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1 INTRODUCTION

1 Introduction

Taxing a good results in a loss of economic efficiency whenever it distorts equilibrium behavior away

from the Pareto optimum. To the extent that agents do not notice a tax, the burden of the tax is

exacerbated by the fact that agents cannot adjust the behavior to protect themselves from the tax.

However, the burden of the tax in excess of government revenue, or deadweight loss, is mitigated when

agents do not pay attention to the tax: if consumers pay the tax without noticing it, they are effectively

transferring some of their income to the government in a lump sum. Chetty, Looney, and Kroft (2009,

henceforth CLK) were the first to make these points. In addition to their theoretical contributions, they

also showed that consumers in the U.S., where sales tax is applied at the register rather than included

on the prices displayed on shelves (or, “sticker prices”), tend to under-react to sales taxes.

While CLK (2009) focuses on the case of homogeneous attention, recent work by Taubinsky and Rees-

Jones (2018, henceforth TRJ) has noted that introducing the possibility of heterogeneous attention may

prevent the computation of deadweight loss from aggregate data. If each person faced a different tax

rate when buying a certain good, understanding welfare effects would require us to study not only ag-

gregate demand, but the demand of every individual. Imposing a high tax on low elasticity individuals

and a low tax on high elasticity individuals would have a very different effect on welfare than doing

the opposite. A similar reasoning applies when all agents face the same tax rate, but perceive different

tax rates. TRJ (2018) find that allowing for heterogeneous attention introduces an issue of allocative

inefficiency that is normally absent from the study of the welfare effects of taxation. In a world of

heterogeneous attention, there is no guarantee that the individuals who end up consuming the good are

the ones who value it the most.

TRJ (2018) make these points in a binary choice model. This is well-suited to their experiment, in

which people are choosing whether or not to buy a certain object, but their proof does not generalize

trivially. Given the predominance of continuous choice settings in much of the literature on tax salience,

including CLK’s seminal paper, this motivates us to study the issue further.

We begin by developing a model of choice under misperceived prices with an arbitrary closed consump-

tion set, and develop our welfare measure: compensating variation due to the tax, net of tax revenue.

Bernheim and Rangel (2009) laid the foundations of welfare analysis with behavioral agents. Our model

is similar to the models of CLK (2007, 2009) and TRJ (2018), but we slightly modify the treatment

of income effects, along the lines of Gabaix’s (2014) model of rational inattention. In the absence of

income effects, our model of choice for an individual agent is essentially equivalent to the model in CLK

(2009), except that we allow for arbitrary consumption sets. Our model is also similar to the model of

Chetty (2009), but for the fact that we specify a particular way in which behavioral agents maximize

utility. While this does not impose severe restrictions on behavior, it offers a useful framework when we

move on to identification. We confirm that some of the major results in CLK (2009) and TRJ (2018)

hold quite broadly: inattention to taxes increases the size of the loss in consumer surplus, but decreases

the size of deadweight loss; attention heterogeneity amplifies deadweight loss, and invalidates CLK’s

sufficient statistic approach.

The main contribution of this paper is to generalize TRJ’s non-identification result to an arbitrary

closed choice set. We show that an econometrician who only observes aggregate consumption data can

only determine the true value of aggregate deadweight loss to lie on an interval. These bounds were

This article is protected by copyright. All rights reserved.
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1 INTRODUCTION

first noted by TRJ (2018) in their proposition A.2. We find these bounds hold generally and propose

to use them as a novel empirical tool.

The lower bound for deadweight loss is the calculation one would perform in the case of a representative

consumer. Since the loss in efficiency is a convex function of the perceived tax rate, the calculation of

deadweight loss from one perceived tax-inclusive price consistent with aggregate demand will generi-

cally underestimate deadweight loss. Heterogeneity in tax salience creates heterogeneity in perceived

net-of-tax prices, which creates an allocative inefficiency across consumers. As the calculation with a

representative consumer only accounts for inefficiency from aggregate foregone consumption due to the

tax, it will under-estimate excess burden. However, in the case in which all agents pay the same amount

of attention to the tax, there is no allocative inefficiency between consumers, and so performing the

calculation as with a representative consumer yields the correct value for deadweight loss. The formula

for this lower bound to deadweight loss is an extension of formulas provided by CLK (2009) and TRJ

(2018).

Following TRJ (2018), we obtain an upper bound for deadweight loss by letting the econometrician

assume that tax salience has support on a known bounded non-negative interval. The upper bound

comes from maximizing perceived price heterogeneity, again exploiting the convexity of deadweight loss

with respect to the perceived tax. This is achieved by positing that agents have either zero or max-

imal salience. Generalizing introduces two additional considerations in calculating the upper bound

for deadweight loss. One, a distribution yielding the upper bound for deadweight loss assigns high

tax salience precisely where it will “hurt” most: to those agents whose particular preferences yield

maximal deadweight loss from that agent relative to the change in consumption of that agent. This

distribution allocates high tax salience to those agents who have more convex demand curves, keeping

the aggregate change in quantity demanded constant. Two, deadweight loss is maximized for a given

aggregate demand if any agent with multiple optimal decisions at the perceived price consumes the

highest amount consistent with their preference when they perceive low prices, whereas they consume

the lowest amount consistent with their preferences when they perceive high prices.1 This is because

heterogeneity in perceived prices permits different equilibria with the same sticker price, tax rate, and

aggregate consumption, yet yielding different values of deadweight loss due to different distributions of

consumption among individuals.

Our approach to compute the upper bound forces the econometrician to impose limits on the possible

values of attention – something that the empirical literature has not settled yet and might be highly

context-dependent. While it might seem natural to assume that attention varies between zero and one,

many papers have found evidence of salience above one – see for instance Allcott and Taubinsky (2015).

In theory, one might allow for unlimited (positive) tax salience, under regularity conditions that avoid

the possibility of unlimited distortion to consumer behavior.2

Our general results follow the work of TRJ (2018), and rely on the fact that the distribution of prefer-

ences is independent of taxes and prices, but that the distribution of salience might change depending

on the value of the tax. Indeed, we show that, even assuming that the distribution of preferences is

entirely known to the econometrician and invariant to observables, one cannot identify deadweight loss.

1TRJ (2018) do not deal with cases like this because they restrict attention to non-atomic distributions of willingness
to pay, so almost every agent has a unique choice that is perceived to maximize utility.

2One might assume that consumer surplus is uniformly bounded to ensure that the upper bound for deadweight loss
is finite even if the upper bound for tax salience is infinite.

This article is protected by copyright. All rights reserved.
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2 CHOICE AND DEADWEIGHT LOSS UNDER NON-SALIENT TAXES

We then turn to the special case in which demand is linear in a relevant range where consumption is

positive. This case is of particular interest for three reasons: first, its ease of applicability; second,

its special relationship to the second order approximation of deadweight loss; and third, its illustrative

value in the kind of problems we can face in identifying deadweight loss. In the case of binary choice,

non-identification ultimately comes from the possibility that taxes and attention to taxes are not in-

dependent of each other. Although the experimental evidence in TRJ (2018) suggests that attention

varies with how large the tax is, if one assumed away this possibility we could identify a full distri-

bution of responsiveness to both taxes and sticker prices using existing models of discrete choice with

random coefficients, as in Masten (2017) and Fox (2017). This estimated distribution could then be

used to yield a point-estimate of deadweight loss. In the case of linear demand, instead, even assuming

that attention and taxes are independent would not help identify deadweight loss with aggregate data

beyond the bounds described above.

Our results complement a growing literature on tax salience. Rosen (1976) does not find evidence of

limited tax salience, but besides CLK (2009) and TRJ (2018), Finkelstein (2009), Gallagher and Mueh-

legger (2011), and Goldin and Homonoff (2013) all find strong evidence of dramatically limited tax

salience. Most of this literature looks at sales taxes in the U.S., as they lend themselves very credibly to

a story about lack of salience. However, work on salience has also looked at other settings: Finkelstein

(2009) studies car tolls; Weber and Schram (2016) study whether income taxes being remitted by the

employer or the employee affects differently people’s attitude towards public spending and the burden

of the tax;3 Morone, Nemore and Nuzzo (2018) explore a similar question in the context of a double-

auction market. Blake, Moshary and Tadelis (2017) study how people react differently to back-end and

upfront fees in online purchases; and Bradley and Feldman (2018) study how changes in the disclosure

of ticket taxes affect the demand for airlines. As we mentioned above, most of these empirical papers,

as well as other theoretically focused papers like Goldin (2015), use models where the choice set is

continuous or mixed discrete-continuous.

The paper proceeds as follows. In section 2, we develop a general model of choice under misperceived

prices. Once we have replicated some of the major theoretical results in CLK (2009) and TRJ (2018),

we shift focus to identification of deadweight loss. Section 3 lays out the main results of our paper,

establishing the non-identification result and the bounds. Section 4 focuses on the special case in which

demand is linear, and provides a straightforward way to compute our bounds in the context of linear

models. Section 5 concludes. Proofs and other minor results are relegated to the online appendix.

2 Choice and Deadweight Loss under Non-Salient Taxes

This section describes the theoretical model and results that underlie the rest of this paper. Many

of our results here simply mirror previous literature, but we make slightly different modeling choices.

The main modeling challenge in dealing with misperceived prices is to allow for the misperception of

prices while keeping agents financially solvent. CLK (2007, 2009) assume that one good “absorbs” all

optimization mistakes. In contrast our approach, inspired by parts of the model in Gabaix (2014), has

agents conjecture a certain income such that they end up consuming on their true budget constraint

3Interestingly, assuming some agents face credit constraints as in Boadway, Garon, and Perrault (2018), also breaks
traditional optimal tax theory.

This article is protected by copyright. All rights reserved.
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2 CHOICE AND DEADWEIGHT LOSS UNDER NON-SALIENT TAXES

when presented with the relative prices they perceive. While this framework preserves all results of

interest from CLK (2009) and TRJ (2018), we find that our approach eases exposition while freeing the

researcher from having to make ad-hoc assumption about which good (or goods) absorb optimization

mistakes. It should be noted that while we do generalize the model to include multiple taxed and

non-taxed goods in the online appendix, in the body of the paper agents will face a choice over two

goods, only one of which is subject to tax.

The agent has a closed consumption set X = XT × R+ ⊆ R2
+. She also has a choice function for the

taxed good, q(p̄, pNT , τ,W ), with (p̄, pNT ) ∈ R2
++, where p̄ and pNT are respectively the sticker price

of the taxed and non-taxed good, τ ∈ R is the sales tax on the taxed good, and W is the income of the

agent.4 We express taxes as if they were specific, so that p̄ + τ is the tax-inclusive price of the taxed

good.

The agent has a continuous and strictly monotonic utility function u(q, qNT ), where q denotes generic

consumption of the taxed good. The choice vector function q(p̄, pNT , τ,W ) = (q(p̄, pNT , τ,W ), qNT (p̄, pNT , τ,W )) ∈
X meets two requirements. One, the agent spends all available income:5

(p̄+ τ)q(p̄, pNT , τ,W ) + pNT qNT (p̄, pNT , τ,W ) = W. (1)

Two, the agent correctly optimizes in the choice of all consumption bundles when there is no tax:

q(p̄, pNT , 0,W ) ∈ arg max
{p̄∗q+pNT ∗qNT≤W}

u(q, qNT ). (2)

It turns out that this model is quite general, in the sense that it rules out very few possible behaviors.

Indeed, this model is equivalent to one in which agents pick rationally given a perceived price ps, and

conjecture themselves an income W s so that they satisfy their true budget constraint at their perceived

price. Proposition 2 and subsequent work in the online appendix shows that, under weak convexity

assumptions on preferences, one can find a pair (ps,W s) to satisfy equations 1 and 2 for any choice

function q(·).
We now want some measure of the incidence of the tax on the consumer. For concreteness, we consider

the compensating variation due to the tax with complete pass-through, defined as:

∆CS ≡ inf{∆W | u(q(p̄, pNT , τ,W + ∆W )) ≥ u(q(p̄, pNT , 0,W ))}.

4We implicitly restrict consideration to sticker prices, taxes, and income such that q(p̄, τ,W ) is well-defined at those
values.

5When we consider multiple non-taxed goods in the online appendix, we also have agents optimally choose qNT given
their choice of q.

This article is protected by copyright. All rights reserved.
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2 CHOICE AND DEADWEIGHT LOSS UNDER NON-SALIENT TAXES

Q

P

p̄

p̄+ τ

p̄+ τs

D(p̄)

D(ps)

Gov’t Rev
DWL

∆CS

Figure 1: Welfare effects from the imposition of a non-salient tax.

In words, the change in consumer surplus is the greatest lower bound of the amount of money the agent

requires to achieve the utility reached before the imposition of the tax. Online appendix proposition 3

shows that the change in consumer surplus can be written as the sum of what consumer would have

to be compensated if the tax-inclusive price were actually ps and the income they “lost” due to their

inattention:

∆CS = (p̄+ τ − ps)h(ps)︸ ︷︷ ︸
Income lost

+ e(ps)− e(p̄)︸ ︷︷ ︸
∆CS under ps

. (3)

This representation, which is graphically illustrated in figure 1, readily gives us two interesting results.

First, as noted by CLK (2007, 2009), if ps ∈ [p̄, p̄+ τ ], then the consumer will be worse off than if she

paid attention to the tax:

∆CS = (p̄+ τ − ps)h(ps) +

∫ ps

p̄

h(p)dp

≥
∫ p̄+τ

ps
h(p)dp+

∫ ps

p̄

h(p)dp

=

∫ p̄+τ

p̄

h(p)dp.

Second, a consumer can be made better off by an increase in the tax, which we do not believe previ-

ous literature to have noted. This is because a tax increase can induce inattentive agents to reduce

their consumption of the taxed good to zero, improving welfare for consumers who would have already

avoided consuming the taxed good had they been attentive to the tax.6 We provide a graphical example

6More formally, consumption does not necessarily have to be reduced to zero for the consumer to be made better off.
The loss of consumer surplus decreases in τ whenever the tax is sufficiently high such that consumption is sufficiently
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2 CHOICE AND DEADWEIGHT LOSS UNDER NON-SALIENT TAXES

in figure 2.

Q

P

p̄

p̄+ τ1

D(p̄)

D(p̄+mτ)

(a) Under τ1 the consumer loses more than total CS

Q

P

p̄

p̄+ τ2

D(p̄)

D(p̄+mτ)

(b) Under τ2 the consumer loses exactly total CS

Figure 2: The consumer in (a) is worse off than in (b), although she is subject to a lower tax

To obtain deadweight loss, we need to adjust ∆CS for the change in tax revenue:7

dwl ≡ ∆CS − τq(p̄, pNT , τ,W + ∆CS) = e(ps)− e(p̄)− (ps − p̄)q(p̄, pNT ,W + ∆CS). (4)

Note that deadweight loss is exactly as if the agent was correct that the tax-inclusive price were ps.

To introduce heterogeneity, let i ∈ I index consumers. Each consumer is characterized by her perception

of the price of the taxed good, psi , type, θi, standing in for her preferences �θi and income Wθi , and

tie-breaking parameter ζi, which we need for technical reasons.8 These consumer-specific parameters

are distributed according to F ∗ps,θ,ζ . Each agent has a choice function for the taxed good, satisfying:

q(p̄, pNT , τ,Wθi ; θi, ζi) = q(psi ,W
s
i ; θi, ζi) ∈ {q|∃qNT : (q, qNT ) �θi q′ ∀q′ ∈ X : (psi , p

NT ) ∗ q′ ≤W s
i },

where psi and W s
i are determined as in the model of section 2, with corresponding expenditure function

e(psi ; θi). If demand is single-valued, letting us ignore the tie-breaking parameter ζ, total deadweight

loss is:

DWL =

∫
psi ,θi

[e(psi ; θi)− e(p̄; θi)]− (psi − p̄)q(psi ; θi)dF ∗ps,θ(psi , θi).

small (but positive).
7We maintain the convention that deadweight loss is a generically positive value.
8ζi acts as a tie-breaker among bundles that could all have been chosen: choices do not necessarily reflect true

preferences when agents misperceive prices, and agents might appear indifferent between choices that do not actually
yield the same ex-post utility. This is in sharp contrast with the neo-classical model, where the actual choice that one
selects among indifferent bundles has no impact on consumer surplus. But in this model of choice, different values of
conjectured income might yield different choices, even given the same preferences, perceived prices, and true income.

This article is protected by copyright. All rights reserved.
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3 NON-IDENTIFICATION WITH AGGREGATE DATA

This paper emphasizes continuous choice, as the binary choice case is worked out in TRJ (2018). We

momentarily assume that h is continuously differentiable with respect to its own price, and that ps is

continuously differentiable with respect to τ . Then tax salience at a tax rate of zero is m = ∂ps

∂τ |(p̄,0).
9

In line with existing deadweight loss analyses, we can consider a second-order approximation, letting

us characterize our object of interest in terms of first derivatives:

DWL ≈ −τ
2

2

∫
psi ,θi

m2
i

∂h(p̄; θi)

∂p
dF ∗ps,θ(p

s
i , θi). (5)

This process of aggregation makes apparent two important points that confirm the analysis of TRJ

(2018) extends naturally to continuous choice. First, allowing for attention heterogeneity introduces an

issue of allocative inefficiency, as it is no longer guaranteed that consumers who value some units of the

taxed good the most will be the ones who end up purchasing those units. It should be noted that we are

assuming throughout this paper that supply is perfectly elastic, and so tax increases will be reflected

one-for-one in the after-tax price. This is not really an issue of concern: as TRJ (2018) note, all that

is needed to generalize this to an arbitrary supply function is to account for the change in sticker price

and the change in profits to suppliers. Nonetheless, as in TRJ’s work, it is interesting to deviate for a

moment from this assumption, to consider what happens to aggregate deadweight loss when supply is

perfectly inelastic. In that case, we can use appendix proposition 4 to show that

DWL ≈ −τ
2

2

∫
mi,θi

[
m2
i

∂qi
∂p

dFm,θ(mi, θi)−
(
∫
mi,θi

mi
∂qi
∂p )2∫

mi,θi

∂qi
∂p dFm,θ(mi, θi)

]
≥ 0,

and DWL = 0 when attention is homogeneous, i.e. mi = m ∀i. Thus, a non-salient tax may yield

excess burden even without changing the equilibrium quantity, due to its effects on allocative efficiency.

Second, allowing for heterogeneous attention introduces a serious problem of identification, as neither ag-

gregate price responsiveness
∫
psi ,θi

∂h(p̄;θi)
∂p dF ∗ps,θ(p

s
i , θi) nor aggregate tax responsiveness

∫
psi ,θi

mi
∂h(p̄;θi)
∂p dF ∗ps,θ(p

s
i , θi)

are sufficient statistics for the deadweight loss in equation 5. These points effectively extend some of

TRJ’s (2018) major results to continuous choice. In the next section, we formalize this non-identification

result with an arbitrary choice function, and show how one might bound deadweight loss with mere

information on aggregate parameters.

3 Non-Identification with Aggregate Data

This section discusses to what degree one can infer deadweight loss from aggregate choice data. Our

results generalize TRJ’s work on binary choice to an arbitrary choice set. We find this to be of interest for

two reasons. First, many papers dealing with tax salience, including the seminal paper by CLK (2009),

operate in a continuous choice setting. Second, while point identification is impossible using aggregate

9Formally, the claim is that there exist (ps,W s) such that ∂ps

∂τ
, where the derivative is taken while the consumer is

being compensated, is well defined. If ∂h
∂p

(p̄) 6= 0, then the Inverse Function Theorem implies that ∂ps

∂τ
=

∂q
∂τ

+ ∂q
∂W

∂∆CS
∂τ

∂h
∂p

.

If ∂h
∂p

= 0 in a neighborhood around p̄, then set ∂ps

∂τ
|τ=0 = 0 and ∂∆CS

∂τ
= −

∂q
∂τ
∂q
∂W

.
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3 NON-IDENTIFICATION WITH AGGREGATE DATA

parameters, we can still provide tight bounds based solely on aggregate (or average) quantities.

For simplicity, we assume that the econometrician already knows the distribution of preference types,

but this should not be considered a limiting assumption. Consumer preferences can be identified with

sticker price variation when there are no (non-salient) taxes. Regardless, even when the econometrician

can fully observe the true distribution of preferences, and how much aggregate consumption there is at

every tax level, she still cannot infer the exact value of deadweight loss. However, we provide a lower

bound and an upper bound for deadweight loss. The lower bound is achieved by assuming that all

agents perceive the same tax-inclusive price, i.e. assume there is no attention heterogeneity. The upper

bound for deadweight loss is achieved by imposing maximal attention heterogeneity. Since the data

do not reveal the individual variation in tax salience, one cannot point identify deadweight loss from

aggregate data. Deadweight loss can take on any value between the upper and lower bounds.10

The results in this section are described as if all agents face the same sales tax. Also, since we are

considering the problem of identification with aggregate demand, we assume there are no income effects.

This is because even the standard model with fully salient taxes requires strong restrictions on income

effects in order to achieve identification with aggregate data, as the same income can yield different

consumption bundles whenever there are several conjectured incomes that solve the agent’s problem.

Suppressing income and price for the non-taxed good, we denote the consumption function for agent

i with type θi and perceived tax-inclusive price psi for the taxed good by q(psi ; θi, ζi). However, all of

these results follow if one reinterprets q(psi ; θi, ζi) as the compensated choice of agent i.

To ensure integrability, we assume the econometrician knows that F ∗ps has support with lower bound

greater than zero, and so only considers marginal distributions of subjective prices bounded above zero.

The econometrician observes aggregate demand:∫
psi ,θi,ζi

q(psi ; θi, ζi)dF
∗
ps,θ,ζ(p

s
i , θi, ζi).

Deadweight loss for an individual i is a function of their expenditure function e(p) and prices via:

dwl(psi ; θi, ζi) = e(psi ; θi)− e(p̄; θi)− (psi − p̄)q(psi ; θi, ζi).

We are interested in aggregate deadweight loss:

DWL =

∫
psi ,θi,ζi

dwl(psi ; θi, ζi)dF
∗
ps,θ,ζ(p

s
i , θi, ζi).

The problem of identification is to find conditions for which any joint distribution Fps,θ,ζ of (ps, θ, ζ),

as a function of observable variables p̄ & τ , satisfying these conditions and such that aggregate demand

is rationalized; that is, such that for any observed values of observable variables, any F satisfying∫
psi ,θiζi

q(psi ; θi, ζi)dFps,θ,ζi(p
s
i , θi, ζi) =

∫
psi ,θi,ζi

q(psi ; θi, ζi)dF
∗
ps,θ,ζ(p

s
i , θi, ζi), (6)

10This claim follows by taking any weighted average of the distributions of parameters yielding upper and lower bounds
of deadweight loss.

This article is protected by copyright. All rights reserved.
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3.1 Lower Bound on Deadweight Loss 3 NON-IDENTIFICATION WITH AGGREGATE DATA

also yields the same value for deadweight loss:∫
psi ,θi,ζi

dwl(psi ; θi, ζi)dFps,θ,ζ(p
s
i , θi, ζi) = DWL.

The main message of this section will be the failure of such a result obtaining. We show that there

are at least two distributions satisfying 6 that yield different values of DWL. These two distributions

also turn out to yield tight bounds to the possible values of DWL that are consistent with aggregate

demand.

Finally, we impose regularity conditions throughout this section to rule out ill-defined integrals. For-

mally, we insist that the econometrician only consider distributions that satisfy the integrability condi-

tions, described below.

Definition 1. A distribution Fps,θ,ζ satisfies the integrability conditions if:

1. q and dwl are integrable on any measurable set.

2. q(p; θi, z) is integrable on any subset of the support of θ for any p > 0 and any z in the range of

ζ.

For instance, all distributions with a finite support of (ps, θ, ζ) satisfy the above conditions.

3.1 Lower Bound on Deadweight Loss

Consider arbitrary p̄, pNT , and τ . For arbitrary Fps,θ,ζ consistent with the data, we can choose a price

p̂s that could also rationalize the data if perceived homogeneously.

Proposition 1. For any Fps,θ,ζ that yields integrable aggregate demand, there exists p̂s such that for

some distribution F ′θ,ζ such that F ′θ = Fθ:∫
psi ,θi,ζi

q(psi ; θi, ζi)dFps,θ,ζ(p
s
i , θi, ζi) =

∫
θi,ζi

q(p̂s; θi, ζi)dF
′
θ,ζ(θi, ζi).

We can always rationalize the data with a joint distribution of (ps, θ) in which θ has marginal distribution

F ∗θ , whereas ps = p̂s with probability one. We now show that such a joint distribution provides a generic

underestimate to the possible values of deadweight loss.

Theorem 1. Consider any joint distributions Fps,θ,ζ and Fθ,ζ with corresponding value p̂s such that:∫
θ,ζ

q(p̂s; θi, ζi)dFθ,ζ(θi, ζi) =

∫
psi ,θi,ζi

q(psi ; θi, ζi)dFps,θ,ζ(p
s
i , θi, ζi).

Then the following inequality obtains:∫
θi,ζi

dwl(p̂s; θi, ζi)dFθ,ζ(θi, ζi) ≤
∫
psi ,θi,ζi

dwl(psi ; θi, ζi)dFps,θ,ζ(p
s
i , θi, ζi).

Intuitively, introducing heterogeneity in perceived prices can mute gains from trade. If someone with a

higher marginal valuation for the good has a higher perceived price than someone with a lower marginal
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3.2 Upper bound on deadweight loss 3 NON-IDENTIFICATION WITH AGGREGATE DATA

valuation, they could both gain by trading with each other after making their consumption decisions.

If they could exchange with each other, the one who perceived the higher price could purchase some

of the good from the other agent, making both agents better off. Thus, ruling out perceived price

heterogeneity by assuming a homogeneous perceived price p̂s eliminates the possibility of an allocative

inefficiency. Figure 3 offers graphical intuition for the lower bound.

Q

P

p̄

ph

p̂s

qh(p)

∆q

(a) High perceived price

Q

P

p̄

pl

p̂s

ql(p)

∆q

(b) Low perceived price

Figure 3: A graphical illustration of Theorem 1. When one picks p̂s as to make the change in demand
equal for the consumer in (a) and in (b), the decrease in dwl for the consumer in (a) (orange) must be
at least as large as the increase in dwl for the consumer in (b) (green).

Theorem 1 points out that for any distribution that rationalizes the data, i.e. that explains the observed

aggregate demand, one can alternatively rationalize the data with a homogeneous perceived price that

yields (weakly) less deadweight loss. From this, we can reach two conclusions. One, we generally cannot

identify deadweight loss because we could always alternatively rationalize the data with a homogeneous

perceived price.11 This holds even if we already knew the distribution of preference types F ∗θ . Two, if

there is a minimum value of deadweight loss that is consistent with the data, that value of deadweight

loss comes from a distribution with no heterogeneity in tax salience.

3.2 Upper bound on deadweight loss

The upper bound comes from an assumption on the limits to tax salience:

Assumption 1. There is some value m̄ ≥ 0 such that ps has support known to be contained in P ≡
[p̄, p̄+ m̄τ ].

This assumption says that agents must perceive a non-negative tax τs no greater than fraction m̄ of the

true tax.12 The econometrician is allowed to assume an arbitrarily large m̄, but the gain in robustness

will likely come at the expense of precision. For instance, setting m̄ = 1 would be to assume that

11This claim holds generically, but would not hold, for instance, if there was no heterogeneity in tax salience.
12This description implicitly assumes that τ > 0.
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3.2 Upper bound on deadweight loss 3 NON-IDENTIFICATION WITH AGGREGATE DATA

agents never over-react to a tax rate. Imposing that τs ≥ 0 with probability one already ensures that

deadweight loss is no greater than the original consumer surplus.13 But the interval restriction implies

any distribution yields no more deadweight loss than a distribution with “binary” perceived prices, i.e.

where ps can only take on values in {p̄, p̄+ m̄τ} ≡ ∂P.

The gist of the upper bound of deadweight loss is that, for any data-generating process that rationalizes

observed aggregate demand, there is another data-generating process that also rationalizes observed

demand, but which would yield at least as much deadweight loss. This alternative explanation of the

observed demand insists that all agents pay either zero or maximal attention.

Before formally stating our main result, we demonstrate how one can always pick such a distribution

of attention to rationalize observed demand, for any underlying (known) distribution of preferences.

Then, we state the main result, theorem 2, providing some intuition for why such a distribution would

yield a weakly higher deadweight loss. Because our model of choice may result in several choices given

the same sticker prices and taxes, sometimes there can be multiple equilibria with the same level of

aggregate demand, but different consequences for welfare. We briefly discuss appendix theorem 3, which

deals deals with such cases.

Consider any Fps,θ,ζ that rationalizes the data, and such that:

lim
m→m̄−

Fps(p̄+mτ)− Fps(p̄) > 0.

In words, the distribution assumes some positive mass of agents pay neither zero nor maximal attention,

i.e. m ∈ (p̄, p̄ + m̄τ) ≡ int(P). Pick p̃s ∈ int(P) and a corresponding pb(psi ) ≡ p̄ + I(psi > p̃s)m̄τ such

that: ∫
psi∈int(P),θi

q(pb(psi ); θi, l)dFps,θ(p
s
i , θi) ≤

∫
psi∈int(P),θi,ζi

q(psi ; θi, ζi)dFps,θ,ζ(p
s
i , θi, ζi)

≤
∫
psi∈int(P),θi

q(pb(psi ); θi, h)dFps,θ(p
s
i , θi).

In words, for any distribution that puts mass on int(P), we pick a value p̃s that acts as a divide: those

below it get assigned to a group that does not perceive the tax at all, while those above it get assigned

to a group that perceives it “maximally”. Since demand is monotonic in p, and given our definitions

of l and h, one can always pick p̃s such that the above inequalities hold weakly. Thus, one can always

find λ ∈ [0, 1] such that:

λ

∫
psi∈intP,θi

q(pb(psi ); θi, h)dFps,θ(p
s
i , θi) + (1− λ)

∫
psi∈intP,θi

q(pb(psi ); θi, l)dFps,θ(p
s
i , θi) (7)

=

∫
psi∈intP,θi,ζi

q(psi ; θi, ζi)dFps,θ,ζ(p
s
i , θi, ζi).

Equation 7 implies that we can always pick a threshold p̃s that rationalizes demand, so long as we

randomly assign a fraction λ of consumers with m ∈ int(P) to the tie-breaking parameter ζ = h, and

the remaining 1−λ to ζ = l. But in turn, this implies that we have found binary distribution of ps and

13Recall that deadweight loss equals its calculation as if taxes actually satisfied τi = psi − p̄, so excess burden cannot
exceed the original consumer surplus for any agent. One can show that if τs has support on negative values, then it’s
possible to have total deadweight loss substantially greater than the original total consumer surplus.
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3.2 Upper bound on deadweight loss 3 NON-IDENTIFICATION WITH AGGREGATE DATA

ζ that rationalizes aggregate demand.

Let us call such distribution F ′′ps,θ,ζ . This new distribution has the same marginal distribution of

preferences, Fθ = F ′′θ . If a consumer perceived a price in the boundary region in the original distribution

Fps,θ,ζ , then so will she in the new distribution: F ′′ps,θ,ζ|ps∈∂P = Fps,θ,ζ|ps∈∂P . As for those consumers

who perceived a price in the interior, we propose to split them up in a manner akin to what we just did

in equation 7: F ′′pb(ps),θ = Fps,θ, and ζ is assigned randomly as we described above. One can quickly

confirm that this distribution rationalizes the same demand as the original distribution Fps,θ,ζ :∫
psi ,θi,ζi

q(psi ; θi, ζi)dFps,θ,ζ(p
s
i , θi, ζi) =

∫
psi∈int(P),θi,ζi

q(psi ; θi, ζi)dFps,θ,ζ(p
s
i , θi, ζi)

+

∫
psi∈∂P,θi,ζi

q(psi ; θi, ζi)dFps,θ,ζ(p
s
i , θi, ζi)

=

∫
psi∈int(P),θi

[λq(pb(psi ); θi, h) + (1− λ)q(pb(psi ), θi, l)]dFps,θ(p
s
i , θi)

+

∫
psi∈∂P,θi,ζi

q(psi ; θi, ζi)dF
′′
ps,θ,ζ(p

s
i , θi, ζi)

=

∫
psi ,θi,ζi

q(psi ; θi, ζi)dF
′′
ps,θ,ζ(p

s
i , θi, ζi).

Furthermore, such a distribution provides a generically larger value of deadweight loss than does Fps,θ,ζ .

Theorem 2. Under assumption 1, for any Fps,θ,ζ and any corresponding F ′′ps,θ,ζ as described above:∫
psi ,θi,ζi

dwl(psi ; θi, ζi)dF
′′
ps,θ,ζ(p

s
i , θi, ζi) ≥

∫
psi ,θi,ζi

dwl(psi ; θi, ζi)dFps,θ,ζ(p
s
i , θi, ζi).

We can obtain intuition in two ways. One is to note that the method of forcing binary perceived prices

increases heterogeneity of perceived prices compared to Fps,θ,ζ . Another is by considering the case

where m̄ = 1 and F ∗θ is known to be degenerate, so that all agents have the same preferences. For

a given aggregate demand, deadweight loss is maximized under these preferences when some perceive

price psi = p̄, while others correctly perceived the true tax rate psi = p̄ + τ . This is because for each

individual agent, deadweight loss is convex in the perceived price. Hence, for a given aggregate demand,

aggregate deadweight loss will be highest when it is as high as possible for some – namely, those who

fully perceive the tax – while it is null for everybody else – as those who don’t perceive the tax at all

are effectively subject to a lump-sum tax. We provide a graphical illustration of this argument in figure 4.
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4 LINEAR SPECIAL CASE
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Figure 4: A graphical illustration of Theorem 2. The watershed price p̃s is chosen to make the change
in demand equal for the consumer in (a) and in (b). As long as we are dealing with weakly decreasing
demand functions, the increase in deadweight loss for (a) is at least as big as the green box, while the
decrease in deadweight loss for (b) is at most as big as the orange box. By assigning a perceived price
of p̄+ m̄τ to the consumer in (a) and p̄ to the consumer in (b), we have increased aggregate deadweight
loss holding aggregate demand constant.

Theorem 2 illustrates that for any distribution of (ps, θ) that rationalizes the data, we can alternatively

rationalize the data with a distribution with support for psi on {p̄, p̄+ m̄τ} that yields (weakly) greater

deadweight loss. Again, we see that identification of deadweight loss is not generally possible even if

we knew the distribution of F ∗θ , as different marginal distributions of ps and ζ could have different

implications for deadweight loss. Also, any upper bound to the possible values of deadweight loss must

be generated from a distribution with support of perceived prices on {p̄, p̄+ m̄τ}.
However, not all distributions that have ps ∈ ∂P with probability one yield the same value of dead-

weight loss, even when rationalizing the same data with the same distribution of preference types. The

allocation of the good that yields the highest possible deadweight loss will also assign more consump-

tion to agents with more convex demand curves. Theorem 3 in the online appendix spells out how to

assign consumption of the good in the way it will “do the least good”, and deals with cases where the

tie-breaking parameter ζ is relevant, to get a general expression for the upper bound for deadweight

loss consistent with aggregate demand and the distribution of preferences.

4 Linear Special Case

In this section, we discuss the special case in which q is known to be linear in p̄ and τ (for fixed pNT ). We

focus on this example both because of how frequently economists estimate linear models and because

of its relationship to the second order approximation of deadweight loss.

We can also use the linear special case to better illustrate the general identification problem. In

this subsection, we will no longer assume that the distribution of preference parameters is known;

the econometrician will, as is usually the case, be able to identify preferences with exogenous price
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4 LINEAR SPECIAL CASE

variation. As in TRJ (2018), we assume the distribution of preferences does not depend on taxes (or

prices). Further, we permit the econometrician to assume that the distribution of tax salience does

not change as sticker prices and taxes vary. This entirely rules out any sort of endogeneity between

attention and taxes – which was driving non-identification in the binary case – and yet we will get the

same non-identification result.

Naturally, no demand curve can be entirely linear, for the simple reason that agents cannot consume

negative quantities. But in practice, one rarely gets the privilege of such rich variation in prices when

doing empirical work. What we are implicitly assuming in this section is that the values of (p̄, τ) that

are considered are all such that p̄ > 0, and qi > 0 for all consumers in the market, so that aggregate

demand is also linear at those values. In other words, one can think of our work here as modeling linear

demand conditional on buying at all prices under consideration.14

We might recall from section 2 that one can express a second order approximation to deadweight loss

as a function of derivatives. If the choice function is linear in regressors p̄ and τ , the second order

approximation is an exact calculation of deadweight loss, and our results from the previous sections

apply.

Formally, each preference type θi takes the form θi = (βi, εi) ∈ R2.15 To maintain linearity in regressors,

we also assume that tax salience m is constant with respect to τ . The choice function q then takes the

form:

qi = α+ βip
s
i + εi = α+ βi[p̄+miτ ] + εi

We are suppressing the tie-breaking parameter ζ because in this linear example θi,mi, p̄, and τ always

uniquely determine consumption. We have the parameter α so that we can assume without loss of

generality that E[ε] = 0.

Defining β̃i ≡ miβi yields:

qi = α+ βip̄+ β̃iτ + εi, (8)

with corresponding deadweight loss per agent, from equation 4:

dwli =

∫ ps

p̄

[α+ βip+ εi]dp− (ps − p̄)[α+ βip
s + εi] =

∫ ps

p̄

(p− ps)βidp

=
1

2

[ps2 − p̄2

2
− (ps − p̄)ps

]
βi =

1

2
(ps − p̄)[(ps + p̄)− 2ps]βi = −1

2
τs2βi

= −1

2
m2
iβiτ

2.

We assume that not just the distribution of preference parameters, but also the joint distribution of pref-

erence and salience parameters remains unaffected by the specific values of p̄ and τ . The econometrician

14We thank an anonymous referee at the Journal of Public Economic Theory for helping us clarify our thinking on this
matter.

15Agents have quasi-linear utility ui =
q2i /2−(α+εi)qi

ii
+ qNTi . For a given pNT , we define βi ≡ ii

pNT
, yielding utility

representation Ui =
q2i /2−(α+εi)qi

βi
+ pNT qNTi .
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4 LINEAR SPECIAL CASE

observes for various values of regressors:

E[q|p̄, τ ] ≡
∫

βi,β̃i,εi

[α+ βip̄+ β̃iτ + εi]dF
∗
β,β̃,ε

(βi, β̃i, εi) = α+ E[β]p̄+ E[β̃]τ. (9)

where F ∗
β,β̃,ε

is the true distribution of (β,mβ, ε). The challenge is to use the observed values of triplets

(p̄, τ, E[q|p̄, τ ]) to infer aggregate deadweight loss, which in this case is equivalent to its second order

approximation around τ = 0:

DWL = −1

2

∫
βi,mi

m2
iβidFβ,m(βi,mi)τ

2 = −1

2
E[m2β]τ2 = −1

2
E[mβ̃]τ2.

The only restriction that the econometrician imposes on the distribution of tax salience m is that the

support of tax salience is contained within the interval [0, m̄]. The econometrician can also use the

Compensated Law of Demand as defined in appendix lemma 2, which shows that compensated demand

is always weakly decreasing, so that P[β ≤ 0] = 1. In fact, we can permit the econometrician to know

the entire distribution of θ = (β, ε). It will not affect our results.} First, we can find a homogeneous

perceived price that rationalizes the data for any τ . In particular, a linear regression of aggregate

demand on sticker prices and taxes may permit identification of β̂ ≡ E[β] and
ˆ̃
β ≡ E[β̃], respectively.16

We define a measure of central tendency of tax salience:17

m̂ ≡
ˆ̃
β

β̂
.

Then the homogeneous perceived price that rationalizes the data is p̂s = p̄+ m̂τ . To see this, note that

assuming all agents have tax salience mi = m̂ yields aggregate demand as in equation 9:∫
βi,εi

[α+ βip̂
s + εi]dF

∗
β,ε(βi, εi) = α+ p̄

∫
βi,εi

βidF
∗
β (βi) + m̂τ

∫
βi

βidF
∗
β (βi)

= α+ β̂p̄+ m̂
ˆ̃
βτ

= α+ β̂ p̄+
ˆ̃
β τ.

Thus, the econometrician cannot rule out all agents perceiving the same price p̂s, and so cannot rule

out mi = m̂ ∀i. For tax τ , this would yield deadweight loss:

DWLlow = −1

2
m̂

ˆ̃
βτ2.

By theorem 1, this is a lower bound for deadweight loss.

Alternatively, the econometrician cannot rule out the perceived tax τs having support in {0, m̄τ}. To

see this, consider P(ps = p̄+ m̄τ) = m̂
m̄ and P(ps = p̄) = 1− m̂

m̄ independently of other parameters and

16Such identification requires exogenous and non-collinear variation in sticker prices and taxes. If the econometrician
cannot identify these terms, so much the worse for identifying aggregate deadweight loss.

17If β̂ = 0, then let m̂ = 0.
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4 LINEAR SPECIAL CASE

regressors.18 This will rationalize aggregate demand:∫
βi,εi

[
α+ βip̄i +

m̂

m̄
βim̄τi + εi

]
dFβ,ε(βi, β̃i, εi) = α+ E[β]p̄+ m̂E[β]τ = α+ E[β]p̄+ E[β̃]τ.

This yields deadweight loss for tax τ :

DWLhigh = −1

2

m̂

m̄
E[β]m̄2τ2 = −1

2
m̂β̂m̄τ2 = −1

2
m̄

ˆ̃
βτ2.

For instance, if m̄ = 1, then the value of deadweight loss under a homogeneous perceived price is fraction

m̂ of the above calculation of deadweight loss.

Proceeding from theorem 2, we noted that there is a specific distribution of perceived prices on {p̄, p̄+

m̄τ} that maximizes deadweight loss. We describe that distribution in theorem 3, noting that it involves

assigning high or low perceived prices based on the ratio of per-person deadweight loss to the change

in consumption for that individual. But in this context:

dwli
qi(p̄)− qi(ps)

=
τs

2
.

Thus, the distribution of tax salience independent of all other parameters and regressors in which

P(m = m̄) = m̂
m̄ and P(m = 0) = 1− m̂

m̄ maximizes deadweight loss. More generally, the econometrician

cannot rule out this maximal value of deadweight loss so long as they cannot rule out the possibility of

some distribution F with Fβ = F ∗β such that supp(m) ∈ {0, m̄} with:

PF (m = m̄)EF [β̃|m = m̄] = m̂β̂ =
ˆ̃
β.

One can check that this distribution rationalizes the data,

E[q|p̄, τ ] = α+ E[β]p̄+ EF [β̃]τ = α+ β̂p̄+ PF [m = m̄]EF [β̃|m = m̄]τ = α+ β̂p̄+
ˆ̃
βτ,

and yields the maximal value of deadweight loss,

−1

2
EF [m2β]τ2 = −1

2
PF [m = m̄]m̄EF [β̃|m = m̄]τ2 = −1

2
m̄

ˆ̃
βτ2 = DWLhigh.

More intuitively, once one knows β̂ and
ˆ̃
β, one can rationalize the aggregate data. Since the ratio

of deadweight loss to the change in quantity is constant, the relationship between tax salience and

preferences doesn’t matter upon attaining the observed aggregate demand.

Finally, consider a distribution with m ⊥ (β, ε) with supp(m) ⊆ {0, m̂, m̄}, P(m = m̂) = λ and

P(m = m̄|m 6= m̂) = m̂
m̄ . Varying λ from zero to one yields:

DWL ∈
[
− 1

2
m̂

ˆ̃
βτ2,−1

2
m̄

ˆ̃
βτ2

]
.

18In the true distribution, it must be that m̂ ∈ [0, m̄]. Alternatively, one could consider checking whether m̂ ∈ [0, m̄] as
a weak test of the null hypothesis that tax salience is bounded within that interval.
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5 CONCLUSION

We can conclude from this result that one cannot even identify a second order approximation of dead-

weight loss with aggregate data alone.19 Imposing structure on preferences to facilitate identification of

F ∗θ still only permits interval identification. Nonetheless, we can use aggregate data to obtain bounds,

or at least m̂, which gives us a sense of the uncertainty over the possible values of deadweight loss.

Besides its illustrative value, this linear framework also gives researchers a quick and easy way to com-

pute bounds for the deadweight loss of non-salient taxes or fees in a variety of empirical contexts. In

the online appendix, we apply these findings to the framework of CLK’s study of aggregate beer con-

sumption and Goldin and Homonoff’s (2013) study of cigarette consumption. Details on the estimation

procedures are provided in the online appendix. In the baseline specification of the CLK (2009) data,

we estimate that m̂ ≈ 0.31. This estimate suggests that even assuming that salience cannot exceed one,

m̄ = 1, the upper bound of deadweight loss is about three times the lower bound. These estimates,

however, all seem fairly imprecise. Across the two data-sets, there is no specification in which we can

reject the null hypothesis that m̂ = 0, permitting the upper bound to be arbitrarily large in proportion

to the lower bound.20 Similarly, in most specifications we cannot reject that m̂ = 1, which would imply

that upper bound and lower bound are identical. This underlying uncertainty is mirrored in previous

work on tax salience – e.g., TRJ (2018) find that individual differences increase excess burden by at

least 200% relative to the case of homogeneous attention – but our wide confidence intervals may be

the result of the specific data sets we are using here – for example, Goldin and Homonoff (2013) often

cannot reject that consumers do not react at all to sales taxes. Our procedure, however, seems so

straightforward to carry out that it might turn out useful in future research on tax salience.

Finally, in both the setting of CLK (2009) and Goldin and Homonoff (2013), functional form assumptions

seem to matter. The limitations of the linear setting would prompt us to undergo more sophisticated

and less parametric exercises, but we are dissuaded by the fact that our statistical power is already very

low.

5 Conclusion

In this paper, we studied deadweight loss in a model where agents misperceive prices. We started by

generalizing the theoretical results of CLK (2007, 2009) with an arbitrary closed choice set. Inattentive-

ness to taxes makes agents worse off while reducing deadweight loss by preventing agents from avoiding

the tax.

As in the binary choice model of TRJ (2018), heterogeneous attention adds another layer of complex-

ity to deadweight loss. In our general setting, we show that aggregate consumption can be consistent

with a wide variety of co-distributions of attention and preferences, each with a different implication

for deadweight loss. This is because it matters who gets the good and who doesn’t: when prices are

misperceived, there is no guarantee that agents who end up with some units of the good are the ones

who value those units most. By minimizing and maximizing this allocative inefficiency, we show that

deadweight loss can only vary between two extremes for any given aggregate demand. The lower bound

holds generally, while the upper bound relies on the assumption that tax salience has support contained

19One can identify a first order approximation trivially: it is zero.
20Note that

DWLhigh
DWLlow

= m̄
m̂

, so that as m̂ approaches zero from above, this ratio of upper to lower bounds blows up to

infinity.
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5 CONCLUSION

in a known non-negative interval.

Finally, we explore the special case in which demand is linear, which is of special interest due to its

relationship to both the empirical literature and the second order approximation of deadweight loss.

Our analysis shows that, while identification of deadweight loss under binary choice may be restated as

an endogeneity problem, the same cannot be said regardless of the choice set. Indeed, when individual

demand is linear, assuming independence of tax salience from taxes and prices does not change the

interval of possible values of deadweight loss.

The linear model yields bounds for deadweight loss that one can easily compute from linear regression

estimates. While this doesn’t necessarily doom any future application in empirical work, our own ap-

plications of this method on the existing work of CLK (2009) and Goldin and Homonoff (2013) leave

us without many answers about how tight these bounds might be. While some point estimates seem

reasonable, they also can be imprecise and dependent on functional form specification.
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