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Abstract 
The healthcare industry is increasingly being asked to account for the negative environmental impacts 

generated in the course of providing medical care. This study expands on a growing body of research to 

present a model for the use of established process life cycle assessment (LCA) methodologies to quantify 

the environmental and public health impacts of chronic disease treatments. The study investigates the 

impacts generated by two Type 2 diabetes (T2d) treatment protocols in the United States and Sri Lanka. 

The functional unit of the study was the inputs required to treat one T2d patient, with no additional 

medical complications, for one year. Inventory data for each treatment protocol was gathered from 

published literature, U.S. patent filings and in-person observations of medical clinics in the United States 

and Sri Lanka. Inventory data emissions were calculated using the Ecoinvent 3.0, Industry 2.0 and USCLI 

databases.  

The results of the study show that T2d as a global epidemic is measurably contributing to environmental 

degradation and negative public health outcomes of the wider non-diabetic community. Different 

treatment components contribute differently according to the specific impact being assessed. The 

results suggest that energy production, transportation and medication dosage strongly influence 

negative impacts. Improving and remotely monitoring patient health to lower medication dosages and 

reducing doctor visits are actions that can be taken by patients and healthcare providers. Governments 

and private sector actors can also champion renewable energy grids and safe active transportation 

infrastructure to promote the low impact exercise, decreased motor-vehicle transportation and 

decarbonized electricity.  
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 Introduction  
Ecosystem services underpin the economic and public health of human society (Costanza et al. 1997; 
Corvalán et al. 2005; Hester and Harrison 2010; Daily 2012). We are dependent on ecosystems yet, 
according the IPCC’s Fifth Assessment Report, humanity’s actions in the form of rapid increases in 
greenhouse gas emissions, immense resource extractions, and the release of concentrated effluents are 
contributing to the massive breakdown of these services and the protections they provide. Ecosystem 
collapses are a part of the broader changes to the global climate that human activity –like medical care 
delivery- is accelerating (Pachauri and Meyer 2015).   

 
The 2015 Lancet Commission on Health and Climate Change reports that “the implications of climate 

change…threatens to undermine the last half century of gains in development and global health” (Watts 

et al. 2015; Haines et al. 2006).Statements such as these suggest that in addition to well documented 

impacts to the environment, climate change will have a substantially negative effect on global human 

health. At the same time, while topics such as energy production and consumer behavior often 

dominate public discourse on climate change solutions, the environmental impacts associated with 

medical care itself are frequently absent from these discussions. This is despite the fact that the 

healthcare industry is estimated to be the source of 4.4% of global greenhouse gas emissions (GHGs) 

(Karliner et al. 2019a), including 10% of the GHGs emitted by the United States (Eckelman & Sherman, 

2016).  

These emissions have a real human cost. One study estimates that just one year of health care in the 

United States results in 123,000 reduced years of life for the global population (Eckelman and Sherman 

2018). That is to say that the emissions generated to save and prolong the lives of people in the United 

States are negatively impacting the long-term health of people in the United States and the wider global 

community. The growing cost of medical treatment to human health is not going unnoticed in a 

profession with the motto “do no harm”. The American College of Physicians formally recommends the 

global health community adopt environmentally sustainable practices to reduce carbon emissions and 

the negative health impacts associated with environmental degradation (Crowley 2016). In 2019 the 

Australian Medical Association followed suit with a motion from its Federal Council stating, “The Federal 

Council recognizes climate change as a health emergency…” (Australian Medical Association 2019). 

To begin to understand how the medical community can eliminate harmful emissions, it must first 

identify the source and causes of its emissions. Over the past several years researchers have begun this 

work (Cimprich et al. 2019). Many studies have centered on the role of medical buildings and very 

energy intensive medical procedures, such as surgery (Campion et al. 2015; Cassandra Thiel et al. 2015; 

CL Thiel et al. 2017; Cassandra Thiel, Woods, and Bilec 2018). While it is vital that the health care 

industry address the waste and emissions generated by these intensive components of medical care, the 

industry should also consider the impacts of medically treating common ailments such as chronic non-

communicable diseases (NCDs). Unlike a surgery, that is often resource intensive and performed once 

per patient, or hospital stays associated with other forms of treatment for acute diseases, chronic 

diseases often require a self-administered, relatively low-resource treatment for an extended period of 

time. While chronic diseases require less resources to treat, the effects of not adequately managing 

these diseases can be severe. NCDs and their associated medical complications are currently the leading 

cause of death worldwide(“WHO | Noncommunicable Diseases” 2018).  
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Diabetes mellitus type 2 or Type 2 Diabetes (T2d) is a chronic, non-communicable metabolic condition 

characterized by the body’s inability to effectively use insulin, an endocrine hormone necessary to 

remove glucose from the blood stream (American Diabetes Association 2017). Treatment of the disease 

involves maintaining a stable blood glucose range defined by an A1c test result of less than 7% or 53 

mmol/mol (American Diabetes Association 2019). If managed properly and blood glucose is kept within 

a healthy range, the negative health implications of the disease are minimal. If patients do not receive 

proper treatment the effects of prolonged elevated blood sugar or hyperglycemia are serious and 

require significant medical resources to manage. Hyperglycemia is one of the leading causes of 

amputations and blindness, and often results in acute conditions such as heart attack and stroke. In 

addition, prolonged hyperglycemia is a common co-morbidity of other deadly non-communicable 

diseases (NCDs) such as heart and kidney disease (Burant 2012), all of which require increased medical 

care.  

Despite the severity of medical complications associated with diabetes, rates of T2d are increasing 

rapidly. In 1980 the global prevalence of diabetes was 4.7%, by 2014 global prevalence had risen to 8.5% 

(Roglic and World Health Organization 2016; The Emerging Risk Factors Collaboration 2010) Not only are 

the number of patients increasing, but the location of diabetes prevalence has shifted. Long considered 

a disease of the wealthy, the highest growth in rates of T2d diagnosis are now occurring in low and 

middle-income countries (Roglic and World Health Organization 2016). The trend is not unique to T2d. 

Chronic diseases, which encompasses but are not limited to cardiovascular diseases, cancer, chronic 

obstructive pulmonary disease and T2d,  are incurring the fastest growth in low and middle-income 

countries Similar to T2d, if left untreated most NCDs will result in severe medical complications. To avoid 

the negative impacts of these diseases, countries around the world will need to offer effective medical 

treatments. But what are the environmental, and by extension, human health impacts of these 

treatments when scaled to global proportions? 

This study offers a framework for how the environmental impacts of chronic disease may be modeled in 

a variety of contexts. Taking T2d as a model, this research uses a standard life cycle assessment (LCA) 

methodology to provide health care practitioners and other interested stakeholders with a preliminary 

baseline indication of the cumulative environmental and health impacts of treating Type 2 diabetes 

(T2d) at two sites – one in the United States (US) and one in Sri Lanka. Four treatment pathways 

associated with the management of T2d are assessed in the context of climate change, terrestrial 

acidification, water consumption and human health. Using data from the sites in the United States and 

Sri Lanka as proxies for High-Income and Low-Middle-Income countries respectively, preliminary results 

are estimated for the global impacts of T2d treatment.   

 Literature Review 

2.1 Health and the Environment 
For most of human history there has been a recognition of the relationship between human health and 

the natural environment. Writings dating back to the ancient Greeks along with ancient archeological 

findings, suggest a fatalist approach to this relationship whereby humanity is acted upon by the natural 

world around it. This view would begin to alter as human society and its technologies evolved to more 

intensely and effectively shape the natural world (Berridge and Gorsky 2011). Observations of strong 

correlations between place and health would lead various societies to adopt the study of what we now 

refer to as Public Health. In the West this area of study became clearly defined in the eighteenth century 
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with what has been called ‘The Great Sanitary Awakening’ (Berridge and Gorsky 2011) .  The recognition 

that human-made waste created an environment that fostered disease supported the logic that human 

action could create an environment that fostered good health. The discovery of bacteria and their role in 

disease transmission in the late 19th century further worked to impart a sense of freedom from 

environmental fatalism (Berridge and Gorsky 2011). Armed with a greater understanding of the 

workings of the natural environment, society could now overcome its ill effects. In this new 

conceptualization the environment was now a place of other, something to be either exploited or 

protected, but fundamentally distinct from the civilization of human society (Berridge and Gorsky 2011). 

Human health was now a matter of individual choices and behaviors. Built environments, Individual 

hygiene practices and medications would ensure or destroy good health. Evidence of this perspective is 

readily available in the published health journals of the era.  

A keyword search of “environmental impact” + “healthcare” through the University of Michigan’s library 

collection of more than 2000 databases, including PubMed, Google Scholar, JSTOR, Web of Science, 

ProQuest, WorldCat among many others, filtered for the years 1900 through 1960 yielded more than 

10,000 articles. An in-depth review of the 50 articles thought to be most relevant, as well as a random 

sample of no less than 200 articles from the entire body of work confirmed the assertion that the public 

health discourse of the period viewed natural ecosystems as in general need of alteration to benefit 

human health(McINTYRE 1943; Mark D. Hollis 1951; 1953; BERRY 1940; HATTIE 1929; Childe 1923; 

Blanchard 1928; BERRY 1960). The World Health Organization in 1952 itself defined the problems of 

environmental health as “The ravages of water-borne, insect-carried and excreta-transmitted disease” 

(Herbert Bosch 1952). Of the hundreds of articles reviewed, only a handful indicated a consideration for 

the importance of natural ecosystems to public health (Conklin 1949; SALISBURY 1938; “The Scientific 

Basis Of Ventilation And Open-Air Treatment” 1920; Lewis 1911; Frost 1916; Watrous 1947; Price 1958; 

1959; “Responsibilities of Local Health Agencies for Air Pollution Control: Statement, Conference of 

Municipal Public Health Engineers on Air Pollution Control, October 6, 1958” 1959; Decker 1960; Mark 

D. Hollis 1952; Kehoe et al. 1958). It would not be until the 1960s with widespread environmental 

degradation highlighted by works such as Rachel Carlson’s “Silent Spring” that the general public and 

public health officials would take meaningful account of the positive impact of dynamic natural 

ecosystems for human health (Baratta 2016; Johnson, Greenberg, and Greenberg 2017). This realization 

came at a time when as described by Adam Rome in his article ““Give Earth a Chance”: The 

Environmental Movement and the Sixties”, “newly affluent Americans were able to insist on 

environmental quality, the development of atomic energy, the chemical revolution in agriculture, the 

proliferation of synthetic materials, and the increased scale of power generation and resource 

extraction technology created new environmental hazards…, the insights of ecology gave countless 

citizens a new appreciation for the risks of transforming nature”(Rome 2003). Still, while the 1960s 

marked the beginning of greater modern public awareness of the impact of the environment on human 

health, there was no observable recognition in the academic literature of the role of human medical 

care on the environment.    

The waste crisis of the 1980’s begins the period in which academic publications specifically note the role 

of the healthcare industry in contributing to negative environmental impacts. Articles such as Susan 

Schlepp’s “Regulating Disposal of Infectious Waste” details the dangers of unregulated disposal of 

infectious waste into the natural environment and the increased risk of human exposure these practices 

yield (Schlepp 1988; Bennett 1988; Doucet 1988; Holthaus 1988). These writings are limited in that they 
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do not speak to the harm of medical waste on the environment, rather the direct harm of direct human 

contact with medical waste in the environment. The conversation further evolves in the 1990s with the 

addition of articles such as “Green Medicine: Environmental Impact of Health Care” and the WHO’s Safe 

Management of Wastes from Health-Care Activities, both of which are calls to address the role of 

healthcare in environmental pollution (Worton 1995; Prüss et al. 1999). But it would not be until the 

new millennium that the realization would surface more widely in published academic discourse that as 

a profession dependent on industrial scale production to provide care, the medical community is itself 

responsible for environmental pollution.  

Between 2000-2010 there is a notable increase in the amount of research dedicated to raising 

awareness of medical waste as an environmental pollutant(Christian G. Daughton 2003; Daughton 2002; 

Jameton and Pierce 2001; Brown 2009; Daughton 2009; Cotton and Cohen 2010) . The American Journal 

of Nursing published an article titled, “Catching the Environmental Health Wave: The ANA, Nurses Work 

to Improve Health Care Industry’s Impact on the Environment” (Trossman 2004) and followed this work 

with a full report on improving environmental health through nursing (American Nurses Association 

2007). Other publications looked at the environmental impacts of general practitioner follow-up 

(Murchie 2007) and the actual emissions generated by healthcare-related incineration (Alvim-Ferraz and 

Afonso 2005). A number of studies investigated approaches to pollution prevention in healthcare (Allen 

2006; Stichler 2009) and systems approaches to managing healthcare waste (Zimmer and McKinley 

2008). 

The last nine years (2010-2019) have seen an even greater increase in number and relevancy of 

publications. Moving beyond awareness raising, the discourse has begun to advocate for 

institutionalized measures to ensure environmental accountability in medical care (Hensher 2020; 

Daughton 2014; Jeswani and Azapagic 2019) and detailed studies are providing greater insights into how 

different medical treatments and systems are contributing to negative environmental impacts (Dunbar-

Reid and Buikstra 2017). Building on its success in cataloguing resource consumption and the 

subsequent environmental impacts attributable to the industrial manufacturing sector, Life Cycle 

Assessment studies are increasingly being used to assess medical services.   

2.2 Early History of LCA 
Life cycle assessment methodologies trace their beginnings to the 1960s. While there is some dispute as 

to which study marks the beginning of the method (some articles report the private 1969 beverage 

container study by Coca-Coloa, while others note the 1963 study by Harold Smith quantifying energy 

requirement needs for chemical production), the method and its adoption are closely related to the rise 

of the modern environmental movement in the United States (Bjørn et al. 2018; Hunt, Sellers, and 

Franklin 1992). Known as Resource and Environmental Profile Analysis (REPA) in the U.S. and 

Ecobalances in Europe, these early methods drew heavily from the concept of material flow accounting 

which focused on tracking the amount of materials cycling into the economy and entering the 

environment at all phases of a commodity’s life cycle (Wernick, Irwin, and World Resources Institute 

2005; Hunt, Sellers, and Franklin 1992). Early iterations of REPA/Ecobalance were not able to provide an 

impact assessment to quantify the direct damage being wrought to the environment or to human 

health, but they did provide an estimated scale of the material outflows to the environment (Hunt, 

Sellers, and Franklin 1992). The ability to conduct impact assessments would be defined later in the 

evolution of the LCA methodology.  
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The authors of the 1969 Coca-Cola beverage container study write that between 1970 and 1975 there 

were several additional REPAs conducted with considerable effort being put into working with major 

materials manufacturers, the U.S. Environmental Protection Agency, environmental groups, researchers 

and other stakeholders to review and advance the protocol’s methodology and assumptions. As it 

proved complex and expensive to implement, adoption of the method remained limited (Hunt, Sellers, 

and Franklin 1992). A small number of studies continued to be conducted throughout the mid-70’s to 

mid-80’s. The European scientific community renewed interest in furthering what has become current 

LCA methods. In the mid-1980’s a number of European researchers conducted similar studies looking at 

the impacts of milk packaging across different European countries. Despite similar focus areas, the 

studies yielded significantly divergent results. The findings prompted collaborations among researchers 

and practitioners to develop standardized research methods throughout the 1990s (Bjørn et al. 2018). In 

1993 the Society of Environmental Toxicology and Chemistry (SETAC) published the first Life Cycle 

Assessment guidelines and this year marked the beginning of a standardization process overseen by the 

International Organization of Standards (ISO).  Refinement of the methodology continued throughout 

the 1990s with significant contributions from the research by Scandinavian governments. In 2002 the 

United Nations Environmental Program (UNEP) partnered with SETAC to create the UNEP/SETAC Life 

Cycle Initiative which has continued to improve LCA methods and works increasingly to disseminate the 

methodology to emerging economies (Bjørn et al. 2018).  

2.3 Life Cycle Assessments  
Today an LCA refers to the process of analyzing a product, service or activity from the very beginning of 

its life. This may refer to the extraction of a raw resource for a product or the creation of a new idea for 

a service. From the initial beginning or ‘cradle’, the unit in question is then traced from inception, 

throughout its growth/development to detail how it is formed, to its maturity to assess how it is used, 

and then finally through its ‘grave’ to understand how it ceases to be used and how any remaining 

elements are disposed of or otherwise recycled (International Organization for Standardization 1997).  

The concept is one of several methods used to assess environmental impact. In addition to Life Cycle 

Assessment, common environmental analysis tools include substance flow analysis, risk assessments, 

material flow analysis, carbon footprints, water footprints and environmental impact assessment (EIA). 

Table 1 in Appendix A, published by Jolliet et al. in their book, Environmental Life Cycle Assessment, 

provides a comprehensive overview of each of these methods. Of the discussed seven environmental 

analysis tools, only LCA, carbon footprint, water footprint and EIA are designed to study products and 

services/activities. Of these four, only LCA is designed to assess the function of a product or a service. 

in a variety of contexts that range from policy development to industrial-scale production. It focuses on 

impacts as diverse as total cost to social justice and human rights. In the context of studying the 

environmental impacts of healthcare, it is most frequently applied as either a process LCA, economic 

input-output LCA or a hybrid combination of the two.  

 Standard Life Cycle Assessment 
Standard life cycle assessment, also referred to as Process LCA, is a technique to model the complete 

environmental life cycle of a product or process. The technique begins with an inventory of everything 

necessary to the produce or process, including the raw materials, energy and inputs required for its 

manufacture, transport and use, to the transportation and inputs required for disposal or recycling. This 

method is frequently combined with data from an Environmental Impact Assessment (EIA), 
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environmental impact assessment (International Organization for Standardization 1997). For each input 

a corresponding environmental impact is identified, quantified and analyzed as part of the total impacts 

associated with the product/process life cycle. For example, if the production of a toy requires 1 kWh of 

energy and that 1 kWh of energy requires 10 gallons of water to produce. A Standard LCA using EIA will 

record that the water consumption of the toy production process is 10 gallons of water. The frequent 

combination of these two methods allows researchers to assess the environmental impacts of specific 

inputs or processes along the life cycle of a product or process.    

At times the Standard LCA method is criticized for the need to define strict system boundaries and thus 

the difficulties it presents in modeling the global scale attributed to modern supply chains. This is an 

important point when considering complex supply chains vital to most healthcare systems and medical 

treatments.  The precision of the method, particularly when it combines an EIA, is also limited by the 

availability of accurate data and the role of the individual researcher’s assumptions in determining the 

outcome of the study (Jolliet et al. 2015). Nevertheless, this process of analysis is known for its 

effectiveness in modeling the environmental impacts of discrete products and processes. The National 

Health Service of the United Kingdom was an early adopter of this method. In a 2000 paper authors 

Erica Ison and Anne Miller describe a case-study of the use of life-cycle assessment to evaluate the 

selection of durable medical devices (Ison and Miller 2000). Additional studies have developed life cycle 

assessment methodologies to focus on various aspects of the health care sector including a system for 

evaluating the building components of hospitals (Rossi et al. n.d.) and single-use medical supplies 

(Campion et al. 2015). In 2011 Andreas Pfützner and his co-authors published a study using LCA methods 

to compare the environmental impacts of insulin infusion sets to the waste generated by a coffee cup or 

aluminum can (Pfützner et al. 2011).  

 Environmentally Extended Input-Output Life Cycle Assessment 

To overcome some of the limitations of standard LCAs researchers developed the environmentally 

extended input-output life cycle assessment (EEIO-LCA). An EEIO- LCA has a defined goal, scope and 

product inventory like a standard LCA, however, the boundary may be considerably larger as the 

inventory data is the cost of a transaction (i.e., the price of a vehicle or the cost of an apple). These costs 

are analyzed using economic input-output data tables which model activity in an economic system by 

tracking all inputs and outputs/final consumption of the system. Using matrix algebra and a technique 

pioneered by the Russian economist Vassily Leontief, industry transactions (i.e., purchases of materials 

from one industry to another) are combined with physical accounting data that measures direct and 

indirect environmental emissions, to estimate the total environmental emissions of a product through a 

supply chain (Schaffartzik et al. 2014). The concept may be applied to data at a country-level to estimate 

nationwide environmental impact or by using multi-regional input-output (MIRO) datasets that allow for 

regional and global analysis (Kitzes 2013).   

As with the standard LCA, there are some drawbacks to the EEIO-LCA method. The foremost being the 

lack of specificity in results. Using published economic data allows for a high-level overview of the 

material flows within an economy, but at the same time it also requires the use of pre-determined 

economic sectors that do not allow for a nuanced review of individual inputs such as a specific product, 

company or even industry (Carnegie Mellon University 2016). Nevertheless, researchers have 

successfully used the method to provide insight into the functioning of national and global healthcare 

systems. In 2009 Chung & Meltzer estimated the carbon footprint of the US healthcare sector (Chung 

and Meltzer 2009). In 2016 Eckelman & Sherman built upon this work and their own research to publish 
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their findings on the public health effects of the US and Canadian healthcare systems (M. Eckelman and 

Sherman 2016; M. J. Eckelman, Sherman, and MacNeill 2018). In 2016 a group of private sector 

researchers from Evidera, a health research firm and Novo Nordisk, a leading global insulin producer, 

published a study using EEIO-LCA principles and data from the UK’s National Health Service Sustainable 

Development Unit, to quantify the environmental impacts of adding insulin to diabetes treatment 

protocols in the United Kingdom. The study specifically considered the avoided costs of diabetes related 

complications (i.e., dialysis and eye surgery) associated with effective insulin therapy (Marsh et al. 

2016). 

A more complete overview of the advantages and disadvantages of the EEIO-LCA and standard LCA is 

provided in Table 2 of Appendix A. 

 Hybrid Life Cycle Assessment  
To leverage the unique advantages and mitigate some of the pitfalls of the Standard LCA and the EEIO-

LCA, researchers are combining the two methods into a hybrid approach. In a chapter of the book 

‘Special Types of Life Cycle Assessment’ titled ‘Input-Output and Hybrid LCA’, authors Shinichiro 

Nakamura and Keisuke Nansai describe three forms of hybrid analysis, tiered, input-output and 

integrated (Finkbeiner 2016).  

The input-output based hybrid analysis uses the concept of a process LCA inventory but does not 

actually include any data from a process LCA inventory.  This approach is typically characterized by using 

input-output tables to gather information about higher-order elements and collecting separate process 

LCA data for more detailed elements that are not broken out in the input-output table.  The result is that 

researchers may conduct an LCA when either a lack of macro-level economic data or specific process 

data would prevent a direct standard LCA or EIO-LCA analysis. 

 In one of the first studies of its kind Campion et al. used input-output hybrid LCA methodology to 

compare the environmental impacts of a vaginal versus cesarean human birth (Campion et al. 2012). 

2.4 Identified Literature Gaps 
Despite impressive efforts over the past decade to investigate the environmental impacts of healthcare, 

research is currently lacking in the environmental cost of treating chronic disease. As stated above, 

efforts have been made to consider the impacts of individual diabetes treatments using both standard 

LCA, in the case of Pfützner et al. and their work to quantify the environmental impacts of insulin 

infusion sets, and EIO-LCA methods, in the case of the research team from Evidera and Novo Nordisk. In 

the case of the work by Pfützner et al., insulin infusion sets are not typically used by T2d patients. Insulin 

infusion is required by Type 1 diabetes patients, a sub-set of diabetes patients consisting of at most 10% 

of the general diabetic population (Roglic and World Health Organization 2016). The EIO-LCA analysis 

completed by the research team from Evidera and Novo Nordisk is an important first step in quantifying 

the environmental impacts of diabetes treatment, but it does not account for the differences in 

treatment options available in different resource settings. This study seeks to build upon this work by 

offering a method to assess chronic disease treatment options with greater detail in a variety of 

resource settings according to different treatment needs.      
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 Materials and Methods 
To quantify the environmental and human impacts of T2d treatments the process LCA method is used to 

estimate emissions of material production, use, and disposal based on unit quantities used within the 

system being modeled. This study initially attempted to apply both the economic input output LCA 

(EEIO-LCA) and process LCA into a hybrid framework. However, a lack of specification in global economic 

data relevant to pharmaceutical supply chains or medical equipment supply chains reduced the 

relevance of any input-output calculations beyond a scope of usefulness in an EEIO-LCA or hybrid 

assessment.  Therefore, the methods used in this study adhere to the process LCA standards developed 

and maintained by the International Organization for Standardization (ISO) (International Organization 

for Standardization 1997). The standards are listed under the title ISO 14040:2006 and include four 

primary phases: goal and scope definition, life cycle inventory analysis, impact analysis and 

interpretation.   

3.1 Goal and Scope: T2d Care Pathways 
The objective of this LCA study is to develop a flexible model that can be replicated in a variety of 

resource settings and medical contexts to assess the life cycle environmental and human health 

implications of chronic disease treatment. To achieve this objective this study provides a baseline 

assessment of the life cycle for T2d treatments.  

Hyperglycemia (elevated blood glucose levels) over the course of an extended period generates the 

most severe negative health outcomes of diabetic patients. In the absence of a direct cure for the 

disease, treatments for T2d are focused on the monitoring and treatment of hyperglycemia. The scope 

of this LCA study is therefore defined by the goods and services required to effectively regulate the 

blood glucose levels of T2d patients. This will be measured through a functional unit defined as: The 

services and resources used to control blood glucose levels in a Type 2 diabetes patient, with no 

associated health complications, for 1 year, or 365 days. 

A primary difficulty when defining the boundaries that characterize this study’s scope was the problem 

of defining a treatment protocol. The American Diabetes Association (ADA) and the U.S. Food and Drug 

Administration currently recognize 11 classes and over 30 different compounds of medications for 

treating T2d (FDA Office of Women’s Health, n.d.; American Diabetes Association 2019). T2d treatment 

protocols are inherently variable to accommodate the unique physiologies, lifestyles and access to 

medications and supplies of patients. The treatment protocol that has optimal health outcomes for one 

patient may not generate the same outcomes for another patient. Additionally, the expanded nature of 

the global medical supply chain has improved the production capacity and availability of many forms of 

diabetic supplies in many countries, especially in private-sector markets. In many countries, particularly 

for patients without access to a well-funded and managed national health service, affordability rather 

than availability is the most significant barrier to effective T2d medical care. (Zgibor and Songer 2001; 

Beran 2015)  

To ensure the modeled treatment protocols were representative of the care that would reasonably be 

available to a wide cross section of patients, this study focuses on treatments and supply chains used in 

two different healthcare contexts, the United States and Sri Lanka. These two countries were selected 

because each has a government-subsidized or government-provided health care option that strives to 

ensure citizens have basic access to T2d treatments. However, the structure of these healthcare systems 

and the average income of citizens differs, offering a range for emissions estimates. While there are 
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well-documented gaps in these systems and neither country has completely universal care, the coverage 

provided is assumed to summarize an average standard of care. 

The boundaries of this study are defined by the treatment options covered by government-sponsored 

Medicare insurance plans in the United States and free or very low-cost treatments at government-run 

medical facilities in Sri Lanka, shown in Error! Reference source not found.. The timeframe for this study 

is 2016-2018. The Sri Lankan national medical system and U.S. Medicare insurance coverage provide 

patients with access to oral diabetes medications and insulin. Depending on patient needs, the ADA 

recommends the oral diabetes medication Metformin as the preferred pharmacologic treatment agent 

for T2d patients with low to moderately elevated blood glucose levels at diagnosis. The use of insulin is 

recommended for patients with severely elevated blood glucose levels at diagnosis (American Diabetes 

Association 2019). 

 

Figure 1: Modeled Care Pathways for Type 2 Diabetes in the United States and Sri Lanka 

Specifically excluded from this study are system elements related to common healthy lifestyle practices, 

i.e., a sensible diet and exercise plans. While diet and exercise are necessary factors in successfully 

managing hyperglycemia, and doctors prescribe these plans to effectively manage T2d, they were 

excluded given their lack of specificity to T2d. Healthy diet and exercise are practices that are almost 

universally advisable irrespective of a diabetes diagnosis. This study seeks to investigate environmental 

and health impacts of medical treatments that are specific to treating T2d. Similarly, the impacts of 

diagnosing T2d and treating any complications that may arise from prolonged elevated blood sugar (i.e., 

stroke, heart attack, blindness, amputations, etc.) are not included in this study as they do not directly 

contribute to efforts to reduce hyperglycemia in patients.  

3.2 Data Collection 
This LCA study seeks to demonstrably quantify the natural resource extractions, transportation, 

processing, use phase, and end-of-life disposal/reuse of all primary components used to treat T2d with 

either insulin or metformin in Sri Lanka and the United States. The full life cycle of each individual 

component in each model is considered. The data used in this study should be considered relevant for 

treatment protocols used in 2017 and 2018. To detail each of the components used in each system, in-
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person observations and interviews were conducted with physicians and patients in the United States 

and Sri Lanka. Specific data on each of the identified system components was collected using published 

academic studies, professional publications, US patent filing data along with additional in-person 

observations and interviews. By breaking down the modeled treatments into their composite 

components and assessing the environmental impacts of each component, it was possible to link 

impacts to process components.  

Figures 2 and 3 below present the data used to model each system. The figures are broken down by 

system, then component and finally by individual input. Following the figures is an account of the of the 

data collection process and relevant assumptions. A complete data inventory with accompanying 

assumptions is provided in Appendix B.   
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Figure 2: Component breakdown of United States T2d Treatment Pathways. Components are color-coded to correspond with 
results graphs. 
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Figure 3: Component breakdown of Sri Lankan T2d treatment pathways. Components are color-coded to correspond with results 
graphs. 

In the United States, the researcher interviewed and shadowed the nursing and physician assistant team 

at the University of Michigan’s Metabolism, Endocrinology and Diabetes Clinic at Dominos Farm in Ann 

Arbor, Michigan. The results of these interactions were cross-referenced with the 2017 ADA’s published 

Standards of Care document.(American Diabetes Association 2017) and the payment coverage provided 

by government Medicare and Medicaid programs (Centers for Medicare and Medicaid Services 2017b). 

The information from these sources is used to inform the types of medications used in the study (insulin 

and metformin), frequency of blood glucose testing (1x/day for patients using metformin and 3x/day for 

patients using insulin), and the frequency of clinic visits (2x/year for a T2d with well managed blood 

glucose and no health complications).  

The same researcher observed the care received by patients of the Diabetes Clinic located within the 

Trincomalee General Hospital in Trincomalee Sri Lanka, and the Uppevelli Public Health Clinic in 

Uppevelli, Sri Lanka. Additional sources of information on Sri Lankan T2d care pathways were obtained 

through series of interviews with T2d patients and three local physicians. Collected primary data was 

cross-referenced with the directives outlined in the Diabetes Treatment Protocol published by the 

Endocrine Association of Sri Lanka. This information was used to inform the types of medication used in 

the models (insulin and metformin), to confirm that personal blood glucose testing is not a standard 

practice in managing T2d for many patients in Sri Lanka, and to provide guidance on the modeling of 

regular clinic visits (1x/month). Interviews with Sri Lankan T2d patients and physicians confirmed that 
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government-sponsored prescriptions require monthly in-person renewals which necessitates monthly 

clinic visits for continued free/very low-cost medications. 

 Medication Production and Use (US and Sri Lanka) 

 Insulin Production Assumptions 

For the US Insulin pathway, we assumed the use of Sanofi’s Lantus Insulin Glargine distributed as an 

injection pen. This plastic container resembles a marker and stores the insulin in a glass vial enclosed in 

a plastic casing. It is designed to be transportable and does not need to be refrigerated for up to 28 days 

after removing from refrigerated storage (Sanofi-Aventis 2019). Per the insulin container label, a single 

insulin pen contains 3.6378 mg of insulin which is equal to 100 insulin units. A base dosage of 10 u/day is 

assumed based on dosing recommendations from the manufacturer (Sanofi-Aventis 2017). 

Transportation was estimated from Sanofi’s largest insulin production facility located in Frankfurt, 

Germany (Industriepark Höchst 2018). The waste scenario modeled here accounts for the disposal of the 

packaging used to house and transport the produced insulin. It does not account for waste generated in 

the insulin production process as data on waste generated from this process was not available. The 

disposal scenario assumes that patients dispose of their used packaging along with standard household 

municipal solid waste. This assumption is based on discussions with medical professionals, as well as a 

review of several dozen diabetes patient online community message threads discussing how to dispose 

of diabetes treatment materials.  

For the Sri Lankan insulin pathway, procurement documents from the Sri Lankan Ministry of Health 

suggest the government generally provides patients with a form of Isophane Human Insulin 

(Somasundaram et al. 2013; Sri Lankan Ministry of Health 2018). It is assumed that as both insulin 

Glargine and Isophane insulin are manufactured from recombinant human DNA, that they both share a 

similar production process. The daily dosage is assumed to be 34.62 units of insulin, based on the dosing 

recommendations of the Endocrine Society of Sri Lanka (Somasundaram et al. 2013). Manual 

measurements indicated a mass of 24.584 g/vial. It is assumed that the insulin used in Sri Lanka is 

primarily being manufactured in India (IBM Micromedex 2019; BioPharm International Editors 2017; 

Ganguly 2017) and its transportation was modeled accordingly. The notable differences between the 

production of insulin used in Sri Lanka versus the US are the containers in which they are stored and the 

locations where they are manufactured. The insulin procured by the Sri Lankan government is primarily 

stored in 10 mL glass vials, which after use are assumed to be landfilled. Without published data 

indicating waste by-products from the insulin production process, neither the U.S. nor Sri Lankan 

scenarios account for waste generated during the production process. 

In the absence of direct process data of the insulin glargine and/or insulin isophane production process, 

this study recreated the production process using the process data published by Gusarov, et al. in their 

paper, Systematic Approach to Production Technology Development for Therapeutic Proteins (Using 

Insulin-Glargine As An Example), and Hwang, et al.’s published paper, Recombinant Glargine Insulin 

Production Process Using Escherichia coli. To calculate the energy used in the manufacturing process of 

the insulin a total energy estimate was derived using the FineChem tool, designed by the Safety and 

Environmental Technology Group within ETH Zurich. (Wernet et al. 2008) The FineChem tool uses the 

molecular structure of a compound to estimate the energy needs and environmental impacts of that 

molecule’s production. While the tool was originally designed for the petrochemical industry, it serves 

to provide a rough estimate of energy use in the absence of process data. All molecular data used in the 
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calculations were sourced from PubChem. The FineChem tool estimated the total energy use to produce 

insulin glargine at 758.6 MJ/kg. The breakdown of the types of energy used in this total was established 

using the work by Cespi, et al in their 2017 Green Chemistry publication. This study indicated an energy 

breakdown in pharmaceutical production of 50% natural gas, 38% electricity and 12% steam. These 

proportions were used in the study’s calculations (Cespi et al. 2015). 

 Insulin Use Assumptions 

For the US insulin use pathway, we assume that the patient will be using a long-lasting insulin that needs 

to be taken once daily. Administration requires one needle and one alcohol swab. The needle is 

necessary to inject the insulin below the skin. The alcohol pad is a standard precaution used to protect 

the patient from infection during the injection process.  While the insulin in insulin pens modeled in this 

study can be stored at room temperature for approximately 28 days, the manufacturer notes that 

longer storage requires refrigeration to prevent degradation of the insulin (Sanofi-Aventis 2019). 

Prescriptions and insurance plans in the United States typically allow for 30 to 90-day supplies of a 

medication (Centers for Medicare and Medicaid Services 2017b). As such, this study assumes patients 

will have a continual need to refrigerate insulin pens year-round. The waste treatment scenario included 

in this model assumes that patients are disposing of their used needles as medical waste. Interviewed 

medical professionals all recommend disposing of used needles in a sealed medical waste container. 

These containers are then disposed of with standard municipal solid waste. This practice aligns with 

several dozen reviewed online diabetes community discussion boards where patients documented their 

methods for disposing of diabetes-related waste. The disposal of the alcohol swab is assumed to be the 

same as for standard municipal solid waste.    

For the Sri Lankan insulin treatment pathway, this study assumes one injection a day with a single-use, 1 

mL syringe and needle. Transportation to Sri Lanka was estimated assuming the production of the 

syringe and needle occurred in Aurangabad, Maharashtra, India. Waste disposal modeling is based off 

the assumption that households are disposing of their needles and syringes in a community landfill. 

Observations of T2d diabetes patients in Sri Lanka indicated that disposal of diabetes supplies along with 

standard municipal solid waste is a common practice, as is on-site incineration, with many families 

incinerating their medical waste along with household waste. For the purposes of this study it was 

decided to model an inert landfill option. It is worth considering that incineration disposal is also a 

common, but inadvisable, method.  

 Metformin Production Assumptions 

For the US Metformin pathway, we assume patients use 1000 mg of metformin daily, based upon dosing 

recommendations provided by IBM’s Micromedex database. It should be noted that both interviews and 

published literature have established a precedent that patients often find it difficult to take their oral 

medication daily (Cramer 2004). However, per ADA recommendations for avoiding diabetes-related 

medical complications, this study assumes adherence to a daily dosage schedule. The production 

process for metformin (both in US and Sri Lanka) modeled in this study is based on the process outlined 

in Rohokale, Jadhav et Kadam’s 2010 paper on metformin process development (Rohokale, Jadhav, and 

Kadam 2010). It is acknowledged that there are a variety of production methods to produce 

pharmaceutical quality metformin and that the type of production process may influence scenario 

outcomes. This model assumes US metformin is produced and shipped from Humacao, Puerto Rico. The 

FineChem tool estimated the total energy used in production to be 145 MJ/kg. The breakdown of the 
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types of energy used in this total again used the work by Cespi, et al. and assumed 50% natural gas, 38% 

electricity and 12% steam.  

Sri Lankan T2d patients are assumed to use 1500 mg of Metformin daily. This is based upon dosing 

recommendations provided by the Endocrine Society of Sri Lanka. The drug was assumed to be 

manufactured in Aurangabad, Maharashtra, India and transported by sea and land to Sri Lanka, and 

energy estimates were made using the FineChem tool as described above. 

 Blood Glucose Testing (US) 
Personal blood glucose testing requires 1) a blood glucose meter, 2) a reusable lancing device, and 3) a 

single-use lancet and test strip. Use of other forms of glucose monitoring such as continuous glucose 

monitoring systems are excluded from this study given their relatively low adoption among T2d patients. 

The glucose meter modeled in this study is a Freestyle Lite meter manufactured by Abbott. The 

Freestyle Lite meter was modeled given the relative ubiquity among glucose meter design and 

functioning, and the researchers’ ability to access several devices for deconstruction. Based on the 

information provided in the user manual, the meter has an assumed lifespan of five years or 1825 days 

and an expected battery life of 500 tests (Abbott 2016). The study establishes two different battery 

scenarios based on either insulin or metformin treatment pathways. Transportation of the device to the 

US was modeled assuming it was manufactured in Shenzhen province in China. This study assumed that 

patients dispose of their glucose meter as an electronic device. The U.S. EPA reports that Americans 

recycle approximately 40% of selected consumer electronics (U.S. Environmental Protection Agency 

2018). As this is less than half of all produced electronics, it was assumed for this study that glucose 

meters would be included with standard municipal solid waste landfill disposal in the majority of 

households.   

The lancing device is assumed to have a lifespan of two years or 730 days, and is used by only one 

individual (Abbott 2016). To determine the components and materials used in the construction of the 

device, the lancing device was manually taken apart and weighed. It was assumed the unit was 

produced by Own Mumford in Oxfordshire, UK (Owen Mumford Ltd. 2018). The waste scenario for the 

lancing device assumes that the used device is not considered biohazardous or medical waste and that it 

is disposed of along with standard municipal solid waste.  

This study assumes one, single-use lancet and one single-use test strip is used for every blood glucose 

test. It is assumed the lancet is manufactured and shipped from Atlanta, Georgia (Facet Medical 

Technologies 2018). The waste treatment scenario included in this model assumes that patients are 

disposing of their used lancets as medical waste. This study assumes the test strips are Abbott Freestyle 

Lite test strips made for use with the Freestyle Lite glucose meter and are manufactured in Donegal, 

Ireland (Abbott Ireland Diabetes Care 2019). The composition of the test strips base layer is assumed to 

be polyester with the electrode materials comprised of silver and carbon, as described in a published 

white paper by the strip’s manufacturer (Abbott Diabetes Care Inc. 2015).  Regarding the additional 

enzymes and reactant materials used in the test strip, it was not feasible to conduct an analysis to 

determine the exact amount of each material used in the adhesive and electrodes of the test strip. 

Given that the combined mass of these materials is so small (>.001 g) an approximate mass was 

estimated by dividing the balance of the test strip mass (after subtracting the known elements) among 

the five additional inputs. The waste treatment scenario included in this model assumes that patients 
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are disposing of their glucose test strips in a sealed container disposed of with standard municipal solid 

waste.  

 Clinic Visits 
This study models two different clinic visit scenarios to reflect differences in clinic visits between the 

United States and Sri Lanka. The models described below are referenced for both metformin and insulin 

treatment pathways.  

 United States 

Studies show the average patient in the United States travels approximately 10 miles to a medical clinic 

(Probst et al. 2006). Using this estimate, the study accounts for a 20-mile round-trip use of a single-

occupancy gasoline-powered vehicle. The US clinic visit was modeled on observations conducted at the 

University of Michigan Metabolism, Endocrinology & Diabetes Clinic in Ann Arbor, Michigan. Clinic staff 

reported that patient appointments are scheduled for 30-minute blocks and that the clinic serves an 

estimated 300 diabetic patients a week. The assumed size of the clinic is 43,000 ft, and the assumed 

average overhead energy use rate is 245 kBtu/ft² which includes power for the clinic’s lights, HVAC 

system, computers and the HbA1c analysis machine (U.S. EPA Energy Star 2015). During the 30-minute 

appointments the medical assistants record patient vital information, including blood glucose levels and 

HbA1c test results. Medications are then verified before patients meet with the doctor for a physical 

examination. This study models diabetes-specific and single-use materials used during a standard clinic 

visit. These materials include: a glucose meter, glucose test strips, lancet, HbA1c testing cartridge, 

rubber gloves, exam-room table cover paper, and neuropathy testing filament. Additional materials such 

as a scale, blood pressure cuff and clinic computers were omitted from the study due to initial 

calculations suggesting that their long use life as well as universal attribution to each clinic patient, 

would result in a miniscule impact attribution. 

Durable medical devices including the glucose meter and lancing device allocate their impacts across the 

T2d patient population of the clinic. All other modeled medical supplies are considered single use and 

the entire impact of the item is attributed to one patient.  The waste disposal scenario is modeled based 

on guidelines from the Michigan Medical Waste Regulatory Act. A third-party medical waste 

management firm disposes of all medical waste from the clinic by first decontaminating the waste 

through autoclaving before the waste is landfilled (Michigan Department of Environmental Quailty: 

Resource Management Division and Wyant 1990). Absent published process data or direct access to 

primary data for commercial medical waste autoclave processes, this study models only the landfill 

portion of the waste scenario.  

 Sri Lanka 

Individual car ownership is not as pervasive in Sri Lanka as in the US. Referencing research from the 

World Bank and estimates of public bus occupancy rates, this model assumes patients will travel a 

distance of 9.6 km roundtrip on a public bus with a total of 20 passengers (Govindaraj et al. 2014). The 

hospital/clinic buildings were open-air buildings with no central air systems used around the clinics. 

Clinic energy use was not modeled, as energy use appeared to be quite negligible. Windows provided 

natural sunlight negating the need for electrical light. While doctors did use computers in the 

Trincomalee Regional Hospital setting to automatically refill patient prescriptions, the energy use of the 

computer systems was emitted from this model. As each physician can see on average between 50 and 

70 patients during clinic hours each day, preliminary calculations considering the energy intensity of the 
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computer use per patient allocated over the sum total of patients for each computer, generated a 

negligible impact.  

The observed government-sponsored clinics did not have the resources to do on-site blood glucose 

testing. Interviews with doctors reinforced that most public-run diabetes clinics do not have this 

capability owing to the expense of blood glucose test-strips. Diabetic patients are instructed to bring the 

results of a previously ordered blood test to their clinic appointments. Blood tests are included in the 

modeled scenario by estimating the impacts associated with the single-use blood collection vial and 

electricity used in the testing process. Published studies on medical waste disposal in Sri Lankan 

healthcare facilities notes the prevalence of various incineration practices as a primary means of waste 

disposal. A general incineration model from the Ecoinvent 3 database was applied to simulate the 

disposal of contaminated waste generated by a patient visit (Wernet et al. 2016). 

3.3 Life Cycle Inventory 
Life cycle inventory data was compiled using SimaPro version 8.5.2.0 by Pré Sustainability. The software 

provides a transparent method for combining Life Cycle Inventory database information with automated 

analytical processes to facilitate the LCA process. Gathered data was assigned to life cycle inventory (LCI) 

databases to model the emissions from those items’ production, use, and disposal. Every attempt was 

made to model the exact materials that comprise the components of each system. However, 

appropriate material substitutions were made where a lack of data made direct modeling impossible or 

unfeasible. Ecoinvent 3.0 was the preferred database, as it is one of the most comprehensive global LCI 

databases (Wernet et al. 2016). Additional data was sourced from the Industry 2.0 and the USLCI 

databases. The Industry 2.0 database lists data made available from industry associations such as 

Plastics Europe, World Steel and ERASM (World Steel Association 2017; PlasticsEurope 2011; Schowanek 

et al. 2018; Pre Consultants 2019). The USLCI database is the U.S. Life Cycle Inventory database (National 

Renewable Energy Laboratory 2018).  

3.4 Impact Assessment 
The impact assessment was conducted using the ReCiPe 2016 impact characterization method 

(Huijbregts et al. 2017). Calculations used the database’s hierarchist uncertainty valuation based on a 

consensus model using 100-year time frames estimates. This study expands on several assessed impact 

indicators as proxies to understand the range of system-wide damage to ecosystems associated with the 

treatment of T2d. These indicators are Climate Change (kilograms of CO2 equivalents, kg CO2-eq), 

Terrestrial Acidification (kilograms SO2 equivalents, kg SO2-eq) and Water Consumption (M3 water-

equivalent consumed). Results for additional environmental impact indicators are included in the 

supplemental materials.  

Human health impacts are assessed through an aggregate end-point measured in Disability Adjusted Life 

Years (DAILYs).  

The human health indicator is an endpoint-damage indicator of the ReCiPe 2016 life cycle impact 

assessment method. It is defined in the 2016 paper by Hujibregts et al., as a characterization factor 

designed to capture the combined midpoint impacts effects on human health (Huijbregts et al. 2017). 

Figure 1 below demonstrates the relationship between environmental stressors (midpoint impacts) and 

an area of protection or concern (endpoint). The ways in which environmental stressors impact human 

health are explained through the damage pathways highlighted in purple.  
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The human health impact indicator is measured using the unit of Disability Adjusted Life Years (DALY). 

DALYs are a traditionally public health measure that are used to quantify the years of healthy life lost. 

According to the World Health Organization, the difference between an entire population living a 

healthy lifespan and one that is disrupted due to the measured external factors is considered a measure 

of the health burden that the external factor is posing on the measured population.  

This definition along with a summary of useful calculation methods for DALYs are available on the 

WHO’s website: https://www.who.int/healthinfo/global_burden_disease/metrics_daly/en/ 

In addition to the functional unit measure of each tested scenario, aggregate impact results were 

considered in the context of T2d populations of the United States, Sri Lanka and globally. Recognizing 

the need to consider impacts in relation to the extended time-period that most T2D patients seek to 

manage their disease, the calculated population-level impacts were also evaluated according to the 

estimated average number of years an otherwise healthy individual would seek to treat their T2D.  

https://www.who.int/healthinfo/global_burden_disease/metrics_daly/en/
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 Population-Level Impact Assessment 
In 2016 the United States Center for Disease Control (CDC) estimated that there were 30.3 million 

diagnosed diabetics in the United States. 1.25 million diabetic patients are reported as being diagnosed 

with Type 1 diabetes patients, a population excluded from this study. Subtracting this population from 

the total diabetic population yielded an estimated 29,050,000 T2d patients in the United States 

(National Center for Chronic Disease Prevention and Health Promotion 2017). It is worth noting that the 

CDC estimates that more than ~81 million Americans are currently pre-diabetic and will likely receive a 

full diagnosis within 5 years.  

The average rate of diabetes prevalence in Sri Lanka is estimated to be 7.9% of the total population 

(World Health Organization 2016b). Assuming a current population of 21.44 million (World Bank 2017), 

it is assumed there are ~1,693,000 T2d patients. National insulin bank registries suggest a negligible 

number of Type 1 diabetes patients that will not impact the validity of this overall T2d assessment 

(Wijesuriya et al. 2019). 

Treatment Option Number of T2d Population 
Using Treatment Option 

Sri Lanka 

Insulin Use Only 67,720    (4%) 

Metformin Use Only 1,472,910    (87%)  

Both Insulin & Metformin 15,0677    (8.9%)  

United States 

Insulin Use Only 5,170,900    (17.35%) 

Metformin Use Only 14,612,150    (66.21%) 

Both Insulin & Metformin 3,776,500    (16.44%) 

Global- High Income Country 

Insulin Use Only 11,492,748    (17.35%) 

Metformin Use Only 32,476,698    (66.21%) 

Both Insulin & Metformin 8,393,580    (16.44%) 

Global- Low & Middle Income Country 

Insulin Use Only 12,609,360  (4%) 

Metformin Use Only 274,253,580  (87%) 

Both Insulin & Metformin  28,055,826   (8.9%) 

The International Diabetes Federation reported an estimated 463 million diabetic patients globally in 

2019 (International Diabetes Federation 2019). This figure is inclusive of Type 1 and Type 2 diabetic 

populations. To estimate the global T2d population the Type 1 population was subtracted from the 

overall global diabetic patient estimate. Using Type 1 diabetes prevalence data compiled by Menke et al, 

this study assumes a highly conservative estimate of 8% of Type 1 prevalence globally(Menke et al. 

2013). This generated a global T2d population estimate of 416,700,000.  

Table 1: A breakdown of the Type 2 diabetes populations of Sri Lanka, the United States, High-Income Countries and 
Low- and Middle-Income Countries, according to pharmacological treatment type. Listed percentages are in relation 
to the total Type 2 diabetes population of that particular country/economic region. United States and High-Income 
pharmacological treatment rates are citied from from Diabetes in America, 3rd Edition. In the initial publication the 
given rates assume ~88% of the T2d population is treating their T2d.(Saydah 2018) These estimates rates have been 
updated by the study’s authors to account for 100% of the T2d population receiving treatment.    
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To account for variances in treatment options throughout all analyzed populations, population totals 

were divided among the treatment scenarios according to the rates established in Table 1. The 

percentage estimates of patients treating their diabetes using either insulin or oral medication in the 

United States and Sri Lanka were derived from published literature (Gunathilake, Kottahachchi, and 

Siyambalapitiya 2017; Saydah 2018). Lacking published information for global usage rates of insulin or 

metformin, the author assumed treatment rates for the U.S. when calculating the total number of T2d 

patients using insulin and metformin in High-Income countries. The treatment rates established for Sri 

Lanka were used to estimate the number of patients using insulin and metformin in Low- and Middle-

Income countries. Definitions of High, Low and Middle-Income countries were derived from the World 

Bank (World Bank 2019b).  Based on a global population distribution data from the World Bank, it was 

assumed that 17% of the global diabetic population lives in a High-Income country and 83% live in a Low 

or Middle Income country (World Bank 2019a). 

To account for the impacts associated with both insulin and metformin use, but so as not to double-

count impacts associated with other treatment components (i.e., blood glucose testing and clinic visits) 

the following equations were used to calculate impact for patient populations using both Metformin and 

Insulin treatments for High-Income and Low- and Middle-Income populations respectively:  

High-Income Scenario Both Treatment Use Functional Unit Result = (50%*U.S. Blood Glucose Testing 

Component Impact for Impact Category X) + (50%*U.S. Clinic Visit Component Impact for Impact 

Category X)  

Low- & Middle-Income Scenario Both Treatment Use Functional Unit Result = (50%*Sri Lankan Clinic 

Visit Component Impact for Impact Category X) 

Overall global treatment impacts were calculated according to the following equation:  

Scenario A Impact Indicator Population Result = (Scenario A Functional Unit Result for Impact Category 

X * Scenario A T2d population * % Single Treatment Population) + ((Scenario A Functional Unit Result for 

Impact Category X - Scenario A Both Treatment Use Functional Unit Result for Impact Category X) * 

Scenario A T2d population * % Both Treatment Population)) 

 Lifetime Impact Assessment 
As a chronic disease this study assumes a T2d diagnosis is a lifetime diagnosis. Daily treatments are 

required from diagnosis to the end of life. Assuming, as this study does, that the patient remains free of 

medical complications and other significant medical conditions, it is expected that the patient’s lifespan 

corresponds to the average national lifespan of their country of residence. Research suggests the 

average natural life-expectancy rage for a healthy 55-year old is at least 19 years, or 74 years of age 

(Leal, Gray, and Clarke 2009). In 2016 the WHO reported the average global life expectancy to be 72 

years (World Health Organization 2016a). Using these age projections it is deemed reasonable that an 

otherwise healthy individual diagnosed with T2d at age 50 could be expected to attain a full life-span of 

72 years. This assumption requires ~22 years of T2d treatments. The results analysis of this study, 

assumes a diagnosis age of 50 and uses 22 years as a standard multiplier when calculating lifetime 

impacts. Calculations use the following equation:  

Population Lifetime Impact Indicator Results = Impact Indicator Population Result * 22 years 



21 
 

3.5 Sensitivity Analysis 
After a preliminary assessment of the functional unit results the research team conducted a sensitivity 

analysis to assess the dependence of nine variables identified as significant contributors to overall 

impacts. The analysis used a wide range of data points to test the sensitivity of impacts according to 

variable values. Highly sensitive variables are discussed in the results section as important qualifiers of 

the study’s findings.  

To assess the sensitivity of the modeled scenario’s impact results to fluctuations in component inputs, 

11 input variables were tested using at least 10 alternative values for each input variable. The sub-

sections below provided detailed information and results associated for each of the 11 tested variables. 

These variables included:  

U.S. Treatment Pathway Sri Lankan Treatment Pathway 

Number of Doctor Visits Insulin Dosage 

Doctor Visit Overhead Energy Use Insulin Production Energy 

Insulin Dosage Metformin Dosage 

Insulin Production Energy Metformin Production Energy 

Metformin Dosage  

Metformin Production Energy  

Number of Doctor Visits, Distance to Doctor’s Office and Doctor Office Overhead Energy were not 

included in the Sri Lankan context given the comparatively minor contributions of doctor visits to the 

overall assessed impacts.  

To conduct the analysis a separate model was created for each of the minimum 10 scenarios tested for 

every input variable. The results were calculated for 19 different impact categories: Human Health 

(DALY), Global Warming Impact (kg CO2-eq), Stratospheric Ozone Depletion (kg CFC11-eq), Ionizing 

Radiation (kg Co-60-eq), Ozone Formation (kg NOx-eq), Fine Particulate Matter (kg PM2.5-eq), Ozone 

Formation- Terrestrial Systems (kg NOx-eq), Terrestrial Acidification (kg SO2-eq), Freshwater 

Eutrophication (kg P-eq), Marine Eutrophication (kg N-eq), Terrestrial Ecotoxicity (kg 1,4-DCB-eq), 

Freshwater Ecotoxicity (kg 1,4- DCB -eq), Marine Ecotoxicity (kg 1,4-DCB-eq), Total Human Carcinogenic 

Toxicity (kg 1,4-DCB-eq), Human Non-Carcinogenic Toxicity (kg 1,4-DCB-eq), Land Use (m² crop eq), 

Mineral Resource Scarcity (kg CU-eq), Fossil Resource Scarcity (kg oil eq), and Water Consumption (m³) 

To best orient the sensitivity results to the findings articulated in this paper, only the impact categories 

Human Health, Global Warming, Terrestrial Acidification and Water Consumption are addressed 

henceforward.  

Each of the assessed variables were assessed according to their functional unit values, that is to say the 

absolute impact emissions that the models attributed to the specific variable being analyzed, and 

according to their impacts on the overall emission impacts of the treatment scenario. Overall emission 

impacts are comprehensive of the impacts attribute to all of the components in the treatment scenario. 
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 Results  

5.1 LCA Results for One Year of T2d Treatment for One Patient 

Table 2 lists the environmental and human health impacts, per functional unit, for each of the four 

modeled scenarios. These functional unit impacts are reflective of the frequent, low resource intensity 

medical interventions characteristic of chronic disease treatments.  

The U.S. Insulin Use scenario is overall the most impactful. It generates the highest emission rates for 

the impact categories of climate change, water consumption and human health. The only outlier is 

Terrestrial Acidification. The U.S. Metformin Use scenario and both Sri Lankan scenarios generated 

greater Terrestrial Acidification impacts.  

The results for Terrestrial Acidification stand out due to differences in the component make-up of each 

treatment pathway. Referencing the treatment pathway components illustrated in Figures 2 and 3 of 

the Methods section, Figure 4 demonstrates how each of the treatment components contribute to the 

impact results. The breakdown indicates U.S. doctor visits are a leading contributor of negative Climate 

Change and Human Health impacts within the U.S. scenarios and overall. Within the Sri Lankan scenarios 

first insulin production, then the use phase of the insulin scenario, are the greatest source of negative 

Climate Change and Human Health impacts. Doctor visits in Sri Lanka contribute the least to negative 

Climate Change impacts.  

Terrestrial acidification impacts are consistent when comparing the Metformin treatment pathway in 

the U.S. and the Insulin and Metformin treatment pathways in Sri Lanka. That the U.S. Insulin pathway 

contributes very little to this impact category is believed to be a function of different methods of energy 

production during the pharmaceutical production process. The insulin used in the U.S. treatment 

pathway is produced in Germany. The energy models for Germany assume significantly lower impact 

characterization factors for each unit of energy produced. This is in comparison to the energy grid 

models used to represent energy production in India and Puerto Rico, the sites of manufacture for the 

other modeled pharmaceuticals.  

Water consumption rates are significantly higher for the U.S. Insulin pathway and are attributable to the 

Insulin Use component of the treatment. The unique spike in water consumption is the result of the 

assumed refrigeration of the insulin. Similar refrigeration rates are not included in the other scenarios 

due to Metformin medication not requiring temperature control, and the temperature regulation of 

insulin in Sri Lanka assumed to be achieved through storage in a dark, cool environment.  

 U.S. 
Insulin 

U.S. 
Metformin 

Sri Lanka 
Insulin 

Sri Lanka 
Metformin 

Climate Change (kg CO2-eq) 34.8 30.6 20.6 6.58 

Terrestrial Acidification (kg 
SO2-eq)  

0.13 0.47 0.32 0.21 

 Water Consumption 3.94 0.894 0.603 0.323 

Human Health (DALY Lost)  0.0001 0.000074 0.000049 0.000015 

Table 2: Results of the SimaPro analysis using the ReCiPe2016 impact characterization database for the functional 
unit for all modeled scenarios. 
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Overall the results per functional unit highlight the importance of several key components of the tested 

treatment pathways. Doctor visits and pharmaceutical production are shown to account for a notable 

amount of emissions in each of the scenarios. Nevertheless, in the context of one individual’s treatment 

over the course of a year diabetic treatments, whether in the United States or Sri Lanka, do not 

significantly contribute to negative environmental impacts or negative human health impacts. 

Unfortunately, T2d is a global epidemic that must be treated for the duration of an individual’s lifetime 

following diagnosis. Does this picture change when we consider these results in the context of broader 

populations seeking treatment over extended periods of time?  
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Figure 4: Functional unit impact results for the U.S. Insulin Use, U.S. Metformin Use, Sri Lankan Insulin Use and Sri Lankan Metformin Use scenarios, disaggregated by treatment component. . 
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5.2 Population and Lifetime Impact Results 
 

High-Income : 
Insulin 

High-Income : 
Metformin 

Low & Middle 
Income : Insulin 

Low & Middle 
Income : 

Metformin 

Total Annual T2d 
Global Impact  

Annual U.S. 
Healthcare 

Emissions (M. J. 
Eckelman and 

Sherman 2016) 

Annual Global 
Healthcare 

Emissions (Karliner 
et al. 2019b) 

Climate Change 
(kg CO2-eq) 

628,769,522 1,529,628,066 906,266,506 2,177,052,872 5,241,716,966 
                     

660,000,000,000  
                                            

2,000,000,000,000  

Terrestrial 
Acidification (kg 

SO2-eq) 
2,452,654 25,220,265 14,251,778 68,783,450 110,708,146 

                         
3,100,000,000  

n/a 

Water 
Consumption (m3) 

84,420,458 44,983,308 25,468,828 106,302,002 261,174,596 n/a n/a 

Human Health 
(DALY Lost) 

2,032 3,720 2,165 4,992 12,909 470,554  n/a 

Table 3: Environmental and Health Footprint from treating the Global T2d population for one year. Annual aggregate total impacts of High-Income and Low-and Middle-
Income treatment scenarios listed according to impact category. The Total Global Impact provides the combined annual impacts associated with all global population results. 
Annual US Healthcare Emissions and Annual Global Healthcare Emissions are included as comparative references and are cited respectively from Eckelman MJ, Sherman J., 2016, 
and Karliner J, Slotterback S, Boyd R, Ashby B, Steele K., 2019.   

5.3 Global Population Lifetime of T2d Treatment Impact Results 
 High-Income: 

Insulin 
High-Income: 

Metformin 
Low & Middle 

Income: Insulin 
Low & Middle Income: 

Metformin 
Total Lifetime T2d Global 

Impact  

Climate Change 
(kg CO2-eq) 

13,832,929,481  
                

33,651,817,457  
 

                     
19,937,863,127  

 

                     
47,895,163,180  

 

                    
115,317,773,245  

 

Terrestrial 
Acidification (kg 

SO2-eq) 
 53,958,395  

                      
554,845,821  

 

                          
313,539,110  

 

                       
1,513,235,890  

 

                         
2,435,579,216  

 

Water 
Consumption (m3) 

           
1,857,250,075  

 

                      
989,632,784  

 

                          
560,314,215  

 

                       
2,338,644,033  

 

                         
5,745,841,107  

 

Human Health 
(DALY Lost) 

                        
44,697  

 

                                
81,840  

 

                                    
47,630  

 

                                  
109,840  

 

                                    
284,007  

 
Table 4: Environmental footprint from Treating the Current Global T2d Population over their Estimated Lifetime: The population lifetime impact results are calculated by 
multiplying the annual population impact results by 22 years. The Total Global Impact column provides the combined global impact for all global populations treating T2d.
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Overall the actual impacts of treating T2d appear slight. The 34.8 kg of CO2-eq generated by the High-Income Insulin Use scenario, the largest 

CO2 emitting scenario, is equivalent to the annual CO2 emissions of 0.007th of an average, gasoline-powered passenger vehicle (US EPA 2015). 

Even as impacts are scaled across population and extended time frames the actual effects of adequate universal T2d treatments are minimal in 

the context of the overall global healthcare emissions (annual global T2d CO2-eq emissions account for ~.26% of annual global healthcare CO2-eq 

emissions). That is not to say these impacts are irrelevant. The global lifetime results reported in Table 4 are a conservative snapshot of the 

cumulative global environmental impact generated by T2d. Avoiding these total Lifetime T2d Global CO2-eq impacts would have the same effect 

as nurturing 2 billion new trees for 10 years(US EPA 2015).  

5.4 Sensitivity Analysis 
An overview of each treatment scenario’s components is available in the Methods Section of this paper.  

Figure 1 shows the combined results for the sensitivity analysis findings of each of the assessed variables according to their estimated actual 

emissions per functional unit. The graph clearly demonstrates the outsized impacts of metformin dosages in the Sri Lankan and United States 

scenarios. These variables are highly elastic in the sense that while large dosages contribute notable CO2 impacts, any decrease in dosage 

amount shows a clear and substantive decrease in emissions. Although never reaching the same potential for amount of CO2 emitted, metformin 

production energy in the United States and Sri Lanka contribute notably to Global Warming impacts with little variability. These impacts remain 

mostly stable irrespective of the amount of energy being used.  
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Figure 5: Climate Change Impacts (kg CO2 eq) Sensitivity Analysis per Tested Variable Per Functional Unit 

Figure 2 presents the combined results of the assessed variables according to their impacts on the overall treatment scenario impact results. 

These findings indicate the impact of each variable on the overall total impact of the scenario. From figure 2 it is clear that metformin dosages in 

the United States and Sri Lanka continue to significantly impact CO2 emissions. As with Figure 1, there is a notable decrease in CO2 emission 

outputs as metformin dosages are reduced. Figure 2 differs from Figure 1 when considering other significant causes of Co2 emissions. In the 

context of overall impacts, U.S. in-person doctor visits and distance traveled to the clinic in the Insulin Use and Metformin Use scenario are both 

notable contributors to CO2 emissions.  
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Figure 6: Climate Change Impacts Sensitivity Analysis as Variables Impact Final T2d Scenario Impact Results 

Figure 3 is the combined variable findings of the sensitivity analysis results for Terrestrial Acidification. The graph clearly indicates the 

importance of energy in insulin production in the Sri Lankan scenario as a large overall producer of terrestrial acidification impacts. Apart from 

insulin production, the amount of insulin used per dosage, the number of in-person doctor visits and the distance to the doctor’s office all 

generate the highest terrestrial acidification impacts.  

The overall scenario impacts displayed in Figure 4 also highlight the importance of the energy used in insulin production in the Sri Lankan 

scenario as a key contributor to terrestrial acidification impacts. However, these impacts are reduced to substantially lower levels once the 

energy used in production is decreased below 110 MJ per functional unit. At that point, the number of in-person doctor visits in the U.S. 

Metformin Use scenario becomes the most impactful contributor to overall terrestrial acidification emissions, followed closely by the energy 

used to produce metformin in the U.S. Metformin Use scenario. 
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Figure 7: Sensitivity Analysis of Terrestrial Acidification Impacts Per Tested Variable 
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Figure 8: Sensitivity Analysis of Terrestrial Acidificatino Impacts per Final T2d Treatment Functional Unit Impact Results 

Figure 5 presents the sensitivity analysis findings for the water consumption variable results. Similar to Terrestrial Acidification, the energy used 

in insulin production in the Sri Lankan context has the greatest potential for water consumption impacts, although this potential is diminished 

when energy use decreases below 110 MJ/functional unit. The number of in-person doctor visits is also a large consumer of water, although the 

attributable impact decreases greatly as the number of visits declines. Insulin dosage in the U.S. context remains a persistently high source of 

water consumption throughout the variable scenarios. 

Figure 6’s depiction of the results of the sensitivity analysis in the context of overall treatment impacts indicates that there is a very clear 

distinction between highly impactful categories and those that are less impactful. The highly impactful categories remain persistently high 

despite variations in variable values.  The high impact categories are Number of In-Person Doctor Visits in the U.S. insulin scenario, distance to 

the doctor office in the U.S. insulin scenario, insulin dosage in the U.S. scenarios, insulin production in the United States. It is very clear from 

these findings that treatments in the United States using insulin are responsible for the highest rates of water consumption.  
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Figure 9: Sensitivity Analysis on Water Consumption per Tested Variable 
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Figure 10: Sensitivity Analysis of Water Consumption Impacts per T2d Treatment Scenario Overall Functional Unit Results 

Figure 7 shows the individual variable results of the Human Health sensitivity analysis. At an individual variable level, human health is most 

significantly impacted by the Number of Doctor Visits and the Distance to the Doctor’s Office. The greatest impacts are generated from these 

variables, but their impacts are highly elastic. They depend greatly on the variable. The impacts are reduced to almost zero when the number of 

doctor visits is cut to one or two in-person visits and round-trip distances are less than 25 miles. Two variables that remain relatively unchanged 

with regard to human health throughout the scenarios and have a higher impact than the majority of the variables, are those of U.S. insulin 

production and U.S. insulin dosage. They show very little sensitivity to different scenario values.  
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Figure 11: Sensitivity Analysis of Human Health Impacts per Tested Variable 

Figure 8 demonstrates the sensitivity analysis results per variable in the context of the overall treatment scenario functional unit results. The 

impactful variables are yet again somewhat different. Number of doctor visits in the U.S. insulin scenario and number of in-person doctor visits 

in the U.S. metformin scenario are what have the most sensitivity to the different variables. Distance to the doctor’s office in the U.S. Insulin Use 

scenario and Metformin scenarios are also large sources of impact, although these impacts are greatly muted once the round-trip distance in 

both scenarios is less than 15 miles. The two least sensitive variables, although not significantly impactful, are insulin and metformin production 

in the United States. Metformin energy production and metformin dosage amounts in the Sri Lankan model are also not very sensitive to 

variable value fluctuations.  
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Tables 1 and 2 below show the standard deviation results for the sensitivity analysis of each assessed variable. The green cells indicate a 

standard deviation value of less than 3. Yellow cells indicate standard deviation values between 3 and 30. Any cells with a standard deviation 

above 30 are marked orange, with the highest deviations noted in red.  

Table 5: U.S. Scenarios Sensitivity Analysis Results 

 

Climate 
Change 

Terrestrial 
Acidification 

Water 
Consumption  Human Health 

# of Doctor Visits 40.41720876 0.117134933 0.245016028 8.04264E-05 

Distance to Doctor 
Office 43.75549561 0.115025378 0.172395726 8.83258E-05 

Doctor Office 
Overhead Energy 0.305050087 0.002649043 0.004698552 2.87107E-07 

Insulin Dosage 0.34675512 0.011554956 0.153234377 4.37623E-07 

Insulin Production  2.835090974 0.102407685 1.369210046 3.54632E-06 

Metformin Dosage 270.0292748 0.03691134 0.041394925 1.20759E-05 

Metformin Production  0.010581014 0.000405159 0.000286133 2.7212E-08 
 

 Table 6: Sri Lanka Scenarios Sensitivity Analysis Results 

 

Climate 
Change 

Terrestrial 
Acidification 

Water 
Consumption  Human Health 

Insulin Dosage 4.786863138 0.11283181 0.167410918 1.22864E-05 

Insulin Production  12.49497328 0.385833321 0.270365509 2.80039E-05 

Metformin Dosage 278.7108235 0.006357084 0.036236901 3.92679E-06 

Metformin Production  0.015871544 0.000607738 0.000429084 4.26237E-08 
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 Discussion: Reducing Negative Impacts of T2d 

Informed by the results of this study, the following discussion suggests preliminary 

actions to be considered by healthcare providers and patients, private sector actors, 

and governments to reduce if not eliminate negative T2d impacts. The second half 

of the section comments on the lessons learned from the study’s research and 

identifies additional methods and research to be developed in future publications.  

The most obvious and definitive method of eliminating the negative impacts 

associated with T2d is to eliminate T2d. In the absence of a cure for the disease, T2d 

prevention reduces the risk of patient health complications and eliminates the need 

to expend resources managing the disease. Unfortunately, an individuals’ personal 

circumstances, genetics, and environmental realities mean that T2d prevention is 

not always possible. Where the disease cannot be prevented, moral and ethical 

obligations require that any patient treatment decision prioritize optimal 

healthcare. The results of this study identify common T2d treatment elements that 

substantively contribute to negative environmental and human health impacts so 

that all relevant stakeholders may consider options for reducing the environmental 

and health impacts of these treatment elements.   

While the impacts of T2d treatments may not substantially contribute to global 

healthcare emissions, the sources of T2d treatment emissions align with with 

previous studies have identified as major sources of pollution. A sensitivity analysis 

(detailed in the supplemental materials) indicates that metformin dosages in both 

the U.S. and Sri Lankan scenarios, the energy used in medication production, the 

number of U.S. in-person doctor visits and the distance U.S. patients travel to the 

doctor’s office all contribute significantly to negative environmental and human 

health impacts. These findings are in accordance with previously published results in 

which medical buildings and prescription medication are consistently cited as major 

emission sources (M. J. Eckelman and Sherman 2016; Karliner et al. 2019b; M. J. 

Eckelman, Sherman, and MacNeill 2018). Transportation is specificly mentioned by 

as an important driver of pollution associated with the health care supply chain, the 

source of 71% of energy-related emissions(Karliner et al. 2019b). 

6.1 Suggested Actions 

Healthcare Providers and Patients 

Optimal health outcomes must always be the priority when making decisions 

regarding patient health. It is acknowledged and encouraged that any potential 

trade-off or alteration to patient care should foremost explicitly contribute to the 

patient’s overall health outcome. Taking into consideration patient health 

outcomes, both medical practitioners and healthcare administrators are well poised 

to address the impacts associated with high medication dosages and doctor visits. 

For practitioners in the U.S. and Sri Lanka, prioritizing the prescription of a sensible 

diet and exercise plans as legitimate and effective treatment options for T2d may 

help to reduce patient reliance on increasingly high dosages of metformin and/or 
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insulin. This recommendation is supported by research that confirms the 

importance of even slight dietary and exercise improvements for enhancing the 

patient’s own blood glucose regulation. (Kraus et al. 2019; Shima et al. 1996; Grimm 

1999)  For their part, patients must recognize the legitimacy of behavior change as 

an effective method in treating and managing their T2d.  Continuous health metric 

tracking and real-time video conferencing may also present an opportunity for 

practitioners to engage with patients outside of a clinical setting, reducing impacts 

associated with clinic operations and the need to travel to a medical clinic. It should 

be noted that while technology costs are continually decreasing, the availability of 

the necessary technology and capacity to virtually monitor and consult with patients 

is presently limited in many settings. (Shaw et al. 2018; Drake et al. 2019; Combi, 

Pozzani, and Pozzi 2016; Holmner et al. 2014; Wickramasinghe et al. 2016; 

Mohammadzadeh and Safdari 2014; Weenk et al. 2017) 

Private Sector Actors 

The private sector is vital as the source of most of the inputs necessary to effectively 

managed T2d. With active encouragement from healthcare practitioners and 

administrators, producers and manufacturers have the ability to reform product 

designs, supply chains and production processes to drastically reduce emissions 

associated with T2d treatments. (Alsaffar et al. 2016; Unger and Landis 2016) This 

study implicates electricity production used in the service of pharmaceutical 

production as one of the largest contributors to negative T2d treatment impacts. 

Sourcing production energy from renewable sources and consciously considering 

the entire environmental life-cycle impacts of all products (including packaging 

materials), are just a few examples of the potential actions the private sector may 

embrace to reduce emissions. (Rafique, Bahaidarah, and Anwar 2019; Tonn et al. 

2014; Obama 2017; Hede et al. 2013; Verghese and Lewis 2007; Wear 2010) The 

incentive for choosing less impactful product designs and production processes may 

be increased profitability due to increases in efficiencies or streamlined supply 

chains. However, market realities will likely require that any substantive changes in 

business practices be drive by sector-wide changes in procurement policies that 

prioritize the purchase of low-impact products.   

Government 

Government support is crucial for the development of infrastructure that will 

facilitate actions to reduce the impacts of T2d treatments. To address the notable 

impacts associated with pharmaceutical production, governments should prioritize 

developing public health fund procurement guidelines that reward firms who 

commit to low-impact production processes throughout each phase of their 

product’s lifecycle. As stated above, the production of pharmaceuticals accounts for 

one of the major negative T2d treatment-related impacts. At the same time the 

government spending on healthcare is approximately $82 million USD of healthcare 
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expenditures in the United States and 40% of healthcare expenditures in Sri Lanka.1 

(World Health Organization 2014) Using similar principles and applying a low-impact 

life-cycle analysis as a key criterion in product procurement and regulation, 

governments have significant leverage to influence the products that are introduced 

in their domestic markets. (Ison and Miller 2000; Lingg et al. 2018)   

In addition to procurement and pricing regulations, electricity generation is a key 

area where government action can quickly reduce impacts. Electricity production is 

a major source of T2d treatment emissions for both of Sri Lanka’s modeled 

treatment pathways and for U.S. metformin production and U.S. doctor visits. 

Supporting the decarbonization of electrical grids through incentives and direct 

investments are direct-action governments can take that will immediately eliminate 

a major source of T2d treatment emissions for the private sector and healthcare 

practitioners alike. (Santoyo-Castelazo, Stamford, and Azapagic 2014; Panwar, 

Kaushik, and Kothari 2011; Paramati, Sinha, and Dogan 2017; Yao, Zhang, and Zhang 

2019)   

As identified in the results section, transportation for doctor visits in the U.S. 

treatment scenarios and increased dosages of medications across all the treatment 

scenarios, are significant sources of T2d-related emissions. Government has a role 

to play in reducing these emissions by creating environments that allow for easy 

commuting by walking, biking, or public transit. Governments should adopt zoning 

regulations that prioritize dense, multipurpose developments and prioritize 

transportation infrastructure that supports safe public transportation and active 

transportation (i.e., walking and bicycling).  Walking and biking are healthy 

behaviors that can not only prevent the development of T2d, but also limit the 

health and environmental burdens generated by those who already have the 

disease. Sedentary behavior, such as long periods sitting in a motor vehicle, has 

been strongly linked to increased rates of obesity and insulin resistance, two known 

causes of patients requiring higher dosages of diabetes-related medications. 

(Edwardson et al. 2012; Helmerhorst et al. 2009; González, Fuentes, and Márquez 

2017; Thyfault et al. 2015) A recent review of more than 50 relevant studies 

confirms the positive effects of physical activities, such as walking and biking, on 

increased insulin sensitivity. (Bird and Hawley 2017) Making active transportation a 

feasible alternative to sedentary motor transportation will reduce motor transport 

trips, which generate ~73 kg of CO2 per U.S. doctor visit (US EPA 2015) and will also 

reduce the amount of diabetes medication required by patients.      

6.2 Lessons Learned and Next Steps 
This study is a preliminary iteration of a proposed method for quantifying the 

environmental and human health impacts of chronic disease. Future studies should 

                                                           
1 Government spending on healthcare in the United States and Sri Lanka figures are cited 
from the WHO’s Global Health Expenditure Database data for the Domestic General 
Government Health Expenditure as % Current Health Expenditure. Results were reported in 
current US$ millions.   
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improve upon this method. As a first step, the data used in this assessment is 

heavily sourced from secondary sources, particularly with regards to medication 

production information. Given the suggested importance of pharmaceutical 

production to impacts, future studies should seek to validate these findings by 

engaging directly with pharmaceutical and medical device manufacturers to access 

current primary production data wherever possible.  

Second, while the modeled scenarios attempted to provide a range of plausible 

treatment scenarios for patients managing their T2d under optimal conditions, the 

reality for most diabetic patients is that they do not live within optimal conditions. 

Many patients have at least one co-morbidity, such as heart disease, and the vast 

majority of patients are not 100% compliant with a treatment regimen. Even for 

those who are compliant, the prescribed treatment may not be ideal for the 

individual’s physiology and an ideal health outcome may not be achieved. Future 

studies should attempt to consider treatment pathways in the context of lived, as 

opposed to optimal, patient conditions.  

Finally, the method discussed in this paper presents parameters for measuring 

impacts directly linked to the identified treatment pathways, it is clear that the 

presented method does not fully consolidate all the information required to make a 

decision regarding patient treatments. The method does not presently account for 

the role of quality health outcomes in its assessment of environmental and human 

health impacts. Moral and ethical obligations require that any patient treatment 

decision prioritize an optimal healthcare outcome. Furthermore, there is anecdotal 

evidence that suggests that a failure to prioritize optimal healthcare may result in 

even greater negative environmental and human health impacts. As such, future 

research should establish a uniform definition of the criteria that define an optimal 

healthcare outcome, as well as investigate how to establish alignment between 

studied treatment scenarios, and ideally treatment components, with patient 

outcomes. Such an undertaking will likely require close collaboration between 

medical and life-cycle researchers.  

 Conclusion  
This study provides a model for using process life cycle assessment methodology to 

quantify the environmental and public health impacts of chronic disease 

treatments. Focusing on Type 2 diabetes, the study analyzed a functional unit of the 

climate change, terrestrial acidification, water consumption and public health 

impacts of treating one type 2 diabetes patient for one year. It is assumed that the 

patient has no additional medical complications. The functional unit was applied to 

four treatment scenarios modeling insulin and metformin use in the United States 

and Sri Lanka. The subsequent results highlight that while the impacts of one 

individual over one year are relatively inconsequential, the global epidemic of the 

disease combined with its chronic nature result in substantive environmental and 

public health impacts. In the case of public health impacts, the global impact of 

treating the Type 2 diabetes population over the life of their disease will likely 
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exceed the disability adjusted life years generated by the entire US healthcare 

system.  

The most effective method of reducing emissions associated with Type 2 diabetes is 

a comprehensive cure for the disease that will preclude the need for treatment. As 

the medical community strives towards this objective, patients, healthcare 

providers, the private sector, and governments are positioned to take actions that 

will at the very least reduce the associated impacts with treating Type 2 diabetes. 

Healthcare providers and governments should prioritize healthy lifestyle choices 

and the development of infrastructure that incentivizes active mobility. The private 

sector and governments should focus efforts to develop and source energy from 

carbon-free energy sources such as wind, solar or geo-thermal. Active transport 

among patients should be prioritized, healthcare providers can invest in remote 

technologies that reduce the need for clinic visits, while the private sector should 

critically review supply chains and production processes to assess where more 

localized production is feasible.  

Human health and well-being are directly related to the health and well-being of our 

environments. Chronic disease affects hundreds of millions of people around the 

world. If we are to provide each of these individuals with the care they need to 

effectively manage their conditions it is the responsibility of the healthcare 

community to consider the impacts of these treatments on the environment. This 

study is a step in understanding the environmental costs of our current treatment 

methods so that we may work towards implementing solutions that are good for a 

patient’s health and their environment.   
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 Appendix A:  
 

Table 7: Description of the main characteristics of available tools of environmental analysis. Table sourced from the book Environmental Life Cycle Assessment cited as (Jolliet et 
al. 2015) 
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Table 8: Describes the advantages and disadvantages of process-based LCA, also refered to as Standard LCA and EIO-LCA methods. The table is sourced from the book 
Environmental Life Cycle Assessment, cited as 



56 
 

 Appendix B. Detailed Data Inventory 

11.1 Sri Lanka Standard LCA Inventory 

 Sri Lanka: Insulin Production  

 Insulin Production Inventory 

Component 
Description  

Measurement/
Functional Unit 

Data Source SimaPro Inventory Description 

Energy Input- 
Natural Gas 

18.33 MJ 

(Wernet et al. 2008) 
(Wernet et al. 2009) (Cespi 
et al. 2015), Pubchem 

Combustion of natural gas, 
consumption mix, at plant/NL Energy 

Energy Input – 
Electricity 

13.93 MJ Electricity, medium voltage {IN-
Western grid}| market for electricity, 
medium voltage | APOS, U 

Energy Input- 
Steam 

4.40 MJ Process steam from natural gas, heat 
plant, consumption mix, at plant, MJ 
EU-27 S 

Tryptone 1211 g 

(Hwang et al. 2016; Gusarov 
et al. 2015) 

Unable to find a suitable equivalent in 
SimaPro. Therefore not included in 
model.  

Yeast Extract 605.5 g Protein feed, 100% crude {GLO}| 
fodder yeast to generic market for 
protein feed | APOS, U 

Sodium 
Chloride 

605.5 g Sodium chloride, at plant/RNA 

Dipotassium 
phosphate 

605.5 g Sodium phosphate {RER}| production 
| APOS, U 

Water 249.6 g Water, ultrapure {GLO}| market for | 
APOS, U 

Urea 58.12 g Urea, as N {RER}| production | APOS, 
U 

Tris 1.1 g Unable to find a suitable equivalent in 
SimaPro. Therefore not included in 
model.  

EDTA 0.04 g EDTA, ethylenediaminetetraacetic acid 
{RER}| EDTA production | APOS, U 

Dithiothreitol 
(reductant) 

0.19 g Unable to find a suitable equivalent in 
SimaPro. Therefore not included in 
model.  

NaOH 4.84 g Sodium hydroxide, without water, in 
50% solution state {RER}| chlor-alkali 
electrolysis, diaphragm cell | APOS, U 

Acetic Acid 7.27 g Acetic acid, without water, in 98% 
solution state {RER}| acetic acid 
production, product in 98% solution 
state | APOS, U 

Trypsin 0.44 g Enzymes {RER}| enzymes production | 
APOS, U 
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Hypersil BDS C-
18 (Sorbent) 

868.89 g 
 

Activated silica {GLO}| market for | 
APOS, U 

Citric Acid 0.23 g Citric acid {RER}| production | APOS, 
U 

Zinc 0.002 g Zinc, special high grade/GLO 

Glycerine 2.02 g Glycerine {GLO}| market for | APOS, U 

Metacresol 0.32 g Unable to find a suitable equivalent in 
SimaPro. Therefore not included in 
model.  

Cardboard 
Package 

25.84 g 

Manual Measurement  

Folding boxboard/chipboard {GLO}| 
market for | APOS, U 

Glass Vial 10 ml 73.67 g Glass tube, borosilicate {GLO}| market 
for | APOS, U 

Aluminum Top 1.75 g Aluminum ingot, production mix, at 
plant/US 

Rubber 
Stopper on Top 

2.14 g Seal, natural rubber based {DE}| 
production | APOS, U 

Plastic Stopper 0.71 g PET, bottle grade, at plant/RER 

Paper Insert 13.0 g Graphic paper, 100% recycled {RER}| 
production | APOS, U 

Refrigerated 
Lorry from 
Indrad, Gujarat 
to Kandla Port 

0.08 tkm 

(Ganguly 2017; BioPharm 
International Editors 2017), 
Google Maps 

Transport, freight, lorry with 
refrigeration machine, 3.5-7.5 ton, 
EURO3, R134a refrigerant, cooling 
{GLO}| transport, freight, lorry with 
refrigeration machine, 3.5-7.5 ton, 
EURO3, R134a refrigerant, cooling | 
APOS, U 

Refrigerated 
Shipping 
Container from 
Kandla Port to 
Colombo Port 

0.66 tkm 

Ports.com 

Transport, freight, sea, transoceanic 
ship with reefer, cooling {GLO}| 
market for | APOS, U 

Waste-Landfill 0.32 g 
Manual Measurement 

Inert waste, for final disposal {RoW}| 
market for inert waste, for final 
disposal | APOS, U 

 Insulin Production Assumptions 

- Functional Unit: 365 days/1 Type 2 diabetes patient with no medical complications. 

- The mass and amount of insulin used in this study was derived from first the Sri Lankan 

government’s Ministry of Health 2018 Medical Procurement list. This list provided the type and 

size of insulin sought by the government. For this study it is assumed that the Ministry of Health 

is providing patients with a form of Isophane Human Insulin (Sri Lankan Ministry of Health 

2018).  As this is a human insulin it is manufactured from recombinant DNA (Riggs 1981) and it is 

therefore assumed that the production process is largely the same as that for insulin glargine. As 

such the process listed below is that which is assumed to be used in the production of insulin 

glargine. 
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- The notable differences between the production of insulin used in Sri Lanka versus that which is 

used in the United States are containers in which they are stored and the locations where they 

are manufactured. The insulin procured by the Sri Lankan government is primarily stored in 10 

mL glass vials (Sri Lankan Ministry of Health 2018). 

- It is assumed that the insulin used in Sri Lanka is primarily being manufactured in India. Many 

large insulin producers have partnered with local Indian firms to expand insulin production 

(Wirtz et al. 2016). Novo Nordisk, the manufacturer of the low-cost Novolin R insulin has a 

partnership with the Indian pharmaceutical firm, Torrent Pharmaceuticals, to manufacture the 

medication at their Gujarat facility (BioPharm International Editors 2017; Ganguly 2017). This 

study assumes that the insulin used in the Sri Lankan models is being transported from Gujarat 

to Colombo, Sri Lanka on a combination of refrigerated lorries and shipping containers. The 

decision to model the transportation from the port of Kandla was based on an assessment that 

this port is the largest in the region for international shipping (“Ports in Gujarat” n.d.). A Google 

Map search yielded a distance of 295.7 km from the city of Indrad to the port of Kandla. The 

distance between the Kandla port and the Port of Colombo is assumed to be 1395 nautical miles 

as estimated by the website ports.com.  

- The daily dosage is assumed to be 34.62 units of insulin. This dosage is based on the dosing 

recommendations of 0.4-1.0 units/kg or more for patients with Type 2 diabetes by the 

Endocrine Society of Sri Lanka (Somasundaram et al. 2013). This study assumes a mid-range 

value of 0.6 units/kg.  

- Per the insulin container label, a vial of 10 mL of insulin contains 100 units/mL for a total of 1000 

units of insulin.  

- Manual measurements indicated a mass of 24.584 g/vial  

- To calculate the energy used in the manufacturing process of the insulin a total energy estimate 

was derived using the FineChem tool. Designed by the Safety and Environmental Technology 

Group within ETH Zurich the FineChem tool uses the molecular structure of a compound to 

estimate the energy needs and environmental impacts of that molecule’s production. While the 

tool was originally designed for the petrochemical industry, it serves to provide a rough estimate 

of energy use in the absence of process data. A full description of the workings of the tool are 

available on the Fine Chem website and on the tools associated published papers (Wernet et al. 

2008; 2009; Safety and Environmental Technology Group 2018). All molecular data used in the 

calculations were sourced from PubChem. The FineChem tool estimated the total energy use to 

produce insulin glargine at 758.6 MJ/kg. The breakdown of the types of energy used in this total 

was established using the work by Cespi, et al (Cespi et al. 2015). This study indicated an energy 

breakdown in pharmaceutical production of 50% natural gas, 38% electricity and 12% steam. 

These proportions were used in the study’s calculations.  

- In the absence of direct process data of the insulin glargine and/or insulin isophane production 

process, this study recreated the production process using the process data published by 

Gusarov, et al. in their paper, Systematic Approach to Production Technology Development for 

Therapeutic Proteins (Using Insulin-Glargine As An Example), and Hwang, et al.’s published 

paper, Recombinant Glargine Insulin Production Process Using Escherichia coli. 
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- Waste disposal modeling is based off of the assumption that the packaging used to transport the 

insulin is disposed of in landfill. Without published data indicating waste by-products from the 

insulin production process, this scenario does not account for waste generated during the 

production process. This assumption is based on observed disposal methods used by Type 2 

diabetes patients in Sri Lanka.  

 Insulin Use 

 Insulin Use Inventory 

 Component 
Description  

Measurement/Functional 
Unit 

Data Source SimaPro Inventory Description 

Syringe 992.8 g Manual 
Measurement 

Polypropylene granulate (PP), 
production mix, at plant RER; 
Injection molding, rigid 
polypropylene part, at 
plant/kg/RNA 

Needle  1.095 g Manual 
Measurement 

Steel, stainless 304, flat rolled 
coil/kg/RNA; 
Wire drawing, steel {RER}| 
processing | APOS, U 

Lorry 0.38 tkm 

Google Maps 

Transport, light commercial truck, 
gasoline powered/tkm/RNA 

Sea Shipping 1.65 tkm Transport, freight, sea, 
transoceanic ship {GLO}| market 
for | APOS, U 

Waste-Landfill 993.86 g Manual 
Measurement 

Inert waste, for final disposal 
{RoW}| market for inert waste, for 
final disposal | APOS, U 

 Insulin Use Assumptions 

- Functional Unit: 365 days/1 Type 2 diabetes patient with no medical complications. 

- Assumes one injection a day 

- Assumes the syringe and needle are one, single-use unit. 

- 1 ml is assumed to be the standard size of a syringe used to inject insulin based on feedback 

from general searches for insulin injection syringes.  

- Assumed production in Aurangabad, Maharashtra, India. This assumption was based on an 

article by India’s Business Today (Kaushik et al. 2008) which lists Mumbai as a growing hub for 

pharmaceutical production. As such, it was assumed there would be a growing market for 

ancillary pharmaceutical products, such as syringes, developing in this market as well.   

- Sea shipping is inclusive of a one-way trip from the port of Mumbai (Jawaharlal Nehru Port) to 

the Colombo Port.  

- Ground transportation is inclusive of a one-way trip from Aurangabad, Maharashtra to the port 

of Mumbai.  
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- Waste disposal modeling is based off of the assumption that households are disposing of their 

needles and syringes in a community landfill. Observations of Type 2 diabetes patients in Sri 

Lanka indicated that disposal of diabetes supplies along with standard municipal solid waste is a 

common practice, as is on-site incineration, with many families incinerating their medical waste 

along with household waste. For the purposes of this study it was decided to model an inert 

landfill option. It is worth considering that incineration disposal is also a common method.  

  

 Sri Lanka: Metformin Production 

 Metformin Production Inventory 

Component 
Description 

Measurement/ 
Functional Unit 

Data Source 
SimaPro Inventory 

Description 

Natural Gas 22.6332394 MJ-
eq/mg 

(Wernet et al. 2008) 
(Wernet et al. 2009), (Safety 
and Environmental 
Technology Group 2018), 
(Cespi et al. 2015) 

Natural gas, low pressure 
{RoW}| market for | APOS, U 

Electricity 17.2012619 MJ-
eq/mg 

Electricity, low voltage {IN-
Southern grid}| market for 
electricity, low voltage | 
APOS, U 

Steam 5.43197745 MJ-
eq/mg 

Heat, from steam, in chemical 
industry {RoW}| market for 
heat, from steam, in chemical 
industry | APOS, U 

Dicyandiamide 407431.3 mg 

(Rohokale, Jadhav, and 
Kadam 2010)  

Dimethylacetamide {GLO}| 
market for | APOS, U 

Dimethylamine 
Hydrochloride 

488917.5 mg 
 

Dimethylamine {GLO}| market 
for | APOS, U 

Cyclohexanol 162972.5 mg Cyclohexanol {GLO}| market 
for | APOS, U 

Ethanol 206294.3 mg Ethanol, without water, in 
95% solution state, from 
fermentation {BR}| cane sugar 
production with ethanol by-
product | APOS, U 

Package 304.2 g 

Manual measurement  

Polyethylene, HDPE, 
granulate, at plant/RER; 
Injection molding, rigid 
polypropylene part, at 
plant/kg/RNA 

Lorry 2.19298E-08 tkm 

Google Maps 

Transport, freight, light 
commercial vehicle {GLO}| 
market for | APOS, U 

Sea Shipping 5.01633E-09 tkm Transport, freight, sea, 
transoceanic ship {GLO}| 
market for | APOS, U 

 Metformin Production Assumptions 

- Functional Unit: 365 days/1 Type 2 diabetes patient with no medical complications. 
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- Sri Lankan T2D patients are assumed to use 1500 mg of Metformin daily. This is based upon 

dosing recommendations provided by the Sri Lankan Endocrine Society’s Clinical Guidelines 

(Somasundaram et al. 2013). This document provides a range of dosing recommendations. The 

higher end of the range is selected based on feedback from Sri Lankan physicians and patients 

who stated that they patients generally prefer higher doses of oral medication as opposed to 

insulin treatments or in many cases, lifestyle adjustments. This preference generally results in 

patients requiring very high doses of medication.  

- It should be noted that both interviews and published literature have established a precedent 

that patients often find it difficult to take their oral medication daily (Cramer 2004). However, 

given that daily medication use is often a prerequisite to treating diabetes without 

complications, this study assumes adherence to a daily dosage schedule.  

- The production process modeled in this study is based on the process outlined in Rohokale, 

Jadhav et Kadam’s 2010 paper on metformin process development (Rohokale, Jadhav, and 

Kadam 2010). It is acknowledged that there are a variety of production methods to produce 

pharmaceutical quality metformin hydrochloride and that the type of production process may 

influence scenario outcomes.  

- Assumed production in Aurangabad, Maharashtra, India. This assumption was based on an 

article by India’s Business Today (Kaushik et al. 2008) which lists Mumbai as a growing hub for 

pharmaceutical production.  

- Sea shipping is inclusive of a one-way trip from the port of Mumbai (Jawaharlal Nehru Port) to 

the Colombo Port.  

- Ground transportation is inclusive of a one-way trip from Aurangabad, Maharashtra to the port 

of Mumbai.  

- To calculate the energy used in the manufacturing process of the metformin a total energy 

estimate was derived using the FineChem tool. Designed by the Safety and Environmental 

Technology Group within ETH Zurich the FineChem tool uses the molecular structure of a 

compound to estimate the energy needs and environmental impacts of that molecule’s 

production. While the tool was originally designed for the petrochemical industry, it serves to 

provide a rough estimate of energy use in the absence of process data. A full description of the 

workings of the tool are available on the Fine Chem website and on the tools associated 

published papers (Wernet et al. 2008; 2009; Safety and Environmental Technology Group 2018). 

All molecular data used in the calculations were sourced from PubChem. The FineChem tool 

estimated the total energy use to produce metformin at 145 MJ/kg. The breakdown of the types 

of energy used in this total was established using the work by Cespi, et al (Cespi et al. 2015). This 

study indicated an energy breakdown in pharmaceutical production of 50% natural gas, 38% 

electricity and 12% steam. These proportions were used in the study’s calculations.  

- Where possible, energy production values for India were selected in the SimaPro program.  

- In the absence of published data on waste disposal methods during the metformin production 

process a waste process was not specifically modeled.  
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 Sri Lanka: Doctor Visit 

 Doctor Visit Inventory 

Component 
Description 

Measurement/ 
Functional Unit 

Data Source SimaPro Inventory Description 

Rubber Gloves 
(Set of 2) 

120 g 
Manual 
Measurement 

Acrylonitrile butadiene styrene 
(ABS)/EU-27; Thermoforming, with 
calendering {RER}| production | 
APOS, U 

Additive k2EDTA .028 g (Fischer Scientific 
2018)  

EDTA, ethylenediaminetetraacetic 
acid {GLO}| market for | APOS, U 

Plastic Container 
for Reagent Disk 

68.81 g (Abaxix, Inc. 2014) Polyethylene, HDPE, granulate, at 
plant/RER; Blow moulding {GLO}| 
market for | APOS, U 

Needle for Blood 
Draw 

.03 g Manual 
Measurement 

Steel, stainless 304, flat rolled 
coil/kg/RNA; Wire drawing, steel 
{RoW}| processing | APOS, U 

Plastic Tube for 
Blood Draw 

13.6 g (VPET Plastico  
Industrial Co., Ltd. 
2018) 

Polyethylene terephthalate (PET) 
granulate, production mix, at plant, 
bottle grade RER; Extrusion of 
plastic sheets and thermoforming, 
inline {GLO}| market for | APOS, U 

Electricity for 
Blood Sugar Test 

0.033 kWh Referenced from US 
Army Medical 
Material Agency 

Electricity, low voltage {RoW}| 
market for | APOS, U 

Transportation 
to the Clinic 

5.76 person/km (Govindaraj et al. 
2014) 

Transport, intercity bus, diesel 
powered/personkm/RNA 

Waste-
Incineration 

30.6 g (Athapattu, 
Priyantha, and 
Tateda 2015) 

Municipal solid waste {RoW}| 
market for | APOS, S 
(Incineration) 

 Doctor Visit Assumptions 

- Functional Unit: 365 days/1 Type 2 diabetes patient with no medical complications. 

- Assumes 12 clinic visits a year or one every month. The frequency of visits is required based on 

the requirement in Sri Lanka that if a patient receives free diabetes medication from the 

government (a previous assumption of this study), that the patient must have that prescription 

renewed each month.  

- The inventory list used in this model is based on personal observations of three government-

sponsored diabetes clinics located in the country’s Eastern Province. Two of the clinics were 

located in the Trincomalee Regional Hospital, while a third clinic was located in a small local 

health care facility outside of Trincomalee.   

- Observations indicated that the amount of electricity used during the exam period was quite 

negliable. The hospital/clinic settings were designed to be passively cooled with no central air 

systems and windows provided natural sunlight in place of electricity. While doctors did use 

computers to re-order prescriptions for patients, it was not possible to obtain electric records to 
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verify the energy use of these machines. As physicians may see between 50 and 70 patients a 

day, the energy intensity of the computer use per patient was deemed to be small enough that 

it was emitted from this model.  

- The observed clinics did not have resources to do on-site blood glucose testing. Interviews with 

doctors indicated that most public diabetes clinics do not have this capability. Diabetic patients 

are instructed to receive a lab blood test with blood glucose as an output of the test. The 

printed results are then taken by the patient to the appointment and reviewed prior to the 

reauthorization of any prescriptions. These tests are modeled above. 

- Published studies on medical waste disposal in Sri Lankan healthcare facilities notes the 

prevalence of various incineration practices as a primary means of waste disposal. As the 

incineration of medical waste specifically is not modeled any of the associated SimaPro 

databases, a general incineration model was applied to simulate the disposal of contaminated 

waste generated in the course of a doctor visit.  

11.2 United States Standard LCA Inventory 

 United States: Glucose Meter 

 Glucose Meter Inventory 

Component 
Description 

Measurement/Functional 
Unit 

Data Source SimaPro Inventory Description 

Circuit 1.32056 g 

Manual 
Measurement   

Integrated circuit, memory type 
{GLO}| market for | Alloc Def, U 

Screen 0.71966 g Panel glass, for cathode ray tube 
display {GLO}| market for | 
APOS, U 

Outer Case 2.35792 g Injection molding, rigid 
polypropylene part, at 
plant/kg/RNA 

Circuit (Under 
Buttons) 

0.2314 g 
 

Integrated circuit, logic type 
{GLO}| market for | APOS, U 

Metal Clip 0.06952 g Brass {CH}| market for brass | 
APOS, U;  
Casting, brass {CH}| processing | 
APOS, U 

Small Metal Clip 0.04332 g Brass {CH}| market for brass | 
APOS, U; 
Casting, brass {CH}| processing | 
APOS, U 

Plastic Cover 0.03402 g Injection molding, rigid 
polypropylene part, at 
plant/kg/RNA 

Battery- Oral 
meds 

2.22478 g 

(Abbott 2016) 

Battery cell, Li-ion {GLO}| market 
for | APOS, U 

Battery- Insulin 6.67424 g Battery cell, Li-ion {GLO}| market 
for | APOS, U 



64 
 

Packaging 7.4 g 

Manual 
Measurement  

Carton board box production, 
with offset printing {RoW}| 
carton board box production 
service, with offset printing | 
APOS, U 

Paper Insert 21.2 g Graphic paper, 100% recycled 
{GLO}| market for | APOS, U 

Carrying Bag 5.8 g Textile, woven cotton {GLO}| 
production | APOS, U 

Ship 
Transportation 

0.42919 tkm 

Google Maps  
 

Transport, freight, sea, 
transoceanic ship {GLO}| market 
for | APOS, U 

Truck 
Transportation  

0.1472562 tkm Transport, combination truck, 
diesel powered/US 

Waste- Landfill 6.17 g Manual 
Measurement 

Inert waste, for final disposal 
{RoW}| market for inert waste, 
for final disposal | APOS, U 

 Glucose Meter Assumptions 

- Functional Unit: 365 days/1 Type 2 diabetes patient with no medical complications. 

- The glucose meter modeled in this study is a Freestyle Lite meter manufactured by Abbott. The 

Freestyle Lite meter was modeled given the relative ubiquity among glucose meter design and 

functioning, and the author’s ability to access a number of devices for deconstruction.  

- Based on the information provided in the user manual it was assumed that the meter has a use 

life of five years or 1825 days.  

- Two different battery scenarios were used. Both were based on published Medicare guidelines. 

Medicare guidelines are considered to be the standard of care in the United States for the 

purposes of this study. Medicare coverage allows for 100 test strips every 90 days for someone 

on oral medication (Centers for Medicare and Medicaid Services 2017a). This equates to 

approximately one test every day with some additional strips left over for contingencies. For 

patients on insulin treatments Medicare allows for 300 test strips every 90 days which equates 

to approximately three tests every day with some additional strips left over for contingencies 

(Centers for Medicare and Medicaid Services 2017a).  

- An estimated battery life of 500 tests based on information provided in the user manual (Abbott 

2016).  

- The Freestyle Lite packaging indicates that the device is manufactured in China. However, it 

does not specify where in China. Without a specific location this study assumes production is 

located in the Shenzhen province and then shipped to Long Beach port in California. From there 

it is trucked to Ann Arbor, Michigan.  

- This study assumed that patients dispose of their glucose meter as an electronic device. The 

United States Environmental Protection Agency reports that Americans recycle approximately 

40% of selected consumer electronics (U.S. Environmental Protection Agency 2018). As this is 

less than half of all produced electronics it was assumed for this study that glucose meters 
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would be included with standard municipal solid waste landfill disposal in the majority of 

households.   

 United States: Test Strips 

 Test Strip Inventory 

Component 
Description 

Measurement/ 
Functional Unit 

(Insulin) 

Measurement/ 
Functional Unit 

(Oral Meds) 
Data Source 

SimaPro Inventory 
Description 

Base A 66.2475 g 22.0825 g 

Manual 
Measurement; 
(Abbott Diabetes Care 
Inc. 2015) 

Polyester resin, unsaturated 
{GLO}| market for | APOS, 
U;  
Injection moulding {RER}| 
processing | APOS, U 

Base B 67.5615 g 22.5205 g Polyester resin, unsaturated 
{GLO}| market for | APOS, 
U;  
Injection moulding {RER}| 
processing | APOS, U 

Glucose 
Oxidase 
Enzyme 

0.0219 g 0.0073 g 

(Fernandes et al. 
2016) 

Enzyme, Glucoamylase, 
Novozyme 
Spirizyme/kg/RER 

Co-Enzyme 
Flavine 
Adenine 
Dinucleotide 

0.0219 g 0.0073 g Enzyme, Alpha-amylase, 
Novozyme 
Liquozyme/kg/RER 

Mediator-
Ferricyanide 

0.0219 g 0.0073 g (Loew et al. 2017) Sodium cyanide {GLO}| 
market for | APOS, U 

Indicator-
Silver 

0.0219 g 0.0073 g 
(Fernandes et al. 
2016) 

Silver {GLO}| market for | 
APOS, U 

Indicator-
Carbon 

0.0219 g 0.0073 g Carbon black {GLO}| market 
for | APOS, U 

Plastic Tube 
Package 

2.409 g 0.803 g 

Manual Measurement  

Polyethylene, high density, 
granulate {CH}| 
polyethylene, high density, 
granulate, recycled to 
generic market for high 
density PE granulate | 
APOS, U; 
Injection moulding {GLO}| 
market for | APOS, U 

Cardboard 
Package 

1.2180 g 0.406 g Folding boxboard/chipboard 
{GLO}| market for | APOS, 
U 

Transportation 
Ship 

2.7319E-10 tkm 9.1064E-11 tkm 
Google Maps 

Transport, freight, sea, 
transoceanic ship {GLO}| 
market for | APOS, U 
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Transportation 
Truck 

1.3662E-09 tkm 4.5541-10 tkm Transport, combination 
truck, long-haul, diesel 
powered, East North 
Central/tkm/RNA 

Waste-Landfill  133.92 g 
 

44.64 g 
 

Manual Measurement Inert waste, for final 
disposal {RoW}| market for 
inert waste, for final 
disposal | Cut-off, U 

 Test Strips Assumptions 

- Functional Unit: 365 days/1 Type 2 diabetes patient with no medical complications. 

- The test strips used in this study are the Abbott Freestyle Lite test strips made for use with the 

Freestyle Lite glucose meter.  

- The number of test strips modeled required two different scenarios to account for a difference 

in allowed allocation by Medicare based on whether or not a patient is managing their diabetes 

with oral medication or insulin. Medicare guidelines are considered to be the standard of care in 

the United States for the purposes of this study. Medicare coverage allows for 100 test strips 

every 90 days for someone on oral medication (Centers for Medicare and Medicaid Services 

2017a). This equates to approximately one test every day with some additional strips left over 

for contingencies. For patients on insulin treatments Medicare allows for 300 test strips every 

90 days which equates to approximately three tests every day with some additional strips left 

over for contingencies (Centers for Medicare and Medicaid Services 2017a).  

- The composition of the test strips base layer is assumed to be polyester as described in a 

published white paper by the strip’s manufacturer, Abbott Diabetes Care Inc (Abbott Diabetes 

Care Inc. 2015).  

- This model assumes the electrode materials of this test strip are comprised of silver and carbon 

(Abbott Diabetes Care Inc. 2015).  

- Regarding the additional enzymes and reactant materials used in the test strip, it was not 

feasible to conduct an analysis to determine the exact amount of each material used in the 

adhesive and electrodes of the test strip. Given that the combined mass of these materials is so 

small (>.001 g) an approximate mass was estimated by dividing the balance of the test strip 

mass (after subtracting the known elements) among the five additional inputs. 

- In most cases it was not possible to find an exact equivalent for the enzyme and mediator 

materials used in test strip production. In these cases, an effort was made to select like 

materials that share similarities in production processes.  

- As published on the Abbott website, the company produces its Freestyle Lite test strips at its 

Donegal facility in Ireland (Abbott Ireland Diabetes Care 2019).  

- The waste treatment scenario included in this model assumes that patients are disposing of 

their glucose test strips as medical waste. Interviewed medical professionals all recommend 

disposing of used test strips in a sealed medical waste container. These containers are then 

disposed of with standard municipal solid waste. This practice aligns with several dozen 



67 
 

reviewed online diabetes community discussion boards where patients documented their 

methods for disposing of diabetes-related waste.   

 United States: Lancet 

 Lancet Inventory 

Component 
Description 

Measurement/ 
Functional Unit 

(Insulin) 

Measurement/ 
Functional 

Unit (Orals) 
Data Source SimaPro Inventory Description 

Needle 249.66 g 83.22 g 

Manual 
Measurement 

Steel, stainless 304, flat rolled 
coil/kg/RNA; Deep drawing, steel, 
10000 kN press, automode {GLO}| 
market for | APOS, U 

Plastic Casing 517.856 g 172.61 g Packaging film, low density 
polyethylene {GLO}| market for | 
Conseq, S; Injection moulding 
{GLO}| market for | Conseq, U 

Packaging 186.15 g 62.05 g Folding boxboard/chipboard 
{GLO}| market for | APOS, U 

Truck 
Transportation 

8.2694E-06 
tkm 

2.7564E-06 
tkm 

Google Maps Transport, combination truck, 
diesel powered/US 

Waste- 
Landfill 

767.4855 g 
 

255.8285 g 
 

Manual 
Measurement 

Inert waste, for final disposal 
{RoW}| market for inert waste, for 
final disposal | Cut-off, U 

 Lancet Assumptions 

- Functional Unit: 365 days/1 Type 2 diabetes patient with no medical complications. 

- The use phase for the lancets occurs in Ann Arbor, Michigan, transportation via truck from the 

production facility is assumed.  

- The company Facet Medical Technologies in Atlanta, Georgia is a producer of lancets. It is 

assumed their production facility in Georgia is where the lancets used in this study are 

manufactured.  

- The number of lancets modeled required two different scenarios to account for a difference in 

allowed allocation by Medicare based on whether or not a patient is managing their diabetes 

with oral medication or insulin. Medicare guidelines are considered to be the standard of care in 

the United States for the purposes of this study. Medicare coverage allows for 100 lancets every 

90 days for someone on oral medication (Centers for Medicare and Medicaid Services 2017a). 

This equates to approximately one lancet for one glucose test every day with some additional 

lancets left over for contingencies. For patients on insulin treatments Medicare allows for 300 

lancets every 90 days which equates to approximately three lancets for three blood glucose 

tests every day with some additional lancets left over for contingencies (Centers for Medicare 

and Medicaid Services 2017a).  

- Assumes one lancet for every blood glucose test. 

- The waste treatment scenario included in this model assumes that patients are disposing of 

their used lancets as medical waste. Interviewed medical professionals all recommend disposing 
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of used lancets as one would a used needle, in a sealed medical waste container. These 

containers are then disposed of with standard municipal solid waste. This practice aligns with 

several dozen reviewed online diabetes community discussion boards where patients 

documented their methods for disposing of diabetes-related waste.   

 United States: Lancing Device 

 Lancing Device Inventory 

Component 
Description 

Measurement/ 
Functional Unit  

Data Source SimaPro Inventory Description 

Wheel 0.30945 g 

Manual 
Measurement 

Polyethylene, high density, resin, at 
plant, CTR/kg/RNA; Injection moulding 
{RER}| processing | APOS, U 

Outer Part- Back 1.3296 g Injection moulding {RER}| processing | 
APOS, U; Polyethylene, high density, 
resin, at plant, CTR/kg/RNA 

Outer Part- Front 1.3025 g Polyethylene, high density, resin, at 
plant, CTR/kg/RNA; Injection moulding 
{RER}| processing | Conseq, U 

Protective Cover 0.9011 g Injection moulding {RER}| processing | 
Conseq, U; Polyethylene, high density, 
resin, at plant, CTR/kg/RNA 

Thumb Part- 
Female 

0.45015 g Polyethylene, high density, resin, at 
plant, CTR/kg/RNA; Injection moulding 
{RER}| processing | APOS, U 

Thumb Part- 
Male 

0.50195 g Injection moulding {RER}| processing | 
APOS, U; Polyethylene, high density, 
resin, at plant, CTR/kg/RNA 

Spring Container 0.75785 g Polyethylene, high density, resin, at 
plant, CTR/kg/RNA; Injection moulding 
{RER}| processing | APOS, U 

Small Spring 0.1041 g Steel, stainless 304, flat rolled 
coil/kg/RNA; Wire drawing, steel {RoW}| 
processing | APOS, U 

Big Spring 0.0462 g Wire drawing, steel {RoW}| processing | 
APOS, U; Steel, stainless 304, flat rolled 
coil/kg/RNA 

Cardboard 
Package 

10 g Folding boxboard/chipboard {GLO}| 
market for | APOS, U 

Paper Insert 3 g Paper, freesheet, coated, average 
production, at mill/kg/RNA 

Truck 
Transportation 
(Oxford to 
Tilbury Port) 

9.92655E-10 tkm 
 

Google Maps 

Transport, freight, sea, transoceanic ship 
{GLO}| market for | APOS, U 

Ship 
Transportation 
(Tilbury Port to 

2.78162E-11 tkm 
 

Transport, freight, lorry 16-32 metric ton, 
EURO3 {GLO}| market for | APOS, U 
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NY Container 
Port) 

Truck 
Transportation 
(NY Container 
Port to Ann 
Arbor) 

1.56856E-10 tkm 
 

Transport, combination truck, diesel 
powered/US 

Waste-Landfill 5.7 g Manual 
Measurement 

Inert waste, for final disposal {RoW}| 
market for inert waste, for final disposal | 
Cut-off, U 

 Lancing Device Assumptions 

- Functional Unit: 365 days/1 Type 2 diabetes patient with no medical complications. 

- As per the specifications in the User Manual, this study assumes a use life of two years or 730 

days. All calculations to derive the amount of material attributed to a single day are made based 

on this assumption (Abbott 2016).  

- Per standard use conventions in the United States, it is assumed that the lancing device is used 

by only one individual.  

- To determine the components and materials used in the construction of the device the lancing 

device was manually taken apart and measured.  

- There are many different types of lancing devices available to consumers. A popular model is 

produced by Own Mumford in Oxfordshire, UK and this production facility is used to calculate 

distance traveled in this mode (Owen Mumford 2017).  

- It is assumed the use phase takes place in Ann Arbor, Michigan and that the product will be 

shipped from the closes largest port, the Tilbury Port and will arrive at the closest largest port in 

the U.S., the NY Container Port. From the container port it is assumed the produce is taken via 

truck to Ann Arbor, Michigan.  

- The waste scenario for the lancing device assumes that the used device is not considered 

biohazardous or medical waste and that it is disposed of along with standard municipal solid 

waste.  

 United States: Insulin Production  

 Insulin Production Inventory 

Component 
Description  

Measurement/
Functional Unit 

Data Source SimaPro Inventory Description 

Energy Input- Natural 
Gas 

52.94 MJ 
(Wernet et al. 2008), (Wernet 
et al. 2009), (Safety and 
Environmental Technology 
Group 2018), (Cespi et al. 
2015), PubChem 

Combustion of natural gas, 
consumption mix, at plant/NL 
Energy 

Energy Input – 
Electricity 

40.23 MJ Electricity, medium voltage {IN-
Western grid} | market for 
electricity, medium voltage | 
APOS, U 



70 
 

Energy Input- Steam 12.71 MJ Process steam from natural 
gas, heat plant, consumption 
mix, at plant, MJ EU-27 S 

Tryptone 1211 g 

(Gusarov et al. 2015; Hwang 
et al. 2016)  

Unable to find a suitable 
equivalent in SimaPro. 
therefore, not included in 
model.  

Yeast Extract 605.5 g Protein feed, 100% crude 
{GLO}| fodder yeast to generic 
market for protein feed | 
APOS, U 

Sodium Chloride 605.5 g Sodium chloride, at plant/RNA 

Dipotassium 
phosphate 

605.5 g Sodium phosphate {RER}| 
production | APOS, U 

Water 249.6 g Water, ultrapure {GLO}| 
market for | APOS, U 

Urea 58.12 g Urea, as N {RER}| production | 
APOS, U 

Tris 1.1 g Unable to find a suitable 
equivalent in SimaPro. 
Therefore, not included in 
model.  

EDTA 0.04 g EDTA, 
ethylenediaminetetraacetic 
acid {RER}| EDTA production | 
APOS, U 

Dithiothreitol 
(reductant) 

0.19 g Unable to find a suitable 
equivalent in SimaPro. 
Therefore, not included in 
model.  

NaOH 4.84 g Sodium hydroxide, without 
water, in 50% solution state 
{RER}| chlor-alkali electrolysis, 
diaphragm cell | APOS, U 

Acetic Acid 7.27 g Acetic acid, without water, in 
98% solution state {RER}| 
acetic acid production, product 
in 98% solution state | APOS, U 

Trypsin 0.44 g Enzymes {RER}| enzymes 
production | APOS, U 

Hypersil BDS C-18 
(Sorbent) 

0.42 g 
 

Activated silica {GLO}| market 
for | APOS, U 

Citric Acid 0.23 g Citric acid {RER}| production | 
APOS, U 

Zinc 0.002 g Zinc, special high grade/GLO 

Glycerine 2.02 g Glycerine {GLO}| market for | 
APOS, U 
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Metacresol 0.32 g 
(Gusarov et al. 2015; Hwang 
et al. 2016) 

Unable to find a suitable 
equivalent in SimaPro. 
Therefore, not included in 
model.  

Cardboard Package 25.84 g 

Manual Measurement 

Folding boxboard/chipboard 
{GLO}| market for | APOS, U 

Glass Vial 10 ml 73.67 g Glass tube, borosilicate {GLO}| 
market for | APOS, U 

Aluminum Top 1.75 g Aluminum ingot, production 
mix, at plant/US 

Rubber Stopper on 
Top 

2.14 g Seal, natural rubber based 
{DE}| production | APOS, U 

Plastic Stopper 0.71 g PET, bottle grade, at plant/RER 

Paper Insert 13.0 g Graphic paper, 100% recycled 
{RER}| production | APOS, U 

Refrigerated truck 
from Frankfort to 
Port of Rotterdam 

0.0173375 tkm 
 

(Industriepark Höchst 2018), 
Google Maps 

Transport, freight, lorry with 
refrigeration machine, 3.5-7.5 
ton, EURO3, carbon dioxide, 
liquid refrigerant, cooling 
{GLO}| market for transport, 
freight, lorry with refrigeration 
machine, 3.5-7.5 ton, EURO3, 
carbon dioxide, liquid 
refri(...)_1 | APOS, U 

Refrigerated Shipping 
Container from 
Rotterdam Port to 
New York Container 
Port 

0.212795 tkm 
 

Google Maps 

Transport, freight, sea, 
transoceanic ship with reefer, 
cooling {GLO}| market for | 
APOS, U 

Refrigerated truck 
from New York 
Container Port 

0.036208 tkm 
 

Transport, freight, lorry with 
refrigeration machine, 3.5-7.5 
ton, EURO3, carbon dioxide, 
liquid refrigerant, cooling 
{GLO}| market for transport, 
freight, lorry with refrigeration 
machine, 3.5-7.5 ton, EURO3, 
carbon dioxide, liquid 
refri(...)_1 | APOS, U 

Waste-Landfill 367.43 g 
Manual Measurement  

Inert waste, for final disposal 
{RoW}| market for inert waste, 
for final disposal | Cut-off, U 

 Insulin Production Assumptions 

- Functional Unit: 365 days/1 Type 2 diabetes patient with no medical complications. 

Sanofi’s Lantus Insulin Glargine is modeled in this study. This particular type of insulin was selected 
based on its status as the best-selling insulin brand (Pharmaceutical Technology 2016). As a 
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long-lasting insulin this is ideal for type 2 diabetic patients who often need a supportive basil 
dosage to supplement residual biological insulin production.  

- The notable differences between the production of insulin used in Sri Lanka versus that which is 

used in the United States are containers in which they are stored and the locations where they 

are manufactured. The insulin used in the United States is assumed to come in an injection pen. 

This plastic container resembles a marker and stores the insulin in a glass vial enclosed in a 

plastic casing. It is designed to be transportable and does not need to be refrigerated for up to 

20 days after removing from refrigerated storage (Sanofi-Aventis 2019).  

- Sanofi’s largest insulin production facility is located in Frankfurt, Germany (Berton 2013). The 

model assumes production at this location and transportation via refrigerated container to the 

Rotterdam port, where it is then shipped to the New York Container Port. From the New York 

Container Port it is taken by refrigerated container to Ann Arbor, Michigan, the site of the 

assumed use phase. All distances are calculated using Google Maps.  

- Per the insulin container label, a single insulin pen contains 3.6378 mg of insulin which is equal 

to 100 insulin units.  

- A base dosage of 10 u/day is assumed based on dosing recommendations from the 

manufacturer(Sanofi-Aventis 2017).  

- To calculate the energy used in the manufacturing process of the insulin a total energy estimate 

was derived using the FineChem tool. Designed by the Safety and Environmental Technology 

Group within ETH Zurich the FineChem tool uses the molecular structure of a compound to 

estimate the energy needs and environmental impacts of that molecule’s production. While the 

tool was originally designed for the petrochemical industry, it serves to provide a rough estimate 

of energy use in the absence of process data. A full description of the workings of the tool are 

available on the Fine Chem website and on the tools associated published papers (Wernet et al. 

2008; 2009; Safety and Environmental Technology Group 2018). All molecular data used in the 

calculations were sourced from PubChem. The FineChem tool estimated the total energy use to 

produce insulin glargine at 758.6 MJ/kg. The breakdown of the types of energy used in this total 

was established using the work by Cespi, et al (Cespi et al. 2015). This study indicated an energy 

breakdown in pharmaceutical production of 50% natural gas, 38% electricity and 12% steam. 

These proportions were used in the study’s calculations.  

- In the absence of direct process data of the insulin glargine and/or insulin isophane production 

process, this study recreated the production process using the process data published by 

Gusarov, et al. in their paper, Systematic Approach to Production Technology Development for 

Therapeutic Proteins (Using Insulin-Glargine As An Example), and Hwang, et al.’s published 

paper, Recombinant Glargine Insulin Production Process Using Escherichia coli. 

- The waste scenario modeled here accounts for the disposal of the packaging used to house and 

transport the produced insulin. It does not account for waste generated in the insulin 

production process as data on waste generated from this process was not available. The 

disposal scenario assumes that patients dispose of their used packaging along with standard 

household municipal solid waste. This assumption is based on discussions with medical 
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professionals, as well as a review of several dozen diabetes patient online community message 

threads discussing how to dispose of diabetes treatment materials.  

 United States: Insulin Use  

 Insulin Use Inventory 

Component 
Description  

Measurement/ 
Functional Unit 

Data Source SimaPro Inventory Description 

Pen Needle_ Plastic 
Casing 

352.298 g 

Manual Measurement 

Injection molding, rigid polypropylene 
part, at plant/kg/RNA; Polypropylene, 
granulate {GLO}| market for | APOS, U 

Pen Needle_ Plastic 
Neck 

72.307 g Injection molding, rigid polypropylene 
part, at plant/kg/RNA; Polypropylene, 
granulate {GLO}| market for | APOS, U 

Pen Needle_Plastic 
Cover 

33.471 g Injection molding, rigid LLDPE part, at 
plant/kg/RNA; Polyethylene, linear low 
density, granulate {GLO}| market for | 
APOS, U 

Pen Needle_Needle 0.584 g Steel, stainless 304, flat rolled 
coil/kg/RNA; Wire drawing, steel {GLO}| 
market for | APOS, U 

Pen Needle_Seal 15.8775 g Polyethylene, HDPE, granulate, at 
plant/RER; Aluminum ingot, production 
mix, at plant/US; Thermoforming, with 
calendering {GLO}| market for | APOS, 
U 

Pen 
Needle_Cardboard 
Package 

62.05 g Folding boxboard/chipboard {RER}| 
chipboard production, white lined | 
APOS, U 

Pen Needle_ Ship 
Transportation  

2.751 tkm 

Google Maps 

Transport, freight, sea, transoceanic 
ship {GLO}| market for | APOS, U 

Pen Needle_ Truck 
Transportation 

0.533 tkm Transport, combination truck, long-haul, 
diesel powered/tkm/RNA 

Alcohol 
Swab_Cotton 

40.555 g Manual Measurement Textile, woven cotton {GLO}| 
production | APOS, U 

Alcohol 
Swab_Isopropyl 
Alchohol 

54.515 mL Stated amount as 
reported in product 
information available 
on NIH website 
(National Institute of 
Health 2018) 

Isopropanol {GLO}| market for | APOS, 
U 

Alcohol 
Swab_Wrapper 

81.111 g Information published 
on supplier website 
(Jiaxing Zhiming 
Machinery 
Manufacture 2014) 

Polyethylene, HDPE, granulate, at 
plant/RER; Aluminum ingot, production 
mix, at plant/US; Thermoforming, with 
calendering {GLO}| market for | APOS, 
U 
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Alcohol Swab 
_Cardboard Package 

51.708 g Manual Measurement Folding boxboard/chipboard {RER}| 
chipboard production, white lined | 
APOS, U 

Alcohol Swab_ Truck 
Transportation  

4.323 tkm 

Google Maps 

Transport, combination truck, long-haul, 
diesel powered/tkm/RNA 

Alcohol Swab _ Ship 
Transportation  

1.323 tkm Transport, freight, sea, transoceanic 
ship {GLO}| market for | APOS, U 

Refrigeration 3.153 kWh (U.S. Department of 
Energy, 2018), 
(Wirecutter, 2018), 
(The Home Depot Inc, 
2018) 

Electricity, low voltage {US}| market 
group for | APOS, U 

Waste-Landfill 751.06 g Manual Measurement Inert waste, for final disposal {RoW}| 
market for inert waste, for final disposal 
| Cut-off, U 

 Insulin Use Assumptions 

- Functional Unit: 365 days/1 Type 2 diabetes patient with no medical complications. 

- The model of insulin use in the United States assumes that the patient will be using a long-

lasting insulin that needs to be taken only once a day.  

- It is assumed that one needle and one alcohol swab are necessary to inject the long-lasting 

insulin. The pen is necessary to inject the insulin below the skin, while the alcohol pad is a 

standard precaution used to protect the patient from infection during the injection process.   

- While the insulin in insulin pens modeled in this study can be stored at room temperature for 

approximately 20 days, longer storage requires refrigeration to prevent degradation of the 

insulin(Sanofi-Aventis 2019). This study assumes the energy used to cool one pen year-round. 

This energy calculation was calculated by dividing the total energy use of the appliance by the 

percentage of space in the refrigerator used by the insulin pen. To determine energy use 

associated with refrigeration, in light of the wide variety of refrigeration appliances in the 

United States, a search was done to estimate the most frequently purchased refrigerator. In this 

case an article from Wirecutter listing the best refrigerator model for 2018 was taken as a proxy 

to indicate the most frequently purchased refrigerator (Wirecutter 2018). The specifications for 

this refrigerator (the LG LFX25974ST), were obtained from the Home Depot website (The Home 

Depot Inc. 2018). Based on the size of the refrigerator, energy use was estimated using a 

calculator provided by the U.S. Department of Energy’s EnergyStar website (U.S. Department of 

Energy 2018). 

- The waste treatment scenario included in this model assumes that patients are disposing of 

their used needles as medical waste. Interviewed medical professionals all recommend 

disposing of used needles in a sealed medical waste container. These containers are then 

disposed of with standard municipal solid waste. This practice aligns with several dozen 

reviewed online diabetes community discussion boards where patients documented their 

methods for disposing of diabetes-related waste. The disposal of the alcohol swab is assumed to 

be the same as for standard municipal solid waste.    
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 United States: Metformin Production 

 Metformin Production Inventory 

Component 
Description 

Measurement/ 
Functional 

Unit 
Data Source SimaPro Inventory Description 

Natural Gas 22.6332394 
MJ-eq/mg 

(Wernet et al. 2008), 
(Wernet et al. 2009), 
(Safety and 
Environmental 
Technology Group 
2018), (Cespi, et al., 
2017) 

Natural gas, low pressure {RoW}| 
market for | APOS, U 

Electricity 17.2012619 
MJ-eq/mg 

Electricity, medium voltage {US}| 
market group for | APOS, U 

Steam 5.43197745 
MJ-eq/mg 

Heat, from steam, in chemical 
industry {RoW}| market for heat, 
from steam, in chemical industry | 
APOS, U 

Dicyandiamide 407431.3 mg 

(Rohokale, Jadhav, and 
Kadam 2010) 

Dimethylacetamide {GLO}| market 
for | APOS, U 

Dimethylamine 
Hydrochloride 

488917.5 mg 
 

Dimethylamine {GLO}| market for | 
APOS, U 

Cyclohexanol 162972.5 mg Cyclohexanol {GLO}| market for | 
APOS, U 

Ethanol 206294.3 mg Ethanol, without water, in 95% 
solution state, from fermentation 
{BR}| cane sugar production with 
ethanol by-product | APOS, U 

Package 304.2 g 

Manual Measurement 

Polyethylene, HDPE, granulate, at 
plant/RER; 
Injection molding, rigid 
polypropylene part, at plant/kg/RNA 

Truck 
Transportation 

1.04636E-08 
tkm 

Google Maps 

Transport, freight, light commercial 
vehicle {GLO}| market for | APOS, U 

Sea Shipping 1.35341E-08 
tkm 

Transport, freight, sea, transoceanic 
ship {GLO}| market for | APOS, U 

 Metformin Production Assumptions 

- Functional Unit: 365 days/1 Type 2 diabetes patient with no medical complications. 

- US T2D patients are assumed to use 1000 mg of Metformin daily. This is based upon dosing 

recommendations provided by IBM’s Micromedex database (IBM Micromedex 2018). A 

comprehensive medical database that lists recommended dosages and uses for active 

pharmaceutical ingredients. While initial recommended dosage is 850 mg once daily with meals, 

it is assumed in this study that patients living with the disease will require a higher dosage 

throughout the course of daily maintenance. The 1000 mg daily dosage reflects this assumption.  

- It should be noted that both interviews and published literature have established a precedent 

that patients often find it difficult to take their oral medication daily. However, given that daily 

medication use is often a prerequisite to treating diabetes without complications, this study 

assumes adherence to a daily dosage schedule (Cramer 2004).  
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- The production process modeled in this study is based on the process outlined in Rohokale, 

Jadhav et Kadam’s 2010 paper on metformin process development (Rohokale, Jadhav, and 

Kadam 2010). It is acknowledged that there are a variety of production methods to produce 

pharmaceutical quality metformin hydrochloride and that the type of production process may 

influence scenario outcomes.  

- Assumed production in Humacao, Puerto Rico (Bristol-Myers Squibb 2010). Use phase is 

assumed to take place in Ann Arbor, Michigan. So therefore, it is also assumed that the 

medication is transported via ship from the production site in Puerto Rico to the Miami port. 

From the port it is assumed that the medication is transported via truck to Ann Arbor, Michigan. 

The model accounts for the environmental impacts of the shipping via sea and truck.  

- To calculate the energy used in the manufacturing process of the metformin a total energy 

estimate was derived using the FineChem tool. Designed by the Safety and Environmental 

Technology Group within ETH Zurich the FineChem tool uses the molecular structure of a 

compound to estimate the energy needs and environmental impacts of that molecule’s 

production. While the tool was originally designed for the petrochemical industry, it serves to 

provide a rough estimate of energy use in the absence of process data. A full description of the 

workings of the tool are available on the Fine Chem website and on the tools associated 

published papers (Wernet et al. 2008; 2009; Safety and Environmental Technology Group 2018). 

All molecular data used in the calculations were sourced from PubChem. The FineChem tool 

estimated the total energy use to produce metformin at 145 MJ/kg. The breakdown of the types 

of energy used in this total was established using the work by Cespi, et al (Cespi et al. 2015). This 

study indicated an energy breakdown in pharmaceutical production of 50% natural gas, 38% 

electricity and 12% steam. These proportions were used in the study’s calculations.  

- Where possible, energy production values for the US were selected in the SimaPro program.  

- In the absence of published data on waste disposal methods during the metformin production 

process a waste process was not specifically modeled.  

 United States: Clinic Visit 

 Clinic Visit Inventory 

Component 
Description 

Measurement/ 
Functional Unit 

Data Source SimaPro Inventory Description 

Transportation to 
Doctor’s office 

64.3736 
personkm 

(Probst, Laditka, Wang, 
& Johnson, 2006) 

Transport, passenger car with 
internal combustion engine 
{RER}| market for | APOS, U 

Lancet_Needle 0.456 g Manual Measurement Steel, stainless 304, flat rolled 
coil/kg/RNA; Deep drawing, steel, 
10000 kN press, automod e 
{RER}| deep drawing, steel, 
10000 kN press, automode | 
APOS, U 

Lancet_ Plastic 
Case 

0.456 g Low density polyethylene resin, 
at plant/RNA; Injection molding, 
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rigid polypropylene part, at 
plant/kg/RNA 

Lancing 
Device_Wheel 

7.93462E-05 g Polyethylene, high density, resin, 
at plant, CTR/kg/RNA; Injection 
molding, rigid polypropylene 
part, at plant/kg/RNA 

Lancing Device_ 
Outer Part-Back 

0.000349 g Polyethylene, high density, resin, 
at plant, CTR/kg/RNA; LLDPE 
scrap, from LLDPE injection 
molding, at plant/kg/RNA 

Lancing Device_ 
Outer Part- Front 

0.000333 g Polyethylene, high density, resin, 
at plant, CTR/kg/RNA; Injection 
molding, rigid polypropylene 
part, at plant/kg/RNA 

Lancing Device_ 
Protective Cover 

0.000231 g Injection molding, rigid 
polypropylene part, at 
plant/kg/RNA; Polyethylene, high 
density, resin, at plant, 
CTR/kg/RNA 

Lancing Device_ 
Thumb Part- 
Female 

0.0001154 g Polyethylene, high density, resin, 
at plant, CTR/kg/RNA; Injection 
molding, rigid polypropylene 
part, at plant/kg/RNA 

Lancing Device_ 
Thumb Part- Male 

0.000128 g Injection molding, rigid 
polypropylene part, at 
plant/kg/RNA; Polyethylene, high 
density, resin, at plant, 
CTR/kg/RNA 

Lancing Device_ 
Spring Container 

0.0001943 g Polyethylene, high density, resin, 
at plant, CTR/kg/RNA; Injection 
molding, rigid polypropylene 
part, at plant/kg/RNA 

Lancing Device_ 
Small Spring 

2.66923E-05 g 

Manual Measurement   

Steel, stainless 304, flat rolled 
coil/kg/RNA; Wire drawing, steel 
{GLO}| market for | APOS, U 

Lancing Device_ 
Large Spring 

1.18462E-05 g Wire drawing, steel {GLO}| 
market for | APOS, U; Steel, 
stainless 304, flat rolled 
coil/kg/RNA 

Test Strip_ Base A 0.121 g Manual measurement; 
(Abbott Diabetes Care 
Inc, 2015) 

Polyester resin, unsaturated 
{GLO}| market for | APOS, U; 
Injection moulding {GLO}| 
market for | APOS, U 

Test Strip_ Base B 0.123 g Manual measurement; 
(Abbott Diabetes Care 
Inc, 2015) 

Injection moulding {GLO}| 
market for | APOS, U; Polyester 
resin, unsaturated {GLO}| market 
for | APOS, U 
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Test Strip_ 
Glucose Oxidase 
Enzyme 

4E-05 g (Fernandes, Kurhe, 
Chavan, & Jayaram, 
2016) 

Enzyme, Glucoamylase, 
Novozyme Spirizyme/kg/RER 

Test Strip_Co-
Enzyme Flavine 
Adenine 
Dinucleotide 

4E-05 g (Fernandes, Kurhe, 
Chavan, & Jayaram, 
2016) 

Enzyme, Alpha-amylase, 
Novozyme Liquozyme/kg/RER 

Test Strip_ 
Mediator- 
Ferricyanide 

4E-05 g (Loew, Tsugawa, Nagae, 
Kojima, & Sode, 2017) 

Sodium cyanide {GLO}| market 
for | APOS, U 

Test Strip_ 
Indicator-Silver 

4E-05 g (Fernandes, Kurhe, 
Chavan, & Jayaram, 
2016) 

Silver {GLO}| market for | APOS, 
U 

Test Strip_ 
Indicator- Carbon 

4E-05 g (Fernandes, Kurhe, 
Chavan, & Jayaram, 
2016) 

Activated carbon, granular 
{GLO}| market for activated 
carbon, granular | APOS, U 

Glucose Meter_ 
Circuit 

4.63843E-07 g 
 

Manual Measurement 
 

Integrated circuit, memory type 
{GLO}| market for | APOS, U 

Glucose Meter_ 
Screen 

2.52778E-07 g 
 

Panel glass, for cathode ray tube 
display {GLO}| market for | 
APOS, U 

Glucose Meter_ 
Outer Case 

8.28212E-07 g 
 

Injection molding, rigid 
polypropylene part, at 
plant/kg/RNA; Polypropylene 
granulate (PP), production mix, at 
plant RER 

Glucose Meter_  
Circuit (under 
button) 

8.12785E-08 g 
 

Integrated circuit, memory type 
{GLO}| market for | APOS, U 

Glucose Meter_ 
Metal Clip  
 

2.44187E-08 g 
 

Brass {RoW}| market for brass | 
APOS, U 

Glucose Meter_  
Small Metal Clip 
  
 

1.5216E-08 g 
 

Brass {RoW}| market for brass | 
APOS, U 

Glucose Meter_  
Plastic Cover 
 

1.19494E-08 g 
 

Injection molding, rigid 
polypropylene part, at 
plant/kg/RNA; Polypropylene 
granulate (PP), production mix, at 
plant RER 

Glucose Meter_  
Rubber Buttons  

6.72076E-08 g 
 

Synthetic rubber {GLO}| market 
for | APOS, U; Injection moulding 
{GLO}| market for | APOS, U 

Glucose 
Meter_Battery 

0.0121904 g (Abbott, 2016) Battery cell, Li-ion {RoW}| 
production | APOS, U 
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Glucose Meter_ 
Ground 
Transportation 

5.17233E-08 
tkm 
 

Google Maps 

Truck Transportation_Glucose 
Meter_USA 

Glucose Meter_ 
Sea Shipping 

1.50752E-07 
tkm 
 

Transport, freight, sea, 
transoceanic ship {GLO}| market 
for | APOS, U 

Alcohol Wipe_ 
Cotton 

0.22222 g 
 

Manual Measurement Textile, woven cotton {GLO}| 
market for | APOS, U 

Alcohol Wipe_ 
Isopropyl Alcohol 

10 g Stated amount as 
reported in product 
information available on 
NIH website (National 
Institute of Health 2018) 

Isopropyl acetate {GLO}| market 
for | APOS, U 

Alcohol Wipe_ 
Wrapper 

0.44444 g Information published 
on supplier website 
(Jiaxing Zhiming 
Machinery Manufacture 
2014) 

Polyethylene, HDPE, granulate, at 
plant/RER; Aluminum ingot, 
production mix, at plant/US; 
Thermoforming, with calendering 
{GLO}| market for | APOS, U 

Alcohol Wipe_ 
Cardboard 
Package 

0.28333 g 

Manual Measurement   

Folding boxboard/chipboard 
{GLO}| market for | APOS, U 

HBa1c_Cartridge 76.8 g Polyethylene, HDPE, granulate, at 
plant/RER; Injection moulding 
{GLO}| market for | APOS, U 

Paper on exam 
table 

864 in Tissue paper {GLO}| market for | 
APOS, U 

Rubber Gloves (2 
gloves) 

20 g Acrylonitrile-butadiene-styrene 
copolymer {RoW}| production | 
APOS, U; Extrusion of plastic 
sheets and thermoforming, inline 
{GLO}| market for | APOS, U 

Foot Exam_ 
Filament 

1 g 

Manual Measurement 
(estimation)  

Polyethylene terephthalate, 
granulate, bottle grade, recycled 
{RoW}| polyethylene 
terephthalate production, 
granulate, bottle grade, recycled 
| APOS, U; Extrusion, plastic film 
{GLO}| market for | APOS, U 

Overhead Energy 48773.15 Btu (United States 
Environmental 
Protection Agency, 
2015) 

Electricity, low voltage {US}| 
market group for | APOS, U 

Waste-Landfill 973.41 g Manual Measurement Inert waste, for final disposal 
{RoW}| market for inert waste, 
for final disposal | Cut-off, U 
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 Clinic Assumptions 

- Functional Unit: 365 days/1 Type 2 diabetes patient with no medical complications.  

- There is an assumption built into this model that in accordance with guidance from the 

American Diabetes Association, patients with well controlled Type 2 diabetes and no 

complications require only two endocrinologist check-ups per year. This guidance aligns with 

coverage provide by Medicare and Medicaid.  

- The components of an annual endocrine check-up were compiled based on observations 

conducted at the University of Michigan Metabolism, Endocrinology & Diabetes Clinic. The 

components listed in the inventory correspond to the appointment protocol followed by the 

clinic. The appointment protocol is as follows:  

o Once patients sign in for their appointment, they are taken to a vitals station where 

their weight, height, blood pressure, blood glucose levels and HBa1c are measured and 

recorded by a Medical Assistant.   

o Patients are then taken to an exam room where they have their medical information 

reviewed and verified by a Medical Assistant.  

o A physician conducts a physical exam, answering any questions.  

o Patients are then checked-out by a Medical Assistant 

- In addition to diabetes related medical equipment including a glucose meter, glucose test strip, 

lancet, lancing device and HbA1c testing cartridge, the exam requires paper to cover the exam 

table, a filament used to detect neuropathy and the electricity used to power the lights, HVAC, 

computer and diagnostic equipment.  

- EIA data for a standard medical facility was used to calculate energy usage. The computer was 

not included in this calculation because the allocation of the computer over thousands of 

patient appointments per year resulted in a contribution of insignificant impact to the final total.  

- Assumes the clinic handles 15,600 patient visits a year and that equipment impacts are allocated 

across these 15,600 appointments. The 15,600 figure is derived from interviews with UM Clinic 

staff where they cite handling approximately 300 patients/week. Assumes 52 weeks in a year 

with 65 operational hours each week (U.S. EPA Energy Star 2015).  

- The average appointment time is calculated as 30 min/patient. This is based on information 

provided from UM Clinic staff.  

- Assumed average clinic size is 43,000 square feet (U.S. EPA Energy Star 2015). A noted average 

medical clinic size according to information provided by the U.S. EPA’s Energy Star data. 

- Assumes an average overhead energy use rate of 245 kBtu/ft² (U.S. EPA Energy Star 2015). 

- Studies show average distance patients in the U.S. travel to a medical clinic is 10 miles. This 

study thus assumes a 20-mile round trip for each clinic visit (Probst et al. 2006).  
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- Waste disposal scenario is modeled based on conversations with Medical Assistants that a third 

party medical waste management firm disposes of all medical-related waste from the clinic. A 

review of common medical waste disposal practices in the United States indicates a strong 

probability that the waste from the clinic is autoclaved before being sent to landfill. Absent data 

or an established method of modeling medical-waste autoclave procedures, this study models 

only the landfill portion of the waste scenario.  
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 Appendix C: Impact Breakdown Per Treatment Component 
 

The following section provides greater insight into how each of the elements of a treatment component contribute to the overall impact total.  

12.1 Glucose Meter 
  

 

 

   

0

0.2

0.4

0.6

0.8

1

kg
 C

O
2

 E
q

u
iv

al
en

t

Glucose Meter Components

Climate Change (kg CO2 eq) Impacts

0
0.0005

0.001
0.0015

0.002
0.0025

0.003
0.0035

0.004

kg
 S

O
2

 E
q

u
iv

al
en

t

Glucose Meter Components

Terrestrial Acidification (kg SO2-eq) Impacts

0
0.002
0.004
0.006
0.008

0.01
0.012
0.014

m
3

Glucose Meter Components

Water Consumption (m3) Impacts

0
0.0000005

0.000001
0.0000015

0.000002
0.0000025

0.000003
0.0000035

D
A

LY
S

Glucose Meter Components

Human Health (DALYS) Impact



83 
 

12.2 Lancet – Insulin  
 

 

 

  

0
0.0000005

0.000001
0.0000015

0.000002
0.0000025

0.000003
0.0000035

0.000004
0.0000045

0.000005

D
A

LY
S

Lancet Components-Insulin 

Human Health Impact (DALYS)

0

0.5

1

1.5

2

2.5

kg
 C

O
2

 E
q

u
iv

al
en

t

Lancet Components- Insulin 

Global Warming Impact (kg CO2 eq)

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

kg
 S

O
2

 E
q

u
iv

al
en

t

Lancet Components- Insulin

Terrestrial Acidification Impact (kg SO2 eq)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

m
3

Lancet Components- Insulin

Water Consumption Impact (m3)



84 
 

12.3 Lancet - Metformin 
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12.4 Test Strips – Insulin  
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12.5 Test Strips - Metformin  
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12.6 Lancing Device  
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12.7 Insulin Use: United States  
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12.8 Insulin Production: United States  
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12.9 Metformin Use – United States Scenario 5 
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12.10 Doctor Visit – US Scenario 8 
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12.11 Insulin Production – Sri Lanka 14 
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12.12 Insulin Use – Sri Lanka 18 
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12.13 Metformin Use – Sri Lanka 21 
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12.14 Dr. Visit – Sri Lanka 25 
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 Appendix  D: Additional Environmental Impact Indicator Results 29 

All information regarding indicator and unit descriptions are sourced from: Huijbregts, M.A.J., 30 

Steinmann, Z.J.N., Elshout, P.M.F. et al. Int J Life Cycle Assess (2017) 22: 138. 31 

https://doi.org/10.1007/s11367-016-1246- 32 

The data tables provided under each impact indicator section highlight the direct outputs associated 33 

with each system component for the indicator being analyzed.  34 

13.1 Ozone Depletion 35 

Indicator:  Stratospheric ozone decrease 36 

Characterization Factor: Ozone depletion potential (ODP) 37 

Unit: kg CFC-11-eq to air 38 

Damage Pathway: Human Health- years of life lost and disabled related to increased skin cancer and 39 

cataract due to UV-exposure 40 

Study’s Impact Indicator Results: 41 

 

Insulin Use: 
USA 

Metformin Use: 
USA 

Insulin Use: 
Sri Lanka 

Metformin Use: 
Sri Lanka 

Total 3.10215E-05 3.13439E-05 3.25179E-05 1.51227E-05 

Standard Deviation 5.79138E-06 4.1228E-05 2.86838E-05 2.94377E-05 

Min 2.52301E-05 -9.88E-06 3.83E-06 -1.4315E-05 

Max 3.68129E-05 7.25719E-05 6.12017E-05 4.45603E-05 

     

 

Insulin Use: 
USA 

Metformin Use: 
USA 

Insulin Use: 
Sri Lanka 

Metformin Use: 
Sri Lanka 

Glucose Meter 9.76E-07 9.76E-07   

Test Strips 5.99E-06 2.00E-06   

Lancet 1.64E-06 5.46E-07   

Lancing Device 3.20E-08 3.20E-08   

Insulin Use 4.14696E-06  3.67183E-07  
Insulin Production 7.24873E-06  3.13585E-05  
Metformin 
Production  1.68E-05  1.43304E-05 

Doctor Visit 1.10E-05 1.10E-05 7.92269E-07 7.92269E-07 

 42 

  43 

https://doi.org/10.1007/s11367-016-1246-
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13.2 Ionizing Radiation 44 

Indicator:  Absorbed dose increase 45 

Characterization Factor: Ionizing radiation potential (IRP) 46 

Unit:  kBq Co-60-eq to air 47 

Damage Pathway: Human Health- Years of life lost and disabled related to an increase in cancer and 48 

hereditary diseases due to exposure to radiation. 49 

Study’s Impact Indicator Results: 50 

 

Insulin Use:  
USA 

Metformin Use:  
USA 

Insulin Use:  
Sri Lanka 

Metformin Use:  
Sri Lanka 

Total 2.819831399 8.010720375 1.67358365 2.116836913 

Standard Deviation 0.796350359 2.959172121 0.756361404 2.88116E-05 

Min 2.023481041 5.05E+00 9.17E-01 2.116808102 

Max 3.616181758 10.9698925 2.429945054 2.116865725 

     

 

Insulin Use:  
USA 

Metformin Use:  
USA 

Insulin Use:  
Sri Lanka 

Metformin Use:  
Sri Lanka 

Glucose Meter 0.147256012 0.147256012   

Test Strips 2.03E-01 6.77E-02   

Lancet 7.60E-02 2.53E-02   

Lancing Device 3.57E-03 3.57E-03   

Insulin Use 0.66357775  0.001041629  
Insulin Production 0.450843479  1.544538766  
Metformin 
Production  6.49E+00  1.988833659 

Doctor Visit 1.28E+00 1.28E+00 0.128003254 0.128003254 
 51 

  52 



101 
 

13.3 Ozone Formulation- Human Health 53 

Indicator:  Tropospheric Ozone population intake increase 54 

Characterization Factor: Photochemical oxidant formation potential: humans (HOFP) 55 

Unit: kg NOx-eq to air 56 

Damage Pathway: Human Health- Years of life lost related to an increase in respiratory diseases caused 57 

by exposure to ozone.  58 

Study’s Impact Indicator Results: 59 

 

Insulin Use: 
USA 

Metformin Use: 
USA 

Insulin Use: 
Sri Lanka 

Metformin Use: 
Sri Lanka 

Total 0.084834732 0.121958094 0.189157229 0.126997768 

Standard 
Deviation 0.556514058 2.87642345 0.281205618 0.287996594 

Min -0.471679326 -2.75E+00 -9.20E-02 -0.160998826 

Max 0.64134879 2.998381544 0.470362846 0.414994362 

     

 

Insulin Use: 
USA 

Metformin Use: 
USA 

Insulin Use: 
Sri Lanka 

Metformin Use: 
Sri Lanka 

Glucose 
Meter 0.003346774 0.003346774   

Test Strips 3.19E-03 1.06E-03   

Lancet 5.12E-03 1.71E-03   
Lancing 
Device 2.55E-04 2.55E-04   

Insulin Use 0.014709225  0.00995572  
Insulin 
Production 0.005770795  0.170653411  
Metformin 
Production  6.31E-02  0.11844967 

Doctor Visit 5.24E-02 5.24E-02 0.008548098 0.008548098 
 60 

 61 

 62 
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13.4 Fine Particulate Matter 64 

Indicator:  PM2.5 population intake increase 65 

Characterization Factor: Particulate matter formation potential 66 

Unit: kg PM2.5-eq to air 67 

Damage Pathway: Human Health- Years of life lost related to an increase in cardiopulmonary and lung 68 

cancer caused by exposure to primary and secondary aerosols.  69 

Study’s Impact Indicator Results: 70 

 

Insulin Use: 
USA 

Metformin Use: 
USA 

Insulin Use: 
Sri Lanka 

Metformin Use: 
Sri Lanka 

Total 0.059459425 0.225444349 0.356504073 0.003046593 

Standard 
Deviation 0.039775546 0.289839571 0.29147002 0.287923954 

Min 0.019683879 -6.44E-02 6.50E-02 -0.28487736 

Max 0.099234971 0.515283921 0.647974092 0.290970547 

     

 

Insulin Use: 
USA 

Metformin Use: 
USA 

Insulin Use: 
Sri Lanka 

Metformin Use: 
Sri Lanka 

Glucose 
Meter 0.00303416 0.00303416   

Test Strips 2.26E-03 7.53E-04   

Lancet 3.62E-03 1.21E-03   
Lancing 
Device 1.15E-04 1.15E-04   

Insulin Use 0.01508088  0.007878243  
Insulin 

Production 0.006764503  0.200142291  
Metformin 
Production  1.92E-01  0.003046593 

Doctor Visit 2.86E-02 2.86E-02 0.148483538 0.148483538 
 71 

 72 

 73 
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13.5 Terrestrial Ozone Formation  75 

Indicator:  Tropospheric ozone increase 76 

Characterization Factor: Photochemical oxidant formation potential: ecosystems (EOFP) 77 

Unit: kg NOx-eq to air 78 

Damage Pathway: Loss of plant species due to increase in ozone exposure. 79 

Study’s Impact Indicator Results: 80 

 

Insulin Use: 
USA 

Metformin Use: 
USA 

Insulin Use: 
Sri Lanka 

Metformin Use: 
Sri Lanka 

Total 0.088741085 0.125134799 0.191501047 0.128252609 

Standard 
Deviation 0.040247475 0.040250191 0.287688212 0.281196934 

Min 0.04849361 8.49E-02 -9.62E-02 -0.152944325 

Max 0.128988559 0.16538499 0.479189259 0.409449543 

     

 

Insulin Use: 
USA 

Metformin Use: 
USA 

Insulin Use: 
Sri Lanka 

Metformin Use: 
Sri Lanka 

Glucose 
Meter 0.003384613 0.003384613   

Test Strips 3.56E-03 1.19E-03   

Lancet 5.48E-03 1.83E-03   
Lancing 
Device 2.61E-04 2.61E-04   

Insulin Use 0.015158249  0.010663508  
Insulin 

Production 0.006223061  0.172095319  
Metformin 
Production  6.38E-02  0.119510388 

Doctor Visit 5.47E-02 5.47E-02 0.008742221 0.008742221 
 81 

 82 

 83 

 84 
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13.6 Freshwater Eutrophication 86 

Indicator:  Phosphorous increase in freshwater 87 

Characterization Factor: Freshwater eutrophication potential (FEP) 88 

Unit: kg P-eq to freshwater 89 

Damage Pathway: Loss of aquatic species due to increased phosphorous concentrations. 90 

Study’s Impact Indicator Results: 91 

 

Insulin Use: 
USA 

Metformin Use: 
USA 

Insulin Use: 
Sri Lanka 

Metformin Use: 
Sri Lanka 

Total 0.014701966 0.037881608 0.038333496 0.035022055 

Standard 
Deviation 0.005753379 0.02925206 0.028413653 0.028451482 

Min 0.008948587 8.63E-03 9.92E-03 0.006570574 

Max 0.020455344 0.067133667 0.066747149 0.063473537 

     

 

Insulin Use: 
USA 

Metformin Use: 
USA 

Insulin Use: 
Sri Lanka 

Metformin Use: 
Sri Lanka 

Glucose 
Meter 0.002611356 0.002611356   

Test Strips 5.71E-04 1.90E-04   

Lancet 5.68E-04 1.89E-04   
Lancing 
Device 1.17E-05 1.17E-05   

Insulin Use 0.003008309  0.000179649  
Insulin 

Production 0.002721097  0.037749512  
Metformin 
Production  2.97E-02  0.03461772 

Doctor 
Visit 5.21E-03 5.21E-03 0.000404335 0.000404335 

 92 

 93 

 94 
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13.7 Terrestrial Ecotoxicity 96 

Indicator:  Hazard-weighted increase in natural soils 97 

Characterization Factor: Terrestrial ecotoxicity potential (TETP)  98 

Unit: kg 1,4-DCB-eq to industrial soil 99 

Damage Pathway: Species loss due to chemical exposure in soils.  100 

Study’s Impact Indicator Results: 101 

 

Insulin Use: 
USA 

Metformin Use: 
USA 

Insulin Use: 
Sri Lanka 

Metformin Use: 
Sri Lanka 

Total 110.0487295 114.362229 66.30324704 52.37202575 

Standard 
Deviation 8.5547203 8.553169496 28.64163732 29.33322515 

Min 101.4940092 1.06E+02 3.77E+01 23.0388006 

Max 118.6034498 122.9153985 94.94488436 81.70525089 

     

 

Insulin Use: 
USA 

Metformin Use: 
USA 

Insulin Use: 
Sri Lanka 

Metformin Use: 
Sri Lanka 

Glucose 
Meter 3.96E+00 3.96E+00   

Test Strips 2.63E+00 8.75E-01   

Lancet 2.28E+00 7.59E-01   
Lancing 
Device 2.02E-01 2.02E-01   

Insulin Use 4.909164615  0.219093817  
Insulin 

Production 2.377762703  64.38071438  
Metformin 
Production  1.49E+01  50.6685869 

Doctor 
Visit 9.37E+01 9.37E+01 1.70343885 1.70343885 

 102 

 103 

 104 
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13.8 Freshwater Ecotoxicity 106 

Indicator:  Hazard-weighted increase in freshwaters 107 

Characterization Factor: Freshwater ecotoxicity potential 108 

Unit: kg 1,4-DCB-eq to freshwater 109 

Damage Pathway: Species loss due to chemical exposure in freshwater 110 

Study’s Impact Indicator Results: 111 

 

Insulin Use: 
USA 

Metformin Use: 
USA 

Insulin Use: 
Sri Lanka 

Metformin Use: 
Sri Lanka 

Total 110.0487295 114.362229 66.30324704 52.37202575 

Standard 
Deviation 8.5547203 8.553169496 28.64163732 29.33322515 

Min 101.4940092 1.06E+02 3.77E+01 23.0388006 

Max 118.6034498 122.9153985 94.94488436 81.70525089 

     

 

Insulin Use: 
USA 

Metformin Use: 
USA 

Insulin Use: 
Sri Lanka 

Metformin Use: 
Sri Lanka 

Glucose 
Meter 3.96E+00 3.96E+00   

Test Strips 2.63E+00 8.75E-01   

Lancet 2.28E+00 7.59E-01   
Lancing 
Device 2.02E-01 2.02E-01   

Insulin Use 4.909164615  0.219093817  
Insulin 

Production 2.377762703  64.38071438  
Metformin 
Production  1.49E+01  50.6685869 

Doctor 
Visit 9.37E+01 9.37E+01 1.70343885 1.70343885 

 112 

 113 
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13.9 Marine Ecotoxicity 115 

Indicator:  Hazard weighted increase in marine water 116 

Characterization Factor: Marine ecotoxicity potential (METP) 117 

Unit: kg 1,4-DCB-eq to marine water 118 

Damage Pathway: Species loss due to chemical exposure in marine waters. 119 

Study’s Impact Indicator Results: 120 

 

Insulin Use: 
USA 

Metformin Use: 
USA 

Insulin Use: 
Sri Lanka 

Metformin Use: 
Sri Lanka 

Total 3.554710646 4.522037604 2.26167749 2.929959994 

Standard 
Deviation 2.863117567 4.004094471 2.864624374 2.863117567 

Min 0.691593079 5.18E-01 -6.03E-01 0.066842427 

Max 6.417828213 8.526132074 5.126301864 5.793077561 

     

 

Insulin Use: 
USA 

Metformin Use: 
USA 

Insulin Use: 
Sri Lanka 

Metformin Use: 
Sri Lanka 

Glucose 
Meter 0.558579812 0.558579812   

Test Strips 6.31E-02 2.10E-02   

Lancet 5.15E-02 1.72E-02   
Lancing 
Device 1.13E-03 1.13E-03   

Insulin Use 0.254290094  0.008912987  
Insulin 

Production 0.136907657  2.252764503  
Metformin 
Production  1.43E+00  2.895072239 

Doctor 
Visit 2.49E+00 2.49E+00  0.034887755 

 121 

 122 

 123 

 124 
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13.10 Carcinogenic Toxicity 126 

Indicator:  Risk increase of cancer disease incidence 127 

Characterization Factor: Human toxicity potential (HTPc) 128 

Unit:  kg 1,4-DCB-eq to urban air 129 

Damage Pathway: Years of life lost and disabled due to cancer and non-cancer effects due to ingestion 130 

and inhalation of toxic substances.  131 

Study’s Impact Indicator Results: 132 

 

Insulin Use: 
USA 

Metformin Use: 
USA 

Insulin Use: 
Sri Lanka 

Metformin Use: 
Sri Lanka 

Total 1.687783122 2.852317376 3.999154009 2.904759146 

Standard 
Deviation 2.852836159 4.037404688 2.88726964 2.897589305 

Min -1.165053036 -1.19E+00 1.11E+00 0.007169841 

Max 4.540619281 6.889722064 6.886423649 5.802348451 

     

 

Insulin Use: 
USA 

Metformin Use: 
USA 

Insulin Use: 
Sri Lanka 

Metformin Use: 
Sri Lanka 

Glucose 
Meter 0.120697021 0.120697021   

Test Strips 4.99E-02 1.66E-02   

Lancet 7.55E-02 2.52E-02   
Lancing 
Device 2.88E-03 2.88E-03   

Insulin Use 0.222423207  0.001941356  
Insulin 

Production 0.155759852  3.958807757  
Metformin 
Production  1.63E+00  2.866354249 

Doctor 
Visit 1.06E+00 1.06E+00 0.038404897 0.038404897 

 133 

 134 

 135 
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13.11 Non-Human Carcinogenic Toxicity 138 

Indicator:  Risk increase of non-cancer disease incidence 139 

Characterization Factor: Human toxicity potential (HTPnc) 140 

Unit: kg 1,4-DCB-eq to urban air 141 

Damage Pathway: Years of life lost and disabled due to cancer and non-cancer effects due to ingestion 142 

and inhalation of toxic substances.  143 

Study’s Impact Indicator Results: 144 

 

Insulin Use: 
USA 

Metformin Use: 
USA 

Insulin Use: 
Sri Lanka 

Metformin Use: 
Sri Lanka 

Total 42.59898876 62.36803309 42.07277858 36.40300221 

Standard 
Deviation 9.521008532 9.53823039 28.78549315 28.9048213 

Min 33.07798023 5.28E+01 1.33E+01 7.498180905 

Max 52.11999729 71.90626348 70.85827173 65.30782351 

     

 

Insulin Use: 
USA 

Metformin Use: 
USA 

Insulin Use: 
Sri Lanka 

Metformin Use: 
Sri Lanka 

Glucose 
Meter 13.42399528 13.42399528   

Test Strips 1.19E+00 3.97E-01   

Lancet 1.02E+00 3.40E-01   
Lancing 
Device 2.65E-02 2.65E-02   

Insulin Use 3.200866126  0.285452572  
Insulin 

Production 2.564014343  41.09502606  
Metformin 
Production  2.70E+01  35.71070226 

Doctor 
Visit 2.12E+01 2.12E+01 0.692299948 0.692299948 

 145 

 146 
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 Appendix B: Detailed Sensitivity Analysis Findings 148 

The following section details the results of the individual sensitivity analysis assessments.  149 

14.1 U.S. Treatment Pathway: Number of Doctor Visits 150 
This analysis assessed the impact of number of visits to the doctor’s office on the four impact indicators. The intent was to investigate if there 151 

were significant differences in the final impact of the scenario assessment if patients were to increase or decrease their in-person interactions 152 

with healthcare providers. Table 3 shows the impact indicator totals attributable to the number of doctor visits. Tables 4 and 5 shows how the 153 

overall T2d treatment totals are impacted by tested variability of doctor visits with regards to the United States Insulin Use scenario and the 154 

United States Metformin Use scenario, respectively.  155 

Table 9: Impacts associated with tested number of In-Person Doctor Visits according to the assumed components of a doctor visit specified in the Data Inventor section. 156 

# of Doctor 
Visits 

Climate Impact  
(kg CO2 
Equiv./Functional 
Unit) 

Total Terrestrial 
Acidification 
Impact (kg SO2 eq) 

Total Water 
Consumption 
Impact (m3) 

Health Impact 
(DALY/Functional 
Unit) 

12 142.095098 0.420971329 0.877484929 0.000281107 

11 127.0947571 0.35778119 0.753627107 0.000254749 

10 114.5833904 0.316737689 0.669741589 0.000230702 

9 102.6942674 0.281230848 0.595849147 0.000207232 

8 91.05404174 0.247938671 0.525953935 0.000183993 

7 79.60527567 0.216350081 0.459133516 1.61E-04 

6 68.1182177 0.184420774 0.391698138 0.000137835 

5 56.71731652 0.153258082 0.325646417 0.000114818 

4 45.25897748 0.121584313 0.258672258 9.17E-05 

3 33.87243577 0.090549389 0.192851146 6.87E-05 

2 79.60527567 0.06164395 0.130873525 4.60E-05 

1 11.27166597 0.030012771 0.063976236 2.29E-05 
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 157 

 Table 10: Final Functional Unit Impacts Associated with Alternative Values for Number of In-Person Doctor Visits in the U.S. Insulin Use Scenario 158 

# of Doctor 
Visits 

Climate Impact  
(kg CO2 
Equiv./Functional 
Unit) 

Total Terrestrial 
Acidification 
Impact (kg SO2 eq) 

Total Water 
Consumption 
Impact (m3) 

Health Impact 
(DALY/Functional 
Unit) 

12 154.1698852 0.489327379 4.686611404 0.000335144 

11 139.1695442 0.42613724 4.562753582 0.000308787 

10 126.6581776 0.385093739 4.478868064 0.000284739 

9 114.7690545 0.349586898 4.404975622 0.000261269 

8 103.1288289 0.316294721 4.33508041 0.00023803 

7 91.68006282 0.284706131 4.268259991 0.000214969 

6 80.19300485 0.252776824 4.200824613 0.000191872 

5 68.79210367 0.221614132 4.134772892 0.000168855 

4 57.33376463 0.189940363 4.067798733 0.000145785 

3 45.94722292 0.158905439 4.001977621 0.000122781 

2 34.8 0.13 3.94 0.0001 

1 23.34645312 0.098368821 3.873102711 7.69343E-05 
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Figure 12:  In-Person Dr. Visit Impact Sensitivity Analysis- US Insulin Use Scenario 167 
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Table 11: Final Functional Unit Impacts Associated with Alternative Values for number of in-person doctor visits in the U.S. Metformin Use Scenario 179 

# of Doctor 
Visits 

Climate Impact  
(kg CO2 
Equiv./Functional 
Unit) 

Total Terrestrial 
Acidification 
Impact (kg SO2 eq) 

Total Water 
Consumption 
Impact (m3) 

Health Impact 
(DALY/Functional 
Unit) 

12 1.50E+02 8.29E-01 1.64E+00 3.09E-04 

11 1.35E+02 7.66E-01 1.52E+00 2.83E-04 

10 1.22E+02 7.25E-01 1.43E+00 2.59E-04 

9 1.11E+02 6.90E-01 1.36E+00 2.35E-04 

8 9.89E+01 6.56E-01 1.29E+00 2.12E-04 

7 8.75E+01 6.25E-01 1.22E+00 1.89E-04 

6 7.60E+01 5.93E-01 1.15E+00 1.66E-04 

5 6.46E+01 5.62E-01 1.09E+00 1.43E-04 

4 5.31E+01 5.30E-01 1.02E+00 1.20E-04 

3 4.17E+01 4.99E-01 9.56E-01 9.68E-05 

2 3.06E+01 4.70E-01 8.94E-01 7.40E-05 

1 1.91E+01 4.08E-01 7.63E-01 5.09E-05 

 180 



114 
 

Figure 13: In-Person Dr. Visit Impact Sensitivity Analysis- US Metformin Use Scenario 181 
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 185 

14.2 Doctor’s Visit Overhead Energy Sensitivity Analysis 186 
The variable Doctor’s Visit Overhead Energy is designed to assess the effects of energy use during in-person doctor visits on the overall impacts 187 

associated with T2d treatments. The variable is only assessed in the context of the US treatment scenarios. Sri Lankan treatment scenarios were 188 

not considered given the low energy intensity of public medical buildings.  189 

 190 

Table 12:Impact values attributed to the Overhead Energy Use of a Doctor’s Office per Functional Unit. Functional Unit assumes two doctor visits per year. 191 

 

MJ/Functional 
unit 

Climate Impact (kg CO2 
Equivalent/Functional 
Unit) 

Total 
Terrestrial 
Acidification 
Impact (kg 
SO2 eq) 

Total Water 
Consumption 
Impact (m3) 

Health Impact 
(DALY/Functional 
Unit) 

Baseline 51.45823906 0.191459564 0.001703588 0.003074792 1.77674E-07 

Scenario 1 308.7494344 1.148757382 0.010221526 0.018448756 1.06604E-06 

Scenario 2 154.3747172 0.574378692 0.005110762 0.009224378 5.33022E-07 

Scenario 3 102.9164781 0.382919128 0.003407176 0.006149586 3.55348E-07 

Scenario 4 77.1873586 0.287189346 0.002555382 0.004612188 2.6651E-07 

Scenario 5 61.74988688 0.229751476 0.002044306 0.003689752 2.13208E-07 

Scenario 6 56.60406296 0.21060552 0.001873946 0.003382272 1.95441E-07 

Scenario 7 46.31241516 0.172313608 0.001533228 0.002767314 1.59907E-07 

Scenario 8 41.16659124 0.15316765 0.00136287 0.002459834 1.42139E-07 

Scenario 9 25.72911954 0.095729782 0.000851794 0.001537396 8.8837E-08 

Scenario 10 12.86455977 0.04786489 0.000425896 0.000768698 4.44E-08 

Scenario 11 2.572911954 0.00958 0.0000852 0.0001538 8.88E-09 

 192 

 193 

 194 
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 195 

Table 13: Total T2d Treatment Impacts per sensitivity analysis scenario for overhead energy used during a doctor visit in the US Insulin Use Scenario. All values are calculated by 196 
Functional Unit, which assumes two in-person doctor visits per year. 197 

 

MJ/Functional 
Unit 

Climate Impact (kg CO2 
Equivalent/Functional 
Unit) 

Total 
Terrestrial 
Acidification 
Impact (kg 
SO2 eq) 

Total Water 
Consumption 
Impact (m3) 

Health Impact 
(DALY/Functional 
Unit) 

Scenario 1 308.7494344 35.75729782 0.138517938 3.955373964 0.000100888 

Scenario 2 154.3747172 35.18291913 0.133407174 3.946149586 0.000100355 

Scenario 3 102.9164781 34.99145956 0.131703588 3.943074794 0.000100178 

Scenario 4 77.1873586 34.89572978 0.130851794 3.941537396 0.000100089 

Scenario 5 61.74988688 34.83829191 0.130340718 3.94061496 0.000100036 

Scenario 6 56.60406296 34.81914596 0.130170358 3.94030748 0.000100018 

Baseline 51.45823906 34.8 0.13 3.94 0.0001 

Scenario 7 46.31241516 34.78085404 0.12982964 3.939692522 9.99822E-05 

Scenario 8 41.16659124 34.76170809 0.129659282 3.939385042 9.99645E-05 

Scenario 9 25.72911954 34.70427022 0.129148206 3.938462604 9.99112E-05 

Scenario 10 12.86455977 34.65640533 0.128722308 3.937693906 9.98667E-05 

Scenario 11 2.572911954 34.61812044 0.128381612 3.937079008 9.98312E-05 

 198 

  199 
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Figure 14: Dr. Office Overhead Energy Variable Scenario Results for Total T2 Impacts- US Insulin Use 200 
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 204 

Table 14: Total T2d treatment Impacts associated with sensitivity analysis adjusted variables for overhead energy used during a doctor visit in the US Metformin Use Scenario. All 205 
values are calculated by Functional Unit, which assumes two in-person doctor visits per year. 206 

 

 

Climate Impact 
(kg CO2 
Equivalent/Func
tional Unit) 

Total 
Terrestrial 
Acidification 
Impact (kg 
SO2 eq) 

Total Water 
Consumption 
Impact (m3) 

Health Impact 
(DALY/Functional 
Unit) 

Scenario 1 308.7494344 31.55729782 0.478517938 0.909373964 7.48884E-05 

Scenario 2 154.3747172 30.98291913 0.473407174 0.900149586 7.43553E-05 

Scenario 3 102.9164781 30.79145956 0.471703588 0.897074794 7.41777E-05 

Scenario 4 77.1873586 30.69572978 0.470851794 0.895537396 7.40888E-05 

Scenario 5 61.74988688 30.63829191 0.470340718 0.89461496 7.40355E-05 

Scenario 6 56.60406296 30.61914596 0.470170358 0.89430748 7.40178E-05 

Baseline 51.45823906 30.6 0.47 0.894 0.000074 

Scenario 7 46.31241516 30.58085404 0.46982964 0.893692522 7.39822E-05 

Scenario 8 41.16659124 30.56170809 0.469659282 0.893385042 7.39645E-05 

Scenario 9 25.72911954 30.50427022 0.469148206 0.892462604 7.39112E-05 

Scenario 10 12.86455977 30.45640533 0.468722308 0.891693906 7.38667E-05 

Scenario 11 2.572911954 30.41812044 0.468381612 0.891079008 7.38312E-05 

 207 
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Figure 15: Dr. Office Overhead Energy Variable Scenario Results for Total T2 Impacts- US Metformin 208 
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14.3 Distance to Doctor’s Office in the United States 211 
Distance to the doctor’s office is a measure of the environmental and human health emissions associated with the round-trip distance required 212 

to journey to and from a doctor appointment. The calculations assume that the patient will be traveling in a gasoline-powered, single occupancy 213 

vehicle.  214 

Table 15: Impact values of sensitivity analysis scenarios for the round-trip distance required by a T2d patient to visit a doctor in the US treatment scenarios. 215 

 

# of 
Roundtrip 
Miles 
Traveled 

Climate Impact 
(kg CO2 
Equivalent/Funct
ional Unit) 

Total 
Terrestrial 
Acidification 
Impact (kg 
SO2 eq) 

Total Water 
Consumption 
Impact (m3) 

Health Impact 
(DALY/Functional 
Unit) 

Scenario 1 0 0.833034978 0.004102816 0.044594458 1.70383E-06 

Scenario 2 5 6.306080864 0.0184881 0.066164225 1.27686E-05 

Scenario 3 10 11.77912675 0.032873383 0.087733992 2.38333E-05 

Scenario 4 15 17.25217264 0.047258667 0.109303758 3.4898E-05 

Scenario 5 20 22.72521852 0.06164395 0.130873525 4.59627E-05 

Scenario 6 25 28.19826441 0.076029234 0.152443292 5.70274E-05 

Baseline 30 33.67131029 0.090414517 0.174013059 6.80922E-05 

Scenario 7 50 55.56349384 0.147955651 0.260292126 0.000112351 

Scenario 8 100 110.2939527 0.291808487 0.475989793 0.000222998 

Scenario 9 125 137.6591821 0.363734905 0.583838627 0.000278322 

 216 

 217 

 218 

 219 

 220 
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Table 16: Total T2d treatment impacts after including scenario sensitivity analysis assessments of roundtrip distances traveled to the doctor in the U.S. Insulin Use Scenario 221 

 

# of 
Roundtrip 
Miles 
Traveled 

Climate Impact 
(kg CO2 
Equivalent/Functi
onal Unit) 

Total 
Terrestrial 
Acidification 
Impact (kg 
SO2 eq) 

Total Water 
Consumption 
Impact (m3) 

Health Impact 
(DALY/Functiona
l Unit) 

Scenario 1 0 1.961724684 0.043688299 3.810581399 3.36117E-05 

Scenario 2 5 7.43477057 0.058073582 3.832151166 4.46764E-05 

Scenario 3 10 12.90781646 0.072458866 3.853720933 5.57411E-05 

Scenario 4 15 18.38086234 0.086844149 3.8752907 6.68058E-05 

Scenario 5 20 23.85390823 0.101229433 3.896860466 7.78706E-05 

Scenario 6 25 29.32695411 0.115614716 3.918430233 8.89353E-05 

Baseline 30 34.8 0.13 3.94 0.0001 

Scenario 7 50 56.69218354 0.187541134 4.026279067 0.000144259 

Scenario 8 100 111.4226424 0.33139397 4.241976735 0.000254906 

Scenario 9 125 138.7878718 0.403320387 4.349825568 0.00031023 

 222 

 223 
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Figure 16: Sensitivity Analysis Results of Impacts Associated with Distance to Doctor Office Variable Scenarios- US Insulin Use 224 
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Table 17: Total T2d treatment impacts after including scenario sensitivity analysis assessments of roundtrip distances traveled to the doctor in the U.S. Metformin Use Scenario 228 

 

# of Roundtrip 
Miles Traveled 

Climate Impact (kg CO2 
Equivalent/Functional 
Unit) 

Total Terrestrial 
Acidification Impact 
(kg SO2 eq) 

Total Water 
Consumption 
Impact (m3) 

Health Impact 
(DALY/Functional 
Unit) 

Scenario 1 0 -2.238275316 -0.010282467 0.764581399 1.70383E-06 

Scenario 2 5 3.23477057 0.004102816 0.786151166 1.27686E-05 

Scenario 3 10 8.707816456 0.0184881 0.807720933 2.38333E-05 

Scenario 4 15 14.18086234 0.032873383 0.8292907 3.4898E-05 

Scenario 5 20 19.65390823 0.047258667 0.850860466 4.59627E-05 

Scenario 6 25 25.12695411 0.06164395 0.872430233 5.70274E-05 

Baseline 30 30.6 0.076029234 0.894 6.80922E-05 

Scenario 7 50 52.49218354 0.133570368 0.980279067 0.000112351 

Scenario 8 100 107.2226424 0.277423203 1.195976735 0.000222998 

Scenario 9 125 134.5878718 0.349349621 1.303825568 0.000278322 
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Figure 17: Sensitivity Analysis Results of Impacts Associated with Distance to Doctor Office Variable Scenarios- US Metformin Use 240 
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14.4 Insulin Dosage- United States 244 
The US Insulin Dosage variable assesses the different impacts associated with different dosages of insulin when used in the context of the U.S. 245 

Insulin-Use scenario model. The variables assessed range from 5 to 25. The assessed variables sought to cover a range of patient scenarios from 246 

those with relatively high insulin production and sensitivity rates to those patients with relatively low insulin production and sensitivity rates.  247 

Table 18: Insulin Dosage Sensitivity Analysis Impact Results 248 

 

# Units/Day 
Climate Impact (kg CO2 
Equivalent/Functional 
Unit) 

Total Terrestrial 
Acidification Impact 
(kg SO2 eq) 

Total Water 
Consumption 
Impact (m3) 

Health Impact 
(DALY/Functional Unit) 

Scenario 1 25 42.76427331 0.266653547 0.899278126 0.000104 

Scenario 2 20 42.46950149 0.256830836 0.769015663 0.000103 

Scenario 3 15 42.17472967 0.247008125 0.638753201 0.000103 

Scenario 4 12 41.99786658 0.241114498 0.560595723 0.000103 

Scenario 5 11 41.93891222 0.239149956 0.534543231 0.000102 

Baseline 10 41.87995786 0.237185414 0.508490738 0.000102 

Scenario 6 9 41.82100349 0.235220872 0.482438246 0.000102 

Scenario 7 8 41.76204913 0.233256329 0.456385753 0.000102 

Scenario 8 7 41.70309477 0.231291787 0.430333261 0.000102 

Scenario 9 6 41.6441404 0.229327245 0.404280768 0.000102 

Scenario 10 5 41.58518604 0.227362703 0.378228276 0.000102 

 249 

 250 

 251 

 252 

 253 
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Table 19: Total T2d Impact Treatment Results for Insulin Dosage Variable Sensitivity Analysis. Each Scenario is Assessed in the Context of the US Insulin Use Model. 254 

 # Units/Day 
Climate Impact (kg CO2 
Equivalent/Functional 
Unit) 

Total Terrestrial 
Acidification Impact 
(kg SO2 eq) 

Total Water 
Consumption 
Impact (m3) 

Health Impact 
(DALY/Functional Unit) 

Scenario 1 25 35.68431545 0.159468133 4.330787388 0.000102 

Scenario 2 20 35.38954363 0.149645422 4.200524925 0.000101 

Scenario 3 15 35.09477181 0.139822711 4.070262463 0.000101 

Scenario 4 12 34.91790872 0.133929084 3.992104985 0.000101 

Scenario 5 11 34.85895436 0.131964542 3.966052493 0.0001 

Baseline 10 34.8 0.13 3.94 0.0001 

Scenario 6 9 34.74104563 0.128035458 3.913947508 0.0001 

Scenario 7 8 34.68209127 0.126070915 3.887895015 0.0001 

Scenario 8 7 34.62313691 0.124106373 3.861842523 0.0001 

Scenario 9 6 34.56418254 0.122141831 3.83579003 0.0001 

Scenario 10 5 34.50522818 0.120177289 3.809737538 0.0001 

 255 

 256 
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Figure 18: Sensitivity Analysis Results of Impacts Associated with Insulin Dosage Variable Scenarios- US Insulin Use Model 257 
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14.5 Insulin Production Energy- United States Scenario 261 
The Insulin Production Energy variable seeks to assess the impacts associated with different amounts of energy used in the insulin production 262 

process. This assessment does not investigate the impacts associated with a different energy mix. The assessment is confined to the impacts 263 

associated with overall production energy increases or decreases, distributed across a standard mix of electrical, steam and gas energy sources.  264 

Table 20: Insulin Production Energy Variable Sensitivity Results 265 

 

MJ/Functional 
Unit 

Climate Impact (kg CO2 
Equivalent/Functional 
Unit) 

Total Terrestrial 
Acidification Impact 
(kg SO2 eq) 

Total Water 
Consumption Impact 
(m3) 

Health Impact 
(DALY/Functional 
Unit) 

Scenario 1 0.344 41.40858335 0.222064136 0.255872186 0.000101851 

Scenario 2 0.172 41.37664271 0.219957659 0.252930305 0.000101804 

Scenario 3 0.115 41.36599584 0.2192555 0.251949677 0.000101788 

Scenario 4 0.086 41.3606724 0.218904421 0.251459364 0.00010178 

Scenario 5 0.069 41.35747834 0.218693773 0.251165176 0.000101775 

Scenario 6 0.063 41.35534896 0.218553341 0.25096905 0.000101772 

Baseline 0.057 41.35641365 0.218623557 0.251067113 0.000101774 

Scenario 7 0.052 41.35428427 0.218483126 0.250870987 0.000101771 

Scenario 8 0.046 41.35321959 0.21841291 0.250772925 0.000101769 

Scenario 9 0.029 41.35002552 0.218202262 0.250478736 0.000101764 

Scenario 10 0.014 41.3473638 0.218026722 0.25023358 0.00010176 

Scenario 11 0.003 41.34523443 0.21788629 0.250037454 0.000101757 
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Table 21: Total T2d Impact Treatment Results for Insulin Production Energy Variable Sensitivity Analysis. Each Scenario is Assessed in the Context of the US Insulin Use Model. 270 

 

MJ/Functional 
Unit 

Climate Impact (kg CO2 
Equivalent/Functional 
Unit) 

Total Terrestrial 
Acidification Impact 
(kg SO2 eq) 

Total Water 
Consumption Impact 
(m3) 

Health Impact 
(DALY/Functional 
Unit) 

Scenario 1 0.344 34.8521697 0.133440579 3.944805073 0.000100077 

Scenario 2 0.172 34.82022906 0.131334102 3.941863192 0.00010003 

Scenario 3 0.115 34.80958219 0.130631943 3.940882564 0.000100014 

Scenario 4 0.086 34.80425875 0.130280864 3.940392251 0.000100006 

Scenario 5 0.069 34.80106469 0.130070216 3.940098063 0.000100001 

Scenario 6 0.063 34.79893531 0.129929784 3.939901937 0.000099998 

Baseline 0.057 34.8 0.13 3.94 0.0001 

Scenario 7 0.052 34.79787062 0.129859569 3.939803874 0.000099997 

Scenario 8 0.046 34.79680594 0.129789353 3.939705812 0.000099995 

Scenario 9 0.029 34.79361187 0.129578705 3.939411623 0.00009999 

Scenario 10 0.014 34.79095015 0.129403165 3.939166467 0.000099986 

Scenario 11 0.003 34.78882078 0.129262733 3.938970341 0.000099983 

 271 

 272 

 273 
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Figure 19: Sensitivity Analysis Results of Impacts Associated with Insulin Production Energy Variable Scenarios- US Insulin Use Model 275 
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14.6 Metformin Dosage - United States Scenario 280 
The Metformin Dosage variable is designed to assess changes to impacts resulting from different medication dosages of the drug Metformin. As 281 

this is a very widely prescribed medication with patients using a large variety of dosages, this analysis is particularly relevant to this study. The 282 

selected dosage scenarios are the result of conversations with medical doctors regarding frequent dosage amounts their patients receive. Low 283 

dosages are common among newly diagnosed patients and those with high insulin sensitivity. High dosages are common among patients who 284 

have had the disease for some time and/or have reduced insulin sensitivity.  285 

Table 22: Metformin Dosage Variable Impact Results 286 

 mg/Day 
Climate Impact (kg CO2 
Equivalent/Functional 
Unit) 

Total Terrestrial 
Acidification Impact 
(kg SO2 eq) 

Total Water 
Consumption 
Impact (m3) 

Health Impact 
(DALY/Functional Unit) 

Scenario 1 3000 1059.216777 0.144788413 0.162375726 0.000047369 

Scenario 2 2000 706.1445177 0.096525609 0.108250484 3.15794E-05 

Scenario 3 1500 529.6083883 0.072394206 0.081187863 2.36845E-05 

Scenario 4 1200 423.6867106 0.057915365 0.064950291 1.89476E-05 

Scenario 5 1100 388.3794848 0.053089085 0.059537766 1.73686E-05 

Baseline 1000 353.0722589 0.048262804 0.054125242 1.57897E-05 

Scenario 6 900 317.765033 0.043436524 0.048712718 1.42107E-05 

Scenario 7 800 282.4578071 0.038610243 0.043300194 1.26317E-05 

Scenario 8 500 176.5361294 0.024131402 0.027062621 7.89484E-06 

Scenario 9 300 105.9216777 0.014478841 0.016237573 4.7369E-06 

Scenario 10 250 88.26806472 0.012065701 0.013531311 3.94742E-06 

 287 

 288 

 289 

 290 



132 
 

Table 23: Total T2d Impact Results Per Metformin Dosage Variable. Results are calculated by functional unit (assumes 365 days) and in the US Metformin Use Model. 291 

 

mg/Day Climate Impact (kg CO2 
Equivalent/Functional 
Unit) 

Total Terrestrial 
Acidification Impact 
(kg SO2 eq) 

Total Water 
Consumption 
Impact (m3) 

Health Impact 
(DALY/Functional Unit) 

Scenario 1 3000 736.7445181 0.566525609 1.002250484 0.000105579 

Scenario 2 2000 383.6722588 0.518262805 0.948125242 8.97897E-05 

Scenario 3 1500 207.1361294 0.494131402 0.921062621 8.18948E-05 

Scenario 4 1200 101.2144517 0.479652561 0.904825049 7.71579E-05 

Scenario 5 1100 65.9072259 0.474826281 0.899412524 7.55789E-05 

Baseline 1000 30.6 0.47 0.894 0.000074 

Scenario 6 900 -4.7072259 0.46517372 0.888587476 0.000072421 

Scenario 7 800 -40.0144518 0.460347439 0.883174952 0.000070842 

Scenario 8 500 -145.9361295 0.445868598 0.866937379 6.61051E-05 

Scenario 9 300 -216.5505812 0.436216037 0.856112331 6.29472E-05 

Scenario 10 250 -234.2041942 0.433802897 0.853406069 6.21577E-05 
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Figure 20: Sensitivity Analysis Results of Impacts Associated with Metformin Dosage Variable Scenarios- US Metformin Use Model 293 
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14.7 Metformin Production Energy Use - United States 297 
The Metformin Production Energy Use variable seeks to understand the effects of different amounts of energy used in the production process. 298 

Whether or not energy efficiency in the production process offers substantive impacts on the overall impacts of treating T2d. The variable does 299 

not consider changes to the energy mix in the production process, merely to the overall energy input as measured in MJ.  300 

 301 

Table 24: Impacts of Metformin Production Energy Use Variable Scenarios 302 

 

MJ/Functional 
Unit 

Climate Impact (kg CO2 
Equivalent/Functional 
Unit) 

Total Terrestrial 
Acidification Impact 
(kg SO2 eq) 

Total Water 
Consumption 
Impact (m3) 

Health Impact 
(DALY/Functional Unit) 

Scenario 1 496 353.1064342 0.049571415 0.055049415 1.58814E-05 

Scenario 2 248 353.085929 0.048786249 0.054494911 1.58264E-05 

Scenario 3 165 353.0790939 0.048524526 0.054310077 0.000015808 

Scenario 4 124 353.0756764 0.048393665 0.054217659 1.57989E-05 

Scenario 5 99 353.0736259 0.048315149 0.054162209 1.57933E-05 

Scenario 6 91 353.0729424 0.048288977 0.054143726 1.57915E-05 

Baseline 83 353.0722589 0.048262804 0.054125242 1.57897E-05 

Scenario 7 74 353.0715754 0.048236632 0.054106759 1.57878E-05 

Scenario 8 66 353.0708919 0.04821046 0.054088275 0.000015786 

Scenario 9 41 353.0688413 0.048131943 0.054032825 1.57805E-05 

Scenario 10 21 353.0671326 0.048066513 0.053986616 1.57759E-05 

Scenario 11 4 353.0657656 0.048014168 0.053949649 1.57722E-05 

 303 

 304 

 305 
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Table 25: Total T2d Impact Results Per Metformin Production Energy Use Variable. Results are calculated by functional unit (assumes medications for 365 days) and in the US 306 
Metformin Use Model. 307 

 

MJ/Functional 
Unit 

Climate Impact (kg CO2 
Equivalent/Functional 
Unit) 

Total Terrestrial 
Acidification Impact 
(kg SO2 eq) 

Total Water 
Consumption 
Impact (m3) 

Health Impact 
(DALY/Functional Unit) 

Scenario 1 496 30.6341753 0.471308611 0.894924173 7.40917E-05 

Scenario 2 248 30.6136701 0.470523445 0.894369669 7.40367E-05 

Scenario 3 165 30.606835 0.470261722 0.894184835 7.40183E-05 

Scenario 4 124 30.6034175 0.470130861 0.894092417 7.40092E-05 

Scenario 5 99 30.601367 0.470052345 0.894036967 7.40036E-05 

Scenario 6 91 30.6006835 0.470026173 0.894018484 7.40018E-05 

Baseline 83 30.6 0.47 0.894 0.000074 

Scenario 7 74 30.5993165 0.469973828 0.893981517 7.39981E-05 

Scenario 8 66 30.598633 0.469947656 0.893963033 7.39963E-05 

Scenario 9 41 30.5965824 0.469869139 0.893907583 7.39908E-05 

Scenario 10 21 30.5948737 0.469803709 0.893861374 7.39862E-05 

Scenario 11 4 30.5935067 0.469751364 0.893824407 7.39825E-05 

 308 
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Figure 21: Sensitivity Analysis Results of Impacts Associated with Metformin Production Energy Use Variable Scenarios- US Metformin Use Model 309 
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14.8 Insulin Dosage- Sri Lanka 314 
The Insulin Dosage variable is the same as that assessed for the United States Insulin Use model, with the distinction that the dosage variability is 315 

adjusted to reflect estimated dosage variability among Sri Lankan patients. Additionally, the impacts are assessed within the Sri Lankan Insulin 316 

Use model.  317 

Table 26: Impacts of Insulin Dosage Variable Scenarios 318 

 Units/
Day 

Climate Impact (kg CO2 
Equivalent/Functional Unit) 

Total Terrestrial 
Acidification 
Impact (kg SO2 eq) 

Total Water 
Consumption Impact 
(m3) 

Health Impact 
(DALY/Functional Unit) 

Scenario 1 60 21.44175176 0.479266977 0.727943208 5.61E-05 

Scenario 2 50 18.14020688 0.401445809 0.612478311 4.76E-05 

Scenario 3 45 16.48943444 0.362535224 0.554745863 4.34E-05 

Scenario 4 40 14.83866201 0.32362464 0.497013414 3.91E-05 

Scenario 5 35 13.18788957 0.284714055 0.439280966 3.49E-05 

Baseline 34.62 13.06243086 0.281756851 0.4348933 3.46E-05 

Scenario 6 30 11.53711713 0.245803471 0.381548517 3.07E-05 

Scenario 7 25 9.886344695 0.206892886 0.323816069 2.64E-05 

Scenario 8 20 8.235572257 0.167982302 0.26608362 2.22E-05 

Scenario 9 15 6.58479982 0.129071717 0.208351172 1.79E-05 

Scenario 10 10 4.934027382 0.090161133 0.150618723 1.37E-05 

 319 

 320 

 321 

 322 

 323 
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Table 27: T2d overall treatment impacts with variable scenario inputs. These results are per functional unit (assumes daily medication for 365 days) and modeled in the Sri Lanka 324 
Insulin Use model. 325 

 
# 
Units/
Day 

Climate Impact (kg CO2 
Equivalent/Functional Unit) 

Total Terrestrial 
Acidification 
Impact (kg SO2 eq) 

Total Water 
Consumption Impact 
(m3) 

Health Impact 
(DALY/Functional Unit) 

Scenario 1 60 28.9793209 0.517510126 0.896049908 0.0000705 

Scenario 2 50 25.67777602 0.439688958 0.780585011 0.000062 

Scenario 3 45 24.02700358 0.400778373 0.722852563 0.0000578 

Scenario 4 40 22.37623115 0.361867789 0.665120114 0.0000535 

Scenario 5 35 20.72545871 0.322957204 0.607387666 0.0000493 

Baseline 34.62 20.6 0.32 0.603 0.000049 

Scenario 6 30 19.07468627 0.28404662 0.549655217 0.0000451 

Scenario 7 25 17.42391384 0.245136035 0.491922769 0.0000408 

Scenario 8 20 15.7731414 0.206225451 0.43419032 0.0000366 

Scenario 9 15 14.12236896 0.167314866 0.376457872 0.0000323 

Scenario 10 10 12.47159652 0.128404282 0.318725423 0.0000281 

 326 
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Table 28: Sensitivity Analysis Results of Total T2d Impacts Associated with Insulin Dosage Variable Scenarios- Sri Lankan Insulin Use Model 327 
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14.9 Insulin Production Energy Use - Sri Lanka 332 
The Insulin Production Energy Use variable, similar to the Insulin Production Energy Use variable described in the U.S. Insulin Use scenario, is 333 

used to assess the impacts energy use reduction in the insulin production process. These findings may indicate if investments in improved 334 

efficiencies in the production process have a measurable effect on environmental and human health impacts. Energy inputs are measured 335 

overall, and the variable does not account for any fluctuations in the energy mix of the production process. The scenarios are modeled within 336 

the Sri Lanka Insulin Use model.  337 

Table 29: Impacts of Insulin Production Energy Use Sensitivity Analysis- Sri Lankan Model 338 

 
MJ/Functional 
Unit 

Climate Impact (kg CO2 
Equivalent/Functional 
Unit) 

Total Terrestrial 
Acidification Impact 
(kg SO2 eq) 

Total Water 
Consumption 
Impact (m3) 

Health Impact 
(DALY/Functional 
Unit) 

Scenario 1 220 53.41957213 1.527948377 1.308138788 0.000125 

Scenario 2 110 29.20528737 0.780233461 0.784191495 0.0000708 

Scenario 3 73 21.13385912 0.530995156 0.609542397 0.0000527 

Scenario 4 55 17.09814499 0.406376003 0.522217848 0.0000436 

Scenario 5 44 14.67671652 0.331604512 0.469823119 0.0000382 

Scenario 6 40 13.86957369 0.306680681 0.452358209 0.0000364 

Baseline 37 13.06243086 0.281756851 0.4348933 0.0000346 

Scenario 7 33 12.25528804 0.25683302 0.41742839 0.0000328 

Scenario 8 29 11.44814521 0.23190919 0.39996348 0.0000309 

Scenario 9 18 9.026716737 0.157137698 0.347568751 0.0000255 

Scenario 10 9 7.008859674 0.094828122 0.303906476 0.000021 

Scenario 11 1.8 5.394574023 0.044980461 0.268976657 0.0000174 

 339 
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Table 30: T2d Overall Treatment Impacts as affected by Insulin Production Energy Use variable scenarios. The resulting impacts are calculated by functional unit (which assumes 342 
daily medication for 365 days) and according to the Sri Lanka Insulin Use model. 343 

 

MJ/Functional 
Unit 

Climate Impact (kg CO2 
Equivalent/Functional 
Unit) 

Total Terrestrial 
Acidification Impact 
(kg SO2 eq) 

Total Water 
Consumption 
Impact (m3) 

Health Impact 
(DALY/Functional 
Unit) 

Scenario 1 220 60.95714127 1.566191526 1.476245488 0.0001394 

Scenario 2 110 36.74285651 0.81847661 0.952298195 0.0000852 

Scenario 3 73 28.67142826 0.569238305 0.777649097 0.0000671 

Scenario 4 55 24.63571413 0.444619152 0.690324548 0.000058 

Scenario 5 44 22.21428566 0.369847661 0.637929819 0.0000526 

Scenario 6 40 21.40714283 0.34492383 0.620464909 0.0000508 

Baseline 37 20.6 0.32 0.603 0.000049 

Scenario 7 33 19.79285718 0.295076169 0.58553509 0.0000472 

Scenario 8 29 18.98571435 0.270152339 0.56807018 0.0000453 

Scenario 9 18 16.56428588 0.195380847 0.515675451 0.0000399 

Scenario 10 9 14.54642881 0.133071271 0.472013176 0.0000354 

Scenario 11 1.8 12.93214316 0.08322361 0.437083357 0.0000318 
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Figure 22: Sensitivity Analysis Results of Total T2d Impacts Associated with Insulin Production Energy Use Variable Scenarios- Sri Lankan Insulin Use Model 345 
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14.10 Metformin Dosage Sensitivity Analysis- Sri Lanka 350 
The Metformin Dosage variable is designed to assess changes to impacts resulting from different medication dosages of the drug Metformin. As 351 

this is a very widely prescribed medication with patients using a large variety of dosages, this analysis is particularly relevant to this study. The 352 

selected dosage scenarios are the result of conversations with medical doctors regarding frequent dosage amounts their patients receive. Low 353 

dosages are common among newly diagnosed patients and those with high insulin sensitivity. High dosages are common among patients who 354 

have had the disease for some time and/or have reduced insulin sensitivity. This variable is assessed according the Sri Lankan Metformin Use 355 

model.  356 

 357 

Table 31: Impacts of Metformin Dosage Variable Sensitivity Analysis- Sri Lankan Model 358 

 

# mg/Day 
Climate Impact (kg CO2 
Equivalent/Functional 
Unit) 

Total Terrestrial 
Acidification Impact 
(kg SO2 eq) 

Total Water 
Consumption Impact 
(m3) 

Health Impact 
(DALY/Functional 
Unit) 

Scenario 1 250 91.17121962 0.059843092 0.023663 1.68212E-05 

Scenario 2 500 178.8276099 0.061842437 0.035059 1.80562E-05 

Scenario 3 750 266.4840001 0.063841782 0.046456 1.92912E-05 

Scenario 4 1000 354.1403903 0.065841127 0.057853 2.05262E-05 

Scenario 5 1300 459.3280586 0.06824034 0.071529 2.20082E-05 

Baseline 1500 529.4531708 0.069839816 0.080646 2.29962E-05 

Scenario 6 1600 564.5157269 0.070639554 0.085205 2.34902E-05 

Scenario 7 1700 599.578283 0.071439292 0.089764 2.39842E-05 

Scenario 8 2000 704.7659512 0.073838506 0.10344 2.54662E-05 

Scenario 9 2500 880.0787317 0.077837195 0.126233 2.79362E-05 

Scenario 10 3000 1055.391512 0.081835885 0.149027 3.04062E-05 

 359 

 360 
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Table 32: T2d Overall Treatment Impacts as affected by Metformin Dosage variable scenarios. The resulting impacts are calculated by functional unit (which assumes daily 361 
medication for 365 days) and according to the Sri Lanka Metformin Use model. 362 

 

# mg/Day Climate Impact (kg CO2 
Equivalent/Functional 
Unit) 

Total Terrestrial 
Acidification Impact 
(kg SO2 eq) 

Total Water 
Consumption Impact 
(m3) 

Health Impact 
(DALY/Functional 
Unit) 

Scenario 1 250 -431.7019512 0.200003276 0.266017 0.000008825 

Scenario 2 500 -344.0455609 0.202002621 0.277413 0.00001006 

Scenario 3 750 -256.3891707 0.204001966 0.28881 0.000011295 

Scenario 4 1000 -168.7327805 0.206001311 0.300207 0.00001253 

Scenario 5 1300 -63.5451122 0.208400524 0.313883 0.000014012 

Baseline 1500 6.58 0.21 0.323 0.000015 

Scenario 6 1600 41.6425561 0.210799738 0.327559 0.000015494 

Scenario 7 1700 76.7051122 0.211599476 0.332118 0.000015988 

Scenario 8 2000 181.8927804 0.21399869 0.345794 0.00001747 

Scenario 9 2500 357.2055609 0.217997379 0.368587 0.00001994 

Scenario 10 3000 532.5183412 0.221996069 0.391381 0.00002241 

 363 
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Figure 23: Sensitivity Analysis Results of Total T2d Impacts Associated with Metformin Dosage Variable Scenarios- Sri Lankan Metformin Use Model 364 
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14.11 Metformin Production Energy- Sri Lanka 368 
The Metformin Production Energy Use variable seeks to understand the effects of different amounts of energy used in the production process. 369 

Whether or not energy efficiency in the production process offers substantive impacts on the overall impacts of treating T2d. The variable does 370 

not consider changes to the energy mix in the production process, merely to the overall energy input as measured in MJ. This variable is 371 

considered in the context of the Sri Lankan Metformin Use model.  372 

 373 

Table 33: Impacts of Metformin Production Energy Use Variable Sensitivity Analysis- Sri Lankan Model 374 

 MJ/Functional Unit 
Climate Impact (kg CO2 
Equivalent/Functional 
Unit) 

Total Terrestrial 
Acidification Impact 
(kg SO2 eq) 

Total Water 
Consumption 
Impact (m3) 

Health Impact 
(DALY/Functional 
Unit) 

Scenario 1 496 6.631263 0.211962916 0.324386 1.51377E-05 

Scenario 2 248 6.6005052 0.210785166 0.323555 1.50551E-05 

Scenario 3 165 6.5902526 0.210392583 0.323277 1.50275E-05 

Scenario 4 124 6.5851263 0.210196292 0.323139 1.50138E-05 

Scenario 5 99 6.5820505 0.210078517 0.323056 1.50055E-05 

Scenario 6 91 6.5810252 0.210039258 0.323028 1.50028E-05 

Baseline 83 6.58 0.21 0.323 0.000015 

Scenario 7 74 6.5789747 0.209960742 0.322972 1.49973E-05 

Scenario 8 66 6.5779495 0.209921483 0.322945 1.49945E-05 

Scenario 9 41 6.5748737 0.209803708 0.322862 1.49862E-05 

Scenario 10 21 6.5723105 0.209705563 0.322792 1.49794E-05 

Scenario 11 4 6.57026 0.209627046 0.322737 1.49739E-05 

 375 

 376 

 377 

 378 
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Table 34: T2d Overall Treatment Impacts as affected by Metformin Production Energy Use variable scenarios. The resulting impacts are calculated by functional unit (which 379 
assumes daily medication for 365 days) and according to the Sri Lanka Metformin Use model 380 

 MJ/Functional Unit 
Climate Impact (kg CO2 
Equivalent/Functional 
Unit) 

Total Terrestrial 
Acidification Impact 
(kg SO2 eq) 

Total Water 
Consumption 
Impact (m3) 

Health Impact 
(DALY/Functional 
Unit) 

Scenario 1 496 6.631263 0.211962916 0.324386 1.51377E-05 

Scenario 2 248 6.6005052 0.210785166 0.323555 1.50551E-05 

Scenario 3 165 6.5902526 0.210392583 0.323277 1.50275E-05 

Scenario 4 124 6.5851263 0.210196292 0.323139 1.50138E-05 

Scenario 5 99 6.5820505 0.210078517 0.323056 1.50055E-05 

Scenario 6 91 6.5810252 0.210039258 0.323028 1.50028E-05 

Baseline 83 6.58 0.21 0.323 0.000015 

Scenario 7 74 6.5789747 0.209960742 0.322972 1.49973E-05 

Scenario 8 66 6.5779495 0.209921483 0.322945 1.49945E-05 

Scenario 9 41 6.5748737 0.209803708 0.322862 1.49862E-05 

Scenario 10 21 6.5723105 0.209705563 0.322792 1.49794E-05 

Scenario 11 4 6.57026 0.209627046 0.322737 1.49739E-05 

 381 

 382 
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Figure 24: Sensitivity Analysis Results of Total T2d Impacts Associated with Metformin Production Energy Use Variable Scenarios- Sri Lankan Metformin Use Model 383 
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