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Pan-Cancer Clinical and Molecular Analysis of Racial Disparities
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and Anil K. Sood, MD1,7

BACKGROUND: Racial disparities in cancer outcomes are increasingly recognized, but comprehensive analyses, including molecular 

studies, are limited. The objective of the current study was to perform a pan-cancer clinical and epigenetic molecular analysis of out-

comes in African American (AA) and European American (EA) patients. METHODS: Cross-platform analyses using cancer databases 

(the Surveillance, Epidemiology, and End Results program database and the National Cancer Data Base) and a molecular database (The 

Cancer Genome Ancestry Atlas) were performed to evaluate clinical and epigenetic molecular differences between AA and EA patients 

based on genetic ancestry. RESULTS: In the primary pan-cancer survival analysis using the Surveillance, Epidemiology, and End Results 

database (2,045,839 patients; 87.5% EA and 12.5% AA), AA patients had higher mortality rates for 28 of 42 cancer types analyzed (hazard 

ratio, >1.0). AAs continued to have higher mortality in 13 cancer types after adjustment for socioeconomic variables using the National 

Cancer Database (5,150,023 patients; 11.6% AA and 88.4% EA). Then, molecular features of 5,283 tumors were analyzed in patients who 

had genetic ancestry data available (87.2% EA and 12.8% AA). Genes were identified with altered DNA methylation along with increased 

microRNA expression levels unique to AA patients that are associated with cancer drug resistance. Increased miRNAs (miR-15a, miR-17, 

miR-130-3p, miR-181a) were noted in common among AAs with breast, kidney, thyroid, or prostate carcinomas. CONCLUSIONS: The cur-

rent results identified epigenetic features in AA patients who have cancer that may contribute to higher mortality rates compared with 

EA patients who have cancer. Therefore, a focus on molecular signatures unique to AAs may identify actionable molecular abnormalities. 
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INTRODUCTION
For many cancer types, authors have documented racial disparity in patient survival. In particular, African American 
(AA) patients have higher mortality rates than all other racial groups for many cancer types.1-3 For example, AA women 
are 40% more likely than European American (EA) women to die of breast cancer, whereas AA men are twice as likely as 
EA men to die of prostate cancer.4 Many factors contribute to disparities in cancer outcomes, including socioeconomic 
factors, culture, diet, stress, and the macroenvironment.5-7 Research into health disparities has primarily focused on these 
social determinants and their impact on health. However, other observations suggest a role for molecular differences in 
cancer survival disparities.8 Compared with EA women, AA women have a 2-fold higher incidence of the inherently 
aggressive triple-negative breast cancer (TNBC).9 A comparison of TNBC in AA versus EA patients has demonstrated a 
gene expression signature consistent with increased loss of BRCA1 expression, increased activation of insulin-like growth 
factor 1 receptor, and increased expression of vascular endothelial growth factor-activated genes in AA patients.10 In  
addition, AA patients with breast, head and neck, or endometrial cancer have higher levels of chromosomal instability and 
frequency of TP53 mutations and CCNE1 amplification than white patients.11

Whereas some studies have explored somatic alterations in individual cancers,12-14 little is known about how the mac-
roenvironment affects the epigenetic landscape among the different races.15,16 Epigenetic differences are particularly relevant 
because they can be shaped by environmental factors, such as chronic stress, social interactions, and toxins.15 Theses epigenetic 
changes can function as a liaison between social, cultural, and environment factors and the genome.17 Furthermore, race is 
a social construct and is often a proxy for chronic stressors that minority populations face, such as low socioeconomic status, 
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poor access to health care, dangerous environments, and 
interpersonal discrimination.18 These unique stressors that 
a racial group experiences may affect their epigenome and 
ability to respond to disease, leading to poor outcome and 
response to therapy.

In this study, we used data from 2 large cancer  
registries to perform a pan-cancer mortality analysis of 
AAs compared with EAs. We also evaluated differences 
in epigenetic modifications, including noncoding RNA  
(microRNA [miRNA] and long-noncoding RNA [lncRNA])  
expression and DNA methylation, in the 2 groups. We 
believe epigenetic modifications unique to AAs may con-
tribute to differences in clinical outcomes.

MATERIALS AND METHODS

Data Sources
In our primary survival analysis, we used data from the 
Surveillance, Epidemiology, and End Results (SEER) pro-
gram database (version 9), which contains information on 
cancer incidence and survival from 17 population-based 
cancer registries covering approximately 28% of the US 
population. Because the SEER database lacks comprehen-
sive sociodemographic information, a secondary survival 
analysis using data from the National Cancer Database 
(NCDB), another US cancer registry, was performed. The 
NCDB is a nationwide oncology outcomes database that 
includes information on approximately 70% of all invasive 
incident cancers diagnosed in the United States. Tumor reg-
istrars at participating hospitals document patient, tumor, 
and treatment characteristics (including information about 
initial surgery, chemotherapy, and radiotherapy) in addition 
to survival. The NCDB population consists of patients who 
received cancer care (treatment or diagnosis) from among 
1400 cancer programs accredited by the Commission on 
Cancer. These survival data were paired with molecular 
data from The Cancer Genome Atlas (TCGA).19 To de-
fine the AA and EA patient groups, data from the Cancer 
Genome Ancestry Atlas (TCGAA)11 were used. TCGA 
contains data such as clinical information, histopathology, 
and molecular information derived from information on 
samples obtained from more than 11,000 patients. TCGA 
miRNA and lncRNA sequencing data used in the cur-
rent study were analyzed on the Illumina HiSeq platform, 
whereas TCGA DNA methylation data were analyzed on 
the Illumina HM450k platform (Illumina, Inc).

Study Population, Covariates, and 
Statistical Analyses
All cancer cases documented from 2000 to 2015 in the 
SEER 9 registry research data were identified. Only 

patients classified as EA or AA were included in our study. 
In addition, patients who had a prior history of cancer 
with a survival or follow-up time shorter than 1 month, 
who were aged >100 years at diagnosis, who had noncan-
cer causes of death, who had tumor types found in fewer 
than 200 cases in the registry, or who had missing age 
or survival data were excluded. The patients had a total 
of 42 primary tumor types. The primary outcome was 
overall survival in AA and EA patients (see Supporting 
Information).

For cancer types identified in the SEER survival 
analyses with hazard ratios (HRs) for mortality >1.0 in 
AAs compared with EAs, a secondary survival analysis 
was performed for cancer types in the NCDB. The cohort 
is defined in the online Supporting Information. Only 
tumor types with available TCGA data on molecular cor-
relations were included in this analysis (see Supporting 
Methods and Supporting Fig. 1).

Patients with 13 primary tumor types that had a 
persistent survival disadvantage according to the NCDB 
survival analysis were subjected to molecular analyses. 
On the basis of the genetic ancestry information from 
TCGAA, EA and AA patients in TCGA were included 
in our study. This differed from SEER and NCDB, 
which rely on self-identified race to identify AA and EA 
groups. The number of AA patients with skin cutaneous 
melanoma in TCGA was insufficient for testing, so this 
group was excluded from all analyses. The distribution of 
EA and AA patients in TCGA according to tumor type 
is shown in Supporting Table 1. For each TCGA tumor 
type of interest,  U tests were used to compare DNA 
methylation profiles, and feature-by-feature t tests were 
run to compare the miRNA sequencing profiles for the 
AA and EA groups. A β-uniform mixture model20 was 
used to adjust for multiple comparisons and estimate 
significant features of AA race at different false-discovery  
rates (FDRs). LncRNA expression profiles were nor-
malized using The Atlas of Noncoding RNA in Cancer 
(https ://bioin forma tics.mdand erson.org/public-softw are/
tanri c/)21,22 based on TCGA RNA sequencing data in 11 
tumor data sets, with estimates of expression levels repre-
sented in reads per kilobase million. The significance of 
the differential expression of each lncRNA, comparing its 
expression estimates between AA and EA patients with 
cancer, was computed using U tests while controlling for 
the FDR for each tumor type. For invasive breast (BRCA) 
and uterine corpus endometrial (UCEC) carcinomas, 
the analyses were performed independently for TNBC 
and non-TNBC cases and for endometrioid endometrial  
adenocarcinoma (EEA) and non-EEA cases, respectively. 

https://bioinformatics.mdanderson.org/public-software/tanric/
https://bioinformatics.mdanderson.org/public-software/tanric/
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To avoid low signal-to-noise instances, only lncRNAs 
with mean absolute deviation scores >0.1 were included 
in the final analysis.

To identify common biologic processes that po-
tentially explain the association between AA race and 
overall survival, pathway analyses were performed using 
Ingenuity Pathway Analysis software (version 46901286; 
Ingenuity Systems). After comparing DNA methylation 
profiles of EA and AA patients for each TCGA tumor 
type, probes with the most extreme P values were ex-
tracted and mapped to human genes. Probes with β differ-
ences >0.1 at an FDR of 0.1 were considered to represent 
significant changes in methylation. For a gene to which 
multiple probes were mapped, the probe with the lowest 
P value was selected to represent that gene. After compar-
ing miRNA expression profiles for each tumor type, only 
miRNAs that were significant at a P < .05 were mapped. 
Additional pathway analysis of differentially methyl-
ated genes was performed using gene set enrichment 
analysis software and the Molecular Signature Database 
(Broad Institute and the University of California, San 
Diego).23 Depicted pathways have FDR <.05 and an ab-
solute normalized enrichment score >1.5. Unsupervised  
hierarchical clustering, heatmap rendering, and figure 
creation were performed in the R programming language 
(R Foundation for Statistical Computing).

RESULTS

Survival Analysis
We first focused on overall survival differences between 
AA and EA patients using the SEER data. After apply-
ing the exclusion criteria, 2,045,839 patients who had 
complete data (12.5% AA and 87.5% EA) were available 
for analysis. We sorted them into 42 different cancer type 
populations, ranging from 361,847 patients with breast 
carcinoma to 188 with placental cancer. Supporting 
Table 2 displays the clinical characteristics of the SEER 
study patients. Among all patients, AA race was associ-
ated with an increased risk of death for a majority of the 
cancer types (see Supporting Fig. 2). Specifically, 28 can-
cer types were associated with an increased risk of death, 
with HRs > 1.0. To determine whether the survival out-
come was related to sociodemographic factors, we per-
formed a secondary survival analysis using the NCDB 
data. We focused on 19 cancer types associated with a 
survival disadvantage that had TCGA data available for 
molecular analyses. The NCDB data were available on a 
total of 5,150,023 patients (11.6% AA and 88.4% EA). 
Supporting Table 3 in displays the clinical characteristics 
of the NCDB study patients. In the NCDB and SEER 

survival analyses, we observed persistently higher mortal-
ity for 13 tumor types in AA patients (HR, >1.0) com-
pared with 6 tumor types in which the higher mortality 
rate was lowered after adjustment for socioeconomic vari-
ables (Fig. 1). We then performed molecular analyses for 
cancer types with increased mortality identified in both 
the NCDB and SEER data sets using TCGA data.

MiRNA Analysis
We analyzed genetic ancestry data for 5283 tumors 
across 12 tumor types, including 12.8% obtained from 
AAs and 87.2% obtained from EAs. First, we compared 
miRNA expression levels in AA and EA patients. Of 
the 12 tumor types analyzed, we focused on the 5 types 
with the highest numbers of significantly differentially 
expressed miRNAs at an FDR of 0.1: BRCA (300 
miRNAs), kidney renal clear cell carcinoma (KIRC) 
(408 miRNAs), prostate adenocarcinoma (PRAD) 
(102 miRNAs), thyroid carcinoma (THCA) (63 miR-
NAs), and UCEC (177 miRNAs). All differentially ex-
pressed miRNAs are listed according to tumor type in 
Supporting Table 4. Unsupervised clustering analysis 
of the most variable miRNAs in AAs revealed similari-
ties between KIRC, PRAD, THCA, and BRCA tumors 
(Fig. 2A) We performed pathway analysis to determine 
the clinical significance and biologic functions of the 
differentially expressed miRNAs for each cancer type. 
For all cancer types, differentially expressed miRNAs 
were associated with cancer drug resistance pathways 
through cancer drug efflux (see Supporting Fig. 3). Also, 
for all cancer types, 11 miRNAs were commonly dys-
regulated in AAs (Table 1).24-37 Investigation of these 
miRNAs within published data indicates their role in 
oncogenesis. Notably, the expression of miRNAs miR-
15a, miR-17, and miR-130-3p was frequently elevated 
in patients with BRCA, KIRC, prostate carcinoma, and 
THCA.

LncRNA Analysis
To characterize dysregulation of lncRNA expression 
that may be associated with AA race, we analyzed 
lncRNA expression in patients with 11 cancer types 
who had adequate sample sizes. The dysregulated lncR-
NAs by cancer type are listed in Supporting Table 5. 
Of these 11 cancer types, only 4 tumor types had ≥20 
dysregulated lncRNAs associated with AA race: THCA 
(20 lncRNAs), PRAD (80 lncRNAs), BRCA (77 
lncRNAs), and KIRC (34 lncRNAs) (see Supporting  
Fig. 4). Greater than 70% of the lncRNAs were unique 
to specific cancer types.



Analysis of Racial Disparities/Lara et al

803Cancer  February 15, 2020

DNA Methylation
Next, we analyzed DNA methylation and gene expression 
data for all cancer types. We identified 9 cancer types as-
sociated with dysregulated gene methylation in AA race: 
bladder urothelial carcinoma (30 genes), BRCA (325 
genes), colon adenocarcinoma (294 genes), esophageal 
carcinoma (541 genes), head and neck carcinoma (204 
genes), KIRC (263 genes), PRAD (269 genes), THCA 
(482 genes), and UCEC (157 genes) (see Supporting 
Table 6). Unsupervised cluster analysis of DNA methyla-
tion and gene expression was performed on cancer types 
that had >100 genes affected (Fig. 2B). Among 7 of 8 
cancer types, we identified hypomethylation of TRPC5 
(transient receptor potential channel C5), S100A14 
(S100 calcium binding protein A14), and MIR662 in 
AA tumors compared with EA tumors, leading to in-
creased gene expression. These alterations are known to 
elicit resistance to chemotherapy38-41 and constitute po-
tential therapeutic targets. In addition, we observed that 
esophageal carcinoma tumors presented distinct sets of 
DNA methylation compared with other cancer types, 
with 466 of 541 unique genes (86%) affected. This may 
represent the already known effect of environmental ex-
posure on molecular alterations of esophageal carcino-
genesis.42 Finally, the gene set enrichment analysis of 
biological pathways enriched in genes with altered DNA 

methylation in AAs across 7 cancer types revealed an 
enrichment in metabolism, development, and signaling 
pathways (see Supporting Fig. 5).

Tumor Subtyping
Finally, we compared histologic subtypes in AA patients 
with BRCA and UCEC. In BRCA, TNBC is an aggres-
sive tumor phenotype more frequently diagnosed in AA 
women than in EA women.43 Similarly, AA women are 
more likely than EA women to be diagnosed with type 2 
(non-EEA) uterine tumors, which are typically more ag-
gressive than other uterine tumor subtypes.44 Therefore, 
we compared epigenetic modifications in TNBC versus 
non-TNBC cases and EEA versus non-EEA cases in AA 
and EA patients. AA TNBC and non-TNBC cases were 
associated with 274 and 41 differentially expressed miR-
NAs, respectively. We performed pathway analysis of 
individual data sets (TNBC and non-TNBC) and then 
compared the predicted activation of functional path-
ways using Ingenuity Pathway Analysis software. AA 
miRNA expression data on TNBC were associated with 
an increase in the angiogenesis pathway, whereas miRNA 
expression data from AAs with non-TNBC tumor types 
were associated with a decrease in the angiogenesis path-
way (Table 2). In addition, all UCECs with dysregulated 
miRNA expression were of the EEA subtype; therefore, 

Figure 1. The risk of death in African American (AA) patients with cancer is illustrated according to tumor type. Shown are results of 
multivariate analysis of the risk of death in AA patients with cancer in the Surveillance, Epidemiology, and End Results (SEER) and 
National Cancer Data Base (NCDB) databases. HR indicates hazard ratio.
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Figure 2. Features of African American (AA) patients in The Cancer Genome Atlas are illustrated. Unsupervised hierarchical 
clustering and heatmaps of (A) the top commonly dysregulated microRNA and (B) DNA methylation targets in AA versus European 
American (EA) patients with cancer from 5283 tumors. (A) Fold changes in AA vs EA patients are illustrated for significant common 
microRNAs in 5 cancer types. (B) Δ β values are illustrated in AA versus EA patients for top loci. Red boxes indicate relative 
hypermethylation in AA patients, blue boxes note relative hypomethylation in AA patients, and white boxes represent genes with 
no significant alteration in AA versus EA patients. BRCA, indicates breast cancer; COAD, colon adenocarcinoma; ESCA, esophageal 
carcinoma; HNSC, head and neck squamous cell carcinoma; KIRC, kidney renal clear cell carcinoma; PRAD, prostate adenocarcinoma; 
THCA, thyroid carcinoma; UCEC, uterine corpus endometrial carcinoma.

TABLE 1. MicroRNAs Commonly Dysregulated in African American Patients With Cancer

MicroRNA 
Component

Expression Level in AAs

Characteristic Reference(s)UCEC THCA PRAD BRCA KIRC

miR-27a Low — — High High Resistance to 5-fluorouracil mediated by 
miR-27a/b

Geretto 201724

miR-331-5p Low — — — — —
miR-130a High High — High High Potential diagnostic marker for breast,  

gastric, ovarian carcinomas
Jiang 2015,25 Zhang 2017,26 

Sueta 201727

miR-328 Low — — — — Overexpression can improve radiosensitivity 
of NSCLC

Ma 201628

miR-181a — High High High High Regulatory role in NSCLC pancreatic,  
gastric, and colon carcinomas

Feng 2018,29 Shi 2017,30 
Meijer 201831

miR-133a — — — — High Associated with aggressive bladder 
carcinoma

Pignot 201332

miR-379 — — — High High —
miR-154 Low — High Low High Prognostic significance for renal cell 

carcinoma
Lin 201833

miR-15a High High High High High miRNAs encoded by miR-15/16 may  
function as tumor suppressors

Aqeilan 200934

miR-17 High High High High High Overexpressed in various solid tumors Zhu 201835

miR-103-3p High High High High High Considered an onco-miR in gastric, and 
bladder carcinomas

Egawa 2016,36 Duan 201637

Abbreviations: AA, African American; BRCA, breast cancer; KIRC, kidney renal clear cell carcinoma; miR, microRNA; NSCLC, non–small-cell lung cancer; PRAD, 
prostate adenocarcinoma; THCA, thyroid carcinoma; UCEC, uterine corpus endometrial carcinoma.
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we were not able to compare miRNA expression profiles 
in the EEA versus non-EEA cases. TRPC5, the most sig-
nificantly hypomethylated gene in the BRCA and UCEC 
data sets, was overexpressed in all histological subtypes. 
We found significant differences in lncRNA expression 
associated with AA race only in the non-TNBC and EEA 
groups (see Supporting Table 5).

DISCUSSION
Our findings demonstrate that AAs have a higher risk of 
death for many cancer types compared with EAs. This 
greater risk of death was consistent across 2 large data-
bases of patients with cancer and persisted despite con-
trolling for socioeconomic factors, access to care, and 
insurance status. Furthermore, we observed that, among 
these cancer types with a persistent survival disadvantage 
in AAs, epigenetic modifications unique to AAs may have 
influenced tumor biology and response to therapy.

This knowledge adds to a growing body of evidence 
that racial disparities may be caused by genetic and bio-
logical differences.45 For instance, differential expression 
of inflammatory mediators, such as IL-6, and inflamma-
tory cytokines have been found to be disproportionally 
increased in AA patients with breast cancer.46 In addi-
tion, both mediators of angiogenesis (vascular endothelial 
growth factor),and immune cells with a tumor-promoting 
phenotype (tumor-associated macrophages) have been 
found to be increased in tumors from AA patients.47 The 
genetic basis for these tumor-promoting events has yet to 
be elucidated but suggests inherent racial differences.

The strengths of this study are the use of 2 large, 
diverse, nationally representative samples of patients 
paired with an equally diverse molecular database. We 
adjusted for several measures of socioeconomic status 
that could confound the relationship between race and 
survival. Despite controlling for these variables, we found 
a persistent cancer survival disadvantage in AA patients. 
Furthermore, using TCGAA, we were able to reliably 

assign tumor types to specific races with certainty based 
on integrated computational algorithms to conclude 
the genetic ancestry of TCGA patients at global and 
local levels. Previous studies using TCGA data relied on 
self-identified race or ethnicity, which were challenging 
and limited the ability to elucidate the genetic contribu-
tion to cancer disparities.48 In addition, despite emerg-
ing interests in the noncoding genome for diagnostic and 
therapeutic purposes, there remains a need to functionally 
annotate cancer-associated miRNAs and lncRNAs. Our 
findings help to identify the molecular roles of epigenetic 
processes that may contribute to cancer pathology.

Limitations of the current study include the low ab-
solute numbers of patients who had some cancer types 
(lymphoma, melanoma, uterine sarcoma, and glioblas-
toma multiforme), which restricted our ability to perform 
molecular analyses for these tumors. In addition, the 
socioeconomic status of patients in the TCGA data are 
unavailable, so we were unable to adjust for this variable 
when comparing racial differences according to tumor bi-
ology. Also, the molecular data in TCGA lacked detailed 
clinical information sufficient to provide adjusted out-
come measures. We consistently found higher mortality 
rates associated with AA race in several cancer types across 
2 large cancer registries, SEER and NCDB. However, we 
are not able to validate data from either cohort, which is 
an inherent limitation of these data sources. Moreover, 
both data sets lack or have only incomplete treatment 
data, such as chemotherapy, surgical intervention, and 
radiation therapy. Without these important variables, we 
are unable to control for the biological effects of treat-
ment on the epigenome. Finally, although we include 
proxies for socioeconomic status in our population-based 
analysis, we are unable to assess systematic differences be-
tween races. For example, patients treated in the public 
hospital setting are found to have a longer interval from 
diagnosis to surgery and fewer preoperative visits.49 We 
also did not analyze trends in survival among other mi-
nority groups, including Asian, Native American, and 

TABLE 2. Disease and Functional Networks in African American Patients With Triple-Negative Breast Cancer 
and Non–Triple-Negative Breast Cancer Based on MicroRNA Expression

Tumor Type
Diseases or Functions 
Annotation P

Predicted 
Activation Z Score Associated MicroRNAs

TNBC Angiogenesis 1.64 × 10−3 Increased 0.748 mir-21, mir-27, mir-29, mir-361
Non-TNBC Angiogenesis 2.99 × 10−9 Decreased −1.890 mir-135, mir-17, mir-154, mir-320, mir-19, mir-130, 

mir-181, mir-185, mir-1301, mir-217, mir-181a-5p, 
mir-15, mir-221, mir-361, mir-8, mir-103, mir-132, 
mir-146, let-7, mir-25, mir-30, mir-21, mir-320b

Abbreviations: mir, microRNA; non-TNBC, non–triple-negative breast cancer; TNBC, triple-negative breast cancer.
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Hispanic patients with cancer, some of whom may also 
have survival disadvantages.50

Hispanic patients make up a fast-growing minority 
group in the United States; however, the heterogeneity 
within this group makes molecular analysis particularly 
challenging. This highlights the need for additional ef-
forts in identifying larger samples of underrepresented pa-
tients with comprehensive clinical and genomic profiles 
to better understand disparities in cancer survival across 
other minority groups.

In summary, we identified epigenetic modifications 
unique to AA patients with cancer that may have clinical 
importance because of their effects on tumor aggressive-
ness, response to therapy, and overall survival.
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