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19 Abstract

20 Purpose: Modern inverse radiotherapy treatment planning requires non-convex, large-scale 

21 optimizations that must be solved within a clinically feasible timeframe. We have developed and 

22 tested a quantum-inspired, stochastic algorithm for intensity-modulated radiotherapy (IMRT): 

23 Quantum Tunnel Annealing (QTA). By modeling the likelihood probability of accepting a higher 

24 energy solution after a particle tunneling through a potential energy barrier, QTA features an 

25 additional degree of freedom (the barrier width, w) not shared by traditional stochastic 

26 optimization methods such as Simulated Annealing (SA). This additional degree of freedom can 

27 improve convergence rates and achieve a more efficient and, potentially, effective treatment 

28 planning process.   
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29 Methods: To analyze the character of the proposed QTA algorithm, we chose two stereotactic 

30 body radiation therapy (SBRT) liver cases of variable complexity. The “easy” first case was used 

31 to confirm functionality, while the second case, with a more challenging geometry, was used to 

32 characterize and evaluate the QTA algorithm performance. Plan quality was assessed using dose-

33 volume-histogram-based objectives and dose distributions. Due to the stochastic nature of the 

34 solution search space, extensive tests were also conducted to determine the optimal smoothing 

35 technique, ensuring balance between plan deliverability and the resulting plan quality. QTA 

36 convergence rates were investigated in relation to the chosen barrier width function, and QTA 

37 and SA performances were compared regarding sensitivity to the choice of solution 

38 initializations, annealing schedules, and complexity of the dose-volume constraints. Finally, we 

39 investigated the extension from beamlet intensity optimization to direct aperture optimization 

40 (DAO). Influence matrices were calculated using the Eclipse scripting application program 

41 interface (API), and the optimizations were run on the University of Michigan's high-

42 performance computing cluster, Flux. 

43 Results: Our results indicate that QTA’s barrier-width function can be tuned to achieve faster 

44 convergence rates. The QTA algorithm reached convergence up to 46.6% faster than SA for 

45 beamlet intensity optimization and up to 26.8% faster for DAO. QTA and SA were ultimately 

46 found to be equally insensitive to the initialization process, but the convergence rate of QTA was 

47 found to be more sensitive to the complexity of the dose-volume constraints. The optimal 

48 smoothing technique was found to be a combination of a Laplace-of-Gaussian (LOG) edge-

49 finding filter implemented as a penalty within the objective function and a two-dimensional 

50 Savitzky-Golay filter applied to the final iteration; this achieved total monitor units more than 

51 20% smaller than plans optimized by commercial treatment planning software.

52 Conclusions: We have characterized the performance of a stochastic, quantum-inspired 

53 optimization algorithm, QTA, for radiotherapy treatment planning. This proof of concept study 

54 suggests that QTA can be tuned to achieve faster convergence than SA; therefore, QTA may be a 

55 good candidate for future knowledge-based or adaptive radiation therapy applications.

56 Keywords: IMRT, Simulated Annealing, Quantum Tunneling Optimization, Adaptive radiotherapy.

57

58 1. Introduction
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59 Radiation therapy has been established as one of the primary modalities for cancer treatment, 

60 used either exclusively or in combination with other techniques such as chemotherapy or 

61 surgery.1,2 A critical challenge for radiation therapy (and all cancer therapies) is to deliver an 

62 adequate dose to the tumor to ensure curative or palliative results while minimizing the dose 

63 delivered to normal tissues. Intensity modulated radiation therapy (IMRT) is a type of external 

64 beam radiation therapy in which each beam is subdivided into a grid of beamlets whose 

65 intensities are determined by dynamic shielding via a multi-leaf collimator (MLC). Because 

66 IMRT and other radiation therapy techniques which rely on dynamic intensity modulation (such 

67 as Volumetric Arc Therapy (VMAT)) are capable of creating concave-shaped dose distributions, 

68 they are particularly effective for challenging cases in which the tumor volume is irregular and 

69 near critical organs at risk (OARs).3,4 The intensity modulations determined from this dynamic 

70 shielding optimization are characterized by aperture or beamlet weights. The challenge of 

71 calculating optimal weights for a treatment plan often represents a non-convex,5 large-scale 

72 optimization problem that must be solved within a clinically reasonable timeframe. The ability to 

73 quickly perform robust optimizations is particularly significant in online adaptive radiotherapy, 

74 in which a patient’s plan may be reoptimized several times during the treatment course to 

75 account for changes such as tumor shrinkage or organ deformations.6

76

77 Quantum computing research is believed to hold promise for achieving computational speedup 

78 for certain types of problems.7 In quantum computing, classical bits (whose two states are often 

79 represented by 0 and 1) are replaced by quantum bits (qubits) which may exist in any linear 

80 superposition of 0 and 1.8 This allows quantum computers to explore multiple solutions 

81 simultaneously, and quantum algorithms can take advantage of this to achieve a significant 

82 computational speedup.8,9 However, the direct use of quantum computers is still limited by 

83 challenges related to creating a proper hardware environment where qubits are maintained in 

84 quantum coherence7 and the number of qubits deployed is still limited (11-2,00010-15) to 

85 effectively handle large scale optimization problems like planning optimization. On the other 

86 hand, quantum-inspired algorithms also hold promise for achieving computational speedup of 

87 complex optimization problems. Such algorithms are not necessarily quantum processes per se 

88 (though some can be formulated to run on a quantum computer); rather, they are quantum 

89 simulations designed to run on a classical computer. 
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90

91 The idea of incorporating quantum-inspired techniques into stochastic algorithms was first 

92 proposed by de Falco et al. in 1989.16 A few years later, Kadowaki and Nishimori demonstrated 

93 the use of Quantum Annealing (QA) on an Ising model of atomic spins by applying a transverse 

94 field, which was annealed to 0 and numerically solving the time-dependent Schrödinger 

95 equation for small systems; they found that the probability of reaching the ground state was 

96 consistently higher for QA than Simulated Annealing (SA). Many studies have since ensued that 

97 have demonstrated QA’s potential for a variety of problems.16-20

98

99 While QA holds theoretical promise for certain problem classes with limited dimensionality,21 its 

100 implementation on a classical computer is impractical for IMRT optimization19 and deployment 

101 on a quantum computer is currently hindered by the limited number of qubits built into existing 

102 hardware systems.19,21 To avoid these computational limitations, we have implemented another 

103 quantum-inspired optimization scheme that models the exploration of higher-energy solutions 

104 based on the probability of a particle tunneling through a one-dimensional potential energy 

105 barrier. We refer to our algorithm as Quantum Tunnel Annealing (QTA) to distinguish it from 

106 the classical QA algorithms described by de Falco and others.16-22 In this paper, we present a 

107 proof-of-concept study that (1) demonstrates the behavior of QTA when applied to beamlet 

108 intensity and direct aperture optimization for IMRT treatment planning, and (2) compares QTA 

109 performance with that of SA as a representative benchmark of traditional optimization methods.  

110

111 2. Materials and Methods

112 2.1 Quantum Tunnel Annealing

113 QTA works by modeling an optimization problem as a biased random walk over a fixed number 

114 of iterations. During each iteration, a new potential solution (e.g., beamlet-weight vector) is 

115 selected from within the neighborhood of the current solution. The energy associated with the 

116 new potential solution, given by the objective function, is then calculated and compared against 

117 that of the current solution. Potential solutions with lower energies are immediately accepted and 

118 set as the current solution. A significant challenge associated with non-convex optimization 

119 problems is that the algorithm can become stuck in a local minimum before it has a chance to 

120 reach the globally optimal solution. To avoid this pitfall and ensure adequate exploration of the 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved

121 solution space, QTA simulates quantum fluctuations, allowing the algorithm to accept a worse 

122 solution with some probability P.  In this process, consider a quantum-particle with energy E, 

123 traversing through a one-dimensional potential energy landscape, . The particle’s �(x)

124 wavefunction,  obeys the time-independent Schrödinger equation: Ψ(�),

125

,� Ψ(x) = � Ψ(x) (1)

126

127 where the Hamiltonian operator, , is a function of the particle’s potential  and kinetic energy  � �
128 :�
129

.� =  � +  � (2)

130

131 Figure 1 illustrates such a particle encountering a potential energy barrier (denoted ). The ��
132 particle’s wavefunction prior, during, and after encountering the barrier can be expressed as: 

133

Ψ(�) =  {
����� + �′�―���,  in region A���� + �′�―��, in region B����′�,  in region C

     ,    �(�) = {
��,   in region A��,   in region B��,   in region C

(3)

134

135 with wave-numbers:

136

 ,  ,  .23� =  
2�ℏ2 (Γ ― V�)  � =

2�ℏ2 (V
�― Γ) �′ =  

2�ℏ2 (Γ ― V�) (4)

137

138 A positive exponent represents the particle traveling to the right, and a negative exponent 

139 represents the particle traveling to the left. Thus, and  represent the amplitudes for �(�′) �(�′)
140 the incident (reflected) waves in regions A and B, respectively, and C is the amplitude of the 

141 wave transmitted through the barrier. The probability of tunneling through the barrier is given by 

142 the transmission coefficient T= . This value has suggested by Mukherjee and Chakrabarti to 
�′�|��|

2

143 be on the order of  using a Wentzel-Kramers-Brillouin (WKB) approximation.18,23 �―� �� ― ��Γ
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144

145 Hence, the probability of QTA accepting a worse solution can be redefined to be proportional to 

146 , where  is the kinetic energy of the system (an annealing variable exp (― � ∗ ����―  ����Γ ) Γ
147 synonymous with the temperature, T, in SA),  is the potential energy of the system at solution i  ��
148 defined by the objective function, and  is the width of the barrier being tunneled through. This �
149 barrier width is a dynamic parameter, which serves as an additional degree of freedom that is not 

150 present in the SA formalism, as discussed in Section 2.2.   

151

152 2.1.1 Calculation of barrier width

153 As stated in Section 2.1, the barrier width represents an additional degree of freedom, which 

154 QTA can use to obtain an optimal solution in a shorter timeframe. The expected trend in the 

155 barrier width’s evolution over the course of the optimization can be derived from the following 

156 argument: At the start of the optimization, energy barriers that the system encounters have finite 

157 widths; as the system approaches its global minimum, the widths of any barriers encountered 

158 would grow increasingly large.

159

160 In the interest of modeling the barrier width after a physical system in nature, one of the common 

161 barrier width schedules tested was modeled after the growth rate of Gallium Arsenide (GaAs) 

162 during the process of metal organic chemical vapor deposition (MOCVD). A typical MOCVD 

163 setup consists of a reaction chamber and a substrate material on a heated platform. As the 

164 substrate is heated by the platform, chemical reactions take place in the gas of the reaction 

165 chamber, leading to the growth of thin films upon the surface of the substrate. In a horizontal-

166 type reaction chamber, the reactants are passed through the chamber horizontally. One of the 

167 most common semiconductors grown using MOCVD is GaAs.24 The growth of semiconductors 

168 using MOCVD is a complex process influenced by many parameters. It was shown 

169 experimentally that GaAs’s growth rate is proportional to the square root of the gas velocity.25  

170 Given that kinetic energy is also proportional to the square root of velocity, we can express the 

171 growth rate as:

172

,
����(�) ∝  

4 Γ(t) (5)
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173

174 where  represents the annealing time defined as the iteration number, and  is the kinetic energy  � Γ
175 of the annealing system, defined in this study as:

176

,Γ(t) = 10 × (1 ― log (t)

log (�)) (6)

177

178 with  defined as the total number of iterations performed during the optimization.  �
179 The values corresponding to  were obtained using MATLAB’s numerical integration �(�)
180 function, “integral()” and applying a proportionality factor (k); through trial and error, this was 

181 found to work well with  k= . Both  and  with t  iterations are 1 × 10―5 ���� �(�) ≤ � = 5 × 105

182 displayed in Figure 2(a) and 2(b), respectively. 

183

184 Because QTA occasionally accepts worse solutions, it stands to reason that the barrier width 

185 does not grow continuously but rather experiences local width fluctuations combined with a 

186 globally increasing trend. Therefore, in addition to the MOCVD-inspired barrier width schedule, 

187 another schedule was also tested, defined as: 

188

,��(�) = ��(�)(sin2 50��� + 1) (7)

189

190 where: 

,��(�) =  10 ×
3 (�′ ∗ �) (8)

191

192 with  used as a tunable parameter to control how quickly the width increases over the �′ > 0

193 course of the optimization. The form of  was chosen to introduce more local variations in the ��
194 barrier width schedule in addition to the global trend of increasing width at a decreasing rate. 

195 This was done by coupling a fractional power function (given by ) with a sinusoidal function. ��
196 A squared sine function was chosen to ensure that the width was always at least as large as the 

197 global trend. For an annealing schedule where , the period of 10,000 corresponded � = 5 × 105

198 to 10 full cycles during the search time. 
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199

200 2.2 Simulated Annealing (SA)

201 For comparison purposes, we used SA, a stochastic search algorithm, which was first introduced 

202 for IMRT optimization by Webb in 1989.1,26 Like QTA, SA models the optimization problem as 

203 a system which undergoes a biased random walk. Over the course of the random walk, the 

204 system will always accept new solutions, which improve on the old solution. In order to avoid 

205 getting trapped in local minima, the system accepts worse solutions with a probability 

206 proportional to , where  is the temperature of the system that is annealed exp (
― (����―  ����)� ) �

207 (decreased) over the course of the algorithm search. Mathematically, SA was proven to converge 

208 to a global optimal solution with minor assumptions on the cooling schedule and appropriate 

209 conditions on irreducibility, aperiodicity and reversibility of the induced Markov chain.27,28 

210 Because SA has a long history of use in our clinic and the literature, it served as our benchmark 

211 algorithm for evaluating the success of QTA.29 The annealing schedule for T was identical to the 

212 schedule used for the QTA annealing variable, , and is defined in Equation 6. Note that while Γ
213 the formalism of QTA shares many similarities with SA, the probability of accepting a worse 

214 solution in QTA differs from SA in two key respects: (1) reduced dependence on the potential 

215 energy difference between the current and new solution and (2) the presence of an additional 

216 dynamic parameter in the barrier width. These differences provide QTA with more freedom to 

217 explore the solution space.

218

219 2.3 IMRT Case Selection

220 To analyze the performance of our quantum-inspired algorithm, we compared QTA and SA on 

221 two stereotactic body radiation therapy (SBRT) liver cases chosen from the University of 

222 Michigan Radiation Oncology Department’s clinical database. 

223

224 Case 1, a 12-field three-dimensional IMRT liver plan, was selected as an “easy” test case to 

225 confirm that both QTA and SA were performing properly. This case was not expected to pose a 

226 significant challenge for either optimization algorithm because it featured a minimal amount of 

227 overlap between the planning target volume (PTV) and the liver, and no overlap with other 

228 structures. For simplicity, the structures selected for optimization from Case 1 were the PTV and 

229 liver exclusive of the gross target volume (Liver – GTV) as shown in Figure 3a. Influence 
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230 matrices for these structures were calculated using built-in functions defined in the Eclipse 

231 scripting application program interface (API). The voxel size used was 2mm and the beamlet 

232 size was 5 mm x 5 mm, for a total of 158,720 voxels, 768 beamlets, and 1,602,504 nonzero 

233 elements in the dose influence matrices.

234

235 Case 2 served as a “challenge” case to determine if the additional degree of freedom associated 

236 with QTA facilitated better results – such as plan quality, robustness, or speed – for more 

237 clinically relevant and difficult optimization problems. Designed as a 5-field IMRT plan, Case 2 

238 was selected because it had significant overlap between the PTV, stomach, and liver structures as 

239 shown in Figure 3b. Because this was a proof of concept study, only a subset of structures from 

240 the original treatment plan were included in our optimization. The structures were selected based 

241 on the priority assigned to them in the original clinical treatment plan. In addition, the dose 

242 volume histogram (DVH) constraints were also inspired by those used clinically. The influence 

243 matrices for these structures (3mm voxel size, 2.5mm x 5mm beamlet size) were again calculated 

244 using built-in functions available in the Eclipse scripting API. Case 2 contained 79,977 voxels, 

245 4166 beamlets, and 1,558,612 nonzero elements in the dose influence matrices. Because Case 2 

246 contained more than four times more beamlet weights, it also represented a more challenging 

247 optimization problem than Case 1.

248

249 The DVH constraints used in the optimization of Case 1 and Case 2 can be viewed in Table 1 

250 and Table 2, respectively.

251

252 2.4 Objective function

253 The objective function used for both SA and QTA IMRT optimization is defined by:

254

min� �(�)

subject to � ≥ 0 (9)

255 where: 

256
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�(�)

=

�∑� = � 
��‖��― ��(�)‖� �� + ��∑� = �∑�� |(� × ��)��|� +

�∑� = �����(�, ��� �����������) 

(10)

257 and:

258

.��(�) = �� ∗ � (11)

259

260 The first term in the objective function represents the mean squared error between the prescribed 

261 dose,  and the delivered dose,  for each structure  of N structures.  represents ��, ��(�), � ��(�)

262 the dose delivered to each voxel in structure and is defined in Equation 2 as the product of the �, 
263 structure’s influence matrix, , and the beamlet-weight vector, . is the number of voxels in  �� � �� 

264 structure n. The influence matrices for each structure were calculated using the Eclipse Scripting 

265 API’s built-in “CalculateInfluenceMatrixToMemory()” function. The point cloud which was 

266 input into this influence matrix function was calculated using an in-house script that generates a 

267 normally distributed random set of point locations whose average distance is the cube root of the 

268 desired voxel size.

269

270 For an influence matrix I, matrix element Iij is defined as the dose contribution to voxel i from 

271 beamlet j. Any given beamlet is expected to contribute primarily to the voxels it overlaps with 

272 and their nearest neighbors. However, due to scattering effects Eclipse-generated influence 

273 matrices contain no non-0 values;  they contain a subset of elements whose values are orders of 

274 magnitude smaller than the largest values in the matrix – corresponding to a beamlet’s 

275 contribution to a distant voxel. To facilitate faster optimization, a tolerance value was defined 

276 below which influence values were deemed negligibly small and reset to 0. This allowed for the 

277 influence matrices to be saved as sparse matrices, reducing calculation times. An acceptable 

278 tolerance value was determined by trial and error to be 0.015. We loaded fluence vectors that 

279 were optimized using filtered influence matrices into the Eclipse scripting API, performed MLC 

280 leaf sequencing and dose volume calculation, and compared the resulting DVH histograms with 

281 those produced in-house.
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282

283 The second term in objective function represents a smoothing penalty which was implemented to 

284 ensure the treatment plans could be delivered efficiently. In order to determine the optimal filter, 

285 , a series of QTA optimizations were performed on Case 2 using a number of different filter �
286 types – including median, Savitzgy-Golay (SG), plan intensity map variation (PIMV), and 

287 Laplacian and Laplace of Gaussian (LOG) filters with kernels of sizes 3, 5, 7, 9, and 15, 

288 respectively.30 For the smoothing filters, a penalty value was defined as the squared difference 

289 between the original and smoothed fluence map. For the PIMV-type filter, the square of the 

290 PIMV value for each beam was used as the penalty. For the edge-finding filters of kernel size n, 

291 the filter kernel was convolved with the beamlet matrix  (reshaped from the beamlet weight ��
292 vector) for each beam. The squared sum of the indices of the resulting matrix yielded a value 

293 correlated to the degree of irregularity for each beamlet matrix. With the exception of the 

294 Laplace filter and the PIMV filter, all filters tested were implemented using MATLAB built-in 

295 functions. Each filter’s performance was evaluated by visually inspecting fluence maps and 

296 comparing the total number of MUs necessary after MLC leaf sequencing. 

297

298 The third term in Equation 10 represents additional penalties based on DVH constraints 

299 associated with each structure. The dose constraints and penalties, , used in each case can be ��
300 viewed in Tables 1 and 2. For Case 1, simple Boolean conditions were used to assign penalty 

301 values (for example, if 99% of the PTV receives < 33 Gy, add 100 to the DVH penalty). The 

302 weighting factors  used in Case 1 were set to 1 for all structures. For the more challenging ��
303 Case 2, we found it necessary to adjust the calculation of the DVH penalty. Specifically, for Case 

304 2, penalties for missed DVH constraints were assigned as the penalty value (listed in the last 

305 columns of Tables 1 and 2) multiplied by the absolute difference between the DVH constraint 

306 and the actual metric achieved. For example, if 99% of the PTV volume received ≥ 29 Gy, the 

307 penalty for that constraint would be (30-29)  100. Because the constraint type is designated as  ×

308 “lower”, no penalty is assigned if 99% of the PTV volume receives > 33Gy. Finally, for Case 2, 

309  and  were set to 9 and 10, respectively.���� ������ ― ���
310

311 2.5 Extension to Influence-based Direct Aperture Optimization
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312 In addition to fluence map optimization, the objective function described in Section 2.4 can be 

313 generalized to directly optimize apertures (defined by MLC leaf positions) and their weights 

314 using a method known as influence-based direct aperture optimization (DAO).31,32 This is 

315 accomplished by defining the fluence weights as a function of the MLC leaf segment positions 

316 and aperture weights, which for small beamlets can be written as: 

317

318

,�(�,�) =  ∑��(�)� × �� (12)

319

320

321 where  defines the MLC leaf positions, is the weight assigned to aperture i, and is a � �� �(�)� 
322 transmission matrix whose values represent the fraction of each beamlet unobstructed by the 

323 MLC leaf segments for aperture i.31

324

325 2.6 Criteria for Convergence

326 In order to compare QTA and SA’s performance in a faithful manner, it is necessary to develop a 

327 quantitative method for defining convergence. For both optimization methods, the energy at each 

328 iteration t was saved in a vector, E(t). The gradient of E(t) was calculated numerically in 

329 MATLAB. From this gradient, a moving average mean (MAM) with width 100 was then 

330 calculated. A tolerance value, ctol, was selected by trial and error, and the largest index position, j 

331 – for which |MAM(j)| > ctol – was identified. The convergence point for the algorithm was then 

332 defined as iteration j+1. Figure 4 displays the process of finding the j (and thus j+1) from E(t). 

333 An appropriate value for ctol was found to be 0.1. 

334

335 2.7 Computing Environment

336 All beamlet-weight optimizations described in this paper were performed using MATLAB 

337 scripts with GPU acceleration on the University of Michigan’s High-Performance Computing 

338 Linux-based cluster, Flux (central processing unit (CPU): Intel Haswell, graphics processing unit 

339 (GPU): Nvidia K40). Each job was submitted with 2 CPU cores (4 GB/core) and 1 GPU.

340
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341 MLC leaf sequencing and dose volume calculations used for final plan visualization were 

342 performed using clinical software (Varian Medical Systems, Inc. Eclipse Treatment Planning 

343 System: Varian Leaf Motion Calculator Version 13.6.23, Anisotropic Analytical Algorithm 

344 Version 15.5.11).

345

346 The complete QTA algorithm for IMRT optimization is summarized in Figure 5. The maximum 

347 possible number of iterations performed in each run was defined as . Because the � = 5 ∗ 105

348 parameter N was used as a variable in both the annealing schedule (T or ) and the barrier width Γ
349 schedule (w), its value was not altered over the course of the reported studies. Therefore, in order 

350 to vary the actual number of iterations performed, an additional break parameter was defined 

351 which forced the algorithm to end early at iteration n = nbreak. This break parameter was 

352 implemented both to shorten the duration of optimizations when it was clear an optimal solution 

353 had been reached prior to N as well as to confirm that the convergence iteration numbers – 

354 whose calculation was described in Section 2.6 – represented clinically acceptable plans.

355

356 3. Results

357 3.1 Case 1

358 Preliminary studies on a geometrically simple case, designated “Case 1”, confirmed that the 

359 QTA and SA algorithms were performing properly. Figures 5(a) through 5(d) display the DVH 

360 and potential energy (PE) trajectory results acquired by running the QTA and SA algorithms 20 

361 times each for  iterations and no premature breaks (i.e., nbreak > N). Figures 5(e) � = 5 × 105

362 through 5(f) display representative dose distributions for QA and SA, respectively, which were 

363 calculated in Eclipse using optimized beamlet-weights from the tenth run. For Case 1, the 

364 incorporation of a Laplace edge-finding filter with a kernel size of 3 into the objective function 

365 was found to yield sufficiently deliverable plans. Beamlet-weights generated from both QTA and 

366 SA were found to consistently yield plans that satisfied the DVH constraints. 

367

368 The DVH curves for QTA (5(a)) and SA (5(b)) indicate that for this case, QTA exhibited greater 

369 stability over SA with respect to the quality of the final plan. SA converged to a solution with 

370 worse PTV coverage 60% of the time. Figures 5(c) and 5(d) display the PE trajectories for the 

371 QTA and SA runs, respectively. The PE trajectories for QTA indicate that QTA explored higher 
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372 energy solutions prior to sudden extreme drops around the th iteration, whereas (� =  1 × 105)

373 SA featured a more linear decrease. The resulting dose distributions were found to be similar 

374 between both algorithms and featured reasonable tumor coverage while minimizing the dose to 

375 the surrounding normal tissues.  

376

377 3.2 Case 2

378 3.2.1 Refined Smoothing Filter

379 In the pursuit of designing an objective function that can produce clinically acceptable and 

380 deliverable plans, a comprehensive study (described in detail in Section 2.4) was performed to 

381 determine the optimal measure of smoothness for use as a penalty in the objective function. 

382 Smoothness was assessed qualitatively using the fluence maps and quantitatively using the total 

383 MU required (summed over each beam). Figure 7(a) displays the optimized fluence map for one 

384 of the Case 2 beams using a LOG filter within the objective function. The speckled appearance 

385 of 7(a) suggests that smoothing within the objective function alone is not sufficient, and the MU 

386 necessary for this plan was more than 20% larger than predicted for an Eclipse-optimized plan 

387 which met the same DVH constraints. Adjustments to the size of the kernel and the type of filter 

388 used within the objective function did not yield discernable improvement to fluence regularity or 

389 total MU.

390

391 We also explored directly applying a smoothing filter to the beamlet weights outside of the 

392 objective function. We found that the optimal smoothing process consisted of the 7x7 LOG filter 

393 within the objective function, combined with a two-dimensional Savitzky-Golay filter applied to 

394 the beamlet-weights during the final iteration of the algorithm. The optimized fluence map using 

395 this refined smoothing filter is displayed in Figure 7(b) and appears markedly smoother than the 

396 LOG-filter alone. This refined smoothing filter resulted in a total of 2877 MU, which was 34% 

397 lower than the LOG filter alone and more than 20% lower than the Eclipse-optimized plan. The 

398 plan quality, as gauged by DVH constraints, experienced only a slight reduction.

399

400 3.2.2 Barrier Width Schedule Effect

401 As discussed in Section 2.1.2, four different barrier width schedules were investigated for QTA. 

402 One was inspired by the growth rate of GaAs in MOCVD, while the remaining three were 
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403 designed to allow for local fluctuations in the barrier width within a globally increasing trend. 

404 Table 3 lists convergence rates calculated for QTA optimizations using the four barrier-width 

405 schedules as well as optimizations for SA. Three of the four barrier widths tested yielded 

406 convergence faster than SA. The optimal barrier width schedule was found to be the  function ��
407 with , and it reached convergence in less than half the time required for SA.   �′ = 1 × 10―5

408

409 3.2.3 Annealing Schedule Effect

410 Each algorithm’s sensitivity to the choice of annealing schedule was assessed by comparing their 

411 performance across five different functions (shown in Figure 8(a)): T1, a linear function; T2, a 

412 sigmoidal function; T3, an exponential function; T4, a logarithmic function; and T5, a power law 

413 function with fractional exponent. Figure 8(b) displays box and whisker plots of the convergence 

414 rates for QTA and SA respectively for each annealing schedule. For schedules T1, T2, and T3, 

415 SA failed to reach convergence prior to the breakpoint at , resulting in the ������ = 2.5 × 105

416 tight spread of data for SA at these schedules. QTA exhibited lower average convergence rates 

417 for all five annealing schedules. Note that for this paper, T4 (defined by Equation 6) served as 

418 the default annealing schedule.

419

420 3.2.4 Optimization Stability

421 QTA’s stability was verified by performing a series of optimization tests using different starting 

422 beamlet-weight vectors (10 runs per initial beamlet-weight vector tested,  iterations, � = 5 × 105

423 which ran until ). As a comparison, SA optimizations were also performed ������ = 2.5 × 105

424 under the same conditions. The optimizations began with initial beamlet-weight vector values set 

425 to 0, 11, and 20, respectively. These values represent the minimum, average, and maximum 

426 fluence values expected for the optimized beamlet-weight vector. In addition, tests were also 

427 conducted using an initial beamlet-weight vector whose values were randomly distributed over a 

428 range from 0-20.  In order to assess whether QTA is primarily advantageous later in the 

429 annealing schedule after the algorithm has become stuck in local minima, additional tests were 

430 performed on a hybrid SA-QTA algorithm, which ran SA for the first iterations after 5 × 104 

431 which the algorithm switched to QTA. The initial beamlet-weights used for the hybrid tests were 

432 also randomly distributed over a range from 0-22.

433
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434 Figure 9 displays the results for 10 QTA and SA optimizations using the randomly distributed 

435 initial beamlet-weight vector. The DVH curves for QTA (9(a)) and SA (9(b)) suggest that both 

436 reached final solutions with nearly identical dose coverage. This finding was found to hold for all 

437 iterations regardless of the initial beamlet-weights used. The energy trajectories for QTA (9(c)) 

438 and SA (9(d)) are plotted on a Log scale to highlight differences in the shape of the curves. Like 

439 Case 1, the QTA PE trajectories for Case 2 feature a region of rapid descent, located just after the 

440 103 iteration. All QTA and SA runs (for b0 = 0,1,20, and rand) required  iterations to ≥ 1.1 × 105

441 reach convergence. Figures 9(e) and 9(f) display the Eclipse-calculated dose distributions from 

442 the tenth optimization for QTA and SA, respectively. The final dose distributions were found to 

443 be nearly identical and exhibited reasonable dose coverage.  

444

445 Table 4 displays the mean convergence rates (in seconds) for QTA, SA, and the hybrid SA-QTA 

446 algorithm. QTA consistently exhibited faster convergence rates and had smaller standard 

447 deviations than SA in all but one case (b0 = 11). The convergence rates of the SA-QTA hybrid 

448 algorithm were similar to the performance of SA.

449

450 The stability of QTA and SA was also assessed by making perturbations in the original dose 

451 constraints. For each of these tests, a perturbation was made to a single constraint while all others 

452 were held constant. Each optimization was run for  iterations and stopped at � = 5 × 105 ������
453 . Table 5 summarizes the perturbations tested and the corresponding convergence  =  2.5 × 105

454 rates (in seconds). For all perturbation types, QTA exhibited faster convergence. However, the 

455 percent difference in the perturbed convergence rates from the original convergence rate ranged 

456 from 5.95%-43.7% for QTA and 4.1%-5.1% for SA, indicating that QTA may exhibit higher 

457 sensitivity than SA.

458

459 3.2.5 Aperture-Weight Optimization via Influence-Based DAO

460 Influence-based DAO was performed on QTA and SA for 10 runs per initial beamlet-weight 

461 vector tested,  iterations, which ran until ) using the fluence � = 5 × 105 ������ = 2.5 × 105

462 approximation formalism described in Section 2.5. For these optimizations, leaf segment 

463 information was extracted from a pre-existing Eclipse-optimized IMRT plan (with a total of 431 

464 apertures) on Case 2, and aperture weights were optimized with the starting weight of each 
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465 aperture set to 0. Figure 10 displays the resulting cumulative DVHs (10(a) and 10(b)), potential 

466 energy trajectories (10(c) and 10(d)), and representative dose distributions (10(d) and 10(e)) for 

467 QTA and SA, respectively.

468

469 The DVHs displayed in Figures 10(a) and 10(b) indicate that QTA and SA achieved comparable 

470 tumor coverage and OAR sparing. While the energy trajectories in Figures 10(c) and 10(d) 

471 indicate that QTA exhibited more stochastic exploration of the solution space early on in the 

472 optimization, QTA converged within 5,234 622.4 (s) on average while SA had an average  ±  

473 convergence rate of 7,151 504.5 (s). Figures 10(e) and 10(f) show that both algorithms also  ±  

474 produced similar dose distributions. 

475

476 4. Discussion 

477 The optimization results from Case 1 confirmed that both algorithms were capable of delivering 

478 clinically acceptable results. QTA was found to be more stable than SA with regard to the quality 

479 of the final solution it converged to, as SA converged to a worse solution 60% of the time. 

480

481 Because it was more geometrically complex, Case 2 was used to characterize QTA’s 

482 performance. One of the ways QTA distinguishes itself from SA is that the probability of 

483 accepting a worse solution during the course of the optimization is a function of the estimated 

484 width of the potential energy barrier, providing an additional degree of freedom with which to 

485 explore the solution space. We tested several expressions which were heuristically selected to 

486 represent the barrier-width function. Adjusting the form of the barrier-width function did not 

487 influence the quality of the final plan if the algorithm was allowed to run for its fully allotted 

488 time. However, the form of the barrier-width function did influence how quickly the algorithm 

489 reached convergence. The convergence results listed in Table 4 suggest that the barrier-width 

490 function can be used as a tunable parameter to achieve faster convergence. While further tests are 

491 warranted to determine an optimal expression for the barrier width, the majority of the functions 

492 tested yielded faster convergence rates than SA.

493

494 The convergence rates of both algorithms were found to be dependent on the annealing schedule 

495 chosen. For three of the five functions tested, SA failed to converge 30-80% of the time, while 
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496 QTA reached convergence for all five evaluated functions. In addition, QTA had faster mean 

497 convergence rates for all five annealing functions tested. These results suggest that QTA is more 

498 robust against the choice of annealing schedule. Another way to conceptualize this advantage is 

499 to interpret QTA as having a modified annealing schedule in which the barrier width function 

500 serves as an additional time-dependent, tunable parameter, coupled with a dampened dependence 

501 on the energy difference between the current and new solution.

502

503 Testing the sensitivity of QTA with respect to changes in the initial beamlet-weights, b0, is useful 

504 for determining whether the algorithm can reliably deliver clinically acceptable plans under 

505 conditions where a “good” first guess is unknown. In initial beamlet-weight tests (described in 

506 Section 3.2.4) we found that QTA consistently achieved faster convergence times over SA across 

507 all variations of b0. 

508

509 Unlike Case 1, Figures 8(a) and 8(b) suggest that both QTA and SA consistently achieved final 

510 solutions of nearly identical plan quality for Case 2. These findings held even after varying the 

511 initial starting guess. These results may seem surprising given that Case 2 represented the more 

512 challenging case. The explanation lies in the difference between the objective functions used for 

513 Cases 1 and 2, which are described in detail in Section 2.4. Case 1 penalties based on the DVH 

514 constraints were assigned using Boolean conditions. Implementing the DVH constraint portion 

515 of the objective function was found to be insufficient for Case 2 because it could not provide 

516 sufficient PTV coverage without delivering an excessive dose to the organs at risk. Therefore, 

517 when we began working on Case 2, it was necessary to adjust the objective function so that 

518 penalties based on the DVH constraints were weighted more heavily as plan results strayed 

519 farther from the objectives. The difference in results between Case 1 and Case 2 suggest that the 

520 additional constraints applied to Case 2’s objective function narrowed the solution space 

521 available to the algorithms. In light of this point, the combined results from both cases suggest 

522 that QTA is more robust than SA to changes in the formulation of the objective function.

523

524 To assess QTA’s sensitivity to changes in treatment plan goals, a series of optimizations were 

525 run for QTA and SA in which perturbations were made to the PTV dose prescription and to OAR 
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526 dose constraints. It was found that while QTA continued to achieve faster convergence rates, 

527 those rates exhibited greater variation from the original, unperturbed convergence rate.  

528

529 For Case 2, it was found that implementing smoothing only within the objective function was 

530 insufficient for producing plans with clinically deliverable fluence maps. This is likely due to the 

531 algorithms’ stochastic nature and the fact that Case 2 contained more than four times the number 

532 of beamlets as Case 1. Ultimately, a refined smoothing technique was developed which 

533 combined a LOG filter – used to define an irregularity penalty in the objective function, with a 

534 two-dimensional SG filter that was applied to each beamlet map during the final iteration. The 

535 resulting fluence maps for these plans had total MU values which were more than 20% less than 

536 those for an Eclipse-optimized plan. It is perhaps unorthodox to include a smoothing filter 

537 outside of the objective function, as this can compromise plan quality.30 However, we found that 

538 implementing the SG filter during the optimization’s final iteration had only a small impact on 

539 plan quality, and all plans generated using this technique were comparable in quality to plans 

540 generated using Eclipse-based IMRT optimization. 

541

542 In order to further investigate the potential of QTA over SA, it is necessary to test additional 

543 optimization formalisms with known ill-behavior.  One such representative approach is to 

544 estimate the aperture weights directly using the influence-based DAO approach described in 

545 Section 2.5. DAO was evaluated on the more complex Case 2. The results from these 

546 optimizations (presented in Section 3.2.5) indicate that on average QTA converged up to 26.8% 

547 faster than SA.  DAO is a more complex optimization problem than fluence optimization. While 

548 the results of this study example may suggest that the performance gap between QTA and SA 

549 seemingly becomes narrower, QTA still exhibits notable benefits over SA overall.

550

551 The limitations of this study are summarized as follows: Because only two patient cases were 

552 considered, our knowledge of the algorithm’s sensitivity to different cases is still limited. We 

553 chose to only optimize the most challenging and critical structures in each case; for this reason, 

554 the convergence times reported are not representative of a full treatment plan. In addition, the 

555 expression used in QTA to define the probability of a particle tunneling through a potential 

556 energy barrier contains weaknesses in its assumptions about the size of the annealing variable, . Γ
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557 Due to these assumptions, while the formulation for QTA can be described as quantum-inspired, 

558 it does not represent a true simulation of a quantum process. Nevertheless, QTA was found to 

559 exhibit several qualities that suggest it might be an attractive candidate for applications which 

560 necessitate rapid optimization of complex or challenging treatment plans. QTA consistently 

561 performed faster than SA across multiple types of perturbations and yielded treatment plans of 

562 equal quality. Furthermore, a hybrid SA-QTA algorithm was found to perform only slightly 

563 better than SA alone, reinforcing the merit of the full QTA algorithm. The presence of an 

564 additional degree of freedom represented by the barrier width schedule leaves open the 

565 possibility that this parameter might be further fine-tuned to achieve even faster results. 

566

567 The results of this study suggest that the extra degree of freedom associated with QTA’s barrier-

568 width schedule allowed for the algorithm to be better “tuned” to converge at faster rates than SA. 

569 Natural future directions for this work include performing QTA optimizations on full IMRT 

570 treatment plans, as well as including VMAT plans, which represent a larger optimization 

571 problem. Based QTA’s computational speedup and ability to escape local minima, it may be a 

572 useful tool for computationally demanding adaptive radiotherapy applications. Finally, QTA 

573 would be a valuable tool for implementing more complex (typically non-convex) objectives 

574 based on biological optimization objections combining imaging and molecular biomarkers with 

575 dose-response functions derived via multiple outcome and utility modeling methods,33,34 which 

576 as of now are hindered in clinical implementation by a lack of efficient and robust optimization 

577 techniques.

578

579 In addition to further studies applying QTA to more challenging treatment problems, we would 

580 also like to explore whether implementing QTA on a quantum computer could lead to greater 

581 computational speedup. In their 2015 study, Nazareth and Spans reported on the first use of a 

582 quantum annealing computer for IMRT beamlet weight optimization; they found that while SA 

583 consistently produced higher-quality plans, optimizations performed on a quantum annealing 

584 device (using a modified version of Tabu Search as the optimization algorithm) were >2.5 times 

585 faster than SA.19 At the time of their study, the researchers were limited to a 512 qubit device, 

586 which restricted the complexity of the treatment problems they could tackle. For reference, if the 

587 beamlets in Case 1 were discretized using the same method used by Nazareth and Spaans, 5,376 
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588 qubits would be required.  In early 2019, the development of a 5,000 qubit commercial quantum 

589 annealing computer was announced,35 which would better allow QA to be scaled to higher 

590 variable optimization problems but practical clinical application remains a subject for future 

591 studies. We believe QTA would be an exciting candidate for quantum computing because it has 

592 already shown promise over SA when run on a classical computer.

593

594 5. Conclusions

595 In this study we have explored the behavior of a novel algorithm inspired by quantum tunneling, 

596 QTA for the use in IMRT beamlet-weight optimization on two SBRT liver cases. We compared 

597 QTA’s performance with classical SA, an algorithm which has historically been used for this 

598 application. On the easier case, QTA exhibited greater stability than SA. On the challenging 

599 case, when allowed to run for the fully allotted number of iterations, both algorithms performed 

600 well and exhibited stability with respect to plan quality. With regards to the differences observed 

601 between Case 1 and Case 2, it is worth noting that the primary benefit of QTA in a more 

602 constrained solution space is the speedup at which it converges, while in a larger (i.e. less 

603 constrained) solution space, QTA appears to achieve both faster convergence and plans of more 

604 robust quality. Extension to DAO is demonstrated to be feasible with similar performance 

605 suggestion potential application of QTA for VMAT type applications as well. 

606
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697 Figure 1. Figurative illustration of a particle (represented by its wave-function, ) tunneling Ψ
698 through a potential energy barrier (in region B) in a 1-dimensional energy landscape.

699

700 Figure 2. (a) Barrier width rate extrapolated from metal organic chemical vapor deposition 

701 (MOCVD) studies by Leys and Veenvliet.25 (b) Barrier width function calculated via numerical 

702 integration of (a). (c) Additional width functions explored in this study.

703

704 Figure 3. CT scans show contours for structures optimized for Case 1 (a) and Case 2 (b), 

705 respectively. Case 1 features a PTV that is roughly spherical in shape and far from major organs. 

706 (with the exception of the liver). Case 2 features a PTV with convex geometrical features and 

707 close proximity to both the liver and the stomach.

708

709 PTV: planning target volume
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710

711 Figure 4. Process of calculating the convergence iteration number from a representative QTA 

712 optimization. The energy gradient (middle) is calculated from the saved energy history (right). 

713 From this gradient a MAM of width 100 was calculated (left). The black vertical line is plotted at 

714 the maximum iteration number j for maxj(|MAM(j)| >ctol).

715

716 MAM: moving average mean; QTA: quantum tunnel annealing

717

718 Figure 5. Quantum Tunnel Annealing (QTA) algorithm for intensity modulated radiation 

719 therapy (IMRT) optimization.

720

721 Figure 6. Optimization results for QTA and SA applied to Case 1. Figures 6(a) and 6(b) display 

722 DVH curves for 10 separate optimizations using QTA and SA, respectively. Figures 6(c) and 

723 6(d) display the PE trajectories for the 10 QTA and SA optimizations. Figures 6(e) and 6(f) 

724 display representative dose distributions calculated in Eclipse using fluence values from the 10th 

725 QTA and SA optimization.

726

727 DVH: dose volume histogram; PE: potential energy; QTA: quantum tunnel annealing; SA: 

728 simulated annealing 

729

730 Figure 7. (a) displays the fluence map results for a single beam in Case 2 resulting from the 

731 QTA optimization without refined smoothing. (b) displays the fluence map results from QTA 

732 optimization with refined smoothing. 

733

734 QTA: quantum tunnel annealing;

735

736 Figure 8. (a) displays the annealing schedule functions tested for QTA and SA. Note that T4 was 

737 the annealing schedule used for all remaining studies.  (b) displays box and whisker plots of the 

738 convergence results for QTA and SA, respectively, for each annealing schedule.

739

740 QTA: quantum tunnel annealing; SA: simulated annealing 
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741

742 Figure 9. DVH bands, PE trajectories, and representative dose distributions for stochastic 

743 optimizations (N = 10, 500000 iterations) with the initial beamlet-weight vector set to random 

744 values uniformly distributed between 0 and 22 on a challenging SBRT liver case for QTA ((a), 

745 (c), and (e)) and SA ((b), (d), and (f)), respectively.  

746

747 DVH: dose volume histogram; PE: potential energy; QTA: quantum tunnel annealing; SA: 

748 simulated annealing; SBRT: stereotactic body radiation therapy;

749

750 Figure 10. DVH bands, PE trajectories, and representative dose distributions for stochastic 

751 optimizations (N = 10, 250000 iterations) of aperture weights on a challenging SBRT liver case 

752 for QTA ((a), (c), and (e)) and SA ((b), (d), and (f)), respectively.  

753

754 DVH: dose volume histogram; PE: potential energy; QTA: quantum tunnel annealing; SA: 

755 simulated annealing; SBRT: stereotactic body radiation therapy; 
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DVH: dose volume histogram; GTV: gross target volume; Gy: Gray; PTV: planning target 

volume 

 

 

 

 

 

 

 

 

 

 

 

 

 

Case 1 DVH Constraints 

Structure Constraint Type Limit Volume (%) Dose [Gy] Penalty 

PTV DVH Point Lower 100 29.7 50 

 DVH Point Lower 95 30 50 

 DVH Point Upper 0 60 100 

 Max Dose Range N/A N/A [30 42] 100 

      

Liver - 

GTV 

DVH Point Upper 0 42 100 

Table 1. DVH constraints applied to objective function for Case 1. 
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Case 2 DVH Constraints 

Structure Constraint Type Limit Volume (%) Dose [Gy] Penalty 

PTV DVH Point Lower 99 33 100 

 DVH Point Lower 95 30 200 

 DVH Point Lower 100 28 200 

 DVH Point Upper 0 48 160 

      

GTV Deformed MR DVH Point Lower 100 43 100 

Table 2. DVH constraints applied to objective function for Case 2. 
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 DVH Point Upper 0 48 160 

      

Liver - GTV Mean N/A N/A 4 50 

      

Stomach DVH Point Upper 0.001 28 150 

      

Stomach PRV DVH Point Upper 0.003 25 300 

DVH: dose volume histogram; GTV Deformed MR: gross tumor volume deformed from 

magnetic resonance imaging; Gy: Gray; PRV: planning organ at risk volume; PTV: planning 

target volume 
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Case 2 Convergence Results QTA Barrier Width Testing 

Algorithm type Convergence (s) 

SA 1062.5 

QTA,              528.6 

QTA,               637.2 

QTA,               1762 

QTA, MOCVD 874.2 

MOCVD: metal organic chemical vapor deposition; QTA: quantum tunnel annealing; SA: 

simulated annealing 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3. Convergence times (in seconds) for QTA with different barrier width schedules as well as SA. 
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Case 2 Convergence Results for Initial Beamlet-Weight Testing 

b0 QTA (s) SA (s) SA-QTA hybrid (s) 

0 637.9   63.2 982.4   96.3 N/A 

11 644.8   84.4 987.4   82.1 N/A 

22 693.2   75.9  1103   84.0 N/A 

Randomly 

distributed 

611.0   72.4 996.4   103.0 953.1   65.5 

QTA: quantum tunnel annealing; SA: simulated annealing 

 

 

 

 

 

 

Table 4. Mean convergence times (in seconds) for QTA and SA with perturbations to the initial beamlet-
weight values. 
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Case 2 Convergence Results for Parameter Testing 

Parameter  Organ from to QTA (s)  SA (s) 

DVH Stomach Max dose = 28Gy Max dose = 18Gy 788.8 1038.9 

DVH  Liver Mean dose = 4Gy Mean dose = 2Gy 951.6 1108.2 

Table 5. Parameter changes and convergence times (in seconds) for QTA and SA with perturbations to the 
original dose constraints. 
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DVH and Dose PTV Target dose = 33Gy Target Dose = 43Gy 701.2 1028.6 

Original Original N/A N/A 661.8 1083.3 

DVH: dose volume histogram; Gy: Gray; PTV: planning target volume; QTA: quantum tunnel 

annealing; SA: simulated annealing 
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