A Tutorial on Software Engineering Intelligence:
Case Studies on Model-Driven Engineering

Marouane Kessentini Xin Yao

Kalyanmoy Deb

Department of Computer Science Department of Computer Science Department of Electrical and Computer Engineering

SUSTech
Shenzhen, China
xiny @sustc.edu.cn

University of Michigan-Dearborn
Michigan, USA
marouane @umich.edu

Abstract—The recent advances in Artificial Intelligence (AI)
are dramatically impacting the way we are modelling software
systems. A large number of computational intelligence based
approaches and tools, combining computational search and ma-
chine learning, proved to be successful in automating and semi-
automating several activities to support developers. However, the
adoption of computational intelligence to address model driven
engineering problems is still under-explored. In this tutorial,
we will give an overview about computational intelligence, why
model-driven engineering is a suitable paradigm for compu-
tational intelligence and how computational intelligence could
benefit from the recent advances in model-driven engineering.
Then, we will focus on some case studies that we published
around the adaptation of a variety of computational intelligence
techniques for model transformations, models evolution, model
changes detection, co-evolution, model/metamodel refactoring,
models merging, models quality and metamodels matching. To
make the tutorial interactive, the participants will have the
opportunity to practice our interactive intelligent MDE tools
during the tutorial. Finally, we will conclude the tutorial with
different suggestions to enhance the adoption of MDE intelli-
gence research into industry, and the lessons that we learned
along this journey and our vision about the future of MDE
intelligence. The event will target a wide range of researchers
and practitioners from both the model-driven engineering and
computational intelligence communities and will reduce the gap
between them. The participants will learn about the recent
advances in computational intelligence and acquire the required
skills to apply them for relevant MDE problems.

Model-Driven Engineering, computational intelligence,

model transformations, models refactoring, machine learning

I. SHORT BIO OF THE PRESENTERS

The three organizers of the tutorial have extensive ex-
perience and complementary expertise on both MDE and
Computational Intelligence. Dr. Kessentini is the PC chair of
the foundations track of MODELS2019, he will be the general
chair of ASE2021 and he organized with Dr. Deb the search
based software engineering symposium (SSBSE2016).

Dr. Marouane Kessentini is a recipient of the prestigious
2018 President of Tunisia distinguished research award, the
University of Michigan distinguished teaching award, the
University of Michigan distinguished digital education award,
the Collge of Engineering and Computer Science distinguished
research award, 4 best paper awards, and his Al-based software
refactoring invention, licensed and deployed by industrial part-
ners, is selected as one of the Top 8 inventions at the University

Michigan State University
Michigan, USA
kdeb@egr.msu.edu

of Michigan for 2018, among over 500 inventions, by the UM
Technology Transfer Office. Prior to joining UM in 2013, He
received his Ph.D. from the University of Montreal in Canada
in 2012. He received several grants from both industry and
federal agencies and published over 110 papers in top journals
and conferences. Dr. Kessentini has several collaborations with
industry on the use of computational search, machine learning
and evolutionary algorithms to address software engineering
and services computing problems. He is the co-founder of
IWoR and NasBASE, General Chair of SSBSE16 and ASE21,
and PC chair of MODELS19, GECCO14-15. He served as
invited speaker at SSBSE and WCCI, graduated 13 Ph.D.
student as a chair and serving as associate editor in 7 journals
and PC member of over 100 conferences. He organized tuto-
rials on Search based Software Engineering at SSBSE2018,
WCCI2016, ASE2016, etc. He has extensive publications on
adopting computational intelligence in MDE [1], [2], [3], [4],
[51, [6], [7], [8], [9], [10], [11], [12], [13] and organized several
workshops at MODELS (2013, 2014 and 2015) around this
topic.

Xin Yao is a Chair Professor of Computer Science at the
Southern University of Science and Technology, Shenzhen,
China, and a part-time professor at the University of Birming-
ham, UK. His major research interests include evolutionary
computation, ensemble learning and search-based software
engineering. His work won the 2001 IEEE Donald G. Fink
Prize Paper Award, 2010, 2015 and 2017 IEEE Transactions on
Evolutionary Computation Outstanding Paper Awards, 2010
BT Gordon Radley Award for Best Author of Innovation
(Finalist), 2011 IEEE Transactions on Neural Networks Out-
standing Paper Award, and many other best paper awards. He
received the prestigious Royal Society Wolfson Research Merit
Award in 2012 and the IEEE CIS Evolutionary Computation
Pioneer Award in 2013. He has extensive publications on
search based software engineering.

Kalyanmoy Deb is Koenig Endowed Chair Professor at
Department of Electrical and Computer Engineering in Michi-
gan State University, USA. Prof. Deb’s research interests are
in evolutionary optimization and their application in multi-
criterion optimization, modeling, and machine learning. He
was awarded IEEE EC Pioneer award, Infosys Prize, TWAS
Prize in Engineering Sciences, CajAstur Mamdani Prize, Dis-



tinguished Alumni Award from IIT Kharagpur, Edgeworth-
Pareto award, Bhatnagar Prize in Engineering Sciences, and
Bessel Research award from Germany. He is fellow of IEEE
and ASME. He has published over 500 research papers with
Google Scholar citation of over 122,000 with h-index 112. He
is in the editorial board on 18 major international journals.

II. PROPOSED LENGTH
A half-day (3 hours).

III. THE PROPOSED TUTORIAL

More effective software development has the potential to
make the infrastructure on which so many aspects of our
society depend less costly including banks, businesses and
government agencies. The increasing size and complexity of
software systems make current development processes expen-
sive, laborious and error prone. This evolution of software
systems currently requires enormous human effort, forcing
highly skilled engineers to waste significant time adapting
many tedious requirements, planning, design, modeling, im-
plementation, quality and testing details. Thus, it is becoming
more challenging for humans to design and maintain software
without automated and semi-automated tools to support them
in their tasks.

The recent advances in Artificial Intelligence (Al) are dra-
matically impacting the way we are building and modeling
software systems. A large number of Al based approaches
and tools, such as search based software engineering (SBSE),
proved to be successful in automating and semi-automating
several activities to support developers from initial require-
ments, design and modeling, project planning, documentation
generation and cost estimation to regression testing, debug-
ging and evolution. There is also an increasing interest in
Al based tools from the industrial sector such as work on
testing involving Google and Microsoft, work on requirements
analysis involving Motorola and NASA, Kessentini and Deb
work on design refactoring involving Ford, eBay, Philips and
SEMA, and work on automated documentation and interactive
modeling with ABB.

Software Engineering Intelligence is a fundamental disci-
pline which impacts a wide spectrum of software engineering
activities. Research advances in this area will have a signifi-
cant impact on Computational Intelligence, Natural Language
Processing and other related areas. We identified over 1,879
papers and 2,684 authors from various disciplines and coun-
tries working on related Software Engineering Intelligence
topics. Model-Driven Engineering is one of the most important
topics where computational intelligence techniques has been
applied with around 392 papers mainly based on evolutionary
algorithms and mining techniques.

Considering the cross-cutting nature of Al based MDE
and the influence it exerts on other areas of MDE, machine
learning, natural language processing and computational intel-
ligence, a wide range of research opportunities will be enabled
by this tutorial. We are confident that the development of
this community will increase the rigor of both MDE and

computational intelligence research and enable opportunities
which are currently missed. Several researchers in MDE are
lacking the required background in computational intelligence
and vice-versa. Thus, this tutorial will reduce the existing gab
between the two communities and encourage the adoption of
computational intelligence in MDE.

It is difficult today to: (1) combine different types of Al
algorithms ranging from metaheuristics search to machine
learning and deep learning for MDE problems due to the
different assumptions that these tools make (e.g., the execution
environments, formats used, modeling languages, etc.) which
prevent their inhibiting breakthroughs. However, the majority
of recent work in Al based MDE show that MDE problems
should be addressed using a combination of Al techniques
such as NLP and machine learning or metaheuristics and clus-
tering algorithms; (2) transfer results of successful research
to industry and enable easy entry for new researchers into
the field due to the required expertise in both MDE and
Al Furthermore, practitioners still face a major difficulty to
find, understand, use and configure Al algorithms for MDE
problems such as design refactoring and model transforma-
tions. Most of researchers lack the resources, including data,
needed to build tools that are robust and scalable enough to be
easily and effectively evaluated and used by practitioners in
an industrial setting. Furthermore, the validation of Al based
approaches for MDE is challenging due to the randomness
involved in these algorithms thus researchers need a clear
guide on how to statistically and scientifically validate them;
(3) access Al based tools for MDE since they are unavailable,
defective, or are no longer supported by their original authors.
For tools that do work, it is common for them to not operate
as expected due to the challenging parameters tuning of Al
tools resulting in major effort required to adapt these tools
for further research and the difficulty to reproduce existing
results; (4) find Benchmarks and Datasets. Scalability is one
of the main motivations to use Al techniques but it is hard to
evaluate using existing small datasets. Currently most of the
new computational intelligence techniques are first validated
on artificial benchmarks (e.g., the ZDT and DTLZ bench-
marks). Similarly, most NLP-based techniques in MDE are
first validated on datasets that were prepared by the authors of
the techniques. Al based MDE community is in great need of
benchmarks and test datasets for common MDE tasks, such as
model transformations; (5) adapt and test novel Al techniques
by MDE researchers and practitioners due to the absence of
an infrastructure that can offer a template to follow in order
to adapt an Al technique for a specific MDE problem without
the need for strong expertise in Al

The main goal of this tutorial is to give MDE researchers
a clear understanding of the recent advances in computational
intelligence, why MDE is relevant for computational intelli-
gence, how to adapt a computational intelligence technique to
an MDE problem illustrated with many real-world example
and tools to practice and discuss the future of MDE intelli-
gence.



Target Design
Model

Differens_'

Calculation
,77//
(% Recommended /Refactoring\
‘ - Refactoring Path Path
: — \\Calculatior\/
e
—
— — _—
Ref. Step Execution: ACC@_P'[Ed . Ugsr . _—
Code-level auto-refactoring Refactoring Path ei/%i’

Selected (
Anti-pattern f
Selected /A/ﬁfpa;;?
Source Code Source code
— - Extraction

Reflexion
Model

Source
Model

Q Automated Process

Legend:

Artifacts

4 .
P User Interaction

Fig. 1. The Interactive Design Refactoring Process

A. An Example of a Case Study on Design Refactoring

Although low-level code quality issues can largely be auto-
mated, higher-level refactoring—such as redistributing func-
tionality into different components, decoupling a large code
base into smaller modules, redesigning to a design pattern,—
requires abstractions determined by the developers of the
system. In these cases, these developers usually has a desired
design in mind as the refactoring target, and they needs to
conduct a series of low-level code changes to achieve this
target. Without explicit guidance about which path to take,
such restructuring tasks can be demanding for scientists with
limited knowledge of best design practices. One of our indus-
trial partners took several weeks to refactor the architecture of
a medium-size project [14]. Tokuda and Batory [15] presented
two case studies where architectural refactoring involved more
than 800 steps, estimated to take more than 2 weeks.

Given that fully automatic refactoring usually does not lead
to the desired architecture and that a designer’s feedback
should be included, we proposed an interactive architecture
refactoring recommendation system to integrate higher-level
abstractions from humans with lower-level refactoring automa-
tion.

We proposed an interactive design refactoring support
framework as illustrated in Figure 1. The process starts from
the selection of one or more quality issues to address by the
user based on the outputs of the two previous detection and
prioritization steps, and the associated source code. From the
code, we can reverse-engineer a high-level model, such as a
UML class diagram, of these quality issues [1], [2], then apply
the following major steps:

1. Supporting target design modeling. Target Design
Models provided by human designers will express key ab-
stractions that cannot be automatically obtained. In our earlier
work [16], [1], [2], users could draw a high-level model
as the target design and the differences between the source
model and the target design form a Reflexion Model that was
visualized. Our work also revealed the challenges of asking
practitioners to provide a high-level target model especially
with little background in the use of best design practices. In
this tutorial, we will explore how to allow the user to express

high-level designs without interfering in their development
process or requiring extensive background in software archi-
tecture, model-driven engineering and quality, and calculate a
Reflexion Model to reveal discrepancies between them. Next
we will explain the guidance that we can offer to designers
to find different possible design alternatives of their systems
without the need to manually specify them.

2. Refactoring path recommendation. Our framework can
calculate optimal refactoring “paths”, using multi-objective
intelligent algorithms with conflicting quality attributes that
can be used to evaluate a new design. Given a reflexion
model, we will calculate a set of paths, each consisting of
an ordered list of atomic code-level refactoring steps. We
formulated multi-objective search-based formulation to find
and recommend an optimal refactoring path based on the
following criteria: 1) maximizing the consistencies between
the target and source; 2) improving OO design quality, such
as coupling and cohesion; and 3) maximizing the similarity
between the target and source design. Multi-objective search
enables us to find the best trade-offs in avoiding interference
between multiple refactoring steps and still reach a target
design, as closely as possible without the need to have the
designers manually defining the targeted design.

3. Refactoring execution with user feedback. Given a
recommended refactoring path, the user can examine each step
and decide whether to accept, reject, or ignore it. Our tool will
then execute the accepted steps to update the Source Model,
and then calculate the updated differences and begin a new
iteration. The designer’s decisions about accepting/rejecting
recommendations are recorded as User Feedback, which will
be considered when computing the next round of recommen-
dations. The refactoring process ends when no discrepancies
exist in the reflexion model, or the tool cannot produce further
refactoring recommendations to eliminate the discrepancies.
We were able to reduce the time of refactoring from several
weeks (conduced by our collaborators manually) to a few
hours, demonstrating the feasibility and potential of the pro-
posed approach, as well as the need for more sophisticated,
less intrusive support for integrating human feedback [14],
[17], [18], [19], [20], [21], [22]. We believe that the integration
of this new interaction process with the users who are non-
programming experts, but mainly designers and architects, will
make quality issues easier to understand and address.

The main novelty of the tutorial can be summarized as
following:

« An overview about the recent advances in computational
intelligence and how they could be useful to address
relevant MDE problems. We have few opportunities in
the MDE community for connections with leading re-
searchers in Computational intelligence.

o Practicing a set of tools related to published papers by
the presenters on addressing MDE using computational
intelligence. Some of these tools are licensed to industrial
partners of Dr. Kessentini.

« Discussions around how MDE could be relevant for com-
putational intelligence to design explainable techniques.



[1]

[2

—

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[16]

REFERENCES

M. W. Mkaouer, M. Kessentini, S. Bechikh, K. Deb, and M. o) Cinnéide,
“Recommendation system for software refactoring using innovization
and interactive dynamic optimization,” in Proceedings of the Interna-
tional Conference on Automated Software Engineering, 2014, pp. 331—
336.

A. Ouni, M. Kessentini, H. A. Sahraoui, K. Inoue, and K. Deb, “Multi-
criteria code refactoring using search-based software engineering:
An industrial case study,” ACM Trans. Softw. Eng. Methodol.,
vol. 25, no. 3, pp. 23:1-23:53, 2016. [Online]. Available:
https://doi.org/10.1145/2932631

M. Kessentini, H. A. Sahraoui, and M. Boukadoum, ‘“Model
transformation as an optimization problem,” in Model Driven
Engineering Languages and Systems, 11th International Conference,

MoDELS 2008, Toulouse, France, September 28 - October
3, 2008. Proceedings, 2008, pp. 159-173. [Online]. Available:
https://doi.org/10.1007/978-3-540-87875-9_12

A. Ghannem, M. Kessentini, M. S. Hamdi, and G. EI-

Boussaidi, “Model refactoring by example: A multi-objective
search based software engineering approach,” Journal of Software:
Evolution and Process, vol. 30, no. 4, 2018. [Online]. Available:
https://doi.org/10.1002/smr.1916

M. Kessentini, U. Mansoor, M. Wimmer, A. Ouni, and K. Deb,
“Search-based detection of model level changes,” Empirical Software
Engineering, vol. 22, no. 2, pp. 670-715, 2017. [Online]. Available:
https://doi.org/10.1007/s10664-016-9442-8

M. Fleck, J. Troya, M. Kessentini, M. Wimmer, and B. Alkhazi,
“Model transformation modularization as a many-objective optimization
problem,” IEEE Trans. Software Eng., vol. 43, no. 11, pp. 1009-1032,
2017. [Online]. Available: https://doi.org/10.1109/TSE.2017.2654255
A. Ghannem, G. El-Boussaidi, and M. Kessentini, “On the use of
design defect examples to detect model refactoring opportunities,”
Software Quality Journal, vol. 24, no. 4, pp. 947-965, 2016. [Online].
Available: https://doi.org/10.1007/s11219-015-9271-9

B. Alkhazi, T. Ruas, M. Kessentini, M. Wimmer, and W. I. Grosky,
“Automated refactoring of ATL model transformations: a search-based
approach,” in Proceedings of the ACM/IEEE 19th International
Conference on Model Driven Engineering Languages and Systems,
Saint-Malo, France, October 2-7, 2016, 2016, pp. 295-304. [Online].
Auvailable: http://dl.acm.org/citation.cfm?id=2976782

U. Mansoor, M. Kessentini, P. Langer, M. Wimmer, S. Bechikh, and
K. Deb, “MOMM: multi-objective model merging,” Journal of Systems
and Software, vol. 103, pp. 423-439, 2015. [Online]. Available:
https://doi.org/10.1016/j.jss.2014.11.043

V. Alizadeh and M. Kessentini, “Reducing interactive refactoring effort
via clustering-based multi-objective search,” in Proceedings of the 33rd
ACM/IEEE International Conference on Automated Software Engineer-

[10]

(11]

[12]

[13]

[14]

[15]

[17]

[18]

[19]

[20]

[21]

[22]

D. Sahin, M. Kessentinii, M. Wimmer, and K. Deb,
“Model transformation testing: a bi-level search-based software
engineering approach,” Journal of Software: Evolution and Process,
vol. 27, no. 11, pp. 821-837, 2015. [Online]. Available:
https://doi.org/10.1002/smr.1735

M. W. Mkaouer and M. Kessentini, “Model transformation using
multiobjective optimization,” Advances in Computers, vol. 92, pp.
161-202, 2014. [Online]. Available: https://doi.org/10.1016/B978-0-12-
420232-0.00004-0

A. ben Fadhel, M. Kessentini, P. Langer, and M. Wimmer, “Search-based
detection of high-level model changes,” in 28th IEEE International
Conference on Software Maintenance, ICSM 2012, Trento, Italy,
September 23-28, 2012, 2012, pp. 212-221. [Online]. Available:
https://doi.org/10.1109/ICSM.2012.6405274

M. Kessentini, H. A. Sahraoui, M. Boukadoum, and O. Benomar,
“Search-based model transformation by example,” Software and System
Modeling, vol. 11, no. 2, pp. 209-226, 2012. [Online]. Available:
https://doi.org/10.1007/s10270-010-0175-7

V. Alizadeh, M. Kessentini, W. Mkaouer, M. Ocinneide, A. Ouni,
and Y. Cai, “An interactive and dynamic search-based approach to
software refactoring recommendations,” IEEE Transactions on Software
Engineering, 2018.

L. Tokuda and D. Batory, “Evolving object-oriented designs with
refactorings,” in Proceedings of International Conference on Automated
Software Engineering, 1999, pp. 174-181.

ing, ASE 2018, Montpellier, France, September 3-7, 2018, 2018, pp.
464-474. [Online]. Available: https://doi.org/10.1145/3238147.3238217
M. Fleck, J. Troya, M. Kessentini, M. Wimmer, and B. Alkhazi,
“Model transformation modularization as a many-objective optimization
problem,” IEEE Transactions on Software Engineering, 2017.

A. Ouni, R. G. Kula, M. Kessentini, T. Ishio, D. M. German, and
K. Inoue, “Search-based software library recommendation using multi-
objective optimization,” Information and Software Technology, vol. 83,
pp- 55-75, 2017.

H. Wang, M. Kessentini, and A. Ouni, “Bi-level identification of
web service defects,” in International Conference on Service-Oriented
Computing. Springer, 2016, pp. 352-368.

M. W. Mkaouer, M. Kessentini, M. 0. Cinnéide, S. Hayashi, and K. Deb,
“A robust multi-objective approach to balance severity and importance
of refactoring opportunities,” Empirical Software Engineering, vol. 22,
no. 2, pp. 894-927, 2017.

U. Mansoor, M. Kessentini, M. Wimmer, and K. Deb, “Multi-view refac-
toring of class and activity diagrams using a multi-objective evolutionary
algorithm,” Software Quality Journal, vol. 25, no. 2, pp. 473-501, 2017.
M. Kessentini, R. Mahaouachi, and K. Ghedira, “What you like in design
use to correct bad-smells,” Software Quality Journal, vol. 21, no. 4, pp.
551-571, 2013.



