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A Additional Results and Proofs

A.1 Additional results and proofs from section 2

Proposition 2. Suppose we can extend u to R? such that u is continuous and quasi-concave. Then for any
B, pNT, 7, and W on which q is defined, there exist scalar values p* and W* such that:

a@. V" W) e argmax  u(q.q¢V")

P qEpNTgNT <W's
a@.p"T T W)k (p+ 1, pNT) =W

We demonstrate a generalization of proposition 2, in which multiple goods may be taxed. We consider
a general setting with N goods, consumption set X = X7 x XNT C Rf , with consumption vector q =
(@T,qNT) € X. Here X7 is the consumption set for taxed goods, while X7 is the consumption set for
non-taxed goods. We assume that either X7 C R, or X7 is convex.

The agent has preferences = on X. Informally, we want to assume preferences such that agents smoothly
prefer moderation. To say that they prefer moderation, one generally assumes convex preferences. However,
we do not want to assume a convex consumption set X. We might alternatively assume that preferences are
pseudo-convex, in that for any g € X and any finite n:

n n n
GEX - M >0Vh=1,...0,) AN=1,> Mg €X=> Mgy~ q
k=1 k=1 k=1

However, we also want some smoothness to preferences. More formally, we want to figure that if ¢’ = g,
then there is an epsilon ball around q’ such that the agent would prefer any element in that epsilon ball to
q if that element were also in the consumption set. Furthermore, any convex combination of points in these
epsilon balls should yield a point that, if contained in X, is also strictly preferred to q. We refer to this
assumption on preferences as continuous pseudo-convexity (CPC).

Assumption 2. For any q € X, define the set of strictly preferred allocations:
A={qd' € X|q' - q}
There ezists some function € : A — Ry such that for any n € N, for any A,..., A\, >0 and q4, ...,q,, € A,

if >op_y A =1, then :

n n
3, @, € R |a) — gl < elar) VE, Y Mgy’ € X =Y M’ - g
k=1 k=1



We provide this description of CPC preferences to facilitate intuition, but our main result for this section
comes from an equivalent, yet more geometric, expression of this description.

Lemma 1. Preferences = are CPC if and only if for every q € X with corresponding set of strictly preferred
bundles A there is an open and convex set @ C RN such that ONX = A1

Proof: For one direction, the convex hull of the union of open €(q’) balls around ¢’ € A is open, and by
assumption does not contain any elements of X \ A. For the other direction, for any q’ € A, define ¢(q’) as
a positive value such that q”’ € ]Rf lg" —q'|| <e(q’) = q" € O. We can do so because O is open. For any
such ¢”, if ¢ € X, then ¢” > q. |

Let p = (pT,pNT) ¢ Rﬂ\_] denote a generic price vector, where pT and p™NT are price vectors for taxed

and non-taxed goods respectively. In particular, let p = (p*,p™¥ ) denote the vector of sticker prices.
Let 7 denote the vector of taxes for taxed goods, so that g7, ¢™VT, and T all have the same number of

elements. The consumption vector q(p,T) = (¢ (P, T), VT (p, T)) satisfies the following properties:

T GNT < W — pT xq"
(a",a"") = (q",a"") Vg € X7 pNT N < W - T g
q(p,0) € argmax >
GEX PrG<W

In words, consumption of the non-taxed goods is always optimally determined upon choosing consumption
of the taxed goods, and consumption is optimally determined when the agent correctly perceives prices, i.e.
when there are no taxes. We also restrict the domain of sticker prices and taxes so that expenditure on
non-taxed goods is positive, i.e.:

P g (P ) >0
The claim is that for any p and 7 in this domain, there is a (p®, W*) that explains q(p, 7).

Proof of Generalization of Proposition 2: Define q = (¢, qNT) = q(p, T) and:

!/

/ / / / _ ’ ’ ’
A° E{(qT 76NT)|qT EXT,HqNT EXNTIPNT*(]NT :eNT ’(qT ,qNT)E O}

Suppose for the sake of contradiction that (g7, p™NT x ¢NT) € Co(A°), ie. that In € N, (g}, el ) € A,
and Ay > 0 Vk =1,...,n such that }_, Ay = 1 and:

n
Z)‘k(qgveg ) = (qu piT qNT)
k=1
Since (g}, eNT) € A Vk, that means that:
vk gy e =N x ) ay = (af et ") = qp €O

If XNT C Ry, then Y 1, ApNT % g T = pNT % ¢NT implies that Y ;'_; \egh' T = g™VT because positive
non-tax expenditure requires that p™¥1 # 0. In that case:

n n
Z/\qu =q =< Z/\qu c0O
k=1 k=1

This is a contradiction arising from q ¢ O.
If XNT is not a subset of Ry, then X7 is convex. This means > ,_; \xq; € X. Pseudo-convexity of
preferences implies that:

n
> gy - g
k=1

INote that O is open in RY.



Yet the weighted average of taxed goods is the desired taxed good consumption bundle, whereas the weighted
average of non-taxed goods is affordable:
n
> gl =q"
k=1

n n
—NT NT NT —NT NT
k=1 k=1

T’ pNT

Thus, the agent could not have optimally chosen ¢V, another contradiction. We conclude that (g7, p

q"") ¢ Co(A°).
Now, we can apply the Separating Hyperplane Theorem to say that there is a vector (p*, 1), where p’*
has as many elements as g7, such that:

(st,].) * (qT,ﬁNT *qNT) < (st’ 1) * (qT"eNT') V(qT',eNT') c CO(.AE)

Defining p* = (p7*, p7), this implies that for any bundle ¢’ = (¢7", ¢ ") € O:

p'xq >p'iq
Since O is open, the above expression can never be satisfied with equality. To see this, suppose otherwise,
i.e. that 3¢’ € O such that: /

p’*xq =p°*q
Note that V7 > 0 implies that we can choose g” within e(q") of ¢’ by slightly reducing a component of ¢’
for which the corresponding perceived price is positive. Thus, ¢”" € O, yet p° * ¢ < p® * q. This yields our
desired contradiction. Therefore:

p*xq >pxqVq €O
We conclude by defining W* = p* x q and noting that Vq’' € X:
qd>-q=>q¢q cO0=p*>W¢*

Therefore, the model has rationalized consumption because no preferred consumption bundle is perceived to
be affordable. O

Now that we’ve gone through the proof, we can make a couple of observations. One, the assumption of
CPC preferences is satisfied when preferences are represented by a lower semi-continuous and quasi-concave
function w on RY, so that:

Ve,ye X tx =y < ulz) > u(y)

This makes it clear that we have, in fact, generalized proposition 2. Also, note that it may be easier in
practice to check to see that preferences have such a utility representation than to check that they satisfy
continuous pseudo-convexity.

Two, it may appear strange that we needed to assume that X7 is concave specifically if it has dimension
greater than one. This is because a discrete grid for consumption of non-taxed goods can create a lumpy
evaluation of non-tax expenditure, thwarting the existence of a separating hyperplane. For example, consider
a consumption set Ry x {0,1}2, where there is one taxed good chosen continuously and two non-taxed goods
chosen from {0,1}. The sticker price vector is p = (1,1,1). The consumer have preferences rationalized by
the function:

u(q) = ¢1 + min{gs, g3}

In words, the taxed good is perfect substitutes with the minimum consumption of the two non-taxed goods,
which are perfect complements with each other. Consider the consumption bundle:

q=(0,1,0)

If the agent perceived income W* > 2, they could do better by consuming (0, 1,1). Supposing otherwise, if
the agent perceives a positive tax-inclusive price of the taxed good, then optimally ¢; > 0 and ¢3 = g3 = 0.
Finally, there is no optimal consumption bundle if p; < 0. Thus, the consumption bundle cannot be
rationalized.

Next, we derive our expression for the change in consumer surplus due to the tax:



Proposition 3. Lete(p) and h(p) denote the expenditure function and compensated demand for the taxed good

respectively at price p for the taxed good and price pN" for the other good, so that the agent is minimally com-

pensated so as to achieve utility of at least u(q(p,p™ 1,0, W)); formally, e(p) = min{W’|u(d(p, pNT, W"),d"T (p,pNT ,W)) >
u(q(p, pNT,0,W))}, which is well-defined by continuity of u and connectedness of the choice set. Then com-

pensating variation due to the tax satisfies:

ACS = (p+7 —p*)h(p*) + e(p®) — e(p) (10)

Proof: Letting W* denote conjectured wealth when facing tax 7, local non-satiation of preferences implies
that:
@*.7"") xq(B, " T W+ ACS) = WP = ¢(p®)

In words, total perceived expenditures equal perceived wealth, which must be exactly the wealth the agent
would need under perceived prices to achieve the utility from before the tax. Plugging in and using the fact
that h(p®) = q(p, pNT,7,W + ACS) yields:

(P+7—p)h(p®) =[P+ 7,0 ") = (°, 0" )] * q(p, 7, W + ACS)
(F+7—p)h(p®) = W + ACS — e(p®)

Rearranging and again using local non-satiation yields:

ACS = e(p®) =W + (5 +7 = p")h(p) = e(p®) — e(P) + (F+ 7 — p*)h(p°)

O
The following lemma establishes the Compensated Law of Demand (CLD) in our setting:
Lemma 2. For any agent i with type 0; and any two prices p and p':
p<p =q(p;0:i,h) < q(p; 6:,1)
Proof: Note that there must be values ¢N7 and ¢¥" such that:
(a(p:65,0),4"") ~o, (a(p': 61, h),a™"")
From local non-satiation:
o a(; 05 1) + V" gNT < (s 05, k) + pNT x N
(05, h) +pNT x gNT < plwq(p; 63,1) + pNT x g
Rearranging yields:
p* [a(p; 6,1) — a(0s 05, 0)] < pNT x (g — VT < x [a(p: 65,1) — a(p': 63, 1)
Thus, p' > p = q(p; 0:,1) > q(p'; 03, h). o

Proposition 4. Assume a continuously differentiable and strictly increasing aggregate supply function
QPP | gs well as continuously differentiable compensated demand functions h; and subjective price functions
p? Vi. Subjective price functions change one-for-one with sticker prices, so that:

p;(p.7) =p+p;(0,7) Vp VT Vi
Subjective prices also agree with sticker prices when there is no tax:
p;(p,0)=p VP Vi
We implicitly define the pre-tazx sticker price p°? by:?
Qeurply (poldy — Z ha(p°, ;)
i

2v; = ui(ds (p, Wy)) Vi



and the new sticker price p"¢¥ after the imposition of the tax T when agents are compensated by:

qupply —new th pz )) )

Defining deadweight loss by

—old
pwL =Y ACS + / Q) — 7Y g
; prew -
where
p; (", T)
ACSZ = (—’flew + 7 — D; (pnew’T))qic + / hi(p7 Vi)dp W
Z_)Old

QZ = h (pl(—’ncw )7Vi) Vi

then aggregate deadweight loss has second order approximation around ™ = 0:

Ohi\2
15, (SR

DWL ~ —= ; |Ea
ah 0Qr vty
2 ; Op >, g Q—p
Proof:
P (5 1) p
DWL =3 / hi(p. v;)dp + / QP (p)dp + 3 (B — b} (5", ))g
i ﬁol«l BN ew P
Note that p"" is a function of 7. One can easily confirm that p"¢*|,—o = p°!¢, so that deadweight loss is

4

zero when 7 = 0. We can find B%T from the Inverse Function Theorem:

8qupply aﬁnew B oh; apl 8—new (9pf B oh; 8—neu 3pf
_Zap[anew = D D ]

op  Or ap - or | or
oprew Zz%ﬁp%

- 8Q supply
or - Ez 6;0
We can then take the first derivative of deadweight loss with respect to the tax:

ODWL Z[aﬁww Lo oprew

supply ( =new
or or or or @ (™)

Jhi —

Oh; [8 e Ops

> (22 h, + (e, ) — o)
~Lor " ! ’ op ' Ot or

1]
8_1Lew R M supply SNEwWY _ S (=new _ anew 6h 8_’,LCLU 8pf
=5 Zi:hz @) = Y (Wi ) =) =+ 5]

i

s (=new _ znew Oh; Op" apzs

Since pf(p™¥,0) = p"ev, it follows that

ODW L

=0
or 7=0

3Note that pe% < p°ld Vr > 0 from the Compensated Law of Demand and the fact that supply is strictly increasing in
price.

4This claim also uses the fact that aggregate supply is strictly increasing while aggregate compensated demand is weakly
decreasing, so that there is always a unique value for p™c%.



Obtaining the second derivative would be straightforward if h; € C? Vi. Instead, we find the second
derivative at 7 = 0 from the definition:

=new 8
*DWL DR (G et % (252 4 9]
—_— = lim —
or2 =0 7—0 T
Note that continuity of a—pj with respect to 7 for all agents implies that 3’?;: ~ is continuous. Since md—:ﬂ/
and V? are also continuous:
> — Z lz [ p + pz ] lim ( (p 7T) p )
87— — =0 37’ =0 BT =0 7—0 T
. Z hi aﬁ”ew’ +5Pf p;
or 7=0 or 7=0 or =0
Using the fact that m; = %p:(), we can note that:
8—new Z mza—hk
|T=0 8
quppl'u
ar Op - Zz Bp
and so: ohira
FDWL NS 2 (limigy) ]
87'2 =0 — : [3 ap agzsupply N %
i op i Op
Now we can find the second order approximation for deadweight loss:
ODWL 190°DWL 9
DWL~DWL|;—o +—— a7 l7=o0T + §W|T=OT
Oh;\2
1 , Oh; (O2imiGy) ,
DWL =~ _5[2 m; 6_]7 aQ~urrly dh,; ]T
i dp 24 9p
O

A.2 Additional results and proofs from section 3

The upper and lower bounds use the following lemma:

Lemma 3. For any agent i with type 0; and any two pairs (p,¢;) and (p',C)):
dwl(p';0;,¢;) > dwl(p; 0:, () — (0 — p)(a(p'; 05, ¢) — a3 65, G))-

Proof: Note from the definition of the expenditure function and optimal compensated consumption vectors
q and ¢’ for price vectors (p,p™?') and (p/, pN'1) respectively:

e(@) —e) =@, p ") xq — (p.p"")xq > @ . PN x g — (0.p"T) x @' = (p' — p)a®';6;, )
Plugging in yields:

dwl(p'; 0;) = [e(p") — e(P)] — (0" — P)a(p’; 0:, ¢;)
= le(®) —e(p)] + [e(p) —e(@] — [ —p) + (p — D)5 6i, )

> (p" = p)a(p':6i,¢) +elp ) e@) — (0" —p) + (p - D)a®'s6:. ¢)
=e(p) —e(®) — (p — P)a(v; 6. ()
= dwl(p) + (p ﬁ)Q(p;Gi,Q) (p—P)a(p’; 0. ¢)
= dwl(p;0;) — (p — §)(a(P's 0. ) — a(p; :. Gi))
See also appendix figure 5 for a graphical demonstration. O



(a) p>p ) p' >p

Figure 5: A graphical illustration of Lemma 3. As long as demand is weakly decreasing, dwl(p’) cannot be
smaller than dwl(p) minus (plus) the orange rectangle.

Proof of Proposition 1: From lemma 2 and prices being bound away from zero, we can always find a value
of p° such that:

/ q(p®; 05, 1)dEp(0;) < / q(p;; 0:, G)dFps 0.¢(p;, 05, Gi) < / q(p®; 05, h)dFy(0;)
J0; Jp3,0:,Ci JO;

Pick A € [0, 1] such that:

A / A(5%: 62, R)AF(8) + (1 — ) / a(5°: 0, 1)dFy(6;) = / G053 63, ) AF e .c (5, 61, C1)
i i p5,0:,Ci

Define Felg such that Fy = Fyp and ¢ = h with probability A, ¢ = [ with probability 1 — A, § L ¢. Then:

/' 05 0, ) (6;) = / NG5 6 1) + (1 — Ng(p*s 01, DAy (6:)
J6;,¢; J6;

2/9 . a(pli; 0is G)dF s g (04, Ci)

Proof of theorem 1: From lemma 3:

/9 [dwl(p;; 0;, )+ (D° — D)a(pi; 05, G)|dFps 0,¢(p5, 05, i)
p;,0i.Ci

> [ 00 + (5~ P)al: B COIF (61,61
p;i,0:i,Ci
But note from the rationalizability of the data that:

G -0) [ a0 G gl 0.6) = (<) [ (0 GAF; (61.6)
p5,0:,Ci 0:,¢i
We can thus conclude that:

/ ) dwl(p;; 0;,Ci)dEFps 0.¢(p, 05, ) 2/9 . dwl(p®: 0;, G)dFy ¢ (05, Ci)
p;,0i,Ci i,Gi



Proof of theorem 2: From lemma 3 and rationalizability of the data:

/ [dwl(p®(p)): 6:) + (§ — P)a(P"(B}); 0, C)IAE}. o (15,6, C:)

p5,0;
> / [dwl(p; 0:) + (p§ — D)a(p;; 0i, Ci)dEpe 0.¢(P5, 0y Ci)
p5,0:,Ci
/ [dwl(p°(p5); 0:) + P a(p°(P); 0, Ci)AFY. o (D5, 6s, Ci)
p5,0;
> /[dﬂfl(Pf§9z')+PfQ(Pf;92-,Ci)]des,e,c(Pfﬁi,Ci)
p5,0:,Ci
/[d'LUl(Pb(pf)Qez’»Ci)‘F(pf_ﬁS)Q(Pb(pf)§9i><i)]d Y 0.5, 05, G)
p;,0;

> / [dwl(p5:6:) + (0 — 5°)a(03; 64, ) dFe 0.0 (05, 65, )

p3,0i,Ci

Rearranging yields:

/ dl(p(p2); 63, CAFY, (05,65, C) > / dwl(p3; 01, C)AFye 0. (15, 05, G1)
pi,0:i,Ci pi,0i,Ci

- / 0O B G 01,0, ¢ / = P0G (01,0,
p;.0:,Ci p;0i,Ci

We can show from lemma 2 and p € [p,p + m7] = P Vi that the term on the second line is non-negative.
Formally for any pi € (5, + m7), 6, G, ¢

P} > 9" = pP(0)) > B° = a(’(p]); 6:, ) < a(pS;0:, i)

P <7° = p"(p}) <7° = a(0"(p}); 0i,¢}) > a(p5; 0, Gi)
Either way:
(p; — 7°)a(P"(0}): 6:, <)) < (0 — P°)a(p}; 0, i)
Thus:

/ (Pf - ﬁs)Q(Pf; 0;, Cz‘)deb,Gﬁc(Pfa 0;, Cz‘) = / (Pf - ﬁS)Q(Pf; aiaci)debﬂ;C(pfa 9%(2‘)
p5,0:.Ci p;€int(P),0:,Ci
+/ (pf _ﬁS)Q(p?;givCi)de‘,e,C(pfveivCi)
p; €{P,p+m7},0:,(

> / (52— 3)a(p (02): 00, CVAEL. o (9. 00, 1)
p; Eint('P),G,,' ,Ci

_|_

(P} = P°)a(pS; 0, G)AFy. g ¢ (1503, G:)

p; €{p.p+m7},0:,;

- / B = P00 GOAEY (91,80, C)
D i,Gi

oo

/ dwl(p"(2): 01, C)AFy o (95 0) > / dwl(p: 61, C)AFye o(p2 61, C)
Pf»ez‘»(:z Pfﬂm(i



Before stating and proving theorem 3, we note that deadweight loss is bounded by the product of the
reduction in demand and m7.

Lemma 4. If p € [p,p + m7], then dwl(ps:0;,G) < [q(P: 6i. G) — q(pf; 0i, G) T V05, ¢

Proof: Using lemma 3:
0 = dwl(p; 0;, Gi) = dwl(pi; 0:, G) — (P — P)a(P; 05, Ci) — a(pi; 03, G

dwl(pi; 0;, G) < [q(P; 0i, G) — a(pi; 0i5 CG)(0F — D) < [a(P; 04, Ci) — q(py; 0i5 G) T
O

Next, we state and prove theorem 3. It says that the maximal value of deadweight loss consistent with the
data and knowledge of Fy is given by having some agents perceive the highest possible price and some others
perceive the lowest possible price. It achieves this by assigning the good there where it will generate the
most deadweight loss, while holding aggregate demand constant. The resulting demand function, ga ~(6;), is
such that those for whom the ratio of deadweight loss® to change in quantity exceeds A perceive the highest
price, those with such a ratio below A perceive the lowest possible price, and those with ratio equal to A
are split between perceiving the high and low price in a way that rationalizes demand. Those who perceive
the high (low) price consume the least (most) possible consistent with their perceptions.

Theorem 3. There exist values A € [0,m7] and v € [0,1] such that:

/ dn(0:))dEy. o, = / ai; 03, G)dFye 0. (p7, 03 )
D3 ,0; p;,0i,Ci

where:
. dwl(p + mT; 6;,1) dwl(p + mT;0;,1) ]
9,) = |1 > A) 441 0,1
500 = (1 et > ) MGk e st P mribi)
dwl(p + mT; 6;,1) dwl(p + mT; 0;,1) }
+ |I(—— — <A)+(1-9)1 =A p;0;,h
[ (q(p; 0i, h) — q(p+mT;0;,1) )+ (=) (q(p, 0ih) — q(p+ m7;0;,1) )]al )

Of course, if ¢(p; 0, h) = q(p + m7;0;,1), then Ga (0:) = q(P; 0;, k). Furthermore, under assumption 1, for
any Fps g.¢c that rationalizes the data such that Fy = Fy:

/ Ga(0;) — q(p; i, h)
0, (P +m7;0;,1) —q(p; 6;. )

dwl(p+ o 0, )AFL 5(95.6:) > / dwl(pS: 05, C)dF e 0.0 (9565, Ci)
2,0:,Ci

where the integrand on the left-hand side is defined as zero for any 0; such that q(p + m7;0;,1) = q(p; 05, h).

The intuition is for the A term is straightforward. The econometrician observes the reduction in aggregate
demand due to the tax. In searching for the explanation of that reduction in demand that maximizes
deadweight loss, one should assign the reduction in quantity demanded to those for whom that allocation
yields the greatest deadweight loss. Following this procedure, there is a cutoff value A which describes the
amount of deadweight loss obtained relative to the reduction in quantity demanded sufficient to warrant the
assignment of subjective tax-inclusive price p{ = p + m7 to that agent.

The idea behind the tie-breaking provision is that those individuals who perceive the high price should
reduce their consumption as much as possible to maximize deadweight loss; those who perceive the sticker
price should maximize their consumption to permit even more individuals to perceive the high price.

Proof of Theorem &: The outline of the proof is as follows. First, we use lemma 4 to show that the maximal
deadweight loss consistent with aggregate demand and Fjy comes from a data-generating process in which
agents perceiving the price p + m7 choose the lowest quantity consistent with preference maximization,
whereas the other agents choose the largest such quantity. Then, we show that distributions satisfying such

5Note that when p® = p, the tax is effectively lump-sum and so there is no deadweight loss.



a property yield deadweight loss no larger than the proposed distribution, which exists.

First, consider an arbitrary distribution Fjs g ¢ (yielding well-defined aggregate demand and deadweight
loss) such that Fy = Fj and:

0 p;i <p
Fpe = Fpe(p) p; € [p,p+mT)
1 p; > Dp+mT

In words, the above expression says that the support of p® is contained in {p,p + m7}. By theorem 2,
the maximal value of deadweight loss consistent with aggregate demand and F;j must satisfy this property.
Consider some value p € [0,1] such that:

P /0 G+ 7 0, 0d e 2p(0:) + [1— 5] /9 4D 04, W)dEyppe—p(0))

k3

(11)
=/ q(p;; 0:. Gi)dFpe 0.¢c(pi, 05, Ci)
p$,0i,Ci

i oVisGi

Such a value of p must exist by the Intermediate Value Theorem, since by the definition of [ and h and the
CLD as expressed in lemma 2:

/0Q(p+m7§‘9i>l)dF0p°¢ﬁ(9i)S/ , q(pi; 03, C)dFps 9.¢ (i, 0s, C:) S/e q(P; 05, h)dFpps—5(05)

In words, we are constructing an alternative distribution that rationalizes aggregate demand such that
p° = p+ m7 and ( = | with probability p, and otherwise p°* = p and ( = h. We now show that this
alternate distribution yields at least as much deadweight loss, thus showing that the maximal value of
deadweight loss consistent with aggregate demand and Fj must arise from a distribution in which almost
surely (p*,¢) = (p,h) or (p*,C) = (P +mT,1).

From the definition of deadweight loss:

/ mrlq(B; 03, G) — (B 05, DdF clpe 2503, Gi)
91"-(11

= [ ldwl(p + 7811  dul(: 01, GNPy
ez aC'i
From here, the definition of I, and using the fact that dwl(p;6;,¢;) = 0 V6, (;, we have that p > 1 — F-(p)
implies that:

p/dwl(zﬂ- mT; 0;, 1) dFy e 25(0;) + (1 — P)/e dwl(p; 03, h)dFy|ps—5(0;)
J !

—p [ dul(p-+mri 04,1 F45(0)
0.

i

> (1= Fp(D)] dwl(p -+ m7; 05, G)dFp ¢ppe 2505, i)
0:,Ci
= [L — Fp: ()] / dwl(p + mT; 0;, G)dEy ¢|ps 250, Gi) + Fps (D) / dwl(p; 0, Gi)dFy ¢|ps=5(0i, Ci)
0;.,¢; 0:,¢i

- / dwl(p+ 7m0, C)dFp.c (65, C)
0;,¢;

Where the inequality follows from the fact that p > 1 — Fj,:(p) by assumption, and the fact that dwl(p +
mT;60;,(;) and the definition of {. This shows that whenever p > 1 — F,:(p), the proposed alternative
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distribution yields at least as much deadweight loss. Now suppose instead p < 1 — Fp,«(p). From lemma 4:
| dul(p+mri 04, 6o i sol01:6)
0:,Ci
Z mT/@ c [Q(ﬁz 6i7 h) - Q(ﬁ + mTv Hi) Ci)]deFez,Ci‘p"'#ﬁ(ei? Cl)
In addition, we find it convenient to rewrite the aggregate demand-rationalizing equation as:
/ q(p;; 0:, Gi)dFps 0.¢ (P, 03, Gi)
p;,0:,Ci

=[1—Fp (25)]/9 ; q(p +mT;0i, G)dFp ps 250, Gi) + Fpe (27)/0 q(p; 0:, C)dFppps—5(0i, G)

And so, using equation 11 and rearranging terms,
p ./9. 5 [q(p+ m7;6;, () — q(P+ mr; 6, D]dEp (05, )
=(1-p) /Bi q(P; 05, h)dFyjps—5(0s) — [L — Fps (D) — p] /94 q(p +m7; 0, G)dFy ¢ips25(0i5 Gi)
— Fp< (D) /e,-,,c,-, q(p +mT;0;, G)dFy ¢ pe 2503, Gi)

Thus, plugging in and using lemma 4:

p/dwl(ﬁ‘l'm7'§9ial)dF9|p'*¢ﬁ(9i) +(1 —P)/e dwl(p; 0;, h)dFyjp-—5(0;)
0; ’

= p/ dwl(p + m7; 0;,1)dFy s 25(65)
0;

p/e ) [dwl(ﬁ +m7;0;,G) —q(p+ mT;0;,1) + q(p + mT; 0, Ci)]dFe’Clps#ﬁ(ei’ ¢i)

iy /0 (5 + 773 61, C)dFy 65, &)
i,Ci

+ P/a . lg(p + M3 63, G) — (D + M7 63, 1)]dFo ¢ (63 G)

=p o c dwl(p + mT; 05, G)dEy ¢1ps25(0i, G) + (1 — P)/e q(p; 0;, h)dFy ps—p(0;)

- Fp )] [ a0 G500 )

— Fp< (D) /ev 5 q(P; 03, Gi)dFy ¢lp-=p(0i, C)

iy /0 dwl(p+ 705, C)AFy ¢ peip(00: &) + Fye (D) / 4(5: 03, 10)dFy e —p(01)
i,Ci )

7

+[1 = Fp<(p) — pl /e» . [q(D; 6:, h) — q(p + m7;0;, ()| dFp ¢cp 250, G)

() /9 005300 G)Fy (0,

> p/e ) dw“ﬁ"‘77”'3,9i7Ci)dF9,C|P'°¢ﬁ(6ivCi)+Fp°’(p)/ q(p; 0i, h)d Fype—5(0:)

7

+[1 = Ep(p) — pjmr dwl(p + m7: 0, G)AEy ¢ipe 2505, Ci)
0:,Ci
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- Fp*(ﬁ)/@ ; q(p; 0i, G)dFy ¢ ps—5(0i, Ci)
> /0 (5 + 77 65, C)dFp 60, &)
i,Gi

+ 1= Fp () — /)]77”'/0 ; dwl(p + mT; 05, C)dFy ¢p 2505, Ci)
= [1 — Fp<(p)] / dwl(p + mT; 0, G)dEy ¢|ps 25055 G) + Fps (D) / dwl(p; 05, G)dFy ¢ p—5(0i, Ci)
0:,¢; 0:,C;

Thus, we know that the maximal deadweight loss consistent with aggregate demand and Fj is generated
by a distribution in which with probability one either (p®,() = (p,h) or (p*,¢) = (p + m7,1). We refer to
distributions of this sort as binary distributions.

Now, we show that the proposed distribution maximizes deadweight loss among all binary distributions,
and thus among all distributions, that rationalize aggregate demand such that Fy = Fj. Towards that end,
we first show that the proposed distribution exists. Note by lemma 4 and the CLD as in lemma 2:

/ Grer (B)AF2 (0%, 0) < / 40865, CAFS o (92 61,G1) < / doo(6)dF". (02, 6,)
0; pfﬂu(z‘ 0;

In words, aggregate demand is contained between when all agents perceive a high price and have type h and
when all agents perceive a low price and have type [. Furthermore, one can confirm that for any A, A’ ~,~/
such that 0 < A< A/ <mrand 0 <y <+ <1t

/e Gan (0)dFS. (3. 00) < /9 Gan (0:)dFL o0, 6:)

/9 Gar oy (0)AES o(52.6:) > /9 dan (0)AE? o(53,0,)

Thus, we can pick A such that:
[asa60dF; 00200 < [ a02560, G0, (05,6, < [ as0(6)dFy 067,00
0; p;,0:,Ci 0;
If both sides hold with equality, we can define -y arbitrarily. Otherwise, we define v so that the market clears:

fpfﬂi&i Q(pf7 92’7 Ci)dF;S,&g(pfa 92’7 Cl) - fgi QA,O(Qi)dF;*,Q(pf', 02)
Jo, a1 (0:)dEy. o(9F,0:) — [, da0(0:)dEy. 4(pF,0:)

v

We now have the values A and 7 such that the market clears. Suppressing A and 7 subscripts from §, we
can say that:
[ g or.00 = [ a0,y 05,00.6)
0; p;,0i,C;

Finally, to show that the proposed distribution maximizes deadweight loss, consider arbitrary binary
distribution Fp. g ¢ that rationalizes aggregate demand. Defining Pr(p® # pl0;) = 1 — Fyejg=o, (P + mT) as
the probability that (p®,() = (p + m7,1) conditional on 6;, rationalizing aggregate demand with F = F}}
means that:

| e #51) atp-+ 7 00.0) + P00, (5) a(ps b, W] dE5 6)

i

- / G033 61, CAET: o (561, C1)
p;,0i,Ci
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We can now write the difference in generated values of aggregate deadweight loss as:

/ [ q(0;) — q(p; 0i, h)
q(p+m7;0;,1) — q(p; 0;, h)

—Pr(p® # pl0:)|dwl(p + m7; 0;,1)dFy (6;)
-/ 1= Pp(p® # F60)Jdwl(5 + mr: 6,)dF (6)
0;:dwl(p+m7)>Alq(p;0: ,h)—q(p+mT;0,,0)]

+ / [y = Pr(p® # 5l6:)]dwl(5 + mr: ;) dF; (6:)
0;:dwl(p+mT)=Alq(p;0:,h) —q(p+mr:0:,1)]

- / Py (p° £ pl60:)dwl (5 + mr; 0,)dF; (6;)
0;:dwl(p+mT)<Alq(p:0:,h) —q(P+mT30:,1)]
A

(1 =Pr(p® # pl6:)] [q(B; 0i, h) — q( + mT; 04, 1)|dFy (6;)
0::dwl(p+mr)>Alq(p;0:,h) —q(p+mr;0;,1)]

LA / by — Br(p® # 5102 [a(B: 03, h) — a(+ o 04, DJAES (6)
0;:dwl(p+m7)=Alq(p;0:,h)—q(p+mr;0:,1)]
- A / Pr(p® # pl0:)q(P: i, h) — q(p + m; 6, 1)]dFy (0;)

0::dwl(p+m7)<Alq(p;0i,h) —q(p+m7;0;,1)]

We complete the proof by showing the right-hand side of the last inequality is zero. Since both distributions
rationalize the same aggregate demand:

/ a(p + mrs 0., 1)dF; (0,
0;:dwl(p+m7)>Alq(p;0: ,h) —q(p+mT;0:,1)]

+ / [ya(@+m7;0:,1) + (1 —v)a(p; 05, h)|dFy (0;)
0;:dwl(p+m7)=A[g(p;0;,h)—q(p+m7;0;,1)]

+/ q(p; i, h)dEy (6;)
0;:dwl(p+mT)<Alq(p;0:,h)—q(p+mT;0:,0)]

= / [Pr(p® # p°10:) [q(p+ m7;0:,1) — q(P; 65, h)] + q(P; 05, h) | dFy (6;)

i

Subtracting both sides from fé)i q(p; 0;, h)dFy (0;) yields:

/ 400 1) — a(p + mrs 0, DJAE(6,)
0;:dwl(p+mT)>Alq(p;0:,h)—q(p+mT;0;,1)]

+f Aa(F: 00, ) — q( + s 63, ) dE; (6,)
0, :dwl(p+mT)=A[q(p;0:,h)—q(p+mT;0:,1)]

- / Br(p® £ p'10:) [a(p + mr 04, 1) — (s 0, RYIAES (6)

K3

Finally, subtracting the right-hand side from the left-hand size and multiplying by zero yields the desired
result. Thus:

/‘ q(0i) — q(p; 0:, h)
Je; q(

—Pr(p® # plo;) | dwl(p + m7;0;, 1)dFy (0;) =0
O D) g0y @ 7 POl b, DAFS (6

In words, deadweight loss from the proposed distribution is at least as great as the deadweight loss from
any binary distribution that also rationalizes aggregate demand and with the true distribution of preference
types. From the first part of the proof, any distribution that rationalized aggregate demand and had the
support of perceived prices contained in ddP yielded deadweight loss no greater than what one could obtain
with a binary distribution that rationalized aggregate demand with Fjy = Fj. Theorem 2 noted that any
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distribution that rationalized aggregate demand with Fy = Fj yielded deadweight loss no greater than that
one could obtain with a distribution that had the support of perceived prices contained in 0dP, rationalized
aggregate demand, and had Fy = Fj. Therefore, any distribution that rationalizes aggregate demand and
with Fy = Fy yields deadweight loss no greater than the proposed distribution. O

B Details on Application of Linear Model

We use data gathered by CLK (2009) on the aggregate consumption of beer in U.S. states between 1970 and
2003, and cross-sectional data gathered by Goldin and Homonoff (2013) on tobacco consumption between
1984 and 2000. We translate their two models (in logs) to our linear specification. In particular, we are
interested in estimating models like the one in equation 8.

In the case of aggregate beer consumption, we follow CLK (2009) in using a specification in first differ-
ences, and so we estimate regressions of the type:

Ayse = a + BATE + BATE + 7 X g + €t

where y¢; represents per-capita consumption of beer, in gallons, for state s at time ¢, 7¢ represents excise
taxes on beer (included in sticker price), 7° represents sales taxes (non-salient), X is a vector of controls,
and € is an i.i.d. error term. All taxes are expressed in dollar amounts.

For each linear specification, we compute m = g, which gives us the ratio of upper bound of deadweight
loss to lower bound of deadweight loss (assuming that maximal attention, m = 1). Results are presented
in table 1. We also estimate a number of other specifications, again following CLK (2009), presented in
table 2. These are meant to address concerns for spurious results — in particular, it could be the case that
consumers react differently to the two tax rates because while sales taxes affect a variety of goods, excise
taxes on beer affect only beer prices. The second last column of table 2 shows estimates for a regression only
for those states that exempt food (a likely substitute of beer) from sales tax, demonstrating that even in
this restricted sample beer consumption is quite insensitive to sales tax. Finally, the last column addresses
the potential concern that people might be substituting toward other alcoholic beverages when they face a
beer tax increase, and not when they face a sales tax increase. As we can see, the share of ethanol people
consume in the form of beer is quite insensitive to either tax rate.

We repeat the exercise for Goldin and Homonoff (2013), who have a similar set-up with individual-level,
cross-sectional data on cigarette consumption. Even though this is not aggregate data, estimating a linear
model that only measures average effects effectively leaves the analysis of section 4 unchanged. We again
follow the original authors of the paper when we estimate the equation:

Cist = a0+ BTE + BT, + Y Xst + 0 Zist + €15t

where now c¢;¢; stands for tobacco consumption, in average cigarettes per day, for individual ¢ from state s
in period t, 7¢, 7%, and X should be interpreted as before, and Z;4; is a vector of individual-level controls.
All the details can be found in the original paper. Results in table 3 showcase a number of different specifi-
cations, including several sets of fixed-effects, all following Goldin and Homonoff (2013).

Data Availability Statement: The data that support the findings of this study are openly available on
the American Economic Association’s website at http://doi.org/10.1257 /aer.99.4.1145, reference number
10.1257 /aer.99.4.1145, for the data in CLK (2009), and at http://doi.org/10.1257/pol.5.1.302, reference
number 10.1257/pol.5.1.302, for the data in Goldin and Homonoff (2013).
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| Baseline

Business cycle

Alcohol regulations

Region trends |

A(excise tax) -0.966 -0.875 -0.808 -0.715
(0.4) (0.393) (0.304) (0.394)
Af(sales tax) -0.305 -0.113 -0.114 -0.241
(0.708) (0.698) (0.699) (.7)
A(population) -0.0002 -.0002 -0.0001 -0.0002
(0.0002) (0.0002) (0.0002) (0.0002)
A(income per cap.) 0.0002 0.0001 0.0002
(0.00006) (0.00006) (0.00006)
A(unemployment) -.094 -0.093 -0.093
(.026) (0.026) (0.026)
Alcohol reg. controls X X
Year FE X X X X
Region FE X
m 0.316 0.129 0.141 0.338
(0.743) (0.8) (0.866) (0.996)
Sample size 1,607 1,487 1,487 1,487

15

Table 1: Estimating 1 with several sets of controls, following the specifications in CLK (2009) in the context
of a linear model. Standard errors in parentheses.



Policy IV 3-Year differences Food exempt Dep. var.: share of
for excise tax ethanol from beer
A(excise tax) -0.808 -2.092 -1.114 0.036
(0.395) (0.897) (1.174) (0.006)
A(sales tax) -0.114 -0.131 -0.449 0.018
(0.699) (0.826) (0.757) (0.011)
A(population) -0.0001 -0.002 -0.00007 0.0000
(0.0002) (0.002) (.0002) (0.0000)
A(income per cap.) 0.0001 0.0002 0.0001 -0.0000
(.00006) (0.00007) (0.00007) (0.0000)
A(unemployment) -0.094 -0.03 -0.056 -0.0001
(.026) (0.028) (.032) (0.0004)
Alcohol reg. controls X X X X
Year FE X X X X
m 0.141 0.062 403
(0.866) (0.395) (0.819)
Sample size 1,487 1,389 937 1,487

Table 2: Estimating i following the strategy of CLK (2009) in the context of a linear model. As in CLK, we
use the nominal excise tax rate divided by the average price of a case of beer from 1970 to 2003 as an IV for
excise tax to eliminate tax-rate variation coming from inflation erosion. Next, we run the same regression in
3-year differences. Next, we run it only for states where food is exempt from sales-tax, to address concerns
about whether consumers react differently to changes in the two taxes only because sales taxes apply to a
broad set of goods. Finally, the last column addresses the concern that beer taxes may induce substitution
with other alcoholic products, biasing the coefficient on excise tax relative to the one on sales tax. While in
the log-log specification of CLK (2009) it seems to show that beer excise taxes have no discernable effect on
the share of ethanol consumed from beer, we do find a significant effect. Standard errors in parentheses.

Outcome variable: Number of cigarettes
Specification 1 2 3
Excise Tax -0.015 -0.015 -0.016
(.004) (.004) (.004)
Sales Tax -0.024 -0.02 -0.022
(0.022)  (0.025) (0.025)
Demographic controls X X X
Econ. conditions controls X X
Income trend controls X
State,year, and month FE X X X
m 1.57 1.33 1.37
(1.65) (1.83) (1.82)
Sample size 274,138 274,138 274,138

Table 3: Estimating 7 based on the intensive response of cigarette consumption to sales taxes (not included
in sticker price) and excise taxes (included in the sticker price). The specifications are a linearized version
of the specifications in Goldin and Homonoff (2013). Standard errors in parentheses.
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