Coordinated ground-based and space-based observations of equatorial plasma bubbles

Ercha Aa1,2, Shasha Zou1, Richard Eastes3, Deepak K. Karan3, Shun-Rong Zhang2, Philip J. Erickson2, and Anthea J. Coster2

1Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI, USA.
2Haystack Observatory, Massachusetts Institute of Technology, 99 Millstone Road, Westford, MA, USA.
3Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO, USA.

Key Points:

• Combined GOLD/UV spectrograph images and ground-based TEC data revealed EPB features and development over a large geographic area
• Bottomside F-layer oscillations and travelling ionospheric disturbance were observed by ionosonde and detrended TEC results
• Atmospheric gravity waves likely play an important role in seeding the R-T instability and the development of this EPB event
Abstract
This paper presents coordinated and fortuitous ground-based and space-borne observations of equatorial plasma bubbles (EPBs) over the South American area on 24 October 2018, combining the following measurements: Global-scale Observations of Limb and Disk (GOLD) far-ultraviolet emission images, Global Navigation Satellite System (GNSS) total electron content (TEC) data, Swarm in situ plasma density observations, ionosonde virtual height and drift data, and cloud brightness temperature data. The new observations from the GOLD/UV imaging spectrograph taken at geostationary orbit provide a unique opportunity to image the evolution of plasma bubbles near the F-peak height over a large geographic area from a fixed longitude location. The combined multi-instrument measurements provide a more integrated and comprehensive way to study the morphological structure, development, and seeding mechanism of EPBs. The main results of this study are as follows: (1) The bubbles developed a westward-tilted structure with 10°–15° inclination relative to the local geomagnetic field lines, with eastward drift velocity of 80–120 m/s near the magnetic equator that gradually decreased with increasing altitude/latitude. (2) Wave-like oscillations in the bottomside F-layer and detrended TEC were observed, which are probably due to upward propagating atmospheric gravity waves (AGWs). The wavelength based on the MSTID signature was consistent with the inter-bubble distance of ~500–800 km. (3) The AGWs that originated from tropospheric convective zone are likely to play an important role in seeding the development of this equatorial EPBs event.

Plain Language Summary: This study presents multi-instrument observations of equatorial plasma density depletions occurred on 24 October 2018 by using Global-scale Observations of Limb and Disk (GOLD) far ultraviolet images, Global Navigation Satellite System (GNSS) total electron content (TEC) data, electron density measurements from Swarm satellite, ionosonde measurements, and cloud temperature data. This multi-instrument study generated an integrated and detailed image revealing both large-scale and meso-scale structures of the equatorial plasma depletion. Our results also suggest that atmospheric gravity waves originating from tropospheric convection activity could play a significant seeding role in the development of equatorial plasma bubbles.

1 Introduction
Equatorial plasma bubbles (EPBs) refer to irregular structures of plasma density depletion that are usually observed in the equatorial and low latitude F-region during postsunset period. Typical density irregularities within EPBs can have different scale sizes of several to hundreds of kilometers, and EPBs can cover a broad altitudinal range from the bottomside ionosphere up to ~1,000 km (Cherniak, Zakharenkova, & Sokolovsky, 2019; Lühr, Xiong, Park, & Rauberg, 2014). One of the top research priorities in the global space weather community is to better understand the generation mechanisms and the dynamic features of EPBs, because they can severely disrupt the amplitude and phase of trans-ionospheric radio waves so as to cause adverse effects on relevant communication and navigation systems. It is generally accepted that EPBs are triggered under a favorable condition of the generalized Rayleigh-Taylor (R-T) instability at the bottomside of the F layer, where a steep vertical density gradient forms after the E layer disappears post-sunset due to high recombination rate. During quiet times, the prereversal enhancement (PRE) of the zonal electric field is responsible for the enhanced upward $\mathbf{E} \times \mathbf{B}$ drift after sunset, which elevates the ionospheric height and subsequently amplifies the growth rate of R-T instability (Abdu, 2005; Carter, Zhang, Norman, Kumar, & Kumar, 2013; Fejer, Scherliess, & de Paula, 1999; Kii, 2015; Woodman & La Hoz, 1976). Thus, initial density perturbations at the bottomside F-layer can then evolve into EPBs and develop nonlinearly after rising to the topside ionosphere.

This article is protected by copyright. All rights reserved.
The morphological features and spatial/temporal variability of EPBs have been widely investigated via case studies and statistical analysis using different observational methods. For example, the structure of EPBs can be observed from irregular traces of range-type equatorial spread F (ESF) in ionograms (Abdu, 2012; Hysell, 2000; Li et al., 2018; Tsunoda, 2015). The spatial variation of EPBs can be derived from the dark streaks of emission depletion in optical observations from ground-based all-sky imagers (ASIs) or space-based ultraviolet imaging spectrographs (e.g., Comberiate & Paxton, 2010; Hickey et al., 2018; Kelley et al., 2003; Kil, Heelis, Paxton, & Oh, 2009; Makela, 2006; Martini et al., 2015; Otsuka, Shiokawa, Ogawa, & Wilkinson, 2002; Shiokawa, Otsuka, Lynn, Wilkinson, & Tsugawa, 2015). In addition, the altitudinal information of irregularities embedded within EPBs can be examined through observations of plume-like structures from coherent backscatter radar or incoherent scatter radar measurements (Ajith et al., 2015; Jin et al., 2018; Li et al., 2013; Rodrigues et al., 2018; Tulasi Ram, Ajith, Yokoyama, Yamamoto, & Niranjan, 2017; Yokoyama & Fukao, 2006). Furthermore, the temporal variation and occurrence distribution of irregularities/bubbles can be extracted from in situ satellite observations, such as the Defense Meteorological Satellite Program (DMSP) constellation (Burke, Gentile, Huang, Valladares, & Su, 2004; Burke, Huang, Gentile, & Bauer, 2004; C. Y. Huang, Burke, Machuzak, Gentile, & Sultan, 2002), Communications/Navigation Outrage Forecasting System (C/NOFS) satellite (C.-S. Huang et al., 2014; Smith & Heelis, 2017), and Swarm constellation (Xiong et al., 2016; Zakharenkova, Astafyeva, & Cherniak, 2016). Moreover, with the fast-growing and global availability of ground-based Global Navigation Satellite Systems (GNSS) measurements and space-based radio occultation data, the evolution characteristics of EPBs can be monitored continuously on both global or regional scales (e.g., Aa et al., 2018; Barros, Takahashi, Wrasse, & Figueiredo, 2018; Buhari et al., 2014, 2017; Cherniak, Kranowski, & Zakharenkova, 2014; Cherniak & Zakharenkova, 2016; Katamzi-Joseph, Habarulema, & Hernández-Pajares, 2017; Ma & Maruyama, 2006; Nishioka, Saito, & Tsugawa, 2008; Takahashi et al., 2015).

Although EPBs have been extensively studied for several decades, there are still some important and challenging tasks that need to be performed to improve current understanding of their detailed spatial/temporal structures and seeding mechanisms. In this regard, different instruments have their own advantages and limitations in analyzing EPBs: (1) Coherent/incoherent scatter radars can monitor irregularities at high spatial resolution, but their location and field-of-view (FOV) limit their coverage range. (2) Optical measurements of ASIs are limited with their field-of-view, and their availability depends on weather conditions. For this reason, multiple ASIs are usually required to get a complete evolution of EPBs structures. (3) Low-Earth orbiting (LEO) satellite observations can produce in situ density profiles or ultraviolet radiance images of irregularities at high spatial resolution, but they can only sample a narrow swath of the EPBs structures along the track of the satellite. (4) Global/regional GNSS total electron content (TEC) observations can monitor ionospheric variability continuously; however, the small-scale structures characteristic of EPBs will sometimes be smoothed out because of the integrating nature of the TEC calculation, not to mention huge data gaps which still exist over receiver-sparse areas, such as oceans.

For these reasons, collective analysis of multi-site and multi-instrument measurements provides an effective way to generate an integrated and comprehensive image for specifying both large-scale and mesoscale features of plasma bubbles (e.g., Aa et al., 2019; Cherniak et al., 2019). Recently, with the successful launch and deployment of NASA’s Global-scale Observations of Limb and Disk (GOLD) mission, an excellent opportunity exists to use the unique data-set from the GOLD far ultraviolet (FUV) imaging spectrograph to monitor equatorial ionospheric structure. In this paper, we present coordinated ground-based and space-borne observations of an EPBs event which occurred on October 24, 2018. Our analysis uses multi-instrument measurements: GOLD/UV imaging spectrograph, TEC from GNSS receiver networks, Swarm in-situ density observations, ionosonde measurements, and cloud temperature data. We use these observations...
to implement a comprehensive analysis of the structural evolution and relevant seeding mechanisms of EPBs.

2 Data Description

The GOLD mission was launched on 25 January 2018 and started its operational observations in October 2018. The main scientific objective of GOLD is to understand the “weather” response of the Earth’s thermosphere and ionosphere system to forcing from above and below, and the formation and evolution of equatorial plasma bubbles is a primary scientific question (Eastes et al., 2017, 2019). Operating at geostationary orbit (GEO) over the longitude of 47.5°W, GOLD has an unparalleled advantage of “staring” at the American region from a fixed geographic location for extended periods of time, providing an exact time-evolving map that can unambiguously specify the spatiotemporal variability of Earth’s thermosphere and ionosphere system. The GOLD instrument is a far-ultraviolet imaging spectrograph that measures Earth’s airglow emissions from 132 to 162 nm, which can be used to infer thermospheric temperature and composition on the dayside disk as well as equatorial ionospheric structures on the nightside. The nighttime disk images of atomic oxygen 135.6 nm emissions, which have a spatial resolution ∼100 km in the longitudinal direction and ∼50 km in the latitudinal direction, will be used in this study to derive valuable information on the low latitude ionosphere.

Gridded TEC products from the Madrigal distributed data system are also used to study EPBs structures. TEC data are produced and provided through the Madrigal distributed data system developed at the Massachusetts Institute of Technology (MIT)’s Haystack Observatory by using dense networks of worldwide GNSS receivers, and have a resolution of 1° (latitude) × 1° (longitude) × 5 min (Rideout & Coster, 2006; Vierinen, Coster, Rideout, Erickson, & Norberg, 2016). Moreover, ionosonde measurements from Sao Luis (2.6°S, 315.8°E) and Fortaleza (3.9°S, 321.6°E), as well as in situ plasma density measurements onboard the Swarm A/C satellites are also used here to analyze the characteristics of plasma irregularities.

Localized gravity waves that originated from the tropospheric convective zone could be an essential factor in seeding EPBs, and the deep convection activity can be deduced from cloud temperature data. These data are derived from global (60°S–60°N) 4-km pixel-resolution infrared brightness temperature data, merged from selected geostationary satellites measurements over the period of record (i.e., Geosynchronous Operational Environmental Satellites [GOES]-8/9/10/11/12/13/14/15/16, United States; the Meteorological Satellite [Meteosat]-5/7/8/9/10, European Community; Geosynchronous Meteorological Satellite[GMS]-5/Multi-functional Transport Satellite[MTSat]-1R/2/Himawari-8, Japan) (Janowiak, Joyce, & Xie, 2017).

3 Results

EPBs are known to produce optical signatures observed as streaks of reduced emission in space-borne ultraviolet imaging spectrographs (Kelley et al., 2003; Kil et al., 2004). Figure 1 shows continuous OI 135.6 nm radiance maps observed by GOLD in successive disk scans during 21:10–22:55 UT on 24 October 2018. The bright zonal band in the low-latitude region paralleling the magnetic equator (red line) is produced by enhanced oxygen ion density in the equatorial ionization anomaly (EIA) region. The dark streaks that cut through the EIA band represent reduced emissions caused by low density within plasma bubbles. There are seven discernible dark streaks marked with #1–7 from east to west. These streaks elongate from northwest to southeast direction, with a meridional length of ∼1,500-2,000 km and inter-bubble distance of ∼500-800 km. Moreover, Figure 2 displays similar UV images for later time periods of 23:10–23:55 UT on October 24, 2018. The white dotted curves show four different geomagnetic field lines (marked with I, II, III, and IV) along which the EPBs were approximately extending. When comparing the
consecutive images, the EPBs depletion streaks were found to be drifting eastward and developing westward-tilted (or backward C-shape) structure. The tilt angle ranges from 10°–15° relative to the Earth's magnetic field line (Figure 2c and 2d). The airglow signature of EPBs and the tilted structure were also illustrated in simulations (e.g. Retterer, 2010) and are consistent with the previous ground-based and space-borne observations (Jin et al., 2018; Kelley et al., 2003; Kil et al., 2009; Li et al., 2018; Tsunoda, Livingstone, McClure, & Hanson, 1982), which will be further discussed in the next section.

Besides the UV images, the EPBs can also be observed in two-dimensional TEC maps as a depletion structure perpendicular to the geomagnetic equator. Figure 3 shows twelve successive TEC maps over the South American region with 15-min cadence during 21:00–23:45 UT on 24 October 2018. The EIA crests can be seen as two regions with enhanced TEC about 10 degrees north and south of the geomagnetic equator (black dotted line). Two TEC depletion belts are parallel to the magnetic field lines, as highlighted by the black dashed lines, which exist over the equatorial region around 45°W and 40°W. Comparing with the surrounding region, the amplitude of the TEC depletion within these EPBs is approximately 10 TEC Unit (TECU, 10^16 el/m^2). Taking the left-side branch of the depletion as an example, we find an onset time of around 22 UT with a subsequent gradual extension toward the EIA crest along the geomagnetic field line “I”, which is the same field line as that marked in Figure 2. The EPB along field line “II” also exhibited similar but weaker evolution.

Moreover, there are two ionosondes, i.e., Sao Luis and Fortaleza, which are located near these two depletion belts and are labeled as asterisk and diamond in Figure 3. Figure 4 shows the F-layer bottomside virtual height (h'F), vertical drift velocity, and zonal drift velocity measured by these two ionosondes on 24 October 2018 (red), as compared with the previous 5-day averaged values (black). It can be seen from the top panels that the h'F over Sao Luis exhibited a significant pre-reversal enhancements (PREs, marked with an arrow) from 250 km to 360 km at around 21 UT on 24 October, while the 5-day averaged peak value of PREs is less than 300 km. A considerable h'F elevation around the same time can be also observed for Fortaleza station, with the peak value of PREs (310 km) on 24 October larger than 5-day average one (250 km). The corresponding peak velocity of vertical drift shown in Figures 4c and 4d, which is 30 m/s over Sao Luis and 25 m/s over Fortaleza, also displayed considerable increase compared with the 5-day averaged values (~10 m/s). These collectively demonstrate the presence of an enhanced dusk sector zonal electric field, raising the F layer and amplifying the growth rate of the R-T instability to generate the observed EPBs. The zonal drift exhibited eastward velocity after the PREs.

The nighttime GOLD/UV OI 135.6 nm images were mainly fixed at the American-Atlantic longitudes. The TEC maps have a broader coverage but with data gaps over the ocean, especially near the Northern Hemisphere part of the EIA. These two datasets complement each other and thus were combined to generate a map shown in Figure 5, which provides a much broader spatial context for EPBs. The extension of EPBs to the southern EIA crest and the backward C-shape streak spanning both hemispheres are clearly indicated. Furthermore, three consecutive satellite passes of Swarm A/C and the corresponding latitudinal profiles of the in situ electron density along these orbits are also shown in Figure 5. Both Swarm A and Swarm C flew at the height of ~450 km and were located at nearby longitudes around 09 LT (dayside) and 21 LT (nightside). Swarm B is not shown here since it did not pass through the American sector at local dusk hours during this period. The signature of plasma irregularities can be clearly seen in orbit #1 (17.0°W) of Swarm A during 22:00–22:30 UT and orbit #5 (39.0°W) of Swarm C during 23:30–00:00 UT, where considerable plasma density bite outs with sawtooth-like irregular fluctuations were measured near the magnetic equator (horizontal dotted line). This revealed the presence of small-scale density fluctuations within the EPBs seen in the GOLD/UV imaging and GNSS TEC results. Although Swarm A and C were very
4 Discussion

First, the development of the westward tilt (or backward C-shape) of the EPBs depletion has been clearly shown in GOLD/UV optical images in Figure 1 and Figure 2. This shape has previously been suggested to be caused by latitudinal variation of zonal plasma drift and/or the polarization electric field inside the EPBs. As described in the principle of F-region dynamo theory (Rishbeth, 1997): the neutral wind in the post-sunset sector is typically eastward at low latitudes, which generates a downward F-region dynamo electric field. This vertical electric field further drives an eastward $\mathbf{E} \times \mathbf{B}$ drift of the F-region plasma with nearly similar velocities as the neutral wind. During this study event, estimation of the eastward drift velocity of 80–120 m/s near the magnetic equator can be achieved through comparing the differences ($\sim 2^\circ–3^\circ$) of the central location of the dark streaks #1 between Figure 2a and 2d, which is consistent with the zonal drift velocities measured by ionosondes in Figures 4e and 4f and previous experimental/modeling studies of EPBs zonal drift velocities (e.g. Chapagain et al., 2012; Gurav et al., 2018; Huba, Ossakow, Joyce, Krall, & England, 2009; Sun et al., 2016). Furthermore, both numerical calculations and in situ observations have previously shown that this zonal plasma eastward drift often decreases with increasing altitude/latitude and thus forming a backward C-shape (e.g., Kil, Kintner, de Paula, & Kantor, 2002; Martinis, Eccles, Baumgardner, Manzano, & Mendillo, 2003; Pimenta, Fagundes, Sahai, Bittencourt, & Abalde, 2003).

On the other hand, Kil et al. (2009) and C.-S. Huang et al. (2010) suggested that a polarization electric field can develop inside the plasma depletion region due to conductivity gradients, which can also retard the eastward flow of the plasma depletion structures.

Second, in addition to generally favorable condition for the R-T instability created by the usual Pre-reversal enhancement, various mechanisms have been proposed as possible seeding factors that can trigger initial plasma density perturbations on the bottom side F layer. These include: (1) Enhanced zonal eastward electric field due to solar wind-magnetosphere-ionosphere coupling processes. The prompt penetration electric field (PPEF) from high latitude to low latitude can increase the F-layer vertical drift on the daytime through dusk sectors and thus facilitate the development of EPBs (Abdu et al., 2003; Basu et al., 2007; Ebihara & Tanaka, 2015; Tulasi Ram et al., 2008). (2) Gravity waves (GWs) from the lower atmosphere. Gravity waves generated by upward propagating meteorological processes in the lower atmosphere may modulate the bottomside F-layer plasma, producing large-scale wave structures (LSWS). Gravity waves generated by upward propagating meteorological processes in the lower atmosphere may modulate the bottomside F-layer plasma, which may accelerate the F-layer uplifting and trigger EPBs (Abdu et al., 2009; McClure, Singh, Bamboy, Johnson, & Kil, 1998; Retterer & Roddy, 2014; Tsunoda, 2010; Tsunoda et al., 2011; Tulasi Ram et al., 2014). (3) Neutral wind shear. Some studies suggested that vertical shear in the zonal winds could cause wave-like vortex, which has a rapid growth rate that can seed the R-T instability and initiate plasma irregularities (Hysell, Kudeki, & Chau, 2005; Hysell, Larsen, Swenson, & Wheeler, 2006; Kudeki, Akgiray, Milla, Chau, & Hysell, 2007). (4) Nighttime medium-scale travelling ionospheric disturbances (MSTIDs) due to Perkins/Es instabilities (Perkins, 1973). The polarization electric field within MSTIDs can map along the geomagnetic field lines to the equatorial bottomside F layer to initiate the EPBs (Krall et al., 2011; Miller, Makela, & Kelley, 2009; Taori et al., 2015; Valdadares & Sheehan, 2016).

For the current EPBs case, the geomagnetic activity condition was relatively quiet on 24 October 2018 with the interplanetary magnetic field (IMF) Bz close to zero and no geomagnetic storm or substorm onset within a few hours before the observed EPBs (Figure 6a). The possibility of significant external driving forces (e.g., interplanetary electric fields) from the magnetosphere for EPBs in the post-sunset sector is unlikely under
this circumstance. Figure 6b displays the rate of TEC index (ROTI) map to illustrate the ionospheric irregularities between 35°W and 55°W over the South American sector. Next, we discuss the possibility of forcing from below. Figure 6c shows the temporal variation of the electron density profile at Sao Luis between 12 and 24 UT on October 24, 2018. Of particular note, the ionosonde-retrieved topside profile above the F2 peak is obtained assuming a α-Chapman shape of plasma distribution (Reinisch & Huang, 2001), and thus only the bottomside profile should be examined. Three continuous quasi-periodic (~50 min) wave-like modulations of the bottomside F-layer height marked by white arrows can be clearly seen between 22–24 UT. Moreover, Figure 6d shows the F-layer true height as observed by the digisonde at specific plasma frequencies (3.0–6.5 MHz) over Sao Luis, plotted from 18 UT to 24 UT. There was a clear downward phase propagation (marked with a dashed line), which identifies the possible presence of atmospheric gravity waves (Abdu et al., 2009; Mandal et al., 2019). Furthermore, Figure 6e shows a keogram plot of detrended TEC as a function of latitude and time at 48°W longitude that around the EPBs region. Detrended TEC was calculated using the same method mentioned in Coster et al. (2017) and Zhang et al. (2017), where 1-hour TEC moving average was subtracted. Medium-scale travelling ionospheric disturbances (MSTIDs) that represent the ionospheric signature of atmospheric gravity waves are clearly observed in detrended TEC. Several possible TID wavefronts (marked with dashed lines) can also be clearly seen with an estimated propagation velocity of ~200–300 m/s and wavelength of ~500–800 km. The latter is close to the value of inter-bubble distance shown in GOLD/UV and TEC images. Many studies have demonstrated that such atmospheric gravity waves can be generated in the tropospheric convective region near the inter-tropical convergence zone (ITCZ) and can grow exponentially when propagating all the way upward into the thermosphere-ionosphere system before being entirely dissipated (Li et al., 2016; Vadas, 2007; Yiğit et al., 2012; Yizengaw & Groves, 2018). However, considering that troposphere excitation sources can be highly mobile and that wave propagation along the long path is strongly influenced by low atmosphere variability, the manifestation of TIDs in the keogram might not be so regular and well-organized. Thus, in order to further specify the potential source of the AGW/TIDs, Figure 6f shows an observation of deep clouds in brightness temperature at 22 UT on 24 October 2018. The purple to blue areas in South American and West African areas indicates that temperature was lower than 210 K, a signature suggesting that the tops of thunderstorms protrude well into the tropopause region (Hoffmann & Alexander, 2010). Such objects are referred to as deep convective clouds and can be an important source for the generation of upward propagating AGWs (e.g., Azeem et al., 2015; Jonah et al., 2018; Vadas & Liu, 2009). In particular, these studies indicated that concentric secondary gravity waves and TIDs with a wavelength of several hundred to thousand kilometers can be triggered by troposphere convection and detected at ionospheric heights. The deep convection activity shown here occurred in the local afternoon and continued for several hours, which was during the similar periods and in locations adjacent to where the MSTIDs were observed. Therefore, the combination of these mutually supportive pieces of evidence collectively suggests that convectively induced AGW/TIDs could have seeded the EPBs in this current case.

5 Conclusion

This paper presents coordinated ground-based and space-borne observational analysis of equatorial plasma bubbles over the South American area on 24 October 2018. The morphological structure and seeding mechanism of the bubbles were analyzed by using multi-instrument measurements, including the GOLD/UV imaging spectrograph, GNSS TEC maps, Swarm in situ electron density data, ionosonde measurements, and cloud temperature data. The new observations provided by GOLD/UV geosynchronous images provide a unique tool for studies of plasma irregularity evolution and equatorial ionospheric dynamics from a fixed longitude location. Furthermore, a combination of different measurements provides a powerful tool for the space weather community to achieve
a more integrated and detailed view on plasma irregularity structure. The main results
can be summarized as follows: (1) The plasma depletion developed westward-tilted struc-
ture of 10°–15° relative to the Earth’s magnetic field line, with an eastward drift veloc-
ity of 80–120 m/s near the magnetic equator that gradually decreased with increasing
altitude/latitude. (2) Wave-like oscillations of travelling ionospheric disturbances were
observed both in ionosonde electron density profiles and detrended TEC keograms. Ob-
served wavelengths were consistent with inter-bubble distances of 500–800 km. (3) At-
mospheric gravity waves originating from the tropospheric convective zone are suggested
to be a possible seeding process for the development of this EPBs event.
Figure 1. OI 135.6 nm radiance maps observed in successive disk scan of GOLD/UV nighttime imaging during 21:10–22:55 UT on 24 October 2018. The dark streaks marked by different numbers represent the optical signature of EPBs. The geomagnetic equator is also shown by red dashed lines. GOLD = Global-Scale Observations of the Limb and Disk; UV = ultraviolet; EPBs = equatorial plasma bubbles.
Figure 2. The same as Figure 1, but during the time interval of 23:10–23:55 UT on 24 October 2018. The white dotted curves show 4 different geomagnetic field lines that go across the EPBs. EPBs = equatorial plasma bubbles.
Figure 3. Gridded TEC maps over South American regions with 15-min interval during 21:00–23:45 UT on 24 October 2018. The ionosonde stations of Sao Luis and Fortaleza are marked with asterisk and diamond, respectively. Two geomagnetic field lines ("I" and "II") that go across the EPBs are marked in dashed lines, and the geomagnetic equator is shown in dotted line. EPBs = equatorial plasma bubbles.
Figure 4. The temporal variation of ionospheric $h'F$, F layer vertical drift, and zonal drift velocity observed at Sao Luis (left panels) and Fortaleza (right panels) during the period of 24–25 October 2018. The black lines represent the values of previous 5-day average. The vertical dotted line represents the local sunset. The error bars represent the velocity spread.
Figure 5. (a) Combined global map of GNSS TEC and OI 135.6 nm radiance of GOLD/UV imaging at 22:10 UT with three consecutive satellite paths of Swarm A. (b) Variation of in situ electron density as a function of latitudes along these paths. (c, d) The same as Figures 5a and 5b, respectively, but at 23:40 UT and for Swarm C satellite paths. The shaded areas represent certain plasma depletions. The magnetic equator is marked by solid line in left panels and dotted line in right panels. GNSS = global navigation satellite system; TEC = total electron content; GOLD = Global-Scale Observations of the Limb and Disk; UV = ultraviolet.
Figure 6. (a) Temporal variation of interplanetary magnetic field (IMF) Bz, the longitudinal asymmetric index (ASY-H), and the symmetric index (SYM-H) between 12 and 24 UT. (b) Rate of TEC Index plot at 23:30 UT. (c) Electron density profile and hmF2 at Sao Luis between 12 and 24 UT. Three quasi-periodic wave-like structures are marked by arrows. (d) Variation of F-layer true heights for different frequencies (3.0–6.5 MHz) at Sao Luis. (e) Keogram plot of detrended total electron content (TEC) as a function of latitude and time at 48°W longitude between 18 and 24 UT. The TID structures are marked by dashed lines. (f) Observation of deep clouds in brightness temperature at 22 UT. All six images are for 24 October 2018.

Acknowledgments

We greatly appreciate NASA/GOLD mission science team for providing data to the public (gold.cs.ucf.edu). We acknowledge ESA for providing the SWARM data (http://earth.esa.int/swarm). GPS TEC data products and access through the Madrigal distributed data system are provided to the community (http://cedar.openmadrigal.org/) by the Massachusetts Institute of Technology (MIT) under support from US National Science Foundation grant AGS-1762141. S. Zou acknowledges NASA 80NSSC20K0190 for the support of this work. AJC and SRZ acknowledge the ONR grant N00014-17-1-2186, and SRZ and AJC acknowledge the AFOSR MURI grant FA9550-16-1-0364. Data for the TEC processing is provided from the following organizations: The Crustal Dynamics Data Information System (CDDIS), the Scripps Orbit and Permanent Array Center (SOPAC), the Continuously Operating Reference System (CORS), the EUREF Permanent GNSS network (EPN), the University NAVSTAR Consortium (UNAVCO), Institut Geographique National in France (IGN), the Brazilian Network for Continuous Monitoring (RBMC), National Geodetic Survey, Instituto Brasileiro de Geografia e Estatística, RAMSAC CORS of Instituto Geográfico Nacional de la República Argentina, Arecibo Observatory, Low-Latitude Ionospheric Sensor Network (LISN), Topcon Positioning Systems, Inc., Canadian High Arctic Ionospheric Network, Centro di Ricerche Sismologiche, Système d’Observation du Niveau des Eaux Littorales (SONEL), RENAG : REseau NAtional GPS permanent, GeoNet - the official source of geological hazard information for New Zealand, GNSS Reference Networks, Finnish Meteorological Institute, and SWEPOS - Sweden. The IMF, ASY-H, and SYM-H data are obtained from NASA/GSFCs Space Physics Data Facilityys OM-
NIWeb service (https://cdaweb.gsfc.nasa.gov/). We acknowledge the University of Massachusetts Lowell for providing ionosonde data from the DIDB database of Global Ionospheric Radio Observatory (http://giro.uml.edu/). The Cloud brightness temperature (BT) data was provided by the National Aeronautics and Space Administration (NASA) Goddard Earth Sciences Data and Information Services Central (https://disc.gsfc.nasa.gov/).

References

Hoffmann, L., & Alexander, M. J. (2010). Occurrence frequency of convective

Janowiak, J., Joyce, B., & Xie, P. (2017). Ncep/cpc l3 half hourly 4km global (60s - 60n) merged ir v1. NASA Goddard Earth Sciences Data and Information Services Center. doi: 10.5067/P4HZB9N27EKU

Kil, H., Kintner, P. M., de Paula, E. R., & Kantor, I. J. (2002). Latitudinal varia-

Otsuka, Y., Shiokawa, K., Ogawa, T., & Wilkinson, P. (2002). Geomagnetic con-

Tsunoda, R. T., Livingston, R. C., McClure, J. P., & Hanson, W. B. (1982). Equatorial plasma bubbles - Vertically elongated wedges from the bottomside F

Sao Luis (26.6S, 315.8E)

October 24-25, 2018 UT

Vy (m/s)

Vz (m/s)

h'F (km)

Fortaleza (3.9S, 321.6E)

Vy (m/s)

Vz (m/s)

Vy (m/s)

This article is protected by copyright. All rights reserved.
Figure 6.