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Abstract  

The Community Land Model (CLM) is the land component of the Community Earth System Model 

(CESM) and is used in several global and regional modeling systems.  In this paper, we introduce model 

developments included in CLM version 5 (CLM5), which is the default land component for CESM2.  We 

assess an ensemble of simulations, including prescribed and prognostic vegetation state, multiple forcing 

datasets, and CLM4, CLM4.5, and CLM5, against a range of metrics including from the International 

Land Model Benchmarking (ILAMBv2) package.  CLM5 includes new and updated processes and 

parameterizations: (1) dynamic land units, (2) updated parameterizations and structure for hydrology and 

snow (spatially explicit soil depth, dry surface layer, revised groundwater scheme, revised canopy 

interception and canopy snow processes, updated fresh snow density, simple firn model, and Model for 

Scale Adaptive River Transport), (3) plant hydraulics and hydraulic redistribution, (4) revised nitrogen 
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cycling (flexible leaf stoichiometry, leaf N optimization for photosynthesis, carbon costs for plant 

nitrogen uptake), (5) global crop model with six crop types and time-evolving irrigated areas and 

fertilization rates, (6) updated urban building energy, (7) carbon isotopes, and (8) updated stomatal 

physiology. New optional features include demographically structured dynamic vegetation model 

(Functionally Assembled Terrestrial Ecosystem Simulator, FATES), ozone damage to plants, and fire 

trace gas emissions coupling to the atmosphere.    Conclusive establishment of improvement or 

degradation of individual variables or metrics is challenged by forcing uncertainty, parametric 

uncertainty, and model structural complexity, but the multi-variate metrics presented here suggest a 

general broad improvement from CLM4 to CLM5. 

 

Plain Language Summary 

The Community Land Model (CLM) is the land component of the widely-used Community Earth System 

Model (CESM).  Here, we introduce model developments included in CLM version 5 (CLM5), the 

default land component for CESM2 which will be used for the Coupled Model Intercomparison Project 

(CMIP6).  CLM5 includes many new and updated processes including: (1) hydrology and snow features 

such as spatially explicit soil depth, canopy snow processes, a simple firn model, and a more mechanistic 

river model, (2) plant hydraulics and hydraulic redistribution, (3) revised nitrogen cycling  with flexible 

leaf stoichiometry, leaf N optimization for photosynthesis, and carbon costs for plant nitrogen uptake, (4) 

expansion to six crop types (global) and time-evolving irrigated areas and fertilization rates, (5) improved 

urban building energy model, and (6) carbon isotopes. New optional features include a demographically-

structured dynamic vegetation model, ozone damage to plants, and fire trace gas emissions coupling to 

the atmosphere.  Model performance is generally improved for most assessed variables and metrics, 

though clear establishment of improvement or degradation is challenging due to model complexity as well 

as observational data limitations.  Nonetheless, CLM5 is increasingly suited for research into a broad 

range of societally-relevant scientific questions related to the terrestrial system. 

 

 

1. Introduction  
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Land models are classically used as tools to integrate terrestrial contributions and responses to weather, 

climate variability, and climate change. In addition, modern land models are increasingly expected to 

provide insight into weather and climate impacts of societally relevant quantities such as water 

availability, crop and timber yields, wildfire risk, human heat stress, and other ecosystem services (Bonan 

& Doney, 2018). The Community Land Model (CLM), which is the land component of the Community 

Earth System Model (CESM), has been developed and expanded over the last decade to provide an 

increasingly comprehensive platform that researchers can use to address these types of questions.  More 

explicitly, CLM has been developed in accordance with two central themes: 1) terrestrial ecosystems, 

through their cycling of energy, water, momentum, carbon, nitrogen, and other trace gases, are important 

determinants of weather and climate, and 2) the land is a critical interface through which climate 

variability and climate change influence humans and ecosystems and through which humans and 

ecosystems can affect global environmental change.   

Here, we introduce the Community Land Model version 5 (CLM5, 

http://www.cesm.ucar.edu/models/cesm2.0/land/), which builds on progress made in CLM4 (Lawrence et 

al., 2011) and CLM4.5 (Oleson et al., 2013). CLM is a community-developed model with CLM5 

representing the outcome of model development and analysis efforts by a diverse group of scientists and 

software engineers from many institutions. Priorities for model development are set collectively by the 

CLM research and development community and are broadly focused on the enhancement of the capacity 

of the model to be applied to emerging questions that lie at the intersection of weather and climate with 

terrestrial processes.  Examples of scientific topics that have driven CLM5 development include the 

following: 

• Improved understanding of carbon and nitrogen cycle interactions and their influence on the long-term 

trajectory of the terrestrial carbon sink; 

• Assessment of the response and vulnerability of ecosystems to climate change and disturbances (human 

and natural) and the possibility for ecosystem management to mitigate climate change; 

• Quantification of the role of terrestrial processes in diurnal to interannual weather and climate variability 

including influence on droughts, floods, and extremes; 

•  Establishment of the availability of water resources under climate variability and climate change; 

This article is protected by copyright. All rights reserved.
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• Quantification of key land feedbacks to climate change including the permafrost climate-carbon 

feedback, and snow- and vegetation-albedo feedbacks; 

• Representation and quantification of impacts of anthropogenic land-cover and land-use change on 

climate and the carbon cycle; 

• Assessment of how land surface heterogeneity affects land-atmosphere interactions and carbon cycling; 

• Examination of the impact of model structural and parameter uncertainty and exploration of parameter 

optimization techniques 

 

The overarching development philosophy also rests on the notion that terrestrial systems are highly 

coupled and that development in one set of model processes can modify, and often improve, the 

simulation of other model processes (for example, improvements in the representation of soil hydrology is 

likely to improve carbon cycle simulations and vice versa) and can also expose problems in other parts of 

the model.   Core biogeophysical and biogeochemical parameterization development has been 

complemented with expansions to model functionality (e.g., introduction of a global interactive crop 

model with fertilization and irrigation, introduction of an embedded ice sheet model) and model structural 

updates (e.g., increased soil vertical resolution and spatially variable soil depth).  Many of the 

improvements adopted for CLM5 were independently developed by separate research groups for a range 

of reasons and applications.  Therefore, a principal goal of this manuscript is to catalog and describe the 

full set of CLM5 model developments so that model users are aware of the new features of the model, 

including known strengths and limitations (Section 2). The model simulations and meteorological forcing 

datasets employed are described in Section 3. We include a high-level assessment of the integrated impact 

of these developments on the overall performance of the model, utilizing the International Land Model 

Benchmarking package (ILAMB, Collier et al., 2018), ecosystem experiment data, and other metrics 

(Section 4).  A summary and discussion are provided in Section 5.  A full Technical Description of the 

model is available here: http://www.cesm.ucar.edu/models/cesm2/land/CLM50_Tech_Note.pdf. 

 

 

2. Model description 

This article is protected by copyright. All rights reserved.
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2.1 CLM4 

CLM4 was released in June, 2010 along with the Community Climate System Model version 4 (CCSM4). 

CLM4 has been used in CCSM4 (Gent et al., 2011) and CESM1 (Hurrell et al., 2013). CLM4 is described 

in Lawrence et al. (2011) and a full technical description is available in Oleson et al. (2010) 

(http://www.cesm.ucar.edu/models/cesm1.2/clm/CLM4_Tech_Note.pdf). Briefly, CLM4 included more 

sophisticated representations of soil hydrology and snow processes than its predecessor, CLM3.5 (Oleson 

et al., 2008b). In particular, new treatments of soil column-groundwater interactions, soil evaporation, 

aerodynamic parameters for sparse/dense canopies, vertical burial of vegetation by snow (Wang & Zeng, 

2009), snow cover fraction (Niu & Yang, 2007), and aging, black carbon and dust deposition, and vertical 

distribution of solar energy for snow were implemented (Flanner et al., 2007). CLM4 was the first version 

in the CLM series to include a prognostic above- and below-ground carbon-nitrogen cycle (CLM4CN, 

(Thornton et al., 2007) as well as the ability to represent transient land-cover change (Lawrence et al., 

2012). CLM4 added a representation of organic soil and deep ground into the existing mineral soil 

treatment (Lawrence & Slater, 2008; Lawrence et al., 2008) to enable more realistic modeling of 

permafrost and active layer dynamics.  An urban canyon model, to contrast rural and urban energy 

balance and climate, was also introduced (Oleson et al., 2008a). 

 

2.2 CLM4.5 

CLM4.5 was released in June, 2013 along with the Community Earth System Model version 1.2 

(CESM1.2).  A full technical description is available here: 

http://www.cesm.ucar.edu/models/cesm1.2/clm/CLM45_Tech_Note.pdf (Oleson et al., 2013). The main 

modifications in CLM4.5 included updates to canopy processes including a revised canopy radiation 

scheme and canopy scaling of leaf processes, co-limitations on photosynthesis (Bonan et al., 2011; Bonan 

et al., 2012), and temperature acclimation of photosynthesis (Lombardozzi et al., 2015b). Hydrology 

updates included modifications such that hydraulic properties of frozen soils are determined by liquid 

water content only rather than total water content, introduction of an ice impedance function and allows 

for a perched water table above icy permafrost ground (Swenson et al., 2012).  The snow cover fraction 

parameterization was revised to reflect hysteresis in fractional snow cover, for a given snow depth, 
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between accumulation and melt phases (Swenson & Lawrence, 2012).  The lake model was thoroughly 

revised (Subin et al., 2012). A surface water store was introduced, replacing the wetland land unit. The 

surface energy flux calculation was modified to separately simulate snow-covered, water-covered, and 

snow/water-free portions of vegetated and crop land units, and snow-covered and snow-free portions of 

glacier land units (Swenson & Lawrence, 2012). Globally constant river flow velocity was replaced with 

variable flow velocity based on mean grid cell slope. A vertically resolved soil biogeochemistry scheme 

was introduced with base decomposition rates varying with depth and modified by soil temperature, 

water, and oxygen limitation and also including vertical mixing of soil carbon and nitrogen due to 

bioturbation, cryoturbation, and diffusion (Koven et al., 2013). Litter and soil carbon and nitrogen pool 

structure as well as nitrification and denitrification were modified to reflect the Century model (Koven et 

al., 2013). The fire model was replaced with a model that includes representations of natural and 

anthropogenic ignition sources and suppression as well as agricultural, deforestation, and peat fires (Li et 

al., 2013a; Li et al., 2012). The biogenic volatile organic compounds model was updated to MEGAN2.1 

(Guenther et al., 2012). 

Further additions to CLM4.5 included a methane production, oxidation, and emissions model (Riley et al., 

2011) and an extension of the crop model to include interactive fertilization, organ pools (Drewniak et al., 

2013), and irrigation (Sacks et al., 2009). Multiple urban density classes, rather than the single dominant 

urban density class used in CLM4, were modeled in the urban land unit.  Carbon 13C and 14C isotopes for 

natural vegetation were introduced (Koven et al., 2013).  A summary of the changes included in CLM4.5 

relative to CLM4 are listed in Table 1. 

 

2.3 CLM5 

CLM5 is the default land model for CESM2 (http://www.cesm.ucar.edu/models/cesm2/).  Developments 

for CLM5 build on the progress made in CLM4.5. Most major components of the model have been 

updated with notable changes made to soil and plant hydrology, snow density, river modeling, carbon and 

nitrogen cycling and coupling, crop modeling as well as new surface characterization and transient land 

use datasets and increased flexibility to represent landscape dynamics through specified or prognostic 

transitions in land unit weights. Much of the development reflects a push towards more mechanistic 

This article is protected by copyright. All rights reserved.
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treatment of key hydrologic and ecological processes and more comprehensive and explicit representation 

of anthropogenic land management.  

Prior versions of CLM mainly included a single option for most parameterizations. With our new CLM 

codebase management philosophy, where new parameterizations or model structural decisions were 

defined for CLM5, we also maintained the CLM4.5 parameterization or configuration, thereby allowing 

users to switch back and forth between alternative parameterizations via namelist control. In this section, 

we briefly describe the full set of model developments. Except where explicitly noted, all described new 

parameterizations or features are active by default in CLM5.  For full details of new and old CLM5 

parameterizations, including equations and parameter values, we refer the reader to the cited papers and to 

the full technical description of CLM5 

(http://www.cesm.ucar.edu/models/cesm2/land/CLM50_Tech_Note.pdf).  Additional documentation 

including information about how to access the code, tutorials about how to run the model, developer’s 

guides, and model output diagnostics can be found here: http://www.cesm.ucar.edu/models/cesm2/land/. 

A schematic representation of the primary processes and functionality represented in CLM5 is shown in 

Figure 1.  A summary of the changes in CLM5 relative to CLM4.5 are listed in Table 1 for reference.  

 

2.3.1 Dynamic land unit weights and Plant Functional Type distribution 

CLM5 includes a new capacity update land unit weights during a simulation either through a dataset or 

prognostically, a technical feature that was previously not possible which prevented representation of 

important specified or dynamic transitions.  Spatial land surface heterogeneity in CLM is represented as a 

nested sub grid hierarchy in which grid cells are composed of multiple land units, columns, and patches 

(Figure 2). Each grid cell can have a different number of land units, each land unit can have a different 

number of columns, and each column can have multiple patches each with a specific plant functional type 

(PFT) or crop functional type (CFT). The first sub grid level, the land unit, is intended to capture the 

broadest spatial patterns of sub grid heterogeneity. The CLM5 land units are vegetated, lake, urban, 

glacier, and crop.  New within CLM5 is the capacity to adjust the fractional area of each land unit 

throughout the course of a simulation either as specified through a land use dataset (e.g., deforestation for 

agriculture, transition of a fraction of vegetated land unit to crop land unit) or through prognosed 
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initiation or loss of glacier area (e.g., initiation of glacier area, transition of fraction of vegetated land unit 

to glacier land unit; only possible when two-way ice sheet interactions are activated).  For natural 

vegetation, CLM operates under the assumption that all PFTs on the natural vegetation land unit compete 

for water and nitrogen and that all PFTs share the same soil column state (temperature, moisture, carbon, 

nitrogen).  Note that prior research has shown that for some applications, particularly for studies of land 

cover change impacts on climate, it may be preferable for each PFT to operate on its own soil column to 

avoid implicit energy transfer from one PFT to another (Chen et al., 2018; Meier et al., 2018; Schultz et 

al., 2016). On the crop land unit, each CFT (irrigated and unirrigated) resides on its own soil column and 

therefore operates based on its own soil moisture and nitrogen conditions.  For CLM5, transitions have 

only been enabled between natural vegetation, crop, and glacier land units; full transition capability (i.e., 

including ability for transitions to and from urban and lake land units) is under development.  The default 

configuration of CLM5 (and the other CLM versions assessed here) does not include dynamic vegetation 

biogeography (i.e., CLM is not a Dynamic Global Vegetation Model).  Instead vegetation distributions 

(natural and cropland PFTs and CFTs) are specified through time through a land use timeseries file (see 

below), but vegetation state (LAI, canopy height) is prognostic. Urban and lake land unit areas do not and 

cannot change during a simulation.  Total grid cell water, energy, carbon and nitrogen are conserved for 

all transitions. 

New land cover and land use data have been generated for CLM5 that combine updated versions of 

current day satellite land cover descriptions with the Land Use Model Intercomparison Project (LUMIP, 

(Lawrence et al., 2016)) past and future transient land use time series (Land Use Harmonization 2, LUH2, 

luh.umd.edu/data.shtml).  The new CLM5 land surface input and timeseries data describe the distribution 

of plant functional types (PFTs) and crop functional types (CFTs), soil texture and, wood harvest, 

industrial N fertilizer application amounts, irrigation-equipped area, shifting cultivation (repeated clearing 

and abandonment of agricultural land), monthly PFT leaf area index (LAI) and canopy height (for 

simulations using prescribed satellite vegetation phenology - SP in CLM infrastructure nomenclature), 

and several additional required or optional input datasets (see Technical Description for more detail on 

input datasets).  

The CLM5 surface datasets are created as in CLM4 and CLM4.5, but with updated methodology as 

described here. Present-day global land cover descriptions are generated at 1km resolution using updated 
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versions of the data and methods used for CLM4 and CLM4.5 (Lawrence & Chase, 2007). The basis for 

the land cover description comes from MODIS land cover (MCD12Q1 v5.1), vegetation continuous fields 

(MOD44B v5.1), leaf area index (MCD15A2 v5), and albedo (MCD43B3 v5) products for the years 2001 

– 2015 (https://lpdaac.usgs.gov/dataset_discovery/modis). Additional information for tree leaf type and 

longevity are provided by the AVHRR continuous fields tree cover product (Defries et al., 2000). Global 

crop distributions are provided by the monthly irrigated and rainfed crop areas around the year 2000 

(MIRCA2000) data set of Portmann et al. (2010). Canopy height data for tree PFTs are provided by the 

Geoscience Laser Altimeter System (GLAS) on the ICESat satellite as processed by (Simard et al., 2011). 

The LUH2 historical and future scenario data provide annual land use descriptions at 0.25o resolution 

from the year 850 to 2100.  The LUH2 data are generated from the History Database of the Global 

Environment (HYDE version 3.2, (Goldewijk et al., 2017)) for 850-2014, and from Integrated 

Assessment Model teams for multiple alternative scenarios of the future for 2015-2100. The LUH2 time 

series describes annual changes in primary and secondary forest and non-forest land units, along with five 

crop groups, managed pasture, rangeland and urban areas. The LUH2 data also includes information on 

wood harvest, both in terms of the mass of carbon extracted and the total harvest areal fraction (CLM5 

uses carbon mass). Annual crop management is specified by crop type through industrial fertilizer 

application and the fraction of each crop irrigated.  Finally, the CLM surface datasets and transient land 

use datasets are produced  with the CLM Land Use Data Tool 

(http://www.cgd.ucar.edu/iam/projects/thesis/thesis-clm-landuse-tool.html). This tool takes the present-

day land cover distribution and merges it with historical or future LUH2 transitions and management 

information and translates them into CLM PFT and CFT distributions and management information.   

 

2.3.2 Soil hydrology  

CLM5 includes several structural and parameterization improvements that increase the realism of the soil 

hydrology representation in the model. To resolve a deficiency in the seasonality of soil evaporation and 

soil water storage in semi-arid regions, the empirical soil evaporation resistance parameterization is 

replaced with a mechanistically-based parameterization where soil evaporation is controlled by the rate of 

diffusion of water vapor through a dry surface layer (Swenson & Lawrence, 2014). To account for spatial 

variation in soil thickness and columnar water holding capacity, CLM is updated so that different soil 
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thicknesses (by default ranging from 0.4 to 8.5m depth) can be applied for each soil column (Brunke et 

al., 2016; Swenson & Lawrence, 2015).  The default spatially-explicit soil depths are derived from a 

spatially explicit soil thickness data product (Pelletier et al., 2016). The explicit treatment of soil thickness 

with underlying bedrock (currently assumed to be impermeable, i.e. zero flux bottom boundary condition) 

means that the soil saturated and unsaturated zones and associated water table depth are modeled 

explicitly.  This allows for the deprecation of the unconfined aquifer parameterization ((Niu et al., 2007), 

which was used as part of the groundwater representation in CLM4 and CLM4.5. Note that an added 

benefit of the explicit representation of spatially-varying soil thickness underlain by impermeable bedrock 

is that it removes a logical inconsistency between the treatment of soil hydrologic and soil thermal 

calculations that existed in CLM4 and CLM4.5. The default model soil layer resolution is increased, 

especially within the top 3m, in part to more accurately simulate active layer thickness within the 

permafrost zone. The default configuration includes a total of 25 ground layers that extend to a depth of 

~50m. The first 5 (0.4m thick soils) up to 20 (8.5m thick soils) layers in each column are considered soil 

and are hydrologically and biogeochemically active.  The number of soil layers is specified independently 

for each column based on the imposed soil thickness dataset.  The remaining ground layers in each 

column are considered to be dry bedrock. Note that since the number of active soil layers varies from grid 

cell to grid cell, users need to be careful when doing spatial averaging of soil moisture or carbon/nitrogen 

quantities since bedrock layers have very small prescribed constant soil moisture and carbon/nitrogen 

values.   

An adaptive time-stepping solution to the Richard’s equation is introduced (Clark & Kavetski, 2010; 

Kavetski et al., 2001). This improves the accuracy and stability of the numerical soil water solution by 

allowing for multiple substeps within the standard 30-minute model timestep when required.  In test 

simulations, all instances of numerical instability in the Richards equation solution (i.e. negative soil 

moisture updates) were eliminated at a cost of an increase of less than 3% in model runtime.  Sub-

stepping is invoked (i.e., instabilities occur in Richard’s equation solution) most frequently when and 

where the number of soil layers is small, which can be due to frozen soils or shallow bedrock. The 

process of subtracting the hydrostatic equilibrium soil moisture distribution from the vertical soil moisture 

profile before solving Richards’ equation, proposed in Zeng and Decker (2009) and included in CLM4 
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and CLM4.5, has been deprecated because it is inconsistent with standard approaches used in soil 

hydrology (De Rooij, 2010). 

 

2.3.3 Atmospheric surface layer stability 

In Monin-Obukhov stability theory (Foken, 2006) atmospheric stability is characterized by a length scale 

L, called the Obukhov length, which is used to nondimensionalize the distance to the surface using 

variable zeta = (z-d)/L, where z is the reference height and d is the displacement height.  In CLM4.5, the 

stability variable zeta is constrained to be less than or equal to 2.  Using temperature and friction velocity 

measurements from a subalpine forest flux tower, Burns et al. (2018) showed that CLM4.5 exhibited a 

large and persistent nighttime low bias of canopy temperature and friction velocity. In that study, they 

alleviated this bias by implementing the Handorf et al. (1999) stability function in very stable conditions.  

For CLM5, we approximate the Handorf et al. (1999) stability function for very stable conditions by 

setting the maximum zeta value to 0.5.  Ongoing development work since CLM5 was finalized indicates 

that this need for a maximum zeta value can be eliminated when a vegetation biomass heat storage 

capacity is explicitly modeled (Swenson et al., 2019). Stability corrections and the applicability of Monin-

Obukhov similarity remains active research topics, which has recently leveraged high-resolution turbulent 

simulations such as Direct Numerical Simulations (DNS) (Li et al., 2018). 

CLM4.5 includes an additional modification to under-canopy stability designed to increase aerodynamic 

resistance between the canopy and the ground in stable conditions (Sakaguchi & Zeng, 2009).  Due to 

biases in surface to lowest atmosphere layer temperature profiles, also noted by Burns et al. (2018), it was 

found that the under-canopy stability parameterization did not perform as intended.  Consequently, this 

under-canopy stability parameterization is inactive in CLM5.  Within- and under- canopy stability 

remains an active area of research (e.g., Bonan et al., 2018).   

 

2.3.4 Snow, glaciers, and ice sheets 

Several changes are included that are mainly targeted at improving the simulation of surface mass 

balance, the difference between annual accumulation and ablation, over ice sheets. New parameterizations 
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for fresh snow density (updated temperature effects and wind effects), destructive metamorphism (the 

change in snow crystals from six-sided shapes to rounded, bonded ice grains due to disturbance, 

molecular motion, and pressure), and compaction by overburden pressure and drifting snow are included 

(van Kampenhout et al., 2017). For reference, fresh snow density as a function of temperature and wind 

speed is shown in Figure 1 of van van Kampenhout et al. (2017).  The maximum number of snow layers 

and snow amount is increased from 5 layers and 1 m snow water equivalent to 12 layers and 10 m snow 

water equivalent, to allow for the formation of firn in regions of persistent snow-cover (e.g., glaciers and 

ice sheets) (van Kampenhout et al., 2017).  The snow capping routine, which sets a limit on the maximum 

amount of accumulated snow, has been fixed to correctly allow surface snow density and grain size to 

refresh when new snow falls. The grain size of freshly fallen snow has been made a function of air 

temperature to address unrealistically high albedos over ice sheets.  Instead of applying a fresh snow grain 

size of 54 μm at all temperatures, fresh snow grain size is set to 54 μm below -30oC and to 204.5 μm 

above 0o C, with a linear ramp applied between these temperatures. The parameters for snow grain ageing 

are maintained.   

Multiple elevation classes (10 elevation classes by default) are specified on the glacier land unit to 

account for the strong topographic elevation gradients present over many glaciers and ice sheets 

(Lipscomb et al., 2013). Atmospheric surface temperature, potential temperature, specific humidity, 

density, and pressure are downscaled from the mean grid cell elevation to each glacier column elevation 

using a specified lapse rate (6.0o km-1) and an assumption of uniform relative humidity. Longwave 

radiation is downscaled by assuming a linear decrease in downwelling longwave radiation with increasing 

elevation (0.032 W m-2 m-1, bounded to 0.5 to 1.5 times the grid cell mean value, then normalized to 

conserve grid cell total energy) (Tricht et al., 2016). This downscaling allows lower-elevation columns 

within a glacier land unit to undergo surface melting while columns at higher elevations remain frozen. 

In typical configurations (e.g. by default in CESM2 and CLM5 land-only simulations), CLM5 computes 

ice sheet surface mass balance, but ice sheets do not evolve. CLM5 can also be coupled bidirectionally to 

CISM2.1 (Lipscomb et al., 2019) and thereby simulate an evolving Greenland ice sheet. The introduction 

of the capability to adjust land unit weights during a simulation (Section 2.3.1) means that a glacier can 

incept, grow, shrink, or disappear during a simulation when two-way coupling between the land and ice 
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sheet model is active.  By default, two-way coupling is not active in CESM2 or CLM5 land-only 

simulations, including the simulations assessed here. 

Vegetation canopy precipitation interception is updated to track liquid and solid water phases separately, 

with intercepted snow subject to unloading events due to wind or above-freezing temperatures similar to 

Roesch et al. (2001).  Interception snow mass compares favorably with in-situ measurements from Storck 

et al. (2002).  Additionally, the snow-covered fraction of the canopy, which is calculated based on the 

canopy snow mass and LAI, is used within the canopy radiation and surface albedo calculations.  

Finally, CLM5 partitions total precipitation into rain and snow according to a linear temperature ramp.  

This partitioning occurs irrespective of what phase precipitation is calculated by the atmosphere model. 

For most land units, this ramp generates all snow below 0oC, all rain above 2oC, and a mix of rain and 

snow for intermediate temperatures. For glaciers, the end points of the ramp are -2oC and 0oC, 

respectively. To ensure energy conservation, a sensible heat flux correction term is applied when the 

phase of precipitation coming from the atmosphere is changed. 

 

2.3.5 Rivers 

The River Transport Model (RTM) used in CLM4.5 is replaced with the physically more realistic Model 

for Scale Adaptive River Transport (MOSART, Li et al., 2013b).  Note that the river model is treated as a 

separate coupled component in CESM and therefore is not technically part of CLM, but we include it in 

this manuscript because of the clear relationship with and dependence on CLM, i.e., MOSART receives 

surface and subsurface runoff from CLM. MOSART represents an upgrade over RTM in several ways.  

RTM utilizes a simple linear reservoir method to calculate streamflow, whilst MOSART is based on the 

more physically-based kinematic wave method.  MOSART also provides more information on river 

conditions; i.e., RTM only simulates streamflow whereas MOSART additionally simulates time-varying 

channel velocities, channel water depth, and channel surface water variations.  In MOSART, surface 

runoff is routed across hillslopes and then discharged along with subsurface runoff into a tributary 

subnetwork before entering the main channel.  MOSART assumes that all the tributaries within a spatial 

unit (either regular lat/lon grid or watershed) can be treated as a single hypothetical sub-network channel 

with a transport capacity equivalent to all the tributaries combined.  Correspondingly, three routing 
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processes are represented in MOSART: 1) hillslope routing: surface runoff is routed as overland flow into 

the sub-network channel, while subsurface runoff directly enters the sub-network channel; 2) sub-network 

channel routing: the sub-network channel receives water from the hillslopes, routes water through the 

channel and discharges it into the main channel; 3) main channel routing: the main channel receives water 

from the sub-network channel and/or inflow, if any, from upstream, and discharges the water downstream 

or to the ocean.  The capability to simulate flooding (water transfer from rivers back onto land under 

flood stages) that was implemented into RTM for CLM4.5 is retained for MOSART, but is not active by 

default.  The representation of wetlands is unchanged from CLM4.5 wherein wetlands are no longer their 

own prescribed land unit, but instead are captured through a prognostic surface water storage that 

accounts for fine spatial scale variations in surface elevation (see Technical Description for details).   

 

2.3.6 Vegetation physiology 

A plant hydraulic stress (PHS) routine is introduced which explicitly models water transport through the 

vegetation according to a simple hydraulic framework (Kennedy et al., 2019). The plant hydraulics 

routine solves for vegetation water potentials (root, xylem and leaf) according to an electric circuit 

analogy, in which the flow (current) is the soil-to-leaf water supply (sap) which is set to meet the 

transpiration flux (demand) at every time step, i.e., no storage is assumed. Explicit prognosis of plant 

tissue water status improves the physical basis for many processes represented in CLM, such as the 

dynamics of root water uptake profiles, and the attenuation of photosynthesis and transpiration with 

drought, which was exaggerated in previous model versions (e.g., Powell et al., 2013).  In PHS, 

‘unstressed’ (atmospheric demand-driven) stomatal conductance is modulated for drought stress using a 

function of leaf water potential, requiring vegetation to regulate stomatal conductance to avoid 

excessively negative leaf water potential and thus plant desiccation and embolism in the xylem. This more 

mechanistic representation of vegetation water stress replaces the soil moisture stress (SMS) 

parameterization in prior versions of CLM in which water stress was calculated through a plant wilting 

factor that was based on soil water matric potential relative to PFT-dependent parameters for fully closed 

and fully open stomata, weighted by layer root fractions.  An emergent feature of the plant hydraulics 

scheme (wherein water moves along water potential gradients within the soil-root-stem-leaf system) is a 

plant-mediated vertical hydraulic redistribution of soil water from wet to dry soil layers, which thus leads 
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to important nighttime and seasonal hydraulic redistribution, physically constrained by the plant hydraulic 

parameterization (Kennedy et al., 2019).  To prevent unrealistically high soil evaporative losses of soil 

water due to continuous hydraulic redistribution, root water uptake and hydraulic redistribution is not 

allowed to occur in the 2 cm thick surface soil layer.   

PHS advances the physical and empirical basis of the CLM vegetation hydrodynamics scheme. 

Previously used soil moisture stress functions (as in SMS) tend to lack either a strong physical or 

empirical justification and are a major source of uncertainty in land models (Trugman et al., 2018). PHS, 

in adopting a plant hydraulic framework, incorporates more physical root water uptake, following Darcy’s 

Law, and a stress formulation based on avoiding excessive xylem tension. Likewise, PHS opens avenues 

for better empirical constraints on vegetation water use. The model parameters have physical meaning, 

and new prognostic vegetation water potential can be validated with field observations and, potentially, 

satellite remote sensing products (e.g., Anderegg et al., 2018; Konings et al., 2017; Li et al., 2017). 

In CLM5, maximum stomatal conductance is obtained from the Medlyn “empirical-optimal” conductance 

model (Medlyn et al., 2011), rather than the Ball-Berry stomatal conductance model that was utilized in 

CLM4.5 and prior versions of the model. The Ball-Berry implementation used a single slope parameter 

for all C3 plants. In a recent study, Lin et al. (2015) estimated PFT-dependent slope parameters for the 

Medlyn model, which have been successfully used in CABLE (De Kauwe et al., 2015). The slope 

parameters used in CLM5 are from CABLE. Note that the slope parameter value is indicative of the 

plant’s water use strategy – PFTs with a high slope parameter have high stomatal conductance per unit 

photosynthesis, and therefore a low water use efficiency.  As discussed by Franks et al. (2017) and Franks 

et al. (2018), the primary difference between the two stomatal models, after accounting for different slope 

parameters, relates to the effects of extreme low and high vapor pressure deficit on stomatal conductance. 

Two other relatively minor changes are included in CLM5.  (1) The trigger for stress deciduous  PFT 

phenology is augmented with an antecedent precipitation requirement (Dahlin et al., 2015). This 

additional trigger was implemented to reduce the occurrence of anomalous green-up during the dry season 

in many semi-arid regions that was being driven by upwards water movement from wet to dry soil layers 

and thereby triggering unrealistic leaf-out even in circumstances when there was not any recent rainfall. 

More recent work has demonstrated a broad array of stress deciduous phenology strategies that are not 

possible to resolve in the current CLM PFT scheme (Adole et al., 2018; Dahlin et al., 2017), but this 

This article is protected by copyright. All rights reserved.



 
 

16 

complexity could potentially be represented in FATES (see Section 2.3.12). (2) The rooting profiles, 

which were inconsistent for water and carbon in CLM4.5 were updated to be consistent in CLM5. The 

Jackson et al. (1996) rooting profile is preferred over the Zeng (2001) profile as it produces more realistic 

vertical soil C profiles, though the Zeng (2001) profile is retained as an option. 

Lastly, ozone damage to vegetation is included as an optional feature in CLM5. The ozone damage 

parameterization is the same as implemented by Lombardozzi et al. (2015a) based on ozone damage 

response data compiled by Lombardozzi et al. (2013).  Ozone damage to vegetation is applied directly 

and independently to photosynthesis and stomatal conductance for three broad PFT classes (broadleaf 

trees and shrubs, needleleaf trees and shrubs, and crops and grasses) based on the cumulative uptake of 

ozone. Cumulative uptake of ozone is calculated as the ozone concentration multiplied by stomatal 

conductance, integrated through time, to account for the fact that ozone primarily damages vegetation 

once it enters the leaf and total damage is dependent on the time period of exposure. The damage decays 

over the growing season to account for the fact that plants acquire new, undamaged leaves throughout the 

growing season, and also decays over the leaf lifespan for evergreen plant types.  

 

2.3.7 Carbon dynamics 

CLM5 applies a fixed C allocation scheme for woody vegetation where allocation to above and below 

ground biomass is held constant. The decision not to use the dynamic allocation scheme based on NPP, as 

was used in CLM4 and CLM4.5, was driven by the fact that observations indicate that plant biomass 

saturates with increasing productivity, which is inconsistent with the behavior in CLM4 and CLM4.5 

where biomass perpetually increases with increasing productivity (Negrón-Juárez et al., 2015).  Because 

the prior allocation rules implicitly led to a saturation of leaf carbon allocation, this change does lead to a 

possible tradeoff between accuracy of biomass and accuracy of leaf area, and remains a large uncertainty 

and an area of active research. Soil carbon decomposition processes are unchanged from CLM4.5 to 

CLM5, but assessment with a new metric for the temperature sensitivity of apparent soil carbon turnover 

times (Koven et al., 2017) pointed to the need to adjust the parameter that controls intrinsic depth 

limitation on soil carbon turnover towards a weaker depth limitation (rather than the strong depth 

limitation in CLM4.5) and to adjust the parameter that controls soil moisture limitation on soil carbon 

This article is protected by copyright. All rights reserved.



 
 

17 

turnover rates in dry soils to a wetter soil moisture level than that used in CLM4.5. Note that vertical C 

and N processes are only calculated for hydrologically active soil layers (see Section 2.3.2), which vary in 

space. 

 

2.3.8 Nutrient dynamics 

Plant nutrient dynamics are substantially updated in CLM5 to resolve several deficiencies with the 

representation of nutrient cycling in previous versions of the model. The Fixation and Uptake of Nitrogen 

(FUN) model, based on the work of Fisher et al. (2010), Brzostek et al. (2014), and Shi et al. (2016), is 

incorporated. The concept of FUN assumes that N uptake requires the expenditure of energy in the form 

of C (in CLM4.5 there was no C expenditure for N uptake), often a significantly large portion of NPP 

(Doughty et al., 2018; Marschner, 1995) and further, that there are numerous potential sources of N in the 

environment which a plant may exchange for C: symbiotic biological N fixation, arbuscular-mycorrhizal 

and ecto-mycorrhizal (two types of root fungus) uptake, direct root uptake, and leaf N retranslocation. 

The ratio of C expended to N acquired is therefore the C cost, or exchange rate, of N acquisition. This C 

is assumed to respire as it is used for N acquisition. As FUN calculates the rate of symbiotic N fixation, 

this N is passed straight to the plant, as opposed to passing through the soil mineral N pool. CLM5 now 

separately calculates rates of free-living N fixation as a function of evapotranspiration (modified from 

Cleveland et al., 1999), which is added to the soil inorganic ammonium (NH4
+) pool. Previous versions of 

CLM added the N fixation flux, which was calculated as function of net primary productivity (without an 

associated C cost; Cleveland et al., 1999; Thornton et al., 2007; Wieder et al., 2015), to the soil mineral N 

pool. 

The static plant carbon:nitrogen (C:N) ratios utilized in CLM4 and CLM4.5 are replaced with variable 

plant C:N ratios, as in Zaehle and Friend (2010), which allows plants to adjust their C:N ratio, and 

therefore their leaf N content, with the cost of N uptake (Ghimire et al., 2016). The implementation of a 

flexible C:N ratio means that the model no longer relies on instantaneous down-regulation of potential 

photosynthesis rates based on soil mineral N availability to represent nutrient limitation. Furthermore, 

stomatal conductance in CLM5 is based on the N-limited photosynthesis rate rather than on potential N-
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unlimited photosynthesis as in CLM4 and CLM4.5, thereby allowing for more realistic coupling between 

plant C and water cycles (Medlyn et al., 2016). 

Finally, the Leaf Use of Nitrogen for Assimilation (LUNA; Ali et al., 2016; Xu et al., 2012) model is 

incorporated. The model allocates N to maximize daily net photosynthetic carbon gain under the 

following two key assumptions: (1) N allocated for light capture, electron transport and carboxylation are 

co-limiting; and (2) respiratory nitrogen is allocated to maintain dark respiration determined by Vcmax25.  

Compared to traditional photosynthetic capacity models, a key advantage of LUNA is that it is able to 

predict potential acclimation of photosynthetic capacities for different environmental conditions as 

determined by temperature, radiation, CO2 concentrations, day length, and humidity.  Importantly, the 

inclusion of LUNA means that Vcmax25, the maximum rate of carboxylation, is a prognostic model 

quantity, dependent on leaf N per unit area and environmental conditions, whereas it was fixed for each 

PFT in CLM4 and CLM4.5. 

 

2.3.9 Land management processes 

Representation of human management of the land (agriculture and wood harvest) is augmented in several 

ways. Critically, the introduction of the capability to dynamically adjust land unit weights during a 

simulation means that the crop model can be run coincidentally with prescribed land-use change, which 

significantly expands the capabilities of the model. The CLM4.5 crop model is extended to operate 

globally through the addition of rice and sugarcane as well as tropical varieties of corn and soybean 

(Badger & Dirmeyer, 2015; Levis et al., 2018). These crop types are added to the existing temperate corn, 

temperature soybean, spring wheat, and cotton crop types. Industrial N fertilization amounts and 

irrigation-equipped area are updated annually based on crop type and geographic region through the land 

use time series dataset. The irrigation trigger is updated to remove the dependence on the CLM4.5 plant 

soil moisture stress calculation (replaced in CLM5 with PHS, Section 2.3.6) and instead uses a target soil 

moisture level, which was tuned to get reasonable irrigation amounts. Additional minor changes to crop 

model include: (1) crop phenological triggers vary by latitude for selected crop types, which is a 

temporary solution that generates more realistic global crop planting dates outside of the temperate 

regions for which the growing degree day-based crop planting window was originally parameterized 
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(though serious crop planting window errors still occur), and (2) grain C and N is transferred during crop 

harvest into a 1-year product pool with the C needed to seed the next season’s crops removed from grain 

C while the rest of the crop vegetation residue is transferred to litter C and N pools.  To better match 

wood harvest inventories specified in the LUH2 dataset, mass-based, rather than area-based, wood harvest 

is applied.  Shifting cultivation is represented by calculating unrepresented gross transitions in the LUH2 

time series and then removing above-ground C to account for the conversion of the gross forest PFTs to 

crop or pasture PFTs not included by the net transitions. Shifting cultivation is an optional feature of 

CLM5 and is off by default and in all simulations considered in this paper. 

Changes to urban modeling capabilities include the introduction of several human heat stress indices for 

both urban and rural areas that are calculated and output by default (Buzan et al., 2015). A more 

sophisticated and realistic building space heating and air conditioning submodel that prognoses interior 

building air temperature and includes more realistic space heating and air conditioning waste heat factors 

is incorporated (Oleson & Feddema, 2019). 

 

2.3.10 Fire 

The fire parameterization in CLM5 simulates four types of fire: agricultural fires in cropland, 

deforestation fires in tropical closed forests, peat fires, and non-peat fires outside cropland and tropical 

closed forests (see Li & Lawrence, 2017 for details; Li et al., 2013a; Li et al., 2012). Burned area is 

affected by climate and weather conditions, vegetation composition and structure, and human activity. 

Once burned area is determined, the impact of the fire is calculated, including biomass and peat C losses, 

fire-induced vegetation mortality, adjustment of the vegetation C:N pools, and fire C and other trace gas 

emissions. The fire model is mainly unchanged from CLM4.5 except with a modified scheme for the 

dependence of fire occurrence and spread on fuel wetness for non-peat fires outside cropland and tropical 

closed forests and with the dependence of agricultural fires on fuel load removed.   

The CLM5 fire model, when coupled to the Community Atmosphere Model, can simulate and transfer 

emissions of total C, aerosols (e.g., black C, organic C, DMS), greenhouse gases (e.g., CO2, N2O, CH4) 

and other trace gases (e.g., CO, NO, NO2, NH3, HONO, SO2 and over 15 non-methane hydrocarbon 

species) to the atmosphere (Ford et al., 2018).  Fire emissions are estimated at the PFT level from total 
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fire C emissions, a conversion factor from C to dry matter (DM) (0.5 g C/g DM) and emission factors (g 

species/g DM) that convert dry matter burned into emissions. The emission factors for each species used 

in CLM5 are derived from up-to-date inventories compiled from field and laboratories studies ((Andreae 

& Merlet, 2001, updated to 2016) (Akagi et al., 2011, updated to 2014) and references therein). The 

vertical distribution of fire emissions is derived from PFT-dependent maximum injection heights (4.3 km 

for needleleaf trees, 3 km for other boreal and temperate trees, 2.5 km for tropical trees, 2 km for 

shrublands, and 1 km for grass and croplands). These injection heights are compiled from satellite-based 

observations of fire smoke plumes (Val Martin et al., 2018; Val Martin et al., 2010).  The fire emissions 

module is not active by default in CESM2, but is available as a research option. 

 

 2.3.11 Parameters 

Parameters of CLM5 were defined where possible from literature values and meta analyses, with some 

adjustments made to reduce large model biases, while accounting for errors in observational datasets and 

in the globally applied model structure.  Default parameter values for all model parameters can be found 

in the CLM5 Technical Description. A brief description of the rationale for the values used for selected 

parameters is included here. Note that during the process of finalizing the CLM5 parameter set, we found 

several instances where parameter value tradeoffs needed to be made related to joint goals of relatively 

small biases for quantities such as GPP and LAI and reasonably high PFT survivability rates (see Section 

4.2).  Fisher et al. (2019) provide a more detailed assessment of CLM5 C and N cycle sensitivity to 

parametric uncertainty as well as additional discussion of parameter definition for CLM5.  Note that 

ILAMB was not used during the parameter adjustment process.     

 

Plant Hydraulics Parameters 

The plant hydraulics scheme introduces four new parameters for each PFT (Kennedy et al., 2019), 

including the water potential at which half of the hydraulic conductivity of each plant element (root, stem, 

shaded leaf, sunlit leaf) is lost (p50), the conductivity of the soil-root interface (krmax), the conductivities 

at the interfaces between each of the plant elements (kmax), and the cavitation vulnerability curve shape-

fitting parameter (ck). The code is structured so that in future investigations, parameter values for each 

plant element can be adjusted individually, but in the released version all plant elements use the same 
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value.  Estimates of p50 across PFTs are obtained from analysis of the dataset presented by Choat et al. 

(2010). Large datasets on comparable plant tissue conductivities (kmax and krmax) are not widely 

available. Further, because the resistances of the plant and roots act in series, the minimum conductivity 

among the plant elements largely controls the overall plant conductivity.  Plant conductivities are 

therefore calibrated as follows: kmax values are set uniformly high and krmax is considered a free tuning 

parameter. The introduction of PHS represents the first instance where a plant hydrodynamic model has 

been applied globally across all biomes in CLM, or indeed, in any ESM of which we are aware. 

Consequently, the plant hydraulics parameter values included in the released CLM5, which were defined 

in a generally ad-hoc manner, should be considered an initial estimate of reasonable parameter valuables, 

that can and should be refined as required. 

 

Vegetation Parameters 

Several vegetation parameters were updated relative to those used in CLM4 or CLM4.5.  (1) PFT-specific 

values for the slope of the Medlyn stomatal conductance (medlynslope) were adapted from Medlyn et al. 

(2011) as documented in Franks et al. (2017).  (2) PFT-specific values of the respiration model intercept 

(lmr_intercept_atkin) were derived from Atkin et al. (2015).  (3) Leaf longevity (leaf_long), target leaf 

CN ratio (leafcn) and specific leaf area (slatop) were all derived from the mean PFT-specific values 

identified in the TRY database (Kattge et al., 2011).  With our final set of default CLM5 parameters, the 

productivity for boreal and temperate needleleaf evergreen trees is too high, particularly when the LUNA 

model is active. To calibrate model performance, leafcn was increased to one standard deviation above 

the mean reported value for these PFTs. 

The parameters for carbon allocation (ratio of new coarse root to new stem allocation, croot_stem; ratio 

of new fine root to new leaf allocation, froot_leaf; ration of new stem to new leaf allocation, stem_leaf.  

The ratios of tissue biomass are the basis for the fixed carbon allocation scheme used in CLM5, which is 

an over-simplification of real allometric ratios that vary as plants age. Thus, it is difficult to directly 

connect the parametric allocation ratios used in CLM5 to those obtained from databases. The CLM5 

allocation parameters (ratio of new coarse root to new stem, croot_stem; ratio of new fine root to new 

leaf, froot_leaf; ratio of new stem to new leaf, stem_leaf; and ratio of new live wood to new total wood) 

were initially derived from an analysis by Ghimire et al. (2016), but were further adjusted to reduce large 

biases in LAI in deciduous PFTs. CLM4.5 down-regulated leaf allocation with high NPP, whereas CLM5 
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adopts a fixed allocation scheme to rectify issues with woody biomass accumulation in tropical forests 

identified by Negrón-Juárez et al. (2015). For CLM5, allocation to stems and roots was increased for 

many PFTs, potentially compensating for the removal of a variable allocation parameterization, and 

potentially also contributing to low growth and survival in more marginal climate areas. This set of 

parametric tradeoffs reflects the need for a whole-plant based (as opposed to big leaf, tissue-based) 

allocation scheme, as is envisaged for future generations of the model (Fisher et al., 2018; Fisher et al., 

2015).  

 

Nitrogen Model Parameters 

The introduction of the FUN model to CLM5 adds numerous parameters describing the costs of N 

acquisition from the environment and control on the flexibility of the tissue C:N ratios.  Many of these 

parameter values are constrained by data, but still include some uncertainty since they represent processes 

(N uptake, fixation, allocation) that are sparsely documented in the literature. Nitrogen cycle models in 

general have large structural and parametric uncertainty. The maximum fraction of net carbon 

assimilation that can be spent (at a PFT level) on fixation is a proxy for the fraction of N fixers 

(FUN_fracfixers) in an ecosystem. FUN_fracfixers is set at 0.25 for each PFT, and 0 for all CFTs except 

temperate and tropical soy where it equals 1. Note that although FUN_fracfixers allows fixation, this does 

not necessarily mean it occurs if there are cheaper C costs for N acquisition from other pathways. 

Parameters for fixation cost (a_fix, b_fix, c_fix, s_fix) were derived from Houlton et al. (2008). The 

relative values of the six parameters of the active cost of N uptake (akc_active, akn_active, ekc_active, 

ekn_active, kc_nonmyc, kn_nonmyc) were taken from Brzostek et al. (2014). These parameters shape the 

C cost curves for the mycorrhizal and direct root uptake pathways. Note that N uptake costs of some PFTs 

were adjusted from Brzostek et al. (2014) values to reduce biases in GPP, especially broadleaf tropical 

deciduous trees and C4 grass, which Brzostek et al. (2014) did not provide.  The parameters that adjust C 

expenditure on N uptake with changing environmental cost and existing tissue ratios (fun_cn_flex_a,  

fun_cn_flex_b and  fun_cn_flex_c) were determined via an offline calibration exercise to achieve 

variations in tissue C:N ratios for the typical modeled N-cost range to be consistent with the range of 

observations. These parameters allowed FUN, which was originally parameterized for models with fixed 

plant C:N ratios, to work with the variable plant C:N ratios in CLM5.  The fraction of ectomycorrhizal 

fungi (per_ecm) were derived from Shi et al. (2016). 
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2.3.12 FATES 

Included as an option with CLM5 is the Functionally-Assembled Terrestrial Ecosystem Simulator 

(FATES, Fisher et al., 2015). FATES is a cohort model of vegetation competition and co-existence, 

allowing a representation of the biosphere which accounts for the division of the vegetated land into 

successional stages, and for competition for light between height structured cohorts of representative trees 

of various plant functional types.  FATES allows the prediction of biome boundaries directly from plant 

physiological traits via their competitive interactions and includes the SPITFIRE model of Thonicke et al. 

(2010), modular allometry and allocation schemes, flexible trait-based PFT definition, interactive logging 

and plant hydrodynamics based on Christoffersen et al. (2016).  FATES fast-timescale physiological 

processes are based on CLM, but resolved for a height-structured and multi-PFT canopy. FATES is not 

active by default in CLM5 and is not active within any simulations assessed in this manuscript. Open-

source development and application of the codebase is ongoing at https://github.com/NGEET/fates. 

 

 2.3.13 Data assimilation capabilities 

The capabilities for conducting data assimilation with CLM5 using the Data Assimilation Research 

Testbed (DART, Anderson et al., 2009) continue to improve, particularly with respect to computational 

efficiency. The CLM-DART system relies heavily on the CESM multi-instance capability and other 

workflows. The latest distribution of DART includes full support for CLM5 both in terms of the initial 

setup scripts provided to create a multi-instance case suitable for DA and the assimilation scripts called by 

CESM, and for the DART executables themselves. CLM-DART has the ability to assimilate many land 

observation types using the general DART framework, including in-situ and remote sensing 

measurements of soil moisture and temperature, eddy covariance flux tower measurements of carbon and 

water fluxes, and most recently leaf area index and aboveground biomass (Fox et al., 2018). Previous 

work with CLM-DART has concentrated on hydrometeorology, and describe capabilities to assimilate 

snow cover fraction (Zhang et al., 2014), AMSR-E brightness temperature for snow depth (Kwon et al., 

2016), soil moisture (Zhao et al., 2016), and GRACE total water storage (Zhao & Yang, 2018). Work is 
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underway to add capability to assimilate solar induced fluorescence (SIF) and the latest generation of 

spaceborne soil moisture observations.    

 

3 Simulations and assessment 

3.1 Simulations 

Table 2 lists the CLM4, CLM4.5, and CLM5 simulations that have been performed.  This set of 

experiments provide a comprehensive assessment of CLM across model generations and across common 

CLM configurations, as well as the basis to assess the sensitivity to forcing datasets.  The assessment of 

three model versions allows readers to understand the progression of model performance and provides 

context for CESM1 versus CESM2  These include simulations that apply LAI prescribed from satellite 

phenology (SP) and simulations with prognostic vegetation state and active biogeochemistry (BGC). 

Note that only CLM5 has the capability to dynamically simulate crop management and crop management 

change through time so this simulation is defined as CLM5 BGC-crop.  All simulations were completed 

at a resolution of 0.9o latitude by 1.25o longitude and except where indicated include all required 

historical or future CLM forcings (as applicable for each configuration) including time series of CO2, 

aerosol deposition, N deposition, and land use change.  The projection period (2015-2300) simulations, 

which used the ‘anomaly forcing’ method (Lawrence et al., 2015), and the no land use change 

simulations are not assessed here but are available to the community via the data portal for use.  The +N 

and +CO2 simulations are 20-year long simulations starting in year 1995 that replicate the CLM4, 

CLM4.5, and CLM5 BGC simulations but with a step increase of: 1) nitrogen deposition (5 g N m-2 y-1 

above ambient evenly distributed over the year) and 2) atmosphere CO2 concentration (200 ppm over 

ambient) (see Wieder et al., 2019 for further detail).  Results from the +CO2 and +N experiments are 

described in Section 4.7.  Note that we restrict our analysis to land-only simulations in this manuscript.  

However, for reference we include assessment of land quantities in CESM1 versus CESM2 with ILAMB 

and the CLM diagnostics package (see Section 3.3).  The performance of CLM5 within CESM2 will be 

assessed in a separate manuscript. 

The standard CLM spin-up protocol is used to achieve carbon, water and energy equilibrium at the start 

of the simulation. The year 1850 equilibrium conditions are calculated by integrating over a repeating 20-
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year period of an atmospheric reanalysis dataset (i.e., years 1901 to 1920 from the forcing datasets 

described below) along with fixed atmospheric CO2, N deposition, aerosol deposition, and land use (note 

that wood harvest is set to zero during spin-up).  As with earlier versions of CLM, it is prohibitively 

expensive to run the full model for the period of time required to achieve a quasi steady-state. Thus, the 

spin-up procedure involves a new “accelerated decomposition” methodology, updated from that 

introduced in Thornton and Rosenbloom (2005) and Koven et al. (2013), with modifications for CLM5 to 

both add a geographic term to the acceleration and also to accelerate the stem and coarse root C turnover. 

During the accelerated decomposition phase, the decomposition of the slow C pools (e.g., the long 

turnover time soil C and coarse woody debris pools) are artificially increased to allow faster convergence 

on the equilibrium state (see Section 21.8 of CLM5 Technical Description for details).   The CLM 

historical simulations assessed here were initialized from spinup simulations that consisted of ~400 years 

in accelerated mode, followed by an additional 400-800 years in ‘normal mode’.  Though the length of 

time for spin-up varies across configurations, by the end of the spin-up, the global total ecosystem C is 

drifting by less than 0.02 PgC yr-1 and fewer than 5% of grid cells are out of C balance by more than 1 gC 

m2 yr-1.  For CLM5, initial/cold start (prior to spin-up) soil C and N stocks are increased substantially 

over earlier model versions, which was done to permit vegetation establishment in harsh environments 

(where the need for plants to pay for N uptake can inhibit growth under marginal conditions).  In some 

high latitude grid cells, however, vegetation does not survive and soil C turnover is slow due to cold 

climate conditions.  In these locations, the high initial soil C stocks do not deplete during the accelerated 

spin-up, which leads to unrealistically high equilibrium soil C stocks in those grid cells.  To circumvent 

this undesirable feature, the C stocks of the slow C pools are set to zero where vegetation C is < 0.1 gC 

m-2 by the end of the accelerated spin-up phase. 

 

3.2 Meteorological forcing datasets 

For comparison, we utilize three historical meteorology/climate forcing datasets (1901-2014) which are 

drawn from standard forcing datasets that will be used within LS3MIP (Van den Hurk et al., 2016). 

GSWP3v1 – The Global Soil Wetness Project forcing dataset (GSWP3) is the default forcing dataset for 

LS3MIP (Van den Hurk et al., 2016) and LUMIP (Lawrence et al., 2016)land-only simulations.  It is a 3-
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hourly 0.5° global forcing product (1901-2014) that was developed for the third phase of GSWP3 

(http://hydro.iis.u-tokyo.ac.jp/GSWP3/). It is based on the 20th Century Reanalysis version 2 performed 

with the NCEP model (Compo et al., 2011). The reanalysis was dynamically downscaled to T248 (0.5°) 

resolution using the Global Spectral Model using a spectral nudging technique (Yoshimura & Kanamitsu, 

2008). Bias correction for temperature, precipitation, and longwave radiation, and shortwave radiation 

were made using CRU TS v3.21 (Climate Research Unit, Jones & Harris, 2013), GPCCv7 (Global 

Precipiation Climatology Centre, Schneider et al., 2014), and SRB (Surface Radiation Budget) datasets, 

respectively.  A wind-induced undercatch correction was applied. 

CRUNCEPv7 – CRUNCEP is the default forcing dataset used in the Global Carbon Project TRENDY 

simulations (Le Quéré et al., 2018) and MsTMIP simulations (Huntzinger et al., 2013). It is also a 

secondary forcing dataset for LS3MIP land-only simulations. It is a 6-hourly 0.5° global forcing product 

(1901-2015) which is a combination of the CRU TS v3.24 monthly climate dataset ( Jones & Harris, 

2013) and NCEP reanalysis (Kalnay et al., 1996). The reanalysis is only used to generate diurnal and 

daily anomalies added to CRU TS monthly means. Precipitation, temperature, cloudiness, and relative 

humidity are all based on CRU while longwave radiation, pressure, and windspeed are taken directly from 

NCEP.  

WATCH/WFDEI – WATCH is a 3-hourly or 6-hourly, 0.5° global forcing product (1901-2001).  It uses 

the CRU TS2.1 (Mitchell & Jones, 2005) and GPCCv6 datasets to provide the mean climate and the 

European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis (ERA-40) product to 

distribute the mean monthly climate to daily and hourly estimates. Years 1958-2001 are based directly on 

ECMWF Reanalysis (ERA-40) whereas years 1901–1957 are based on reordered ERA-40 data. 

Corrections have been applied for seasonal- and decadal-scale variations in the effects of tropospheric and 

stratospheric aerosol loading on solar radiation, thereby accounting for the effects of global “dimming” 

and “brightening.”  Additional detail about the WATCH dataset is available in Weedon et al. (2011). Note 

that simulations with WATCH forcing only run through year 2001.  We also utilize the WFDEI product, 

which utilizes the WATCH methodology to the ERA-Interim reanalysis dataset (Weedon et al., 2014).  

This WFDEI dataset covers the period 1979-2012.  Due to the short record, we only use WFDEI dataset 

for SP simulations. 
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3.3 ILAMB 

The International Land Model Benchmarking (ILAMBv2.1, Collier et al., 2018) package is used to assess 

the models. ILAMB is an open source land model evaluation system that operates on global-, regional-, 

and site-level data and provides a hierarchical scoring system to indicate model fidelity.  The ILAMBv2 

version used here integrates analysis for 28 variables utilizing more than 60 datasets and data products. 

For each variable, ILAMB produces statistics, maps, time series, and metrics for annual mean, bias, 

relative bias, RMSE, seasonal cycle phase, spatial distribution, interannual variability, as well as variable-

to-variable assessments.  Both global and regional assessments are included. 

To address a range of questions related to the impacts of model configuration (e.g., prescribed satellite 

vegetation phenology (SP in CLM infrastructure terminology) versus prognostic vegetation and 

biogeochemistry (BGC in CLM infrastructure terminology), model structural evolution across CLM 

generations (CLM4 versus CLM4.5 versus CLM5), and forcing datasets (GSWP3v1 versus CRUNCEPv7 

versus WATCH), we ran ILAMB for several different sets of the model simulations listed in Table 2 

(http://www.cesm.ucar.edu/experiments/cesm2.0/land/diagnostics/clm_diag_ILAMB.html): 

● Structural evolution BGC mode: (CLM4BGC, CLM4.5BGC, CLM5BGC; GSWP3v1 and 

CRUNCEPv7 forcing):  

● Structural evolution prescribed vegetation mode (CLM4SP, CLM4.5SP, CLM5SP; GSWP3 

forcing):  

● Forcing uncertainty (CLM5BGC and CLM5SP with GSWP3, CRUNCEP, and WATCH/WFDEI) 

● Structural and forcing uncertainty (CLM4, CLM4.5, CLM5 with GSWP3 and CRUNCEP, SP 

and BGC):  

The CLM diagnostics package provides a vast set of additional plots and tables, including plots for many 

variables that are not included in ILAMB as well as seasonal comparisons against selected observed 

datasets. CLM diagnostic package results are available here for reference: 

http://www.cesm.ucar.edu/experiments/cesm2.0/land/diagnostics/clm_diag_PCKG.html. 

 

4 Results  
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In this section, we present a representative sample of analyses that are selected to emphasize strengths and 

weaknesses of CLM5, relative to CLM4 and CLM4.5, as well as to highlight new features of the model.  

Due to the breadth of model improvements and the scope of the model output, the assessment presented 

here is necessarily incomplete.  Companion manuscripts focused on CLM5 for the CESM2 Special Issue 

provide more in-depth assessment of specific aspects of the model (CO2 and N-additions response, 

Wieder et al., 2019; plant hydraulics, Kennedy et al., 2019; C-N interactions and parameter uncertainty, 

Fisher et al., 2019; urban datasets, Oleson and Feddema, 2019; and terrestrial carbon cycle uncertainty, 

Bonan et al., 2019).   

 

4.1 Assessment with ILAMB  

Encouragingly, there is a general progression in the quality of the simulations across model generations.  

CLM5 outperforms CLM4 for the majority of assessed variables (Figure 3, see also 

http://www.cesm.ucar.edu/experiments/cesm2.0/land/diagnostics/clm_diag_ILAMB.html). We refer the 

reader to ILAMB output where vast amounts of additional figures and statistics are available. The 

improvements from CLM4.5 to CLM5 are comparatively subtle with several variables showing 

improvement (biomass, burned area, LAI, net ecosystem carbon balance, latent heat, terrestrial water 

storage, albedo, net ecosystem exchange, ecosystem respiration), but others showing degradation (soil 

carbon, runoff, surface net radiation, CO2).  The broad improvements across model generations is an 

emergent feature of the comprehensive model development activities described in Section 2. Definitive 

identification of the source of particular improvements (or degradation) is beyond the scope of this paper, 

but some insight is provided in the analyses below.  Note that ILAMB results should be interpreted 

carefully.  The summary scores shown in Figure 3 reflect integrated scores across multiple metrics 

(RMSE, bias, interannual variability, spatial pattern, etc) and for some variables also multiple 

observational datasets.  An overall improved or degraded score for a particular variable can be a result of 

a mix of scores for individual metrics.  For runoff, for example, the overall score is degraded in CLM5 

which, when one drills down into ILAMB output, comes from a combination of degraded interannual 

variability, improved spatial distribution and a slightly greater mean bias (shifting from a low bias in 

CLM4 to a high bias of similar magnitude in CLM5 when forced with GSWP3v1; when forced with 
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CRUNCEPv7, all model versions show a large low bias in runoff).  Consequently, the overall reduced 

score for runoff should be considered within this more nuanced perspective. 

ILAMB scores indicate a degradation in the simulations of soil carbon stocks from CLM4.5 to CLM5, but 

the observed estimates are known to be highly uncertain.  An alternative soil carbon metric that evaluates 

the models against apparent soil carbon turnover time shows an improvement from CLM4.5 to CLM5 

(Section 4.6).  This apparent disagreement between two metrics of soil carbon highlights one of the 

challenges of benchmarking.  When there is disagreement across metrics, we argue that the metric that 

emphasizes a model process is more meaningful than one that simply evaluates a stock or flux.  

Consequently, in this instance, our interpretation (based partly on expert judgement) is that the 

representation of soil carbon is actually slightly improved in CLM5, even though the ILAMB assessment 

indicates otherwise. We refer the readers to Collier et al. (2018) for more information on how observed 

dataset uncertainty is accounted for in ILAMB and note that improved treatment of observational data 

uncertainty is ongoing within the ILAMB project.     

ILAMB also assesses functional relationships between two variables (e.g., precipitation versus GPP or 

LAI).  CLM5 performs better than CLM4 or CLM4.5 for the majority of the functional relationships 

assessed (Figure 4), suggesting improved process-representation in CLM5.  In particular, the relationships 

between GPP and climate variables such as solar radiation and precipitation are improved, though there is 

a slight degradation (CLM4.5 to CLM5) of the relationship between GPP and surface air temperature.  

Relationships between burned area and climate are also improved (see ILAMB plots), with burned area 

correctly peaking at average annual precipitation rates of 2.5 to 5 mm d-1, an ecoclimatic regime that is 

dry enough for fire, but productive enough to establish fuel loads.  

The ILAMB system was designed to probe model performance across both timescales and spatial scales.  

At the global scale, the seasonal cycle of atmospheric CO2 deduced from CLM carbon fluxes improved 

substantially from CLM4 to CLM5, especially in the mid-to-high northern latitudes.  However, the 

magnitude of interannual variability has degraded, especially in the tropics. For all CLM model versions, 

the Northern Hemisphere interannual variability is at most one-third of that observed at NOAA marine 

boundary layer sites.   
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Utilizing ILAMB, we can also identify a significant sensitivity of simulation output to the forcing dataset 

(Figure 5). While all of the forcing datasets used in this study are observationally-derived, each one 

employs different methodology for downscaling and bias correction and can therefore potentially be 

assessed with ILAMB.  GSWP3-forced simulations score best for most of the forcing variables (assessed 

forcing variables are surface air temperature, precipitation, surface relative humidity, surface downward 

shortwave and longwave radiation) with relative humidity being the exception.  Generally, CLM5 scores 

best for simulations forced with the GSWP3 forcing dataset.  The fact that model output variables score 

better with the best (according to ILAMB) forcing dataset suggests, not surprisingly, that land models are 

likely to perform better with more accurate forcing, particularly when functional relationships are 

represented reasonably by the model. 

As noted in Section 3.1, it is beyond the scope and aim of this paper to provide an assessment of the 

performance of CLM5 within CESM2.  However, we direct interested readers to the ILAMB results for 

CESM1/CLM4 versus CESM2/CLM5 that we provide on the ILAMB webpage associated with this 

paper.  In those results, we see that the land climate forcing variables (e.g., surface air temperature, 

downwelling shortwave and longwave radiation, surface relative humidity, etc.) are generally marginally 

improved in CESM2 (with the exception of precipitation which shows slight degradation).  The assessed 

land carbon, water, and energy variables show similar improvements in the coupled simulations (i.e., 

from CESM1 to CESM2) as they do in land-only simulations (CLM4 to CLM5).  The modest 

improvement in coupled model land forcing quantities combined with the consistent relatively strong 

improvements in land-only and coupled simulations implies that the source of improvement in land 

surface variables derives from developments in CLM, rather than due to improvements in other 

components of CESM. 

 

4.2 Plant Functional Type-level assessment 

Biases in the annual monthly maximum Leaf Area Index (LAI) for selected PFTs are shown in Figure 6 

and for all PFTs in Figure S2.  CLM5 shows reduced root mean square error compared to MODIS LAI 

(Table 3) for 9 out of 14 PFTs compared to CLM4.5.  Broadleaf evergreen tropical trees, broadleaf 

deciduous temperate trees and C4 grasses showed the biggest improvement.    
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During the course of the development of CLM5, we tested the model with parameter sets that resulted in 

considerable areal fractions of the vegetation not surviving for one or more PFTs.  This result lead us to 

routinely track survival percentage throughout the model development process. Survival percentage for 

each PFT is reported in Table 3. In general, survival percentage is slightly higher in CLM5.  Survival 

fraction plots in Whitaker space are shown in Figure S3.  We can see, unsurprisingly, that for most PFTs 

survival fractions are low in dry and warm climates or in very cold climates. CLM PFTs have the same 

parameters across their entire geographical range, thus not accounting for geographical trait variations 

which could nonetheless regulate surface fluxes (Giardina et al., 2018; Konings & Gentine, 2017).  Land 

models where PFTs or their parameters are more disaggregated, for example into those adapted for more 

and less productive environments (e.g., CLM-FATES), should in principle be able to circumvent this 

issue.  It is important to note that in CLM, once a PFT dies (i.e., vegetation C goes to zero) in a particular 

grid cell, that PFT cannot grow back during the course of the simulation, even if climate conditions 

become more amenable for survival.   

Maximum carboxylation rate at 25℃, Vcmax25, values (representing leaf canopy average) for each PFT and 

each model version are shown in Table 3, and are compared to the synthesized Kattge et al. (2009) 

observational estimates.  In CLM4 and CLM4.5, the Vcmax25 values are prescribed with the values in 

CLM4.5 specifically calibrated to reflect data in Kattge et al. (2009), except for broadleaf evergreen 

tropical trees which were adjusted upwards so as to produce a viable tropical forest photosynthesis levels.  

In CLM5, Vcmax25 is a prognostic quantity (see Section 2.3.7), and the values shown in the table represent 

a spatially-weighted average monthly maximum Vcmax25 for each PFT.  With the model’s current 

parameterization, CLM5 predicts Vcmax25 values that are lower than the observational estimates for most 

PFTs, especially C3 grasses (Table 3, Figure S4). The discrepancy may be partially related to the fact that 

observed values of Vcmax25 may not represent the environmental conditions (e.g., shading) as experienced 

by the plants in CLM, in addition to challenges associated with the limited spatial representativeness of 

the observed values. The ability of the model to represent photosynthesis and leaf area index reasonably 

well even with such low Vcmax25 values is potentially indicative of a structural problem in the leaf-level 

versus canopy-scaled value (as discussed in Rogers et al., 2017) which will be investigated further using 

offline tools such as those presented by Walker et al. (2018). The prognostic Vcmax25 values produced in 

CLM5 should be perceived as an initial effort to incorporate parameterizations that can simulate changes 
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in leaf N allocation and photosynthetic capacity under environmental change.  Further investigation is 

needed to improve the model representation of photosynthetic capacity.  

Simulated canopy height and canopy height biases with respect to those derived from ICEsat (Simard et 

al., 2011) are shown for all tree PFTs for CLM5BGC in Figure S5.  On average, boreal needleleaf 

evergreen trees are too tall by 5-10 m while tropical broadleaf evergreen trees and temperate and boreal 

deciduous trees are too short by 5-10 m. These biases are related to simulated plant biomass as well as 

uncertainties in the specified allometric relationships between biomass and height. Biases in canopy 

height will affect the land surface roughness length and therefore turbulent heat flux exchange between 

the land and the atmosphere.   

 

4.3 Hydrology 

The main changes to soil hydrology (see Section 2.3.2) are: (1) introduction of spatially variable soil 

depth (depth to bedrock), (2) replacement of the unconfined aquifer that existed below the soil column 

with a no flux bottom boundary condition (Swenson & Lawrence, 2015) and (3) a revised soil 

evaporation parameterization that accounts for the rate of diffusion of water vapor through a dry surface 

layer (Swenson & Lawrence, 2014).  Figure 7 illustrates the impacts of these new features for two 

example grid cells in southwest and southeast US.  At the southwest US grid cell, one can see that ET is 

too variable compared to the observations for CLM4 and CLM4.5.  With the dry surface layer in CLM5, 

soil evaporative water losses are restricted, resulting in improved ET seasonality.  Water from snow melt 

and spring rains then infiltrates deeper into the soil column (which is 8.5 m deep at this location), 

providing a source of moisture for evaporation into the summer months.  At the eastern US grid cell, we 

can observe a different feature of the new model.  The shallow 1 m thick soil prescribed at this location in 

CLM5 cannot store much water.  Consequently, we can see strong drying throughout the soil column in 

the low precipitation year of 1993, which then restricts ET from summer into fall, in agreement with 

observations.  In CLM4 and CLM4.5, ET is unrealistically supported through this period by soil water 

that is stored deeper in the standard 3.5 m thick soils. 

ILAMB and CLM diagnostics package results indicate only relatively small changes in the quality of 

annual streamflow for the top 50 biggest rivers.  In particular, mean flow for the Amazon and Congo 
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rivers is increased and shows better agreement with observed flows, with the improvement mainly due to 

reduction of the excessively high tropical forest ET that was seen in CLM4.  The mean bias in global 

annual mean river flow is slightly degraded, with CLM5 showing a high bias in global river discharge in 

both SP and BGC configurations (bias is larger in BGC mode).  On the other hand, the global annual 

mean bias and bias/RMSE scores for ET show nominal improvement in CLM5.  We also note that 

differences in simulated runoff and ET between forcing datasets is larger than the differences across 

model versions.   

Assessment of the impact of hydrology changes on simulated land-atmosphere interactions is beyond the 

scope of this manuscript.  However, we can infer that the relationship is likely to differ by examining the 

simulated soil moisture residence time (SMRT) across models.  SMRT is the e-folding decay timescale of 

soil moisture due to evapotranspiration, is an integrative measure of soil-plant-atmosphere dynamics.  We 

calculate SMRT for the root zone (0-0.5m) from daily soil moisture curves during post-rain periods using 

a procedure similar to the estimation of a base flow recession constant (Vogel & Kroll, 1996). This 

residence time metric is reflective of the evapotranspiration dry-down response time-scale (Teuling et al., 

2006).  In Figure 8, SMRT as simulated by CLM5 is shown for the continental United States for the May 

to October warm season and is compared to observationally-derived estimates from the North American 

Soil Moisture Database (Quiring et al., 2016). In general, the SMRT as simulated by CLM5 compares 

well with observations except for the western United States where observations show a wide range of 

residence times from less than 60 days to greater than 90 days whereas CLM5 shows uniformly longer 

residence time (120 days or more).  At least some of the western US discrepancy could be attributed to 

the poorly resolved topographic gradients at the nominal 1o resolution of these simulations.  Figures 11b 

and 11c compare the soil moisture residence time in CLM5 with that in CLM4 and CLM4.5.  Overall, the 

soil moisture residence time in CLM5 has increased across much of the eastern US and decreased in parts 

the western US compared to both CLM4 and CLM4.5.  Identification of the source of the changes in 

residence time is beyond the scope of this paper, but the spatially-explicit soil depths, the introduction of 

the dry surface layer parameterization for soil evaporation, and soil moisture dynamics associated with 

the plant hydraulic stress routine are all likely to be factors.  Averaged across the continental United 

States domain, soil moisture residence time is higher by 15% compared to CLM4.5, and 1.5% compared 
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to CLM4.  Dirmeyer et al. (2016) concluded that the soil moisture residence time in CLM4 was 18% too 

low, so the lengthened residence time in CLM5 may represent a change in the desired direction.   

The residence time metric suggests improvements in CLM5 compared to CLM4, and CLM4.5 with 

CLM5 shows a generally higher soil moisture residence time across majority of the soil moisture 

observing network, as one would expect with generally deeper soils and stronger soil evaporation 

limitations associated with the dry surface layer parameterization.  In many regions this moves the model 

further from observed estimates (Supplementary Table S1) though caution is warranted when comparing 

CLM SMRT with observationally-derived SMRT due to uncertainties from a number of sources including 

uncertainties in observationally-derived SMRT due to different type of sensors and measurement 

techniques at each site, the substantial spatial-scale mismatch between grid cells and observational sites, 

as well as uncertainties in model parameterizations (Dirmeyer et al., 2016). We repeated our calculations 

using the soil moisture memory metric employed in Dirmeyer et al. (2016) and found a similar change in 

CLM5 compared to CLM4 and CLM4.5 (not shown). Changes in SMRT are likely to impact a range of 

land-atmosphere interaction phenomenon including land-driven climate predictability. 

 

4.4 Plant Hydraulic Stress and ET partitioning  

The plant hydraulic stress (PHS) configuration implements new parameterizations for root water uptake 

and water stress for CLM5. For comparison, we also ran CLM5 with PHS replaced with the soil moisture 

stress (SMS) parameterization included in prior CLM versions (see Section 2.3.6).  One of the broadest 

impacts of PHS is a decrease in the coefficient of variation of GPP (CVGPP) and transpiration (CVET) 

(Figure 9d,h). The global distributions of CVGPP and CVET both shift towards lower values with PHS 

(Figure 9c,g), corresponding to global reductions in CV of 8.0 and 12.5% for GPP and ET, respectively, 

relative to SMS. Decreases in CVGPP tend to occur in water-limited ecosystems with seasonal rainfall, 

such as the Sahel region of Africa and northern Australia (Figure 9d). PHS incorporates more flexible 

root water uptake (Kennedy et al., 2019), which can utilize more of the soil column to buffer shortfalls in 

precipitation, acting to reduce variability imposed by precipitation variations. CVET decreases follow 

roughly the same patterns, reflecting the coupling of transpiration and photosynthesis through stomatal 

conductance. (Figure 9h). With PHS, vegetation water stress is sensitive to atmospheric demand for 

transpiration and tends to narrow the range of transpiration values, which results in relatively larger 
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reductions in CVET as compared to CVGPP. In some regions, variability increases with PHS, primarily at 

high latitudes (e.g., eastern Siberia) and in arid regions. Such increases in CVGPP and CVET are generally 

associated with increases in the mean fluxes of GPP and ET in these regions with PHS.  Other 

mechanisms unrepresented in CLM, including adaptive responses of Vcmax25 to dry conditions and 

biochemical responses to stress (Keenan et al., 2009; Niinemets & Keenan, 2014) could in principle 

increase interannual variability of these fluxes, thus the decrease in variability seen here is not necessarily 

indicative of a structural degradation or inappropriate PHS parameters.  

The partitioning of evapotranspiration into transpiration, canopy evaporation, and soil evaporation is a 

key emergent process simulated by land models, essential to assess ecosystem water use efficiency 

(Lawrence et al., 2007).  In Figure 10, we show the transpiration fraction from each model compared to 

estimates of transpiration fraction from the Water, Energy, and Carbon with Artificial Neural Networks 

dataset (WECANN, Alemohammad et al., 2017 , available at 

https://gentinelab.eee.columbia.edu/content/datasets).  In prescribed vegetation configurations, CLM5SP 

shows better agreement with WECANN transpiration fraction than either CLM4SP or CLM4.5SP, 

especially in the Tropics.  Globally, the contribution of soil evaporation to ET is diminished in CLM5 

relative to CLM4 and CLM4.5, resulting in a higher percentage of ET coming from transpiration 

(CLM4SP and CLM4.5SP 53%; CLM5SP 60%, Table 4), in line with recent isotopic data estimates of 61 

± 15% (Jasechko et al., 2013; Schlesinger & Jasechko, 2014).  However, in prognostic vegetation mode, 

biases in simulated LAI lead to poorer agreement with WECANN for ET partitioning for all model 

versions.  In particular, low LAI biases for tropical deciduous trees (Figure S2), especially in the Sahel 

and southern Africa, appear to correlate with low biases in transpiration fraction, though errors in the 

observations. Table 4 shows global percentages for transpiration, soil evaporation, and canopy 

evaporation for the CLM versions. Note that simulations forced with CRUNCEPv7 show a higher 

proportion of ET coming from canopy evaporation than GSWP3v1-forced simulations.  This difference is 

likely due to the temporal frequency of the forcing precipitation (6-hourly for CRUNCEPv7, 3-hourly for 

GSWP3v1), which can have a strong impact on canopy evaporation. 

 

4.5 Permafrost and snow density 
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Permafrost is a key feature of the earth system and uncertainty regarding the strength of the permafrost 

climate-carbon feedback is considerable (McGuire et al., 2018; Schuur et al., 2015).  The permafrost 

climate-carbon feedback is a challenging research problem that depends on many features of a land 

modeling system.  A known deficiency in prior versions of CLM was an unrealistically low fresh snow 

density, which led to excessive snow insulation of the ground, particularly at low snow depths (Slater et 

al., 2017).   Several changes to fresh snow density and snow densification were introduced in CLM5 (van 

Kampenhout et al., 2017) resulting generally in denser snow for both seasonal and perennial snowpacks.  

The denser snow over Greenland and Antarctica is an improvement and along with the deeper snowpack 

allows the model to more realistically represent firn and the transition from snow to ice.  The denser 

surface snowpack also largely eliminates excessive sub snow-surface melt that occasionally occurred in 

CLM4 and CLM4.5 in very cold climates where the simulated near-surface thermal conductivity was 

unrealistically low. 

The changes to modeled snow density also have beneficial impacts on permafrost distribution and active 

layer thickness (ALT, the depth to which permafrost soils thaw each summer).  In Figure 11, maps of 

ALT and February snow density are shown for CLM4.5 and CLM5 with GSWP3v1 and CRUNCEPv7.  

These maps reveal that there are strong relationships between the forcing dataset, the snow density 

formulation, and simulated ALT.  Snow is denser across the permafrost domain in CLM5 (225 to 275 kg 

m-3) compared to CLM4.5 (< 200 to 225 kg m-3).  This denser snow in CLM5 is more consistent with the 

values of 230 to 330 kg m-3 reported for northwest Alaska (Sturm et al., 2010).  The denser snow reduces 

snow insulation and results in colder soils and shallower ALT in CLM5 compared to CLM4.5.   

It is also relevant to note the impact of forcing dataset on snow density and ALT simulations.  Snow tends 

to be less dense with CRUNCEPv7 forcing than with GSWP3v1 forcing.  Taken in isolation, this should 

lead to shallower ALT with GSWP3v1 forcing, but instead ALT is generally deeper which appears to be 

due largely to greater downwelling longwave and shortwave radiation in GSWP3v1 forcing data.  The 

large differences in simulated permafrost distribution and ALT between the two forcing datasets reveals 

an important aspect of uncertainty in permafrost modeling (which propagates to uncertainty in modeled 

soil carbon stocks, as discussed below).  ILAMB output indicates that downwelling longwave radiation, 

downwelling solar radiation, and humidity variables all score significantly higher across the Arctic land 

domain with GSWP3v1 (other forcing quantities are roughly equivalent across these two forcing datasets) 
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which suggests that for permafrost studies, GSWP3v1 forcing may be more appropriate.  If we consider 

just the GSWP3v1-forced simulations, we see that CLM4.5, with its low-density snow, exhibits ALT that 

is unrealistically deep (ALT > 1m deep across nearly the entire permafrost domain) while CLM5, with its 

denser snow, is more realistic.  These results are an indirect indication that the CLM5 snow density 

parameterizations may represent an improvement. 

 

4.6 Carbon and nitrogen fluxes and stocks 

Table 5 lists the simulated global total carbon stocks and annual mean fluxes for the different model 

versions compared to available data products.  Global GPP agrees best with available data products for 

CLM5 (119 PgC yr-1 in CLM5BGC, 134 PgC yr-1 in CLM4BGC, 118 PgC yr-1 for FLUXNET-MTE 

observed GPP estimate; values are for area of land intersection between model and observations, i.e., grid 

cells where model and observations agree there is land). Net primary productivity (NPP) increased in 

successive versions of the model, reflecting concurrent declines in autotrophic respiration (AR) fluxes. As 

such, annual mean carbon use efficiency (CUE, calculated as the quotient of grid cell NPP and GPP) 

increased from CLM4 to later versions of the model, although all three model versions show high spatial 

heterogeneity in CUE (Wieder et al., 2019). The latitudinal variation of CUE simulated by CLM5 seems 

plausible, based on published estimates (Campioli et al., 2015; DeLucia et al., 2007; Malhi et al., 2011; 

Vicca et al., 2012), but deserves further investigation. All three model versions reasonably replicate the 

global totals for vegetation carbon stocks, but the spatial distribution differs across models.  ILAMB 

results show that CLM4BGC placed too much carbon into tropical rainforests and too little carbon into 

boreal forests, especially across Europe and Siberia. To first order, the biases are reversed in CLM5BGC 

with too little carbon in the tropical rainforests and too much carbon across the boreal forests, largely 

reflecting the spatial pattern of GPP biases but likely also related to changes in C allocation in CLM5.   

Soil C stock patterns are more realistic in CLM4.5BGC and CLM5BGC than in CLM4BGC because of 

the introduction of vertically-resolved soil biogeochemistry in CLM4.5 (Koven et al., 2013), which 

allows the model to generate large C stocks across the northern high-latitude permafrost domain, as 

observed.  The relationship between apparent soil C turnover times (defined as the ratio of mean soil C 

stocks over climatological annual mean NPP) and mean air temperature is more realistic in CLM4.5 and 
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CLM5 (Figure 12, metric reproduced as in Koven et al., 2017), with both of these model versions at least 

partially capturing the transition to longer apparent soil C turnover times in cold climates.  This metric 

suggests that CLM5 apparent soil C turnover times are slightly improved over CLM4.5 with a steeper 

increase in turnover times at cold temperatures as well as a broader spread of turnover times in warm 

climates associated with soil wetness (short turnover times in warm-wet climates and long turnover times 

in warm-dry climates). Because of the greater permafrost extent and colder permafrost soil temperatures 

in CLM5 when forced by CRUNCEPv7 than by GSWP3v1, the stocks of soil C to 3m depth are a factor 

of 2 larger when forced by CRUNCEPv7 (4000 Pg C) than when forced by GSWP3v1 (1925 Pg C), 

demonstrating the extreme sensitivity of simulated permafrost soil C stocks to simulated permafrost 

conditions. 

The spatial distribution and global sums of terrestrial N inputs and losses remain poorly constrained with 

data and highly variable among versions of CLM.  Table 6 shows published estimates of global terrestrial 

N fluxes and corresponding estimates from the GSWP3-forced BGC simulations. Within CLM, N inputs 

come from N deposition and N fixation. Inputs from N deposition are consistent among model versions, 

with forcings coming from Lamarque et al. (2010), and show broad agreement with observationally 

derived estimates (Fowler et al., 2013). Estimates of global N fixation show greater spread among 

models. The empirical approach applied in CLM4 and CLM4.5 estimated biological N fixation rates as 

function of NPP (Cleveland et al., 1999).  CLM5 calculates both symbiotic and free-living N fixation.  

Total N fixation in CLM5 is lower than in previous versions of the model and lies within the range of 

estimates of N fixation rates (Vitousek et al., 2013). Finally, with the ability to simulate a global 

interactive crop model, CLM5 provides opportunities to estimate anthropogenic changes to the terrestrial 

N cycle through planting N fixing crops and fertilizer application. The N fixation rates simulated by soy 

in the model are well below upscaled estimates of agricultural N fixation (Herridge et al., 2008), but 

simulated fertilization rates appear to be on target with observational estimates (Fowler et al., 2013).  

CLM simulates N losses through leaching, gaseous emissions, and biomass removal. Successive model 

versions show increasing hydrological N losses, though these have not been evaluated against data.  

Houlton et al. (2015) pointed out that gaseous N losses were too high in CLM4. The same is likely true 

with CLM5, which still suffers from poorly implemented representation of soil N dynamics resulting in a 

high bias in gaseous (as opposed to hydrologic) N losses. With intensification of land use and land 
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management, CLM5 also shows anthropogenically-driven N losses associated with wood harvest, crop 

harvest, and land use change.  These N loss fluxes, as well as gaseous N emissions (including NOx 

emissions due to fire and soil N2O fluxes) remain poorly constrained and an area for future model 

evaluation and development.    

 

4.7 CO2 and N-addition response 

Over the course of model development, CLM (BGC configurations) transitioned from a model that 

exhibited strong N limitation of the terrestrial carbon cycle (CLM4) to a model that showed greater 

responsiveness to elevated concentrations of CO2 in the atmosphere (CLM5) (Wieder et al., 2019), 

consistent with recent observations that suggest that there has been only weak N limitations on CO2 

fertilization (Campbell et al., 2017). Specifically, the carbon cycle simulated by CLM4 showed an 

unrealistically strong nitrogen limitation (Bonan & Levis, 2010; Thomas et al., 2013a; Thomas et al., 

2013b) and a lower than observed response to CO2 enrichment (Figure 13; Hoffman et al., 2014; Walker 

et al., 2014; Zaehle et al., 2014). With revisions to the photosynthesis parameterization and soil 

biogeochemical model (Bonan et al., 2011; Koven et al., 2013), CLM4.5 showed a lower sensitivity to N 

enrichment than its predecessor that was more in line with observations (LeBauer & Treseder, 2008), but 

it still exhibited lower sensitivity to CO2 enrichment than observations from Free Air CO2 Enrichment 

(FACE) sites (Ainsworth & Long, 2004). CLM5 includes a suite of model developments focused on 

improving the representation of vegetation C-N dynamics (outlined in section 2.3.6). The globally 

integrated response of terrestrial ecosystems to N and CO2 enrichment suggest that CLM5 shows 

improved agreement with observed ecosystem response to these environmental manipulations (Figure 13; 

Ainsworth & Long, 2004; LeBauer & Treseder, 2008), though the globally-integrated improved 

agreement with these syntheses should not be overinterpreted . Besides capturing the appropriate 

magnitude of terrestrial C pools and fluxes to N enrichment, simulations with CLM5 also show increases 

in foliar N content and ecosystem C use efficiency that are consistent with observations (Campioli et al., 

2015; Vicca et al., 2012; Wieder et al., 2019).  Similarly, foliar N content and Vcmax decline under 

elevated CO2, again consistent with observations (Ainsworth & Long, 2004).  Together, these results 

suggest that CLM5 better captures terrestrial ecosystem responses to global change drivers (N and CO2 

enrichment) than previous versions of the model, and that CLM5 captures these responses for at least 
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some of the right reasons, though in a parameter uncertainty assessment, Fisher et al. (2018) demonstrate 

a strong sensitivity of CO2 and N fertilization to several factors including to what extent plant 

communities can increase their fixation of nitrogen, stoichiometric flexibility of plant tissues, nitrogen 

uptake costs, and model initial state.  The strong sensitivity to parameters as well as large differences in 

response across PFTs (see Wieder et al. (2019) for further figures and discussion) implies that the large-

scale agreement with observations should not be overinterpreted as indicative that the model is 

necessarily reproducing the observed response for the right reasons.   

Confronting land models with perturbations that are similar to experimental manipulations also exposes 

shortcomings in the model’s structural assumptions and parameterizations. For example, although the 

bulk C cycle response to N enrichment simulated by CLM5 appears more appropriate than CLM4 or 

CLM4.5, the model still fails to capture observed shifts in plant C allocation towards greater above 

ground productivity or decreases in heterotrophic respiration that are commonly seen in nutrient addition 

experiments (Janssens et al., 2010; Liu & Greaver, 2010). Similarly, terrestrial sensitivities to elevated 

CO2 simulated by CLM5 seem more in line with observed responses, but the model achieves higher 

productivity by increasing LAI and nitrogen fixation rates beyond what is likely to occur in natural 

ecosystems (Ainsworth & Long, 2004; Hungate et al., 2004; Medlyn et al., 2015; Terrer et al., 2018). 

Indeed, results from experimental manipulations emphasize that acclimation as well as changes to plant 

allocation (which are not represented in CLM5) and stoichiometry are important aspects of terrestrial 

ecosystem responses to global change drivers (Liu & Greaver, 2010; Luo et al., 2006; Reich et al., 2006). 

Despite its improvements, CLM5 still has limited capacity to capture these responses, highlighting 

priority areas that should be addressed in future model developments.  Specifically, understanding and 

modeling appropriate changes in above and below ground C and N allocation remains uncertain, 

especially in response to global change (Giardina et al., 2005; Terrer et al., 2018). This is an outstanding 

challenge to be addressed in land models and evaluated with observations from experimental 

manipulations. Despite these limitations, the overall transition towards the use of optimality theories in N-

cycle representation in CLM5 and in integrating N-processes directly into plant physiology, rather than 

the post-hoc reconciliation of N-unlimited and N-limited rates of GPP in CLM4, appears to broadly move 

the model in the right direction, though there is much work still to do (e.g., resolve limitations in 
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representation of soil nutrient competition between plants, microbes, and mineral surfaces; Zhu et al., 

2016). 

 

4.8 Land carbon accumulation over historical period 

The global land C accumulation trends exhibit clear differences across model versions (Figure 14).  As 

noted above, CLM4 produces an unrealistically strong nutrient limitation on photosynthesis, which limits 

that model’s capacity for C uptake even as atmospheric CO2 increases. Consequently, in CLM4 land-use 

and land-cover change (LULCC) C loss fluxes dominate over the CO2 fertilization response resulting in 

an accumulated land C loss of ~60 Pg C over the period 1850 to 2014, which is outside the observational 

estimates of -8 Pg C (range +32 to -52 PgC, 1850-2010; Hoffman et al., 2014)  CLM4.5, on the other 

hand shows C uptake and accumulation in response to CO2 fertilization that is perhaps too strong, 

especially under the GSWP3v1-forced simulation.  The CLM5 land C accumulation curve lies in between 

CLM4 and CLM4.5 and appears to result in the best match with observational estimates, for the historical 

period as well as the global carbon project era (1950-2012; Le Quéré et al., 2014). These results are also 

reflected by the comparatively high scores for the Global Net Ecosystem Carbon metric in ILAMB for 

CLM5 (Figure 3).   

Although it is tempting to infer that the more realistic responses of CO2 and N additions in CLM5 

(Wieder et al., 2019) are responsible for the improved emergent behavior of the model with respect to the 

historical land C accumulation, historical C accumulation is a function of several sometimes-

counteracting processes that control C fluxes and stocks and thus these changes should be interpreted 

cautiously.  These processes include deforestation and wood harvest fluxes and the dependency of these 

fluxes on initial forest vegetation C stocks, C-uptake responses to increasing CO2 and N-deposition 

trends, and vegetation and soil C responses to climate trends and variability. Furthermore and 

importantly, as noted above, Fisher et al. (2019) demonstrate that CLM5 responses to CO2 and N 

fertilization exhibit strong sensitivity to several uncertain parameters. Nonetheless, the improvement in 

this important emergent behavior of the model is intriguing and is investigated in more depth in Bonan et 

al. (2019).    
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Also apparent in Figure 14 is a strong sensitivity to atmospheric forcing with accumulated land C for the 

period 1850 to 2014 differing between runs forced with GSWP3v1 and CRUNCEPv7 by 50, 20, and 10 

Pg C for CLM4, CLM4.5, and CLM5 respectively.  The divergence in C accumulation between runs with 

different forcing datasets arises early in the period, mainly prior to 1950, when CO2 fertilization would 

have been relatively small and LULCC fluxes dominate.  This implies, then, that LULCC C fluxes can 

differ substantially even within a model version forced with exactly the same LULCC time series but 

under different estimates of historical climate forcing.  We hypothesize that the simulated pre-industrial 

(year 1850) vegetation C stocks and their regional distribution can impart a strong influence on historical 

LULCC C fluxes.   

Finally, while the long-term land carbon accumulation agrees better with observed estimates, which are 

derived from atmospheric CO2 and ocean C inventories, the interannual variation in land C accumulation 

appears to be degraded in CLM5 (larger low bias in variability), based on a comparison of interannual 

variability of atmospheric CO2 simulated from the CLM fluxes compared to that observed (see ILAMB 

CO2 diagnostics). Throughout the Northern Hemisphere, interannual variability is at most one-third of 

that observed at NOAA marine boundary layer sites. The drivers and implications of this degradation 

from CLM4 to CLM4.5 to CLM5 require further investigation, since climate-driven variations at 

interannual timescales may provide useful information about future climate-driven changes in terrestrial 

carbon stocks (Cox et al., 2013; Keppel-Aleks et al., 2018).  Preliminary investigation suggests that 

although the plant hydraulics scheme does tend to reduce variability in GPP and transpiration (see Section 

4.4), it does not appear to be primarily responsible for the reduced C flux variability in CLM5, with the 

reduced variability potentially resulting from increased interannual synchronicity between NPP and 

ecosystem respiration.   

 

4.9 Water use efficiency 

Quantification of changes in water use efficiency (WUE, carbon uptake per unit of water loss) due to 

climate change and rising atmospheric CO2 levels is challenging (Cheng et al., 2017).  Changes in WUE 

will have strong implications for water availability, food and fiber production as well as the C sink 

capacity of terrestrial ecosystems.  Though this topic has received considerable recent attention in the 
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literature (e.g., Cheng et al., 2017; Frank et al., 2015; Huang et al., 2015; Keenan et al., 2013), there is 

still no consensus on how the coupled terrestrial carbon and water cycles have changed or will change in 

the future.    

A key feature of CLM5 is a more realistic coupling of N limitation and stomatal conductance, with 

stomatal conductance in CLM5 based on the N-limited photosynthesis (Ghimire et al., 2016) rather than 

on N-unlimited potential photosynthesis as it was in CLM4 and CLM4.5.  This more realistic coupling 

has consequences for WUE and WUE trends since changes in N-limitation will propagate directly into 

simulated transpiration. The increase in global WUE (defined here as GPP / transpiration) over the 

historical period is considerably stronger in CLM5 compared to CLM4 and CLM4.5 (Figure 15).  Global 

GPP trends are comparable across models, though CLM5 marginally exhibits the strongest increase, 

while CLM4 shows the weakest increase, at least partially due to the high N-limitation in that version (see 

Section 4.7).  Global transpiration trends, on the other hand, diverge considerably across versions with 

CLM4 and CLM5 showing a declining trend in transpiration during 1980 to 2014 and CLM4.5 showing 

an increasing trend over the same period.  Spatially, the increase in WUE is larger almost everywhere in 

CLM5 than in the other model versions, but the driver of the WUE change differs considerably by region. 

In the tropics, the CLM5 increase in WUE is driven by both increased GPP and somewhat reduced 

transpiration (Figure S6).  In the boreal forest and across the mid- to high-northern latitudes, the historical 

increases in GPP are high, but transpiration is largely unchanged or is weakly increased.  Deeper analysis 

of the WUE trends and its interaction with CO2 fertilization and LAI, N-limitation, and soil moisture 

limitation trends across model versions and compared against available estimates of historical WUE 

trends is worthy of additional study, but is beyond the scope of this paper. 

 

4.10 Crops 

Agricultural management practices can have a considerable impact on climate (Bagley et al., 2015; Davin 

et al., 2014; Lombardozzi et al., 2018; Mueller et al., 2017; Thiery et al., 2017), highlighting the 

importance of representing agriculture in ESMs. CLM5 is the first version of CLM that includes transient 

representation of crop distribution and management, and the inclusion of managed agriculture in CLM5 

does affect carbon, water, and energy fluxes from the land surface. The representation of crops in CLM5 
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also allows the model to track crop yields through time. The crop yields simulated by CLM5 increase 

from 1.1 tonnes ha-1 in 1850 to ~3 tonnes ha-1 in 2010 (Figure 16c). For the crop types represented in 

CLM5, the simulated yields match observations for the same crop types from the United Nations Food 

and Agriculture Organization (UN-FAO) from the start of available observations in 1961 through 

approximately 1980. Yields in CLM5 level off after that time, whereas the UN-FAO yields steadily 

increase, with the discrepancy likely due to the fact that crop representation in CLM5 does not include 

processes associated with intensification, such as increasing planting density. The spatial distribution of 

crop yields illustrates that CLM5 underestimates crop yields throughout the northern hemisphere 

compared to UN-FAO, particularly in Central US, Europe, and Southwestern Asia, but overestimates crop 

yields throughout much of the tropics (Figure 16a, b). Yields of individual crops are generally similar to 

UN-FAO estimates, though CLM5 underestimates corn yields throughout most temperate regions. The 

management techniques represented in CLM5 also impact the magnitude of crop yields. Globally, 

agricultural expansion and fertilization have large impacts on increasing crop yields, and irrigation has a 

smaller impact due to the fact that less than ~25% of cropland area is irrigated. Irrigation is quite 

important for crop yields within irrigated areas, however.  Note that due to the inflexibility of the planting 

windows in CLM5, planting dates in some regions, such as India (too early), are unrealistic.  A more 

flexible climate-driven planting date scheme is planned for future model versions. 

 

4.11 Urban 

To evaluate behavior of the updated urban model and building properties data, observations from five 

urban flux tower sites and a global anthropogenic heat flux (AHF) dataset were used.  In simulations 

described in Oleson and Feddema (2019), radiative and turbulent fluxes, surface temperatures, and AHF 

were found to be generally improved compared to the previous version.  The simulation of global and 

regional AHF is also significantly improved, mainly due to the new building energy model.  For example, 

large positive biases in AHF over the U.S. and Europe, evident in the previous model version, are reduced 

such that simulated values are now within 1% and 11% of observations, respectively.  The increased 

simulation fidelity and new capabilities of the model should enhance its utility for research into the 

combined effects of urbanization and global climate change. 
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5. Summary and Discussion 

As with prior CLM versions, the development of CLM5 was an extensive community effort involving 

researchers from many different institutions and culminating with the integration of numerous disparate 

development efforts. The resulting updated model represents a significant advancement, relative to prior 

model versions.  CLM5 includes new default and optional functionality, improved flexibility in model 

configurations and land cover transitions (natural vegetation ↔ glacier, natural vegetation ↔ crop), as 

well as more mechanistic and ecologically-relevant representations of the physics, biology, and human 

land management processes that govern terrestrial states and fluxes.   

Benchmarking packages such as ILAMB mark a significant enhancement in our ability to evaluate land 

model representations of water, energy and carbon cycles.  Broadly, ILAMB and other metrics presented 

here indicate that the simulation quality is improved in CLM5 over CLM4 and CLM4.5; although 

differences between CLM4.5 and CLM5 are less distinct, and particular variables or metrics show 

degraded performance.  However, even with the deployment of advanced model assessment tools and 

metrics, in many cases a clear and unambiguous demonstration of improvement or degradation for a 

complex model such as CLM remains challenging.  We find for example, perhaps unsurprisingly, that 

climate and weather forcing uncertainty confound the interpretation of impacts of model structural 

advances.  The impact of parameter uncertainty, which is not assessed here (see Fisher et al. (2019) for 

partial parameter sensitivity assessment of CLM5).  Nonetheless, we interpret the broad indications of 

improvement across multiple variables and metrics (>30) suggests genuine progress, which (hopefully) is 

grounded in the upgraded model parameterizations and more comprehensive process representation. 

We stress, however, that model users should consider improvements or degradation identified in ILAMB 

or other metrics presented here with caution due to observed data limitations related to data scale 

applicability, measurement uncertainties, inconsistencies across multiple observational datasets for one or 

more variables (e.g., water and energy budgets derived from the available observationally-based ILAMB 

datasets do not close), as well as limitations in the metrics included in ILAMB.  Improved methods within 

ILAMB to account for observational data uncertainty is critical and is a priority for the ILAMB project.    
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An improvement or a degradation for a particular variable or metric does not on its own imply that the 

model is suited or not suited for research related to that particular variable.  For example, ILAMB 

indicates that snow water equivalent is degraded in CLM5 relative to CLM4.  This apparent degradation 

occurs despite several mechanistic improvements to snow physics that have been introduced between 

CLM4 and CLM5.  The lower ILAMB score for snow water equivalent for CLM5 could indicate a real 

model snow simulation performance degradation (due to structural or parametric problems introduced 

during development from CLM4 to CLM5), but it could also potentially be attributed due to inaccuracies 

in the forcing data or biases in the observed dataset used in ILAMB or limitations in the ILAMB metrics 

themselves.  Consequently, CLM5 users interested in applying the model for research into snow 

processes will need to balance knowledge of the snow physics and snow physics structural advances 

against the ILAMB score decrease and against their own assessment of snow simulations to decide 

whether or not the model is ‘fit-for-purpose.’   

More explicit process representation enables new types of observations to be applied for evaluation of 

CLM.  For example, since CLM5 implements prognostic, rather than prescribed, leaf photosynthetic 

traits, observations of Vcmax25 and Jmax25 can be used as a means for assessing the model.  Similarly, the 

introduction of plant hydraulics opens up the potential to employ several observational quantities that 

were previously not applicable to CLM including mid-day stomatal conductance, leaf water potential, and 

sap flow. This list could continue, but in general, the expansion of CLM science to more realistically 

represent physical and ecological processes opens also new opportunities to evaluate the model with 

diverse observational datasets. Identifying, developing, and applying these and other new data products to 

constrain the more realistic representations of physical and ecological processes is likely to be a fruitful 

avenue for research and model development going forward.   

Open-source development of CLM is ongoing at https://github.com/escomp/ctsm.  Model users and 

developers are encouraged to provide feedback, report bugs, and contribute model developments.  New 

model features and parameterizations are in development for future versions of CLM including multiple 

lines of FATES development, explicit treatment of biomass heat storage (Swenson et al., 2019), a 

representative hillslope formulation that permits water to flow laterally within a grid cell according to 

topographic or water table gradients, and a multi-layer canopy parameterization (Bonan et al., 2018) as 

well as ongoing projects on agriculture (e.g., more realistic crop phenology and allocation (Peng et al., 
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2018), tillage (Levis et al., 2014),  biofuel crops), water management (e.g., multiple sources of irrigation 

water, reservoirs), and forestry.  As these development projects come to fruition, they will be made 

available to the CLM research community for use. 

 

Model availability 

CLM5.0 is publicly available through the Community Terrestrial System Model (CTSM) git repository 

(https://github.com/ESCOMP/ctsm). 
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Gentine Pierre (Orcid ID: 0000-0002-0845-8345) 
Hoffman Forrest (Orcid ID: 0000-0001-5802-4134) 
Keppel-Aleks Gretchen (Orcid ID: 0000-0003-2213-0044) 
Kumar Sanjiv (Orcid ID: 0000-0002-0472-6074) 
Lenaerts Jan (Orcid ID: 0000-0003-4309-4011) 
Leung L. Ruby (Orcid ID: 0000-0002-3221-9467) 
Table 1. List of changes in CLM4.5 and CLM5 (relative to previous versions of the model). 
 CLM4.5 CLM5 
Hydrology ● Ice impedance function; 

hydraulic properties for frozen 
soil determined by liquid water 
only; perched water table 
above icy permafrost soil  

● Surface water store replaces 
wetland landunit 

● Dry surface layer for ground evap  
● Spatially variable soil depth (0.4 to 8.5m) 
● Increased soil vertical resolution (20 soil 

layers + 5 bedrock layers) 
● Remove unconfined aquifer, no flux lower 

boundary condition 
● adaptive time-stepping solution of 

Richard’s equation  
Snow ● SCF parameterization 

accounting for hysteresis in 
accumulation and ablation 

● Surface energy fluxes 
calculated separately for snow-
covered and snow-free portions 
of each landunit  

● Separate liquid and ice canopy water stores 
and radiative treatment, snow unloading 
due to T or wind 

● Wind and T effects on fresh snow density  
● Increase maximum snow layers from 5 to 

12 and max SWE to 10m to allow for firn 
development   

Glaciers ● Updated bare ice albedos ● Multiple elevation classes (10) with 
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downscaling for glacier landunit  
Rivers ● Variable flow velocity based 

on mean grid cell slope in 
RTM 

● MOSART – Manning’s equation-based 
model representing hillslope to tributary to 
main channel flow  

Vegetation ● Revised canopy radiation 
scheme and canopy scaling of 
leaf processes  

● Co-limitation on 
photosynthesis among 
Rubisco-, light-, and export-
limited rates; revised 
photosynthetic parameters for 
Rubisco kinetics and 
temperature response  

● BVOC emissions from 
MEGAN2.1  

● Plant hydraulic stress model of water 
transport through vegetation, replaces 
empirical soil moisture stress formulation, 
hydraulic redistribution  

● Medlyn stomatal conductance replacing 
Ball-Berry  

● Consistent Jackson et al. (1996) rooting 
profile for water and carbon  

● Deepened rooting profile for Broadleaf 
Evergreen and Broadleaf Deciduous 
Tropical trees 

● Add antecedent rain requirement to stress 
deciduous phenology trigger  

Carbon ● Vertically-resolved soil C and 
N  

● Vertical mixing of carbon due 
to bioturbation, cryoturbation, 
and diffusion  

● Litter and soil carbon and 
nitrogen pool structure based 
on Century model  

● 13C and 14C carbon isotopes 
● CH4 production and emissions 

from natural wetlands 

● Fixed allocation scheme replaces dynamic 
NPP-based allocation scheme 

● Weaker intrinsic decrease in decomposition 
rate with depth 

● Stronger soil moisture controls on 
decomposition 

● 13C and 14C carbon isotopes for crops 

Nitrogen ● Nitrification and denitrification 
based on Century model  

● Biological fixation distributed 
more realistically over year 

● Flexible plant C:N ratios, eliminate 
instantaneous downregulation of 
photosynthesis based on mineral N 
availability 

● Carbon cost for N-uptake and fixation 
(FUN) 

● Leaf N optimization for photosynthetic 
capacity  

● Free living fixation function of ET  
Agriculture ● Temperate crop model 

(optional, not active by default) 
● Introduction of organ pools, 

crop yield  

● Global crop model on in BGC default 
configuration with 8 temperate and tropical 
crop types  

● Updated irrigation trigger based on soil 
water deficit 

● Industrial fertilization from land use file; 
background manure 

● 1-yr grain product pool 
LULCC  ● Wood harvest by mass rather than area 

● Land unit weights can change during 
simulation 
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● Updated 1850 and CMIP6 LUMIP transient 
PFT-distribution 

Fire ● New fire model with 
anthropogenic triggers and 
suppression; agricultural, 
deforestation, and peat fires  

● Modified dependence of fire occurrence 
and spread on fuel wetness 

Lakes ● Updated lake model including 
deep and shallow lakes  

 

Urban ● Multiple urban density classes  ● Building space heating and air conditioning  
● Heat stress indices 

 
 
Table 2.  Simulations performed for CLM analysis.   

 CLM4 CLM4.5 CLM5 

Forcing SP BGC +CO2, 
+N 

no 
LUC 

SP BGC +CO2, 
+N 

no 
LUC 

SP BGC  +CO2, 
+N 

no 
LUC 

GSWP3v1 
 ✓o ✓o★ ✓ ✓ ✓o★ ✓ ✓ ✓ ✓o ✓o★ ✓ ✓ 

CRUNCEPv7 
  ✓    ✓   ✓ ✓★  ✓ 

WATCH/ 
WFDEI         ✓ WF ✓ W   

Note: ✓ indicates historical simulation (1850-2014, W1850-2001, WF1979-2014). ★ indicates projection 
period simulation (RCP8.5, 2015-2300). o indicates daily and hourly output for selected years.  
Abbreviations: SP – Satellite Phenology, BGC – biogeochemistry, no LUC – land-use and land-cover 
change turned off, +N – nitrogen addition, +CO2 – CO2 addition.  Except where explicitly noted, all 
simulations include all historical or future forcings as applicable to the version of the model (CO2, N-
deposition, aerosol deposition, and LUC time series).  Note that CLM5 is the only CLM version with 
capability to run with the dynamic crop model.  See Section 3.1 for further details on the experimental 
design.  Except for CLM4SP, CLM4.5SP, and CLM5SP, all simulations are with active BGC.  
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Table 3: PFT-level quantities.   
 Area LAI RMSEa (m2 m-2) Survival (%) Vcmax25 (µmol CO2 m−2 s−1) 
 (106 

km2) 
CLM4 CLM4.5 CLM5 CLM4 CLM4.5 CLM5 Obsb CLM4 CLM4.5 CLM5 

NET 
temperate 4.9 1.9 2.3 2.0 93 91 87 63 61 63 42 

NET 
boreal 6.0 1.7 3.6 2.7 91 91 92 63 54 63 55 

NDT 
boreal 2.1 1.0 1.3 1.1 67 10 67 39 57 39 52 

BET 
tropical 14.3 1.9 1.5 1.1 92 76 92 29 72 55 38 

BET 
temperate 1.3 1.4 1.4 3.8 88 74 99 62 72 62 39 

BDT 
tropical 2.0 2.4 2.2 2.5 63 24 78 29 52 41 35 

BDT 
temperate 3.0 1.9 2.1 1.1 85 82 81 58 52 58 50 

BDT 
boreal 1.0 1.5 1.6 1.0 92 88 78 58 52 58 50 

BES 
temperate 0.03 3.2 2.3 1.7 83 68a 67 62 72 62 43 

BDS 
temperate 4.6 0.9 0.6 0.6 26 18 30 54 52 54 44 

BDS 
boreal 4.9 1.1 1.3 1.8 35 56 88 54 52 54 58 

C3 Arctic 
grass 8.7 1.4 2.7 2.5 61 78 83  52 78 52 

C3 grass 
 16.0 1.6 1.6 1.8 60 78 85 78 52 78 36 

C4 grass 
 19.9 2.1 2.4 1.2 99 98 90  52 52 50 

Note: PFT area, LAI RMSE and Vcmax25 are calculated for year 2010.  Survival percentage is for year 
1850.  For Vcmax25, data is only included for plants that survive (i.e., annual maximum LAI > 0.01 m2 m-2).  
For Vcmax25, CLM4 and CLM4.5 parameter values are prescribed.  Vcmax25 is a prognostic quantity in 
CLM5.  All data shown is from GSWP3v1-forced BGC simulations.  Note that survival rates for 
CRUNCEPv7-forced simulations are generally within 5% of those with GSWP3v1.  PFT abbreviations: 
N - needleleaf; B - broadleaf; E- evergreen; D - deciduous; T - tree; S - shrub.   
 

a LAI observations are from MODIS.  
b Vcmax25 observational estimates are from Kattge et al. (2009).  Note that TRY database reports two 
values for Tropical trees, 29 for trees on oxisol soil, 41 for trees on nonoxisol soils. 
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Table 4: Summary of water cycle variables.   
 P 

(mm d-1) 

 

ET 

(mm d-1) 

Total 

Runoff 

(mm d-1) 

Transp

iration 

(%) 

Soil 

Evaporation 

(%) 

Canopy 

Evaporation (%) 

Obs 2.22 1.17 0.83 60   

CLM4SP 2.22 1.27 0.86 53 32 14 

CLM4.5SP 2.22 1.24 0.84 53 34 13 

CLM5SP 2.22 1.20 0.89 60 26 14 

CLM4BGC 2.22(2.08) 1.34(1.42) 0.77(0.52) 60 25 15 

CLM4.5BG

C 

2.22(2.08) 1.25(1.33) 0.81(0.58) 56 (53) 29 (26) 15 (20) 

CLM5BGC 2.22(2.08) 1.17(1.30) 0.91(0.58) 54 31 15 

Note: Sum of evapotranspiration components may not add up to 100% due to rounding.  Values in 
parentheses are from CRUNCEPv7 forced simulations.  All other values are from GSWP3v1 forced 
simulations.  Note that observed values are for the area of intersection where both observations and model 
are land as reported in ILAMB (Collier et al., 2018).  Observations are GPCC for precipitation, GLEAM 
for ET,  Dai and Trenberth (2007) for runoff, and WECANN. 
 
 
Table 5: Summary of global C fluxes and stocks.  
 GPP 

  
NPP CUE AR HR ER Ecosys C Veg C 

 
Soil C 
1m 

Obs (118)a     (94)a  (449)b (1320)c 

CLM4BGC 130 
(122) 

45 0.40 85 41 126 
(119) 

1043 469 
(453) 

500 
(493) 

CLM4.5BGC 113 
(137) 

47 0.48 66 43 107 
(100) 

2379 450 
(432) 

879 
(862) 

CLM5BGC 125 
(119) 

49 0.43 70 42 112 
(103) 

2574 492 
(460) 

1057 
(1040) 

Note: Fluxes include gross and net primary productivity (GPP and NPP), carbon use efficiency (CUE), 
autotrophic, heterotrophic, and ecosystem respiration (AR, HR and ER). Units are Pg C yr-1 for C fluxes, 
Pg C for C stocks, and a unitless ratio for CUE.  Data are averages for the period 1995-2014 from the 
GSWP3v1-forced simulations.  Values in parentheses indicate ILAMB values for the area of intersection 
between observations and model.   
a GPP and ER observed estimates from FLUXNET-MTE upscaling (Jung et al., 2011). 
b Forest vegetation C stock observed estimate from GEOCARBON project (Avitabile et al., 2016; Santoro 
et al., 2015). 
c Soil C to 1 m depth observed estimate from Harmonized World Soil Database (Fao/Iiasa/Isric/Isscas/Jrc, 
2012). 
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Table 6: Summary of nitrogen fluxes.   
N Flux Obs estimate CLM4BGC CLM4.5BGC CLM5BGC 

N Inputs     

N deposition 70a 63.1 63.1 63.1 

Symbiotic N fix 58b*   57.9 

Free living N fix  107.7 96.6 38.5 

Soy N fix 60c   6.0e 

Crop N fertilization 120a   106.7 

N Losses     

Denitrification 100a 117.8 51.2 100.1 

Hydrologic N losses 80a 0.01 10.2 33.2 

LULCC N losses  5.6 2.6 19.2 

Wood harvest   1.4 1.2 2.6 

Crop harvest     32.7 

Fire losses 14.1d 21.8 43.3 32.0 

N2O 13a  2.7 6.3 

Note: Units are TgN yr-1. Data are averages for the period 1995-2014 from the GSWP3v1-forced 
simulations.   
a data from synthesis by Fowler et al. 2013.   
b Preindustrial estimate (Vitousek et al., 2013), range 40-100 TgN yr-1. *Note, this includes both free-
living and symbiotic N fixation. 
c Globally upscaled estimate for agricultural N fixation, range 50-70 TgN yr-1 (Herridge et al., 2008). 
d Global biomass burning estimates of NOx and NH3, converted to Tg N yr-1 (Lamarque et al., 2010). 
e Soy N fix is also included in global estimate of symbiotic N fixation listed above in the table. Data here 
are from CFT output for nitrogen fixation. 
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Figure 1: Schematic representation of primary processes and functionality in CLM5.  Abbreviations: SCF 
– snow cover fraction; BVOC – biogenic volatile organic compounds; C/N – carbon and nitrogen.   For 
Biogeochemical Cycles, black arrow denotes carbon flux, purple arrow denotes nitrogen flux.  Note that 
not all soil levels are shown. Not all processes are depicted.  Optional features that are not active in 
default configurations are italicized.  Updated from Figure 1 in Lawrence et al. (2011).   
 
Figure 2.  Standard configuration of the CLM5 subgrid hierarchy.  Box in upper right shows hypothetical 
subgrid distribution for a single grid cell.  Note that the Crop land unit is only used when the model is run 
with the crop model active. Abbreviations: TBD – Tall Building District; HD – High Density; MD – 
Medium Density, G – Glacier, L – Lake, U – Urban, C – Crop, V – Vegetated, PFT – Plant Functional 
Type, Irr – Irrigated, Rnfd – Rainfed.  Red arrows indicate allowed land unit transitions.  Purple arrows 
indicate allowed patch-level transitions. 

Figure 3: ILAMB summary diagram for CLM4BGC, CLM4.5BGC, and CLM5BGC for GSWP3v1 and 
CRUNCEPv7 forcing.  A version of this figure designed for colorblind readers is available within the 
ILAMB results. 

Figure 4: ILAMB variable-to-variable comparison summary diagram for CLM4BGC, CLM4.5BGC, 
CLM5BGC for GSWP3v1 forcing.  See Collier et al. (2018) for details on this metric.  Right panels show 
example ILAMB relationship plot for a particular variable-to-variable comparison between climatological 
annual precipitation and LAI. Black line, repeated in each plot, is the observationally-derived 
relationship.  Error bars indicate the +- 1 standard deviation of LAI for all grid cells that lie within that 
precipitation bin.  Values in parentheses indicate ILAMB score for that comparison.  

Figure 5:  ILAMB summary diagram for CLM5SP (prescribed vegetation, left) and CLM5BGC 
(prognostic vegetation and carbon cycle, right) forced with three alternative forcing datasets (GSWP3v1, 
CRUNCEPv7, WFDEI/WATCH).  Note that the CLM5BGC WATCH-forced runs only run through year 
2001 which means that CLM5BGC-WATCH runs are evaluated over different set of observational years.  
Grey color for CLM5-WATCH for Terrestrial Water Storage is because there are not enough years of 
overlap between observations and model.  Note that a different set of forcing datasets is used for SP 
versus BGC simulations (WFDEI for SP and WATCH for BGC) which affects the relative scores even 
for forcing variables such as precipitation which is the same for CRUNCEPv7 and GSWP3v1 in SP 
versus BGC. 

Figure 6: Maps of biases in annual monthly maximum LAI (m3 m-3) for CLM4BGC, CLM4.5BGC, and 
CLM5BGC with GSWP3 forcing for two PFTs, temperate needleleaf evergreen trees and C4 grasses.  
Weighted area-average RMSE is shown in upper left of each plot. Data is shown only where the 
individual PFT fraction for a particular grid cell is > 0.  

Figure 7: Plots of CLM4SP, CLM4.5SP, and CLM5SP (GSWP3) evapotranspiration (upper panels, mm 
month-1) and soil moisture (lower panels, fraction of saturation) with depth for two years for two example 
grid cells in (a) southwest US (248oE, 40oN; upper plots) and (b) southeast US (278.5oE, 36oN; lower 
plots). Observations are from GBAF latent heat flux converted to evapotranspiration (mm month-1).  
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RMSD between model and observations shown for ET comparison.  Black lines in soil moisture plots 
indicate water table position.  Grey shading in CLM5 soil moisture plots indicates hydrologically inactive 
bedrock; white area in CLM4 and CLM4.5 indicates the unconfined aquifer.   

Figure 8: (a) Soil moisture residence time (SMRT, May to October) as simulated by CLM5SP (contours) 
and as derived from soil moisture timeseries at 928 North American Soil Moisture Database (NASMD) 
stations (filled circles, note that ARM and OK-Mesonet sites are not included because they exhibit large 
high soil moisture residence time biases (Dirmeyer et al., 2016). (b) Percentage change in SMRT from 
CLM4.5SP to CLM5SP: (CLM5SPSMRT - CLM4.5SPSMRT)*100/CLM5SMRT. (c) Change in SMRT from 
CLM4SP to CLM5SP.      

Figure 9: Impact of PHS on variability of GPP and ET.  Coefficient of variation (CV, unitless) of GPP 
and ET with two CLM5SP model configurations: PHS and SMS. CV data are derived from monthly 
model output over fifty years (1964-2013), after removing the trend and seasonal cycle. GPP analyses 
exclude grid cells with average GPP less than 0.5 umol m-2 s-1. ET analyses exclude grid cells with 
average ET less than 5 W m-2. Bin widths for all bar plots are 0.05 (CV, unitless), with each bar 
representing the percent of global average GPP or ET where CV falls within the corresponding range. 

Figure 10: Annual transpiration fraction (transpiration / total ET) as estimated with WECANN dataset 
(upper left) and the difference between model and WECANN for CLM4, CLM4.5, and CLM5 (GSWP3) 
for SP (left) and BGC (right) configurations.  

Figure 11: Permafrost maximum active layer thickness (top panels) and February snow density (lower 
panels), averaged over years 1990-2010 for CLM4.5BGC and CLM5BGC with GSWP3v1 and 
CRUNCEPv7 forcing.  Total permafrost area in millions of km2 shown under title bar.  CLM4 results (not 
shown) are similar to CLM4.5. 

Figure 12:  Metric for apparent soil carbon turnover time versus mean air temperature, as in Koven et al. 
(2017) for observations and CLMBGC model versions. Turnover time is calculated in observations and 
models as ratio of mean carbon stocks (SOM) over climatological annual mean carbon inputs (NPP).  
Each dot represents one grid cell, color coded by mean annual precipitation.  The best-fit regression curve 
for the observational data with 50% prediction intervals is shown as black lines for the models.  RMSE 
represents the agreement with the best-fit curves. See Koven et al. (2017) for full description of this 
metric.  Observations for soil organic matter (SOM) are merged from Harmonized World Soil Database 
(Fao/Iiasa/Isric/Isscas/Jrc, 2012) and Northern Circumpolar Soil Carbon Database (Hugelius et al., 2013).  
Observed NPP estimate is from MODIS (Zhao et al., 2005). 

Figure 13: Simulated effect sizes of nitrogen versus CO2 enrichment on global rates of net primary 
productivity (NPP) that was calculated for CLM4BGC, CLM4.5BGC, and CLM5BGC (brown, turquoise, 
and purple symbols, respectively; GSWP3 simulations).  Observational constraints for the nitrogen 
response (above-ground NPP from LeBauer and Treseder (2008)) and CO2 response (dry matter 
production from Ainsworth and Long (2004)) are shown with the vertical and horizontal lines, 
respectively (mean +/- 95% confidence interval). Figure reproduced from Figure 7a in Wieder et al. 
(2019).  
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Figure 14: Land carbon accumulation for the period (a)1850-2014 and (b)1960-2014 for CLM4BGC, 
CLM4.5BGC, and CLM5BGC simulations forced with GSWP3v1 and CRUNCEPv7. Observationally-
constrained model reconstructions (black lines, uncertainty estimates in grey) are from (a) Hoffman et al. 
(2014) and (b) Global Carbon Project (Le Quéré et al. 2014).   

Figure 15: Global time series of the change in (a) mean water use efficiency (WUE = GPP/Transpiration), 
(b) GPP (weighted sum) and (c) transpiration.  Note that only grid cells with annual maximum LAI > 0.1 
mm2 mm-2 are included in the averaging. (d) Global maps of change in WUE over the historical period 
(2005-2014 minus 1850-1859) for GSWP3v1-forced CLM4BGC, CLM4.5BGC, and CLM5BGC.  Grey 
color denotes regions where annual maximum LAI < 0.1 mm2 mm-2. 

Figure 16: CLM5BGC crop yields were evaluated against data from the United Nations Food and 
Agriculture Organization (UNFAO), which were downscaled using EarthStat data. The spatial 
distribution of crop yields averaged from 1990 - 2010 are plotted in (a) for UNFAO and (b) for CLM5 
and illustrate the summed yields for all explicitly represented crop types (temperate and tropical soybean, 
temperate and tropical corn, rice, sugarcane, cotton, and wheat). The time series of globally-summed crop 
yields for all explicitly represented crop types is plotted in (c) as simulated by CLM5 (black line) over the 
full time period and evaluated against data from UNFAO (red line) starting in 1961, when data are first 
available.  
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	Figure 9: Impact of PHS on variability of GPP and ET.  Coefficient of variation (CV, unitless) of GPP and ET with two CLM5SP model configurations: PHS and SMS. CV data are derived from monthly model output over fifty years (1964-2013), after removing ...
	Figure 10: Annual transpiration fraction (transpiration / total ET) as estimated with WECANN dataset (upper left) and the difference between model and WECANN for CLM4, CLM4.5, and CLM5 (GSWP3) for SP (left) and BGC (right) configurations.
	Figure 11: Permafrost maximum active layer thickness (top panels) and February snow density (lower panels), averaged over years 1990-2010 for CLM4.5BGC and CLM5BGC with GSWP3v1 and CRUNCEPv7 forcing.  Total permafrost area in millions of km2 shown und...



