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Abstract 

Individual sequencing studies often have limited sample sizes and so limited power to 
detect trait associations with rare variants. A common strategy is to aggregate data from 
multiple studies. For studying rare variants, jointly calling all samples together is the gold 
standard strategy but can be difficult to implement due to privacy restrictions and 
computational burden. Here, we compare joint calling to the alternative of single-study 
calling in terms of variant detection sensitivity and genotype accuracy as a function of 
sequencing coverage and assess their impact on downstream association analysis. To do 
so, we analyze deep-coverage (~82X) exome and low-coverage (~5X) genome sequence 
data on 2,250 individuals from the GoT2D study jointly and separately within five 
geographic cohorts. 

For rare SNVs: (1) ≥97% of discovered SNVs are found by both calling strategies; (2) 
non-reference concordance with a set of highly accurate genotypes is ≥99% for both 
calling strategies; (3) meta-analysis has similar power to joint analysis in deep-coverage 
sequence data but can be less powerful in low-coverage sequence data. Given similar data 
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processing and quality control steps, we recommend single-study calling as a viable 
alternative to joint calling for analyzing SNVs of all MAF in deep-coverage data. 

Keywords: Sequencing studies, rare variants, joint analysis, meta-analysis 

Introduction 

Genome-wide association studies (GWAS) based on genotype arrays have identified 
thousands of common (minor allele frequency [MAF]>5%) genetic variants associated 
with a wide range of human diseases and traits (Hindorff et al., 2012). However, these 
common variants comprise only 10% of the ~84 million variant sites discovered in the 
human genome by the 1000 Genomes Project (2015) with the rest being low-frequency 
(MAF 0.5-5%; ~14%) and rare (MAF<0.5%; ~76%) variants that are less well captured 
by genotype arrays and subsequent genotype imputation (Zuk et al., 2014). With the 
advance of genome sequencing technology, we can now directly study the role of variants 
across the full allele-frequency spectrum. Although sequencing studies to date have 
reaffirmed and expanded on the common variant associations of array-based GWAS, the 
modest sample sizes of most sequencing studies to date have limited the discovery of rare 
and low-frequency variant associations (Fuchsberger et al., 2016; Auer et al., 2016; Luo 
et al., 2017). 

To increase sample size, researchers often aggregate sequence data across multiple 
studies. To combine sequence data across studies, the gold standard strategy is to jointly 
call all samples together (Auer et al., 2016). This joint calling strategy increases the 
quality of variant calls and minimizes batch effects such as those due to different 
sequencing centers or platforms (Auer, et al., 2016). However, joint calling for sequence 
data can be difficult to implement due to restrictions on data sharing (Paltoo et al., 2014; 
Jiang et al., 2014) and the potentially heavy computation burden (Lek et al., 2016). An 
alternative strategy that adheres to privacy rules and mitigates computing load is single-
study calling (Okada et al., 2018) in which variants are identified and genotypes called 
separately within each study and then combined through meta-analysis of study-level 
association statistics or joint analysis of pooled individual-level data (i.e. mega-analysis). 
Although single-study calling is easier to implement than the gold standard joint calling, 
there is a need to quantify the difference in calling results between these two strategies 
and assess how it affects downstream association analysis. 

Past research has shown that meta-analysis of study-level association results is as 
statistically efficient as joint analysis of individual-level data for combining common-
variant GWAS (Lin & Zeng, 2010). More recent research has extended methods for 
meta-analysis to sequencing studies for rare variants (Tang & Lin, 2015). However, this 
research only analyzes the relative power of joint and meta-analysis under a single-study 
calling strategy and does not consider the impact of joint calling on association results. In 
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addition, sequencing studies often differ in sequencing coverage depending on project 
needs and goals. For example, deep-coverage sequencing results in improved genotyping 
accuracy, particularly for rare variants (Lee et al., 2014; Xu et al., 2017), while low-
coverage sequencing results in more sequenced samples at the same cost (Li et al., 2011). 
Thus, there is also a need to compare rare variant association tests for joint and single-
study calling under different sequencing coverage. 

In this paper, we aim to quantify the difference between the gold standard joint calling 
and the alternative single-study calling strategies and assess their impact on association 
testing of rare single nucleotide variants (SNVs) in deep and low-coverage sequence data. 
Specifically, we compare variant detection and genotyping accuracy for joint and single-
study callsets on deep-coverage whole exome sequence (WES) and low-coverage whole 
genome sequence (WGS) dataset from the Genetics of Type 2 Diabetes (GoT2D) study 
(Fuchsberger et al., 2016) using the GotCloud variant calling pipelines (Jun et al., 2015) 
at default settings. Then for each data type, we compare single-variant and gene-based 
association test results for rare SNVs between three types of joint and single-study 
strategies: 1) joint calling with joint analysis, 2) single-study calling with meta-analysis, 
and 3) single-study calling with mega-analysis. 

Methods 

Data description 

We analyzed data on 2,250 individuals from the GoT2D study (Fuchsberger et al., 2016) 
for whom deep-coverage whole exome sequence (mean depth 82X), low-coverage whole 
genome sequence (mean depth 5X), and Illumina HumanOmni 2.5M array data were all 
available. Study participants came from five geographical regions: (1) Augsburg, 
Germany (n=193; KORA study), (2) the Botnia region of western Finland (n=303; DGI 
study), (3) Sweden (n=391; DGI study), (4) the United Kingdom (n=473; UKT2D study), 
and (5) Finland (n=890; FUSION study). For clarity, we will refer to the sample of 2,250 
individuals as the “joint” cohort and the five subsets as the “single-study” cohorts (Figure 
1). 

DNA sample preparation and sequencing 

DNA samples were processed at the Broad Institute (FUSION and DGI), Wellcome Trust 
Centre for Human Genetics (UKT2D), and Helmholtz Zentrum München (KORA). DNA 
samples were genome and exome sequenced using the Illumina GAII or HiSeq. 2000 
sequencers. Sequence data were aligned to human reference genome version 19 (hg19) 
using Picard (DePristo et al., 2011) and BWA (Li & Durbin, 2009). Further details on 
data generation, processing, and quality control can be found in Fuchsberger et al. (2016). 
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Processed and filtered sequence reads for the joint and single-study cohorts were 
analyzed by the GotCloud and GATK (McKenna et al., 2010; Van der Auwera et al., 
2013) variant calling pipelines according to the best practice workflows recommended by 
their developers at default settings. We restricted our analyses to chromosome 2 (~8% of 
the human genome) to reduce computational burden. 

Whole-genome and exome sequence data processing: GotCloud and GATK pipeline 

We called SNVs with GotCloud at default settings using processed BAM files (Figure 1). 
We used SAMtools pileup and glfFlex to generate genotype likelihoods for all samples in 
5 Mb chromosomal segments. We then used a support vector machine classifier to filter 
out likely false-positive variant sites (Jun et al., 2015). 

Adhering to the recommended GATK workflow, we “hard called” every variable site in 
each sample for the number of non-reference alleles (0, 1, or 2) using HaplotypeCaller in 
GVCF mode. To parallelize this step, we divided chromosome 2 into 5 Mb segments with 
100 bp overlap and simultaneously carried out hard-calls within each segment. We 
merged intermediate genomic VCF (gVCF) files from each sample into batches of 100 
samples with CombineGVCFs and then jointly genotyped them with GenotypeGVCFs. 
We used the GATK CatVariants tool to concatenate variant sets from all genomic regions 
to form a combined callset. We identified a set of high-quality variant calls from the raw 
variant callset using the Variant Quality Score Recalibration (VQSR) method which 
applies machine learning algorithms to score each variant call and filter them at a desired 
level of sensitivity. We used GATK VariantRecalibrator and ApplyRecalibration to filter 
the raw variant callset at the recommended tranche threshold of 99.9% which provides 
high sensitivity while maintaining a reasonable level of specificity. Finally, we removed 
indels from the filtered variant callset in keeping with our settings for the GotCloud 
pipeline and to focus on SNVs in subsequent analyses.  

We used haplotype-based refinement to improve genotype and haplotype quality for 
whole genome genotype calls from both pipelines (Figure 1). Specifically, we used 
Beagle (Browning & Yu, 2009) to phase the genotype data in chunks of 10,000 SNVs 
with 1,000 SNVs overlaps and refined the phased sequences using Thunder (Jun et al., 
2015) with 300 states.  

We ran whole exome sequence reads through the GotCloud and GATK discovery 
pipelines under the same settings as the whole-genome data. We did not apply any 
refinement steps to the exome calls, consistent with standard practice for both pipelines 
for deep-coverage sequence data. 

The final dataset for each of the four combinations of sequencing coverage (genome and 
exome) and pipeline (GotCloud and GATK) consists of a joint callset for all 2,250 
samples, five separate single-study callsets for the geographically subdivided cohorts, and 
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a union callset which merges the five single-study callsets. Since comparing the joint 
callset to five single-study callsets individually is difficult because detection of rare 
SNVs is heavily dependent on sample size and the results would be potentially skewed by 
the considerable sample size differences between cohorts, we use the union callset as an 
overall representation of single-study calling to provide a more apt comparison with the 
joint callset. For the union callset, we set genotype calls for SNVs not found in one or 
more of the single-study callset(s) as missing. 

Non-reference genotype accuracy 

For both pipelines, we assessed the accuracy of whole genome calls by comparing the 
Thunder-refined non-reference genotypes against a set of 192,322 variants of highly 
accurate (“high-confidence”) genotypes determined through joint statistical analysis of 
deep-coverage (~82X) exome sequence and Illumina HumanOmni 2.5 array data in the 
GoT2D whole genome sequencing study (Fuchsberger et al., 2016). We assessed the 
accuracy of exome calls by comparing unrefined non-reference genotypes against the set 
of high-confidence genotypes from Illumina HumanOmni 2.5 array data. 

Single-variant association analysis 

We evaluated the impact of joint and single-study calling on single-variant association 
tests by comparing -log10p-values from joint analysis of the joint callset against those 
from meta-analysis of single-study summary statistics and joint analysis of the union 
callset (i.e. mega-analysis). In each single-study callset, we used the logistic score test to 
test for T2D association under an additive genetic model with the top two principal 
components as covariates (Figure 1). For meta-analysis, we combined summary-level 
results from the single-study callsets with fixed-effects sample-size weighted meta-
analysis using METAL (Willer et al., 2010) and with trans-ethnic meta-analysis using 
MR-MEGA software (Mägi et al., 2017). 

Gene-based association analysis  

We used SKAT-O to test for association with multiple rare and low-frequency SNVs 
within coding regions of the genome. We prepared four lists of SNVs (“masks”) based on 
MAF and functional annotation. For the creation of the masks, we considered a SNV to 
have MAF<1% if its MAF in every one of the single-study callsets is <1%. Mask 1 
contained SNVs predicted to be protein-truncating, Mask 2 included all SNVs from Mask 
1 together with missense SNVs with MAF<1%, Mask 3 included all SNVs from Mask 1 
and those predicted to be deleterious by all five algorithms applied (Polyphen2-HumDiv, 
PolyPhen2-HumVar, LRT, Mutation Taster, and SIFT), and Mask 4 included all SNVs 
from Mask 1 and those predicted to be deleterious by at least one algorithm with 
MAF<1%. 



 

This article is protected by copyright. All rights reserved. 

A
ut

ho
r 

M
an

us
cr

ip
t 

We performed SKAT-O (Lee et al., 2012) analysis on the four masks separately within 
each single-study callset (Figure 1). We combined SKAT-O results from each single-
study callset using Meta-SKAT-O test in the MetaSKAT R package (Lee et al., 2013) 
once assuming homogeneous genetic effects across single-study cohorts and again 
assuming heterogeneous genetic effects. 

Results 

Overview 

We evaluated the utility of single-study calling as an alternative to the gold standard joint 
calling by comparing these methods in terms of variant detection, genotype accuracy, and 
impact on power of association tests for different sequencing coverage. For our analysis 
(restricted to chromosome 2 due to computational burden), we focus on the gold standard 
joint callset, which are calls from analyzing all 2,250 samples together (the “joint” 
cohort), the five single-study callsets, which are calls from the five geographically 
subdivided cohorts (the “single-study” cohorts: Germany, Botnia, Sweden, UK, Finland), 
and the union callset, which pools calls from the five single-study callsets. There are 
25,689 deep-coverage WES SNVs and 2,101,401 (15,344 when restricted to coding 
regions) low-coverage WGS SNVs in the joint callset and 26,364 deep-coverage WES 
SNVs and 2,249,181 (16,457) low-coverage WGS SNVs in the union callset. We present 
only GotCloud results as we found choice of software pipelines (GotCloud or GATK) to 
have no meaningful impact on variant calling and association results. 

Calling results 

Union callset 

The union callset pools calling results from the five single-study cohorts by merging their 
SNV calls. For SNV sites found in only a subset of the studies, we assign missing 
genotypes for studies in which the SNV site was not called. Using the union callset, we 
examine the overlap in variant detection between single-study cohorts. For deep-coverage 
data, 78% of all rare SNVs detected by single-study calling (i.e. those in the union 
callset) are “study specific” (Table 1), meaning they were found in only one of the single-
study callsets and missing in all others, compared with 1.2% of low-frequency SNVs and 
0.05% of common SNVs (Table 1). Conversely, only 2.3% of rare SNVs in the union 
callset are found in all five studies (Table 1) compared with 80% of low-frequency and 
99% of common SNVs (Table 1). Similar numbers are seen for low-coverage data 
(restricted to coding regions) (Table 1). Overall, there are three possible reasons for a 
missing SNV site in a study: 1) the SNV was monomorphic in the study sample; 2) the 
variant caller did not have confidence to declare the SNV site; or 3) the SNV site was 
identified but removed by quality control as likely false-positive. However, for single-
study calling, we are unable to differentiate between the three types of missingness 
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because of privacy restrictions for individual-level data such as BAM files and calling 
results.  

Variant detection: callset size 

We evaluated variant detection for joint and single-study strategies by comparing the 
joint and union callsets across a range of MAFs. For low-frequency and common SNVs 
in both deep-coverage exome and low-coverage genome (restricted to coding regions) 
sequence data, there is almost complete overlap between the joint and union callsets 
(Figure 2C-F). However, for rare SNVs, there are noticeable discrepancies between the 
two callsets as described below. 

The overwhelming majority of rare SNVs detected in deep-coverage data are found in 
both the joint and union callsets (97% of all rare SNVs) with the remaining SNVs found 
exclusively in the joint (0.1%) and union (2.9%) callsets (Figure 2A). Contrary to 
expectations, the union callset is larger than the joint callset, mainly due to 
inconsistencies in variant filtering. Of the 631 rare SNVs exclusive to the union callset, 
540 of them were filtered out during joint calling and excluded from the final joint 
callset. SNVs in joint calling go through variant filters once whereas SNVs in single-
study calling have one chance per study to pass filters and be included in the union 
callset. In this scenario, a lack of consistent variant filtering between joint and single-
study calling can lead to the differences seen here. 

For rare SNVs in low-coverage data (Figure 2B), we observed a similar pattern of variant 
detection as for deep-coverage data. However, inconsistencies in variant filtering only 
accounts for a small fraction of differences between the joint and union callsets. Only 128 
of the 1,107 rare SNVs exclusive to the union callset were filtered out during joint 
calling. 

Variant detection: genotype calls 

In addition to comparing the number of SNVs detected by joint and single-study calling, 
we also compared the genotype calls made by the two strategies at different sequencing 
coverage. We show in Tables 2 and 3 the comparison of genotype calls between joint and 
the single-study calling for 9,096 rare SNVs found in the joint and union callsets from 
deep-coverage exome as well as from low-coverage genome (restricted to coding 
regions) sequence data. Genotype comparisons for 2,127 low-frequency and 2,027 
common SNVs are shown in Supplementary Tables 1-4. Excluding missing calls, overall 
genotype discordance between joint and single-study calling is lower in deep-coverage 
data than in low-coverage data. Furthermore, for rare SNVs, 64% of all genotype calls 
from single-study calling in deep-coverage data (Table 2) are missing compared with 
70% for low-coverage data (Table 3). Breaking down rare SNVs further by minor allele 
count (MAC), we observe this missingness to be a function of MAC in both types of 



 

This article is protected by copyright. All rights reserved. 

A
ut

ho
r 

M
an

us
cr

ip
t 

sequencing data with the rarest categories most affected (Supplementary Tables 5-12). In 
deep-coverage data, we can attribute almost all missing calls for rare SNVs to 
monomorphic SNVs in the single-study cohort(s) since 13,093,060 of the 13,093,128 
missing single-study calls were called as homozygous reference by joint calling (Table 
2). Using the GATK pipeline, it is possible to identify monomorphic SNVs in gVCFs and 
assign homozygous reference genotypes to the 13,093,060 missing calls. However, we 
were unable to do this for the GotCloud pipeline since it does not support gVCFs. In low-
coverage data, 6,365 of 14,246,613 missing single-study calls were called as non-
reference by joint calling (Table 3) compared with 68 non-reference calls for deep-
coverage data (Table 2). Since rare SNVs naturally have low allele counts to begin with, 
any small change to their overall allele counts will have a noticeable impact on 
association testing and other downstream analyses. Finally, the missingness appears to be 
mostly localized to rare SNVs as we observe only a slight number of missing genotype 
calls in low-frequency SNVs (4.3% in deep-coverage data, 9.2% in low-coverage data; 
Supplementary Tables 1 and 2) and a negligible number in common SNVs (0.21% and 
0.78%; Supplementary Tables 3 and 4).  

Genotype concordance 

We assessed non-reference genotype accuracy (hereafter referred to as “genotype 
concordance”) of joint and single-study calling in deep-coverage exome sequence data by 
comparing non-reference calls for SNVs found in both the joint and union callsets against 
a “truth” set of high confidence genotypes from Illumina HumanOmni 2.5 array data 
(Fuchsberger et al., 2016). The joint and union callsets have nearly identical genotype 
concordance with the truth set for SNVs of all MAFs and negligible differences in raw 
counts (Table 4). 

Next, we assessed genotype concordance for SNVs in low-coverage genome sequence 
data (not restricted to coding regions to preserve a meaningful number of comparisons) 
by comparing against high confidence genotypes from Illumina HumanOmni 2.5 array 
data and/or from deep (~82X) exome sequence in the GoT2D integrated panel 
(Fuchsberger et al., 2016). The joint callset correctly calls 0.4% more genotypes than the 
union callset for rare SNVs, 0.5% more for low-frequency SNVs, and 0.2% more for 
common SNVs (Table 4). Compared with deep-coverage data, here we observe a larger 
difference in genotype concordance with the truth set between the joint and union 
callsets. For example, the joint callset calls 13,322 more genotypes correctly (out of 
3,575,402 total comparisons) than the union callset for rare SNVs in low-coverage data 
while it only calls 1 more genotype correctly (out of 91,756) for rare SNVs in deep-
coverage data. As expected, the improvements to calling accuracy offered by larger 
sample sizes in the joint strategy are more pronounced when the average read coverage is 
low. 
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Effect of GC bias on genotype concordance 

It is a well-known that sequencing read coverage tends to be lower in high GC-content 
regions. To investigate the effect of this GC bias on joint and single-study calling, we 
compared genotype concordance between the joint and union callset in regions of low 
GC-content (<60% of base pairs are GC) and in regions of high GC-content (≥60%) in 
chromosome 2. In low GC-content regions, we observe similar genotype concordance 
between the joint and union callset in both deep- and low-coverage sequence data 
(Supplementary Table 13). In high GC-content regions, we observe similar genotype 
concordance between the two callsets in deep-coverage data but notice larger differences 
in low-coverage data where the joint callset correctly calls 0.7% more genotypes than the 
union callset for rare and low-frequency SNVs (Supplementary Table 14). The 
performance of the two calling strategies in high GC-content regions are nearly equal in 
deep-coverage data but single-study calling can be slightly less accurate than joint calling 
in low-coverage data. 

Association analysis 

Overall, we observe similar p-values between joint analysis of the joint callset, fixed-
effects meta-analysis of single-study summary statistics, and joint analysis of the union 
callset (mega-analysis) for rare SNVs in deep-coverage data (Figure 3A-C). This is due to 
almost perfect concordance in genotype calls between joint and single-study calling and 
the fact that missing variant calls for rare SNVs from single-study calling were almost all 
called as homozygous reference in the joint callset. However, for low-coverage data, we 
observe large discrepancies in p-values between joint and meta-analysis (Figure 3D) as 
well as between joint and mega-analysis for rare SNVs (Figure 3E). These differences in 
association results is caused by a combination of lower concordance in genotype calls 
between the two calling strategies for low-coverage data and an increase in the number of 
missing single-study calls being called as non-reference in the joint callset. Since both 
meta-analysis and mega-analysis use single-study calling, their association results are 
more similar (Figure 3F). 

We evaluated association power between joint and single-study calling for gene-based 
tests by comparing -log10p-values from SKAT-O test of the joint callset versus those 
from meta-analysis of single-study SKAT-O test results assuming homogeneous genetic 
effects. For all masks, SKAT-O based joint analysis and Meta-SKAT-O based meta-
analysis produce similar p-values (Supplementary Figure 3). 

Heterogeneity between single-study cohorts 

To address possible heterogeneity in genetic effects between our single-study cohorts, we 
combined single-study summary statistics using a trans-ethnic meta-analysis 
implemented in MR-MEGA and combined single-study SKAT-O test results using Meta-
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SKAT-O assuming heterogeneous genetic effects. For single-variant tests, we observe 
that trans-ethnic meta-analysis had slightly greater power to detect variants whose 
heterogeneity in genetic effects were correlated with ancestry compared with fixed-
effects meta-analysis (Supplementary Figure 4). However, none of these variants are 
close to reaching genome-wide significance (p-value<5x10-8) while those that are have 
more significant p-values under a fixed-effects meta-analysis. For gene-based tests, we 
observe slight variations in p-values between homogeneous and heterogeneous effect 
meta-analyses for Masks 1 and 3 but much greater p-value variability for Masks 2 and 4 
(Supplementary Figure 5). 

Discussion 

Although jointly calling all samples together is the gold standard strategy for analyzing 
rare SNVs in sequencing studies, single-study calling is more appealing due to fewer 
privacy restrictions and smaller computation burden. In this study, we compared joint and 
single-study calling in terms of variant detection, non-reference genotype concordance, 
and their impact on association power as a function of sequencing coverage. 

For single-study calling, we found that low overlap in variant detection among single-
study cohorts for rare SNVs results in an abundance of “missing” genotype calls where 
we lose information for variant sites in cohorts where they were not detected. We show 
that for deep-coverage data, the impact of missing genotype calls on association testing of 
rare SNVs from single-study calling is minimal because almost all of this missingness is 
due to monomorphic SNVs, as evident by corresponding homozygous reference calls in 
the joint callset. However, for low-coverage data, average read depth is low and thus, a 
portion of the missing genotype calls may be due to lack of coverage at the variant sites 
(Xu et al., 2017). Indeed, we show that a fraction amount of missing single-study calls for 
rare SNVs in low-coverage data have corresponding non-reference calls in the joint 
callset, resulting in lower than expected allele counts and reduced power for association 
testing of these SNVs. In addition, these missing calls can have a negative impact on 
gene-based aggregation tests, which will be underpowered if too many variant sites 
within a gene have missing genotype calls, and genotype-based callbacks, since the 
majority of loss-of-function SNVs are rare. A possible, but resource-intensive solution is 
to generate a list of SNV sites based on the union callset and then go back and genotype 
these sites within each single-study cohort. With parallel computation for each sample 
and every 5 Mb chromosomal segment, this process takes on average one hour CPU-time 
per sample per cohort with a maximum memory usage of approximately 0.5 GB to re-call 
1 to 1.2 million variants in chromosome 2. 

Although the low overlap in variant detection among single-study cohorts for rare SNVs 
can arise naturally due to sample population differences between cohorts, another 
contributing factor is the inconsistency of variant calling filters (i.e. false-positive 
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screening). In our analysis, rare SNVs that were filtered out during joint calling may pass 
filters during calling in some single-study cohorts while being filtered out in others. This 
increases the possibility of introducing false-positive SNVs to downstream analyses since 
they only need to pass filters in one of the single-study cohorts to be included in 
association tests. 

Recommendations 

For deep-coverage data, single-study calling and either meta-analysis or mega-analysis 
can be recommended as a viable alternative to joint calling and analysis for rare SNVs 
based on almost perfect concordance of genotype calls between the two calling strategies, 
comparable non-reference genotype concordance with an external truth set, and 
comparable association results. Furthermore, missing genotype calls in single-study 
calling for deep-coverage data can be assumed to be homozygous reference and attributed 
to monomorphic variant due to a matching homozygous reference call for their 
counterparts in the joint callset. When combining many smaller single studies, meta-
analysis can be more conservative and less powerful than mega-analysis (Ma et al., 
2013). 

For low-coverage data or low-coverage regions in deep data, single-study calling cannot 
be recommended as a viable alternative to joint calling for rare SNVs. Discordance in 
genotype calls between the two calling strategies is approximately 150 times higher than 
that in deep-coverage data (0.09% versus 0.0006%) and combined with a sizable number 
of genotype calls in single-study calling being missing due to lack of coverage at variant 
sites, we observe large discrepancies in association results between the two calling 
strategies. 

In general, for studying low-frequency and common SNVs, single-study calling can be 
used as an alternative to joint calling in both deep-coverage and low-coverage data 
(Supplementary Figures 1 and 2). The only exception is for studying low-frequency 
SNVs in low-coverage data (Supplementary Figure 1D-F) where there remain noticeable 
discrepancies in association results between joint and meta/mega-analysis, although less 
than that seen for rare SNVs in low-coverage data. 

Comparison with GATK pipeline 

In addition to the GotCloud pipeline, we ran our analyses with the widely used GATK 
pipeline at default settings. Choice of software pipeline had a limited impact on variant 
detection (Supplementary Figure 6) and genotype accuracy (Supplementary Table 15) 
with little to no impact on association results (Supplementary Figures 7-10). There is 
more overlap in detected SNVs between joint and single-study calling for the GotCloud 
pipeline in deep-coverage data and vice versa for the GATK pipeline in low-coverage 
data. The GotCloud pipeline was slightly more accurate in calling common and low-
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frequency SNVs; however, on average this difference amounts to less than 1.5% more 
correctly called non-reference genotypes.  

Study limitations 

Due to computation time and burden, we limited our study to SNVs in chromosome 2 and 
we were unable to compare joint and single-study calling strategies for indels. Additional 
SNVs from analyzing more chromosomes would be helpful in comparing association 
power between joint and single-study strategies for genome-wide significant (p-
value<5x10-8) rare SNVs. Currently, our single-variant and gene-based analysis of rare 
SNVs are centered on those with p-values≥5x10-5 with limited information on rare SNVs 
near the genome-wide significance threshold. 

Due to similar performances between the GotCloud and GATK pipelines, we only 
presented results for the GotCloud pipeline. One difference between the two pipelines is 
that GATK, in contrast to GotCloud, also supports the gVCF file format which eliminates 
almost all of the missing homomorphic reference genotype calls in the union callset by 
including calls on monomorphic SNVs in the single-study callset. 

Summary 

We show single-study calling to be a viable alternative to joint calling for deep-coverage 
sequence data but show them to have noticeable discrepancies in rare variant calling and 
association results for low-coverage sequence data. 
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Figure 1: Workflow for variant calling and association analysis. Sequencing and 
alignment procedures are described in Fuchsberger et al., 2016. Haplotype-based 
refinement was only applied to low-coverage whole genome sequence data. 
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Figure 2: Comparison of variant detection between joint and single study calling 
strategies for rare (MAF<0.5%), low-frequency (MAF 0.5-5%), and common (MAF>5%) 
SNVs in deep-coverage (~82X) exome sequence data and low-coverage (~5X) genome 
sequence data restricted to coding regions. 
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Figure 3: Comparison of single-variant association test p-values between joint and single 
study calling strategies for rare (MAF<0.5%) SNVs in (A-C) deep-coverage (~82X) 
exome sequence data and (D-F) low-coverage (~5X) genome sequence data. Joint refers 
to joint analysis of the joint callset, meta refers to fixed-effects meta-analysis of single-
study summary statistics, and mega refers to joint analysis of the union callset (mega-
analysis). 

 

  



 

This article is protected by copyright. All rights reserved. 

A
ut

ho
r 

M
an

us
cr

ip
t 

Table 1. Overlap in variant detection for the union callset 

Data type 
Variants 
detected by 
only one 
study 

Variants 
detected by  

2 to 4 
studies 

Variants 
detected by  

all 5 studies 

Deep-coverage 

Rare (MAF <0.5%) 

Low-frequency (MAF 0.5-5%) 

Common (MAF >5%) 

 

17,128 

(78.0%) 

28 (1.2%) 

1 (0.05%) 

 

4,316 (20%) 

435 (19%) 

26 (1.3%) 

 

507 (2.3%) 

1,873 (80%) 

2,050 (99%) 

Low-coverage (coding 

regions) 

Rare (MAF <0.5%) 

Low-frequency (MAF 0.5-5%) 

Common (MAF >5%) 

 

9,262 (77%) 

38 (1.6%) 

5 (0.24%) 

 

2,563 (21%) 

890 (38%) 

123 (5.8%) 

 

160 (1.4%) 

1,432 (61%) 

1,984 (94%) 

Note. The union callset pools variant calling results from the five single-
study cohorts. Numbers in table refers to SNVs from chromosome 2 in deep-
coverage (~82X) exome sequence data and low-coverage (~5X) genome 
sequence data restricted to coding regions. 
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Table 2. Comparison of genotype calls for rare SNVs from deep-
coverage exome sequence data 

Single-study 

variant 
calling 

(union 
callset) 

Joint variant calling (joint callset) 

Missing 
Homozygous 

reference 
Heterozygous 

Homozygous 

alternate 
Total 

Missing 0 13,093,060 
(64%) 

68 
(0.00033%) 0 13,093,128 

(64%) 

Hom. ref. 0 7,135,459 
(35%) 

9 
(0.000044%) 0 7,135,468 

(35%) 

Heterozygous 0 31 
(0.00015%) 

25,862 
(0.13%) 0 25,893 

(0.13%) 

Hom. alt. 0 0 4 
(0.000020%) 

211,507 
(1.0%) 

211,511 
(1.0%) 

Total 0 20,228,550 
(99%) 

25,943 
(0.13%) 

211,507 
(1.0%) 

20,466,000 
(100%) 

Note. Genotype calls from joint (horizontal axis) and single-study (vertical 
axis) calling strategies for 9,096 rare (MAF <0.5%) SNVs from 
chromosome 2 in deep-coverage (~82X) exome sequence data. Concordant 
calls between the two strategies are highlighted in bold. 
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Table 3. Comparison of genotype calls for rare SNVs from low-
coverage genome sequence data (coding regions) 

Single-study 

variant 
calling 

(union 
callset) 

Joint variant calling (joint callset) 

Missing 
Homozygous 

reference 
Heterozygous 

Homozygous 

alternate 
Total 

Missing 0 14,240,248 
(70%) 

5,966 
(0.029%) 399 (0.002%) 14,246,613 

(70%) 

Hom. ref. 0 5,981,638 
(29%) 

1,855 
(0.009%) 

2 
(0.000010%) 

5,983,495 
(29%) 

Heterozygous 0 3,687 
(0.02%) 

21,073 
(0.10%) 

99 
(0.00048%) 

24,859 
(0.12%) 

Hom. alt. 0 0 37 
(0.00018%) 

210,996 
(1.0%) 

211,033 
(1.0%) 

Total 0 20,225,573 
(99%) 

28,931 
(0.14%) 

211,496 
(1.0%) 

20,466,000 
(100%) 

Note. Genotype calls from joint (horizontal axis) and single-study (vertical 
axis) calling strategies for 9,096 rare (MAF <0.5%) SNVs from 
chromosome 2 in low-coverage (~5X) genome sequence data restricted to 
coding regions. Concordant calls between the two strategies are highlighted 
in bold. 
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Table 4. Non-reference genotype accuracy for joint and single-
study calling strategies 

Data type 
Genotype concordance 

for joint callset 
Genotype concordance 

for union callset 

Deep-coverage 

Rare (MAF <0.5%) 

Low-frequency (MAF 0.5-

5%) 

Common (MAF >5%) 

 

99.7% (91,457/91,756) 

99.3% (171,939/173,131) 

99.3% 

(1,712,741/1,72,4873) 

 

99.7% (91,456/91,756) 

99.3% (171,930/173,131) 

99.2% 

(1,711,385/1,724,873) 

Low-coverage (all 

regions) 

Rare (MAF <0.5%) 

Low-frequency (MAF 0.5-

5%) 

Common (MAF >5%) 

 

99.7% 

(3,563,500/3,575,402) 

99.6% 

(6,837,310/6,866,584) 

99.6% 

(112,966,946/113,401,131) 

 

99.3% 

(3,550,178/3,575,402) 

99.1% 

(6,807,530/6,866,584) 

99.4% 

(112,694,329/113,401,131) 

Note. Genotype concordance for joint and single-study calling strategies in 
deep-coverage (~82X) exome and low-coverage (~5X) genome sequence 
data. The “truth” set of high confidence genotypes being compared against 
comes from Illumina HumanOmni 2.5 array data and deep exome sequence 
in the GoT2D integrated panel. Raw genotype counts are displayed in 
parentheses.  

 




