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first 20 principal components using a Principal Component Analysis (PCA)
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Uniform Manifold Approximation and Projection for Dimension Reduction
(UMAP) algorithm (b). Environments are detected from the UMAP manifold
using the HDBSCAN* clustering algorithm (c). . . . . . . . . . . . . . . . 60
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3.3 The first two principal components of the descriptor space (a left), where
each point represents one particle and its environment colored by time step,
has a broad initial basin with two smaller competing basins at a later stage.
In contrast to the PCA embedding, the two-dimensional UMAP manifold is
optimized to represent the complete topology of the high-dimensional descrip-
tor space and for this system displays better separation between unrelated
environments (a right). We used the HDBSCAN* algorithm to cluster the
10-dimensional manifold and identify four environments (b). The supersat-
urated fluid is dominated by a liquid environment (1), with fluctuations of
random hexagonal close packing (RHCP) environments (0). The RHCP
environments present a precursor for the nucleation of the crystal nucleus,
which is primarily made up of face-centered cubic (FCC) environments (2
and 3). We compared our identification of environments to those obtained
with Polyhedra Template Matching (PTM) (c). . . . . . . . . . . . . . . . 62

3.4 The Local Density (LD) order parameter is significantly lower for the fluid
environment (2) compared to all other environments, with the hexagonal
close packing (HCP)-like environment (0) in between the fluid and FCC (3
and 4) (a). The Steinhardt order parameter Ql, here evaluated for l = 4, 6, 8,
and 10 shows narrow distributions of Q6 for both HCP (0) and FCC (3 and 4).
We see that there is significant overlap for all environments, which supports
that using Ql alone in combination with hard cut-offs would make it difficult
to reliably distinguish between the identified environments (b). The plots
show the interquartile range of the data as a vertical bar, the median as a
dot, and the whiskers extend to the full range of the data excluding all data
points that are considered outliers, overlaid by a kernel density estimate of
the distribution; please see the appendix for details. . . . . . . . . . . . . 64

3.5 The UMAP representation of the LJ assembly pathway descriptor space
(a) is divided into two major cluster groups with a clear separation of the
FCC environment (0) on the right. The probability density diagram (b)
features two wells with the deepest well located at the top coinciding with
environment 0. We observe that the two HCP-like environments (3 and 4)
are located halfway between the fluid environments (1 and 2). Environment
3 has a significant smaller Local Density (LD) compared to environment
4. The visualization of the critical nucleus (c) colored by environments on
the left and with polyhedra template matching on the right shows that the
HCP-like environments with higher density (3) are incorporated into the
critical nucleus, while those with lower density (4) are primarily found in
the bulk. The critical nucleus has a significantly higher concentration of
FCC environments compared to the bulk, however there is a large number of
spontaneous fluctuations of HCP order within the fluid at all times which
then increase in density and finally transform into FCC (d). . . . . . . . . 66
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3.6 The A15-type cP8-Cr3Si (cP8) UMAP descriptor space representation (a)
has three primary clusters, a disordered fluid (2), an icosahedral environment
(1) that corresponds to cP8 Wyckoff site a and a third environment only
present in the ordered crystal structure (0), which corresponds to Wyckoff
site c (b). The manifold topology suggests that the environments 2 and
1, i.e., the icosahedral environment and the fluid are more closely related.
Environment 2 reaches a brief local maximum right after the temperature
quench at 400τ and then partially transitions to environment 0 (c). The
Polyhedra Template Matching (PTM) representation of the final crystal
structure shows that environment 2 corresponds to an icosahedral motif
(gold), while environment 0 is not recognized (white) (see inset). . . . . . 68

3.7 The β-tin tI4-Sn (tI4) crystallization pathway is characterized by precursor
environment (1), which becomes dominant shortly after the temperature
quench at 4000τ and is then consumed by the crystalline environment (0).
The precursor environment persists in the form of a spherical defect with
interfaces circled in the bottom right visualization. . . . . . . . . . . . . . 69

3.8 The UMAP representation of the tI4 descriptor space separates into two
main cluster groups, which we can identify as pre- and post-crystallization
from the time coding alone (not shown). The clustering algorithm identifies
three distinct environments within the left group, which we later associate
with the disordered fluid state (2 and 3) and a precursor environment (1). 70

4.1 The Pointillist style was invented by Paul Signac (1863-1935) and Georges
Seurat (1895-1891) and describes paintings in which images are composed
from collections of individual dots, each containing a single color. This style
serves as a metaphor for signac’s data model, in which the data is dependent
on both individual data points and their position within the larger parameter
space. The painting underlying this artistic illustration Cassis, Cap Lombard
was created by Paul Signac in 1889 and is owned by the Gemeentenmuseum
in Den Haag. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

xi



4.2 This conceptual example demonstrates how we manage and operate on a data
space using the signac and the signac-flow applications. We use signac

to initialize a discrete data space (represented by dark grey dots), where each
dot represents a discrete data point and may be associated with anything
from a single number to a large set of data. The data space is coordinated
within a higher-dimensional parameter space (light grey shape), in this case
spanned by the three vectors a, b, and c. Manipulations of the data space
(addition, modification, or removal of data), can be divided into operations,
where each operation must be a function of one or more data points. The
operations shown in the example deposit and extract data (dashed arrows)
and are organized into a specific workflow using signac-flow. Specifically,
after initialization, we first generate particle configurations, then post-process
these configurations to extract the root-mean squared displacement (RMSD).
Finally, we aggregate results via the analysis of a subset of our data space
that we find using a signac search query. This example shows the clear
division of responsibilities between the different applications. The signac
application manages and provides access to the data space and allows us to
perform complex search queries. The signac-flow application assists in the
definition and execution of reproducible workflows comprised of individual
data space operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.3 The signac application manages a particular data space (illustrated in
Fig. 4.2) by allocating it to a distinct workspace (grey shaded space) on
the file system. Data space operations (blue shaded boxes) used for the
curation of data are always operating on one specific active workspace (black
frame). Information about state points, data location and data format may
be compiled into an index using signac. The index can be used for searching,
aggregation, and even direct access to data. The index as well as the data
itself, can be exported into a database, which is especially useful for the
purpose of making data available to a wide range of subscribers, such as the
general public. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.4 In order to track and execute workflows on a signac workspace, signac-flow
FlowProjects track the status of each job (top). This status tracking includes
information about which operations have been completed for a given job,
which operations are next in line to run, and which operations are incomplete
but are not ready to run due to unfulfilled dependencies upstream in the
workflow. The progression of each job through the workflow is always known
to the FlowProject, as is whether a particular job-operation pair is active, i.e.,
is currently executed on a high-performance computing cluster or is queued
for execution. This information is used to determine which job-operation
pairs are eligible for submission to the cluster scheduler; pairs that are already
queued or active are not resubmitted (bottom). For maximal flexibility, the
execution of job-operations may be bundled prior to submission, e.g., enabling
the execution of large numbers of compute-light operations on a single node
in serial or parallel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
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4.5 We measured the time required for the execution of a set of data space
operations as a function of the number of directories N with signac and
datreant. All tests were executed with Python 3.6 on a network file system;
reported values are the minimum of 3 independent test sessions, where each
one is averaged over 10 runs within one session, except for the 4th, which
was run only once per session; the 2nd test category was aborted for datreant
at N = 104 due to very long execution time. All values are normalized by
the expected complexity, i.e., they must be multiplied with the respective
order to obtain absolute values for a specific data space size. . . . . . . . . 95

5.1 This figure illustrates the code development progression associated with
solving two related computational problems. Problem A is solved using
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ABSTRACT

The ability to produce particles on the nano-scale that self-assemble into soft materials with

specifically targeted properties is a promising avenue for a completely new class of materials

with novel applications. New synthesis routes and increased computational resources have led

to the proposition, modeling, simulation, and experimental realization of a whole plethora of

new particle types, including but not limited to faceted polyhedra, Janus particles, lock-and-

key particles, and self-propelled particles. The inverse design problem of engineering particles

for targeted self-assembly is challenging because of the large available design space. Unlike

atoms which are more easily classified by their composition and energy state, nanoparticles

can be almost arbitrarily shaped and interactions between particles can be further modulated

to various degrees, for example with complete or partial surface coatings.

One of the main determinants of material properties is the breaking of symmetries

manifested in the formation of crystal structures. In Chapter II of this dissertation, I present

a computational method for the optimization of isotropic pair potentials (IPPs) as a general

model for the effective interaction between colloidal particles. Using this method, which

is based on the minimization of the relative entropy, I optimize IPPs for various simple

and complex crystal structures, including simple cubic (cP1), body-centered cubic (cI2),

face-centered cubic (cF4), β-tin tI4-Sn (tI4), diamond (cF8), A15-type cP8-Cr3Si (cP8),

σ-phase tP30-CrFe (tP30), and clathrate-I cP54-K4Si23 (cP54). Reducing the design space

to IPPs allows us to explore it more effectively, however solutions found in this way still need

to be mapped to a physical model for experimental synthesis.

Chapter III is a study of crystallization pathways, including pathways of some of the
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models presented in Chapter II. I developed and applied an unsupervised machine learning

(ML) workflow for the analysis of self-assembly pathways, which allows us to make observations

about the general mechanism of, as well as identify local particle environments that play a

role in, the nucleation and growth of the crystal structure. I observe two-step nucleation

for all tested crystal structures at moderate supercooling and can demonstrate that random

fluctuations of local order play a crucial role in mediating nucleation and growth.

In Chapter IV, I present signac, a software framework that assists researchers in managing

their computational data and implementing workflows that operate on that data. The signac

framework was originally designed and implemented by me and has since its early inception

matured into an open-source project with a team of core maintainers and many internal and

external contributors and users. Recent work has been focused on enabling the implementation

of more complex workflows and increasing the user base, which is facilitated by an affiliation

of the project with the NumFOCUS organization.

Chapter V provides guidelines on how to efficiently develop robust and reusable software

within an academic research environment. These guidelines are presented in the form of a

heuristic named lazy refactoring, which in essence priorities the incremental development

of working solutions over general complete solutions. Determining the correct scope and

Application Program Interface (API) for general solutions from scratch is typically much

more difficult compared to refactoring existing partial solutions.

I conclude this dissertation with a general summary of the presented work and provide a

brief outlook on potential future research directions.
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CHAPTER I

Introduction

1.1 Historical Background

The use of computational simulations for the study of materials and physical processes

has come a long way since Metropolis et al. published on their proposed method of using

“fast computing machines” for the calculation of an equation of state of a monatomic fluid in

1953 [1]. In its early stage often regarded as a secondary, complementary technique to merely

verify or support experimental results, the field of computational research has matured to an

essential pillar of modern science and engineering and is now more often found in the role of

driver of innovation for both the science itself and the technology it is supported by [2, 3].

The evaluation of molecular models with statistical mechanics is especially attractive and

amenable to computational research since the fundamental principles [4] are both simple to

implement and due to the small time and length scales elusive to experimental observation

at the same time. The simplicity of implementation of course only holds for the most

naive implementations; highly optimized implementations for modern architectures can be

arbitrarily complex [5–8] and are undergoing continuous innovation to this day [9, 10].

However, employing computational “experiments” as opposed to physical experiments

has other advantages despite simplicity of implementation and the ability to collect statistics

on all observables at full resolution. Possibly the biggest strength is their versatility. A

computational model of, e.g., a colloidal particle on the nano- to microscale [11] is not
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constrained by available routes to fabrication, costs of fabrication posed by materials and

labor, and even the laws of physics in general. For instance, while hard spheres can be posed

theoretically, it is impossible to physically fabricate a sphere that has absolutely zero repulsion

or attraction at finite distances, and a zero probability of overlap below a certain diameter.

A hard sphere model represents an approximation of a physical object with very similar

properties (highly spherical, extremely high bulk modulus) in a vacuum and microgravity,

but is nonetheless highly informative.

1.2 Colloidal Self-Assembly

Alder and Wrainwright used computer simulations in 1957 [12] to demonstrate that hard

spheres – a particle model with maximal symmetry – will self-assemble into a symmetry-

breaking face-centered cubic (FCC) crystal structure absent any external forces or energetic

contributions, i.e., through pure entropy maximization alone. This at the time highly

surprising result inspired a heated debate about the nature of the formation of crystals, and

inspired researchers to explore the self-assembly behavior of other “simple” hard particle

models such as rods [13] and ellipses [14, 15], and more recently polyhedra [16, 17].

The study of hard objects with statistical mechanics is most easily described within the

canonical ensemble, which represents the collection of all possible states of a system with

constant number of particles N and constant volume V , and which is in equilibrium with an

infinitely large heat bath at temperature T . The free energy of this ensemble is equivalent to

the Helmholtz free energy A and is defined as

A = U − TS, (1.1)

where U denotes the internal energy as a function of all particle coordinates and momenta,

and S is the entropy of the system.

The probability of a particular microstate i with internal energy Ui to occur within the
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canonical ensemble is equal to

Pi = eβ(A−Ui), (1.2)

where β is the inverse reduced temperature (kBT )−1. For a system that is comprised of purely

hard shapes with no other interactions, the probability of a particular microstate to occur is

either zero (at least one shape overlaps with another shape) or constant across all possible

microstates (no overlaps). That in turn means that the energetic term U of the free energy

A must be zero for all valid configurations, which means that minimizing the free energy A

is equivalent to maximizing the entropic term TS, i.e., maximizing the entropy S since T

is constant. The crystallization or increase in order through free energy minimization of a

system comprised of hard particles is therefore also referred to as “entropic ordering“ [18]

or “entropic crystallization” [19] since the only remaining and therefore relevant term is the

entropic term TS.

To this date, the concept of “entropic crystallization” is still not widely known within the

scientific community, albeit having been shown to be real beyond doubt both in theory and

experiment. There has also been some confusion as to how the packing of hard shapes is related

to crystallization of hard shapes at finite pressures, often mistaken as the underlying driving

mechanism. While local dense packing plays a significant role in entropic crystallization [20],

Cersonsky et al. showed that the relationship between global dense packing and self-assembly

is purely correlative, with additional factors determining the self-assembly structure of

colloidal crystals [21].

1.3 Forward vs. Inverse Design

One of the main advantages in using computational experiments compared to physical

experiments is the ability to rapidly test different models and physical conditions, vastly

expanding the design space available for the invention of novel materials with highly unique

properties. However, an increased number of degrees of freedom also comes with an increase
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in complexity. Glotzer and Solomon devised a framework for the design of complex materials

with anisotropic building blocks [22] which serves as a guideline on how to describe and

parameterize the design space of anisotropic shapes.

Damasceno et al. [17] and Klotsa et al. [23] explored this space for the shape class of convex

polyhedra and showed that simple shapes are indeed a possible avenue for the self-assembly of

highly complex crystal structures. And while both studies sought after and revealed certain

correlations that can be translated into design rules, they are also an example of “forward

design”, essentially a brute-force approach to exploring the design space with the goal of

uncovering interesting phenomena.

In contrast, “inverse design” is a more targeted approach, where the design targets are set

a priori, and the design space is explored in a more directed manner [24]. Materials inverse

design can be expressed as an optimization problem, in which case it is made accessible

to solutions via established optimization algorithm such as Covariance Matrix Adaptation

Evolution Strategy (CMA-ES) [25–27], or as an extended thermodynamical ensemble, such

as the “Digital Alchemy Framework” devised by van Anders et al. [28]. The former approach

is more general and may be advantageous when relevant degrees of freedom can be made

accessible to the algorithm, whereas the second approach can be embedded and evaluated

via existing algorithms for the integration of statistical mechanical ensembles.

1.4 Relative Entropy

Regardless of the methodology for inverse design, mathematically it is most elegantly

expressed within the framework of relative entropy [29]. The relative entropy or Kullback-

Leibler divergence [30]

DKL(P |Q) = −
∑
x∈χ

P (x) log

(
Q(x)

P (x)

)
(1.3)
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is a concept out of information theory and is a measure for the similarity of two probability

distributions P and Q evaluated for a continuous random variable x out of distribution

χ. Assuming that we have two models1 a and b which are both sampled within the same

statistical ensemble, and that we collect statistics on a set of observables O, then the relative

entropy of the distribution of said observables will be minimized if and only if the two models

have a similar probability distribution of microstates that is correlated with said observables.

For example, the probability distribution of nearest neighbor distances as expressed in the

radial distribution function g(r) will be similar for both models at the same state point.

Scott Shell was able to contextualize many independently developed algorithms that are

aimed at minimizing the difference between two models, such as algorithms developed for

the purpose of coarse-graining atomistic models, within the framework of relative entropy

minimization [29].

A minimal relative entropy between two distributions of a specific observable is a necessary,

but not a sufficient condition for two models to behave identically in all aspects. It is possible

that two models produce the exact same distribution for a particular set of observables at

a specific state point, and are in that respect equivalent for all intents and purposes, but

then behave completely orthogonal with respect to a different set of observables and/or at a

different state point. For example, Moore et al. [31] showed that it is possible to reduce the

state-dependence of isotropic pair potentials (IPPs), which are optimized via the Iterative

Boltzmann Inversion (IBI) algorithm, to match the radial distribution function (RDF) of a

given target state by optimizing the model for multiple state points simultaneously. This

means that the relative entropy for this particular observable is globally reduced by refining

the model, even though it might have appeared minimized locally.

1A model in this context is equivalent to a Hamiltonian.
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1.5 Outline

In Chapter II, I present an approach on how to use relative entropy minimization to

optimize tabulated IPP models for the self-assembly of specifically targeted crystal structures.

I combine the approach presented by Edlund et al. [32, 33], who showed that designing

IPPs directly in Fourier space is a highly effective way to guarantee that a targeted crystal

structure presents a ground state for a given energy function, with the method published by

Lindquist et al. [34], based on the minimization of relative entropy. In this way we are able to

optimize multiple IPPs for the self-assembly of various simple to complex crystal structures

while at the same time controlling against overfitting of the function.

How and if a model optimized in this way can be mapped to a physical system of particles

depends strongly on the complexity of the interaction function, i.e., the number of features

and the interaction range. In either case, the function’s complexity serves as an upper bound

on how complex a physical particle that assembles the same structure would need to be.

But even without an immediate experimental realization, we can still study the model to

learn more about potential mechanisms for the self-assembly of a particular colloidal crystal.

In Chapter III, I present a machine learning (ML)-based approach for the semi-automated

identification and analysis of self-assembly pathways. Among other systems, I show results

for the analysis of crystallization pathways for some of the models obtained in Chapter II.

The methods presented as part of Chapters II and III allow us to overcome interesting

scientific problems, however their implementation and large-scale execution also poses tough

technical challenges. Optimizing many different potential functions for a multitude of different

target crystal structures with a variety of optimization parameters for the work presented

in Chapter II requires a lot of compute power and a well-managed data space with diligent

tracking of all relevant parameters. Similarly, the unsupervised ML workflow presented

in Chapter III involves the execution of hundreds of interdependent data space operations

starting with the computation of the descriptor space, its dimensionality reduction, model

training, and numerous plotting and rendering operations.
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The main challenges to overcome are the establishment of a well defined data space, where

data and metadata are robustly linked. Metadata in this context are all attributes necessary

to place the data into context and thus make the data space accessible to oneself and others.

The second challenge is the definition and execution of workflows in a way that they are

reproducible, but also scalable.

Much of the work presented here is driven by massively parallelized and partially GPU-

accelerated algorithms implemented in HOOMD-blue [6, 8] and freud [35]. That includes

for example Molecular Dynamics (MD) and Hard-particle Monte Carlo (HPMC) simulations

of particle systems and the parallelized computation of neighbor-based order parameters,

which can be executed efficiently on hundreds or thousands of processing units in parallel and

require massive amounts of random-access memory (RAM) and on-disk storage. However,

many other operations are much less computationally intensive, such as the collection of

statistics and graph plotting. The challenge is to have an integrated workflow that supports

both the very small and the very large data space operations for both early exploration and

large-scale production.

In Chapter IV, I present signac, a software framework that I designed and implemented

to overcome exactly these challenges. The first components of the framework were released

open-source in 2016, which spawned a significant expansion of its developer and user base. As

of the day of writing, the software has approximately twenty internal and external contributors

and on the order of hundreds of users.2

However, developing reusable and robust software within an academic environment poses

its own set of challenges. Chapter V provides a guideline on how to efficiently implement

reusable scientific software in an academic setting. My colleague Vyas Ramasubramani

and I together with Joshua Anderson and Sharon C. Glotzer developed the lazy refactoring

approach, which is targeted at researchers in academic groups who find themselves in the

position of needing to develop software as part of their general research efforts.

2The size of the user base is an estimate based on the number of known users as well as website access
and download statistics.
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While software developers both in industry and academia generally face very similar

challenges, there are a few crucial differences that make it difficult and in some cases ill-

advisable to simply adopt best practices and standards developed for industry within the

academic research group. For example, on the one hand many software developers in academia

are non-experts and software development represents only a small fraction of their actual

work and may not be rewarded as much by principle investigators and program managers.

On the other hand, researchers who do aspire to developing high-quality research software

and are generally supported in this effort may find it challenging to determine the right scope

and consequently spend either too little or too much effort on certain components of their

software.

The lazy refactoring approach asks developers to prioritize the development of working

solutions over general solutions while consequently generalizing these the moment that they

need to be reused more than once. This is motivated by the experience that composing a

general solution from one or more specialized ones is usually orders of magnitude easier than

trying to understand and design software for a general problem space without even having

solved parts of it.

I conclude with a summary of the presented work and an outlook for potential future

research directions in Chapter VI.
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CHAPTER II

Inverse Design of Isotropic Pair Potentials for the

Self-Assembly of Complex Structures

This chapter is adapted from a publication in the Journal of Chemical Physics in 2018

authored by me, James Antonaglia, Julia Dshemuchadse, and Sharon C. Glotzer. The article

was assigned DOI:10.1063/1.5063802.

2.1 Introduction

The ability to synthesize novel complex materials via the self-assembly of building blocks

on the nanoscale presents an enormous opportunity for the design of materials with targeted

behavior, including mechanical and optical properties [1, 2]. Following the definition of

Whitesides et al. [3], a self-assembly process is characterized by the emergence of structure

from disordered, distinct constituents and governed by their shapes and interactions. In order

to design a material for synthesis via self-assembly, we need to answer the question “What

constituents are required for the targeted self-assembly behavior?” This question represents

the inverse problem in contrast to the forward problem of “What is the self-assembly behavior

of certain predefined constituents?” [1, 4] The major challenge in solving the inverse problem

is the vast search space constituted by the sheer limitless choice and possible combinations of

feasible building blocks and interactions [5–7]. Of course, simply identifying the constituents
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Generation of Target Distribution and Guess Function

Iterative Optimization

Replicated Unit Cell Thermal Target Distribution Guess Function (k-space)

Self-Assembly Simulation at iteration i

Exit when converged.

Enter iterative optimization.
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Figure 2.1: To generate an isotropic pair potential (IPP) for the self-assembly of complex
structures, the radial distribution function (RDF) is measured from a thermalized ideal
crystal, from which we generate a smooth guess function in k-space. This guess function
is then iteratively updated by transforming the potential into real space at each iteration,
executing a self-assembly simulation, measuring the response, and then updating the potential
accordingly in Fourier space. The initial guess, as well as all updates are smoothened via
a low-pass filter (shown in red) in order to ensure that the optimization is biased toward
smoother potentials that carry only those length scales that are crucial for the assembly of
the target structure.
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that produce a thermodynamic target structure does not guarantee the existence of a robust

kinetic pathway to that structure.

Although directing self-assembly processes with highly specific interactions is technically

possible [8–10], it is often more informative to know what is the simplest interaction needed

to achieve a specific structure via facile and robust self-assembly [11], that is, on short time

scales and without the need for seeding the target crystal. This so-called simplest interaction

will not only provide insight into the underlying mechanisms of self-assembly, but may also be

easier to realize experimentally and produce higher yields. Simple interactions with features

whose length scales are on the order of the interparticle distances are experimentally realizable

through, for example, DNA-mediated surface functionalization of nanoparticles [12–19].

In this work we optimize isotropic pair potentials (IPPs) as a model for the interaction

between point particles that self-assemble into a specific target crystal structure from a fluid

(disordered) state. That is, we seek pair potentials that not only have shapes containing

minimal features, but also which drive assembly of the target structure rapidly, without

need for a seed and without long waiting times for nucleation. It was previously shown that

Fourier space filters provide an elegant way to design simple IPPs for the self-assembly of

complex structures [20, 21]. Here we apply this knowledge to advance the relative entropy

minimization (REM) approach outlined by Lindquist et al. [22] to be carried out directly in

Fourier space and with the repeated application of a smooth low-pass filter at each iteration

in order to effectively steer the optimization process towards simpler solutions. The proposed

Fourier-filtered relative entropy minimization (FF-REM) method (Fig. 2.1) is designed to

optimize for potentials with relatively few minima and maxima while suppressing noisy

fluctuations on length scales smaller than those features.

Standard methods for the derivation of IPPs for fluids [23–26], many of which fall under

the general umbrella of the relative entropy minimization framework [27, 28], cannot be

readily used for solids, because the radial distribution functions (RDFs) of solids have many

more characteristic length scales compared to their fluid counterparts. Applying standard
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REM or Iterative Boltzmann Inversion (IBI) directly to solids results in potentials that

tend to be overfitted. That means in this context that they contain too many features

and length scales that are not actually critical and are possibly even detrimental for the

robust self-assembly of the target structure. Since we know that complex structures may be

assembled from much simpler potential functions [29], an efficient optimization algorithm

needs to be biased towards those length scales that are essential for robust self-assembly.

One approach to steer the optimization of potentials towards simpler solutions is to apply

constraints, e.g., by limiting the solution space to a specific functional form [30]. Overfitting

may also be prevented with early stopping for more broadly constrained search spaces, for

example when the solutions are limited to a specific class of functions, such as repulsive,

monotonically decreasing functions [22, 31, 32]. The FF-REM method does not rely on such

constraints, but instead steers the optimization towards smoother and simpler solutions by

the repeated application of a filter function in Fourier space (k-space). This approach is

especially advantageous during early exploration, e.g., to determine whether any solution

exists at all, or when there is no specific desired functional form. Conversely, the presented

method does not allow one to target a specific functional form, even if desired.

2.2 Fourier-filtered Relative Entropy Minimization

For the algorithm’s derivation we recognize the potential energy E of a three-dimensional

system of interacting point particles in a volume V = N/ρ, where ρ denotes the number

density, may be expressed as a function of the RDF, g(r), both in real space,

E

N
= 2πρ

∞∫
0

dr r2g(r)V (r), (2.1)

and equivalently in reciprocal space,
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E

N
= 2πρ

∞∫
0

dk k2ĝ(k)V̂ (k), (2.2)

where f(r) 7→ f̂(k) is the Fourier transform, defined by

f̂(k) =
1

k

√
2

π

∞∫
0

dr rf(r) sin (kr) . (2.3)

The Fourier transformation is unique and invertible and thus preserves all the information

of the real-space potential. However, in practice, in order to meet the complexity constraints

introduced above, a real-space potential is strongly limited, especially in its range. This

means that traditional optimization techniques—carried out exclusively in real-space—are

inherently tying the information exploited for the optimization process to the range of the

potential energy function. In other words, a potential optimized with, e.g., IBI is inherently

biased to match short-range distance distributions since any long-range information contained

in the RDF beyond the real-space potential cut-off is completely discarded. By instead

optimizing the pairwise interaction model directly in Fourier space, we introduce no inherent

constraint on the potential range and the potential function is only transformed into real

space for the sake of carrying out the integration of forces as part of simulating the assembly

process using Molecular Dynamics (MD).

For the overall process (shown in Fig. 2.1), we first propose an ansatz function V̂ (0)(k),

which in our case is just the smoothened Fourier transform of the potential of mean force.

Then we enter an iterative update process, where at each iteration we map the potential to

real space and carry out a MD simulation of point particles. Specifically, we thermalize the

system at an elevated temperature of kBT = 3.0ε to ensure that it is in a disordered fluid

state, and then cool and compress the system over the next 4 million time steps to a final
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temperature of kBT = 1.0ε (see Section 2.5.3 for details). Whether the system assembled the

targeted structure or not, we then calculate the shifted RDF h(r) = g(r) − 1 and Fourier

transform to obtain ĥ(k). The update step is then derived from the minimization of relative

entropy directly in Fourier space (see Sections 2.5.1.1 to 2.5.1.3 for a more detailed derivation)

and is expressed as a function of the difference between ĥ(i)(k) at iteration i and ĥ∗(k)

measured from the target structure

V̂ (i+1)(k) = V̂ (i)(k) + αe−ckkBT [ĥ(i)(k)− ĥ∗(k)], (2.4)

where α denotes the effective learning rate, c scales the low-pass filter, and kBT is the thermal

energy of the system. The learning rate α is a unitless dampening factor to stabilize the

optimization process; we found values on the order of 0.1 to be small enough to yield stable

optimization. The low-pass length scale of the exponential filter is set by c such that features

in the real-space potential with wavelengths much smaller than 2πc are damped while features

with much longer wavelengths are preserved (see Section 2.5.1.4 for details).

The studied filter strengths c = 0.1σ and c = 0.2σ are chosen empirically, such that

features on length scales on the order of particle interactions O(1) are largely preserved, while

features on smaller lengths scales are sufficiently suppressed.

IPPs mapped from Fourier space onto real space need to be truncated since they are in

principle infinite in range. For this we applied the following cut-off algorithm:

rcut = min
r

(r ≥ rmin ∧ V (r) ≤ ε ∧ V ′(r) ≤ ε′) , (2.5)

where we chose rmin ∈ {1.6, 2.4}, ε = 0.3 and ε′ = 5.0. This means that the potential is cut off

at the first extremum beyond rmin that is sufficiently close to zero (see also Section 2.5.1.5).

We ensure smoothness at this cut-off by applying the Stoddard-Ford algorithm [33] up to the
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Figure 2.2: Here we show the objectively best IPPs (corresponding to ϕmax, see Eq. 2.7)
optimized with FF-REM (c > 0) in blue and without filtering (c = 0) in yellow. The RDF
measured from the assembled structures (g(r), gray lines) are compared against those obtained
from the target harmonic crystal (g∗(r), shaded in gray). We found that a perfect fitting of
all RDF features is not a critical requirement for the assembly of the target structure. The
corresponding unit cells are depicted as ball-and-stick models (top right). While our method
consistently produces simpler potentials compared to the control method without filtering, it
is not guaranteed that our methodology results in the simplest possible interaction potential
for a given target structure. This becomes obvious in comparison with select results from
the literature, where some potentials are significantly simpler compared to our results, even
though most share general characteristics. The potentials drawn from the literature and
plotted here are not adjusted for differences in temperature and density of the assembly state
point.
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first derivative.

To apply this algorithm to the derivation of IPPs for the assembly of solid structures,

we compute the RDF from position distributions of harmonic crystals, where particles are

bound to their ideal crystal sites through harmonic bonds. The harmonic bond constant K

was chosen such that the peaks within the measured RDF are sufficiently distinct to reliably

characterize the structure, usually in a range of K = [100, 800], but always low enough to

avoid singularities.

All molecular dynamics simulations were carried out with HOOMD-blue [34, 35] on

XSEDE resources [36] (including the Comet and Bridges clusters) and on the high-performance

compute cluster of the University of Michigan. The computational workflow in general and

data management in particular for this work was primarily supported by the signac data

management framework [37].

Simulation trajectories were analyzed with the software package Freud [38] and visualiza-

tions were rendered with Fresnel [39]. Structures were analyzed and identified with the in

house software Injavis. We trained a machine-learning model based on a deep neural network

with spherical harmonic descriptors of particle environments to identify crystal structures

from millions of simulation snapshots [40] (Section 2.5.2).

To benchmark the performance of FF-REM, we also attempted a control optimization

using standard REM, which is equivalent to no filtering (c = 0). IPPs optimized using REM

without any kind of filtering failed to self-assemble the target structure in about 70% of all

cases.

2.3 Isotropic Pair Potentials for Complex Structures

Design and optimization of IPPs for simple and complex structures has yielded a plethora

of different models ranging from repulsive to attractive, from short-ranged to long-ranged,

from simple to complex. We have selected a few exemplary models to compare our results to,

including the Gaussian core model (GCM) [41, 42], the inverse-power-law potential (IPL) [42–
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46], the Dzugutov potential [47–49], the soft-repulsive-shoulder potential (SRS) [50], and

potentials published by Rechtsman et al.[51, 52] and Jain et al.[53], that have been shown to

assemble some of the structures we targeted as part of this study.

Using FF-REM we found IPPs for the assembly of simple cubic (cP1), body-centered cubic

(cI2), face-centered cubic (cF4), β-tin tI4-Sn (tI4), A15-type cP8-Cr3Si (cP8), diamond

(cF8), clathrate-I cP54-K4Si23 (cP54), and σ-phase tP30-CrFe (tP30) structures. The

corresponding IPPs are plotted in Fig. 2.2. Without filtering, i.e., c = 0, we were only able

to optimize potentials for cP1, cI2, cF4, and tI4.

Attempts to find potentials for cP4-Li (cP4), β-manganese cP20-Mn (cP20), and γ-brass

cI52-Cu5Zn8 (cI52) were not successful with parameters tested for this study, that means

they did not assemble the target structure after a fixed number of time steps. This does

not rule out the possibility of the obtained potentials to self-assemble the target structure

using alternative protocols, e.g., by starting from a seeded configuration or simply sampling

longer to overcome potential nucleation barriers. This is evidenced by the fact that potentials

that will self-assemble the targeted structures are known for all tested structures, including

cI52[54] and cP20[55], and because the assembly yield is equal or greater for all potentials

when the system is doped with a crystalline seed (Fig. 2.16). Within the realm of this study,

we only report those potentials that assemble the target structure with the tested protocol,

others were considered unsuccessful and consequently disregarded.

To quantify the effectiveness of our filtering, we introduced a measurement of complexity,

Ω, defined as

Ω ≡ 1

kmax

kmax∫
k=0

dk
[
kV̂ (k)

]2
. (2.6)

Ω is nonnegative and becomes large when the potential has small-scale real-space features

(Section 2.5.5).
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Table 2.1: The complexity Ω as defined by Eq. 2.6, measured for different structures and
filter strengths c (Eq. 2.4).

Crystal Structure c = 0 c = 0.1σ c = 0.2σ Mean
cP1-Po 1.04 0.22 0.18 0.48
cI2-W 0.46 0.08 0.06 0.20
cF4-Cu 0.99 0.06 0.04 0.37
tI4-Sn 0.71 0.07 0.04 0.27
cF8-C - - 0.70 0.70
cP8-Cr3Si - - 0.09 0.09
tP30-CrFe - - 0.06 0.06
cP54-K4Si23 - - 0.07 0.07
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2
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2

4

V(
r) 

[
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c = 0.2

Figure 2.3: We can use the filter strength c to effectively control the complexity of our
solution in k-space (Eq. 2.4), resulting in smoother potentials with fewer features on smaller
length scales. Important features such as the location of extrema and their relative well-depth
are preserved. The control optimization with c = 0 is obviously much more complex.

The effectiveness of the low-pass filter becomes obvious when comparing Ω between

optimization procedures with different filter strengths c, see Tab. 2.1. Optimization runs

with the higher c value of 0.2σ consistently yielded solutions with lower complexity.

This effect can be visualized when comparing solutions mapped onto real space for the

identical target structure, but carried out with different filter strengths. Fig. 2.3 shows

solutions for cI2, optimized with c ranging from 0 to 0.2σ. The solution for c = 0 is clearly

much more complex compared to all other solutions, but the main characteristics of the

potential functions with c > 0 are conserved. The solution with c = 0.1σ clearly contains
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Figure 2.4: All optimized potentials were evaluated by the objective function ϕ (defined by
Eq. 2.7 and visualized by color), which rewards a better fit with the target RDF and penalizes
complexity (Eq. 2.6) and long-ranged potentials (Eq. 2.5). Plotted are potentials that were
found as solutions for the self-assembly of the cP1 structure for a given set of optimization
parameters and multiple replications. The potentials have about the same shape, but the
complexity is sharply clustered with respect to the filter strength c.

additional non-critical features on smaller length scales compared to solutions obtained with

c = 0.2σ.

2.4 Method Evaluation

To quantify the objective of minimizing the difference in the RDF measured from the

thermalized ideal crystal and the distribution measured from the self-assembly result, with the

additional constraint of minimizing complexity and potential range, we define the objective

function,

ϕ(i) =
f (i)

Ω(i) · r(i)cut

, (2.7)

where
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f (i) = 1.0−
∑

j |g(i)(rj)− g∗(rj)|∑
j[g

(i)(rj)− g∗(rj)]
. (2.8)

The functions g(i)(rj) and g∗(rj) denote the discrete RDF measured at iteration i and from

the target structure, respectively, therefore f is a measure of how close the RDF matches the

target distribution at iteration i. This means that the objective function naturally increases

as the RDF matches better, but is reduced by increased complexity (Eq. 2.6) and the range

of the potential evaluated in real space (Eq. 2.5). The objective function is used to rank

different IPP solutions for the same structure as shown in Fig. 2.4 and Fig. 2.12.

For the structures that we were able to find a solution for, the Fourier space filtering

not only results in a reduction of IPP complexity, but also generally yields an overall higher

fitness (see Fig. 2.8). We found it both surprising and reassuring that the least complex

solutions result in an overall better fitting of the target function.

In general, the fitness of the resulting RDFs is not a good indicator for successful assembly.

In fact, when evaluated for the complete data set, the fitness is only weakly correlated with

the yield. In other words, most optimization runs returned potentials that reliably reproduced

the RDF, up to a specific precision, but from that alone we cannot discern that this potential

assembles the target structure, or any ordered structure at all. However, for those potentials

that did assemble the target structure, we can use the fitness as a quantitative measure

of how well the solution matches the target distribution, which in turn allows us to rank

multiple successful solutions.

While we were able to determine IPPs for many different structures, in many cases the

optimization resulted in potentials that either failed to assemble any structure, i.e., they

formed some kind of fluid, or assembled highly defective structures that might or might not

resemble the target structure. In only very few cases did the optimization result in a structure

different from the desired structure. For example, none of the attempts to optimize an IPP
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for cI52 were successful, but some of them yielded cI2 instead. While the optimization

did not succeed in this case, it at least yielded a closely related state: cI52 represents a

(3× 3× 3)-fold superstructure of cI2. Similarly, some of the cP20 optimization runs yielded

cI2 as well. A potential energy analysis (Fig. 2.17) shows that the FF-REM algorithm is able

to determine a potential for which the targeted structure presents the ground state among

the competitor pool in all cases except for cI52, where cI2 has a lower potential energy. We

therefore presume that the failure to find a IPP for a targeted structure is related primarily

to the assembly protocol in all but this case.

We analyzed the optimization performance with respect to the optimization parameters

and with respect to the target structures. In particular we are interested in determining

which parameters yield the best results and whether we can discern for which structures

it is inherently harder to optimize potentials with the presented methods based on specific

structural characteristics.

We evaluated the robustness of a specific parameter and structure combination by dividing

the number of times they resulted in the successful optimization of a potential in at least one

iteration with the total number of attempts for that combination. All combinations were

replicated independently three times with a different random seed.

We found that the overall yield of FF-REM (41%) for finite filter strengths (c > 0) is

higher compared to 30% with no filtering (c = 0). The yield among replication groups, that

means all attempts with identical optimization parameters except for the random seed, where

at least one attempt led to successful optimization, is much closer (87% (filtered) versus 95%

(non-filtered)).

For the three tested filter strengths c, we find that FF-REM performs better with higher

values of c, see Fig. 2.5b. This finding is surprising to us as we expected that increased

smoothing would make it more difficult to assemble target structures.

Secondly, we investigated how the optimization performs with respect to the target

structure. We found that the yield for individual structures is usually higher with FF-REM
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Figure 2.5: The yield shown here is the number of successful attempts, i.e., a structure and
optimization parameter combination, where at least one iteration led to an IPP that would
assemble the target structure, divided by the total number of attempts.

(Fig. 2.5a). That means we were able to find more structures more robustly with FF-REM in

the vast majority of studied cases.

It appears that for the tested structures the yield is negatively correlated with the unit

cell size (see Fig. 2.5c). However, we would need to test more structures to determine whether

this is inherent to the optimization algorithm, or whether, e.g., it is because structures with

larger unit cells are generally more difficult to assemble with the used protocols and without

seeds. Furthermore, the yield increases with the average coordination number of the first

neighbor shell (see Fig. 2.13). With the exception of the extraordinarily robust optimization

of potentials for the cP1 and tI4 structures, which both have an average coordination number
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Figure 2.6: The melting temperature kBTmelt is the temperature at which the target structure
disintegrates, i.e., is no longer stable with particles at the lattice coordinates interacting via
the optimized IPP. The melting temperature was determined by initializing the system in
the target structural configuration and then slowly raising the temperature from kBT = 1.0
up to kBT = 3.0 (Fig. 2.18).

of 6, there appears to be a a positive relationship between average coordination number

and the yield. Specifically, it appears to be generally more difficult to optimize IPPs for

lower-coordinated structures, such as cP4 or cF8 (see Fig. 2.5a).

To assess the optimization robustness for all runs, even for those parameter combinations

where the target structure could not be assembled, we determined the melting temperature

kBTmelt for the best potential, i.e., the potential with the objectively highest value (ϕmax)

(see Fig. 2.6). The melting temperature is defined as the temperature at which the target

structure comprised of particles interacting via the corresponding potential would start to

disintegrate. We initialized simulation configurations with the target structure, and then

slowly increased the temperature while evaluating the Lindemann criterion [56, 57]:

L =
(

(ri − r0)
)1/2

. (2.9)

The melting temperature was then determined to be exactly the temperature at which L and

δL
δt

were above a specific but universal threshold (see Section 2.5.9 for more information).

We found that the mean melting temperature is slightly higher with lower filter strengths
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c. The mean melting temperature for individual structures was often comparable or even

higher with no filter (c = 0), even when the latter did not result in a potential that would

assemble the target structure.

In conclusion, we demonstrated that by taking advantage of the unique properties of

Fourier space, we are able to implement a simple but effective optimization algorithm resulting

in smooth IPPs for the self-assembly of complex structures. Not only is FF-REM more robust

and demonstrated an overall higher yield compared to the control optimization with no filter,

the resulting smoother potentials lead to a significantly higher yield when it comes to the

self-assembly of complex crystal structures.

2.5 Supplemental Material

2.5.1 Background

2.5.1.1 The Potential Energy in Real and Fourier Space

We can describe the total potential energy E of a many-particle system as the sum of a

pairwise isotropic potential function V (r) over all particle coordinates r

E =
∑
i<j

V (|ri − rj|), (2.10)

where | . . . | denotes the Euclidean norm.

In 3 dimensions the total potential energy may be expressed as a function of the RDF

E

N
= 2πρ

∞∫
0

dr r2g(r)V (r), (2.11)

and equivalently in reciprocal space
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E

N
= 2πρ

∞∫
0

dk k2ĝ(k)V̂ (k), (2.12)

where f(r) 7→ f̂(k) is the Fourier transform for isotropic functions, defined by

f̂(k) =
1

(2π)3/2

∫
d3rf(r)e−ik·r =

1

k

√
2

π

∞∫
0

dr rf(r) sin (kr) . (2.13)

This means that we can use V (r) and V̂ (k) equivalently to evaluate the potential energy of

the system.

2.5.1.2 Relative Entropy Minimization in Fourier Space

We largely follow the approach outlined by Lindquist et al. [22] for the REM, to derive the

optimization algorithm for the FF-REM method. The probability p for a specific microstate

Ri within the canonical ensemble (NVT) is defined as

p(Ri) =
e−βE(Ri|θ)∑
i e
−βE(Ri|θ)

(2.14)

≡ 1

Z(θ)
e−βE(Ri|θ), (2.15)

where Z(θ) denotes the partition function. We then define the joint probability

P (Ω|θ) =
M∏
i

1

Z(θ)
e−βE(Ri|θ) (2.16)

where Ω denotes the set of all M microstates sampled from the target distribution, which we

want to maximize to find the optimal parameter set
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θ∗ = arg max
θ

P (Ω|θ). (2.17)

Assuming that P > 0, this is equivalent to

θ∗ = arg max
θ

lnP (Ω|θ) (2.18)

≡ arg max
θ

L(Ω|θ), (2.19)

where we denote the logarithm of the probability with L. We apply an iterative ascent

algorithm to maximize L

θ(i+1) = θ(i) + ᾱ∇θL(Ω|θ), (2.20)

where ᾱ denotes the learning rate, an empirical constant that controls the size of each update

step. To evaluate ∇θL, we first expand L:

L = ln
M∏
i

1

Z(θ)
e−βE(Ri|θ) (2.21)

=
M∑
i

[−βE(Ri|θ)− lnZ(θ)] (2.22)

= −β
M∑
i

E(Ri|θ)−M lnZ(θ). (2.23)

Then we evaluate the derivative for all terms individually:
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∇θ
(
−L
M

)
= β

1

M

M∑
i

∇θ(E(Ri|θ)) +∇θ lnZ(θ). (2.24)

The derivative of the potential energy can be expressed in terms of ĝ(k) by applying Eq. 2.12:

∇θE(Ri|θ) = 2πρN

∞∫
0

dk k2ĝi(k)∇θV̂ (θ). (2.25)

The first term of Eq. 2.24 is therefore:

1

M

M∑
i

∇θ(E(Ri|θ)) =
1

M

M∑
i

2πρN

∞∫
0

dk k2ĝi(k)∇θV̂ (θ) (2.26)

= 2πρN

∞∫
0

dk k2ĝ(k)∇θV̂ (θ) (2.27)

∗
= 2πρN

∞∫
0

dk k2 〈ĝ(k)〉∗∇θV̂ (θ), (2.28)

where we assume for the last transformation (∗) that the target sample distribution Ω is

ergodic. Similarly, the second term can be evaluated to:
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∇θ lnZ(θ) =
1

Z(θ)
∇θZ(θ) (2.29)

=
1

Z(θ)

∑
Ω

∇θe−βE(Ri|θ) (2.30)

= −β
∑
Ω

1

Z(θ)
e−βE(Ri|θ)∇θE(Ri|θ) (2.31)

= −β
∑
Ω

1

Z(θ)
e−βE(Ri|θ)2πρN

∞∫
0

dk k2ĝi(k)∇θV̂ (k|θ) (2.32)

= −2πρNβ

∞∫
0

dkk2

[∑
Ω

1

Z(θ)
e−βE(Ri|θ)ĝi(k)

]
∇θV̂ (k|θ) (2.33)

= −2πρNβ

∞∫
0

dk k2 〈ĝ(k)〉θ∇θV̂ (k|θ). (2.34)

Since both terms only vary with respect to the ensemble average, we can combine them to:

∇θL ∝
∞∫
0

dk k2
[〈
ĥ(k)

〉
θ
−
〈
ĥ(k)

〉
∗

]
∇θV̂ (k|θ). (2.35)

Here we use h(r) ≡ g(r)− 1 to avoid explicitly computing the Fourier transform ĝ(k) which

has a singularity at k = 0.

Assuming that V̂ (k|θ) is a tabulated potential, where θ = [ε0, ε1, ..., εP ]T , then the mth

component of ∇θL can be expressed as

d

dεm
L ∝

P∑
n=0

kn,max∫
kn,min

dk k2
[〈
ĥ(k)

〉
θ
−
〈
ĥ(k)

〉
∗

] d

dεm
εn, (2.36)

where the integral—over all k values—has been split up into multiple integrals, each over all

k values corresponding to a specific ε. Since all terms in the sum must be zero except where
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m = n, our update formula for individual components reduces to:

ε(i+1)
m = ε(i)m + α̃

km,max∫
km,min

dk k2
[〈
ĥ(k)

〉
θ
−
〈
ĥ(k)

〉
∗

]
, (2.37)

where we have combined ᾱ and all other proportionality constants into α̃. Choosing an

appropriate discretization of ĥ(k), this is approximately equivalent to

ε(i+1)
m ≈ ε(i)m + α̃k2m∆k

[〈
ĥ(km)

〉
θ
−
〈
ĥ(km)

〉
∗

](i)
. (2.38)

To bias the optimization algorithm towards smoother functions, we apply a filter operator

function ξ̂cf(k) = k−2e−ckf(k) to the update step:

ε(i+1)
m ≈ ε(i)m + α̃e−ckm∆k

[〈
ĥ(km)

〉
θ
−
〈
ĥ(km)

〉
∗

](i)
, (2.39)

which is the basis for Eq. (2.4) shown earlier. This transformation biases the gradient ascent

path on L in directions that are orthogonal to changes for large k, but preserves the positions

of extrema on L.

2.5.1.3 The Ansatz Function

The iterative update scheme outlined in the previous section requires the proposition of

an ansatz function V̂ (k|θ0) as a starting point. For this, we measure the potential of mean

force,
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V0(r) = − 1

β
ln g(r), (2.40)

which we transform into Fourier space and then screen to amplify values within the low k

range:

V̂0(k) = e−ckf̂(V0(r)). (2.41)

2.5.1.4 The Filter Strength c (Fourier Space)

To determine an appropriate filter strength c to be used with the filter operator function

ξ̂c (Eq. 2.39), we evaluated the Fourier spectrum of the g(r) of some representative crystal

structures.

10 1 100 101 102

k [ 1]

1.5

1.0

0.5

0.0

0.5

1.0

1.5

h(
k)

 [-
]

cP1-Po c = 0.1

Figure 2.7: Here we have superimposed the function e−ck (red) for c = 0.1σ with ĥ(k) for
cP1 (blue). We see that the majority of features within the small-k range are preserved while
most features within the high-k range are suppressed.

We found that values within the range c/σ = [0.1, 0.2] scale the filter such that the most
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important features within the spectrum are preserved, but many features within the range of

large k values are suppressed (see Fig. 2.7).

The low-pass filtering operation can also be expressed as a convolution in real space. If

V (r) is the real-space filtered potential and V0(r) is the real-space unfiltered potential, the

operation in Equation 2.41 is equivalent to

V (r) =
1

π

∞∫
0

dr′ V0(r
′)

4cr′2

(c2 + (r − r′)2)(c2 + (r + r′)2)
. (2.42)

2.5.1.5 The Real Space Potential

To be able to simulate the assembly process at each iteration i, the Fourier potential

V̂ (k|θ(i)) was transformed into real space

V (r|θ) =
1

r

√
2

π

∞∫
0

dk kV̂ (k|θ) sin(kr) (2.43)

and then truncated according to Eq. (2.5)

After the range was determined, we applied the Stoddard-Ford algorithm [33] up to the

first derivative to ensure that all potentials would smoothly go to zero at the truncation.

2.5.2 Crystal Structure Identification

We employed multiple techniques to identify crystal structures from simulation snapshots:

1. By directly inspecting the rendered structures (i.e., their real-space coordinates).

2. By comparing the bond-orientational order diagram (BOD) against those of ideal and

thermalized crystals.

3. By comparing the diffraction pattern against those of ideal and thermalized crystals.
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4. By identifying the unit cell through symmetry detection and cluster reduction.

5. Through automated classification using a neural network trained on local harmonic

descriptors as described by Spellings et al. [40].

Tasks 1-4 were performed using the in-house software Injavis. The machine learning model

(task 5) was trained on a subset of the data and subsequently used to identify possible

candidates for successful assembly.

2.5.3 The Optimization Self-Assembly Protocol

All simulations were executed with HOOMD-blue [34, 35] within the canonical ensemble

(NV T ) using the Langevin integrator and a time step of dt = 0.001τ . All systems self-

assembled for the potential optimization contained at least 2,000 particles and were first

thermalized for 1 million steps at a slightly increased box size and an elevated temperature

kBT0 = 3.0ε. The box was then compressed and the temperature reduced to kBT = 1.0ε over

the next 1-2 million steps. The system was then thermalized for another 1-2 million steps and

the RDF used to determine the potential update was measured from the last 800,000 steps.

The ultimately selected IPPs were verified to assemble the targeted structure in a larger

self-assembly simulation with the self-assembly protocol as described above, but with system

sizes of 15,625 particles in a cubic box, and 10-times more time steps.

2.5.4 Fitness

The fitness f as defined in Eq. (2.8) is a measure of how closely the discrete RDF g(rj)

at iteration i matches the discrete RDF of the target. The fitness ranges from 0 (complete

mismatch) to 1 (perfect match).

The FF-REM method generally generates IPP solutions that have a higher fitness compared

to the non-filtered results (see Fig. 2.8 and Fig. 2.9).
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Figure 2.8: We observe that FF-REM outperforms non-filtered optimization with respect
to the maximum fitness fmax (Eq. 2.8) averaged over the structure class in the majority of
cases. Notable exceptions are cP4 and tP30, which lead to exceptionally high fitness without
any smoothening. The fact that cP4 did not actually self-assemble is further evidence that a
high fitness is not a good indicator for successful assembly.

2.5.5 Complexity

To objectively measure the complexity of a specific IPP solution, we introduced a com-

plexity norm Ω defined in Eq. (2.6). This nonnegative number correlates with the presence of

small-scale features in the real-space potential. We show complexity measures for potentials

as a function of structure and filter strength in Fig. 2.10.

2.5.6 Objective Quality

To be able to evaluate and select the objectively best IPP solution among multiple possible

solutions, we defined the objective function according to Eq. (2.7), which is proportional to

the fitness f (Eq. (2.8)) and anti-proportional to the potential’s complexity Ω (Eq. (2.6))

and range (Eq. (2.5)). We show a visual comparison of potentials with different quality in

Fig. 2.12.
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Figure 2.9: The average maximal fitness fmax is generally higher for filter strengths c > 0.

2.5.7 Yield

The optimization yield is defined as the number of successful attempts, i.e., any opti-

mization run that would yield at least one IPP that would assemble the targeted structure,

divided by the number of all optimization runs. We evaluated the yield with respect to the

optimization parameters and the targeted structure (Fig. 5), as well as selected structure

properties (Fig. 2.13).

We performed additional self-assembly simulations with all potentials that successfully

assembled the targeted structure during the optimization process in order to validate that they

will assemble the targeted structure not only for small system sizes and unit cell commensurate

box dimensions, but also for large systems in a cubic box. We made a total of three attempts

per potential and only selected those potentials that assembled the targeted structure at

least once. The assembly yield is defined as the number of successful attempts to assemble

the targeted structure with a given potential in a large cubic system, divided by the total

number of attempts.

Finally, we tested how much the nucleation barrier affects the assembly rate and ran

additional tests with crystalline seeds in a large (N > 10, 000 particles), but unit cell
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Figure 2.10: The average minimal complexity Ωmin (Eq. 2.6) is much higher for all potentials
optimized without filter (c = 0) compared to those optimized with FF-REM.

commensurate box, where 8 to 20 particles were fixed at the center and compared them to

the non-seeded assembly runs. The results show that a crystal seed greatly improves the

assembly yield for all tested potentials (see Fig. 2.16).

2.5.8 Ground state energies

To further elucidate reasons for failure, we measured the potential energy of all computed

potentials for all targeted ideal structures (Fig. 2.17). We then compared the minimum

energy of a targeted crystal structure with the minimal energy from the competitor pool and

found that in almost all cases the targeted crystal structure presents the ground state for a

given potential within the competitor pool.

A notable exception is cI52, where cI2 presents the ground state which matches our

observations that potentials optimized for cI52 sometimes yield cI2 instead. Furthermore,

the energies for tP30 and cP8 are very close, which also matches our expectations, since

these structures are structurally very similar.
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Figure 2.11: The quality ϕ of potentials is strongly governed by the chosen filter strength c,
with a strong positive correlation between filter strength and potential quality.

2.5.9 Melting Temperature

The melting temperature kBTmelt was measured by initializing the system directly in the

target structure and then slowly increasing the temperature from kBT = 1.0ε to kBT = 3.0ε.

We then measured the Lindemann order parameter [56, 57] defined as

L =
(

(ri − r0)
)1/2

. (2.44)

The melting temperature was determined with

kBTmelt = arg min
kT

(L > Lmax ∨ (L′ > 4σL′ ∧ L > Lmin)), (2.45)

where L′ denotes the gradient of L, σL′ the standard deviation of L′, and all parameters

were tuned empirically with Lmin = 3.0 and Lmax = 4.7. The average measured melting

temperatures as a function of filter strength c are plotted in Fig. 2.18.
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Figure 2.12: Comparison of different IPPs (a) and the resulting RDFs (b) for the cP1
structure with respect to the objective function ϕ (Eq. 2.7), optimized with different filter
strengths c.

2.5.10 Crystal Structure Visualization

All structures are rendered with the Fresnel rendering software [39] (Fig. 2.19 to 2.26).
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Figure 2.13: There appears to be a marginal trend for a higher yield for structures with a
higher average coordination number. Note: the data is plotted on a non-linear x-axis.
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Figure 2.14: The assembly yield is on average much higher for values of c > 0.
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Figure 2.15: Assembly yield by structure.
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Figure 2.16: The assembly yield by structure for selected potentials (ϕmax, some shown
in Fig. 2), is generally improved by providing a crystalline seed at the beginning of the
simulation. Notably, the cP4 structure assembles only with seed, the cP54 structure did not
assemble without seed in these additional tests.
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Figure 2.17: We calculated the per-particle potential energy of an ideal crystal for all computed
potentials and compared the respective minimum energy for any structure with the respective
minimum energy of all other structures. The results clearly show that FF-REM is able to
determine at least one potential for each structure, where the targeted structure presents the
ground state among the competitor pool with the exception of cI52.
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Figure 2.18: The melting temperature kBTmelt was determined for all structures and parame-
ters, regardless of whether the optimization succeeded, according to Eq. 2.45. The melting
temperature was generally higher for no and weak filtering (c ≤ 0.1σ) compared to stronger
filtering (c = 0.2σ).

Figure 2.19: cF4-Cu

Figure 2.20: cF8-C

Figure 2.21: cI2-W

44



Figure 2.22: cP1-Po

Figure 2.23: cP54-K4Si23

Figure 2.24: cP8-Cr3Si

Figure 2.25: tI4-Sn

Figure 2.26: tP30-CrFe
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Inverse Design of Self-Assembling Frank-Kasper Phases and Insights Into Emergent
Quasicrystals. J. Phys. Chem. B, 122(21):5547–5556, 2018. doi: 10.1021/acs.jpcb.
7b11841.

[33] Spotswood D Stoddard and Joseph Ford. Numerical Experiments on the Stochastic
Behavior of a Lennard-Jones Gas System. Phys. Rev. A, 8(3):1504–1512, 1973. doi:
10.1103/PhysRevA.8.1504.

[34] Joshua A. Anderson, Chris D. Lorenz, and A. Travesset. General purpose molecular
dynamics simulations fully implemented on graphics processing units. J. Comput. Phys.,
227(10):5342–5359, 2008. doi: 10.1016/j.jcp.2008.01.047.

[35] Jens Glaser, Trung Dac Nguyen, Joshua A Anderson, Pak Lui, Filippo Spiga, Jaime A
Millan, David C Morse, and Sharon C. Glotzer. Strong scaling of general-purpose
molecular dynamics simulations on GPUs. Comput. Phys. Commun., 192:97–107, 2015.
doi: 10.1016/j.cpc.2015.02.028.

[36] John Towns, Timothy Cockerill, Maytal Dahan, Ian Foster, Kelly Gaither, Andrew
Grimshaw, Victor Hazlewood, Scott Lathrop, Dave Lifka, Gregory D Peterson, Ralph
Roskies, J Ray Scott, and Nancy Wilkins-Diehr. XSEDE: Accelerating Scientific Discov-
ery. Comput. Sci. Eng., 16(5):62–74, 2014. doi: 10.1109/MCSE.2014.80.

[37] Carl S. Adorf, Paul M. Dodd, Vyas Ramasubramani, and Sharon C. Glotzer. Simple
data and workflow management with the signac framework. Comput. Mater. Sci., 146:
220–229, 2018. doi: 10.1016/j.commatsci.2018.01.035.

[38] Vyas Ramasubramani, Bradley D. Dice, Eric S. Harper, Matthew P. Spellings, Joshua A.
Anderson, and Sharon C. Glotzer. freud: A Software Suite for High Throughput Analysis
of Particle Simulation Data. arXiv:1906.06317 [cond-mat, physics:physics], June 2019.
arXiv: 1906.06317.

[39] Joshua A Anderson. fresnel is a python library for path tracing publication quality images
of soft matter simulations in real time., 2019. URL https://github.com/glotzerlab/

fresnel. Accessed on: 2019-09-18.

[40] Matthew Spellings and Sharon C Glotzer. Machine learning for crystal identification
and discovery. AIChE J., 64(6):2198–2206, 2018. doi: 10.1002/aic.16157.

49

https://github.com/glotzerlab/fresnel
https://github.com/glotzerlab/fresnel


[41] Frank H Stillinger. Phase transitions in the Gaussian core system. J. Chem. Phys., 65
(10):3968–3974, 1976. doi: 10.1063/1.432891.

[42] Santi Prestipino, Franz Saija, and Paolo V. Giaquinta. Phase diagram of softly repulsive
systems: The Gaussian and inverse-power-law potentials. J. Chem. Phys., 123(14):
144110, 2005. doi: 10.1063/1.2064639.

[43] C. Domb. CXXX. The melting curve at high pressures. London, Edinburgh, Dublin
Philos. Mag. J. Sci., 42(334):1316–1324, 1951. doi: 10.1080/14786444108561387.

[44] William G. Hoover, Steven G. Gray, and Keith W. Johnson. Thermodynamic Properties
of the Fluid and Solid Phases for Inverse Power Potentials. J. Chem. Phys., 55(3):1128,
1971. doi: 10.1063/1.1676196.

[45] Brian B. Laird and A. D J Haymet. Phase diagram for the inverse sixth power potential
system from molecular dynamics computer simulation. Mol. Phys., 75(1):71–80, 1992.
doi: 10.1080/00268979200100071.

[46] Rupal Agrawal and David A. Kofke. Thermodynamic and structural properties of
model systems at solid-fluid coexistence. Mol. Phys., 85(1):43–59, 1995. doi: 10.1080/
00268979500100921.

[47] Mikhail Dzugutov. Glass formation in a simple monatomic liquid with icosahedral
inherent local order. Phys. Rev. A, 46(6):R2984–R2987, 1992. doi: 10.1103/PhysRevA.
46.R2984.

[48] Mikhail Dzugutov. Formation of a dodecagonal quasicrystalline phase in a simple
monatomic liquid. Phys. Rev. Lett., 70(19):2924–2927, 1993. doi: 10.1103/PhysRevLett.
70.2924.

[49] J Roth and Alan R Denton. Solid-phase structures of the Dzugutov pair potential. Phys.
Rev. E, 61(6):6845–6857, 2000. doi: 10.1103/PhysRevE.61.6845.

[50] Yu D. Fomin, N. V. Gribova, V. N. Ryzhov, S. M. Stishov, and Daan Frenkel. Quasibinary
amorphous phase in a three-dimensional system of particles with repulsive-shoulder
interactions. J. Chem. Phys., 129(6):064512, 2008. doi: 10.1063/1.2965880.

[51] Mikael C. Rechtsman, Frank H. Stillinger, and Salvatore Torquato. Self-assembly of the
simple cubic lattice with an isotropic potential. Phys. Rev. E, 74(2):021404, 2006. doi:
10.1103/PhysRevE.74.021404.

[52] Mikael C. Rechtsman, Frank H. Stillinger, and Salvatore Torquato. Synthetic diamond
and wurtzite structures self-assemble with isotropic pair interactions. Phys. Rev. E, 75
(3):031403, 2007. doi: 10.1103/PhysRevE.75.031403.

[53] Avni Jain, Jeffrey R. Errington, and Thomas M. Truskett. Communication: Phase
behavior of materials with isotropic interactions designed by inverse strategies to favor
diamond and simple cubic lattice ground states. J. Chem. Phys., 139(14):141102, 2013.
doi: 10.1063/1.4825173.

50



[54] Fredrik H.M. Zetterling, Mikhail Dzugutov, and Sven Lidin. γ-Brass Crystallization in a
Simple Monotomic Liquid. MRS Proc., 643(0):K9.5, 2000. doi: 10.1557/PROC-643-K9.5.

[55] Mans Elenius, Fredrik H.M. Zetterling, Mikhail Dzugutov, Daniel C. Fredrickson, and
Sven Lidin. Structural model for octagonal quasicrystals derived from octagonal symmetry
elements arising in β-Mn crystallization of a simple monatomic liquid. Phys. Rev. B -
Condens. Matter Mater. Phys., 79(14):144201, 2009. doi: 10.1103/PhysRevB.79.144201.
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CHAPTER III

Analysis of Self-Assembly Pathways with Unsupervised

Machine Learning Algorithms

This chapter is adapted from a manuscript which is currently in preparation for publication

authored by me with contributions to the design and evaluation of the study by Timothy C.

Moore and Sharon C. Glotzer and contributions to the technical implementation by Yannah

J. U. Melle.

3.1 Introduction

A full and detailed mechanistic understanding of crystallization pathways would have

enormous implications on our ability to develop novel materials with unique properties.

The still remaining discrepancy between predicted nucleation and growth rates and those

measured in experiment suggest that our models of the system and the crystallization process

itself are still insufficient in capturing all relevant effects [1]. One particular ambiguity in

studying crystallization is the identification of local motifs that particles participate in as

they transform from fluid to solid. The advent of machine learning in the field of chemical

physics provides an avenue to reduce such ambiguities and autonomously identify relevant

particle environments, as we will show in this chapter.

Here we present the analysis of crystallization pathways of colloidal systems, which are
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especially useful, because simple model systems such as hard spheres and pairwise interacting

potentials are amenable to study both theoretically [2–4] and experimentally [5, 6]. The fact

that colloidal building blocks on the nano- and microscale can be artificially designed and

fabricated and thus, in principle, be optimized for the design of self-assembly routes has

sparked the imagination of the scientific community [7] and led to a plethora of computational

and experimental studies [8–19].

One of the main challenges in studying the exact pathways of self-assembly is the ability to

access relevant time and length scales. That holds true for both physical and computational

experiments, but is especially problematic for the study of rare events including nucleation [20].

Rare events like these may have such a minuscule probability to occur on the time scales

accessible via brute-force simulation, that even increases in orders of magnitude of available

computational resources would not be sufficient. Rare event sampling techniques that fall

into the general category of advanced sampling techniques, such as umbrella sampling [21],

transition interface sampling [22], and forward flux sampling [23, 24], provide ways to study

rare events but require more consideration and a better understanding of the underlying

process compared to simple brute-force approaches. They also might have restrictions such

as being only suitable to equilibrium or quasi-equilibrium processes.

Even with sufficient sampling, describing and identifying particle environments in a

systematic, unbiased, and computationally feasible manner represents its own challenge. One

particularly successful approach is to use Steinhardt bond orientational order parameters [25]

based on spherical-harmonics, which we will from here on refer to as Steinhardt order

parameters, or Ql in short. Steinhardt order parameters capture symmetries that are broken

by the particle’s local environment in a rotationally invariant manner, which is especially

important when we are concerned with the characterization and identification of local motifs

before and during the crystallization process as opposed to characterizing bulk phases

post-crystallization.

While useful, Steinhardt order parameters are often insufficient: For one, they require
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some heuristic on what neighbors to include in their computation. A simple heuristic is to

select all points within a certain radius as neighbors. Another heuristic may be based on the

number of n-nearest neighbors regardless of their distance. A more advanced approach is the

determination of neighbors based on the topology of the local environment: The Polyhedra

Template Matching (PTM) structure identification algorithm selects the number of neighbors

based on the Voronoi cell surrounding a particular particle [26]. Similarly, the solid-angle

based nearest-neighbor algorithm (SANN) also adjusts the number of neighbors for each

particle individually based on reaching a threshold of the sum of the solid angle [27].

However, no matter the environment descriptor and environment selection heuristic

applied, the use of order parameters to unambiguously identify structures and phases changes

still requires the evaluation and comparison of distributions and arbitrary cut-offs. The design

of suitable order parameters (OPs) could, in many instances, be better characterized as an

art than a science [28]. However in the past few years the field has seen a significant shift

towards the use of machine-learning based OPs [29–33], an approach that has the potential

to greatly simplify and accelerate the search for suitable OPs for a new system or process.

In this work, we advance techniques for the autonomous identification of local environments

present within a given system, and apply them to characterize the crystallization pathways

of colloidal systems, including hard spheres, the Lennard-Jones fluid, and systems of point

particles interacting via isotropic pair potentials (IPPs) designed to self-assemble specifically

targeted complex crystal structures [34]. We use a descriptor composed of the bispectrum of

the three-dimensional rotation group (SO(3)) that is a high-dimensional rotationally-invariant

representation of a local particle environment. The bispectrum descriptor is similar to the

Steinhardt order parameter based on spherical harmonics, but preserves more information

about the environment than just its symmetry. We show that the high-dimensional descriptor

is effective in devising an environment detection model through dimensionality reduction and

a clustering-based unsupervised machine-learning workflow.
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Figure 3.1: We analyzed the nucleation and growth crystallization pathways for systems of
point particles interacting via IPPs. We studied two benchmark models (Lennard-Jones (LJ)
and Weeks-Chandler-Andersen (WCA)) as well as two models that were specifically designed
to assemble complex crystal structures (cP8 and tI4).

3.2 Theoretical Methods

3.2.1 Models

We studied the crystallization behavior of Weeks-Chandler-Andersen (WCA) spheres and

systems of point particles interacting via the Lennard-Jones (LJ) potential and potentials

optimized for the self-assembly of A15-type cP8-Cr3Si (cP8) and β-tin tI4-Sn (tI4) crystal

structures, all of which are plotted in Fig. 3.1. The models for cP8 and tI4 were obtained with

an algorithm designed for the optimization of simple, short-ranged IPPs that will self-assemble

complex crystal structures [34]. To our knowledge, detailed self-assembly pathways of these

crystal structures using computational models have not been reported.

3.2.2 Unsupervised Machine Learning Workflow

To study the self-assembly pathways of models for colloidal self-assembly, we employ

a workflow, illustrated in Fig. 3.2, that uses a generalized descriptor space as input and

produces an environment classification as output. In this way we are able to assign to each

particle at each sampled time step a label corresponding to exactly one environment group.

The descriptor is in principle independent of the studied systems, but must be general enough
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to incorporate all important features that sufficiently define a local particle environment at

least up to its first, but optionally also to its second, neighbor shell. At a minimum, for a

system that assembles a specific target structure, the descriptor space must have features

that capture the broken symmetries of that structure.

The “complete feature vector” has length D and is a concatenation of multiple descriptors

with the assumption that the unsupervised machine learning model is going to be able to

discern the relevant features automatically, and will discard all features that are irrelevant

for a given system and pathway. The complete descriptor space is then an array with shape

N ×D, where N corresponds to our sample size, which is spanned by the number of sampled

particles and time steps.

After computing the descriptor space, we apply two dimensionality reduction steps to

reduce the overall data size and thus computational demand and to prepare the data for the

crucial clustering step. We first reduce the dimensionality from D to 20 by transforming the

descriptor space with incremental Principal Component Analysis (PCA) [35, 36] and selecting

the first 20 components with the largest variance and hence the most information. Our

preliminary studies showed that the relative variance typically drops drastically after 10-20

components, which means that including more than that would not lead to more accurate

results.

A subset corresponding to 1,000 randomly selected particles of the resulting data space

embedding is then further reduced in dimensionality using the density-based and non-

linear Uniform Manifold Approximation and Projection for Dimension Reduction (UMAP)

algorithm [37]. The UMAP algorithm has natural advantages for our problem space. It

reduces the dimensionality of the descriptor space computationally more efficiently than

comparable algorithms such as as t-SNE [38], which is important because the descriptor space

dimensionality is typically in the hundreds or thousand. Furthermore, UMAP optimizes the

resulting manifold as much as possible to preserve distances between points within the higher-

dimensional space. This means that the resulting topology and distances between points
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is related to the actual high-dimensional representation of the system and thus potentially

informative and interpretable. The UMAP algorithm was applied with the number of

neighbors parameter set to 30, the minimum distance set to zero, and with point distances

computed using the “Manhattan” norm.1 The “Manhattan” metric is advantageous compared

to the Euclidean metric in preserving distances in higher dimensional spaces [39].

We reduced the descriptor space embedding to two dimensions for visualization and

validation purposes, and to 10 dimensions for the actual unsupervised learning via a clustering

algorithm. The lower-dimensional manifolds constitute a representation of the self-assembly

process as described by the descriptor vectors, which naturally cluster into groups that may

be associated with phase changes and particle environments present in the studied system.

Concretely, we expect environments that are found within the same cluster to be more similar

to each other than to environments in a different cluster.

We apply the HDBSCAN* clustering algorithm [40] to automatically identify clusters

within the 10-dimensional descriptor space manifold. The HDBSCAN* algorithm represents

an extension of the popular DBSCAN algorithm that is more robust against fluctuations in

density and cluster size within the clustered space compared to standard DBSCAN.

Like DBSCAN, HDBSCAN* clusters points by their local neighborhood density, building

up a graph of connected points referred to as a cluster hierarchy. However, unlike DBSCAN,

which selects clusters within the hierarchy based on a global cut-off distance, HDBSCAN*

merges connected nodes until the cluster associated with each node reaches a specified

minimum cluster size. That means the effective cut-off range will be different for each

cluster. We determined that a minimum cluster size within the range of 1 to 4% of the

system size in combination with a minimum sample size of 1% of the system size is suitable

for our application. We further used the “leaf” cluster selection mode, which means that

HDBSCAN* selects all leafs within the merged cluster hierarchy, resulting in smaller and

more homogeneous clusters.

1The Manhattan norm is also referred to as 1-norm.
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As aforementioned, the manifold generation and its subsequent clustering was applied to

a subset of 1,000 randomly selected particles for all or a subset of all sampled time steps. To

predict labels for all particles at all time steps, we trained a linear Support Vector Machine

(SVM) model on the embedded PCA descriptor space (excluding all points classified as noise)

with a 3-to-1 training-validation split. The validation accuracy obtained for these models was

typically close to or even above 98%. Training a separate model has the distinct advantage

of avoiding the need to compute the manifold for the complete descriptor space as well as

simplifying the labeling of new data from either the same system or possibly even a different

system.

3.2.3 Descriptors

Within the scope of this study, we employed various descriptors based on the local

neighborhood including bond distances and bond angles, as well as spherical-harmonics based

descriptors such as Steinhardt order parameters and the bispectrum. These order parameters

are implemented within the open-source pythia machine learning (ML) package [32, 41]. We

found the spherical-harmonics based bispectrum descriptor to generally be most robust to

universally describe the self-assembly pathway characteristics across all studied systems [42]

compared to Steinhardt order parameter- and bond- or angle-based descriptors.

We also compared our results against the traditionally employed Steinhardt order param-

eters for comparison and validation purposes. While the bispectrum descriptor preserves

much more information compared to the Steinhardt order parameters, the latter require only

one dimension per symmetry-variant and neighborhood size. That is significantly less than

the bispectrum descriptor, whose dimension is proportional to the cube of lmax, which is not

a huge problem for the initial dimensionality reduction using PCA but vastly increases the

required storage size if the descriptor is to be preserved. We find it encouraging that our

machine learning algorithm easily handles descriptors with up to at least 5,368 dimensions,

as is the case for the cP8 system presented later.
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3.2.4 Environment characterization

The environments identified by our unsupervised machine learning workflow can be

characterized through visual inspection as well as various order parameters, including the

Local Density (LD), the Steinhardt order parameter for different values of l, and through their

root-mean-squared deviation. For this we collect a sample of particles that are all classified

to belong to the same environment and then compute the given order parameter such as the

LD for that sample. This post-classification analysis serves as additional validation, since

the original classification via the descriptor-based unsupervised machine learning model is

independent of this step.

3.2.5 Data Management and Workflow Implementation

The computational workflow in general and data management in particular for this publi-

cation was primarily supported by the signac data management framework [43]. Simulations

were performed with HOOMD-blue [44]. Trajectories were analyzed with freud [45]. The

descriptors were calculated with pythia [41]. The rendered visualizations of particle systems

were generated with OVITO [46]. Computations were carried out on the Oak Ridge National

Laboratory (OLCF) Titan and Summit super computers as well as the University of Michigan

Flux cluster.

59



N

D

N

N
s

N

N
s

Ns « N
20

PCA UMAP
HDB-
SCAN

EmbeddingDescriptors (D)

2 10 1

1

Manifolds PredictionClusters

SVM

ys yXs , X 

DN

(0)DN
(1)DN

(2)DN

a) b) c)

Figure 3.2: We employ an unsupervised machine learning workflow for the automated
detection of environments within the crystallization pathway. Particle environments are first
mapped to a descriptor space, which should capture the local environment of each particle
in a rotationally invariant manner (a). This potentially high-dimensional descriptor space
is then reduced to its first 20 principal components using a Principal Component Analysis
(PCA) decomposition and subsequently reduced to 2 and 10 dimensions using the Uniform
Manifold Approximation and Projection for Dimension Reduction (UMAP) algorithm (b).
Environments are detected from the UMAP manifold using the HDBSCAN* clustering
algorithm (c).
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3.3 Results

3.3.1 Weeks-Chandler-Andersen (WCA)

The self-assembly of colloidal hard spheres was simulated with the WCA model

VWCA(r)


4ε
[(

σ
r

)12 − (σ
r

)6
+ 1

4

]
r ≤ 2

1
6σ

0 r > 2
1
6σ

, (3.1)

which approximates the interaction of physical hard spheres via a purely repulsive and

short-ranged energy function. The self-assembly behavior of WCA spheres has been studied

extensively [1, 3, 47] and was just recently analyzed with a similar unsupervised machine

learning approach by Boattini et al. [33]. The system represents a suitable benchmark

system for the validation of novel colloidal crystallization pathway analysis methods. We

sampled the system with Molecular Dynamics (MD) in the NPT ensemble with a constant

system size N , pressure P , and temperature T . The integration was carried out via a MTK

barostat-thermostat [48–50], a time step of dt = 0.001τ , a thermal coupling constant of

τT = 0.01, and a pressure coupling constant of τP = 0.1. We initialized the system with a

largely expanded box and at an elevated temperature of βε = 40/3 and then equilibrated at

the same temperature to a pressure of βPσ3 = 30, where β is the inverse temperature 1/kT .

At time t = 400τ the temperature was abruptly reduced to βε = 40.

We computed the bispectrum descriptor for 12 neighbors and, as described in the previous

section, mapped the descriptor space with PCA and the UMAP algorithm from D =

1342 dimensions to 20, 10, and 2 dimensions (Fig. 3.3a). Although we visualize only the

first two principal components, we apply the UMAP algorithm twice, once to generate

a two-dimensional manifold for visualization and once to generate a higher-dimensional

representation used for clustering. Both UMAP manifolds are inferred from the 20-dimensional

PCA reduced embedding.

Each point in the plots in Fig. 3.3a represents one particle at a specific time step, which
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Figure 3.3: The first two principal components of the descriptor space (a left), where each
point represents one particle and its environment colored by time step, has a broad initial basin
with two smaller competing basins at a later stage. In contrast to the PCA embedding, the
two-dimensional UMAP manifold is optimized to represent the complete topology of the high-
dimensional descriptor space and for this system displays better separation between unrelated
environments (a right). We used the HDBSCAN* algorithm to cluster the 10-dimensional
manifold and identify four environments (b). The supersaturated fluid is dominated by
a liquid environment (1), with fluctuations of random hexagonal close packing (RHCP)
environments (0). The RHCP environments present a precursor for the nucleation of the
crystal nucleus, which is primarily made up of face-centered cubic (FCC) environments (2
and 3). We compared our identification of environments to those obtained with Polyhedra
Template Matching (PTM) (c).
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is signified in terms of its color from dark to bright. The location of each point on the

two-dimensional graph represents its environment in terms of the descriptor vector mapped

into two dimensions.

Simply by examining this lower-dimensional representation of the descriptor space, we

can already infer some characteristics of the self-assembly pathway and the final phase:

1. There are two primary distinct environment groups within the system.

2. One group is present at both an early and a late stage of the simulation while the other

one is only present at a later stage.

3. The environment present at both the early and late stages is more similar to the initial

(disordered) fluid phase than it is to the second environment group.

We then applied the HDBSCAN* clustering algorithm to automatically cluster the

indiscriminate point cloud shown in Fig. 3.3a into the four clusters shown in Fig. 3.3b. The

clustering algorithm clearly delineates between the two primary clusters, however it also

splits these further into two smaller clusters that might not have been immediately obvious

through simple visual inspection in two dimensions. As stated before, the clustering algorithm

operates on the 10-dimensional reduced descriptor space, taking in more information about

distances between points than visible to the eye.

Through visual inspection in combination with PTM, we identify the four principal

environments to correspond to two phases, as shown in Fig. 3.3c. We identify the initially

dominant environment to correspond to a disordered fluid (environment 1). The second most

dominant phase consists of random fluctuations of RHCP (0), which find a local maximum

around 750τ , playing a strong role in the formation of the crystal nucleus (Fig. 3.3c). Shortly

after, the two FCC-like environments (2 and 3) become dominant. The remaining 15% of

all particles identified within environment 0 persist in the form of a hexagonal close packing

(HCP)-stacking fault.

The fluid-like environment (1) has a significantly lower median LD compared to all other
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Figure 3.4: The Local Density (LD) order parameter is significantly lower for the fluid
environment (2) compared to all other environments, with the HCP-like environment (0) in
between the fluid and FCC (3 and 4) (a). The Steinhardt order parameter Ql, here evaluated
for l = 4, 6, 8, and 10 shows narrow distributions of Q6 for both HCP (0) and FCC (3 and
4). We see that there is significant overlap for all environments, which supports that using
Ql alone in combination with hard cut-offs would make it difficult to reliably distinguish
between the identified environments (b). The plots show the interquartile range of the data
as a vertical bar, the median as a dot, and the whiskers extend to the full range of the data
excluding all data points that are considered outliers, overlaid by a kernel density estimate of
the distribution; please see the appendix for details.

environments, see Fig. 3.4a. The HCP-like environment (0) has also a slightly lower median

LD compared to the two FCC-like environments (2 and 3), which are both very similar to

each other. Both environments 3 and 4 are highly similar, however environment 4 has a

slightly higher LD and lower Q10 Steinhardt order parameter (Fig. 3.4b) which means its

local order is slightly higher.

Our simulation and analysis of the WCA system confirms observations made previously

by Auer and Frenkel [51], Kawasaki and Tanaka [3], and recently by Ren et al. [1], that

fluctuations of RHCP provide the necessary precursory conditions for the formation of the

nucleus, which predominantly consists of FCC-like environments with higher Q6 compared to

HCP. Local body-centered cubic (BCC)-like environments do not play a role in the formation

of the critical nucleus. Having now validated our methodology, we study increasingly complex

systems in the following sub-sections.
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3.3.2 Lennard-Jones (LJ)

The nucleation and growth characteristics of the LJ system have been extensively stud-

ied [52–54], however there are a few remaining questions. The nucleation rates determined

from simulations are still orders of magnitude away from experimental measurements [55]

and the exact composition of the nucleus in its early stage is still somewhat dependent on

the chosen order parameter [20].

We sampled the crystallization behavior of 4,096 point particles interacting via the LJ

potential

VLJ(r)


V (r) = 4ε

[(
σ
r

)12 − (σ
r

)6]
r ≤ rcut

0 r > rcut

(3.2)

with a cut-off range of rcut = 3σ without shift at the cut-off using Forward Flux Sampling

(FFS) at moderate supercooling with a temperature of kT = 0.85ε and a pressure of

P = 5.76εσ−3 in the NPT ensemble. The integration time step was set to dt = 0.01τ , and

the system was coupled to the environment with τT = 0.1 and τP = 1. Details on the

implementation of the advanced sampling with FFS are described in the appendix.

Similar to the WCA system, the pathway analysis of the LJ system reveals two dominant

environment groups: Group one represents the environment of the final crystal structure

FCC (0), and group two is made up of fluid- (1 and 2) and HCP-like (3 and 4) environments.

The two fluid-like environments have low density and order, whereas the two HCP-like

environments have similar density, but higher local order, see Fig. 3.5b. We can infer from

the manifold that RHCP/HCP is overall more similar to the fluid than FCC (Fig. 3.5a).

The pathway as visualized in the probability density plot of LD vs. Q6 (Fig. 3.5b)

proceeds from the fluid (1 and 2) to RHCP/HCP (3 and 4) to FCC (0) and is characterized by

simultaneous densification and ordering. There are two primary wells with a clear separation

between FCC and all other environments, with the latter being shallower and broader.

The critical crystal nucleus (see Fig. 3.5c) is primarily made up of FCC with one HCP
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Figure 3.5: The UMAP representation of the Lennard-Jones (LJ) assembly pathway descriptor
space (a) is divided into two major cluster groups with a clear separation of the FCC
environment (0) on the right. The probability density diagram (b) features two wells with
the deepest well located at the top coinciding with environment 0. We observe that the two
HCP-like environments (3 and 4) are located halfway between the fluid environments (1 and
2). Environment 3 has a significant smaller LD compared to environment 4. The visualization
of the critical nucleus (c) colored by environments on the left and with polyhedra template
matching on the right shows that the HCP-like environments with higher density (3) are
incorporated into the critical nucleus, while those with lower density (4) are primarily found
in the bulk. The critical nucleus has a significantly higher concentration of FCC environments
compared to the bulk, however there is a large number of spontaneous fluctuations of HCP
order within the fluid at all times which then increase in density and finally transform into
FCC (d).
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stacking fault and wetted by HCP environments (3). Fluctuations of RHCP (environment 4)

are present within the bulk, meaning that the system has overall very high HCP-like order at

all times with a significant density gradient at the surface of the crystal nucleus.

Looking at the crystallization over time, fluctuations of RHCP and HCP environments

(3 and 4) are present at all times. However the increase in the number of particles with

FCC environment (0) coincides with the nucleus reaching a critical size at 4650τ , which

makes sense considering that the nucleus is primarily made up of particles with the FCC

environment. The crystal growth phase is characterized by a simultaneous increase of both

HCP (3) and FCC (0) environments with HCP being initially dominant and reaching a

maximum at 4730τ at which point FCC becomes the dominant environment.

3.3.3 A15-type cP8-Cr3Si

The crystallization of the cP8 structure was simulated with the pairwise interaction

potential presented in Chapter II. The system was equilibrated with the Langevin integrator

(time step dt = 0.001τ) at an elevated temperature of kT = 3.0ε and a slightly expanded box

for 100τ and then compressed to the final density for another 100τ . The temperature was

then reduced abruptly to kT = 1.0ε at 400τ .

The descriptor for the cP8 structure was computed for 12, 13, 24, and 26 neighbors to

include the first and second neighbor shells, which results in the identification of the three

environments shown in Fig. 3.6a. These environments can be attributed to the disordered fluid

(1), an intermittently dominant icosahedral environment (2) corresponding to Wyckoff site a,

and an environment that is only present in the final crystal structure (0) and corresponds to

Wyckoff site c (see Fig. 3.6b).

Roughly one-fourth of the particles were found to be within the icosahedral environment

(2) prior to the quench, with a significant uptake to almost 100% immediately after the

temperature quench (see Fig. 3.6c). These environments became incorporated into the crystal

nucleus and the final crystal structure over a prolonged growth period. The final crystal
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Figure 3.6: The cP8 UMAP descriptor space representation (a) has three primary clusters,
a disordered fluid (2), an icosahedral environment (1) that corresponds to cP8 Wyckoff
site a and a third environment only present in the ordered crystal structure (0), which
corresponds to Wyckoff site c (b). The manifold topology suggests that the environments 2
and 1, i.e., the icosahedral environment and the fluid are more closely related. Environment 2
reaches a brief local maximum right after the temperature quench at 400τ and then partially
transitions to environment 0 (c). The PTM representation of the final crystal structure shows
that environment 2 corresponds to an icosahedral motif (gold), while environment 0 is not
recognized (white) (see inset).
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Interface

Figure 3.7: The tI4 crystallization pathway is characterized by precursor environment (1),
which becomes dominant shortly after the temperature quench at 4000τ and is then consumed
by the crystalline environment (0). The precursor environment persists in the form of a
spherical defect with interfaces circled in the bottom right visualization.

structure has two defect planes, which are visually apparent by a reduced concentration of

environment 0.

3.3.4 β-tin tI4-Sn (tI4)

The crystallization of the tI4 structure was simulated with the Langevin integrator

(dt = 0.001) with the potential presented in Chapter II. The system, comprised of 14,400

point particles, was equilibrated at kT = 3.0ε for 4000τ , and then quenched to kT = 0.1ε.

There are three environments present in significant amounts prior to the temperature

quench: environments 1, 2, and 3. Environment 1 becomes dominant immediately after the

temperature quench at 400τ only to be replaced shortly after by the crystalline environment

0. Environment 1 remains present in significant concentration localized at a defect in the

form of a spherical shell (see Fig. 3.7).

The UMAP representation of the tI4 self-assembly descriptor space is interpretable both

in terms of the relative distance between clusters and their relative location within the

two-dimensional coordinate system. The clustering algorithm identifies four clusters within
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Figure 3.8: The UMAP representation of the tI4 descriptor space separates into two main
cluster groups, which we can identify as pre- and post-crystallization from the time coding
alone (not shown). The clustering algorithm identifies three distinct environments within the
left group, which we later associate with the disordered fluid state (2 and 3) and a precursor
environment (1).

the descriptor space, with two fluid environments (1 and 3), a precursor environment (1),

and a crystalline environment (0) visualized in Fig. 3.8.

3.4 Conclusions

Using a general spherical harmonics-based descriptor in combination with an unsupervised

ML workflow we studied the self-assembly of four interaction models that assemble a variety

of crystal structures. The applied clustering algorithm autonomously identified groups of local

structural motifs, here referred to as environments, that helped us to discriminate between a

fluid and a solid phase as well as specific crystal structures, e.g., FCC and HCP and related

structures such as RHCP. The autonomous environment classification performed as well as

established methods such as PTM in discriminating between fluid and solid phases and in

identifying the final structure, interfaces, and defects.

The employed bispectrum descriptor takes multiple symmetries into account and was

only adjusted with respect to the number of neighbors for a particular system. We used

the coordination number of particles within the final crystal structure as a guideline on the

70



number of neighbors selection, however future studies should use a more advanced neighbor

selection heuristic, for example based on the SANN algorithm [27] or by employing Voronoi

cell division [26].

All pathways show significant fluctuations of local structural order within the disordered

bulk fluid phase prior to nucleation. This suggests that nucleation events are triggered by

a combination of random fluctuations in both local order and density, providing further

evidence for the hypothesis by Russo and Tanaka [56] that the supercooled bulk liquid is

highly structured to lower its free energy compared to a completely isotropic bulk phase.

We can further confirm their insight on the importance of the structure of the embryonic

crystal nucleus on the final macro state, evidenced by our observation that stacking faults

that are present even at a very early stage, for example in the LJ nucleus, persist even after

substantial crystal growth and opportunity for defect healing (see Fig. 3.5c and Fig. 3.5d).

3.5 Appendix

3.5.1 Violin plots

Violin plots show the median of the data (dot), the interquartile range in form of a vertical

box, and the complete range of the data including the minimum and maximum except for

points that are considered outliers as the grey line. Outliers are defined as any point that

extends 1.5 times the interquartile range below the first and above the third quartile. In

addition, the graph also features a kernel density estimate (KDE) of the distribution, which

makes it easier to visually asses the overall distribution of the data.

3.5.2 Forward Flux Sampling (FFS)

Forward Flux Sampling (FFS) is an advanced sampling technique originally presented by

Allen et al. [24] which allows the sampling of pathways that have rare events in a way that

is computational feasible, largely unbiased with respect to the chosen order parameter, and
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allows the study of non-equilibrium systems [23].

We studied the crystallization of the LJ system at moderate supercooling, which made it

necessary to use advanced sampling techniques to observe nucleation events on a reasonable

computational time scale. The nucleation rate of the WCA spheres as well as of the systems of

point particles interacting via the tI4 and cP8 pairwise interactive potentials is comparatively

higher at the chosen state points and could therefore be observed with brute-force sampling.

We employed the solid-liquid order parameter introduced by ten Wolde et al. [52] as

implemented in the freud analysis package [45]. Using this order parameter, a particle is

considered solid-like if and only if it has more than 10 nearest neighbors where the dot

product

ql = Q̄∗lm(i) · Q̄lm(j) (3.3)

exceeds the threshold of ql > 0.6. The value for Qlm(i) is determined by evaluating

Q̄lm(i) =
1

Nb(i)

Nb(i)∑
j=1

Ylm(rij) (3.4)

over the Nb nearest neighbors of particle i, where rij denotes the bond vector between particle

i and particle j and Ylm(r) are spherical harmonics. The number of nearest neighbors was

determined using a ball-metric with a cut-off radius of rcut = 1.35σ.
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CHAPTER IV

Scientific Data and Workflow Management with Signac

This chapter is adapted from a publication in the Journal of Computational Materials

Science in 2018 authored by me, Paul M. Dodd, Vyas Ramasubramani, and Sharon C. Glotzer.

The article was assigned DOI:10.1016/j.commatsci.2018.01.035.

4.1 Introduction

Improved software [1–5] and increased resources available to computational researchers [6,

7] have led to significant increases in the quantities of data generated [8]. This makes a highly

systematic data management approach crucial to preserving data provenance and ensuring

reproducibility. To address this problem, researchers often employ data organization practices

such as using human-readable file-naming conventions. Although such solutions address the

problem at a superficial level, they suffer from numerous drawbacks with respect to efficiency

and flexibility. Here, we introduce signac, named after Paul Signac (see Fig. 4.1), a simple

and robust framework for the management of complex and heterogeneous data spaces as

well as the efficient implementation of workflows. Data spaces managed with signac are

immediately searchable and sharable.

The capabilities of signac are best illustrated by example. Consider a typical, albeit

trivial, research task in which we are given data about the pressure, volume, and temperature

of a noble gas and wish to develop a simple theory to explain these data. As a first hypothesis,
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Figure 4.1: The Pointillist style was invented by Paul Signac (1863-1935) and Georges
Seurat (1895-1891) and describes paintings in which images are composed from collections of
individual dots, each containing a single color. This style serves as a metaphor for signac’s
data model, in which the data is dependent on both individual data points and their position
within the larger parameter space. The painting underlying this artistic illustration Cassis,
Cap Lombard was created by Paul Signac in 1889 and is owned by the Gemeentenmuseum in
Den Haag.

we might test Boyle’s law, pV = const., by iterating over values of p and storing the

corresponding values for V in text files named for those values of p. Upon finding that the

data appears to be temperature-dependent, we then could choose to test a more general

equation, pV = NkT .

We are now faced with a dilemma: how do we efficiently adapt our data space for this

extension? We could provide the existing files with new names incorporating temperature,

but this could quickly become intractable if we had to further increase the complexity of

our equation of state. Alternatively, we might determine that storing data in a (relational)

database would be a more flexible solution to accommodate any future schema changes;

however, that could be much less efficient for a generally file-based workflow and could

introduce a significant bottleneck in downstream data processing and analysis.

The signac framework resolves this by abstracting away the details of file-based data
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storage while simultaneously functioning like a lightweight, semi-structured database. Using

signac, files are directly stored on the file system along with the associated metadata in a

well-defined storage layout. The metadata is parsed and indexed on-the-fly whenever we use

signac’s interface to access and search for data. By using signac to manage the data in the

above example, the tasks of adding a parameter such as temperature and searching for data

associated with a particular p, T pair can both be easily realized with only a few commands.

This chapter is organized as follows. First, the general design principles of signac are

presented. We then delve into greater detail about how the core signac functionality is

implemented in keeping with these principles, followed by a more in-depth comparison to

closely related solutions. Finally, the practicality of this system is then demonstrated through

numerous examples indicating how signac can be used to manage a variety of disparate,

heterogeneous data sets.

4.2 Overview

4.2.1 Design

In the following section we lay out the core design principles behind signac, which

necessitates making a clear distinction between the signac framework and the signac

application. The primary focus of this chapter is the signac application (henceforth simply

signac), which implements the core data management functions discussed throughout this

chapter. The signac framework is a collection of applications and modules that are built

on top of the core signac application, such as the signac-flow application, which will be

introduced in Section 4.3.3.

At its core, signac is a database built directly on top of the file system, leveraging the

many advantages of direct file system access while also providing functions to efficiently

index and search the data space. As a database system, signac makes only one central

assumption: that all data may be discretized within a high-dimensional parameter space (see
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Figure 4.2: This conceptual example demonstrates how we manage and operate on a data
space using the signac and the signac-flow applications. We use signac to initialize a
discrete data space (represented by dark grey dots), where each dot represents a discrete data
point and may be associated with anything from a single number to a large set of data. The
data space is coordinated within a higher-dimensional parameter space (light grey shape), in
this case spanned by the three vectors a, b, and c. Manipulations of the data space (addition,
modification, or removal of data), can be divided into operations, where each operation must
be a function of one or more data points. The operations shown in the example deposit and
extract data (dashed arrows) and are organized into a specific workflow using signac-flow.
Specifically, after initialization, we first generate particle configurations, then post-process
these configurations to extract the root-mean squared displacement (RMSD). Finally, we
aggregate results via the analysis of a subset of our data space that we find using a signac

search query. This example shows the clear division of responsibilities between the different
applications. The signac application manages and provides access to the data space and allows
us to perform complex search queries. The signac-flow application assists in the definition
and execution of reproducible workflows comprised of individual data space operations.
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Fig. 4.2). Once the user provides the parameters and associated data, signac is responsible

for managing both the storage of data and its association with the parameters through the

maintenance of metadata files encoded in the open JavaScript Object Notification (JSON)

format. Through this division, signac can ensure both data integrity and searchability.

The database functions of signac are modeled after those provided by well-tried database

management systems (DBMS) such as MongoDB [9] or MySQL [10]. Typically, such DBMS

are very efficient when it comes to the execution of complex query and aggregation operations;

however, there are two main issues that render these tools suboptimal for managing the large

amounts of (binary) data typically generated by massively parallelized scientific applications

within high-performance computing (HPC). First, unless a database is specifically set up to

handle peak loads originating from many instances (potentially numbering in the thousands)

hitting them in parallel, reading and writing to files distributed on the file system will usually

scale more efficiently. Setting up a partitioned or replicated database system to handle higher

loads is non-trivial, and this task becomes even more complicated if we care about proper

authentication and authorization among different nodes. Secondly, data may need to be

serialized for ingestion into the database, which may pose another performance bottleneck,

particularly if the data are large binary files.

With signac, files are managed directly on the file system and performance is mainly

determined by the latency and scalability of the file system. This technique fully exploits

the existing file systems on supercomputers, which are commonly designed to process highly

parallel, computationally intensive input/output (I/O) operations, thereby avoiding all the

above mentioned issues while also allowing for the immediate execution of the previously

mentioned query routines.

The signac data model assumes that all data associated with a particular computational

investigation is part of the same high-dimensional data space and therefore adheres to roughly

the same semi-structured schema. Each such investigation is called a signac project, and

the associated data is stored in a special directory, the project workspace (Fig. 4.3). The
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data associated with any given set of parameters within the project’s data space is sorted

into a distinct subdirectory within the workspace along with a JSON file containing the

associated metadata. In the introductory example, each p, T pair represents a point within

the larger parameter space, so the data associated with each pair would be stored in a distinct

directory within the workspace along with a file containing the corresponding pressure and

temperature.

This storage mechanism not only enables efficient on-the-fly indexing, it also ensures

that parsing a signac managed data space is straightforward even without signac since

the parameters associated with the data are stored at the same location. In practice,

however, signac users can ignore these details since the software abstracts away the internal

representation of the data space. As described in signac’s public documentation,1 signac

enables users to easily access the high-level information required to interpret the data space

without ever inspecting the filesystem directly.

None of this relieves the user of the burden of documenting their data spaces, i.e.,

describing explicitly the processes used to generate the data from the provided parameters;

this procedure is facilitated by using signac-flow. Combined with proper documentation of

these processes, however, the use of signac ensures that a data space is fully interpretable

even for individuals who did not create it.

This interpretability is critical because it makes the data accessible to anyone, even

individuals not using signac in their own workflows. There is strong evidence that well-

maintained public databases, such as the Protein Data Bank (PDB) [11], the Cambridge

Structural Database (CSD) [12, 13], The Materials Project [8] or ImageNet [14] have a

significant positive impact on their respective fields. Promoting an open data culture among

researchers within one or across multiple organizations will likely result in similar positive

synergistic effects. The simplicity of signac is designed to facilitate this open data culture,

because it lowers the barrier to adopt a standardized data storage layout, even for small data

1https://www.signac.io
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spaces and simple workflows that do not necessarily warrant a more sophisticated solution.

A data set managed with signac that is uploaded to a repository such as the materials

data facility2 (the National Institute of Standards and Technology (NIST) and the Center

for Hierarchical Materials Design (CHiMaD)) or the NOMAD repository3 (funded by the

European Union) is immediately easier to parse, access, and search. A repository interface

could be set up to directly support signac, which would allow users to search the data by

metadata directly. Furthermore, any standardization of metadata tracking facilitates the

curation and export of data to public databases such as the NRELMatDB4 or the materials

data base5 managed by NIST, since converting an existing schema is easier than starting

from scratch.

All of signac’s core functions are enabled through a highly efficient, on-the-fly indexing

of the data space. For all higher-level functions, such as data searching and data selection,

this indexing process is completely transparent to the user. As a result, signac maintains

an extremely low barrier to entry, enabling new users to take immediate advantage of basic

data management functions. Meanwhile, more advanced users can access signac’s full range

of capabilities (including detailed control over indexing) for the implementation of complex

data-driven workflows.

To remain lightweight and focused, signac does not attempt to solve all data management

concerns. For example, we assume that infrastructure-related issues such as the setup of and

access to a distributed file system are better addressed and solved by systems such as the

Integrated Rule-Oriented Data System (iRODS) [15] or GLOBUS [16], both of which have a

different scope than signac.

2https://www.materialsdatafacility.org/
3https://repository.nomad-coe.eu/
4https://materials.nrel.gov/
5https://materialsdata.nist.gov/
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4.2.2 Workflow

In order to support generic file-based workflows, the signac data model makes minimal

assumptions about how these workflows generate and operate on the data; signac manages the

file paths, but the underlying files are stored directly on the file system without modification

or serialization. This design ensures that existing tools may interact with a signac data

repository without the need to serialize or convert existing file formats, an advantage shared

by solutions like datreant [17]. Conversely, this design distinguishes signac from more

domain-specific solutions that make certain assumptions about data schema and format,

such as DCMS [18] and the AiiDA infrastructure [19]. See Section 4.4.1 for a more detailed

discussion. Hence, a signac workspace can be written to or read from outside the context

of any broader workflow, and this framework can be used irrespective of how the data is

generated or what must be done to process it as long as it is file-based. In other words,

whether data is generated through the evaluation of a single equation, or by means of

compute-intensive molecular dynamics simulations, signac is used in exactly the same way.

While signac itself is workflow agnostic, the development of robust workflows operating

on data and their reproducible execution is a central component in any scientific investigation.

To facilitate this process for users of signac, the signac-flow package provides users

with a flexible set of tools to implement workflows operating on signac data spaces (see

Section 4.3.3).
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Workspace 1 Workspace 2

Op A Op B Op C

Operate on active workspace

Index
• fb43
• 3d5c
...

Generate Index

Export to DB Publish

Figure 4.3: The signac application manages a particular data space (illustrated in Fig. 4.2)
by allocating it to a distinct workspace (grey shaded space) on the file system. Data space
operations (blue shaded boxes) used for the curation of data are always operating on one
specific active workspace (black frame). Information about state points, data location and
data format may be compiled into an index using signac. The index can be used for searching,
aggregation, and even direct access to data. The index as well as the data itself, can be
exported into a database, which is especially useful for the purpose of making data available
to a wide range of subscribers, such as the general public.

86



Identify Eligible Operations Generate Execution Scripts Submit to Cluster

Job fb4
D

A
B

C active
inactive

next
completed

incomplete
Job 3d5

D
A

B

C

Job c82
D

A
B

C

Next
• B(fb4)
• C(fb4)
• A(3d5)

Eligible
• C(fb4)
• A(3d5)

Current Project Status

Execution of Operations

separate

bundled

$ run C(fb4)

$ run A(3d5)

$ run C(fb4)
$ run A(3d5)

or

Figure 4.4: In order to track and execute workflows on a signac workspace, signac-flow
FlowProjects track the status of each job (top). This status tracking includes information
about which operations have been completed for a given job, which operations are next in
line to run, and which operations are incomplete but are not ready to run due to unfulfilled
dependencies upstream in the workflow. The progression of each job through the workflow is
always known to the FlowProject, as is whether a particular job-operation pair is active, i.e.,
is currently executed on a high-performance computing cluster or is queued for execution.
This information is used to determine which job-operation pairs are eligible for submission to
the cluster scheduler; pairs that are already queued or active are not resubmitted (bottom).
For maximal flexibility, the execution of job-operations may be bundled prior to submission,
e.g., enabling the execution of large numbers of compute-light operations on a single node in
serial or parallel.
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4.3 Implementation

4.3.1 Software Architecture

The core signac data management application, as well as the rest of the signac framework,

are implemented in Python and tested for versions 2.7.x and 3.x. They are designed to be

used in high-performance computing (HPC) environments, and hard requirements besides

the Python interpreter are avoided. We employ continuous integrated testing to ensure high

interoperability between all main applications. Documentation is generated via the Sphinx

documentation tool [20] and made available online.6

Although the primary interface is Python-centric, most core signac functionality is

available through a command-line interface (CLI) to simplify the integration of workflows

that are not Python-oriented. Metadata is encoded in the open standard JSON format,

which is largely human-readable and can be easily parsed in most programming languages.

Relying on a simple, open format ensures that the data remains accessible even without

signac. Furthermore, the JSON format is internally used by many non relational (NoSQL)

database management systems (DBMS), allowing an effortless integration of signac with

these systems.

4.3.2 Software Components

The main data management functions of the signac framework are implemented as part of

the core signac application. This application is designed with modularity in mind, enabling

its extensibility via the implementation of additional components of the signac framework.

This layered structure minimizes the interdependence of higher-level components, making

the system more robust against architectural changes [21]. Besides the main application,

we have implemented various other tools to augment the signac ecosystem such as the

signac-dashboard, a web application to search and visualize signac data spaces in the

6https://docs.signac.io
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browser.

In this section, we first describe the three primary functions of the core application:

data storage and searching, which simplifies the maintenance and access of complex and

heterogeneous data spaces; indexing, which enables efficient advanced post-processing and

analysis routines; and database integration, which allows the export of indexes and data

to external databases. We then demonstrate this framework’s extensibility in Section 4.3.3,

where we discuss the signac-flow application that we have developed for the management

of workflows utilizing signac’s data management capabilities.

4.3.2.1 Project Data Management

The data management component is the central component of the signac model. The

framework supports all typical data management related processes, including data curation,

data manipulation, and analysis, by providing a consistent and homogeneous interface for

data access and storage within the workspace. The workspace itself is project agnostic, i.e.

the particular workspace associated with a project may be swapped in and out at any time,

and workspaces can be divided and merged as depicted in Fig. 4.3.

The main challenge of reliable long-term storage of data is to ensure the proper association

of data and metadata. To surmount this obstacle, the signac application calculates a short

numeric hash value from the full parameter metadata to generate a unique address, the

signac id, which is a concise representation of the full state point. The signac id serves as

the primary index and constitutes the basis for the file system path within the workspace

where associated data is stored. A JSON-encoded copy of the parameter metadata is saved

within these paths, which ensures that this association can be trivially identified. The use of

a standard format such as JSON ensures that access to the data is not dependent on signac.

This methodology bypasses numerous issues common to file system-based workflows. As

the output of a hash function, the signac id is both short and non-ambiguous, making it a

unique, reliable, and indexable address of the data in all contexts. The signac id can also
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encode effectively arbitrary complexity, circumventing file naming limitations inherent to

most file systems while maintaining great flexibility.

4.3.2.2 Indexing and Database Integration

The internal index that signac generates to support its main functions is exposed to

the user on demand. This can be used to simplify the mapping between different, possibly

heterogeneous storage devices, such as a file system and a database system. For example, we

could use signac to generate files on the file system and execute post-processing routines on

the data, and then export the data index into a database that is accessible to a wider group

of data subscribers.

To facilitate integration, the current implementation supports export routines for the

MongoDB NoSQL database, but in principle any database system that provides a Python

driver could be integrated in the future. We chose to initially support MongoDB because its

internal data structure is already based on the JSON format and because we consider the

semi-structured NoSQL approach more flexible and intuitive to researchers, who are used to

dynamic schemas rather than the more rigidly defined table schema used in relational DBMS.

Using MongoDB also enables users to leverage tools built for the MongoDB ecosystem for

data inspection and manipulation, e.g., Studio 3T [22].

The indexes in signac are generated by one or more crawlers, which for our purposes

are defined as any functions that generate a series of JSON documents. In general, the

index needs to contain the metadata associated with the data and all information required to

allow access to the data. In the specific case of a file system index, this is the metadata and

information about file locations and formats. The system is designed for simple customization,

e.g., for the extraction of additional metadata from the data (deep indexing). The signac

application provides templates for crawlers specialized to crawl file systems and generate

indexes.

The data processing and index creation steps are intentionally decoupled in signac,
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allowing easy indexing of pre-existing data. This approach is enormously powerful in

providing a single homogeneous data interface for new and existing data, particularly because

crawlers can be used to index data spaces not generated by signac. These indexes can

be used to make data accessible to individual researchers within and across organizations,

whether or not signac was used for their curation.

4.3.3 Implementation of workflows with signac-flow

Although signac is designed to be workflow agnostic, it is very important for computa-

tional scientists to maintain a well-defined workflow that interacts in predictable ways with

data. To ease the development of computational workflows using signac, we developed the

signac-flow package, which offers users the ability to design complex workflows around

signac managed data spaces (illustrated in Fig. 4.4). There are three critical elements of

signac-flow: jobs, each of which represents the data associated with a single parameter

combination; operations, which are sets of procedures acting on jobs; and FlowProjects, which

are collections of operations encapsulating a complete workflow associated with a signac

data space. Note that FlowProjects, which correspond to a single workflow, are distinct from

signac projects, which correspond to a particular data space. The signac-flow package

supports multiple FlowProjects acting on a single signac project to allow the implementation

of multiple distinct workflows on the same data space. An example of where this might be

useful would be to create separate FlowProjects to perform coarse-grained and atomistic

molecular dynamics simulations of the same system to extract different sets of information.

To convert our original ideal gas workflow into a signac-flow FlowProject, we could

define an IdealGasEquationOfState FlowProject with a single operation responsible for

calculating the volume from the parameters. If we desired, we could then easily define

additional operations for, e.g, the computation of the free energy of the gas. For more

complex workflows, the sequence is controlled by a series of pre- and post-conditions for each

operation that determine the next set of operations that should be executed. The FlowProject
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is entirely self-contained, relying on signac to store and manage the generated data.

The signac-flow package is also designed to facilitate working with compute clusters.

For this purpose, we define a job-operation as an atomic task consisting of a FlowProject

operation acting on a specific job. The FlowProject interface enables the packaging of sets of

job-operations into cluster jobs by automatically generating the requisite job scripts; each

cluster job can consist of an arbitrary number of job-operations running either in serial or in

parallel. At the time of writing, FlowProjects support submission to both Slurm and Torque

PBS clusters, generating job scripts on-the-fly after detecting the types of job schedulers

present on a given cluster. The signac-flow package allows users to configure their default

submission behavior, both globally and on the level of a single FlowProject. In addition,

users working in cluster environments with specific requirements, such as submitting only

to a specific partition, can encapsulate this information into specific Python modules that

signac-flow can be configured to recognize, making it easier for users to share common

configuration information. By providing simple and transparent APIs for cluster submission,

signac-flow enables users to streamline the large-scale execution of data space operations

in cluster environments.

4.4 Practicality and Scalability

To assess the practicality and scalability of our implementation, specifically with respect

to existing comparable solutions, we evaluated the following key metrics:

1. Efficiency of setting up a new workflow for an existing tool set.

2. Time needed to determine the data space size.

3. Time needed to iterate through the data space.

4. Time needed to search and select data sets.

Since the first item is difficult to quantify, we instead attempt to demonstrate how easily any
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scriptable tool operating on input and output files may be integrated into a signac- and

signac-flow-based workflow by means of the examples laid out in Section 4.5. The remainder

of this section is dedicated to a more in-depth comparison of signac with alternative solutions,

including benchmarks for the last three items in direct comparison with datreant, which we

identified as the most comparable tool in both scope and approach.

4.4.1 Comparable Solutions

The signac philosophy entails leaving the development of data schemas and workflows

largely up to the user, removing the need for specialized input scripts and output parsers.

In this way, signac substantially differs from domain-specific tools such as AiiDA [19] or

pylada-light [23], which impose strict data and workflow restrictions. We believe that this

relaxed structure decreases the barrier for integrating new tools and developing new workflows;

however, we also recognize that this less standardized approach increases the chance of user

error during the implementation and execution of workflows.

In the realm of workflow management, the FireWorks open-source tool [24] stands out

as a particularly mature and feature-rich option. Its feature set largely overlaps with the

one provided by signac-flow, and in addition it offers more advanced job management and

monitoring capabilities. These additional features are supported by a MongoDB database

on the back-end. In contrast, signac-flow relies purely on signac to store all runtime and

scheduling related metadata.

Integrating FireWorks and signac simply involves using signac to manage the data

space while specifying and executing workflows through the FireWorks interface, similar to

how signac-flow is currently integrated with signac. Yet, there is a caveat: FireWorks’

data storage layout is strongly coupled to its execution model, to the extent that Fireworks’

documentation explicitly discourages users from manually controlling data storage locations.7

The tools operate on two different philosophies when it comes to storage layout management,

7https://materialsproject.github.io/fireworks/controlworker.html
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which poses a barrier for integration.

The Sumatra tool [25] allows users to keep a detailed “automated electronic lab notebook”8

of operations executed on a specific data space. It is not a job manager in the sense of

FireWorks or signac-flow, but primarily focuses on ensuring that computational research is

reproducible. We found it to integrate very well with signac and signac-flow operations,

enabling users to keep better track of which operations have been executed, a feature which

signac-flow currently lacks.

The software we found to be most similar to signac in core scope and functionality

is datreant.core [17], which enables users to associate specific directories with searchable

metadata. Just like signac, datreant.core is largely domain agnostic, does not require a

central server, and performs distributed data management directly on the file system in

distinct directories that are associated with searchable metadata.

However, there are also some key differences. First, datreant.core is even more agnostic

than signac with respect to the general workflow, e.g., there is no need to confine data

within a single project entity. Instead, multiple directories may be dynamically organized in

bundles, which loosely correspond to a signac workspace but need not share a common root

directory. These bundles can be searched and grouped by metadata, just like signac jobs.

Furthermore, datreant.core has no concept of a unique identifier like the signac id, so the user

is still required to choose a directory name for each data set. While this methodology might

provide more flexibility in defining a general storage layout and make it easier to combine

different data spaces, we contend that it would make it harder for novices to overcome the

habit of encoding metadata in file paths, reducing the homogeneity and flexibility of the

overall data space. Finally, datreant.core employs file locking mechanisms to ensure that

metadata may be safely manipulated in parallel from multiple processes. While that might

be advantageous under some circumstances, in practice file locks do not work reliably on

the network file systems commonly employed in HPC environments, rendering this feature a

8http://neuralensemble.org/sumatra/

94



100 102 104 106 108

Execution Time / Complexity (1|N) [µs]

Determine N  (N)

Iterate  (N)

Iterate (single pass)  (N)

Search w/ lean filter  (N)

Search w/ rich filter  (N)

Select by ID  (1)

log10(N)

da
tre

an
t

0.
7.

1
sig

na
c

0.
9.

2

2
3
4

2
3
4

Figure 4.5: We measured the time required for the execution of a set of data space operations
as a function of the number of directories N with signac and datreant. All tests were
executed with Python 3.6 on a network file system; reported values are the minimum of
3 independent test sessions, where each one is averaged over 10 runs within one session,
except for the 4th, which was run only once per session; the 2nd test category was aborted
for datreant at N = 104 due to very long execution time. All values are normalized by
the expected complexity, i.e., they must be multiplied with the respective order to obtain
absolute values for a specific data space size.

liability in cases where it would be most needed. For this reason, the signac implementation

avoids any reliance on file locks. Overall, we have found datreant to be the most comparable

existing solution for the core problems signac aims to solve.

4.4.2 Benchmarks

Since datreant.core most closely corresponds to signac’s scope and approach for data

management, we used it as a quantitative benchmark for the performance and scalability of

our implementation. Concretely, we measured the time each tool required

1. to select a single data set by known id,
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2. to search and select with a rich filter (many keys),

3. to search and select with a lean filter (one key),

4. for the first iteration through the meta data space within one session,

5. for multiple iterations within one session,

6. to determine the data space size N .

We then used this data to estimate the time complexity of each operation with respect to N .

In signac, we expect all but the first category to run with a time complexity of O(N), since

the largest bottleneck is likely to be the initial parsing of all metadata within one session. A

selection by known id should be constant time O(1). The results of these measurements are

plotted in Fig. 4.5.

We are able to show that within our test environment9 a data space of N = 1, 000

directories and approximately 1 kB of metadata per directory,10 all operations, even those

that scale linearly with the data space, are executed nearly instantaneously on a human

time scale. For example, the first iteration through the complete metadata space within one

session requires on the order of 1 ms per directory. It is important to point out that none

of these operations are in any way affected by the number or size of data files within those

directories since they only interact with the JSON metadata files.

While both signac and datreant show very similar scaling behavior, we can clearly show

that signac is at least one order of magnitude faster than datreant in all tested categories

despite implementing very similar concepts. The maximum practical data space size – at

which users perceive the system response time (SRT) acceptable for complex tasks – is

therefore much larger.

Comparing our time measurements on a network file system (∼1 ms per directory for

start-up) with the guidelines laid out by Doherty and Sorenson [26], operating on data spaces

9A workstation with 20 Intel(R) Xeon(R) CPU E5-2680 v2 @ 2.80GHz cores running Gentoo Linux
(4.9.34).

10That corresponds roughly to 10 keys of one character associated with 100 character long values.
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with up to 300 directories would be perceived as instantaneous (<300 ms), 1,000 directories as

immediate (<1 s) and up to 5,000 directories as transient (<5 s). Larger data spaces with up

to 300,000 directories may still be acceptable, but will require multitasking and/or additional

feedback on the progress to not break the user flow.

In summary, while the only hard cap on the data space size is the file system and main

memory storage capacity, interactive work may be significantly impaired by prolonged session

start-up times for data spaces with more than 300,000 directories. In this case users would

be advised to aggregate the working set of data prior to interactive work. We consider data

spaces with up to 10,000 directories very practicable for interactive work even on network file

systems. All the code to generate these benchmarks is open source and available online.11

4.5 Examples

In this section we introduce two representative conceptual examples that demonstrate

how to incorporate signac into computational workflows. The first one is in reference to the

case presented in Section 4.1, the evaluation of the equation of state of an ideal gas. The

second is a molecular dynamics study of the Lennard-Jones potential, which is slightly more

involved, but also more realistic.

For brevity, some commands are omitted or shortened; however, fully functional examples,

including additional demonstrations for DFT and GROMACS, can be found online.12 All

Python examples are tested for Python version 3.5.

4.5.1 Ideal Gas Example

This is a minimal demonstration for carrying out the example described in the introduction.

We intend to calculate and store the volume V of an ideal gas within the three-dimensional

parameter space spanned by p, N , and kT .

11https://github.com/glotzerlab/signac-benchmarks
12https://github.com/glotzerlab/signac-examples
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We start by creating an empty directory for our project and initializing the signac project:

$ mkdir idg_eos

$ cd idg_eos

$ signac init IdealGasEOS

The project initialization creates a small configuration file within the current directory to

mark it as the project’s root directory.

4.5.1.1 Minimal Ideal Gas Example

For our most basic demonstration, we implement a Python script to calculate and store

the volume in signac’s built-in JSON storage for each state point of interest:

1 import signac

2

3 project = signac.get_project ()

4

5 for p in 0.1, 1.0, 10.0:

6 sp = {"p": p, "N": 1000, "kT": 1.0}

7 job = project.open_job(sp)

8 V = job.sp.N * job.sp.kT / job.sp.p

9 job.doc.V = V

First, we import the signac Python package (l. 1). Then we obtain a handle on the project

(l. 3), which is the interface for accessing and manipulating the project’s data space. To

calculate the phase diagram — here as a function of pressure — we simply iterate over p

(l. 5) and construct the full state point sp associated with each data point (l. 6).

This state point is passed into the project.open_job() function, which returns a job handle

that represents this specific data point (l. 7). The volume is calculated from the state point

variables associated with the job, which we access via the job.sp property (l. 8). Being a single

number, the volume naturally lends itself to being stored in a very lightweight format. Here,

we leverage the job.doc property of signac jobs, which provides a lightweight, persistent, and
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immediately searchable JSON storage option associated with each signac job (l. 9). However,

we could store the data just as well in a file with a format of our choosing, as will be shown

in the next example.

Once the data space is initialized, we can immediately start searching it. For example, to

find all state points, where p is greater or equal than 1.0, we would execute:

jobs = project.find_jobs ({"p.$gt": 1.0})

The jobs variable is the result cursor that we can use to iterate over all jobs that match the

given criterion. We can execute the same kind of queries directly on the command line:

$ signac find p.\$gt 1.0

In this case the ids of all matching jobs will be output for further processing. The query

language supports a variety of operators, including but not limited to arithmetic and logical

operators, and represents a subset of the MongoDB query language, making it easy to

transition between the two systems. More details can be found in the online documentation.

4.5.1.2 Ideal Gas with a Bash Terminal Script

In many cases parts of our workflow will rely on precompiled programs or other scripts

that can be interfaced on the command line, but not directly through Python. For example,

we might have a program called idg, that accepts parameters N , kT , and p as the first

through third argument and outputs the resulting volume V , e.g.:

$ idg 1000 2.0 1.0

2000.0

The signac application provides a command-line interface (CLI) to simplify the integration

of such tools. The following example script replicates the first example, but in bash instead

of Python and the volume is stored in a file called V.txt instead of the job document.

1 #!/bin/bash

2 N=1000
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3 kT=1.0

4 for p in 0.1 1.0 10.0; do

5 SP={\"N\": $N , \"kT\": $kT , \"p\": $p}"

6 WS=`signac job -wc "$SP"`

7 ./idg $N $kT $p > $WS/V.txt

8 done

After storing parameters as constants at the beginning of the script (l. 2-3), we again iterate

over the variable of interest (l. 4) and construct the full state point SP in JSON formatting.13

(l. 5). We then provide the state point as argument to the signac job -wc command, which

creates the corresponding job and returns the full workspace path WS (l. 6). Finally, we execute

the idg program and pipe its output into the V.txt file within the job’s workspace (l. 7). This

approach reliably couples the job’s data and the parameters used to generate them.

An alternative approach for the incorporation of command line tools is the construction

of the required bash commands within a Python script:

1 import signac

2 from subprocess import run

3

4 IDG = "./idg {job.sp.N} {job.sp.kT} {job.sp.p}"\

5 ">{job.ws}/V.txt"

6

7 project = signac.get_project ()

8

9 for p in 0.1, 1.0, 10.0:

10 sp = {"N": 1000, "kT": 1.0, "p": p}

11 job = project.open_job(sp).init()

12 if not job.isfile("V.txt"):

13 run(IDG.format(job=job), shell=True)

This approach can be more flexible, especially in cases where users are already familiar with

13The JSON format expects all keys to be enclosed in double quotes, which need to be escaped within the
bash script We recommend using here-docs for larger state point definitions.
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Python. The crucial point is that input parameters and location of the output data are

always automatically and unambiguously linked.

4.5.2 Molecular Dynamics with HOOMD-blue

Similar to the first example, we again calculate the equation of state of a gas, this time

using molecular dynamics with a Lennard-Jones potential. This means that instead of merely

evaluating a single analytic function, we need to set up initial and boundary conditions of the

simulated system, load the interaction potential, define the simulation protocol, and possibly

store significant amounts of output data.

4.5.2.1 Basic example

For this example we will use the HOOMD-blue [2, 27, 28] particle simulation toolkit which

provides a native Python interface. This means we can interface with the signac project

directly within the input script. If there was no Python interface, we would follow the

approach shown in the previous (CLI) example (Section 4.5.1.2).

1 import signac

2 import hoomd

3 import hoomd.md

4

5 def setup_and_simulate(job):

6 # [...] Setup initial conditions

7 hoomd.md.integrate.langevin(kT=job.sp.kT, seed=job.sp.seed , ...)

8 hoomd.dump.gsd(filename="trajectory.gsd", period =2e3, ...)

9 hoomd.run(steps=1e4)

10

11 project = signac.get_project ()

12

13 for kT in 0.1, 1.0, 2.0:

14 sp = {"kT": kT , "seed": 42}

15 with project.open_job(sp) as job:
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16 setup_and_simulate(job)

We start by importing all required packages (l. 1-3) and continue by defining a function for the

execution of our simulation as function of the job (l. 5). We skip HOOMD-specific commands

needed for the setup of the simulation, but lines 7 and 8 show how we use the job.sp interface

to directly set the simulation parameters.

The iteration over the data space (l. 13) and the definition of the full state point (l. 14)

are analogous to the previous examples. Instead of wrapping all input and output filenames

wherever they appear (such as in line 9), we use signac’s built-in context manager to change

into the job’s workspace for all commands that are within the scope of the with clause (l. 15).

That means signac will change into the correct directory for the duration of the execution

of the setup_and_simulate() function and return to the previous directory after completion.

In this example, the data space operations that we execute are still very simple: simulations

are executed sequentially by iterating over the variable of interest, kT . However, for more

complex workflows, especially those involving more compute-intensive operations, it is

advantageous to break things up into smaller steps that can be executed in parallel and

possibly be submitted to an HPC cluster. One possible approach for doing so is shown

in the next example, utilizing the the previously introduced signac-flow application (see

Section 4.3.3).

4.5.3 Workflow management with signac-flow

While users are encouraged to integrate the signac data management application into

existing workflows or develop new ones that fit their specific applications, here we demonstrate

the use of the signac-flow application for the rapid development of workflows for users

that are so inclined. The application is quite general, and is simply designed around the

sequential or parallel execution of operations in well-defined order. Splitting the overall

workflow into such self-contained operations increases flexibility and reproducibility and is

especially beneficial for larger studies.
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We demonstrate the concept by adapting the previous example. First, we move the

initialization logic into a separate script to initialize the data space prior to executing any

data space operations:

1 # init.py

2 import signac

3

4 project = signac.init_project("LJ -EOS")

5

6 for kT in (0.1, 1.0, 2.0):

7 sp = {

8 "kT": kT , "seed": 42,

9 "epsilon": 1.0, "sigma": 1.0,

10 "r_cut": 3.0}

11 project.open_job(sp).init()

This initializes the complete data space with the essential parameters required for the

execution of our molecular dynamics simulations.

Second, we split the setup_and_simulate() step into setup() and simulate(). These two

operations are defined within an operations.py module:

1 # operations.py

2 import hoomd

3 import hoomd.md

4

5 def setup(job):

6 """ Setup the initial conditions """

7 hoomd.init.create_lattice(unitcell=hoomd.lattice.sc(a=1.0) , n=16)

8 hoomd.dump.gsd(filename=job.fn("init.gsd"), ...)

9

10 def simulate(job):

11 """ Execute MD simulation """

12 with job:

13 hoomd.init.read_gsd("init.gsd")

103



14 # [...]

15 lj = hoomd.md.pair.lj(r_cut=job.sp.r_cut , ...)

16 lj.pair_coeff.set(

17 "A", "A",

18 epsilon=job.sp.epsilon ,

19 sigma=job.sp.sigma)

20 hoomd.md.integrate.langevin(kT=job.sp.kT, seed=job.sp.seed , ...)

21 hoomd.dump.gsd("trajectory.gsd", period =2e3, ...)

22 hoomd.run(tsteps =1e6)

23 job.document["step"] = hoomd.get_step ()

24

25 if __name__ == "__main__":

26 import flow

27 flow.run()

The last three lines (l. 25-27) leverage signac-flow’s function to equip this module with a

command line interface that allows us to execute all operations directly from the command

line:

$ python operations.py setup

$ python operations.py simulate

To further automate the execution of operations and their submission to an HPC cluster,

we can implement a workflow as part of a FlowProject as described in Section 4.3.3. The

workflow is defined by adding operations to the FlowProject class with the @operation function

decorator. Each operation can be associated with pre- and post-conditions to determine their

order of execution. An operation is eligible to be executed when all pre-conditions are met

and at least one of the post-conditions is not met. The execution conditions associated with

each operation are implemented as methods, which are then passed as arguments to the @pre

and @post function decorators.

For this example, we would want to execute the setup operation first, and then assuming

that was successful, the simulate operation. A simple condition for successful setup would
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therefore be the existence of the init.gsd file, which contains the system’s initial configuration,

so we set that as the post condition via the initialized function. We also keep track of

the simulation progress by storing the current simulation time step within the persistent

JSON storage associated with the job (job.document).

1 # project.py

2 import flow

3

4 class Project(flow.FlowProject ):

5 pass

6

7 @Project.label

8 def initialized(job):

9 return job.isfile("init.gsd")

10

11 @Project.operation

12 @Project.post(initialized)

13 def setup(job):

14 # ...

15

16 @Project.label

17 def simulated(job):

18 return job.doc.step >= 1e6

19

20 @Project.operation

21 @Project.pre.after(setup)

22 @Project.post(simulated)

23 def simulate(job):

24 # ...

25

26 if __name__ == "__main__":

27 MyProject.main()
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In addition to clearly defining the status of each individual operation, this FlowProject

implementation also describes all valid sequences of operations. For example, because

the setup operation has no pre-conditions, it is the only operation eligible for execution

immediately after data space initialization. Since the FlowProject encapsulates this logic, we

can trivially execute our workflow by leveraging the FlowProject’s run capabilities, which

take the simple run functionality from our operations.py script one step further. Rather than

specifying operations to run, we can now simply execute $ python project.py run, which will

automatically run the next eligible operation for each job. To submit these job-operations to

a job scheduler on a HPC cluster, we could instead use signac-flow’s submission tool by

typing $ python project.py submit. Note that the operations of this workflow are here defined

as Python functions, but could just as well be an arbitrary terminal command, e.g.:

1 @Project.operation

2 @flow.cmd

3 def idg(job):

4 return "./idg {job.sp.N} {job.sp.kT} {job.sp.p}".format(job=job)

4.6 Conclusions

The development of signac is motivated by the increased need for the management of

heterogeneous and complex data spaces in computational materials science, specifically in

work requiring HPC resources. Researchers in computational fields are frequently required

to manage such data spaces and account for the various issues associated with this task.

The signac framework provides non-intrusive solutions to many data management and

workflow challenges in environments scaling from desktops to HPC clusters. The simple

file-centric data model and the use of standard file formats such as JSON ensure easy access

and portability of both the data and the associated workflows. This portability is particularly

critical for sustainable long-term storage, since it allows the use of signac without tying

users to future use of the platform or specific file formats in order to be able to access the
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data. The indexing functionality eases the transition from data acquisition to curation and

analysis, and the simplicity of export to databases allows the integration of existing DBMS

into HPC workflows. These functions allow signac to combine the advanced metadata

handling capabilities of modern DBMS while also providing the performance of file system-

based solutions. By providing a lightweight, high-performance solution to common data

management and workflow challenges in HPC, the signac framework frees researchers from

solving these problems themselves and enables more effective and efficient scientific research.
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CHAPTER V

On the Development of Scientific Software in

Academic Research Groups

This chapter is adapted from a publication in Computing in Science & Engineering in 2019 as

part of a special issue on Accelerating Scientific Discovery With Reusable Software authored by me

and Vyas Ramasubramani with equal contributions and co-authored by Joshua A. Anderson and

Sharon C. Glotzer. The article was assigned DOI:10.1109/MCSE.2018.2882355.

5.1 Introduction

As computational science continues to play a rapidly growing role across nearly all scientific

disciplines, quality scientific software becomes ever more critical to research productivity [1]. The

development of such software is impeded by the fact that most scientific software is developed by

non-experts for whom the primary product is not the software, but the resulting science. The existing

incentive structure, which is geared towards rapid publication of scientific results, tends to motivate

the creation of single-use software. In addition to being highly targeted at a specific application,

single-use software often also disregards established software development best practices such as

proper version control and documentation, impeding its reuse for future studies and ultimately

hindering long-term scientific progress.

Software solutions for many-body simulations present a useful case study of this development

pattern. Over time, the range of scales and physical phenomena of interest have led to the creation of

numerous packages with overlapping yet distinct feature sets. Despite this fragmentation, however,
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certain packages have attracted much larger user communities than others, suggesting a slow

progression towards specific reusable solutions.

We present an approach, lazy refactoring, for accelerating this progression while ensuring that

code development is always targeted at an immediate scientific objective. This approach—especially

suited for researchers, who need to reconcile sustainable software development with the need to make

immediate scientific progress—advocates that initial development should always lead to single-use

code, but this code is refactored into a reusable solution as soon as two further uses for it are

found [2]. We discuss how software standards such as modular design and well-defined interfaces,

tools such as VCS and CI, and proper code documentation help facilitate lazy refactoring. With

this context, we offer a concrete methodology to help determine when and how to write new code.

As an example of lazy refactoring, we present the development progression of software developed

by the Glotzer Group at the University of Michigan. We are a diverse, collaborative research group

comprised of 30+ graduate students, post docs, and research scientists from chemical engineering,

materials science, physics, and other disciplines. Roughly half our members join the group with

little to no simulation experience, and very few have developed professional quality code prior to

joining. As such, we are a representative sample of the computational research community within

academia. We show how lazy refactoring evolved alongside our development efforts and demonstrate

its use to create a domain-specific, reusable, and loosely integrated software stack. We close with a

brief discussion of how we train group members to foster the presented techniques.

5.2 Developing computational solutions

The goal of lazy refactoring is to minimize the total resources used on tool development for

a computational problem within the context of a preexisting software ecosystem, which refers to

the set of all available software. While much of this code will come in the form of clearly defined,

well-documented, and consistently maintained software packages, the ecosystem will also contain

harder to reuse special-purpose codes that may nevertheless be useful beyond their original intent.

This second kind of software, commonly referred to as a prototype, generally lacks clean interfaces

and documentation, and does not have explicit names or release versions. While packages are
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easily reusable, prototypes offset this benefit by being faster to implement and requiring less effort

to maintain. Borrowing from well-established agile software development techniques [3] such as

extreme programming (XP) [4], lazy refactoring ensures that the ability to respond rapidly to

changing requirements and maintaining working software are prioritized over planned design and

comprehensive documentation [5]. One critical difference here is that the programmer of scientific

software aimed at solving a particular scientific problem is usually also the only customer.

In principle, total development efforts are minimized by using existing code whenever possible,

and, when new code is required, expending effort to make code reusable only when reuse is expected.

From this perspective, solving a computational problem starts by decomposing it into components

that each require a software solution. This process helps identify which parts are already solved

within the ecosystem, which ones can be addressed by adapting existing tools, and which ones

require entirely new code. Then, the missing components can be assessed to determine which ones

merit developing reusable packages and which ones should be developed as prototypes. We use the

term adapter to refer to code whose primary purpose is to interface between other packages.

In practice, however, making an optimal decision about when to develop reusable code is generally

impossible. The problem scope may be ill-defined and future project plans change, invalidating total

resource estimates and making it difficult to determine which components are worth developing as

packages. In this light, it is clear that developing reusable code packages any time reuse is foreseen

is often an inefficient use of resources.

Instead, we recommend the more agile lazy refactoring approach, in which all missing code is

developed as a prototype in the most convenient manner possible, e.g., in Python [6,7]. Refactoring

of this code should always be motivated by its imminent application to new problems, but refactoring

should be preferred over new prototype development once such applications are identified. Specifically,

we advocate following the Rule of Three: a prototype should be refactored as soon as a third

application is found. We illustrate this approach in Figure 5.1, where there are two alternatives

to address the additional software needs of Problem B after previously solving Problem A. If no

prototypes exist, the problem should be solved with rapid development of prototypes x and y,

tailored to the specific problem (Alternative A). If two or more prototypes already exist, then the

gap should be closed by refactoring these into package d (Alternative B). We argue that, on average,
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this approach minimizes total software development effort since the resources required for the design,

implementation and maintenance of software packages are only expended once the future reuse

potential is sufficiently apparent.

The advantages of lazy refactoring are manifold:

1. Total resource investment into solving one problem is minimized.

2. Refactoring a prototype into a package is usually easier than writing a package from scratch

because it postpones developing interfaces and defining the scope until the problem is better

understood.

3. The package can be validated against the original prototype.

4. The decision to refactor can account for actual projects that arise rather than attempting to

estimate future reusability.

Lazy refactoring does carry significant risks: key personnel involved with the original development

may no longer be available for refactoring, or the prototype may grow so large and opaque that

refactoring itself presents a significant barrier. Therefore, the Rule of Three should be applied

rigorously such that refactoring occurs in a timely manner and the original developers can be heavily

involved in the refactoring process. This method requires that some quality controls be imposed on

even initial prototypes to ensure that refactoring remains possible.
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Figure 5.1: This figure illustrates the code development progression associated with solving two
related computational problems. Problem A is solved using packages a and b in combination
with some adapter code and the prototype code base x. Problem B is determined to overlap
with problem A, and large portions of it are already solved by packages b and c. There
are two alternatives for addressing the remaining software needs for problem B. The first
alternative is to reuse x and develop prototype y to fill the gap (Alternative A). The second
approach is to refactor prototype x into package d, which interfaces with packages a, b, and
c and fully solves problem B (Alternative B).
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5.3 Principles, Tools and Practices

In this section, we expound upon several principles, development tools and best practices that

aid in effectively applying lazy refactoring. As we will show, these principles, tools, and practices

are also useful barometers for evaluating preexisting software solutions, as will be shown later.

5.3.1 Principles

Modularity, the core design principle that we advocate, is a well-known standard enshrined

in the UNIX philosophy that naturally leads to the development of tools with clearly delimited

scopes and well-defined Application Programming Interfaces (APIs), each of which confer significant

benefits. Code with limited scope can be developed more quickly, and it may preclude further time

expenditures if the initial work proves sufficient for the task at hand. The API-driven design model

also ensures that different components can be easily used independently of one another, making it

easier to generalize and refactor specific pieces or integrate them with other tools. This feature is

especially crucial in science because specific research applications often require combining previously

unrelated, highly domain-specific software.

The first step towards modularity is defining a clear division between software components.

Defining these divisions immediately suggests the appropriate scopes for each component, the specific

interoperability requirements, and the necessary API to meet these requirements. In Section 5.5 we

show how our group’s stack is largely composed of modular packages with well-defined APIs that

employ standard data formats and operational paradigms for easy integration.

Our other guiding principle is the public release of software source code. Although some code

may be privately maintained to preserve a competitive advantage in the short term, the need to

validate scientific results and the need to integrate disparate software tools make the ability to view

source code more valuable than ever. These are strong incentives for open-source scientific software

development.
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5.3.2 Tools and Best Practices

We employ a number of tools and best practices to ensure that our code adheres to the

principles expressed in the previous section. Version Control Systems (VCSs), which enable the

robust management of a project’s evolution over time, are especially important in scientific code

development due to its collaborative nature. VCSs enable scientists to work in parallel while

maintaining stable, working versions of code at all times. This collaborative process is much better

suited to the decentralized model of Distributed Version Control Systems (DVCSs), such as Git,

than to the centralized approaches of traditional VCSs like Subversion (SVN). The benefits of a

controlled, shareable central repository can be recovered by hosting code on public repositories such

as GitHub, Bitbucket, or GitLab.

Some code quality checks can be automated using code linters, such as Flake8 for Python, splint

for C, or Cppcheck for C++. Higher level checks can solicit input by using, for instance, pull

request-based workflows to require human reviews before new code is added to an existing code

base. Code should include unit and integration tests, which increase confidence in code correctness

and reduce the likelihood of introducing breaking changes. Code should also employ Continuous

Integration (CI) [8], the automatic execution of tests to ensure that any errors or issues are caught

before spreading to stable code versions. Many CI services, such as Jenkins, CircleCI, and Bitbucket

Pipelines, integrate with repository hosting services and are free to publicly available repositories,

further incentivizing open-source development.

To maximize reusability, software must be widely disseminated and painless to install. At the

very least, source code should be publicly available, but standardizing modes of distribution through,

e.g., package managers, is the preferred mode of making the software readily available. For example,

most open-source packages published by our group are distributed via the PyPI and Anaconda cloud

repositories. For distribution on specialized High Performance Computing (HPC) environments,

we currently host Docker images on the Docker container hub, which we deploy using Singularity

on environments such as the TACC Stampede2, PSC Bridges, and SDSC Comet clusters available

through XSEDE [9].

Software must come with effective documentation, which includes both guidance for high-

level usage and more detailed information on the package’s various components such as its API.
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Documentation quality can be greatly improved by taking into account user feedback, which can be

obtained through surveys and focus group sessions along with more asynchronous mechanisms like

issue trackers, mailing lists, and chat rooms. As with CI, online documentation hosting services

such as ReadTheDocs are free for open-source software to simplify the publishing of high-quality

documentation.

Finally, software must be appropriately licensed. Terms and conditions for using unlicensed

code may be unclear, so software (whether open- or closed-source) must have licenses that permit

reuse. For open-source software, for instance, the Open Source Initiative (OSI) approves certain

licenses as providing sufficiently free usage and modification. Our group typically licenses software

under the BSD 3-clause or the MIT license.

5.4 Applying lazy refactoring

While we have described an agile approach to code development for a research problem, to this

point our formulation has been purposely abstract, providing only a conceptual description and

high-level guidelines. We now describe the practical application of lazy refactoring to solving a

particular problem. Using the ideas espoused by the previous section as a guide, we identify specific

attributes by which existing software may be assessed and that should be incorporated into any new

software. We then present a process for rigorously and systematically determining exactly when and

how much new code development is merited, using the identified attributes to assess the usability

and integrability of external code bases. Note that the needs of a typical project will evolve over its

lifetime, and will therefore require applying this heuristic multiple times.

5.4.1 Critical Attributes

Any software that is considered for integration into a problem solution workflow should be

assessed according to the following critical attributes:

1. Scope: Does it solve the problem at hand?

2. Integrability: How well does it integrate into the existing software stack, including external

tools upon which this stack relies, and how much work would be required for integration?
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3. Stability: Does it have a well-defined, static API, is it largely error-free, and is it likely to

be maintained into the foreseeable future, or at the very least, over the project lifetime?

4. Security: Does it pose any security risks?

These attributes are discussed in detail in the following subsections.

5.4.1.1 Scope

In order for software to be useful, it must solve the problem at hand. Although this statement

appears trivial, its simplicity hides some important nuances. A complete solution must satisfy,

for instance, scalability and performance requirements. These factors are context-dependent; for

example, simulations may need to scale to leadership-class HPC platforms and run fast even for

systems with millions of particles. Such considerations may disqualify a candidate code base that

solves the problem in a limited set of cases.

5.4.1.2 Ease of integration

The next step is determining how easily the software can be integrated into existing workflows.

As discussed earlier, license compatibility is a significant factor in this determination and may be a

reason to prefer open-source software. Open-source software has the additional benefit that the

code can be inspected and adapted if needed (see Section 5.4.2.2).

In addition to license compatibility, software compatibility also encompasses modularity, data

types, and file formats. In order for different components of a software pipeline to work together,

they must communicate in some common language, i.e, they must be able to exchange data in a

standardized manner. For example, all numerical analysis software implemented in Python should

make use of NumPy [6,7], which is the de facto standard for arrays of numerical data within the

Python ecosystem.

5.4.1.3 Stability

High quality software must also be sufficiently stable. This means that API and code paths are

set, further dependencies are unlikely to be introduced, and existing features are provided with

the implicit or explicit promise that they will continue to work. Furthermore, stable packages
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Figure 5.2: This flow chart depicts the core elements of a basic decision tree for the development
of workflows that solve a specific computational problem. In summary, we break down the
problem into individual components that may or may not have existing solutions. Existing
solutions are evaluated for use, and where appropriate, prototype solutions are either written
or existing prototypes are refactored into packages. The decision on what solutions to include
is largely based on the criteria outlined in “Applying Lazy Refactoring”, which serve as basic
guidelines for evaluating existing solutions for their integrability into the proposed workflow.

must be well-supported and have good documentation, and they should have active and responsive

developers. Additional indicators of stability are active mailing lists, issue trackers, and forums.

5.4.1.4 Security

Last but not least is the consideration of security risks posed by potential external software

solutions. For instance, any software that requires a privileged execution context may be problematic,

especially in HPC environments. Additionally, software that communicates with internet servers,

including cloud computing services, may be unsuitable for handling sensitive data. These services

are commonly not compliant with rules and regulations implemented by the Health Insurance

Portability and Accountability Act (HIPAA) in the U.S. and similar legislation in other countries.
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5.4.2 General Heuristic

We now formulate a decision tree to guide the software-related decisions involved in solving a

scientific problem (see Figure 5.2). This process involves decomposing a problem into components

that can be solved sequentially. A critical part of the process is the usage of preexisting partial

solutions, which are often originally developed as single-use prototypes and are ripe for refactoring.

Although such refactoring can be difficult, eventually it will pay dividends as the quality of the

software ecosystem increases and software becomes easier to refactor and adapt. NumPy is one

example of how two partial solutions, Numarray and Numeric, were consolidated into an improved

package that shares both their strengths.

In some circumstances, writing partially redundant software may be justifiable. Git is one

example of a highly successful package that was developed despite the existence of other VCSs because

those tools failed to support highly distributed, branch-heavy workflows. Any such development,

however, should be driven by a clear shortcoming of existing software.

5.4.2.1 Checklist for software integration

Once potential complete or partial solutions have been identified, they must be individually

checked to see whether the following criteria can be satisfied:

� Ensure that the software is appropriately licensed to allow integration and modification.

� Ensure that the architecture and interfaces are designed for easy integration.

� Determine whether the software is actively maintained and whether code or documentation

contributions would be accepted.

� Check whether the API is stable to estimate future maintenance effort.

� Confirm that all interfaces, the architecture and—in case modifications are required—the

source code are sufficiently documented.

� Establish that the majority of the code base is properly tested and validated.
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In many cases, software that does not satisfy these criteria can be brought into compliance

with sufficient modification, either by the user (e.g. by writing documentation, adding tests, or

maintaining a fork) or by contacting the maintainer (e.g. to add a license). If such modification

ultimately proves insufficient to satisfy these criteria, however, the software should be discarded as

a solution for the problem at hand. Note that all criteria outlined above extend to dependencies as

well, so code bases with many dependencies must effectively clear a higher bar.

5.4.2.2 Guidelines for package adaptation

For packages that provide a near-complete solution but require some adaptation to completely

address the relevant part of the problem, we have developed the following guidelines:

1. Plan development: Unless it conflicts strongly with the protection of intellectual property,

obtain feedback on the proposed modifications and extensions from the current package

maintainer.

2. Testing: Before modifying any code, implement any missing tests to ensure adequate coverage

of code paths that may be modified.

3. Validation: Add integration tests as needed to completely verify the correctness of the original

software when applied to the problem at hand.

4. Modularity: Refactor the code base such that all parts that require modification are mostly

separated from those that do not.

5. Adaptation: Write only as much code as is needed to address the problem at hand without

aiming for too much generality.

5.4.2.3 Steps for refactoring prototypes into packages

If there are no applicable packages, but there are multiple existing prototypes, then these should

be refactored into a package. Before refactoring, all related prototypes and packages should be

analyzed for interfaces, overlaps, strengths and weaknesses, with a special focus on relevant packages

that failed the tests of the checklist for software integration. Such software, which may have failed
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due to, e.g., licensing issues, likely contains a great deal of expertise and know-how that is invaluable

for the design of any new package. It may also be worthwhile to seek additional information on these

packages through public forums or issue trackers, or by reaching out to developers or experienced

users for further insight. The new package may then be implemented according to the following

steps:

1. Determine the scope and the software architecture. Identify the core logic and then build

layers around it for additional functionality such that dependencies only point inwards as

described in the The Clean Architecture [10] principle.

2. Draft the end user interface before implementation. Ensure that the most prominent use

cases are supported by the drafted interface design.

3. Replace the prototype code with the package step by step within the original applications.

Ensuring that the new code produces identical results at each step is an important part of

the validation process.

4. Document all functions and interfaces well such that a user can understand and use the

package without needing to consult any of the developers.

5. Write unit tests for all core functions and add integration tests for the main applications of

the code.

6. After ensuring function and correctness, optimize critical code paths (and only those paths) if

needed.

5.4.2.4 Guidelines for developing a new prototype solution

If new software is required, we impose the following minimal standards on the resulting prototype

code to simplify its future refactoring if needed:

1. License: Any code base should be licensed. Such a license may, for instance, explicitly permit

internal reuse and require acknowledgment of the original author. To simplify matters, a

research group could agree on a general license that is assumed to apply to all code that is
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not explicitly licensed otherwise. Organization-wide policies regarding intellectual property

will apply.

2. Modularity: Code should be developed as modularly as possible to simplify potential refac-

toring at a later stage. However, this modularity should not come at the expense of simple,

problem specific interfaces that streamline solutions to the problem at hand.

3. Stability: All code should be part of a version-controlled repository. Interfaces can be changed

whenever convenient.

4. Documentation: The code should have enough internal documentation to allow developers to

modify it as well as sufficient API documentation for prospective users familiar with the code

base.

5. Validation: The code base should be validated as part of the research process, ideally against

known results.

6. Testing: Unit tests are not necessary unless they aid in the development process.

5.5 The Glotzer Group Software Stack

We now trace the growth of the core software developed within our group. Although our

initial development followed a far less structured pattern than lazy refactoring, the challenges

we encountered and the experiences we accumulated informed the guidelines that we now follow.

By describing our internal software ecosystem (illustrated in Figure 5.3), we aim to motivate our

approach and provide a blueprint for how to use it to create a powerful, sustainable, and integrated

software stack for domain-specific computational research.

For brevity, we restrict ourselves to software that is directly involved with the generation,

organization and transformation of data. Therefore, we omit discussion of, for instance, all software

used for producing illustrations or presentations. We also avoid discussing operating systems aside

from noting that we primarily use UNIX-like systems such as various Linux distributions and

Mac OS X.
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Figure 5.3: We illustrate here the relationships between the various components of our
software stack. Software packages are grouped according to their overarching functions.
Interactions are denoted by adjacency. Software that is developed within our research group
is shown in dark blue with white labels. Workflows for computational projects are typically
organized using signac-flow, which links together simulation, analysis, and plotting. The vast
majority of our simulation needs are provided by HOOMD-blue, but we occasionally utilize
other tools, for instance to perform atomistic simulations of proteins. Which visualization
toolkit is used depends on the specific simulation, and occasionally also on whether the
toolkit has the required analysis capabilities built-in. More generally, the problem at hand
dictates the appropriate analysis software packages. We use various plotting tools, especially
Matplotlib, to visualize the evolution of both raw quantities (such as total system energy) as
well as the outputs of more complex analyses. All data generated throughout this process,
including raw simulation trajectories as well as the outputs from complex analyses, is stored
and managed using signac.

5.5.1 Simulation

The genesis of our lazy refactoring approach lies in the consolidation of “single-use codes” written

for various particle simulation techniques into a package called HOOMD-blue [11, 12]. HOOMD-blue

evolved from HOOMD [11], a general purpose Molecular Dynamics (MD) program developed

for bead-spring polymer models that was the first MD package to run completely on Graphics

Processing Units (GPUs). HOOMD-blue exemplifies the paradigm of growth by refactoring and

incorporation of external code. Today, HOOMD-blue runs many flavors of MD and MC simulations
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on both CPUs and GPUs, and it supports a rich variety of phenomena that were not originally

envisioned. These features were all developed separately for specific research purposes, and the

original implementations underwent many revisions before incorporation into a public release of

HOOMD-blue.

Consolidating our development efforts has reduced development time, increased reproducibility,

and improved code quality, allowing us to improve upon our original prototypes. Moreover, we have

incorporated lessons learned from modifying preexisting toolkits that were not modular enough

to allow easy modification or integration with our workflows. HOOMD-blue’s highly structured,

object-oriented design maximizes ease of modification, enabling the continued integration of new

tools such as the Hard Particle Monte Carlo (HPMC) [13] module from a pre-existing code base [14].

With internals written in C++ and CUDA, HOOMD-blue is one of the fastest particle simulation

tools available; it is one of NVIDIA’s official benchmarks for new GPU hardware. Unlike toolkits such

as Large-scale Atomic/ Molecular Massively Parallel Simulator (LAMMPS) [15] or the GROningen

Machine for Chemical Simulations (GROMACS) [16], which use a specialized file format for

simulation configuration, HOOMD-blue offers a full-featured Python interface for greater flexibility

and ease of integration with other tools. An open-source toolkit, HOOMD-blue has benefited greatly

from numerous contributions from its user base; at the time of writing, 29 developers external to

the group have contributed to HOOMD-blue. HOOMD-blue also uses a number of external code

bases, including: pybind11 for exporting C++ classes to Python; CUDA, cub and Thrust to utilize

GPUs; the Message Passing Interface (MPI) to scale across multiple nodes; LLVM for Just-in-time

(JIT) compilation; the Eigen linear algebra library; and cereal to serialize data for communication.

5.5.2 Data Analysis

For generic data analysis tasks, our group makes liberal usage of existing software, such as

components of the SciPy ecosystem. In addition to NumPy, which we use extensively and have

incorporated into many of our own open-source packages, we also use other SciPy tools for, e.g,

optimization and working with spatial data. Jupyter [17] notebooks are central to our workflow, and

we typically use the Matplotlib library [18] for plotting. For machine learning tasks, we typically

develop methods using scikit-learn, Keras, and TensorFlow.
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For analyses more specific to particle simulations, however, we found that many of the standard

analysis methods we use—including correlation functions, order parameters, and more—had only

been implemented in various prototype codes. Eventually, we collected our prototypes into freud [19],

a Cython [20], C++, and Threading Building Blocks (TBB)-accelerated tool that, like HOOMD-blue,

provides a transparent Python API to a high-performance back-end. While many methods have

been refactored and added to freud, the package maintains a consistent API across these methods.

Tasks that do not fit in freud have been placed in other, more specialized tools.

5.5.3 Visualization

Our simulation visualization codes have undergone the most consistent process of repeated

refactoring of prototypes and partial solutions. Our simulations typically generate long trajectories

of complex systems that require powerful software and hardware for effective visualization. HOOMD-

blue provides output in formats that can be interpreted by well-known simulation visualization

packages such as VMD [21], PyMol, and OVITO [22], but these tools have up until recently

been generally incapable of visualizing anisotropic particles, which require interpretation of their

orientations in addition to their positions. Therefore, we used injavis, a previously developed Java

visualization and analysis tool that represented particle data using XYZ-coordinates. Our group

members extended this software to account for particle orientations, and we enabled HOOMD-blue to

provide output data in this format. As a largely Graphical User Interface (GUI)-centric application,

however, its analysis capabilities can be difficult to integrate into scripted workflows.

The goal of refactoring the functions in injavis into a more scriptable tool was a driving force for

the development of freud. To leverage freud’s analysis capabilities for visualization, we developed a

visualization toolkit called plato that outsources its analysis functions to freud. This division makes

plato easier to adapt for new visualization tasks, resulting in a more modular, maintainable software

infrastructure. In addition to plato, we developed fresnel to generate publication quality images

using a GPU-accelerated path tracing engine.
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5.5.4 Data and Workflow Management

A comprehensive simulation study typically involves conducting many simulations, often using

HPC clusters to achieve meaningful system dimensions and time scales. Although HOOMD-blue

scripts accommodate user-defined parameters, the user remains responsible for reliably associating

these parameters with the simulation outputs and subsequent analyses. Many group members

developed prototype solutions , but they suffered from numerous drawbacks with respect to scalability,

flexibility, and interpretability.

To resolve these problems, we developed signac [23], an open-source framework for constructing

complex workflows on large, heterogeneous data spaces. Inspired by these prototypes, signac uses

well-formed JavaScript Object Notation (JSON) parameter files to associated data files with their

identifying parameters, providing a robust and full-featured database interface to data stored directly

on the filesystem. The system is designed for the high performance filesystems inherent to HPC

environments and supports the highly parallel file I/O operations required for, e.g., MPI-enabled

HOOMD-blue simulations. Since all data and metadata are stored directly on the filesystem, they

can also be easily transferred using tools like ‘rsync’ or GLOBUS [24]. The signac framework

includes signac-flow, a tool for managing and automating complex workflows operating on a signac

data space. Workflows designed with signac-flow are immediately portable to HPC environments,

making it possible to design and test workflows on local resources and then immediately submit

them to a cluster scheduler.

5.5.5 Software Integration

The smooth functioning of our overall pipeline also depends on a number of smaller packages

that perform more limited but equally important tasks. A good example of applying lazy refactoring

is rowan [25], an open-source Python package for quaternion operations. A standard method for

representing particle orientations in 3D, quaternions are used throughout our code base; however, in-

dividual packages have historically each had their own implementations. This fragmentation strongly

suggested the need for standardization, particularly because many individuals also reimplemented

these methods for their own, more ad hoc uses. Although quaternion packages already existed

within the Python ecosystem, they suffered from numerous drawbacks with respect to performance
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and flexibility that made them unsuitable for incorporation into our code bases. rowan is the result

of refactoring our own quaternion codes into a single package providing a unified API for working

with quaternions at a uniform level of generality appropriate for our needs.

5.6 Training and Support

Our group has built an infrastructure around our software to provide users with training and

information on how to take maximal advantage of our ecosystem. In addition to the documentation

associated with each of our packages, we have created comprehensive integrated documentation

that explains how to utilize our stack as part of a cohesive workflow, including a crash course

to incrementally acquaint new users with this stack. We use Slack to maintain internal chat

rooms for instant technical support, specialized discussions of science or software, and coordinating

development.

We also aim to make our software useful to the broader community. We publish documentation

through ReadTheDocs, distribute software via Anaconda and PyPI, and have published papers

on some of our packages to further publicize them. We have also presented our software at the

Scientific Computing with Python (SciPy) conference [26], the annual American Physical Society

(APS) March meeting, the triennial Foundations of Molecular Modeling and Simulation Conference

(FOMMS), and the annual meeting of the American Institute of Chemical Engineers (AIChE), to

name a few. In addition to these presentations, which are one avenue for feedback, we also use

surveys and focus groups to gather user feedback. Biannual hackathons where all group members

participate in improving our code help to improve the distribution of code ownership.

5.7 Conclusions

Advances in computational science are heavily dependent on the ongoing evolution of the

scientific software ecosystem. Although quickly produced ad hoc solutions may seem sufficiently

expedient in the moment, scientific progress can often be accelerated by a judicious use of existing

software. Consequently, time spent properly designing and developing reusable software solutions

may prove worthwhile if the reuse potential is identified sufficiently early in the development process.
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Properly estimating the future reuse potential of a piece of code is a daunting task, however,

requiring a degree of foresight that is often impossible in scientific applications. Moreover, assessing

the existing software options when embarking on a new project is far from trivial.

To address the need for a systematic approach to these problems, we have outlined a near

optimal approach to determining when and how to develop reusable software that works well for us.

The lazy refactoring approach is designed to balance sustainably improving the scientific software

landscape with making immediate scientific progress. It does this by advocating for individual

researchers to

1. evaluate existing software for its reuse potential prior to any code development,

2. adapt existing code bases for the problem at hand,

3. refactor existing code bases into proper packages whenever there are more than two use cases,

4. develop rapidly evolving prototype code strictly focused on solving the problem at hand in all

other cases.

Lazy refactoring is particularly well suited to the academic research group. To illustrate its

application in this context, we have shown how it has been applied over time by our research group

to develop a suite of independent but highly interoperable and powerful tools targeted at a specific

class of scientific problems. Through this, we provided a concrete example of how lazy refactoring

may be used to significantly accelerate net scientific output in any subfield of computational science.

5.8 Acknowledgments

We would like to thank all contributors to the group’s code base, including all members of the

Glotzer group as well as the numerous external contributors to our software. We would like to

thank Michael Engel for his development of injavis, some of which was done while in the Glotzer

group. Development and deployment of signac supported by MICCoM, as part of the Computational

Materials Sciences Program funded by the U.S. Department of Energy, Office of Science, Basic

Energy Sciences, Materials Sciences and Engineering Division, under Subcontract No. 6F-30844.

129



Development and deployment of some aspects of HOOMD-blue and freud supported by the National

Science Foundation, Award # DMR 1409620.

Bibliography

[1] G. Wilson, D. A. Aruliah, C. T. Brown, N. P. Chue Hong, M. Davis, R. T. Guy, S. H. D.
Haddock, K. D. Huff, I. M. Mitchell, M. D. Plumbley, B. Waugh, E. P. White, and P. Wilson,
“Best Practices for Scientific Computing,” PLoS Biol., vol. 12(1): e1001745, 2014.

[2] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts, “Refactoring: Improving the Design
of Existing Code,” Addison-Wesley Professional, 1999.

[3] T. Dyb and T. Dingsyr, “Empirical studies of agile software development: A systematic review,”
Inf. Softw. Technol., vol. 50(9-1), pp. 833-859, 2008.

[4] L. Lindstrom and R. Jeffries, “Extreme Programming and Agile Software Development Method-
ologies,” Inf. Syst. Manag., vol. 21(3), pp. 41-52, Jun. 2004.

[5] M. Fowler, and J. Highsmith, “Manifesto for Agile Software Development,”
http://agilemanifesto.org/, 2001 (accessed on 2018-09-29).

[6] T. E. Oliphant, “Python for Scientific Computing,” Comput. Sci. Eng., vol. 9, no. 3, pp. 10-20,
2007.

[7] K. J. Millman and M. Aivazis, “Python for Scientists and Engineers,” Comput. Sci. Eng., vol.
13(2), pp. 9-12, 2011.

[8] M. Fowler, “Continuous Integration,”
https://martinfowler.com/articles/continuousIntegration.html, 2006 (accessed on 2018-10-01).

[9] J. Towns, T. Cockerill, M. Dahan, I. Foster, K. Gaither, A. Grimshaw, V. Hazlewood, S. Lathrop,
D. Lifka, G. D. Peterson, R. Roskies, J. R. Scott, and N. Wilkins-Diehr, “XSEDE: Accelerating
Scientific Discovery,” Comput. Sci. Eng., vol. 16(5), pp. 62-74, 2014.

[10] R. Martin, “The Clean Architecture,” https://8thlight.com/blog/uncle-bob/2012/08/13/the-
clean-architecture.html, 2012 (accessed on 2018/10/10)

[11] J. A. Anderson, C. D. Lorenz, and A. Travesset, “General purpose molecular dynamics
simulations fully implemented on graphics processing units,” J. Comput. Phys., vol. 227(10), pp.
5342-5359, 2008.

[12] J. Glaser, T. D. Nguyen, J. A. Anderson, P. Lui, F. Spiga, J. A. Millan, D. C. Morse, and S. C.
Glotzer, “Strong scaling of general-purpose molecular dynamics simulations on GPUs,” Comput.
Phys. Commun., vol. 192, pp. 97-107, 2015.

[13] J. A. Anderson, M. E. Irrgang, and S. C. Glotzer, “Scalable Metropolis Monte Carlo for
simulation of hard shapes,” Comput. Phys. Commun., vol. 204, pp. 21 - 30, 2016.

130



[14] J. A. Anderson, E. Jankowski, T. L. Grubb, M. Engel, and S. C. Glotzer, “Massively parallel
Monte Carlo for many-particle simulations on GPUs,” J. Comput. Phys., vol. 254, pp. 27 - 38,
2013.

[15] S. Plimpton, “Fast Parallel Algorithms for Short-Range Molecular Dynamics,” J. Comput.
Phys., vol. 117(1), pp. 1-19, 1995.

[16] H. Berendsen, D. van der Spoel, and R. van Drunen, “GROMACS: A message-passing parallel
molecular dynamics implementation,” Comput. Phys. Commun., vol. 91(1-3), pp. 43-56, 1995.

[17] F. Prez and B. E. Granger, “IPython: A System for Interactive Scientific Computing,” Comput.
Sci. Eng., vol. 9(3), pp. 21-29, 2007.

[18] J. D. Hunter, “Matplotlib: A 2D Graphics Environment,” Comput. Sci. Eng., vol. 9(3), pp.
90-95, 2007.

[19] V. Ramasubramani, Bradley D. Dice, Eric S. Harper, Matthew P. Spellings, Joshua A. Anderson,
Sharon C., “freud: A Software Suite for High Throughput Analysis of Particle Simulation Data,”
arXiv:1906.06317 [cond-mat, physics:physics], 2019.

[20] S. Behnel, R. Bradshaw, C. Citro, L. Dalcin, D. S. Seljebotn, and K. Smith, “Cython: The
Best of Both Worlds,” Comput. Sci. Eng., vol. 13(2), pp. 31-39, 2011.

[21] W. Humphrey, A. Dalke, and K. Schulten, “VMD - Visual Molecular Dynamics,” J. Mol.
Graph., vol. 14, pp. 33- 38, 1996.

[22] A. Stukowski, “Visualization and analysis of atomistic simulation data with OVITO — the
Open Visualization Tool,” Model. Simul. Mater. Sci. Eng., vol. 18(1), p. 015012, 2010.

[23] C. S. Adorf, P. M. Dodd, V. Ramasubramani, and S. C. Glotzer, “Simple data and workflow
management with the signac framework,” Comput. Mater. Sci., vol. 146, pp. 220-229, 2018.

[24] I. Foster, “Globus online: Accelerating and Democratizing Science
through Cloud-Based Services,” IEEE Internet Comput., vol. 15(3), pp. 70-73, 2011.

[25] V. Ramasubramani, Sharon C. Glotzer, “rowan: A Python package for working with quater-
nions,” J. Open Source Softw., 3(27), p. 787, 2018.

[26] V. Ramasubramani, C. S. Adorf, P. M. Dodd, B. D. Dice, and Sharon C. Glotzer, “signac:
A Python framework for data and workflow management,” Proc. 17th Python Sci. Conf., pp.
91-98, 2018.

131



CHAPTER VI

Conclusions and Outlook

This dissertation research work was guided by the inverse design problem, which can be

summarized as :

What building blocks do we need to assemble materials with specifically targeted

properties?

The properties of materials in the colloidal realm and in the absence of chemistry is largely determined

by their structure, i.e., the broken symmetries within the material. Structure is an emergent property

that requires many individual building blocks to come together. Developing a method to design

building blocks that will self-assemble a specifically targeted structure was therefore the primary

motivation of the first part of my research on self-assembly.

In Chapter II of my dissertation, I presented the Fourier-filtered relative entropy minimization

(FF-REM) method, a procedure for the optimization of isotropic pair potentials (IPPs) for the

self-assembly of crystal structures. We were able to show that we can use the same procedure to find

potentials for simple structures such as simple cubic (cP1) or body-centered cubic (cI2), but also

more complex ones, e.g., diamond (cF8), A15-type cP8-Cr3Si (cP8), σ-phase tP30-CrFe (tP30),

and clathrate-I cP54-K4Si23 (cP54).

A crucial part of this work was to develop an algorithm that would modulate the Hamiltonian

in such a way that its free energy landscape has a minimum at the targeted configuration while

remaining sufficiently smooth. The smoothness criterion is what enables the self-assembly with

sufficiently high yields.
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This was achieved by deriving the algorithm within the general framework of relative entropy

minimization directly in Fourier space. The mathematical formulation and implementation in Fourier

space is more natural when working with configurations with long-range periodicity. Optimizing

potentials directly in Fourier space also enables us to apply a filter function in a simple and elegant

manner, which ensures that solutions are constrained in complexity. Many features in the form of

local extrema make it more difficult to map the function to a physical particle.

An interesting opportunity to explore with respect to this work would be the optimization of

IPPs that have two independent state points with two different crystal structures. That would

allow us to, for example, design particles that self-assemble multiple different crystal structures as a

function of temperature and pressure and have a well-defined freezing point.

The second part of my research on self-assembly is focused on understanding the nature and

mechanisms of the self-assembly process. Chapter III is a study on crystallization pathways of

representative benchmark and other model systems. We use a machine learning (ML)-driven approach

in determining a holistic depiction of the pathway in the form of a manifold representation of the

descriptor space. The descriptor space is a feature space that describes local particle environments

over time. Essential components of that space are uncovered using Principal Component Analysis

(PCA) and the manifold with reduced dimensionality is generated using the Uniform Manifold

Approximation and Projection for Dimension Reduction (UMAP) algorithm.

The UMAP manifold is a collection of points, where each point represents one particle and its

environment at a specific slice of its trajectory. This representation already gives us new insight

into the assembly process. Phase changes are usually immediately apparent in the form of a large

separation between different clusters. The number of smaller clusters and their connections is

directly correlated to the number of local motifs present within the system.

All studied systems show significant local structure in the liquid, supporting the hypothesis

by Kawasaki and Tanka [1] that liquids are highly structured to lower their free energy compared

to a completely isotropic fluid. Furthermore, we observe that crystal nucleation is mediated by

environments that are generally closer to the liquid structure. This is an example of two-step

nucleation and in support of Ostwald’s step rule which states that structures with a free energy

closer to the liquid will form first even if they are not generally stable.
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We observe two-step nucleation and growth with hexagonal close packing (HCP) forming earlier

than face-centered cubic (FCC) for both the Weeks-Chandler-Andersen (WCA) and Lennard-Jones

(LJ) systems. It would be very interesting to contextualize these phenomena within the theoretical

framework laid out by James et al. [2]. They show that finite-size fluctuations play a crucial role

in phase transitions, especially with respect to two-step nucleation. This means that fluctuations

of local motifs facilitate the formation of crystal nuclei even if these motifs do not represent a

metastable bulk phase.

This work could be substantially extended and its generality improved by using better heuristics

for the determination of neighbors. For example, Voronoi-cell based algorithms [3] adapt the number

of neighbors for each particle individually and could be implemented in freud [4].

The second part of my dissertation is focused on the technical aspects of computational work.

I presented in Chapter IV the signac framework, which is a software framework for data and

workflow management. Developing this software and facilitating its adoption presented its own set

of challenges. Some of these challenges related to the development of software within an academic

environment are discussed in Chapter V.

The original motivation of the signac project was to develop a software that would enable

effective sharing of research data among my immediate peers. One specific driver of this was to

make the data set related to the publication of Damasceno et al. on the self-assembly of convex

polyhedra in Science 2012 [5] more accessible for continued research. Generating large data sets

such as this one requires a lot of computational resources. Making data reusable and more sharable

means that these resources can be used for other scientific goals and duplication of efforts is avoided.

However, very early on, I realized that software can only be one part of a solution to this problem.

The second – and probably more important – part is related to data sharing culture. There are

essentially three pillars needed to make data sharable and reusable:

• Access privilege – One must have the authorization to access and use the data.

• Technical access – One must have physical access to the data, e.g., through the internet.

• Provenance – One needs to have sufficient context to understand what the source of the data

is and how it was curated.
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Many grants have stipulations that require researchers to have a data management plan and make

their data publicly accessible. However, that usually only applies to data related to publications.

Data that is never published is therefore most likely also never reused.

Providing technical access to data can be facilitated, for example, by using shared network file

systems or by uploading data to internet repositories such as the University of Michigan Deep Blue

Repository,1 Zenodo,2 or the Open Science Framework.3 However, these repositories usually have

data set size limitations well below the typical size of data sets within our field.

Finally, keeping track of the data provenance is a real challenge for highly exploratory and

dynamic studies. Particle simulations within the soft matter field are typically highly customized

to the problem at hand both in terms of the model and the simulation protocol. Developing

standardized and extendable schemas that can capture all of these details is therefore very difficult.

One alternative to standardized schemas is to keep a copy of the source code that was used

to generate the data in combination with all parameters used for a specific data set. The latter

is the approach we take with signac. Users are encouraged to use their own metadata schema in

combination with their own source code, however signac standardizes how these two components

are combined. That makes it significantly easier to understand the general structure of the workflow

and determine the provenance of a particular data set.

One crucial design goal for signac was to ensure that the implementation of workflows and

the management of data spaces is so simple that the system can be easily used during all stages

of a computational study. That means during early exploration and at production scales. This

is important to avoid breaks and unnecessary redundancy in the workflow implementation, but

also to facilitate the reuse of data sourced from preliminary studies that might never get published

otherwise.

While signac has been a success when measured in terms of user adoption and recognition

by organizations such as NumFOCUS,4 there are also still a lot of challenges that need to be

overcome. Users still face obstacles with respect to the implementation of inter-project workflows,

1https://deepblue.lib.umich.edu/
2https://zenodo.org
3https://osf.io
4The signac project is officially affiliated with the NumFOCUS organization as of this year.
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i.e., workflows that operate on and curate data from multiple different projects. Similarly, workflows

implemented with signac-flow that operate on more than one data set, e.g., to compute collective

statistics, are not yet directly supported.

The signac project has grown into a mature open-source project in the past couple of years,

which means that many internal and external contributors have helped extend the packages’

functionality, their documentation, and their exposure to the public. The increased size of the

project has forced the core maintainer team to shift their attention from pure software development

to the establishment of strategies to effectively integrate contributions and guide new contributors. I

am confident that this transition facilitated by the increased involvement of the scientific community

outside of our research group will vastly increase the longevity of the project.
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