. One example 

of this complexity is that p53 can modulate autophagy by regulating LC3 under starvation 

[50]. No immune differences were found in this study but the known cross-talk between 

immune and tumor epithelial cells emphasizes the need to understand how autophagy 

impacts the tumor as a whole. The limitations from current mouse models, and complexity 

of mutational landscape may be addressed using single-cell sequencing from patient 

derived samples. Seq-well is a cost-effective platform that enables processing of multiple 

samples simultaneously and may be a beneficial tool to explore these questions.  



124 
 

Throughout this dissertation I have primarily focused on autophagy at the primary 

tumor sight. When considering tumor stage, it is important to evaluate the metastatic roles 

of this mechanism. Similar to the primary tumor site, autophagy is found to perform pro 

and anti-metastatic roles [51]. Little work has been done specifically in colon cancer to 

address this question.  Single-cell sequencing can be applied to metastatic nodes in colon 

cancer models or from those in patients. Single-cell sequencing may uncover specific cell 

types that metastasize and how autophagy is altered in metastatic versus primary tissue. 

Metastatic models are available to assess these questions in vivo [52]. Understanding 

autophagy in metastatic sites will help guide researchers and clinicians in developing 

therapies and enhancing individualized patient care for those with advance stages of 

disease.   

Therapeutic approaches 

Over the past few decades, interest in targeting autophagy for cancer treatment 

has increased. Therapies directed at these mechanisms may prove effective in reducing 

tumor burden. Hydroxy-chloroquine (HCQ) is currently the only clinically approved 

autophagy inhibitor. Unfortunately, we did not observe significant decrease in tumor 

growth using chloroquine in vivo. This data is consistent with others due to limitations in 

the pharmacokinetics and achieving the proper circulating levels to inhibit autophagy [53, 

54]. The development of more specifically targeted drugs may allow for better treatment 

that can be effective at low doses. I demonstrated that the use of SBI-0206965, a ULK-1 

inhibitor is able to block cell growth. This compound has the potential to be used as a 

more targeted approach of autophagy inhibition following further safety and efficacy 

studies [55]. I utilized a dominant negative ATG4B to inhibit growth, the development of 
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inhibitors NSC185058 and SC377071 which target ATG4B and suppressed 

osteosarcoma growth may also prove beneficial [56]. The functional role of autophagy in 

different cell types is a confounding factor in using therapies targeted toward this 

mechanism. If tools can be utilized to target autophagy in epithelial cells, and not in 

immune cells, it may provide a more efficacious therapy. A promising approach is the 

utilization of nanoparticles. Using nanoparticles, siRNA can be selectively delivered to 

endothelial cells [57]. Nanoparticles can also deliver genes to cells based on cell-specific 

promoters [58]. Drugs can target the tumor via coating nanoparticles with cancer cell 

membrane [59].  I have shown that loss of autophagy in epithelial cells impacts growth 

selectively in tumor cells and does not impact the growth of normal colon cells. Autophagy 

can be specifically targeted in epithelial cells while preventing impact on immune cells 

with this approach as would occur with pharmacological inhibitors. 

This thesis has identified targeting of mitophagy as a potential approach for CRC 

treatment. Pharmacological methods can be used to inhibit mitophagy such as 

mitochondrial division inhibitor (Mdivi1) which inhibits Drp1 activity [60, 61]. There is 

limited bioavailability of potential mitophagy inhibitors. The utilization of siRNA to target 

modulators is a potential approach. While this dissertation primarily focuses on 

PINK1/PRKN mediated mitophagy, other mechanisms of mitophagy may be important to 

acquiring metabolites and targeting these pathways for therapy may be beneficial. If 

tumor cells are adapting to alternate mechanisms the treatments will need to be assessed 

on an individual patient basis.  

 

Final Thoughts  
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This dissertation uncovers a novel role for autophagy in colon cancer growth. This 

work further defines the importance of understanding cell type specific modulations of 

autophagy. While the field of autophagy research in colon cancer is relatively new, the 

potential ability to target this mechanism is efficacious. This data serves as a framework 

for targeting mitophagy as a treatment for colon cancer. Understanding the nutrient 

sensing and mechanisms that activate autophagy in the tumor will inform ways that this 

pathway can be targeted for therapy. Similarly, I have shown the cell-autonomous role of 

autophagy for cell growth but little work has been done in colon cancer on the cell-

autonomous effects on metastasis and response to therapy. Future work may determine 

how autophagy modulation changes during different stages of tumor development and 

how this information can improve individualized patient care. 
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Figure 4.1 Loss of autophagy in late tumor development does not significantly 

reduce tumor growth in colitis associated cancer. A. Weights of mice on AOM/DSS. 

B. Tumor number, tumor size, and tumor burden. Error bars represent SEM.  
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Figure 4.2 Caloric restriction and pharmacological inhibition of autophagy does not 

significantly reduce growth in xenograft models. A. Quantification of tumor size. B. 

Representative images of tumors from individual mice. Error bars represent SEM.  
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Figure 4.3 Inhibition of autophagy in spontaneous tumor model does not reduce 

low-grade dysplasia at tumor initiation. A. Weights of mice treated with chloroquine. 

B. Dysplasia scoring by blinded pathologist from H&E sections. C. Percent Ki67 positive 

staining. D. Dysplasia scoring of second cohort of mice treated with chloroquine. * p 

<0.05. Error bars represent SEM.  

 

 

 

 

 

 

 

 

 

 

 

 


