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Abstract 

Armored skin resulting from the presence of bony dermal structures, osteoderms, is an 

exceptional phenotype in gekkotans (geckos and flap-footed lizards) only known to occur 

in three genera: Geckolepis, Gekko and Tarentola. The Tokay gecko (Gekko gecko 

LINNAEUS 1758) is among the best-studied geckos due to its large size and wide range of 

occurrence, and although cranial dermal bone development has previously been 

investigated, details of osteoderm development along a size gradient remain less well-

known. Likewise, a comparative survey of additional species within the broader Gekko 

clade to determine the uniqueness of this trait has not yet been completed. Here, we studied 

a large sample of gekkotans (38 spp.), including 18 specimens of G. gecko, using X-rays 

and High-Resolution Computed Tomography (HRCT) for visualizing and quantifying the 

dermal armor in situ. Results from this survey confirm the presence of osteoderms in a 

second species within this genus, G. reevesii GRAY 1831, which exhibits discordance in 

timing and pattern of osteoderm development when compared with its sister taxon, G. 

gecko. We discuss the developmental sequence of osteoderms in these two species and 

explore in detail the formation and functionality of these enigmatic dermal ossifications. 

Finally, we conducted a comparative analysis of endolymphatic sacs in a wide array of 

gekkotans to explore previous ideas regarding the role of osteoderms as calcium reservoirs. 

We found that G. gecko, and other gecko species with osteoderms, have highly enlarged 

endolymphatic sacs relative to their body size, when compared to species without 
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osteoderms, which implies that these membranous structures might fulfill a major role of 

calcium storage even in species with osteoderms. 

Keywords: comparative anatomy, CT scans, endolymphatic sac, osteoderms, osteology, 

reptiles 

Research Highlights: Within the Indopacific gecko clade only the Common and Reeves’ 

Tokay geckos were found to develop cephalic shields of osteoderms. Tokays are the largest 

gekkotans to develop osteoderms, and the timing of appearance in these species is 

heterochronic. 
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Graphical Abstract 

 
Graphical abstract: Distribution of osteoderms in the skull of a large sized Tokay gecko 

(Gekko gecko).  
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1. INTRODUCTION 

Acquisition of mineralized integumentary structuresi.e., osteoderms, has occurred 

independently several times in multiple vertebrate lineages (Vickaryous & Sire, 2009). 

Osteoderms may form as a continuous or patchy layer of osseous tissue in the dermis 

(Vickaryous & Sire, 2009), and are developed in representatives of most major tetrapod 

lineages (both extinct and living; Hill, 2005; Moss, 1969; Romer, 1956) including frogs 

(e.g., Batista et al., 2014; Campos, Da Silva, & Sebben, 2010; Ruibal & Shoemaker, 1984), 

dinosaurs (e.g., Curry Rogers, D'emic, Rogers, Vickaryous, & Cagan, 2011; Farlow, 

Thompson, & Rosner, 1976), leatherback turtles (in contrast to other Testudines; Chen, 

Yang, & Meyers, 2015), crocodilians (e.g., Seidel, 1979; Sun & Chen, 2013), lizards (e.g., 

Broeckhoven, Diedericks, & Mouton, 2015; Broeckhoven, El Adak, Hui, Van Damme, & 

Stankowich, 2018; Broeckhoven, Mouton, & Hui, 2018; Stanley, Paluh, & Blackburn, 

2019), xenarthrans (e.g., Chen et al., 2011; Krmpotic et al., 2015; Vickaryous & Hall, 

2006), the fossil Eocene elephant shrew Pholidocercus (von Koenigswald & Storch, 1983), 

and mice of the genus Acomys (Kraft, 1995; Niethammer, 1975). 

Among squamates, osteoderms have been reported in representatives of almost every 

major lizard clade (Broeckhoven, du Plessis, Minne, & Van Damme, 2019; Camp, 1923; 

Conrad, 2008; Estes, de Queiroz, & Gauthier, 1988; Evans, 2008; Gadow, 1901; Gao & 

Norell, 2000; Moss, 1969; Schmidt, 1912), including iguanians (e.g., de Queiroz, 1987; 

Schucht, Rühr, Geier, Glaw, & Lambertz, 2019; Siebenrock, 1893), gekkotans (e.g., 
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Levrat-Calviac, 1986; Levrat‐Calviac &  Zyl berberg, 1986; Paluh, Griffing, & Bauer, 

2017; Scherz, Daza, Köhler, Vences, & Glaw, 2017; Vickaryous, Meldrum, & Russell, 

2015; Villa, Daza, Bauer, & Delfino, 2018), scincoideans (e.g., King, 1964; Krause, Evans, 

& Gao, 2003; Oliver, 1951; Paluh & Bauer, 2017), lacertoideans (e.g., Arnold, 1989; 

Barahona & Barbadillo, 1998; Bellairs & Kamal, 1981; Costantini, Alonso, Moazen, & 

Bruner, 2010; Read, 1986; Siebenrock, 1894), and anguimorphs (e.g., Bever, Bell, & 

Maisano, 2005; Bhullar & Bell, 2008; Conrad, Head, & Carrano, 2014; Maisano, Bell, 

Gauthier, & Rowe, 2002; McDowell & Bogert, 1954; Zylberberg & Castanet, 1985). 

Despite this diverse representation however, osteoderms can be inconsistently expressed 

within clades, even within the same genus (e.g., Abronia (Good & Schwenk, 1985), 

Varanus (Erickson, De Ricqles, De Buffrénil, Molnar, & Bayless, 2003), and Gekko 

(Vickaryous et al., 2015)). Varanids are a particularly contrasting group; for instance, 

species can exhibit conspicuous osteoderms (Varanus [Megalania] priscus [prisca] 

(Erickson et al., 2003), Varanus komodoensis OUWENS 1912 (Maisano, Laduc, Bell, & 

Barber, 2019)), or lack these dermal structures completely, (the vast majority of species 

within the genus Varanus; Auffenberg, 1981; Erickson et al., 2003). 

Gekkota, the likely sister clade to all other squamates (Burbrink et al., 2019; Simoes et 

al., 2018), is a highly diverse group with over 1900 species (Bauer, 2013; Conrad, 2008; 

Uetz, Freed, & Hošek, 2019). Despite the high species-richness however, osteoderms have 

only evolved in three genera of gekkotans, each representing an independent derivation: 
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within the phyllodactylid genus Tarentola (Bauer & Russell, 1989; Levrat-Calviac, 1986; 

Levrat‐Calviac &  Zylberberg, 1986; Loveridge, 194 7; Otto & Coburg, 1909; Parker & 

Taylor, 1942; Vickaryous et al., 2015; Villa et al., 2018) and two gekkonid genera, 

Gekko (specifically, G. gecko LINNAEUS 1758, (Daza, Mapps, Lewis, Thies, & Bauer, 

2015; Vickaryous et al., 2015)) and Geckolepis (Paluh et al., 2017; Schmidt, 1911, 1912). 

Likely due to their independent origins, osteoderms in these genera are different in 

morphology. In the case of Tarentola, the osteoderms even develop a special kind of tissue 

called osteodermine (Vickaryous et al., 2015). Though discovery of osteoderms in the 

genus Geckolepis was based on early reports in an unidentified specimen (Schmidt, 1911, 

1912), until recently it had been a matter of contention as to whether these structures were 

indeed true osteoderms (Bauer & Russell, 1989; Paluh et al., 2017; Vickaryous et al., 

2015). Geckolepis also represents a unique situation since a large portion of the skin in 

these geckos can be lost at once, degloving the body by an extensive avulsion (Angel, 

1942; Paluh et al., 2017; Scherz et al., 2017).   

The type genus of the family Gekkonidae, the genus Gekko, is undergoing 

reorganization (Wood et al., 2019) involving division into new subgenera and subsumption 

of two other genera into Gekko. In contrast to Geckolepis and Tarentola, where osteoderms 

have been documented across the respective genera, osteoderms in Gekko are only known 

to occur in Gekko gecko. However, it is only in recent years that works have begun to 

describe the ontogenetic development of gecko osteoderms in detail (e.g., Vickaryous et al., 
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2015), and confidently confirmed osteoderms in additional species (Paluh et al., 2017). In 

light of this, and with the enhanced ability to visualize the patterning of osteodermal 

structures in situ using High-Resolution Computed Tomography (HRCT) methods (e.g., 

Maisano et al., 2019), the timing seems apt to reconsider osteoderm presence and 

development within the revised Gekko genus. We have obtained morphological data for a 

broad taxonomic sampling of species across the Gekko group that allows us to explore in 

detail the occurrence of these rare integumentary elements within this group.  

Osteoderms may contribute to a variety of possible functions, including playing a role in 

protection, locomotion, thermoregulation and even calcium mineral storage (e.g., 

Broeckhoven, du Plessis, & Hui, 2017; Buchwitz, Witzmann, Voigt, & Golubev, 2012; 

Dacke et al., 2015; Farlow, Hayashi, & Tattersall, 2010). Though work is still progressing 

to understand the complexity of the roles of osteoderms, the distribution and form of these 

structures across the body may provide some clues. Gekko gecko possesses another 

structure that is presumed to play a role in calcium storage, the endolymphatic sacs. 

Endolymphatic sacs are gland-like, contain calcareous substances, and are typically located 

in the cranial vault, proximal to the brain (e.g., Bauer, 1989; Kluge, 1967; Whiteside, 

1922). Though the full function of the endolymphatic system remains to be determined, it 

has been hypothesized to be involved in aspects of inner ear pressure regulation, sound 

transmission, protection of the central nervous system, and storage of calcium for both 

reproductive functions and for bone formation (Bauer, 1989; Kluge, 1967; Mangione & 
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Montero, 2001). In certain iguanids, agamids, chameleons and several gekkotans the 

endolymphatic sacs are expanded to the point that they protrude anteriorly from the cranial 

vault and/or posteriorly to lie on either side of the neck (Bauer, 1989; Kluge, 1967). In G. 

gecko the extracranial endolymphatic sacs are particularly enlarged (Kluge, 1967), and we 

suspect this may serve for calcium storage not only to supply extra material for both 

reproductive functions and for bone formation, but additionally for osteoderm production. 

As a first step in investigating the possibility of a relationship between these structures we 

also measured the size of extracranial endolymphatic sacs in a broad sampling of geckos to 

quantify the relationship between osteoderm presence and size of endolymphatic sacs.  

The ontogenetic development of osteoderms in Gekko gecko was previously described 

by Vickaryous et al. (2015) together with geckos of the genus Tarentola. Previously, the 

ontogenetic development of the skull was studied in G. gecko, but as this work was based 

on skeletonized specimens, the osteoderms were not included (Daza et al., 2015). In this 

paper we had three broad aims and used HRCT-images to document in further detail the 

development of osteoderms in a series of postnatal individuals of different size of the 

species G. gecko. This imaging technique allows us to: 1) visually document in detail the 

distribution of osteoderms in this species, and the sequence of development of these 

elements in the body. The new data also facilitates: 2) the description of the morphological 

variation of individual osteoderms in situ. Finally, we: 3) compare the proportion of the 

extracranial endolymphatic sacs in the species G. gecko with those of other species with 
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and without osteoderms in order to determine whether these additional ossifications are 

correlated with the size of these calcium-rich structures. 

 

2. MATERIALS AND METHODS 

Imaging techniques: We used two methods to study bony elements: digital X-rays and 

HRCT. Digital X-rays were taken at the Division of Amphibians and Reptiles and 

Ichthyology X-ray facility at the Museum Support Center of the National Museum of 

Natural History, Smithsonian Institution. We used an X-ray system with a KevexTM 

PXS10-16W X-ray source and Varian Amorphous Silicon Digital X-Ray Detector 

PaxScanH 4030R set to 130 kV at 81 mA. For each X-ray, linear and pseudofilm filters 

were used. The HRCT scans were obtained at the University of Texas HRXCT Facility 

(UTCT) using a FeinFocus Microfocal source NSI scanner (Garbsen, Germany), operating 

at variable kV and mA values, with no X-ray prefilter. Three specimens were scanned 

simultaneously using a helical continued CT Scan. Volume renderings were obtained using 

Avizo Lite version 2019.2 (Thermo Fisher Scientific, 2019). TIFF-images from 3D-

renderings were used herein for descriptions and comparisons. In addition, the individual 

X-rays of the premaxillary-nasal suture, fronto-nasal suture, fronto-parietal suture and the 

cervical region were used for a more detailed assessment of the morphology and 

development of the osteoderms in different regions of the skull. A web-deliverable version 

of the resulting visualizations is available at Morphosource. 
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Specimen source: Specimens from the group of Indopacific geckos were obtained from 

preserved formalin‐fixed, ethanol‐ preserved museum specimens ( supplemental online 

material, Table S1). We concentrated our sampling on the genus Gekko as recently revised 

(Wood et al., 2019) and included representatives from five of the seven Gekko 

subgenerai.e., Archipelagekko, Gekko, Japonigekko, Ptychozoon, and Sundagekko; in 

addition to some closely related genera, i.e., Lepidodactylus and Luperosaurus. We 

examined a total of 100 specimens, covering 38 species. The species Gekko gecko was 

represented by 18 specimens, seven of which were CT-scanned and 11 were X-rayed. The 

specimens span a range of body sizes, with snout-vent lengths (SVL) from 42.3 mm to 

176.7 mm. These specimens of G. gecko were used here as a proxy for the different stages 

of development, as a means to assess osteoderm development throughout ontogeny (Table 

1). The SVLs, skull-lengths (SL), and extracranial endolymphatic areas were measured 

from X-rays in ImageJ v1.8.0 (Rasband, 2018). Sex was indicated where possible for 

specimens examined in this study. For many specimens this information was available from 

online museum databases. Where it was not available, we determined sex of males by 

presence of cloacal bones (Carphodactylidae, Diplodactylidae, Eublepharidae, Gekkonidae, 

Phyllodactylidae; following the review by Russell et al. (2016), or hemibacula in 

Aristelliger (Sphaerodactylidae), and/or females by the presence of eggs (gravid 

Sphaerodactylidae and other families). 
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For HRCT-scanned specimens of G. gecko, we calculated the same measurements, as 

well as osteoderm volumes using the measuring tool in Avizo. To estimate the volume of 

the osteoderms, these elements were segmented in Avizo and the number of voxels 

occupied was used as a measure of volume; volume values were regressed against SVLs to 

determine changes in volume with body size. For the endolymphatic area analysis, we 

initially followed the same approach as Lamb et. al. (2017) to compare the area of the 

endolymphatic sacs in geckos in relation to SVL. We assessed the disparity of 

endolymphatic sac area among 164 samples across 113 gecko species with and without 

osteoderms (supplemental online material, Table S2) using phylogenetic generalized least-

square analysis (PGLS; Grafen, 1989; Martins & Hansen, 1997; Symonds & Blomberg, 

2014) and a multi-locus, ultrametric phylogeny. For the phylogenetic analysis, sequences of 

the 16S, ACM4, CMOS, ND2, PDC, RAG-1 and RAG-2 genes were downloaded from 

GenBank (https://www.ncbi.nlm.nih.gov/genbank) for all available species with 

accompanying endolymphatic sac measurements (supplemental online material, Table S3). 

Sequences were aligned using MAFFT v7.429 (Katoh & Standley, 2013), and a partitioning 

and model scheme identified using PartitionFinder v2.1 (Lanfear, Frandsen, Wright, 

Senfeld, & Calcott, 2016), considering all genes and codon positions as potentially different 

partitions. The best-fitting partitioning scheme and models were used to produce a 

maximum likelihood (ML) tree estimate in IQ-TREE v1.5 (Nguyen, Schmidt, von 

Haeseler, & Minh, 2015). A preliminary ultrametric tree was then estimated under 
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Penalized Likelihood in the package ‘ape’ v5.3 (Paradis & Schliep, 2018) in R v3.5.1 

(http://www.R-project.org; R Core Team, 2012), which was then used as a starting tree for 

a finalized ultrametric phylogeny estimated in BEAST v1.10.4 (Suchard et al., 2018). The 

BEAST analysis used the same partitions as the ML analysis and was implemented as four 

parallel runs of 100 million generations, sampling every 10,000 generations. The first 15 

million generations of each run were discarded as burn-in, with the final consensus tree 

generated from the combined output of the four runs (supplemental online material, 

FigureFigureS1). When more than one individual was measured per species, we used the 

largest specimen in the analysis. Comparative analyses were conducted in R with the 

packages ‘geiger’ v2.0.6.2 (Harmon, Weir, Brock, Glor, & Challenger, 2008) and ‘ape’.  

 

3. RESULTS 

3.1 Occurrence of osteoderms 

Cephalic osteoderms were only found in large specimens of the species Gekko gecko, 

and in one specimen assignable to G. reevesii GRAY 1831 (Table 1). The minimum sized 

individual in which we detected the presence of osteoderms was a G. gecko of 98.8 mm 

SVL. Of the 38 species examined, only five additional species exceed this minimum SVL–

Gekko (Archipelagekko) mindorensis TAYLOR 1919, G. (Gekko) reevesii, G. (G.) 

siamensis GROSSMANN & ULBER 1990, G. (G.) smithii GRAY 1842, and G. 

(Sundagekko) petricolus TAYLOR 1962–yet osteoderms were not detected in any of our 
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HRCT or X-ray scans from these specimens either (supplemental online material, Table 

S1). These new data suggest that the presence of osteoderms in the group of Indopacific 

geckos occurs only in large specimens of large species (i.e., at least 98.8 mm SVL; G. 

gecko, G. reevesii), as the majority of the specimens sampled where no osteoderms were 

found were <98.8 mm in SVL (Figure 1). The maximum sized individual of G. gecko we 

measured in this work was from Burma and had an SVL of 176.7 mm (USNM 564836; 

Figure 2), approaching the largest reported values for this species, 176.0–178.0 mm (Bauer, 

2013; A P Russell & Bauer, 1987). 

 

3.2 Pattern of development of osteoderms in Gekko gecko 

The smallest HRCT specimen (SVL 61.7 mm, SL 19.1 mm, FMNH 261847, ♀) shows 

characteristics of immature specimens such as paired parietals and nasals (Daza et al., 

2015); partially ossified pectoral girdle, pelvic girdle and tarsal elements; and non-ossified 

carpal, and epiphyses of long bones. Osteoderms were not present within this specimen 

(Figures 3A, 4A, 5A). 

Osteoderms were visible in slightly larger HRCT (and X-ray) specimens (Figures 3, 6). 

Onset of osteoderm development occurred at the same size range in both males and females 

of Gekko gecko, and there was no obvious sexual dimorphism in osteoderm volume or 

distribution. Sexual dimorphism in this species in general has also been noted to be 

minimal (Fitch, 1981). To simplify the description of the osteoderm development, we 
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describe the distribution of osteoderms for each specimen ordered by increasing size, 

followed by a brief comment on visible changes to the skeleton.  

SVL 98.8 mm, SL 27.3 mm (FMNH 261849, ♀, Figures 3B, 4B, 5B). The osteoderms in 

this specimen appear as scattered condensations overlying the prefrontal, orbits, frontal, 

parietal, squamosal, supraoccipital, and on top of the temporal region; yet there are still 

several spaces free of osteoderms. The osteoderms extend posteriorly to the level of the 

atlas. Individual osteoderms are ring-shaped with a void space in the center (Figure 3B).  

The nasals and parietals have started to fuse together and although epiphyses and 

metaphyses are still cartilaginous, they are starting to show some of the carpal, tarsal, and 

elbow and knee sesamoid elements. The wrist of the specimen shows two bones, the ulnare 

(proximal to the ulna) and the centrale, located in the middle of the wrist (Figure 3B). In the 

elbow and knee joints there are epiphyseal ossification centers, and in the ankle, there are 

four elements: the astragalocalcaneum, two distal tarsals (3 and 4), and the metatarsal V 

(Figure 3B). 

SVL 102.0 mm, SL 29.0 mm (FMNH 258696, ♀, Figures 3C, 4C, 5C). Despite the 

similar body size between this specimen and the previous one, there are striking differences 

between them in both osteoderm volume and ossification. In this specimen, the osteoderms 

are more densely packed, forming a continuous armor that covers the same bones, in 

addition to the postorbitofrontal. The osteoderms cover the entire surface of these bones 

with no exposure of the surface except for the anterior portion of the frontal, which remains 
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exposed. The cephalic shield covers the orbits (eyes) more extensively and descends 

laterally and extends posteriorly to cover the level of the third cervical vertebra. 

The nasals and parietals still show ongoing fusion (Daza et al., 2015), the epiphyses and 

metaphyses are still cartilaginous, showing two bones in the wrist (ulnare and centrale). 

The elbow and knee joints show additional ossification centers and epiphyses, and in the 

ankle the same four elements are observed as in the previous specimen. 

SVL 113.4 mm, SL 31.6 mm (FMNH 266245, ♂, Figures 3D, 4D, 5D). At this size, the 

specimen shows additional concentration of osteoderms on top of the temporal area and the 

entire surface of the postorbitofrontal, following a neat pattern around the orbit. The 

osteoderms form a continuous structure similar to a helmet, completely covering the 

mandibular fossa when viewed in dorsal view and overlying the entirety of the squamosal. 

The layer of osteoderms appears to be denser than in smaller specimens. Some of the 

individual osteoderms still have a void space in the center. 

The epiphyses and metaphyses still show signs of being cartilaginous, but they display 

an increasing number of ossification centers near the long bones in the elbow (5), wrist (4), 

and knee (~4). Major changes in the ankle are concentrated on the epiphyses of the tibia 

and fibula. 

SVL 138.0 mm, SL 34.8 mm (YPM HERR 010083, ♂, Figures 3E, 4E, 5E). The 

osteoderms in this stage also cover the snout, including the entire frontal, nasals, prefrontal, 

and a large portion of the facial process of the maxilla, and some independent patches 
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additionally cover the side of the posterior process of the maxilla. The osteoderms reach the 

limit between the premaxilla and the nasals. On the lateral side, the osteoderms extend 

more laterally covering the entire temporal region (including the entire lateral side, and 

forming a bony shield behind the orbit), and even reaching the eminence of the coronoid. 

Osteoderms are also present on the lateral side of the jaw, partially covering the dentary, 

and a large patch is present on the mental and chin area. The osteoderm shield extends 

posteriorly to the level of the fifth cervical vertebra, where there is an isolated row of large 

conical osteoderms. 

The epiphyseal plate and ossification centers are entirely fused, indicating skeletal 

maturity (Maisano, 2002). The elbow, wrist, knee, and ankle joints are also completely 

ossified. There is a sesamoid on the proximal side of the radius, and the fabella sesamoid is 

observed on the posterior side of both knees. 

SVL 143.3 mm, SL 38.0 mm (FMNH 236071, ♂, Figures 3F, 4F, 5F). Although this 

specimen is slightly larger than the previous one (YPM HERR 010083), it shows a lower 

volume of osteoderms. It has a similar distribution of osteoderms to the previous specimen 

but does not have osteoderms in the lower jaw region. The snout is also extensively covered 

by osteoderms, although these elements are scattered over the top of the nasals and the 

nasal-premaxilla suture. 

The osteoderm distribution on the dorsal part of the skull in this specimen is similar to 

that of specimen YPM HERR 010083, except that the snout retains some spaces without 
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osteoderms. In addition, specimen FMNH 236071 has osteoderms on the tip of the facial 

process of the maxilla and only a small spot on the posterior part of this process. Although 

FMNH 236071 is larger than YPM HERR 010083, the former does not exhibit osteoderms 

in the gular region. 

SVL 167.0 mm, SL 46.1 mm (SHSVMH-0001-2014, ♂, Figure 7). Specimen 

SHSVMH-0001-2014 was illustrated previously (Daza et al., 2015); we have here produced 

images in all views to better illustrate the position of the osteoderms. We also use this 

specimen to describe the individual variation of osteoderms in this species. The osteoderms 

in this specimen cover virtually the entire surface of the cranium and portions of the jaw; 

the ascending nasal process of the premaxilla is covered, leaving only the labial margin of 

the maxilla exposed. 

Individual osteoderm variation of the cephalic osteoderms: In specimen SHSVMH-

0001-2014 the differentiation in the osteoderms is more marked, both in size and shape; 

osteoderms vary in size depending on the area of the head or body where they are formed. 

The smallest osteoderms are those along the midrow of the skull from the nasal region to 

anterior portion of the parietals, the ones forming the chin patch and the ones scattered on 

the gular region. The largest osteoderms are located in the temporal region, and they 

enlarge as they approach the posterior border, especially the ones forming the free occipital 

row. Some of the largest osteoderms still preserve the void space in the middle (e.g., those 

of the occipital row). Osteoderms are arranged in an interlocking pattern similar to puzzle 
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pieces, and the majority are either tubercular or doughnut shaped. The osteoderms 

associated with the supralabial and infralabial scales tend to be more irregular and 

elongated, almost rectangular. There is a line of slim and elongated osteoderms surrounding 

the upper margins of the brille (Figure 7). 

We observed that in Gekko gecko osteoderm volume increases linearly along the body 

size gradient (Figure 8), and the relationship between size and volume shows positive 

allometry, as defined by the equation with an allometric coefficient higher than 10 (y = 

10.777x - 20.428). This data indicates that osteoderm volume increases rapidly with respect 

to body length (SVL), which is consistent with the pattern described. Once the osteoderms 

overlay certain areas of the skull (i.e.. frontal, parietals) the individual dermal structures 

begin to expand and fill the space between them and within their central void spaces.  

 

3.3 Osteoderms in Gekko reevesii 

One of the specimens studied (YPM HERR 016062, ♀, SVL 131.4 mm, SL 34.9 mm, 

Figure 9) was assignable to the species Gekko reevesii from southern China, representing a 

second species where these structures are found. The pattern of osteoderm distribution in 

this species is different to the one seen in the series of G. gecko. The osteoderms in this 

specimen, which has a skull length comparable with YPM HERR 010083, appear to present 

a less dense layer. Contrary to YPM HERR 010083, osteoderm distribution is similar to the 

skeletally immature specimens of G. gecko (e.g., FMNH 261849), although the osteoderms 
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are more concentrated on the palpebral region, and are very scattered on top of the frontal, 

postorbitofrontal, parietal, supraoccipital and the temporal region. One major difference is 

that despite the lower volume of osteoderms compared with G. gecko of similar size, this 

species displays osteoderms in the chin area, which tend to be developed in much later 

stages in G. gecko. 

 

3.4 Do endolymphatic sac proportions vary with presence of osteoderms? 

Gecko species with osteoderms have larger endolymphatic sacs than gecko species 

without osteoderms taking into account SVL (Figure 10). PGLS results support that the 

endolymphatic sac area of geckos with or without osteoderms have similar slopes but the 

slopes have different intercepts. The PGLS model with osteoderms as treatment 

(endolymphatic sac area ~ ln[SVL] + osteoderms) received moderately stronger support 

than the model without treatment (endolymphatic sac area ~ ln[SVL], ΔAIC = 7.13). These 

findings imply that the extracranial endolymphatic sacs tend to be larger in gecko species 

with osteoderms than in species without osteoderms. 

 

4. DISCUSSION 

4.1 Onset of osteoderm development 

Previously, osteoderms were considered to be absent from the hatchling stage (SVL 

<80.0 mm) to less than 111.5 mm SVL, which was the stage at which the first appearance 
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of osteoderms was noted in Gekko gecko (Vickaryous et al., 2015). In our sampling, we 

noticed the presence of osteoderms in even smaller specimens (98.8 mm SVL). It is clear 

that these structures develop before the onset of skeletal maturity.  

In both Gekko species where the presence of osteoderms was observed, the timing of 

appearance of these elements (based on comparison of similar sized specimens) is 

asynchronous to previous reports (Vickaryous et al., 2015). The development of osteoderms 

in G. gecko can described in three main stages: 1) In skeletally immature specimens, 

osteoderms appear overlying the posterior portion of the frontal bone, palpebral region, 

parietals, supraoccipital, and the temporal region (Figures 3B–D, 4B–D, 5B–D). 2) In 

young adults, the osteoderms extend further towards the snout region, entirely covering the 

frontal bone, nasals, premaxilla, maxilla, and prefrontal (Figures 3F, 4F, 5F). 3) In the last 

stage, specimens are skeletally mature and develop osteoderms covering the entire dorsal 

surface of the cranium and extending to the labial side of the jaw and chin areas (Figures 

3E, 4E, 5E, 7). In stages 2 and 3 there is a noticeable incremental increase in osteoderm 

volume, to the point where spaces between individual elements are filled out.  

Previously it was described that individuals around the SVL of 111.5 mm (comparable 

to stage 1) have osteoderms restricted to the frontal bone and orbits, and no postcranial 

osteoderms (Vickaryous et al., 2015). We found here that osteoderms also covered the 

parietals, postorbitofrontals, supraoccipital and the temporal region. It is possible that the 

HRCT-method better reveals the more posterior osteoderms compared to clear and staining. 
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Our results are congruent with the Vickaryous et al. (2015) study where they further report 

the appearance of osteoderms covering most of the head (except the rostral-most tip) in 

slightly larger individuals (SVL 116.2 mm), and found no evidence of osteoderms beneath 

the supralabial scales, and only some mineralization subadjacent to the infralabials and 

across the gular region, and in the tubercles dorsal to the pectoral girdle. Vickaryous et al. 

(2015) described that in specimens larger than 121.9 mm SVL (equivalent to stage 2), most, 

if not all, of the dorsal surface of the head (excluding the supralabial scales) is completely 

reinforced with osteoderms, including the gular region, and within dermal stroma of the 

tubercular scales across the trunk and limbs. Postcranial osteoderms in the trunk or limbs 

were not as evident as cephalic osteoderms in the full body HRCT-datasets, and were 

instead observed as scarcely and randomly distributed, small and irregularly shaped 

osteoderms, most similar in form to those seen in the gular region. These few osteoderms 

were observed infrequently scattered in both dorsal and ventral surfaces of the trunk and 

limbs in all specimens, including the juvenile specimen which showed no cranial 

osteoderms (FMNH 261847, see Table 1), but were so small that most do not display in the 

HRCT volume renderings, in contrast to the cranial osteoderms. These discrepancies 

between this study and that of Vickaryous et al. (2015) may be attributed to the resolution 

of the scans and the size of these structures. 

The species Gekko reevesii is the sister species of G. gecko and the two species were 

long considered to be conspecific (Rösler et al., 2011). Based on the single available 
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specimen of this species, it appears that the osteoderms may develop in a slightly different 

pattern to those in G. gecko, similar to observations of variation in timing and patterns of 

osteoderm accumulation in different species of Tarentola (Vickaryous et al., 2015). The 

specimen of G. reevesii studied measured 131.4 mm SVL; considering that this species 

attains a maximum of at least 173.0 mm SVL (Rösler et al., 2011), and the degree of 

ossification of the epiphyses and joint elements, we estimate this specimen to be a young 

adult. However, it already displays osteoderms in the chin region, prior to an increase in the 

osteoderm volume, and to development of these elements over the snout and jaw. A more 

detailed study of G. reevesii, including more specimens, is needed to corroborate this 

asynchronous ossification pattern. At this point we cannot conclude whether this species 

develops similar volume of osteoderms in the skull as G. gecko. Likewise, we lack 

complete data on osteoderm development for other extremely large species of the subgenus 

Gecko (e.g., G. albofasciolatus GÜNTHER 1867, G. nutaphandi BAUER, SUMONTHA & 

PAUWELS 2008, G. verreauxi TYTLER 1865), and for some species we are lacking 

specimens near the maximum size limit (e.g., G. smithii (Rösler et al., 2011)); although 

none of the three adult specimens of G. siamensis or G. smithii included in this study have 

osteoderms. It would seem that large size may facilitate the appearance of the cephalic 

osteoderms in the genus Gekko; an analogous association between large size and the 

occurrence of parafrontal bones was reported in the Old World radiation of sphaerodactylid 

geckos (Griffing, Daza, DeBoer, & Bauer, 2018). 
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4.2 Comments on the distribution and functionality of osteoderms in geckos 

Among the three gekkotan genera that exhibit osteoderms different patterns of 

osteoderm distribution are observed. In terms of body coverage, osteoderms in Geckolepis 

(Gekkonidae) superficially resemble the body armor developed in skinks, where the whole 

body is covered by large, overlapping cycloid scales (except in the chin area); although the 

microstructure of the osteoderms in Geckolepis differ substantially from skinks in that they 

are much thinner, more pliable, and also ephemeral structures that are easily shed during 

regional integumentary loss (Paluh et al., 2017). The genus Tarentola (Phyllodactylidae) 

has been shown to exhibit osteoderms in multiple species (T. americana GRAY 1831, T. 

annularis GEOFFROY SAINT-HILAIRE 1827, T. chazaliae MOCQUAD 1895, T. 

crombiei DIAZ & HEDGES 2008, T. mauritanica LINNAEUS 1758, T. neglecta 

STRAUCH 1887 (Levrat-Calviac, 1986; Levrat‐Calviac &  Zylbe rberg, 1986; Vickaryous 

et al., 2015)), representative of all four subgeneric clades within this genus (Carranza, 

Arnold, Mateo, & Geniez, 2002; Carranza, Arnold, Mateo, & López-Jurado, 2000). 

Different species studied across Tarentola have been shown to display differential degrees 

of osteoderm development, however, these structures are still more permanent than in 

Geckolepis and are developed in the cranial and postcranial regions (Vickaryous et al., 

2015). The osteoderms of Tarentola are more dense around the skull, and may overly the 

lower jaw and the chin region (Vickaryous et al., 2015). When these structures are 
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developed in the postcranium of Tarentola, in cleared and stained preparations they appear 

as scattered structures in the dorsal region of the body (Vickaryous et al., 2015), however, 

they form an almost continuous layer of dermal bone comprised of thousands of tiny 

isolated elements (Avallone, Tizzano, Cerciello, Buglione, & Fulgione, 2018); the 

discrepancy in the degree of covering reported in these two studies is likely attributed to 

sexual, ontogenetic and geographical differences. Osteoderms in the genus Gekko 

(Gekkonidae) are more similar to those of Tarentola spp. and other squamates in terms of 

permanency and morphology (juxtaposed, polygonal; Parker & Taylor, 1942).  

A diversity of functions have been proposed for osteoderms including protection 

(Broeckhoven et al., 2017; Moss, 1969; Vickaryous et al., 2015), locomotion (Buchwitz & 

Voigt, 2010; Buchwitz et al., 2012; Dilkes & Brown, 2007; Frey, 1988; Seidel, 1979), 

calcium mineral storage (Curry Rogers et al., 2011; Dacke et al., 2015; Klein, Scheyer, & 

Tütken, 2009), and thermoregulation (Farlow et al., 2010; Farlow et al., 1976; Seidel, 

1979), or a combination of these functions (Broeckhoven et al., 2017). For example, 

Broeckhoven et al. (2017) provided evidence for  a functional trade-off between strength 

and thermal capacity of osteoderms in two species of girdled lizards. 

Considering reinforcement of the integument, a body armor covering can not only serve 

as an antipredator defense but can also act to prevent intraspecific aggression, as well as 

protect against dangerous prey commonly encountered by some of the armored gecko 

species (Vickaryous & Sire, 2009). Geckolepis osteoderms have been inferred to function 
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more as thermoregulation structures or deposits of labile calcium for eggshell formation 

(Paluh et al., 2017). On the other hand, extreme shedding, such as observed in Geckolepis 

(Paluh et al., 2017; Schmidt, 1911, 1912), could be also interpreted as an antipredator 

strategy that might trick the hunter; shedding a large amount of hardened integument could 

work in similar way to other antipredator strategies, such as tail autotomy, which is a 

widespread strategy among squamates (Hofstetter & Gasc, 1969; McConnachie & Whiting, 

2003), being developed in 13 families (Stanley et al., 2019). The protective nature of 

osteoderms is consistent with large specimens of Gekko gecko being capable of preying 

upon vertebrates, in addition to invertebrates, that have the potential to injure their heads 

(e.g., birds, geckos, rodents, and snakes; Bucol & Alcala, 2013; and see review in Daza, 

Herrera, Thomas, & Claudio, 2009). Furthermore, to kill large prey items G. gecko is 

known to exhibit the peculiar behavior of smashing their heads and the prey against the 

substrate, hence the cephalic shield may offer additional protection ( Bucol & Alcala, 

2013). In cordylid lizards, osteoderms increase skin toughness, serving as an antipredator 

strategy by withstanding bite forces of mammalian predators; however, predation by snakes 

and thermoregulation might cause variation in defensive morphology (Broeckhoven et al., 

2015). A similar conclusion can be drawn for the species Gekko gecko, as they are also 

preyed upon by snakes (e.g., Golden tree snake, Chrysopelea ornata – Shaw, 1802; Babu, 

Shihan, Debbarma, & Debbarma, 2018).  
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The pattern of osteoderm distribution in G. gecko, limited to the head with scattered 

small elements on the dorsal side of the trunk, argues against any physiological role 

(thermoregulation, water loss), and to some extent protection against some predators/prey, 

although some protection might be offered against direct strikes to the head by conspecifics 

or prey. Males of Gekko gecko are known for being territorial and aggressive (Henkel & 

Schmidt, 1995; Marcellini, 1977; Seufer, 1991), especially when defending their eggs and 

offspring (Petzold, 2007). In G. gecko, restriction of the osteoderm layer to predominantly 

form a cephalic shield over the dorsal surface of the head could relate to such agonistic 

behaviors (Vickaryous et al., 2015). The osteoderm distribution pattern in G. gecko differs 

considerably from the pattern seen in heavily armored lizards (e.g., cordylids and 

gerrhosaurids), which in fact display a wide range of different combinations of areas 

covered (Stanley, 2013), including: 1) full-body covering (e.g., Broadleysaurus major 

DUMÉRIL 1851, Ouroborus cataphractus BOIE 1828, Smaug giganteus SMITH 1844), 2) 

head, limbs, and tail covered (e.g., Pseudocordylus transvaalensis FITZSIMONS 1943), 

and 3) body covering reduced or absent and tail covered (e.g., Platysaurus ocellatus 

BROADLEY 1962). Tail cover is important for cordylids and gerrhosaurids considering 

that some of them use crevices as retreats, oftentimes leaving the tail uncovered. In the case 

of geckos, where the tail is commonly shed, development of caudal osteoderms seems 

certainly ineffective since it would be a wasted investment of energy and calcium; 

nevertheless, they can be present in the tail (e.g., in Tarentola).  
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The idea that these dermal structures might work as additional deposits of calcium has 

been proposed (Paluh et al., 2017), and could be similar to how alligators may source 

calcium from osteoderms for eggshell production (Dacke et al., 2015). Alternatively, 

calcareous materials are produced in the endolymphatic apparatus of all vertebrates 

(Whiteside, 1922), and in some geckos and iguanians the endolymphatic sacs become 

greatly enlarged, forming protruding structures extracranially (Kluge, 1967). These 

structures are found mainly in the neck and sometimes anterior to the braincase, which 

extend via a foramen that opens from the anterior semicircular canal (pathway of the 

accessory endolymphatic duct, Conrad & Daza, 2015). It seems plausible that, at least in 

geckos and iguanians, the endolymphatic sacs are supplying all the calcium necessary for 

egg production (Bauer, 1989; Kluge, 1967; Lamb et al., 2017). In the sphaerodactylid 

gecko Gonatodes antillensis LIDTH DE JEUDE 1887 it has been shown that females 

develop larger endolymphatic sacs than males, and that gravid females have slightly larger 

endolymphatic sacs than non-gravid females (Lamb et al., 2017). Kluge (1967) illustrated 

an adult male and female specimen of G. gecko, highlighting that males lack extracranial 

endolymphatic sacs, while in females these structures appear very enlarged. In our 

sampling we found that these sacs were also present in males, but frequently are smaller 

than in females (Figure 6, supplemental online material, Table S2).  

Considering the results of the analysis of endolymphatic sac areas as an approximation 

of the size of these structures it seems that, for its size, Gekko gecko, along with other 
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gecko species with osteoderms, has proportionally larger endolymphatic sacs compared to 

geckos without osteoderms (Figure 10). Given the rare occurrence of osteoderms across 

gekkotans however (three small clades), even with unlimited species sampling it may 

remain impossible to draw strong conclusions about the relationship between 

endolymphatic sac size and osteoderms. Furthermore, size of endolymphatic sacs is highly 

variable among geckos, including differences among species or families (e.g., sacs tend to 

be absent in diplodactylids, likely because this family lay leathery rather than hard-shelled 

eggs), between sexes, stage of reproductive cycle in females, and availability of calcium in 

diet (e.g., captive animals). Given this variability and that our sampling only included a few 

individuals per species, we recommend considering this a preliminary analysis and 

interpreting these results with caution until more accurate approaches are applied to study 

these structures in depth (e.g., Diffusible Iodine-based Contrast-Enhanced Computed 

Tomography [DiceCT], detailed dissections, vital staining of the calcium, or post-mortem 

staining of large sample sizes for many species). Despite the limitations of these data, our 

analysis suggests that in geckos with osteoderms, the endolymphatic sacs might have a dual 

function as a source of calcium, not only for egg production, but also for the extra bone 

material. We propose that osteoderms represent structures that require rather than provide 

calcium resources and would predict that if the opposite were the case, the endolymphatic 

sacs in geckos with osteoderms would be more likely to be reduced in size compared to the 

body size.  
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5. Conclusions 

Despite our broad species sampling, osteoderms were only confirmed in two sister taxa 

(Gekko gecko and G. reevesii), therefore these dermal structures are a synapomorphy for 

this clade of geckos. Osteoderms in other geckos, since they occur in quite divergent 

clades, and due to their overall differences in permanence (Geckolepis), morphology 

(Tarentola), and spatial distribution (both), are independently acquired and non-

homologous. 

Although these structures are homologous in the two species of the group of Indopacific 

geckos, we found disparity between these two species in the timing of development of the 

osteoderms. A more detailed assessment of the development of this trait is required in G. 

reevesii, including additional specimens of varying size, in order to better understand the 

developmental discordance.  

In Gekko gecko and G. reevesii, osteoderms are likely to reinforce the integument, 

especially in large specimens that might be more exposed to agonistic behavior of 

conspecifics or large prey items, as a consequence of increase in diversity of dietary items 

during ontogeny. With current data we cannot conclude if the osteoderms in G. gecko 

function as calcium reservoirs, however, our data implies that increased auxiliary structures 

(i.e., extracranial endolymphatic sacs) in gecko species with osteoderms possibly fulfill this 

function. Conclusively determining the final storage area of calcium could be done 
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experimentally by feeding captive geckos with calcium isotopes and tracking the pathway 

of calcium accumulation in the body.  

 

Data availability statement 

The data that support the findings of this study are available from the corresponding author 

upon reasonable request. 

 

Author contributions 

JDD and MPH conceived of the study; RJL, CHM, KL, MPH, TG and JDD collected and 

analyzed data; RJL, CHM, MPH, TG and JDD produced the figures; MPH, TG, AMB, and 

JDD contributed funding; all authors contributed to writing of the manuscript. 

 

Acknowledgements 

The authors would like to acknowledge Jessie Maisano and Matt Colbert from The 

University of Texas High-Resolution X-ray Computed Tomography Facility for scanning 

all the specimen for the NSF Collaborative Research: RUI: From Exaptation to Key 

Innovation – Evolutionary Insights from Gliding Geckos. We thank Patrick Lewis for 

providing further HRCT scans; thanks to Kevin de Queiroz, Rayna Bell, Kenneth Tighe, 

Addison Wynn, Steve Gotte from the Division of Amphibians and Reptiles at the National 

Museum of Natural History, Smithsonian Institution, and Maria Camila Vallejo, Elizabeth 

This article is protected by copyright. All rights reserved.



Laver et al. 33 
 

Sullivan, and Christopher Schalk from their help obtaining digital X-rays. We also would 

like to thank Greg Watkins-Colwell (Yale Peabody Museum of Natural History), Lauren 

Scheinberg (California Academy of Sciences) and Alan Resetar (The Field Museum) for 

access to specimens under their care. This study was funded in-part by the National Science 

Foundation (DEB1657662 awarded to TG; DEB1657656 awarded to JDD; DEB1555968 

awarded to AMB; DEB1657527 awarded to MPH), and experiment.com.  

 

This article is protected by copyright. All rights reserved.



Laver et al. 34 
 

References 

Angel, F. (1942). Les lézards de Madagascar. Memoires De L'academie Malgache, 36, 1–
193.  

Arnold, E. N. (1989). Towards a phylogeny and biogeography of the Lacertidae: 
relationships within an Old World family of lizards derived from morphology. 
Bulletin of the British Museum of Natural History, 55, 209‒257.  

Auffenberg, W. (1981). The behavioral ecology of the Komodo monitor. Gainesville, 
Florida: University Press. 

Avallone, B., Tizzano, M., Cerciello, R., Buglione, M., & Fulgione, D. (2018). Gross 
anatomy and ultrastructure of Moorish Gecko, Tarentola mauritanica skin. Tissue 
and Cell, 51, 62‒67. doi:10.1016/j.tice.2018.03.002 

Babu, M. Q., Shihan, T. R., Debbarma, R., & Debbarma, P. (2018). Chrysopelea ornata 
(Ornate flying snake). Diet. Herpetological Review, 49(3), 544‒545.  

Barahona, F., & Barbadillo, L. J. (1998). Inter-and intraspecific variation in the post-natal 
skull of some lacertid lizards. Journal of Zoology, 245(4), 393‒405. 
doi:10.1111/j.1469-7998.1998.tb00114.x 

Batista, A., Hertz, A., Mebert, K., Koehler, G., Lotzkat, S., Ponce, M., & Vesely, M. 
(2014). Two new fringe-limbed frogs of the genus Ecnomiohyla (Anura: Hylidae) 
from Panama. Zootaxa, 3826(3), 449‒474. doi:10.11646/zootaxa.3826.3.2 

Bauer, A. M. (1989). Extracranial endolymphatic sacs in Eurydactylodes (Reptilia: 
Gekkonidae), with comments on endolymphatic function in lizards. Journal of 
Herpetology, 23(2), 172‒175. doi:10.2307/1564025 

Bauer, A. M. (2013). Geckos: the animal answer guide. Baltimore, USA: The Johns 
Hopkins University Press. 

Bauer, A. M., & Russell, A. P. (1989). Supraorbital ossifications in geckos (Reptilia: 
Gekkonidae). Canadian Journal of Zoology, 67(3), 678‒684. doi:10.1139/z89-098 

Bellairs, d. A., & Kamal, A. M. (1981). The Chondrocranium and the Development of the 
Skull in Recent Reptiles. In C. Gans (Ed.), Biology of the Reptilia (Vol. 11, 
Morphology F, pp. 1‒263). London, UK: Academic Press. 

Bever, G. S., Bell, C. J., & Maisano, J. A. (2005). The ossified braincase and cephalic 
osteoderms of Shinisaurus crocodilurus (Squamata, Shinisauridae). Palaeontologia 
Electronica, 8(1), 1‒36.  

Bhullar, B.-A. S., & Bell, C. J. (2008). Osteoderms of the California legless lizard Anniella 
(Squamata: Anguidae) and their relevance for considerations of miniaturization. 
Copeia, 2008(4), 785‒793. doi:10.1643/CG-07-189 

Broeckhoven, C., Diedericks, G., & Mouton, P. l. F. N. (2015). What doesn't kill you might 
make you stronger: functional basis for variation in body armour. Journal of Animal 
Ecology, 84(5), 1213‒1221. doi:10.1111/1365-2656.12414 

This article is protected by copyright. All rights reserved.



Laver et al. 35 
 

Broeckhoven, C., du Plessis, A., & Hui, C. (2017). Functional trade-off between strength 
and thermal capacity of dermal armor: insights from girdled lizards. Journal of the 
Mechanical Behavior of Biomedical Materials, 74, 189‒194. 
doi:10.1016/j.jmbbm.2017.06.007 

Broeckhoven, C., du Plessis, A., Minne, B., & Van Damme, R. (2019). Evolutionary 
morphology of osteoderms in squamates. Journal of Morphology, 280(S1), S90. 
doi:10.1002/jmor.21003 

Broeckhoven, C., El Adak, Y., Hui, C., Van Damme, R., & Stankowich, T. (2018). On 
dangerous ground: the evolution of body armour in cordyline lizards. Proceedings 
of the Royal Society B: Biological Sciences, 285(1880), 20180513. 
doi:10.1098/rspb.2018.0513 

Broeckhoven, C., Mouton, P. l. F. N., & Hui, C. (2018). Proximate causes of variation in 
dermal armour: insights from armadillo lizards. Oikos, 127(10), 1449‒1458. 
doi:10.1111/oik.05401 

Buchwitz, M., & Voigt, S. (2010). Peculiar carapace structure of a Triassic chroniosuchian 
implies evolutionary shift in trunk flexibility. Journal of Vertebrate Paleontology, 
30(6), 1697‒1708. doi:10.1080/02724634.2010.521685 

Buchwitz, M., Witzmann, F., Voigt, S., & Golubev, V. (2012). Osteoderm microstructure 
indicates the presence of a crocodylian‐like trunk bracing system in a group of 
armoured basal tetrapods. Acta Zoologica, 93(3), 260‒280. doi:10.1111/j.1463-
6395.2011.00502.x 

Bucol, A., & Alcala, A. (2013). Tokay gecko, Gekko gecko (Sauria: Gekkonidae) predation 
on juvenile house rats. Herpetology Notes, 6, 307‒308.  

Burbrink, F. T., Grazziotin, F. G., Pyron, R. A., Cundall, D., Donnellan, S., Irish, F., . . . 
Zaher, H. (2019). Interrogating genomic-scale data for Squamata (lizards, snakes, 
and amphisbaenians) shows no support for key traditional morphological 
relationships. Systematic Biology, syz062. doi:10.1093/sysbio/syz062 

Camp, C. L. (1923). Classification of the lizards. Bulletin of the American Museum of 
Natural History, 48, 289‒482.  

Campos, L. A., Da Silva, H. R., & Sebben, A. (2010). Morphology and development of 
additional bony elements in the genus Brachycephalus (Anura: Brachycephalidae). 
Biological Journal of the Linnean Society, 99(4), 752‒767. doi:10.1111/j.1095-
8312.2010.01375.x 

Carranza, S., Arnold, E. N., Mateo, J. A., & Geniez, P. (2002). Relationships and evolution 
of the North African geckos, Geckonia and Tarentola (Reptilia: Gekkonidae), based 
on mitochondrial and nuclear DNA sequences. Molecular Phylogenetics and 
Evolution, 23(2), 244‒256. doi:10.1016/S1055-7903(02)00024-6 

Carranza, S., Arnold, E. N., Mateo, J. A., & López-Jurado, L. F. (2000). Long-distance 
colonization and radiation in gekkonid lizards, Tarentola (Reptilia: Gekkonidae), 

This article is protected by copyright. All rights reserved.



Laver et al. 36 
 

revealed by mitochondrial DNA sequences. Proceedings of the Royal Society of 
London B: Biological Sciences, 267(1444), 637‒649. doi:10.1098/rspb.2000.1050 

Chen, I. H., Kiang, J. H., Correa, V., Lopez, M. I., Chen, P.-Y., McKittrick, J., & Meyers, 
M. A. (2011). Armadillo armor: mechanical testing and micro-structural evaluation. 
Journal of the Mechanical Behavior of Biomedical Materials, 4(5), 713‒722. 
doi:10.1016/j.jmbbm.2010.12.013 

Chen, I. H., Yang, W., & Meyers, M. A. (2015). Leatherback sea turtle shell: a tough and 
flexible biological design. Acta Biomaterialia, 28, 2–12. 
doi:10.1016/j.actbio.2015.09.023 

Conrad, J. L. (2008). Phylogeny and systematics of Squamata (Reptilia) based on 
morphology. Bulletin of the American Museum of Natural History, 2008(310), 1‒
182. doi:10.1206/310.1 

Conrad, J. L., & Daza, J. D. (2015). Naming and rediagnosing the Cretaceous 
gekkonomorph (Reptilia, Squamata) from Öösh (Övörkhangai, Mongolia). Journal 
of Vertebrate Paleontology, 35(5), e980891. doi:10.1080/02724634.2015.980891 

Conrad, J. L., Head, J. J., & Carrano, M. T. (2014). Unusual soft‐tissue preservation of a 
crocodile lizard (Squamata, Shinisauria) from the Green River Formation (Eocene) 
and shinisaur relationships. The Anatomical Record, 297(3), 545‒559. 
doi:10.1002/ar.22868 

Costantini, D., Alonso, M. L., Moazen, M., & Bruner, E. (2010). The relationship between 
cephalic scales and bones in lizards: a preliminary microtomographic survey on 
three lacertid species. The Anatomical Record: Advances in Integrative Anatomy 
and Evolutionary Biology, 293(2), 183‒194. doi:10.1002/ar.21048 

Curry Rogers, K., D'emic, M., Rogers, R., Vickaryous, M., & Cagan, A. (2011). Sauropod 
dinosaur osteoderms from the Late Cretaceous of Madagascar. Nature 
Communications, 2, 564. doi:10.1038/ncomms1578 

Dacke, C. G., Elsey, R. M., Trosclair III, P. L., Sugiyama, T., Nevarez, J. G., & Schweitzer, 
M. H. (2015). Alligator osteoderms as a source of labile calcium for eggshell 
formation. Journal of Zoology, 297(4), 255‒264. doi:10.1111/jzo.12272 

Daza, J. D., Herrera, A., Thomas, R., & Claudio, H. J. (2009). Are you what you eat? A 
geometric morphometric analysis of gekkotan skull shape. Biological Journal of the 
Linnean Society, 97(3), 677‒707. doi:10.1111/j.1095-8312.2009.01242.x 

Daza, J. D., Mapps, A. A., Lewis, P. J., Thies, M. L., & Bauer, A. M. (2015). Peramorphic 
traits in the tokay gecko skull. Journal of Morphology, 276(8), 915‒928. 
doi:10.1002/jmor.20389 

de Queiroz, K. (1987). Phylogenetic systematics of iguanine lizards: a comparative 
osteological study (Vol. 118). California, USA: University of California Press. 

Dilkes, D., & Brown, L. E. (2007). Biomechanics of the vertebrae and associated 
osteoderms of the Early Permian amphibian Cacops aspidephorus. Journal of 
Zoology, 271(4), 396‒407. doi:10.1111/j.1469-7998.2006.00221.x 

This article is protected by copyright. All rights reserved.



Laver et al. 37 
 

Erickson, G. M., De Ricqles, A., De Buffrénil, V., Molnar, R. E., & Bayless, M. K. (2003). 
Vermiform bones and the evolution of gigantism in Megalania—how a reptilian fox 
became a lion. Journal of Vertebrate Paleontology, 23(4), 966‒970. doi:10.1671/23 

Estes, R., de Queiroz, K., & Gauthier, J. A. (1988). Phylogenetic relationships within 
Squamata. In Phylogenetic Relationships of the Lizard Families (pp. 119‒281). 
Standford, CA: Stanford University Press. 

Evans, S. E. (2008). The Skull of Lizards and Tuatara. In C. Gans, A. S. Gaunt, & K. Adler 
(Eds.), Biology of the Reptilia, The Skull of Lepidosauria (Vol. 20, Morphology 8, 
pp. 1‒347). Ithaca, NY: The Society for the Study of Amphibians and Reptiles 
(SSAR). 

Farlow, J. O., Hayashi, S., & Tattersall, G. J. (2010). Internal vascularity of the dermal 
plates of Stegosaurus (Ornithischia, Thyreophora). Swiss Journal of Geosciences, 
103(2), 173‒185. doi:10.1007/s00015-010-0021-5 

Farlow, J. O., Thompson, C. V., & Rosner, D. E. (1976). Plates of the dinosaur 
Stegosaurus: forced convection heat loss fins? Science, 192(4244), 1123‒1125. 
doi:10.1126/science.192.4244.1123 

Fitch, H. S. (1981). Sexual size differences in reptiles. Miscellaneous publication - 
University of Kansas, Museum of Natural History, 70, 1–72.  

Frey, E. (1988). The carrying system of crocodilians—a biomechanical and phylogenetical 
analysis. Stuttgarter Beitrage zur Naturkunde, Serie A (Biologie), 426, 1‒60.  

Gadow, H. (1901). Cambridge Natural History: Amphibia and Reptiles (Vol. VIII). New 
York: Hafner Publishing Company. 

Gao, K., & Norell, M. A. (2000). Taxonomic composition and systematics of Late 
Cretaceous lizard assemblages from Ukhaa Tolgod and adjacent localities, 
Mongolian Gobi Desert. Bulletin of the American Museum of Natural History, 
2000(249), 1‒118. doi:10.1206/0003-0090(2000)249<0001:TCASOL>2.0.CO;2 

Good, D. A., & Schwenk, K. (1985). A new species of Abronia (Lacertilia: Anguidae) from 
Oaxaca, Mexico. Copeia, 1985(1), 135‒141. doi:10.2307/1444801 

Grafen, A. (1989). The phylogenetic regression. Philosophical Transactions of the Royal 
Society of London. B: Biological Sciences, 326(1233), 119‒157. 
doi:10.1098/rstb.1989.0106 

Griffing, A. H., Daza, J. D., DeBoer, J. C., & Bauer, A. M. (2018). Developmental 
Osteology of the Parafrontal Bones of the Sphaerodactylidae. The Anatomical 
Record, 301(4), 581–606. doi:10.1002/ar.23749 

Harmon, L. J., Weir, J. T., Brock, C. D., Glor, R. E., & Challenger, W. (2008). GEIGER: 
investigating evolutionary radiations. Bioinformatics, 24(1), 129‒131. 
doi:10.1093/bioinformatics/btm538 

Henkel, F.-W., & Schmidt, J. (1995). Geckoes: biology, husbandry and reproduction. 
Malabar, Florida: Krieger Publishing Company. 

This article is protected by copyright. All rights reserved.



Laver et al. 38 
 

Hill, R. V. (2005). Integration of morphological data sets for phylogenetic analysis of 
Amniota: the importance of integumentary characters and increased taxonomic 
sampling. Systematic Biology, 54(4), 530‒547. doi:10.1080/10635150590950326 

Hofstetter, R., & Gasc, J. P. (1969). Vertebrae and ribs of modern reptiles. In C. Gans, d. A. 
Bellairs, & T. S. Parsons (Eds.), Biology of the Reptilia (Vol. 1, pp. 201‒301). 
London: Academic Press. 

Katoh, K., & Standley, D. M. (2013). MAFFT multiple sequence alignment software 
version 7: improvements in performance and usability. Molecular Biology and 
Evolution, 30(4), 772‒780. doi:10.1093/molbev/mst010 

King, D. (1964). The osteology of the water skink, Lygosoma (Sphenomorphus) quoyii. 
Australian Journal of Zoology, 12(2), 201‒216. doi:10.1071/ZO9640201 

Klein, N., Scheyer, T., & Tütken, T. (2009). Skeletochronology and isotopic analysis of a 
captive individual of Alligator mississippiensis Daudin, 1802. Fossil Record, 12(2), 
121‒131. doi:10.1002/mmng.200900002 

Kluge, A. G. (1967). Higher taxonomic categories of Gekkonid lizards and their evolution. 
Bulletin of the American Museum of Natural History, 135(1), 1‒60.  

Kraft, R. (1995). Xenarthra. In J. Niethammer, H. Schliemann, & D. Starck (Eds.), 
Handbuch der Zoologie (Vol. 8). Berlin: Walter de Gruyter. 

Krause, D. W., Evans, S. E., & Gao, K.-Q. (2003). First definitive record of Mesozoic 
lizards from Madagascar. Journal of Vertebrate Paleontology, 23(4), 842‒856. 
doi:10.1671/9 

Krmpotic, C. M., Ciancio, M. R., Carlini, A. A., Castro, M. C., Scarano, A. C., & Barbeito, 
C. G. (2015). Comparative histology and ontogenetic change in the carapace of 
armadillos (Mammalia: Dasypodidae). Zoomorphology, 134(4), 601‒616. 
doi:10.1007/s00435-015-0281-8 

Lamb, A. D., Watkins-Colwell, G. J., Moore, J. A., Warren, D. L., Iglesias, T. L., Brandley, 
M. C., & Dornburg, A. (2017). Endolymphatic sac use and reproductive activity in 
the Lesser Antilles endemic gecko Gonatodes antillensis (Gekkota: 
Sphaerodactylidae). Bulletin of the Peabody Museum of Natural History, 58(1), 17‒
30. doi:10.3374/014.058.0103 

Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T., & Calcott, B. (2016). 
PartitionFinder 2: new methods for selecting partitioned models of evolution for 
molecular and morphological phylogenetic datasets. Molecular Biology and 
Evolution, 34(3), 772‒773. doi:10.1093/molbev/msw260 

Levrat-Calviac, V. (1986). Étude comparée des ostéodermes de Tarentola mauritanica et 
de T. neglecta (Gekkonidae, Squamata). Archives d'Anatomie Microscopique et de 
Morphologie Expérimentale, 75(1), 29‒43.  

Levrat‐Calviac, V., &  Zylberberg, L. (1986). The structure of the osteoderms in the gekko: 
Tarentola mauritanica. American Journal of Anatomy, 176(4), 437‒446. 
doi:10.1002/aja.1001760406 

This article is protected by copyright. All rights reserved.



Laver et al. 39 
 

Loveridge, A. (1947). Revision of the African lizards of the family Gekkonidae. Bulletin of 
the Museum of Comparative Zoology, 98, 1‒469.  

Maisano, J. A. (2002). Terminal fusions of skeletal elements as indicators of maturity in 
squamates. Journal of Vertebrate Paleontology, 22(2), 268‒275. doi:10.1671/0272-
4634(2002)022[0268:TFOSEA]2.0.CO;2 

Maisano, J. A., Bell, C. J., Gauthier, J. A., & Rowe, T. (2002). The osteoderms and 
palpebral in Lanthanotus borneensis (Squamata: Anguimorpha). Journal of 
Herpetology, 36(4), 678‒683. doi:10.1670/0022-
1511(2002)036[0678:TOAPIL]2.0.CO;2 

Maisano, J. A., Laduc, T. J., Bell, C. J., & Barber, D. (2019). The cephalic osteoderms of 
Varanus komodoensis as revealed by high‐r esolution X‐ray computed 
tomography. The Anatomical Record, 302, 1675–1680. doi:10.1002/ar.24197 

Mangione, S., & Montero, R. (2001). The endolymphatic sacs in embryos of Amphisbaena 
Darwini. Journal of Herpetology, 35(3), 524–529. doi:10.2307/1565977 

Marcellini, D. (1977). Acoustic and visual display behavior of gekkonid lizards. American 
Zoologist, 17(1), 251‒260. doi:10.1093/icb/17.1.251 

Martins, E. P., & Hansen, T. F. (1997). Phylogenies and the comparative method: a general 
approach to incorporating phylogenetic information into the analysis of interspecific 
data. The American Naturalist, 149(4), 646‒667. doi:10.1086/286013 

McConnachie, S., & Whiting, M. J. (2003). Costs associated with tail autotomy in an 
ambush foraging lizard, Cordylus melanotus melanotus. African Zoology, 38(1), 
57‒65. doi:10.1080/15627020.2003.11657194 

McDowell, S. B., & Bogert, C. M. (1954). The systematic position of Lanthanotus and the 
affinities of the anguinomorphan lizards. Bulletin of the American Museum of 
Natural History, 105, 1‒142.  

Moss, M. L. (1969). Comparative histology of dermal sclerifications in reptiles. Acta 
Anatomica, 73(4), 510‒533. doi:10.1159/000143315 

Nguyen, L.-T., Schmidt, H. A., von Haeseler, A., & Minh, B. Q. (2015). IQ-TREE: a fast 
and effective stochastic algorithm for estimating maximum-likelihood phylogenies. 
Molecular Biology and Evolution, 32(1), 268‒274. doi:10.1093/molbev/msu300 

Niethammer, J. (1975). Hautverknöcherungen im schwanz von stachelmäusen (Acomys 
dimidiatus). Bonner Zoologische Beiträge, 26(1‒3), 100‒106.  

Oliver, J. A. (1951). Ontogenetic changes in osteodermal ornamentation in skinks. Copeia, 
1951(2), 127‒130. doi:10.2307/1437541 

Otto, H., & Coburg, S. (1909). Die Beschuppung der Brevilinguier und Ascalaboten. 
Jenaische Zeitschrift für Naturwissenschaft, 37, 193‒252.  

Paluh, D. J., & Bauer, A. M. (2017). Comparative skull anatomy of terrestrial and crevice-
dwelling Trachylepis skinks (Squamata: Scincidae) with a survey of resources in 
scincid cranial osteology. PLoS ONE, 12(9), e0184414. 
doi:10.1371/journal.pone.0184414 

This article is protected by copyright. All rights reserved.



Laver et al. 40 
 

Paluh, D. J., Griffing, A. H., & Bauer, A. M. (2017). Sheddable armour: identification of 
osteoderms in the integument of Geckolepis maculata (Gekkota). African Journal of 
Herpetology, 66(1), 12‒24. doi:10.1080/21564574.2017.1281172 

Paradis, E., & Schliep, K. (2018). ape 5.0: an environment for modern phylogenetics and 
evolutionary analyses in R. Bioinformatics, 35, 526‒528. 
doi:10.1093/bioinformatics/bty633 

Parker, H. W., & Taylor, R. H. R. (1942). The lizards of British Somaliland. Bulletin of the 
Museum of Comparative Zoology, 91, 1‒101.  

Petzold, H.-G. (2007). Lives of Captive Reptiles - Translation of “Aufgaben und Probleme 
bei der Erforshung der Lebensäusserungen der Niederen Amnioten (Reptilien)” 
[Tasks and Problems Encountered by Zoo Keepers in Research Concerning the 
Vital Manifestations of the Lower Amniotic Animals (Reptiles)] (Translated by L. 
Heichler and J.B. Murphy) (Vol. 22). Ithaca, New York: Society for the Study of 
Amphibians and Reptiles (SSAR). 

R_Core_Team. (2012). R: A language and environment for statistical computing. Vienna: 
R Foundation for Statistical Computing. Retrieved from http://www.R-project.org 

Rasband, W. S. (2018). US Image J. Bethesda, Maryland, USA: National Institutes of 
Health. Retrieved from https://imagej.nih.gov/ij/ 

Read, R. (1986). Osteoderms in the Lacertilia: an investigation into the structure and 
phylogenetic implications of dermal bone found under the skin of lizards. (PhD 
thesis), California State University, Fullerton, CA.  

Romer, A. S. (1956). Osteology of the Reptiles. Chicago: University of Chicago Press. 
Rösler, H., Bauer, A. M., Heinicke, M. P., Greenbaum, E., Jackman, T., Nguyen, T. Q., & 

Ziegler, T. (2011). Phylogeny, taxonomy, and zoogeography of the genus Gekko 
Laurenti, 1768 with the revalidation of G. reevesii Gray, 1831 (Sauria: 
Gekkonidae). Zootaxa, 2989(1), 1‒50. doi:10.11646/zootaxa.2989.1.1 

Ruibal, R., & Shoemaker, V. (1984). Osteoderms in anurans. Journal of Herpetology, 18, 
313‒328. doi:10.2307/1564085 

Russell, A. P., & Bauer, A. M. (1987). Le gecko géant Hoplodactylus delcourti et ses 
relations avec le gigantisme et l'endemisme insulaire chez les Gekkonidae. 
Mésogée, 46, 25‒28.  

Russell, A. P., Vickaryous, M. K., & Bauer, A. M. (2016). The phylogenetic distribution, 
anatomy and histology of the post‐cloacal bones and adnexa of geckos. Journal of 
Morphology, 277(2), 264‒277. doi:10.1002/jmor.20494 

Scherz, M. D., Daza, J. D., Köhler, J., Vences, M., & Glaw, F. (2017). Off the scale: a new 
species of fish-scale gecko (Squamata: Gekkonidae: Geckolepis) with exceptionally 
large scales. PeerJ, 5, e2955. doi:10.7717/peerj.2955 

Schmidt, W. J. (1911). Beobactungen an der Haut von Geckolepis und einigen anderen 
Geckoniden. In A. Voeltzkow (Ed.), Reise in Ostafrika in den Jahren 1903–1905 
mit Mitteln der Hermann und Elise geb. Hickman Wentzel-Stiftung ausgeführt 

This article is protected by copyright. All rights reserved.

http://www.r-project.org/
https://imagej.nih.gov/ij/


Laver et al. 41 
 

Wissenschaftliche Ergebniss von Alfred Voeltzkkow (Vol. 4, pp. 331–352). Stuttgart, 
BW: Schweizerbart’sche Verlagsbuchhandlung. 

Schmidt, W. J. (1912). Studien am Integument der Reptilien. I. Die Haut der Geckoniden. 
Zeitschrift für wissenschaftliche Zoologie, 51, 139‒258.  

Schucht, P. J., Rühr, P. T., Geier, B., Glaw, F., & Lambertz, M. (2019). Armored with skin 
and bone: the integumentary morphology of the Antsingy leaf chameleon Brookesia 
perarmata (Iguania: Chamaeleonidae). Journal of Morphology, 280(S1), S214. 
doi:10.1002/jmor.21003 

Seidel, M. R. (1979). The osteoderms of the American alligator and their functional 
significance. Herpetologica, 35(4), 375‒380.  

Seufer, H. (1991). Keeping and breeding geckos. Neptune, New Jersey: TFH Publications. 
Siebenrock, F. (1893). Das Skelet von Brookesia superciliaris Kuhl. Sitzungsberichte der 

Mathematisch-Naturwissenschaftlichen Classe der Kaiserlichen Akademie der 
Wissenschaften 102, 71‒118.  

Siebenrock, F. (1894). Das Skelet der Lacerta simonyi Steind. und der Lacertiden familie 
überhaupt. Sber. K. Akad. Wiss. Wien, Math.-Naturw. Kl, 103, 205‒292.  

Simoes, T. R., Caldwell, M. W., Tałanda, M., Bernardi, M., Palci, A., Vernygora, O., . . . 
Nydam, R. L. (2018). The origin of squamates revealed by a Middle Triassic lizard 
from the Italian Alps. Nature, 557(7707), 706‒709. doi:10.1038/s41586-018-0093-3 

Stanley, E. L. (2013). Systematics and morphological diversification of the Cordylidae 
(Squamata). (PhD Doctoral dissertation), American Museum of Natural History, 
New York, NY. Retrieved from http://digitallibrary.amnh.org/handle/2246/6713  

Stanley, E. L., Paluh, D. J., & Blackburn, D. C. (2019). Diversification of dermal armor in 
squamates. Journal of Morphology, 280(S1), S224. doi:10.1002/jmor.21003 

Suchard, M. A., Lemey, P., Baele, G., Ayres, D. L., Drummond, A. J., & Rambaut, A. 
(2018). Bayesian phylogenetic and phylodynamic data integration using BEAST 
1.10. Virus Evolution, 4(1), vey016. doi:10.1093/ve/vey016 

Sun, C.-Y., & Chen, P.-Y. (2013). Structural design and mechanical behavior of alligator 
(Alligator mississippiensis) osteoderms. Acta Biomaterialia, 9(11), 9049‒9064. 
doi:10.1016/j.actbio.2013.07.016 

Symonds, M. R. E., & Blomberg, S. P. (2014). A primer on phylogenetic generalised least 
squares. In L. Z. Garamszegi (Ed.), Modern Phylogenetic Comparative Methods 
and Their Application in Evolutionary Biology (pp. 105‒130). Berlin, Heidelberg: 
Springer-Verlag. 

Uetz, P., Freed, P., & Hošek, J. (2019). The Reptile Database.  Retrieved 14 October 2019 
http://www.reptile-database.org 

Vickaryous, M. K., & Hall, B. K. (2006). Osteoderm morphology and development in the 
nine-banded armadillo, Dasypus novemcinctus (Mammalia, Xenarthra, Cingulata). 
Journal of Morphology, 267(11), 1273‒1283. doi:10.1002/jmor.10475 

This article is protected by copyright. All rights reserved.

http://digitallibrary.amnh.org/handle/2246/6713
http://www.reptile-database.org/


Laver et al. 42 
 

Vickaryous, M. K., Meldrum, G., & Russell, A. P. (2015). Armored geckos: A histological 
investigation of osteoderm development in Tarentola (Phyllodactylidae) and Gekko 
(Gekkonidae) with comments on their regeneration and inferred function. Journal of 
Morphology, 276(11), 1345‒1357. doi:10.1002/jmor.20422 

Vickaryous, M. K., & Sire, J. Y. (2009). The integumentary skeleton of tetrapods: origin, 
evolution, and development. Journal of Anatomy, 214(4), 441‒464. 
doi:10.1111/j.1469-7580.2008.01043.x 

Villa, A., Daza, J. D., Bauer, A. M., & Delfino, M. (2018). Comparative cranial osteology 
of European gekkotans (Reptilia, Squamata). Zoological Journal of the Linnean 
Society, 184(3), 857‒895. doi:10.1093/zoolinnean/zlx104 

von Koenigswald, W., & Storch, G. (1983). Pholidocercus hassiacus, ein Amphilemuride 
aus dem Eözan der "Grube Messel" bei Darmstadt (Mammalia, Lipotyphla). 
Senckenbergiana Lethaea, 64, 447‒495.  

Whiteside, B. (1922). The development of the saccus endolymphaticus in Rana temporaria 
Linné. The American Journal of Anatomy, 30(2), 231‒266. 
doi:10.1002/aja.1000300204 

Wood, P. L. J., Guo, X., Travers, S. L., Su, Y.-C., Olson, K. V., Bauer, A. M., . . . Brown, 
R. M. (2019). Parachute geckos free fall into synonymy: Gekko phylogeny, and a 
new subgeneric classification, inferred from thousands of ultraconserved elements. 
bioRxiv, 717520. doi:10.1101/717520 

Zylberberg, L., & Castanet, J. (1985). New data on the structure and the growth of the 
osteoderms in the reptile Anguis fragilis L. (Anguidae, Squamata). Journal of 
Morphology, 186(3), 327‒342. doi:10.1002/jmor.1051860309 

 

  

This article is protected by copyright. All rights reserved.



Laver et al. 43 
 

Tables 

Table 1. List of Gekko spp. specimens discussed in this study that were scanned using 

High-Resolution Computed Tomography (HRCT), including snout-vent lengths (SVL), 

skull lengths (SL), the region of the body that osteoderms were observed, and the total 

volume of osteoderms.  

Specimen Number SVL 
(mm) 

SL 
(mm) 

Osteoderms 
Volume of 
osteoderms 

(mm3) 
Nasals Frontal Parietal Nape Jaw Gular Post-

cranial 

Gekko gecko                     
FMNH 261847 (♀) 61.7 19.1 – – – – – – x 1.7E-02 
FMNH 261849 (♀) 98.8 27.3 – x x x – – x 31.3 
FMNH 258696 (♀) 102.0 29.0 – x x x – – x 67.4 
FMNH 266245 (♂) 113.4 31.6 – x x x – – x 108.2 

YPM HERR 010083 (♂) 138.0 34.8 x x x x x x x 531.9 
FMNH 236071 (♂) 143.3 38.0 x x x x – – x 387.2 

SHSVMH-0001-2014 (♂) 167.0 46.1 x x x x x x x 884.0 
Gekko reevesii                     

YPM HERR 016062 (♀) 131.4 34.9 – x x x – x x 61.9 
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Figure Legends 

Figure 1. Box plot of the snout-vent length (SVL) in mm of specimens sampled. Gray area 

indicates the size range where osteoderms were detected in species of the genus Gekko 

gecko and G. reevesii. Note that only a few species were represented by specimens within 

this range.  

Figure 2. Gekko gecko, digital X-ray of the largest specimen included in this study (Snout-

vent length [SVL] 176.7 mm, USNM 564836 [♀]).  

Figure 3. Gekko gecko, osteoderm growth trajectory and volume in specimens observed 

using High-Resolution Computed Tomography (HRCT). Specimens: A) FMNH 261847 

(♀), B) FMNH 261849 (♀), C) FMNH 258696 (♀), D) FMNH 266245 (♂), E) YPM 

HERR 010083 (♂), and F) FMNH 236071 (♂), are displayed in a developmental 

progression from smallest (A) to largest (F). The osteoderms are rendered in green to 

distinguish them from the rest of the skeleton. 

Figure 4. Gekko gecko, transverse cross-section tomogram at the level of the frontoparietal 

suture of the specimens: A) FMNH 261847 (♀), B) FMNH 261849 (♀), C) FMNH 258696 

(♀), D) FMNH 266245 (♂), E) YPM HERR 010083 (♂), and F) FMNH 236071 (♂). 

Figure 5. Gekko gecko, midsagittal cross-section tomogram of the specimens: A) FMNH 

261847 (♀), B) FMNH 261849 (♀), C) FMNH 258696 (♀), D) FMNH 266245 (♂), E) 

YPM HERR 010083 (♂), and F) FMNH 236071 (♂). 
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Figure 6. Gekko gecko, osteoderm growth trajectory and volume in specimens observed 

using digital X-rays. Numbers in parentheses after specimen numbers are snout-vent 

lengths (SVLs) in mm: A) USNM 318728 (122.2, ♀), B) USNM 512854 (126.4, ♀), C) 

USNM 564835 (131.5, ♂), D) USNM 512855 (136.6, ♀), E) USNM 512857 (137.5, ♀), F) 

USNM 573671 (138.3, ♀), G) USNM 564838 (144.9, ♀), H) USNM 512856 (152.3, ♂), I) 

USNM 564837 (158.7, ♀), J) USNM 564836 (176.7, ♀).       

Figure 7. Gekko gecko, details of the osteoderms of the largest High-Resolution Computed 

Tomography (HRCT) specimen (SHSVMH-0001-2014, ♂) showing individual variation of 

the osteoderms at different regions of the skull.  

Figure 8. Increase in osteoderm volume in Gekko gecko along a body-size gradient, with 

data from samples presented in Figure 3. Log-transformed snout-vent length (SVL) in mm, 

log-transformed osteoderm volume measured in cubic mm. 

Figure 9. Gekko reevesii, details of the osteoderms of the High-Resolution Computed 

Tomography (specimen: YPM HERR 016062, ♀). The osteoderms are rendered in green to 

distinguish them from the rest of the skeleton. 

Figure 10. Plot of log-transformed endolymphatic sac area (mm2) against log(x+1)-

transformed snout-vent length (SVL, mm), with fitted lines from a Phylogenetic 

Generalized Least Squares (PGLS) model that includes the presence/absence of osteoderms 

as treatment. Gecko species with osteoderms tend to have larger endolymphatic sac area, 

and similar slopes with different intercepts are consistent with different phenotypic optima.  
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Abstract 

Armored skin resulting from the presence of bony dermal structures, osteoderms, is an 

exceptional phenotype in gekkotans (geckos and flap-footed lizards) only known to occur 

in three genera: Geckolepis, Gekko and Tarentola. The Tokay gecko (Gekko gecko 

LINNAEUS 1758) is among the best-studied geckos due to its large size and wide range of 

occurrence, and although cranial dermal bone development has previously been 

investigated, details regarding osteoderm development along a size gradient remain less 

well-known. Likewise, a comparative survey of additional species within the broader 

Gekko clade to determine the uniqueness of this trait has not yet been completed. Here we 

studied a large sample of gekkotans (38 spp.), including 18 specimens of G. gecko, using 

detailed X-rays and High-Resolution Computed Tomography (HRCT) for visualizing and 

quantifying the dermal armor in situ. Results from this survey confirm the presence of 

osteoderms in a second species within this genus, G. reevesii GRAY 1831, which exhibits 

discordance in timing and pattern of osteoderm development when compared with its sister 

taxon, G. gecko. We discuss the developmental sequence of osteoderms in these two 

species and explore in detail the formation and functionality of these enigmatic dermal 

ossifications. Finally, we conducted a comparative analysis of endolymphatic sacs in a wide 

array of gekkotans to explore previous ideas regarding the role of osteoderms as calcium 

reservoirs. We found that G. gecko, and other gecko species with osteoderms, have highly 

enlarged endolymphatic sacs relative to their body size, when compared to species without 

osteoderms, which implies that these membranous structures might fulfill a major role of 

calcium storage even in species with osteoderms. 
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Research Highlights: Within the Indopacific gecko clade only the Common and Reeves’ 

Tokay geckos were found to develop cephalic shields of osteoderms. Tokays are the largest 

gekkotans to develop osteoderms, and the timing of appearance in these species is 

heterochronic. 
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Graphical Abstract 

 
Graphical abstract: Distribution of osteoderms in the skull of a large sized Tokay gecko 

(Gekko gecko).  
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1. Introduction 

Acquisition of mineralized integumentary structures – osteoderms – has occurred 

independently several times in multiple vertebrate lineages (Vickaryous & Sire, 2009). 

Osteoderms may form as a continuous or patchy layer of osseous tissue in the dermis 

(Vickaryous & Sire, 2009), and are developed in representatives of most major tetrapod 

lineages (both extinct and living; Hill, 2005; Moss, 1969; Romer, 1956) including frogs 

(e.g. Batista et al., 2014; Campos, Da Silva, & Sebben, 2010; Ruibal & Shoemaker, 1984), 

dinosaurs (e.g. Curry Rogers, D'emic, Rogers, Vickaryous, & Cagan, 2011; Farlow, 

Thompson, & Rosner, 1976), leatherback turtles (in contrast to other Testudines; Chen, 

Yang, & Meyers, 2015), crocodilians (e.g. Seidel, 1979; Sun & Chen, 2013), lizards (e.g. 

Broeckhoven, Diedericks, & Mouton, 2015; Broeckhoven, El Adak, Hui, Van Damme, & 

Stankowich, 2018; Broeckhoven, Mouton, & Hui, 2018; Stanley, Paluh, & Blackburn, 

2019), xenarthrans (e.g. Chen et al., 2011; Krmpotic et al., 2015; Vickaryous & Hall, 

2006), the fossil Eocene elephant shrew Pholidocercus (von Koenigswald & Storch, 1983), 

and mice of the genus Acomys (Kraft, 1995; Niethammer, 1975). 

Among squamates, osteoderms have been reported in representatives of almost every 

major lizard clade (Broeckhoven, du Plessis, Minne, & Van Damme, 2019; Camp, 1923; 

Conrad, 2008; Estes, de Queiroz, & Gauthier, 1988; Evans, 2008; Gadow, 1901; Gao & 

Norell, 2000; Moss, 1969; Schmidt, 1912), including iguanians (e.g. de Queiroz, 1987; 

Schucht, Rühr, Geier, Glaw, & Lambertz, 2019; Siebenrock, 1893), gekkotans (e.g. Levrat-

Calviac, 1986; Levrat‐Calviac &  Zylberberg, 1986; Paluh, G riffing, & Bauer, 2017; 

Scherz, Daza, Köhler, Vences, & Glaw, 2017; Vickaryous, Meldrum, & Russell, 2015; 

Villa, Daza, Bauer, & Delfino, 2018), scincoideans (e.g. King, 1964; Krause, Evans, & 
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Gao, 2003; Oliver, 1951; Paluh & Bauer, 2017), lacertoideans (e.g. Arnold, 1989; Barahona 

& Barbadillo, 1998; Bellairs & Kamal, 1981; Costantini, Alonso, Moazen, & Bruner, 2010; 

Read, 1986; Siebenrock, 1894), and anguimorphs (e.g. Bever, Bell, & Maisano, 2005; 

Bhullar & Bell, 2008; Conrad, Head, & Carrano, 2014; Maisano, Bell, Gauthier, & Rowe, 

2002; McDowell & Bogert, 1954; Zylberberg & Castanet, 1985). Despite this diverse 

representation however, osteoderms can be inconsistently expressed within clades, even 

within the same genus (e.g. Abronia (Good & Schwenk, 1985), Varanus (Erickson, De 

Ricqles, De Buffrénil, Molnar, & Bayless, 2003), and Gekko (Vickaryous et al., 

2015)). Varanids are a particularly contrasting group; for instance, species can exhibit very 

conspicuous osteoderms (Varanus [Megalania] priscus [prisca] (Erickson et al., 2003), 

Varanus komodoensis OUWENS 1912 (Maisano, Laduc, Bell, & Barber, 2019)), or lack 

these dermal structures completely, (the vast majority of species within the genus Varanus; 

Auffenberg, 1981; Erickson et al., 2003). 

Gekkota, the likely sister clade to all other squamates (Burbrink et al., 2019; Simoes et 

al., 2018), is a highly diverse group with over 1900 species (Bauer, 2013; Conrad, 2008; 

Uetz, Freed, & Hošek, 2019). Despite the high species-richness however, osteoderms have 

only evolved in three genera of gekkotans, each representing an independent derivation: 

within the phyllodactylid genus Tarentola (Bauer & Russell, 1989; Levrat-Calviac, 1986; 

Levrat‐Calviac &  Zylberberg, 1986; Loveridge, 194 7; Otto & Coburg, 1909; Parker & 

Taylor, 1942; Vickaryous et al., 2015; Villa et al., 2018) and two gekkonid genera, 

Gekko (specifically, G. gecko LINNAEUS 1758, (Daza, Mapps, Lewis, Thies, & Bauer, 

2015; Vickaryous et al., 2015)) and Geckolepis (Paluh et al., 2017; Schmidt, 1911, 1912). 

Likely due to their independent origins, osteoderms in these genera are very different in 
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morphology. In the case of Tarentola, the osteoderms even develop a special kind of tissue 

called osteodermine (Vickaryous et al., 2015). Though discovery of osteoderms in the 

genus Geckolepis was based on early reports in an unidentified specimen (Schmidt, 1911, 

1912), until very recently it had been a matter of contention as to whether these structures 

were indeed true osteoderms (Bauer & Russell, 1989; Paluh et al., 2017; Vickaryous et al., 

2015). Geckolepis also represents a unique situation since a large portion of the skin in 

these geckos can be lost at once, degloving the body by an extensive avulsion (Angel, 

1942; Paluh et al., 2017; Scherz et al., 2017).   

The type genus of the family Gekkonidae, the genus Gekko, is undergoing 

reorganization (Wood et al., 2019) involving division into new subgenera and subsumption 

of two other genera into Gekko. In contrast to Geckolepis and Tarentola, where osteoderms 

have been documented across the respective genera, osteoderms in Gekko are only known 

to occur in Gekko gecko. However, it is only in recent years that works have begun to 

describe the ontogenetic development of gecko osteoderms in detail (e.g. Vickaryous et al., 

2015), and confidently confirmed osteoderms in additional species (Paluh et al., 2017). In 

light of this, and with the enhanced ability to visualize the patterning of osteodermal 

structures in situ using High-Resolution Computed Tomography (HRCT) methods (e.g. 

Maisano et al., 2019), the timing seems apt to reconsider osteoderm presence and 

development within the revised Gekko genus. We have obtained morphological data for a 

broad taxonomic sampling of species across the Gekko group that allows us to explore in 

detail the occurrence of these rare integumentary elements within this group.  

Osteoderms may contribute to a variety of possible functions, including playing a role in 

protection, locomotion, thermoregulation and even calcium mineral storage (e.g. 
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Broeckhoven, du Plessis, & Hui, 2017; Buchwitz, Witzmann, Voigt, & Golubev, 2012; 

Dacke et al., 2015; Farlow, Hayashi, & Tattersall, 2010). Though work is still progressing 

to understand the complexity of the roles of osteoderms, the distribution and form of these 

structures across the body may provide some clues. Gekko gecko possesses another 

structure that is presumed to play a role in calcium storage, the endolymphatic sacs. 

Endolymphatic sacs are gland-like, contain calcareous substances, and are typically located 

in the cranial vault, proximal to the brain (e.g. Bauer, 1989; Kluge, 1967; Whiteside, 1922). 

Though the full function of the endolymphatic system remains to be determined, it has been 

hypothesized to be involved in aspects of inner ear pressure regulation, sound transmission, 

protection of the central nervous system, and storage of calcium for both reproductive 

functions and for bone formation (Bauer, 1989; Kluge, 1967; Mangione & Montero, 2001). 

In certain iguanids, agamids, chameleons and several gekkotans the endolymphatic sacs are 

expanded to the point that they protrude anteriorly from the cranial vault and/or posteriorly 

to lie on either side of the neck (Bauer, 1989; Kluge, 1967). In G. gecko the extracranial 

endolymphatic sacs are particularly enlarged (Kluge, 1967), and we suspect this may serve 

for calcium storage not only to supply extra material for both reproductive functions and for 

bone formation, but additionally for osteoderm production. As a first step in investigating 

the possibility of a relationship between these structures we also measured the size of 

extracranial endolymphatic sacs in a broad sampling of geckos to quantify the relationship 

between osteoderm presence and size of endolymphatic sacs.  

The ontogenetic development of osteoderms in Gekko gecko was previously described 

by Vickaryous et al. (2015) together with geckos of the genus Tarentola. Previously the 

ontogenetic development of the skull was studied in G. gecko, but as this work was based 
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on skeletonized specimens, the osteoderms were not included (Daza et al., 2015). In this 

paper we had three broad aims and used HRCT images to document in further detail the 

development of osteoderms in a series of postnatal individuals of different size of the 

species G. gecko. This imaging technique allows us to: 1) visually document in detail the 

distribution of osteoderms in this species, and the sequence of development of these 

elements in the body. The new data also facilitates: 2) the description of the morphological 

variation of individual osteoderms in situ. Finally, we: 3) compare the proportion of the 

extracranial endolymphatic sacs in the species G. gecko with those of other species with 

and without osteoderms in order to determine whether these additional ossifications are 

correlated with the size of these calcium-rich structures. 

 

2. Materials and Methods 

Imaging techniques: We used two methods to study bony elements: digital X-rays and 

HRCT. Digital X-rays were taken at the Division of Amphibians and Reptiles and 

Ichthyology X-ray facility at the Museum Support Center of the National Museum of 

Natural History, Smithsonian Institution. We used an X-ray system with a KevexTM 

PXS10-16W X-ray source and Varian Amorphous Silicon Digital X-Ray Detector 

PaxScanH 4030R set to 130 kV at 81 mA. For each X-ray, linear and pseudofilm filters 

were used. The HRCT scans were obtained at the University of Texas HRXCT Facility 

(UTCT) using a FeinFocus Microfocal source NSI scanner (Garbsen, Germany), operating 

at variable kV and mA values, with no X-ray prefilter. Three specimens were scanned 

simultaneously using a helical continued CT Scan. Volume renderings were obtained using 

Avizo Lite version 2019.2 (Thermo Fisher Scientific, 2019). TIFF images from 3D 
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renderings were used herein for descriptions and comparisons. In addition, the individual 

X-rays of the premaxillary-nasal suture, fronto-nasal suture, fronto-parietal suture and the 

cervical region were used for a more detailed assessment of the morphology and 

development of the osteoderms in different regions of the skull. A web-deliverable version 

of the resulting visualizations is available at Morphosource. 

Specimen source: Specimens from the group of Indopacific geckos were obtained from 

preserved formalin‐fixed, ethanol‐ preserved museum specimens (Table S1). We 

concentrated our sampling on the genus Gekko as recently revised (Wood et al., 2019) and 

included representatives from five of the seven Gekko subgenera—Archipelagekko, Gekko, 

Japonigekko, Ptychozoon, and Sundagekko; in addition to some closely related genera—

Lepidodactylus and Luperosaurus. We examined a total of 100 specimens, covering 38 

species. The species Gekko gecko was represented by 18 specimens, seven of which were 

CT scanned and 11 were X-rayed. The specimens span a range of body sizes, with snout-

vent lengths (SVL) from 42.3 mm to 176.7 mm. These specimens of G. gecko were used 

here as a proxy for the different stages of development, as a means to assess osteoderm 

development throughout ontogeny (Table 1). The SVLs, skull-lengths (SL), and 

extracranial endolymphatic areas were measured from X-rays in ImageJ v1.8.0 (Rasband, 

2018). Sex was indicated where possible for specimens examined in this study. For many 

specimens this information was available from online museum databases. Where it was not 

available, we determined sex of males by presence of cloacal bones (Carphodactylidae, 

Diplodactylidae, Eublepharidae, Gekkonidae, Phyllodactylidae; following the review by 

Russell et al. (2016), or hemibacula in Aristelliger (Sphaerodactylidae), and/or females by 

the presence of eggs (gravid Sphaerodactylidae and other families). 
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For HRCT scanned specimens of G. gecko, we calculated the same measurements, as 

well as osteoderm volumes using the measuring tool in Avizo. To estimate the volume of 

the osteoderms, these elements were segmented in Avizo and the number of voxels 

occupied was used as a measure of volume; volume values were regressed against SVLs to 

determine changes in volume with body size. For the endolymphatic area analysis, we 

initially followed the same approach as Lamb et. al. (2017) to compare the area of the 

endolymphatic sacs in geckos in relation to SVL. We assessed the disparity of 

endolymphatic sac area among 164 samples across 113 gecko species with and without 

osteoderms (Table S2) using phylogenetic generalized least-square analysis (PGLS; Grafen, 

1989; Martins & Hansen, 1997; Symonds & Blomberg, 2014) and a multi-locus, 

ultrametric phylogeny. For the phylogenetic analysis, sequences of the 16S, ACM4, CMOS, 

ND2, PDC, RAG-1 and RAG-2 genes were downloaded from GenBank 

(https://www.ncbi.nlm.nih.gov/genbank) for all available species with accompanying 

endolymphatic sac measurements (Table S3). Sequences were aligned using MAFFT 

v7.429 (Katoh & Standley, 2013), and a partitioning and model scheme identified using 

PartitionFinder v2.1 (Lanfear, Frandsen, Wright, Senfeld, & Calcott, 2016), considering all 

genes and codon positions as potentially different partitions. The best-fitting partitioning 

scheme and models were used to produce a maximum likelihood (ML) tree estimate in IQ-

TREE v1.5 (Nguyen, Schmidt, von Haeseler, & Minh, 2015). A preliminary ultrametric 

tree was then estimated under Penalized Likelihood in the package ‘ape’ v5.3 (Paradis & 

Schliep, 2018) in R v3.5.1 (http://www.R-project.org; R Core Team, 2012), which was then 

used as a starting tree for a finalized ultrametric phylogeny estimated in BEAST v1.10.4 

(Suchard et al., 2018). The BEAST analysis used the same partitions as the ML analysis 
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and was implemented as four parallel runs of 100 million generations, sampling every 

10,000 generations. The first 15 million generations of each run were discarded as burn-in, 

with the final consensus tree generated from the combined output of the four runs (Fig. S1). 

When more than one individual was measured per species, we used the largest specimen in 

the analysis. Comparative analyses were conducted in R with the packages ‘geiger’ v2.0.6.2 

(Harmon, Weir, Brock, Glor, & Challenger, 2008) and ‘ape’.  

 

3. Results 

3.1 Occurrence of osteoderms 

Cephalic osteoderms were only found in large specimens of the species Gekko gecko, 

and in one specimen assignable to G. reevesii GRAY 1831 (Table 1). The minimum sized 

individual in which we detected the presence of osteoderms was a G. gecko of 98.8 mm 

SVL. Of the 38 species examined, only five additional species exceed this minimum SVL–

Gekko (Archipelagekko) mindorensis TAYLOR 1919, G. (Gekko) reevesii, G. (G.) 

siamensis GROSSMANN & ULBER 1990, G. (G.) smithii GRAY 1842, and G. 

(Sundagekko) petricolus TAYLOR 1962–yet osteoderms were not detected in any of our 

HRCT or X-ray scans from these specimens either (Table S1). These new data suggest that 

the presence of osteoderms in the group of Indopacific geckos occurs only in large 

specimens of large species (i.e. at least 98.8 mm SVL; G. gecko, G. reevesii), as the 

majority of the specimens sampled where no osteoderms were found were <98.8 mm in 

SVL (Fig. 1). The maximum sized individual of G. gecko we measured in this work was 

from Burma and had an SVL of 176.7 mm (USNM 564836; Fig. 2), approaching the largest 
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reported values for this species, 176.0–178.0 mm (Bauer, 2013; A P Russell & Bauer, 

1987). 

 

3.2 Pattern of development of osteoderms in Gekko gecko 

The smallest HRCT specimen (SVL 61.7 mm, SL 19.1 mm, FMNH 261847, ♀) shows 

characteristics of immature specimens such as paired parietals and nasals (Daza et al., 

2015); partially ossified pectoral girdle, pelvic girdle and tarsal elements; and non-ossified 

carpal, and epiphyses of long bones. Osteoderms were not present within this specimen 

(Fig. 3A, 4A, 5A). 

Osteoderms were visible in slightly larger HRCT (and X-ray) specimens (Figs. 3, 6). 

Onset of osteoderm development occurred at the same size range in both males and females 

of Gekko gecko, and there was no obvious sexual dimorphism in osteoderm volume or 

distribution. Sexual dimorphism in this species in general has also been noted to be 

minimal (Fitch, 1981). To simplify the description of the osteoderm development, we 

describe the distribution of osteoderms for each specimen ordered by increasing size, 

followed by a brief comment on visible changes to the skeleton.  

SVL 98.8 mm, SL 27.3 mm (FMNH 261849, ♀, Fig. 3B, 4B, 5B). The osteoderms in 

this specimen appear as scattered condensations overlying the prefrontal, orbits, frontal, 

parietal, squamosal, supraoccipital, and on top of the temporal region; yet there are still 

several spaces free of osteoderms. The osteoderms extend posteriorly to the level of the 

atlas. Individual osteoderms are ring-shaped with a void space in the center (Fig. 3B).  

The nasals and parietals have started to fuse together and although epiphyses and 

metaphyses are still cartilaginous, they are starting to show some of the carpal, tarsal, and 
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elbow and knee sesamoid elements. The wrist of the specimen shows two bones, the ulnare 

(proximal to the ulna) and the centrale, located in the middle of the wrist (Fig. 3B). In the 

elbow and knee joints there are epiphyseal ossification centers, and in the ankle, there are 

four elements: the astragalocalcaneum, two distal tarsals (3 and 4), and the metatarsal V 

(Fig. 3B). 

SVL 102.0 mm, SL 29.0 mm (FMNH 258696, ♀, Fig. 3C, 4C, 5C). Despite the similar 

body size between this specimen and the previous one, there are striking differences 

between them in both osteoderm volume and ossification. In this specimen, the osteoderms 

are more densely packed, forming a continuous armor that covers the same bones, in 

addition to the postorbitofrontal. The osteoderms cover the entire surface of these bones 

with no exposure of the surface except for the anterior portion of the frontal, which remains 

exposed. The cephalic shield covers the orbits (eyes) more extensively and descends 

laterally and extends posteriorly to cover the level of the third cervical vertebra. 

The nasals and parietals still show ongoing fusion (Daza et al., 2015), the epiphyses and 

metaphyses are still cartilaginous, showing two bones in the wrist (ulnare and centrale). 

The elbow and knee joints show additional ossification centers and epiphyses, and in the 

ankle the same four elements are observed as in the previous specimen. 

SVL 113.4 mm, SL 31.6 mm (FMNH 266245, ♂, Fig. 3D, 4D, 5D). At this size, the 

specimen shows additional concentration of osteoderms on top of the temporal area and the 

entire surface of the postorbitofrontal, following a neat pattern around the orbit. The 

osteoderms form a continuous structure similar to a helmet, completely covering the 

mandibular fossa when viewed in dorsal view and overlying the entirety of the squamosal. 
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The layer of osteoderms appears to be denser than in smaller specimens. Some of the 

individual osteoderms still have a void space in the center. 

The epiphyses and metaphyses still show signs of being cartilaginous, but they display 

an increasing number of ossification centers near the long bones in the elbow (5), wrist (4), 

and knee (~4). Major changes in the ankle are concentrated on the epiphyses of the tibia 

and fibula. 

SVL 138.0 mm, SL 34.8 mm (YPM HERR 010083, ♂, Fig. 3E, 4E, 5E). The 

osteoderms in this stage also cover the snout, including the entire frontal, nasals, prefrontal, 

and a large portion of the facial process of the maxilla, and some independent patches 

additionally cover the side of the posterior process of the maxilla. The osteoderms reach the 

limit between the premaxilla and the nasals. On the lateral side, the osteoderms extend 

more laterally covering the entire temporal region (including the entire lateral side, and 

forming a bony shield behind the orbit), and even reaching the eminence of the coronoid. 

Osteoderms are also present on the lateral side of the jaw, partially covering the dentary, 

and a large patch is present on the mental and chin area. The osteoderm shield extends 

posteriorly to the level of the fifth cervical vertebra, where there is an isolated row of large 

conical osteoderms. 

The epiphyseal plate and ossification centers are entirely fused, indicating skeletal 

maturity (Maisano, 2002). The elbow, wrist, knee, and ankle joints are also completely 

ossified. There is a sesamoid on the proximal side of the radius, and the fabella sesamoid is 

observed on the posterior side of both knees. 

SVL 143.3 mm, SL 38.0 mm (FMNH 236071, ♂, Fig. 3F, 4F, 5F). Although this 

specimen is slightly larger than the previous one (YPM HERR 010083), it shows a lower 
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volume of osteoderms. It has a similar distribution of osteoderms to the previous specimen 

but does not have osteoderms in the lower jaw region. The snout is also extensively covered 

by osteoderms, although these elements are scattered over the top of the nasals and the 

nasal-premaxilla suture. 

The osteoderm distribution on the dorsal part of the skull in this specimen is similar to 

that of specimen YPM HERR 010083, except that the snout retains some spaces without 

osteoderms. In addition, specimen FMNH 236071 has osteoderms on the tip of the facial 

process of the maxilla and only a small spot on the posterior part of this process. Although 

FMNH 236071 is larger than YPM HERR 010083, the former does not exhibit osteoderms 

in the gular region. 

SVL 167.0 mm, SL 46.1 mm (SHSVMH-0001-2014, ♂, Fig. 7). Specimen SHSVMH-

0001-2014 was illustrated previously (Daza et al., 2015); we have here produced images in 

all views to better illustrate the position of the osteoderms. We also use this specimen to 

describe the individual variation of osteoderms in this species. The osteoderms in this 

specimen cover virtually the entire surface of the cranium and portions of the jaw; the 

ascending nasal process of the premaxilla is covered, leaving only the labial margin of the 

maxilla exposed. 

Individual osteoderm variation of the cephalic osteoderms: In specimen SHSVMH-

0001-2014 the differentiation in the osteoderms is more marked, both in size and shape; 

osteoderms vary in size depending on the area of the head or body where they are formed. 

The smallest osteoderms are those along the midrow of the skull from the nasal region to 

anterior portion of the parietals, the ones forming the chin patch and the ones scattered on 

the gular region. The largest osteoderms are located in the temporal region, and they 
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enlarge as they approach the posterior border, especially the ones forming the free occipital 

row. Some of the largest osteoderms still preserve the void space in the middle (e.g. those 

of the occipital row). Osteoderms are arranged in an interlocking pattern similar to puzzle 

pieces, and the majority are either tubercular or doughnut shaped. The osteoderms 

associated with the supralabial and infralabial scales tend to be more irregular and 

elongated, almost rectangular. There is a line of very slim and elongated osteoderms 

surrounding the upper margins of the brille (Fig. 7). 

We observed that in Gekko gecko osteoderm volume increases linearly along the body 

size gradient (Fig. 8), and the relationship between size and volume shows positive 

allometry, as defined by the equation with an allometric coefficient higher than 10 (y = 

10.777x - 20.428). This data indicates that osteoderm volume increases rapidly with respect 

to body length (SVL), which is consistent with the pattern described. Once the osteoderms 

overlay certain areas of the skull (i.e. frontal, parietals) the individual dermal structures 

begin to expand and fill the space between them and within their central void spaces.  

 

3.3 Osteoderms in Gekko reevesii 

One of the specimens studied (YPM HERR 016062, ♀, SVL 131.4 mm, SL 34.9 mm, 

Fig. 9) was assignable to the species Gekko reevesii from southern China, representing a 

second species where these structures are found. The pattern of osteoderm distribution in 

this species is different to the one seen in the series of G. gecko. The osteoderms in this 

specimen, which has a skull length comparable with YPM HERR 010083, appear to present 

a less dense layer. Contrary to YPM HERR 010083, osteoderm distribution is similar to the 

skeletally immature specimens of G. gecko (e.g. FMNH 261849), although the osteoderms 
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are more concentrated on the palpebral region, and are very scattered on top of the frontal, 

postorbitofrontal, parietal, supraoccipital and the temporal region. One major difference is 

that despite the lower volume of osteoderms compared with G. gecko of similar size, this 

species displays osteoderms in the chin area, which tend to be developed in much later 

stages in G. gecko. 

 

3.4 Do endolymphatic sac proportions vary with presence of osteoderms? 

Gecko species with osteoderms have larger endolymphatic sacs than gecko species 

without osteoderms taking into account SVL (Fig. 10). PGLS results support that the 

endolymphatic sac area of geckos with or without osteoderms have similar slopes but the 

slopes have different intercepts. The PGLS model with osteoderms as treatment 

(endolymphatic sac area ~ ln[SVL] + osteoderms) received moderately stronger support 

than the model without treatment (endolymphatic sac area ~ ln[SVL], ΔAIC = 7.13). These 

findings imply that the extracranial endolymphatic sacs tend to be larger in gecko species 

with osteoderms than in species without osteoderms. 

 

4. Discussion 

4.1 Onset of osteoderm development 

Previously, osteoderms were considered to be absent from the hatchling stage (SVL 

<80.0 mm) to less than 111.5 mm SVL, which was the stage at which the first appearance 

of osteoderms was noted in Gekko gecko (Vickaryous et al., 2015). In our sampling, we 

noticed the presence of osteoderms in even smaller specimens (98.8 mm SVL). It is clear 

that these structures develop before the onset of skeletal maturity.  
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In both Gekko species where the presence of osteoderms was observed, the timing of 

appearance of these elements (based on comparison of similar sized specimens) is 

asynchronous to previous reports (Vickaryous et al., 2015). The development of osteoderms 

in G. gecko can described in three main stages: 1) In skeletally immature specimens, 

osteoderms appear overlying the posterior portion of the frontal bone, palpebral region, 

parietals, supraoccipital, and the temporal region (Fig. 3B–D, 4B–D, 5B–D). 2) In young 

adults, the osteoderms extend further towards the snout region, entirely covering the frontal 

bone, nasals, premaxilla, maxilla, and prefrontal (Fig. 3F, 4F, 5F). 3) In the last stage, 

specimens are skeletally mature and develop osteoderms covering the entire dorsal surface 

of the cranium and extending to the labial side of the jaw and chin areas (Fig. 3E, 4E, 5E, 

7). In stages 2 and 3 there is a noticeable incremental increase in osteoderm volume, to the 

point where spaces between individual elements are filled out.  

Previously it was described that individuals around the SVL of 111.5 mm (comparable 

to stage 1) have osteoderms restricted to the frontal bone and orbits, and no postcranial 

osteoderms (Vickaryous et al., 2015). We found here that osteoderms also covered the 

parietals, postorbitofrontals, supraoccipital and the temporal region. It is possible that the 

HRCT method better reveals the more posterior osteoderms compared to clear and staining. 

Our results are congruent with the Vickaryous et al. (2015) study where they further report 

the appearance of osteoderms covering most of the head (except the rostral-most tip) in 

slightly larger individuals (SVL 116.2 mm), and found no evidence of osteoderms beneath 

the supralabial scales, and only some mineralization subadjacent to the infralabials and 

across the gular region, and in the tubercles dorsal to the pectoral girdle. Vickaryous et al. 

(2015) described that in specimens larger than 121.9 mm SVL (equivalent to stage 2), most, 
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if not all, of the dorsal surface of the head (excluding the supralabial scales) is completely 

reinforced with osteoderms, including the gular region, and within dermal stroma of the 

tubercular scales across the trunk and limbs. Postcranial osteoderms in the trunk or limbs 

were not as evident as cephalic osteoderms in the full body HRCT datasets, and were 

instead observed as scarcely and randomly distributed, small and irregularly shaped 

osteoderms, most similar in form to those seen in the gular region. These few osteoderms 

were observed infrequently scattered in both dorsal and ventral surfaces of the trunk and 

limbs in all specimens, including the juvenile specimen which showed no cranial 

osteoderms (FMNH 261847, see Table 1), but were so small that most do not display in the 

HRCT volume renderings, in contrast to the cranial osteoderms. These discrepancies 

between this study and that of Vickaryous et al. (2015) may be attributed to the resolution 

of the scans and the size of these structures. 

The species Gekko reevesii is the sister species of G. gecko and the two species were 

long considered to be conspecific (Rösler et al., 2011). Based on the single available 

specimen of this species, it appears that the osteoderms may develop in a slightly different 

pattern to those in G. gecko, similar to observations of variation in timing and patterns of 

osteoderm accumulation in different species of Tarentola (Vickaryous et al., 2015). The 

specimen of G. reevesii studied measured 131.4 mm SVL; considering that this species 

attains a maximum of at least 173.0 mm SVL (Rösler et al., 2011), and the degree of 

ossification of the epiphyses and joint elements, we estimate this specimen to be a young 

adult. However, it already displays osteoderms in the chin region, prior to an increase in the 

osteoderm volume, and to development of these elements over the snout and jaw. A more 

detailed study of G. reevesii, including more specimens, is needed to corroborate this 
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asynchronous ossification pattern. At this point we cannot conclude whether this species 

develops similar volume of osteoderms in the skull as G. gecko. Likewise, we lack 

complete data on osteoderm development for other extremely large species of the subgenus 

Gecko (e.g. G. albofasciolatus GÜNTHER 1867, G. nutaphandi BAUER, SUMONTHA & 

PAUWELS 2008, G. verreauxi TYTLER 1865), and for some species we are lacking 

specimens near the maximum size limit (e.g. G. smithii (Rösler et al., 2011)); although 

none of the three adult specimens of G. siamensis or G. smithii included in this study have 

osteoderms. It would seem that large size may facilitate the appearance of the cephalic 

osteoderms in the genus Gekko; an analogous association between large size and the 

occurrence of parafrontal bones was reported in the Old World radiation of sphaerodactylid 

geckos (Griffing, Daza, DeBoer, & Bauer, 2018). 

 

4.2 Comments on the distribution and functionality of osteoderms in geckos 

Among the three gekkotan genera that exhibit osteoderms very different patterns of 

osteoderm distribution are observed. In terms of body coverage, osteoderms in Geckolepis 

(Gekkonidae) superficially resemble the body armor developed in skinks, where the whole 

body is covered by large, overlapping cycloid scales (except in the chin area); although the 

microstructure of the osteoderms in Geckolepis differ substantially from skinks in that they 

are much thinner, more pliable, and also ephemeral structures that are easily shed during 

regional integumentary loss (Paluh et al., 2017). The genus Tarentola (Phyllodactylidae) 

has been shown to exhibit osteoderms in multiple species (T. americana GRAY 1831, T. 

annularis GEOFFROY SAINT-HILAIRE 1827, T. chazaliae MOCQUAD 1895, T. 

crombiei DIAZ & HEDGES 2008, T. mauritanica LINNAEUS 1758, T. neglecta 

This article is protected by copyright. All rights reserved.



Laver et al. 22 
 

STRAUCH 1887 (Levrat-Calviac, 1986; Levrat‐Calviac &  Zylbe rberg, 1986; Vickaryous 

et al., 2015)), representative of all four subgeneric clades within this genus (Carranza, 

Arnold, Mateo, & Geniez, 2002; Carranza, Arnold, Mateo, & López-Jurado, 2000). 

Different species studied across Tarentola have been shown to display differential degrees 

of osteoderm development, however, these structures are still more permanent than in 

Geckolepis and are developed in the cranial and postcranial regions (Vickaryous et al., 

2015). The osteoderms of Tarentola are more dense around the skull, and may overly the 

lower jaw and the chin region (Vickaryous et al., 2015). When these structures are 

developed in the postcranium of Tarentola, in cleared and stained preparations they appear 

as scattered structures in the dorsal region of the body (Vickaryous et al., 2015), however, 

they form an almost continuous layer of dermal bone comprised of thousands of tiny 

isolated elements (Avallone, Tizzano, Cerciello, Buglione, & Fulgione, 2018)—the 

discrepancy in the degree of covering reported in these two studies is likely attributed to 

sexual, ontogenetic and geographical differences. Osteoderms in the genus Gekko 

(Gekkonidae) are more similar to those of Tarentola spp. and other squamates in terms of 

permanency and morphology (juxtaposed, polygonal; Parker & Taylor, 1942).  

A diversity of functions have been proposed for osteoderms including protection 

(Broeckhoven et al., 2017; Moss, 1969; Vickaryous et al., 2015), locomotion (Buchwitz & 

Voigt, 2010; Buchwitz et al., 2012; Dilkes & Brown, 2007; Frey, 1988; Seidel, 1979), 

calcium mineral storage (Curry Rogers et al., 2011; Dacke et al., 2015; Klein, Scheyer, & 

Tütken, 2009), and thermoregulation (Farlow et al., 2010; Farlow et al., 1976; Seidel, 

1979), or a combination of these functions (Broeckhoven et al., 2017). For example, 
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Broeckhoven et al. (2017) provided evidence for  a functional trade-off between strength 

and thermal capacity of osteoderms in two species of girdled lizards. 

Considering reinforcement of the integument, a body armor covering can not only serve 

as an antipredator defense but can also act to prevent intraspecific aggression, as well as 

protect against dangerous prey commonly encountered by some of the armored gecko 

species (Vickaryous & Sire, 2009). Geckolepis osteoderms have been inferred to function 

more as thermoregulation structures or deposits of labile calcium for eggshell formation 

(Paluh et al., 2017). On the other hand, extreme shedding, such as observed in Geckolepis 

(Paluh et al., 2017; Schmidt, 1911, 1912), could be also interpreted as an antipredator 

strategy that might trick the hunter; shedding a large amount of hardened integument could 

work in similar way to other antipredator strategies, such as tail autotomy, which is a very 

widespread strategy among squamates (Hofstetter & Gasc, 1969; McConnachie & Whiting, 

2003), being developed in 13 families (Stanley et al., 2019). The protective nature of 

osteoderms is consistent with large specimens of Gekko gecko being capable of preying 

upon vertebrates, in addition to invertebrates, that have the potential to injure their heads 

(e.g. birds, geckos, rodents, and snakes; Bucol & Alcala, 2013; and see review in Daza, 

Herrera, Thomas, & Claudio, 2009). Furthermore, to kill large prey items G. gecko is 

known to exhibit the peculiar behavior of smashing their heads and the prey against the 

substrate, hence the cephalic shield may offer additional protection (TG pers. obs.; Bucol & 

Alcala, 2013). In cordylid lizards, osteoderms increase skin toughness, serving as an 

antipredator strategy by withstanding bite forces of mammalian predators; however, 

predation by snakes and thermoregulation might cause variation in defensive morphology 

(Broeckhoven et al., 2015). A similar conclusion can be drawn for the species Gekko gecko, 
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as they are also preyed upon by snakes (e.g. Golden tree snake, Chrysopelea ornata – 

Shaw, 1802; Babu, Shihan, Debbarma, & Debbarma, 2018).  

The pattern of osteoderm distribution in G. gecko, limited to the head with scattered 

small elements on the dorsal side of the trunk, argues against any physiological role 

(thermoregulation, water loss), and to some extent protection against some predators/prey, 

although some protection might be offered against direct strikes to the head by conspecifics 

or prey. Males of Gekko gecko are known for being territorial and aggressive (Henkel & 

Schmidt, 1995; Marcellini, 1977; Seufer, 1991), especially when defending their eggs and 

offspring (Petzold, 2007). In G. gecko, restriction of the osteoderm layer to predominantly 

form a cephalic shield over the dorsal surface of the head could relate to such agonistic 

behaviors (Vickaryous et al., 2015). The osteoderm distribution pattern in G. gecko differs 

considerably from the pattern seen in heavily armored lizards (e.g. cordylids and 

gerrhosaurids), which in fact display a wide range of different combinations of areas 

covered (Stanley, 2013), including: 1) full-body covering (e.g. Broadleysaurus major 

DUMÉRIL 1851, Ouroborus cataphractus BOIE 1828, Smaug giganteus SMITH 1844), 2) 

head, limbs, and tail covered (e.g. Pseudocordylus transvaalensis FITZSIMONS 1943), 

and 3) body covering reduced or absent and tail covered (e.g. Platysaurus ocellatus 

BROADLEY 1962). Tail cover is important for cordylids and gerrhosaurids considering 

that some of them use crevices as retreats, oftentimes leaving the tail uncovered. In the case 

of geckos, where the tail is commonly shed, development of caudal osteoderms seems 

certainly ineffective since it would be a wasted investment of energy and calcium; 

nevertheless, they can be present in the tail (e.g. in Tarentola).  
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The idea that these dermal structures might work as additional deposits of calcium has 

been proposed (Paluh et al., 2017), and could be similar to how alligators may source 

calcium from osteoderms for eggshell production (Dacke et al., 2015). Alternatively, 

calcareous materials are produced in the endolymphatic apparatus of all vertebrates 

(Whiteside, 1922), and in some geckos and iguanians the endolymphatic sacs become 

greatly enlarged, forming protruding structures extracranially (Kluge, 1967). These 

structures are found mainly in the neck and sometimes anterior to the braincase, which 

extend via a foramen that opens from the anterior semicircular canal (pathway of the 

accessory endolymphatic duct, Conrad & Daza, 2015). It seems plausible that, at least in 

geckos and iguanians, the endolymphatic sacs are supplying all the calcium necessary for 

egg production (Bauer, 1989; Kluge, 1967; Lamb et al., 2017). In the sphaerodactylid 

gecko Gonatodes antillensis LIDTH DE JEUDE 1887 it has been shown that females 

develop larger endolymphatic sacs than males, and that gravid females have slightly larger 

endolymphatic sacs than non-gravid females (Lamb et al., 2017). Kluge (1967) illustrated 

an adult male and female specimen of G. gecko, highlighting that males lack extracranial 

endolymphatic sacs, while in females these structures appear very enlarged. In our 

sampling we found that these sacs were also present in males, but frequently are smaller 

than in females (Fig. 6, Table S2).  

Considering the results of the analysis of endolymphatic sac areas as an approximation 

of the size of these structures it seems that, for its size, Gekko gecko, along with other 

gecko species with osteoderms, has proportionally larger endolymphatic sacs compared to 

geckos without osteoderms (Fig. 10). Given the rare occurrence of osteoderms across 

gekkotans however (three small clades), even with unlimited species sampling it may 
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remain impossible to draw strong conclusions about the relationship between 

endolymphatic sac size and osteoderms. Furthermore, size of endolymphatic sacs is highly 

variable among geckos, including differences among species or families (e.g. sacs tend to 

be absent in diplodactylids, likely because this family lay leathery rather than hard-shelled 

eggs), between sexes, stage of reproductive cycle in females, and availability of calcium in 

diet (e.g. captive animals). Given this variability and that our sampling only included a few 

individuals per species, we recommend considering this a preliminary analysis and 

interpreting these results with caution until more accurate approaches are applied to study 

these structures in depth (e.g. Diffusible Iodine-based Contrast-Enhanced Computed 

Tomography [DiceCT], detailed dissections, vital staining of the calcium, or post-mortem 

staining of large sample sizes for many species). Despite the limitations of these data, our 

analysis suggests that in geckos with osteoderms, the endolymphatic sacs might have a dual 

function as a source of calcium, not only for egg production, but also for the extra bone 

material. We propose that osteoderms represent structures that require rather than provide 

calcium resources and would predict that if the opposite were the case, the endolymphatic 

sacs in geckos with osteoderms would be more likely to be reduced in size compared to the 

body size.  

 

5. Conclusions 

Despite our broad species sampling, osteoderms were only confirmed in two sister taxa 

(Gekko gecko and G. reevesii), therefore these dermal structures are a synapomorphy for 

this clade of geckos. Osteoderms in other geckos, since they occur in quite divergent 

clades, and due to their overall differences in permanence (Geckolepis), morphology 
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(Tarentola), and spatial distribution (both), are independently acquired and non-

homologous. 

Although these structures are homologous in the two species of the group of Indopacific 

geckos, we found disparity between these two species in the timing of development of the 

osteoderms. A more detailed assessment of the development of this trait is required in G. 

reevesii, including additional specimens of varying size, in order to better understand the 

developmental discordance.  

In Gekko gecko and G. reevesii, osteoderms are likely to reinforce the integument, 

especially in large specimens that might be more exposed to agonistic behavior of 

conspecifics or large prey items, as a consequence of increase in diversity of dietary items 

during ontogeny. With current data we cannot conclude if the osteoderms in G. gecko 

function as calcium reservoirs, however, our data implies that increased auxiliary structures 

(i.e. extracranial endolymphatic sacs) in gecko species with osteoderms possibly fulfill this 

function. Conclusively determining the final storage area of calcium could be done 

experimentally by feeding captive geckos with calcium isotopes and tracking the pathway 

of calcium accumulation in the body.  
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Tables 

Table 1. List of Gekko spp. specimens discussed in this study that were scanned using 

High-Resolution Computed Tomography (HRCT), including snout-vent lengths (SVL), 

skull lengths (SL), the region of the body that osteoderms were observed, and the total 

volume of osteoderms.  

Specimen Number SVL 
(mm) 

SL 
(mm) 

Osteoderms 
Volume of 
osteoderms 

(mm3) 
Nasals Frontal Parietal Nape Jaw Gular Post-

cranial 

Gekko gecko                     
FMNH 261847 (♀) 61.7 19.1 – – – – – – x 1.7E-02 
FMNH 261849 (♀) 98.8 27.3 – x x x – – x 31.3 
FMNH 258696 (♀) 102.0 29.0 – x x x – – x 67.4 
FMNH 266245 (♂) 113.4 31.6 – x x x – – x 108.2 

YPM HERR 010083 (♂) 138.0 34.8 x x x x x x x 531.9 
FMNH 236071 (♂) 143.3 38.0 x x x x – – x 387.2 

SHSVMH-0001-2014 (♂) 167.0 46.1 x x x x x x x 884.0 
Gekko reevesii                     

YPM HERR 016062 (♀) 131.4 34.9 – x x x – x x 61.9 
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Table S1. All specimens of Gekko spp. and additional Gekkonids studied for the presence 

of osteoderms. Specimens are listed by species in increasing snout-vent length (SVL). Scan 

source (High-Resolution Computed Tomography [HRCT] or X-ray) is indicated, as well as 

whether osteoderms were detected. All specimens larger than the minimum size SVL at 

which osteoderms were observed in Gekko gecko are highlighted in gray. 

Table S2. Specimens included in analysis of endolymphatic sac (ELS) area relative to 

snout-vent length (SVL) in gecko species with and without osteoderms.  

Table S3. GenBank accession numbers of sequences used in phylogenetic analysis. Due to 

lack of availability of sequences for a few species, the following closely related species 

were used as substitutes in the phylogeny: Aristelliger praesignis for A. nelsoni, 

Cyrtopodion scabrum for C. agamuroides, Geckolepis maculata for G. humbloti, 

Homonota fasciata for H. horrida, Ptenopus carpi for P. garrulus, and Agamura persica 

for Rhinogekko misonnei. 
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Figure Legends 

Figure 1. Box plot of the snout-vent length (SVL) in mm of specimens sampled. Gray area 

indicates the size range where osteoderms were detected in species of the genus Gekko 

gecko and G. reevesii. Note that only a few species were represented by specimens within 

this range.  

Figure 2. Digital X-ray of the largest specimen of Gekko gecko included in this study 

(Snout-vent length [SVL] 176.7 mm, USNM 564836 [♀]).  

Figure 3. Osteoderm growth trajectory and volume in specimens of Gekko gecko observed 

using High-Resolution Computed Tomography (HRCT). Specimens: A) FMNH 261847 

(♀), B) FMNH 261849 (♀), C) FMNH 258696 (♀), D) FMNH 266245 (♂), E) YPM 

HERR 010083 (♂), and F) FMNH 236071 (♂), are displayed in a developmental 

progression from smallest (A) to largest (F). The osteoderms are rendered in green to 

distinguish them from the rest of the skeleton. 

Figure 4. Transverse cross-section tomogram at the level of the frontoparietal suture of the 

Gekko gecko specimens: A) FMNH 261847 (♀), B) FMNH 261849 (♀), C) FMNH 258696 

(♀), D) FMNH 266245 (♂), E) YPM HERR 010083 (♂), and F) FMNH 236071 (♂). 

Figure 5. Midsagittal cross-section tomogram of the Gekko gecko specimens: A) FMNH 

261847 (♀), B) FMNH 261849 (♀), C) FMNH 258696 (♀), D) FMNH 266245 (♂), E) 

YPM HERR 010083 (♂), and F) FMNH 236071 (♂). 

Figure 6. Osteoderm growth trajectory and volume in specimens of Gekko gecko observed 

using digital X-rays. Numbers in parentheses after specimen numbers are snout-vent 

lengths (SVLs) in mm: A) USNM 318728 (122.2, ♀), B) USNM 512854 (126.4, ♀), C) 

USNM 564835 (131.5, ♂), D) USNM 512855 (136.6, ♀), E) USNM 512857 (137.5, ♀), F) 
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USNM 573671 (138.3, ♀), G) USNM 564838 (144.9, ♀), H) USNM 512856 (152.3, ♂), I) 

USNM 564837 (158.7, ♀), J) USNM 564836 (176.7, ♀).       

Figure 7. Details of the osteoderms of the largest High-Resolution Computed Tomography 

(HRCT) Gekko gecko specimen (SHSVMH-0001-2014, ♂) showing individual variation of 

the osteoderms at different regions of the skull.  

Figure 8. Increase in osteoderm volume in Gekko gecko along a body-size gradient, with 

data from samples presented in Figure 3. Log-transformed snout-vent length (SVL) in mm, 

log-transformed osteoderm volume measured in cubic mm. 

Figure 9. Details of the osteoderms of the High-Resolution Computed Tomography 

(HRCT) Gekko reevesii specimen (YPM HERR 016062, ♀). The osteoderms are rendered 

in green to distinguish them from the rest of the skeleton. 

Figure 10. Plot of log-transformed endolymphatic sac area (mm2) against log(x+1)-

transformed snout-vent length (SVL, mm), with fitted lines from a Phylogenetic 

Generalized Least Squares (PGLS) model that includes the presence/absence of osteoderms 

as treatment. Gecko species with osteoderms tend to have larger endolymphatic sac area, 

and similar slopes with different intercepts are consistent with different phenotypic optima.  

Figure S1. Bayesian ultrametric phylogeny of geckos used in Phylogenetic Generalized 

Least Squares (PGLS) analysis of endolymphatic sac size evolution. Posterior probabilities 

of taxa splits and 95% credibility intervals of node depth are indicated. 
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