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Abstract

Individual sequencing studies often have limited sample sizes and so limited

power to detect trait associations with rare variants. A common strategy is to

aggregate data from multiple studies. For studying rare variants, jointly calling

all samples together is the gold standard strategy but can be difficult to

implement due to privacy restrictions and computational burden. Here, we

compare joint calling to the alternative of single‐study calling in terms of variant

detection sensitivity and genotype accuracy as a function of sequencing

coverage and assess their impact on downstream association analysis. To do so,

we analyze deep‐coverage (~82×) exome and low‐coverage (~5×) genome

sequence data on 2,250 individuals from the Genetics of Type 2 Diabetes study

jointly and separately within five geographic cohorts.

For rare single nucleotide variants (SNVs): (a) ≥97% of discovered SNVs are

found by both calling strategies; (b) nonreference concordance with a set of

highly accurate genotypes is ≥99% for both calling strategies; (c) meta‐analysis
has similar power to joint analysis in deep‐coverage sequence data but can be

less powerful in low‐coverage sequence data. Given similar data processing and

quality control steps, we recommend single‐study calling as a viable alternative

to joint calling for analyzing SNVs of all minor allele frequency in

deep‐coverage data.
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1 | INTRODUCTION

Genome‐wide association studies (GWAS) based on
genotype arrays have identified thousands of common
(minor allele frequency [MAF] >5%) genetic variants
associated with a wide range of human diseases and traits
(Hindorff et al., 2012). However, these common variants

comprise only 10% of the ~84 million variant sites
discovered in the human genome by the Genomes Project
Consortium (1000, 2015) with the rest being low‐
frequency (MAF 0.5–5%; ~14%) and rare (MAF <0.5%;
~76%) variants that are less well captured by genotype
arrays and subsequent genotype imputation (Zuk et al.,
2014). With the advance of genome sequencing technol-
ogy, we can now directly study the role of variants across
the full allele‐frequency spectrum. Although sequencing
studies to date have reaffirmed and expanded on the
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common variant associations of array‐based GWAS, the
modest sample sizes of most sequencing studies to date
have limited the discovery of rare and low‐frequency
variant associations (Auer et al., 2016; Fuchsberger et al.,
2016; Luo et al., 2017).

To increase sample size, researchers often aggregate
sequence data across multiple studies. To combine
sequence data across studies, the gold standard strategy
is to jointly call all samples together (Auer et al., 2016).
This joint calling strategy increases the quality of variant
calls and minimizes batch effects such as those due to
different sequencing centers or platforms (Auer et al.,
2016). However, joint calling for sequence data can be
difficult to implement due to restrictions on data sharing
(Jiang, Chen, Wang, Li, & Wiens, 2014; Paltoo et al.,
2014) and the potentially heavy computation burden (Lek
et al., 2016). An alternative strategy that adheres to
privacy rules and mitigates computing load is single‐
study calling (Okada et al., 2018) in which variants are
identified and genotypes called separately within each
study and then combined through the meta‐analysis of
study‐level association statistics or joint analysis of
pooled individual‐level data (i.e., mega‐analysis).
Although single‐study calling is easier to implement
than the gold standard joint calling, there is a need to
quantify the difference in calling results between these
two strategies and assess how it affects downstream
association analysis.

Past research has shown that meta‐analysis of study‐
level association results is as statistically efficient as joint
analysis of individual‐level data for combining common‐
variant GWAS (Lin & Zeng, 2010). More recent research
has extended methods for meta‐analysis to sequencing
studies for rare variants (Tang & Lin, 2015). However,
this research only analyzes the relative power of joint and
meta‐analysis under a single‐study calling strategy and
does not consider the impact of joint calling on
association results. In addition, sequencing studies often
differ in sequencing coverage depending on project needs
and goals. For example, deep‐coverage sequencing results
in improved genotyping accuracy, particularly for rare
variants (Lee, Abecasis, Boehnke, & Lin, 2014; Xu, Wu,
Zhang, Shen, & Deng, 2017), while low‐coverage
sequencing results in more sequenced samples at the
same cost (Li, Sidore, Kang, Boehnke, & Abecasis, 2011).
Thus, there is also a need to compare rare variant
association tests for joint and single‐study calling under
different sequencing coverage.

In this paper, we aim to quantify the difference
between the gold standard joint calling and the
alternative single‐study calling strategies and assess
their impact on association testing of rare single
nucleotide variants (SNVs) in deep and low‐coverage

sequence data. Specifically, we compare variant detec-
tion and genotyping accuracy for joint and single‐study
callsets on deep‐coverage whole‐exome sequence (WES)
and low‐coverage whole‐genome sequence (WGS) data-
set from the Genetics of Type 2 Diabetes (GoT2D) study
(Fuchsberger et al., 2016) using the GotCloud variant
calling pipelines (Jun, Wing, Abecasis, & Kang, 2015) at
default settings. Then for each data type, we compare
single‐variant and gene‐based association test results for
rare SNVs between three types of joint and single‐study
strategies: (a) joint calling with joint analysis; (b) single‐
study calling with meta‐analysis; and (c) single‐study
calling with mega‐analysis.

2 | METHODS

2.1 | Data description

We analyzed data on 2,250 individuals from the GoT2D
study (Fuchsberger et al., 2016) for whom deep‐coverage
WES (mean depth 82×), low‐coverage WGS (mean depth
5×), and Illumina HumanOmni 2.5M array data were all
available. Study participants came from five geographical
regions: (a) Augsburg, Germany (n= 193; KORA study);
(b) the Botnia region of western Finland (n= 303; DGI
study); (c) Sweden (n= 391; DGI study); (d) the United
Kingdom (n= 473; UKT2D study); and (e) Finland
(n= 890; FUSION study). For clarity, we will refer to
the sample of 2,250 individuals as the “joint” cohort and
the five subsets as the “single‐study” cohorts (Figure 1).

2.2 | DNA sample preparation and
sequencing

DNA samples were processed at the Broad Institute
(FUSION and DGI), Wellcome Trust Centre for Human
Genetics (UKT2D), and Helmholtz Zentrum München
(KORA). DNA samples were genome and exome
sequenced using the Illumina GAII or HiSeq. 2000
sequencers. Sequence data were aligned to human
reference genome version 19 (hg19) using Picard
(DePristo et al., 2011) and BWA (Li & Durbin, 2009).
Further details on data generation, processing, and
quality control can be found in Fuchsberger et al. (2016).

Processed and filtered sequence reads for the joint and
single‐study cohorts were analyzed by the GotCloud and
GATK (McKenna et al., 2010; Van der Auwera et al.,
2013) variant calling pipelines according to the best
practice workflows recommended by their developers at
default settings. We restricted our analyses to chromo-
some 2 (~8% of the human genome) to reduce the
computational burden.
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2.3 | Whole‐genome and exome
sequence data processing: GotCloud and
GATK pipeline

We called SNVs with GotCloud at default settings using
processed BAM files (Figure 1). We used SAMtools pileup
and glfFlex to generate genotype likelihoods for all
samples in 5Mb chromosomal segments. We then used a
support vector machine classifier to filter out likely false‐
positive variant sites (Jun et al., 2015).

Adhering to the recommended GATK workflow, we
“hard called” every variable site in each sample for the
number of nonreference alleles (0, 1, or 2) using
HaplotypeCaller in GVCF mode. To parallelize this step,
we divided chromosome 2 into 5Mb segments with
100 bp overlap and simultaneously carried out hard‐calls
within each segment. We merged intermediate genomic
VCF (gVCF) files from each sample into batches of 100
samples with CombineGVCFs and then jointly genotyped

them with GenotypeGVCFs. We used the GATK CatVar-
iants tool to concatenate variant sets from all genomic
regions to form a combined callset. We identified a set of
high‐quality variant calls from the raw variant callset
using the Variant Quality Score Recalibration method
which applies machine learning algorithms to score each
variant call and filter them at a desired level of sensitivity.
We used GATK VariantRecalibrator and ApplyRecalibra-
tion to filter the raw variant callset at the recommended
tranche threshold of 99.9% which provides high sensitiv-
ity while maintaining a reasonable level of specificity.
Finally, we removed indels from the filtered variant
callset in keeping with our settings for the GotCloud
pipeline and to focus on SNVs in subsequent analyses.

We used haplotype‐based refinement to improve
genotype and haplotype quality for whole‐genome
genotype calls from both pipelines (Figure 1). Specifi-
cally, we used Beagle (Browning & Yu, 2009) to phase the

FIGURE 1 Workflow for variant calling and association analysis. Sequencing and alignment procedures are described in Fuchsberger
et al. (2016). Haplotype‐based refinement was only applied to low‐coverage whole‐genome sequence data
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genotype data in chunks of 10,000 SNVs with 1,000 SNVs
overlaps and refined the phased sequences using
Thunder (Jun et al., 2015) with 300 states.

We ran WES reads through the GotCloud and GATK
discovery pipelines under the same settings as the whole‐
genome data. We did not apply any refinement steps to
the exome calls, consistent with standard practice for
both pipelines for deep‐coverage sequence data.

The final dataset for each of the four combinations of
sequencing coverage (genome and exome) and pipeline
(GotCloud and GATK) consists of a joint callset for all
2,250 samples, five separate single‐study callsets for the
geographically subdivided cohorts, and a union callset
which merges the five single‐study callsets. Since
comparing the joint callset to five single‐study callsets
individually is difficult because detection of rare SNVs is
heavily dependent on sample size and the results would
be potentially skewed by the considerable sample size
differences between cohorts, we use the union callset as
an overall representation of single‐study calling to
provide a more apt comparison with the joint callset.
For the union callset, we set genotype calls for SNVs not
found in one or more of the single‐study callset(s) as
missing.

2.4 | Nonreference genotype accuracy

For both pipelines, we assessed the accuracy of whole‐
genome calls by comparing the Thunder‐refined non-
reference genotypes against a set of 192,322 variants of
highly accurate (“high‐confidence”) genotypes deter-
mined through joint statistical analysis of deep‐coverage
(~82×) exome sequence and Illumina HumanOmni 2.5
array data in the GoT2D whole‐genome sequencing study
(Fuchsberger et al., 2016). We assessed the accuracy of
exome calls by comparing unrefined nonreference
genotypes against the set of high‐confidence genotypes
from Illumina HumanOmni 2.5 array data.

2.5 | Single‐variant association analysis

We evaluated the impact of joint and single‐study calling
on single‐variant association tests by comparing −log10p
values from joint analysis of the joint callset against those
from the meta‐analysis of single‐study summary statistics
and joint analysis of the union callset (i.e., mega‐
analysis). In each single‐study callset, we used the
logistic score test to test for T2D association under an
additive genetic model with the top two principal
components as covariates (Figure 1). For the meta‐
analysis, we combined summary‐level results from the
single‐study callsets with fixed‐effects sample‐size
weighted meta‐analysis using METAL (Willer, Li, &

Abecasis, 2010) and with transethnic meta‐analysis using
MR‐MEGA software (Mägi et al., 2017).

2.6 | Gene‐based association analysis

We used SKAT‐O to test for association with multiple
rare and low‐frequency SNVs within coding regions of
the genome. We prepared four lists of SNVs (“masks”)
based on MAF and functional annotation. For the
creation of the masks, we considered an SNV to have
MAF <1% if its MAF in every one of the single‐study
callsets is <1%. Mask 1 contained SNVs predicted to be
protein‐truncating, Mask 2 included all SNVs from Mask
1 together with missense SNVs with MAF <1%, Mask 3
included all SNVs from Mask 1 and those predicted to be
deleterious by all five algorithms applied (Polyphen2‐
HumDiv, PolyPhen2‐HumVar, LRT, Mutation Taster,
and SIFT), and Mask 4 included all SNVs from Mask 1
and those predicted to be deleterious by at least one
algorithm with MAF <1%.

We performed SKAT‐O (Lee et al., 2012) analysis of
the four masks separately within each single‐study callset
(Figure 1). We combined SKAT‐O results from each
single‐study callset using Meta‐SKAT‐O test in the
MetaSKAT R package (Lee, Teslovich, Boehnke, & Lin,
2013) once assuming homogeneous genetic effects across
single‐study cohorts and again assuming heterogeneous
genetic effects.

3 | RESULTS

3.1 | Overview

We evaluated the utility of single‐study calling as an
alternative to the gold standard joint calling by comparing
these methods in terms of variant detection, genotype
accuracy, and impact on the power of association tests for
different sequencing coverage. For our analysis (restricted
to chromosome 2 due to computational burden), we focus
on the gold standard joint callset, which are calls from
analyzing all 2,250 samples together (the “joint” cohort),
the five single‐study callsets, which are calls from the five
geographically subdivided cohorts (the “single‐study”
cohorts: Germany, Botnia, Sweden, UK, Finland), and
the union callset, which pools calls from the five single‐
study callsets. There are 25,689 deep‐coverage WES SNVs
and 2,101,401 (15,344 when restricted to coding regions)
low‐coverage WGS SNVs in the joint callset and 26,364
deep‐coverage WES SNVs and 2,249,181 (16,457) low‐
coverage WGS SNVs in the union callset. We present only
GotCloud results as we found the choice of software
pipelines (GotCloud or GATK) to have no meaningful
impact on variant calling and association results.
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4 | CALLING RESULTS

4.1 | Union callset

The union callset pools calling results from the five
single‐study cohorts by merging their SNV calls. For SNV
sites found in only a subset of the studies, we assign
missing genotypes for studies in which the SNV site was
not called. Using the union callset, we examine the
overlap in variant detection between single‐study cohorts.
For deep‐coverage data, 78% of all rare SNVs detected by
single‐study calling (i.e., those in the union callset) are
“study‐specific” (Table 1), meaning they were found in
only one of the single‐study callsets and missing in all
others, compared with 1.2% of low‐frequency SNVs and
0.05% of common SNVs (Table 1). Conversely, only 2.3%
of rare SNVs in the union callset are found in all five
studies (Table 1) compared with 80% of low‐frequency
and 99% of common SNVs (Table 1). Similar numbers are
seen for low‐coverage data (restricted to coding regions;
Table 1). Overall, there are three possible reasons for a
missing SNV site in a study: (a) the SNV was
monomorphic in the study sample; (b) the variant caller
did not have confidence to declare the SNV site; or (c) the
SNV site was identified but removed by quality control as
likely false‐positive. However, for single‐study calling, we
are unable to differentiate between the three types of
missingness because of privacy restrictions for individual‐
level data such as BAM files and calling results.

4.2 | Variant detection: callset size

We evaluated variant detection for joint and single‐study
strategies by comparing the joint and union callsets
across a range of MAFs. For low‐frequency and common
SNVs in both deep‐coverage exome and low‐coverage
genome (restricted to coding regions) sequence data,
there is almost complete overlap between the joint and
union callsets (Figure 2c–f). However, for rare SNVs,

there are noticeable discrepancies between the two
callsets as described below.

The overwhelming majority of rare SNVs detected in
deep‐coverage data are found in both the joint and union
callsets (97% of all rare SNVs) with the remaining SNVs
found exclusively in the joint (0.1%) and union (2.9%)
callsets (Figure 2a). Contrary to expectations, the union
callset is larger than the joint callset, mainly due to
inconsistencies in variant filtering. Of the 631 rare SNVs
exclusive to the union callset, 540 of them were filtered
out during joint calling and excluded from the final joint
callset. SNVs in joint calling go through variant filters
once whereas SNVs in single‐study calling have one
chance per study to pass filters and be included in the
union callset. In this scenario, a lack of consistent variant
filtering between joint and single‐study calling can lead
to the differences seen here.

For rare SNVs in low‐coverage data (Figure 2b), we
observed a similar pattern of variant detection as for
deep‐coverage data. However, inconsistencies in variant
filtering only account for a small fraction of differences
between the joint and union callsets. Only 128 of the
1,107 rare SNVs exclusive to the union callset were
filtered out during joint calling.

4.3 | Variant detection: genotype calls

In addition to comparing the number of SNVs detected by
joint and single‐study calling, we also compared the
genotype calls made by the two strategies at different
sequencing coverage. We show in Table 2 and Table 3 the
comparison of genotype calls between joint and the
single‐study calling for 9,096 rare SNVs found in the joint
and union callsets from deep‐coverage exome as well as
from low‐coverage genome (restricted to coding regions)
sequence data. Genotype comparisons for 2,127 low‐
frequency and 2,027 common SNVs are shown in
Tables S1–S4. Excluding missing calls, overall genotype

TABLE 1 Overlap in variant detection for the union callset

Data type
Variants detected by only
one study (%)

Variants detected by
2–4 studies (%)

Variants detected by all
five studies (%)

Deep‐coverage
Rare (MAF <0.5%) 17,128 (78.0) 4,316 (20) 507 (2.3)
Low‐frequency (MAF 0.5–5%) 28 (1.2) 435 (19) 1,873 (80)
Common (MAF >5%) 1 (0.05) 26 (1.3) 2,050 (99)

Low‐coverage (coding regions)
Rare (MAF <0.5%) 9,262 (77) 2,563 (21) 160 (1.4)
Low‐frequency (MAF 0.5–5%) 38 (1.6) 890 (38) 1,432 (61)
Common (MAF >5%) 5 (0.24) 123 (5.8) 1,984 (94)

Note: The union callset pools variant calling results from the five single‐study cohorts. Numbers in table refers to SNVs from chromosome 2 in deep‐coverage
(~82×) exome sequence data and low‐coverage (~5×) genome sequence data restricted to coding regions.
Abbreviation: SNV, single nucleotide variant.
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discordance between joint and single‐study calling is
lower in deep‐coverage data than in low‐coverage data.
Furthermore, for rare SNVs, 64% of all genotype calls
from single‐study calling in deep‐coverage data (Table 2)
are missing compared with 70% for low‐coverage data
(Table 3). Breaking down rare SNVs further by minor
allele count (MAC), we observe this missingness to be a
function of MAC in both types of sequencing data with
the rarest categories most affected (Tables S5–S12). In
deep‐coverage data, we can attribute almost all missing
calls for rare SNVs to monomorphic SNVs in the

single‐study cohort(s) since 13,093,060 of the 13,093,128
missing single‐study calls were called as a homozygous
reference by joint calling (Table 2). Using the GATK
pipeline, it is possible to identify monomorphic SNVs in
gVCFs and assign homozygous reference genotypes to
the 13,093,060 missing calls. However, we were unable to
do this for the GotCloud pipeline since it does not
support gVCFs. In low‐coverage data, 6,365 of 14,246,613
missing single‐study calls were called as nonreference by
joint calling (Table 3) compared with 68 nonreference
calls for deep‐coverage data (Table 2). Since rare SNVs

FIGURE 2 Comparison of variant
detection between joint and single study
calling strategies for rare (MAF <0.5%),
low‐frequency (MAF 0.5–5%), and
common (MAF >5%) SNVs in deep‐
coverage (~82×) exome sequence data and
low‐coverage (~5×) genome sequence
data restricted to coding regions.
MAF, minor allele frequency; SNV, single
nucleotide variant

TABLE 2 Comparison of genotype calls for rare SNVs from deep‐coverage exome sequence data

Single‐study variant
calling (union callset)

Joint variant calling (joint callset)

Missing
Homozygous
reference (%)

Heterozygous
(%)

Homozygous
alternate (%) Total (%)

Missing 0 13,093,060 (64) 68 (0.00033) 0 13,093,128 (64)

Hom. ref. 0 7,135,459 (35) 9 (0.000044) 0 7,135,468 (35)

Heterozygous 0 31 (0.00015 %) 25,862 (0.13) 0 25,893 (0.13)

Hom. alt. 0 0 4 (0.000020) 211,507 (1.0) 211,511 (1.0)

Total 0 20,228,550 (99) 25,943 (0.13) 211,507 (1.0) 20,466,000 (100)

Note: Genotype calls from joint (horizontal axis) and single‐study (vertical axis) calling strategies for 9,096 rare (MAF <0.5%) SNVs from chromosome 2 in deep‐
coverage (~82×) exome sequence data. Concordant calls between the two strategies are highlighted in bold.
Abbreviations: MAF, minor allele frequency; SNV, single nucleotide variant.
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naturally have low allele counts, to begin with, any small
change to their overall allele counts will have a noticeable
impact on association testing and other downstream
analyses. Finally, the missingness appears to be mostly
localized to rare SNVs as we observe only a slight number
of missing genotype calls in low‐frequency SNVs (4.3% in
deep‐coverage data, 9.2% in low‐coverage data; Tables S1
and S2) and a negligible number in common SNVs (0.21%
and 0.78%; Tables S3 and S4).

4.4 | Genotype concordance

We assessed nonreference genotype accuracy (hereafter
referred to as “genotype concordance”) of joint and
single‐study calling in deep‐coverage exome sequence
data by comparing nonreference calls for SNVs found in
both the joint and union callsets against a “truth” set of
high confidence genotypes from Illumina HumanOmni
2.5 array data (Fuchsberger et al., 2016). The joint and
union callsets have nearly identical genotype concor-
dance with the truth set for SNVs of all MAFs and
negligible differences in raw counts (Table 4).

Next, we assessed genotype concordance for SNVs in low‐
coverage genome sequence data (not restricted to coding

regions to preserve a meaningful number of comparisons) by
comparing against high confidence genotypes from Illumina
HumanOmni 2.5 array data and/or from deep (~82×) exome
sequence in the GoT2D integrated panel (Fuchsberger et al.,
2016). The joint callset correctly calls 0.4% more genotypes
than the union callset for rare SNVs, 0.5% more for low‐
frequency SNVs, and 0.2% more for common SNVs (Table 4).
Compared with deep‐coverage data, here we observe a larger
difference in genotype concordance with the truth set
between the joint and union callsets. For example, the joint
callset calls 13,322 more genotypes correctly (out of 3,575,402
total comparisons) than the union callset for rare SNVs in
low‐coverage data while it only calls 1 more genotype
correctly (out of 91,756) for rare SNVs in deep‐coverage data.
As expected, the improvements to calling accuracy offered by
larger sample sizes in the joint strategy are more pronounced
when the average read coverage is low.

4.5 | Effect of GC bias on genotype
concordance

It is well‐known that sequencing read coverage tends to
be lower in high guanine‐cytosine (GC)‐content regions.
To investigate the effect of this GC bias on joint and

TABLE 3 Comparison of genotype calls for rare SNVs from low‐coverage genome sequence data (coding regions)

Single‐study variant
calling (union callset)

Joint variant calling (joint callset)

Missing
Homozygous
reference (%)

Heterozygous
(%)

Homozygous
alternate (%) Total (%)

Missing 0 14,240,248 (70) 5,966 (0.029) 399 (0.002) 14,246,613 (70)

Hom. ref. 0 5,981,638 (29) 1,855 (0.009) 2 (0.000010) 5,983,495 (29)

Heterozygous 0 3,687 (0.02) 21,073 (0.10) 99 (0.00048) 24,859 (0.12)

Hom. alt. 0 0 37 (0.00018) 210,996 (1.0) 211,033 (1.0)

Total 0 20,225,573 (99) 28,931 (0.14) 211,496 (1.0) 20,466,000 (100)

Note: Genotype calls from joint (horizontal axis) and single‐study (vertical axis) calling strategies for 9,096 rare (MAF <0.5%) SNVs from chromosome 2 in low‐
coverage (~5 × ) genome sequence data restricted to coding regions. Concordant calls between the two strategies are highlighted in bold.
Abbreviations: MAF, minor allele frequency; SNV, single nucleotide variant.

TABLE 4 Nonreference genotype accuracy for joint and single‐study calling strategies

Data type Genotype concordance for joint callset Genotype concordance for union callset

Deep‐coverage
Rare (MAF <0.5%) 99.7% (91,457/91,756) 99.7% (91,456/91,756)

Low‐frequency (MAF: 0.5–5%) 99.3% (171,939/173,131) 99.3% (171,930/173,131)

Common (MAF >5%) 99.3% (1,712,741/1,724,873) 99.2% (1,711,385/1,724,873)

Low‐coverage (all regions)
Rare (MAF <0.5%) 99.7% (3,563,500/3,575,402) 99.3% (3,550,178/3,575,402)
Low‐frequency (MAF: 0.5–5%) 99.6% (6,837,310/6,866,584) 99.1% (6,807,530/6,866,584)
Common (MAF >5%) 99.6% (112,966,946/113,401,131) 99.4% (112,694,329/113,401,131)

Note: Genotype concordance for joint and single‐study calling strategies in deep‐coverage (~82×) exome and low‐coverage (~5×) genome sequence data. The
“truth” set of high confidence genotypes being compared against comes from Illumina HumanOmni 2.5 array data and deep exome sequence in the GoT2D
integrated panel. Raw genotype counts are displayed in parentheses.
Abbreviations: MAF, minor allele frequency; SNV, single nucleotide variant.
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single‐study calling, we compared genotype concordance
between the joint and union callset in regions of low GC‐
content (<60% of base pairs are GC) and in regions of high
GC‐content (≥60%) in chromosome 2. In low GC‐content
regions, we observe similar genotype concordance between
the joint and union callset in both deep‐ and low‐coverage
sequence data (Table S13). In high GC‐content regions, we
observe similar genotype concordance between the two
callsets in deep‐coverage data but notice larger differences in
low‐coverage data where the joint callset correctly calls 0.7%
more genotypes than the union callset for rare and low‐
frequency SNVs (Table S14). The performance of the two
calling strategies in high GC‐content regions is nearly equal
in deep‐coverage data but single‐study calling can be slightly
less accurate than joint calling in low‐coverage data.

4.6 | Association analysis

Overall, we observe similar p values between joint
analysis of the joint callset, a fixed‐effects meta‐analysis
of single‐study summary statistics, and joint analysis of
the union callset (mega‐analysis) for rare SNVs in deep‐
coverage data (Figure 3a–c). This is due to almost perfect
concordance in genotype calls between joint and single‐
study calling and the fact that missing variant calls for
rare SNVs from single‐study calling were almost all called
as a homozygous reference in the joint callset. However,
for low‐coverage data, we observe large discrepancies in p
values between joint and meta‐analysis (Figure 3d) as
well as between joint and mega‐analysis for rare SNVs
(Figure 3e). These differences in association results are
caused by a combination of lower concordance in
genotype calls between the two calling strategies for
low‐coverage data and an increase in the number of
missing single‐study calls being called as nonreference in
the joint callset. Since both meta‐analysis and mega‐
analysis use single‐study calling, their association results
are more similar (Figure 3f).

We evaluated association power between joint and single‐
study calling for gene‐based tests by comparing −log10p
values from SKAT‐O test of the joint callset versus those
from the meta‐analysis of single‐study SKAT‐O test results
assuming homogeneous genetic effects. For all masks,
SKAT‐O based joint analysis and Meta‐SKAT‐O based
meta‐analysis produce similar p values (Figure S3).

4.7 | Heterogeneity between single‐
study cohorts

To address possible heterogeneity in genetic effects
between our single‐study cohorts, we combined single‐
study summary statistics using a transethnic meta‐
analysis implemented in MR‐MEGA and combined

single‐study SKAT‐O test results using Meta‐SKAT‐O
assuming heterogeneous genetic effects. For single‐
variant tests, we observe that transethnic meta‐analysis
had slightly greater power to detect variants whose
heterogeneity in genetic effects was correlated with
ancestry compared with fixed‐effects meta‐analysis (Fig-
ure S4). However, none of these variants are close to
reaching genome‐wide significance (p< 5 × 10−8) while
those that are have more significant p values under a
fixed‐effects meta‐analysis. For gene‐based tests, we
observe slight variations in p values between homoge-
neous and heterogeneous effect meta‐analyses for Masks
1 and 3 but much greater p value variability for Masks 2
and 4 (Figure S5).

5 | DISCUSSION

Although jointly calling all samples together is the gold
standard strategy for analyzing rare SNVs in sequencing
studies, single‐study calling is more appealing due to
fewer privacy restrictions and smaller computation
burden. In this study, we compared joint and single‐
study calling in terms of variant detection, nonreference
genotype concordance, and their impact on association
power as a function of sequencing coverage.

For single‐study calling, we found that low overlap in
variant detection among single‐study cohorts for rare
SNVs results in an abundance of “missing” genotype calls
where we lose information for variant sites in cohorts
where they were not detected. We show that for deep‐
coverage data, the impact of missing genotype calls on
association testing of rare SNVs from single‐study calling
is minimal because almost all of this missingness is due
to monomorphic SNVs, as evident by corresponding
homozygous reference calls in the joint callset. However,
for low‐coverage data, average read depth is low and
thus, a portion of the missing genotype calls may be due
to lack of coverage at the variant sites (Xu et al., 2017).
Indeed, we show that a fraction amount of missing
single‐study calls for rare SNVs in low‐coverage data has
corresponding nonreference calls in the joint callset,
resulting in lower than expected allele counts and
reduced power for association testing of these SNVs. In
addition, these missing calls can have a negative impact
on gene‐based aggregation tests, which will be under-
powered if too many variant sites within a gene have
missing genotype calls, and genotype‐based callbacks,
since the majority of loss‐of‐function SNVs are rare. A
possible, but resource‐intensive solution is to generate a
list of SNV sites based on the union callset and then go
back and genotype these sites within each single‐study
cohort. With parallel computation for each sample and
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every 5Mb chromosomal segment, this process takes on
average 1 hr CPU‐time per sample per cohort with a
maximum memory usage of approximately 0.5 GB to re‐
call 1–1.2 million variants in chromosome 2.

Although the low overlap in variant detection among
single‐study cohorts for rare SNVs can arise naturally due
to sample population differences between cohorts,
another contributing factor is the inconsistency of variant
calling filters (i.e., false‐positive screening). In our
analysis, rare SNVs that were filtered out during joint
calling may pass filters during calling in some single‐
study cohorts while being filtered out in others. This
increases the possibility of introducing false‐positive
SNVs to downstream analyses since they only need to
pass filters in one of the single‐study cohorts to be
included in association tests.

5.1 | Recommendations

For deep‐coverage data, single‐study calling and either
meta‐analysis or mega‐analysis can be recommended as a

viable alternative to joint calling and analysis for rare
SNVs based on the almost perfect concordance of
genotype calls between the two calling strategies,
comparable nonreference genotype concordance with
an external truth set, and comparable association results.
Furthermore, missing genotype calls in single‐study
calling for deep‐coverage data can be assumed to be a
homozygous reference and attributed to monomorphic
variant due to a matching homozygous reference call for
their counterparts in the joint callset. When combining
many smaller single studies, meta‐analysis can be more
conservative and less powerful than mega‐analysis (Ma,
Blackwell, Boehnke, Scott, & GoT2D Investigators, 2013).

For low‐coverage data or low‐coverage regions in deep
data, single‐study calling cannot be recommended as a
viable alternative to joint calling for rare SNVs. Dis-
cordance in genotype calls between the two calling
strategies is approximately 150 times higher than that in
deep‐coverage data (0.09% vs. 0.0006%) and combined
with a sizable number of genotype calls in single‐study
calling being missing due to lack of coverage at variant

FIGURE 3 Comparison of single‐variant association test p values between joint and single study calling strategies for rare (MAF <0.5%)
SNVs in (a–c) deep‐coverage (~82×) exome sequence data and (d–f) low‐coverage (~5×) genome sequence data. Joint refers to joint analysis
of the joint callset, meta refers to the fixed‐effects meta‐analysis of single‐study summary statistics, and mega refers to joint analysis of the
union callset (mega‐analysis). MAF, minor allele frequency; SNV, single nucleotide variant
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sites, we observe large discrepancies in association results
between the two calling strategies.

In general, for studying low‐frequency and common
SNVs, single‐study calling can be used as an alternative to
joint calling in both deep‐coverage and low‐coverage data
(Figures S1 and S2). The only exception is for studying low‐
frequency SNVs in low‐coverage data (Figure S1d–f) where
there remain noticeable discrepancies in association results
between joint and meta/mega‐analysis, although less than
that seen for rare SNVs in low‐coverage data.

5.2 | Comparison with GATK pipeline

In addition to the GotCloud pipeline, we ran our analyses
with the widely used Genome Analysis Toolkit (GATK)
pipeline at default settings. Choice of software pipeline
had a limited impact on variant detection (Figure S6) and
genotype accuracy (Table S15) with little to no impact on
association results (Figures S7–S10). There is more
overlap in detected SNVs between joint and single‐study
calling for the GotCloud pipeline in deep‐coverage data
and vice versa for the GATK pipeline in low‐coverage
data. The GotCloud pipeline was slightly more accurate
in calling common and low‐frequency SNVs; however, on
average this difference amounts to less than 1.5% more
correctly called nonreference genotypes.

5.3 | Study limitations

Due to computation time and burden, we limited our
study to SNVs in chromosome 2 and we were unable to
compare joint and single‐study calling strategies for
indels. Additional SNVs from analyzing more chromo-
somes would be helpful in comparing association power
between joint and single‐study strategies for genome‐
wide significant (p< 5 × 10−8) rare SNVs. Currently, our
single‐variant and gene‐based analysis of rare SNVs are
centered on those with p≥ 5 × 10−5 with limited in-
formation on rare SNVs near the genome‐wide signifi-
cance threshold.

Due to similar performances between the GotCloud
and GATK pipelines, we only presented results for the
GotCloud pipeline. One difference between the two
pipelines is that GATK, in contrast to GotCloud, also
supports the gVCF file format which eliminates almost
all of the missing homomorphic reference genotype calls
in the union callset by including calls on monomorphic
SNVs in the single‐study callset.

5.4 | Summary

We show single‐study calling to be a viable alternative
to joint calling for deep‐coverage sequence data but

show them to have noticeable discrepancies in rare
variant calling and association results for low‐cover-
age sequence data.
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