AAEL

TH 1095 . B 37 1978

TORSION IN BUILDINGS SUBJECTED TO EARTHQUAKES

Martin E. Batts
Glen V. Berg
Robert D. Hanson

The University of Michigan Department of Civil Engineering

FY
Martin E. Batts
Glen v. Eery
Robert [. Hanson

Heport on Fesearch Supported by the Sational Science Ecundation, Grants
AEN E-00G30 and ENV 75-822.09. and The University of Michigan

sepurt UMEE $78 \mathrm{B4}$
Department of Civil Engineering
The University of Michigar
Ann arbor, Michigan 48109

AESTEACI

It is now well known that for cuildings wita eccentric Centelis of auss and stiffness, there is a dynaiaic amelifiaaricn of torque and a dynamic reduction in building shear. The main concern with building torsion is that the eccentricity induces a rotaticnal motion whose contribution to tie aisplacement at the feriphery causes an increased a seiduadent ountared to the displacement correspowding to zero eccentricity. Other researchers have raported for a siny feripheral resfonse.

Ii tinis dissertation, the prcabilistic approach is seiectei for tie analysis ce linear response. The edrthyidie ground excitaticn is discussed and a sinple expression reiating torsional eartbquake power spectra to trafsiationd earthyuake fcter seectra is developed. Interaction relatious are derived Eor systems with siaultaneous X, \varnothing, and Y grcund excitations.

Th= peripheral resfonse is studied using the probainilistic aproach. It is shown that a special case arises where tae feripheral resfonse is independent of the eccentriciti ratio and frequency ratio.

The state of the art of artificial accelerogram generation 15 discussed. Various parameters affecting Ground rotational motion are discussed.

Noulinear response characteristics for a four exterior wall madel are analized and it is concluded that parametric
resonance is not a preda an for this model.
liajur こonclusions ir om the results of this dissertation inciude the following: a) the axamum expected increase in perifheral response is on the crder of 50% b) the single most. impurrant parameter in building torsion is the tursiontransiation frequency ratio, and c) torsional ground excitation aust be quite large before it significantly afeects the zesponse for systems with well separated Eréy ueto

This report was subinitted $k y$ ir. Batts to The Oniversity of yicirigan iii factial fulfillatnt of the requirements for the legree of Doctor of philcsophy (Civil Engineering). proressors blan v. Bery and Robert D. Hanson provided guiuance and assistance throughout this investigdtion as charmen sif tia doctoral comittee. The anthors would like tu Enagk abutessors frank E. Richart.jr. and Pichard A. Scotr (avadars of the dcctcral comirtee) for reviewing the regurt adi oftering helfful suggestions.

This investigation was surforted by The university of Michigan and astional Sciance foundation Grants aen 74-00930 and Eivi 7ó-3 20 y. The conclusicns arrived at in this paper are solely those of the author and do not necessarily represent the views of any cf the sponsors.
page
ACKNOWLEDGEMENTS ii
NCTATION iv
LIST OF FIGחEES. vii
CHAPTEA
I. Introdjctich 1
 12
 43
IV. yontiveda respovse hodel 72
V. VONLIMEAE EESPMYE EESULTS 81
VI. STJAMAEY AMD CONCLTSIONS. 104
ADREMDIK A 108
ARPENDI? 5 112
APPENDIX C 116
APPENDIX D 119
APPENDIR ב 122
APPENDIX P 141
REFBRENCES 144
$\left\{a_{n j}\right\}$... mode shape
[a]...ảtriz of eigenvectors
A...constant
$B, B_{x}{ }^{E} y$..builaing dimensions
$B_{i}{ }^{B_{j}} \ldots$...fraction critical damping in itin and jth modes
C...period factor
$C_{\text {s. }} .$. shadr wave speed in rock
$\{C\}$...こonstants
D...complex constant

Diç....̉issipated hysteretic energy
DNaE...Jissipated nouhysteretic energy
$\left\{D_{j}\right\}$.... mode sampe
EIE...earthquake input energy
Eym...iistance Erof center of wass to building exterior
$E_{i j} \ldots$...onstant
$\mathrm{E}_{\mathrm{X}} \mathrm{E}_{\mathrm{Y}} \ldots$..eccentricities
F, ${ }_{e}, F_{g}$....Frequancies, cps

$G_{Y_{m}}{ }^{2}(\omega), G_{Z}{ }^{2}(\omega)$... power spectra
$G(t) . .$. Eunction in t
$H_{Y_{m}}(\omega) .$. complax frequency response function
日 (t)...Ieavisiła unit step function
I... use factor
$I(t)$....intensity function
I a...Arias intensity
$K_{x}, K_{y} \ldots$... building stiffness in X and q direction
$K_{X 1}{ }^{\prime} K_{y l}$..elemant stiffness in Z and Z direction
K_{\varnothing}. ..rotational stiffness
M....mass

MPF m ... modal participation factor for mob mode
M....ith moment of power spectrum abcut origin
M...number of aqcles
P_{mn}.... \quad orrelation coefficient
Q...maxiqual of $\mathfrak{i}(t)$
B....radius of gyration of building mass
$R_{\ddot{z}_{X}}(\tau)$...autocorrelation function of $\ddot{z}_{X}(t)$
S...soil Eactor
$\mathrm{S}_{\mathrm{v}}(山) \cdot .$. response spectrun
SI...Housner's spectral intensity
T, Tx...period
T...toriue
0_{p}...displazement response cf pcint P
U.V....jround motiou in Cartesian coordinates corresponding to X-Airection and Y-direction
\bar{V}_{x}, \bar{V}_{y}....shear force in X and Y direction for coupled system $U_{g x}$. Ugy \cdot. ground displacements in X and I direction
$0_{X} J_{y} .$. responsa displacements in X and Y direction
w... weight
$X_{i}, Y_{i} \ldots$ distancas from center of mass to stiffness element
$Y_{m}(t) \ldots$ mth modal response
$I_{p x} Y_{p \phi} I_{p y} \cdots$..nadal responses of point $?$
z...zone factor

a... constant
c...constant
g....gravity
$h(t)$...inpulse response Eunction
i... $\neg /-1$
s...duration or accelerogram
t'...constant
$\alpha \cdot \beta \cdot . . \approx \partial$ nstants
γ...constant
o e...measure of spread of power spectrum
$\delta_{y} \cdot \cdots i=1 d$ displacement
ع...constant
$\theta \ldots$...anyle
λ....wavelengtin
$\xi \cdot .$. building size to wavelength ratio
o...varianca
T...transit timə and lag time in autocorrelation function
ϕ...ground rotation
w...fraguenci
$\omega_{i} \cdot \omega_{j} \ldots$....ith and jth modal Erequencies
$\omega_{\text {di }} \omega_{d j}$... dampad modal frequencies
Tigure 1 … 1 Iypical yoment Erame fysteresis 9
Figure 1－2 Iq̣ical Braced Frame Hysrezesis 9
Figure 13 Tppical Shear vall tysteresis \bigcirc
Figure 2． 1 Jeformation Spectrm for Elastoolastio 23
Figure 22 orobability כistribution for Extreme anc Lia（62）］ 25
 28
Fiqure 2－t Eiastic Earthquake raves 33
Tiquer 2.5 surface dzve Motion 35

Neqlertisy zackscaーニe＝in？ 37
Pigure 2－7 effect of Transit Time in Averagira 39
Eiqure 2•3 effect of Transit rime on Fesonnse．．． 41
Piguze 3－1 SE＝uc＝urai Systens． 45
Zigure 3－2 Exaaple Builaiaq Layout 46
Fiqure 3x 3 Examole Builaing and Coupled fodes［aiapteg from heideb＝ectr（2e）］． 00
Pigure $3-4$ Eramole Dasign pasponse Spectram． E2
Figure 3．5 Force Enteraction for X GrourdExciさa＝iononly and flat acceleration Spectrum $\left(E_{X} / E=0, \omega_{Y} / \omega_{X}=1\right)$63
Pigure 3－6 Force Interaction fo＝ϕ Ground Excitation
Only and Flat acceleration Spectrum $\left(\Sigma x_{x} / \Sigma=0, \omega_{y} / \omega_{x}=1\right)$ 6.5
Figure 3－7 Force Interaction Foz Uncorrelated Ground Excitations 円ith Plat accelera＝ion spectra $\left(E_{X} / E=0, \omega_{Y^{\prime}}^{\prime} \omega_{X}=1\right)$ 66
Pigure $3-3$ Effect of Ground gotation 70
Piqure 4＊ 1 Building Model 74
Pigure 4．2 ：Ulutibap 3uilaina 75
Fiqure $4-3$ Bilinear Iield Envelode 79
アiqure 5×1 Artificiai Accelerogram Data． 82
Figure 5～2 Accelerog＝an 1. 84
Piaure 5－3 Acceleroazam 2 85
Fiaure 5：4 locelerograil ？ 36
Figure $5 \cdot 5$ accelerog＝an \downarrow ． 87
تiqu＝e 5－5 acceleroa＝an 5. 33
Figure 5．07 Disulacements and guctilities ofCenter of Mass
$\left.\left(Y^{\prime}\right)(\underline{n} \cdot a)=1 / 2\right)$ 9.Fianたe ラーか Periphural Jisolacoments ari92
Fiqure 5－9 Displacerents and Ductilities of
Center of Mass
$\left.{ }^{(F} y^{\prime}(u \bullet q)=1 / 4\right)$ 93
Piqure 5－10 periphe＝al Displacemen＝s and
Ductilities $\left(F_{y} /(n \cdot q)=1 / 4\right)$ 94
Giqure j－11 Displacements and Ductilities ofCenter of hass$\left(F_{y} /(X \cdot q)=1 / 3\right)$95
Figure 5． 12 Peripheral Displacements and
Ductilities $(\bar{y} /(Y \cdot \mathcal{F})=1 / 8)$ ． 97
Figure 5－13 JneEg7 Dartition（ $\mathrm{F}_{\mathrm{y}} /(\mathrm{M} \cdot \mathrm{q})=1 / 2$ ） 99
Figare 5－14 Pnergy partition $(\underline{y} /(\mathrm{y} \cdot \mathrm{g})=1 / 4)$ 100
Piqure 5． 15 Energy Partition $\left(F_{y} /(\operatorname{li} \cdot g)=1 / B\right)$ 101
Figuze 5－16 StEength Fatio versus Ductility． 102
Fiaure A－1 111

Qigure f-1 Dynamic odel 142

CHAPTEF I

INTRODOCTION

according to Herodotus, hen Xerxes was planning the second Persian experition aqainst the Greeks in 480 B. C., a briage built for the crossing a^{\star} Rellesoont by his Phoenician and Eqyptian engineers was destroyed by a storm. The engineers were beheadeत and the waters of Hellespont received three hundred lashes(1).

In ancient Mesodotamia, the Code of Hammurabi contained the first building code. Its design philosophy was to prescribe the punishment for a failed building, one of which was the death of the builder(2).
as time passed, society became less barbaric and building became more scientific.

While there is no written historical evidence the Egpotians had knowledge of a theory of steqctural behavior, their immense and precise civil engineering works suggest theq derised empirical rules in their building. The Greeks contribution to structural theory pas by aristotle (384-322 B.C.). and by Archimedes (287-212 B.C.) yho formulated the equilibrium principle of statics. The Romans, while profuse builders, designed their structures empirically. The middle Ages, as is typical of the period, seems deroid of much civil engineering progress. although a few of the

Penaissance's versatile scientists, Da Vinci and Galileo. discussed structural behavior in their publications, it was not until the 18 h h century, the $A g e$ of Peason, that the basis $\tilde{f} 0 r$ the modern theory of mechanics of solids was established by Hooke, the Pernoulli's. Euler, LaGrange, Couloumb, and Navier. The establishment of the theory chanqed tie emphasis of design from empirical observations on strength to a scientific elastic analysis of stresses and strains(3).

Dedicating a bridge, Franklin Delano Roosevelt once remarked that b=idge building is the story of cirilization. It surely is the story of civil engineering. sineteenth century bridge failures had a profound effect on the course of the civil engineering profession. In 1876, a Howe truss bridge at Ashtabula, ohio, collapsed, killing ninety persons. It had been erected by a non-engineer, uho also had modified its design. Legislation followina the catastrophe required that the design and construction of bridqes be directed by professional engineers(4).

Zhile infamous bridge failures in wind in the 1800's brought about studies and design rules for wind bracing, it took the great San Francisco Earthquake of 1906 to spur the profession to studies of earthquake resistant design, resulting in the first American building code for earthquake design Iules, namely the Santa Barbara code of 1925(5).

Many studies of earthquake resistant design center on inelastic response. The present design philosophy that
structures be able to withstand a large earthquake while allowing structaral damage is based in part on economics and the concept of limit design, introduced by Eousner(6). The principle of liait design is to allow the structure to dissipate energy hysteretically, ghich results in a ductility demand design requirement.

Ductile moment frame buildings are jypically systems of orthogonal plane frames couplea throuqh floor diaphraqms. Por two-dimensional analysis, the plane frames can be analyzed separately. The bysteretic energy dissipation for a moment frame takes place through olastic hinging of the meabers yhen yield moment capacity is exceeded. The simplest model for such plastic hinging is the elasto-plastic model. The elasto-plastic model nas used by Berg (7) in the inelastic analyses of plane frames and also by Newmark (8). The next refinement in the analysis was the use of the bilinear model. This model was employed by Clouqh (9). Iuan (10), and Giberson (11) to mention a few. Since the moment curvature relation for typical members was not multilinear but curvilinear, the next refinement included the Eamberg-osgood model (12) utilized by Jennings (13), Goel (14), and Kaldiian (15).

Suggested analytical models for the bysteretic behaviour of shear walls have been used fith some success (16 17). Extensive experimental data also exists on the hysteresis behaviour of reinforced concrete flexural members and the parameters affecting it; hovever, no generally accepted
modeling technique exists.
Many special purpose computer programs exist for inelastic dynamic plane frame analysis: one widely used general purpose computer program for this purpose is DRAIN2D by Ranaan and powell (18).

The levelopment of the computer and the increased size of computer core space spurred the development and use of space frame elastic oroqrams. A space frame elastic dynamic analysis program, tabs, developed by hilson (19) economically utilizes the planar structure of space Erames; however, it computes column axial strains that are not compatible in columns common to orthogonal plane frames. In the course of the space program, the rational Aeronautics and Space Administration developed a three-dimensional elastic dynamic analysis computer prograng Nastrag(zo). Other public general purpose space frame programs developed are $S A P-I \nabla(21)$ and STRDDi (z2).

Three dimensional elastic dynamic compater programs are expensive to use since each joint has six degrees of freedom, requiring a large amount of computer time in matrix manipulation. Simplifying techniques bave been employed with some success to shon the gross structural response.

Early studies (23) of building torsion have shown that the lateral and torsional motions of the structure are coupled if there exists an eccentricity betyeen the centers of mass and stiffness of the structure. For small eccentricities the usual method of analysis consisted of
computing the static torque, the product of the building shear and the eccentricity. Many studies (24 25) have shown that the dynamic torque may considerably exceed this product. Most of these studies have shovn that a reduction in the horizontal builaing shear usually occurs along with this dynamic amplification of torque.

Hoerner (26) did a study of modal coupling, meaning a coupling between the two translational and one rotational degrees of freedor such that each mode may contain a component of all three deqrees of freedon- Hoerner's stady showed that the amount of modal coupling is related to the eccentricity between the center of mass and the center of stiffness divided by the translational-torsional frequency difference. This is confirmed by forced vibration tests (27).

Heidebrecht (28) used modal analysis with the frames and shear walls modeled as prismatic shear and bending beams respectively. $\begin{aligned} & \text { ith } \\ & \text { a }\end{aligned}$ differential equations of wotion, he developed nomographs to determine the higher coupled frequencies.

Berg (29) also used modal analysis in a study of a cantilever shear bear model to show the effect of unspmmetric setbacks. \quad is study showed that torsional oscillations occur and mode shapes are coupled for unsymmetric setbacks.

Tso (30) showed that when a symetric building with no eccentricity, i.e. uncoupled, is excited in only one
direction, torsional response can arise frow the nonlinear coapling between translational and torsional motions, known as parametric resonance.

The final refinement in analysis techniques is the modeling of buildings as inelastic space frames. Okada (31) modeled a one story building as a space frame to show the increased corner damage due to high eccentricity. pảillaYora (32) used a four frame shear building as a model to show the effect common column orthogonal strongth interaction has on hysteretic dissipated energy.

Shiga (33) developed a special purpose three-dimensional inelastic dynamic response computer program for the analysis of a building damaged by the 1968 Tokachi-0ki earthquake. The results correlated with the darage.

Mondkar et al (34) have developed a general parpose inelastic three-dimensional dynamic finite element computer program. ANSR, which is an extension of DRAIN2D (28). It is very expensive to utilize.

There have been many attempts to model a building as a beam (35). For some parposes this technique gives the desired result. $P o r$ elastic analyses it is difficult, if not impossible, ± 0 match both the higher frequencies and mode shapes. For a typical N-story bailding the beam model's parameters can be adjusted such that the v frequencies vill match the actual building's frequencies, but then the mode shapes may not match (and vice versa). Por inelastic analyses where higher modes may not be as important, a beam
model cannot simulate the strength interaction of colums common to orthoqonal frames. also, it cannot model the effects of unsymmetrical strenath (as opposed to stiffness) in parallel frames. These problems can be avoided by modeling the individual frames as beams, but this creates new problems. For the shear beam model, a change in stiffness at the $I t h$ level changes the stiffness matrix coefficients at the (I-1). (I) and (I+1) rows and columas. For a moment frame, a change in stiffoess in a nember at the Ith level chanqes all the coefficients in the lateral stiffness matrix. This proble⿴ can also be circumpented by modeling the frame as a bending beam instead of a shear beam: however, the frame's dqnamic characteristics are more like a shear bean than a bending beam. Some attempted remedies consist of using Timoshenko beams and series or parallel beams; yet, the modeling of a building as a beam raises more objections than the benefits of economics of the model can justify.

Another modeling technique can be used for 1-story buildings and buildings being analyzed in their fundamental mode only. Kan and Chopra (36) did an exhaustive study of the parameters affecting the torsional response of linear one story buildings. For inelastic behaviour, the single resisting element or generalized coorinate stiffness for multidegrae of freedor systems analyzed only in the fundamental mode, can be assigned a hysteresis loop based on theoretical or experimental information depending on the
type of building. For example, in a steel moment frame building a bilinear or Ramberg-Osgood type hysteresis would be appropriate (Fig. 1-1). A symmetrically braced frame type hysteresis, illustrated in Fig. 1-2, exhibits the slip type shape characteristic of bolted frames. A shear wall resisting element differs from moment frame hysteresis in that it is usually of the degrading type. The shear wall type hysteresis is illustrated in Fig. 1-3 and is characterized by the pinched shape near the origin.

A more rigorous method for modeling inelastic building motion is by the member by member approach. Here the matrix structural analysis technique is used with the alobal stiffness matrix being altered in time as each member changes stiffness in time. There are different types of hysteresis behavior for different resisting element members as described above.

A bifurcation of analysis methods arises in the choice of time domain versus frequency domain analysis. The choice partially rests on the philosophy of the analyst. Time series analysis is generally more expensive and statistically more variant than frequency domain analysis which gives the expected maximum (37) as opposef to a maximum of a member of an ensemble of ergodic processes. Por inelastic response, frequency domain analysis cannot be applied ithout using some approximate technique since the complex frequency response function is time dependent.

At the present time there is no generally accepted method

for determining by spectral analysis the statistical parameters of response for a stochastically excited nonlinear hysteretic system. The Pokker-Planck equation approach for nonlinear systeus, which involves the solution of a partial differential equation involving the joint probability of displacement, velocity, and time, is not apolicable for either nonwhite excitation (38) or hysteretic systems. Equivalent linearization techniques (39), where minimization of the mean squared error is used in finding a statistically equivalent linear stiffness and damping coefficient, is limited to either bilinear systems with nearly equal sloves or systems with small nonlinearities or silall ductilities (40).

Probably the most reliable method of studying the response of inelastic hysteretic three-dimensionalstructures is by monte-Carlo methods. Statistical parameters can be determined by analyzing an ensemble of time series analyses of structural response to ergodic excitations. The Monte-Carlo methods will be used in this thesis. Chapter II recounts the state of the art in artificial accelerogram generation, its underlying processes, and the parameters affecting it. Ground rotational motion is also described and discussed. Chapter III describes the elastic torsional response of buildings using as the foundation the excitations described in Chapter II. The torsional response is analyzed in the frequency domain. Chapter IV describes the model used in the
inelastic study and the solution technique used to analyze the response. Chapter ∇ lists the results for the inelastic studies and discusses the nonlinear response characteristics.

CHAPTER II

DESCRIPTION OP EARTHQUAKE

 EXCITATIONObservations of geologists and current thinking on the origin of the earth make it evident that earthquakes have been occurring for at least hundreds of willions of years.

Earl? historical and biblical references to earchquakes occur as far back as 1600 3.C. (43). Historical speculation as to the causes of earthquakes has bases in legend, aytholoay, science, astrology and religion.

Aristotle believed that earthquakes mere caused by subterranean yinds produced by an evaporation of goisture imprisoned in the earth's crust. Pliny, a Boman philosopher, later expanded on aristotle's belief, writing that earthquakes yere earth's way of punishing the wickedness of men who mine ores of gold, silver and iron, a theme repeated in variation in different cultures around the worli.

Zoomorphic qualities are assigned to earthquakes in the legends of many cultures and countries. In Japan, it uas thought there was a giant subterranean spider who cansed the earth to shake when he moved. In India the mythical monster was a mole; in Mongolia, a hog; and in North America a tortoise (44). A BSSA account of the 1811 New Madrid. Missouri earthquake(45) tells of a legend claiming that
earthquake to be caused by a horned comet colliłina aith the earth.

Scandinavian mythology reqarding earthquakes concerned the peccadillos of deities. Indian lore contains seven myths concerning earthquake sources. Fascinating accounts of causes of earthquakes abound in the mythologies of various cultures.

Gods of earthquakes are referref to in various mytholoqies. A common theme in the beliefs of different cultures reqards the earthquake as divine punishment visited upon a wicked people. with time natural explanations of earthquakes mere expounded and received to varying degrees. In an article in the esteemed philosophic Transactions of the foyal Society of London in 1750 , a writer in his foreword apologized to "those who are apt to be offended at any attempts to give a natural account of earthquakes." As late as 1930, according to naspaper reports (London Times, July 28, 1930), the Archbishop of Naples referred to the Italian eartbquake of July 23. 1930 as God's vengeance visited upon an imoral people.

Historical legends and myths are fascinating to read. The evolution of scientific thought is another interesting and related aspect of earthquakes important to the understanding of tro geophysical topics, namely, the mechanism and underlying causes of earthquakes. The currently accepted predominant earthquake mechanism, the Elastic Rebound theory, was proposed in 1908 by garry

Fielding geid and andrey Layson. They were faced uith charges of "mysticism" since they presented the mechanism but not the underlying causes of the earthquakes. The Elastic Rebound Theory postulates a slow accumalation of strain along the fault until rupture occurs. The fault then rebounds to a new equilibrium position radiating shock waves outward.

Much speculation concerns the underlying cause of the slow accumulation of strains necessary to the plastic Rebound mechanism. A prevalent theory of the $19 t h$ century was that earthquakes were caused by contraction of the earth by cooling. Most theories on the origin of the earth assume it has cooled from a molten mass. The cooling of the earth through qeologic time has solidified the earth down to the molten core, wose existence is theorized by its inability to transmit seismic shear waves. Yet, the surficial layer of the earth is not changing in temperature and therefore is not changing in volume. The crust thus becomes too large to fit the shrinking layers beneath it, resulting in the folding and faulting of crustal diastrophism. The anjor criticism of the contraction theory is that the folding of the crust and its associated mountain building process should be more widely distributed over the earth's surface.

The isostatic principle has been called into play by Other theories. Experiments have shomn that a plamb bob does not deflect towards a mountain as it qould if the mountain were merely an added wass on the surface. The theory of
isostasy states that at some depth beneath the surface, all columns of the earth's crust are made up of lighter rocks floating on a layer of heavier rocks requiring that mountains have deep roots consisting of these liqhter rocks. Accompanying the process of mountain erosion is the reverse plastic flow of rocks beneath it.

Another popular theory regarding the underlying carse is the convection theory. The convection theory presunes, by various causes, temperature differences in the mantle. As a result, convection currents develop similar to those in the atmosphere. The horizontal current near the surface vould drag the crust with it. at points of rising convection currents, crustal stretching occurs, resulting in grabens and normal (tension) fault planes. At points of descending convection currents crustal compression results in mountain building and thrust (compression) fault planes. The general criticism of this theory is that it requires cyclical changes in temperature of the earth, whereas large systems such as the earth tend to thermal equilibrium.

Brief mention should also be made of the magmatic theory. This theory requires thermal changes in the earth's crust, bringing about magmatic differentiation and plastic flow of rock.

The theory of continental drift currently enjoys the wost widespread support in the scientific community. The original proponent of the theory was alfred Vegener (46). as many a grade schooler has observed, the continents of South

America and Africa fit together like pieces of a puzzle. Currrent thinking on the continental drift theory views the earth's surface as having once consisted of one large supercontinent called the Panqaea. Recent researchers in paleomagnetisa have reconstructed the panqaea by analyzing the change in orientation of land asses by studying the airection of the magnetic field of nev rocks (lava) in time (47). As stated, the continental drift theory is now viewed as the most probable source for the slou accumulation of strain required by the Elastic Rebound Theory.

Thatever the nature of the source of earthquakes, the earthquake succussatory ground motion causes distress in civil engineering structures. To understand the effect on structures it is necessary to know the nature of the ground motions. For elastic structures the usual analysis method is by response spectra. Techniques have been developed to obtain the expected response spectra by the statistics of oscillator response (37). Other methods have been used to obtain plausible "design spectra" (48). These methods have their roots in the statistics of stationary stochastic processes, i.e. random vibration theory. although earthquakes are obviously nonstationary, stadies have shown that for linear systems. nonstationarity has little effect on the expected response. \quad movever, for inelastic systems, the response is sometimes sensitive to the time variation of the energy of the motion(49). Thus for inelastic systems, yonte-Carlo methods of analysis are desirable. This in tarn
requires families or ensembles of stochastically similar ground motions.

Ensembles of "similar" stronq motion accelerograms do not exist. In fact, the occurrence of large earthquakes is modeled statistically as a poisson process, a model for rare events. Thus the need for data creates a need for mathematical modeling of earthquake ground motion.

For low frequencies and epicentral distances larqe relatiqe to the source dimension, earthatuak sources may be approximated by point sources. The assumed force field must be in equilibriun both before and after the earthquake. One such point source meeting the criteria is the double conple. It consists of two couples of opposite sign 90° out of phase. For a pure shear rebound phenomenon in the loy frequency limit, the equivalent point source is a double couple (so). The scale parameter of the double couple is the seismic moment necessary for the assmed source to be in equilibrium. It can be related to the fault dimension and averaqe fault slip.

The enerqy relaased in an earthquake for an elastic rebound phenomenon comes from stored elastic energy. The eneray is released in the form of frictional heat from the fault slip and as seismic waves. Various mathematical models exist relating the released energy to the faqlt area, average displacement, and average stress drop over the fault. The stress drop in turn can be related to the fault displacement and geometry. Estimates of maximum ground
zccelerzion can be mate using the aforeaentioned parmmeters. Some disagreement centers on tio aazimum near source accaleration. For Erequencies less than 10 az, Srune(s0) calculazes che maximum accelera-ion as being in the neighbozhood of $2 g . \quad$ The maximum ground acceleration recorded to date is 1.25 f for the 1971 Pacoira Dar acceleroqram of the San Feznando earthquake (51). Pealistically soeaking though, in speci气ying a maximam ground acceleration, the probability of its occurrence must be taken in=0 account, i.e. similar $=0$ many iesign code philosophies, the maximum acceleration should be relatea to aean recuraence intervals (return periods). curaen= oroposed codes contain a design maximua ground acceleration of 0.4 g .

Another quantity necessary for the stochastic fescription of qrount motion is the oreiominant frequency, the Erequency at the peak of the power spectaum. The predominant frequency near the fault is the subiect of current research by seismologists and is not well understood. Among the parame:eェs =elated to the oredominant frequency are =he crack oropagation velocity, Eault geometry, faulr size, rock strength, topography, and fault breakout. The site pretominant feequency is altered by the local geology. The effect of local qeoloqic structure is similar to passing the mo-ion throngh a filter with appropriate frequency and damping characteristics. Vonhomogeneity of the teansimission medina, multiole reflection and refraction, and sometimes
focusing, cause \mathfrak{z} wiening of the band width in the rear Eielz for earthquake ground motion. Because of this and the shape of power spectra of actual recorded ground motions, stochastic modeliing of around motion has become popular.

Jifferent types of artificial earthquake ground motion can be generated accozding to observed peculiar characteristics. Jeaningset al. (s2) qenerated artificial accolezoazans =o =eoresent fou= diEferont =ypes oE ground moこion on fiza soil. Newmazk ara $\begin{aligned} \text { a osenbluerín (41) classify }\end{aligned}$ earthquakes into four broaler qroups: 1) practically a sinule shock near the epicenter of a shallow ea=thauake, 2) long, wide band strond ground morion on firn soil simila= =o the 194才 $X S$ El Centro record, 3) ionq, anrow band motion on Soft soil, and 4) lãqe scale permanere deformations with Dossible lanतsliaes or soil liquefaction.

The Eirst type can be analyzed deterministically, using similaz recorded ground motion.

The third kind of ground motion can be obtained by filtering the seconi type.

Tie fourth tyoe will not ce dealt with here.
The secona type is the gajor concern of this thesis. Actual =ecords of this type are more prevalent than other types. Since it is a wide band process, white noise has been user to represent it. Due to its ranam appearance, communica=ions =heory offers many cools to stady its probabilistic nature.

Housner (53), Bycroft (54), and Rosenbluech (55), arong
others, modeled ground motion of this type as stationary white noise of liaited duration by superposition of randomly arriving short duration pulses with randon frequency and amplitude.

The arerage of Fourier amplitude spectra of existing strong ground motion accelerograms shows that the spectra are not white noise but rather are like a broad band process that damps out with higher frequencies. This suggests filtering white noise with appropriate filter characteristics to match the power spectra. Kanai (ss) and Tajimi (57) suggested that the transfer function for total response acceleration be selected with filter properties Which match the broad band nature of actual accelerogram spectra. The total acceleration transfer function filter will amplify those frequencies near the filter natural frequency and attenuate the bigher frequencies. Singularities occur at zero frequency for velocity and displacement. Jennings, Housner, and Tsai (s2) used a high pass filter for response displacement to attenuate these very loy frequencies. This eliminates the problem since it causes the pover at zero frequency to be zero. The average of many accelerogram power spectra fits closely this filtered white noise spectra.

The next refinement was to simulate the nonstationarity of actual accelerograms. The usual procedure is to ase an envelope function to vary the intensity of the process. The nonstationary process uses the product of the stationary
stochastic ororess and the iexozministic onvelooe function． Several types oz envelope Euncrions have been used． Jenainas et al．（52）seoarated it into an initial parabolic phase，a cons＝an＝st＝ong ao＝ion paaミe，and a decayiag tail． The parameters for this intensity function are chosen to match the intensity or yariance of actual accelerograms． Go： 0 and Toki（58）used a transceniental intensiey function of the tion

$$
I(=)=a \cdot(=/ \div 1) \cdot e x p[(-1-t) \nmid+1] \cdot a(幺) \quad 2.1
$$

 time of peak $I(t)$ ，and the Heavisine unit stop function． Koopmans e＝al．（59）used a＝こanscenderial iñersizq Euncsion of the shape

$$
I(t)=a \cdot[\exp (-\alpha \tau)-\exp (-\beta+)] \quad 2.2
$$

Where a, α, and β are constants．
Another step in the refinement of artificial accelerourans is the use of Berg and dousner＇s（so）baseline correction．Ihis procedure miniaizes the mean sạure velocity in order to remove excessively large around Aisplacements．

The necessity for including the nonstationarity in the artificial acceleroframs is dotermined by its effect on the respunse．Amin，tsao，and Ang（99），Koopmanset al．（59）and Shinozuka and sato（si），among others have studied this effect．The theoretical information contained in extreme
value theory is very helpful in separating the effects of yarious parameters of the expected response. also the =elation of the variance with time for nonstationary orocesses resulting from zero initial conditions is necessa=y to understandinq these effects.

The stuly of amin et al.(49) reported the deformation spectra of elastoplastic systems (2\% damping) using a s-aこiona=y zocitation and z norstazionazy excitazior of the Jennings $\mathfrak{E t}$ il. (s2) type, both with a cotal duration of 25 sec. The spečこa, reproduced in Eigire 2-1, show a decrease in response with increasing auctility. The spectra, reported Eor initial frequency, also sion the response for the
 equal for linear structures. The eatreme of a stationary Gaussian process is Eelated to the daration by

$$
\left.\Xi(\max \mid y(t) 1) \alpha \sqrt{\ln (2 \cdot s \cdot F} e^{2}\right)
$$

Where $\exists()$ deno=es expectation, s is the duration and ${ }^{F}$ is the average numor of zern censsings/rec. of the p=oces. For $s=25$ sec. and $F_{e}=5$ iz, ialvinq tae duration orly changes the oxpected response by approximately 6\%. The highor ductilities show a decrease in response larger than 6\%, as seen in Figure 2. 1. The report concludes that the nonstationarizy causes a difference in zesponse for high nonlinearity.

It is possible that the difference lies in the effective dmrations for the stationary and nonstationary exciะations
used. The probability of the latter portion of the nonstationary decaying tail containing the extreme is surely remote, i.e. the effect of the type of nonstationarity can be viewed as resulting in a shorter effective daration.

Pigure 2-1 Deformation Spertrum for elastoplastic Systems($B=0.02$) [adapted from Amin et al.(49)]

With increasing ductilities the effective statistical or as sometimes called equivalent linear stiffness decreases. By vieqing the elastoplastic response as an equivalent linear system the response nonlinearities tend to reduce the effective atural frequency and increase the effective damping. The possible reduction in natural frequency is presumed the same for the stationary and nonstationary excitation.

The deformation spectrum in Figure $2-1$ is shown for ductilities, ie alarimum displacement nondimensionalized by yield displacement. Penzien and Liu(sz), who studied the effect of duration on response, depicted the response of the experimental distribution in the form of Gumbel (63) extreme val ie Type I chases Eeproduced in Figure 2-2.

Gumbel Type I extreme value probability distributions vary | a |
| :---: |

$$
P\left\{Q<K_{\text {max }}\right\}=\exp [-\exp (-v)]
$$

where 0 is affine? as

$$
0=\max |x(t)|
$$

Э is the mode of 2 and the reduced variance y is defined as

$$
\mathrm{Y}=\frac{\sigma_{\mathrm{V}}}{\sigma_{\tau}}[\underline{0} \overline{0}]
$$

and σ_{y} depends on the number $o f$ observed extreme values (64). Gumbel extreme value charts plot as a straight line with the most probable value at the reducer variate origin. Its slope is proportional to the standard deviation of the extreme values. The slopes in figure 22 increase with increasing nonlinearity implying an increase in the standard deviation of the extreme response, ie. a larger spread of the values. With an average of a larger number of accelerograms the response spectra anomalies said to be caused by nonstationarity may not be so large since the

(a)

(o)

(c)
nonlinear mocess of singiz degree of paseocin systed

$\begin{array}{\|l\|} \hline 2 \sec \\ \mathrm{yo} \end{array}$	STMCTM:AL TYPE*	$\left\lvert\, \begin{array}{r}\text { FER100 } \\ i-S E L\end{array}\right.$	$\begin{aligned} & \text { CAMFNGG } \\ & \text { PATICE } \end{aligned}$	$\begin{aligned} & \text { STRENGTH } \\ & \text { ?nNo-3 } \end{aligned}$	$\begin{aligned} & \text { iY: } 1 \geq 01 S A_{-} \\ & X \sim N . \end{aligned}$	$\sigma_{\text {O }}$	$\begin{aligned} & \bar{x} \\ & . N \end{aligned}$	$\begin{aligned} & \text { u } \\ & \text { in } \end{aligned}$	1/2
1	Ξ	0.3	0.02	-	-	0.115	0.756	0.722	0.085
2	Ep	0.3	0.02	0.10	0.088	i. 513	3.216	2.450	i. 390
3	So	0.3	0.02	0.10	0.088	0.71	2.480	2.144	0.613
4	ε	0.3	0.10	-	-	0.050	0.354	0.330	0.643
5	E?	0.3	0.10	c. 10	0.068	10.910	1.947	1.517	0.734
5	So	0.3	0.10	0.10	0.058	10.300\|	1.327	i.157	0.310
7	三	2.7	0.02	-	-	3.07	14.15	12.73	2.59
3	E?	2.7	0.02	0.048	3.42	5.51	i6.35	13.75	4.75
9	So	2.7	0.02	0.048	3.42	5.33	14.32	11.56	5.02
10	E	2.7	0.10	-	-	1.31	3.77	8.24	0.97
11	$E ?$	2.7	0.10	0.048	3.42	4.56	11.57	9.41	3.94
:2	So	2.7	0.10	0.048	3.42	3.25	ง. 98	3.45	2.80

Fiaure 2-2 Probability Distribution for Extreme Values of Relative Displacement[adapted from Penzien and Liu(s2)]
spreac of the values increases with increasing nonlinea=ity. The amin et al. =epoこ=(49) apparen=1y used an average of eight accelerograms, a rather small statistical sample from which to dyay conclusions.

To give an example of the effect of nonstationarity, consider the extreme response from the level crossing approach. C=andall(65) presents an excellent siate of the art review. As shown shown in Figure $2 \cdots 3$ the extreme valnes have a specific probability distribution. The usual method in Eirst passage problems is to determine the mean, mode, or median of the extreme values in terms of its standard leviation, e.g. the most probable extreme is the procuct of the standard deviation of the response and a peak factor, R. The asymptote of the most probable peak factor for white noise is

$$
E=\sqrt{2-\ln (2.9 \cdot N)}
$$

where N is the number of cycles the system has undergone, i.e. the natu=al Erequency times the duzation. por nonuhite excitation the peak factor is a fanction of the arerage number of zero crossings (usually near the natural frequency), the damping, the probability of exceedance, the đuration, and a parameter similar to tie coefficient of va=iation of =he maxima. an approximate expression for the neak factor E, is (66)

Where δ e, a measure of the spread of the power spectrum is

$$
\delta_{e}=\left[1-M_{1} 2 /\left(M_{0} \bullet M_{2}\right)\right]^{0.6}
$$

and M_{i}, the ith moment of the power spectra about the origin is

$$
M_{i}=\int_{-\infty}^{\infty} \omega^{i} \cdot G 2(\omega) \cdot d \omega
$$

The equivalent parameter values derived from the amin report could decrease the peak factor, R, as much as 13% by halving the duration. Although the different duration would also affect the standard deviation, the difference is negliqible for the damping used. The decrease in response thus appears to be caused more by the effective duration than the effect of nonstationarity.

This says nothing, of course, for the effect of nonstationarity of the transcendental type, e.g. Equation 2. 1 or Equation 2.2. Here the time rate of change of the intensity and the duration both combine to affect the expected response. An exact solution for the stationary first passage problem does not exist. However, for a sufficient number of cycles the asymptote gives a very good approximation.
approximate techniques for nonstationary response are just starting to receive attention. For nonstationarity due

-o transien = resoonse of sউa-ionary excitation, ne method is to use an equivalent auration. For norstationary linear response bue to nonstationary excitation with a =zanscendental intensity function, the most logical zporoach is to consider the extreme a function of the total energy, i.e. proportional to the inteqral of the intensity fanction. This follows from stationary response extremes baing the propuct of the standard deviation or oover ala the peak Eactor which is p=oportional =o the duration. One appazch woula be to obtain the ararinal probability density Eancrion of the maxima by inteyrating out rime dependence of the variance in the Davenport(67) aerivation. The sta二istios of nonstationary peak response are beyond tae scope of this rooort.

Kubo and Penzien(68) studied the accelerogzams of the 1971 San Fernando earthquake. Theif resulting intensity functions Eesemble the tanascendental intensity function more closely than they resemble the Jennings et al.(sz) intensity function. Kubo and Penzien also showed distinct jumos in the phase of the cross coraelation between the iorizontal ground acceleroqran, possibly inked to the zrrival of different yaves.

Saragoni and Hart(69) presented a method for generating artificial accelerograms incorporating nonstationary power spectra. They used three discrete power specta for different phases of the duration in order to simulate the decrease in the preतominant frequency with time. They used
a =zansceriertal intensity function of the form

$$
I(t)=a \cdot t^{\gamma} \cdot \exp (\cdot \varepsilon \cdot t)
$$

where a, y, and ε are constants forermined by a best Eit anaiysis of exiseing accelerograms. This concept of evolutionary power spectra is not new. Nevertheless, it immensely complicates the statistics of extreme zesponse aaking it nearly intactable.

The Saragoni aad Hart reports siow the intensity function =o va=y for diffezen= earthquakes. also =he phases of the discrete power spectra woult change dith fault orientation ana edicentral distances. a method to sioulate this was presented by pascon and Cornell(70), who produced artificial accoleroarams from a physically based model. Their simulation involver a suberposition of zandomy arriving dilata+ional and fistortional single pulses with a poisson arrival distribution from a number of elementary Eoci. The elementary foci generate the single pulses along the fault olane, moving according to the arack orovagation velociey. Ateenuation was based on spherical speeading and multiple reflection and refraction. The duration and the parameters were based on statistical studies relating these parameters to magnitude, epicental distances, etc. The resulting simulations closely resemble actual accelezograms.

The preceding lescriptions of the various methods to Generate artificial acceleroarams indicate the increasing
comolexity that accompanies more faithenl simula-ion of ground notions. ₹or a particular sice of given local qeolouy, many factors are being introfuced that influence the accelerouraas, such as fault size, orientation, seismic porential, distance from the faule, ezc. This emphasizes the nonuniversality of accelerograms and the care wioh thich they should be selected for particular sites. For these zeasons, the accolezoctans used heze will be renezated by the computaz p=og=an pSepgey(71). This program generates ensembles of filtored white noise with an intensity function of the Jennings et ai. (55) =roe to represeñ st=ong a=ound дotion on fira soil. The use of these arrificial accelorjarams stoula present no drawback through its genezali土y since Ghi三 dissertation is a stajy of general builaing response and not a particular site.

The nroqraid psepgev can generate ensembles dé stochastically similar artificial acceleroqrams. Individual members of the ensemble can be used to represent the two or=hoqonal horizontal ground motions. They will, however, be uncorrelated. 2enzien and xatade(72) have shown that the correlation between the two orthogonal norizontal ground motions will be a minimum in the neat field when one is pointed in the airection of the epicenter. They concluded that ground motions generated artificially can be uncorrolater provided the components are directed along principal axes which are peroendicular and parallel to the Eault. The fact that the correlation is minirum and
neqliaible when oarallel and pezeendicula= to the fault is not surpzising wien you consiner the na-ure of shear and compression waves. Also, Fascon(73) has shown that single ieqzee of freedo zesponse is maximum when the structure is orientef along one of these same orincipal axes. Por these zeasons and the argument expounded in appendix B, this dissertation uses uncorrelated horizontal ground motions.

A comolete aescriotion of the grount notion involves six coajonaa=s: =hzee こranslational and thzee rozational. The two rotational components of rocing wose axes are in the hozizoncal olane are not included in this analỵis. In addition, $=h e$ veztical zranslation oomponeñ aill not be included. This leares the two horizontal translations and Ehe rotaiion whose axis is vertical. as previously mentioned the horizontal motions will be artificially gene=a=ed to resemble actual accelerograms and mill be statis=ically unco==elated. The origin of eorsional gronnd motion is generally thought to be love waves wich are horizon=ally polarizei shear waves neaz the suyface(see ?iqure 2.4. The torsional motion arises from the quantity $\frac{\partial V}{\partial} \bar{X}$. The motion $V(x)$ is Ielated to the frequency F, wave speed C_{S}, and wave length λ, where

$$
C_{S}=F \cdot \lambda
$$

Thile the wave speed can be determined, =he random nature of the motion is such that there will be a random mixture of frequencies determined by the power spectra. artificial

b) Eulerian description

Pigure 2-4 Elastic Earthquake maves

ここanslation accelerograms are based on the average nower specraz or many actual earthquake accelerograms. There are yet no roported torsion accelerograms; thus, one cannot lezermine the correlation between =orsion and taanslation. dei-her can the porez specta he determined.

Some qeans of generating earthquake ground rotation is desired. stazting frot the assumprion that horizontal sureace motion is derived Erom the aezrly yortical בefancion of sheaz waves $a=$ the base zock soil inverface, Newark(25) proposed a method to determine tie rotztion based on the theory of elasticity. That the refraction is nearly verrical azises from a corsideration of the respective wave velocities and Snell's Law (Pigure 2.5). Thus at che free surface the refzacted waves will travel at the wave velocity of the zock not the soil. Mewmark caiculates the ground rotation $\not \varnothing$, as

$$
\not \partial=\frac{1}{2} \quad\left[\frac{\partial V}{\partial x}-\frac{\partial \Pi}{\partial y}\right]
$$

Fith the ground motions u and v uncorrelated and stochastically similar, the qround motion simplifies to

$$
\begin{equation*}
\phi \phi=\frac{\partial v}{\partial x} \tag{2. 11}
\end{equation*}
$$

With the further assumption that

$$
\nabla=\nabla\left(\leftrightarrows-x / C_{S}\right)
$$

$\frac{\sin \gamma_{1}}{c_{P_{1}}}=\frac{\sin \gamma_{2}}{c_{P_{2}}} \quad \frac{\sin \beta_{1}}{c_{S V_{1}}}=\frac{\sin \beta_{2}}{c_{S V_{2}}} \quad \frac{\sin \alpha_{1}}{c_{S H}}=\frac{\sin \alpha_{2}}{c_{S H_{2}}}$

- a) Near vertical Refraction into Surface Soil Layer

b) Plan view or Simolified ground surface point transiation due to different wave types.

Figure 2-5 Surface Wave Motion

$$
\phi=\frac{\stackrel{\rightharpoonup}{\mathrm{V}}}{\mathrm{C}_{s}}
$$

Boseablueth(74) proposed a modification of this to account for the building size. Since Equation 2.12 is valid for a point, the effective or averaqe displacement determiaed by assuming a rigia building and neglecting backscattering is
and neglecting backscatterina is

$$
\bar{v}=\frac{1}{B} \int^{3 / 2} y\left(\div-x / C_{s}\right) \cdot d x
$$

$$
2.13
$$

Where 3 is tie building width transverse to the motion V.

$$
-B / 2
$$ For a siausoialal translation, Equation 2.13 reduces to

2. 14

where λ is the wavelength. Figure 26 depicts the effect of the building leng=i to wavelerarh agio has in decreasing the effective translation according to Rosenblueth's assumption. observations of earthquake damage reinforce this notion that civil engineering wo ns covering large= Ground area respond with less intensity.

Nathan and Mackenzie (75) calculated the torsion response spectra by use of उquarion 2.12 in a finite difference form expressed in terms of acceleration rather than displacement

$$
\left.\ddot{\sigma}=[\ddot{\nabla} \quad(t+\tau) \ddot{\nabla} \quad(t)] / / C_{s} \cdot \tau\right)
$$

Finite difference techniques are basel on small. finite changes where the function is assumed to vary smoothly between the points. The around acceleration is assumed linear between the digitized values since very high frequencies are deemed unimportant in building response.
$B \cong \lambda$

Figure 2-6 schematic of Effect of Suilding
bith to wavelength Ratio in Average Translation
Neslecting Eackscattering

जith tyoical values of the तiqitizinq interval of 0.025 sec , the maximun value allowable for the transit tine aould be of the order of 0.025 sec . For a wave speei of $300 \mathrm{~m} / \mathrm{sec}$ and a builaing diath transverse to the motion of 30 m the transit time of a shear waye is 0.1 sec, or 4 diaitizing intezvals. Fiqure 2-7 illustaztes the deficiency of the finite lifzerence approach.
CuE=ently, venaza e=al. (76) aze stidying the efecct of builaing size or transit time di calculating the response spectra for the inout acceleration averaqed over the transit こime, τ, as

$$
\ddot{\bar{V}}=\frac{1}{\tau} \int_{t}^{t+\tau} \dot{\nabla}(t) \cdot d t=\frac{1}{\tau}[\dot{V}(t+\tau) \cdot \dot{V}(t)]
$$

ani

पhere $\ddot{\ddot{\gamma}}$ is proportional to the third deripative of ∇, calculated as $\dot{\bar{\Delta}} / \tau$, which in turn is deternined by a least squares fit $0 \underset{\mathrm{~V}}{\mathrm{~V}}$ over time τ (Figure 2-7). Figure $2-9$ shoms the effect of this averaging in reducing the extreae values. The excitarion used for qenerating Figure 2-8 was an ensemble of ten stationary filterea white noise accelerograns of 10 sec. duration using the filter

Figure 2-7 Effect of Transit Time on Averaging

Characteristics of pSEQGEM (71).
Another methon for analyzing the effect this averaqing has on buildinq resoonse is feequency domain analysis. The zverage? resoonse is the result of convolvina the excitation wish the averaqing filter. as shown in spoendix a, the resulting power spectrum is reduced by the facto: multiplying sin(ωt) in aquation 2.14. The resulting zeirucion of the ooyer soectaz renuces the exaitztion yariance, which in zuzn zeduces =he expected peak value. Fhe resoonse power spectrum is the prodact of the inpat power ミoミctam, averagirg filter, and the complax faequency response function. It is readily anparent that the variance and thas the oeak Eesponse should aecease more for bigher frequencies. This expected trend is verified in Fiqure 2-3. The tamasit time Eeduction increases with increasing builaing size. Also, it is dependent on tie assumed wave speed which is dependent on the assumed wave type. For small builiings this redrcion will be slight. another source for the reduction of ideaiized inout exci=ation is the soilstructure interaction. Luco(77) found the effect of embedment of the foundation to be quite significant. The excitation used in Luco's stady as ohliquelp incident sy waves. The input twist for a hemispherical foundation as leterminef to be hale that of a ciEculay diskfoundation. This reduction was attributed to the effect of scattering and the increased foundation stiffness. The Eesults are presented in a nondimensionalized form via a frequency ratio

PSUUOL-VEOCITT RESPONSE SPETTRA

parametez comongy used in foundation dynamics ahich is Droportional to the Eoundation size to wavelength ra＝io．
vet another reduction in the expecter maximum grond ＝orsion is discussef by Nemmark ant Rosenblueth．Their proposef reतuction is due to the statistical relation between exrreme values in the orthogoral direction．

As eviden：，the Newmark approach to ground torsion can be viewed as an upper limit．The vaires determined are reduced ny building to wavelengti zatios，soilystructure interaction，scateering，e＝c．since the uniform Building Code does not include ground rotation，New ark＇s values for ground Eoこaーion qill be used ir this thesis to dezezaine its effect．

The need for actual free－field＝otation and translation records is apparent．It is especially necessary to ietermine the correlation between ground rotation ana こransiation and $i=s=\in l a=i v e$ effect．

CGADTER III

ELASTIC PTSPOYSE

Abstract

Builaings with coincident centers of mass and stiffness are called uncoupled systens in this تhesis. por the dynamic analysis of uncoupled systems, responses along the principal directions are analyzed independently ahen an eccentricity between the centezs of mass and seiffness axists, the responses alonq the princioal axes are coupled. Analyzing the zesponses along the pincipal axes independently may give good =esules if these three frequencies are well separated and the eccentricities are not too lazqe. Full scale tests(27) have confizaed the strong counling that occurs with close natural frequencies even if the eccentrici-ies are small.

The usial desiqn procedire to acconat for an eccentric mass is to ada a force due to the torque, calculated as the product of story shear and eccentricity. Many studies(24, 36) have shown that the dynamic story shear decreases when there is an eccen=こicity and that the dynamic torque exceeds the proanct of shear and eccentricity. For tall builaings consisting of moment resisting planar frames, although lateral-torsional couplinq decreases the total story shear, the story torque increases the shear in the peripheral
lateral force resisting olnaon+s. Thus the statement that s=ozy shear decreases, must not be taken to iadly that lazeral-rorsional couplina is beneficial.

The torsional response of Large civil engineering works such as bridqes ard pipolires is a result of eccentricities as sell as the horizontal qround motion not heing in phase over the length of che structure. This type of s=aucture is not consiager in this stuay. There is of counse torsional ground aotion: however, the effect of grouna
 (24) tepatment Jf the subject, winch is described in Chap=er II.

The objectipe of this chapter is =0 fozmulaze a method to stuay the elastic cesponse of torsionaliy coupled brilainas by modal analysis based on sta=istical concepts similar to that doveloped by cosenhlueth(24), but extended to thzeorlimensional systems. This method will be used primazily to show she effect of qround sozation and the absonce of correlation between the horizontal qround たェansla

Structural Systoms

Most tall buildings are either shear wall type, moment Erame type, or a combination of the two. Shear wall buildinas are commonly multiply connecter vertical plates like tiat illustrated in Fiqure 3.1a). For this type of builiing, shear flow must be considered. A moment frame type builaina is illussazied in Figure 3-1b). Both will be
assumed to have riqia floor diaphragms.
The origin of the principal axes of these structural systems is the center of stiffness (sometimes called center of rigidity, resistance, twist or torsion, or shear center). The principal axes are orthogonal and are defined such that a force in the direction of one of the principal axes causes a displacement only in that direction.

The principal axes in a moment frame systen consistina of planar frames that are not orthogonal are determined by statics(24).

Once the principal axes have been deterained the lateral stiffness in the principal directions can be determined as

$$
\begin{gathered}
k_{x}=\sum_{i} k_{x i} \\
k_{y}=\sum_{i} k_{y i}
\end{gathered}
$$

While the torsional stiffness, Jefined about the center of mass and neglecting individual element torsional stiffnesses, is

$$
K_{\phi}=\sum K_{x i} \cdot x_{i}^{2}+\sum K_{y i} \cdot I_{i}^{2}
$$

i
i

The eccentricities are

$$
\mathrm{P}_{\mathrm{x}}=\sum_{i} \mathrm{X}_{\mathrm{i}} \bullet \mathrm{~K}_{\mathrm{yi}} / \mathrm{K}_{\mathrm{y}}
$$

Figure 3-2 Example Euilding Layout

$$
F_{y}=\sum_{i} Y_{i} \cdot K_{x i} / K_{x}
$$

Eor X_{i} and Y_{i} as shown in Figure 3. 2.
dralysis of an yustory structure generally requiros $3 N$ Hegrees of freelom. Shiga(42) and Hoerner(26) have Geveloped a procedire to simplify this to v three deqree of faerioin zys=ems. The mode shape is
for structures where the story masses are colinear, the story stiffnesses are colinear, and the ratio of the lateral stiffnesses is the same for all stories. \{C\} n is the $n t h$ mode of the 3 DOF syE=em and $\left\{\operatorname{Di}_{j}\right\}$ is the j th mode of the NDOF systom, which is the same for x, \varnothing, and y.

Generally, i- is assamed that the first three mode shapes of a multistory structure are two priaarily transla-ion modes and the Drimarily torsion mode. the torsion frequency is nearly always less than twice the fundamental. The second mode in the fundamental direction is usually greater =han 3 times the fundamental; so, the translation stiffnesses would have to be an order of magniture different before the assumptior would not be true. a multistory structure can be analyzed approximately as a three legree of freerom system by using the first three
modes as described above.

Equations of Motion

The equations of motion for the single story three degree of freedom system shown in Figure 3-? are
where M is the mass, F is the radios of gyration, and

$$
\omega_{x}=\left(K_{X} / \underline{M}\right)^{0.5} \quad \omega_{y}=\left(K_{Y} / Y\right)^{0.5} \quad \omega_{\phi}=\left(R_{\phi} / I_{p}\right)^{0.5} \quad I_{p}=M \bullet R^{2}
$$

The characteristic equation for this system is

$$
\begin{aligned}
& \omega^{6}-\left[\omega_{x}^{2+} \omega_{y^{2}}^{2+\omega} \phi^{2}\right] \cdot \omega^{4}
\end{aligned}
$$

$$
\begin{aligned}
& -\left[\omega _ { x } ^ { 2 } \cdot \omega _ { Y } ^ { 2 } \cdot \left(\omega_{\phi}^{2-\omega_{Y}^{2}} \cdot \Xi_{x}^{\left.\left.2 / E 2-\omega_{x}^{2} \cdot E_{Y}^{2 / R 2}\right)\right]=0 \quad 3.2}\right.\right.
\end{aligned}
$$

or

$$
F^{3}+Q \cdot F^{2}+Q \cdot F+R=0
$$

Where $\mathrm{F}=\omega^{2}$.

Let $C=\left(3-P^{2}\right) / 3$, and $D=\left(2 \cdot P^{3}-9 \cdot P \cdot Q+27 \cdot 8\right) / 27$
and $A=\left[-D / 2+\left(D^{2} / 4+C 3 / 27\right)^{0.5}\right]^{2 / 3}, B=\left[-D / 2-\left(D^{2} / 4+C 3 / 27\right) 0.5\right]^{1 / 3}$
then the conpled Ezequencies car bo directly comouted as

$$
\begin{aligned}
& \omega_{3}^{2}=-(A+B) / 2-(A-B) \cdot(-3) 0.5 / 2-2 / 3 \\
& \omega_{2}^{2}=-(A+B) / 2+(A B) \cdot(-3) 0.5 / 2 P / 3 \\
& \omega_{3}^{2}=A+B \cdot P / 3
\end{aligned}
$$

The solu-ior can be unstable for some exteeme combinations of eccentricities and uncoupled Erequencies.
or if Z_{y} and $Z_{x}=0$

$$
[A]=\left[\begin{array}{lll}
1 & \frac{-\omega_{x}^{2} \cdot E}{} \frac{R}{\left(\omega_{2}^{2}-\omega_{x}^{2}\right)} & 0 \\
\frac{-\left(\omega_{1}^{2}-\omega_{x}^{2}\right.}{\omega_{x}^{2} \cdot E^{\prime} y^{R}} & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

and if $e_{x}=y_{y}=0$

$$
[A]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

which is the mode shape of the uncoupled system.
Once the uncoupled frequencies and mode shapes have been determined, the maxima can be estimated by modal combination. The usual method is the root sum square (RSS)

$$
Q=\left(\sum Q_{i}^{2}\right) 0.5
$$

i
which is based on the assumption of near independence of modal responses. The modal responses are nearly independent if the frequencies are well separated. In an analysis of a planar structure, the ratio of frequencies are approximately 1:3:5:.... however, in threemimensional systems the

Erequencies can be very close =oqezhor.
In systems bitere the frequencies are close togerher the usual procedure in modal combination is to use a method Droposet by Rosenblyesh(24) in which the distribution of the resoonse $q(t)$ is assumed to be gaussian with zero mean. The necessary fusther assumptior, consisten: with extreme value
 ororortionnt to the stamatrd geviation,i.e.

$$
E(0)^{2} \alpha\left\langle q^{2}(\dagger)\right\rangle
$$

where F() denotes expectation ani < > ierozes time zverage.

The response can be expressel in Eerns of its impulse response function, $h, a s$

$$
q(t)=\int_{-\infty}^{t} h\left(t-t^{\prime}\right) \cdot z\left(t^{\prime}\right) d t^{\prime}
$$

or in discretized fora

$$
a(t)=\int_{-\infty}^{t} h\left(t+t^{\prime}\right) \cdot z\left(t^{\prime}\right) \cdot \exists t^{\prime}=h_{i} z_{f} h_{i} z_{2}^{+} \ldots+h_{n} z_{n}
$$

wheze $z(-)$ is white noise of intensicy Go.

With Ghe further assimption that each =erm in Equation 3. is independent, the variance of q becomes

$$
\left\langle q^{2}(t)\right\rangle=\sum\left(h^{2} \cdot z^{2}\right)
$$

and by the Cauchy-Schwarz inequali=y, $\Sigma\left(h^{2} \cdot z^{2}\right) \leq \sum h z \cdot \Sigma z^{2}$,

$$
\left\langle q^{2}(t)\right\rangle \leq \Sigma h^{2}=c \int_{-\infty}^{t} h^{2}\left(t-t^{\prime}\right) \cdot d t^{\prime}=c \int_{0}^{\infty} h^{2}(t) \cdot d t
$$

for Gaussian excitation. The inequality in Equation 3.8 becomes a proportionality by virtue of Parseqal's relation,

$$
\int_{-\infty}^{\infty} h^{2}(t) d t=\left[\int_{-\infty}^{\infty} \mid \text { H }\left.(\omega)\right|^{2 d \omega}\right] /(2 \cdot \pi)=\left\langle q^{2}(t)\right\rangle /\left(G_{0}^{2} 2 \cdot 2 \cdot \pi\right) \quad 3.9
$$

Where $g(\omega)$, the complex frequency response function, is the Fourier transform of the transfer function $h(t)$, and G_{o}^{2} is the intensity of the white noise excitation.

For a MDOF system, by expressing the response $g(t)$ as the sum of its modal values

$$
q(t)=\Sigma q_{i}(t)
$$

i
and inserting this in terms of its modal transfer function into Equation 3.8 Rosenblueth obtains

$$
\begin{align*}
& Q^{2}=\sum_{i} Q_{i}^{2}+\sum_{i \neq j} \sum_{i} Q_{i} \bullet 0_{j} \\
& 1+E_{i j}{ }^{2}
\end{aligned} \quad \begin{aligned}
& E_{i j^{2}}=\frac{\omega_{d i}-\omega_{d j}}{B_{i} \bullet \omega_{i}+B_{j} \bullet \omega_{j}}
\end{align*}
$$

Where B_{i} is the th mode's fraction of critical damping and $\omega_{\text {di }}$ the lith mode's damped natural frequency. The quantity $1 /\left(1+E_{i j}{ }^{2}\right)$ can be interpreted as the correlation coefficient.

To n derstand the limitations of Equation 3.10 due to its underlying assumptions, it is necessary to understand its derivation and the effect of the assumptions. Por this reason a modal combination expression will be derived based on Bosenblueth's approach, i.e. maximum square response proportional to the variance: but the mathematical approach will be in the frequency domain rather than the time domain. The expected peak response is likewise presumed proportional to the standard deviation, the root of the variance. The mean square value in turn will be described by the complex frequency response function,i.e.

$$
\left\langle Y_{m}(t) \cdot Y_{n}(t)\right\rangle=\int_{-\infty}^{\infty} G_{Y_{m}} Y_{n}^{2(\omega) \cdot d \omega}
$$

where

$$
G_{Y_{m} Y_{n}}{ }^{\left.2(\omega)=F_{Y_{m}}(\omega) \bullet \overline{H_{Y_{n}}}(\omega) \bullet G_{Z_{m} Z_{n}}{ }^{2}(\omega)\right), ~(\omega)}
$$

and $G_{Z_{m}} Z_{n}{ }^{2}(\omega$ is the cospectrum of the mth and nth DOP's excitation.

Tsually the input excitation is assumed to be ahita noise to simplify the mathematics. Initially, this same assumption will be made in the following derivation. Thus Equation 3.11 becomes

$$
\left\langle Y_{m}(t) \bullet Y_{n}(t)\right\rangle=\int_{-\infty}^{\infty} H_{Y_{m}}(\omega) \bullet \bar{H}_{Y_{n}}(\omega) \cdot G_{0}^{2} \bullet d \omega \quad .
$$

$H_{Y_{m}}(w)$ is by definition

$$
\mathrm{E}_{\mathrm{Y}_{\mathrm{m}}}\left(\text { (ब) }=1 /\left\{\left[\omega_{\mathrm{m}}^{2+i} \cdot 2 \cdot \mathrm{~B}_{\mathrm{m}} \bullet \omega_{\mathrm{m}} \bullet \omega^{-} \omega^{2}\right] \cdot{ }_{\mathrm{m}}{ }^{\prime}\right\}\right.
$$

where * m^{\prime} is the moral mass and ω_{m} and foze the mih natural frecuency and fraction of critical damoing. zespeccively.

The resoonse is expressel in terms of its modal zesponses, and thus the variance of the response is expressoa in terms of the modal variances and covariances. The equations of motion for a MDOF system with classical moñes are

$$
[x]\{\ddot{x}\}+[c]\{\dot{x}\}+[x][x\}=-[x]\{\ddot{z}\}
$$

In uncoupierf form hhere [A] is tie matrix of eigenvectors znd $\{\underset{Y}{ }\}=\{\dot{d}\}\{?\}$.

$$
\begin{array}{r}
\ddot{Y}\}+[2 \cdot 3 \cdot \omega]\{\dot{Y}\}+\left[\omega^{2}\right][Y\}=-[x \cdot\}^{-1}[A][1]\{\ddot{z}\} \equiv-\left[A^{\prime}\right]^{-1}[A]{ }^{T}\{P\} \\
3.15
\end{array}
$$

A response quantity of interest $q(t)$ can be expressed 35

$$
\underline{G}(t)=\Sigma C_{r n} \cdot \nabla_{n}(t)=\left\{C_{r}\right\}^{T} \cdot\{V(t)\}
$$

n
and by definition,

$$
\begin{align*}
& G_{q}{ }^{2}(\omega)=\Sigma \Sigma C_{r m} \cdot C_{r n} \cdot G_{Y_{m} Y_{n}}{ }^{2(\omega)} \\
& \text { ITI }
\end{align*}
$$

？クロ a two－dimensional syster，i．e．planar frames，eacn deqree of freedom is ミubjected to the same exci＝ation and each element of the natrix $\left[G Z^{2}(\omega)\right]$ is the same．Introducing ＝his into Rquation 3．18，rearranging zerms and integrating fives

$$
\begin{aligned}
& \text { n } \mathrm{n}
\end{aligned}
$$

where 10 m is the modal participation factor for aodew， defined as

$$
\begin{aligned}
& 3.20 \\
& \text { n } \\
& \text { I }
\end{aligned}
$$

and $\{Y(t)\}$ is the solution $=0$ Equation 3.15 wheze the right hanf sile is just $\{\ddot{z}\}$ ．

Jquation 3.19 can be rewritten as

$$
\begin{aligned}
\left\langle q^{2}(\tau)\right\rangle= & \sum \Sigma\left(C_{m} \cdot n O F_{m}\right)\left(C_{n} \bullet M P F_{n}\right)\left\langle Y_{m}^{2}(-)>05 \bullet\left\langle Y_{n}^{2}(t)>0.5 \cdot \underline{D}_{m n}\right.\right. \\
& 3.21
\end{aligned}
$$

Where $P_{m n}$ is the correlation coefficient of $F_{m}(t)$ and I $n(t)$ ．Since the RMS value is assumed proportional to the peak value．0，Iquation 3.21 can be rewritten as

$$
Q^{2}=\Sigma \Sigma Q_{\mathrm{m}} \mathrm{Q}_{\mathrm{n}} \mathrm{n}^{\bullet} \mathrm{mn}
$$

Where Om，the peak rosconse of the oth mode，is

$$
\Omega_{\mathrm{m}}=\mathrm{C}_{\mathrm{m}} \bullet y \supset \mathrm{~m}^{\bullet 3} \mathrm{v}\left(\omega_{\mathrm{m}}\right)
$$

ar．

$$
\begin{align*}
& P_{\mathrm{mn}}=3 \cdot\left(\omega_{\mathrm{m}} \cdot \mathrm{R}_{\mathrm{m}}+\omega_{\mathrm{n}} \cdot{ }_{\mathrm{n}}\right) \cdot\left(\omega_{\mathrm{m}}{ }^{3} \cdot R_{\mathrm{m}} \cdot \omega_{\mathrm{n}}{ }^{3} \cdot \mathrm{~B}_{\mathrm{n}}\right)^{0.5 /\left.10\right|^{2}} \\
& D=\left[\left(\omega_{d m}{ }^{2 \cdot} \omega_{d n^{2}}\right) \cdot\left(\omega_{m} \bullet{ }^{B} m^{+} \omega_{n} \bullet B_{n}\right)^{2}\right]+i \bullet\left[2 \bullet \omega_{d m} \bullet\left(\omega_{m} \bullet 3 m^{+} \omega_{n} \bullet B_{n}\right)\right]
\end{align*}
$$

 3． $2 \nmid$ aives values of the correlation very close to those inheこeñ in Fauation 3．10．

Equa－ion 3.22 has two lini＝ing assump＝ions，namely white noise excitation and ifentical excitation for each
 つf the white noise assumption is not considered significant for cases of practical interest．The effect of the second assumption is not so eviaent．It is cleaz though，that the second assumption is not valid for a three dimansional system．For the two－inimensional system each element of the qatrix of $\left[\mathrm{G}_{\mathrm{Z}}{ }^{2}(\omega)\right]$ is the same but for tine three dimensional ラ75tea iた is

Chapter II aescribes the current state of the art in ground motion description．

Equation 3.25 can be greatly simplified by incorporating the approximations described in Chapter II, namely Newmarkian ground rotation and uncorrelated ground translations. Por ground rotation defined as

$$
\pi_{\phi}=\frac{p}{2}\left[\frac{d z y}{d x}-\frac{d z x}{d y}\right]
$$

the excitation, following Newmark's procedure is

$$
\ddot{z}_{\phi}=\left[\ddot{z}_{y}-\ddot{z}_{x}\right] \cdot F /\left(2 \cdot c_{s}\right)
$$

where C_{S} is the shear wave speed in the underlying rock. Since we are assuming uncorrelated ground translations we can set $G_{\ddot{Z}} \ddot{z}_{y}{ }^{2(\omega)}=0$. The autocovariance function for the ground rotational excitation is

$$
R_{\ddot{z}_{\phi}}(\tau)=E\left[\ddot{z}_{r \phi}(t) \cdot \ddot{z}_{r \phi}(t+\tau)\right]
$$

Inserting Equation 3.26 gives

$$
\mathrm{R}_{\ddot{Z}_{\phi}}(\tau)=\left[\mathrm{a}_{\ddot{Z}_{Y}}(\tau)-2 \cdot \mathrm{a}_{\ddot{Z}_{Y}} \dddot{z}_{X}(\tau)+\mathrm{R}_{\mathrm{Z}_{X}}(\tau)\right] \cdot\left(\mathrm{E} /\left(2 \cdot \mathrm{C}_{S}\right)\right)^{2}
$$

For uncorrelated but equal spectral density ground translations, this reduces to

$$
R_{\ddot{Z}_{\phi}}(\tau)=2 \cdot R_{\dddot{Z}_{Y}}(\tau) \cdot\left(R /\left(2 \cdot C_{S}\right)\right)^{2}
$$

Thus,

$$
G_{\ddot{Z}_{r \varnothing}}{ }^{2(\omega)=\left(R^{2} / 2 \cdot C_{S}^{2}\right) \cdot G_{\dddot{Z}}^{Y}} \quad 2(\omega)
$$

$$
=\left(R^{2} / 2 \cdot C_{S}^{2}\right) \cdot \omega_{G}{ }^{2} \cdot G_{\ddot{Z}_{Y}}^{2}(\omega)
$$

and

$$
\begin{aligned}
& =\left(R^{2} / 2 \cdot C_{S^{2}}\right) \cdot \omega_{g}{ }^{2} \cdot \int_{-\infty}^{\infty} G_{\ddot{z}_{y}}^{2}(\omega) \cdot d \omega
\end{aligned}
$$

Where w_{g} is the oredominant frequency.
mhe crosscovariance function for rotation and translation is

$$
\begin{aligned}
& E_{\ddot{Z}_{\phi} \ddot{z}_{X}(\tau)=E\left[\ddot{z}_{r \phi}(t) \cdot \ddot{z}_{x}(t+\tau)\right]} \\
& =\left\{E\left[\ddot{z}_{y}(t) \cdot \ddot{z}_{x}(t+\tau)\right]-\left[\ddot{z}_{x}(t) \cdot \ddot{z}_{x}(t+\tau)\right]\right\}\left(E / 2 \cdot C_{s}\right) \\
& =0-E\left[\dddot{z}_{x}(t) \cdot \ddot{z}_{X}(t+\tau)\right] \cdot\left(R / 2 \cdot C_{S}\right) \\
& =-\frac{R}{2 \cdot C_{S}} \frac{d \ddot{q}_{\mathrm{Z}}}{d \tau} x
\end{aligned}
$$

where

$$
P_{\ddot{Z}_{x}}(\tau)=\int_{-\infty}^{\infty} G_{\ddot{z}_{x}}^{2}(\omega) \cdot \exp (-i \cdot \omega \cdot \tau) \cdot d \omega
$$

Differentiating this gives

$$
\begin{aligned}
& B_{\ddot{z}_{\phi}} \ddot{z}_{x}(\tau)=\left(R / 2 \cdot C_{S}\right) \bullet \int_{-\infty}^{\infty} i \bullet \omega \bullet G_{\ddot{z}_{x}}^{2}(\omega) \bullet \exp (-i \bullet \omega \bullet \tau) \bullet d \omega \\
& =\int_{-\infty}^{\infty} G_{\ddot{z}_{r} \ddot{\chi}_{x}}{ }^{2(\omega)} \bullet \exp (-i \bullet \omega \cdot \tau) \bullet d \omega
\end{aligned}
$$

Thus,

$$
\ddot{z}_{I \phi} \ddot{z}_{X}^{2}(\omega)=\left(P / 2 \cdot C_{S}\right) \cdot \underline{i} \cdot \omega \cdot G_{\ddot{z}_{X}}^{2}(\omega)
$$

where $G \ddot{z}_{X}{ }^{2}(\omega)$ is real, symmetric and

$$
\left\langle\ddot{z}_{r \phi} \cdot \ddot{z}_{x}\right\rangle=\int_{\infty}^{\infty} G_{\tilde{z}} \ddot{z}_{r} \ddot{z}_{x}^{2}(\omega) \cdot त \omega=\left(R / 2 \cdot C_{S}\right) \int_{\infty}^{\infty} i \cdot \omega \cdot G_{G} \ddot{z}_{x}^{2}(\omega) \cdot d \omega=0
$$

For $\xi \equiv R \cdot$ w $_{g} /\left(2 \cdot C_{S}\right)$, Equation 3.25 neduces $=0$

$$
\left[\ddot{z}^{2}(\omega)\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 \xi^{2} & 0 \\
0 & 0 & 1
\end{array}\right] \cdot \ddot{z}_{x}^{2(\omega)}
$$

Tor $C_{s}=\operatorname{Fg}_{\mathrm{g}} \boldsymbol{\lambda}, \lambda$ being the seismic wavelength in the unaezlying rock an? Eg the corresonding Ezequency, ξ becomes $\pi \bullet a / \lambda$. Combining Equa=ion 3.27 and 3.18 and

$$
4 P m_{m} \cdot 1 D F_{n}=A m^{A} 1 m^{+A} 3 m \cdot A_{3 m}+2 \cdot 2 \cdot A_{2 m} \cdot A_{2 n} \quad 3.28
$$

The ams value doterminet by using Equation 3.23 should be less than that calculated using Equation 3.20 because the latter assumes all deqrees of freedom hape the sare exci-ation and aze thus ideńical.

As an example, consider the shear wall building analyzed by Heideb=echt (28), which is shown in Piqu:e 3-3 with the corresponiting frequencies and mode shapes. The funlamental aode is predominantly y motion, the second mode predominan=ly x motion and the thizd mode mostly sotation. The values of C_{i} for the \bar{y} disolacewent of point $3, A_{3}+17$ (a/ E•A $2 i^{\text {aze }}$

Mode 1

$$
f_{1}=2.46 \mathrm{cps}
$$

Mode 2

$$
f_{2}=2.78 \mathrm{cps}
$$

Mode 3

$$
\mathrm{f}_{3}=3.76 \mathrm{cps}
$$

$A_{Z}=\left\{\begin{array}{l}.89 \\ .0 \\ .45\end{array}\right\}$
$A_{3}=\left\{\begin{array}{r}.20 \\ .89 \\ -.40\end{array}\right\}$

Figure $3-3$ Example Building and Coupled Modes [Adapted from Heidebrecht(28)]

$$
\{C\}=\left\{\begin{array}{llll}
.45 & .17 & 1.00
\end{array}\right\}^{\mathrm{T}} .
$$

The matrix of correlation coofficients Dm, the same for Eauations 3. 10 and 3.24 are

$$
\left[E_{\mathrm{mn}}\right]=\left[\begin{array}{ccc}
1.0 & .09 & .00 \\
.09 & 1.0 & -07 \\
.00 & .07 & 1.0
\end{array}\right]
$$

which assumes a pezcentaqe of caicical damping oz 57 in each mode.

The modzl participation factors as calculater by Zquation 3.23 for a vavelength of 1000 m , are

$$
[12 F \mathrm{mn}]=\left[\begin{array}{rrr}
0.30 & -0.39 & 0.00 \\
0.39 & 0.02 & 0.00 \\
0.00 & -0.00 & 1.00
\end{array}\right]
$$

The mazrix of the mean square modal values as determined by Pquations 3.22 . 3.24 and 3.29 are

$$
\left[\begin{array}{rrr}
2.73 & -0.02 & 0.00 \\
-0.02 & 0.02 & 0.00 \\
0.00 & 0.00 & 12.27
\end{array}\right]
$$

for the response spectrum shown in Figure 3.4.
The Bis disolacement of point B is thus 3.87
cantimeters. tera means of comparizon, if equation 3. 20 ferellsar insteat of equarion 3.28 the nis displacement 'aouly be 4.38 centimeters, and if tie arsolute sum of the modai values were uset it would be 5.51 sentime=ers.

Fiqure ?-4 Example Design Response Spectanin

Fhe difference between the valles Eor Equation 3.23 an' 2. 20 lies in the correlation of the excitations. . The former assumes only the spectra to be the same while the latter assumes the spectra and the excitations themselves to be iden=ical.

Another way of showing this effect is by araoh of the interaction equations. Rosenblueth and Elorduy 2 and ana and Chopra 36 presented the effect of torsional coupling as graohs of the fynamic forces, nondimensionalized by the
ancoupleri force in the direction of the excitation，versus a monlimensional Ezequency razio for a flat accelera＝ion soectrim．The torque is Dresented as the ratio of dynamic こ0 ミニaーic eccen＝こici＝y．

Por a qround excitation consisting of only X t＝anslatiors，Kan an Chooraza also derived the intezaction surface of the normalized forces as

$$
\bar{v} x^{2}+\bar{v} y^{2}+\bar{i} \geq=1
$$

Whore the bar dequtes the value normalized by the uncouded

Fiause $3-5$ shows the interacrion beveen the forces for a grount excitation consisting of only y translation with a Elat acceleration specsrum．The forces are not normalized here．

Riqure $3-5$ Force Interaction for X Ground excita＝ior
only and Flat acceleration spectrum（ $\mathrm{X}_{\mathrm{X}}\left(\equiv=0, \omega_{\mathrm{y}} / \omega_{\mathrm{x}}=1\right)$
＝he x arection while cansing a shear in the y direction and a＝ローque．

For a frouna excitation consisting of rotation only，a similar interaction fo＝a flat accele＝arion spectrum is shown in Fiqure $3-6$ for．different values of the zadias of gクfation to wavelength ratio．Fere the effect of the coupling is to decrease the torque while inducing bililing shoprs．The decrease in the torque for aiferent eccent＝iciさy ニzーios shown in Fiañe 3－ó is much less than the decrease in the shear in the direction ojexcitation as ミャo幺n in Figure 3 ．

Irferaction＝ala＝ions can aiso be derived for systems Jith simutareous ？，\not ，and Y excitations．For uncorrelatea ground translations，ani ground rotation excitarion detined by Fquation 3．26，all the excitations are uncorrelated as shoun by Equation 3．27．Por ancoreelater excizations the variance of the sum of the modal responses is the sum of the response modal variances and the interaction surface is

$$
\bar{T}_{x}^{2+\bar{y}} y_{y}^{2+T^{2}}=2\left(1+\xi^{2}\right)
$$

Eigure $3=7$ shows the interaction betreen the forces for excitations described by Equa＝ion 3.27 and with flat acceleration spectra．

The increases in the shear for higher levels of the radins of gyration to wavelen $\mathrm{g}_{\mathrm{t}} \mathrm{h}$ ratio are not great。 Although Figure $3 \cdot \sigma$ shows an incraase in the shears due to the \quad round rotation，the decrease in shear shown in

Tiqure 3-E Force Interaction for o Ground Excitation oniy and Flat icceleration spectrum $\left(Z_{x} /=0, \omega_{y} / \omega_{x}=1\right)$
 offsets this as shown in Eigure 3-7. Also, i= must be remembered that the shortest wavelength of interest is of the orter of 600-1000 meters since the reasoning behint the ground rotation excitation assumes the wavelength to be that associated with the underlying rock and the shortest natural periods of interest are 0.2 sec. or longer. Thus for typical building sizes the ratio ξ will be of the order $0.0-0.1$. AS

Figure 3-7. Force Interaction For
Uncorrelated Ground Excitations
With ?lat Acceleration Spectra $\left(\Sigma_{X} / R=0, \omega_{Y} / \omega_{X}=1\right)$
seen in ?jaure 3.7, even for the worst case of $\omega_{x}=\omega_{\phi}=\omega_{y}$, for $\xi=0.1$, only $=$ he =oruue is appreciably affected by the coupiring.

It is now establisted that the story shear decreases with increasina eccentricity. It can also be said that the story displacements , i.e., the displacement at the center of mass, decrease with increasing eccentricity. The shea二 ani disolacemenz az =he periphery of tie builainf, nowever, is generally thought to increase with eccentricity. Zhe reason it is thought to increase is that the eccart-ici=y iniaces a =otational notion yhose displacement at the perionery aore than offsets the decrease in the averaqe วモ $5-\supset=y$ displacement that occurs with inceeasing eccentricity.

The qethod presented in this chapter can also be used to examine the peripheral response and the parameters afiecting it. For the syster shorn in Fiquae 3-2, the displacement at the center of mass (C.M.) is less than what it would be if the centers of mass and stiffness were coincident. The origin of the coozdinate system is the center of mass. The displacement of the point marked P is determined by the relation

$$
U_{p}=J_{x}+\left(E_{Y m} / R\right) \cdot\left(\Pi_{\phi}\right)
$$

or in matrix forg

$$
J_{p}=\left\{\begin{array}{lll}
1 & \left.E_{y m} / R \quad 0\right\} \cdot\{U\}=\{C\}^{T}\{J\} & 3.30
\end{array}\right.
$$

with this relation, the power spectral densiey of ${ }_{p}$ is determined to be

$$
\begin{aligned}
G_{U_{p}}^{2(\omega)} & \left.=\{C\}^{T_{[}} G_{U}{ }^{2(}(\omega)\right]\{C\} \\
& =\{C\} T[I(\omega)]^{H}[A]^{T}\left[G_{Z}^{2}(\omega)\right][A][\mathrm{E}(\omega)]\{C\}
\end{aligned}
$$

Where be spectral density of the ground motion [G $\left.Z^{2}(\omega)\right]$ is letermined by Equation 3.27.
which upon expanding, becomes

and after integrating, becomes

$$
+2 \cdot \sum_{y m^{\prime}} / ? \cdot\left\langle Y_{p x} \cdot Y_{p \phi}>+\left(A_{x x} \cdot A_{x \phi}+2 \cdot \xi^{2} \cdot A_{\phi x} \cdot A_{\phi \phi}+2 \cdot \mathrm{E}_{\mathrm{ym}} / B \cdot A_{y x} \cdot A_{y \phi}\right)\right.
$$

$$
3.31
$$

The variance of the input ground translations are assumed the same. The variance of tie ground rotation is determined by the quantity ξ. The area of interest in building torsion concerns systems where the frequencies are close together. For such systems the moral quantities
$\left\langle Y_{p x}{ }^{2\rangle},\left\langle y_{p \phi^{2}}{ }^{2\rangle}\right.\right.$, and $\left\langle y_{p y}^{2\rangle}\right.$ can be assumed approximately equal
$\left\langle Y_{p x}{ }^{2\rangle=\left\langle Y_{p} \phi^{2\rangle}=\left\langle Y_{p Y}{ }^{2\rangle}{ }^{2} \sigma^{2} .\right.\right.}\right.$
where σ is a constant.
A special case of interest arises when $\xi=\sqrt{2} / 2$.

$$
\begin{aligned}
& \left\langle\mathrm{U}_{\mathrm{p}}{ }^{2\rangle}=\left\langle\mathrm{Y}_{\mathrm{px}}{ }^{2\rangle \cdot\left(A_{\mathrm{xx}}{ }^{2}+2 \cdot \xi^{2} \cdot \mathrm{~A}_{\phi \mathrm{x}^{2}}+2 \cdot \mathrm{E}_{\mathrm{ym}}{ }^{\prime E} \cdot \mathrm{~A}_{\mathrm{Yx}}{ }^{2}\right)}\right.\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { The variance of }{ }^{\mathrm{T}} \mathrm{p} \text { then is } \\
& \left\langle U_{p}{ }^{2}\right\rangle=\int_{-\infty}^{\infty} G_{U_{p}}{ }^{2}(\omega) \cdot \exists_{\omega} \\
& \left.\left.=\int_{-\infty}^{\infty} G Z^{2}(\omega) \cdot\{C\}^{T} \Gamma H(\omega)\right\}^{H}[a\}^{T}\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 2 \cdot \xi^{2} & 0 \\
0 & 0 & 1
\end{array}\right] \Gamma\right][H(\omega)]\{C\} \cdot a \omega
\end{aligned}
$$

Equarion 3.31 then can be reancel to

$$
\begin{aligned}
& \left\langle i p^{2\rangle}=\sigma^{2 \cdot\{(A} x^{2+A} \phi x^{2+A} y x^{2}\right)+\left(E \mathrm{ym}^{/ R}\right)^{2 \cdot(A} x \phi^{2+A} \phi \phi^{2+A} y \phi^{2)}
\end{aligned}
$$

$$
\begin{aligned}
& =\sigma^{2} \cdot\left(1+\left(\Xi_{\mathrm{ym}^{\prime}}\right)^{2}+D\right) \quad 3.32
\end{aligned}
$$

It shoula be notec that Equation 3.32 is independent of the eccentricity，i．e．，the maximur response at the periphery does not increase with eccentricity，regaraless of its valie．a qalue of $\xi=\sqrt{2} / 2$ is hiqher thantipical trong

In order ：o examine the effects of the differen： parameters，Fiqure $3 \cdot 3$ was plotted usirq different frequency こaこiつs，eccentニicity ratios，aistancos E＝on the contor of
 Graphs represents the response Eor $\Xi_{\mathrm{ym}^{\prime} / \mathrm{F}=0.0 \text { ．i．e．at the }}$ center of mass．It shows the familiar Eeduction with increasing accentriciry．The second column rep＝esents $E_{y m}$ $=0.6$ ，and the third 1.22 （which would represent the peripbery of a square buildina）．

The bottom row of graphs in Eigure 3－8 represents $\xi=0.0$ ． i．e．no ground rotation．Tt shows a siqnificant increase for $\mathrm{e}_{\mathrm{ym}^{\prime}} / \mathrm{R}=1.22$ ．The aidde row represents $\xi=0.25$ and the too row $\xi=\sqrt{2} / 2$ ．

The maximan increase for $\xi=0.0$ and $y^{\prime} y^{\prime} S=1.22$（the ex＝erio：of a squa＝e building）is about 55 号 when $\omega_{\phi} / \omega_{x}=1$ ． This is about the same when $\xi=\sqrt{2} / 2$ and $\sum_{y m} / \Omega=1.22$ ．This reosesents a static eccentricity of about 33\％of the building width．

\qquad

Figure 3-8 Effect of Ground rotation
mat this means is that the expecter maximum peripheral resoonse is essentially ingependent of the level of ground Eotation for systems where the torsional ano lateral Erequencies are the same.

This is not reue, however, for systems where the -orsional ani lateral frequencies are not close toqether. In this case the level of around rotation directly affects the level of resnonse as seen in Piaure 3-3. The zesoorse in this case can be approximatel by tio root sua square of Ghe $=0 r s i o n a l$ and lateral resoonses.

The sinqle most importan- vaziabie in determining the peripheral resoonse is the torsional lateral frefuency ratio since in mos= cases ξ should be leas than 0.1.

The method presented should give reasonable estimates of the elastic torsional response of three तimensional building systems. The =elative effect of Ehe diffeneñ parameters on the expected maximum response is based on a probabilistic description of the gronnd motion. The power spectral density natrix of the ground motions is taxen to be a diagonal matrix. The expected maximia peripheral resoonse is lecermined as the standard deviarion of the response which is based on the iiaqonal onwer spectral density watrix of gronnd motions.

CRAPTEP IV

YOMLIYEAP ERSPDHSE MODEI

 simoie for zeasons of economy. since edrrhquake peak resounse coefficients of variation vary Eroa 0.1 to 0.3 , seqeazl ミamples tusc be avezaged =0 interpre= the zesults クeaninçuly. also, nonlineaz sys=eas, especially thzeeÅiaensional nonlinear systems are complex anł expensive to simulate.

The characteristics of nonlinear torsional response are needed though, since buildings respond inelastically to some earthquakes. It is desired to know the effect of ground rotazion in a nonlinear system. Also, nonlinearieies in an unsymnetric builaina tena to increase the eacentaicity. The effect on ductility requirement.s of peripheral lateral load elements is also needed.

In order to analyze accurataly and efficiently the effect hysteretic enezgy dissipation has on the parameters eccentricity ratio, frequency ratio, and strength ratio, a simple sirgle story model is used. The singie story building that qill be studied is shown in Fiqure $4-1$. The load resisting eleaents exhitit a single degree of freedoa
hysteresis qhere the force is a function of onlo one łisplacement as poposed to, say, a beam-column where =he forces $\exists r e$ a function of severai displacements. This simplifies the nonlinear torsional response coopatations by onabling the use of simple hysteresis types.

Many different simple hysteresis types are available depending on what is being modelled. The elastoplastic mofel was develode? to monel the elastic-olastic hehayiour of steel. The bilinear model is similar to the elastoplasiic aodel but allows st=air-iardenira.

Por monent-resisting members the qradual yielding inward of the cross seccion requires silonこhiny of the sharp yielding in the bilinear model. Tins toqether with the Bauschinger effect brought about the use of the famberga Osgoon hysteresis model which is a cnavilimear model very similar to the bilinear model.
arother singla degree of freedom hysteresis model is the origin oriented shear model. In this model the unloading is alwaps dizected thzough the origin giving a pinched hyseeresis looo. This model is used were nonlinear leformations and Eailure characteristics are qoverned orimacily by shear.

The stiffness degrading model is used for members whose stiffness degrades upon reloaing, where the feqree of degradation depends on the current ductility. The stiffness deqrading and oriqin"oriented shear models are usually used to model roinforced concrete members.

The building model used to study the nonlinear behaviour of buildings subject to torsicnal motion is shown in figure 4-1. It consists of a rigid diaphragm roof and four independent extarior lateral lcad resisting elements, e.g.. steel moment frames or braced frames.

Figure 4-1 Euilding Model

This model can represent many different single story buildings in use. Some of the buildings on auclear reactor sites are single story four frame buildings. Industrial buildings are commonly one story and for better utilization of space, often have only exterior frames. Marehonses are often similar to such industrial buildings.

Small commercial buildings are commonly one story.

Also, such buildings often haqe very high eccentriciries. One sile of these builaings is typically all glass, leaving only 3 exterior Erames. This can result in the center of stiffness located at the exterios which gives rise to Ehe very bigh eccentricity.

Spozts arenas, audǐoriums, and meeting halls are other examples of sinqle story exterior framed buildings.

Xultistory, maltibay stractares ofviously don't Eit tap cai=eria for this model; however, wi=h some crude approximations this model can qive the wultiscory, multibay gross response. For example, if the response can be presumet to consist orimarily of the fundamental mode then this aporoximation should qive reasonable results.

Sone pultistory structures are rot suitable for modelling as a single story structure even for gross results. suildings with eccentric penthouses are one example. Buildings ith sudaen changes in stifiness of changes in the eccentricity are another example.

Multibay structures require another approximation in orier to be modelled as a single bay stucture. The frames on each side of the center of stiffness are lumped together each as one frame keeping the rotal stiffness constant so the frequency isn't chanqed. For the building shown in Pigure 402 , the stiffress of the equivalent frames in the y o direction would be as follows

$$
\begin{aligned}
& K_{y t 1}=R_{Y 1}+K_{Y 2} \\
& K_{y 七 2}=k_{Y} 3^{+} K_{Y} 4
\end{aligned}
$$

In \quad rde = 0 ken unchanaed the =otational stiferess due to these frames, the distances $X_{t 1}, X_{t 2}$ would be determined from

$$
\begin{aligned}
& x_{y 1} \cdot x_{1}^{2}+x_{y 2} \cdot x_{2}^{2}=x_{y t 1} \cdot x_{t 1^{2}} \\
& x_{y 3} \cdot x_{3}^{2}+r_{y} \|_{4} \cdot x_{4}^{2}=x_{y t 2} \cdot x_{t 2^{2}}
\end{aligned}
$$

where F_{t} would be between V_{1} and X_{2}.

Figure 4-2 Kultibay Builaing

For a linear multibay systea this method of modeling wold give the same results: \quad owever, a problem arises in nonlinear response. If the yield levels of frames 1 and 2 were $F_{y l}$ and $F_{y 2}$, then the obvious choice for the equivalent
 eccentaicity anえ no torsional exci¿ations, the zesnonse of the actual muitibay structure and the four frame equivalent model would not be the same unless the yield levels of Erames 1 and 2 were identical. Por bilinear bysteresis with

ヨifferont qiald levels for the Erames labelled one and two， the equivalent Erame yould bave to exhibit a trilinear hysteresis to match the response of the acrual structure． Also，when a torsional resoonse exists，the rotational displacement wich would cause one or the frames in the multibay strucさuze $=0$ yield，wuld rot necessa＝ily be the same yield rotational displaceaent as that of the equivalent model．The maximum moment for each sys＝en xill be aporoximately the same thomah．So motellina nonlinear quleibay stauctuニes as sifale bay structures ioes require some approximarions．It shouli model the aross cesoonse adequately，thouqh．

EDTAMIOUS CT MORION
For the four Exame structure being analyzed，the rigid diaphragm reduces the system to three dearees of freedom； two lateral fisplacements and a rotation about a vertical ョxis．

The aynamic equations of motion for the three deqree of Ereedom ronlinear syseem shown in Figure 4－1 are
$[1]\{\ddot{i}\}+[C]\{\dot{0}\}+\{F(J)\}=\cdot \cdot[1]\left\{i \mathrm{j}{ }_{q}\right\} \quad 4.1$
where
$\left\{F\left(\Pi_{i}\right)\right\}=\left\{F\left(\sigma_{i-1}\right)\right\}+\left[K_{i-1}\right] \Pi_{i}^{-\Gamma} i-1$
and $\left[K_{i}\right]$ is the tangent stiffness at time t_{i} ．
The displacement vector $\{T\}$ is the same as in Equation 3．1．i．e．

$$
\{J\}=\left\{\begin{array}{lll}
U_{x} & E \cdot T J
\end{array} \quad U_{Y}\right\}^{T}
$$

The mass matrix then becomes
$[M]=\left[\begin{array}{ccc}\pi & 0 & 0 \\ 0 & \pi & \equiv \\ 0 & 0 & 0\end{array}\right]$

The hyseeresis model chosen for this study is the bilinear morel．The numerical integration method used is fourth order funge，Kutta．

Fourth order Runge－kutta numerical incegration of a secont oraer differential equation，き．Equation 3．1，is conditionaliv stable for $T_{n} \prime \Delta t>2.43$ ，where I_{n} is the period of the sys＝em．The linear accelezation methor，sometimes reforrer to as yewark＇s $\quad \beta$ method（41），is conditionally ラ＝able for $I_{n} / \Delta>1.31$ ．In a linited test of single deqree ग三 Ereerom linear responses to sine waves，the Eour－i oriez Funge rinta method was more accurate than the linear acceleration method in terms of peak response and earchquake innut onergy，which is defined simply as the energy input to the s－ructure．The linear acceleration me＝hod is more efficient for the same T_{n} / Δ^{+}ratio though．The reason the Eungarratta method is used is its accuracy and ease in proqramming changes in the time s＝ep $\Delta t=$

For a bilinear hysteresis model the amount by which the force can overshoot the yield envelope can be considerable； especially for low values of $T_{n} / \Delta t$ ．The usial procedure raken when the force overshoots＝he yield envelope is to redo this steós calculations with a mach smaller time increment，say oner fifth the original；then，when the force is beyond the pield envelope，oresumably by a small amount，

Ghe Eime increment is zeset to the original value and the computations zesume.

A special \exists lagorithm is used here to compute the time step necessary to reach the qield force precisely. The fourth order Eunge-Kutta methor is used to solve Equation 4.1. The initial time steo increment Δt is chosen on the basis of stability anc accuracy. When the force for one of the elements overshoots the pielt envelooe, this time step's calculazions are =eione wich a new =ime sモed increaent.

Figure $4 \cdots 3$ Bilinear Yield Envelope

When the force overshoots the yieli envelope, as shown in Figure 4-3, the lisplacement necessary for the force to equal the yield force is known. If the displacement is assumed to be a thizd order function of time, i.e. linear acceleration, then the time increaent corresponding to that displacement can be computed. That displacement then is

$$
\Delta X=(P y-F(=)) / K=\Delta \tau \cdot \dot{X}(t)+\Delta t^{2} \cdot\left[2 \cdot \ddot{x}(\tau)+\ddot{x}\left(t+\Delta^{t}\right)\right] / 6 \quad 4.2
$$

where

$$
\ddot{x}(=+\Delta t)=\ddot{x}(t)+[\ddot{z}(t+t) \cdot \ddot{z}(t)] \cdot \Delta t / 亡 1
$$

a cubic equation in Δt is obained by combining Equations 4. 1 and 4.2.

$$
G(\Delta t)=\Delta t^{3} \cdot[\ddot{x}(t+=1)=\ddot{x}(+)] /(6+1)+\Delta+2 \cdot \ddot{x}(t) / 2+\Delta \pm \dot{X}(t)-\Delta \bar{x}=0 .
$$

Δt can be solved for directly or by New on iteration
$\Delta t_{i+1}=\Delta t_{i} \quad G\left(\Delta t_{i}\right) / G^{1}\left(\Delta t_{i}\right)$
In practise, only a feg iterations are required to achieve the necessary acruracy. This time stop increment is then lsea ir the four-i onaer Eunqe Kutza inteqration scheqe for this step only. The computed element Eofec is then compared to the vield value and if it is dithin 1%, the solution ? ooceeds aith the initial time step ircrement. For the simula-ions used in this study the acouracy has almay been within 1 . The computer program using this algortinm is listed in Appendix E.

This solution technique for bilinear systems can be efficiently used for structures with fed yielding elements. For a strucruze with many yielding elements, the constant changing of the time step ould make this technigue expensive, computationally.

CHAPTER V

NONLINEAR RESPONSE RESULTS

The importance of the various torsional paraneters， arcon＝İcizy ra＝io，torsional yround aotion，ana strenath raンio ミュニ the model as doscribed in Chapter IV aze stuiled， espacially the peripheral response as it pertains to the ductili＝y demand．

Since the moael is a nonlinezr hysteretic system，yonte Carlo methods aze used．an ensemble of arさificial nonstationary accelerograms is generated as desc＝ibed in Chapter II usinq the computer proaran pSFQGEN（71）yhich uses filtared yhite roise with an intensity function of the Jenning＇s et al（s2）type．The intensity function $I(t)$ is shown in fiquze 5－1d）．The acceleroqrams are the product of ＝he stazionazy Eilzezed whitc noise ard Ehe intensity Eunction $I(t)$ ．The power spectral density shown in Figure 5－1c）is the nroduct of the filter＇s two frequency response functions shown in Figure 5－1a）and b）．The acceleroarams qenerated are intended to simulate strona ground motion on firm soil in the vicinity of the epicenter（s5）．The generated accelerograms are shown in Figures 5－2 through 5－6．

Other parameters that characterize the accelerograms include the maximur acceleration wich averages 0.4 g for the five accelerograms with a standard deviation of 0.01g. The duration is 60 seconds with a duration of 31 seconds for the strona ground motion (stationary) portion. The Arias intensity(78) which is defined as

$$
\left.I_{a}=\pi / 2 \cdot q\right) \cdot \int_{0}^{t} \ddot{z}_{g}^{2}(t) \cdot d t
$$

is 22.2 ft/sec. The rms acceleration is 0.19.

Pigure 5-1 Artificial Accelerogram Data

Bousner's spectrum intensity $S I$, is defined as

$$
S I=\int_{0.1}^{2.5} \nabla \cdot d T
$$

Where Y is the pseudoveloci-y response in ft/sec, often for 20 damping, and Γ is the natural period. For the five yenerateß acceleroqrams the average spectruin intensity SI is 3.9 Et for 20% damping. Ground rotarion as included and computed according to Equation 2.15. The shear wave speed used ias a conservarive 1000 ft/sec. This corresponds to a value of 0.15 for the parameter ξ as described in Chapter II for the mavelength corresponding to the prodorinant Erequency of excitatior.

The normalized eccentricity ratio, ミ/E, is defined as The eccentriciry bezween the center of wass and stiffness aivided by the mass raidus of gyaation. The values 0.0 , 0.1, 0.2, 0.3, anł an unusually high value of 1.0 mere used for this ratio. The structure's dimension ratio $B_{y}{ }^{\prime B_{x}}$ was 2.0. The stifeness was assumed p=oportional to the Iimensions of the structure i.e., $\mathrm{K}_{\mathrm{y}} / \mathrm{K}_{\mathrm{x}}=2.0$, so the frequency ratio $\omega / \omega_{\mathrm{x}}$ was $\sqrt{2}$ - The torsional"lateral frequency ratio $\omega_{\phi} / \omega_{x}$ is determined by the geometry of the structure. قor a uniform mass distribution the mass radius of gyration is

$$
R=\sqrt{\left(B x^{2}+B y^{2}\right) / 12}
$$

and the torsional frequency is

For $B_{y}=3_{x}$ and $K_{y}=K_{x}, \omega_{\phi} / \omega_{x}=\sqrt{3}=1.73$. For $B_{Y} / B_{x}=K_{y} / K_{x}=2$. $\omega_{\phi} / \omega_{x}=1.90$.

The mass of the model，assumed uniformly distributed， was $2 . j$ kipsesecr／inch．\quad ther important parameters of the nonlinear response are the naturai frequencies and a streng－h raramerer．Tine natural perious used mere 0．2，0．6．1．0，and 1.4 seconđs．

The other darameter determininq nonlinear response relates to the yield level．This strenqth parameter can be expressez in mant different ways．The currert racepol coie specifies tie hase shear $v, a s$
$\mathrm{V}=\mathrm{Z} \cdot \mathrm{I}-\mathrm{K} * \mathrm{C} \cdot \mathrm{S} \boldsymbol{0}$
 factur，a Eraaing sysean facto＝，a gaこural deriod factor，a ミiبeーミことucむu＝e zesonarce fac－oz，ana the building weiqhtor aass times gravity）．A natural ahoice for the strength parameter then is the yield shear F^{\prime} ，divided by the weight， $4 \cdot \square$.

The values for ${ }^{5} y^{\prime}(M \cdot q)$ used were $1 / 8,1 / 4$ ，as $1 / 2$ ．

Resulさs

The excitation for the first analysis consistel of accelezograin 1 for the x－dizection，accelerogran 2 for the I－direction，and using Equation 2.15 to determine the rotational acceleration．The excitation for the second analysis consisted of acceleroqram 2 for the X －direction， accelerogram 3 for the Ψ－direction，and again using Equation 2． 15 to determine the rotational acceleration．The exciさation for the third，forrth，and fifth aralyses are similarly determined．All results presented are the average
of the results of the five dynamic analyses.
The maximum displacements and ductilities at the center of mass for different values of the eccentricity ratio and a strength ratio of $1 / 2$ are shown in Figure 5-7 as functions of the period in the x-direction. The disolacements in the X-direction don't vary wuch vith eccentricity. The displacements in the Y-direction appear to increase vith eccentricity, bat only slightly.

The maximum peripheral displacements and ductilities for different values of the eccentricity ratio and a strength ratio of $1 / 2$ are shown in Fiqure 5-8. The displacements in both directions increase with eccentricity for the most part.

The maximum displacements of the center of mass and their corresponding ductilities for different values of the eccentricity ratio and a strenqth ratio of $1 / 4$ are shown in Pigure 5-9 as a function of the period in the x-direction. The displacements in the X-direction and T-direction don't vary much with eccentricity.

The maximum peripheral displacements and ductilities for different values of the eccentrici=y ratio and a strength ratio of $1 / 4$ are shown in Figure 5 -10. The displacements in both directions increase vith eccentricity for the most part.

The maximull displacements and ductilities at the center of ass for different values of the eccentricity ratio and a strength ratio of $1 / 8$ versus the period in the x-direction

a) Maximum Displacement of Center of Mass in X Direction

b) Maximum Displacement of Center of Mass in Y Direction
E / R

c) Ductility of Center of Mass in X Direction

d) Ductility of Center of Mass in Y Direction

Figure 5-7 Displacements and Dactilities of
Center of Mass

$$
\left(F_{Y} /(M-G)=1 / 2\right)
$$

Pigure 5-8 Peripheral Displacements and

$$
\text { Dactilities }(F /(M \bullet G)=1 / 2)
$$

Figure 5-10 Peripheral Displacements and

$$
\text { Ductilities }\left(F_{Y} /(M \cdot g)=1 / 4\right)
$$

are shown in piaure 5w11．The iisplacements in the p． lirection don＇＝show a aiscernible trenc．The displacements in the Y wirection aopear to increase with eccentricity，but only sliahtly．

The maximum peripheral displacements and ductilieies for different values of the eccentricity ratio and a strength ratio of $1 / 8$ are shown in figure 5－12．The iisplacements in both diroctions increase with eccentricity foz ihe most part．The values for a period of 0.2 seconds were ieft out becmase the ductilities were in the hurdreds，which for all practical purposes are not meaninaful．

三크thquake Enerqi ？
The partition JEenergy in the model das also computed． The earthquake input energy（EIZ）is defined as the total acceleration inteqzated over the ground displaceaent

EIE $=\int_{a}^{t} M \cdot\left(i \bar{i}+j_{g}\right) \cdot d \eta{ }_{g}$
The dissipated hysteretic onergy（D⿴囗十）is the stiffness Eela＝ed force inteq＝ated over relative displacement less the zecoverable strain energy

$$
D E E=\int_{0}^{t} F(\mathrm{~J}) \cdot d J-E^{2}(亡) /(2 \cdot K)
$$

The dissipated monhysteretic energy（Dyme）is the daaping force inteqrated over relative displacement plus the recoverable strain energy and kinetic energy．The strain and kinetic energy are included since they are eventually dissipa二ed through dampina．The Eraction of critical viscous damping in all cases was 5 \％．（See appendix F for

a) Maximum Displacement of Center of Mass in X Direction
b) Maximum Displacement of Center of Mass in Y Direction

$$
\begin{aligned}
& E / R
\end{aligned}
$$

$$
\begin{aligned}
& \text { c) Ductiiity of Center } \\
& \text { of Mass in X Direction } \\
& \text { d) Ductility of Center } \\
& \text { of Mass in } Y \text { Direction } \\
& \text { Figure 5-11 Displacerents and Ductilities of } \\
& \text { Center of Mass } \\
& \left(F_{Y} /(M \bullet g)=1 / 8\right)
\end{aligned}
$$

Figure 5-12 Peripheral Displacements and

$$
\text { Dactilities }\left(F_{Y} /(M \bullet g)=1 / 8\right)
$$

The earthcuake input energy, dissipated damping eneray, and dissipated hysteretic eneray for different values of the eccontricity ratio and a strenath zatio of $1 / 2$ vessus the period in the X.direction are shown in Eigure 5-13. The values for a strength ratio of $1 / 4$ and $1 / 8$ are shown in Figures 5-14 and 5-15.

- Several things are noteworthy in these figures. First. Chere inesn' seen = be any doeinite Eelation betwern the values and eccorraicity, i.e. thev dor'- uniformy irc=ase or तecrease with eccentricity. Second, as would be expecter, =he dissipazed hyミterecic energy increases for lower values of $\bar{F} y(M \cdot a)$. Third, the earthquake input enezgy lacreases for lower vaimes of $\exists y(y * g)$. The reason for this is not cleaz. Finally, $\begin{gathered}\text { here } \\ \text { is } \\ \text { a definite peak in }\end{gathered}$ the vaiue of earthquake input energy versus period. This can be explained. If the dissipated hystereric enerqy were viewed as an equivalent viscous damping dissipaced energy, then the total value of the damping parameter C would be the sum of the viscous damping and the equivalent hysteretic Gamoing. The earthquake inout energy uould be approximately

$$
\text { IIE }=\int_{0}^{T} C \cdot \square 2 \cdot d t \doteq c \cdot\langle\bar{j} 2\rangle \cdot t
$$

The mean square velocity can be representel in terms of the input poger spectan density and the velocizy =esoonse function which in this case are unimodal functions, functions mith one peak.

$$
\langle\dot{j} 2\rangle=\int_{-\infty}^{\infty}\left|\dot{H}_{\dot{U}}(\omega)\right|^{2}, G_{\ddot{U}_{g}}^{2}(\omega) \cdot \mathcal{C}_{\omega}
$$

a) Earthquake Input Energy (EIE)
b) Dissipated Nonhysteretic Energy

c) Dissipated Hysteretic Energy (DHE)

E / R

Figure 5-13 Energy Partition $\left(F_{Y} f(M * G)=1 / 2\right)$

b) Dissipatsd Nonhysteretic Energy

Figure 5-14 Energy partition $\left(F_{Y}(M \bullet g)=1 / 4\right)$

a) Earthquake Input Energy (EIE)
b) Dissipated Nonhysteretic Energy

A typical velocity response function is shown in Figure $13-1 a)$. The input power spectral densiry is shovn in Figure 5-1. It follous that $\langle\dot{\square} 2\rangle$ would be largest when the peaks of the two functions were concurrent. Thus, the largest value of earthquake input enerqy should occur near the peak of the inpat power spectral density function. This is the case.

The strength ratio corresponding to a given ductility ratio is also of interest. For the ductilities, averaged over the different eccentricitq ratios, the corresponding strength ratio is determined by interpolation from Piqures 5-7 to 5-12 and is shown in Fiqure 5-16.

Pigure 5-16 Strength Batio versus Dactility

For a system with uniformly distribated mass, the response of the element furthest from the center of stiffness will be the largest. Due to this increased response the stiffness will be smaller relative to the element closest to the center of stiffness. This smaller
stiffness increases the eccentricity and, one might expect. could further increase the response of the element furthest from the center of stiffness.

This could lead to a situation where the eccentricity causes an increasinaly nonlinear response of the element until the ductility demand could not be met. That this is not the case is evident from the results. The reason is probably the type of hysteresis model used. The bilinear model has increasingly nonlinear strength as vell as increasing dissipated hysteretic energy capacity uhich would both limit the response. In any case, this does not seer to be a problem.

SUMBARY AND CONCLTSIONS

This dissertation is concerned with the study of torsion in buildings subjected to earthquakes. It is now well known that there is a aqnamic amplification of torque and a Jynamic reduction in buildinq shear. A recent, detailed study used the mode superposition and zesponse spectrin techniques to develop response envelopes for an excitation in one तirection. other researchers have reported for a single accelerogram response, as much as a $40-100 \%$ increase in the peripheral response.

The analytical technique selected here for linear
 description of earthquake excitation was discussed and a simple expression relating torsional earthquake exaitation to translational earthquake excitation yas developed. Interaction relations were derived for systems with simultaneous $\mathbb{X}, \not \subset$, and Y around excitations.

The main concern or deleterious effect of brilding torsion is the increase in peripheral response. The reason for the increase is thouqht to be that the eccentricity induces a rotational motion whose displacement at the periphery more than offsets the decrease in the story displacement that occurs with increasing eccentricity. The peripheral response was stadied using the probabilistic model. The effect of the various parameters on the
peripheral response yas studied. It was shoun that a special case arises where the peripheral response is independent of the eccentricity or frequency ratio.

Earthquake ground motion was described and the state of the art of artificial qeneration was discussed. Jncorrelated ground translations were used for this study. Newmark's model of ground rotational motion was used and the various parameters affecting it vere studied. The decrease on the maqnitude of this around rotation as the rigid building size to wavelength ratio increases was also Aiscussed.

A probabilistic approach cannot be used for noninear hysteretic response. Monte Carlo methods are used for nonlinear response. An ensemble of artificial accelerograms were generated for a response analysis of a class of nonlinear building types. For the four exterior all model studied, a bilinear hysteresis was used. For this type of model the torsion-translation frequency ratio is determined by the geometry of the structure. The results showed the peripheral response to be only marginally higher than that for zero eccentricity.

For an eccentric structure responding in the nonlinear range, the eccentricity increases with the increasing nonlinearities, possibly causing larger and larger torsional excitation. These studies showed this is not a problem with the bilinear hysteresis used with this model.

Conclusions

Based on the study in this dissertation, the following general conclusions can be wade: 1) in the statistical sense of the word expected, i.e. the mean, the maximum expected increase in the elastic peripheral response due to both the eccentricity and ground rotations is on the order of 50%; 2) the single most important parameter in building torsion is the torsion-translation frequency ratio; 3) torsional ground excitation must be quite large before it significantly affects the response for structures with well separated frequencies; 4) the dissipatef hysteretic energy for nonlinear structures is maximum when the nataral frequency is near the predominant frequency of the accelerogram; and 5) parametric resonance is not a problem for the four peripheral wall structure stadied herein.

Concloding Remarks

The analysis of building torsion in this dissertation assumes the qround rotation to be related to the ground translations by Newmark's relation. Although the conclusions stated are based on this assumption, it is still felt, based on field observations of others, that ground rotation is not moch larger if different. Nevertheless, the author still recommends the development and production of a torsional seismometer to determine the actual magnitude of the ground rotations and its relation to ground translations.

Lastly, the importance of the torsion-translation frequency ratio must be emphasized. It is recommended for unusually shaped buildings here large eccentricities are unavoidable, that the building be designed with well separated torsion and translation frequencies.

Response of single degree of freedom oscillators is sometimes computed by the Duhamel or convolution integral. The response to an impulse is a damped sine wave commonly referred to as the impulse response function,h(t) of the oscillator. The summing of the response due to each impulse becomes in the limit an integral. The summing or superposition of these responses is referred to as the Duhamel or convolution integral

$$
V(t)=\int_{-\infty}^{t} h\left(t-t^{\prime}\right) \cdot P\left(t^{\prime}\right) d t^{\prime}
$$

where

$$
h(t)=\left\{\begin{array}{lc}
0 & t<0 \\
\exp (-B \cdot \omega \cdot t) \cdot \sin \left[\omega \cdot\left(1-B^{2}\right)^{0.5} \cdot t\right] /\left[\omega \cdot\left(1-B^{2}\right)^{0.5}\right] t \geq 0 & \text { A.2 }
\end{array}\right.
$$

which is the transfer function for the differential equation

$$
\ddot{V}(t)+2 \cdot B \cdot \omega \cdot \dot{V}(t)+\omega^{2} \cdot V(t)=P(t)
$$

The Fourier transform of Equation A.l, commoniy referred to as the complex frequency response function, is

$$
H(\omega)=1 /\left[\omega_{n}^{2}-\omega^{2}+2 \cdot B \cdot \omega \cdot \omega_{n} \cdot i\right]
$$

The transfer function and the modulus of its transform are plotted in Figure Aa).

The power spectral density of an ergodic stochastic process is defined as

$$
G_{p}^{2}(\omega)=\left.\lim _{s \rightarrow \infty} \int_{-s / 2}^{s / 2} p(t) \cdot \exp (-i \cdot \omega \cdot t) \cdot d t\right|^{2} / s \quad \text { A } .5
$$

A sample random process and its spectral density are shown in Figure Ab).

It can easily be shown (59) that the response power spectral density is the product of the square of the complex frequency response function and the input power spectral density.

$$
\left|G_{V}^{2}(\omega)\right|=|H(\omega)|^{2} \cdot\left|G_{p}^{2}(\omega)\right|
$$

$$
A^{\prime} .6
$$

The response $v(t)$ and corresponding power spectral density are shown in Figure Ac). It is seen that a convolution in the time domain corresponds to a multiplication in the frequency domain. The converse can also be shown. Put simply, the transform of a convolution of two functions is the product of the individual transforms; also, the transform of the product of two functions is the convolution of the individual transforms.

$$
\text { The averaging filter } U_{t}(t)
$$

$$
U_{t^{\prime}}(t)= \begin{cases}0 & t<t^{\prime} \tag{A. 7}\\ 1 / t^{\prime} & -t<t<t^{\prime} \\ 0 & t>t^{\prime}\end{cases}
$$

along with its transform $U(f)$

$$
U(f)=\sin \left(2 \cdot \pi \cdot f \cdot t^{\prime}\right) /\left(2 \cdot \pi \cdot f \cdot t^{\prime}\right) \quad \text { A. } 8
$$

are depicted in Figure Ad).
The averaged response $\overline{\mathrm{V}(t)}$
$\bar{V}(t)=\frac{1}{t}, \quad \int^{t+t^{\prime} / 2} V(t) d t=\int_{-\infty}^{\infty} U_{t^{\prime}}\left(t-t^{\prime}\right) \cdot V\left(t^{\prime}\right) d t^{\prime}=U_{t^{\prime}}(t) * V(t) \quad$ A. 9 $t-t^{\prime} / 2$
can be viewea as the convolution of U_{t}, with V. The transform of \bar{V} shown in Figure $A e)$ is the product of the transform of U_{t}, and V.

The first zero of $U(f)$ is $1 /\left(2 t^{\prime}\right)$, which for the values of interest will be well beyond the natural frequency, f. 'Thus the effect of the averaging is to reduce the ordinates of the spectral density which reduces the variance defined as the area under the spectral density curve. Since the expected extreme value is proportional to the variance, the effect of the averaging reduces the expected extreme value, as expected.

Figure A-I

APPENDIX B

For a single degree of freedom (SDOF) system the expected response is a maximum when the structure is directed along one of the principal axes. The motion along the principle axes are uncorrelated and are defined as the radial to the epicenter and normal to the radius.

To show this, it is first assumed that the maximum expected response is proportional to the variance, consistent with the theory of extreme values. The variance is expressed as the integral of the power spectral density of the response, which is expressed as the integral of the product of the frequency response function and excitation power spectral density.

Let R denote the excitation along the principal axis P. Since R and C are uncorrelated, the cross-correlation function is zero. Thus, the cross spectrum $G_{r c}{ }^{2}(\omega)$, the transform of the cross-correlation function, is also zero. Let X and Y denote the angle θ of the structure's to P. Then

$$
X=C \cdot \cos (\theta)+R \cdot \sin (\theta)
$$

and

$$
Y=C \cdot \sin (\theta)+R \cdot \cos (\theta)
$$

Describing the power spectral density of X and Y in terms of R and C gives

$$
\begin{aligned}
& G_{X}^{2}(\omega)=\cos ^{2}(\theta) \cdot G_{Y}^{2}(\omega)+\sin ^{2}(\theta) \cdot G_{C}^{2}(\omega) \\
& G_{Y}^{2}(\omega)=\sin ^{2}(\theta) \cdot G_{Y}^{2}(\omega)+\cos ^{2}(\theta) \cdot G_{C}^{2}(\omega)
\end{aligned}
$$

$$
G_{X Y}^{2}(\omega)=\cos (\theta) \cdot \sin (\theta) \cdot\left(G_{r}^{2}(\omega)-G_{C}^{2}(\omega)\right)
$$

The variance of response of the SDOF system is

$$
\begin{aligned}
\left\langle X^{2}\right\rangle & =\int_{-\infty}^{\infty}|H(\omega)|^{2} \cdot G_{X}^{2}(\omega) d \omega \\
& =\int_{-\infty}^{\infty}|H(\omega)|^{2} \cdot\left[\cos ^{2}(\theta) \cdot G_{r}^{2}(\omega)+\sin ^{2}(\theta) \cdot G_{C}^{2}(\omega)\right] d \omega
\end{aligned}
$$

which is maximum when θ is either 0° or 90° depending on the relative variances of R and C.

For a multidegree of freedom (MDOF) system, the
approach is not as straightforward, and simplifying assumptions must be made. First, the variance is expressed as the sum of the variances and covariances of the uncoupled modal responses. The response quantity of interest is

$$
Q=\{B\}^{T}\{X\}
$$

where

$$
\begin{aligned}
& \{X\}=[A]^{\prime}\{U\} \\
& \ddot{U}\}+[2 \cdot B \cdot \omega]^{\prime}\{\dot{U}\}+\left[\omega^{2}\right]^{\prime}\{U\}=\{P\}
\end{aligned}
$$

[A] is the matrix of eigenvectors. The response power spectrum can be expressed as

$$
G_{q}^{2}(\omega)=\{B\}^{\top}[H]^{H}[A]^{\top}\left[G_{p}^{2}(\omega)\right][A][H]^{\top}\{B\}
$$

For a 2-DOF system this expands to $G_{q}{ }^{2}=\left(G_{o}{ }^{2} \cdot \cos ^{2} \theta+G_{r}{ }^{2} \cdot \sin ^{2} \theta\right)\left[H_{1}^{2} \cdot A_{11}^{2} \cdot B_{1}^{2}+2 \cdot H_{i} H_{i} \cdot A_{i 1} A_{21} B_{i} \cdot B_{2}+H_{2}^{2} \cdot A_{12}^{2} \cdot B_{2}^{2}\right]+$

$$
\begin{aligned}
& \left(G_{r}^{2}-G_{C}^{2}\right) \cdot \cos \theta \cdot \sin \theta\left[H_{1}^{2} A_{11} A_{21} B_{1}^{2}+H_{i} H_{2}\left(A_{11} A_{22}+A_{21} A_{12} B_{1} \cdot B_{2}+H_{2}^{2} \cdot A_{12} \cdot A_{22} B_{2}\right)+\right. \\
& \left(G_{C}^{2} \cdot \sin ^{2} \theta+G_{C}^{2} \cdot \cos ^{2} \theta\right)\left[H_{1}^{2} \cdot A_{21}^{2} \cdot B_{1}^{2}+2 H_{1} \cdot H_{2} A_{21} A_{22} \cdot B_{i} B_{2}+H_{2}^{2} \cdot A_{22}^{2} \cdot B_{2}^{2}\right] \quad B .1
\end{aligned}
$$

Rosenblueth (41) argues, based on work by Rascon (73), that there is a deteministic relátion between the ratio of spectral intensities (SI) $0 \cong$ the grounde motions along the two orthogonal axes, and
that as the RMS spectrun intensity increases the expected ratio approaches unity. For the RMS spectrum intensity>4.5, corresponding to a Modified Mercalli intensity of around V, the ratio exceeds 0.9.

Thus, for earthquake intensities of interest, SIx \sin. Since the Arias intensity, the variance times duration, is closely related to Housner's spectrum intensity, we can say that: $\left\langle X^{2}\right\rangle \cong\left\langle Y^{2}\right\rangle$, or

$$
\int_{-\infty}^{\infty} G_{r}^{2}(\omega) \cdot d \omega \simeq \int_{-\infty}^{\infty} G_{c}^{2}(i) \cdot d \omega
$$

Due to the origins of the two ground motions R and C, we can say

$$
|H(\omega)|^{2} \cdot G_{r}^{2}(\omega) \cdot d \omega=|E(\omega)|^{2} \cdot G_{C}^{2}(\omega) \cdot d \omega \quad \text { B. } 2
$$

Thus, in Equation B.1, the first and third terms become dominant and the contribution of the second term approaches zero. Also, since the two displacement coordinates, corresponding to the two horizontal ground translations, are orthogonal, the amount of coupling will be small even in the worst case, i.e. $A_{i i} \gg A_{i j}$. THis suggests that Equation'B.I. will be maximum when the $\cos (\theta) \cdot \sin (\theta)$ is maximum, i.e. $\theta=45^{\circ}$. However, Equation B. 2 suggests that the difference will be slight.

APPENDIX C

For a: white noise process of intensity, , G_{0}, the covariance of modal responses is defined as

$$
\left\langle Y_{m}(t) \cdot Y_{n}(t)\right\rangle=\int_{-\infty}^{\infty} H_{y m}(\omega) \cdot H_{Y n}(\omega) \cdot G_{o}^{2} \cdot d \omega
$$

where the complex frequency response function is

$$
\mathrm{H}_{\mathrm{yn}}(\omega)=1 /\left[\omega_{\mathrm{m}}^{2}+i \cdot 2 \cdot B_{\mathrm{m}} \cdot \omega_{\mathrm{m}} \cdot \omega-\omega^{2}\right]
$$

The variance is

$$
\begin{equation*}
\left\langle Y_{m}^{2}(t)\right\rangle=\int_{-\infty}^{\infty}\left|H_{y m}(\omega)\right|^{2} \cdot G_{o}^{2} \cdot d \omega \tag{C. 2}
\end{equation*}
$$

The correlation coefficient $P_{m n}$ is defined as

$$
P_{m n}=\frac{\left\langle Y_{m}(t) \cdot Y_{n}(t)\right\rangle}{\left\langle Y_{m}^{2}(t)\right\rangle^{05}:\left\langle Y_{n}^{2}(t)\right\rangle}
$$

Inserting C.I into C:2 gives

$$
\begin{equation*}
\left\langle Y_{m}^{2}(t)\right\rangle=\int_{-\infty}^{\infty} \frac{G_{o}^{2} \cdot d \omega}{\left[\omega^{4}+\omega_{m} \cdot\left(4 \cdot B_{m}^{2}-2\right) \cdot \omega^{2}-\omega_{m}^{4}\right]} \tag{C. 4}
\end{equation*}
$$

This can be factored to

$$
<Y_{m}^{2}(t)>=\int_{-\infty}^{\infty} \frac{G_{0}^{2} \cdot d \omega}{\left[\omega^{2}-\omega_{m}^{2} \cdot \exp (-2 \cdot i \cdot \theta)\right] \cdot\left[\omega^{2}-\omega_{m}^{2} \cdot \exp (2 \cdot i \cdot \theta)\right]} \quad C .5
$$

$$
\text { where } \exp (2 \cdot i \cdot \theta)=\left[\left(I-2 \cdot B_{m}^{2}\right)\right]+i \cdot\left[2 \cdot B_{m} \cdot\left(1-B_{m}^{2}\right)^{0.5}\right] \text { and } i=(-1)^{0.5}
$$

Equation: C.5. can be expanded to
,$\left\langle Y_{m}^{2}(t)\right\rangle=\int_{-\infty}^{\infty} \frac{G_{0}^{2}}{\left[\omega-\omega_{m} \cdot \exp (-i \cdot \theta)\right] \cdot\left[\omega+\omega_{m} \cdot \exp (-i \cdot \theta)\right]}$

$$
\cdot \frac{d \omega}{\left[\omega-\omega_{m} \cdot \exp (i \cdot \theta)\right] \cdot\left[\omega+\omega_{m} \cdot \exp (i \cdot \theta)\right]}
$$

where $\exp (i \cdot \dot{\theta})=\left[\left(1-B_{m}{ }^{2}\right)^{0.5}\right]+i \cdot\left[B_{m}\right]$

$$
\text { Equation C. } 6 \text { has } 4 \text { poles of order } 1 ; \text { namely, } \pm \omega_{m} \cdot \exp
$$

$(i \cdot \theta)$ and $\pm \omega_{m} \cdot \exp (i \cdot \theta) \cdot f(x)$ can be regarded as a Iine integral along the real axis. By the method of residues:

$$
\int_{-\infty}^{\infty} f(x) d x=\oint_{C_{r}} \quad f(z) \cdot d z
$$

where $f(z)$ is analytic in C_{r} except at a finite number of poles, and C_{r} is a semicircular path whose diameter is the real axis. Then

$$
\begin{array}{r}
\oint_{c_{r}} f(z) \cdot d z=2 \cdot \pi \cdot i \cdot \\
\text { \{sum of the residues in the upper } \\
\text { half of the complex } z-p l a n e\}
\end{array}
$$

The residue of $f(z)$ at z^{\prime}, z^{\prime} a pole of order 1 , is

$$
\operatorname{Res}\left[f(z), z^{\prime}\right]=\lim _{z \rightarrow z^{\prime}}\left[\left(z-z^{\prime}\right) \cdot f(z)\right]
$$

The integrand in Equation C. 6 has two poles in the upper half of the complex $z-p l a n e, ~ n a m e l y, \omega_{m} \cdot \exp (i \cdot \theta)$ and $-\omega_{m} \cdot \exp (-i \cdot \theta)$.
thus,

$$
\left\langle Y_{m}^{2}(t)\right\rangle=\frac{2 \cdot \pi \cdot G_{o}^{2} \cdot i}{\omega_{m}^{3}}
$$

$\frac{1}{[\exp (i \cdot \theta)+\exp (-i \cdot \theta)][\exp (i \cdot \theta)-\exp (-i \cdot \theta)][\exp (i \cdot \theta)+\exp (i \cdot \theta)]}$ $+\frac{1}{[-\exp (-i \cdot \theta)-\exp (i \cdot \theta)][\exp (i \cdot \theta)-\exp (-i \cdot \theta)][-\exp (-i \cdot \theta)-\exp (-i \cdot \theta)]}$
or

$$
\begin{equation*}
\left\langle Y_{m}^{2}(t)\right\rangle=\frac{G_{o}^{2} \cdot \pi}{2 \cdot \omega_{n}^{3} \cdot B_{m}} \tag{C. 7}
\end{equation*}
$$

which is the variance of the displacement of an oscillator subjected to white noise excitation.

For the covariance, combining Equation 3.13 and C.I

$$
\left\langle Y_{m}(t) \cdot Y_{n}(t)\right\rangle=
$$

$\int_{-\infty}^{\infty} \frac{G_{o}^{2}}{\left[\omega+\omega_{m} \cdot \exp (-i \cdot \theta)\right] \cdot\left[\omega-\omega_{m} \cdot \exp (i \cdot \theta)\right]} \quad$.

$$
\frac{d \omega}{\left[\omega+\omega_{n} \cdot \exp (i \cdot \theta)\right] \cdot\left[\omega-\omega_{n} \cdot \exp (-i \cdot \theta)\right]}
$$

C. 8

By the method of residues, Equation C.8 becomes $<Y_{m}(t) \cdot Y_{n}(t)>=2 \cdot \pi \cdot i \cdot G_{0}^{2} \begin{gathered}\text { \{sum of residues on upper half of } \\ \text { complex } z-p l a n e\}\end{gathered}$

$$
\begin{aligned}
& =\frac{2 \cdot \pi \cdot i \cdot G_{o}^{2}}{2 \cdot \omega_{m} \cdot\left(1-B_{m}^{2}\right) 0.5} \\
& \frac{1}{\left[\omega_{m} \cdot \exp \left(i \cdot \theta_{m}\right)+\omega_{n} \cdot \exp \left(i \cdot \theta_{n}\right)\right] \cdot\left[\omega_{m} \cdot \exp \left(i \cdot \theta_{m}\right)-\omega_{n} \cdot \exp \left(-i \cdot \theta_{n}\right)\right]} \\
& \frac{1}{\left[-\omega_{m} \cdot \exp \left(-i \cdot \theta_{m}\right)+\omega_{n} \cdot \exp \left(i \cdot \theta_{n}\right)\right]\left[-\omega_{m} \cdot \exp \left(-i \cdot \theta_{m}\right)-\omega_{n} \cdot \exp \left(-i \cdot \theta_{n}\right)\right]}
\end{aligned}
$$

Simplifying,

$$
\begin{align*}
\left\langle Y_{m}(t) \cdot Y_{n}(t)>\right. & =2 \cdot \pi \cdot i \cdot G_{o}^{2} \cdot\{I / z-I / \bar{z}\} /\left(2 \cdot \omega_{m}^{\prime}\right) \\
& =2 \cdot \pi \cdot i \cdot G_{o}^{2} \cdot\left\{2 \cdot i \cdot \operatorname{Im}(z) /|z|^{2}\right\} /\left(2 \cdot \omega_{m}^{\prime}\right) \\
& =4 \cdot \pi \cdot G_{o}^{2} \cdot\left(\omega_{m} \cdot B_{m}+\omega_{n} \cdot B_{n}\right) /|z|^{2}
\end{align*}
$$

where ω_{m} ' is the damped natural frequency of the mth mode and

$$
\left.z=\left[\left(\omega_{m}^{\prime 2}-\omega_{n}^{\prime}\right)^{2}\right)-\left(\omega_{m} \cdot B_{m}+\omega_{n} \cdot B_{n}\right)^{2}\right]+i \cdot\left[2 \cdot \omega_{m}^{\prime} \cdot\left(\omega_{m} \cdot B_{m}+\omega_{n} \cdot B_{n}\right)\right]
$$

The correlation coefficient $P_{m n}$ by inserting Equation C. 7 and C.9 into C.3 is

$$
P_{m n}=8 \cdot\left(\omega_{m} \cdot B_{m}+\omega_{n} \cdot B_{n}\right) \cdot\left(\omega_{m}^{3} \cdot B_{m} \cdot \omega_{n}^{3} \cdot B_{n}\right)^{0.5} /|z|^{2}
$$

which is Equation 3.24. For $B_{n}, B_{m} \ll 1$, Equation C. 10 is very close to the simpler Equation 3.10 developed by Rosenblueth.

APPENDIX D

As described in Chapter II, the power spectrumfor ensembles of accelerograms is commonly expressed in the Kanai-Tajimi form
$G_{z}{ }^{2}()=\frac{G_{o}{ }^{2} \cdot\left(1+4 \cdot B_{g}{ }^{2} \cdot \omega^{2} / \omega_{g}{ }^{2}\right)}{\left\{\left[1-\left(\omega / \omega_{g}\right)^{2}\right]^{2}+4 \cdot B_{g}{ }^{2} \cdot \omega^{2} / \omega_{g}{ }^{2}\right\}}$
D. 正:-

The response power spectrum for this type of excitation is

$$
\begin{equation*}
G_{Y}^{2}(\omega)=\left|H_{Y}(\omega)\right|^{2} \cdot G_{z}^{2}(\omega) \tag{D. 2}
\end{equation*}
$$

or

$$
\begin{align*}
\left\langle Y^{2}(t)>\right. & =\int_{-\infty}^{\infty} \frac{G_{o}^{2} \cdot\left(1+4 \cdot B_{g}{ }^{2} \cdot \omega^{2} / \omega_{g}{ }^{2}\right) \cdot d \omega}{\left[\omega_{n}{ }^{2} \cdot\left(4 \cdot B_{n}{ }^{2}-2\right) \cdot \omega^{2}-\omega^{4}\right] \cdot\left[\left(1-\omega^{2} / \omega_{g}{ }^{2}\right)^{2}+4 \cdot B_{g}{ }^{2} \cdot \omega^{2} / \omega_{g}{ }^{2}\right]} \\
= & G_{0}^{2} \cdot \int_{-\infty}^{\infty} \frac{\omega_{g}^{4} \cdot\left[1+4 \cdot B_{g}{ }^{2} \cdot \omega^{2} / \omega_{g}{ }^{2}\right]}{\left[\omega^{2}-\omega_{n}^{2} \cdot \exp \left(-2 \cdot i \cdot \theta_{n}\right)\right]\left[\omega^{2}-\omega_{n}{ }^{2} \cdot \exp \left(2 \cdot i \cdot \theta_{n}\right)\right]} \\
& \cdot \frac{\left.d \omega^{\left[\omega^{2}-\omega_{g}\right.}{ }^{2} \cdot \exp \left(-2 \cdot i \cdot \theta_{g}\right)\right]\left[\omega^{2}-\omega_{g}^{2} \cdot \exp \left(2 \cdot i \cdot \theta_{g}\right)\right]}{D .3} \tag{D. 3}
\end{align*}
$$

which has eight poles of order 1 at $\pm \omega_{n} \cdot \exp \left(\pm i \cdot \theta_{n}\right)$ and $\pm \omega_{g} \cdot \exp \left(\pm i \cdot \theta_{g}\right)$. By the method of residues
$\left\langle Y_{n}^{2}(t)>=G_{0}^{2} \cdot 2 \cdot \pi \cdot i \cdot \begin{array}{l}\text { Sum of the residues in the upper half } \\ \text { of the complex } z-p l a n e .\}\end{array}\right.$
With the assuption that the spectrum for the ensemble of excitations is a wide band process, B_{g} wilI be large compared to that of the Iightly damped oscillator, i.e.

$$
B_{g} \gg B_{n}
$$

and therefore

$$
\theta_{g} \gg \theta_{n}
$$

After some algebra

$$
\begin{aligned}
& \left\langle Y_{n}^{2}(t)>=\frac{G_{0}{ }^{2} \cdot \pi}{2 \cdot \omega_{n}^{3} \cdot B_{n}} \cdot\right. \\
& \frac{1+4 \cdot B_{g}{ }^{2} \cdot \omega^{2} / \omega_{g}{ }^{2}}{1+\left(\omega_{n} / \omega_{g}\right)^{4}-\left(\omega_{n} / \omega_{g}\right)^{2} \cdot\left\{\exp \left[2 \cdot i \cdot\left(\theta_{g}-\theta_{n}\right)\right]+\exp \left[-2 \cdot i \cdot\left(\theta_{g}+\theta_{n}\right)\right]\right\}} \\
& +\frac{G_{0}{ }^{2} \cdot \pi}{2 \cdot \omega_{g}{ }^{3} \cdot B_{g}} \cdot \\
& \frac{\left(1+4 B_{g}\right)^{2}\left\{\left[1-\omega_{n}{ }^{2} / \omega_{g}{ }^{2}\right]^{2}+4 \cdot B_{g}{ }^{2} \cdot \omega_{n}{ }^{2} / \omega_{g}{ }^{2}\right\}-4 \cdot B_{g}{ }^{2} \cdot \omega_{n}{ }^{2} / \omega_{g}{ }^{2}\left(1-4 \cdot B_{g}{ }^{2}\right)}{\left\{\left[1-\left(\omega_{n} / \omega_{g}\right)^{2}\right]^{2}+4 \cdot B_{g}{ }^{2} \cdot \omega_{n}^{2} / \omega_{g}{ }^{2}\right\}^{2}+\left\{\left[4 \cdot \omega_{n}{ }^{2} / \omega_{g}{ }^{2} \cdot B_{g}\right]^{2} \cdot\left(1-B_{g}{ }^{2}\right)\right\}}
\end{aligned}
$$

$$
\text { D. } 5
$$

or

$$
\begin{aligned}
<Y_{n}^{2}(t)> & =\frac{\pi \cdot G_{z}^{2\left(\omega_{n}\right)}}{2 \cdot \omega_{n}^{3} \cdot \cdot B_{n}}+\frac{\pi \cdot F\left(\omega_{n}\right)}{2 \cdot \omega_{g}^{3} \cdot B_{g}} \\
& =<Y_{n}^{2}(t)>\omega \cdot n \cdot \cdot G_{z}^{2}\left(\omega_{n}\right)+<z^{2}(t)>\cdot F\left(\omega_{n}\right)
\end{aligned}
$$

where $G_{z}{ }^{2}(\omega)$ is defined by Equation D.I, $F\left(\omega_{n}\right)$ is defined in Equation $D .5$, and. $\left\langle Y_{n}{ }^{2}(t)>\omega . n\right.$. is the response of the oscillator to white noise. The assumption underlying Equation D.6. gives rise to the same approximation used in gust response factors, based on graphical inspection.

Typical values for ω_{g} and B_{g} used in Equation D.I. are 15.6 radians/sec. and 0.6 , respectively. For $\omega_{n}<\omega_{g}, F\left(\omega_{n}\right) \simeq G_{0}^{2}$ and $G_{z}^{2}\left(\omega_{n}\right)>G_{o}^{2}$. Also, since $B_{g} \ll B_{n}$ the first term in Equation D. . $^{\circ}$ dominates and

$$
\begin{equation*}
\left\langle Y_{n}^{2}(t)>\cong<Y_{n}^{2}(t)>\omega \cdot n \cdot \cdot G_{z}^{2}\left(\omega_{n}\right)\right. \tag{D. 7}
\end{equation*}
$$

Thus the variance, which is proportional to the square of the expected extreme value, is proportional to the value of the excitation power spectrum at the oscillator natural frequency. For a wide band excitation where the building frequencies are close together the effect of nonwhite excitation cancels.

Appendix E

Nonlinear Response Program

```
C
C PROGRAMEED BY MARTIN E. BATTS 1977
C CONSISTEXT UNITS (OSE KIDSEINEGES)
C GACC(1) = X GROO&D ACCEI INROT FILE 7
C GACC(2)= 2 GRODND ANGULAR ACCEI
C GACC (3)= Y GROUND ACCEL INPUI FIIE 8
こ EXA= X DIST FROM ORIGIN TO C.G.
C EYM= Y DIST FROM ORIGIN TO C.G.
C BX= DIST ALONS X AXIS BETREEN Y RESISTING ELEMENTS
C BY= DIST ALONG Y AXIS BETUEEN X RESISTING ELEYENTS
C EX= ECCFNTEIこITY ALONG X AXIS FROM C.G. TO CENTER OF STIFENESS
C EY= ECCESTRICITY AIONS Y AXIS FRCY C.G. TO CEITER OF STIFP#ESS
C XI= % CPITICAL DAMPING (VISCOCS)
C DT= INTEGRATION TIME STEP
C पASS= MASS
C PMASS= MASS MOMENT OF IMEBTIA(=R**2*#ASS)
C TO= INTIAL TIME
C TEND= FINAL TIMEOF ACEEIERATION
C DTAC= EQUAL TIME STEP OF ACCEL RRATION AS INPUI
C R=POLAB RADIUS OF GYRATION OF EASS
C SO= INITIAL ELEMEMT SIIFFNESS IEIEX=1= RAMEERG-OSGJOD
C QI= ELEMENT YIEID POSCF IEIEM=2=BIITHEAR
C RO= RAMBERG-OSGOOD COEFY. IELEM=3=STIFPMESS DZGAADING
C SX= TOTAL X DIRECTION STIPFMESS
C SI= TOTAL Y DIRECTION STIFFNESS
C SR= TOTAL 2 DIRPCIION STIFETESS
C PGI= BODE SHAPE
C D= EIGENVAIOES
C DAMP= DAMPING MATRIX=甘-1/2*C*&-1/2
C DYE= YIELD DISPIACEMENTS OF RLEMENTS
C DYC=YIELD DISPIACFMENTS OP COORD DIRECTIO&
C Y= RELATIVE DISPLACEYENT
C DY= RELATIVE VELOCITY
C DDY= RELATIVE ACCL RRATION
C OLDIS= CLD RRLATIVE DISPLACEGENT
C PPC= OID COORD TOTAL FOBCE
C DISE= DISPLACEMENT OF THE ELEMEBTS
C PP= RLEMENT PORC:
C OF= OLD RIEMENT FORCE
C TE (I) = TNTEGPAL OF ELEMPNT I FORCE TIMES DISPLACEYENT
    (ODTPUT AS TE-STRAIN ENERGY=DISSIPATED ENERGY)
DAMPDE (I)= DAMPING DISSIPATED ENERGY FOR COORD DIRECTION I
C \nablaARC= COORD DISP COV. VARFC= COORD PORCECOV.
C \nablaARE= RES ELEYRNT DIS? \nablaABFE= RMS ELEMENT FORCE
C EONS OF MOTION (I) = (U,R*THETA,V) THETA ABOUT CENTER OF MASS
C
```

```
C RO= STIFPNESS AROUT EENTER OF MASS(&OT CENTER OF STIPFEESS)
C NOTE THAT THE MASS MATRIX IS THE IDENTITY MATRIX.THOS THE MODAL MASSES
C ARE 1.0
    DIEENSION FORMAT(20), P1(8000), D1 (8000), SOC(3), DYC(3), DYE(4)
    COEMON /STIMR/ GAこC(3), OGACC(3),G(8000,3)
    COBEON SK (3,3), DAMP(3,3), PHI (3,3), D(3); OLDPPC(3). OLDIS(3).,
    1 PDELTÅ(3)
    CO甘MON /STIPP/ RJ(4), EY(4), SO(4), IVC(4), S(4), PMAX(4), EPSMAX,
    1 IBIOT
    DIGENSION DISE (4), ODISE(4), DISEMX(4), Y(3), DY(3), DDY(3).
    ODY(4), TITIP(20), PF(4), B(6,6), DICMX(4). DISMX(3).
    PFMAX(4), TDISMX(3), ACMAX(3), TACMAX(3), OP(4),
    DOCTMX(3), TE(4), EPC(3), OY(4), ATX 1 (3), AOX2 (3),
    PPCMX (3), TPFCMX(3), VG(3), VARE(4), VARC(3,3), EIE(3),
    DAMPDE(3), VAREE(4), VARFC (3,3), TE= (3), P(3), FEBAR(4),
    YEBAR(4), FCBAR(3), YCBAR(3), VELR(4), כVELE(4).
    ACCE (4). OACCE(4), ECCMAX (3), SKINV (3,3)
    REAL MASS, K1(3), K2(3), K3(3), K4(3), M(3)
    IN = 5
    INR = 7
    INE2=8
    IT = 6
10 READ (IN,20,PND=550) TITLE
    NRITE (IT,30) TITLE
20 FORMAT (20A4)
30 FORMAT (1H1. 20A4/)
    READ (IN, 20) TITLE
    MRITE (IT,40) TITLE
40 PORMAT (//' I GROJND ACCELERATION= ', 10A4, 1JX, I GROOND AこCELE
    1BATION= ', 10A4/)
    READ (IN,50) EXM, EYM, BZ, BY, XI, DT, MASS, ID, TEND, DTAC,GG,
    1ACMULT, ES, HGT, IELEM, IGROT, IFDELT, IPLOT
50 FORMAT (4F10.2/3F10.9/7F10.4/4I5)
    #STEPS = (TEED - TO) / JTAC + 0.49
    READ (IN,60) SO, FY, RO
```



```
    READ (IN,70) FORMAT
70 FORMAT (20A4)
    PMASS = MASS # (BX**2 + BY**2) / 12.
    B = SQRT((BX**2 + BY**2)/12.)
    EX = SO(4) * BX/ (SO(3) + SO(4)) - EXX
    EY = SO(2) * BY / (SO(1) + SO(2)) - EYM
    IBTOT = 0
    EPSMAX = 0.0
    SOC(1) = SO(1) + SO(2)
    SOC(3)=SO(3) + SC(4)
    SOC(2) = SO(1) *EY#** 2 + SO(2) * (BY - EYM) ** 2 + SO(3) * EXE
    1** 2 + SO (4) * (DX - EXM) ** 2
    DET = SOC(1) * SOL (3) * (SOC(2) - SOC(1)*OP**2 - SOC (3)*EY**2)
    SKINP(1,1)=(SOC (2)*SCC(3)-(SOC (3)*EX)**2)/DET
    SKINV(1,2)=(SOC(1)*SOC(3)*EY)/ DET
    SKINV (1,?) = (-SOこ (1)*SOC(3)*EX*EY) / DET
    SKINV (2,1)=SKINV (1,2)
    SKI#P(2.2)=(SOC(1)*SOC(3)) / DET
```

```
        \(\operatorname{SKINV}(2,3)=(-\operatorname{SO}(1) * \operatorname{SOC}(3) * E X) / \operatorname{DET}\)
        \(\operatorname{SKIXV}(3,1)=\operatorname{SKINF}(1,3)\)
        \(\operatorname{SKINV}(3,2)=\operatorname{SKINV}(2,3)\)
        \(\operatorname{SKINV}(3,3)=(\operatorname{SOC}(2) * \operatorname{SOC}(1)-(\operatorname{SOC}(1) * E T) * * 2) / \operatorname{DET}\)
        \(\Delta(1)=1.0\)
        \(\Delta(2)=1.0\) * \(B\)
        \(H(3)=1.0\)
        PDELTA (1) = GG * FIOAT(IPDELT) / HGT
        PDELTA (2) \(=0.0\)
        PDELTA (3) \(=\) GG * FIOAT(IPDELT) / RGT
        EXR \(=E X / R\)
        EYR \(=\mathbf{E Y} / \mathrm{R}\)
        RRITE (IT, 80) BX, BY, EXM, EYM, KI, DT, MASS, PMASS, TO, TEND,
        1DTAC, R, EXR, EYR, GG, ACMOLT, IRIRM, IGROT, CS, IPDELT, HGT,
        2IPIOT
```



```
        1 P7.2.' BETA=1, P6.4, DT=', P6.4, MASS=1, E19.4. '
```



```
        4 ACMULT=1, P8.3.' IRIEY=', I2/'O IGROT=', I2, ' (NON O=NEWMART GRD
        5ROT)', 5民, ' SHEAR RAYE SPEED=1, P10.3, ' PDELTA?=', I3. ' HEIGHT=
        6'. P10.3. ' IPLOF=', I5)
            CAIL SSK(SOC(1), SOC(3), SOC(2), EI, EY, MASS, PYASS. R)
            CALI EIG
C
        DO \(90 I=1,4\)
        \(90 \mathrm{DFE}(\mathrm{I})=F Y(I) / S O(I)\)
C
CAVGX \(\mathcal{Y} Y\) YIRLD DISPLACEMEXIS
C
    \(\operatorname{DYC}(1)=(\operatorname{DYE}(1)+D Y D(2)) / 2\).
    DYC(3) \(=(D Y E(3)+D Y E(4)) / 2\).
C \(\quad\) CALUE CF ROTATIOY (ABOUT CENTER OF MASS) GHEN ALL ELEBENTS RAVE
C IIELDED I.E. \(\operatorname{HAX}\) TOBQUE/INITIAL STIFFNESS
    \(D Y C(2)=(F Y(1) * E Y M+F Y(2) *(B Y-E Y M)+F Y(3) * E Y Y+F Y(4) *(B I-\)
    1EXB)) / SOC(2)
```



```
C SINCE THE DISPLACEQEST VECTOR IS
                                    \(I=(U, B * T B E T A, \nabla)\)
        DO \(100 I=1,3\)
        \(P(I)=6.2832 / S Q E T(D(I))\)
C EOTP THAT MODAL MASSES ARE 1.O*YASS.SEE ABORE. BOF RE MANT DAMP/MASS.
            DO \(100 \mathrm{~J}=1.3\)
    \(100 \mathrm{~B}(I, J)=P H I(J, I) * 2.0 * \operatorname{SQRT}(D(I)) * \pi I * 1.0\)
    DO \(120 \mathrm{I}=1,3\)
C
        DO \(120 \mathrm{~K}=1.3\)
        SUE \(=0.0\)
\(c\)
```

```
    110 SUB=SUM + PHI(I,J) * B(J,R)
```

 Do \(110 \mathrm{~J}=1,3\)
 C
120 DAMP(I,K) $=\operatorname{SUM}$
C
पRITE (IT, 130)
130 FORMAT ('JPERIOD PREODENCY**2 DODE SHAPE', 30Y, 'STIPREESS MATRIX
1'. 30X, 'DAMPING MATRIX')
C
DO $140 \mathrm{I}=1,3$
140 HRITE (IT, 150) $P(I), D(I),(P H I(I, J), J=1,3),(S K(I, J), J=1,3)$.
$1(D \operatorname{ABP}(I, J), J=1,3)$
C
150 FOBMAT ($F 6.3, F 9.1,1 \mathrm{X}, 3 \mathrm{E} 12.4,3 \mathrm{~K}, 3 \mathrm{~F} 12.4,3 \mathrm{X}, 3 \mathrm{E} 12.4)$)
RE日IND INN
RE日IND INR2
160 READ (INN, FORMAT, END=10) (G(I, 1), I=1,NSTEPS)
READ (INN2, PORMAT) (G $(I, 3), I=1, N S T E P S)$
C
DO $170 I=1$, NSTEPS
TIME $=T O+(I-1) * \operatorname{DTAC}$
C
C IF YOU WANT GROTHD ROTATIONAL ACCELERATION NOT = O, THEM IGROT NOT=0
$C G(I, 2)=((G(I+1,1)-G(I, 1))+G(I+1,3)-G(I, 3))) /(2 * S$ AEARMAVE SPEED $) * M(I)$
* $B(I)$ DUE TJ THE NONDIMENSIONAL EQTATIONS
$G(I, 2)=A C M U T T * E(2) *(G(I+1,1)-G(I, 1)+G(I+1,3)-G($
1 I, 3))/ (2.*CS*DmAC)
IF (IGROT.EO. 0) $G(I, 2)=0.0$
$G(I, 1)=G(I, 1) * \operatorname{ACEOLT}$
$170 \mathrm{G}(\mathrm{I}, 3)=\mathrm{G}(\mathrm{I}, 3) * \mathrm{ACMOLT}$
C
DO $180 \mathrm{I}=1.4$
ODISE $(I)=0.0$
DISEMX(I) $=0.0$
PFMAX (I) $=0.0$
$O P(I)=0.0$
$\mathrm{TE}(I)=0.0$
$\nabla A R E(I)=0.0$
VARFE(I) $=0.0$
$\operatorname{PEBAR}(I)=0.0$
IESAR $(I)=0.0$
OVELE $(I)=0.0$
OACCE $(I)=0.0$
$\operatorname{IVC}(I)=1$
$S(I)=S O(I)$
PMAI (I) $=F Y(I)$
IF (IELEE .EQ. 3) GO TO 180
$\operatorname{EMAX}(I)=F Y(I) *(1 .-R O(I)) /(S O(I) * R O(I))$
180 CONTIEOE
c
DO $190 \mathrm{I}=1.3$
ODY $(I)=0.0$
DISMI $(I)=0$.

```
    \(\operatorname{ACMAX}(I)=0.0\)
    \(O I(I)=0.0\)
    PFCMX (I) \(=0.0\)
\(\nabla G(I)=0.0\)
\(\operatorname{EIR}(I)=0.0\)
OGACC (I) \(=0.0\)
DABPDE(I) \(=0.0\)
\(\operatorname{TEC}(I)=0.0\)
PCBAR (I) \(=0.0\)
YCBAR \((I)=0.0\)
\(\operatorname{BCCHAX}(I)=0.0\)
C
DO \(190 \mathrm{~J}=1,3\)
    \(\nabla A R C(I, J)=0.0\)
    \(\nabla A R P C(I, J)=0.0\)
    190 CONTIEUE
C
        \(D T T=D T\)
        CALL SSK (SOC(1), SOC(3), SOC(2), RI, EY, MASS, PEASS, R)
        L = 0
        IERE \(=0\)
        L2 \(=9\)
        TIME \(=0.0\)
C
        DO \(200 I=1,3\)
        \(200 \operatorname{GACC}(I)=G(1, I)\)
C AIH ORDER BUNGE-KRTTA SINGIE STEP INTEGRATION ABRAMORITZ P. 897
C BEGINHING OF INTEGRATICN KBEE
        \(210 I=I+1\)
            \(D T=D T T\)
            IBTOT \(=0\)
\({ }^{\circ} \mathrm{C}\)
\(C\) SOLN OF EQNS OF EOTION ARE NONDIMENSIONALIZED IN SOBR PNCTY
C
    220 CONTINOE
C BY CHABGING DT, TIBEMAY NO日BE<DTAC*(L2-1). IP SO, L2=L2-1
C
    230 IF (TIME + DT .LT. DTAC* (L2 - 1) 1 L2 = L2 - 1
C
C DE MABT TIBE(I-1)+DT BETHEEN DTACF(I2-1) AND DTAC*L2
C
        IP (TIRE + DT .LE. DTAC*L2) GO TO 240
        \(L 2=L 2+1\)
        GO TO 230
        \(240 \mathrm{PP}=(\mathrm{TIAE}+\mathrm{DT}-\mathrm{DTAC}=(\mathrm{L} 2-1)) / \mathrm{DTAC}\)
C
    DO \(250 I=1,3\)
    250 GACC \((I)=P P * G(L 2+1, I)+(1 .-P P) * G(L 2, I)\)
C
C
        CAIL FNCTH (I, 0.0. Y, DY. K1)
    DO \(260 I=1.3\)
```



```
    260 ADX2(I) = DY(I) + K1(I) * DT/2.
C
    CAII FNCTN(I, 0.5, AOX1, AOI2, K2)
C
    270 AOX2(I) = DY(I) + K2(I) * DT//2.
C
C
    CALI FACTN(L, 0.5, AUX1, AOX2, R3)
    DO 280 I = 1, 3
        AOX1(I) = Y(I) + DT * DY(I) + DT / 2.* K3 (I) * DT
    280 AUK2(I)=DY(I) + K3(I) * DI
C
    CAIL FHCTM(I. 1.0, AOX1, AUX2, K4)
C
    DO 290 I = 1. 3
        I(I) = DY(I) + DT * (DY(I) + DT/6.*(R1(I) + R2(I) + R3(I)))
    290 DY (I) = ODY(I) + DT / 6.* (R1(I) + 2.*K2(I) + 2.*R3(I) + K4(I))
C
    CALI FYCIN (I, 1.0, Y, DY, DDY)
C
C FIND NEH EIENENT D,V,A
    DISE(1) = Y(1) + EYH * Y(2)/R
    DISE(2) = Y(1) - (BY-EYY) * Y(2)/ B
    DISE(3) = Y(3) - EXE* Y(2) / B
    DISE(4) = Y(3) + (BX - EXY) * Y(2) / E
    VEIE(1) = DY(1) + EYM * DY(2) / B
    VEIE(2) = DY(1) - (BY - EYM) * DY(2) / B
    VELE(3) = DY(3) - EXM * DY(2) / R
    VELE(4) = DY(3) + (BX - EXM) * DY(2) / 回
    ACCE(1) = DDY(1) + EYM * DDY(2) / E
    ACCE(2) = DDY(1) - (EY - DYM) * DDY(2) / R
    ACCE(3) = DDY(3) - EXM * DDY(2) / R
    ACCE(4) = DDY(3) + (BX - EXM) * DDY(2) / R
    PF(1) = OP(1) + S(1) * (DISE(1) - ODISE(1))
    PF(2) = OF(2) + S(2) * (DISE(2) - ODISE(2))
    PF(3) = OF(3) + S(3) * (DISE(3) - ODISE(3))
    PF(4) = JF(4) +S(4) * (DISE(4) - ODISE(4).)
    PPC(1) = PF(1) + DF(2)
    PFC(2) = PF(1) * EYM - PP(2) * (BI - EYM) + PF(4) * (BI - EIE) -
    1PF(3) * EXM
    PFC(3) = PF(3) + PF(4)
C
C FIND NEQ ELEMENT STIFFNESSES
    ODT = DT
C
    DO 330 I = 1, 4
        GO TO {300, 310, 320), IELEM
        CALL RMBOSG(PF(I), OP(I), I)
        GO TO 330
C
```

```
C FOR BIIYR, CHECR IF STIFFNRSS RAS CHANGED. IF SO.FIND \(\mathbb{E} E D T E G T O 130\)
C
    310 CALL BIL \(\because R(P F(I)\) 。 OF (I) . DISE (I). ODISE (I). OVELE \((I)\). OACCE(I).
        1 ACCE (I) , DIT, DT2, ODT, I)
C
C FIND MIN DT IF MORE TEAN ONE ELEMENT EAS YIELDED
C
        \(D T=A M I N 1(D T, D R 2)\)
        GO TO 330
    320 CALL STPDEG(PF(I), OF(I), DISE (I), ODISE(I), OVELE(I), OACCE (I),
        1 ACCE(I). DTT, DT2, ODT. I)
        \(D T=A S I E 1(D T 2, D T)\)
    330 CORTINOE
C
    DO \(360 I=1,4\)
C
C JUST INSURANCE
    IF (S(I) .GT. 1.001*SO(I)) IERR = 1
    IF (IERR .EQ. 1) GO TO 460
\(C\) IF ONE ELEMENT HAS YIELDED E ANOTEER IS UNLOADING FROY YIELD IINE
C IT SHOOID CONVERGE IN ONE ITERATION
C
    IP (ITC (I) . EQ. 1) GO TO 360
    IF (IVC(I).EQ. O.AND. IELEM .EQ. 1) GO TO 360
C
C IF ELEMENT HAS YIELDED RESET \(\triangle E H\) FORCES E DISPS. TO TAEIR OLD VALJES
C SINCE NE DANT TO ONDO THIS LAST TIUE STEP
C
    DO \(340 J=1.4\)
    \(340 \quad \operatorname{PF}(J)=O F(J)\)
C
        DO \(350 \mathrm{~J}=1,3\)
            \(\boldsymbol{I}(J)=O Y(J)\)
    350 DI(J) \(=\) ODY(J)
C
        \(E I=S(2) * B Y /(S(1)+S(2))-E Y M\)
\(E X=S(4) * B X /(S(3)+S(4))-E X M\)
        \(S X=S(1)+S(2)\)
        \(S Y=S(3)+S(4)\)
        \(S B=S(1) * E M A * 2+S(2) *\{B Y-E Y M\rangle * 2+S(3) * E X M * 2\)
        \(1+S(4) *(B X-R X Q) * * 2\)
        CALL SSK (SX, SY, SR, EX, EY, EASS, PMASS, R)
        IBTOT \(=I B T O T+1\)
        IP (IBTOT.LT. 5) GO TO 220
C
C IF ITS NOT CONVERGING, OR ELEMENT STIPFNESSES ARE OSEIILATING
C BACKEFORTE
C SET DT=DT/2 ARD TRY AGAIN
C
    IBTOT \(=0\)
    IF (DT.LT. 1.E-4) IERE = 2
    IF (IERR .EQ.2) GO TO 460
```

```
DT = DT / 2.
```

GO TO 220

360 CONTINOE
C
C TEMPORARY ; TESTIRG STATEMENTS
C
IF (IPLOT. EQ. 0) GO TO 365
F1 (I) = PR (IPLOT)
D1 (I) = DISE(IPIOT)
C
365 TIME $=$ TIME $+D T$
C
C SIMPSON'S ROLE IRTEGRATION OF EIE ASSUMING IIVEAE ACCELERATION FOR DDY
C THE *R**2 'S ARE IN K1...K4 E VG
DO $390 \mathrm{I}=9,3$
$\operatorname{EIE}(I)=E I E(I)+M A S S *(R 1(I) * \nabla G(I)+2 . *(K 2(I)+R 3(I)) *(\nabla G($
1 I) + DT* (3.*OGAこC(I) +GACC (I))/8.) + K4 (I)* (VG(I) + DT* (OGACC (
$I)+\operatorname{GACC}(I)) / 2.) 1 * D T / 6$.
C
DO $370 \mathrm{~J}=1.3$
C
C *MASS SINCE DAMP IS NONDIUENSIONAIIZBD BY MASS
C
370 DAMPDE $(I)=\operatorname{DAMPDE}(I)+\operatorname{DAMP}(I, J) * D Y(I) * D Y(I) * D T$ * EASS
C
$\nabla G(I)=\nabla G(I)+\operatorname{OGACC}(I)+G A C C(I)) * D T / 2$.
YCBAR (I) $=$ YCBAR (I) + Y(I) * DT / TEND
$\operatorname{PCBAR}(I)=\operatorname{FCBAR}(I)+\operatorname{PFC}(I) * D T / T B X D$
C
DO $380 \mathrm{~J}=1.3$
$\nabla A R C(I, J)=\nabla A R C(I, J)+(I(I) * Y(J) /(M(I) * Y(J))) * D T / T E X D$
$380 \operatorname{\nabla ARPC}(I, J)=\operatorname{VARPC}(I, J)+\operatorname{PFC}(I) * \operatorname{PPC}(J)) * D T / \operatorname{TEND}$
C $\operatorname{TEC}(I)=\operatorname{TEC}(I)+(O L D P P C(I) * \operatorname{HASS} \# M(I)+P R E(I)) *(Y(I)-$
1 OLDIS(I)) / (2.*M(I))
OLDPFC(I) $=\operatorname{PPC}(I) /($ MASS*M $(I))$
OGACC(I) = GACC (I)
390 OLDIS (I) $=\Psi(I)$
C
DO $400 \mathrm{I}=1.4$
DEL $=$ DISE(I) - ODISE(I)
$T E(I)=T E(I)+(P P(I)+O F(I)) * D E L / 2$.
$\operatorname{\nabla ARE}(I)=\nabla A R E(I)+D I S E(I) * * 2 * D T / T E N D$ $\nabla A R F E(I)=\nabla A R F E(I)+P F(I) * * 2 * D T / T E N D$
YEBAR (I) $=$ YEBAR (I) + DISE (I) * DT / TEXD
$\operatorname{PEBAR}(I)=\operatorname{FEEAR}(I)+\mathrm{PF}(I) * D T / T E A D$
ODISE(I) = DISE(I)
OVELE (I) = VELE (I)
$\operatorname{OACCE}(I)=\triangle C C E(I)$
$O Y(I)=Y(I)$
$O D Y(I)=D Y(I)$
400 OP(I) $=P P(I)$
C

$$
E Y=S(2) * B Y /(S(1)+S(2))-E Y E
$$

```
        EX = S(4) * BX / (S(3) + S(4)) - EXM
        SI = S(1) + S(2)
        SY =S(3) + S(4)
        SB=S(1) * EYM**2 + S(2) * (BI - EIM) ** 2 + S(3) * EXM ** 2 +
        1S(4) * (BX - EXM) ** 2
    CAIL SSK(SX, SY, SR, EX, RY, MASS, PMASS, R)
C
C COMPARE M/ MAXIMDMS
C
    IF (ABS (EX) .GT. ECCMAX (1)) ECCMAX(1) = ABS(EX)
    IF (ABS(EI) .GT. ECCYAX(3)) ECCBAX(3) = ABS(EI)
C
    DO 430 I = 1, 3
        IF (ABS(PFC(I)) .IT. PPCMX(I)) GO 10 410
        PFCEII(I) = ABS(PFC(I))
        TPPCMX(I) = TIME
    410 IF (ABS(DDY(I) + GACC(I)).IT. ACMAZ (I)*GG) GO TO 420
        ACBAX(I) = ABS(DDY(I) + GACC(I))/GG
        TACMAX(I) = TIME
        IF (ABS(Y(I)).IT. DISMX (I)) GO TO 430
        DISMX(I) = ABS(Y(I))
        TDISHX(I) = TIEE
        DOCTMI(I) = DISAX(I) / DYC(I)
    430 COETINUS
C
    DO 440 I = 1.4
        IF (ABS(PP(I)) .GT. PFMAX(I)) PFMAX(I) = ABS(PF(I))
        IF (ABS(DISE(I)) .GT. DISEMX(I)) DISEEX(I) = ABS(DISE(I))
        DUCMX(I) = DISEMX(I) / DYE(I)
    440 CONTINDE
C
    450 IP (TIME.IT. TEND) GO TO 210
C
C END OF INTEGRATION
C
C TEMPORAEY STATPGENTS:DLOTS PORCE DISP. HYSTERESIS POR ELEMRNTS#1
C
    460 IF (IDIOT .EQ. 0) GO TO 470
    CALL PLTOFS(0.0, 2.*FY(1)/SO(1), 0.. FI(1)/2., 7., 10.)
    CALI PAXIS(2., 10., 'DISP', -0. 10.. 0..,-10.*PY(1)/SO(1).
        1 2.*FY(1)/SO(1), 1.)
            CALI PAXIS (7., 6., 'FOFCE', 0. 8., 90.. -2.*FY(1), PY(1)/2., 1.)
            CAIL PIINE (D1, F1, L, 1,0, 2, 1)
            CALI PITEND
C
    470 DO 480 I = 1.4
        \nablaARYE(I) = SQRT(ABS(VARPE(I) - FEBAR(I)**2))
        \nablaARE(I) = SQRT(ABS(VARE(I) - YEBAB(I)**2))
    480 TE(I) = TE(I) - PP(I) ** 2/ (2.*SO(I))
C
    EIET = 0.0
    DAERT = 0.0
    TECT = 0.0
C
```

```
    DO 520 I = 1. 3
C
    490
        DO 490J=9.3
            \nablaARPC(I,J) = SQRT(ABS(\nablaARPC(I,J) - PCBAB(I)*PこBAR(J)))
        VARC (I,J) = SQRT (ABS (VARC(I,J) - YCBAR(I)*TこBAR(J)|)
C
C
        EIE(I) = EIB(I) + MASS * VG(I) ** 2/2.
        DO 500 J = 1. 3
    500 TFC(I) = TEC(I) - SKINV (I,J) * PFC(J) * PPC(I) / 2.
C
C PIRAL STRAIN E RINETIC ENERGY EVEATOALIY ARE DISSIPATED AS
C DAMPING ENERGY
    DO 510 J=1.3
    510 DAMPDE(I) = DABPDE(I) + SKINY(I,J) * PRC(J) * PPC(I) / 2.
C
    DAMPDE(I) = DAMPDE(I) + MASS * (DY(I) + VG(I)) ** 2 / 2. - IASS
    1. * PDELTA(I) * Y(I) ** 2 / 2.
            EIET = EIET + EIE(I)
            DAMPI = DAMPT + DAMPDE(I)
    520 TECT = TECT + TEC(I)
C
C
    RRITE (IT,530) (PFCMX(I),TPPCMX(I),I=1,3), (AこEAX(I),TACMAX(I);I=
    11.3). (DISMX(I),TDISMX(I),I=1,3), DUCTYX, DYC, YCZAR, JARC, FこBAR,
    2VABPC, EIE, EIET, DAMPDE, DABPT, TEC, TECI, TEDE, ECCEAX, L, L2,
    3TIGE, IERR
    530 FOREAT ///'-QUANTITY X E M XTIME R R RTME
    1 I TTIME'//'M MAX FORCE', 6F10.3/'0ACC/S.TOT', 6F10.3/10
    2KAI DISPL', 6F10.3, T80, 'T&ETA*R'/'ODUCTILITY', 3(F10.3,10र)/'OYI
    3ELD DIS', 3(F10.3.10X)/OAVG DISP.', T11. 3(F10.3,10X)/, 'ORHS DIS
    4P.', 3(T11,3(F10.3,10X) ^, 'OAVG FORCE', T11, 3(F10.3.i0X)/, '0ZMS
    5 PORCE', 3(T19,3(P10.3,10X)/), EQ. INPUT'/' EQPRGY ',
    64 4(F10.3.10X)/' DANSING'/' ENERGI 1,4(F10.3.10X)/' DISSIP
    7ATED'/' ENEAGY ', 4(F10.3,10X)/T70, 'TOTAL DISSIPATED ENREGY=',
    8 F10.3/'0MAXBCC ', 3(P10.3.10X), 10X, ' L=', I5, I L2=1.
    9 I5.' TIME=1, F10.4.'IERR= .IS/)
    URITE (IT,540) (I,SO(I) ,EY(I),DYE(I),RO(I),DISEMX(I), DOCMX(I),
    1PFMAX(I),TE(I),YESAB(I), VARE(I),FEBAR(I),VAREE(I),I=1, 4)
    540 POREAT ('-ELMT #/ STIFF/YIRLD FORCE/YIEID DISPL./B-O COEFF/EAI.DIS
    1P./DOCTILITY/MAK.RORCE/DISS.ENERGY/AYG DISP/RAS DISP./AVG FOREE/RM
    25 FORCE///(I5.2X,F9.1.3X.F9.3.1X,F9.4.1X.F5.3.7X.8(P9.3.1X))।
        GO TO 160
    550 STOP }
        BND
        SUB&OUTINE FNCTE(L, PCT,Y, DY, DDY)
    COBEON SK(3,3), DAMP(3,3), PRI (3,3), D (3), OLOPPC(3), OLDIS(3),
    1 PDEITA(3)
    COMMON GITME/ GAZC (3), OGACC(3). G (8000,3)
    DIMENSION Y(1) , DY(1), DDY(1), AOX (3)
C
C
```

C
C K $* Y=$ PREVIOUS PCRCE + INCREMENTAL POBCE
C＝PREVIOUS POBCE＋CTRRENT STIFPNESS＊INCERHENTAL DISPLACEMENT
C OLDPPC MUST BE NORMALIZED
Do $20 I=1,3$
$s=0.0$
c
$10 \quad \mathrm{~S}=\mathrm{S}+\operatorname{DAMP}(\mathrm{I}, \mathrm{J}) * \operatorname{DY}(\mathrm{~J})$
c
$20 \operatorname{AOX}(I)=5$
C
DO $40 I=1.3$
$s=0.0$
c

$$
\text { DO } 30 \mathrm{~J}=1,3
$$

$30 \quad s=S+S X(I, J) *(I(J)-\operatorname{OLDIS}(J))$
c
$40 \mathrm{DDY}(\mathrm{I})=-(S+\operatorname{OLDPPC}(I))-\operatorname{ADX}(I)-\operatorname{OGACC}(I) *(1 .-P C T)-$
1GACC（I）＊PCT＋PDELTA（I）＊$Y(I)$
c
bETDRE
END
SUBbodtine SSk（SX，SI，SR，EX，EY，mass，PMASS，R）
COMEOY SK $(3,3)$ ，DAMP（3，3），DHI $(3,3)$ ．D（3），OLDPFC（3）．OLDIS（3）．
9 PDELTA（3）
BEAL EASS
SK（1．1）＝SE／MASS
$S K(1,2)=-E Y * S I /(\mathbb{L S S} * R)$
SK $(1,3)=0.0$
SK $(2,2)=S R / \operatorname{PMASS}$
SK $(2,3)=E X * S Y /$ MaSS／B
SK $(3,3)=S Y /$ MASS
DO $10 I=1,3$
C
DO $10 \mathrm{~J}=1,3$
$10 \operatorname{SK}(\mathrm{~J}, \mathrm{I})=\operatorname{SK}(I, J)$
c
RETURN
EXD
SUBRODTINE BIIER（PR，OR，Y，OY，OVRL，OACC，ALC，DTT，DT，ODT，I）
c
C bilinear stipfness subroutine pbogramaed by y．e．batts 1978
C FOR AH PLEMENT YHOSE PORCE IS A PUNCTION OP ONLY ONE DISPLACEMENT
c soch as a lomped mass sieab system．
C IP the force ofershoots the biligear rivelope．the subrootine
C compdtes tar time step aeccessari to ait tue envelope precisely（if
C 17）
C FOR ELPMENTS HHOSE PJRCE IS A PU日CTIOA OP SEVERAL DISPLACEMENTS SUC
C as moments in a beam，
C the tise ster calcolation most be reformolated（but can be done
C KHERE THE CHANGE 日ILI BE in the OLD velocity eacc ε ney acc
C SOCR AS DY＝ロOE／SO＝2＊THETAA＋THETAB－3／LENGTH＊PSI）

```
C IVC MUST BE INITIALIZED TO 1; S TO SO; PMAX TO.PY*(1-RO)/(SO*RO)
C
        COMEON /STIEP/ RO(4),FY(4), SO(4), IVC(4),S(4), PMAI(4), EPSMAX,
        1 IBTOT
C IVC(I)=0 MEANS NEK CRANGING; IVC(I) =1 GEABS UNCGANGING;IVC(I)=-1
C MEANS GNIOADIHG FROM YIELD IINE
C
    DT = DTT
    IF (I\nablaC(I) .EQ.O) GO TO 2O
    IF (IVC(I) .EQ. - 1) IVC(I) = 1
C
C IP UNLOADING GTO 10:IF NOT GMO 30. INITIALIZE CONVERGEECE COUNTER;
C IF Y IS BEYOND FY* (1-RO)/(SO*RO) LOADINGEOHLOADING BECONE UNCLEAR
C
    IP (ABS (OY).IT. PMAX (I)) GO TO 5
    IF(S(I).E2.SO(I)) GO TO 40
    IF (ABS (OY).LT.ABS(Y).AND.ABS (PF).IT.FY (I)) GO TO 10
        IF (ABS (OY).GT.ABS(U).AND.ABS (PF).GT.FY(I)) GO TO 10
        GO TO 190
        5IF ((PF + OF)* (Y - OY) ) 10. 30. 30
        10 IF (S(I) .EQ. SO(I)) GO TO 40
C
C DNLOADING E ?&EVIDOSLY IIELDED,RESEI STIFPGESS TO INIIIAL,IVC(I)=-1
C AND REDO TEIS TIME STEPS CALCULATIONS
C
    S(I) = SO(I)
    IYC(I) = - 1
    DT = DTT
    GO TO 110
C
C DT RAS CEANGED. RESET IVC(I)=1 & CEECK IF PF=FY(I) SET
C S (I) =SO(I) *RO(I)
    20 IVC(I) = 1
        S(I) = SO{I) * BO(I)
        EPSLON = ABS(PF- (RO(I)* (SO(I)*Y-PF-FI(I)) + FI(I))/(1. - RO(
        1I))) / ABS (PF)
        EPSLON = AMIN` (EPSION,ABS(FP - (RO(I)*{SO(I)*Y - PF + FY(I)) - PY(
        1I))/(1. - RO(I)))/ABS (PP))
        BPSMAX = AMAXI (EPSMAX,EPSLON)
        IF (EPSION .IR. O.01) RETURN
C
C CAICULATED DF HAS FAILED TO ECNVERGE, RECALULATE DT IP IT HAS OVERSEOT
C ENVELODE,OTHRPRISE USE TEIS TIMESTEPECONTINUE. IP TRO ELEMENTS
C GAD YIEIDED, ONE DROBAELY EAS NOT CONVERGED OR OVERSHOT:TRIS IS OR
        S(I) = SO(I)
    GO TO 40
C
C IP NOT ONLOADING & NOT PREVIOUSIY YIELDED, CRECK IO SEB IF YIBLDEJ NOU
C
    30 IP (S(I).EQ. SO(I)) GO TJ 40
C
C CONTINUING TO YIEID(GTO 110)
```

```
C
GO TO 110
C C IP PF ABOVE BOTTON YIEID LINE, (GTOSO)
C
    40 IF ((PP- (RC (I)* (SO(I)*Y-PF + PY(I)) - PY(I))/(1. - RO(I))) .
        1 GE. 0.0) GO TO 50
C
C ELEMENT EAS YIELDED OU &EGATIVE SIDE. FIED YEM DT
C
        GO TO 60
C
C IF PF BELOV TJP YIELD IIEE BEIORE
    50 IF ((PF- (RO(I)*(SO(I)*Y-PR-PY(I)) + PI(I))/(1. - RO(I))) .
C
C ELEMEET HAS IIELDED ON POSITIVE SIDE. FIND NEF DT(GTO 60)
GO TO 60
C
```



```
C DI=(PY (I) -OF)/SO(I)=DT*OVEL+DT**2/6*(2*OACC+ACC(T+MEZDT))
C ASSUMING LINEAR ACCRLERATION DORING DTT,TAIS IMPILES A CIBIC
C EQN IM DT. SOLVZ FOR DT,SET IVC(I)=0,EREDO TKIS TIME STEP D/ NEE DT
C
    60 P = 3. * ODT * OAこC / (ACC - OACC)
        Q = 2. * P * OPEL / OACC
C FI(OF,OY)={PY(I)+RO(I)*(SO(I)*OY-OF-FY(I)))/(1-RO(I)
PII= FI(I)
    IF (Y .IT. OY) FYY = -PY(I)
    B=-6.*ODT/SJ(I)*((FYI + RO(I)* (SO(I)*JI - OF-PYY))/(1.-
        1RO(I)) - OF) / (ACC - OACC)
            A = (3.*2 - P*P) / 3.
        B}=(2.*P**3-9.*P*Q + 27.*R)/27.
        DT = ODT
C IF A>O TGERES ONLY ORE REAL ROOT, OSE NERTON ITERATIOE
    IF (A .GE. O.O) GJ TO }8
C C O EEAL DISTINCT ROOTS, FIND TEE O&E BETGEEN O AND DTT
C
    D = -B/2./SQRT (-A** 3/27.)
    IF (ABS (D) .GT. 1.0) GO TO 80
    PRI3 = ARこOS(D)/3.
    C = 2. * SQRT (-A/3.)
    DT = DTT
C
    DO 70 J = 1.3
    DT2 = C * COS (PHI3 + (J - 1.)*2.094395) - P/3.
    IF (DT2 .LE. 0.0) DT2 = DTT
```

```
            IF(DT2.LT.1.E-4) DT2=1.E-4
        70 DT = AMIN1(DT,DT2)
C
    GO TO 100
    80 DO 90 J = 1. 3
    90 DT = DT - (DT**3 + P*DT**2 + Q*DT + R) / (3.*DT**2 + 2.*P*DT + Q)
C
C IF DT IS CLOSE TO DTT, IINEAR ACC. MAI GIVE DT>DTT SINCE
C RUNGE-KOTTA 5 IINEAR ACC. GIVE SIIGGTLY DIFFERENI ANSYERS.
C IT SHOOLD BE @ITHIN 1P THOUGH. IF NOT. IBOMB MILL =5
    100 IYC(I) = 0
    110 RETORN
        END
        SUBROUTINE RMBOSG(TT, OTT, I)
    C
C PERIOD/DT SHOUID BE >16 OTHERप्रISE YCO CANT REALIY
C CONSIDER THE ELEMENT IO BE LINEAR BETVREN TIME STEPS
C
        COEMON /STIFP/ RO(4), PY(4), SO(4), IVC(4), S(4), PMAX(4), EPSYAX,
        1 IBTOT
        DIMENSIO& YM(20,4), IC(4), OP(4)
        GY (DY,DR) = 1. / (1. + (DR)*AES (DI)**(DR - 1.) )
        GRO(DY,DYO.DR) = 1. / (1. + (DR)*ABS((DY - DYO)/2.)**(DE - 1.1)
C
C GY=STIFFNESS ON SRELETON CORVE(R/ SHARPNESS CDEPF=DRE ALPHA=1.)
C GRO=STIFPGESS NOT ON SKELETON CURVE
C EVEN IC(I)'S= UNLOADING PTS ON SIDE OF HYSTERESIS LOOR OF MOST
C RECENT UNLOADING PBOM SKELETON CORVE
C ODD IC (I)'S = OMLOADING PTS GOING IN OTGER DIRECTION
C IVC MUST BE INITIALIZRD TO 1, S TO SO
C
    T=TT/FY(I)
    OT = OTT / FY(I)
        IF (IYC(I) .NE. 11 GO TO 30
        IP (ABS(I) .LT. ABS (OT)) GO TO 20
    10 S(I) = SO (I) * GV(T,RO(I))
        IC (I) = 0
        RETORN
C
C
                                    ONLOADING FEOM SKELEION こURVE .SET
                                    IVC(I)=-1 & REDO THIS TIME STEDS
                                    CALCOLATIONS D/ NEP STIPPRESS
    20 IVC(I) = - 1
        |P(I)=1.
                                OP(I)=1; INCREASING JP(I) =-1:DECREASIBG
    IF (T.IIT. OT) UP(I) = -1.
    IC (I) = 2
    IM (1,I) = - OT
    M (2,I) = OT
    S(I) = SO(I) * GRO(T,OT,RO(I))
    BRTORN
```

30 IF (ABS (T) -GE. ABS (IM (1,I))) GO TO 50

C ETC. TIII THE SKELETON CORVE IS REACBED
$60 \mathrm{IF}(\mathrm{OP}(\mathrm{I}) *(T-\mathrm{F}(\mathrm{IC}(\mathrm{I})-1 . I))$.IT. O.) $30 . \mathrm{TO} 40$
70 IC (I) $=I C(I)-2$
IF (IC (I) .EO. 1) IC(I) $=2$
IF (IC (I) .EQ. 2) GO TO 40
GO TO 50
EN D
SOBROOTINE EIG
DOUBLE PRECISION Q, Q, B, A. B, X, Y
COHMON SK $(3,3)$, DAYP $(3,3)$, PKI $(3,3), D(3), O L D P P C(3)$, OLDIS (3).
9 PDELTE(3)
$\mathrm{P}=-5 \mathrm{~K}(1,1)-\operatorname{SK}(2,2)-\operatorname{SK}(3,3)$
$Q=\operatorname{SK}(1,1) * \operatorname{SK}(2,2)+\operatorname{SK}(3,3))+\operatorname{SK}(2,2) \quad \operatorname{SK}(3,3)-\operatorname{SK}(2,3)$
$12-\operatorname{SK}(1,2) * * 2$
$B=-\operatorname{SK}(1,1) * \operatorname{SK}(2,2) * \operatorname{SK}(3,3)+\operatorname{SK}(1,1) * \operatorname{SK}(2,3) * * 2+\operatorname{SK}(3$,
13) *SK $(1,2) * * 2$
$\Delta=(3 . D O * Q-P * P) / 3 . D O$
$B=(2 . D 0 * P * * 3-3 . D 0 * P * Q+27 . D 0 * R) / 27 . D 0$
IF $(B * * 2 / 4 . D O+A * * 3 / 27 . D 0 . G T .0 . D O) B=2 . D O * D S Q R T(-A * * 3 / 27 . D 0)$
1* B / DABS (B)
$X=\operatorname{DARCJS}(-B / 2 . D 0 / D S Q E T(-A * * 3 / 27 . D 0)) / 3 . D O$
$Y=2 . D O$ * DSQRT $(-A / 3 . D O)$
$D(9)=Y * \operatorname{DCOS}(X+4.188790200)-P / 3.00$
$D(2)=Y * \operatorname{DCOS}(X+2.094395903 D 0)-P / 3 . D 0$
$D(3)=Y * \operatorname{DCOS}(X)-P / 3 . D O$
C

```
    DO 10 I \(=1,3\)
C
        DO \(10 \mathrm{~J}=1,3\)
        \(10 \mathrm{PHI}(I, J)=0.0\)
C
    DO \(80 I=1,3\)
        PHI (1.I) \(=1.0\)
        IF (ABS \((S K(3,3)-D(I))\).IE. 5.E-01.AND. \(S K(2.3) . E Q .0 .0)\)
        1 GÓ TO 20
        GO TO 30
        20 IF \((S K(1,1)\).EV. \(S K(3.3)\)-AND. I . XE. 1) GO TO 30
        \(\operatorname{PHI}(1, I)=0.0\)
        \(\operatorname{PEI}(2 . I)=0.0\)
        PHI (3.I) \(=1.0\)
        GO TO 80
```



```
            GO TO 50
        \(40 \quad \operatorname{PHI}(1, I)=1.0\)
        PRI \((2, I)=0.0\)
        \(\operatorname{PHI}(3 . I)=0.0\)
        GO TO 30
        50 IF (ABS (SK (2, 2)-D(I)) ILE. 5.E-01. . AND. SK (1.2) .EQ. O. O. AND.
                SK 2,3 ) .EQ. 0.0\()\) GO TO 60
            GO TO 70
        \(60 \operatorname{PHI}(1, I)=0.0\)
        \(\operatorname{PEI}(2 . I)=1.0\)
        \(\operatorname{PEI}(3, I)=0.0\)
        GO TO 80
        70. \(\operatorname{IF}(S K(1,2)\). EQ. 0.0\() \operatorname{PRI}(1, I)=0.0\)
        \(\operatorname{IF}(S K(1.2) . E Q .0 .0) \operatorname{PHI}(2 . I)=1.0\)
        IP \(\{\operatorname{SK}(1,2)\).NE. 0.0\() \operatorname{PGI}(2, I)=-(S K(1,1)-D(I)) / S K(1,2)\)
        \(I F(S R(2,3)\). NE. 0.0\() \operatorname{PGI}(3, I)=-(S K(1,2) * P H I(1, I)+(S K(2,2)-\)
        \(1 \mathrm{D}(\mathrm{I})) * \mathrm{PRI}(2, I)) / \mathrm{SK}(2,3)\)
        80 CONTIRUE
C
    DO \(90 \mathrm{~J}=1,3\)
    \(\operatorname{SOB}=\operatorname{SQRT}(P G I(1, J) * * 2+\operatorname{PEI}(2, J) * * 2+\operatorname{PHI}(3, J) * * 2)\)
C
        DO \(90 I=1,3\)
        \(90 \mathrm{PHI}(I, J)=\) DHI \((I, J) / S U M\)
        RETURY
        END
        SUBROUTIHE STFDRG(PF, OP, Y, CY, OVEL, OALC, ACC, DTM, DT, ODF, I)
C
C BILINRAR STIFPNESS DEGRADIRG HYSTERESIS(SIHDITFIED TAKEDA)
C SUBROUTINE. CALCULATES NEH TIAE STPP DT OHEN STIFPRESS CYA GES
C
    COMMON/SIIPF/RO(4), PY(4). SO (4). IVC (4), S(4), PYAY(4), EPSYAX.
    1 IBTOT
    DIGENSIOX \(\quad(13,4), F(13,4), I C(4), I O C(4), S 2(4)\)
C
C IVC=1 GRANS ONCGANGINS STIFPNRSS: IVC=-1 MEANS UNLOADING , LAST STRP
```

```
C ItC=0 means changing stiffness meile loading olast step;cer if
c converged
C
C pT IC=2 IS THE HIGREST PT. ON BILINBAR ENV ELOPE REACBED
C PT IC=4 IS TRE MAX PT RPACHED ON MAY TO PT IC=2
C PF IC=1 IS THE MIRZOR OF PT IC=2
C PT IC=3 IS THE YAX PT REACHED O\ MAY TO PT IC=1
C IVC mDST be INITIALIZED tO 1: S to SO; PaAI to fY
C
    DT = DTT
    IF (IDC(I) .EO. O) GO TO 20
    IF (IVC (I) .NE. -1) GO TO 5
    S2(I) = SO (I)
    IVC(I) = 1
        IOC(I) = IC(I) +2
        O(IOC(I),I) = OY
        P(IOC(I),I) = OF
        DT = DTT
        GO TO 160
        5 IF ( OF * (Y - OY)) 10, 70, 70
        10 IP (S (I) .EQ. SO(I)) GO TO 60
C
C ONLOADING & CHANGIYG STIPFEPSS PIND DT S.T. DY=0 TO AVOID
C PROBLEES WHEN THO ELEMENTS YIELD & UNLOAD SIMOLTANEOUSLY
C
        IVC(I) =-1
        DY = 0.0
        GO TO }11
        20 IVC(I) = 1
        IF( PMAX(I) . EQ. FY(I)) GJ TO 40
        IF (S(I).EO. SO(I).AND. OP*(Y-OY).IT. O.0) GO TO 40
        EPSLON = ABS(P(IOZ (I) + 2.I) - PF) / ABS (PP)
        IF (EPSLON .GE. 0.01) GO TO 30
C
C CONVRRGED. LOADING TOMARD O(IC (I) -2)
C
    IF (IOC(I) .LE. O) GO TO 90
    S2(I)={P(IOC(I),I)-P(IOC(I)+2.I))/(O(IOC(I),I)-O(IOC(I)+2,I))
    GO TO 160
C
C PAILED to CONVERGE TO PT. O(IC(I))
    30 IOC(I) = IC(I)
        GO TO 70
c
c ONLOADING tORARDS zERJ PORCR, CBECK IF IT HIT zERJ
C OR PIRST NOMLINEAR EXCURSION
40 IP (ABS(PF)/PY(I) .GE. 0.005.AND.PMAX(I).NE.FY(I)) GO TO 50
C
C ZERO PORCE, PIND NET STIFFNESS
C OR PIRST &OMLINEAR EXCUBSION
    IP(PMAI(I).EQ.FY(I).AND.ABS(PMAX(I)-ABS(PP))/PMAX(I).GR.0.01)
```

```
    1 GO TO 100
    IF (PMAX(I) .EQ. PY(I)) GO TO 90
    IOC(I) = IC(I) - 1
    S2(I)=F(IOC(I).I) ! (O(IOC(I).I) - I)
    PF=0.0
    GO TO 160
C
C FAIIED TO CONVERGE TO ZERO FORCE
C
    50 IOCC(I) = IC(I)
C
C ONLOADING TONARDS ZERO FORCE; CEECK IF BEYOND
C
    60 S2(I)=SO(I)
        IF (PMAX(I) .EQ. PY(I)) so TO 160
        IF (PY*OP .GT. O.0) GO TO }16
        DY = -OF / SO(I)
        IVC(I) = 0
        GO TO 110
C
C CONTINOING LDADING: CHECK IF BEYO&D P(IC(I),I)
C
        70 IF (ABS(PF) .GE. ABS(F(MAIO(IC(I),1).I))) GO IO 80
            S2(I) = S (I)
            GO TO 160
C
    80 IF {S(I) . EE. SO(I)*RO(I)) GO TO 100
C
C STIIL ON BIIINEAR BNVEIOPE
C
    90S2(I) = RO(I) * SO(I)
        IOC(I) = 0
        U(1,I)=-Y
        F(1.I) = - PF
        O(2,I)=I
        F(2,I) = PF
        PMAX(I) = ABS(PF)
        GO TO 160
C
C IP STILI IIREAR,RETURA
    100 S2(I) =S (I)
    IF (PAAX(I) .EQ.EY(I) .AND. ABS (PF) .LE. FT(I)) 30 TO 160
C
C CHANGING STIPENESS, FIND NEW DT PIEST
    DY = O (MAXO(IC (I),T),I) - OY
    IVC(I) = 0
    IF(PMAX(I) . EQ.PY(I)) DY=(PY(I)/SO(I)-ABS(OY))*OY/ABS(OY)
C
C IP ONE ELEEENT YIELDS E ANOTHER DNLOADS, THE CHANGB IN TIME STEP gAY
C CAOSE THE UNLJADIHG ELEMENT TO BEIOAD. IN THIS CASE SI&CE IC MILL
C JOST HAVE BENY INCREMENTED BY 2 IN IS&9, ME DONT HANT TO DECREMENI IT
C
```

```
    IF (DY. BE.O.D) IOC(I)=IC(I) -2
    110 P = 3. * ODT * OALC / (ACC - OACC)
    Q = 6. * ODT * OVEI,' (ACC - OACC)
    R = -6. * ODT * DI / (ACC - OACC)
    A = (3.*Q-P*P) / 3.
    B}=(2.*P**3-9.*P*Q + 27.*R) / 27.
    DT = ODT
    IF (A.GE. 0.0) GJ TO 130
    D=-B/2./SQRT(-A**3/27.)
    IF (ABS (D).GT. 1.0) GO TO 130
    PHI3= ARCOS (D)/3.
    C = 2. * SQRT(-A/3.)
    DT = DTT
C
        DO 120 J = 1. 3
        DT2 = C * COS (PHI3 + (J - 1.)*2.094395) - P/ 3.
        IP (DT2 .IE. 0.0) DT2 = DTT
        IF(DT2.IT.1.E-4) DT 2=1.E-4
    120 DT = ABIN1 (DT, DT2)
C
        GO TO }15
C
    130 DO 140J=1, 3
    140 DT = DT - (DT**3 + P*DT**2 + Q*DT + E) / (3.*DT**2 + 2.*P*DT + Q)
        IP (DT. LT. 1. E-4) DT=1.E-4
        IF (DT .GT. DTT) DT=DTT
C
    950 CONTINTE
    160 IF (I..NE. 4} GO TO 190
        IF (IVC(J) .EQ. 1) GO TO 170
        GO TO 190
    170 CONTINUE
        DO 180 J=1.4
        IC(J)=IOC(J)
    180 S(J) = S2(J)
    190 RETORN
        EKD
```


APPENDIX F

The first law of thermodynamics for a closed system that undergoes a change in state is

$$
\int_{1}^{2} \delta Q=\int_{1}^{2} d E+\int_{1}^{2} \delta W
$$

where $\int_{1}^{2} \delta Q$ is the heat transferred by the process between state 1 and state 2 and $\}_{1}^{2} \delta$ is the work done between state 1 and state 2. E is the energy of the system in a given state and in this case represents the sum of strain energy. $S E$ and kinetic energy, $K E$.

Equation $F-1$ can be written as

$$
I_{2}=\left(S E_{2}+K E_{2}\right)-\left(S E_{1}+K E_{1}\right)+I^{W} 2
$$

where 1_{2} represents the dissipated hysteretic dissipated energy. DHE, and dissipated damping energy, DDE

$$
1_{2}^{O}=-(D E E+D D E)
$$

$I^{[17} 2$ represents the work done by the system which is the earthquake input energy, EIE

$$
I_{2}=-E I E \text {. }
$$

By writing the dynamic equations of motion as

$$
M \cdot\left(\ddot{T}_{g}^{\bullet}+\ddot{\Pi}\right)+C \cdot \dot{T}+E(J)=0
$$

and integrating these forces through the distance $d U+d_{g}$
the various terms in Equation $p-2$ can be expressed as

By a suitable change of variables and rearranging terms, Equation F-3 becomes
which satisfies the first law of thermodynamics for the closer system shown in Fiqure $F-1$.

$z=0$

Pigure $F-1$ Dynamic Model

The first term in Equation $F-4$ is the kinetic energy, RE
$K E=M \cdot\left[\dot{O}(t)+\dot{U}_{g}(t)\right] 2 / 2$
The second term is the dissipated damping energy. DDE

$$
D D E=\int_{0}^{t} C \cdot \dot{\sigma}^{2}(t) \cdot d t
$$

The third term represents the dissipated hysteretic energy DHE, and the strain energy, SE

$$
S E=K \bullet \nabla^{2}(t) / 2
$$

The right hand side of Equation $F-4$ is the earthquake input energy. BI E

$$
E I E=-\int_{0}^{t}\{K \cdot U+C \cdot \dot{\sigma}\} \cdot d U_{g}=\int_{0}^{t} M \cdot\left(\ddot{\Pi}_{\mathrm{G}}+\ddot{\sigma}^{*}\right) \cdot \dot{\mathrm{T}}_{\mathrm{g}} \cdot d t .
$$

Finally, Equation Fwh can be rearranged as the more familiar

$$
E I E=\Delta_{S E}+\Delta K E+D D E+D H E \quad F-5
$$

4．Matson，S．，＂Civil Enqineezing Iis：ory Gives valuable Lessons，＂Civil ĖGinegring，Mav 1975，pp．43．52
 TaEthquice Safery ani ot そiazaza abatement，＂ DEOCOO

万．Auusner，ヨ．ग．，＂Limi＋Design oE structures to Fesist巴arthquakes，＂Drocoerings pf tho 1st 习orld

7．Berq，G．サ．，＂The Analysis of Stuctural zesponse to Farthquake Forces，＂Th．D．Thesis，the Jniv．of Michigan，Ann arbo：，Yichigan， 1958

3．Newmark，Y．＂a＊ethod of Computation for Structural ？ynanics，：＂Journal of the Enqincering yechanics

－Clougt，B．a．，Benuska，R．L．，and rilson，E．I．， ＂Inelastic Zarrhauake Response of Tall Builiings，＂
 Earhauare Zอaland，vol．2，1965，20．2－63 to 2－29

10．Iwan，M．J．．＂The Dynamic Fosponse of Bilinear fysterptic Systems，＂2h．D．Thesis，Califoznia Insticute of Technoloqy，Pasaiena，California， 1961

11．Giberson，y．F．＂The Fesponse of Monlinear Multistory Ph．D．Thesis，California Institute of Technology， Pasadena，California， 1957

13．Jenainas，P．C．，＂Yarthquake Pesponse of a Yielding Structure．＂Journal of the Engineering lechanics Division，ASCE，VOl． 31, No．Eñ，fuguse，1965， 20．41－68

14．3oel，S．C．，＂Inolastic Behaviour of Multistory euilding Frames subjecter to 巨arthquake a Ph．D．Thesis，Jniv．of Michigan ann Arbor，Michiaan， 1967

15．Kaldjian，A．J．．and Fan，M．2．S．，＂Earこhquake fesporse of a amberg nsgood Structure，＂Journal of the Structural givision，ASCE，Vol．94，：io．STY，August， 1968．20．1907：1934

1f．Fikuta，Y．，＂S＝udy Jt the ？esこozina Force Characteristics of＝einforcer concrete suindinas，＂
 Ins－izu＝e of Japar，10．40，yov． 1969
 Proceerings of the Eeview reztina i．S．－Japan
 pp．107．117

18．Kanaan，A．，and Dowell．G． profram for Inelastic Dynamic Fesponse of plane Structures，＂Zarthauake Engineering jesearch Center，feport fo． 7301 ，berkeley，California， 1973

19．Tilsor，E．L．，ard Dnyey，I．M．，＂Three－Dimensional Analysis of Building Systems，＂Ear＝hquake Enqineering Research Cecter，Eeport No．72－8． Tniv．of California，Berkeley，California，Dec． 1972

20．Macneil，E．H．（EAitor），＂The MASTAN Theoretical Manual，＂ National Jeronautics and snace Administration，sp．．221（01），Houston，tesas，april 1972

21．Bathe，H．J．，Tilsor，r．I．，ana Peterson，I．5．，＂sap．， ry－a Structural Analysis Program for Static and nynamic Response of Iinear Systems，＂Earehquake Enqineering zesearch centeE，Repori No．EERC 73－11， गnir．of California，serkeley，California，197？
 The Structaral Design Language Enqineering \quad gers Manual，＇Eeasearch Feport R $70-77$ ，Department of Civil Rnqineering， $4 I T, C a m b r i d g e, ~ H a s s a c h u s s e t t s, ~ J u n e ~$ 1971

23．Iure，P．S．，＂Interconnection o三 ransslational and Torsional Viorations in 3uildings，＂Eulletin of the Seisialoqical Sociery ne biaerica，Vol． 23 ，No． 2 ， 1938．20．39．130

24．ヨosenblue－h，ヨ．，and Elorduy，J．，＂Eosponse of Linear Eystams to Cartain Iransient Disturbanses，＂ 므으릐ings 2f the 4 th ㅁorla Conference on Barthanaxe Enqineerina，Tol．1，Santiago．Chile． 1959，DD．A1－185＝0 A1． 126

25．Nemmark，V．，＂roysion in Symmutrical Builuings，＂ poncooiings

26．Hoerner，J． OE Tall ？uillings，＂Earthguake ヨngineopring 三esearch
 Institute je Technoloqy，Zasaana，Califoraia， 1971

 Institute of Technology，Pasadena，Califoznia， Eet． 1971

28．Heidebrechte A．C．，＂Dynamic Analysis of asymmetric fall－ Frame 3uiliings，＂BSCE Mational Structural griqneering Conqersion，New orlears，Lorisiana， Meeting Preprint 2497，April 14－18，1975

29．Jerq，G． $7 .$, ＂习arthauake Stresses in Iall zuilaings aith Setbacks，＂Proceedings of the Second Symposing on zarthquake Enqineering，oniv．of Forkee，Borkee， India，yov．10．12，196？
 Canadiari conference on
＂Torsional vibeations of
 Canada． 1971

31．Okaca，T．，＂Analysis of the 耳achinohe Library Damaged by ＇58 Fokachi oki Earthquake，＂Proceedings of the
g．S．Janan Seminar on Earthauake Enqineerinq， Sept．1970，op．172：194

32．Padilla－Mora，B．M Monlineaz Response of Framed Structures to rwo Dimensional Earthquake Motion，＂ Ph．D．Thesis，Oniv．of Illinois，Champaign，Illinois， 1974 Report NO．JIIU－ENG－74－2015

33．Shixa，R．，＂Torsional Resnonse oE 3 こ上uctuaes to Tarthquake Motion，＂？rceedings of tine U－S．－Japan Seminar on Earthanake znainering，Seot．1970， 20．156：171
 Durpose Profram for tnalysis of vonlinear Structural Eesponse，＂Earthouake Enaineering Eessarch Center，
 9arkəley，California，Jec．1975

35．Nishikawa，T．，3atts，M．．．．and Banson，F．D．，＂Nonlinear Builuing ？esponse by the characteristics xeriod，＂
 progazo in

36．Kan，C．L．，ant こhopra，A．K．＂Couoled Lateral．Torsional Eesponse oE Buildiras to Ground shaking，＂Earthauake Raqineering Eesearch Genter，zeport \because o．こeac 75－13， Jaiv．of Calíg aia，derkeleq，California，yay 1975
 Mransform，Fesponse Spectra and Their Eolationship Throuyh bite s＝aこistics of oscilla＝oz Eesponse，＂
 Pasadena，California Acr． 1973

38．Cauqhev，T．K．，＂Derivation and fpplica＝ion of the Fokker＂Planck Equation to Discrete Nonlinear Dynamic Systems Subjected to ahite aandom axcitation，＂
 701．35，！ว．11，Nov．1953，pp．1693－16？

39．Cauqhev，T．，＂ヨauivalent Iinearization mechniques，＂ Journal of tho acoustical Society of america，

40 ．Lntes，I．D．，＂S＝ationary anndom Besponse of Bilinear Asyteretic Systems，Ph．D．Thesis，California Institute of Techrology，Pasadena，California， 1967

4．Meqma＝k，N．，A．，an Zosenbluech，E．，Funiamentals of Ea 1971

42．Shiqa，T．，＂Torsional Vibrations of dultistoried Buildings，＂Proc．of Ehe 3Ed \＃ozld Conferance on Ea Wellington，New zealand，1955，po．569－584
43. íine, J., "Ca+zloque of Destructive Ea=thuakes," Louतon: Feports of the aritish association, 1011. 20.647-7!
 1939

47. วiezz, P.S., and Holden, J.C., "Fesonstraction of the つarqaea: =eak-up and Dispersion oE Con=irents,
 Vol. 75, 20.4939405

 of Nonstationarity \quad Ef Earthquake Mo=ions,"
 1969. pp.A1-97 to A1-114
50. Tomnitz, C., and Fosenblueth, g. (editors), seismic Fisk and Enqineering necisions, Elsevier Science

 $\frac{\text { Tnqineering }}{\text { Instifure }}$ ge $\frac{\text { Fesearch }}{\text { hnology }}$, pasaboratory, California

 of atorica, Tol.45, No.3, July 1955, pp.197-211
 Zarthquakes," Journal of the Enqineering Mechanics Division ASCE, Vol. 36, No. Ev2, Apr. 1960, pp. $1 \cdots 15$
55. Dosenblueth, 已., "Some Apolications of Probabili=y Theorf in Aseismic Desiqn," Eroce qorla Conferzace on Eartiquaxe Enqineerifu, Berkeley, California, June 1956

So. Kanai, R., "Seismic Zapizical Formula for the Seismic Characteristics of the Ground," Iniv. of Tokyo Bulletin Earthcuake Eesearch Institute, $\nabla 01.35$, 1957. 20. 3090325
 Maximur response of a puilaing structure During an Tarthquake," Droceedinas of the 2na morla Conference on zarthaugke znqineerina vol.I, Tokyo, Japan, $1000,00.701 .703$
 Honscationary ?andom Exci=a=ior," Etoceenings of the

 Bound on the Failure of Linear structures," Journal 을 dpolied yechanics, Ser. z, サol.40, 1973, pp.1.17-135
 Displacement of Stronq Zarthquake Ground yotion," Balletin of the Seismoloqical Society of America, VO1.51, v०.2. 1961 pp.175.189
51. Shinozuka, A., and Sa $=0$, T., "Sirula-ion of

 No. En1, Feb. 1967. pp.17-40
62. Penzien, J., and Liu, S.C.. "Nondeterministic Analysis of Noglinear Structuros," procoedinas of the tth
 santiago, chile, $196 \overline{9}, 00.4114$ to 11130

54. Gumbel, E.J., ana Carlson, P.G., Vaxtreme Values in aeronautics," Journal of deronautical Science, June 1954, 2p.339-398
65. Crandall, S. R . "Pirs Crossing P=obabilicies of the Linear oscillator," Journal of Sound and \#ibeation, Tol.12, 1970, pp.285-300
66. Tanyarcke, E. a., "Cn the Distribution of the 1sj Passage Tiae for Noraal Stationary Fandom Processes,"
 po.215-2?0
67. ᄀavonport, a.j., "Yote on the Distribution uf the
 to Gust Loating," oroceedings of Ehe InstituEo of Civil Engineering, Vol.28, 1964, 0.187196
68. Kuno, T., arz Penzien, J., "Characteristics of ThreeDimensional sround Motions, san Fernando 2artiquake," proceedings of the Eeview heeting I. S. Japan Coon ㅌesearch profran in Earthauake Fngineering, :avaii, 1975, pp.3551

Aニ=ificial Barchquako" InEernational Joamani of
 701.2, : YO.2, CCt.-Dec., 1973 pr.249-267

 1969. PD. A1-84 $=0$ A1-97
71. Yurakami, M., and Penzien. J., "Nonlinear Fesponse Spectra for probabilistic Soismic Design and Damage assessment of Eeinforced Concrete Structures," 5zrthauake Enqineering Ee gearch Center, Berkeley, California, yov. 1975
72. Perzier, J., and watabe, A., "Siaula=ion of 3-D Zarthauake Ground motions," Eulletin of the International Institute of Seismologv and Earthauake Engineering, $\nabla 01.12,1974$, pp.103. 115
73. Rascon, O.A., "Pstudio Teorico y Estadistico de las Comporentes de Traslacion del Suelo durante un Sismo," Ingenerio, Vol.37. No.4, 1967, pp.384-388
74. 2osenblueth, z., "The Six Components of चarthquakes," Pzoceerings of the 12th kecional Confezence on
 Australia, $1973,00.63-91$
75. Nathan, N.D.. and yackenzie, J.E., "Fotational Components of ヨarthquake Hotións," Canadian Journal of Civil Enqineering, Yol.2, 1975, pp.430.436
 of Building aesponse and Free Field Motion in Earthquakes." 2roceerinas of the oth Forli
 India, Voi. 3 . Jan. 137万, op.1.7
77. Luco, J.E., "Tozsional nesponse of Styuctures for SA gaves: The Case of terispherical Foundations," 3ulletin of the Seismologicai society of gnerica, 7ol.55, No.1, Eer.1075, pe. 10 c. 123
78. A工ias, A.,"A Measu=e of Ea=thguake Intensity, ": ́IT, March, 1969
79. International Conference of Baidira Cficicials. Iniform
 California, $1 \geqslant 75$

AIIM SCANNER TEST CHART\#2

RIT ALPHANUMERIC RESOLUTION TEST OBJECT, RT-1-71

