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ABSTRACT

The design of new materials has often relied on crystal structure as a source for de-

sign complexity and innovation. This requires new crystal structures and new manners

of constructing and synthesizing these structures. An ideal mechanism for synthesis is self-

assembly, the spontaneous emergence of order due to particle interactions. For hard particles

on the nanometer length scale, particle shape can drive or often dominate the self-assembly

behavior of a system. Using Digital Alchemy (DA), a framework which provides theoreti-

cal thermodynamic interpretation of particle shape, we can obtain optimal particle shapes

through simulation for assembling target structures, and use these results to understand the

role of particle shape in stabilizing colloidal crystals. In Chapters III-V of this dissertation, I

present multiple ways in which DA can (and cannot) be used to understand the self-assembly

of hard polyhedral nanoparticles. First in Chapter III, I present how DA can be used to

formally distinguish colloidal self-assembly from packing, which explains the contradictory

behavior of certain hard polyhedral nanoparticles which self-assemble and pack into different

crystal structures. Then in Chapter IV I present how phase transitions can occur in shape

space and how this has implications on the properties exhibited by these colloidal crystals.

Finally, in Chapter V, I give insight into the nuances of using DA as a tool for predicting

particle shapes for self-assembly.

However, we are not limited to target only structures, but also materials properties,

furthering the understanding of the interplay between materials synthesis, structure, and

properties. Inspired by an open question in Chapter IV, I delve into the relationship between

crystal structure and a particular materials property: photonic band gaps. A photonic

xxi



crystal is comprised of two materials with different interactions with light; a photonic band

gap occurs in a photonic crystal when a range of light is not transmittable through the

material, i.e. reflected. In Chapter VII, I explore which crystal structure properties will

lead to a photonic band gap by computing more than 150,000 photonic band structures (a

subset of which are given in Appendix C). In Chapter VIII, I use the knowledge gained in

Chapter VII, apply modifications to known crystal structures, and compute the photonic

band structures (which are included in Appendix D and Appendix E).
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CHAPTER I

Introduction

There is geometry in the humming of the strings. There is music in the spacing of

the spheres.

– Pythagoras

When we think of the eras of human civilization, such as the Stone Age, Bronze Age, the

Information Age, technology is often the defining feature. However, this technology relies

on the materials available to society, such that that new materials enable their advancement

and become the driving feature to scientific discovery.

How do you design a new material? First, you must choose a length scale and therefore a

building block. Are we designing materials on the atomic scale, on the order of Angstroms to

nanometers, where atoms and molecules are our blocks? Are we designing on the macroscale,

where our blocks can be larger, potentially literal blocks? Here I will discuss a length scale

somewhere in between, the nanoscale.

Statistical physics is a powerful tool used to understand the self-assembly and stability of

materials, including the crystalline order which can form due to entropy. Here entropy is not

used in its traditional connotation as the amount of disorder within a system, but rather as

it is defined in information theory. The information theory of entropy views entropy as the

information yet to be learned for a system. Statistical physics states that a closed system will

tend towards that which minimizes free energy and maximizes entropy; therefore, a system
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will tend towards the state that leaves the most information unknown.

To better understand this, imagine a subway car. There are a variety of ways for people

to sit, stand, hang from the subway rail, etc. Let’s imagine there are four people sitting

in a car with six seats – what does that tell us? From a quick probability calculation, we

know that there are 360 ways for four people to sit in six seats. Therefore there are 360

snapshots, or “microstates” of what our car can look like. Now imagine two people get up

and move to the one of six places it is comfortable to stand. Now we have 900 possible

configurations. Therefore, we have more information about the configuration of people when

everyone is sitting (there are only 360 choices) than when half are standing. According to

the information theory of entropy, the latter has more entropy.

On a hot summer day – how are you more likely to find the subway car? Half standing

and half sitting gives each person more room, and more possibility of switching seats, and

will be more likely for people to adopt. The same goes for hard nanoparticles – they will

adopt a state where the most microstates are accessible, and they have the most freedom to

change their position or orientation. When a particle is non-spherical, such as in the case of

hard polyhedral nanoparticles, there are more microstates if the faces of the nanoparticles

are aligned, leading to order.[1, 2, 3, 4]

Additionally, when we look at this theory inversely, we can design novel materials; if we

have a target structure in mind, we can we find the building blocks that will self-assemble

and maximize entropy in the structure. This is the idea behind the Digital Alchemy (DA)

framework, wherein some aspect of particle design, here particle shape, is optimized for

entropic maximization for some target criterion.[4, 5, 6]

The first three projects within this dissertation will look closely into the DA framework,

and how we can use it within three aspects of materials design: (Chapter III) What is the

relationship between self-assembly and packing on the colloidal length scale? (Chapter IV)

What kinds of structures and phase transitions can we observe by modifying the particle

design? (Chapter V) How can the framework of DA be best realized to design nanoparticle
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shapes for self-assembly?

In Chapter III, I will demonstrate that order formation at finite pressure and at infi-

nite pressures, or self-assembly and packing, respectively, are distinct physical phenomena

carrying their own characteristic signatures. [7]

In researching Chapter III, I came across a set of anomalous data points that serve as

the basis for Chapter IV.i These data points suggest a phase transition that occurs from the

well-studied diamond structure to a tetragonal derivative as a function of particle shape. In

this chapter I will detail this phase transition and its parallels to the phase transitions that

occur in atomic systems of Si, Ge, and Sn. I will also detail the impact of this structure

change on the photonic properties of the system, which I will define later.[8]

Chapter V will look at the implementation of the DA framework across shape space, i.e.

the variable space that defines nanoparticle shape. Chapter III and Chapter IV demonstrated

the complexity of this space for design, large changes in physics or structure possible due to

small displacements in shape space. Therefore, it is important to understand the influence of

the underlying shape space on design for target structures. In this chapter I will report the

ground state to shape space and the impact that structural constraints have on the results

of DA and propose new methodologies for implementing DA for the purpose of materials

design.[9]

The final two chapters, on the topic of photonic crystals, will feel somewhat disjoint

from the first three, but comes from an open question in Chapter IV. Photonic crystals are

systems of mixed dielectric media, i.e. where light moves at different speeds in different

regions of the material, and are responsible for the brilliant color in some butterflies, birds,

and in chameleons.[10, 11, 12, 13, 14, 15] Certain photonic crystals can exhibit a photonic

band gap, or PBG, wherein a range of frequencies, commensurate with the length scale of

the material, are not transmittable through the material, i.e. reflected. In Chapter. IV, we

iThe quote from Lord Rayleigh, “One’s instinct is at first to try and get rid of a discrepancy, but I
believe that experience shows such an endeavour to be a mistake. What one ought to do is to magnify a
small discrepancy with a view to finding out the explanation,” comes to mind.

3



witnessed a phase transition from the popular photonic target, the diamond structure, to a

tetragonal derivative. Based upon previous literature, this break in cubic symmetry should

have destroyed the photonic band gap, but our system retained a sizable PBG. [16, 17] This

led to an open question that I answer in Chapter VII: what crystal structures will result

in a PBG? To answer this, I computed a database of photonic band structures of 2,714

crystal structures using MPB[18] and used crystallography and field analysis to understand

the characteristics that lead to a PBG. We found that the design principles most commonly

thought of as necessary or sufficient in producing a PBG are neither, and that for every

general guideline there is an unexpected exception.[19]

In Chapter VIII, I use the insight gained from Chapter VII to modify structures and

observe the response in their PBG. First, I apply a simple design principle to a set of 20

structures and show that this design principle, while successful in some cases, will not produce

a PBG for all templates. [20] Lastly, I will show the effects of lattice distortion on some

popular PBG target crystals.[21]

In my outlook and conclusions (Chapter IX) I will summarize the content of this dis-

sertation and discuss some general insights and further questions for those pursuing similar

research. I have also included appendices detailing the underlying theory of photonic crys-

tals, some recipes for using the signac package, and containing photonic band structures

from Chapters VII-VIII.
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CHAPTER II

Digital Alchemy for Materials Design

Once I got home, I sulked for a while. All my brilliant plans foiled by thermody-

namics. Damn you, Entropy!

– Andy Weir, The Martian

Imagine a box full of sugar cubes, which have a decidedly more defined shape than our

subway riders in the introduction.i Often when you look into the box, they are arranged face

to face in a “cubic” pattern. We can understand the origins of the phenomenon by using

statistical mechanics. The box defines the volume of the system (V), the number of cubes

remains constant (N), as does the temperature (T). The arrangements and orientations of the

cubes define individual snapshots or “microstates” of the system. The face-to-face alignment

is a feature of the system that we can observe, and can be quantified in the form of an order

parameter. The set of microstates that have the given macroscopic properties of N, V, and

T make up the macrostate.

The entropy S is defined as S = kB ln(W ), where kB is the boltzmann factor and W is

the number of microstates that fall under a specific description. In other words, the general

configuration which corresponds to the greatest number of microstates will have the highest

entropy.[1] Thermodynamics tells us that a system will adopt the configuration that has the

iwe will ignore that sugar cubes can disintegrate, and a box of sugar cubes is not ergodic so it doesn’t
follow the laws of thermodynamics
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lowest free energy, which in an NV T ensemble is given by F = U − TS, where F is the

Helmholtz free energy, U is the internal energy, and T is the temperature.

When a system consists of anisotropic nanoparticles, entropic bonds will form due to the

preferred alignments between particles.[2, 3, 4, 5, 6] Entropic bonds are effective attractions

created by the increase of entropy based upon shape complement. We see this with our

sugar cubes – there are more ways to arrange the cubes if the cube faces tend to line up,

rather than meet at an angle, so systems of cubes will generally assemble favoring face-to-face

arrangements and moving out of this configuration carries some free energy penalty.

We can extend our study of entropic self-assembly beyond the traditional variables of

thermodynamics. In DA, the traditional partition function is extended to include particle

design aspects, for example particle shape or interparticle interaction.[4]

Z =
∑
σ

e−β(H−
∑
i µiNαi) (2.1)

where β is 1
kBT

, H is the classical hamiltonian, and conjugates µ and α are the alchemical

potential and alchemical design parameter. The subscript i denotes the individual alchemical

dimensions, e.g. two separate types of truncation.

One can optimize over these extended dimensions and determine the design parameters

which will be entropically favorable for a given macrostate. In the following chapters, I will

discuss the design parameter of particle shape, which can be sampled using an extended hard

particle Monte Carlo (MC) algorithm.[7] In HPMC simulations, internal energy U is given by

a piecewise function where U =∞ when the particles are overlapping and U = 0 otherwise.

In traditional HPMC, you can sample changes in particle position or orientation, accepting

changes that do not cause overlaps and rejecting otherwise. With the addition of DA, you

can also sample particle shape, either from a defined parameterization or by sampling small

changes in vertex position for convex polyhedral particles. A thorough explanation of the

algorithmic design and optimization is given in Refs. [4] and [8].

Digital Alchemy can be employed for a variety of applications. From a theoretical per-
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spective, exploring these extended ensembles can give insight into the role of these design

parameters on the stability and self-assembly of colloidal systems. In Ref. [9], DA was cou-

pled with machine learning to determine the shape features that serve as the best predictors

for self-assembly structure. I will employ Digital Alchemy in Chapter III to understand

the role of particle packing arguments in predicting hard nanoparticle self-assembly and in

Chapter IV to understand a phase transition that can occur across shape space.

From a design perspective, the implementation of Digital Alchemy has the potential to

provide design rules to attain a target property or structure. In Ref. [10], DA was applied

to multiple target systems to test the robustness of DA for determining particle shape for

self-assembly. Furthermore, in Ref. [11], DA was employed to design particles to transition

between two target structures at different pressures. The possibilities for DA for design are

endless with the innumerable synthesis parameters yet to be explored.[12] However, there

are considerations and limitations that must be taken into account when using DA for design

of nanoparticle shapes for self-assembly, which I will discuss in Chapter V.
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CHAPTER III

Relevance of Packing to Colloidal Self-Assembly

How wonderful that we have met with a paradox. Now we have some hope of making

progress.

– Niels Bohr

The contents of this chapter are taken from “Relevance of Packing to Colloidal Self-

Assembly,” R. K. Cersonsky, G. van Anders, P. M. Dodd, and S. C. Glotzer. Proceedings of

the National Academy of Sciences 115.7 (2018).[1]

3.1 Introduction

In this chapter, I will discuss how the use of an extended ensemble approach can be used

to understand the distinction between assembly (i.e. where order forms at finite pressure)

and packing (i.e. where order forms under infinite pressure). This question extends from the

common correlation of structures formed at finite and infinite pressure. Take for example the

rhombic dodecahedron, a nanoparticle shape which will both assemble into and fill space in

the cubic close-packed (face-centered cubic, or fcc) structure. However, for other nanoparticle

shapes, the finite and infinite pressure structures are not the same. Thus we ask: is packing

a causal mechanism to self-assembly?

In 1929, Pauling proposed an answer to this question for atoms by demonstrating re-

markable correlations between the sphere packing problem, the study of which dates back
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to Sanskrit writings in 499CE [4], and the crystal structures of ionic solids [5]. The pack-

ing problem asks: given a set of hard, convex objects, such as spheres, what is the spatial

arrangement of those objects that most densely fills space? Pauling argued that crystal

structures could be explained by packings of spheres of appropriate atomic radii.

Variants of the packing problem have yielded solutions relevant not only to the rational-

ization of crystal structures [5], but also in optimal information transmission [6], DNA in

cell nuclei [7, 8], blood clots [9], plant morphology [10], and the stacking of oranges in the

produce section [11]. Packing rules were used by Frank and Kasper to rationalize complex

crystal structures in intermetallic alloys [12, 13], and the molecular packing parameter, a

popular geometric measure in surfactant self-assembly, is also based on packing principles

[14].

More recently, Pauling’s packing principles have been used to rationalize and predict

colloidal crystals and nanoparticle superlattice structures by asserting packing as a causal

mechanism. For example, packing rules explain many binary nanoparticle superlattice struc-

tures obtained from both spherical and nonspherical particle shapes [15, 16, 17]. Packing

rules are also successfully used to design DNA-functionalized gold nanospheres [18, 19].

This raises the question: in instances where packing principles can describe observed crystal

structures, does that necessarily imply that packing mechanisms are responsible?

For chemically bonded spherical particles, where, e.g. electrostatic forces between op-

positely charged colloids or ligand-ligand attraction between functionalized nanoparticles

may dominate, packing arguments seem plausible due to the tendency towards close-packed

structures. However, when attractive interparticle forces are weak and particles are non-

spherical, entropy arising from thermal motion can dominate and invalidate packing rules

[20, 21, 22, 23, 24, 25, 26, 27, 28]. Nevertheless, there are examples in both situations where

packing rules appear to explain self-assembled structures. Does that imply the crystal formed

via a packing mechanism? Or is it simply the case that packing rules are useful to rationalize

the structure retrospectively, as is the case for molecular packing rules in ordered surfactant
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systems?

Statistical thermodynamics tells us that free-energy minimization dictates equilibrium

structures. In the case of hard particles, free energy minimization is achieved by structures

that self-assemble to maximize entropy except in the limit of very high pressures, where

they maximize density [29, 30, 27, 31, 32, 33, 34]. It is these maximum density (or infinite

pressure) structures that are invoked when packings are discussed. It is also this limiting

case that offers an explanation of why systems of atoms, molecules, or nanoparticles might

order through packing.

We can answer our questions by comparing for a given system the self-assembly density,

ηassembly: the lowest density at which spontaneous self-assembly is observed, with the “pack-

ing onset density”, ηpack: the lowest density at which the system exhibits packing behavior.

We argue that packing behavior can occur in a finite pressure system if it follows the same

asymptotic, infinite pressure behavior as idealized, mathematical packing. So the question

of “when does matter pack?” reduces to searching for this asymptotic behavior. We test

for the existence of this asymptotic behavior using generalized Maxwell relations derived in

the alchemical ensemble first introduced in Ref. [35]. These generalized Maxwell relations

are similar to the usual ones, but defined here in shape space, they can be used to define

the packing onset density. One of these generalized relations directly relates the density of

ordered structures to the “alchemical potential” µ, defined as the change in the alchemical

free energy in response to a change in particle shape:

(
∂µi
∂P

)
N,T,αj

=
1

η2

(
∂η

∂αi

)
N,P,T,αj 6=i

(3.1)

Here η denotes density, α represents the alchemical (here, shape) variable, P is pressure, N

is the total number of particles, and T is temperature responsible for the thermal motion of

the particles. The right-hand side of this equation can be computed analytically for systems

at the limit of infinite pressure, i.e. densely packed systems, while the left-hand side can be

computed via simulations in the isobaric alchemical ensemble [35]. We define ηpack as the
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lowest density that satisfies this generalized Maxwell relation when the right-hand side is

calculated at infinite pressure. To express this mathematically, we define

ε(P ) =

∣∣∣∣∣
(
∂µi
∂P

)
N,T,αj

− lim
P→∞

1

η2

(
∂η

∂αi

)
N,P,T,αj 6=i

∣∣∣∣∣ , (3.2)

and note that there must exist some Ppack such that ε(P ) ≈ 0 for all P > Ppack. The packing

density ηpack = η(Ppack).

If we find for some system that ηassembly ≈ ηpack, then this indicates that the onset of

order is consistent with the existence of a global, dense packing mechanism. Conversely, if

ηassembly < ηpack this indicates that systems spontaneously order before they pack, and the

mechanism that drives the order is not packing. However, in this case, it is possible that

systems could be quenched to ηpack in a disordered state,[36] and then subsequently order by

packing. To check for the existence of this possibility, we can compare ηpack to random close

packing densities ηrcp. Random close packing has been defined in Ref. [37] as the density at

which the metastable branch in the equation of state corresponding to a disordered system

diverges, i.e. the maximum density at which it is possible for the system to be found in a

disordered state. If ηpack > ηrcp then we conclude that a given system cannot be ordered

by a packing mechanism, as a system found at a density above η > ηrcp must already be

ordered. We will show below that in all systems we study ηpack > ηrcp > ηassembly, indicating

that not only is the spontaneous order not driven by packing, but also the systems cannot

be ordered by packing.

We also pose the following, related question: When can packing arguments be used

for the inverse problem of predicting the thermodynamically optimal particle shape for a

particular structure? In other words, when—if ever—is the space-filling shape of a target

crystal structure thermodynamically optimal for self-assembling that crystal?
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3.2 Methods

3.2.1 Shape Parameterization

Spheric triangle-group families are generated by the intersection of sets of symmetric

planes [44]. They are parameterized by αi parameters between 0 and 1, where αi encodes the

inverse distance of the ith-fold symmetric planes from the particle center. Any αi parameter

can be more readily understood as the truncation of an ith fold axis of symmetry for the

particle shape.

The shape family studied here is generated by intersections of planes perpendicular to

the directions of the 4-fold, 2-fold, and 3-fold axes of rotational symmetry for a rhombic

dodecahedron, shown in Fig. 3.1A as red, blue, and grey, respectively, and is therefore

named the 423 family of polyhedra (∆423). ∆423 is parameterized by three values, α2, α3

and α4, in the manner described above. Planes perpendicular to the 2-fold direction remain

fixed, as does α2, so discussion is restricted to α3 and α4. We restrict our exploration to

a shape space with restricted point group symmetry due to (i) geometric reasoning about

shape features that lead to optimal thermodynamic behavior (ii) crystal growth processes

that determine particle symmetries in nanoscale and synthesis protocols (e.g. [51, 52, 53]).

3.2.2 Simulation Methods

We simulate our shapes in the alchemical ensemble using the digital alchemy (DA) frame-

work [35]. DA is a statistical mechanics simulation technique that employs thermodynamic

ensembles extended into alchemical (here, particle shape) space by one or more dimensions,

allowing fluctuations in the alchemical space or corresponding conjugate alchemical poten-

tial(s). This extended (“alchemical”) ensemble has the partition function [35]

Z = e−βF =
∑
σ

e−β(H−
∑
i µiNαi−kΛ) , (3.3)
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where σ labels microstates, H is the Hamiltonian, αi are the alchemical parameters de-

scribing model-specific particle shape attributes (detailed above), µi are thermodynamically

conjugate alchemical potentials, N is the number of particles, Λ is a structural design crite-

rion that initially keeps the system in an FCC, SC, or BCC crystal structure, and k is the

strength of the coupling to Λ.

We employed DA through the simulation method alchemical Monte Carlo (Alch–HPMC)

[35]. In Alch–HPMC simulations, µi is held constant and particle position and orientation

moves are accepted with standard acceptance criteria [54]. Unbiased shape moves (hereafter

µi = 0) are performed such that all particles in the system change simultaneously from a

shape described by alchemical parameter α to a shape described by α′, with probability

π = min

(
1,

(det(Iα))N/2

(det(Iα′))N/2
e−β(Uα−Uα′ )

)
(3.4)

where U is the potential energy and I is the anisotropic particle moment of inertia tensor.

See 3.6.2.1 and [35] for details. For the hard particle systems studied here the potential

energy (and ∆U) vanishes for all valid, non-overlapping particle configurations so that π = 0

for a microstate in which any particles overlap.

We used DA and Alch–HPMC in two ways: (i) we computed the expectation value 〈αi〉

as a function of packing fraction in the NV Tµi ensemble, and (ii) we performed Alch–HPMC

within the NPTαi ensemble, obtained by Legendre transforming the NV Tµi ensemble twice,

to calculate the alchemical potential µi. All simulations were run with systems of 500 or

more particles. See 3.6.2.1 for numerical details and state points for NV Tµi and NPTαi

simulations.

In (i), we initialized independent simulations with distinct shapes, taking Λ to be the

potential energy function of an Einstein crystal for the target structure (FCC, SC or BCC at

some density). We maintained non-zero k during initialization only to ensure the system did

not transition out of the target structure. All data were collected on equilibrated systems
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with k = 0; results were validated by directly computing the free energy [58] for selected

state points in NV Tµi simulations.

In (ii), simulations were used to evaluate alchemical potentials for space-filling shapes

using the thermodynamic relation

µi = − 1

N

(
∂F

∂αi

)
N,η,T,µj 6=i

(3.5)

Our Alch–HPMC algorithm recorded the acceptance ratio for small trial moves from the

space-filling shape, without performing such moves. We evaluated (3.5) numerically using

the Bennett acceptance ratio method [56], which is described as it applies to the alchemical

potential in Ref. [35] and employs a finite differencing method published in Ref. [57].

In this ensemble, we derive a Maxwell relation between alchemical potential µ and packing

fraction η: (
∂µi
∂P

)
N,T,αj

=
1

η2

(
∂η

∂αi

)
N,P,T,αj 6=i

(3.6)

We used this expression to relate the high pressure asymptotic behavior of the alchemical

potential to dense packing surfaces that have been computed in the literature [44].

Specifically, we consider systems to exhibit packing behavior when the slope of the al-

chemical potential approaches the infinite pressure asymptotic limit of the dense packing

surface given by (3.1). Relevant data [44] has been recreated in 3.6.2.1 according to our

variable notation.

All simulations were performed with a hard particle Monte Carlo (HPMC) [41] extension

to HOOMD-Blue [62, 63], which we further extended to allow Alch–HPMC moves. Runs

were partially performed on XSEDE computing resources [64]. The data management for

this publication was supported by the signac data management framework [65, 66]. Details

on statistical analyses can be found in 3.6.2.1.
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B

Figure 3.1: Shape Family and Structures. We rely on a previously defined parameter-
ization (A) which continuously maps two values, α3 and α4, to convex polyhedra. This
parameterization, here known as the ∆423 family, contains the space-filling shapes for (B)
FCC, (C) SC and (D) BCC.
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3.3 Models

To understand whether packing is driving self-assembly or fundamental to particle design,

we study the most likely systems for this to be the case: idealized, perfectly hard, convex

shapes. We consider three common structures: face-centered cubic (FCC), simple cubic

(SC), and body-centered cubic (BCC) and their corresponding space-filling (Voronoi) shapes:

rhombic dodecahedron, cube, and truncated octahedron, shown in Fig. 3.1(B–D). It is well

known that, for each of these shapes, the corresponding structure is the only thermodynamic

equilibrium assembly and the densest packing (at η = 1 by definition) [38, 39, 21, 20, 40,

30]. Yet, we show that, in each case, the onset of packing behavior occurs at a higher

density than ηrcp, and therefore the observed structures cannot be ordering via a packing

mechanism. Moreover, we show that the space-filling shape for all three structures is never

thermodynamically optimal except at η = 1. From these two findings, we argue that there

is only a correlation, not a causal relationship, between the observed thermodynamically

assembled structures and those rationalized by packing arguments.

Hard Particle Monte Carlo (HPMC) simulations [41] of the self assembly of FCC, SC,

and BCC crystals were carried out for a family of spheric triangle group invariant particle

shapes, ∆423 (Fig. 3.1A), which includes each crystal’s space-filling particle, as shown in

Fig. 3.1(B–D), but also, importantly, sets of truncated versions of those shapes that are

nearby in shape space. This shape family maps two values, α3 and α4 to convex polyhedra,

with α3, α4 ∈ [0, 1]. The space-filling shapes for FCC, SC, and BCC are defined at (α4, α3) =

(0, 0) (rhombic dodecahedron), (α4, α3) = (1, 0) (cube), and (α4, α3) = (2
3
, 1) (Archimedean

truncated octahedron), respectively.

To compute the packing onset density, we utilized analytical constructions of putative

densest packings reported in Ref. [44] for the entire ∆423 shape family, giving η as a function

of α, to evaluate the second term in (3.2) in the infinite pressure limit. We evaluated the

first term in (3.2) at finite pressure using NPTα HPMC simulations at varying pressures.

From this, we estimated the lower limit of ηpack. We also performed simulations in the NVTµ
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ensemble to find the thermodynamically optimal shape for FCC, SC, and BCC as a function

of density. Additional details and derivations for the parameterization of the ∆423 shape

family, extended ensembles, free energy calculations, and the simulations conducted can be

found in the 3.2 and in 3.6.2.1.

3.4 Results and Discussion

The computed alchemical potential as a function of pressure is plotted in Fig. 3.2 for

(A) FCC, (B) SC, and (C) BCC. Particle shape is fixed to that of the space-filling particle

in each case. Asymptotic behavior extracted from analytical results reported in Ref. [44]

reveals that in all three cases, asymptotes have zero slope in the limit of infinite pressure

and thus ε→ 0 as ∂µi/∂P → 0, indicated with a horizontal line in each panel. We distinguish

the onset of packing behavior in each panel, at ηpack = 0.80, 0.95, and 0.87 for FCC, SC,

and BCC, respectively, as the densities that correspond to the lowest pressures for which

∂µi/∂P ≈ 0. In Fig. 3.2, results represent the first term in (3.2) and dotted lines represent

the second term, adapted from analytical results reported in Ref. [44]. We also indicate both

the assembly and random close packing densities for FCC, SC, and BCC: ηassembly ≈ 0.5–0.55

[42, 21], and ηrcp = 0.76 ± 0.03, 0.74 ± 0.03, 0.78 ± 0.03, respectively. We estimated upper

limits on ηrcp using a procedure established in Ref. [37]. The procedure defined in Ref. [37]

determines an upper bound for ηrcp from the divergence of the pressure on the metastable

branch of the equation of state. The density at which this divergence occurs indicates the

maximum density at which a system can be found in a disordered state, and indicates the

maximum density to which a system of hard particles can be quenched without order. To

estimate upper bounds for ηrcp we use generalized equations of state for anisotropic hard

particles reported in Ref. [43], and identify the densities at which the equations of state

diverge for each particle shape of interest. In every system, ηpack > ηrcp > ηassembly. Our

results indicate that none of the systems investigated here order via a packing mechanism

that occurs throughout space; rather, they indicate only that systems can self-assemble
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Figure 3.2: Onset of Asymptotic Packing Behavior in (A) FCC, (B) SC, and
(C) BCC. We utilize the generalized Maxwell relation in (3.1) to extract the onset of
asymptotic packing behavior for (A) FCC, (B) SC, and (C) BCC with respect to their
space-filing particles. The shaded region in each figure denotes the density-pressure regime
where the system is found to be “packing”, i.e. where structure formation is driven by
packing principles. By comparison, ηpack is much higher than either ηassembly and ηrcp shown
for all three systems. For space-filling particles within FCC, SC, and BCC, ηassembly ≈ 0.5–
0.55 [42, 21], and ηrcp ≈ 0.76, 0.74, and 0.78, respectively, calculated using methods from
Refs. [37, 43].

into the same structures that correspond to packings. Note that this does not rule out

the possibility that systems could order by packing layer-by-layer through sedimentation,

but that mechanism would be fundamentally different from spontaneously packing globally
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throughout space.
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Figure 3.3: Contour Maps of Free Energy for ∆323 in (A) FCC, (B) SC, and (C)
BCC The perfect space-filling (Voronoi) shape, indicated by a filled circle in each figure, is
different from any of the optimal shapes determined from simulation, even up to densities
of 0.99. (D–F) The densest packing surface reported in Ref. [44] in the regions closest to
the space-filling shapes for (D) FCC, (E) SC, and (F) BCC The dotted lines in (B–C),
(E–F) denote discontinuities in the derivative of the dense filling surface.

Moreover, results in Fig. 3.3(A–C) indicate that packing cannot predict ideal particle

shapes for self-assembly because the perfect space-filling shape is never thermodynamically

preferred away from η = 1. Contours plotted in Fig. 3.3(A–C) indicate the per particle free

energy cost of modifying the shape of all colloidal particles while maintaining a fixed target

structure. Even at η = 0.99, there is a tiny difference in shape that, in each case, produces

a non-trivial difference in free energy (up to > 3kT ) between identical crystals comprised of

the thermodynamically optimal shape and those comprised of the space-filling shape. How-

ever, we do find that features in the global dense packing landscape do generally correlate

with features found in the optimal particle shapes, as seen by comparing the optimal shape

(Fig. 3.3(A–C)) with the corresponding densest packing landscape from Ref. [44] (recre-

ated in Fig. 3.3(D–F)). Thus, while densest packing arguments do not predict the optimal

shape for self-assembly, the densest packing landscape may provide qualitative guidance in
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determining optimal particle shape.

3.5 Conclusions

Although packing arguments are often used successfully in nanoparticle and colloidal

assembly, they often fail to explain experimental and computational observations. Our

findings demonstrate that the use of packing arguments to rationalize observed structures

or design particles to achieve target structures may not be well founded, even when the

observed structure is the same as one would get from packing. Because one would expect

packing principles—if they do hold—to hold for hard particles, our finding raises the question:

is the apparent success of Pauling’s packing principles for atomic systems also a spurious

correlation? It could also be that the imperfect hardness of atoms and molecules makes them

more amenable to dense packing as a mechanism. This counterintuitive possibility would

beg for further understanding as the initial reasons for applying packing arguments were

based on the existence of steep, sterically repulsive interaction potentials that are nearly

hard. Combining the approach for studying sphere packings developed in Ref. [45] with the

generalized Maxwell relation (3.1) could give additional insight into the behavior of putative

sphere packings more generally. Indeed, for spherical nanoparticles recent work analyzing

experiments reported in Ref. [15] has shown that the microscopic details of the particle

organization are driven by a complex form of packing involving ligand topology.[46, 47, 48]

In addition, in providing new, thermodynamic formulations with which to investigate the

packing of hard shapes, we offer alternative approaches to the ubiquitous but notoriously

difficult set of general packing problems [49].

Our results, combined with those reported in Ref. [50], indicate that in every case that

has so far been investigated there is not a single instance in which a space filling shape

is thermodynamically optimal for the self-assembly of its corresponding target structure,

at least for hard colloidal particles, as entropic contributions cannot be ignored. Small,

stabilizing entropic contributions one might have guessed to be irrelevant can arise from
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nearly infinitesimal shape modifications, such as small truncations of vertices or edges of

polyhedral nanoparticles. This means the space-filling shape is never thermodynamically

optimal for self-assembling its corresponding structure, at least for hard colloidal particles.

Our observations suggest that heroic efforts to synthesize perfectly shaped, space-filling

particles to achieve the corresponding target structure are unnecessary, and that the entropy

gained from slight imperfections may actually facilitate assembly.

3.6 Supplementary Information

3.6.1 Choice of Packing Criterion

If there exists a causal relationship between mathematical dense packing at infinite pres-

sure and the behavior of a thermodynamic system at finite pressure, this implies that any

thermodynamic quanity that is evaluated in the finite pressure system must saturate the

infinite pressure asymptotic limit for that quantity. Hence, to show that a system’s finite

pressure behavior is not caused by the existence of the infinite pressure packing limit, it is

sufficient to find a thermodynamic quantity that deviates from the infinite pressure asymp-

totic form. That means that our choice of criterion for distinguishing the onset of packing

behavior is not unique nor does it preclude the existence of other thermodynamic quantities

that show deviation from asymptotic packing behavior at even lower densities or pressures.

Our results for ηpack should be interpreted as determining a set of upper bounds.

3.6.2 Detailed Methods

3.6.2.1 Using Trial Alch-MC in NPTµ to find the Alchemical Potential

The Maxwell relation from the alchemical-isothermal-isobaric ensemble (NPTµ) is

(
∂µi
∂P

)
N,T,αj

= −
(
∂V

∂αi

)
N,P,T,αj 6=i

(3.7)
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We use the relationship V = N
η

to obtain the Maxwell relation reported in the main text.

We explicitly compute the alchemical potential of a system in NPTµi simulations by

performing trial Alchemical Monte Carlo (Alch-MC) moves, using the Bennett acceptance

ratio to estimate the partial derivative of free energy with respect to a given α [56, 35]:

∂F

∂α
≈ 1

h

∑
ν

γνF (α + νh) , (3.8)

where h is a finite difference, ν is an index, and γv is an appropriate finite differencing

coefficient from Ref. [57]. The alchemical potential is then given by:

βµ ≈ − 1

Nh

∑
ν

γν

(
log

p(α + ν0h|α + νh)

p(α + νh|α + ν0h)

)
, (3.9)

where p(α + ν0h|α + νh) and p(α + νh|α + ν0h) represent the acceptance ratio of moving

from state α + νh to state α + ν0h, and from state α + ν0h to state α + νh, respectively

[35]. For each simulation, particle shapes were either initialized at the space-filling shape

for the crystal and sampled for each nearby αν = α + νh (calculating p(α + νh|α + ν0h))

or initialized at a nearby αν = α + νh and sampled for the space-filling shape (calculating

p(α + ν0h|α + νh)).

For rhombic dodecahedra in FCC, we calculated the partial derivatives for three-fold

and four-fold truncation with fixed α4 = 0.0 and α3 = 0.0, respectively. We simulated

500 particles with h = 0.002 at pressures corresponding to densities between 0.5 and 0.99

for 5 × 106 Monte Carlo sweeps after the target density was reached. For perfect cubes in

SC, we calculated the partial derivatives for three-fold and four-fold truncation with fixed

α4 = 1.0 and α3 = 0.0, respectively. We simulated 512 particles with h = 0.0002 at pressures

corresponding to densities between 0.5 and 0.99 for a minimum of 3 × 107 Monte Carlo

sweeps. For BCC, we computed the alchemical potential along 2α3 = 3α4, the maximal

ridge of the dense packing landscape surrounding the space-filling shape. At high pressures,

truncation along other directions resulted in a sufficiently large free energy increase that then
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caused a correspondingly large increase in numerical error. In all structures, five independent

replicates with different random seeds were run for each state point. We simulated 686

particles with hα3 = 0.003 at pressures corresponding to densities between 0.5 and 0.90 for

a minimum of 3× 107 Monte Carlo sweeps.

3.6.2.2 Using Alch-MC in NV Tµ to find 〈αi〉

Verifying Alch-MC with Frenkel-Ladd Integration We first compared the free energy

results of these simulations with a modified Frenkel-Ladd free energy integration[59, 58], in

which free energy is computed through the integration of the mean-squared displacement

of particles tethered to Einstein crystal positions and orientations as the spring constant

decreases. Each simulation ran for 2.2× 107 MC sweeps, decreasing the spring constant by

a factor of 10 every 1× 105 MC sweeps.

We computed the modified Frenkel-Ladd free energy at 2601 evenly spaced shapes in

∆423 in FCC, varying α by ∆α3,4 = 0.02, with ten replica for each state point. We computed

statistical error as the standard deviation over several replicates. Wherever the default

orientation was geometrically forbidden, a random orientation was used. We compared

Frenkel-Ladd integration and Alch-MC exploration for systems of 32, 256, and 500 particles.

Simulation Details We perform simulations in the alchemical ensemble through the in-

corporation of an “Alchemical Monte Carlo” (Alch-MC) shape move [35]. Similar to a

rotational or translational Monte Carlo (MC) move, the system additionally samples the

adjacent shape-states within a given search radius r = ∆αi using the Metropolis-Hastings

algorithm and acceptance criterion to maintain detailed balance. A thorough discussion of

detailed balance in Alch-MC can be found in Ref. [35].

We determine Helmholtz free energy in alchemical space by computing the microstate

probabilities from the Monte Carlo results. We conduct Alch-MC simulations with µi = 0,

and then normalize free energies such that the lowest free energy state has zero free energy.
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We compute 〈αi〉 via NV Tµi simulations that are initialized in an Einstein crystal of the

target structure with an external force field Λ tethering particles to their crystal site with

springs of strength k = 1010 (measured in units of kBT/l
2). Every 5× 105 Alch-MC sweeps,

k is decreased by a factor of 10 until at 5× 106 Alch-MC sweeps the spring constant was set

to 0. This allows the particles to start in their target structure, while not binding them to

strict positions or orientations throughout the simulation. Afterward, simulations are run

for 12.5×106 Alch-MC sweeps to equilibrate, after which data (parameter(s) αi) is retrieved

for another 10× 106 to 12.5× 106 Alch-MC sweeps. For every simulation, data is collected

after equilibration, at intervals of the autocorrelation time. Autocorrelation times were on

the order of 103 − 105 Alch-MC sweeps.

Alch-MC simulations were performed for FCC (with 500 particles), SC (with 512 parti-

cles) and BCC (with 686 particles) systems. All simulations were initialized with one of 36

evenly spaced shapes, varying by ∆α3,4 = 0.2 at densities between 0.5 and 0.99, varying by

∆η = 0.05. Those initial simulations that were geometrically forbidden at the given density

were discarded, and replicates were run such that a minimum of 10 independent replicates

were run for each density and structure. In order to optimize the acceptance of these shape

moves, replicates were run with Alch-MC search radius r = δαi = 0.001 − 0.003. Each

system was run maintaining zero polydispersity, with one particle shape throughout. We

visually and quantitatively (through the use of neighbor-averaged bond-order parameter Q̄4

[60, 61]) ensured that simulations did not transition from the target structure.

Additional Data for 〈αi〉 Here we provide an extended free energy landscape for FCC,

SC, and BCC structures in ∆423 for densities from (0.7–0.99). Lower densities resulted in

greater deviation from the space-filling shape, as seen in Fig. 3.4.
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Figure 3.4: Results from Alch-MC to determine the Optimal Particle Shape for
(A) FCC, (B) SC, and (C) BCC. The space-filling shape does not coincide with the
shapes determined from simulation (contour lines), even up to densities of 0.99. In each case,
there is non-trivial difference in free energy between the optimal shape and the space-filling
shape (on the order of > 3kT ).

3.6.3 Relevant Data for the Dense Packing Landscapes

Dense packing landscapes for ∆423 are reported in Supplemental Materials of Ref. [44].

We include here the relevant equations simplified and in our variable notation as reference

for the analysis performed in the main text. In ∆423, there are 17 distinct regions in the

dense packing landscape. For each region, the maximum density is given by the ratio of the

occupied volume (U) to the unit cell volume (V). The occupied volume is given by

U =


16− 8α3

4 − 16
3
α3

3 α3 + α4 ≤ 1

16− 8α3
4 − 16

3
α3

3 + 4 (α3 + α4 − 1)3 α3 + α4 > 1 .

(3.10)

The unit cell volume is defined differently for the 17 subregions of ∆423. For this study, the

relevant regions are those that achieve perfect packing in any of the three target structures

(FCC, SC, BCC). For for FCC the relevant region is 17 (surrounding the rhombic dodeca-

hedron), SC they are 7, 9, 13, and 16 (surrounding perfect cube), and for BCC they are 11
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Figure 3.5: Dense Packing Landscape near the Space-Filling Particles for (A)
FCC, (B) SC, and (C) BCC, generated from (3.12) from Ref. [44]. The dotted lines
denote a discontinuity in the derivative of the surface, where two regions meet. Note that
the axes are different for each plot. Numbers on each surface correspond to the numbered
region of the dense packing landscape.
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and 15 (surrounding the Archimedean truncated octahedron). The unit cell volumes are:

V7 = 2 (−α3 + α4 − 3)
(
α2

4 + 3α4 − α3 (α4 − 2)− 6
)

(3.11a)

V9 =
8

27
(3− α3)

(
27α2

4 − 9α4α3 − 81α4 + α2
3 + 12α3 + 63

)
(3.11b)

V11 = 2 (α3 − 2α4 + 1) (−2α3 + α4 + 4) 2 (3.11c)

V13 = 8α4 (2α4 − 3)2 (3.11d)

V15 = 8 (α4 − 2) 2 (−α3 + α4 + 1) (3.11e)

V16 = 32− 24α4 (3.11f)

V17 = 16 (3.11g)

Combining (3.10) and Eqs. (3.11) gives the maximum densities:

η7,max =
8− 8

3
α3

3 − 4α3
4 + 2 (α3 + α4 − 1) 3

(α4 − α3 − 3) (α2
4 + 3α4 − α4α3 + 2α3 − 6)

(3.12a)

η9,max =
−27

(
−16α3

3

3
− 8α3

4 + 4 (α3 + α4 − 1) 3 + 16
)

8 (α3 − 3) (α2
3 + (12− 9α4)α3 + 9 (3α2

4 − 9α4 + 7))
(3.12b)

η11,max =
−8α3

3

3
− 4α3

4 + 2 (α3 + α4 − 1) 3 + 8

(α3 − 2α4 + 1) (−2α3 + α4 + 4) 2
(3.12c)

η13,max =
2− α3

4 − 2
3
α3

3 − 1
2

(α3 + α4 − 1)3

α4 (2α4 − 3)2 (3.12d)

η15,max =
−2α3

3

3
− α3

4 + 1
2

(α3 + α4 − 1) 3 + 2

(α4 − 2) 2 (−α3 + α4 + 1)
(3.12e)

η16,max =


2−α3

4−
2
3
α3

3

4−3α4
α3 + α4 ≤ 1

2−α3
4−

2
3
α3

3−4(α3+α4−1)3

4−3α4
α3 + α4 > 1

(3.12f)

η17,max =


1− 1

2
α3

4 − 1
3
α3

3 α3 + α4 ≤ 1

1− 1
2
α3

4 − 1
3
α3

3 − 1
4

(α3 + α4 − 1)3 α3 + α4 > 1

(3.12g)
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These are plotted in Fig. 3.5 at 0.0 ≤ α3,4 ≤ 0.4 (Fig. 3.5A), 0.0 ≤ α3 ≤ 0.25, 0.75 ≤ α4 ≤

1.0, (Fig. 3.5B) and 0.9 ≤ α3 ≤ 1.0, 0.6 ≤ α4 ≤ 0.7 (Fig. 3.5C).
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CHAPTER IV

Pressure-Tunable Photonic Band Gaps in an Entropic

Colloidal Crystal

There is no cross-word puzzle that can compare in interest with the practical working

out of a problem in Physics or Chemistry. You may say that to work at an amusing

thing is not a very noble task. I can only answer that it makes a very happy life and

I think that, if we can increase the number of human beings who find happiness in

their work, we shall have gone some way towards creating a better state of things.

– William H. Bragg

The contents of this chapter are taken from “Pressure-Tunable Band Gaps in an Entropic

Crystal.”, R.K. Cersonsky, J. D. Dshemuchadse, J. Antonaglia, G. van Anders, and S. C.

Glotzer, Phys. Rev. Mat. (2018).[1]

4.1 Introduction

In the century since it was first characterized in 1913 by W. H. and W. L. Bragg, the dia-

mond structure has been a popular focus of materials research [2]. Diamond-type materials,

including the diatomic equivalent, zincblende, exhibit extraordinary properties, such as high

hardness, high thermal conductivity, and a high refractive index at room temperature. Also

known for its opticalpress-properties, diamond was the first structure calculated to have a
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photonic band gap, meaning it reflects all electromagnetic waves over a range of wavelengths

that depends on the interparticle distance. Ho, et al. [3] showed that a diamond structure

of overlapping silicon spheres arranged at a filling fraction of 34% reflects wavelengths a

factor of roughly 2.4 times the crystal lattice parameter, at any length scale (e.g., a lattice

parameter of 100 nm would result in the reflection of UV light). Crystals with photonic band

gaps in the visible range can be achieved by using colloidal particles with sub-micron to mi-

cron diameters and are commonly a target for self-assembly within the colloids community

[4, 5, 6, 7].

The unique properties of diamond-structured materials provide an interesting target for

reconfigurable photonic materials; that is, a material designed to switch to and from a

diamond-like structure with its concomitant properties. There is precedent for reconfigurable

diamond-structured materials in elemental structures: Si, Ge, and Sn each form the diamond

structure at ambient pressure and transition to a tetragonal metallic phase, β-Sn, at higher

pressures [8, 9].

This inspires the question: can we design a photonic crystal that reflects wavelengths

in the visible range of the electromagnetic spectrum, and whose structure and thus band

gap are reconfigurable? Such target criteria lead us to consider colloidal crystals, where

reconfigurability has been demonstrated [10, 11] and where the self-assembly of the diamond

structure is possible [12, 13, 14, 15, 16, 17, 18]. Core-shell colloidal crystals offer the further

possibility of operating on two separate length scales, that of the high dielectric core and

that of the shell. Because the size and shape of the core is independent of the size and shape

of the particle in which it is imbedded, the photonic properties are independently tunable

from the length scale that is relevant for assembly.

Particle shape adds anisotropy dimensions ([19]) that allow one to assemble and transition

between a diversity of crystal structures not easily achievable with spherical particles [20]

and colloidal polyhedra have now been realized for a variety of materials [21, 22, 23, 24, 25,

26, 19]. Moreover, it has been demonstrated that directional entropic forces [27, 14] arising
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from the statistical tendency for particle facets to align are more than sufficient to produce

crystal structures of extraordinary complexity and diversity [28, 29, 30], including diamond

[14]. Polyhedral nanoparticles have been synthesized with spherical and nonspherical cores

[31, 32, 33, 34], comprised of materials such as silica, silver, gold, or palladium.

Here we report a reversible structural phase transition with photonic implications for

a simulated system of hard core-shell polyhedra with tetrahedral symmetry ordering via

directional entropic forces into a diamond structure. The transition is driven by pressure,

and leads from the well-known cubic diamond structure to a tetragonal diamond derivative

(TDD) distinct from the aforementioned β-Sn. The transition provides a reversible recon-

figuration process for a new target for synthesis: a photonic colloidal material that can be

switched among as many as four possible photonic states, each of which permits a different

frequency range of light in the infrared or visible regimes. Additionally, by noting that all

three phases — cubic diamond, TDD, and β-Sn — are related through scaling along a major

axis, we gain insight into the mechanism driving high-pressure transitions between diamond

and β-Sn in atomic systems.

4.2 Methods

We conduct our study in the alchemical thermodynamic ensemble, implemented through

the Digital Alchemy framework [35]. This ensemble is an extension of the canonical ensemble

that treats particle shape, parametrized by a set of values αi, as a thermodynamic state

variable. Each αi parameter has an associated conjugate alchemical potential µi. The NV Tµ

ensemble, in which each αi is allowed to fluctuate, is defined with the partition function

Z =
∑
σ

e−β(H−
∑
i µiNαi). (4.1)

Here,
∑

σ denotes a sum over all microstates σ and shape parameter values αi. The

variables αi and µi are related to derivatives of F , the thermodynamic potential for the
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ensemble:

µi =
1

N

(
∂F

∂αi

)
N,φ,T,αj 6=i

(4.2)

and

αi =
1

N

(
∂F

∂µi

)
N,φ,T,µj 6=i

, (4.3)

where

F = −kBT log (Z) . (4.4)

For all simulations, we used the hard-particle Monte Carlo sampling method of the

HOOMD-blue simulation toolkit [36, 37]. We conducted alchemical hard particle Monte

Carlo (Alch-HPMC) simulations within the NV Tα, NPTα, and NV Tµ ensembles. Further

details on Alch-HPMC can be found in Refs. [35, 38]. All simulations were run so that each

particle’s shape is specified by one α and every particle in the system changes identically

and simultaneously as α changes.

4.2.1 Simulations in NV Tα

In the NV Tα ensemble, we simulated systems of 1728 particles with unit volume, with

state points from α ∈ [0.3, 0.5] with ∆α = 0.01 initialized in the diamond structure at

φ = 0.55, the known assembly structure for these shapes [14]. These simulations were then

incrementally compressed to a target density of φ = 0.55–0.95 with ∆φ = 0.05, allowing

for the box aspect ratio to change as a separate MC move while maintaining constant box

volume. For regions of interest, additional state points were run at ∆φ = 0.025. The box

aspect ratio search radius was set to 0.01 per sweep. Simulations were then run for 1.1×107–

2.4× 107 MC sweeps, until equilibrated. A minimum of four replicas were run for each state

point.

Similar simulations were run by initializing at the densest packing of the shape family
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in both diamond and its tetragonal derivative. The box was expanded isotropically to a

target density, then simulated using MC with box moves for 1.1 × 107–2.4 × 107 sweeps.

These simulations were run with the same parameters as systems initialized in the diamond

assembly phase.

4.2.1.1 Analysis

Each frame of a simulation was separated into crystal grains using in-house environment-

matching algorithms (E. G. Teich, private communication) analyzing the bond angles of each

particle with its nearest neighbors and then separating the particles into groups based upon

these arrangements. For some simulations, compression and the reduction in symmetry

caused the formation of multiple grains within the assembly, and these state points were

removed from the results to avoid distorting the influence of these simulation data. We used

in-house software injavis to determine the 8-particle unit cells of all simulation runs. We

used the signac framework for all data management [39].

4.2.2 Simulations in NPTα

We simulated systems of 512 particles with unit volume and constant shape in an NPTα

ensemble to generate an equation of state for the given transformation at 35 unitless pressures

(= PV
kBT

with unit volume) between βP = 5–100 and α = 0.4–0.5, with ∆α = 0.01. Additional

state points were run for regions of interest and for α = 0.5. Systems were initialized in the

tetragonal diamond derivative (c/a =
√

0.4) at maximum density or in their assembled

diamond phase at the assembly density, and held at target pressure to equilibrate over

1× 107–4× 107 MC sweeps. Simulations for shapes of interest (α = 0.5, P = 9.8–10.0) were

run with longer simulations and additional state points (up to 10). A minimum of three

independent simulations were run for all other state points.
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4.2.3 Simulations in NV Tµ

Alch-HPMC simulations were run in the NV Tµ ensemble to find the thermodynamically

preferred structure and particle shape. Systems of 512 particles were initialized with α = 1
3

and φ = 0.6 and allowed to equilibrate in shape space. The particles were then compressed

isotropically to a target φ ∈ [0.70, 0.95] with ∆φ = 0.05, and allowed to equilibrate using

MC box moves and subsequently within shape space. This step was repeated until both

structure and shape were at equilibrium. Systems were then decompressed to φ = 0.60 and

allowed once again to equilibrate to check for reversibility.

4.2.3.1 Potential of Mean Force and Torque (PMFT)

For the data shown, we averaged the PMFT values for 150 frames from earlier NV Tµ

simulations at a range of φ values. The PMFT results were visualized using the Python

package mayavi.

4.2.4 Calculation of Photonic Band Structure

We computed the photonic band structure for different forms of tetragonal diamond

using MIT Photonic Bands (MPB) [40]. This package computes the eigenmodes of Maxwell’s

equations through conjugate-gradient minimization of the block Rayleigh quotient in a plane-

wave basis [40].

We computed the size and location of all photonic band gaps for all structures computed

in NV Tα simulations in Fig. 4.3(b), including both c/a ratio and lattice vector magnitude

(to reflect density). For radius we took the insphere of the respective polyhedra in ∆323

and for the dielectric constant we chose 11.56, that of a theoretical silicon-type material and

assume the material to be lossless, as has been done in similar studies [41, 42, 43] Actual

silicon would not make a good candidate material for photonic crystals in the visible range,

as it has high absorbance in this range. We computed the irreducible Brillouin zone using

the package SeeK-path [44], an open-source k-space path finder.
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Figure 4.1: The ∆323 Shape Parameterization. (a–b) The ∆323 shape family, ranging
from an octahedron (α = 0.0) to a tetrahedron (α = 1.0). The intersection of planes at
parameterized distances shown in (a) generate the resulting shapes in (b). All shapes are
scaled to unit volume in simulations.

Resulting photonic band gaps were normalized by the mid-gap frequency, consistent with

convention.

4.3 Model and Structural Comparison

To represent the particle shells, we simulated a family of convex shapes with tetrahedral

symmetry (here denoted ∆323) [45] using the Digital Alchemy (DA) framework [35]. In

DA, a design parameter is introduced as a thermodynamic state variable, which defines an

extended alchemical ensemble in which either the design parameter, the alchemical variable,

or its conjugate, the alchemical potential can fluctuate while the other remains fixed.

The ∆323 family is constructed through the intersection of planes arranged tetrahedrally

around the particle center, parametrized by α3, which can be viewed as the truncation along
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a set of three-fold axes, in the following called α for brevity. The shape family is shown

in Fig. 4.1; all shapes are scaled to unit volume. Hard shapes with α = 0.3–0.5 assemble

into diamond at packing fraction (synonymous with filling fraction) φ = 0.5–0.6 [14]. When

these assembled crystals are compressed to higher packing fractions, we observe a transition

to a tetragonal diamond derivative (TDD) structure. Because this transition occurs via local

particle rearrangement only, it is easily achievable at higher densities, where self-assembly

from a fluid may be thwarted by an intervening glass transition.

These two crystal structures, diamond and TDD, differ in two major respects: the aspect

ratio of the unit cell and the particle orientations. The TDD structure is defined by lattice

vectors ~a1 = [a, 0, 0], ~a2 = [0, a, 0], ~c = [0, 0, c], with particles situated at positions 0,0,0

and 1
4
, 1

4
, 1

4
(in fractional coordinates) on a face-centered lattice (i.e., with centering vectors

[0, 0, 0], [1
2
, 1

2
, 0], [1

2
, 0, 1

2
], and [0, 1

2
, 1

2
]). For ease of comparison, tetragonal unit cells will

be expressed in a non-standard face-centered setting tF8, such that all unit cells can be

described in terms of c/a for a face-centered unit cell (containing 8 particles), where c/a = 1

for the face-centered cubic unit cell of diamond (cF8-C). Shapes from the ∆323 family densely

pack into TDD with c/a =
√

0.4 ≈ 0.6325 (which is also c/amin for ∆323) and α = 0.5.

The β-Sn structure (referred to by its Pearson symbol tI4-Sn) can be defined as a TDD

structure at c/a ≈ 0.3859 (given a tF8 unit cell). tI4-Sn and TDD structures in ∆323 both

have space group I41/amd and Wyckoff position 4c 0, 0, 0, albeit at different ratios of c/a.

TDD structures with c/a ≥
√

0.4 have tetrahedral coordination (coordination number 4),

whereas tI4-Sn has two additional particles adjacent to the first neighbor shell, resulting in

an octahedral coordination (coordination number 6). Other TDD phases have been found in

studies of atomic structures although with aspect ratios near that of tI4-Sn or high-pressure

tI4-Cs, which has c/a > 1 [46, 47].

Snapshots of the two structures observed in our simulations are shown in Fig. 5.2(a–d),

with their radial distribution function (RDF) peaks in Fig. 5.2(e) i .

iSee Supplemental Material at [] for structure diagrams comparing diamond and TDD (c/a =
√

0.4) with
tI4-Sn, a description of alchemical hard particle Monte Carlo (Alch-HPMC), plots of photonic band gap
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Figure 4.2: Structural Diagrams for Diamond and its Tetragonal Derivative. (a–d)
Structural comparison between (a, c) diamond and (b, d) the tetragonal diamond derivative
(TDD) with c/a =

√
0.4, both shown with shape at α = 0.5. Here, we show projections along

the major axis of cubic diamond and along two differing axes in the tetragonal derivative
structure (~c in (b) and one of the equivalent ~a-axes in (d)). The particle positions appear
unchanged when viewed along the ~c-axis, but the particles rotate about the ~c-direction.
(e) The peaks in the radial distribution function (RDF), i.e., the distances of the nearest-
neighbor shells. The fourth nearest neighbors (yellow) in the ~c-direction in diamond are
immediately outside the third neighbor shell in TDD at c/a =

√
0.4.
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4.4 Results

4.4.1 Phase Diagram

We report phase diagrams comparing the c/a ratio of the tF8 unit cell for varying den-

sities and shape parameter α. These phase diagrams reveal that, although all shapes with

0.3 ≤ α ≤ 0.5 assemble into diamond, they will transition to tetragonal unit cells at higher

densities. The NV Tα simulations generating this phase diagram and NPTα simulations for

computing the equation of state were conducted by initializing both in the assembled and

densely packed structures and equilibrating at the desired density or pressure.

In Fig. 4.3(a), the contour lines map the c/a value of the unit cell of the equilibrium

structure for systems of constant shape at varying densities. The shades of red represent

the c/a ratio of the unit cell lattice vectors, with the lighter red region showing where cubic

diamond is the configuration with the lowest free energy (c/a = 1), and darker reds indicating

TDD structures, where c/a < 1 is lower in free energy. The region marked as geometrically

forbidden (grey) shows the densities and α values at which particles would be forced to

overlap.

In this study, shape and structure are intrinsically intertwined due to the shape-dependency

of the transition from cubic diamond to its tetragonal derivative. Using Alchemical hard

particle Monte Carlo (Alch-HPMC) (described in [38] and 4.6) with constant alchemical

potential µ = 0, we can find the shape that produces the lowest free energy structure at a

given density or pressure, and determine where the crossover from the diamond to the TDD

stability region occurs (〈α〉 shown in black on Fig. 4.3(a)). At low densities, the lowest

free energy phase is diamond, but at densities & 0.75 (or equivalently at unitless pressures

p∗ ≥ 10–15) a TDD structure will have lower free energy in this shape space. Decompression

of this high-density system showed full recovery of the diamond structure.

sizes at lower ε, and a diagram of the simulation protocol
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Figure 4.3: Simulation Results for NV Tα, NPTα, and NV Tµ. (a) Composite “phase
diagram” from all simulations. The putative densest packing in either diamond or TDD
structure as a function of shape is the upper limit of the phase diagram, the geometrically
forbidden region shown in grey. Shades of red represent the c/a ratio of the unit cell,
with the lighter red region showing where diamond is the configuration with the lowest free
energy (c/a = 1), and darker reds indicating TDD structures with lower c/a values. The
black data set represents results from NV Tµ simulations, denoting where the crossover from
the diamond to the TDD stability region occurs as a function of density and shape. (b)
Equation of state for α = 0.5 evaluated in compression and expansion runs. The main plot
shows the average values, with an inset showing the average and standard deviations around
the transition pressure. (c) Potentials of mean force and torque for α = 0.5 at varying
pressures. The PMFT wells shift from the center of the large face of each particle toward
one edge. This shows that the coordination remains tetrahedral, but becomes distorted with
increasing pressure.
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4.4.2 Equation of State and PMFT

We investigated the nature of the phase transition and behavior of potentials of mean

force and torque (PMFTs) for the phase transition corresponding to the largest change in c/a,

at α = 0.50, in Fig. 4.3(b, c). In Fig. 4.3(b), the main plot represents the average for both

initializations, with an inset representing the average and standard deviations around the

transition pressure. The transition exhibits a small discontinuity in βP (φ) and no hysteresis,

which implies that it is either a weak first-order or a second-order transition [48]. PMFTs, the

calculation of which is detailed in [27], provide a statistical landscape for entropic particle

bonding—i.e., they show the probable locations for the neighboring particles of a given

reference particle in units of free energy. PMFTs show that after the transition occurs, the

bonding remains four-fold, with the coordination being that of a distorted tetrahedron.

4.4.3 Photonic Band Structures

Diamond exhibits a complete photonic band gap when the lattice sites are populated

with dielectric spheres [3]; thus the transition from the diamond structure to any form

of TDD structure would result in a shift in the photonic properties due to the symmetry

reduction of the lattice from cubic to tetragonal. We computed the photonic band structure

of the equilibrated crystals found through simulation using MIT Photonic Bands (MPB) [40],

replacing each polyhedral shell with its insphere core. Because the polyhedra are scaled to

unit volume, there is a one-to-one mapping between shape parameter α and insphere radius.

We report the photonic band frequencies in units of (speed of light)/a, where a is the

lattice constant. Each complete photonic band gap is reported in unitless dimensions, defined

as the width of the band gap over the mid-gap frequency, ω∗. The conversion from ω∗ to

absolute wavelength is:

λ =
a

ω∗
. (4.5)

While we anticipated a change in photonic properties from an “on” to “off” state upon
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converting the diamond structure to TDD, we were surprised to find that the results suggest

a potential multistate material with one of four possibilities with regards to a complete

photonic band gap: i) no gap, ii) a complete gap between bands 8 and 9, iii) a complete

gap between bands 2 and 3, and (iv) complete gaps between both bands 2 and 3, and 8 and

9. Examples of (ii) and (iii) are shown in Fig. 4.4(b) and (c), respectively. These findings

suggest how to make a material that could switch between permitting all light and blocking

one set of frequencies or another.

Taking the equilibrated structures (i.e., thermalized) from simulation and considering

each core of the polyhedral particles as the high dielectric medium dielectric constant ε =

11.56, we computed the photonic band structure for structures with packing fractions φ =

0.6–0.975 and shape parameters α = 0.3–0.5. The maximum band gap width is 9.2% and

all bands were centered around mid-gap frequencies of approximately 0.260–0.298 (between

bands 2 and 3) or 0.384–0.459 (between bands 8 and 9). Unitless band gap widths are shown

for the ∆323 family of shapes as a function of packing fraction in Fig. 4.4(a).

In addition to computing the photonic band structure for ε = 11.56, we also considered

lower dielectric constants (shown in Fig. 4.8). From these, we learn that complete photonic

band gaps between bands 2 and 3 are possible with a minimum dielectric constant of 5.0,

and between 8 and 9 with a minimum dielectric constant of 8.0. These values suggest that

this type of photonic band structure would not be possible with crystals made of polymeric

materials (which generally have ε < 4.0, such as poly(methyl methacrylate) particles), but

would require materials of higher dielectric constant.

4.5 Discussion and Conclusions

We posit that this system could be synthesized via a variety of methods, including by

assembling spherical core-polyhedral shell nanoparticles, as outlined earlier. The diamond

structure has been stabilized with nanocages made of DNA that are functionalized to hy-

bridize with coated nanoparticles [49]. This could potentially extend to the TDD structure
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by changing the length of the strands at the binding sites or the cage geometry. The transi-

tion may also be achievable through DNA-programmable assembly [50], for which the lengths

and bonding strength of DNA may be gleaned by examination of the PMFTs [51].

These results represent the theoretical behavior of an ideal system, and will be affected

by imperfections introduced during synthesis. Previous studies have discussed the sensitivity

of high band-number gaps to disorder [52], which may cause the gap between bands 8 and

9 to disappear in most real-world systems. In this case the system would only demonstrate

a gap between bands 2 and 3, and the material would exhibit two states (e.g., “on” in the

TDD state and “off” in the diamond state). This, in addition to the fact that the 8-9 band

gap requires a much higher dielectric constant than the 2-3 gap, would make a two-state

material a more robust target.

The phase transition we report at the colloidal length scale may also reveal insights about

the atomic transition on which it is based. Although other TDD structures have not been

observed as an intermediary between atomic diamond and β-Sn phases, such a consideration

could provide new perspective into the mechanism underlying the phase transition. In our

simulations, all effects other than shape entropy are excluded [27], and we restrict the particle

geometry to symmetric truncations of tetrahedra, i.e., the ∆323 shape family. Thus we prove

that entropy alone suffices to explain the transition in colloidal systems from diamond to a

lower c/a tetragonal derivative. This correlation strengthens a supposition made by G. J.

Ackland, who proposed that it was plausible that entropy is the driving force for diamond-

to-β-Sn transitions, based on the absence of such a transition at 0 K [8].

Our colloidal system differs from atomic systems in several respects. At the higher c/a

ratio (≈ 0.63 vs. ≈ 0.39), the coordination remains four-fold, while the neighboring particles

form a distorted tetrahedron (as compared to a regular tetrahedron in perfect diamond). This

retention of four-fold coordination may explain the reversibility in our system, compared to

the irreversibility in atomic systems, which transition to octahedral coordination.

The same cannot be said for systems adopting the diatomic analog to diamond, zincblende,
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as these systems do not adopt a β-Sn-equivalent structure upon pressurization: the tran-

sition geometry would result in the nearing of like-charged, mutually repulsive atoms [53].

Most III-V semiconducting zincblende-formers transition to wurtzite, a hexagonal diamond

derivative under pressure. While β-Sn is topologically identical to diamond, wurtzite is to

cubic diamond as cubic-close sphere packing is to its hexagonally-close packed relative: the

local coordination is identical, but its network is topologically distinct, which would require

a breaking of bonds and rearrangement of the constituent atoms in the transition.

We have predicted a new phase transition achievable in colloidal systems, induced by a

slight change in pressure or in particle shape. This structural transition provides an exciting

target for synthesis: a photonic material switchable between multiple photonic band gap

states, either between two different gaps, or –perhaps more practically– between “on”/“off”

states. Given the placement of the two possible gaps, complete photonic band gaps would

be achievable in colloidal crystals in visible or infrared wavelengths, and could potentially

toggle between two colors or separate regimes in the electromagnetic spectrum. For example,

by using spheres made of a high-dielectric material with ε ≈ 8.0− 9.0 (such as titania [54])

that inscribe truncated tetrahedra with α = 0.5 (see Fig. 4.4) and a lattice constant of

a = 200 nm, a three-state material could be self-assembled with a violet (400 nm) band gap

at low densities, no band gap at intermediate densities, and a red (685 nm) band gap at high

densities. If a larger lattice constant of a = 8.2 µm is used, which is achievable for colloidal

systems, the lower band gap occurs at 28 µm, or about 11 THz, suitable for sub-millimeter

photonic applications. If a is a tunable design parameter, this system could exhibit bands

gaps at target wavelengths whose ratios are approximately 5:3.
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4.6 Supplementary Information

4.6.1 Comparison of Diamond, TDD, and β-Sn

Given a non-standard unit cell of tF8, these three structures have corresponding c/a

ratios of 1.0,
√

0.4 ≈ 0.6325, and 0.3859, respectively. For unit cell tI4, the structures have

corresponding c/a ratios of
√

2 ≈ 1.4142,
√

0.8 ≈ 0.8944, and 0.5515, respectively, as the

standard body-centered setting tI4 differs in c/a ratio by a factor of
√

2 from tF8 systems.

Both TDD and tI4-Sn exhibit symmetry of space group I41/amd (no. 141), with diamond

exhibiting higher symmetry, consistent with space group Fd3̄m (no. 227). Particles in TDD

have four nearest neighbors as in diamond, but arranged in a distorted tetrahedral shape,

while the coordination number of β-Sn-type structures is six, the coordination polyhedron

being a distorted octahedron.

It should be noted that tI4-Sn is geometrically forbidden for shapes in ∆323. Shapes in

∆323 pack into TDD at a maximum density of 1 and c/amin =
√

0.4. The densest packing

arrangement of shapes with α ≤ 0.36 corresponds to a different structure type, α-As (hR6-

As) [14], which is not studied in this publication as the difference in topology suggests that

it cannot be obtained by a non-reconstructive transition, i.e., without a drastic change in

topology.
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Figure 4.5: Structure Diagrams for (a) diamond, (b) TDD at c/a =
√

0.4, and
tI4-Sn (β-Sn), including snapshots of nearest neighbor RDF peaks, and local environments.
All three structures are related by a scaling along a major axis. Particles in TDD have
four nearest neighbors as in diamond, but arranged in a distorted tetrahedral shape, while
the coordination number of β-Sn-type structures is six, the coordination polyhedron being
a distorted octahedron.

4.6.2 Equations of State

Here we present the equations of state (EOS) for α = 0.4, 0.45, 0.5. Every EOS shows

a kink in the density around the transition pressure, as seen in Fig. 4.6, implying a weak

first-order or second-order phase transition. A kink in c/a ratio also occurs at the same

pressure, as seen in blue in Fig. 4.6.

4.6.3 Protocol for NV Tµ Simulations

Alchemical Monte Carlo simulations were run in the NV Tµ ensemble to find the thermo-

dynamically optimal shape and structure in ∆323. Systems of 512 particles were initialized

with α = 1
3

and φ = 0.6 and equilibrated in shape space. The particles were then compressed

isotropically to target φ = 0.7− 0.9 with ∆φ = 0.05, and equilibrated both with respect to
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Figure 4.6: Equations of state for α = 0.4, 0.45, 0.5. Density and c/a ratio with respect to
pressure are shown in black and blue, respectively. Equations for all three shapes showed a
small kink in density and c/a ratio with respect to pressure, implying a weak first-order or
second-order transition. Error bars denote standard deviation across multiple independent
simulations run at each statepoint, and are in most cases very small relative to the data
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Figure 4.7: Simulation Scheme for Alch-HPMC Simulations, done in four separate
steps: 1) Simulations were started by equilibrating a system with a diamond-type crystal
structure at φ = 0.6 to the previously reported low free energy shape α = 0.37 [35]. 2)
Systems were compressed to the target packing fraction, after which Monte Carlo moves
with box aspect ratio change were enabled and equilibrated. 3) Alchemical Monte Carlo
moves with box aspect ratio changes were run until both box and shape were equilibrated.
4) Systems were decompressed to φ = 0.6, and allowed to equilibrate in box aspect ratio and
shape, returning to step (1).
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c/a and shape. This step was repeated until both structure and shape were at equilibrium.

Systems were then decompressed to φ = 0.6 and allowed once again to equilibrate with

respect to α and the structure to check for reversibility.

4.6.4 Photonic Band Structure

In addition to computing the photonic band structure for the dielectric constant of silicon,

we also computed the unitless width of any complete photonic band gaps for lower dielectric

constants, included here. We sampled dielectric constants ε ∈ [1.0, 12.0] and found complete

band gaps in systems for dielectric constants as low as 5.0 (between bands 2 and 3) and 8.0

(between 8 and 9).
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Figure 4.8: Photonic band gap widths measured between bands 2 and 3 (red) and
between bands 8 and 9 (blue) for structures reported in the main text. All polyhedra have
been replaced with spheres of radius equal to the polyhedral insphere radius, and with varying
dielectric constants, ε ∈ [5.0, 12.0]. The legend in the upper left plot holds for all plots. The
solid black line delineates allowed structures from geometrically forbidden structures.
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CHAPTER V

Understanding Shape Space for Nanoparticle Design

The mathematical sciences particularly exhibit order symmetry and limitations; and

these are the greatest forms of the beautiful.

– Aristotle

5.1 Introduction

In Chapter IV, we witnessed a system of nanoparticle shapes that transitioned between

two structures within the NV Tµ ensemble, even when constraints were imposed to maintain

the target structure. This raises an alarming question: if the constraints are overpowered

in DA simulation, what is driving the exploration of shape space? How will optimizing the

free energy of nanoparticle shape for a target structure differ from designing the optimal

nanoparticle for self-assembly?

To answer this lofty question would require a pre-emptive knowledge of the free energy

landscape of highly dimensional space of all shapes, and the computation of this landscape

would require untenable amount of compute time. Therefore, we must choose aspects of the

free energy landscape to compute that provide the greatest amount of insight at smallest

computational cost.

First, let’s discuss some variable terminology. When discussing shape, I will use α to

denote a particular shape space, whether through some parametrization or abstract reference.
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To discuss a region of shape space, I will use α, and to discuss a region of shape space that

assembles a structure, I will use αΛ, where Λ is the structure assembled. To denote the shape

corresponding to the global or local (to some region of shape space) free energy minimum, I

will use 〈α〉 and 〈αΛ〉, respectively.

In this chapter, I will focus on two such aspects: 1) the results of DA in an unconstrained

system, and 2) the effect of varying the strength of spring-type constraints on the results

of DA. The goal of (1) is to provide insight into the competing driving forces during shape

space exploration. In other words, I aim to decipher which shape features are a result of

the constraints provided for DA, and that are a result of the free energy landscape which

DA is exploring. These simulations were designed by myself, C. X. Du, and S. C. Barterian.

The goal of (2) is to report on the effects of constraints on the accessible shape space during

simulation.

Finally, I will make suggestions as to implementations of DA aimed to provide ideal

nanoparticle shapes for self-assembly. These methodologies will be implemented by T. C. Moore

and R. A. LaCour as part of ongoing work.

5.2 The Ground State of Shape Space

5.2.1 Methods

DA can be implemented to explore a variety of “slices” of shape spaces, with the use

of spheric triangle groups, truncation parameters, and rounding parameters as popular

choices.[1, 2, 3, 4, 5] One may also implement shape space for all convex polyhedra with

3xN variables, where N is the number of vertices. The formulation of the partition function

for this ensemble is:

Z =
∑
σ

e−β(H−
∑
iNαiµi) (5.1)

where β is the reciprocal to kBT , H is the classical Hamiltonian, N are the number of
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particles, αi and µi are the alchemical parameter and its conjugate, the alchemical potential.

For each independently optimized vertex, there are three α and µ parameters, one for each

coordinate of the vertex.

We choose the initial shapes by randomly placing N vertices on a unit sphere, where N ∈

[4−12, 14−20, 24, 28, 32, 40, 50], with 5-10 unique shapes for each N . For N = 4, 6, 8, 12, 20,

we also initialized shapes corresponding to the Platonic solids. All shapes are scaled such

that V = 1 throughout simulation.

For each shape, I simulated independently-seeded systems of 512 particles initialized in

a periodic structure at sub-assembly packing fractions (φ ≈ 0.1). Systems were compressed

isotropically without change in particle shape to the target packing fraction φ with the

hard-particle Monte Carlo (HPMC) functionality of HOOMD-Blue [6, 7] and then ran until

equilibration over 1.0E7−2.0E8 Monte Carlo sweeps implementing the alchemical ensemble

extension to HPMC (Alch-HPMC). Simulations were run for φ = 0.5, 0.51, 0.52, 0.53, 0.54,

0.55, 0.57, 0.59, 0.61, 0.63, 0.65.

The resulting shapes were analyzed using the isoperimetric quotient (IQ) as a scalar

representation of the shape.i,ii,iii IQ is not a unique value – many distinct shapes share

similar IQ values, therefore I qualitatively analyzed the resulting shapes to ensure that all

shapes corresponding to a single IQ value were of the same type. Autocorrelation times of

the IQ were on the order of 1.0E3 − 8.0E5 Monte Carlo sweeps.To determine structure of

the system throughout simulation, I analyzed the structures using in-house software Injavis

and with the Steinhardt order parameters.[9]

5.2.2 Results

Here I report two representations of the phase diagram for unconstrained systems: 1)

equilibrium shape, 2) equilibrium structure.

iIsoperimetric quotient is defined as IQ = 36π ∗ V 2/S3. The trace of the moment of inertia could also
be used as a scalar representation.

iiThe method for finding the isoperimetric quotient are reported in Ref. [8].
iiiThe values of IQ for a sphere is by definition 1.0
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Figure 5.1: Results of Simulation Across Unconstrained Shape Space: Resulting
Polyhedra. The color of the phase diagram corresponds to values of isoperimetric quotient
(IQ). Examples of common polyhedra are listed on the colorbar at the appropriate IQ value
to give reference for the shapes found in simulation. Shapes with IQ values similar to the
sphere and bi-cone, which are both non-polyhedral, were approximates; i.e. highly spherical
shapes with many vertices or n-gonal bipyramids, respectively. Multiple colors within the
same pixel correspond to multiple replicas yielding varying shapes.
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Figure 5.2: Results of Simulation Across Unconstrained Shape Space: Resulting
Structures. The color of the phase diagram correspond to self-assembled structures from
simulation. Six distinct categories of structures emerged (1) FCC and FCC-like (red), (2)
BCT and BCT-like green), (3) SC (blue), (4) Simple hexagonal or Columnar hexagonal
(teal), (5) Dodecagonal Quasicrystal (violet), and (6) Disordered (white). Multiple colors
within the same pixel correspond to multiple replicas yielding varying structures.
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Figure 5.3: Examples of Large Change in 〈α〉 across φ for N = 5, 9, 12, 32, 40, and
50 The colors of the data points correspond to values of isoperimetric quotient (IQ) with
the same color scheme as Fig. 5.1. Each plot is marked with a red dotted line corresponding
to the most spherical shape accessible in the given shape space of N vertices. Data points
shown are for independent simulations, with error bars marking the standard deviation.

For shapes with four vertices, the system adopted a regular tetrahedral shape in a do-

decagonal quasicrystal for all φ. For shapes with five or six vertices, the ground state

corresponds to an asymmetric polyhedron in a disordered phase (rather than converging to

the more symmetric tetrahedron in the dodecagonal quasicrystal phase).

For shape spaces containing shapes with 12 or more vertices, FCC is the dominant ground

state. At low packing fractions, a sphere-like shape is thermodynamically preferred, whereas

at higher packing fractions (φ ≈ 0.63) a less spherical rhombictricontahedron is the preferred

shape. This is potentially due to the onset of jamming which occurs for spheres at φ = 0.63,

below which spheres can spontaneously assemble from a disordered fluid.

I have highlighted cases of N with a large change in 〈α〉 across packing fractions in

Fig. 5.3.
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5.2.3 Discussion

The results from this section demonstrate that, in the absence of any structural con-

straints, there is a large free energy well within shape space, as shown in Fig. 5.1 and 5.2.

This implies that the results of DA simulation are heavily influenced by the underlying free

energy landscape, which must be taken into account when performing DA for design. Prac-

tically, this suggests that the particle shapes found by exploring shape space using DA may

be more spherical than necessary to assemble the target structure – if shape space has a large

free energy well corresponding to sphere-like particles, then the entropy gained by increasing

the sphericity of a particle in simulation may be on the same scale as the entropy gained

due to the specific shape characteristics that lead to higher entropy in the target structure.

In such a case, suppressing the effects of the free energy landscape of shape space may lead

to particle shapes that are more likely to assemble the target structure.

5.3 The Effects of Structural Constraints

Given that the free energy well within shape space can contribute to the entropy of

the lowest free energy shape for a given structure, it becomes more important to inspect the

constraints that bias a solution away from this global minimum. Previous implementations of

DA have used translation and rotational restraints quantified with spring constants to restrict

the space of shapes within which DA may sample and transform the free energy landscape

through energetic penalties applied to environments not found in the target crystal.

Let me pose a few scenarios. Imagine structures Λ1 and Λ2 such that αΛ1 and αΛ2 lie

near each other in shape space and minFΛ1 >> minFΛ2 (e.g. imagine that Λ1 and Λ2 are

BCC and FCC, respectively). Λ1 and Λ2 are topologically similar but distinct, such that

the boundary between αΛ1 and αΛ2 is not well defined, and many α’s between αΛ1 and αΛ2

form distortions or mixtures of Λ1 and Λ2. When using DA to sample this shape space,

designing for structure Λ1, the entropy gained by small distortions along the path to Λ2
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may be larger than the entropy gained by finding a shape that assembles perfectly into Λ1.

Applying constraints may apply an energy penalty to these distortions, but may also restrict

the entropy enough such that a flat, asymmetric shape is preferable based upon rotational

entropy maximization in a highly constrained system.

Consider also a structure Λ3 where αΛ3 fully bounds another region αΛ4 . This may

happen where Λ3 will form for shapes only where Λ4 is not geometrically possible at assembly

packing fractions. This “interrupting” phase may have one of many effects. If 〈αΛ3〉 ∈ αΛ4 ,

the optimization of free energy for Λ3 becomes ill-defined, as there is no free energy minimum

shape which assembles Λ3. Where do we go next? 〈αΛ3〉 s.t. 〈αΛ3〉 6∈ αΛ4? This shape may,

if FΛ3 is smooth, be at the boundary of αΛ3 and αΛ4 and may not easily form Λ3.

5.3.1 Methods and Models

To test the sensitivities of free energy minimization to the structural constraints, I com-

puted αminFΛ
for different Λ across various translational and rotational spring constants k

and q, respectively. I chose Λ to be structures which were either (1) well-studied and thereby

comparable across past literature, (2) topologically similar to a structure in (1), or (3) con-

tained multiple rotations of the same particle environments. For this, our set of structures

studied is (1) FCC, BCC, SC, diamond, (2) oF8-Am, and simple hexagonal (3) cI12-Ga,

tI32-K.

The simulation protocol consisted of three parts, denoted (A), (B), and (C). All simula-

tions used HOOMD-Blue, including volume-constrained box MC moves.[10] (A) Each of these

structures were simulated at φ = 0.6 with 256−734 particles and q, k ∈ {0, 10, 100, 1000, 10000}.

All shapes were intialized with 50 vertices (to avoid the vertex-dependent effects found in

Sec. 5.2) and run with DA for a total of 1E7−1E8 MC sweeps. Autocorrelation times of the

isoperimetric quotient were on the order of 1E3−3.5E6 MC sweeps. IQ was used as the order

parameter to assess when the simulation had reached equilibrium. Simulations that quickly

converged to IQ ≈ 0 were interrupted, as computational complexity grows exponentially
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as L/D → ∞, and this signified that the system was over-constrained and would continue

to flatten with further simulation. (B) The resulting particle shapes were initialized in the

target structure and run for up to 1E7 MC sweeps without constraints to see if the structure

melted, recording the pressure. (C) Those systems which did not melt after this timeframe

were re-initialized in a fluid at φ ≈ 0.1 and compressed to φ = 0.6 and run for 1E7 − 5E7

MC sweeps to see if the target structure would assemble. Pressure was used as the order

parameter to assess when the simulation had reach equilibrium. Structures were classified

as having (1) assembled the target, (2) assembled a lower F phase, or (3) assembled a higher

F phase. (2) and (3) were assessed by comparing the pressure of the system to that of step

(B), as lower F phases, through the thermodynamic relationship, will have lower pressure.

5.3.2 Results

Here I report 〈αΛ〉 for each of our structures, and note which particle shapes were (1)

unstable in the target structure, (2) stable in the target structure but self-assemble a lower

pressure structure, (3) stable in the target structure but failed to self-assemble, and (4) stable

and self-assembled into the target structure.

For all previously studied targets, I was able to find shapes using digital alchemy that

would assemble the target structure, consistent with previous literature.[11] Additionally, I

found a few new shapes capable of assembling these targets: the golden rhombohedron in

simple cubic in (c) and the squashed gyrobifastigium in diamond in (d), which were found

at k = 10− 100, q = 1000− 10000 and k = 0, q = 10000, respectively. I was unable to find a

shape that would self-assemble into any of the complex phases in Fig. 5.5.

5.3.3 Discussion

From Fig. 5.4-5.5, we can see a few universal effects of structural constraints for DA

simulations. For example, for all systems under strong structural constraints (i.e. q >

1000 and k > 1000) 〈αΛ〉 approached flat, disc-like shapes and under weak constraints
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Figure 5.4: Effect of Spring Constraints on 〈αΛ〉 and target structure stability
for (a) FCC, (b) BCC, (c) SC, and (d) Diamond. In each subfigure, the left panel
corresponds to equilibrium particle shape obtained using digital alchemy for the indicated
target structure with the indicated constraints. The colors used in the left panel refer to
the shapes above the panel. The right panel denotes the stability of the shape in the target
structure upon release of the constraints, where grey, brown, purple, and blue denote that
the system melts upon release of the springs, does not melt but assembles a different crystal,
assembles a crystal with higher F than the target, and assembles the target (with lighter
purple denoting that the shape assembles the target structure with defects), respectively.
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Figure 5.5: Effect of Spring Constraints on 〈αΛ〉 and Target Structure Stability for
More Complex Phases: (a) oF8-Am, (b) cI12-Ga, (c) Simple Hexagonal and (d)
tI32-K. In each subfigure, the left panel corresponds to equilibrium particle shape obtained
using digital alchemy for the indicated target structure with the indicated constraints. The
colors used in the left panel refer to the shapes above the panel. The right panel denotes
the stability of the shape in the target structure upon release of the constraints, where grey,
brown, purple, and blue denote that the system melts upon release of the springs, does not
melt but assembles a different crystal, assembles a crystal with higher F than the target,
and assembles the target (with lighter purple denoting that the shape assembles the target
structure with defects), respectively.
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went towards the global free energy well (sphere-like shapes in FCC), with the exception of

diamond. iv

Another general feature is the large effect of rotational spring constant q – for every

structure, there are greater similarities across the range of translational spring constant k,

however the equilibrium shape drastically changes for different q.

We were unable to find shapes that self-assemble the target structures for most systems.

In oF8-Am, which is topologically similar to FCC, the lowest free energy shapes transitioned

to FCC or HCP. In simple hexagonal (Fig. 5.5(c)), the columns would shear alongside each

other, forming a hexagonal columnar phase, with little order in the xy plane. cI12-Ga and

tI32-K had similar phenomena – the only 〈αΛ〉 that did not melt once the springs were cut

was often a long shape found in simulations with large k and q values. However, the shapes

did not self-assemble the target structure, rather assembling a structure with a larger free

energy than the target, alluding to some kinetic barrier for self-assembly. These sorts of

systems may be a rich area for further inquiry using advanced sampling methods, such as

umbrella sampling or forward flux sampling.

5.4 Conclusions

From the data presented in Chapter V it is clear that using DA in shape space requires

further investigation as to its implementation. I have identified a few concerns within this

chapter regarding the current implementation:

• Resulting Shapes from DA may be Rounder than Necessary. Given that there

is a large free energy well in shape space surrounding sphere-like shapes in the FCC

structure, it may be possible that DA is driven by two design principles in simula-

tion: the overall free energy minimum and the constraints. The balance of these two

motivations is crucial and non-trivial.

ivAs diamond is topologically distinct from FCC, and may have been confined to a local free energy well.
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• Constraining Particles to the Target with Springs Leads to a Wide Array

of Results. As seen in Figs. 5.4-5.5, the values of spring constant k and q can change

the resulting 〈αΛ〉 from a DA simulation. Furthermore, the effects of k and q are not

universal, and different targets may require different magnitudes of k and q to properly

search shape space.

• Spring Constraints are Not Always Sufficient to Find a Suitable Shape for

Self-Assembly. For the structures shown in Fig. 5.5, DA was unable to find a suitable

shape to self-assemble any of the target structures, either because of strongly competing

structures (5.5(a,c)) or potential kinetic obstacles (5.5(b,d))

So knowing all this, how do we more generally implement DA in shape space? With T.

C. Moore and R. A. LaCour, I have developed a few potential methodologies, to be tested in

continued work. These methodologies, in addition to the pros and cons of each, are shown

in Fig. 5.6.

Using a Distribution of Constraint Strengths An under-constrained system will tran-

sition to FCC during an alchemical simulation. An over-constrained system will result in a

flat 〈αΛ〉, which will always form a variety of liquid crystal. Where is the just right amount of

constraint? Because this can vary greatly based upon the target structure, we propose that

using a distribution of k and q values assigned randomly to particles in the simulation might

be sufficient to avoid the effects of an over- or under-constrained system, while sampling a

variety of microstates.

The main benefit of this implementation is little anticipated increase in computational

complexity and it would not require much new code within HOOMD-Blue. However, it may

not address the global free energy well surrounding sphere-like shapes or other competing

phases. Furthermore, it is unknown whether it addresses the universal effects of over- and

under-constrained systems, as the strongest constraint may serve as a limiting case to the

other particles.
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Figure 5.6: Proposed Implementations of Digital Alchemy. (a) Distribution of Con-
straint Strengths. Instead of a constant or changing constraint strength, each simulation is
initialized with a normal distribution of strengths. The distribution should be centered at
a strength where the crystal structure is maintained, but the distribution may go as low as
0. (b) Negative Design with Changing Competitor. Here, two systems are initialized within
the same ensemble and with the same “Alchemostat” (i.e. their shapes change simultane-
ously). The shape is sampled positively with the target and negatively with the competitor.
When the shape becomes geometrically forbidden in the competitor, the competitor system
is expanded and re-assembled into a new competing phase. This is repeated until the com-
petitor assembles the target phase. (c) Negative Design with a Structure Database. Here,
a single system is initialized and run with an advanced sampling method, such as umbrella
sampling.[12] The sampling method queries a database of structures, and shapes are ac-
cepted/rejected based upon their ability to fit geometrically in the competing phases. The
simulation minimizes the FE and the number of competing phases that the shape may fit
into.
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Negative Design with Changing Competitor. Here, two systems are initialized within

the same ensemble and with the same “Alchemostat” (i.e. their shapes change identically)

but in two different crystal structures. The shape is sampled positively with the target

and negatively with the competitor. When the shape becomes geometrically forbidden in

the competitor, the competitor system is expanded and re-assembled into a new competing

phase. This is repeated until the competitor assembles the target phase.

This implementation holds true to the mission of DA for design – find a shape that

will self-assemble a target phase and avoid assembling other competing phases. However,

expanding and re-assembling a system may drastically increase the length of the simulation

to an unknown extent, and the implementation of this may be difficult. Furthermore, this

case does not address the issue of structural constraints.

Negative Design with a Structure Database. Here, a single system is initialized and

run with an advanced sampling method, such as umbrella sampling.[12] The sampling method

queries a database of structures, and shapes are accepted/rejected based upon the free energy

difference of the shape within the target and within the competing phases.

This implementation may be the most advisable given the problem and our current

computation tools, as it does address competing phases and we anticipate it being less

computationally costly than option (1). However, this implementation requires a preemptive

knowledge of the competing phases, and the exclusion of any competing phase may result

in shapes which do not successfully assemble the target phase. Furthermore, the choice of

assessment for the competitor phases is crucial – we propose using a method such as phase

switch Monte Carlo[13] which can estimate the difference in free energies between two phases.

Outlook It is unknown if these methods will find shapes capable of assembling any phase,

and further design dimensions may be necessary, including multiple particles types, inter-

particle interactions, or polydispersity.
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CHAPTER VI

Photonic Crystals

Color is my day-long obsession, joy, and torment.

– Claude Monet

Many butterflies, birds, and chameleons owe their spectacular colors to the microscopic

patterns within their wings, feathers, or skin.[1, 2, 3, 4, 5, 6] These microscropic patterns,

known as photonic crystals, affect the transmission, and reflection of light. This can lead

to a phenomenon known as a photonic band gap (PBG) resulting in the total reflection of

light with wavelengths commensurate with the length scale of the pattern, i.e. for photonic

crystals on the nanoscale, where the particles or lattice parameters are on the length scale of

nanometers to microns, light with wavelengths of nanometers or microns will be reflected. It

follows then that the colloidal self-assembly community, photonic properties are very often

used as motivation for crystal design. [3, 4, 7, 8, 9, 10, 11, 12, 13, 14, 15]

A Brief History. The existence of structural color was first noted in 1888 by Lord

Rayleigh[16] , when he observed that the color of his crystalline specimen changed with

rotation (similar to the phenomenon of “iridescence”). Further observations were made over

the following century about structurally dependent color, often inspired by the brilliant blue

and green hues found in nature that did not originate in any sort of pigmentation or exhibited

similar iridescence as Lord Rayleigh’s sample.[2] About 100 years after Lord Rayleigh’s first
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observation, Eli Yablonovitch published Ref. [17], which postulated the existence of crystals

that would reflect certain wavelengths of lights from all directions, naming them “photonic

crystals”. Within that year, Sajeev John made the same observation independently.[18]

Yablonovitch had theorized that the cubic-close packed structure, more commonly known as

fcc, would possess a complete photonic band gap when spheres with a high dielectric con-

stant (hereon called “dielectric medium” or “dielectric”). However this was later disproved,

as fcc exhibits a “pseudo-gap”, where the reflection of light is dependent on the incidence

of the light wave, much like the crystal in Rayleigh’s observation. It wasn’t until 1990 that

a crystal structure with a complete photonic band gap was found – Chan, Ho, and Souko-

lis [19] discovered that the diamond structure, when either the lattice sites were occupied

by spheres of the low or high dielectric medium, would exhibit a large photonic band gap

between bands 2 and 3. A few years later, Yablonovitch responded with a modified FCC

structure, known as “Yablonovite”, which exhibited a complete photonic band gap.[20] With

this, analytical and experimental study of photonic crystals exploded, with many potential

photonic crystal structures reported.

Known 3D Photonic Crystals These photonic crystal structures spanned different

topologies and were derived from natural analog or geometric arguments. Chan, Ho, and

Soukolis found that adding dielectric rods between the lattice sites of the diamond structure,

as opposed to spheres on the lattice sites, greatly increased the PBG and was more readily

experimentally realizable.[21] They also reported PBGs found in the A7 family of structures

[22] and worked with experimental collaborators to develop a wide array of layer-by-layer

structures, including the woodpile family of structures.[21, 23] Layer-by-layer structures, or

structures formed by the stacking of 2D structures into 3D, became popular due to the

synthesis possibilities, with a variety of 2D topologies for PBG crystals reported.[24, 25, 26]

Sözüer and Haus showed that the FCC structure would have a complete PBG, however it

only occurred when the lattice sites were occupied by the low dielectric medium, the reverse

76



of computations completed by Yablonovitch in 1987.[27] Sözüer and Haus also reported

a complete photonic band gap in the simple cubic structure, with either rods connecting

neighboring lattice sites or with spheres of the low dielectric constant on the lattice sites,[28]

which was later expanded upon by Maldovan, et al. [29] In addition to simple cubic systems,

Maldovan also expanded upon the investigations of the gyroid (first theorized by Martin-

Moreno in 1999), diamond, and face-centered photonic crystals, showing that 1) many large

band gap structures resembled diamond and 2) there were many FCC space groups in which

a photonic band gap can occur.[30, 31, 32]

Known Design Principles. The general design principles for photonic crystals have

largely stemmed from the more computationally straightforward 2D case. In 2D, the two

polarizations of photonic band structure, the transverse electric (TE) modes and the trans-

verse magnetic (TM) modes, can be computed separately, leading to simpler analysis of the

underlying field configurations. In 1993, Meade et al. showed that producing a photonic

band gap between either set of modes came with different topological requirements. In 2D,

a gap will occur when there is a large change in concentration factor f , or the proportion

of electric energy density found in the high dielectric medium, between two consecutive

modes. This leads to the classification of the mode below a PBG as the “dielectric band”,

where the electric energy is found in the high dielectric medium, and the mode below the

PBG as the “air band”, where the electric energy is found in the low dielectric medium.

These monikers were quickly adopted to describe the modes delineating a PBG in 1-, 2-, and

3D. The difference in concentration factor between consecutive modes can be optimized in

systems where the high dielectric medium is connected (for TE modes) or where the high

dielectric medium is sufficiently isolated (for TM modes). The two dimensional triangular

lattice optimizes both effects, and thereby has a gap between both TE and TM modes.[33]

Due to this observation about TE modes in 2D crystals, network structures have been a

focus of PBG materials design in 3D.[24, 25, 26, 34, 35]
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Many publications have pointed to certain symmetry elements as conducive to producing

a PBG. The symmetry elements of a crystal directly relate to the degeneracies within the

PBG structure and the BZ over which the PBG is calculated. Understanding the degeneracies

inherent to particular symmetry groups is a focus of group theory, and can be used to predict

which space groups are prohibited from having a PBG between specific eigenmodes of their

photonic band structure.[36] However, group theory cannot be used to predict where a PBG

will occur. Due to the relationship between symmetry and the BZ, the set of structures with

FCC lattices have been the focus of much literature,[17, 32] based upon the assumption that

the frequency ω roughly scales with |~k| at which it is computed. Given that a more spherical

BZ would lead to a more uniform |~k|, it would follow that the bands would be relatively flat,

less likely to intersect. Therefore, the lattice with the most spherical BZ, FCC, would be

most likely to exhibit a band gap.[37]

Computing the Photonic Band Structure. There has also been great progress in

approaches to computing photonic band gaps. The photonic band structure corresponds to

the eigenvalues of the eigenproblem:

∇× 1

ε(r)
(∇×H(r)) =

ω2

c2
H(r) (6.1)

calculated across reciprocal space. Practically, this can be computed in O(n) as any other

eigenproblem of the form Av = λv, however, the treatment of the ε(r) term has a large

effect on the convergence and therefore computational complexity of the problem. In 1990,

Sözüer and Haus identified this convergence problem, wherein the truncation of basis func-

tions within the approximation of the matrix components of 6.1 would lead to incorrect

values for PBG size, and corrected errors in [19] due to this issue.[27] Instead, Sözüer and

Haus suggested a smoothed representation of ε(r), or effective dielectric function, which was

implemented and explained well in [38] .

This method of solving 6.1 has been implemented in MPB, an open-source code which
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uses an iterative eigensolver on a planewave basis. MPB is a frequency-domain calculation

software, such that degenerate modes of the photonic band structure can be easily identified,

wherein the time-domain software MEEP degenerate modes would be indistinguishable.[38]
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CHAPTER VII

The Unexpected Diversity of 3D Photonic Crystals

I was from the first inclined to attribute the colours to a periodic structure.

– Lord Rayleigh

The contents of this chapter are taken from “Unexpected Diversity of Three-Dimensional

Photonic Crystals”. R. K. Cersonsky, J. A. Antonaglia, B. D. Dice, and S. C. Glotzer.

Submitted.

7.1 Introduction

Which 3D crystals will possess an omnidirectional photonic band gap (PBG)? The current

understanding within the scientific community is: this question has been largely answered.

Much of what is assumed for 3D PBGs comes from our experiences with 2D PBGs.

Meade, et al. explain the origins of PBGs in 2D crystals by looking at the modes of the

photonic band structure defining the PBG.i They showed that PBGs occur when there is a

large shift in where the electric energy density is localized. In the band below the PBG, the

electric energy density primarily resides in the medium with the higher dielectric constant

(hereon “dielectric”); this band is known as the “dielectric band” where dielectric constant ε

iThe photonic band structure is given by solving, in reciprocal space, the eigenproblem∇× 1
ε(~r)∇× ~H(~r) =(

ω
c

)2 ~H(~r), where ε(~r) is the spatially-dependent dielectric function, c is the speed of light, and ~H(~r) is the
magnetic field.
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is the square of the index of refraction n. Above the PBG, the electric energy density is in the

medium with the lower dielectric constant (typically called “air”); this band is known as the

“air band.” Meade, et al. suggest one must aim to decrease the energy of the dielectric band

in order to increase the size of the PBG. For a PBG between the transverse electric (TE)

modes,ii this requires that regions of dielectric be connected.[6] Likewise, the importance of

energy localization suggests that the greater the difference in ε of the two regions, the larger

the PBG, as this will decrease the similarity between the dielectric and air band. These 2D

principles are used to understand and design 3D photonic crystals; even the terminology of

dielectric and air band has become convention in 3D PBG crystals.[7]

Additionally, Yablonovitch,[8] John,[9] and Ho, et al. [10] pointed to the sphericity of the

Brillouin Zone (BZ), which is the reciprocal space analog to the real space primitive unit cell,

as an important feature for predicting which photonic crystals have a PBG. Their reasoning

suggests that cubic face-centered (cF ) and body-centered (cI ) lattices are the most likely

targets for PBGs, as they have the most spherical BZs. These have been realized, but are

highly sensitive to thermal disorder.

These heuristics – connectivity of the dielectric, increasing gap size with increasing ε,

and spherical BZ – have proved useful, but have inadvertently restricted the design search

space to structures near diamond and inverse opal, both of which are face-centered cubic

structures that exhibit PBGs when the dielectric forms a continuous network.[10, 11, 12,

13, 14, 7, 15, 16, 17, 18, 19] Here we assess the fitness of these design rules using a large

dataset of PBG crystals, and demonstrate that the space of PBG crystals is much richer

than previously thought, going well beyond these heuristics.

iiOne of the two polarizations of light in 2D, the other being transverse magnetic, or TM.
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7.2 Results

Our data set consists of 2,714 crystal structures from multiple sources.[20, 21] Each

structure is used as a template, with identical dielectric or air spheres on every lattice site

for the “direct” or “inverse” versions, respectively. We screened each structure for PBGs

between the first 20 bands across the structural parameters of volume filling fraction φ

(from 0-1) and dielectric constant ε (from 4-16 in reduced units), resulting in 151,593 band

structure calculations via MIT Photonic Bands (MPB)[22] and managed with the signac

data framework.[23] PBGs are reported as dimensionless percentages, i.e. , the range of

frequencies within the PBG (∆ω) divided by the mid-gap frequency (ω∗).[22] Of the photonic

band structures studied, 12,778 contain PBGs of size 0.1% or larger for 0.022 ≤ φ ≤ 0.711.

The lowest ε resulting in a PBG is ε = 4 (agreeing with literature)[10] and many structures

have PBGs with values of ε as low as 6. In total, we find 471 unique PBGs ¿ 0.1% in 351

structures (some structures exhibit PBGs at more than one band location at different filling

fractions). A summary of the PBGs is shown in Fig. 7.1, with the maximum gap size for

each location (above band 2 and higher) indicated by the size and color of the circles.iii,iv

Photonic band structures for templates that are of special interest or mentioned later in

the text are shown in Fig. 7.1(b). Results were validated where possible against previous

literature. [24, 25, 22, 10, 14, 12],v

7.2.1 Correlations with Crystal Symmetry

Of the 14 types of Bravais lattices, we find PBGs for all of them, including monoclinic

and triclinic lattices whose asymmetry should preclude a PBG based on current assumptions.

In Fig. 7.2(a), we find that PBGs most often exist not only in cF and cI lattices, but also

in rhombohedral (hR) and cubic primitive (cP) lattices, despite their aspherical BZs. As

iiiPBGs under the first band or between bands 1 and 2 are physically impossible, as the first two bands
will approach zero frequency at the center of the BZ.

ivThe gap atlas, selected photonic band structures, and isosurface representations of structures mentioned
in the main text can be found in the Additional Data.

vValidation data sets can be found in the Additional Data.
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expected, large PBGs (¿25%) tend to occur in structures with diamond or gyroid-like topolo-

gies, but surprisingly, they also occur in tI lattices, which can have highly aspherical BZs

(Fig. 7.2(b)(i)).vi Thus a nearly spherical BZ is neither necessary nor sufficient to produce a

PBG.vii Additionally, we find that a large fraction of PBGs between bands 2 and 3 are in cF

and tI structures, and PBGs between bands 5 and 6 are primarily found in cP structures,

as shown in Fig. 7.2(b)(ii and iii). The former corroborates earlier correlations suggesting a

strong link between symmetry elements of cF space groups and PBG location.[13, 26]

7.2.2 Connectivity of the High Dielectric Medium

Next, we look at the 2D heuristic of connectivity of the dielectric.[6] For any structure

realized with monoatomic spheres on every lattice site, there are two connectivity thresholds

defined by the geometry. The first, which we denote φN , is min(φ) such that the dielectric

forms a continuous network, for direct and inverse structures. The second, which we denote

φT , is min(φ) such that the dielectric spheres on any two lattice sites overlap, and can only be

defined for direct structures. For some direct structures, φN = φT . As shown in Fig. 7.2(b),

we find that many PBGs, including large PBGs, occur for φ < φN and for φ < φT , especially

in PBGs at high frequencies, as these modes can more easily travel between disconnected

regions of dielectric.

7.2.3 Dielectric Constant

Finally, in our dataset we find 41 of 471 cases where the PBG size is non-monotonic

with ε, as seen in Fig. 7.2(d)(iii). The most dramatic non-monotonicity occurs for lithium

oxide (also known as the fluorite or the C1 structure), whose PBG between bands 17 and 18

increases for 6 ≤ ε ≤ 9 but then decreases to half its maximum size for 9 ≤ ε ≤ 16, as seen

viWe can compare the sphericity of the BZs using the isoperimetric quotient, defined as 36πV 2

A3 , where
IQ=1 for perfect spheres. The IQ of hR, cP, and tI lattices are at most π/6 ≈ 0.523, whereas the IQ of cF
and cI lattices are 0.7533 and 0.7404, respectively.

viiDiscussions of the point group symmetry of the structures and Wyckoff sites, sphericity of the BZ, space
group, and angles between nearest neighbor vectors can be found in the Additional Data.
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in Fig. 7.2(d)(ii). The 8-9 PBG of space group 225 with tetrahedral sites was previously

theorized in Maldovan et al. [13] and is monotonic with ε.

7.2.4 Field Analysis

To understand the failure of 2D heuristics extrapolated to 3D, we analyzed the config-

urations of electromagnetic modes delineating PBGs. In contrast to 2D, the 3D Maxwell

eigenproblem is fully vectorial and conformations of field lines do not easily decompose

into separate TE and TM polarizations. For select structures found to have a PBG, we

calculated the electric displacement field ~D above and below the gap and constructed a

flow diagram. Several general motifs of displacement field localization appear, as shown in

Fig. 7.3(a)(i–viii).viii We quantify the fraction of electric energy found in the dielectric with

the concentration factor f , as per convention.[6] For each PBG, we highlight four properties

of the eigenmodes delineating the PBG: (1) band number, (2) Γ representation of the bands,

(3) f , and (4) the motif that most closely resembles the displacement field lines. All of these

properties are computed for the filling fraction that maximizes the PBG of a given structure

and for the wavevectors ~k corresponding to the maxima and minima of the bands below

and above the PBG, respectively. The dotted line signifies φN (for the structures shown,

φN = φT ).ix

In 2D the dielectric band typically has 50% or more of the electric energy density localized

in the dielectric compared to the air band.[6] For example, from band 2 to 3 in diamond

(Fig. 7.3(b)), the concentration factor f decreases by 0.1, i.e. 10% more of the electric energy

is in the dielectric in band 2 as compared to band 3. There is no change in concentration

factor between bands 8 and 9, and the concentration factor of band 15 is higher than that

of band 14. Thus band 15 is more of a “dielectric band” than band 14, which implies that

the concept of “dielectric” and “air” bands is not sufficient to describe the electric energy

localization of the bands surrounding a gap in 3D.

viiiMore details on the reduction from vector fields to flow diagrams can be found in the Additional Data.
ixField analysis for additional structures can be found in the Additional Data.
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Indeed, 2D design rules aimed at lowering the energy of the dielectric band do not al-

ways optimize PBGs in 3D. There are more ways of localizing electric energy in 3D than in

2D, and these motifs do not fall neatly into the categories of “dielectric” and “air” band.

In 3D, we find several motifs, in two broad categories: those that travel between adjacent

unit cells (Fig. 7.3(a)(i–iii)) and those that remain confined to a single region of dielectric

(Fig. 7.3(a)(iv–viii)). For modes with field conformations similar to Fig. 7.3(a)(i–iii), increas-

ing the connectivity of the dielectric reduces the mode frequency. Therefore if this motif is

found in the band below a gap (but not above the gap), increasing connectivity will enlarge

the PBG, as seen in the PBG between bands 2-3 in Fig. 7.3(b)). However, if both modes or

the mode above the gap exhibit this type of motif, increasing the connectivity will reduce or

close the PBG, such as the 8-9 and 14-15 PBG in Fig. 7.3(b)).

We can use a similar analysis to explain the surprising relationship between ε and PBG

size in the lithium oxide crystal structure shown in Fig. 7.2(b). The heuristic of mono-

tonicity of gap size with ε assumes a mode configuration where the PBG is enlarged by

higher localization in the dielectric, e.g. , when there is a distinct air band and dielectric

band. However, as the PBG in lithium oxide decreases as the filling fraction approaches the

connectivity threshold, this assumption is invalid, and the relationship of ∆ω/ω∗ and ε is

understandably more complex.

7.3 Conclusions

Although our data-driven exploration of the possible space of photonic band gap crystal

structures calls into question many of the assumptions from 2D PBGs as they have been

applied to 3D, it is clear that no single design rule applies to all PBGs. Further inquiry is

needed to understand the PBGs in 3D, especially at higher frequencies, where these design

rules most typically fail.

The 293 new PBG structures reported here should make for interesting targets, in par-

ticular for colloidal systems where the focus on diamond has been fraught with synthe-
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sis obstacles. Several of the structures shown to have PBGs are known to assemble on

colloidal length scales: lithium oxide (6% in direct form) and simple chiral cubic (3.4%

PBG in direct form, 27% PBG in inverse form) can be self-assembled using polyhedral

nanoparticles,[27, 28] the Clathrate II structure (33% PBG in inverse form) was recently

found using DNA-programmed self-assembly,[29] and the AB13 structure (13.3% PBG in

inverse form) is easily achievable with binary mixtures of hard spheres. [30, 31] Furthermore

there are structures, previously unstudied, that can be new targets for colloidal self-assembly,

such as tI8[32] (6.0% PBG in direct form, 25% PBG in inverse form) or cI16[33] (6.4% PBG

in direct form, 18.4% PBG in inverse form).
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Figure 7.3: (a–c) Mode Configurations and Motifs for PBG Photonic Crystals
(a) Common Motifs in the Mode Conformations of PBG Photonic Crystals. Motifs (i–iii)
exhibit regions of high electric energy density between adjacent unit cells, while the electric
energy density for modes (iv–viii) is confined to an isolated region of dielectric material.
(b) Gap atlas and field analysis of diamond, which has two large PBGs at different regions
of filling fraction, either between bands 2-3 or 8-9, and a small PBG between bands 14-15.
The dotted line denotes the filling fraction at which the dielectric has formed a continuous
network. (c) Gap atlas and field analysis of lithium oxide, which has two PBGs at different
regions of filling fraction, either between bands 8-9 or 17-18. The dotted line denotes the
filling fraction at which the dielectric has formed a continuous network.
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7.4 Methods

7.4.1 Data Management and Archival

The data for this project was managed using signac and the workflow was managed by

signac-flow [23] in a multi-level project. The top level of the project consists of statepoints

associated with the structural data. Inside each structure statepoint was an additional

project managing the statepoints containing radii and dielectric constant.

Data for all PBG structures has been made available in conjunction with University

of Michigan’s Deep Blue data storage, and is publicly available at https://glotzerlab.

engin.umich.edu/photonics/index.html.

7.4.2 Structure Retrieval and Conversion

Crystallographic Information Files (“.cif” format) were downloaded from the Crystal-

lographic Open Database (COD) and the Inorganic Crystallographic Structure Database

(ICSD). Information regarding atomic constituents and structure name were taken directly

from the .cif files, regardless of the correctness or conditions of the original authors’ publi-

cation or data. Additionally, we included structures found in unrelated simulations in the

Glotzer group, some of which have no natural analogue. These position files were then con-

verted to a set of lattice vectors and a fractional basis, with the first lattice vector normalized

to unit length.

7.4.3 Input parameters for MPB

All PBG calculations were conducted using MPB, a Scheme-based eigenmode solver

developed at MIT [22]. MPB calculates the photonic band structure through iterative

planewave eigenmode searching. In MPB, the input parameters required are: 1) lattice

vectors and fractional basis, 2) particle radius and dielectric constant, 3) fractional k-point

path in reciprocal space, 4) k-point interpolation, 5) resolution, 6) mesh size, and 7) number
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of bands to calculate.

(1) and (2) define the statepoints for this study. (3) was generated using the procedure

below. (4) was set to 16 in initial screening, and set to 32 in complex structures or during

the second round of screening. (5) was set to 1 in initial screening, and 6 during the second

round of screening. (6) was set to 5. (7) was set to 20. Only those statepoints with PBGs

during initial screening were included in the second round of screening, as those structures

found to not have a PBG with minimal k-points would not have a PBG with additional

k-points, which would only reduce or close the calculated PBG.

7.4.4 Radius Screening

For each structure, particle radii were initialized to r ∈ (0.0, 1.5) and ∆r = 0.01 and

calculations run. MPB outputs were then queried, and radii with filling fractions outside

of [0.0, 1.0] for a structure were removed. For each structure radii were added uniformly at

smaller intervals where necessary, such that each structure was screened with at least 20

radii for both dielectric spheres and air spheres.

7.4.5 Dielectric Constants

For each structure, we initially assumed a dielectric constant ε = 16, the highest theorized

dielectric constant for solid, translucent media [34]. It has been postulated that any crystal

will exhibit a PBG in the limit of infinite dielectric constant [7], thus we tested a wide variety

of crystals, even if difficult to realize in experiment. After the initial computations at ε = 16,

we performed computations for structures and statepoints found to have PBGs at lower ε,

down to ε = 2 or such that ∆ω = 0.

7.4.6 k-Point Path Generation

The first Brillouin zone was computed by finding the Voronoi tessellation of the reciprocal

lattice for each structure using the Voronoi functionality of SciPy [35]. The path through
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the BZ was taken to be a highly redundant traversal along the edges of each face of the

surface of the BZ, including to and from the face center and the Γ-point. This path, though

redundant, is guaranteed to exhaustively sample the high symmetry points at which band

extrema occur. An example of a highly redundant k-point path is given in the Extended

Data.

For field analysis, the irreducible BZ was calculated to ensure correct k-point labels in

the calculation of Γ representation.

7.4.7 Structural Analysis

In order to calculate the connectivity thresholds (included in Extended Data) and bond

angles, we used the Python package pymatgen [36], an open-source materials analysis pack-

age.

For every structure, we computed the radius r and filling fraction φ for up to two different

thresholds, (1) corresponding to the first peak in the radial distribution function (RDF),

denoted φT , and (2) corresponding to the radius at which the spheres on the lattice sites are

connected in a continuous network, denoted φN . φT is ill-defined for inverse structures. (2)

was found for direct structures using pymatgen, and by analyzing the voxelizations of inverse

structures using the skimage package[35]. For some direct structures, these thresholds are

the same.

Space groups and symmetry information were found using the open-source package spglib

[37] and 3D visualization was done with the open-source package mayavi [38].

7.4.8 Field Analysis

For MPB, there is an option to output field files for a given computation at every ~k and

band. We took the electric fields in these files and visualized them using mayavi [38]. The

flow reduction was done on 1-2 unit cells of the structure with a resolution of 24-40 grid

points. Motifs were drawn based upon analysis of these flow diagrams. A schematic of this
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process is provided in the Extended Data.

Concentration factor was computed using:

f =

∫
Vε

(E∗(r)) · (D(r)) dr∫
(E∗(r)) · (D(r)) dr

(7.1)

as described in Meade, et al. [6]

Γ classification was done using character tables found in the Bilbao Crystal Database[39]

and Dresselhaus, et al. .[40]

7.5 Supplementary Information

In addition to the information shown in this section, there is a large glossary of photonic

band structures for the majority of the crystal structures included in this study in Appendix

C.

7.5.1 Summaries of Data

Another way of viewing Fig. 1 from the main text is to organize in terms of PBG size

and ε, as shown in 7.4.
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Figure 7.4: PBGs Properties of Nature-Inspired Structural Templates. Largest
PBGs found for each structure generated among ε = 4–16. Circle areas are proportional
to the PBG size; colors correspond to the location of the PBG. Some structures are shown
more than once, as some structures were found to exhibit PBGs in two different locations at
different filling fractions. Structures that have been previously studied or noted in the main
text have been labeled.

96



7.5.2 Method Figures
Comparison with Previously Published Data In Fig. 7.5, we compare the PBG sizes

computed using our methodology and previously published in literature within references

[10, 12, 25, 22, 14, 24].x
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Figure 7.5: Comparison of Reported and Previously Published Data for Fixed ε
and φ. Color indicates bands between which the PBG occurs, with plotting marker corre-
sponding to data source. (a) PBG between bands 2-3 (red), 8-9 (teal) and 14-15 (lavender)
for Diamond at ε = 12.96, as reported by [10] and generated by the example code given
by [22]. PBG sizes reported in Ref. [10] were found to be overestimated in [14], therefore
a better benchmark for diamond is provided by [22]. (b) PBG between bands 2 and 3 in
Inverse Diamond at ε = 12.96, as reported by [10]. (c) PBG between bands 5 and 6 in
Inverse Simple Cubic at ε = 13, as reported by [12]. (d) PBG between bands 16 and 17 in
Hexagonal Diamond at ε = 12, as reported by [25]. PBG between bands 4 and 5 (orange)
were unreported in [25], with no indication if calculations for corresponding φ were run. (e)
PBG between bands 2-3 (red) and 8-9 (teal) for Diamond at φ ≈ 0.34, as reported by [10]
and generated by the example code given by [22]. PBG sizes reported in Ref. [10] were found
to be overestimated in [14], therefore a better benchmark for diamond is provided by [22].
(f) PBG between bands 2 and 3 in Inverse Diamond at φ ≈ 0.19, as reported by [10]. (g)
PBG between bands 8 and 9 in Inverse Opal at φ ≈ 0.26, as reported by [14, 24].

xAny discrepancies between the computations reported and previous literature can be due to differing
smoothing functions of ε space, using a more exhaustive IBZ, and small errors in transcribing previous
literature, which were available in figure, and not table, form.
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Data Management with Signac The data for this project was managed using signac

and the workflow managed by signac-flow in a multi-level project.[23] The top level of the

project consisted of statepoints consisting of structural data. Inside each structure statepoint

was an additional project managing the statepoints containing radii and dielectric constant.

Structure
e.q. cF8-C

Different Radii
and Dielectric

Constants

Workspace

Operations Labels

Spacegroup

Point Group

Wyckoff Sites

IBZ Sphericity

Bond Angles

etc.

Calculate
Store Summary
Add Statepoints

Make Ctl File

etc.

Calculate
Run MPB

etc.

PBG

ф

Mode Motifs

f

Γ Group

etc.

Figure 7.6: Organization of Project Using signac and signac-flow . Operations and
labels were stored individually for the structure at large and independent radii and dielec-
tric constants, as was appropriate. Typical structure-level operations included symmetry
calculations, PBG atlas generation, and summarizing lower level data. Typical lower level
operations include running and analyzing MPB, computing fill fraction, and field analysis.
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Vector Fields Flow Diagram Generalized Motif Vector Fields Flow Diagram Generalized Motif

Figure 7.7: Schematic of Complexity Reduction from Vector Fields to Mode Mo-
tifs. For each mode motif in the main text, we show the reduction in visual complexity from
the vector fields to a flow diagram to a mode motif. For each motif we attempted to provide
a visual that best represents the motif, with many structures exhibiting variations on these
motifs or mixed motif behavior.
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7.5.3 Extended Analysis
7.5.3.1 Structural Features and PBGs

For this section, we will report percentages of structures that have a particular structural

fingerprint across all structures studied and the 351 that have PBGs. We will also report

relative probabilities, i.e. the probability a given fingerprint is found in structures with

PBGs divided by its probability of being found in all structures.xi
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Figure 7.8: Correlation between PBG Location and Bravais Lattice. Here we show
an extension of Fig. 2(a)(iii-iv) from the main text, including PBG locations where there
was less clear correlation between Bravais Lattice and PBG location.

xiWe compared the sample of structures used in this project with a rough estimate of the data space
available through ICSD and COD to show that our sample set can represent a general distribution.
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Correlation with PBG Existence

0

4

8

%
 o

f  
S

tru
ct

ur
es

sc BZ

bcc BZ

fcc BZ

0.70.60.50.40.30.20.1 0.8
IQ

(b) Isoperimetric Quotient of the Brillouin Zone

RP
N

Angle [°]

0

20

10

30

%
 o

f  
S

tru
ct

ur
es

0 20 1601401201008060 18040

10
9.

5

°

(c) Angle between Neighbor Bonds

RP
N

%
 o

f  
S

tru
ct

ur
es

(a) Symmetry

Point
Group

4

22
2

m
m

21

4/
m

m
mm 2 23322/
m

m
m

m

4m
m3

6/
m

m
m3m    1

   
   

   
   

   
   

 
 4

2m    4

6m
m

42
2

43
2

6/
m

62
2    3

   
   

   
   

   
   

 
 6

2m

   
   

   
   

   
   

 
 4

3m

   
   

   
   

  
 m

3m   
   

 m
3

   
   

   
   

  
 3

m    6

0

40
60

20

6

4/
m

0

20

10

RP
N

(i) Structure (Global)

RP
N

(ii)  Wyckoff Sites (Local)

Structures with a PBG

All Structures Studied

3 421½1⁄3¼1⁄5 2⁄30

Relative Probability (RP)

Number of Samples (N)

30 402010 50 100 2000

Figure 7.9: Comparison of Structural Features for PBG Structures and All Struc-
tures. For each subfigure, the grey and black markers/area denote values for all structures
and those with PBGs, respectively. (a) Point group symmetry of the (i) structure and (ii)
Wyckoff sites, increasing in symmetry order to the right. (b) Isoperimetric quotient of the
first Brillouin zone (BZ). Isoperimetric quotient is a measure of sphericity, close to 0 for
highly non-spherical shapes and 1 for spheres. The values for cubic structures, which are
constant for all structures of a given centering, are denoted with red dotted lines. (c) Mea-
sure of the angle between neighboring “bonding” sites. For each lattice site, we computed
this value by considering the first shell of nearest neighbor sites.
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Correlation with Large PBGs
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Figure 7.10: The Correlation of Structural Features with Large PBGs. (a) The
distribution of PBGs with respect to lattice setting and PBG size, with the Bravais lattices
increasing in symmetry order to the right. (a) Distribution of PBGs with respect to (i) point
group of the structure or (ii) point group of individual Wyckoff sites and PBG size, with the
point groups increasing in symmetry order to the right. (b) Heat map of sphericity of the
BZ and PBG size. (c) Heat map of bond angles and PBG size.
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Relative Probabilities Across Space Groups
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Figure 7.11: Relative Probabilities for Space Group Numbers. Of the 230 total
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Effects of φ and ε
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Figure 7.12: Summary of PBGs across Different Filling Fractions and Dielectric
Constants. (a) Number of PBGs found across filling fractions from 0 to 1. (b) Largest
PBGs found at each filling fraction. (c) Number of PBGs found across dielectric constants,
from 4–16. (d) Largest PBGs found at each dielectric constant. Each plot is separated by
band number indicated by the color guide.
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Additional Field Analysis

Gaps at ε=16: Bands 18-19 (1.28%) 
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Figure 7.13: Additional Field Analyses Computed. (a) α-Cristobalite, which has a
24.4% PBG above band 4 above φT = φN . Mode analysis appears similar to the 2-3 PBG in
Diamond. (b) Lautite, an orthorhombic crystal which has a 10.0% PBG above band 12 above
φN . Mode analysis appears similar to the 2-3 PBG in Diamond. (c) Inverse Ice Ih, which has
two PBGs above bands 4 and 10 above φT = φN . The mode of band 4 has a trigonal motif,
whereas above the PBG is a confined motif. The 10-11 occurs between two confined-motif
modes. (d) Palladium Oxide, which has a PBG below φT = φN between bands 18 and 19
due to two confined motifs surrounding the PBG. (e) Inverse Opal, which has a mixed motif
within band 8 and a confined motif in band 9. (f) Inverse Simple Cubic, which has a reverse
case to the 2-3 PBG of diamond: a confined motif below the PBG and a traveling motif
above, however with a much lower concentration factor. (g) Pseudo-Manganese Yttrium,
due to its topological similarity to diamond, this structure has similar PBGs and motifs to
diamond, with the exception of the 8-9 PBG.
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CHAPTER VIII

The Effects of Structural Modifications on Photonic

Band Gaps

The important thing is not to stop questioning. Curiosity has its own reason for

existence.

– Albert Einstein

8.1 Introduction

In Chapter VII, we showed that the breadth of crystal structures are capable of produc-

ing a photonic band gap is larger than previously expected, and a large variety of photonic

crystals are available. In this chapter, I will discuss the effects of some modifications to the

structures studied in Chapter VII, primarily the results from 1) manipulating the connec-

tivity of the structure and 2) distorting large PBG structures.

The connectivity of the high dielectric medium, hereon referred to simply as “connectiv-

ity”, was shown to be neither necessary nor sufficient to create a PBG, primarily for those

at high frequencies. That being said, connectivity can be important at low frequencies, as

the smooth dielectric channel will lower the energy required for confinement within the high

dielectric medium. For a particular crystal structure with spheres on each of the lattice sites,

the filling fraction range over which it is connected is fixed, as determined by the structure’s
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interparticle distances. However, what if we could modify the structure such that the sym-

metry is maintained, but we lower the minimum filling fraction necessary to yields a network

structure? Will decreasing this lower limit always lead to a larger PBG?

One way to decrease the interparticle distances is to introduce additional lattice sites

between neighboring sites, creating effective “rods” connecting the neighboring lattice sites.

This idea has been introduced previously, with rod-connected diamond, FCC, and simple

cubic all having been studied.[1, 2, 3] In each case the “rod-connected” version of the crystal

improved upon the PBG size from the sphere-instantiated version. This approach would

open up fabrication possibilities, as network structures can be fabricated using 3D printing.

Thus, it is important to understand if this design rule can be universally applied to crystal

templates.

A previous publication has attempted to define a universal design rule for photonic crys-

tals. In [4], the authors constructed a spiral pattern on various crystal lattices, improving

the PBG size in every case. Based upon this finding, the authors claimed the macrostructure

(i.e. bravais lattice) was less important than the microstructure (the topology).i Here I will

construct a similar rule and apply it to a range of crystal templates and report whether a

similar universal effect exists.

I will also report the effects of tetragonal and orthorhombic distortion on the gaps in a

few photonic structures that have a PBG in their undistorted form.

8.2 The Effect of Network Connectivity on PBGs

8.2.1 Methods and Models

I chose a space of crystal templates for which the effects of connectivity were previously

studied (such as diamond, FCC, and SC), or those that had well-defined nearest neighbor

shells with uniform nearest neighbor distances. I instantiated each structure with 0-9 addi-

iThis study, while insightful, overlooked that each of the instantiations described in the study roughly
approximated a 2D photonic crystal, for which the structural requirements are well known and less stringent.
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tional lattice sites between nearest neighbor pair (we will denote this with the variable I in

the upcoming results and discussion), with 0 corresponding to the original structure and 9

corresponding to an effective “rod-connected” structure. I sampled the PBG properties for

φ ∈ [0, 1] by varying the sphere radius and ε ∈ [4, 16] using the MPB software. Photonic

band structures for this chapter are given in Appendix D.

I will report with the structures the coordination of the nearest neighbor “bonds”, which

will inform our later analysis. The structures investigated are shown in Fig.8.1, arranged by

the aforementioned coordination.

4-Connected 6-Connected 12-Connected 

5-Connected 8-Connected Mixed Connectivity

10-Connected

Figure 8.1: Snapshots of Templates, Original and “Rod-Connected”. I computed
the photonic band structure for multiple templates with different types of “connectivity”
between neighboring lattice sites. In each panel, the original structure is shown to the left,
with the “rod-connected” version on the right.
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8.2.2 Results

As a single crystal template may exhibit gaps at multiple frequencies, the remainder of

the results and discussion will focus on the structures and each gap separately, e.g. the gap

between bands 8 and 9 in diamond will be discussed independently from that between bands

2 and 3.

For each gap, we computed the photonic band structure for 0 <= φ <= 1 for up to

9 additional lattice sites between nearest neighbors. In Fig. 8.2, the gap size across φ is

shown as a function of additional lattice sites for ε = 16, with the color corresponding to the

location of the gap and the opacity corresponding to the size, as reflected in the color bar.
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Figure 8.2: Examples of the Effects of Connectivity on Photonic Band Gap Size.
The peaks of these plots, with respect to gap size across φ, are plotted in Fig. 8.4.

Diamond (Bands 2-3) and Simple Chiral Cubic (Bands 4-5). With the additional
lattice sites, the PBG increases due to the lowering of the filling fraction threshold φ at which
the structure is connected. The upper limit of φ where PBGs occur remains unchanged.

Diamond (Bands 8-9) and Lonsdaleite or Hexagonal Diamond (Bands 16-17).
With the additional lattice sites, the PBG disappears.

BCC (Bands 6-7) and CN=10 (Bands 7-8). A PBG occurs for a small number of
lattice sites, but disappears as the structure becomes more rod-like. Outlines have been
added for visual clarity.
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For the majority of structures tested, 1) a gap opened where one had previously not

existed or 2) a PBG that occurred in the original template grew with additional extra lattice

sites. These PBGs of these structures are shown in Fig. 8.4(a) as a function of number of

additional lattice sites.

Figure 8.4: PBGs that Increased and Decreased with Connectivity.

PBGs that Increased. Most structures have a gap that increases in size with the intro-
duction of even a few additional sites, and plateaus when the topology of the high dielectric
medium approaches a rod.

PBGs that Decreased. For many PBGs, one of two decreasing effects occurred: (1) a
PBG that occurred at I=0 disappeared with the introduction of additional lattice sites (e.g.
Diamond, Bands 8-9 or Londaleite, Bands 16-17) or a PBG occurred for intermediate values
of I and disappeared as I grew larger (e.g. BCC, Bands 6-7 or CN=10, Bands 7-8).
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Unexpectedly, several structures show gaps that decrease with increased connectivity.

These structures and PBGs are shown in Fig. 8.4(b). For many of these systems, a gap that

occurs in the original structure disappears for all I > 0. However, some systems that had

little to no PBG in the original structure exhibit a gap at 0 < I < 9, yet the gap disappeared

as I → 9 (e.g. BCC and CN=10).

8.2.3 Discussion

To understand the cases in which connectivity is not sufficient to produce a PBG, I will

look at the effect of connectivity on the bands surrounding the potential PBGs. For a given

structure, there are a finite number of locations at which a PBG may occur, governed by the

symmetry of the crystal and computed using group theory[5, 6]. For each of our templates,

the symmetry class of the crystal does not change with the introduction of extra lattice sites,

so the potential locations for PBGs stay the same.

For this section, I will use max(ωi) and min(ωi+1) to denote the frequencies that delineate

a PBG between the ith and (i+ 1)th bands.

For diamond or simple cubic, for which the PBG between bands 2 and 3 increases with

increased connectivity, the addition of extra lattices sites greatly decreases max(ω2), opening

or widening the gap, as seen in Fig. 8.6(a-b). For BCC, the increased connectivity lowers both

max(ω6) andmin(ω7), but at different rates. The PBG appears at I = 3 because themin(ω7)

decreases less rapidly than max(ω6). When the system approaches a rod-like morphology,

as seen in Fig. 8.6(c), the frequencies are comparable, with the min(ω7)¡max(ω6), thus the

PBG disappears. A similar effect also happens for the 8-9 PBG in diamond (Fig. 8.6(d)).ii

It is most likely that connectivity will have a beneficial effect on the PBG size of a

structure when the modes delineating the PBG differ in concentration factor f ,iii, as the

connectivity will affect the frequency of the two modes differently.

iiThis does not preclude a PBG opening at a higher band location, but as seen in Chapter 3, for PBGs
at high frequencies typically do not rely on connectivity, meaning this is an unlikely, albeit not impossible,
scenario.

iiidefined in Chapter VII)
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Bands 2-3

(b) SC @ r=0.14
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Figure 8.6: Effect of Connectivity on Bands Surrounding a PBG. Frequency of the
bands surrounding a PBG for (a) diamond, bands 2-3, (b), SC, bands 2-3, (c) lithium oxide,
bands 5-6, (d) diamond, bands 8-9, (e) BCC, bands 6-7, and (f) CN=10, bands 7-8. Arrow
direction corresponds to whether it is the maximum of the lower band (down) or minimum
of the upper band (up), and color denotes band number. A grey box and “PBG” indicate
where a PBG occurs.

8.2.4 Conclusions

I have shown that network connectivity morphology is not a sufficient condition for cre-

ating a PBG, as increased connectivity may lower the frequencies of both bands delineating

a PBG. I have also identified several new systems that have increased PBGs with increased

network connectivity and may be ideal candidates for fabrication in future work.

8.3 Effect of Lattice Distortion on PBG Structures

I looked at the effect of lattice distortion on several well studied photonic crystals to

understand the resilience of the PBGs. Photonic band structures for this section can be

found in Appendix E. For each of the structures, we looked at the effect of orthorhombic

scaling, wherein |a2|, |a3| change and the original angles are preserved. For each structure we

report based upon the standard setting, but compute with the primitive cell. For example,
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diamond is reported with its cubic lattice setting, as opposed to its rhombohedral primitive

cell.

First we looked at the photonic crystal staple: diamond, summarized in Fig. 8.7.iv Both

the PBGs found between Bands 2-3 and 8-9 decrease most with orthorhombic settings,

however the 8-9 PBG persists to higher asymmetry, as seen by the width of the region where

the 8-9 PBG is greater than 0 in Fig. 8.7. Both PBGs disappear for |a2|, |a3| > 2.0. At |a2|

or |a3| >= 2, the topology resembles 2D sheets, leading to the PBG found between bands

10-11. The PBG between bands 14-15 increased marginally upon scaling to |a2|, |a3| = 1.25,

yet was only found for small lattice distortions.

Fig. 8.8 shows the effect of orthorhombic scaling on (a) Inverse Opal, (b) Inverse Simple

Cubic, (c) Inverse Simple Chiral Cubic, and (d) Simple Chiral Cubic. Surprisingly, the PBGs

for (a) and (b) decreased greatly with small changes in |a2| and |a3|, whereas the decrease in

PBG size for (c) and (d) was much smaller. For (d), the PBG between bands 4-5 and 16-17

increased with small scaling along one axis.

8.3.1 Discussion

It is clear from the figures in this section that orthorhombic scaling greatly affects the

PBGs of a crystal structure. However, the reason is unknown and must be an area for further

investigation. Possible causes are a loss of connectivity of the high dielectric medium (for

those band gaps where connectivity is required) the energy changes in the electromagnetic

modes due to the distortion. I think that this study would be well coupled with a self-

assembly study where these structures were analyzed for the distortion that may occur due

to particle polydispersity or non-uniaxial pressure.

References

ivI took this structure in the direct instantiation, as there exist 3 potential PBGs to study, as opposed to
the single PBG in inverse diamond.
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Figure 8.7: The Effects of Orthorhombic Scaling on the PBGs in Diamond (a)
Effect of Orthorhombic Scaling on Lattice Setting and Photonic Band Gaps. (b) Effect on
PBGs found between bands 2-3, 8-9, 10-11, and 14-15. (c) Effects on Connectivity Threshold
φT , Bond Angles, and Coordination Number
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CHAPTER IX

Conclusions

I once asked a young dissertation writer whether her suddenly grayed hair was due

to ill health or personal tragedy; she answered: “It was the footnotes”.

– Joanna Russ, How to Suppress Women’s Writing

In this dissertation I have presented work as it relates to the self-assembly and design

of novel colloidal and photonic systems. I have done so by performing computations to

understand the role of shape in colloidal self-assembly and to understand the relationship

between structure and photonic band gaps.

Here I highlight the scope and main conclusions from each of the five main chapters

forming this dissertation. The first of these chapters[1] investigated the role that packing

plays in colloidal self-assembly of hard polyhedra. We examined the three systems, BCC,

FCC, and SC in the alchemical ensemble and demonstrated that the onset of packing occurs

at densities higher than spontaneous self-assembly. We also showed that packing rules were

not necessarily predictive of the ideal shapes for self-assembly.

The second study[2] focused on a shape-induced phase transition in a system of diamond-

assembling hard polyhedral nanoparticles. We quantified the transition using the box ratio

c/a as an order parameter, and demonstrated that it was a continuous transition by exam-

ining the equation of state and potential of mean force and torque (PMFT). We computed

the effects of this transition on the photonic properties of the corresponding structures, and
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found that this system could potentially toggle between 4 photonic states.

The third of the works included in this thesis focused on the implementation of Digital

Alchemy for design across shape space. In this section, I demonstrated two features of shape

space that may influence the results through exploration in the extended ensemble. First,

there exists a global free energy well towards which simulations will drive under no structural

constraints. Secondly, the structural constraints impart a non-trivial bias on the results of

DA simulations and may not ensure the identification of a the optimized design parameter.

The second part of the dissertation, spanning Chapters VII-VIII, focused on the proper-

ties underlying a popular motivator for nanoparticle self-assembly: photonic band gaps. In

Chapter VII[3], we computed over 150,000 photonic band structures and showed that the

range of photonic crystal targets is far broader and more complex than previously thought,

calling for a more exhaustive theory of photonic band gap materials. The final chapter looked

at some structural modifications possible on photonic crystals, both in attempt to increase

the photonic band gaps or understand the robustness of these gaps.

9.1 Additional Work

There are also a few supplementary works are briefly mentioned below.

1. Digital Alchemy for Novel Photonic Crystals. In continued work with Yuan

Zhou, I am looking to design the self-assembly of photonic nanocrystals. Together,

we are exploring the use of Digital Alchemy and interparticle interactions to design

PBG colloidal crystals capable of self-assembly and reconfigurability. Currently, she

has started investigating cI16-Li, and I have looked into tI8-YMn and Simple Chiral

Cubic (previously studied in [4, 5]).

2. Binary Mixtures that form the Lithium Oxide Structure. A colleague, Andrew

Cadotte, previously found a binary system capable of assembling the lithium oxide

structure (which exhibited many interesting photonic properties, as seen in Chapter
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VII)[6]. I ran simulations to test the conditions where this binary mixture would self-

assemble, across size ratio and truncation parameters, and determined the range of

these parameters that self-assemble Lithium Oxide.

9.2 Outlook

9.3 Open Questions

1. Does shape entropy play a role in the stability of atomic phases? The phase

transition witnessed in Chapter IV parallels one that occurs at the atomic length scale

in systems of Si, Ge, and Sn. We have shown that tetrahedral coordination and pressure

alone can induce a phase transition to tetragonal derivatives. It is plausible that the

shape of the electron orbitals for the lower pressure atomic structures (tetrahedral in

diamond) may drive the transition to β-Sn at higher pressures. It follows to ask: are

there other atomic systems that form or transition based upon the shape entropy of

their orbitals? What can we infer from understanding shape entropy at colloidal length

scales?

2. Can we make reconfigurable photonic crystals from the expanded list of

PBG crystals? One of the most exciting implications of Chapter VII is the inspiration

we can gain from the structural templates. Given that many templates are polymorphs

of one another in their natural forms, it is possible that a single system can transition

between these two states.

3. What design spaces of photonic crystals have yet to be explored? In Chapter

VII, we only scratched the surface with designing photonic crystals. There are so

many other spaces to explore: multicomponent systems, polyhedral regions of dielectric

medium, and design with specific synthesis or fabrication methods in mind.

The work presented has applications across many fields; colloidal systems have been used
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in photonic crystals, data storage, and drug delivery. [7, 8, 9, 10, 11] The ability to design

for the self-assembly of these systems is a large part of this, as it will enable the development

and use of novel materials. Photonic crystals, given the dependence of their properties on

the scale on which the crystal is made, can be used across the electromagnetic spectrum.

The work covered in Chapters VII - VIII pushed the understanding of the phenomenon and

opened a wide new space of photonic crystal targets for fabrication.

9.4 Concluding Remarks

It feels surreal to be concluding five years of hard work and inquiry. My best advice,

for those who should ever look here for it, is to follow a question. It is very easy to define

research in terms of “I have done X. Let me try X on A, B, and C”, but without a guiding

question it’s hard to see the big picture. I’ve not always succeeded at this, the purpose of a

PhD is to learn how to learn through both failures and triumphs. Yet, if you have a question,

if you have a concrete purpose to the research you’re conducting, it’s much easier to push

through these obstacles to seek understanding.

One never notices what has been done; one can only see what remains to be done.

– Marie Curie
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APPENDIX A

An Explanation of Photonic Crystals, Starting with

Maxwell’s Equations

A1. Useful Equations

1. Mathematic Equivalences and Definitions

Here, A is a general field or equation, depending on the definition.

1. Curl: ∇×A(x, y, z) = det


x̂ ŷ ẑ

∂
∂x

∂
∂y

∂
∂z

Ax Ay Az



2. Divergence: ∇ ·A(x1, x2, ..., xn) = ∂A1

∂x1
+ ∂A2

∂x2
+ ...+ ∂An

∂xn

3. Laplace Operator: ∇2A = ∇ (∇ ·A)−∇× (∇×A)

4. Stoke’s Theorem:
∮

A · dl =
∫∫

S
∇×A · dS
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5. ∇ · (∇×A) = 0 (This is a feature of all continuous vector fields)

2. Physical Relations

Here, D, E, H, and B are the divergence, electric, magnetic, and magnetic flux fields,

respectively. µ, ε, and χ represent the magnetic permeability, dielectric constant, and electric

susceptibility, respectively.

1. D ≡ εE

2. µH ≡ B

3. ε ≡ ε0(1 + χe)

4. ε ≡ ε0εr

A2. The Maxwell Equations

The Maxwell Equations are four equations that apply to describe electromagnetic behav-

ior. The four equations can be used to derive all other equations in electromagnetism.

1. Gauss’s Law

∇ · E = 1
ε0
ρ

2. Gauss’s Law for Magnetism

∇ ·B = 0

3. Faraday’s Law

∇× E = −∂B
∂t

4. Ampère’s Law with Maxwell’s Correction

∇×B = µ0J + µ0ε0
∂E
∂t
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1. Gauss’s Law

Origins The history of Gauss’s Law is a point of debate, as four scientists have discovered

it independently, Carl Friedrich Gauss in 1813, [1]Joseph-Louis Lagrange in 1760,[2] George

Green in 1823 in his Essay on the Mathematical Theory of Electricity and Magnetism[3] and

Mikhail Ostrogradsky in 1826.[4]

Whether it be Lagrange’s Theorem, Gauss’s Theorem, Green’s Theorem, or Ostrograd-

sky’s Theorem, it states that for a closed surface:

∇ · E =
1

ε0

ρ (A.1)

where ∇ · E is the electric flux, ε0 is the dielectric constant, and ρ is the electric charge

density per unit volume for both free and bound charge (ρ = ρf + ρb). Now we can write

this in terms of the free charge and polarization density:

ρ = ρf + ρb

ρ = ρf −∇ ·P

∇ · E =
1

ε0

(ρf −∇ ·P)

ρf = ∇ · (ε0E + P)

(A.2)

This equation can be transformed to detail the electric displacement field D,

D ≡ ε0E + P

∇ ·D = ρf

(A.3)

where ρf is the free surface charge density.
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Practical Interpretations Essentially, this means that without an electric charge on

the surface, it is impossible to have a divergent electric field on a closed surface. In a pure

Faraday field, where any electric field is based upon a changing B field and no surface charge

is present, the electric field is non-divergent.

∇ · E = 0 (A.4)

2. Gauss’s Law for Magnetism

Origins Whereas for electric fields there can exist free charges, the same cannot be said

for magnetic fields. This idea, the nonexistence of magnetic monopoles (magnetic fields

originate from magnetic dipoles) dates back to 1269 with Petrus Peregrinus Maricourt.[5]

Over the next 600 years, the idea was expanded to its current form:

∇ ·B = 0 (A.5)

If a magnetic monopole were to be found to exist, this law would take the form:

∇ ·B = ρm (A.6)

where ρm would be the magnetic charge density.

Practical Interpretations Consider a bar magnet. If you were to split it into two along

the division between the (-) and (+) poles, would you create two separate (-) and (+)

magnets? In fact, you would create two smaller magnets, each with their own (-) and (+)

poles. This is due to the many currents within the magnets, which would not fail to flow if

the magnet were made smaller, but would oscillate within the new shape, again creating the

two separate poles.

3. Faraday’s Law
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Origins In 1831, Michael Faraday conducted a series of experiments that led to the formu-

lation of Faraday’s law. In each experiment, he placed a loop of wire within a magnetic field

and performed three actions: (1) he pulled the loop to the right through the magnetic field,

(2) he moved the magnet to the left and held the loop still, and (3) he left both the magnet

and the loop in place and changed the strength of the magnetic field. In each case, a current

flowed through the loop, which led him to the conclusion that there must be a relationship

between magnetic and electric fields. He deduced that A changing magnetic field induces an

electric field. [6]

He then formulated an equation to describe their relationship. He was able to measure

the emf (E electromotive force or electromotance, which is the integration of the electric field

with respect to a distance), and found that it was equal to the rate of change in the flux of

the magnetic field Φ, i.e. the flux rule:

E =

∮
E · dl = −dΦ

dt
(A.7)

where we know that:

Φ =

∫∫
S

B · dS

dΦ

dt
=

∫∫
S

∂B

∂t
· dS

(A.8)
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therefore, using Stoke’s Theorem,

∮
E · dl = −

∫∫
S

∂B

∂t
· dS

∫∫
S

∇× E · dS = −
∫∫
S

∂B

∂t
· dS

∇× E = −∂B

∂t

(A.9)

Practical Interpretations The best way to think of this law is as nature’s response to

unbalance. Nature does not like a change in magnetic flux, so it induces a current to maintain

balance. Griffiths points out that based upon this definition, we really should not consider

(1) an example of Faraday’s law: (2) and (3) were cases of static electrons being mobilized

by a change in the magnetic field, whereas in (1) the electrons were being dragged by the

moving electric field.

4. Ampère’s Law with Maxwell’s Correction

Origins Ampère was conducting experiments with forces on wires in the 1820s, looking

at the magnetic effects of a current running through a wire. He found that for a wire or

conductor containing an electric current I, there would be a magnetic field B created. This

magnetic field would encircle the wire, and the integral of the magnetic field along a given

path would be equal to the current it encloses. In other words:

µ0

∮
B · dl = Iencµ0 (A.10)

Note that this integration is agnostic to the line chosen (this will be important later). Again,

using Stoke’s theorem,

∮
B · dL =

∫
S

∇×B · dS (A.11)
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The enclosed current can be written as the surface integral of the current density J:

Ienc =

∫
S

J · dS (A.12)

therefore,

∫
S

∇×B · dS = µ0

∫
S

J · dS

∇×B = µ0J

(A.13)

Because the choice of surface and line are arbitrary, we can set the integrands of these two

equations to be equal. This final result was thought to be the relationship between the

magnetic field and current density from the 1820s up through the 1860s, at which point it

was corrected by this identity:

∇ · (∇×A) = 0 (A.14)

which is true for any vector field. Given this equation, ∇·(∇×B) = ∇·J = 0, which implies

that all current densities are without divergence. However, for a length of conductor, there

are many cases in which the density in does not equal the density out (equalling divergence),

such as when the conductor is interrupted by a capacitor. In reality:

∇ · J = −∂ρ
∂t

(A.15)

James Clerk Maxwell conceived of displacement current as a polarization current in the

dielectric vortex sea, which he used to model the magnetic field hydrodynamically and me-

chanically. He added this displacement current to Ampère’s circuital law at equation 112

in his 1861 paper On Physical Lines of Force,[7] creating what we now know as the fourth
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Maxwell equation:

∇×B = µ0J + µ0ε0
∂E

∂t
(A.16)

which was found experimentally in systems of J = 0.

Practical Interpretations A flowing electric current gives rise to a magnetic field that

circles that current, as will a changing E or corresponding D flux.

A3. Simple Formulation of EM Waves

Consider a force F on a taut string:

∆F = Tsinθ′ − Tsinθ (A.17)

where T is the tension in the string and θ′ and θ are the angles that the string makes

with the z-axis at distance z and z+ ∆z, respectively. When θ is small we can approximate:

∆F ≈ Ttanθ′ − Ttanθ

∆F = T

((
∂f

∂z

)
z+∆z

−
(
∂f

∂z

)
z

)
∆F = T

(
∂2f

∂z2

)
∆z

(A.18)

Newton’s law can be understood as ∆F = m∆a, therefore:

∆F = m

(
∂2f

∂t2

)
∆F = µ

(
∂2f

∂t2

)
∆z

T

(
∂2f

∂z2

)
∆z = µ

(
∂2f

∂t2

)
∆z

T

(
∂2f

∂z2

)
= µ

(
∂2f

∂t2

)
(A.19)
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Given v =
√

T
µ

, we get the classical wave equation:

∂2f

∂z2
=

1

v2

∂2f

∂t2
(A.20)

for a given displacement f along the z axis. This gives us the form of a wave:

f(z, t) = g(z − vt) + h(z + vt) (A.21)

which for sinusoidal waves takes the form:

f(z, t) = f0cos[k(z − vt)] = f0cos[kz − ωt] (A.22)

Alas, this is only the real component of the wave. Considering the complex components and

Euler’s formula, the wave will then take the form:

f̃(z, t) = f0 [cos[kz − ωt] + isin[kz − ωt]]

f̃(z, t) = f0e
i(kz−ωt)

(A.23)

We can decouple the spatial and time dependence:

f̃(z, t) = f0e
i(kz)e−i(ωt) (A.24)

A4. Extension to Photonic Crystals

Let’s take the Maxwell equations and transform them into the macroscopic Maxwell

equations, for which the formulations of Gauss’s law and Ampere’s law take into account

two new fields, the displacement field D and the magnetizing field H, defined in homogenous
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materials as

D ≡ εE

µH ≡ B

ε = ε0εR = ε0 (1 + χe)µ = µ0µR

(A.25)

where ε0 and µ0 are the material permittivity and permeability, respectively. This takes

into account the macroscopic properties of the bulk material where appropriate. We are also

going to arrange the equations to reflect the “fields” and “sources” on the left and right,

respectively. Now we have:

1. ∇ ·D = ρ

2. ∇ ·B = 0

3. ∇× E + ∂B
∂t

= 0

4. ∇×H− ∂D
∂t

= J

Now we will consider a material of mixed but homogenous material in which light prop-

agates but no light is necessarily introduced (that is, ρ = 0 and J = 0). Given that the

material consists of regions of differing dielectric strength, we consider ε to be a real, positive

function of r, ignoring any frequency dependence (more on this later). We’ll also assume

that each region of material is isotropic and macroscopic, such that higher order terms in

the relationship between the D field and E field can be ignored (for mixed dielectric media,

the displacement field of region i is defined Di/ε0 =
∑

j εijEj +
∑

j,k χijkEjEk + O(E3), we

disregard all but the first term). Given the hetergeneity of the materials, we define ε = ε0ε(r)
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and µ = µ0µ(r) to give us:

D(r) ≡ ε0ε(r)E(r)

H(r) ≡ µ0µ(r)B(r)

(A.26)

Therefore, let’s include our assumptions and get our Maxwell equations into only two

field variables:

1. ∇ · [ε(r)E(r, t)] = 0

2. ∇ ·H(r, t) = 0

3. ∇× E(r, t) + µ0
∂H(r,t)
∂t

= 0

4. ∇×H(r, t)− ε0ε(r)∂E(r,t)
∂t

= 0

Given that our fields can be expanded into as harmonic modes, we can now separate our

fields into their spatial (r) and time (t) dependent components (see section A3):

H(r, t) = H(r)e(−iωt)

E(r, t) = E(r)e(−iωt)
(A.27)

If we take a look at our constraints given by Gauss’s law of magnetism and we define

H(r) = H0e
ik·r−ωt, as is customary for electromagnetic waves, we must constrain H0 and k

such that H0 · k = 0.

Now let’s apply our formulations to Faraday’s and Ampere’s laws:

∇× E(r)− iωµ0H(r) = 0

∇×H(r) + iωε0ε(r)E(r) = 0

(A.28)
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Focusing on the H field (although this choice is arbitrary), we can simplify to our master

equation by (1) dividing by ε(r), (2) taking the curl, and (3) using the previous E equation

to eliminate E in the final equation in four steps:

1

ε (r)
∇×H(r) = −iωε0E(r)

∇×
(

1

ε (r)
∇×H(r)

)
= −iωε0 (∇× E(r))

∇×
(

1

ε (r)
∇×H(r)

)
= −iωε0 (iωµ0H(r))

∇×
(

1

ε (r)
∇×H(r)

)
= ω2ε0µ0H(r)

(A.29)

and thus:

∇×
(

1

ε (r)
∇×H(r)

)
=
(ω
c

)2

H(r) (A.30)

Tada! This is the master equation, from which we can calculate ω, the frequencies

that serve as solutions to the eigenproblem, given a periodic dielectric function ε. From now

on, for brevity, we will formulate this equation:

ΘH(r) =
(ω
c

)2

H(r) (A.31)

where ΘH(r) represents ∇×
(

1
ε(r)
∇×H(r)

)
. Θ is both linear (i.e. if H1(r) and H2(r) are

both solutions, so is αH1(r) + βH2(r), where α and β are constants) and Hermitian.i

A5. Computing the Photonic Band Structure

Practically, the eigenvalues of the master equation in A.31 can be computed as any other

eigenproblem of the form Av = λv, so the main source of computational complexity lies in

solving for the matrix components.

iA hermitian matrix is one which is unchanged by the conjugate transpose operation. Because Eq. A.31
is Hermitian, it follows that the square of the eigenvalues will be real. A full derivation of this property is
given in [8], pages 11-13.
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Johnson and Joannopoulos showed that A.31 could be simplified by rewriting the mag-

netic field H into a sum of basis functions, given in Dirac notation as:

Â~k
∣∣H~k

〉
=
ω2

c2

∣∣H~k

〉
(A.32)

∣∣H~k

〉
=

N∑
m=1

hm|bm〉 (A.33)

this gives Ah = ω2

c2
Bh, where:

Alm = 〈bl|Â~k|bm〉 (A.34)

Blm = 〈blbm|〉 (A.35)

here Blm will reduce to the identity matrix, and Alm can be computed in O(n log(n)) using[9]:

Alm = −(~k + ~Gl)...IFFT... ˜ε−1...FFT...(~k + ~Gm) (A.36)

where “FFT” and “IFFT” represent a fast Fourier transform and the inverse operation.

A6. The Caveats

1. Length-Scale Covariance

In the master equation, it is interesting to note that there are no constants with dimen-

sions of length - alluding to the fact that the results found are scale-invariant. Let’s test this

theory.

Say that our dielectric function is scaled by some parameter s, such that r′ = sr. Chang-

ing the variables, we get ∇′ = ∇/s and replace all remaining r in our master equation by
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r′/s:

s∇′ ×
(

1

ε (r′/s)
s∇′ ×H(r′/s)

)
=
(ω
c

)2

H(r′/s) (A.37)

By extracting the s’s from the left side of the equation, we create:

∇′ ×
(

1

ε (r′/s)
∇′ ×H(r′/s)

)
=
( ω
sc

)2

H(r′/s) (A.38)

Which shows that for a scaling by a factor of s, our eigenvalues will scale by 1/s, such that

ω′ = ω/s. Our mode profile for r (H (r)) similarly scales, i.e. the solution of the problem at

one length scale determines the solutions at other length scales.

However, the practical applications of photonic properties requires a scale-covariance,

i.e. that there needs to be a determined length scale in order to find the corresponding gap

frequencies. The returned eigenvalues will be in units c/a, where c is the speed of light and

a is the lattice parameter. The unit-bearing frequencies are then given by:

λ =
a

ω
(A.39)

2. Frequency Dependence of Permittivity

The permittivity, or dielectric constant ε, is not a constant, but rather a function of the

wavelength λ. This frequency-dependence is called dispersion, and materials exhibiting it

are known as dispersive media. We can actually consider the electrons in the dielectric under

multiple forces:

Fbinding = −kspringx = −mω2
0x

Fdamping = −mγdx
dt

Fdriving = qE = qE0cos[ωt]

m
d2x

dt2
= Ftot = Fbinding + Fdamping + Fdriving

(A.40)
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where x is our displacement coordinate, m is the mass, q is change of an electron, and γ is

the damping constant.

Assuming a complex equation x̃, this becomes:

m
d2x̃

dt2
+mγ

dx̃

dt
+mω2

0x̃ = qE0e
(iωt)

d2x̃

dt2
+ γ

dx̃

dt
+ ω2

0x̃ = qE0/me
(iωt)

(A.41)

which at steady state gives:

x̃(t) = x̃0e
(iωt)

−ω2x̃0 + iωγx̃0 + ω2
0x̃0 = qE0/m

x̃0 =
q/m

−ω2 + iωγ + ω2
0

E0

(A.42)

The polarization P̃, which is the dipole per unit volume, is found by summing over all

populations of electrons with a given frequency and damping coefficient, subscripted j:

P̃ =
Nq2

m

(∑
j

fj
−ω2 + iωγj + ω2

j

)
Ẽ (A.43)

where fj is the size of each population. And for linear media:

P̃ = ε0χ̃eẼ (A.44)

and as εR = 1 + χ̃e,

εR = 1 +
Nq2

m

(∑
j

fj
−ω2 + iωγj + ω2

j

)
(A.45)

giving us our non-constant ε as a function of ω.
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APPENDIX B

Signac Cookbook

B1. Tips for Running HOOMD Simulations with signac

1. Statepoints and Documents

I find it very useful to mold my HOOMD simulations around the signac infrastructure.[10]

For this, I’ll distinguish between the static and dynamic data storage for signac. The

ensemble-defining parameters should go in the signac statepoint, so a typical NV Tµ en-

semble simulation may have a statepoint like:

{

"phi": 0.6,\ #running our simulation at a filling fraction of 0.6 (analogous to constant volume)

"N": 512,\

"target": "sc", #the target we are trying to optimize

}

The signac document can be used to store the dynamic data from a simulation:

{

"pressure": 100,\ # such as when calculated using the sdf analyzer

"vertices": {"A": [...], "B":[...]},\ #dictionary of vertices for a DA simulation

"MC_sweep": 20001000,\ #current mc sweep, as gotten by hoomd.get\_step()

"total_run": 40000000,\ #target number of MC sweeps to run for, can be increased if equilibrium isn’t

reached

"random_seed": 5003452,\ #random seed to be used in simulation. I like to put it in the document so that

my searching of statepoints doesn’t have to account for random seeds
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"output_file": "...",\ #current output file, if file type is rewrite only

}

2. Using Signac Operations for Code Reusability

Often times we have sections of our simulations that require the same type of code. I

like to use signac operations to avoid code duplication:

##operations.py

def __simulate__(job, mode, dump_period = 1e3):

#names outputs with the given mode

restart = ’restart.{}.gsd’.format(mode)

#code that runs the simulation, dumping restart or data at the prescribed dump_period

def compress(job):

#do what I need to do to compress

__simulate__(job, "compress", 1e2)

def equilibrate(job):

__simulate__(job, "equilibrate", 1e4)

def collect_data(job):

#do what I need to do to set up data collection

__simulate__(job, "collect")

if __name__=="__main__":

import flow

flow.run()
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B2. Multi-Level Projects

During my doctoral work, I used a data management framework signac to organize,

develop, and conduct my work. Some of my signac usage is quite textbook, however for a

few projects I employed multi-level projects, as I will detail here.

For the projects covered in Chapters VII-VIII, it was appropriate to conduct compu-

tations/calculations on two levels: ”sub-job” and ”super-jobs”. The super-job would cor-

respond to the structures, e.g. cF8-C or cP1-Po and the sub-jobs would correspond to

individual states, such as with different materials or filling fraction. A snapshot of this file

structure is given in Fig. 7.6.
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1. The Project.py Files and Status Calls

The signac super-project file can look like this:i

##super_project.py

from flow import FlowProject, staticlabel

import signac

class Project(FlowProject):

@staticlabel()

def Progress(job):

return ’{}\%’.format(round( 100*len( signac.get_project(job.workspace()).find_jobs(

doc_filter={"calculations_done":True))/len(signac.get_project(job.workspace()).find_jobs()),2))

@staticlabel()

def finished(job):

return len(signac.get_project(job.workspace()).find_jobs(

doc_filter={"calculations_done":True))==len(signac.get_project(job.workspace()).find_jobs())

def __init__(self, *args, **kwargs):

super(Project, self).__init__(*args, **kwargs)

self.add_operation(name=’store_BZ’, post=[lambda job: ’BZ’ in job.document]

cmd=’python super_operations.py store_BZ {job._id}’)

self.add_operation(name=’store_spacegroup’, post=[lambda job: ’spacegroup’ in job.document]

cmd=’python super_operations.py store_spacegroup {job._id}’)

self.add_operation(name=’submit_subjobs’,\

cmd=’cd {job.ws}; python ../../../sub_project.py submit -o compute; cd {job.ws}/../../’,

post=[Project.finished])

if __name__=="__main__":

Project().main()

when invoked with “python super project.py status -d –skip-overview” gives:

job_id operation structure labels

-------------------------------- --------------------- ------------- ------------------------------

11259c0c710cd3c07e81d726342e695d Structure1 finished

96ca3ebafaf0627e74cde058fc7746a6 store_spacegroup [U] Structure2 70.0\%

submit_subjobs [U]

b35947d0db87e3390b271cd5f43eab9c store_BZ [U] Structure3 65.0\%

submit_subjobs [U]

store_spacegroup [U]

[U]:unknown [R]:registered [Q]:queued [A]:active [I]:inactive [!]:requires_attention

iNotes: I use the old signac API, but this can be converted to the currect API easily.
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The sub-project file can look like this:

##sub_project.py

from flow import FlowProject

from flow import staticlabel

class Project(FlowProject):

def __init__(self, *args, **kwargs):

super(Project, self).__init__(*args, **kwargs)

self.add_operation(name=’compute’,\

cmd=’python sub_operations.py compute {job._id}’,

post=[lambda job: job.document.get(’calculations_done’)==True])

self.add_operation(name=’store_filling_fraction’,\

cmd=’python sub_operations.py store_ff {job._id}’,

post=[lambda job: ’fill_fraction’ in job.document])

if __name__=="__main__":

Project().main()

which when invoked from within a sub-project folder gives:

# Detailed View:

job_id operation radius dielectric labels

-------------------------------- -------------------------- -------- ------------ ----------------

2cbe92bbb74043e72907d43adf8f3ba9 compute [U] 0.1 12 ff_stored

bcb2395eec03cb18f8cd851b1846783b store_filling_fraction [U] 0.8 4 computed

bcaa1c1e7ea6056543f32b1bccbbd4c6 store_filling_fraction [U] 0.3 4 computed

37f881c6005d89be2720fe69c654950d compute [U] 0.2 16 ff_stored

195bf8408e8cd408cec4f3141a7c6476 store_filling_fraction [U] 0.1 4 computed

9a48843751347716110c1027c64428d9 store_filling_fraction [U] 0.5 12 computed

e4f9ba06c9d24d4c0774677a99a591c7 compute [U] 0.8 8 ff_stored

14db7dc600abf0e52e347bca16413ce8 store_filling_fraction [U] 0.9 4 computed

28ac8f460bb11eee31aa6f7ef3748d44 compute [U] 0.6 16 ff_stored

a846799094f74807c4e417ad87072e22 compute [U] 0.8 12 ff_stored

c3724f79137862cddca38c9c7bff47ee store_filling_fraction [U] 0.4 16 computed

[U]:unknown [R]:registered [Q]:queued [A]:active [I]:inactive [!]:requires_attention
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2. Aggregating and Submitting at the Super Project Level

Computations could also be aggregated and submitted from the super project level:

python super_project.py submit -o submit_subjobs -j 96ca --pretend

Using environment configuration: UnknownEnvironment

Submitting cluster job ’super_projec/96ca3eba/submit_subjo/0000/7b49e8103b9cf86db2f80c915113b93f’:

- Operation: submit_subjobs(96ca3ebafaf0627e74cde058fc7746a6)

cd my_project

# submit_subjobs(96ca3ebafaf0627e74cde058fc7746a6)

cd my_project/workspace/96ca3ebafaf0627e74cde058fc7746a6

python ../../../sub_project.py submit -o compute -w 12 --nn 1

cd my_project/workspace/96ca3ebafaf0627e74cde058fc7746a6/../../
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3. Multi-Level Data Analysis

This structure also allows for cross-structural data analysis, such as that in Fig. 7.12(c).

We could generate a similar figure showing individual statepoints that have a PBG for every

ε using this code snippetii:

##agg_plot.py

from matplotlib import pyplot, rcParams

import signac

project = signac.get_project()

structure_projects = [signac.get_project(structure.workspace()) for structure in project.find_jobs()]

sub_jobs = [jobs for sproj in structure_projects for jobs in sproj.find_jobs(doc_filter={"has_gap":True})]

dielectrics = [4, 6, 8, 10, 12, 14, 16]

band_gaps = [(band, job.sp.dielectric) for job in sub_jobs for band in job.document.band_nos]

for bn in range(2,20):

pyplot.plot(dielectrics, [band_gaps.count((bn,d)) for d in dielectrics])

pyplot.show()
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Figure B.1: The Resulting Figure from our Code Snippet
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APPENDIX C

Glossary of Photonic Band Structures from Chapter

VII

For each of these crystal structures, the photonic band structure for each gap location

(e.g. between bands 2-3) is given for the filling fraction φ that maximizes gap size and for

all ε computed in Chapter VII where gap size is greater than 0.
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2-Connected Diamond (cF40-ZnC2N2), Bands 2 - 3
Structure file taken from https://doi.org/10.1021/ja4012707.
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Inverse Clathrate-II (cF 136-Si), Bands 2 - 3
Structure file taken from https://doi.org/10.1103/PhysRevB.60.950.
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Inverse Diamond (cF8-C), Bands 2 - 3
Structure file taken from https://doi.org/10.1107/S0108768195010810.
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Inverse Tetraarsenic Oxide (cF80-As2O3), Bands 2 - 3
Structure file taken from https://doi.org/10.1021/ja01660a006.
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Inverse Senarmontite (cF80-Sb2O3), Bands 2 - 3
Structure file taken from https://doi.org/10.1107/S0567740875006759.
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Inverse 2-Connected Diamond (cF40-ZnC2N2), Bands 2 - 3
Structure file taken from https://doi.org/10.1021/ja4012707.
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Cristobalite (beta) (cF24-SiO2), Bands 2 - 3
Structure file taken from https://doi.org/10.1524/zkri.1992.201.1-2.125.
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Inverse Cobalt Copper Silicon Sulfide (tI16-CoSiCu2S4), Bands 8 - 9
Structure file taken from https://doi.org/10.1016/j.jallcom.2004.02.004.
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Inverse Cristobalite (beta) (cF24-SiO2), Bands 2 - 3
Structure file taken from https://doi.org/10.1524/zkri.1992.201.1-2.125.
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Inverse Indium Silver Telluride (tI16-In4.8Ag1.6Te8), Bands 8 - 9
Structure file taken from https://doi.org/10.1021/acs.inorgchem.5b00433.
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Inverse Chalkogenide With Pyrite Structure (tI16-AlAgS2), Bands 8 - 9
Structure file taken from https://doi.org/10.1002/zaac.19532710307.
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Inverse Simple Chiral Cubic (cP4-X), Bands 4 - 5
Structure file taken from https://doi.org/10.1103/PhysRevLett.115.158303.
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Inverse Zeolite- type Chalcogenide (tI48-GeS2), Bands 2 - 3
Structure file taken from https://doi.org/10.1021/jacs.5b03550.
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Cristobalite (beta, with defects) (cP24-SiO2), Bands 8 - 9
Structure file taken from https://doi.org/10.2475/ajs.s5-23.136.350.
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Ice Ih (hP20-H3O), Bands 4 - 5
Structure file taken from https://doi.org/10.1063/1.1765099.
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Inverse Lithium (aP4-Li), Bands 4 - 5
Structure file taken from https://doi.org/10.1021/nn204012y.
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Inverse Iron Trifluoride (Pyrochlore- Type) (cF64-FeF3), Bands 2 - 3
Structure file taken from https://doi.org/10.1016/0025-5408(86)90134-0.
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Inverse Iron Trifluoride (Pyrochlore- Type) (cF64-FeF3), Bands 18 - 19
Structure file taken from https://doi.org/10.1016/0025-5408(86)90134-0.
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Inverse 576-Particle Zeolite Network (cF2304-SiO2), Bands 8 - 9
Structure file taken from https://doi.org/10.1021/ja048685g.
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Inverse Germanium Indium Selenide (oF96-In2S5), Bands 2 - 3
Structure file taken from https://doi.org/10.1107/S0108768104003878.
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2-Connected Hexagonal Diamond (hP20-ZnC2N2), Bands 4 - 5
Structure file taken from https://doi.org/10.1021/ja4012707.
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ε = 8, φ = 0.27. 7.23% gap.

Inverse Manganese Yttrium (tI8-YMn2), Bands 2 - 3
Structure file taken from https://doi.org/10.1088/0953-8984/3/33/023.
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Inverse Lautite (oP12-CuAsS), Bands 12 - 13
Structure file taken from https://doi.org/10.1107/S1600536808004492.
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Orthorhombic Tridymite (HT) (oC48-SiO2), Bands 8 - 9
Structure file taken from https://doi.org/10.1107/S0365110X67003287.
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Cristobalite (alpha, HT) (tP12-SiO2), Bands 4 - 5
Structure file taken from https://doi.org/10.1524/zkri.1973.138.jg.274.
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Tridymite 2H (hP12-SiO), Bands 4 - 5
Structure file taken from https://doi.org/10.1524/zkri.1978.147.3-4.159.
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Monoclinic Tridymite (mP12-SiO2), Bands 4 - 5
Structure file taken from https://doi.org/10.17188/1269045.
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Monoclinic Tridymite (mP24-SiO2), Bands 8 - 9
Structure file taken from https://doi.org/10.17188/1269045.
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Phosphorus Oxonitride (cristobalite- like) (tI12-PNO), Bands 2 - 3
Structure file taken from https://doi.org/10.1107/S205698901501899X.
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Gallium Boron Phosphate (beta cristobalite- like) (tP12-Ga0.71B0.29PO4), Bands
4 - 5
Structure file taken from https://doi.org/10.1107/S1600536810000358.
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Boron Phosphate (tI12-BPO4), Bands 2 - 3
Structure file taken from https://doi.org/10.17188/1207092.

X P N M S S0 X R G M

0.0

0.2

0.4

0.6

0.8

1.0

[c
/a

] 

XP

NM
S S0

RG

ε = 16, φ = 0.28. 23.13% gap.

X P N M S S0 X R G M

0.0

0.2

0.4

0.6

0.8

1.0

[c
/a

] 

XP

NM
S S0

RG

ε = 14, φ = 0.28. 20.61% gap.

X P N M S S0 X R G M

0.0

0.2

0.4

0.6

0.8

1.0

[c
/a

] 

XP

NM
S S0

RG

ε = 12, φ = 0.28. 17.54% gap.

X P N M S S0 X R G M

0.0

0.2

0.4

0.6

0.8

1.0

[c
/a

] 

XP

NM
S S0

RG

ε = 10, φ = 0.31. 13.89% gap.

X P N M S S0 X R G M

0.0

0.2

0.4

0.6

0.8

1.0

[c
/a

] 

XP

NM
S S0

RG

ε = 8, φ = 0.31. 9.35% gap.

X P N M S S0 X R G M

0.0

0.2

0.4

0.6

0.8

1.0

[c
/a

] 

XP

NM
S S0

RG

ε = 6, φ = 0.35. 3.49% gap.

Phosphorus Oxide Nitride (tP12-PNO), Bands 4 - 5
Structure file taken from https://doi.org/10.1002/chin.199030021.
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Inverse Silver Indium Germanium Selenide (tI28-InAgGeSe4), Bands 16 - 17
Structure file taken from https://doi.org/10.1016/S0925-8388(01)01945-4.

X M Z R A Z X R M A

0.0

0.2

0.4

0.6

0.8

1.0

[c
/a

] 

X M

Z

R A

ε = 16, φ = 0.13. 22.47% gap.

X M Z R A Z X R M A

0.0

0.2

0.4

0.6

0.8

1.0

[c
/a

] 

X M

Z

R A

ε = 14, φ = 0.13. 19.56% gap.

X M Z R A Z X R M A

0.0

0.2

0.4

0.6

0.8

1.0

[c
/a

] 

X M

Z

R A

ε = 12, φ = 0.16. 16.4% gap.

X M Z R A Z X R M A

0.0

0.2

0.4

0.6

0.8

1.0

[c
/a

] 

X M

Z

R A

ε = 10, φ = 0.16. 12.89% gap.

X M Z R A Z X R M A

0.0

0.2

0.4

0.6

0.8

1.0

[c
/a

] 

X M

Z

R A

ε = 8, φ = 0.2. 8.43% gap.

X M Z R A Z X R M A

0.0

0.2

0.4

0.6

0.8

1.0

[c
/a

] 

X M

Z

R A

ε = 6, φ = 0.2. 3.16% gap.

Inverse Phosphorus Oxonitride (cristobalite- like) (tI12-PNO), Bands 2 - 3
Structure file taken from https://doi.org/10.1107/S205698901501899X.
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Inverse Boron Phosphate (tI12-BPO4), Bands 2 - 3
Structure file taken from https://doi.org/10.17188/1207092.
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Inverse Dinitrogen Tetraoxide (cI36-NO2), Bands 2 - 3
Structure file taken from https://doi.org/10.1007/BF01390966.
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Inverse Gallium Boron Phosphate (beta cristobalite- like) (tP12-
Ga0.71B0.29PO4), Bands 4 - 5
Structure file taken from https://doi.org/10.1107/S1600536810000358.
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Inverse Cristobalite (beta, with defects) (cP24-SiO2), Bands 8 - 9
Structure file taken from https://doi.org/10.2475/ajs.s5-23.136.350.
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Inverse Platinum Hexaindium Germanate Oxide (cF72-In6Ge2PtO9), Bands 10
- 11
Structure file taken from https://doi.org/10.1021/ja053280x.
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ε = 10, φ = 0.21. 6.6% gap.

Inverse Platinum Hexaindium Germanate Oxide (cF72-In6Ge2PtO9), Bands 13
- 14
Structure file taken from https://doi.org/10.1021/ja053280x.
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173

https://doi.org/10.1021/ja053280x
https://doi.org/10.1021/ja053280x


Inverse Germanium Mercury Selenium (tI14-Hg2GeSe4), Bands 8 - 9
Structure file taken from https://doi.org/10.1107/S1600536804034105.
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Inverse Germanium Mercury Selenium (tI14-Hg2GeSe4), Bands 11 - 12
Structure file taken from https://doi.org/10.1107/S1600536804034105.
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Inverse Cristobalite (alpha, HT) (tP12-SiO2), Bands 4 - 5
Structure file taken from https://doi.org/10.1524/zkri.1973.138.jg.274.
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Inverse Beryllium Sulfate Tetrahydrate (tI40-BeSO8), Bands 12 - 13
Structure file taken from https://doi.org/10.1524/zkri.1932.82.1.297.
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Inverse Complex Polymeric Telluridoindates (tI280-In12Te23), Bands 2 - 3
Structure file taken from https://doi.org/10.1107/S0108767383001762.
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Inverse Trisilver Vanadate (beta) (tI16-VAg3O4), Bands 8 - 9
Structure file taken from https://doi.org/10.1021/cm301119c.
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Inverse Uranium Borohydride (tP20-UB4), Bands 4 - 5
Structure file taken from https://doi.org/10.1021/ic50118a027.
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Ice II (hR72-H2O), Bands 12 - 13
Structure file taken from https://doi.org/10.1107/S0365110X64003553.
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Inverse Silicon (II) (cI16-Si), Bands 12 - 13
Structure file taken from https://doi.org/10.1107/S0365110X64001840.
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Inverse Silica (HP, Pyrite- type) (cP12-SiO2), Bands 16 - 17
Structure file taken from https://doi.org/10.1126/science.1114879.
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Ice Ih (hP30-H5O2), Bands 4 - 5
Structure file taken from https://doi.org/10.1063/1.1699206.

M K A L H A L M H K
0.0

0.2

0.4

0.6

0.8

1.0

[c
/a

] 

M
K

A
L

H

ε = 16, φ = 0.33. 17.75% gap.

M K A L H A L M H K

0.0

0.2

0.4

0.6

0.8

1.0

[c
/a

] 

M
K

A
L

H

ε = 14, φ = 0.33. 16.37% gap.

M K A L H A L M H K

0.0

0.2

0.4

0.6

0.8

1.0

[c
/a

] 

M
K

A
L

H

ε = 12, φ = 0.33. 14.56% gap.

M K A L H A L M H K

0.0

0.2

0.4

0.6

0.8

1.0

[c
/a

] 

M
K

A
L

H

ε = 10, φ = 0.33. 11.62% gap.

M K A L H A L M H K

0.0

0.2

0.4

0.6

0.8

1.0

[c
/a

] 

M
K

A
L

H

ε = 8, φ = 0.3. 7.84% gap.

Inverse Phosphorus Oxide Nitride (tP12-PNO), Bands 4 - 5
Structure file taken from https://doi.org/10.1002/chin.199030021.
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179

https://doi.org/10.1063/1.1699206
https://doi.org/10.1002/chin.199030021


Inverse Monoclinic Cristobalite (II) (mP24-SiO2), Bands 8 - 9
Structure file taken from https://doi.org/10.1180/002646100549436.
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Inverse Octahedral Hexasilver Molecule (cP86-Al12Si12Ag11.48O48), Bands 5 - 6
Structure file taken from https://doi.org/10.1021/ja00490a035.
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Inverse Octahedral Hexasilver Molecule (cP86-Al12Si12Ag11.48O48), Bands 13 -
14
Structure file taken from https://doi.org/10.1021/ja00490a035.
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Inverse Zeolite (CIT-I) (mC336-SO2), Bands 4 - 5
Structure file taken from https://doi.org/10.1021/ja00118a013.
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Inverse Copper Nitride (cP4-Cu3N), Bands 5 - 6
Structure file taken from https://doi.org/10.1016/j.ssc.2010.06.012.
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Inverse Cobalt pentlandite (cF68-Co9S8), Bands 10 - 11
Structure file taken from https://doi.org/10.17188/1191033.
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Inverse Cobalt pentlandite (cF68-Co9S8), Bands 13 - 14
Structure file taken from https://doi.org/10.17188/1191033.
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Diamond (cF8-C), Bands 2 - 3
Structure file taken from https://doi.org/10.1107/S0108768195010810.
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Diamond (cF8-C), Bands 8 - 9
Structure file taken from https://doi.org/10.1107/S0108768195010810.
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Diamond (cF8-C), Bands 14 - 15
Structure file taken from https://doi.org/10.1107/S0108768195010810.
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Ice Ih (hP36-H2O), Bands 12 - 13
Structure file taken from https://doi.org/10.1063/1.1749327.
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Ice Ih (hP36-H2O), Bands 12 - 13
Structure file taken from https://doi.org/10.1063/1.1749327.
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Sodium Alumosilicate Eu-doped (hP21-NaAlSiO4), Bands 6 - 7
Structure file taken from https://doi.org/10.1021/acs.chemmater.7b02548.
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Silver Copper Oxide (tI28-Cu2Ag2O3), Bands 2 - 3
Structure file taken from https://doi.org/10.1021/ic025872b.
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Inverse Gallium Chalkogenide (tI14-Ga2HgSe4), Bands 8 - 9
Structure file taken from https://doi.org/10.1002/zaac.19552790502.
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4.96% gap between bands 11-12.
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Inverse Gallium Chalkogenide (tI14-Ga2HgSe4), Bands 11 - 12
Structure file taken from https://doi.org/10.1002/zaac.19552790502.
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Silver Chlorate (VII) (cF24-AgClO4), Bands 2 - 3
Structure file taken from https://doi.org/10.1515/zkri-1930-0105.
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Zeolite- type Chalcogenide (tI48-GeS2), Bands 2 - 3
Structure file taken from https://doi.org/10.1021/jacs.5b03550.
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Inverse Cadmium Selenide (cP138-Cd6Se7O), Bands 5 - 6
Structure file taken from https://doi.org/10.1021/jacs.6b10490.
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Inverse Cadmium Selenide (cP138-Cd6Se7O), Bands 8 - 9
Structure file taken from https://doi.org/10.1021/jacs.6b10490.
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Inverse AB13 (cP26-UBe13), Bands 5 - 6
Structure file taken from https://doi.org/10.1103/PhysRevB.32.6042.

X M R X R M

0.0

0.2

0.4

0.6

0.8

1.0

[c
/a

] 

X

M R

ε = 16, φ = 0.21. (1) 13.3%

gap between bands 5-6, and (2)

3.12% gap between bands 10-11.

X M R X R M

0.0

0.2

0.4

0.6

0.8

1.0

[c
/a

] 

X

M R

ε = 14, φ = 0.21. 11.76% gap.

X M R X R M

0.0

0.2

0.4

0.6

0.8

1.0

[c
/a

] 

X

M R

ε = 12, φ = 0.2. 8.99% gap.

X M R X R M

0.0

0.2

0.4

0.6

0.8

1.0

[c
/a

] 

X

M R

ε = 10, φ = 0.2. 4.61% gap.

Inverse AB13 (cP26-UBe13), Bands 10 - 11
Structure file taken from https://doi.org/10.1103/PhysRevB.32.6042.
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gap between bands 5-6, and (2)
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Ice II (oC48-H2O), Bands 8 - 9
Structure file taken from https://doi.org/10.1063/1.1749748.
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Ice II (oC48-H2O), Bands 8 - 9
Structure file taken from https://doi.org/10.1063/1.1749748.
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Hexagonal Diamond (hP4-Ge), Bands 4 - 5
Structure file taken from https://doi.org/10.17188/1324726.
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Hexagonal Diamond (hP4-Ge), Bands 16 - 17
Structure file taken from https://doi.org/10.17188/1324726.
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ε = 10, φ = 0.18. 4.09% gap.

Inverse Ternary Thiostannate (cF184-Cu8Sn3S12), Bands 10 - 11
Structure file taken from https://doi.org/10.1021/acs.inorgchem.6b02012.
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Inverse Manganese Gallium Sulfide (tI14-Mn1.5Ga4.34S8), Bands 8 - 9
Structure file taken from https://doi.org/10.1016/0025-5408(78)90086-7.
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ε = 16, φ = 0.35. (1) 4.82%

gap between bands 8-9, and (2)

7.05% gap between bands 11-12.
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gap between bands 8-9, and (2)

6.09% gap between bands 11-12.
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ε = 12, φ = 0.35. (1) 4.2%

gap between bands 8-9, and (2)

4.75% gap between bands 11-12.
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2.81% gap between bands 11-12.

X P N M S S0 X R G M

0.0

0.2

0.4

0.6

0.8

1.0

[c
/a

] 

X

P

N
M

S S0

R
G

ε = 8, φ = 0.3. (1) 2.15% gap

between bands 8-9, and (2)

1.23% gap between bands 11-12.
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Inverse Manganese Gallium Sulfide (tI14-Mn1.5Ga4.34S8), Bands 11 - 12
Structure file taken from https://doi.org/10.1016/0025-5408(78)90086-7.
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X P N M S S0 X R G M

0.0

0.2

0.4

0.6

0.8

1.0

[c
/a

] 

X

P

N
M

S S0

R
G

ε = 12, φ = 0.2. (1) 1.25%

gap between bands 8-9, and (2)

9.44% gap between bands 11-12.
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ε = 8, φ = 0.25. (1) 1.55%

gap between bands 8-9, and (2)

1.88% gap between bands 11-12.

Inverse Rhodium Telluride (Pyrite- like) (cP12-Te2Rh), Bands 16 - 17
Structure file taken from https://doi.org/10.3891/acta.chem.scand.32a-0209.
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Germanium Indium Selenide (oF96-In2S5), Bands 2 - 3
Structure file taken from https://doi.org/10.1107/S0108768104003878.
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ε = 8, φ = 0.43. 2.04% gap.

Cobalt Copper Silicon Sulfide (tI16-CoSiCu2S4), Bands 8 - 9
Structure file taken from https://doi.org/10.1016/j.jallcom.2004.02.004.
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ε = 16, φ = 0.46. 12.26% gap.

Ammonium Fluoride (hP12-H2NF), Bands 4 - 5
Structure file taken from https://doi.org/10.1107/S0567740870003898.
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ε = 12, φ = 0.35. 8.63% gap.
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Indium Silver Telluride (tI16-In4.8Ag1.6Te8), Bands 8 - 9
Structure file taken from https://doi.org/10.1021/acs.inorgchem.5b00433.
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ε = 16, φ = 0.47. 11.71% gap.
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ε = 6, φ = 0.47. 3.4% gap.

Inverse Simple Cubic (cP1-Po), Bands 5 - 6
Structure file taken from https://doi.org/10.1016/0022-1902(66)80270-1.
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Hoffman- type Framework (tP20-ZnNiC4N4), Bands 4 - 5
Structure file taken from https://doi.org/10.1039/c1ce05699a.
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ε = 10, φ = 0.26. 2.84% gap.

Inverse Borphosphide (hR14-B12.64P1.36), Bands 7 - 8
Structure file taken from https://doi.org/10.1107/S0567740874007576.
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Silica Sodalite (cI36-SiO2), Bands 6 - 7
Structure file taken from https://doi.org/10.1016/j.micromeso.2011.10.042.
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ε = 12, φ = 0.24. 2.89% gap.

Ice II (HP) (hR36-H2O), Bands 12 - 13
Structure file taken from https://doi.org/10.1107/S0365110X64003553.
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ε = 10, φ = 0.4. 4.78% gap.

Inverse Triammonium Heptafluorozirconate (cF360-Zr4H47.99936N12F28.0032),
Bands 10 - 11
Structure file taken from https://doi.org/10.1007/s10947-008-0066-8.
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ε = 12, φ = 0.15. 3.24% gap.
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Iron Trifluoride (Pyrochlore- Type) (cF64-FeF3), Bands 2 - 3
Structure file taken from https://doi.org/10.1016/0025-5408(86)90134-0.
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ε = 16, φ = 0.42. (1) 10.14%

gap between bands 2-3, and (2)

3.72% gap between bands 8-9.
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ε = 8, φ = 0.47. 3.09% gap.

Iron Trifluoride (Pyrochlore- Type) (cF64-FeF3), Bands 8 - 9
Structure file taken from https://doi.org/10.1016/0025-5408(86)90134-0.
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gap between bands 2-3, and (2)
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ε = 12, φ = 0.36. (1) 7.14%

gap between bands 2-3, and (2)

2.26% gap between bands 8-9.
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Inverse Ammonia (cP16-H3N), Bands 4 - 5
Structure file taken from https://doi.org/10.1021/jp970580v.
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Lautite (oP12-CuAsS), Bands 12 - 13
Structure file taken from https://doi.org/10.1107/S1600536808004492.
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ε = 10, φ = 0.46. 7.35% gap.
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ε = 8, φ = 0.46. 5.59% gap.
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ε = 6, φ = 0.46. 2.77% gap.

Potassium Magnesium Silicide (tI60-K2MgO2), Bands 8 - 9
Structure file taken from https://doi.org/10.1107/S0108768196004594.
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ε = 12, φ = 0.31. 2.42% gap.
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Inverse Trilead Germanate (mP9-GePb3O5), Bands 5 - 6
Structure file taken from https://doi.org/10.17188/1272330.
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ε = 16, φ = 0.19. 9.89% gap.
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ε = 14, φ = 0.19. 6.21% gap.
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ε = 12, φ = 0.19. 1.97% gap.

Inverse Trilead Germanate (mP9-GePb3O5), Bands 8 - 9
Structure file taken from https://doi.org/10.17188/1272330.
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ε = 16, φ = 0.09. (1) 3.27%

gap between bands 5-6, and (2)

3.48% gap between bands 8-9.
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ε = 14, φ = 0.09. 2.06% gap.

Rblicro 4 Crystals (hP14-RbLiCrO4), Bands 4 - 5
Structure file taken from https://doi.org/10.1107/S0108768192006141.
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ε = 16, φ = 0.3. 9.78% gap.
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Keatite (mP36-SiO2), Bands 12 - 13
Structure file taken from https://doi.org/10.1524/zkri.1959.112.jg.409.
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ε = 16, φ = 0.32. 9.69% gap.
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ε = 14, φ = 0.32. 6.52% gap.
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ε = 12, φ = 0.32. 2.87% gap.

Inverse Hexagonal Diamond (hP4-Ge), Bands 4 - 5
Structure file taken from https://doi.org/10.17188/1324726.
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ε = 16, φ = 0.2. 9.32% gap.
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ε = 14, φ = 0.2. 7.69% gap.
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ε = 12, φ = 0.21. 5.46% gap.
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ε = 10, φ = 0.22. 2.55% gap.
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Inverse Copper (I) Tetraiodomercurate (tP7-Cu2HgI4), Bands 8 - 9
Structure file taken from https://doi.org/10.1524/zkri.1931.80.1.190.
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ε = 16, φ = 0.36. (1) 1.8%

gap between bands 8-9, and (2)

5.1% gap between bands 11-12.
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ε = 14, φ = 0.36. (1) 1.33%

gap between bands 8-9, and (2)

4.25% gap between bands 11-12.

Inverse Copper (I) Tetraiodomercurate (tP7-Cu2HgI4), Bands 11 - 12
Structure file taken from https://doi.org/10.1524/zkri.1931.80.1.190.
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ε = 16, φ = 0.24. 9.03% gap.
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ε = 14, φ = 0.24. 8.29% gap.
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ε = 12, φ = 0.24. 7.17% gap.
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ε = 10, φ = 0.24. 5.39% gap.
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ε = 8, φ = 0.24. 2.06% gap.
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Inverse Metal Chalcogenide Supertetrahedral Nanocluster (mP212-Zn4In16S33),
Bands 6 - 7
Structure file taken from https://doi.org/10.1021/jacs.7b12092.
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ε = 16, φ = 0.16. 8.82% gap.
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ε = 14, φ = 0.18. 6.4% gap.
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ε = 12, φ = 0.2. 3.3% gap.

Inverse Opal (FCC) (cF4-Cu), Bands 8 - 9
Structure file taken from https://doi.org/10.1063/1.1728392.

X U K L W X

0.0

0.2

0.4

0.6

0.8

1.0

[c
/a

] 

X

W
U

K
L

ε = 16, φ = 0.22. 8.76% gap.
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ε = 14, φ = 0.22. 7.21% gap.
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ε = 12, φ = 0.24. 5.34% gap.
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ε = 10, φ = 0.26. 2.92% gap.
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Phosphorus (V) Nitride (alpha) (mC64-P3N5), Bands 12 - 13
Structure file taken from https://doi.org/10.1002/(SICI)1521-3749(199804)624:

4<620::AID-ZAAC620>3.0.CO;2-K.
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ε = 16, φ = 0.27. 8.53% gap.
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ε = 12, φ = 0.27. 4.26% gap.
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ε = 10, φ = 0.3. 1.32% gap.

Inverse Gallium Selenide (mC20-Ga2Se3), Bands 12 - 13
Structure file taken from https://doi.org/10.1107/S0108270183007039.
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ε = 16, φ = 0.1. (1) 7.17% gap

between bands 12-13, and (2)

2.35% gap between bands 18-19.
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ε = 14, φ = 0.12. (1) 6.41% gap

between bands 12-13, and (2)

3.72% gap between bands 18-19.
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ε = 12, φ = 0.12. (1) 5.44% gap

between bands 12-13, and (2)

1.4% gap between bands 18-19.
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ε = 8, φ = 0.17. 2.69% gap.
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Inverse Gallium Selenide (mC20-Ga2Se3), Bands 18 - 19
Structure file taken from https://doi.org/10.1107/S0108270183007039.
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ε = 16, φ = 0.2. (1) 5.28% gap

between bands 12-13, and (2)

8.29% gap between bands 18-19.
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between bands 12-13, and (2)

7.69% gap between bands 18-19.
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ε = 12, φ = 0.22. (1) 4.26% gap

between bands 12-13, and (2)

6.62% gap between bands 18-19.
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ε = 10, φ = 0.25. (1) 3.37% gap

between bands 12-13, and (2)

4.51% gap between bands 18-19.
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ε = 8, φ = 0.25. (1) 2.55% gap

between bands 12-13, and (2)

1.44% gap between bands 18-19.

Inverse Nickel Antimonide Sulfide (cP12-NiSbS), Bands 16 - 17
Structure file taken from https://doi.org/10.1006/jssc.2001.9342.
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ε = 16, φ = 0.13. 8.28% gap.
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X M R X R M

0.0

0.2

0.4

0.6

0.8

1.0

[c
/a

] 

X

M R

ε = 12, φ = 0.15. 2.42% gap.
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Inverse Aluminum Cobalt Phosphate (mC384-Al19.2Co12.8P32O128), Bands 16 -
17
Structure file taken from https://doi.org/10.1021/ja057933l.
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ε = 16, φ = 0.23. 8.17% gap.
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ε = 12, φ = 0.23. 4.37% gap.

Inverse Zeolite ZSM-11 (tI576-SiO2), Bands 4 - 5
Structure file taken from https://doi.org/10.1021/ja00189a016.
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ε = 16, φ = 0.2. 8.13% gap.
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ε = 14, φ = 0.2. 4.34% gap.

Inverse Heazlewoodite (hR5-Ni3S2), Bands 2 - 3
Structure file taken from https://doi.org/10.1002/zaac.19382390109.
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ε = 16, φ = 0.22. 8.07% gap.
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ε = 14, φ = 0.22. 4.67% gap.
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Inverse Rhenium Disulfide (mC4-ReS2), Bands 16 - 17
Structure file taken from https://doi.org/10.1021/ic00097a037.
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ε = 16, φ = 0.21. 8.05% gap.
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ε = 14, φ = 0.25. 6.5% gap.
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ε = 12, φ = 0.25. 4.71% gap.
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ε = 10, φ = 0.25. 2.19% gap.

Inverse HCP (hP2-Be), Bands 16 - 17
Structure file taken from https://doi.org/10.1107/S0567739478000121.
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ε = 16, φ = 0.23. 7.79% gap.
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ε = 14, φ = 0.23. 6.64% gap.
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ε = 10, φ = 0.25. 2.35% gap.
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Inverse Uranium Boride (cF52-UB12), Bands 5 - 6
Structure file taken from https://doi.org/10.1107/S0365110X54000151.
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ε = 16, φ = 0.13. 3.84% gap.

Inverse Uranium Boride (cF52-UB12), Bands 8 - 9
Structure file taken from https://doi.org/10.1107/S0365110X54000151.
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ε = 16, φ = 0.25. 7.78% gap.

Dinitrogen Tetraoxide (cI36-NO2), Bands 8 - 9
Structure file taken from https://doi.org/10.1007/BF01390966.
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ε = 16, φ = 0.41. 7.66% gap.
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ε = 12, φ = 0.41. 3.75% gap.
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Inverse Ice Ih (hP30-H5O2), Bands 4 - 5
Structure file taken from https://doi.org/10.1063/1.1699206.
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ε = 16, φ = 0.21. (1) 7.52%

gap between bands 4-5, and (2)

1.89% gap between bands 10-11.
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ε = 14, φ = 0.21. 6.05% gap.
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ε = 12, φ = 0.24. 4.08% gap.
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ε = 10, φ = 0.24. 1.36% gap.

Inverse Ice Ih (hP30-H5O2), Bands 10 - 11
Structure file taken from https://doi.org/10.1063/1.1699206.

M K A L H A L M H K

0.0

0.2

0.4

0.6

0.8

1.0

[c
/a

] 

M
K

A
L

H

ε = 16, φ = 0.17. (1) 6.68%

gap between bands 4-5, and (2)

2.7% gap between bands 10-11.
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Uranium Borohydride (tP20-UB4), Bands 4 - 5
Structure file taken from https://doi.org/10.1021/ic50118a027.
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ε = 14, φ = 0.36. 4.96% gap.

Chalkogenide With Pyrite Structure (tI16-AlAgS2), Bands 8 - 9
Structure file taken from https://doi.org/10.1002/zaac.19532710307.
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ε = 8, φ = 0.49. 3.26% gap.

Inverse Heazlewoodite (hR5-Ni3S2), Bands 2 - 3
Structure file taken from https://doi.org/10.1107/S0567740880005523.
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ε = 14, φ = 0.22. 3.99% gap.
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Hexadeuteriodi - amminedeuterium iodide (cP8-DIN6), Bands 5 - 6
Structure file taken from https://doi.org/10.1524/zkri.1992.200.3-4.225.
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ε = 16, φ = 0.39. 7.26% gap.
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ε = 12, φ = 0.37. 1.93% gap.

Inverse BCC (cI2-D), Bands 6 - 7
Structure file taken from https://doi.org/10.1063/1.1727691.

H N P H P N

0.0

0.2

0.4

0.6

0.8

1.0

[c
/a

] 

H

N
P

ε = 16, φ = 0.19. 7.18% gap.

Inverse Ice Ih (hP20-H3O), Bands 4 - 5
Structure file taken from https://doi.org/10.1063/1.1765099.
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ε = 12, φ = 0.22. 3.75% gap.
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Inverse Ice Ih (hP36-H2O), Bands 12 - 13
Structure file taken from https://doi.org/10.1063/1.1749327.
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ε = 16, φ = 0.21. 6.89% gap.
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ε = 14, φ = 0.23. 5.43% gap.
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ε = 12, φ = 0.23. 3.5% gap.

Inverse Ice Ih (hP36-H2O), Bands 12 - 13
Structure file taken from https://doi.org/10.1063/1.1749327.
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ε = 16, φ = 0.21. 6.85% gap.
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ε = 12, φ = 0.23. 3.46% gap.

Inverse Copper Cadnium Germanium Sulfide (oP16-CdCu2GeS4), Bands 16 - 17
Structure file taken from https://doi.org/10.1107/S0567740869003670.
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ε = 12, φ = 0.21. 3.22% gap.
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Aluminum Fluoride (cF288-AlH2.25O1.875F1.5), Bands 8 - 9
Structure file taken from https://doi.org/10.1021/ja01181a030.
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ε = 16, φ = 0.43. 6.7% gap.
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ε = 10, φ = 0.47. 1.08% gap.

Beryllium Catena Phosphate (II) (mP36-BeP2O6), Bands 12 - 13
Structure file taken from https://doi.org/10.1107/S0567740877011200.
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ε = 12, φ = 0.34. 2.01% gap.

Aluminum Silicate (oI108-SiO2), Bands 18 - 19
Structure file taken from https://doi.org/10.1021/ja0292400.
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ε = 14, φ = 0.27. 4.0% gap.
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Inverse Erbium Oxide (cI80-Er2O3), Bands 12 - 13
Structure file taken from https://doi.org/10.17188/1283440.
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ε = 10, φ = 0.19. 3.31% gap.

Inverse Cerium (alpha, HP) (mC4-Ce), Bands 16 - 17
Structure file taken from https://doi.org/10.1107/S0567739477000321.
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ε = 10, φ = 0.26. 1.3% gap.
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Mixed- metal Oxynitrides (cF88-Pr2Zr2O7), Bands 2 - 3
Structure file taken from https://doi.org/10.1021/ic902020r.
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ε = 16, φ = 0.47. 6.52% gap.
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ε = 14, φ = 0.47. 4.71% gap.
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ε = 12, φ = 0.47. 2.59% gap.

Inverse Sperrylite (cP12-As2Pt), Bands 16 - 17
Structure file taken from https://pubs.geoscienceworld.org/canmin/article/17/1/

117/11304/the-crystal-structure-of-platarsite-pt-as-s-2-and.
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ε = 12, φ = 0.18. 1.06% gap.
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Inverse 2-Connected Hexagonal Diamond (hP20-ZnC2N2), Bands 4 - 5
Structure file taken from https://doi.org/10.1021/ja4012707.
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ε = 16, φ = 0.21. 6.44% gap.
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ε = 12, φ = 0.23. 3.11% gap.

Inverse 2-Connected Hexagonal Diamond (hP20-ZnC2N2), Bands 10 - 11
Structure file taken from https://doi.org/10.1021/ja4012707.
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ε = 16, φ = 0.18. (1) 5.74%

gap between bands 4-5, and (2)

1.07% gap between bands 10-11.

Silicon (II) (cI16-Si), Bands 8 - 9
Structure file taken from https://doi.org/10.1107/S0365110X64001840.
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ε = 12, φ = 0.49. 3.04% gap.
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Inverse Tridymite 2H (hP12-SiO), Bands 4 - 5
Structure file taken from https://doi.org/10.1524/zkri.1978.147.3-4.159.
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ε = 16, φ = 0.23. (1) 6.38%

gap between bands 4-5, and (2)

1.29% gap between bands 10-11.
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ε = 12, φ = 0.23. 3.15% gap.

Inverse Tridymite 2H (hP12-SiO), Bands 10 - 11
Structure file taken from https://doi.org/10.1524/zkri.1978.147.3-4.159.
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ε = 16, φ = 0.19. (1) 6.11%

gap between bands 4-5, and (2)

2.07% gap between bands 10-11.

Inverse Zeolite ITQ-34 (oC672-Si0.91Ge0.09O2), Bands 8 - 9
Structure file taken from https://doi.org/10.1021/ja806903c.
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ε = 14, φ = 0.19. 3.23% gap.
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Manganese Yttrium (tI8-YMn2), Bands 2 - 3
Structure file taken from https://doi.org/10.1088/0953-8984/3/33/023.
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ε = 10, φ = 0.5. 2.42% gap.

Manganese Yttrium (tI8-YMn2), Bands 14 - 15
Structure file taken from https://doi.org/10.1088/0953-8984/3/33/023.
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ε = 16, φ = 0.17. 4.82% gap.
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ε = 14, φ = 0.13. 2.72% gap.

222

https://doi.org/10.1088/0953-8984/3/33/023
https://doi.org/10.1088/0953-8984/3/33/023


Inverse Silver Chlorate (VII) (cF24-AgClO4), Bands 5 - 6
Structure file taken from https://doi.org/10.1515/zkri-1930-0105.
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ε = 16, φ = 0.23. (1) 6.01%

gap between bands 5-6, and (2)

1.09% gap between bands 13-14.
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ε = 14, φ = 0.23. (1) 5.96%

gap between bands 5-6, and (2)

1.42% gap between bands 13-14.
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ε = 10, φ = 0.17. 1.58% gap.

Inverse Silver Chlorate (VII) (cF24-AgClO4), Bands 13 - 14
Structure file taken from https://doi.org/10.1515/zkri-1930-0105.
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ε = 16, φ = 0.23. (1) 6.01%

gap between bands 5-6, and (2)

1.09% gap between bands 13-14.
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ε = 14, φ = 0.23. (1) 5.96%

gap between bands 5-6, and (2)

1.42% gap between bands 13-14.
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Inverse Copper Iron Selenide (tP16-FeCuSe2), Bands 16 - 17
Structure file taken from https://doi.org/10.1007/BF02398194.
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ε = 14, φ = 0.22. 3.7% gap.

Lithium Oxide (cF12-Li2O), Bands 8 - 9
Structure file taken from https://doi.org/10.1021/ja066016s.
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gap between bands 8-9, and (2)

2.11% gap between bands 17-18.
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gap between bands 8-9, and (2)

4.08% gap between bands 17-18.
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ε = 12, φ = 0.25. (1) 4.15%

gap between bands 8-9, and (2)

4.08% gap between bands 17-18.
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Lithium Oxide (cF12-Li2O), Bands 17 - 18
Structure file taken from https://doi.org/10.1021/ja066016s.
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gap between bands 8-9, and (2)

4.01% gap between bands 17-18.
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Beryllium Tellurate (cF48-Be4TeO7), Bands 10 - 11
Structure file taken from https://doi.org/10.1107/S0567740877012606.
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ε = 16, φ = 0.4. 5.89% gap.

Inverse Plutonium (gamma) (oF8-Pu), Bands 12 - 13
Structure file taken from https://doi.org/10.1107/S0365110X55001357.
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ε = 12, φ = 0.22. 1.94% gap.

Inverse Pyrite (cP12-FeS2), Bands 16 - 17
Structure file taken from https://doi.org/10.17188/1183906.
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Inverse Hexachloroborazol (hR18-BNCl), Bands 5 - 6
Structure file taken from https://doi.org/10.1107/S0567740871005235.

L T P0 P2 F

0.0

0.2

0.4

0.6

0.8

1.0

[c
/a

] 

ε = 16, φ = 0.19. 5.82% gap.

L T P0 P2 F

0.0

0.2

0.4

0.6

0.8

1.0

[c
/a

] 
ε = 14, φ = 0.18. 3.82% gap.

L T P0 P2 F

0.0

0.2

0.4

0.6

0.8

1.0

[c
/a

] 

ε = 12, φ = 0.18. 1.86% gap.

Inverse Ammonium Fluoride (hP12-H2NF), Bands 4 - 5
Structure file taken from https://doi.org/10.1107/S0567740870004624.
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ε = 12, φ = 0.23. 2.49% gap.

Inverse Potassium Sulfate -High-temperature Phase (hP22-K4S3O12), Bands 16
- 17
Structure file taken from https://doi.org/10.1107/S0567740880003779.
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ε = 12, φ = 0.15. 2.55% gap.

227

https://doi.org/10.1107/S0567740871005235
https://doi.org/10.1107/S0567740870004624
https://doi.org/10.1107/S0567740880003779


Inverse Chabazite (hR108-Si2O5), Bands 15 - 16
Structure file taken from https://doi.org/10.1039/A804800B.
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Inverse Zeolite ITQ-24 (oA336-SiO2), Bands 4 - 5
Structure file taken from https://doi.org/10.1021/ja0603599.
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ε = 12, φ = 0.23. 1.0% gap.

Inverse Lead Molybdate (Wulfenite) (tI2-MoPbO4), Bands 8 - 9
Structure file taken from https://doi.org/10.1021/ja01446a012.
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ε = 12, φ = 0.22. 2.56% gap.
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Vanadium Phosphate (V) (tI80-VP2O7), Bands 16 - 17
Structure file taken from http://crystallography-online.com/structure/1530205.
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ε = 16, φ = 0.39. 5.31% gap.
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Inverse Sakhaite (cF264-Ca24Mg8B16C8O73), Bands 8 - 9
Structure file taken from http://icsd.kisti.re.kr/icsd/icsd_view1.jsp?board=icsd&

num=6398&pg=399.
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ε = 16, φ = 0.11. 5.23% gap.
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ε = 14, φ = 0.11. (1) 2.68%

gap between bands 8-9, and (2)

1.13% gap between bands 14-15.

Inverse Sakhaite (cF264-Ca24Mg8B16C8O73), Bands 14 - 15
Structure file taken from http://icsd.kisti.re.kr/icsd/icsd_view1.jsp?board=icsd&

num=6398&pg=399.
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ε = 16, φ = 0.05. (1) 1.05%

gap between bands 8-9, and (2)

3.24% gap between bands 14-15.
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ε = 8, φ = 0.09. 1.33% gap.
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Ytterbium Indium Rhodium Tetracopper (cF24-YbIn0.81Cu4Rh0.19), Bands 2 -
3
Structure file taken from https://doi.org/10.1107/S1600536806029941.
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ε = 16, φ = 0.62. 5.17% gap.
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ε = 14, φ = 0.62. 3.05% gap.

Inverse Clathrate II (cF136-Ge), Bands 8 - 9
Structure file taken from https://doi.org/10.1002/anie.200800914.
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ε = 16, φ = 0.14. 5.09% gap.
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ε = 14, φ = 0.11. 3.09% gap.

Inverse Clathrate II (cF136-Ge), Bands 14 - 15
Structure file taken from https://doi.org/10.1002/anie.200800914.
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ε = 16, φ = 0.09. (1) 3.67%

gap between bands 8-9, and (2)

1.53% gap between bands 14-15.
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ε = 14, φ = 0.1. (1) 3.0% gap

between bands 8-9, and (2)

1.11% gap between bands 14-15.
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Indium Phosphorous Chalkogenide (tI12-InPS4), Bands 2 - 3
Structure file taken from https://doi.org/10.1107/S0567740878005002.
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ε = 16, φ = 0.41. 5.04% gap.
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ε = 14, φ = 0.41. 2.99% gap.

Silica Sodalite (cI36-SiO2), Bands 14 - 15
Structure file taken from https://doi.org/10.1016/j.micromeso.2011.10.042.
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ε = 14, φ = 0.29. 2.19% gap.

Inverse Orthorhombic Tridymite (HT) (oC48-SiO2), Bands 8 - 9
Structure file taken from https://doi.org/10.1107/S0365110X67003287.
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ε = 12, φ = 0.26. 1.92% gap.
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Inverse Gold Silver Selenide (cI48-Ag3AuSe2), Bands 2 - 3
Structure file taken from https://doi.org/10.1002/zaac.19673560110.
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ε = 16, φ = 0.16. 4.95% gap.
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ε = 14, φ = 0.16. 1.76% gap.

Sodium Diplatinum (cF24-NaPt2), Bands 2 - 3
Structure file taken from https://doi.org/10.1107/S0108270189000351.
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ε = 16, φ = 0.66. 4.87% gap.
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ε = 14, φ = 0.66. 2.76% gap.

Hafnium Vanadide (tI12-HfV2), Bands 2 - 3
Structure file taken from https://doi.org/10.1107/S0108768100003633.
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ε = 16, φ = 0.62. 4.84% gap.
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ε = 14, φ = 0.62. 2.73% gap.
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Inverse Beryllium Floride (hR108-Be9F26), Bands 15 - 16
Structure file taken from https://doi.org/10.1021/ja8026967.
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ε = 14, φ = 0.24. 1.69% gap.

Copper Nitride (cP4-Cu3N), Bands 2 - 3
Structure file taken from https://doi.org/10.1016/j.ssc.2010.06.012.
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ε = 16, φ = 0.34. 1.48% gap.

Copper Nitride (cP4-Cu3N), Bands 14 - 15
Structure file taken from https://doi.org/10.1016/j.ssc.2010.06.012.
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ε = 14, φ = 0.11. 1.17% gap.
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Silver Cadmium Gallium Sulfide (oP16-Cd2GaAgS4), Bands 16 - 17
Structure file taken from https://doi.org/10.1107/S1600536805012341.
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ε = 16, φ = 0.43. 4.69% gap.
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ε = 12, φ = 0.43. 2.09% gap.

Inverse Dicopper (I) Zinc Silicon Tetrasulfide (oP16-ZnSiCu2S4), Bands 16 - 17
Structure file taken from https://doi.org/10.1107/S1600536811008889.
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ε = 16, φ = 0.22. 4.67% gap.
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ε = 12, φ = 0.22. 1.5% gap.

Inverse Caesium Duo-disulfate (hP20-CsSO3), Bands 12 - 13
Structure file taken from https://doi.org/10.1515/zpch-1932-1825.
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ε = 16, φ = 0.23. (1) 4.65% gap

between bands 12-13, and (2)

3.19% gap between bands 18-19.
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between bands 12-13, and (2)

2.82% gap between bands 18-19.
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ε = 12, φ = 0.23. 2.38% gap.
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Inverse Caesium Duo-disulfate (hP20-CsSO3), Bands 18 - 19
Structure file taken from https://doi.org/10.1515/zpch-1932-1825.
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ε = 16, φ = 0.19. (1) 4.52% gap

between bands 12-13, and (2)

3.19% gap between bands 18-19.
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ε = 14, φ = 0.23. (1) 3.69% gap

between bands 12-13, and (2)

2.82% gap between bands 18-19.

Inverse Scandium Oxide (cI80-Sc2O3), Bands 12 - 13
Structure file taken from https://doi.org/10.17188/1197026.
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ε = 10, φ = 0.18. 1.45% gap.
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Trisilver Vanadate (beta) (tI16-VAg3O4), Bands 8 - 9
Structure file taken from https://doi.org/10.1021/cm301119c.
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ε = 16, φ = 0.51. 4.61% gap.
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ε = 8, φ = 0.51. 1.07% gap.

Copper Chloride (cP16-CuBr), Bands 16 - 17
Structure file taken from https://doi.org/10.1103/PhysRevB.50.5868.
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ε = 16, φ = 0.52. 4.6% gap.
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ε = 12, φ = 0.52. 2.09% gap.

Inverse Silver Cadmium Gallium Sulfide (oP16-Cd2GaAgS4), Bands 16 - 17
Structure file taken from https://doi.org/10.1107/S1600536805012341.
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ε = 16, φ = 0.21. 4.57% gap.
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ε = 14, φ = 0.23. 3.19% gap.
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ε = 12, φ = 0.23. 1.36% gap.
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Inverse Zeolite With Three- dimensional Intersecting Straight- channel (tP96-
SiO2), Bands 2 - 3
Structure file taken from https://doi.org/10.1021/ja0107778.
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ε = 16, φ = 0.17. 4.49% gap.
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ε = 14, φ = 0.19. 1.27% gap.

Pyrochlore- like (cF72-CsAl0.38Te1.62O6), Bands 2 - 3
Structure file taken from https://doi.org/10.1021/ic200574v.
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ε = 16, φ = 0.45. (1) 4.46%

gap between bands 2-3, and (2)

2.02% gap between bands 8-9.
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ε = 12, φ = 0.45. 1.19% gap.

Pyrochlore- like (cF72-CsAl0.38Te1.62O6), Bands 8 - 9
Structure file taken from https://doi.org/10.1021/ic200574v.
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ε = 16, φ = 0.38. (1) 4.21%

gap between bands 2-3, and (2)

2.83% gap between bands 8-9.

238

https://doi.org/10.1021/ja0107778
https://doi.org/10.1021/ic200574v
https://doi.org/10.1021/ic200574v


Dicopper (I) Zinc Silicon Tetrasulfide (oP16-ZnSiCu2S4), Bands 16 - 17
Structure file taken from https://doi.org/10.1107/S1600536811008889.
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ε = 16, φ = 0.45. 4.41% gap.
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ε = 14, φ = 0.45. 3.33% gap.
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ε = 12, φ = 0.45. 1.87% gap.

Pyrochlore- Related Cesium Tellurium Oxide (oP44-Te4CO6), Bands 4 - 5
Structure file taken from https://doi.org/10.1021/ic2010375.
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ε = 16, φ = 0.46. 4.32% gap.

Pyrochlore- Related Cesium Tellurium Oxide (oP44-Te4CO6), Bands 16 - 17
Structure file taken from https://doi.org/10.1021/ic2010375.
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ε = 16, φ = 0.4. (1) 4.09%

gap between bands 4-5, and (2)

1.59% gap between bands 16-17.
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Inverse High- temperature Order- disorder Transition In Cocr2se4 (cF56-
Cr2Co0.2Cu0.8Se4), Bands 8 - 9
Structure file taken from https://doi.org/10.1021/ic900264x.
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ε = 16, φ = 0.16. 4.32% gap.
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ε = 14, φ = 0.19. 3.0% gap.
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ε = 12, φ = 0.19. 1.33% gap.

Inverse Aluminum Fluoride (cF288-AlH2.25O1.875F1.5), Bands 8 - 9
Structure file taken from https://doi.org/10.1021/ja01181a030.
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ε = 16, φ = 0.25. 4.31% gap.
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ε = 14, φ = 0.29. 3.1% gap.
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ε = 12, φ = 0.29. 1.97% gap.

Zirconium Tungstate (cP44-ZrW2O8), Bands 16 - 17
Structure file taken from https://doi.org/10.1107/S0108270195001545.
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ε = 16, φ = 0.41. 4.3% gap.
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ε = 14, φ = 0.41. 2.27% gap.
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Inverse Silicon Phosphide (cP12-SiP2), Bands 16 - 17
Structure file taken from https://doi.org/10.1524/zkri.1984.167.14.1..
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ε = 16, φ = 0.14. 4.24% gap.
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ε = 14, φ = 0.19. 2.18% gap.

Inverse Gold Silver Selenide (cI48-Ag3AuSe2), Bands 2 - 3
Structure file taken from http://crystallography-online.com/structure/1509884.
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ε = 16, φ = 0.13. 4.15% gap.

Inverse Hydrogen Peroxide (tP16-HO), Bands 12 - 13
Structure file taken from https://doi.org/10.1021/ja00524a012.
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ε = 16, φ = 0.23. 4.08% gap.
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ε = 14, φ = 0.23. 3.61% gap.
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ε = 10, φ = 0.25. 1.27% gap.
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Calcium Boride (cP7-SiB6), Bands 5 - 6
Structure file taken from https://doi.org/10.17188/1299378.
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ε = 16, φ = 0.34. 4.07% gap.
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ε = 14, φ = 0.34. 1.52% gap.

High- temperature Order- disorder Transition In Cocr2se4 (cF56-
Cr2Co0.2Cu0.8Se4), Bands 18 - 19
Structure file taken from https://doi.org/10.1021/ic900264x.
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ε = 16, φ = 0.51. 3.92% gap.
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ε = 14, φ = 0.51. 3.44% gap.
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ε = 12, φ = 0.51. 2.79% gap.
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ε = 10, φ = 0.51. 1.83% gap.

Inverse Titanium Tellerium Oxide (cI96-TiTe3O8), Bands 12 - 13
Structure file taken from https://doi.org/10.1107/S0567740871002620.
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ε = 16, φ = 0.21. 3.9% gap.
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ε = 14, φ = 0.21. 2.45% gap.
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Aluminum Silver Disulfide (hP4-AlAgS2), Bands 18 - 19
Structure file taken from https://doi.org/10.1515/znb-1974-3-411.
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ε = 16, φ = 0.32. 3.9% gap.

Inverse Thiospinelle (tI28-Fe2SnS4), Bands 8 - 9
Structure file taken from https://doi.org/10.1107/S0567740877012205.
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ε = 16, φ = 0.16. 3.89% gap.
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ε = 14, φ = 0.16. 2.5% gap.

Inverse Erbium Iron Deuteride (cF120-Er8Fe16D23.52), Bands 11 - 12
Structure file taken from https://doi.org/10.1016/j.jallcom.2012.05.107.
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ε = 12, φ = 0.26. 1.23% gap.
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Inverse Erbium Iron Deuteride (cF120-Er8Fe16D23.52), Bands 16 - 17
Structure file taken from https://doi.org/10.1016/j.jallcom.2012.05.107.
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ε = 12, φ = 0.33. 1.35% gap.

Silicon Nitride (beta) (hP14-SiN2), Bands 10 - 11
Structure file taken from https://doi.org/10.1107/S0567740879004933.
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ε = 16, φ = 0.34. 3.87% gap.

Cadium (alpha) (oP12-CdP2), Bands 12 - 13
Structure file taken from https://doi.org/10.1107/S0567740869005723.
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ε = 16, φ = 0.46. 3.85% gap.
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ε = 14, φ = 0.46. 2.95% gap.
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[c
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] 

X

SY
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U
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T

ε = 12, φ = 0.46. 1.74% gap.
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Rubidium Nitrate (V) - HT (cP33-RbNO3), Bands 5 - 6
Structure file taken from https://doi.org/10.1107/S0108270187095660.

X M R X R M
0.0

0.2

0.4

0.6

0.8

1.0

[c
/a

] 

X

M R

ε = 16, φ = 0.49. 3.82% gap.

X M R X R M

0.0

0.2

0.4

0.6

0.8

1.0

[c
/a

] 

X

M R

ε = 14, φ = 0.49. 1.85% gap.

Rubidium Nitrate (V) - HT (cP33-RbNO3), Bands 16 - 17
Structure file taken from https://doi.org/10.1107/S0108270187095660.

X M R X R M

0.0

0.2

0.4

0.6

0.8

1.0

[c
/a

] 

X

M R

ε = 16, φ = 0.32. 2.59% gap.

X M R X R M

0.0

0.2

0.4

0.6

0.8

1.0

[c
/a

] 

X

M R

ε = 14, φ = 0.32. 2.23% gap.

Inverse Tin (HP) (oI2-Sn), Bands 6 - 7
Structure file taken from https://doi.org/10.1103/PhysRevB.88.104104.

X F2 0 Y0 U0 X R W S T W

0.0

0.2

0.4
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0.8

1.0

[c
/a

] 

X
F2 0

Y0

U0 R

WS T

ε = 16, φ = 0.2. 3.68% gap.

X F2 0 Y0 U0 X R W S T W

0.0

0.2

0.4

0.6

0.8

1.0

[c
/a

] 

X
F2 0

Y0

U0 R

WS T

ε = 14, φ = 0.2. 1.16% gap.
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Silicon (XII, HP) (hR8-Si), Bands 8 - 9
Structure file taken from https://doi.org/10.1103/PhysRevB.50.13043.

L T P0 P2 F
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0.4
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1.0

[c
/a

] 

L

T

P0

P2

F

ε = 16, φ = 0.5. 3.65% gap.

L T P0 P2 F
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[c
/a

] 

L

T

P0

P2

F

ε = 14, φ = 0.5. 1.9% gap.

Tin Oxide (HP) (oP4-SnO), Bands 16 - 17
Structure file taken from https://doi.org/10.17188/1267079.

X S Y Z U R T Z X U Y T S R
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[c
/a

] 

X
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R
T

ε = 16, φ = 0.25. 3.62% gap.

X S Y Z U R T Z X U Y T S R
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0.2
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0.8

1.0

[c
/a

] 

X
SY

Z
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R
T

ε = 14, φ = 0.22. 1.79% gap.
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Inverse Hypothetical Uninodal Zeolite (tP24-SiO2), Bands 10 - 11
Structure file taken from https://doi.org/10.1021/ja037334j.

X M Z R A Z X R M A

0.0

0.2

0.4

0.6

0.8

1.0

[c
/a

] 

X M

Z

R A

ε = 16, φ = 0.19. 3.61% gap.

X M Z R A Z X R M A

0.0

0.2

0.4

0.6

0.8

1.0

[c
/a

] 

X M

Z

R A

ε = 14, φ = 0.19. (1) 2.63% gap

between bands 10-11, and (2)

1.03% gap between bands 12-13.

Inverse Hypothetical Uninodal Zeolite (tP24-SiO2), Bands 12 - 13
Structure file taken from https://doi.org/10.1021/ja037334j.

X M Z R A Z X R M A

0.0

0.2

0.4

0.6

0.8

1.0

[c
/a

] 

X M

Z

R A

ε = 14, φ = 0.19. (1) 2.63% gap

between bands 10-11, and (2)

1.03% gap between bands 12-13.

Cesium Tellurate (hR54-CsTe2O6), Bands 6 - 7
Structure file taken from https://doi.org/10.1021/ic2010375.

C C2 Y2 M2 D D2 A L2 V2

0.0

0.2

0.4

0.6

0.8

1.0

[c
/a

] 

ε = 16, φ = 0.41. 3.46% gap.
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Inverse Cobalt (II) Dicarbonate Trisodium Chloride (cF208-Na3CoC2ClO6),
Bands 2 - 3
Structure file taken from https://doi.org/10.1107/S0108270111043605.

X U K L W X

0.0

0.2

0.4

0.6

0.8

1.0

[c
/a

] 

X

W
U

K
L

ε = 16, φ = 0.18. 1.1% gap.

Inverse Cobalt (II) Dicarbonate Trisodium Chloride (cF208-Na3CoC2ClO6),
Bands 14 - 15
Structure file taken from https://doi.org/10.1107/S0108270111043605.

X U K L W X

0.0

0.2

0.4

0.6

0.8

1.0

[c
/a

] 

X

W
U

K
L

ε = 16, φ = 0.06. 3.45% gap.

X U K L W X
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1.0

[c
/a

] 

X

W
U

K
L

ε = 14, φ = 0.06. 3.16% gap.

X U K L W X
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0.2

0.4

0.6

0.8

1.0

[c
/a

] 

X

W
U

K
L

ε = 12, φ = 0.06. 2.63% gap.

X U K L W X

0.0

0.2

0.4

0.6

0.8

1.0

[c
/a

] 

X

W
U

K
L

ε = 10, φ = 0.06. 1.28% gap.
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Simple Chiral Cubic (cP4-X), Bands 16 - 17
Structure file taken from https://doi.org/10.1103/PhysRevLett.115.158303.

X M R X R M

0.0

0.2

0.4

0.6

0.8

1.0

[c
/a

] 

X

M R

ε = 16, φ = 0.39. 3.42% gap.

X M R X R M

0.0

0.2

0.4

0.6

0.8

1.0

[c
/a

] 

X

M R

ε = 14, φ = 0.35. 3.42% gap.

X M R X R M

0.0

0.2

0.4

0.6

0.8

1.0

[c
/a

] 

X

M R

ε = 12, φ = 0.28. 3.33% gap.

X M R X R M

0.0

0.2

0.4

0.6

0.8

1.0
[c

/a
] 

X

M R

ε = 10, φ = 0.2. 1.45% gap.

Inverse Gallium Tellurium Selenide (tI20-Ga2TeSe2), Bands 2 - 3
Structure file taken from https://doi.org/10.17188/1202536.

X P N M S S0 X R G M

0.0

0.2

0.4
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0.8

1.0

[c
/a
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XP
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RG

ε = 16, φ = 0.19. 3.33% gap.
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[c
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] 
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ε = 14, φ = 0.19. 1.96% gap.

Inverse Monoclinic Tridymite (mP12-SiO2), Bands 4 - 5
Structure file taken from https://doi.org/10.17188/1269045.

Z D B A E Z C2 Y2
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ε = 14, φ = 0.26. 2.75% gap.
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[c
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Z
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ε = 10, φ = 0.26. 1.84% gap.
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Lithium (aP4-Li), Bands 16 - 17
Structure file taken from https://doi.org/10.1021/nn204012y.

X Y Z R2 T2 U2 V2

0.0

0.2

0.4

0.6

0.8

1.0

[c
/a

] 

ε = 16, φ = 0.39. 3.28% gap.

X Y Z R2 T2 U2 V2

0.0

0.2

0.4

0.6

0.8

1.0

[c
/a

] 

ε = 14, φ = 0.35. 3.22% gap.

X Y Z R2 T2 U2 V2

0.0

0.2

0.4

0.6

0.8

1.0

[c
/a

] 

ε = 12, φ = 0.28. 3.1% gap.

X Y Z R2 T2 U2 V2

0.0

0.2

0.4

0.6

0.8

1.0
[c

/a
] 

ε = 10, φ = 0.22. 1.21% gap.

Inverse Hydrogen Peroxide (tP8-O), Bands 12 - 13
Structure file taken from https://doi.org/10.1107/S0365110X51000039.

X M Z R A Z X R M A

0.0
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0.4
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1.0

[c
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] 

X M
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R A

ε = 16, φ = 0.18. 3.2% gap.

X M Z R A Z X R M A
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0.4
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1.0

[c
/a

] 

X M

Z

R A

ε = 14, φ = 0.2. 1.56% gap.

Inverse Cobalt Dimanganese (III) Oxide (tI28-Mn2CoO4), Bands 8 - 9
Structure file taken from https://doi.org/10.1021/ic501134y.

X P N M S S0 X R G M

0.0

0.2

0.4

0.6

0.8

1.0

[c
/a

] 

XP
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S S0
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ε = 16, φ = 0.16. 3.16% gap.

X P N M S S0 X R G M

0.0

0.2
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0.8

1.0

[c
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] 
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ε = 14, φ = 0.18. 1.91% gap.
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Sperrylite (cP12-As2Pt), Bands 16 - 17
Structure file taken from https://pubs.geoscienceworld.org/canmin/article/17/1/

117/11304/the-crystal-structure-of-platarsite-pt-as-s-2-and.

X M R X R M
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0.2

0.4

0.6
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1.0
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] 

X

M R

ε = 16, φ = 0.56. 3.14% gap.
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[c
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] 

X

M R

ε = 14, φ = 0.56. 2.21% gap.

Inverse Monoclinic Tridymite (mP24-SiO2), Bands 8 - 9
Structure file taken from https://doi.org/10.17188/1269045.

Z D B A E Z C2 Y2

0.0

0.2

0.4

0.6

0.8

1.0

[c
/a

] 

Z
D

BA

EC2

Y2

ε = 16, φ = 0.27. 3.13% gap.
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] 

Z
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ε = 14, φ = 0.27. 2.32% gap.
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] 

Z
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ε = 12, φ = 0.22. 1.59% gap.
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[c
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] 

Z
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Y2

ε = 10, φ = 0.32. 1.33% gap.

Boron Potassium Phosphate (tI40-KPD4O4), Bands 2 - 3
Structure file taken from https://doi.org/10.1143/JPSJ.62.959.

X M Z Z0 M X P N

0.0

0.2

0.4
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1.0
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X
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P
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ε = 16, φ = 0.34. 3.06% gap.

X M Z Z0 M X P N

0.0

0.2
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[c
/a

] 

X

MZ Z0
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N

ε = 14, φ = 0.34. 2.88% gap.
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Inverse Aluminium Oxide (cF120-Al11O4), Bands 8 - 9
Structure file taken from https://doi.org/10.2109/jcersj1950.84.976_610.

X U K L W X
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[c
/a

] 

X

W
U

K
L

ε = 16, φ = 0.05. (1) 2.13%

gap between bands 8-9, and (2)

2.65% gap between bands 14-15.

Inverse Aluminium Oxide (cF120-Al11O4), Bands 14 - 15
Structure file taken from https://doi.org/10.2109/jcersj1950.84.976_610.

X U K L W X
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] 

X

W
U

K
L

ε = 16, φ = 0.06. (1) 1.9%

gap between bands 8-9, and (2)

3.06% gap between bands 14-15.
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ε = 14, φ = 0.06. 2.66% gap.

X U K L W X
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] 

X
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ε = 12, φ = 0.06. 2.43% gap.

X U K L W X
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X
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L

ε = 10, φ = 0.06. 2.09% gap.
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Inverse Zn2tio4 Ordered Spinel (tP28-TiZn2O4), Bands 16 - 17
Structure file taken from https://doi.org/10.1006/jssc.1994.1389.

X M Z R A Z X R M A
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0.4
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1.0

[c
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] 

X M
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R A

ε = 16, φ = 0.16. 3.04% gap.

X M Z R A Z X R M A
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1.0

[c
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] 

X M

Z

R A

ε = 14, φ = 0.21. 1.87% gap.

Dicopper Selenide (alpha) (cF44-Cu10Se), Bands 11 - 12
Structure file taken from https://doi.org/10.1107/S0108768104007475.

X U K L W X
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1.0
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] 

X
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ε = 16, φ = 0.34. 3.01% gap.
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] 

X
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L

ε = 14, φ = 0.34. 1.15% gap.

Inverse Pyrochlore- Related Cesium Tellurium Oxide (oP44-Te4CO6), Bands 4 -
5
Structure file taken from https://doi.org/10.1021/ic2010375.

X S Y Z U R T Z X U Y T S R

0.0
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[c
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X
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T

ε = 16, φ = 0.25. 2.94% gap.

X S Y Z U R T Z X U Y T S R
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X
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ε = 14, φ = 0.25. 2.09% gap.
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Silicon Nitride (beta) (hP14-SiN2), Bands 10 - 11
Structure file taken from https://doi.org/10.1016/0025-5408(83)90003-X.

M K A L H A L M H K
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H

ε = 16, φ = 0.34. 2.93% gap.

Copper (I) Tetraiodomercurate (tP7-Cu2HgI4), Bands 5 - 6
Structure file taken from https://doi.org/10.1524/zkri.1931.80.1.190.

X M Z R A Z X R M A
0.0
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] 

X
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R A

ε = 16, φ = 0.43. 2.91% gap.
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Inverse Pyrochlore- like (cF72-CsAl0.38Te1.62O6), Bands 2 - 3
Structure file taken from https://doi.org/10.1021/ic200574v.

X U K L W X
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[c
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X
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ε = 16, φ = 0.25. 2.9% gap.
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X
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ε = 14, φ = 0.25. 1.64% gap.

Inverse Pyrochlore- like (cF72-CsAl0.38Te1.62O6), Bands 12 - 13
Structure file taken from https://doi.org/10.1021/ic200574v.

X U K L W X
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0.2

0.4
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1.0

[c
/a

] 

X

W
U

K
L

ε = 16, φ = 0.16. (1) 1.01%

gap between bands 2-3, and (2)

2.57% gap between bands 12-13.
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Inverse Uranium Nitride (cI80-U2N3), Bands 12 - 13
Structure file taken from https://doi.org/10.1021/ja01181a029.
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ε = 16, φ = 0.19. 2.9% gap.
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ε = 14, φ = 0.19. 2.39% gap.
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ε = 12, φ = 0.23. 1.91% gap.
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ε = 10, φ = 0.23. 1.24% gap.

Inverse Helical Sulfur (hP9-S), Bands 18 - 19
Structure file taken from https://doi.org/10.1524/zkri.216.8.417.20360.

C C2 Y2 M2 D D2 A L2 V2
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D D2
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ε = 16, φ = 0.14. 2.89% gap.

Inverse Silicon Nitride (alpha) (hP28-Si3N5), Bands 12 - 13
Structure file taken from https://doi.org/10.1016/0025-5408(83)90003-X.
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ε = 16, φ = 0.15. 2.86% gap.
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ε = 14, φ = 0.15. 2.76% gap.
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ε = 12, φ = 0.12. 1.66% gap.

256

https://doi.org/10.1021/ja01181a029
https://doi.org/10.1524/zkri.216.8.417.20360
https://doi.org/10.1016/0025-5408(83)90003-X


Inverse Cooperite (tP4-PtS), Bands 4 - 5
Structure file taken from https://doi.org/10.3891/acta.chem.scand.20-0577.

X M Z R A Z X R M A
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] 

ε = 16, φ = 0.15. 2.85% gap.

Inverse Palladium Oxide (tP4-PdO), Bands 4 - 5
Structure file taken from https://doi.org/10.1107/S0365110X53001800.

X M Z R A Z X R M A
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] 

ε = 16, φ = 0.15. 2.85% gap.

Inverse Tin Oxide (HP) (oP4-SnO), Bands 4 - 5
Structure file taken from https://doi.org/10.17188/1267079.

X S Y Z U R T Z X U Y T S R
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ε = 16, φ = 0.17. 2.84% gap.
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Inverse Selenium (hP3-Se), Bands 6 - 7
Structure file taken from https://doi.org/10.1103/PhysRevB.16.4404.

M K A L H A L M H K
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] 

ε = 16, φ = 0.22. 2.83% gap.
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/a

] 
ε = 14, φ = 0.22. 1.54% gap.

Silicon (oC24-Si), Bands 12 - 13
Structure file taken from https://doi.org/10.1038/nmat4140.

Y C0 0 Z A0 E0 T Y S R Z T
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ε = 16, φ = 0.42. 2.82% gap.

Inverse Calcium (IV, HP) (tP8-Ca), Bands 12 - 13
Structure file taken from https://doi.org/10.1103/PhysRevLett.101.095503.

X M Z R A Z X R M A
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ε = 16, φ = 0.21. 2.81% gap.
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Aluminum Lead Oxide (oA28-AlPbO3), Bands 4 - 5
Structure file taken from https://doi.org/10.1107/S0108768194011857.

Y F0 DELTA0 Z B0 G0 T Y S R Z T
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[c
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] 

ε = 16, φ = 0.3. 2.76% gap.

Heazlewoodite (hR5-Ni3S2), Bands 17 - 18
Structure file taken from https://doi.org/10.1002/zaac.19382390109.
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ε = 16, φ = 0.25. 2.75% gap.
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ε = 14, φ = 0.22. 2.38% gap.
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ε = 12, φ = 0.19. 1.25% gap.

Inverse Silicon Nitride (alpha) (hP28-Si3N4), Bands 12 - 13
Structure file taken from https://doi.org/10.1016/0025-5408(83)90003-X.
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ε = 16, φ = 0.15. 2.7% gap.
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ε = 14, φ = 0.15. 2.62% gap.
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ε = 12, φ = 0.1. 1.39% gap.
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Simple Cubic (cP1-Po), Bands 5 - 6
Structure file taken from https://doi.org/10.1016/0022-1902(66)80270-1.

X M R X R M
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ε = 16, φ = 0.51. 2.69% gap.

Pyrite (cP12-FeS2), Bands 16 - 17
Structure file taken from https://doi.org/10.17188/1183906.
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ε = 16, φ = 0.56. 2.68% gap.
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ε = 14, φ = 0.56. 1.82% gap.

Inverse 2-3 Spinel (tP28-Mg(FeO2)2), Bands 16 - 17
Structure file taken from https://doi.org/10.2138/am.2007.2485.

X M Z R A Z X R M A
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ε = 16, φ = 0.17. 2.68% gap.
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ε = 14, φ = 0.17. 1.77% gap.
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Inverse C60 Polymer (oI120-C), Bands 17 - 18
Structure file taken from https://doi.org/10.1016/S0009-2614(02)00827-8.

X F2 0 Y0 U0 X R W S T W
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ε = 16, φ = 0.12. 2.64% gap.
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ε = 14, φ = 0.14. 2.73% gap.

Inverse Silver Hexahydroxoantimonate (tP32-AgSbO6), Bands 12 - 13
Structure file taken from https://doi.org/10.1002/zaac.19382380209.

X M Z R A Z X R M A
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ε = 16, φ = 0.21. 2.64% gap.

Silicon Phosphide (cP12-SiP2), Bands 16 - 17
Structure file taken from https://doi.org/10.17188/1196344.
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ε = 16, φ = 0.56. 2.62% gap.
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ε = 14, φ = 0.56. 1.82% gap.
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Ice III (tP36-H2O), Bands 12 - 13
Structure file taken from https://doi.org/10.1107/S0567740868004231.

X M Z R A Z X R M A
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ε = 16, φ = 0.38. 2.53% gap.

Inverse Gallium Tellurium Zinc Oxide (cI76-ZnGa2Te4O12), Bands 10 - 11
Structure file taken from https://doi.org/10.1021/ic300909s.
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ε = 16, φ = 0.18. 2.51% gap.

Inverse Tellurium (III, HP) (mC12-Te), Bands 18 - 19
Structure file taken from https://doi.org/10.1088/0953-8984/14/44/342.

C C2 Y2 M2 D D2 A L2 V2
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] 

ε = 16, φ = 0.14. 2.5% gap.
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Inverse Dilithium Titanium Hexaoxotellurate (oP20-Li2TiTeO6), Bands 4 - 5
Structure file taken from https://doi.org/10.1016/0022-4596(89)90292-2.

X S Y Z U R T Z X U Y T S R
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] 

ε = 16, φ = 0.15. 2.44% gap.

Inverse Iron Trifluoride (hR8-FeF3), Bands 8 - 9
Structure file taken from https://doi.org/10.17188/1269222.
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ε = 16, φ = 0.2. 2.44% gap.
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ε = 14, φ = 0.2. 1.25% gap.

Inverse Hypothetical Uninodal Zeolite (oP24-SiO2), Bands 12 - 13
Structure file taken from https://doi.org/10.1021/ja037334j.
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ε = 16, φ = 0.31. 2.4% gap.
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ε = 14, φ = 0.31. 2.17% gap.
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ε = 12, φ = 0.26. 1.64% gap.
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Inverse Bismuth Iron (III) Oxide (hR10-FeBiO3), Bands 16 - 17
Structure file taken from https://doi.org/10.1016/S0022-3697(71)80189-0.
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ε = 16, φ = 0.22. 2.36% gap.

Copper Cadnium Germanium Sulfide (oP16-CdCu2GeS4), Bands 16 - 17
Structure file taken from https://doi.org/10.1107/S0567740869003670.
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ε = 16, φ = 0.49. 2.36% gap.
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ε = 14, φ = 0.49. 1.39% gap.

Heazlewoodite (hR5-Ni3S2), Bands 17 - 18
Structure file taken from https://doi.org/10.1107/S0567740880005523.
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ε = 16, φ = 0.29. 2.34% gap.
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ε = 14, φ = 0.22. 2.12% gap.
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ε = 12, φ = 0.19. 1.22% gap.
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Inverse Gallium Selenide (cI144-GaSe2), Bands 14 - 15
Structure file taken from https://doi.org/10.1126/science.1078663.
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ε = 16, φ = 0.27. 2.33% gap.

Inverse Marcasite (oP6-CoTe2), Bands 8 - 9
Structure file taken from https://doi.org/10.1021/ic50166a018.
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ε = 16, φ = 0.4. 2.32% gap.
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ε = 14, φ = 0.4. 2.65% gap.
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ε = 12, φ = 0.35. 2.41% gap.
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ε = 10, φ = 0.21. 2.8% gap.

X S Y Z U R T Z X U Y T S R

0.0

0.2

0.4

0.6

0.8

1.0

[c
/a

] 

X

SY

Z U

RT

ε = 8, φ = 0.21. 3.66% gap.
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ε = 6, φ = 0.25. 1.27% gap.

576-Particle Zeolite Network (cF2304-SiO2), Bands 8 - 9
Structure file taken from https://doi.org/10.1021/ja048685g.
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ε = 16, φ = 0.49. 2.29% gap.

X U K L W X

0.0

0.2

0.4

0.6

0.8

1.0

[c
/a

] 

X

W
U

K
L

ε = 14, φ = 0.49. 2.03% gap.
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ε = 12, φ = 0.49. 1.29% gap.
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Inverse Polonium (beta) (hR1-Po), Bands 3 - 4
Structure file taken from https://doi.org/10.1016/0022-1902(66)80270-1.
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ε = 16, φ = 0.13. 2.28% gap.

Inverse Polonium (beta) (hR1-Po), Bands 7 - 8
Structure file taken from https://doi.org/10.1016/0022-1902(66)80270-1.
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ε = 16, φ = 0.17. 1.25% gap.

Beryllium-free Deep-ultraviolet Nonlinear Optical Crystal (hP42-
Rb3Al3B3O10F), Bands 10 - 11
Structure file taken from https://doi.org/10.1021/ja5128314.
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ε = 16, φ = 0.31. 2.22% gap.
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Inverse Tetragonal Spinel (tP28-Ta0.6Ti3.4Zn7.7O16), Bands 16 - 17
Structure file taken from https://doi.org/10.2109/jcersj2.115.780.
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ε = 16, φ = 0.21. 2.2% gap.

Inverse Grey Selenium (hP3-Se), Bands 6 - 7
Structure file taken from https://doi.org/10.1039/C7CE00863E.
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ε = 16, φ = 0.21. 2.13% gap.

Inverse Gold Tellurium Sulfide (mC24-Ag2TeS3), Bands 12 - 13
Structure file taken from https://doi.org/10.1007/BF00807304.
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ε = 16, φ = 0.24. 2.1% gap.

Y M A L2 V2

0.0

0.2

0.4

0.6

0.8

1.0

[c
/a

] 

ε = 14, φ = 0.24. 1.37% gap.
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Inverse Rubidium Nitrate (V) (HT) (cP33-RbNO3), Bands 17 - 18
Structure file taken from https://doi.org/10.1107/S0108270187095660.
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ε = 16, φ = 0.08. 2.05% gap.
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ε = 14, φ = 0.08. 2.26% gap.

X M R X R M

0.0

0.2

0.4

0.6

0.8

1.0

[c
/a

] 

X

M R

ε = 12, φ = 0.08. 2.04% gap.
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Inverse Beryllium Tellurate (cF48-Be4TeO7), Bands 18 - 19
Structure file taken from https://doi.org/10.1107/S0567740877012606.
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ε = 16, φ = 0.17. 2.01% gap.

X U K L W X

0.0

0.2

0.4

0.6

0.8

1.0

[c
/a

] 

X

W
U

K
L

ε = 14, φ = 0.17. 1.0% gap.

Inverse Silver Phosphate (cP16-Ag3PO4), Bands 16 - 17
Structure file taken from https://doi.org/10.1524/zkri.1976.144.16.76.
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ε = 16, φ = 0.26. 1.97% gap.
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ε = 14, φ = 0.26. 1.5% gap.

Deuterated Sulphuric Acid Tetrahydrate (tP38-D10SO8), Bands 10 - 11
Structure file taken from https://doi.org/10.1107/S056774087200487X.
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ε = 16, φ = 0.3. 1.94% gap.
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Inverse Aluminium trifluoride (tP64-AlF3), Bands 10 - 11
Structure file taken from https://doi.org/10.1016/0022-4596(92)90165-R.
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ε = 16, φ = 0.13. 1.94% gap.

Inverse Iodine (HP) (hR6-As), Bands 12 - 13
Structure file taken from https://doi.org/10.1107/S0021889869006443.
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] 

ε = 16, φ = 0.22. 1.89% gap.

Inverse Monoclinic Cristobalite (II) (mP24-SiO2), Bands 8 - 9
Structure file taken from https://doi.org/10.1180/002646100549436.
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ε = 16, φ = 0.21. 1.88% gap.
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] 

ε = 14, φ = 0.25. 1.1% gap.
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Inverse Calcium Bromide Hexahydrate (hP21-CaH12(BrO3)2), Bands 16 - 17
Structure file taken from https://doi.org/10.1107/S0567740877009881.
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ε = 16, φ = 0.17. 1.85% gap.
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ε = 14, φ = 0.17. 1.93% gap.

Orthorhombic Carbon (oC8-C), Bands 16 - 17
Structure file taken from https://doi.org/10.1007/s10910-012-0030-x.

Y C0 0 Z A0 E0 T Y S R Z T

0.0

0.2

0.4

0.6

0.8

1.0

[c
/a

] 

Y C0

0Z A0

E0T SR

ε = 16, φ = 0.06. 1.81% gap.
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ε = 14, φ = 0.08. 2.44% gap.

Inverse Silicon Oxide - Fibrous (oI12-SiO2), Bands 14 - 15
Structure file taken from https://doi.org/10.1002/zaac.19542760110.

X F0 0 0 G0 X R W S T W

0.0

0.2

0.4

0.6

0.8

1.0

[c
/a

] 

XF0

00

G0

R

WS T

ε = 16, φ = 0.2. 1.77% gap.
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Inverse Silver Carbonate (cP6-Ag2O), Bands 18 - 19
Structure file taken from https://doi.org/10.1021/ic0111177.
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ε = 16, φ = 0.2. 1.75% gap.

Inverse Cuprite (cP6-Cu2O), Bands 18 - 19
Structure file taken from https://doi.org/10.1007/BF01390765.
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ε = 16, φ = 0.2. 1.75% gap.

Inverse Manganese Nitride (hP12-Mn3N7), Bands 12 - 13
Structure file taken from https://doi.org/10.1107/S0567740877009261.
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ε = 16, φ = 0.23. 1.71% gap.
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Inverse Protactinium (tI2-Pa), Bands 5 - 6
Structure file taken from https://doi.org/10.1016/0304-8853(82)90252-9.
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ε = 16, φ = 0.16. 1.65% gap.

Inverse Cinnabar (hP6-HgS), Bands 6 - 7
Structure file taken from https://doi.org/10.1088/0256-307X/26/4/046402.
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ε = 16, φ = 0.16. 1.59% gap.

Zinc Oxide (hP5-Zn7O6), Bands 18 - 19
Structure file taken from https://doi.org/10.1134/S1063774513020119.
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] 

ε = 16, φ = 0.27. 1.58% gap.
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Zinc Oxide (hP5-Zn7O6), Bands 19 - 20
Structure file taken from https://doi.org/10.1134/S1063774513020119.
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] 

ε = 16, φ = 0.18. 1.5% gap.

Inverse Sodium Superoxide (oP6-NaO2), Bands 8 - 9
Structure file taken from https://doi.org/10.1021/ja01117a031.
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ε = 16, φ = 0.25. 1.55% gap.
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ε = 14, φ = 0.13. 1.42% gap.
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ε = 12, φ = 0.13. 1.68% gap.
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ε = 10, φ = 0.18. 1.71% gap.

Inverse Indium Phosphorous Chalkogenide (tI12-InPS4), Bands 11 - 12
Structure file taken from https://doi.org/10.1107/S0567740878005002.
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ε = 16, φ = 0.18. 1.48% gap.
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Inverse Xenon Trioxide (beta) (hR4-XeO3), Bands 2 - 3
Structure file taken from https://doi.org/10.1021/acs.inorgchem.6b02371.
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] 

ε = 16, φ = 0.12. 1.47% gap.
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Inverse Cobalt Hexafluorozirconate (LT) (hR8-ZrCoF6), Bands 8 - 9
Structure file taken from https://doi.org/10.1088/0953-8984/2/36/001.
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ε = 16, φ = 0.21. 1.47% gap.

Neodymium Oxide (alpha) (hP5-Nd2O3), Bands 19 - 20
Structure file taken from https://doi.org/10.1515/zpch-1926-12309.
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ε = 16, φ = 0.14. 1.44% gap.

Inverse Magnesium Chlorite Hexahydrate (tP26-Mg(ClO5)2), Bands 10 - 11
Structure file taken from https://doi.org/10.1107/S010827019000066X.
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ε = 16, φ = 0.16. 1.41% gap.
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Inverse Niobium Oxide Phosphate (HT) (tP14-NbPO5), Bands 8 - 9
Structure file taken from https://doi.org/10.1006/jssc.1998.8045.
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ε = 16, φ = 0.16. 1.38% gap.

Mercury (alpha, LT) (hR1-Hg), Bands 2 - 3
Structure file taken from https://doi.org/10.1103/PhysRev.19.444.3.

T H2 H0 L S0 S2 F
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[c
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] 

ε = 16, φ = 0.39. (1) 1.11%

gap between bands 2-3, and (2)

1.18% gap between bands 5-6.
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Mercury (alpha, LT) (hR1-Hg), Bands 5 - 6
Structure file taken from https://doi.org/10.1103/PhysRev.19.444.3.

T H2 H0 L S0 S2 F
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ε = 16, φ = 0.11. 1.36% gap.
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ε = 14, φ = 0.11. 1.57% gap.
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ε = 12, φ = 0.11. 1.66% gap.
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ε = 10, φ = 0.14. 1.82% gap.

Cooperite (tP4-PtS), Bands 18 - 19
Structure file taken from https://doi.org/10.3891/acta.chem.scand.20-0577.
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ε = 16, φ = 0.14. 1.34% gap.
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ε = 14, φ = 0.15. 1.97% gap.
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ε = 12, φ = 0.14. 2.74% gap.

Inverse Layered Barium Cobalt Phosphate (hP13-BaCo6P6O12), Bands 7 - 8
Structure file taken from https://doi.org/10.1021/ic4009027.
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ε = 16, φ = 0.12. 1.32% gap.
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ε = 14, φ = 0.12. 1.17% gap.
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Inverse Mattagamite (oP6-CoTe2), Bands 8 - 9
Structure file taken from https://doi.org/10.1002/zaac.19382390203.
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ε = 16, φ = 0.32. 1.28% gap.

X S Y Z U R T Z X U Y T S R

0.0

0.2

0.4

0.6

0.8

1.0

[c
/a

] 

X

SY

Z U

RT

ε = 14, φ = 0.3. 1.24% gap.
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ε = 12, φ = 0.3. 1.17% gap.
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ε = 10, φ = 0.28. 1.08% gap.

Palladium Oxide (tP4-PdO), Bands 18 - 19
Structure file taken from https://doi.org/10.1107/S0365110X53001800.
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ε = 16, φ = 0.15. 1.28% gap.
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ε = 14, φ = 0.15. 1.97% gap.
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ε = 12, φ = 0.15. 2.56% gap.

Nickel Antimonide Sulfide (cP12-NiSbS), Bands 16 - 17
Structure file taken from https://doi.org/10.1006/jssc.2001.9342.
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ε = 16, φ = 0.59. 1.26% gap.
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Inverse Quartz- like Water Ice (mC80-H5O2), Bands 15 - 16
Structure file taken from https://doi.org/10.1021/jacs.6b06986.
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ε = 16, φ = 0.2. 1.25% gap.

Titanium Hydrogen Carbon Nitrogen Oxide (hP72-TiH8C4NO10), Bands 18 - 19
Structure file taken from https://doi.org/10.1107/S0108768195012900.
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ε = 16, φ = 0.39. 1.25% gap.

Inverse Anhydrous Tetrahedral Halides And Silicon Chalcogenide (hP27-BeCl2),
Bands 15 - 16
Structure file taken from https://doi.org/10.1021/ja8026967.
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ε = 16, φ = 0.31. 1.22% gap.
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Cesium Cadmium Trinitrite (cP20-CsCd(NO2)3), Bands 17 - 18
Structure file taken from https://doi.org/10.1016/0022-5088(79)90251-0.
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ε = 16, φ = 0.42. 1.14% gap.

Gallium Chalkogenide (tI14-Ga2HgSe4), Bands 5 - 6
Structure file taken from https://doi.org/10.1002/zaac.19552790502.
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ε = 16, φ = 0.4. 1.1% gap.

281

https://doi.org/10.1016/0022-5088(79)90251-0
https://doi.org/10.1002/zaac.19552790502


Oxygen (eta) (hP4-O), Bands 8 - 9
Structure file taken from https://doi.org/10.1063/1.3118970.
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ε = 14, φ = 0.25. 1.7% gap.

Hexagonal Tungsten Trioxide (hP12-WO3), Bands 6 - 7
Structure file taken from https://doi.org/10.1016/0022-4596(79)90199-3.
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ε = 16, φ = 0.32. 1.01% gap.

Xenon Trioxide (beta) (hR4-XeO3), Bands 16 - 17
Structure file taken from https://doi.org/10.1021/acs.inorgchem.6b02371.

T H2 H0 L S0 S2 F

0.0

0.2

0.4

0.6

0.8

1.0

[c
/a

] 

ε = 16, φ = 0.21. 1.0% gap.
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ε = 12, φ = 0.3. 1.29% gap.
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ε = 10, φ = 0.21. 1.03% gap.
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APPENDIX D

Glossary of Photonic Band Structures from Section 8.2

For each of these crystal structures, the photonic band structure for each gap location

(e.g. between bands 2-3) is given for the filling fraction φ which maximizes the gap size and

all number of additional lattice sites (denoted I) computed in Chapter VIII where gap size

is greater than 0. We include multiple ε for select cases of I = 0 and I = 9.
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A15, ε = 16, Bands 16 - 17.
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I = 3, φ = 0.32. 2.47% gap.
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I = 4, φ = 0.23. 7.08% gap.
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I = 5, φ = 0.15. 10.59% gap.
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I = 6, φ = 0.15. 12.65% gap.

X M R X R M

0.0

0.2

0.4

0.6

0.8

1.0

[c
/a

] 

X

M R

I = 7, φ = 0.16. 11.48% gap.
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I = 8, φ = 0.16. 11.6% gap.
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A15, I = 9, Bands 16 - 17.
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ε = 7, φ = 0.21. 1.68% gap.
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ε = 9, φ = 0.16. 5.04% gap.
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ε = 10, φ = 0.16. 6.66% gap.
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ε = 11, φ = 0.16. 7.99% gap.
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ε = 12, φ = 0.16. 9.2% gap.
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ε = 13, φ = 0.16. 10.18% gap.
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ε = 14, φ = 0.16. 10.85% gap.
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ε = 15, φ = 0.16. 11.45% gap.
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ε = 16, φ = 0.16. 11.98% gap.
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Body-Centered Cubic, ε = 16, Bands 6 - 7.
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Lithium Oxide, I = 0, Bands 17 - 18.
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Lithium Oxide, I = 0, Bands 8 - 9.
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Lithium Oxide, ε = 16, Bands 5-6.
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Lithium Oxide, ε = 16, Bands 8-9.
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Lithium Oxide, I = 9, Bands 5-6.
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Lithium Oxide, I = 9, Bands 8-9.
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Simple Chiral Cubic, I = 0, Bands 16 - 17.
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Simple Chiral Cubic, ε = 16, Bands 4 - 5.
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Simple Chiral Cubic, ε = 16, Bands 8 - 9.
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Simple Chiral Cubic, I = 9, Bands 4 - 5.
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Simple Chiral Cubic, I = 9, Bands 8-9.
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Diamond, I = 0, Bands 2 - 3.

X U K L W X

0.0

0.2

0.4

0.6

0.8

1.0

[c
/a

] 

X

W
U

K
L

ε = 5, φ = 0.42. 2.88% gap.

X U K L W X

0.0

0.2

0.4

0.6

0.8

1.0

[c
/a

] 

X

W
U

K
L

ε = 6, φ = 0.42. 5.52% gap.

X U K L W X

0.0

0.2

0.4

0.6

0.8

1.0

[c
/a

] 

X

W
U

K
L

ε = 7, φ = 0.42. 7.55% gap.

X U K L W X

0.0

0.2

0.4

0.6

0.8

1.0

[c
/a

] 

X

W
U

K
L

ε = 8, φ = 0.42. 9.16% gap.

X U K L W X

0.0

0.2

0.4

0.6

0.8

1.0

[c
/a

] 

X

W
U

K
L

ε = 9, φ = 0.42. 10.45% gap.

X U K L W X

0.0

0.2

0.4

0.6

0.8

1.0

[c
/a

] 

X

W
U

K
L

ε = 10, φ = 0.42. 11.5% gap.

X U K L W X

0.0

0.2

0.4

0.6

0.8

1.0

[c
/a

] 

X

W
U

K
L

ε = 11, φ = 0.42. 12.36% gap.

X U K L W X

0.0

0.2

0.4

0.6

0.8

1.0

[c
/a

] 

X

W
U

K
L

ε = 12, φ = 0.42. (1) 13.09%

gap between bands 2-3, and (2)

1.38% gap between bands 8-9.

X U K L W X

0.0

0.2

0.4

0.6

0.8

1.0
[c

/a
] 

X

W
U

K
L

ε = 13, φ = 0.42. (1) 13.71%

gap between bands 2-3, and (2)

1.32% gap between bands 8-9.

X U K L W X

0.0

0.2

0.4

0.6

0.8

1.0

[c
/a

] 

X

W
U

K
L

ε = 14, φ = 0.42. 14.24% gap.

X U K L W X

0.0

0.2

0.4

0.6

0.8

1.0

[c
/a

] 

X

W
U

K
L

ε = 15, φ = 0.42. 14.69% gap.

X U K L W X

0.0

0.2

0.4

0.6

0.8

1.0

[c
/a

] 

X

W
U

K
L

ε = 16, φ = 0.42. 15.09% gap.

298



Diamond, I = 0, Bands 8-9.
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Diamond, I = 0, Bands 14 - 15.
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Diamond, ε = 16, Bands 2-3.
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Diamond, I = 9, Bands 2 - 3.
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Face-Centered Cubic, ε = 16, Bands 8 - 9.
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Face-Centered Cubic, I = 9, Bands 8-9.
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Face-Centered Cubic (Modified), ε = 16, Bands 11 - 12.
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Face-Centered Cubic (Modified), I = 9, Bands 11 - 12.
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Lonsdaleite (Hexagonal Diamond), ε = 16, Bands 16 - 17.
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Lonsdaleite (Hexagonal Diamond), ε = 16, Bands 4 - 5.
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Hexagonal Close Packing, ε = 16, Bands 4 - 5.
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Simple Hexagonal, ε = 16, Bands 16 - 17.
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I = 1, ε = 16, φ = 0.17. 1.54%

gap.
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Simple Hexagonal, ε = 16, Bands 6 - 7.
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I = 4, φ = 0.31. 1.23% gap.

Pyrite, ε = 16, Bands 12 - 13.
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Pyrite, I = 9, Bands 12 - 13.
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Simple Cubic, ε = 16, Bands 2-3.
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Simple Cubic, ε = 16, Bands 14-15.
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gap.
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Simple Cubic, I = 9, Bands 2 - 3.
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CN=10, ε = 16, Bands 7 - 8.

X M Z Z0 M X P N

0.0

0.2

0.4

0.6

0.8

1.0

[c
/a

] 

X

MZ Z0

P
N

I = 3, φ = 0.36. 2.83% gap.

X M Z Z0 M X P N

0.0

0.2

0.4

0.6

0.8

1.0

[c
/a

] 

X

MZ Z0

P
N

I = 4, φ = 0.34. 3.53% gap.
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Yttrium Manganese, ε = 16, Bands 2 - 3.
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I = 0, φ = 0.5. 6.05% gap.
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I = 1, φ = 0.27. 14.36% gap.

X M Z Z0 M X P N

0.0

0.2

0.4

0.6

0.8

1.0

[c
/a

] 

X

MZ
Z0

P

N

I = 2, φ = 0.27. 12.22% gap.

X M Z Z0 M X P N

0.0

0.2

0.4

0.6

0.8

1.0

[c
/a

] 

X

MZ
Z0

P

N

I = 3, φ = 0.29. 12.98% gap.
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I = 4, φ = 0.26. 12.68% gap.
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I = 5, φ = 0.26. 12.89% gap.
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I = 6, φ = 0.26. 13.08% gap.
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I = 7, φ = 0.26. 13.08% gap.

X M Z Z0 M X P N

0.0

0.2

0.4

0.6

0.8

1.0

[c
/a

] 

X

MZ
Z0

P

N

I = 8, φ = 0.26. 13.07% gap.

Yttrium Manganese, ε = 16, Bands 14 - 15.
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I = 0, ε = 16, φ = 0.17. 4.86%

gap.
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Yttrium Manganese, I = 9, Bands 2-3.
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ε = 8, φ = 0.32. 4.91% gap.
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ε = 16, φ = 0.26. 13.1% gap.
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Palladium Oxide, ε = 16, Bands 18 - 19.
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I = 0, ε = 16, φ = 0.14. 1.18%

gap.

Palladium Oxide, ε = 16, Bands 4 - 5.
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I = 2, φ = 0.25. 7.57% gap.
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I = 3, φ = 0.22. 9.65% gap.
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I = 4, φ = 0.22. 9.14% gap.
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I = 8, φ = 0.23. 10.02% gap.
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Palladium Oxide, I = 9, Bands 4 - 5.
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ε = 10, φ = 0.31. 1.01% gap.
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ε = 16, φ = 0.23. 10.1% gap.
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APPENDIX E

Glossary of Photonic Band Structures from Section 8.3
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Diamond, Bands 2 - 3.
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Distorted by y = 0.75,

z = 0.75 (tI4), φ = 0.47.

10.14% gap.
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φ = 0.42. 15.07% gap.
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(tI4), φ = 0.48. 3.77% gap.
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4.99% gap.
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z = 1.75 (tI4), φ = 0.48. 8.34%

gap.
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Diamond, Bands 2 - 3 (continued).
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Distorted by y = 2.0, z = 1.75

(oF8), φ = 0.54. 1.01% gap.
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Distorted by y = 2.0, z = 2.0

(tI4), φ = 0.54. 2.27% gap.

Diamond, Bands 6 - 7.
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(tI4), φ = 0.21. .
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Distorted by y = 1.75,

z = 1.25 (oF8), φ = 0.18.

1.08% gap.
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Diamond, Bands 8 - 9.
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Distorted by y = 0.5, z = 0.5

(tI4), φ = 0.37. 2.17% gap.
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Distorted by y = 0.75, z = 0.5

(oF8), φ = 0.3. 4.54% gap.
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12.18% gap.
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φ = 0.21. 14.54% gap.
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(tI4), φ = 0.24. 13.01% gap.
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(tI4), φ = 0.29. 9.93% gap.
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(tI4), φ = 0.37. 2.17% gap.
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7.38% gap.
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11.82% gap.
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Diamond, Bands 8 - 9 (continued).
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Distorted by y = 1.5, z = 0.75

(oF8), φ = 0.3. 5.35% gap.
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(oF8), φ = 0.26. 9.42% gap.
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1.53% gap.
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gap.
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X M Z Z0 M X P N

0.0

0.2

0.4

0.6

0.8

1.0

[c
/a

] 

X

M
Z

Z0P
N

Distorted by y = 1.75,

z = 1.75 (tI4), φ = 0.18. 5.01%

gap.

Y T Z 0 U0 T Y C0 A0 Z L

0.0

0.2

0.4

0.6

0.8

1.0

[c
/a

] 

Y

T

Z
0

U0

C0

A0

L

Distorted by y = 2.0, z = 1.25

(oF8), φ = 0.34. 4.98% gap.
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z = 1.25 (oF8), φ = 0.35.

1.59% gap.
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Diamond, Bands 8 - 9 (continued).
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Distorted by y = 2.25, z = 1.5

(oF8), φ = 0.34. 3.02% gap.
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Distorted by y = 2.25,

z = 1.75 (oF8), φ = 0.26.

1.27% gap.

Diamond, Bands 10 - 11.
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(tI4), φ = 0.46. .
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Distorted by y = 2.75,

z = 2.75 (tI4), φ = 0.55. 2.19%

gap.
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Diamond, Bands 14 - 15.
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Distorted by y = 0.75,

z = 0.75 (tI4), φ = 0.08. 1.47%

gap.
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(tI4), φ = 0.07. (1) 3.27%

gap between bands 8-9, and (2)

1.36% gap between bands 14-15.
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φ = 0.06. 5.14% gap.
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Distorted by y = 1.0, z = 1.25

(tI4), φ = 0.07. (1) 3.1% gap

between bands 8-9, and (2)

1.06% gap between bands 14-15.
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(tI4), φ = 0.1. .
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Distorted by y = 1.25,

z = 1.25 (tI4), φ = 0.06. (1)

4.02% gap between bands 8-9,

and (2) 1.51% gap between

bands 14-15.
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(oF8), φ = 0.08. 1.09% gap.
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(tI4), φ = 0.09. 2.96% gap.
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Lithium Oxide, Bands 8 - 9.
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z = 0.75 (tI6), φ = 0.27. 3.11%

gap.
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(tI6), φ = 0.17. 1.47% gap.
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Original Structure (cF12),

φ = 0.31. 5.86% gap.
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Distorted by y = 1.0, z = 1.25

(tI6), φ = 0.29. 3.84% gap.
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Distorted by y = 1.0, z = 1.5

(tI6), φ = 0.23. 1.97% gap.
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Distorted by y = 1.25,

z = 1.25 (tI6), φ = 0.23. (1)

3.28% gap between bands 8-9,

and (2) 1.09% gap between

bands 17-18.

Lithium Oxide, Bands 11 - 12.
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Original Structure (cF12),

φ = 0.25. (1) 4.92% gap

between bands 8-9, and (3)

1.89% gap between bands 17-18.

Lithium Oxide, Bands 14 - 15.
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Original Structure (cF12),

φ = 0.43. 1.88% gap.
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Lithium Oxide, Bands 17 - 18.
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Distorted by y = 0.75,

z = 0.75 (tI6), φ = 0.13. 1.86%

gap.
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(tI6), φ = 0.13. 1.87% gap.
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Original Structure (cF12),

φ = 0.12. (1) 3.15% gap

between bands 8-9, and (2)

3.1% gap between bands 17-18.
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Distorted by y = 1.0, z = 1.25

(tI6), φ = 0.14. (1) 2.29%

gap between bands 8-9, and (2)

1.12% gap between bands 17-18.
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Distorted by y = 1.0, z = 1.5

(tI6), φ = 0.26. 1.92% gap.

X P N M S S0 X R G M

0.0

0.2

0.4

0.6

0.8

1.0

[c
/a

] 

X

P
NMS S0R

G

Distorted by y = 1.25,

z = 1.25 (tI6), φ = 0.13. (1)

2.39% gap between bands 8-9,

and (2) 2.45% gap between

bands 17-18.

SCC, Bands 4 - 5.
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z = 0.75 (tP4), φ = 0.52.

4.57% gap.
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(tP4), φ = 0.51. 6.84% gap.
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Distorted by y = 1.75, z = 1.0

(tP4), φ = 0.54. 4.83% gap.

324



SCC, Bands 8 - 9.
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Distorted by y = 2.0, z = 1.5

(oP4), φ = 0.31. 2.8% gap.
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SCC, Bands 16 - 17.
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(tP4), φ = 0.33. 5.86% gap.
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(oP4), φ = 0.36. 3.21% gap.
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z = 0.75 (tP4), φ = 0.32.

6.97% gap.
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(tP4), φ = 0.06. 1.86% gap.
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φ = 0.37. 4.23% gap.
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Distorted by y = 1.25,

z = 0.75 (oP4), φ = 0.37.

3.78% gap.
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z = 1.25 (tP4), φ = 0.05.

1.52% gap.
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(tP4), φ = 0.06. 2.29% gap.
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SCC, Bands 16 - 17 (continued).
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4.01% gap.
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(oP4), φ = 0.31. 5.28% gap.
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(oP4), φ = 0.36. 3.21% gap.
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(oP4), φ = 0.41. 1.44% gap.
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X S Y Z U R T Z X U Y T S R

0.0

0.2

0.4

0.6

0.8

1.0

[c
/a

] 

X

S
Y

Z
U

RT

Distorted by y = 2.25,

z = 1.25 (oP4), φ = 0.33.

5.01% gap.
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(oP4), φ = 0.39. 2.26% gap.
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SCC, Bands 16 - 17 (continued).
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(tP4), φ = 0.35. 2.89% gap.
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Distorted by y = 2.5, z = 1.25

(oP4), φ = 0.34. 3.3% gap.
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(oP4), φ = 0.34. 1.22% gap.
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Distorted by y = 2.75, z = 1.0

(tP4), φ = 0.35. 1.75% gap.
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Distorted by y = 2.75,

z = 1.25 (oP4), φ = 0.34.

1.61% gap.
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