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Abstract 

 As circular economy systems gain popularity with the environmental movement, 

the combination of raising fish (aquaculture) and growing crops outside of soil 

(hydroponics) appeals to many, especially in low-resource areas. But how 

environmentally friendly is it really, especially when compared to other farming 

technologies? This study aims to measure the energy, water, and nutrient inputs of a 

tilapia and tomato aquaponics system over a six-month growing season and compare 

those numbers to plant and fish biomass outputs. Then, the data is compared to traditional 

tomato farming, aquaculture, and hydroponics technologies to determine which has the 

best input to output ratios in each category. The system output 45.1 kg of plant biomass, 

91.9 kg of tomatoes, and 21.6 kg of tilapia.  Aquaponics is found to consume more water 

and energy than traditional and hydroponic tomato growth methods. Traditional farming 

was found to use 31.9 L water/kg tomato and produce 19.2 gCO2e/kg tomato. 

Hydroponics was found to consume 17 L water/kg tomato and produce 209 gCO2e/kg 

tomato. Aquaponics was found to utilize 186 L water/kg tomato and produce 28,300 

gCO2e/kg tomato. However, aquaponics consumes less water and energy than traditional 

aquaculture. Aquaculture uses 1200 L water/kg tilapia and produces 62,100 gCO2e/kg 

tilapia while aquaponics uses 43.5 L water/kg tilapia and produces 28,200 gCO2e/kg 

tilapia. 

  



3 

 

 

 

Literature Review 

General Overview 

 Aquaponics is a relatively new discipline within the scientific community. It is the 

concept of combining aquaculture and hydroponics systems into one cohesive closed-

loop system that cycles nutrients and water to the mutual benefit of the plant and fish 

species within the system (Fox et al. 2010). The first scientific papers on aquaponics were 

published in the 1980s, but research on the subject only really became widespread around 

2010 (Junge et al. 2017). As water and food scarcity became more widespread with 

climate change, aquaponics was one of the technologies that scientists began looking to 

as a potential solution for stable and sustainable food production with potential for 

reduced water usage as compared to traditional farming methods. Aquaponics systems 

are easier to implement within urban areas or as local food production because of the 

adaptable size of the system and its freedom from soil (Love et al. 2015), so it is possible 

to create an aquaponics system that requires less transportation energy than a traditional 

farm. The overall impact of energy use of the system can also be significantly decreased 

by the implementation of on site renewable energy generation technologies (Tokunaga et 

al. 2015, Forchino et al. 2017). However, despite the potential for increased sustainability 

in aquaponics in relation to traditional aquaculture and farming methods, the running of 

such a system can be quite labor intensive and costly in some cases. It is important to 

continuously monitor an aquaponics system to make sure that nutrients are in proper 

concentrations for plant growth so that adjustments can be made if necessary for the well-

being of the plants and animals involved (Suhl et al. 2016). Therefore, labor costs for 

aquaponics systems can be up to ⅓ of the total costs of running the system (Tokunaga et 
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al. 2015). Despite these high labor prices, aquaponics has been found to be profitable in 

Hawaii, where fresh produce costs tend to be higher than those in the continental United 

States (Tokunaga et al. 2015). 

 

Different System Types 

 There are three commonly used types of aquaponics systems. These include 

nutrient film technique (NFT), floating raft/deep water culture, and media filled systems 

(Wongkiew 2017). Nutrient film technique systems circulate a shallow stream of water 

which contains nutrients from the fish along the bare roots of the plants in the system 

(Wongkiew 2017). This method requires no media for the plant to grow in other than the 

grow bed channel. Some of the difficulties of NFT systems are that only small vegetable 

species can be used, there needs to be some method for efficient solids removal to 

prevent clogging the system, and a biofilter is required for nitrification (Wongkiew 

2017). Floating raft/deep water culture systems are the most common type of aquaponics 

system in the literature today. These systems consist of floating boards (typically made of 

polystyrene) that float on top of the water. Water from the fish tank circulates into the 

plant tank to provide nutrients. This type of system is popular because there is no thin 

channel of water flow to clog like in NFT systems (Wongkiew 2017). Floating systems, 

like NFT systems, require both solids removal and biofilters in their designs (Love et al. 

2015). In a life cycle assessment, floating systems are typically the best system type of 

the three explored in this paragraph (Forchino et al. 2017). Finally, media filled systems 

are the simplest of the three types to build and implement. This is because media filled 

systems do not require biofilters because the media in the grow bed provides a space for 
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nitrification (Zou et al. 2016). In these systems, water from the fish tank is pumped into 

grow beds filled with some type of media in intervals so that aerobic bacteria can convert 

nutrients into forms that plants can uptake (Fox et al. 2010). These intervals are often 

controlled by either a bell siphon or an automatic siphon with a timer (Fox et al. 2010).  

 In addition to the types of system design that can be used to categorize aquaponics 

systems, distinctions can also be made in terms of system size, location, and types of fish 

and plants that can be raised within systems. The sizes can be broken down into three 

categories: hobby, social/school, and commercial (Junge et al. 2017). However, there are 

no definitive size restrictions that have been documented for each size and this 

categorization is up to the interpretation of the observer and often based more on what the 

system is used for rather than the actual size. Systems can also be categorized by whether 

they are in rural or urban areas, as this distinction may impact the layout of the system as 

well as the energy use for transportation of products and supplies. Finally, there are many 

different types of fish and plants that can be used in aquaponics systems. Common types 

of fish utilized are trout (Buzby et al. 2016), tilapia (Delaide et al. 2017, Love et al. 2015, 

Ngo et al. 2017), and carp (Filep et al. 2016). Plant varieties included sage, chives, garlic, 

lovage, swiss chard, beets, kohlrabi, many different types of lettuce (Buzby et al. 2016), 

basil (Filep et al. 2016), tomato, and bok choy (Hu et al. 2015). 

 

Parameters of Aquaponics Systems 

 A lot of work has been done in the study of optimal parameters of the various 

nutrients and resources that flow through aquaponics systems. The most notable of these 

are nitrogen, ammonia, phosphorus, pH, water use, and energy use. Nitrogen utilization 
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efficiency in an aquaponics system is typically best when the pH of the water is between 

6.0 and 9.0 (Zou et al. 2016). In outdoor systems, seasonal variations may not affect 

nitrogen utilization efficiency, but they do affect the ratio of nitrification to plant growth 

(Zou et al. 2016). Nitrogen utilization efficiencies also vary by plant and should be 

researched for individual systems based on plant selection (Hu et al. 2015). Compared to 

traditional farming methods, only about half of the amount of nitrogen is required in 

aquaponics systems for comparable plant growth (Van Ginkel et al. 2017). Aquaponics is 

a complex biological system and levels of different forms of nitrogen and transformations 

of nitrogen should be closely monitored and systematically controlled (Wongkiew 2017). 

Ammonia levels were a large barrier in early aquaponics systems, as ammonia would 

build up in the system and could be toxic to fish, but are not as much of a problem in 

more modern systems (Bohl 1977, Collins et al. 1975, Love et al. 2015). In typical 

modern systems, nitrifying bacteria break down the ammonia (Zou et al. 2016). 

Phosphorus is highly utilized and produced by aquaponics systems as well (Cerozi et al. 

2017). When plants are first planted, there tends to be more phosphorus than necessary in 

the system. In the middle stages of growth, there tends to be just enough. At the end 

growth stages, there tends to be a shortage of phosphorus (Cerozi et al. 2017). 

Phosphorus availability in aquaponics systems is also highly impacted by pH, much like 

nitrogen. The optimal pH range for keeping phosphorus available for plant uptake in the 

system is between 5.5 and 7.2 (Cerozi 2016).  

Water use and energy use are important to document in order to determine how 

sustainable an aquaponics system is. On average, the water use required for 1 kg of 

vegetable growth is 244 L and the amount of water use required for a 1 kg increase in 
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tilapia is 278 L (Delaide et al. 2017). In comparison, farming techniques on average 

require about 8 times more water than aquaponics techniques (Van Ginkel et al. 2017). It 

is also important to note that a recirculation rate of 200-400% per day of water is optimal 

for plant growth (Ngo et al. 2017). This should be water that is cycled through the system 

over and over. Water exchange can help with decreasing nutrient levels if they get too 

high, but this should be done cautiously as any amount of water exchange typically 

results in high levels of nutrient loss across all parameters (Delaide et al. 2017). Many 

forms of water losses in systems have been documented from leaks to evaporation to 

transpiration. As long as water losses are not too severe, in many areas of the United 

States, rainfall should be able to make up for most losses (Love et al. 2015). On average, 

energy use for 1 kg of vegetable production is 84.5 kWh and the amount of energy 

required for a 1 kg increase in tilapia is 96.2 kWh (Delaide et al. 2017). There seems to 

be little difference overall in energy consumption between aquaponically grown plants 

and traditionally grown plants (Van Ginkel et al. 2017). 

As chemical controls such as pesticides and herbicides can harm fish, other 

methods of pest control in aquaponically grown plants need to be evaluated in order to 

have a successful system (Junge et al. 2017). Methods for pest control in aquaponics are 

not widely decided upon or accepted. However, many commercial aquaponics businesses 

believe that employees and owners need more education and information about fish 

diseases and plant pests as well as what they can do about them (Villarroel et al. 2016). 

The ability of aquaponic crops to be free of pesticides and herbicides (essentially organic) 

can be a huge boost to aquaponic farmers in terms of marketing and the ability to sell 

aquaponic produce at potentially higher prices (Miličić et al. 2017).  



8 

 

 

 

 According to Love et al. (2015), the main factors that affect the profitability of an 

aquaponics system are whether the system is someone’s primary source of income, 

geographic location, knowledge of aquaponics, and sales ability. In Villarroel et al. 

(2016)’s survey of European aquaponics systems, only 19% of respondents were 

commercial aquaponics producers and only 19.6% of total respondents listed aquaponics 

as their primary source of income. The largest users of aquaponics systems were schools 

and universities (43%) and a huge 91.7% of respondents had a postgraduate degree, 

showing that aquaponics seems to still be viewed as an educational pursuit that requires 

quite a bit of expertise and isn’t widely commercialized yet. According to Miličić et al, 

customers of aquaponics systems seem to have a good opinion of the practice in general 

because most aquaponic-grown produce is organic, local, and environmentally friendly 

and is advertised as such (Miličić et al. 2017). 

 

Major Challenges to Aquaponics 

 Despite benefits of using aquaponics technology, such as decreased water use, 

decreased organic waste, and local production of multiple types of food products (Love et 

al. 2015), there are still major challenges in the implementation of aquaponics 

technology. Some barriers to implementation include high start-up costs (Villarroel 

2016), extensive knowledge requirements, high resource demand, daily maintenance 

requirements, and narrow ranges of nutrient and temperature requirements that leave little 

room for error (Love et al. 2015). These barriers will likely decrease or disappear as the 

field grows and time passes, but are still significant enough to exclude many people 

currently (Villarroel 2016). There are additionally some global impacts that aquaponics 
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could have that could cause environmental issues such as water use (in potentially water 

scarce areas), nutrient release into the environment, and introduction of exotic species 

and diseases into the local ecosystem in the event of a fish escape (Samuel-Fitwi et al. 

2012). Some of the major challenges that need to be addressed in order to create 

sustainable aquaponics systems are improved nutrient utilization, better pest 

management, reduction of water requirements, use of alternative energy sources to power 

the systems, and better pH stabilization measures (Goddek et al. 2015).  
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Methodology 

Overview of Study 

 The purpose of this study is to build and run an aquaponics system for a term of 6 

months and document the nutrient, water, and energy inputs to the system. At the end of 

running the system, fish and biomass (fruits and plants) were harvested and weighed as 

outputs of the system. Blue tilapia (oreochromis aureus) and semi-determinate tomatoes 

were chosen as the fish and plant species respectively to be used in the system. The blue 

tilapia were chosen because of prevalence in aquaponics literature as well as their 

increased hardiness in colder water conditions than other tilapia species. This trait was 

important because despite the system being inside a greenhouse, it was also located in 

Michigan, USA, which can get quite cold in the fall and winter, resulting in cooler 

greenhouse temperatures. Semi-determinate tomatoes were chosen because the system 

was located in a greenhouse with limited space for growing out plants. Tomatoes were 

chosen above leafy green plants (which have higher prevalence in literature) because of a 

perceived social stigma of eating the part of the plant that had touched “fish water”. More 

research may have to be done to show if this concern was valid. A period of 6 months 

was decided on based on information from Aquaponics USA which suggested that blue 

tilapia would reach maturity over a six to nine month period.  

 

System Design 

 The design of the system was determined by materials available. Some materials 

were donated which included wood, HDPE tubs, PVC pipe in various shapes and sizes, 

various waterproof tarps, stone grow media, and three pumps (one 1.3 amp and two 0.85 
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amp). Based on this, it was decided to construct a media-filled system because of the 

availability of the materials. The fish pond and one large grow bed of equal size were 

constructed out of wood, which was then lined with tarps to prevent leaks. The 

dimensions of these are shown in figure 1 below. Then four HDPE tubs were used as 

another set of grow beds, approximately equal in combined volume to the first large grow 

bed. A ratio of 2:1 grow beds to fish pond volume was decided on based on 

recommendations from various hobbyist literature. An area next to the pond and grow 

beds was cut out of the greenhouse floor and lined with another tarp to act as a sump tank 

for the system. This sump tank was important because the system was designed so that if 

any water level changes occurred (due to leaks, evaporation, etc.), they would only occur 

in the sump tank. This kept the fish safe from any disasters that could result in changing 

water levels. The sump tank was approximately twice the volume of the fish tank. A 1.5 

kW heater was attached to the pump between the sump tank and the fish pond. 

 Because of inconsistencies in operation and difficulties with implementation of 

siphons, it was decided to convert to a continuous flow system. In a continuous flow 

system, water is distributed over the media and the outflow is set a level some 3 inches 

below the surface to create space for the bacteria to grow.   

 When fully constructed, the system operated as such (see Figure 2): 

1. Water from the sump tank was pumped to the fish pond via a 1.3 amp pump. 

Water passed through the heater as it was pumped between tanks. 

2. From there, the water either flowed by gravity or by a 0.85 amp pump to one of 

the grow beds. The small grow beds were connected to the fish pond via PVC 

pipes which water flowed out of via gravity when a certain water level was 
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reached. The large grow bed was fed by the pump as it was further away from the 

fish pond than the smaller grow beds and also at a higher elevation than them. 

3. Once in the grow beds, water was filtered through the plants which uptake various 

nutrients and then exited the grow beds through the continuous flow system which 

led back into the sump tank. 

 

Figure 1: Fish Tank and Large Grow Bed Dimensions 

 

Figure 2: A diagram of the direction of flows throughout the aquaponics system. 
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Data Logs 

 As required by the Institutional Animal Care and Use Committee (IACUC) at the 

University of Michigan, a daily log was conducted for the system which included the 

date, time, health of fish, water temperature, feedings, and any other fish-related notes. 

For the purposes of this research, columns were also added for water additions to the 

system and any tomato harvests or biomass removals. Fish were fed and observed for any 

health issues twice daily. An additional weekly log was kept at the request of IACUC of 

water quality parameters to ensure safe conditions for the fish. Water quality analysis 

testing was also conducted weekly for Dissolved Oxygen (mg/L O2), Phosphate (mg/L 

PO4
2-), Nitrate (mg/L NO3

-), Ammonia (mg/L NH3-N), and Nitrite (µg/L NO2-N) using a 

Hanna Instruments multiparameter benchtop photometer and pH meter. 

 

Water Use 

 Any water additions were recorded in the daily log and measured using a save-a-

drop water meter connected to a hose. Measured water additions began following the 

initial fill and cycling of the system, after fish were added. A total water input, average 

daily water input, and water input per kilogram of tomatoes produced were calculated for 

comparison with other technologies. 

 

Electricity Use 

 Electricity use was initially measured by P3 International P4460 Kill A Watt EZ 

Electricity Usage Monitors, which plug into standard wall outlets and devices then are 

plugged into them. However, the measurements of electricity use were found to match 
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the specs of the devices provided by the manufacturers almost exactly, so use of the 

monitors was discontinued due to operational convenience. As an alternative, electricity 

use was calculated based on equipment specifications and time of use. Of the total 185 

days of the experiment, the pumps (0.2568 kW total) operated constantly and the heater 

(1.5 kW) ran for 93 days. There was also a mini fridge that was used to keep food on-site 

that was operated for all 185 days. The mini fridge was rated at 180 Watts. Grow lights 

were considered, but since the system was operated during May to November in the 

northern hemisphere, they were not needed. 

 Carbon dioxide equivalent emissions for electricity use of the system were 

calculated using total electricity use of the system, the fuel mix of the local utility 

(Detroit Edison) for 2018, and carbon intensity values for each fuel source provided by 

the U.S. Energy Information Administration (EIA) from June 2018. Emissions were 

calculated as a total, on a per kilogram of tomato basis, on a per kilogram of food 

produced basis, and on a per day basis to be compared with numbers for different farming 

technologies. 

 

Nutrient Inputs 

 Fish food was ordered from Aquaponics USA as a bundle. This bundle included 

food for each stage of growth of the tilapia. “Fingerling crumble” was provided in an 

amount of 10 lbs (approx. 4.5 kg) which was rated as containing 50% protein and 17% 

fat. The ingredients were listed as fish meal, fish oil, wheat flour, brewer’s yeast, and 

vitamin mix (A, C, D, E). After the “fingerling crumble” was the “fingerling pellet”, 

which was slightly larger and provided in the amount of 20 lbs (approx. 9 kg). It 
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contained 50% protein and 16% fat. The ingredients of the “fingerling pellet” were fish 

meal, dehulled soybean meal, ground corn, fish oil, corn gluten meal, and vitamin mix 

(A, C, D, E). Twenty pounds were also provided of the “intermediate pellet”, which was 

even larger and contained 45%  protein and 16% fat. “Intermediate pellets” contained fish 

meal, dehulled soybean meal, ground wheat, fish oil, wheat flour, and vitamin mix (A, C, 

D, E). Finally, 40 pounds were provided of the “growout pellet”. This was the largest 

pellet and contained 36% protein and 6% fat. The listed ingredients of the “growout 

pellet” were dehulled soybean meal, ground corn, wheat middlings, fish meal, brewer’s 

dried yeast, and vitamin mix (A, C, D, E). All but the last 10 lbs of the “growout pellet” 

were used. Values were calculated for total food inputs and total protein inputs based on 

the data above. 

 

System Outputs 

 Seventy-five blue tilapia fingerlings were ordered from Aquaponics USA at a 

50/50 male to female ratio. Eighty fish were delivered with only two casualties 

(uncertainty due to living fish partially eating any dead fish). As the fish grew, it became 

apparent that there was at least one red tilapia and at least one black Mozambique tilapia 

in the mix. There were also some tilapia that looked like they were potentially a mix 

between blue and red tilapia. What appeared to be the red tilapia and black Mozambique 

tilapia grew much more slowly than the blue tilapia and were still quite small by the end 

of the experiment. One fish was taken and euthanized by a veterinarian early in the 

experiment to do a necroscopy to check for parasites in the mix and ensure fish health. 

The veterinarian found nothing unusual.  
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Seventy-eight fish were harvested at the end of the term. Fish were weighed as 

whole fish and also as fillets. Fillets were cut, after euthenasia, by several experienced 

fishermen to ensure that they were cut properly without losing any edible parts. The 

fishermen were used to fish native to Michigan and remarked that tilapia had an 

additional bone structure in their underbellies that Michigan-native fish did not have 

which made it difficult to salvage meat from that area. This may be something to consider 

in future projects, as different fish species or special fillet techniques may create 

opportunities for increased viable meat outputs. 

Tomato harvests and biomass trimmings throughout the experiment were weighed 

and recorded in a daily log. At the end of the experiment, any remaining fruits and 

biomass were removed from the system and weighed.  

 

Other Farming Technologies 

 The data collected in this experiment were meant to be compared with reported 

aquaponics data (as seen in the background section) as well as data for hydroponic 

tomatoes and traditional tomato farming. Data for carbon footprint and water use were 

collected for each farming technology. The scope of this comparison only involves 

electricity, nutrient, and water inputs as well as food outputs of the various farming 

technologies so that a fair comparison can be made between them and with the built 

aquaponics system. This means that this analysis does not include any shipping of tomato 

product for retail, packaging of the product for sale, or any end of life analysis of 

materials consumed or product produced. In terms of water use, the outputs are relatively 

simple already, but for energy and nutrient use, the scope had to be limited. For the more 
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complicated categories, data was consolidated to find an overall CO2e measurement for 

all the inputs. 

 In terms of traditional methods, three different irrigation systems were compared. 

The first was ditch irrigation, in which water is delivered to a field through a ditch or pipe 

and is spread over the ground to crops. The second method was sprinkle irrigation, in 

which water is delivered by sprinkler to crops. The third method was drip irrigation, in 

which water is delivered by some kind of system of pipes and/or pumps that slowly drips 

water to crops. This delivery system can be above ground and drip onto the plants 

directly, or it can be below ground and drip straight to the roots of the plants. 

         For hydroponic methods, two different methods were compared. The first method 

was open hydroponics, in which water flows through the system and then dumps into a 

nearby body of water or drainage pipe when through. The second method was closed 

hydroponics, in which the water flows through the system and then is cycled back to the 

beginning of the system where additional nutrients are added before the water goes 

through the system again. 

 In order to determine what data to use in calculations, various studies on water 

use and carbon footprint for variations on traditional farming and hydroponics were 

found. Numbers among the studies were averaged to find a good value to use for 

comparison. Sources for these numbers included various scientific journals, national labs, 

the Simapro database, the EIA, and the IPCC (see sources and appendix). The data came 

from sources both inside and outside of the US. Sources from within the United States 

were preferred since this experiment was conducted in the US, but there seemed to be 
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somewhat of a literature gap in the US in terms of measuring farming inputs, so outside 

sources were also used. 

 For water use, traditional farming was consolidated to one value. This is because 

it was difficult to find information on different water use measurements for the different 

methods of traditional farming. Many papers were not clear about what kind of irrigation 

system they were using, which made comparison difficult, so all traditional methods were 

combined into a single average. Water use was measured in terms of liters of water used 

per kilogram of tomatoes produced. 

 It is assumed for the CO2e assessment that all farming methods take place in the 

US, however it does not make sense to choose a single location in the US to base all 

calculations on because different system setups are required in different climates 

throughout the US. For example, in colder climates, greenhouses and/or heaters are more 

cost effective generally than in warmer climates because of the increase in growing 

season that they provide. For this reason, it was important to do an analysis of the 

differences in CO2e outputs for each method when accounting for location. A Monte 

Carlo analysis was done in Excel that varied the CO2e emissions based on the different 

inputs to the US power grid in different locations. 
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Results 

Nutrients 

 System Output (kg) 

Plant Biomass 45.1 

Tomatoes 91.9 

Fish 21.6 

Fillets 6.1 

Protein 1.6 

 

 The aquaponics system yielded a total of 45.1 kg of plant biomass and 91.9 kg of 

tomatoes. The initial fish harvest showed that the 78 fish had a mass of 21.6 kg. After 

being filleted, the edible fish biomass came out to 6.1 kg (approx. 13.4 lbs). At a protein 

output of 120 g/lb of fillet, the protein output of the system was 1.6 kg. The system was 

only run for six months, which is the minimum recommended amount for blue tilapia to 

reach maturity according to Aquaponics USA. If the system could be run for nine 

months, which was the higher end of the estimate, outputs could be increased. This may 

be something to consider in the future. 

 

Water 

 Water Use (L/kg tomato) 

Aquaponics 186 

Hydroponics 17.0 

Traditional Farming 31.9 
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 Water Use (L/kg tilapia) 

Aquaponics 43.5 

Aquaculture 1200 

 

 Following the initial fill of the system, water use was calculated to be about 30 

gal/day (approx. 114 L/day).  Given this, water use comes out to an overall figure of 229 

L/kg of product (tomatoes and tilapia together). This was divided up by biomass 

proportion into 186 L/kg of tomatoes produced and 43.5 L/kg of tilapia produced. In the 

aquaponics literature it was found that on average, the water use required for 1 kg of 

vegetable growth was 244 L and the amount of water use required for a 1 kg increase in 

tilapia was 278 L (Delaide et al. 2017). Using this figure gives an estimate of the total 

water use for the system to be 28,434 L, which is slightly more than the actual water use 

of  21,009 L. 

The figure for water use in aquaponics is quite high compared to other tomato 

producing technologies whether this system’s or the literature’s total is used. For 

traditional farming methods, water use averages to 31.9 L/kg of tomatoes. In hydroponics 

technologies, water use averages out to 17 L/kg of tomatoes. This discrepancy in water 

use could come down to several factors. First, the addition of fish to the system requires a 

lot more water initially as the fish pond must be filled and kept filled for the duration of 

the system. There is also the requirement of keeping a sump tank with water in it as a 

safety measure for the fish. Keeping large, open pools of water on site for aquaponics can 

lead to much more evaporation than in the other technologies where this is not required. 
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However, water use is much less in aquaponics than in traditional aquaculture (Verdegem 

et al. 2006). 

 

Energy 

 Carbon Footprint (gCO2e/kg tomato) 

Aquaponics 28,300 

Hydroponics 208 

Traditional Farming 19.2 

 

 Carbon Footprint (gCO2e/kg tilapia) 

Aquaponics 28,200 

Aquaculture 62,100 

 

 For electricity, a total of 5,287 kWh was used over the 185 day run of the system, 

or about 28.6 kWh/day. Of that, 63.3% came from the heater, 21.6% came from the 

pumps, and 15.1% came from the mini fridge. In the literature review on aquaponics, it 

was previously noted that on average, energy use for 1 kg of vegetable production is 84.5 

kWh and the amount of energy required for a 1 kg increase in tilapia is 96.2 kWh 

(Delaide et al. 2017). This figure would estimate that about 9,845 kWh would be used for 

the system described in this study (assuming that “vegetable” and tomato energy use is 

equivalent), which means that energy use was quite a bit lower than expected. This may 

be due to not using grow lights for the system. For tomatoes, 46.6 kWh/kg tomato 

produced was consumed. For fish, 46.5 kWh/kg of fish produced was consumed. When 

using the fuel mix of the local utility and carbon intensities of different energy sources 
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from the EIA, carbon emissions over the course of running the system come out to 3.21 

tons CO2e. This is about 28,300 gCO2e emitted per kilogram of tomato produced in this 

system in Southeast Michigan.  

 In comparison to traditional aquaculture, aquaponics was found to utilize only 

about 45% of the energy to produce the same amount of fish (Kim et al. 2018). This may 

be due to the reduced filter, water change, and aeration needs in aquaponics. These 

reductions are due to the use of plant grow beds as filters and quick circulation of water 

to provide aeration. This is a sizable improvement. 

The carbon footprint of aquaponics from energy use is much higher than that of 

either traditional farming of tomatoes or hydroponics. The Monte Carlo analysis of 

traditional farming (figures 3 and 4) showed a mean of 19.2 gCO2e/kg tomato produced 

while the analysis of hydroponics showed a mean of 208 gCO2e/kg tomato produced. For 

aquaponics, the mean in the Monte Carlo analysis was 43,500 gCO2e/kg tomato 

produced. This discrepancy between the other tomato producing technologies and 

aquaponics is likely due to the increased use of electrical equipment required for the fish. 

The heater used most of the electricity, which would not be required in technologies that 

do not include fish. It would also not be a factor in warmer climates, where a heater is not 

required to keep the fish alive or with fish species that can withstand colder temperatures. 

Additionally, the mini fridge, which was kept running at all times to keep the fish food 

fresh, used quite a bit of energy that the other technologies would not when it was added 

up over the course of the experiment. The entirety of electricity use from traditional 

farming of tomatoes came from building electricity while most of the energy used in 
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hydroponically grown tomatoes came from pump systems similar to the ones in the 

aquaponics setup.  

 

 

Figure 3: Monte Carlo Analysis results for Total CO2e Emissions for Traditional Farming and Hydroponics 

from electricity across the United States 
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Figure 4:  Monte Carlo Analysis results for Total CO2e Emissions for Traditional Farming and 

Hydroponics from electricity across the United States 
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Conclusions 

 Based on the results outlined above, aquaponics uses more energy and more water 

than both traditional methods of farming and hydroponics for every kilogram of tomatoes 

produced. So why would anyone use aquaponics? The biggest draw of aquaponics that 

none of the other tomato producing methods can provide is a protein source. Aquaponics 

is the only method that involves both plants and meat as food sources. As a technology 

that can be applied in low resource areas and in somewhat small spaces like rooftops or 

empty lots, being able to raise animals for meat can be quite appealing. This is hard to do 

with traditional methods, where large areas of land or bodies of water are typically 

required. However, aquaponics has reduced energy and water use compared to traditional 

aquaculture. This means that it is a more environmentally friendly meat production 

method, which makes it valuable to communities that want to produce their own protein 

at any scale. 

 With some improvements to the system, it may be possible for aquaponics to 

become competitive with other tomato production methods in the future. Setting up a 

system in a way that has fewer leaks and less surface area of water could lead to less 

evaporation, less daily water use, and a reduced need for top-offs to the system. This 

could bring down overall water use somewhat and maybe make aquaponics more 

competitive with other technologies. However, due to the needs of fish in the system, it 

may be difficult for aquaponics to outcompete the others even with reduced losses. In 

terms of energy use, the biggest draw was from heating the system. This result may 

suggest that aquaponics is more competitive with the other technologies in warmer areas 

where heaters are not needed. In addition, running the system only once as a case study 
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did not allow for perfection of the stocking rate of tilapia. At the end of the process, it 

seemed as if more tilapia could happily fit in the system, which could improve figures 

reported for water and energy use per kilogram. Future runs of the system will hopefully 

show improvements on these fronts and make aquaponics progressively more sustainable.
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Appendix 

Water Additions Log Gallons Added 

First Addition 52 

Day 5 56 

Day 6 100 

Day 7 51 

Day 8 57 

Day 10 205 

Day 13 100 

Day 15 197 

Day 23 100 

Day 25 100 

Day 31 245 

Day 41 100 

Day 45 100 

Day 50 115 

Day 53 55 

Day 56 50 

Day 58 105 

Day 60 208 

Day 64 50 

Day 65 170 

Day 66 50 

Day 68 100 

Day 73 50 

Day 75 100 

Day 77 100 

Day 83 100 

Day 87 50 

Day 91 100 

Day 96 60 

Day 98 300 

Day 108 100 
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Data Summary for 

Comparison 

   

Technology Water Use Energy Use - 
electricity 

Energy Use - fuel 

Hydroponics 17 L/kg tomato 0.244 kWh/kg 
tomato 

28.9 MJ/kg tomato 

Traditional Farming 31.9 L/kg tomato 0.1408 MJ/kg tomato 0.0735 MJ/kg tomato 

Aquaculture 1200 L/kg fish 538.8 kWh/kg fish N/A 

Aquaponics 43.5 L/kg tomato 46.6 kWh/kg tomato 
and 46.5 kWh/kg fish 

N/A 

Sources Used in Averages: AlShrouf et al. 2017, Barbossa et al. 2015, Bribián et al. 

2011, Czaplicka-Kolarz et al. 2010, Del Borghi et al. 2014, Dias et al. 2017, Greenhouse 

Gas Protocol 2014, Hasanbeigi et al. 2014, Hogberg 2010, Kim et al. 2018, Krey et al. 

2014, Moomaw et al. 2011, Schlömer et al. 2014, Schmitz et al. 2011, Verdegem et al. 

2006, Worrell et al. 2000, Worrell et al. 2007 

 

Life Cycle 
gCO2e/kWh for 
various technologies 

   

Source Min Med Max 

Coal – PC 740 820 910 

Biomass – Cofiring 
with coal 620 740 890 

Gas – combined cycle 410 490 650 

Biomass – Dedicated 130 230 420 

Solar PV – Utility 
scale 18 48 180 

Solar PV – rooftop 26 41 60 

Geothermal 6 38 79 

Concentrated solar 
power 8.8 27 63 

Hydropower 1 24 22001 

Wind Offshore 8 12 35 

Nuclear 3.7 12 110 

Wind Onshore 7 11 56 

 

Energy Source 2018 US Generation Amount 

(billion kWh) 

Total – All Sources 
4178 

Fossil Fuels (total) 
2651 

Natural Gas 
1468 
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Coal 
1146 

Petroleum (total) 
    25 

Petroleum Liquids 
    16 

Petroleum Coke 
     9 

Other Gases 
    12 

Nuclear 
   807 

Renewables (total) 
   713 

Hydropower 
   292 

Wind 
   275 

Biomass (total) 
    63 

Wood 
    41 

Landfill Gas 
    11 

Municipal Solid Waste (biogenic) 
     7 

Other Biomass Waste 
     3 

Solar (total) 
    67 

Photovoltaic 
    63 

Solar Thermal 
     4 

Geothermal 
     17 

Pumped Storage Hydropower 
     -6 

Other 
     13 

 

Fuel Source DTE Energy’s Fuel Mix for 

Electricity in 2018 

Coal 64.19% 

Nuclear 18.68% 

Gas 8.67% 
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Oil 0.23% 

Hydroelectric 0.17% 

Biofuel 0.13% 

Biomass 1.06% 

Solid Waste Incineration 0.32% 

Solar 0.21% 

Wind 6.28% 

Wood 0.07% 
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