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1 Abstract

2 The central nervous system regulates fertility through the release of gonadotropin-releasing 

3 hormone (GnRH). This control revolves around the hypothalamo-pituitary-gonadal axis, which 

4 operates under traditional homeostatic feedback by sex steroids from the gonads in males and 

5 most of the time in females. An exception is the late follicular phase in females, when 

6 homeostatic feedback is suspended and a positive feedback response to estradiol initiates the 

7 preovulatory surges of GnRH and luteinizing hormone (LH). Here we briefly review the history of 

8 how mechanisms underlying central control of ovulation by circulating steroids have been 

9 studied, discuss the relative merit of different model systems, and integrate some of the more 

10 recent findings in this area into an overall picture of how this phenomenon occurs.

11 Introduction

12 GnRH neurons form the final common central output pathway controlling fertility in vertebrates. 

13 Their output is regulated primarily by homeostatic sex steroid feedback. During the preovulatory 

14 period of the mammalian female reproductive cycle in spontaneously ovulating species, 

15 however, the feedback action of estradiol switches from negative to positive feedback. This 

16 initiates a surge of GnRH, and subsequently LH, release and ultimately triggers ovulation. A 

17 central signal is required for ovulation in most mammals. In some species, including rabbits, 

18 ovulation is induced by copulation; this association made it possible to study the neural link to 

19 reproduction as early as the 18th century. In 1797, Jon Haighton recounted to the Royal Society 

20 his observation that, in rabbits, sex made “by sympathy the ovarian vesicles enlarge, project, 

21 and burst” (1). Haighton rejected the hypothesis that semen directly stimulated the ovary to 

22 release an egg because he had severed the Fallopian tubes. He conjectured sympathy, or 

23 crosstalk, between the vagina and ovaries through the nervous system occurred to induce 

24 ovulation. The study of the brain’s role in ovulation accelerated in the early 20th century. In 1936, 

25 Marshall and Verney induced ovulation when they passed electrical current through a rabbit’s 

26 brain (2). A year later, Harris refined their work when he induced ovulation by electrically 

27 stimulating a specific region of the brain, the hypothalamus (3). 

28 A neural signal was also postulated to be necessary for ovulation in animals that do not require 

29 copulation to ovulate, i.e., spontaneous ovulators. Humans, non-human primates, sheep, 

30 rodents, and many other mammals ovulate spontaneously at the end of the follicular phase of 

31 the reproductive cycle (proestrus in rodents). Studying spontaneous ovulation became possible 

32 as techniques, such as the vaginal smear, were developed to follow cycle stage in live animals. 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved

33 In 1950, Everett and Sawyer delayed spontaneous ovulation by anesthetizing rats with 

34 phenobarbital on the afternoon of proestrus. In their control animals, ovulation occurred 

35 between 1 and 2 am on the morning of estrus (lights off at 7 pm), but anesthesia delayed 

36 ovulation by 24 hours if administered during a critical period (3 – 5 pm before lights off) the 

37 previous day (4). They hypothesized that a neural signal initiated spontaneous ovulation during 

38 this period. Eight years later, Critchlow stimulated the hypothalamus directly to trigger 

39 “spontaneous” ovulation (5). In the 1950s, hypothalamic pathologies were first associated with 

40 both hypogonadism and precocious puberty in humans (6), further supporting a central role in 

41 the regulation of fertility.

42 The study of the brain’s role in reproduction did not occur in isolation, as a role was also 

43 emerging for the pituitary. In 1921 and 1922, Evans and Long noted that injecting pituitary 

44 extract into a rat’s peritoneal cavity enlarged its ovaries and disrupted its estrous cycles (7-9). 

45 Similarly, surgical removal of the pituitary caused ovarian atrophy, and pituitary transplants 

46 beneath the hypothalamus (site of the sella turcica, home of the pituitary) restored estrous 

47 cycles and spontaneous ovulation (10,11). When the pituitary was transplanted to sites outside 

48 of the sella turcica, however, reproduction was not restored (12). These studies supported two 

49 early hypotheses: first, the pituitary may be important for reproduction in spontaneously 

50 ovulating species, and second, communication with the hypothalamus is necessary for pituitary 

51 control of reproduction. 

52 Support for the hypothalamo-pituitary control of ovulation and reproduction continued to expand 

53 through the 20th century. A releasing factor in the hypothalamus had long been postulated to 

54 initiate pituitary hormone release to control reproduction. By 1971, Schally had isolated and 

55 sequenced 11.4 mg of GnRH from the hypothalami of 240,000 pigs (13). This GnRH is made 

56 and released by a small population (800 – 2500 neurons in mammals) that is scattered through 

57 the preoptic area and anterior hypothalamus (14). Many of these neurons project to and secrete 

58 GnRH into the median eminence, from where it is carried down long portal vessels into the 

59 capillary beds of the anterior pituitary. There, GnRH binds to receptors on pituitary 

60 gonadotropes to trigger the release of two hormones, follicle stimulating hormone (FSH) and 

61 LH. The release of these hormones stimulates follicular maturation and the production of sex 

62 steroids in the ovaries. Ovarian steroids provide feedback on the pituitary and hypothalamus to 

63 regulate hormone release. Collectively, hypothalamus, pituitary, and ovaries control complex 

64 hormonal interactions to precisely coordinate the reproductive cycle. The focus of this review is 
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65 on systemic feedback; for recent reviews of a potentially interesting role for neural steroids in 

66 this process the reader is referred to a recent review on this by Terasawa (15).

67 Modes of estradiol feedback regulation of the hypothalamus and pituitary

68 In mammals, ovarian estradiol was soon linked with ovulation induction (16), and studies 

69 showed that estradiol differentially regulates pulsatile vs surge modes of GnRH release via 

70 negative and positive feedback, respectively. For the majority of the reproductive cycle, GnRH is 

71 released in pulsatile manner and drives the pulsatile release of gonadotropins (17-20). Estradiol 

72 is traditionally referred to as having negative feedback actions on pulsatile hormone release. A 

73 closer examination of the actions of estrogens suggests this nomenclature is somewhat 

74 misleading. The term negative feedback arises from the observation that mean LH levels are 

75 lower in estrogen-treated than in ovariectomized (open feedback loop) animals (21-23). This is 

76 attributable primarily to a reduction in pulse amplitude as frequency of GnRH and LH release 

77 are often increased, or at least not suppressed, in higher estrogen states produced by either 

78 steroid replacement in the physiologic range or natural progression towards the late follicular 

79 phase (22,24-28). For historical consistency, we will refer to this action of estradiol as negative 

80 feedback, but wish to clarify the term to mean the action of estradiol to modulate the pulsatile 

81 pattern of GnRH/LH that characterizes much of the female cycle.

82 In most mammals, there is a switch from pulsatile GnRH to a continuous surge of GnRH release 

83 at the end of the follicular phase that is induced by estradiol positive feedback. There is little 

84 evidence of episodic secretion during the surge suggesting it is a different mode of secretion or 

85 a continuous mode superimposed upon the episodic mode (29-32). There remains some 

86 controversy over whether or not a GnRH surge exists in humans. It is certainly clear that in old-

87 world primates a consistent GnRH pulse frequency can generate reproductive cyclicity at least 

88 over a few months (33,34). This led to the postulate that GnRH is permissive for LH surge 

89 generation in these species, rather than deterministic. Other indirect measures of GnRH release 

90 have suggested there is actually a decrease in GnRH during the LH surge in monkeys and 

91 women (35-37). Estradiol positive feedback at the pituitary appears to be stronger in these 

92 species, evidenced by the ability of estradiol to induce an LH surge in males and the ability of 

93 transplanted ovaries to produce cyclic hormonal changes reminiscent of the menstrual cycle in 

94 males (38,39). This question is difficult to resolve without direct measurement of GnRH release 

95 itself. This is not currently possible in humans but in rhesus monkeys preovulatory, estradiol-
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96 induced and progesterone-induced increases in GnRH release during the LH surge have been 

97 observed (30,40,41), suggesting this phenomenon may also exist in humans.

98

99 Models to study estradiol feedback

100 Because of the availability of a vast array of genetic and other technical tools, much of the work 

101 to understand the neurobiology underlying these different modes of GnRH release has been 

102 done in rodent species, specifically laboratory mice. Three primary hormone replacement 

103 models have been used to induce negative and positive feedback in mice and were recently 

104 compared directly (42). Early work in mice utilized paradigms consisting of ovariectomy (OVX) 

105 with low estradiol replacement for approximately a week, followed by an estradiol rise on its own 

106 (E rise model) or in combination with a subsequent progesterone rise (43). Another paradigm is 

107 to ovariectomize mice and replace with a constant high physiologic level of estradiol (OVX+E) 

108 (44). This model takes advantage of a diurnal change in the feedback action of estradiol in 

109 these species. Specifically, in rodents ovulation is tightly coupled to time-of-day, and the 

110 GnRH/LH surges begin 1-2 hours before lights out in nocturnal species (4,32) and a similar time 

111 before lights on in diurnal species (45). In mice, rats and hamsters, the OVX+E paradigm 

112 induces daily LH surges in the late afternoon, hence has been referred to as the daily surge 

113 model (44,46,47). In OVX+E mice, LH release is suppressed in the morning (AM) and increased 

114 in the afternoon (PM) relative to ovariectomized mice that do not receive estradiol (OVX). This 

115 pattern persists in brain slices with GnRH firing rates and release suppressed in the AM relative 

116 to the PM in OVX+E mice (44,48). 

117 Of note all of these models deviate from the natural estrous cycle, and all have advantages and 

118 disadvantages. On the negative side, constant estradiol, even at physiologic levels, is not 

119 characteristic of the estrous cycle. Further, all of these OVX+E models operate on a different 

120 duration than the typical cycle, with the E rise model being longer and the daily surge being 

121 shorter. On the plus side, all of these paradigms permit the study of estradiol feedback in 

122 genetic models that are not capable of generating an estradiol rise on their own. The differences 

123 in these models also can make it possible to probe different aspects of positive feedback. In the 

124 E rise model, the switch between negative and positive feedback relies on both an increase in 

125 estradiol and on time of day. In the daily surge model, the switch between negative and positive 

126 feedback relies on time of day. An interesting biological question that remains to be answered is 
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127 whether or not the underlying neurobiological mechanisms are the same in both of these 

128 models and how they compare to the natural cycle. 

129 Daily surge vs the cycle

130 The daily surge model has been used to characterize changes in multiple intrinsic and fast-

131 synaptic properties during the switch from negative to positive feedback (49-54). As this dataset 

132 has grown, it became increasingly important to compare at least some of the changes induced 

133 by this model to those that occur during the cycle. This was particularly important as the 

134 amplitude of the proestous surge was observed to be larger than the estradiol-induced LH surge 

135 (55,56). To do this, we examined three parts of the estrous cycle. Diestrous PM is a time of 

136 relatively low estradiol that is characterized by pulsatile LH release. Proestrous AM is a time 

137 when exposure to high estradiol needed for surge induction has occurred, but the LH surge has 

138 not yet been triggered. Proestrous PM is the time of estradiol positive feedback and the LH 

139 surge. GnRH neuron firing rate (diestrous and proestrous PM only), GABAergic fast synaptic 

140 transmission, GnRH neuron excitability, and action potential properties were examined (Figure 

141 1). Firing rate of GnRH neurons determined by extracellular recordings of GFP-identified GnRH 

142 neurons in brain slices prepared on the afternoon of diestrous vs proestrous were strikingly 

143 similar to those observed in the daily surge model from OVX+E AM vs OVX+E PM neurons, 

144 respectively (56). Further, the larger amplitude of the proestrous LH surge was shown to be 

145 attributable at least in part to increased pituitary responsiveness to GnRH (56). These 

146 observations suggest that the final output of the reproductive neuroendocrine system (GnRH 

147 release) is likely to be similar in the daily surge model and during the natural proestrous surge.

148 Whole-cell recordings were used to examine synaptic and intrinsic properties of GnRH neurons 

149 during the cycle. The number of action potentials fired in response to fixed current injection is 

150 one way to characterize the integrated sum of the intrinsic properties of a neuron; this is often 

151 termed excitability. GnRH neuron excitability on diestrous PM was strikingly similar to that in 

152 OVX AM, OVX PM and OVX+E AM in the daily surge model (54,57). Similarly the positive 

153 feedback states (OVX+E PM and proestrous PM) were comparable in excitability and greater 

154 than that observed during the negative feedback/open loop conditions. We were initially 

155 surprised that OVX+E AM cells were not less excitable than cells from OVX mice as other 

156 properties, including potassium and calcium currents, are altered by estradiol in the daily surge 

157 models in manners that would typically reduce excitability. Computational modeling suggested 

158 an inverse relationship between the conductance and voltage-dependence of inactivation of a 
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159 transient potassium current in GnRH neurons accounted for the similarity between OVX and 

160 negative feedback states (OVX+E AM) (54). 

161 Of interest in this regard, the excitability of GnRH neurons recorded on proestrous AM was 

162 reduced compared to diestrous PM. The same shifts in response to cycle stage were observed 

163 for GABAergic transmission to GnRH neurons, with transmission during the low estradiol 

164 negative feedback state of diestrous PM being lower than during positive feedback on 

165 proestrous PM, but GABA input during the high estradiol negative feedback of proestrous AM 

166 being the lowest frequency. These results were again initially surprising. The ability of a high 

167 physiologic and even pharmacologic level of estrogen to induce positive feedback is consistent 

168 (43,58,59), but in vivo the negative feedback actions of constant estradiol on GnRH release 

169 appeared to be stronger than those of the estradiol rise during the cycle (28,58). These 

170 observations had led us to postulate that a likely limitation of the daily surge model was that 

171 negative feedback was stronger than would be typical during the cycle. Together these newer 

172 data suggest that a possible limitation of the daily surge model is rather that negative feedback 

173 in this model effectively recapitulates that of lower estradiol states of diestrus, but may fall short 

174 of the stronger negative feedback that emerges on the morning of proestrus.

175 The existence of a daily central signal for ovulation such as observed in the daily surge model 

176 was identified in the middle of the last century in studies that demonstrated that barbiturate 

177 anesthesia during a critical period on proestrus blocked ovulation for 24 hours in rats (4). 

178 Ovulation can occur on a daily basis during the breeding season in many fish and bird species 

179 (60,61). Daily ovulation per se has not been observed in placental mammals but the LH surge 

180 and ovulation occurs at a particular time of day in some mammals. This is especially observed, 

181 as mentioned above, in rodents. Interestingly, LH surges in women occur more often during late 

182 sleep/early wake hours (62,63), and shiftwork, which can disrupt the circadian clock, is linked to 

183 menstrual cycle irregularities and increased time to pregnancy (64-66). 

184 If a daily neural signal for ovulation can exist, why don’t mammals ovulate daily? This may be 

185 attributed in part to the time needed for a follicle to mature to the point that it can produce 

186 sufficient estradiol to trigger positive feedback. Of interest in this regard, tau mutant hamsters, in 

187 which the free-running period is ~20 hours vs. just under 24 hours in the wild type, exhibit 

188 estrous cycles lasting five circadian days, or about 100 hours. This is similar in duration to the 

189 typical four-day (96 hour) estrous cycle in wild type golden hamsters (67). Daily LH surges are 

190 induced during subjective afternoon in OVX+E tau hamsters, and the period of consecutive LH 
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191 surges was shorter than in wild type hamsters (68). These observations are consistent with the 

192 postulate that follicle maturation and subsequent estradiol production are limiting and that the 

193 reproductive cycle does not result from a mere counting of circadian days. The provision of a 

194 constant high physiologic estradiol level, such as in the OVX+E daily surge model, would 

195 circumvent this limitation, allowing a central signal to occur on a daily basis as observed.

196

197 Are synaptic and/or intrinsic changes needed to produce increased GnRH neuron output 

198 during positive feedback?

199 The daily surge model has produced data indicating that both synaptic and intrinsic properties of 

200 GnRH neurons are altered by estradiol feedback mode (50-54,69,70). Performing these studies 

201 typically required optimizing recording conditions to isolate a single variable. Further, most 

202 experiments were done in voltage-clamp mode, which fixes membrane potential to observe and 

203 quantify currents, but at the same time precludes the membrane potential from responding to 

204 changes in intrinsic properties. To begin to address the question of whether intrinsic changes 

205 and/or synaptic changes are needed to generate increased GnRH neuron firing during positive 

206 feedback we utilized dynamic clamp (71). GABA is the primary fast synaptic input to GnRH 

207 neurons in adults and can be excitatory even in adulthood (72,73). We mined our previous 

208 recordings of GABA transmission to GnRH neurons in the daily surge model (44), and selected 

209 traces that were representative of OVX (open loop), OVX+E AM (negative feedback) and 

210 OVX+E PM (positive feedback) conditions. Conductance trains mimicking these patterns were 

211 then applied in random order to GnRH neurons from these same animal models, effectively 

212 mixing or matching intrinsic properties of the recorded cell with the type of synaptic input (Figure 

213 2). This approach revealed that both the synaptic inputs and intrinsic properties were important 

214 for the increased firing rate observed during positive feedback (72,73). Specifically, the GABA 

215 conductance train from positive feedback induced more firing in all animal models, suggesting 

216 increased input frequency was important, and this positive feedback train was most effective in 

217 cells recorded during positive feedback, indicating the intrinsic properties during positive 

218 feedback poise the cell to be more responsive to excitatory synaptic input. 

219 It is important to point out that additional factors not examined in this study may contribute to 

220 surge generation. For example, estradiol can alter excitatory fast glutamatergic transmission to 

221 GnRH neurons, and spines where glutamate afferents may synapse onto activated GnRH 

222 neurons are increased on proestrus (53,74,75). It is also important to point out that in other 
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223 animal models, no change in GABA PSC frequency has been reported during positive feedback 

224 (76). Arguing against a lack of a role for GABA in surge generation, specific knockout of 

225 estrogen receptor alpha (ER) from GABA neurons blocks positive feedback (77), although this 

226 could be attributable to reduced release of cotransmitters such as kisspeptin that would be 

227 activated by estradiol action (78) as many kisspeptin neurons utilize GABA as a co-transmitter 

228 (79,80). 

229 Where does estradiol act for negative and positive feedback?

230 A persistent question about estradiol feedback has been where it occurs. This is because this 

231 feedback requires classical signaling via ER (81), which GnRH neurons typically do not 

232 express in detectable levels (82,83). Estradiol feedback is thus likely transmitted to GnRH 

233 neurons by ERα-expressing afferents (84). Kisspeptin is a neuromodulator that stimulates 

234 GnRH neurons (85,86). These neurons project to GnRH neurons and are directly but 

235 differentially responsive to estradiol (87-89). Specifically, the mRNA for kisspeptin is increased 

236 by estradiol in the kisspeptin neurons of the anteroventral periventricular (AVPV), postulated to 

237 underlie positive feedback, but decreased in kisspeptin neurons of the arcuate nucleus, 

238 postulated to underlie negative feedback. To begin to determine the role of ER in these cells, 

239 whole-body knockout of ER from kisspeptin cells was done using Cre-lox technology. These 

240 KERKO mice have disrupted cycles and do not exhibit estradiol-induced LH surges (90-92). 

241 This suggests ER in kisspeptin cells may be critical for both estradiol negative and positive 

242 feedback. Relatively little was known about the properties of these kisspeptin neurons and how 

243 they respond to estradiol. We thus began to characterize these properties in control and 

244 KERKO mice.

245 AVPV kisspeptin neurons were found to be more excitable during estradiol positive feedback on 

246 proestrus PM than during negative feedback on diestrus PM (93) (Figure 3). This increased 

247 firing was attributable to estradiol; adding progesterone did not produce a further elevation in 

248 firing rate. Burst firing by these neurons followed the same pattern, being increased during 

249 positive feedback whether occurring during the cycle or induced by estradiol. Both 

250 electrophysiological recordings measuring ionic currents and mRNA expression of these ion 

251 channel genes in pooled cells suggest several ionic conductances that can underlie burst firing 

252 are expressed by AVPV kisspeptin neurons, including hyperpolarization-activated cation 

253 channels, T-type calcium channels, and persistent sodium channels, and are regulated by 

254 estradiol (93-96). Further support of a role for estradiol comes from studies in KERKO mice. 
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255 AVPV kisspeptin neurons were less excitable, fired fewer bursts and no longer changed firing 

256 rate in response to estradiol (97). 

257 Estradiol feedback also modulates synaptic transmission to AVPV kisspeptin neurons, 

258 increasing glutamate transmission and suppressing hyperpolarizing GABAergic transmission to 

259 these cells, indicating that estradiol tilts the balance toward excitatory inputs during positive 

260 feedback (98,99). Coupled with estradiol upregulation of intrinsic conductances underlying 

261 bursting firing, AVPV kisspeptin neurons are poised to increase output during positive feedback 

262 to drive the GnRH/LH surge. 

263 KERKO mice are a useful tool but lack both temporal and spatial regulation of ERα. Because 

264 Cre-lox will delete ERα as soon as Kiss1 is expressed there can be developmental changes in 

265 these cells or their networks (100,101). Further, the deletion of ERα from all kisspeptin cells 

266 makes it impossible to assess independently the role of AVPV and arcuate kisspeptin neurons. 

267 We thus used CRISPR/Cas9 to target Esr1 in the AVPV of adult mice (97). This approach 

268 successfully reduced ERα expression in AVPV kisspeptin neurons from ~75% in controls to 

269 about 25% in knockdown mice. These mice exhibited typical cycles but had markedly blunted 

270 proestrous and estradiol-induced LH surges. Further, their electrophysiologic properties 

271 resembled those in KERKO mice. These studies suggest ERα in AVPV kisspeptin neurons is 

272 required for estradiol action on their intrinsic membrane excitability and that these effects are 

273 activational, rather than organizational.

274 Kisspeptin neurons in the hypothalamic arcuate nucleus (also called KNDy neurons for their 

275 coexpression of kisspeptin, neurokinin B and dynorphin) are postulated to mediate estradiol 

276 negative feedback regulation of pulsatile GnRH/LH pulse as well as to generate LH pulses 

277 (87,102). Short-term extracellular recordings of these cells in OVX vs. OVX+E mice during 

278 negative feedback did to reveal any differences in firing pattern (98), although an effect of 

279 steroids on a longer-term firing pattern of these cells, similar to that observed in males, cannot 

280 be excluded (103). In, KERKO mice, however, firing rate of arcuate kisspeptin neurons in brain 

281 slices was markedly increased, as was LH pulse frequency in vivo (98). Estradiol also altered 

282 synaptic transmission to these cells, suppressing spontaneous glutamatergic transmission. Of 

283 note, the direction of regulation of glutamate transmission to these two kisspeptin populations is 

284 opposite.

285 Targeting the same CRISPR approach to the arcuate kisspeptin neurons produced a similar 

286 reduction in percent of neurons expressing ERα. In striking contrast to the mice in which the 
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287 AVPV was targeted, mice with reduced ERα expression in the arcuate kisspeptin neurons had 

288 disrupted estrous cycles, with an increasing tendency to remain in estrus. This is similar to mice 

289 in which ER was deleted from Tac2-expressing neurons via Cre-lox technology (92); the 

290 overlap of ER and Tac2 expression in the brain is largely represented by the arcuate 

291 kisspeptin neurons. In the targeted CRISPR knock down, arcuate kisspeptin neurons also 

292 exhibited increased firing rate and increased levels of glutamatergic transmission. Together with 

293 the above, these findings suggest arcuate kisspeptin neurons mediate at least some aspects of 

294 negative feedback via ERα. These observations are further consistent with a key role for these 

295 cells in generating pulsatile secretion, as normal LH pulse frequency modulation is critical for 

296 producing cyclic changes in steroids. 

297 Conclusions and future directions

298 Application of newer methodologies to the old question of how the action of estradiol switches 

299 from negative to positive feedback has brought increased understanding and generated new 

300 questions. At the GnRH neuron, both fast-synaptic and intrinsic changes appear to contribute to 

301 initiating a robust GnRH surge, but the nature of these signals can be further refined. The 

302 postulated roles of AVPV kisspeptin neurons in positive feedback and arcuate neurons in 

303 negative feedback have been supported, but how these signals are generated in these cells and 

304 then conveyed to GnRH neurons remains largely a mystery. Mechanistic studies of population 

305 synchrony and the neurobiology of the interactions between kisspeptin neurons and GnRH 

306 neurons need to be pursued. Further investigation of the nature of the estradiol-sensitive inputs 

307 to kisspeptin neurons may reveal additional interactions among these cells and/or new 

308 populations to study in the question of estradiol feedback.
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Figures and legends

Figure 1. Comparison of daily surge model with estrous cycle. A, B. Representative firing 

patterns (A) and individual values and mean ±SEM firing rate (B) of GnRH neurons from 

diestrous, proestrous or OVX+E mice recorded in the PM. C, D. Representative recordings (C) 

and individual values and mean ±SEM frequency (D) of spontaneous GABAergic postsynaptic 

current (PSCs) in GnRH neurons from diestrous PM, proestrous AM and proestrous PM mice. 

E. Representative current-clamp recordings from diestrous PM, proestrous AM and proestrous 

PM mice. F. Mean±SEM number of action potentials in these groups; grey shaded areas show 
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range of SEM for the same experiment in GnRH neurons from OVX+E AM and OVX+E PM 

mice. * p<0.05. A and B adapted from (56), C-F adapted from (54,57) with permission.

Figure 2. Both synaptic input and intrinsic properties contribute to increased GnRH neuron firing 

during positive feedback. A. Representative conductance trains from OVX (orange), OVX+E AM 

(blue), and OVX+E PM (black) conditions. B. Individual values and mean ± SEM spikes induced 

during individual postsynaptic conductances in input each train in cells from all three animal 

models. In the OVX group, open circles denote cells recorded in the PM and closed circles 

denote cells recorded in the AM. Numbers in parentheses along x-axis indicate number of cells 

not firing any spikes. *p<0.05 two-way repeated-measures ANOVA/Fisher’s LSD test. From (71) 
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Figure 3. Estradiol regulation of firing rate and EPSC frequency in kisspeptin neurons of the 

hypothalamus. A. AVPV kisspeptin neuron firing rate is elevated during proestrus (left) and by 

estradiol (right). Open symbols in OVX+E were injected with vehicle at the time of progestin 

injection, closed symbols were uninjected controls. B, C. Spontaneous glutamatergic EPSC 

frequency is regulated by cycle stage and estradiol in both AVPV (B) and arcuate (C) kisspeptin 

neurons. Estradiol regulation is lost in KERKO mice. From (93,98) with permission.

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved

Figure 4. Schematic diagram of proposed feedback actions of estradiol via AVPV and arcuate 

kisspeptin neurons. From (97).
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