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AESTEACT

It 15 now wall known that for tnildings wita ecceatric
centeis OL auss and stiffress, there 1s a dycamic
daaglificacicn of torque and a dynamic reduction in building
shear. The main éoncefn with Etuilding tprsion is that the
eccentricity induces a rotaticnal motion whose contribution
to tne displacezent at +the rperiphery causes an increased
alsylaceaent compared to  the dispolacement corresponding to
ZeL o eccentricity. Other —resecarchers have —cteported for a
Singyxe acceleroyram as m@mucn as a 40-100% increase in the
fecilpheral resgponse.

Ii tais aissertation, tke prctabilistic approach is
selected for thLe analysis ct linear response. The
earthyuase ground excitaticn 1is discussed and a sisple
expression relating torsional earthquake power spectra to
translational earthyuake ECceer spectra is developed.
Interaction crelatious are derived for systems with
siaultaneous &, @, 4and ¥ Jgrcund excitations.

The gerigheral resgcnse is studied using tae
provabilistic apiroach. It 1s shown that a special case
arises where tone peripheral resgonse 1s independent of the
eccentcicit; ratio and f£requency ratiao.

The state oL the art of artificial accelerogran
generation 1s discussed. Yarious paranmeters affecting
ground rotational aotion are discussed.

Noalinear response characteristics £for a four extefior

wall model are anaiyzed and it is ccncluded that parametric



resonazce 1s not a preplea for this mcdel.

dajor conciusions from the results of this dissertation
1nciude the Lollowing: a) the raximum expected increase in
periphsral rcesponse 1s on the crder of 50%, b) the single
most important parameter in building totsion is the torsion-
translation frequency ratiag, and c) torsional ground

excltation w@ust be guite large ©Gcefore it significantly
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CHAPTZF I
INTRODOCTION

According to Herodo*us, when Xerxes was planning the
second Persian expedition against the Greeks in 480 B.C., 2
bridge buil%t for +the crossing a* Fellesoont by his
Phoenician and Egyptian engineers was destroyed by a storn.
The engineers were ©beheaded and the waters of Hellespont
received three hundred lashes(1),

In ancient ¥esopotamia, *he Code of Hammurabl contained
the first building <code. TIts design ©philosophy was to
prescribe the punishment for a failed building, one of which
was the death of the builder¢2).

As time passed, society rtecame less barbaric and byilding
became more scientific.

#hile there 1is 1o written historical -evidence the
Egyotians had knowledge of a theory of structural behavior,
their immense and precise civil engineering works suggest
they devised empirical rules 1in their building. The Greeks
contribution to structural theory was by Aristotle (388-322
BoC.) and by Archimedes (287-212 B.C.) vwho formulated the
equilibrium principle of statics. The Romans, while profuse
builders, designed their structures empirically. The #middle
dges, as is typical of the ©period, seeas devoid of much

civil engineering progress. Although a few of the



Renaissance's versatile scientists, Da Vinci and Galileo,
discussed structural behavior in their publications, it was
not until the 18th century, the Age of Peason, that the
basis for the @modern theory of mechanics of solids wvas
established by Hooke, the Bernoulli's, . PFuler, LaGrange,
Couloumb, and Navier. The establishment of the theory
changed tne emphasis of design from empirical observations
on strength to a scientific elastic analysis of stresses and
strains(3),

Dedicating a bridge, PFranklin Delano Roosevelt oance
remarked that bridge building 1is the story of civilization.
It surely 1is the story of <c¢ivil engineering. ¥ineteenth
century bridqge failures had a profound effect on the course
of the civil engineering profession. 1In 1876, a Howe truss
bridge at Ashtabula, Ohio, collapsed, killing nirety
persons. It had been erected by a non-engineer, who also
had modified its design. legislation following the
catastrophe required that +the design and construction of
bridges be directed by professional engineers(*),

7hile infamous bridge failures in wind in the 1800's
brought about studies and design rules for wind bracing, it
took the great San Francisco Earthquake of 1906 to spur the
profession to studies of earthquake resistant Jesign,
resulting in the first American building code for earthguake
design rules, namely the Santa Barbara code of 1925<¢(S)J.

¥any studies of earthquake resistant design center on

inelastic response. The present design philosophy <that



structures be able to withstand a large earthquake while
allowing structural damage is based in part on econoaics and
the conceot of limit design, introduced by Bouéner<5). The
principle of limit design 1is to allow the struc*ture to
dissipate energy hysteretically, which results in a
ductility demand design requirenment.

Ductile moment frame buildiﬁqs are typically sys*tems of
orthogonal plane frames coupled through floor
diaphragms. For two-dimensional analysis, the plane frames
can be analyzed separately. The hysteretic enerqgy:
dissipation for a moment frame %takes place through plastic
hinging of the nmembers when yield nmomen*t capacity 1is
exceeded. The siaplest model for such plastic hinging is
the elasto-plastic model. The elasto-plastic model was used
by Berg ¢?) in the 1inelastic analyses of plane frames angd
also bty Newmark (87>, The next refinement in the analysis
was +he use of the bilinear model. This model was employed
by Clough ¢(9), Iwan (€190), and Giberson (11) to mention a
few. Since the moment curvature relation for typical meambers
¥vas not multilinear bat curvilinear, the next refinement
included the Eamberg-0Osgood model (¢12) ytilized by Jennings
(13), Goel (14>, and Kaldijian €153,

Suggested analytical models for the hysteretic behaviour
of shear walls have been used with some success (16 17),
Extensive experimental data also exists on the hysteresis
behaviour of reinforced concrete flexural members and the

parameters affecting 1t; however, mno generally accepted



modeling technique exists.

d1any special purpose computer programs exist  for
inelastic dynamic plane frame analysis; one widely used
general purpose computer program for this purpose is DRAIN2D
by Ranaan and Powell (18D,

The development of the computer and the increased size of
computer core space spurred the development and use of space
frame elastic orograms. A spvace frame elastic dynaric
analysis progranm, TaABS, developed by Wilson (13)
economically utilizes the planar structure of space frames;
however, it «computes column axial strcains that are not
compatible in columns common *o orthogonal plane frames. In
the course of the space program, the Yational Aeronautics
and Space Administration developed a three-dimensional
elastic dynamic _analysis computer program, MNASTRAN(20),
Other pablic general purpose space frame programs dsveloped
are SAP-IV(21) and STRUDL (22),

Three dimensional elastic dynamic computer programs are
expensive %to use since each Jjoint has six degrees of
freedom, requiring a large amount of computer time in matrix
manipualation. Simplifying techniques have been employed
with some success to show the gross structural resv»onse.

Farly studies (23> of building torsion have shown that
the lateral and +torsional motions of the structure are
coupled if there exists an eccentricity betveen the centers
of mass and stiffness ‘of the structure. Por small

eccentricities the usual method of analysis consisted of



computing the static torgque, *he product of the building
shear and the eccentricity. Many studies (2% 2S5) have shown
that the dynamic torgque may considerably exceed this
product. Most of these studies have shown that a reduc*ion
in the horizontal building shear usually occurs along with
this dyramic amplification of torgue.

Hoerner (26) 4id a study of modal coupling, meaning a
coupling between the two translational and one rotational
degrees of freedom such that each @eode may con*tain a
component of all three degrees of freedom. Hoerner's study
showed that +*he amount of modal couplinq'is related to the
eccentricity between the center of mass and the center of
stiffness divided by the translational-torsional freguency
difference. This is <confirmed by forced vibration tests
27y,

Heidebrecht (28) ysed modal analysis with the frames and
shear walls modeled as 'prismatic shear and bending beams
respectively. With a simplification of the three coupled
differential equations of mo*ion, he developed nomographs *o
determine the higher coupled frequencies.

Berg (29) also used modal analysis in a study of a

cantilever shear Dbeanm model to show the effect of
unsymmetric setbacks. His study showed that torsional
oscillations occur and node shapes are coupled for

unsymmetric setbacks.
Tso (30) showed that when a symmetric building with no

eccentricity, i.e. uncoupled, is excited in omnly one



direction, torsional resvonse can arise from the nonlinear
couapling between translational and torsional motions, known
as parametric resonance.

The final refinement 3in analysis techniques 1is the
modeling of buildings as inelastic space frames. 0Okada (31)
modeled a one story building as a space frame to show the
increased corner damage due to high eccentricity. Padilla-
Mora (32) uysed a Ffour frame <shear building as a mnodel to
show the effect common colunmn orthogonal strength
interaction has on hysteretic dissipated energy.

Shiga (33> developed a special purpose three-dimensional
inelastic dynamic response coaputer progranm for the analysis
of a building damaged by the 1568 Tokachi=Cki
earthquake. The results correlated with the damage.

Mondkar et al (34> have developed a general purpose
inelastic three-dimensional dynamic finite eleaent computer
program, ANSR, which is an extension of DRAIN2D (18>, Tt is
very expensive to utilize.

There have been many attempts to model a building as a
beam (335), For some purposes this *technique gives the
desired result. For elastic analyses it is difficult, if not
impossible, *o match both the higher frequencies and mode
shapes. Por a typical ¥-story building the beam model's
parameters can be adjusted such that the ¥ frequencies will
match the actual bunilding's fregquencies, but then the mode
shapes may not match (and vice versa). Por inelastic

analyses where higher modes may not be as important, a bean



model cannot simulate the strength interaction of colunns
common to orthogomnal frames. Also, 1t <cannot model the
effects of unsymmetrical strength (as opposed to stiffness)
in parallel frames. These problems can be avoided by
nodeling the individual frames as beams, but this creates
new problems. For the shear beam model, a change 1in
stiffness at the Ith 1level changes the stiffness matrix
coefficients at +he (-1, (1) and (T+1) Cows and
colunns. Por a wmoment <frame, a change in stiffness in a
member at the Ith level <changes all the coefficients in the
lateral stiffness wmatrix. This problean can also be
circumvented by modeling the frame as a bending beam instead
of a shear beams however, the frame's dynamic
characteristics are more like a shear beam than a bending
beam. Some attempted remedies <consist of using Timoshenko
beams and series or parallel ‘beams; yet, the modeling of a
building as a beam raises nore objections than the benefits
of economics of the model can justify.

Another modeling technique can be wused for 1-story
buildings and buildings being analyzed in their fundamental
mode only. ®an and Chopra (38> did an exhaustive study of
the parameters affecting the torsional response of linear
one story buildings. PFor 1inelastic behaviour, the single
resisting element or generalized coordiinate stiffness for
multidegr=e of <freedonr systens analyzed only 1in the
fundamenfal mode, can be assigned a hysteresis loop based on

theoretical or experimental information depending on the



type of building. TFor example, 1in a steel aoment franme
building a bilinear or Ramberg~Osgood type hysteresis would
be appropriate (Fig. 1-1). A symmetrically braced frame
type hysteresis, illustrated in Fig. 1-2, exhibits the slip
type shape characteristic of Dbolted €frames. A shear wall
resisting element differs Ffrom moment frame hysteresis in
that it is usually of the degrading type. The shear wall
tyoe hysteresis is illus*trated in ®?ig. 1-2 and 1is
characterized by the pinched shape near the origin.

A more rigorous nethod for a@odeling inelastic building
motion is by the member by membher approach. Here the matrix
structural analysis technigque 1is ©used with the global
stiffness waoatrix being altered in time as each member
changes stiffness 1in tiﬁe. There are different ftypes of
hysteresis behavior for different resisting element members
as described above.

A bifurcation of analysis methods arises in the choice of
time domain versus frequency domain analysis. The choice
partially rests on the philosophy of the analyst. Tinme
series analysis is generally more expensive and
statistically more variant than frequency domain analysis
which gives the expected nmaximum (37) as opposed to a
maximam of a member of an ensemble of ergodic processes.
Por inelastic response, frequency domain analysis cannot be
applied without using some approximate technique since the
complex frequency response function is time dependent.

At the present time there is no generally accepted method
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for determining by spectral analysis the statistical
parameters of response for a stochastically excited
nonlinear hysteretic system. The Fokker-Planck equation
approach for nonlinear systems, which involves the solution
of a partial differential equation 1involving the Jjoint
probability of displacement, velocity, and time, is not
apolicable for either nonwhite excitation (38> or hysteretic
systemns. Eguivalent 1lirearization technicues (39), where
ainimization of the mean squared error is used in finding a
statistically equivalent linear stif fness and damping
coefficient, 1s liaited %o either bilinear svstems with
nearly equal slopoes or systems with small nonlinearities or
small ductilities (407,

Probably the wmost reliable method of studying the
response of inelastic hysteretic three-dimensional-
structures is by Monte-Carlo methods. Statistical
parameters can be determined bty analyzing an ensemble of
time series analyses of structural response to ergodic

excitations. The Monte=Carlo methods will be used in this

*hesis. Chapter II —recounts the state of +the art in
artificial accelerogran generation, its anderlying
processes, and the parameters affecting it. Ground

rotational motion is also described and discussed. Chapter
IIT describes the elastic torsional responrnse of buildings
using as the foundation the excitations described in Chapter
IX. The torsional response 1is analyzed in the frequency

domain. Chapter IV describes the model wused in the



"

inelastic study and the solution technigue used to analyze
the response. Chapter V lists the results for the inelastic
studies and discusses the nonlinear respouse

characteristics.



CHAPTER IX
DESCRIPTION OF ZARTHQUAKE
EXCITATION

Observations of geologists and current thinking on the
origin of the earth make 1t evident that earthquakes have
been occurring for at least hundreds of millions of vyears.

Barly historical and biblical references to earthguakes
occur as far back as 1600 38.C. <43)._ Historical speculation
as to the <causes of earthguakes has bases in legend,
mytholoay, science, astrology and religion.

Aristotle believed that earthquakes were caused by
subterranean winds produced by an evaporation of moisture
imprisoned 1in the earth's crust. Pliny, a Roman
philosopher, later expanded on Aristotle's belief, writing
that earthguakes vere earth's way of punishing the
wickedness of men who mine ores of gold, silver and iron, a
theme repeated in variation in different cultures around th=
world.

Zoomorphic qualities are assigned to earthgquakes in the
legends of many cultures and countries. In Japan, it vas
thought there was a giant subterranean spider who caused the
earth to shake when he moved. In India the mythical moaster
was a mole; in Mongolia, a hog; and 1in North America a
tortoise (44> A BSSA account of the 1811 Newv Madrid,

¥issouri earthquake(*S) tells of a legend <claiming that

12
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earthquake to bhe caused by a horned comet collidinag with the
earth.

Scandinavian wmythology <regarding earthquakes concerned
the pegcadillos of deities. Indian lore contains seven myths
concerning earthquake sources. Fascinating accounts of
causes of earthquakes abound 1in the mythologies of various
cultures.

Gods of earthguakes are referred to in various
nythologies. A common theme in the beliefs of diffarent
cultures regards the earthquake as divine punishment visited
upon a wicked ©veople. With *ime npatural explana-ions of
earthquakes vwere expounded and received to wvarying
degrees. In an arcticle in “he esteemed Philosophic
Transactions of the EKoyal Society of ©London in 1750, a
writer in his foreword apologized to '"those who are apt to
be offended at any attempts *+o give a natural account of
earthquakes." As late as 1930, according to nes¥spaper
reports (London Times, July 28, 1930), the Archbishop of
Naples referred to the T*alian earthguake of July 23, 1930
as God's vengeance visited upon an immoral people.

Aistorical legends and @ayths are fascinating to read.
The evolution of scientific thouaght is another iqterestinq
and related aspect of earthguakes important to _the
understanding of two geoohysical topics, =namely, the
mechanism and underlying causes of earthquakes. The
currently accepted predominant earthquake mechanism, the

Elastic Rebound +*heory, was proposed in 1908 by Harry
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Fielding Reid and Andrew Lawson. They were faced with
charges of "mysticism™ since they presented the mechanism
but not the underlving causes of the earthguakes. The
Elastic Rebound Theory postulates a slow accumulation of
strain along the fault until rupture occurs. The fault then
rebounds to a new egnilibrium position radiating shock waves
outward.

wuch speculation concerns the underlving cause of the
slow accuaulation of sﬁrains necessary to thé Zlastic
Rebound wmechanism. A prevalent theorvy of the 1Sth century
was tha*t earthnquakes were caused by contraction of *he earth

by cooling. Most theories on the origin of the earth assume

(D

it has cooled from a molten mass. The cooling of the earth
through geologic time has solidified the earth down to the
molten core, whose existence 1is theorized by its inability
to transmit seismic shear waves. Ye*t, the surficial layer of
the earth is not <changing in temperature and therefore is
not changing in volume. The <crust thus becomes too large to
fit the shrinking layers Dbeneath 1it, resulting in the
folding and faulting of crustal diastrophism. The madjor
criticism of the comntraction theory is that the folding of
the crust and 1its associated mountain building process
shounld be more widely distributed over the earth's surface.
The isostatic principle has been called 1into play by
other theories. Experimen*s have shown that a plumb bob does
not deflect towards a mountain as it would if the aountain

were merely an added  mass on the surface. The theory of
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isos*asy s*tates *tha*t at+ some depth beneath the surface, all
columns of the earth's crust are made up of lighter rocks
floating omn a lavyer of heavier rocks requiring that
mountains have deep roots consisting of these lighter rocks.
Accompanying the process. of mouantain érosion is the reverse
plastic flow of rocks beneath it.

Another popular theory regarding the underlying cause is
the convection theory. The convection +theory poresunes, by
various causes, tanmnperature differences in the mantle. As a
result, convection currents develop siamilar to those in the
atmosphere. The horizontal current near the surface would
drag the «crust with it. At points of rising convection
currents; crustal stretching occurs, resulting in grabeans
and normal (tension) fault planes. At points of descending
convection currents crustal compression results in mountain
building and thrust (compression) fault planes. The general
criticism of +this theory is that it requires cyclical
changes in temperature of the earth, wheresas large systeas
such as the earth tend to thermal equilibrium.

Brizf mention should also be made of +*he magmatic
theory. This theory reguires thermal changes in the earth's
crust, bringing about ﬁaqmatic differentiation and plastic
flow of rock.

The theory of continental drift currently enjoys the most
widespread support in the scientific community. The original
proponent of the theory vas Alfred Wegener (*%). As pany a

grade schooler has observed, the continents of South
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America and Africa fit together 1like 9pieces of a puzzle.
Currrent thinking on the continental drift theory views the
earth's surface as having once consisted of one large
supercontinent called +the Pangaea. Recent ressarchers in
paleomagnetism have reconstructed the Pangaea by analvzing
the change in orientation of 1land masses by studying the
direction of the magnetic field of nev rocks (lava) in time
(47), As stated, the continental drift theory is now viewed
as the most probable source for the slow accunmula*ion of
strain required by the Elastic Rebound Theory.

7hatever the nature of +the source of earthgquakes, the
earthquake succussatory ground aotion causes dis*tress in
civil engineering structures. To understand the effect on
Sstructures it is necessary to know the nature of the ground
motions. For elastic s*Tuctures the usual analysis method is
by response spectra. Techniques have besen developed to
obtain the expected response spectra by the statistics of
oscillator response (37)_, oOther methods have been used to
obtain plausible "design spectra" (48), These methods have
their roots in the statistics of stationary stochastic
processes, i.e. random vibration theory. Although
earthquakes are obviously nonstationary, studies have shown
that for linear systems, nonstationarity has little effect
on the expected resopounse. Hdvever, for inelastic systems,
the response is sometimes sensitive to the time variation of
the energy of the motion(+9), Thus for inelastic systenms,

Monte-Carlo methods of analysis are desirable. This in tarn
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requires families or ensembles of stochastically similar
ground motions.

Ensembles of "similar" strong motion accelerograms d5 not
exist. In fact, +the occurrence of large earthquakes is
modeled statistically as a Poisson porocess, a nodel for rare
events. Thus +the need for data <creates a need for
mathematical modeling of earthquake ground motion.

For 1low freguencies and epicentral distances large
relative to the source dimension, earthouake sources ﬁay be
approximated by point sources. The assumed force field must
be in equilibrium both before and after the earthquake. One
such point source meeting the criteria is the double coaple.
It consists of two couples of opposite sign 90° out of
phase. For a pure shear rebound phenomenon in the low
frequency limit, the equiﬁalent point source 1is a double
couple (S0)_, The scale parameter of the double couple is
the seismic moment necessary for the assumed source to be in
equilibrium. It can be related to the fault dimension and
average fault slip.

The enerqgy released in amn earthquake for an elastic
reboand phenomenon comes from stored elastic energy. The
enerqy is released in the form of frictional heat from the
fault slip and as seismic waves. Various mathematical
models exist relating the released energy *o the faul* area,
average displacement, and average stress drop over the
fault. The stress drop in turn <can be relaied to the fault

displacement and geometry. Estimates of @maximur ground
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iccaleration Can ba made 1sing the aforenentioned
parimetars. Some disagreement centers on the maziaum near
source acceleration. For freguencies less than 10 EHz,

3rune{59) calculazes the nmaximum accelera*ion as being in

the neighborthood of 2g. The maximum ground acceleration
recorded to date is 1.253q for the 1971 Pacoiwra Danm
accelerogram of ~he San Fernando 2arthquake (51),

2ealistically spoeaking thouah, 1n speciliving a zaxiounz

»Y)

jround acceleration, the probability of 1ts occurrence aust

3

be =a¥en inio accouniz, 1.e. siamilar =-o wmany design code
nhilosophi=2s, the maxinum acceleration should be related to

aean rCeacur-ence intervals (zr2turn pec-iods). Curran=

orovosed cod=s contain a design maximua ground acceleration

Another gnanti=y necessary for the stochastic Ae

n

cription
of ground motion is the predominant frequency, the freguency
at -he neak of “he power spect-um. The predozinant freguency
near <he fault 1is +the subdject of current research by
seismologists and 1is not well understood. Among the
paramezers related o the ©oredominant frequency Aare the
crack oropagation velocity, fault geometry, faulc size, rock
strenqgth, topography, and fault ° breakout. The site
predominant £requency is altered by the local geology. The
effect of local geologic structure is similar to passing the
mo=-ion =throngh a £filter with appropriate £frequency and
damping characteris*ics., Yonhomogeneity of the transmission

medinm, multiple reflection and refraction, and sometimes



focusing, cause a widening of +he band wid=th in =<he near

fiell £or earthquake ground motion. Because of this and the

hape oI power soectra of ac=-ual recorded ground motions,

n

Stochastic modelling of ground notion has become pnonular.

Different types of artificial earthguake ground motion

can b2 generated accozding to observed dseculiar
characteristics. Jennings =&t al. (52) genszrated artificial
acczlerogTans <o I=oresent four differant  zypes 2 ground

mozion on £i-z soil. Yewmark and Rosenhbluezh (*1) classify
earthquakes 1into £four broader groups: 1) opractically a
single shock near -he epicenter of a shallow eaczhauake, 2)
long, wid= pand stroaqg ground xmo=ion on firm 301l siamila- =o
the 1849 35S Z1 Centro record, 3) 1loag, narrow ftard amotion on
soft soil, and ) lazge scale permanent deformations with
possible landslides or soil liquefaction.

The first type can bhe analvzad deterainistically, using

1ia

.—41

N

laz recorded ground mo=ion.

The third kind of ground wmotion can be obtained by
filsering the second tyve.

The fourth tyove will not Cte dealt with here.

The second type 1is the w@ajor <concern oL this thesis.
Actnal rTecords of *his *#*#ype are more prevalent *han other
types. Since it is a wide band process, white noise has been
1sed to reopresent i*. Pue *o 1its random Aappearance,
communicazions <theory offers many Tools to standy 1its
oprobabilistic nature.

Housner ¢(53), B8ycrof:z (54), and Rosenblueth ¢5S5), anmong
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others, modeled ground motion of +this type as stationary
white noise of limited duration by superposition of randomly‘
arriving short daration pulses with random frequency and
amplitude.

The average . of Fourier Aamplitude spectra of existing
strong ground motion accelerograms shows that the spectra
are not white noise but rather are like a broad band process
that damps out wi*h thigher freguencies. This suggests
filtering vhite noise with appropriate filter
characteristics to match the ©power spectra. Kanai (56) and
Tajimi ¢(57) suggested that the transfer function for +*otal
response acceleration be selected «with filter properties
which match the broad band nature of actual accelerogran
spectra. The total acceleration transfer function filter
¥ill amplify those frequencies near the filter natural
frequency and attenuate the higher
frequencies. Sinqularities occur at zero frequency for
velocity and displacement., Jennings, Housner, and Tsai (52}
used a high pass filter for response displacement to
attepnuate these very low frequencies. This elimina*es the
problem since it causes the pover at zero freqguency to be
zero. The average of many accelerogram power spectra fits
closely this filtered white noise spectra.

The nex*t refinement was +*o simulate the nonstationarity
of actual accelerograms. The usual procedure is to use an
envelope function to vary the intensity of the process. The

nonstationary process uses +the product of the stationary
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stochastic nrorcess and =<he de=erministic envelooe func*ion.
Several types oOf envelope functions have been used.
Jenaings et al.¢(52) separated it into an initial parabolic

has

'o
D

, 2 conszan- strong zo-lon piaase, and a decaying tail.
The parameters for this intensity function arce chosen to
aatch the 1ntensity or variance 9of actual accelerograms.

530%2 and Toxi (58) ysed a *ransceniental intensity function

nf thoe tyne

T(z) = as(z/5") sexof (='1-%) /u Jed (%) 2.1

where a, t', ani H(+*) are, respectively, a cons-anz, the

time of peak I(t), and the Heaviside unit sten function.
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scenden*al 1ln-ernsi=y funczion

T(%) = ae[exp (-0st) -exp (- Be=) ] ' 2.2

where a, a, and B are constants.

Another step in the refinement of artificial
accelerngraas is zhes use of Berg and dousper's (%0) baseline
correctiona This ©procedure minimizes the 13=2an square
velocity 1im order to remove excessively large gqround
displacements.

The necessity for including the nonstationazity in the
artificial accelernqgrams is determined by its effect on the
cespons2. Amin, Tsao, and Ang¢%*9), Zoopmans et al.(59) and
Shinozuka and Sato(s1), among others have studied this

effect. The +heoretical information contained in extreme
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value theory 1is veryvy helpful in separatinag the effects of
variogs paraaeters of the expected crcespouse. Also the
celatzion of <the variance with <time £or nonstationary

initial conditions is

=]
~N
D
lp]
O

orocesses resulting fro
nec2ssarcy %o understanding these effects.

The study of Awmin et al.(%9) reported the deformation
spec=ra of elastoplastic systeas (2% damping) 'using a
s*azionarcy 2zci~2i<ion and 2 nons:dtiona:y 2xXci=ationr of the
Jennings et al. (52) typve, both with a total duration of 25
sec. The specztza, reproduced in Figure 2-1, show a decrease
in ressponse with increasing ductilitv. The spectra, reported

for initial fregquency, also show the response for the

¢}

“a=ionarcy 2nd npon3*tatiorary excitazior %o be aporoxima-tely

2qual for linear structures. The extreze of a stationary

Ji

Saussian process 1s related to the duration by

L

(\S]
.
w

2{(maxiy{t) 1) aéq/ln(?'s-Fe)

where 2 ( ) denozes expectation, s is th=z duration and F is
e
c

h

~he averaqge numb=ar 9 zeTn crossings/<ec. 2f *he nTo

as <
g il

[NV

7for 3 = 25 sec. and F_ = 5 Hz, halving the duration orly

e

changes *he

D

Xpected response Dby approximately 6%. The
higher ductilities show a decrease in resoonse larger +han
7%, as seen in Figure 2-1., The —report concludes that the
nonstationari-y causes a difference 1in <zesponse for high
nonlinearity.

It is possible that the difference lies in the effective

dnra*ions for the stationary and nons*tatiosonary excita*ions
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used. The probability of +he latter nvportion of the
nonstationary decaying tail containing the extreme 1is surely
remote, i.e. the effect of the type of nonstationarity can

be viewed as resulting in a shorter effective daration.
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7ith increasing ductilities the effective statistical or
as sometimes called equivalent lipear stiffness
decreases. By viewing the elastoplastic response as an
equivalent linear system the response nonlinearities teund to
reduce the effective natural frequency and 1increase the
effective damping. The possible reduction 1in natural
frequency is presumed the same for the stationary and

nonstationary excitation.
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The deformation scectrum 1in Fi

£

ure 2-1 1s <shown for
ductilities, i.e. waximum displaccaent nondimensionalized by
yield displacement. Penzien and L1iu¢é2), who studied the

efifect nof duration on response, fdepicted the response of the

[m 1]

experimental distribution irp the rforta of Gumbel (63) extrene
valiae Type I charwms reproduced in Figure 2-2.
Gumbel Type I extreme value propability distributions

VaTy a3

2 {O<X exp( ~exp (-Y) ]

max}

s

wnere 7 i3 defined as

O=max|x{<) |

-
J is *he node of Q ard the reducad variate ¥ is defired as
O. N
Y=__v*[0-0Q]
los
el
and Oy depends on the number of observed ex*rene

values(®4), Guabel extreme value charts plot as a straigh+
line witk the most probhable value at the reduced variate
origin. Its slope is proportional to mhe s+=andard deviation
of the extreme values, The slopes in FPigures 2 2 increase
with increzasing nonlinearity 1implying an incr=zase in the

standard deviation of the extreme response, 1.e. 3 larger

]

pread of the values. With an average of a larger nuabker of

\

accelerograms the response sSpectra apnomalies said %o be

caused by nonstationarity may not b2 so large since the
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_Spread of the values increases with increasing
nonlinearity. The amin et al. Zepo-=(49) apparen:tly uased an
average of eiéht accelerograms, a rather small statistical
sample f£rom which %o draw conclusions.

To give an example of the effect of nonstationarity,
consider the extreme response from the 1level crossing
aporoach. C-andall(éS) presents an excellent s*a*e of the
art review. As shown shown in Tigure 2- 3 the extreme valunes
have a specific probability distribution. The usual method

in first passaqe problems is to deteraine the mean, mode, or

3

nedian of +he extreme values 1in terms of its standard

&
fe

deviation, e2.g. “he most probable extreme is the product of
the standard deviation of the response and a peak factor, R.
The asymntote of <the most ©»probable peak factor for white

nolse 1is

ay}
|

~/Z+~1n (2. G=N) ‘ 2.4

where N is =he number of <cycles the system has undergone,
i.e. *he na*u-al freguency timés the duration. Por nonwhize
2xcitation the peak factor is a <function of the average
number of zero crossings (usually near the natural
frequency), the damping, the probability of exceedance, the
dura=ion, and 2a parameter similar to +*he coefficient of
variation of the maxima. An approximate expression for the

neak factor E, 1s(68)
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R=<‘/2.]_n{2.No[‘]~ exp ("5 .j/T'lD(z'N)) ]} 2.5

where e, a measure of the spread of the power spectrum is
e =[ 1= 2/(n ou,) ]06 2.6

and " . the ith moment of the power spectra about the origin
is

~oi
M.=fw oG 2 (w) edw 2.7

1

-

The equivalent parameter values derived from the Amin report
could decrease the peak factor, R, as much as 13% by halving
the duration. Although the different duration would also
affect the standard deviation, the difference is negligible
for the damping used. The decrease in response thus appears
to be caused more by the effective duration than the effect
of nonstationarity.

This says nothing, of course, for the effect of
nonstationarity of the +transcendental type, e.g. Equation
2.1 or Equation 2.2. Here the time rate of change of the
intensity and the duration both combine to affect the
expected response. An exact solution for the stationary
first passage problem does not exist. However, for a
sufficient number of cycles the asymptote gives a very good
approximation.

Approximate technigques for nonstationary —response arce

just starting to receive attention. For nonstationarity due
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=0 =mransienz tre

(7]

cons2 of s*a*innarcy excitation, nue method

i= %o use an equivalen= duration. For nonstationary linear

3]
D

sponse Jue to nonstationary eXcitation with 2
<ranscenden=zal in=ensity function, the mnst logical aporoach
is to consider the extreme a function of the total =nergy,
i.e. proportional to the integral of the intensity function.
This follows from statlonary response extremes beaing the

orolact oI the

ot

andarcd deviation or cower aand the peak

0

fac=o7T which 13 pzIovortional =0 the duration. . One approach
would b= to obtain the marginal probability densi:ty fanction

of the maxima Ly 1integratina out rtime dependence of the

t

variance 1n =he Davenport(s87) dJerivation. The stazisztics of

nonstationary peik response ar=2 beyond the scope of this
ceoorta

Kubo and Penzien¢(é8) studied the accelerogzams of the
1971 35an Fernando earthquake. Their —resulting intensity
func+=ions resemble +he +tr-anscendental intensity fanction
more closely <han they resemble <the Jennings et al.(52)
intensity function. Kubo and Penzien also showed distinct
jumos irn the ©phase of =the «cross correlation between the
norizontal ground accelerograa, possibly 1linked to the
arrival of different waves.

Saragoni and Hart(é9%) presented a aethod for generating
artificial accelerograms incorporating nonstationary ovower
spectra. They used ~hree discrete power spectra for
different phases of the duration 1ia order to simulate the

decrease in the predominant frequency with time. They used
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1 =zranscendern=al intersity func+ion of th=2 fora

I(t) = a=tleexp(-cot) 2.8

where a,Y, and € are coans=an*=s dexermined by a best it
analysis of existing accelerograms. This concept of
evolutionary power spectra 1s not new. Nevertheless, it
immensely complicates +the sta*tistics of ex rene respons2
@ma<ing 1% nearly iln-=-actable.

The Saragoni aad Jart reports show the intensity function
to vacy for diffecent «earthgnaxes. 3lso cthe phases of the

1iscr=te power svectra would change w#with fault orientation

ind esvicentral distances. A @method to> simulate thils was
nTesented by Rascon and Cornell{70J, who produced artificial
acceleroqrams from a physically based wmodel. Their

simula“ion involved a suverposiziion of <rarndomly 2arriving
dilata*ional and distor=ional sizgle pulses with a Polisson
arrival distribution from a numbher Of slementary £oci. The
2lemenzarzy £oci generaze tﬁe single pulses along fthe fauls
olane, aoving according to the crack oronagation
velocicy. Attenruation was based on spherical spreading and
multiple reflection and refraction. The duration and the
parameters were based on statis*ical studies relating these
parameters to magnitude, epicenzrtal dis*tances, etc. The
resulting simulations closely resemble actual
accelerograms.

The preceding descriptions of the various methods to

generate arzificial accelerograms indicate the increasing



comolexity that Aaccompanies w@nre faithful simula<ion of
ground =motions. F>r a particular site of given local
Jeoloagy, wmany factors are heing 1introduced that influence
the accelerograas, sucnh as fault size, orientation, seisnic
sorantial, distance from the fault, etc. This emphasizes
t~he nonuniversality nf accelerograms and the care wizh which
they should be selected €for particular sites. F7or these
Ceasons, the acc=lacograns used hefe will be a=2necated by
the computa2z pIZoazZaa 2SEQGTMC71) Tnls program Jespnerates

ansenbles of filtered white noise %ith an intensity function

of %fhe Jernnings 2% al.(S55) <cvne TD represant s-Tong g-ound
aotion on fira soil. The use 0of these arzificial
aAccelcrograns shoull prasent o drawback through its

generali*y since zhiz dissertation 1s a <study of general
building response and not a particular site.

The proqraa PSEQGEN can Jenerarte ensembles nE
stochastically similar artificial acceleroqrams. Individual
members of the ensemble can be used +o represent the two
or=hogonal horizontal ground mo<lio0oDSe They w#ill, however,
be uncorrelated. Penzien and ¥atapel(72) have shown that the
correlatioa between the two orthogonal horizontal ground
motions will be a minimum in *he near field when one is
pointed in the direction of +the epicenter. They concluded
zhaz ground motions generated ar=ificially can be
uncorrelated provided +the componen=s are directed along
principal axes which are pervpendicular and parallel to the

faul=t., The fact +*hat the «correlation is @inimum and



negliginle when parallel and pecstendiculas 4o *he fault is
N0t surprising wa2n you consider <he na-ure of shear and
compression waves. Also, Fascon(73) Lhas shown that single
leg-ee of freedom Z2sSponse is maxliaum when the s4“ructure is

oriented along one of these same orincipal axas. Por these

o)

te2asons and +%h2 arcgument expounded 1in Appendix 3, this
dissertation uses uncorrela*ted horizontal ground motions.

1 connleta 7escriotion of the ground notion involves six
zoaoan2at3: thr2e Translational and thTtee rotational. The
two rotational components of rocking whose axXxes ar= in the
horizonztal olane Are not 1included ia this analvsis. In
addition, <the vertical =ransla*ion ~omponent will no* be
included. This le2avas the two horizontal translations and
the rota%ion whose axis is verctical. As previously
1entioned the horizontal motions will be artificially
gqenezaz=2d to reseable actual accelerograms and 9ill be
sta*is=<ically unco--elated. The origin of torsional gromund
motion is generally thoucht *o be Love waves waich are
horizon=ally polarized shear waves near the surface(see

7igure 2 4). The torsional motion arises from the quantity

AV

3X. Th2 motion V(x) is related %o *the freguency F, wave

speed Cgq, and wave length A,whers

Cg=F A 2.9

o

Jhile the wave speed can be determined, -he random na*ure of

the motion is such that there will be a random mixture of

mn

frequencies determined by <the power pectra. irtificial
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~ransla=ion accelerograms are bhased on +th2 average DOWEr
spec=ra 9L many actual ear=thquake accelefoqrams. There are
7et no recorted torsion accelerograms; thus, one cannot
le=ermine -ha correlartion between =zorsion and translation.
Jeizher can =he poweT specra be determined.

5ome means of generating earthquake ground rotation is

[oN

es

‘-4
t
®

d., 3zarcting fron the assumprtion <*ha: horizontal

i

=
w1

rm

urfaca2 aqotion 1is deriv ron +the n=23rlvy v=2rtical

(¥

1

cefrac-ion of shear waves at +he base rock soil inzerface,
Jewnark(2sS) proposed a wmethod to determine the rotation
sased on the theory o0f elas*ticity. That the refractisn is
neaclvy ver=ical arcises from a consideration of <%he

cespective wave velocities and Sn=2ll's Law (Pigur=s 2.5).

rhy

ace the refracted waves will travel at

1

Thus a= the free

UrT

!

the wave velocity of the rock no:t *he soil. YNewmark

calculates the ground rotation 4, as

1 v 30 2.10
g= - - -
2 dx dv
3ith the ground motions u and V uncorrelated and

stochastically similar, the qground motion siaplifies to

Z=3Y 2.11

7ith the further assumption that

V=V(t’X/CS)
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Rosz2ablu=2th(?74) proposed a modification of this +to
account for th2 building size. Since Equation 2.12 is valid
for a point, the effective or average displacement

determined by assuming a rigid building and neglecting back-

scattering is



s dayming 2 EETET
jetermined hy assumindg -

and neglecting packscatterind is
3/2

V(t-x/Cs)0dx 2.13

w -

-B/2
where 3 1is tae puilding width transverse to the motion V.

Tor & sinusoidal t:aaslation,‘?quation 2.13 reduces £0

Fozin(meeN esin(wrz) -

Z=x
e

whece A is The waveleagth. rigure 2 & dapicts the effect of
=he puilding 1epg=h =9 wavelenath -a-io has 1in jscreasing
the effective translation according to Rosenblueth's
assumpzione. observations nE ear+hquake damade reinforce
-his no=ion -hat civil enqinee:inq sorks covering largert
qround area respond 4ith less intensity-

yathan and Mmac¥Xenzie ¢75) calculaced the - orsion response

spectrTa by uS€ of @gua-ion 2.12 in @ finize difference form

expressed in terfas of acceleration rather than displacement

g =(T (t+=7 (%) 1/(C *7 2.15
s

rinite Aif ference +achnigues ate basel on spall, finite

changes where the function is assumed ro vary smoothly

petween the points. mhe around acceleration is assumed

linear Dbetweel the digitized yalues since vyery high

frequencies are deened gnimportant in building rcespouse.
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. _Figure 2-56 5chematic of Effect of S3uilding
¥idth to ¥avelenath Ratio in Average Translation
Neglecting Rackscattering
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“ith typical valnes 2f the diqitizing interval o>

~he maxiamum valu= allowable for the transit tiaze would be of

9}

. the order of J.025 s=2c. For a wave speed of 300 m/sec and a

buildinag width transverse to +the aotion of 30m the transit
Time of a shear wave i3 0.1 sec, or 4 digitizing in%tervals.
Figure 2-7 1llustcates the deficiency of <he finite
iifference approach.

Cuczently, Y¥ewmackx ez al.(78) g3ars stiudying =he effec* of

(0]

(=Y
=

building size or tramnsit time Dy calculating the resvon

[}
e}
D)
Q
o+
[}
)
rh

Or *the input acceleratinn Aaveraged over the transit

t+T
Vo= 1 /v (t) edt=1[ V(t+7) T(t) ] 2.16a
T T
t
and
T =S el T (c+p) +T (=) 1 - 12e[ V(:i+7) =V (%) ] 2.16b
CS'T2 CSOT3

-a
where ¥ 13 oroportional to *he third derivative of v,

calculated as iﬁ/T, which in turn is determined by a least

squares fit of V over time t (Fiqure 2-7). Figure 2-8 shows

the effect of this averaging in reducing the extreme values.

The =excitation used for generating Figure 2-8 was an
enseable of ten stationary filtered white noise

accelerograns of 10 SeC. duration using the filter
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‘\V,//r <\\\~//f Rw\ least squares approximation

Pigure 2-7 Effect of Transit Time on Averaging
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characteristics of PSEQGEN (713,

Another method for apalyzing the effect this averaging
has on building T2soonse 1is fr-egquency domain analysis. The
averaged response 1s the result of convolving the excitation
with the averagingy filter. As shown 1in Apoendix A, the
resulting power spectrum is reduaced by *the factor
aultiplying sin(wt) in 2gquation 2.174. The resulting
caeduction nf the 9oower =pectria reluces tThe =2xcita*tion
variance, which in =-ucn reduces <the <2expected peak valne.
The respoonnse power Spectrum 1is the prodact of the inpat
vow=aT Ioscirua, averagircg filter, and the complax f£-aguency
Tt is readily anparent that the variance
and -~hus the peak response should decrease more for higher
frequencies. This expected *rend is verified in Figure 2-38.

The transit time reduction 1ipcreases with increasing
bagilding size. Also, L1t 1s dependent on the assuned wave
speed w#hich is dspendent on the assumed wave type. For small
buildings *his rednc=ion will be slight. Another source for
the reduction o0f 1idealized 1invut excita*ionm 15 the soil-
structure interaction. Lucn(77> found the effect of
embedmen<t of *he foundation *o be guite significanz. The
excitation used ian Luco's stndy was ohliquely incident SH
waves. The inpu+t twist for a hemispherical foundation was

de*arminad *o be half +ha*t of a circular disk foundation.

This reduction was attributed to the

D

ffect of scattering
and tha 1increased foundation stiffness. The rTesults are

presented in a nondimensionalized form via a £freguency ratio
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parane+<e> cozmornly uased in £oundatioa dvynaamics which'is
proportional to rthe foundation size to wavelength ra=io.

vet another reduction 1in +the expected 1aximum ground
zorsion is discussed by Newmark anpd Rosenblueth. Their
oroposed reduction 1is due to the statistical relation
between exwreme values in thke orthogopal directinn.

As eviden%, *he ¥ewmark approach to ground torsion can be

oY)

0]

viewed Aas an upoer limit. The vaiues Adetermined ar= reiuced

rructure

“
=

,._‘

hy building =0 Jyavelenqg=mi ratios, 501
inzeraction, sca=zering, e=c. Since <the Uniform 3uilding
Code does not iaclude grouni rotation, Newmark's values for

e=ernipe its

(W)

ground Toza=ilon will be used in =his <thesis to
effect.

The need for actual free-field Tozation and “ranslation
records 1s apparent. It is esvpecially necessary to
ietermine *he correlation between ground rotatiosn ani

-ransiation and its celazive effect.
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8uildings with coincident centers o2f mass and stiffness
are called uncouolsd systems ip =hiz ~hesis. For the
dynaaic analysis of uncoupled systeas, responses along the

orincipal directisns ars analyzed indzpendently. Fhen an

n
o
=)
fo)
n
ol
)

2ccentricity be=ween <The centers 92f 23as d stiffress
2xists, the responses along +the priacioval axes are couplad.

B

Aralvzing “he Tesponseas along ~hse pfincipal axes

2

independently @may give good Tesults if +these *hree
frequencies are well sepa:ateﬁ- and the eccentricities are
not %<oo larcge. Fnll scale *es=s(27) have confizamed the
strong conunling that ‘occu:s with close natural freguencies
even 1f zhe eccentrici-ies are swmall.

onlnt Ior an eccentric

The nsnal desiqn nrocedure to

Y]

C

Q

mass 1s to add a force Adue t

o}

the torgue, calculated as the
product of story shear and eccentricity. Many studies(2%
38) have shown that the dynamic story shear decreases when

there 1s an eccentTici*y and that =he dynamic ztorgue exceeds

the orolnct of shear and eccentricity. For %all buildings
consisting of mwoment resisting planar <frames, although

lateral-torsional coupling decreases +the total story shear,

the story torgue 1iacreases the shear in the peripheral

43
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lateral force resis*ting elanents.

3T0ry shear decreases, must not

tatenent that

be taken to imply that

la-eral--orsional coupling is beneficial.

1

The torsional large

such as bridges and

1s w¥2ll as the horizontal «ground o

dver *he lerng=<h 0€ <the sStructure.

is no* in this study

torsional motion: however,

=32a=ion a3 ~his chapzte

(24> treataent subiject,

D

)

jective of tzls chapter

elastic TesEonse

bnildinas by modal analysis Cbtased

similar to that d=aveloped by Sosen

three-1in hi

“0
primac-ily to show
correlation

absence of

1

a

n

~ranslaticans.

S

ct

T

[
ct

ctnral Systeas

-

¥Most tall buildings are either

frame tvype, or a coabination of

buildings are comaonly @multiply <

like that 3

w

qure

}.Jo

illustrated 1in

puilding, shear flow must be conside

puildinaga is illuszcated 1in ¥Figur

vil engineering works

.4.

C

esult of eccentricities

O

S

ul

T
otion not heing in

This oe of s=cucture

-

A

wnich

is %o formula=-e a ae+hod

i

2f torsionally coupled

ol

on Stazistical concepts

4o
w

hlueth(24), but extended

s method 111 be used

W

ground cota%tion and the

the horizontal ground

shear wall type, moment

the two. Shear wall

onnected vertical plates

~13) . Tor this type of

red. A momen: frame type

2 3-1b). Both will be
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assumed to have rigid floor diaphragms.

The origian of the ©principal axes of these structural
systems is the center of stiffness (sometimes called center
of rigidity,resistance,twist or torsion, or shear center).
The principal axes are orthogonal and are defined such that
a force in the direction of one of the principal axes causes
a displacement only in that direction.

The principal axes in a momea* frame system Consisting
of planar frames that are not orthogonal are determined by
statics(24),

Cnce the principal axes have been deterained the
lateral stiffness in the principal directions can be

determined as

Bx =28y
i

Ky = 2%y1
i

while the torsional stiffness, Adefined about the c=nter of
mass and neglecting individual element torsional

stiffnesses, is

Ky = ZKxi.'Xiz * ZKyi.Yi2

i i
The eccentricities are

B = . .
By ZXIOKYI/KY
1
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a) Shear wWall Tvpe O—-y0
b}Moment Frame Type

Figure 3-1 Structural Systens

T Us :\ Yi
>~

yyINeIi

Figure 3-2 Exaunmple Euilding Llayout
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i

for Ki and Yi as shown 1n Fiqure 3 2.
Analysis of an VN-s*ory s=ructare gsnerally reguires 3%
degrees of freedoan. Shiga(42) and Hoerner(28) have

developed a proceduare to si

=]

plify this +*o N three desqree of

i

free

v

om zys=ems. The mode shaone 1

7]

for structures where +the sStorvy masses are colinear , the

story stiffnesses are colinear, and the ratio of *he lateral

ot

stiffnesses is the same for all stories. {C}p is the nth

mode of *he 3DOF sys=em and {Dj} is the d*4 mode of th

o®
[w]
O
ry

system, which is %he same for x,d, and y.

Generally, i= 1s assamed <z=hat <the f1rst three mode
shapes 92f a nultistory strncture Ar=2 two »priaarily
transla-ion @aodes and <the orimarily +*orsion wmode. The
torsion freguency 1is nearly always 1less than twice tkhe
fundiamental. The second mode 1in the fundamental direction
is usually greater +=han 3 +*imes the fundamental; so, the
translation stiffnesses wonld have to be an order of
magni<ude different before *the assumptior would zo* be *rue.

A multistory structure can he analyzed approximately as a

three degree of <freedom system by using the first tbhree

r
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nodes as described above.

Equations of Motion

The equations of motion for the single story three

degree of freedom system shown in Figure 3-2 are

r 1r 1r 1 { 1
Jx we? - WEeE/F D I ng
q.rjszs.p - W2e78 /T .L)¢2 uOZo-‘{/E QQU¢ = —voag¢
7 0 wz.n T w2 3 7

LY § L Ty 1L v Uy

where ¥ is the mass, R is the radius of gyration, and

i

e

= M) 05 = (K My 0s n = (R 05 =MeR2 o
S AL LIRS

The characteristic equation for this system is

/
8 - w 2+ 2+w 2 .w‘
wd ={ < wy 4 ]
+w 2oy 24 2e(y 2-) 2eF 2/R2)+p 2e(w 2-w 2eF 2/72) le,2
S Ux Yy @ v X X %] X v -
-fw 2 e Zo(w 2- () 267 Z/EZ..(J_) 2o Z/RZ) ]:O 3.2
X v 3 vy X X Y

<

or
F3+PeF2 +QeF+R=0
where F=@2.

Let C=(3-P2) /3, and D=(2eP3-%eDPeQ+27eR) /27

and A=[ -D/2+(D2/4+C3/27) 05 [1/3, B=[ -D/2-(D2/4+C3/27) 05 J1/3



~hen

4
“he coupled

fra2guenci
w

12

n

carn he directly coxzrcuted as
12=-(A+B)/2~(A-B)-(-3)05/2-?/3
w22 =" (A+B) /2+ (A R) ¢ (--3)05/2 D/3 3.3
w,2=3+3-P/3 .
The solu=ion car be uns*able for some extreme combinations
Of eccantricities and uncoupled frequencies.
oz =T _,% #0 ant1 w_ #w_ *~he nnnorralized andse s3havces arta
}{J y y X Q L 8
r ' .
1 “w 23 /P ~w S s {wy?-w 2)
“x Y X y i
(w2~ w 2) w 228 (w2~ w/2)
X
rA = - 2= 2 1 w 2 w 2)
] ((1)1 wx ( 3 v
2ez /7 w2eZ /%
Y vy Y 4
24T o 2.y 2 2e% /R 1
w7 {w w_2) wy ux/
2ef o W 2~w 2 (w 2~y 2
wy . ( . ) A )
\\\ L J
~ 16 ™ @ {
or 1% ~yf0 and 2 8)
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1 -w.2eE /R 0

(W 2-w.2)

(2= |=(w,Z-w2) 1 0

wy? *E /R

[aj={ 0 1 0

which is the mode shape of *he uncoupled systen.
Once the wuncoupled €frequencies and mode shapes have
been determined, +the maxima can be estimated by modal

combination. The usual method 1is the roo* sum square {RSS)

Q=(2Q42 )0s 3.4

i

which is based on the assumption of near independence of
modal responses. The modal responses are nearly independent
if the freguencies are well separated. In an analysis of a
planar structure, the ratio of frequencies are approximately

12:325%. - however, in three=dimensional Systeams the
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ra2quencies can be

In systems wher=s the frequencies are close toge~ther

very

51

close

toge-=

Lar.

-
-

he

usual procedure in mndal comhination is to use a method
oropos21 by Rosenbluezh(24) ip which the distribu%ion of the
resoonse g(t) is assumed to be Faussian with zero mean. The
necessarcy f£urther assumptior, consistent with extreme valae
theory, 1s that “he maximum <Tesnonse Q=max|q(=)] 1is
orovortional to thz standard d4eoviation,i.e.

2(2)2 «<q2(=)> . 3.5
whers =( ) denotss expectatiocn and < > d2no=es *ime
iverage.

Tae response can be expresscd in teras of its impulse
resoonse function, h, as

Q(ﬁ)=[h(t‘t')‘2(t')dt'

-%
or in discretized form
t
a(t)y=[h(t-t')yez(t')+3t'= hpzthezs.. . +hez 2.8
=0
where z (%) 1s whize noise of intensicy G, .
With *he further assamption that each <erm in Zgquation 2.4
1s independ=nt, the variance of g becoaes
<g2 (t)>=1(h2ez2) 5.7

and by the Cauchy-Schwarz inegqualizy,

$(h2 e z2) < thzejyz2,
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t
©

<g2(t)> < Lh2 = cfhz(t-t')Odt' = clnz(t) edt 3.8

-~

for Gaussian excitation. The inequality in Equation 3.8
becomes a probortionality bv vir*ue of Parseval's relation,

fhz(tydt = [ [IE(®) [2dw]/(2em) = <q2 (t) >/ (G 2*2*m 3.9

vhere 4 (w), the complex freguency response function, is the
Fourier transform of the transfer func*ion h(t), and G02 is
the intensity of the white noise excitation.

For a ¥DOP system, by expressing the respoanse g(t) as

the sum of its modal values

q(t)y=LIg,;(t)

i

and inserting this in terms of its modal transfer function

into Equation 3.8 Rosenblueth obtains

02=30 2+ ZQi'Qj 3.10
i i3 T:EI;?
Ei52 = “ai™%ay
Biowi+8j .wj

where B; is the ith mode's fraction of critical damping and
W3y the ith mode's damped natural frequency. The gquantity
1/(1+Eij2) can be interpreted as the correlation

coefficient.
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To nnderstand the limitat+ions of =quation 3.10 due to
its underlying assumptions, it 1is necessary to understand
its derivation and the effect of the assumptions. PFor this
reason a modal combination expression will be derived based
dn, Rosenblueth's approach, 1i.e. @maximum square response
proportional to the variance; but the mathematical approach
w1ill be in the frequency domain rather than the time domain.

The expected 9oveak response is likewiss opresumed
proportional to the standard deviation, the —root of the
varianc=. The mean sguare value 1in turn will be described

by the complex frequency response function,i.e.

o]

DAty oY, (6)>=[Cy o 2 (w) *du 3.11
- n
where
Gy v Z(W=F_ (W *E_ () *6_ _ 2(y 3.12
YmYn Ym Yn ZmZp

and szznz(u9 is the <cospectrum of the m=mth and ath DOF's
excitation.

NTsually the input excita*ion is assumed +to be white
noise to simplify the mathematics. Initially, this sanme
assumption will be made in the following derivation. Thaus

Equation 3.11 becomes

e}

<= :_—r w T L ] 2 -
<Ym(_)'Yn(t)>-éHYm( )'HYn(w) GO edy 3.13

Hy (w) is by defini*ion
m

aYm(a)=1/{[wm2+i-2~5m-wm-m- wa]-um'} 3.14
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where ' is *tae 1aodal aass and Wy 2nd 3y are the ath
natural £fregquenc: and fraction of <c¢critical daampning,
Tespactively.

The —response 1s expressedl in terms of its wmodal
cesnoanses, and thus the variance of *he response is
axecraessed in taras of the wmodal variances and covariances.
The =2quations of ao=ion for a MADOF system with classical
n10das are

(AT +(CI (O +[ R (X} =-0% 1 (2

L g

In uncoupli=sd form #here [A] 1is the matrix of eigenvec=ors

and (Y} =[aj{%},

’e . T . T
[YY+{2e3ew]fY}+[ w? JA}=-(2" T-202] [(4]{z}=-(4" I~t(a] (P}

3.15

wherz [*']=(1]1 T2 7.
A response guantity of interest g (t) can be expressed

as

and by definition,

G 2 = o 2 -
q (W =2 ZC__ € (w) 3.17

o G
rn' YmYn

m 0

Combining Zquations 3.12,3.15,and 3.17 gives
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G 2(y)={C}Try WraTrg 2 Al H {C} 3.18
g (@ = 1ET T (W) TR T8 2 (w) J0ATCE (w) 100 3.1

5T a *wo-dimensional svstem,l.e. planar frames, each deagree

ot freedom 1is nbiected +0 =he same exciza+ion and each

mn

element of the matrix [G_2(w)] 1is the same. TIntroducing

Z
~his into =guatinsn 3.18, rearranging =-erwms and integra<ing
Jives
<32 (t)>= 5T (C_a¥2FT ) e(C *¥27 )al¥ (t)e7¥ (t)D> 3.153
m m n n m n

n

wnare W?Fm is the @modal pacticipatiosa <factor for aode a,

defined as

.20

[
'
ra

|

—_

™

<
*
-~

—
N

™
S

]
pd
N

—
.
L)

and {Y(t)} is the sonlution *o Tguazion 3.15 where the right

hand side is djust {Z}.

Iquation 3.19 can be rewritten as

2 (v = 40P C MDD 2 (=) >0S ey 2 (+) D>OS D
<q2(7) >= py(C *42F ) (C e¥PF )<Y 2 (=) L2 .

o : 3.21

whera Pmn is +the —correlation coefficient of Ym(t) and
T 40 - Since the RS value 1is assumed proportional to the

peakx value,Q, Zguation 3.21 can be rewritten as

02= 230,20 y*? o ‘ 3.22

mn



(2}
fo)Y

0}

“here Qe *he peak resvonse of *+*he nath amode, 1

0 =Cp* 127

m Sy lwg) 2.23

m*
ari

- = R 2 3 aR w 3 2.5 D12 .21
pm_n 3.(wmo m+u.)nt n)o(wm m’ n "Bn) /1 D} 3.24

D=[ ((J)dmzu mdnz) : {mm08m+(unan) 2]+io[2.mdnlo (wmo'amé-wnoan) Ji

(se=2 2Aoneniix C Zoz- Jdeciva=ion). For s2all dazping Zagna*ion

=0 those

®
o

3.2% aives values oC the correlation very clos
inhesent in T3juation 3.10.

Zquazlion 3.22 has two limi=ing assuapzions, namely
white noise =xcitation and identical excitation f£or each
deqz2e »f freedca. s explained 1in Aovendix D, the effec=
>f the white noise assumption is not considered sigrnifican:
for cases of practical 1interest. The effect of the second
aAssumn=1ion 15 no= so eviden+. It 13 clesac though, =hat the
second assuaption is not valid <for a three -dimensional
system. For =he *wo-4inensional system each element of the

aatrix of (G

C Zz(w)] is the same but £for the three dim=snsional

ot

systen 1t is

’zxz(w) Sz (O Szt (W
(6720 1= |Gz 20 Sz 20  Sgpp 20 3.25
G G G, 2 "

T
where {Z}={ng R‘Ug¢ Ugy}

Chap=zer TI describes the current state of the art in ground

motion description.
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Eguation 3.25 can be greatly simplified by
incorporating the approximations described in Chapter II,
namely Newmarkian ground rotation and uncorrelated ground

translations. Por ground rotation defined as

P dZy de

7 = — 4 - =2

2 dx dy

the excitation, following Newmark's procedure is

[N
1}
~
o3
]
[N

1e7/(25C) 3.26

where C, 1s the shear wave speed in the underlving

rock, Since we are assuming uncorrelated ground transla*ions
we can set Gj 5 2 (W)y=0. The autocovariance fuaction for the

X'y
ground rotational excitation is

Rz¢<r)= BlZ 4(t) oZ (24T ]
Inserting Equation 3.26 gives

Rz (D) =(R_ (1) -2eR_ (1) *#B_ (1) Je(R/(2+C ))2
8 Z, 2,2, Z, s

For uncorrelated but equal spectral density ground

translations, this reduces to

Ry (T)=2%Ry (1) *{R/(2C_))2
Z¢ ZY S
Thus,
Gy 2(ws= (RZ/anSZ) QG-Z. 2 {w
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= (RZ/Z-.CSZ) o) ZOG:Z' 2 ((1))

9 ey

and

o) oo}

[Gf _2(w) edw = (R2/2eCg2) [wReGj 2(w)edw » [Gy 2(wedw
o rd - . ¥ o Y

<f§2 2 (w)edw
Y

-0

= (R2/20Cg2) 2wy 2 [Gy 2(w) edw
- ¥

where g is the predominant fregnency,

mha crosscovariance function for rotat+tion and

transla Fion is
(t ..i t*“['.
r¢' ) X( ) ]

={E['Z'Y(t) T (t+D) 1T (%) -'Z'X(tw 1} (8r24C)

=0 - E[f%(t)'ix(t+r)]o(R/ZOCS)

= - R a%;
—Zx
2eC_ 4T
where
By (D= [Gs 2(w sexp(~iewe D eduw
X - X

Differentiating this gives
o)

Bj 5 (= (R/20C ) o [ ieweGy 2(w eexp(-iew)edu

3 i .

= fGZ ¢Z 2 () eexp(~iepeT) edw
-0 “rgx

Thus,



5Q

35 5 2 (W)= (R/20C5) eieweds 2(w)

where Gy 2(w) 1s real, svmmetric and
: X

. . hod o
<Zr¢~Zx>=£Gir¢2X2(m)-dm=(R/2~CS) [ieweGz 2 (w) *dw=0
© ‘

For g580@g/(2~cs), Zguatior 3.25 reduces *o

r h
1 0 N
(552 (w) 159 252 0| *G5 2 () 3.27
X
J 0 1 .
L g
Tor CS=?g-K, A peing the seisaic wavelencth 1in +the
uni=arclying rock an? ?g tse corresponding Icsgquencv, &
becoaes TeR/A, Contiping EZgmation 3.27 and 3.18 and
inteqrating gives Eguation 3.21 where YOF eMPF is now
HP® eMPF =2 LN +A, e, +2e 28] o} 2.2
S n-1m® fimt Y am® 3w *2m " 2n 8

The BMS value determined bty using Tgua+tion 3.23 should
be less than that calculated using Equation 3.20 because the

atzer assumes 21l Aegrees 2f fr=edoz have +the saze

s

2xci-atlon and ace =hus identical.

As an example, consider the shear wall building
analyzed by Heidebrecht (28) which is shown in Figure 3-3
with the corresponding frequencies and mode shapes. The
funiamental wnode is oredominantly vy motion, the second mode
nredominantly x mo*ion and the -third mode mostly cotationa.

The values of C; for the y displaceament of point 3, A44+17n/

b]

*3

»l

Te

. A
21
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N 1
1l4m
F_______,_ufﬂﬁgu
K =K =3,3x108N/m!d =& =2.78 20m
Y S
K¢= 3.8x107"N-m/rad.
w ,=3.54
6 ¢ comaneawey 3 1
Mass=1x10"Xg . ,
R=26.6 m T4m
E_=-10m
X
EY=—Sm /
Alx --4
= = 4
Mode 1 Al Al¢ .45
= 4
fl 2.46cps Aly .80
— .89
} . |
Mode 2 L= |, Ag = {.0
£,=2.78 cps ! | .45
2 i !
.20
Mode 3 ={ .89
f3=3.76cps -.40

Figure 3-3 Example Building and Coupled Modes
{ Adapted fron Heidebrecht (28) ]
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The matrix of correlation coefficients Pmn' 2

Tguations 2.10 and 3.24 are

1.0 .09 .00}
1=}.09 1.0 .07
mn® 1 00 .07 1.0

which assumes a par-csntage of critical daaping of 37 in each
mode.
The modal par-zicipation factors as calculated by
Jiguation 3.23 for a2 wavelength of 1J00a, are
0.80 -0.39 0.00
cAPF =|-0.39 0.0Z2 :0.00
- nug ‘
0.00 =-9.00 1.00 .
The ma=rix of =hes mean <sguare modal valuess as determined by

Zquations 3.22 - 3.24% and 3.28 are

2.73 =0.02 0.00
0.02 0.02 0.00
0.00 0.00 12.27

for the response spectrum shown in Figure 3 4.

The R4S displacement of poin+t B 1s *thus 3.87



centime“ers. ¥™|  aeans of comparizon, 1f Zguazinrn 3.20

28}
=

verz used insteal of Eguariorn 3.28 the 345 displacement
'"oull 52 4,33 centimeters, and if the absolute sum Of the

10dal values were uysed i+ would be 5.51 c=n<ime-ers.
200

100
V,cm

50

20

10

Figure 2-4 Example Design Resvonse Spectroua

o

The difference between the values for EZzuation 2.2°

and 2.20 liss in +he <correlation of the excitatinns. Th

D

former assumes only the spectra to be the same while the
latter assumes the spectra and the excitations themselves to
be idenzical.

Another way of showing this effect is bv a graph of the
interactinon eguations. Rosenblneth and Zlorduy 2% and Xan
and Chopra 36 presented the effect of torsional coapling as

~

graoshs of the dynamic forces, nondimensionalized by the
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1.00

0.50

o
(98]

ancoupnled force in =he directipon of =-he 2xcitation, varsus 2

rh

nonliaensional Tequency razio for a flat acceleration

spechrum.  The torgue is5 presented as the ratio of dvnamic

TO 3tazic eccenzTicizy.

0]

For a ground excitation consisting of only X
“Tanslations, Xan anl Choora3® also derived the intercactionnp

surface of the normalized forces as

§XP+VYZ+T2 = 1
“here the bar dsadotes the value normalized by ths uncouopled
fozce in zhe direc=isn 0f “he excizarion,i.=. for Zx=3y;0.
7iguZe 3-5 shows the ilnieraction Lezween the forces for
2 groun? excitation consisting nf only Y translation with a
fla* acceleration svec:iruam. The forces are not normzalized

hera.

00
6]

igure 2-5 <Force Interaction for X GSround Zxcita-ion
2nly and Flat Acceleration Spectrum(zx/Bzo,w wX=1)

ing 1is to decrease tae shear in

=)
-
®
D
H
th
D
Q
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O
h
ot
=
\D
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~he ¥ direczion while cansing a shear in the Y direction and

“or a gJround =xcitation consisting of rotation only, a
Similar 1in-=ercaction <oz a flat Aaccelezation spectrum 1is
shown in Figure 3-4 for . different values of the radius of

yvration to wavelength ratio. fere the effect of the

coupling 1s t> decreise +the *orjue while inducing building

shears. The decre=i3=2 in *he torgue for 3different
accen=T-ici=y TaTios shown 1n Figuz-a -0 1s auch less +han

the d2crease in the shesar in the directiorn oI excitation as

Interaction -2lations can aiso pe derived for systeas
with simaltaneous 7, &g, and Y excitations. 7For uancorrelated
groand translations, and ground rotation excita=zion defined
by Zguation 3.26, all the excitations are uncorr=lated as
shown by Equation 3.27. Por uncorrela-ed exciza*ions the
variapnce of the sux of the modal responses 1s the sum of the

resoonse modal variances and the interaction surface is

<
N
+
=
N
+
A
N
1]
Y]
-~
-
+
vy
r
(&)
.
J
O

Pigure 3=7 shows the interaction between the forces for

«27 and with flat

(99)

excitations described by Equazion
acceleration spectra.

The increases in *he shear for higher 1levels of the

t

radins of gyration +*o wavelength ra*io are not great.

-

Although Figure 3-6 shcws an increase 1in the shears due to

“he grournd rotation, the dacrease 1in shear showa 1in

n
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"igure 3-& Force Interaction for o Sround IZxcitation
Qnly and Flat Acceleration Spectrua(Z_/%=0,w /w_=1
nly an A T T (X/,Yx)

Tigure 35 £07 *he ground <+“-anslation @xcitation more than
noffsets =his as shown 1in Figure 3-7. Also, 1= aust be

remenkered that the shortest wavelength of interest is of
~he order of 600-1000 meters since the reasoning behind *he
ground rotation excitation assumes tke wavelength *o be :that
associated with the underlying rock and the shortest natural
periods of 1nterest are (.2 sSec. or longer. Thus for
typical building sizes the ratio & will be of the order

0.0-0.1. As
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seen in Figqure 3-7, even for the worst case of wx=w¢=wy, for
€=0.1, omly =<-he <or3Jue 1s avppreciably azffected Dbv the
coupling.

It 1s now w€=2ll establisked that the story shear
decr=sases with incceasinag eccen“ricity. It can also be said
that *the storv displacements ,i.c., the displacement at the

center of mass, decrease with increasing eccentricity. The

oY)

=

sheaz and disclacement a= the periphery oI =<as tuilding,

nowever, is g=2nerally thought to increase with eccentricity.
"he reason 1t 1is thought to increase 15 that the
gccantTici<y induces a roftational motion whose displacement
at the peripharcvy aore than otftifsets the decrease in the
averaqge »I 3-o52Ty displaceament that occurs with increasing
eccentricitvy.

The method presented ir *his chapter can also be used %o

examnipne the peripheral response and the parazeters aiifecting

]

i+, For the system shown 1in Figure 3-2, the displacement
at the center of mass(C.¥.) is less than what it would be 1if
“he centers of 2ass and stiffness w=re coincident. The

tem 13 the center of mass. The

n

origin oL =he coo-dlnace sy
dispvlacement of the point marked P 1s determined bv the

relation

g =193 + (E _/RYs(T )
P X 2
or in matrix fora
g = {1 E /&R 0}efu} = [c}T(m 3.30
D { ym } {

%ith this relation, the ©power spectral density of Hp is

determined to be
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S 2w =10} 152 (o) 1)
={CIT{H (w) IHATTIG,2 (0) LA N H (w) 11C)
where the spectral density of the ground motion [Gzz(w)] is
letermined by Equation 3.27.

The variance of ”p fhen 1is

[o0)
<y 2> = [g_ 2 od
E (1 0 9
=fe 2w e ciTracw Frafl o 2egz  2fraifd(y 110 o2y
. z 0 1
L J
which upon expanding, bcecomes
<7 2> =7 2 (W) efT.2(w)s(Y 2 + 2ef2el 2 + A 2
iy ) 12 (W) %x g #x vx )
#2407 /Tl (w)ed, (W) (A ,e)  +ZeEF2ed  sd  +) A )
ym” " 2 xg “xx #x B8 yx v
+ (T /)28 2 () = (2 2 » 2agr2a} 2 + 2 23 o3
ym , 0 (w) = - g 44 v )} *dy

and after integrating, kecomes
<U_2> = <Y__2>e () 2 + 2eE2e4 2 + 2eF /Eed 2
P pPx Pex Bx ym/ VX )
+ (B /P)Zo('{ 2>ae (1 2 ¢+ Der2e)} 2 + 287 /T e} 2)
ym pg xd & g ym'yg
+283  /Re<LY o7 D>w (1} ) +2ez2a]} A +29F Bel A
" fym pX (4 xg <8 ag TR kg

o1 XX gx g ym yx  y%
The variance of the inpu*t ground <tracnslations are
assuaed the same. The variance ©of the ground rotation is
de“ermined by the gquantity §&. The area of interest in
building torsion concerns sys*ems where *hz freguencies are
close together. For such systems the noial quantities
<Ipx2>,<’{p¢2>, and <‘{py2> can be assumed approximartely equal

< 2>=<Y

ot

ihere g 1s a constant.

Y 2):("{ 2> 2
pxX py =~ O

A special case of interest arises when ¢ = ~/2/2-
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Tcuation 3.231 th2n can be rednced o

1.2 = 2e 3 2 2 43 2 = R)Y2e (2 2+ 243 2
<Tp > o {(lxx +A¢X +ayx ) o+ ym/r) { <8 *\¢¢ +&y¢)
+D_ (» 2T _/Tae (A 1+ ed  +4 LE
xg ym S~ Xg dx B8 dyx y¢)¥
- 2e 2 /t 2 H 3-32
g2e (1 + ('ym' )2 o+ 0)

T- should be non*ted tha* Zguation 2.32 is independent of
the eccentricity, 1i.e., the maximua response at the
periphery does not increase wi-th eccentrici*y, regardless of
its valie. 1 valus of §g= +/2/2 1is higher than typical

Thongn,

[N
-
[a ]}
Ih
(0]
ln}
o
]
o

tn order =0 examine *he ffecrs of zhe

()

paranetars, Figur=s 33 was nlotted using different freguency
-azins,eccentcicity razion<s, di=*tance Zrom +he center of
1as3 (B (3), and dLIferent values ot g - The f£irst column of

gqraphs rcepresants the response for = /F=0.0,1i.e. at the
ym

center of 1ass. I* shows *=he familiar creduction with

increasing eccen=rticity. The second column represents Evm/

E=0.5, and the thicd 1.22(which would —represent the

peripbery of a square building).

The bottom tow of graphs in Figure 3-8 represents ¢=0.0,

i.e. no ground rotation. Tt shows a significant increase

(]

Ym/3=1.22. The @middle &row represents £=0.25 and the

top row &= 1/5/2.

The maximum increase for £=0.0 and Bym/5=1.22 (the

for

i

i“h

T 92

)
e

(0]

o

a sgnace building) 15 about 55% when w¢/wx=1 .

is about the same when = ~/2/2 and Eym/3=1.22. This

mh3
s

]

¥

v
S

0]

oresents a s=aitic eccentricity of about 33% of the

building width.
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1o

Yhat thkis means is that the expected maximum peripheral

resoonse 1is essentially independent of the level of ground
rotratlion for systems wWwhere ~he torsional and lazeral

frequencies are the sane.
This is no* t-ue, however, for sys+tems where the
“orsional and la=eral frequencies are not close together.

In this case the 1level of ground rotation diresctly affects

the lsvel of resnonsse as seen inp Pigur= 3-3. The Cesoponse
in this case can te approximated DV tue root sua sguare of

mhe torsional and lateral responses.
The single most 1i1mpor*an=- va-iable 1n detertmining the
neripheral resoonse is the torsional lat=sral frequency ratio

3ince 1in mo3% casas should bte leszss ~han 92.7.

Q

]

[

'he metho>d vresented should give reasonable estinmates

of +the elastic torsional response of +three-dimzensional
building sys*ens. The =cela+=ive effecm of <zthe diffecen<

paraaeters on the exvected mwmaximuma response 1s based on a
probabilistic description of +the ground motion. The power
spectral density matrix of the ground motions is taken to be
A diagonal marrix. The expected maxizua peripheral rCesvonse
is Jdetermined as the standard deviacion of the response
which is based on the diagonal vower spectral densi*ty matrix

of ground motions.



ONLI RESPONSE HMODEL
1= previnuasly stazted, the mnonlinear amolsl aus= he kept
simole for <ceasons of econonv. Since earthquake peak

resnonse coefficients of variation wvary froa 0.7 to 0.3,

1inensional nonlinsar systems are complex and expensive to
simulate.

The characteristics of nonlinear torsional response are
needad %hough, since buildings tespond inelastically to some
carthquakes. It 1is desired to know the effect of groundi

Totazinn in a3 ronlinear system. 3also, nonlineari=ies in an

ansymactric baildinag tend to 1ncrease the eccentsicity. The
2ffect on ductility reaquirements of peripharal lateral 1load

pts is also needed.

()
'_.l
(D
(D

In order to analyze accurately and efficientlv the
effect hysteretic ene-gy dissipation has on the parame®ers
acce2ntricity ratio, frequencvy ratio, and strength ratio, a
siaple single s*ory model 15 used. The single story
building thaz will be studied 1s shown in Figure 4-1. The

load resisting eleaents exhikit a single degree of freedom

72
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hysteresis vwhere <he <force 1is a function of onlv one
iisplacemenz as noposed <to, sSsay, a Leam-column where =he
forces are a £function of several displacements. This
simplifies the nonlinear *orsional response coampatations by
enabling the use of simple hysteresis *vpes.

1any different simple hysteresis *tyoces are available
depending on what 15 being modelled. The elastoplastic

np0del was develored to3 aodel the eliastic-olastic hehaviounr

=t

of steel. The bilinear aodel 1is similar to the elasto=
plaszic model bu* allows s*rainr-hardening.
Tor moment-resisting members the gqradual yielding inward

of the <cross section reguires smoothing of <he shacp
vielding in the ©bilinear model. This together with the
Bauschinger effect brought abour the use of the Eamberg-
0sgood hysteresis model which 1is a cn-vilinear model very

sinilar +o the bilinear model.

s

“her singls degree of freedom hys—-eresis model 1s the

U1}

>y

o

T«

O

i

origin oriented shear model. In this model the unloading is

always directed zth-ough the origin giving a pinched

]

[oh

hysceresis looo. This nmodel 1s used waere nonlinear
deformations and failure characteristics are governed
prtimarily by shear.

The stiffness dagrading model 1is used for members whose
stiffness degrades apen reloading, where the degree of
degradation depends on the current ductility. The stiffness

degrading and origin-oriented shear models are usually used

0 model teinfo-ced concrete menmhers.
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The building mcdel used tc study the nonlinear behaviour
of buildings subject to torsicpnal motion is shown in Figure
4-1. It consists of a rigid diaphragm roof and four
independent ext2rior lateral lcad resisting elements, e.g.,

steel moment frames or braced frames.

Y
A z
-}r—'
C.s.
}— )
By =
b I +4em. X
—nl
Ex
Y o X
Bx ' ~
A

Zax
Figure 4-1 Building Model

This nodel can represent many different single story
buildings in us2. Some of the buildings on nuclear reactor
sites are single story four frame buildings. Industrial
buildings are commonly one stcry and for better utilization
oL space, often have only exterior frames. Warehonses are
often similar to such industrial buildings.

Small commercial buildings are commonly one story.



Also, snch buildings often have very high eccen+trici-ies.
One side of these buildings 1is typically all glass, leaving

only 3 exzerior franme This <can result in the center of

(n

l'll
rh

tiZfness located at “he exterinr which gives rize %o the
very high eccentricity.
Spocts arenas, 3ai1ditoriums, and amee=-ing halls are other

examples of singl

(]

story ex*terior framed buildings
Multistory, aualtibay structnres cohviously don'+ it tha
crizeria rtor “hiz nodel; however, with some cTude

aoproxiaations this wmodel can give the aultiszory, nultibavy

{1}

JLosSs resoonse. *or exaaple, 1 th= rC=2sponse can be

th

presuned ©To c¢onsi3* orimacily o Tthe fuandamenzal mode then

thkis aporoximation shoull give rsasonable results.

Some @mulztis*ory stCuctures are ot suitable fer
modelling as a single s%tory stoucture even for gross
results. Buildings with eccentric nenthouses are one

example. Buildingys «ith sudden <changes in sStif:

th
o)
»
mn
Ul
(o]
i

changes in the eccentricity are another example.

Mulzibay structures require another approximation in

>rder to be modelled as a single bay struczure. The frames

on each side of the «center of stiffness are lumped together

]

cach as one frame keeping the total s=iffness cons=ant so

¢

the frequency 1isn't changed. For the building shown in

i}
H)

Pigure 4-2, “he stiffress of the equivalep* frames in the Y-

(=]

ollows

1y

direction would be

v

s
Kye1™ Xy1* Xy

Ryt Ky3*t Kyg



anchanaced

*he rota*ional s3tiffness due *o

these frames, the distances th,ItZ would be determined fronm

2 + K

Kyl'xl

Ky3'f(32 + X

v2" 12

y4‘x42

2= Foe1t e’

KytZ'K

]

2
t2

wherae th would be between Yl and Xz.

X4
Xt )
X r
1?.
2
xl
-
xt*__L_
(g ] I aRMEEST S s X
2
Figare 4-2 Multibay Building
For a linear aultibay system this method of modelling
wonld give the same results: however, a problem arises in

nonlinear response.

were Fyl and FyZ’

Zrame's yield levwvel

the actual multibay
nmrodel would not be

frames 1 and 2 were

h

levels of frames 1 and 2

vious choice fo

t1

the egquivalent

wn

F . +F_~ea Tor a svstem with no
vyl "v2 '

torsispal excltatiors, zhe resnonse of

structure and the four frame equivalent

“he same unless =the vyield levels of

identical. 7For bilinear hvsteresis with



i

m

ferent viald levels fcor the frames labelled one and *wo,
the equivalent <fraae would rave to exhibit a trilinear
hystera2sis to ma:c the response of the actual structure.
Also, when a toarsional —response exists, the rotational
displacement which would cause one of the frames in the
multibay structure =0 yield, would rot necessacily be the
same yield rotational displacement as that of the equivalent

model. The maxiaum momen% For each 737em  W1ll be

n

approximately the same thoughe. So aodellina noalinear
mulzibay s+“Tuctuzes as single bPay structures does require
sSome approsimations. I+ shoull aodel <he gross resoonse

adequately, though.

T0JATINYS CT ¥2TION

For *<he four £f-ame s+*ructure being analyzed, the rigid
diaphragm reduces the system to three dedrees of freedom;
two lateral displacements and a rotation about a vertical
axis.

The dynamic equations of motion for the three degree of
freedom nonlinear system shown in Figure 4-1 are

(4]0} +(CI{OI+(F(D)} = -~tmﬁig} T
where

F(TY={F(0 ) }+(K; _J0,-0, 3
and [Ki] is the tangent stiffness at tiae ti.

The displacemen* vector (7} 1s +he same as in Zguation

- T e T
(U} =(U, Rely Uy}

The mass matrix mhen becomes
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The avstefesis model chosen for this study 1s the
bilinear model. The numerical 1irtegration method uased is
fourth order Eunge-Kutta.

Fourth order Runge-Kutta naumerical 1integration of a
second order “differential eqguation, =2.3. Zguation 3.1, is
conditionallv s=able cfor T _/At>2.42, where I 13 *he period

n

2f the sys=zen. The 1linear accelsra*ion method, some=imes

0t freedoa linear responses to slipe waves, the fourth order
funge Rntta wmethod was 1zore accurats than the linear
acceleration method in terms »f peak response and earthquake

nnout energy, which is defined simply as the energy input to

[

s

he s=Tucture. The linear acceleration 1zez-hod 1is amore

efficient for thke same T _/pt ratio though. The reason the
Funge-gutta method 1s used is 1its accuracy and ease 1in
orogrammping changes in the time sStep A%

For a bilinear aysteresis model the amount by which the
force can overshoot the yield envelope can be considerable;
especially for low values of %1/At’ The usual procedare
taken when the force overshoo*s =z<he vield envelope is to

ctedo this t2o's calculations with a much smallier *inme

v

increment, say one~fifth *he original; then, when the force

is beyond the yield emnvelope, ©oresumably by a small amount,
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~he wime incremesn=- 13 re

th

et t0o the original value and the

computations re

h

uma.

A special algoritha 1is wused here to compute tane time
Step necessary to Teach the vyield force precisely. The
fourth order Funge-XKutta wmethod is wused to solve Eguation

4.1. The 1initial +ime steo increment At is chosen on the

basis of stabili<y and accuracy. When =~he force for one of
the elements 2vershonts +he vield envelooe, this tiae step's

calculazions are -edone with a new <ige sTeD increment.

F
f x
/ |
Fyt t
T > X : + + > t
Sy Vi otsat tet

Figure 4-3 Bilinear Yield Zanvelope

#hen the force overshoots <he yield envelope, as shown

U

in Figure 4-3, the displacement necesszary for the force to
equal the yield force 1is known. If the displacement is
assumed to be a =“hird order function of =ime, 1l.e. 1linear

acceleration, then the time increment corresponding to that

displacement can be computed. That displacement then is

l

AX=(Py=F (z)) /R = AteX (t)+At2e[ 2e% (x)+X (2+p%) 1/6 4.2

where
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Y (z+Az) =¥ () HL X (24m 1) X (%) Jmpn/nt 5.3
1 cubic equation in A= is ob=zained by coxzbining Eguations
4.1 and 4.2.

SAZ) SATI e[ T (R4 1) =X (F) ]/ (Bett) #pt2 el (n) /2+AL 9L (£) =pX=0.
At can be solved for directly or by MNew=-on iterazion

At =pat - G(At ) /ST (At )

i+l i i i

In practise, only a few 1i%erations are required to achieve

D

the necaessary acTuracy. This +ime step increment is then
1se1 in “he rour-h oo-der Eundge Xutta in-egration scheae for
*his st=2p only. Th= compu*ed element fo-ce 15 <hen compared
to the vield value 2apnd if it is within 1%, the solution

oroceeds Wwizh *he ipnizial time szep 1increment. For the

()

simula=ions used 1z *his studvy =<he accuracy has alwavs been

~4

within 1%. The <coaputer program using this algortiha is
list=2d in Appendix E.

This solution technique for bilinear sysztems can be
efficiently used for structures with few yieldiang elements.

For a struczuce with many vyielding elements, the constant

fal

changing oZ the time step would nmake this +echnicue

2xpensivs, coamputatiocnally.



CHAPTER V

NONLINEAR RESPONSE RESULTS

The 1mpnrtance 0% +the wvarious torsional pnaraaeters,
2r-cantriicicy razio, torsional ground aoction, and strcength
ratio 9T *he model as descritbted in Chap%er IV are s3=uiied,

2specially the peripheral —response as it vertains to the
ductili-y demand.

ince the2 moizl 1is a nonlinear hysteretic syst=a, ‘fonte

ul

Carlo na=2thods arce used. An ensemble of ar+ificial
nons*tationary accelerograms 1s generated as desc-ibed in
Chaoter II using the computer progras PSFQGEN (71) yhich
uses filtered whi*te noise with an 1in=ensi*y funczion of the
Jenning?'s et al(s2) type. The intensity function I(%) 1is
shown 1in Pigure 5-1d). The acceleroqrans ar=2 the product of
~he s%ta-ionacy fllte-ed white noise ard <The Latensity
function I(t). The pOowWer spectral density shown in
Figure 5-1c) 15 the nroduct of +the filter's two freguency
response functions shown 1in Pigure S-1a) and b). The
acceleroqrans generated are intended to simulate stroang
ground moziorn on firm soil in the vwvicinity of the
epicenter(ss), The generated accelerograms are shown in

Figures 5-2 through 5-6.

81
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Other parameters that characterize +he accelerograas
include the maximum acceleration which averages 0.4g for the
five accelerograms with a standard deviation of 0.01g. The

duration is 60 seconds with a duration of 31 seconds for the

strong ground m@motion {stationary) portion. The Arias
in+tensity¢78) which is defined as
I,= nﬂZ-q)~T Zgz(t)Odt
o)
is 22.2 ft/sec. The rms acceleration is 0.1g.
g ()| f (W) )}
a) ] D)
J L - 1 1 o
W 8y
G (w)
. (w I(t) |
5 N (£) 4
c) i d)

> L —l
1 2 w ty ty t

W
n

Pigure 5-1 Artificial Accelerogram Data

Housner's spectrum intensity SI, is defined as

2.5

ST = [vear
0.1
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where ¥V 1s the pseudovelocity resvonse in ft/sec, often
for 20% damping, and T is the natural period. TFor ithe five

Jenerated accelerograms the average spectrum ianatensity SI is

3.9 £+ for 20% damping. Ground —ro*azion ¥as included and
computed according to Egquation 2. 15. The shear wave speed

1sed was a conservative 1000 f*/sec. This corresponds to a
valne of 5.15 for the ©parame+ter £ as described im Chapter
ITT for the wavelangth corresvonding +2 the pnredoninant

frequency of excization.

1932l parameters

The normalized eccentricity ratio, /¥, 1s defined as
zhe eccentricityv bezween <=he <cenzer of mass and stiffness

=

iivided by =h=2 =mass radius of gyration. The wvalues 0.0,
2.1, 0.2, 0.2, and an unusually high value of 1.0 were used

for +his ratio. The structure's dimensicn ratio B.,/B.,, was
" . Yy’ X

2.0. The stiffness ¥as assumed o-oponrtiornal to the
dimensions ©of the structure i.e., KY/KX=2.O, so the
frequency ratio w / w _ ¥as ~/2 - The <torsional-lateral

frequency ratio w,/w 1s de+*ermined by the geometry of the
‘ ‘ X

8

structure. For a uniform mass distribution the mass radius

of gyration 1is

R= /1B, 2¥8,%) /12

and the torsional fregunerncy is

W = o (K R 2 R o8B 2) /] Qs (3 <+83 <

I = = 3= F¢ =} X =2,
For 3, and KY K w¢/wx ~/3=1.73. For B /B =K /X =2

x’ Yy X y X

3,
Wy /0, =1.90.
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The mass of =the wmodel, assumed uniformly distributed,

was 2.5 kKipsssacz/inch. Cther 1mportan*t parameters of the
nonlin=ar responsa are the natural frequencies and a
3tTeng=-h ©varameter. The natural periods used wWere

2.2,0.6,1.0, anéd 1.4 seconds.
The other nvarameter deteraining nonlinear response
relates to the yield level. This streng*h pacameter can be

exprasse? in man7 4different wavs. The currern+: TRC(73) cod=

where 72,I1,%,C,S8, 3and W are a zone factor, an 1mpdrtance
factor, a fraaming system fac*or, a natural period factor, a
Iite-=<ructuce cesonance faczor, and fTas tuilding weight (or
1ass times qgravity). i natural <choice for the strength
parameter then is the yleld shear Fy' divided by *he weight,
1eg,

The valu=ss for Py/(ﬂiq) used were 1/3,1/4, anil 1/2.

Results

The excitation <for the first énalysis consistéﬂ of
iacceleczogram 1 for *he (-direczion, accelerogram 2 tor =zhe
T-direction, and using Equatiog 2.15 to determine the
rotational acceleration. The excitation tfor the second
analysis consisted of accelerogram 2 for the ¥-direc*iorn,
accelerogram 3 for the Y-direction, and 3gain using Zguation
2.15 to deteraine the rotational acceleration. The
excitation for the *~hird, fourth, andb fifth aralyses arce

similarly determined. All results presented are the average
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of the results of the five dynamic analyses.

The maximum displacements and ductilities at the center
of mass for different values of the eccentricity ratio and a
strength ratio of 1/2 are shown in Figure 5-7 as functions
of the period in the ¥X-direction. The disnlacemenis in the
X-direction don't vary much ¥ith eccentricity. The
displacements in the Y-direction appear +to increase with
eccentricity, but only slightly.

The maximum peripheral displacements and ductilities for
differeqt values of the eccentricity ra*tio and a strength
ratio of 1/2 are shown 1in Fiqure 5-8. The displacements in
both directions 1increase with ecceptricity £for +*he most
part.

The maximum displacements of <the center of mass and
their corresponding ductilities for different values of the
eccentricity ratio and a strength ratio of 1/4 are shown in
Pigure 5-9 as a function of the period in the X-direction.
The displacements in the Y-direction and 7-direction donft
vary much with eccen<ricity.

The maximum peripheral displaceaments and ductiliities for
different values of the eccentricity ratio and a strength
ratio of 1/4 are shown in Figure 5~-10. The displacements in
both directions 1increase with weccentricity for the most
part.

The maximum displacements and ductilities at the center
of mass for different values of the eccentricity ratio and a

strength ratio of 1/8 versus the period in the ZX-direction
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3.0
4 .' .' 11 ' - 3
0.2 0.6 1.0 1.4 0.2 0.6 1.0 1.4
Ty (seconds) : :x (seconds)
a) Maximum Displacement b) Maximum Displacement
of Center of Mass of Center of Mass
in X Direction in ¥ Direction
E/R
0.0 —
0.1 ===
0.2 ————=—
.3 —mMmm
l‘o s 00 mreemm enane. —aee
3.071

1.5+ 1.5+
0.2 0.6 1.0 1.4 0.2 0.6 1.0 1.4
2& (seconds) 'ﬁx (seconds)
c) Ductility of Center d) Ductility of Center
of Mass in X Direction of Mass in Y Direction

Figure 5-7 Displacements and Ductilities of
Center of Hass

(FY/(M'Q)=1/2)
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Pigqure 5-8 Peripheral Displaceaents and

Ductilities (F /(Meg)=1/2)
Y
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3.04
— ; — 4 : . , N
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a) Maximum Displacement b) Maximum Displacement
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1.5+ 1.5
0.2 0.6 1.0 1.4 0.2 0.6 1.0 1.4
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c) Ductility of Center d) Ductility of Center
of Mass in X Direction of Mass in Y Direction

Figure 5-9 Displacements and Ductilities of
Center of Hass

(Fy/(Mea)=1/8)
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in X Direction in ¥ Direction

Figure 5-10 Peripheral Displacements and

Ductilities(FY/(E-g)=1/4)



are shown in Figure 5-11. The displacements in the Y-
dlrection don'=t show a discermible trend. The displacements
in the Vv-direction appear to incr=ase with eccentricity, but
only sligh*ly.

The maximum peripheral displacements and duc=tilizies for
iifferent values 2f the eccentricity ratio and a strength
ratio of 1/8 are shown in Fiqure 5-12. The displacemen*s in

both directions 1increase with =eccenptricitvy €5 <he mnos=:

part. The values f£or a period of 9.2 saconds Were L=2ft out
becanuse *he ductiliziez were in <he hundredsz, shich for all

practical purposas are not meaninaful.

Tarthquake Znergy P2artition

The partition HZ enerqgy 1n the model Wwas also computed.
The earthquaks input eneraqy {(FI3) is defined as the total

acceleration integra*ted over the ground displacement
t .. an
ETIZ = [e (T +7 ) edn
1 g

The dissipated hysteretic energy (DHT) is the stiffness

It

the

[

related force integrated over relative displacement les

n

(

Tecoverable strain energy

t
JFE = j?(n).dq - F2(%) / (2eXK)
Qo

The dissipated nonhysteretic energy (DYHE) 1is the damping
force 1integrated over relative displacenent plus the
recoverable strain emergy and kinetic energy. The strain
and kinetic energy are included since they are eventually
dissipa=ed through damping. The fraction of critical viscous

damping 1in all cases was 5% . {See dppendix F for
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Figure 5-11 Displacements and Ductilities of
Center of ¥ass

{Fy,/ (Heq)=1/8)
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Pigure 5-12 Peripheral Displacements and

Ductilities(Py/(ﬂ-g)=1/8)
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The earthouave input en=rgv, 4dissipated damving eneragy,
and dissipated hvsteretic eneray for different values of the
accen*ricity ratio and a strenath zZatio of 1/2 versus *he
peris>d in the X.-direction are shown 1in Figure 5-13. The
valueé for a strength ratio of 1/4 and 1/8 are shown in
Figures 5-14 and 5-15.

-Several things are noteworthy 1in these figures. First,

m

ther=2 dnesn't seen =2 be anv definize Zelation between the
values and eccenptricity, i.e. +heyv dorn'= uriformly incT2ase
orC decrease with eccentricity. Second, as would be
expactad, the dissipa=ed hys%eretic enerqgy 1increases for
lower values of Vy/(x’a). Third, +the earthguake input
eneCgy Jdacreases for lower wvaliues of ?y/(ﬂog). The reason
for this is not clear. Finally, there is a definite peak in
the value of earthquake input energy versus period. This
can be explained. TIf <the dissipated hysteretic energy were
viewed as an eguivalent' viscous dampiny dissipaced 2nergy,
then the total value of the damping parameter C would be the
sum of the viscous damping and +he equivalent hysterezic
Jamoing. The earthguake inout enargy would be approximately

2TE = [CelZedt = Co<liz>et
o}

The mean sguare v2locity can be represented in teras of the
inpuz power spectral densi“y and +the veloclty rCesponse
func*ion which 1irn this case are unimodal functions,

functions with one peak.

[ee]

<g2> = leg(w)!z’Gﬁ 2 (w) ey
-0 g
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Figure 5-13 Energy Partition(?y/(ﬂsq)=1/2)
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4 typical velocity response function is shown in
Figqure 13-1a). The input power spectral density is shown in
Figure 5-1. It follows that <a2> would be largest when the
peaks of the +two functions vere concurrent. Thus, the
largest value of earthguake 1input emnerqy should occur near
the peak of the input power spectral density function. This
is the case.

The strength ratio corresponding to a given ductility
ratio is also of interest. Tor the ductilities, averaged
over the different eccentrici*y ratios, the corresponding
strenqgth rat*tio is determined by interpolation from

Figures 5-7 to 5-12 and is shown in Figure 5=16.

0.5 7

Fy

M-g 0.4 7 \
0.3 |
0.2 | =4
0.1 7

—d
T

0.2 0.6 1.0 1.4
T&{period

Pigure S-16 Strength Ratio versus Ductility

Por a system with uniformly distributed mass, the
response of the element furthest from the center of
stiffness will be the largest. Due +to this increased
response the stiffness will be smaller relative to the

element closest to the center of stiffness. This smaller
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stiffness increases the eccentricity and, one aight exvect,
could further increase the response of the element furthest
from the center of stiffness.

This could lead +*o a situation where the eccentricity
causes an increasingly nonlinear response of the element
until the ductility demand could not be met. That this is
not the case is evident from the results. The reason is
probably the type of hysteresis model used. The bilinear
model has increasingly nonlinear strength as well as
increasing dissipated hysteretic energy capacity which would
both limit the response. In any case, this does not seem to

be a problem.



CHAPTER VI

SUXMARY AND CONCLUSIONS

This dissertation is concerned with the study of torsion
in buildings subjected to earthquakes. TI* is now well known
that there 1is a dyramic amplification of torgue and a
dynamic reduction in Dbuilding shear. A recent, detailed
study used *he mode superposition and <Tesponse spectrim
techniques to develop response envelopes for an excitation
"in one Adirec*ion, Other researchers have reported for a
single accelerogram response, as zuch as a 40-100% increase
in the peripheral resporse.

The analytical technique selected here for 1linear
response was the probabilistic approach. The probabilistic
description of earthgquake excitation was discussed and a
simple expression r=lating torsional earthquake excitation
to translational earthquake excitation was developed.
Interaction relations vere derived for systems with
simultaneous X, o, and Y ground excitations.

The main concern or deleteriocus effect of bailding
torsion is the increase 1in peripheral response. The reason
for *he increase 1is thought +*o be that the eccen*ricity
induces a rotational motion whose displacement at the
periphery more than offsets the decrease in the story
displacement that occurs with increasing eccentricity. The
peripheral response was studied wusing the probabilistic

model. The effect of the various parameters on the

104
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peripheral response was studied. It was shown that a
special case arises where the peripheral response is
independent of the eccentricity or frequency ratio.

Earthquake ground motion was described and the state of
the art of artificial generation vas discussed.
Oncorrelated ground translations were used for this study.
¥ewmark's model of ground rotational motion was used and the
various parameters affecting i* were studied. The decrease
on the magnitude of +this ground rotation as the rigid
building size to wavelength ratio 1increases was also
discussed.

A probabilistic approach cannot be used for nonlinear
hysteretic response. Monte Carlo methods ares used for
nonlinear response. An ensemble of artificial accelerograns
were generated for a response amnalysis of a class of
nonlinear building types. For +the four exterior wall model
studied, a bilirear hysteresis was used. For this *type of
model the torsion-translation frequency ratio is determined
by the geometry of the structure. The results showed the
peripheral response *to be only marginally higher *han that
for zero eccentricity.

For an eccentric structure responding in the nonlinear
range, the eccentricity increases with the increasing
nonlinearities, possibly causing larger and larger torsional
excitation. These studies showed this is not a problem with

the bilinear hysteresis used with this model.
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Conclusions

Based on the study 1in this dissertation, the following
general conclusions can be made: 1) in the statistical sense
of the word expected, i.e. the nmean, the maximum expected
increase 1in the elastic peripheral response due to both the
eccentricity and ground rotations 1is on the order of 50%;
2) the single most 1important parameter in building torsion
is the torsion-translation £frequency ratio; 3) torsional
grouand excitation must be guite larcge before it

significantly affscts the response for structures with well

separated frequencies; 4) the dissipated hysteretic energy
for nonlinear structures 1is maximum when the natunral
frequency 1s near the predominant frequency of the

accelerogram; and 5) parametric —resonance is not a problenm

for the four peripheral wall structure studied herein.

Concluding Remarks

The analysis of building torsion 1in this dissertation
assumes the ground rotation %o be related +to *he ground
translations by Vewmark's relation. Although the
conclusions stated are based on this assumption, it is still
felt, based on field observations of others, that ground
rotation is not much larger if differemt. ©Vevertheless, the
author still recommends the development and production of a
torsional seismometer to determine +*the actual magnitude of
the ground rotations and its relation to ground

+ranslations.
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Lastly, the ‘importance of the torsion-translation
frequency ratio must be emphasized. It is recommended for
qnusually shaped buildings where large eccentricities are
unavoidable, that the building be designed with well

separated torsion and translation frequencies.
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APPENDIX A

Response of single degree of freedom oscillators is
sometimes computed by the Duhamel or convolution integral.
The response to an impulse is a damped sine wave comménly
referred to as the impulse response function,h(t) of the oscil-
lator. The summing of the response due to each impulse
becomes in the limit an integral. The summing or super-
position of these responses is referred to as the Duhamel
or convolution integral

t
V(t)= [ h(t-t')-P(t')dt’ B .1

- 00

where

h(t)= A .2
exp (-Bew+t) *sinfuw- (1-B2) %+ t1/[w- (1-8%) %21t> 0
which is the transfer function for the differential equation

2

V(£)+2B-w-V(t) +02+V(t) = P(t) A .3

The Fourier transform of Equation A .1, commonly

referred to as the complex frequency response function, is
H(w)=1/[w 2-w2+2-B'w-w ci] A .4
n n :

The transfer function and the modulus of its transform
are plotted in Figure Aa).
The power spectral density of an ergodic stochastic process

is defined as
, s/2
6,2 (w=1im| | p(e) exp(-i-w-t)-at|%/s A .5
S "'S/Z
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A sample random process and its spectral density are
shown in Figure Ab).

It can easily be shown(sg)

that the response power
spectral density is the product of the square of the complex
frequency response function and the input power spectral
density.

|2

2 _ e 2 )
|G, () [=]H () e (w) | A.6

The response v(t) and corresponding power spectral density
are shown in Figure Ac). It is seen that a convolution

in the time domain corresponds to a multiplication in the
frequency domain. The converse can also be shown. Put
simply, the transform of a convolution of two functions

is the product of the individual transforms; also, the
transform of the product of two functions is the convolution
of the individual transforms.

The averaging filter U _,(t)

t!
0 t <t
U (8)=(1/t" —tk <t | ' A .7
0 t>t!
along with its transform U(f)
U(f)=sin (2 me£-t')/(2eme£-t") A .8
are depicted iﬁ Figure Ad).

The averaged response V(t)
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t+t' /2

©

marp—

vVi(t)

%, fv(t)dt= f Upr (E=£") =V (£')at"'=U_, (£) *V (t) A .9
t-t'/2

can be viewed as the convolution of Ut' with V. The

transform of V shown in Figure Ae) is the product of the

transform of U and V.

£
The first zero of U(f) is 1/(2t'), which for the

values of interest will be well beyond the natural frequency,

f. Thus the effect of the averaging is to reduce the

ordinates of the spectral density which reduces the variance

defined as the area under the spectral density curve. Since

the expected extreme value is proportional to the variance,

the effect of the averaging reduces the expected extreme

value, as expected.
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APPENDIX B
For a single degree of freedom (SDOF) system the
expected response is a maximum when the structure 1is directed

along one of the principal axes. The Motion along the princi-

ple axes are uncorrelated and are defined as the radial to the

epicenter and normal to the radius.

To show this, it is first assumed that the maximum
expected response is proportional to the variance, con-
sistent with the theory of extreme values. The variance
is expressed as the integral of the power spectral density
of the response, which is expressed as the integral of
the product of the frequency response function and excita-
tion power spectral density.

Let R denote the excitation along the principal axis P.
Since R and C are uncorrelated, the cross-correlation
function is zero. Thus, the cross spectrum Grcz(w), the
transform of the cross-correlation function, is also zero.
Let X and Y denote the angle 6 of the structure's
to p. Then

X=C-cos(6) + Re-sin(9)
and

Y=C:sin(6) + Recos(6)

Describing the power spectral density of X and Y in terms

of R and C gives

2

Gy (w)=cos? (8) 6,2 (w) +sin? (6) *G _

()

G 2(w)=sin2(5)'Grz(w)+cosz(9)'Gcz(w)

Y
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2, . _ e i 202
ny (w)=cos (6) *sin(8) -(Gr (w) G (w))

The variance of response of the SDOF system is

[oe]

L <x%>= 7 lH(w)|2°GX2(w)dw

- CO

o

= [ lH(w)iZ-[cosz(e)-Gr

- CO

2(m)+sin2(6)~Gcz(w)]dw

which is maximum when 6 is either 0° or 90° depending on
the relative variances of R and C.

For a multidegree of freedom (MDOF) system, the
approach is not as étraightforward, and simplifying
assumptions must be made. First, the variance is expressed
as the sum of the variances and covariances of the un-
coupled modal responses. The response quantity of interest
is

Q = B} ’ x}
where

&} = [AT U}

U}+[2-B-0) U+ (0] U} £}

[A] is the matrix of eigenvectors. The response power
spectrum can be expressed as

G % ()= {B}T[H]H[A]T[sz(w)] [a] (2] B}

!
For a 2-DOF system this expands to

. - 2 .2 .2
Gq2= (G02 . cosze+Gr2 , s1n29) |.H12 'A121"B12+2 'Hng'AﬁAzﬁBfBz'*'Hz .A]_z.Bz 1+

2 2 1 2 2 He (D e . . 2 s Dol
=G, ") +cos6-sinb [HI AjA;BI +H; H(AZAFAA) By BIH, ~As A B)+

(G,
2 2 .2 42
(Gcz'Sin26+Gc2'cosze)[H$°Ai'B1+2HinAﬁA2PfB;H2°Aé[B2] Bl
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argues, based on work by Rascon

(41) (73)

Rosenblueth
that there is a deterministic relaticii between the ratio of
spectral intensities (SI) of the ground& motions

along the two orthogonal axes, and

that as the RMS spectfum intensity increases fhe expected
ratio approaches unity. For the RMS spectrum intensity>4.5,
corresponding to a Modified Mercalli intensity of around V,
the ratio exceeds 0.9.

Thus, for earthguake intensities of interest, SIx=SIy.
Since the Arias intensity, the variance times duration,
is closely related to Housner's spectrum intensity, we

can say that\ <X2>s <Y2>, or

[-+] [-~)
2, 3 2. .
f Gr (w) *dw = f Gc {») -dw
(<]

- -
Due to the origins of the two ground motions R and C, we

can say
]H(w)i2°Gr2(m)~dw=]H(u)IZ-Gcz(w)°dm B.2

Thus, in Egquation B.1, the first and third terms become
dominant and the contribution of the second term apoproaches
zero. Also, since the two displacement coordinates,
corresponding to the two horizontal ground translations,
are orthogonal, the amount of coupling will be small even
in the worst case, i.e. Aii>>Aij' THis suggests that'
Equation'B.l . will be maximum when the cos(6) -sin(8) is

maximum, i.e. 8=45°. However, Equation B.2 suggests that

the difference will be slight.
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APPENDIX C
For a white noise process of intensity,,Gd, the
covariance of ‘modal responses is defined as

2

< Ym(t)°Yn(t)>=-£ H (w)*Hyn(w)'GO *dw 3.13

ym

where the complex frequency response function is

p—dq 2 1 L] L] L] L] -— 2 L] ' -
Hyn(w)—l/[mm +1°2+B 0 cw-w ] wC,%,

The wvariance 1is

< sz (t) >=_Z |H

The correlation coefficient Pmn is defined as
< o .
A Ym(t) Yn(t)>

P = TG:3
mn .-<Ym2(t)>059~<Yn2(t)>Q5

Inserting C.1 . into ."C.2. gives

5 © Goz-dw
<'Ym (t)y>= [ c.4

- 4 2 2 4
[w +wm°(4 Bm =2) w —w ]

This can be factored to

2
®© G *dw
<y _*(t)>= J ' © C.5

- OO

[wz-wmz-exp(-2~i-6)]-[mz—wmz-exp(Z-i-e)]

2

3% ana i=(-1) P

where exp(2+i-0)=[(1-2+B_%)]+i-[2-B_- (1-B
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Equation- C.5° can be expanded to

2
o
[w—wm-exp(-i-e)]-[w+mm-exp(-i-e)]

G
2 -
v <Ym (t)>—

-0

. dw
[w-wm-exp(i°8)]-[w+wm~exp(i-8)]

2

-

e 05, .
where exp(i-8)=[(1 B ) T1+i [BmJ

Equation C.6 - has 4 poles of order 1; namely,iwm-exp
(i+6) and twm-exp(i-e). f(x) can be regarded as a line

integral along the real axis. By the method of residues:

~.:f"f(x)dx=gs £(z) +dz

Cr

where f£(z) is analytic in Cr except at a finite number of
poles, and C. is a semicircular path whose diameter is the
real axis. Then

¢ £(z)-dz = Z-ﬂ-i;'Bum.of the residues in the upper
Cr half of the complex z-plane}

The residue of £(z) at z', z' a pole ocforder 1, is

Res[f(z),z']1=1im [(z-2')+£(2)]

z+z'
The integrand in Equation C.6 has two poles in the upper
half of the complex z-plane, namely, wm!exp(i~9) and

-wm~exp(-i'6).
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: 1
[exp(i-0)+exptiB) ][ exp(i+B)-exp(i+f)] [exp(i+8)+exp( 1°06)]

+ 1
"[-exp(-i+0)-exp(i-8)] [exp(i+B)-exp(-1+8)] [-exp(~1i°6)-expti-e)]

or

2 ey =
A (D= oy

which is the variance of the displacement of an oscillator

subjected to white noise excitation.

For the covariance, combining Equation 3.13 and C.1

. < Ym(t) -Yn(t) >=

2
o . GO

j [w+wm-exp(—i°6)]-[w—wm-exp(i-e)]

- 00

dw c.8
[w+mn°exp(i'6)]-[w—wn'exp(-i°e)] L

By the method of residues, Equation c.8 becomes

<Y _(t) Y _(t)>=2+mei-G 2"{sum of residues on upper half of
m n complex z-plane}l
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. 2
2°Te1i Go

. 2,05
2 W (l-Bm )

1
me'exp(i~em)+wn-exp(1-6n)J-[wm-exp(1°9m)-wn~exp(-1~en)]

1
[-wm°exp(-1-6m)+wn°exp(l-en)][—wm-exp(-l-em)—wn'exp(-l-en)]

Simplifying,
( LAY, = e e o 2.( - s . '
<Y (E) Y (t)>= 2em-d G, 1/z-1/z}/(2 w ")
=2emei-G 2+ R-i-Im(z)/|z|2}/ (2w ")
o m
=4.m-G %+ (w_-B +w_-B_)/|z]|? T.9
o m m n n B

where wm' is the damped natural frequency of the mth mode
and

-— '2_ 2_ . Y 2 1 e . LIS . . .
Z—[(cum wn' ) (wm Bm+mn Bn) 1+i-[2 W (wm Bm+wn Bn)]

The correlation coefficient Pmn by inserting Equation
C.7 and C.9  into £.3 is
— 3v . 3- 05 2 . - 1
Pon=8" (0 *Bp+w *B ) (w “*B *w ~*B) /12| L C:10-
which is Equation 3.24. For B,s By <<1l, Equation C.10

is very close to the simpler Equation 3.10 developed by

Rosenblueth.
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APPENDIX D
As described in Chapter II, the power spectrumfor
ensembles of accelerograms is commonly expressed in the

Kanai-Tajimi form

2 2 2 2.
GO (1+4 Bg w /wg )

5 DL

G, ()

T 2.2 _,.. 2. 2, 2
{[1 (w/wg) 1°+4 Bg w /mg }

The response power spectrumfor this type of excitation is

Gyz(w) = IHY(w)[Z-GZZ(w) D.2

or
.<'Y2(t)>=j — G°2.(l+4iBgz‘wé/wg2).dw 3
_w[w4+wn2-(4-Bn2-2)-wz—w4]'[(l-wz/wg2)2+4°Bg2-w2/wg ]

4 2 2 2
. +40B .
=G 2. J wg (1 g w /wg ]
(o]

2 2 . 2 2 -
-o [w —wy exp(=2-1i Gn)][w Wy exp(2-i en)]

. duw »lD.3 :

2 2 . e 2 2 cn
- . =Deief - . 2+i46
[w wg exp ( i g)J[w wg exp(2-+1i g)]

which has eight poles of order 1 at iwn-exp(ti~en) and

twg-exp(ti-eg). By the method of residues

2.2.7+i¢ {Sum of the residues in the upper half

, <Yn2(t)>=GO
of the complex z-plane.}

With the assuption that the spectrum for the ensemble
of excitations is a wide band process, Bg will be large

compared to that of the lightly damped oscillator, i.e.

>
Bg >Bn
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and therefore
eg>>en

After some algebra

G "7
2°w_T B
n n

2 2 2
w /mg

+ ¢ 4_. 2.' «q e - 3 .
l.(wn/wg) (mn/wg) {exp[2-1 (eg en)j+exp[ 21 (eg+en)]}

1+4-B
g

2y 2 2.2 2 2 2 2 2 2 2
1+4B 1- +4+B <o -4 . -4
( g Y I t;)nz/wg 1 2g 2n2/wg } Bg w_ /wg (1-4 Bg )
A 2 . , 2 2 2 2
i[1l- +4+B_ - + {[4- . «(1-
[ (wn/wg) ] g "“n /wg e+ I w /wg Bg] (1 Bg ) }
D.5
or
2
5 ﬂ'Gz (w_) ﬂ-F(wn)
<Y _“(t)>= 5 + = D.6
2*w_"~*B 2°w_"°B
n g
_ 2 2 2
—.‘<Yn (t)>w.n. Gz (wn) +<Z7(t)> F(mn)
where Gzz(m) is defined by Equation D.1l;-. F(wn) is defined

in Equation D.9, and.<Yn2(t)>m.n. is the response of the
oscillator to white noise. The assumption underlying
Equation D.6  gives rise to the same approximation used

in gust response factors, based on graphical inspection.



121

Typical values for mg and Bg used in Equation D.l- :

are 15.6 radians/sec. and 0.6, respectively. For

~ 2 2 2 .
mnémg, F(wn) = Gy and G, (wn)>GO . Also, since Bg<<Bn
the first term in Equation:Dgﬁ': dominates and
2 - 2, 2 .
<Y T(e)>2 <Y T(t)>w.n. G, (0] D.7

Thus the variance, which is proportional to the sgquare of
the expected extreme value, is proportional to the value
of the excitation power spectrum at the oscillator natural
frequency. For a wide band excitation where the building
frequencies are close together the effect of nonwhite

excitation cancels.
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Appendix E
Nonlinear Response Program

PROGRAMMED BY MARTIN E. BATTS 1977

CONSISTERT ORITS (USE KIPSEINCHES)

GACC (1)= X GROUND ACCEL INPOUT FILE 7
GACC({2)= Z GROUYD ANGULAR ACCEL
GACC(3)= Y GROUND" ACCEL INPUT FILE 8

EX®= X DIST FROM ORTJGIN TO C.G.

EYM= Y DIST FRCM ORIGIN TO C.G.

BX= DYST ALO¥S X AXIS BETWEEN Y RESISTING ELBHENTS

BY= DIST ALCNG Y AXIS BETWEEN X RESISTING ELEMENTS

BX= ECCFNTERICITY ALONG X AXIS FR0M C.G. TO CENTER OF STIFTNESS
EY= ECCENTRICITY ALON5 Y AXIS FRCM C.G. TO CERTER OF STIFFNESS
XI= % CRITICAL DAMPINS (VISCOCUS)

DT= INTEGRATION TIME STEP

MASS= MASS

PMASS= FASS MOMENT OF INERTIA{=R**2%XASS)

TO= INTIAL TINE

TEND= FINAL TIMEOF ACCELERATION .

DTAC= EQUAL TIME STEP OF ACCELERATION AS IFPUT

R=POLAR RADIUS OF GYRATION OF HASS

SO= INITIAL ELEHEWT STIFFUVESS IELEX=1=RAMEERG-0SGO0D
QY= ELEMEXT YIELD PORCFE IBLEN=2=BILIJEAR
BRO= RAMBERG-05G0O0D CDEFF. JELEN=3=STIFPNESS D2GRADING

SX= TOTAL X DIRECTICN STIFFRESS GG=ACCEL ERATION UNITS

SY¥= TOTAL Y NDIRECTION STITFXESS IPDELT=0 MEANS NO P-DELTA CALCS

SR= TOTAL Z DIRECTIQON STIFTIESS HGT=HEIGET 27 BLDS.

PHI= BODE SHAPE ACMULT=INPUT EB. MULIIPLIER

D= EIGERVALUES

DAMP= DAMPING MATRIX=M-1/2%*C*xN-1/2

DYE= YIELD DISPLACEMENTS OF ELEMENTIS

DYC=YT ELD DISPLACFEMENTS OFP CDORD CDIRECTION

Y= RELATIVE DISPLACENENT

DY= RELATIVE VELOCITY

DDY= RELATIVE ACCLERATION

OLDIS= CLD RELATIVE DISPLACEMERT

PPC= QLD COORD TOTAL FORCE

DISE= DISPLACEMERT OF THE ELENERTS

PF= FLEMENT FORCE

OF= OLD ELEMENT FPORCE

TE (T)= TINTEGRPAL OF TLENENT I FORCE TIMES DISPLACEMENT
(OUTPUT AS TE-STRATIN ENLERGY=DISSIPATED ENERGY) -

DAMPDE (I)= DAMPING DISSIPATED ENERGY FOR COORD DIRECTION I

VARC= COORD DISP COV. VARFC= COORD FORCECOV.

VARE= RMS ELEMENT DIS? VARFE= RMS ELEMENT FORCE

EQNS OF MOTION (Y)=(U,R*THETA,V) THETA ABOUT CENTER JF MASS

(ch C12/R c13 ) (KX -RX*EY/R 0. )
. @ 1 ’ - 1
(Y } ¢+ -*(C21/R C22/K**2 C23/R) * (1) + —*{-KI*BY/R KO/R**2 KY*EX/B) *(Y)
| .|

(c31 C32/R C33 ) 0. EY*EZ/R KY )
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C KO= STIFPNESS ABOUT CENTER OF XASS(NOT CENTER OF STIPFEESS)
C FOTE THAT THE MASS MATRIX IS THEZ IDENTITY MATRIX.THUS THE MODAL MASSES
C ARE 1.0

DIMENSION PORNAT(20), P1(8000), D1(8000), SOC(3), DIC(3), DYE(4)

CONNON /3TINE/ GASC(3), OGACC(3), G(8000,3)

COMNON SK(3,3), DAMP(3,2), PHI(3,3), D(3), OLDPPC(3), OLDIS(3),

1 PDELTA(3)
COMMOR /STIPF/ RIO(M4), FY(4), SO{4), IVC(4), S(4), PMAX(4), EPSHAX,
1 IBIOT

DIMENSION DISFE (4), ODISE(%), DISEMX(8), Y(3), DY(3), DDY(3),
oDY (4), TITLE(20), PP{4), B(6,6), DICHY(4), DISMX(3),
PPMAX (4) , TDISMX (3), ACMAX(3), TACMAX(3), OF(4),
DUCTNX(3), TE(4%), PFC(3), OY (4), AUX1(3), AUX2(3),
PPCHMX (3) , TPFCMX (3), VG(3), VARE(4), VARC(3,3), EIE(3),
DAMPDE(3), VARFE(4), VARFC(3,3), TBZ(3), P(3), FEBAR (4),
YEBAR (4) , FCBAR(3), YCBAR(3), VELZ(4), OVEILE (4),
ACCE (4), OACCE(4), ECCHAX(3), SKINV(3,3)
REAL MASS, K1(3), K2(3), K3(3), K&{(3), M(3)
IN = 5
INN = 7
INE2 = 8
IT = 6
10 READ (TX,20,BND=550) TITLE
WRITE (IT,30) TITLE
20 FORMAT (20AY4)
30 FORMAT (1H1, 20A4/)
READ (IN,20) TITLR
WRITE (IT,40) TITLE
40 FORMAT (//' X GROUND ACCELERATION= ', 10A4, 10X, ' Y GROUND AZCELE
1RATION= ', 10A4/)
READ (IN,50) EXX, EY®, BX, BY, XI, DT, MASS, T0, TEND, DTAC, 3G,
1ACMULT, CS, HGT, IELEM, IGROT, IFDELT, IPLOT
50 FORMAT (4F10.2/3F10.9/7F10.4/415)
¥STEPS = (TEED - TO) / DTAC + 0.49
READ (IN,60) SO, FY, RO
60 FORMAT (4F10.3)
READ (IN,70) PORMAT
70 FTORMAT (204l4)
PNASS = MASS * (BX*%2 + BY**2) / 12.
R = SQRT((3X*%*2 + BY**2)/12.)
EX = SO(4) * BX / (SO(3) + SO(4)) - EXN
EY = S0(2) * BY / (SO(1) + SO0(2)) - EYN

O W -

IBTOT = 0
EP SMAX 0.0
SOC(1) SO (1) + S0 (2)

S0C (3) SO(3) + SC(4)

S0C (2) SO(1) * EYNM *=* 2 + SO(2) * (BY - BYX) *x 2 + SO(3) * EBIX
1#* 2 + SO(4) * (BX - EXM) *= 2

DET = SOC(1) * SOZ(3) * (SOC({2) —~ SOC(1)*2Y*%2 - S0C(3) *EX**2)
SKINV(1,1) (SOC(2)*SCC(3) - (S50C(3)*EX)*%*2) / DET

SKINV(1,2) (SOC{ 1) *S0OC(3)*EY) / DET

SKINV(1,2?) (=502 (1) *S0C(3) *EX*EY) / DET

SKIRV{2,1) SKINY (1,2)

SKINV(2.2) (S50C (1)*sS0C(3)) / DET

o

LS L | I TR 1]



anaon nna

annoaan

124

SKINV(2,3) = (-SOT (1) *SOC(3)*EX) / DET

SKIEV(3,1) = SKINV (1,3)

SKINV(3,2) = SKINV(2,3)

SKINV(3,3) = (SOC(2)*SOC(1) = (SOC(1)*EY)*%2) / DET
(1) = 1.0

(2) = 1.0 * R

M(3) = 1.0

PDELTA(1) = GG * FPLOAT (IPDELT) / HGT

PDELTA(2) = 0.0

PDELTA(3) = GG * FLOAT (IPDELT) / HGT

BEXR = EX / R
BYR = BY / R
¥RITE (IT,80) BX, BY, EXM, EYEM, XI, DT, MASS, PMASS, TO, TERD,
1DTAC, R, EXR, EYR, GG, ACNULT, IELEM, IGROT, CS, IPDELT, HGT,
2IPLOT

80 FORMAT (//'0 BX=', F7.2,° BY=', ¥7.2, * EX1=*, F7.2, * EYI=!,

1 F7.2, ' BETA=', P6.4, ' DT=', P6.4, ' MASS=', B11.4, * ¥
2B**2 =',  B11.4, /* TO=', F7.3, ? TP=*', P6.3, ' DTAC=', F6.4, !
3 R=*, FB.4, ' EX/B=!, Fo.4, ' BY/R=t', P7.4, ' G=', FB.3, %X, !

4 ACMULT=*, P8.3, ' IELEM=', I2/'0 IGROT=', I2, ' (40Y¥ O=NEWMARX GRD
SROT)*, 5%, ' SHEAR WAVE SPEED=', P10.3, ' PDELTA?=', I3, ' HEIGHT=
6', P10.3, ' TIPLOT=', IS)

CALL SsSX(soc(1), soc(3), soCc(2), EX, EY, MASS, PMASS, R)

CALL EIG

po 90 I = 1, 4
90 DYE(X) = FY(I) / SO({I)

AVG X & Y YIELD DISPLACEMENTS

DYC (1)
DY C (3)

{DYE(1) + DYZ(2)) / 2.
(DYZ(3) + DYE(4)) / 2.

VALUE CP ROTATION (ABOUT CENTER OF MASS) WHEN ALL ELEMERTS HAVE
YIELDED I.E. MAX TORQUE/INITIAL STIFFNESS

DYC(2) = (FY(1)*BYM + FY(2)*(BY - EYM) + FY(3) *EXNM + FY(4)*(BL -
1EXH)) / S0C(2)

EQUAL %DAMPIRG IR ALL MODES:M-1K IS SYMM &M-1C=PHI* (2XIW) $PHI IS SYMX
SIKCE THE DISPLACEHENT VECTOR IS
Y= (U,R*THETA,V)

DO 100 T =1, 3
P(I) = 6.2832 / SQRT (D(I))
NOTF THBAT MODAL MASSES ARE 1.0*MASS.SEE ABOVE. BOUT WE WANT DAMP/MASS.
po 1003 =1, 3
100 B(I,J) = PHI(J,I) * 2.0 * SQRT(D(I)) * XI * 1.0

DO 120 T = 1, 3

Do 120Kk =1, 3
SUE = 0.0
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po 110 =1, 3
110 SU¥ = sOM + PHI(I,J) * B (J,K)

120 DAXP(I,K) = SUHM

WRITE (IT, 130)
130 FORMAT ('OPERIOD PREQUENCY**2 HBODE SHAPE', 30X, 'STIFPNESS MATRIX
1', 30X, '"DANPING MATRIX')

DO 140 I = 1, 3
140 WRITE (IT,1S0) P(I), D(I), (PHI(I,J),J=1,3), (SK(I,J),J=1,3),
1(DANP(I,J) ,J=1,3)

150 FORMAT ((F6.3,79.1,1X,3E12.4,3X,3212.4,3%,3E12.4))
REWIND INX
REWIRD INKR2

160 READ (INN,FORMAT,EED=10) (G(I,1) ,I=1,NSTEPS)
READ (INN2,PORMAT) (G (X,3),I=1,NSTREPS)

po 170 I = 1, NSTEPS
TIME = TO + (I - 1) #* DTAC

IF YOU WANT SROTND ROTATIONAL ACCELERATION NOT=0, THEN IGROT KOT=0
G(I,2)=((G{I+1,M) -G, 1)) *+G(I+1,3)-G(T,3)))/(2*SAEARWAVE SPEED) *M(I)
* M(I) DUE TD TYT NCNDIMENSIONAL EQUATIONS
G(I,2) = ACMULT * M(2) * (G(I + 1,1) = G(I,1) + G(I + 1,3) - G(
1 I1,3)) / (2.*CS*DTAC) :

IF (IGRAT .EQ. 0) G(I,2) = 0.0

G(I,1) = G(I,7) * ACKULT
170 G(I,3) = G(I,3) * ACMULT

DO 180 I = 1,
ODISE(I) =
DISEMX(T) =
PPMAX (I} = O
OF(I) = 0.0
TE(I) = 0.0
VARE(I) = 0
VARFE (I)
FEBAR (I)
YEBAR (T)
OVELE(I)
OACCE (T)
IvC(I) =
S(I) = So(I)
PMAX (I) = FY (I)
IF (IELEX .EQ. 3) GO TO 180
EMAX(I) = FY(I) * (1. - RO(I)) / (SO (I)*RO(I))
180 CONTIYUE :

g

0.0
0.0
.0

(o]

OO COO:
R T R T
QOOOO

L L LI I ]

DO 190 T
oDY (I)
DISAX (I)

3

([}

1,
0.0
=0
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ACNMAX(I) = 0.0
0Y(I) = 0.0
PFCHX(I) = 0.0
VG (I) = O.
EIB(I) = O
0GACC(I) = 0.
DAKPDE(I) = O
TEC(I) = O.
FCBAR(I) = O.
YCBAR(I) = 0.
BCCHAX(I) = 0.0

Do 190 J = 1, 3
VARC(I,J) = 0.0
VARFPC(I,J) = 0.

190 CORTINUE

DTT = DT

CALL SSK({soc{1), soc(3), soC(2), BX, EY, ¥ASS, PHASS, R)
L=20

IERR = 0

L2 =1

TIME = 0.0

DO 200 I = 1, 3
200 GACC(I) = G (1, I)

8TH ORDER RUNGE-RUTTA SINGLZ STEP INTEGRATION ABRAMORITZ P. 897
BEGINNING OF IRTEGRATICN HERE
210 L =1 + 1

DT = DIT

IBTOT = 0
SOLN OF EQNS OP EOTION ARE NONDINENSIONALIZED IN SUBR PNCTH
220 COXNTINUE
BY CHANGING DT, TIME MAY NOW BEKDTAC*(L2-1). IP? SO, L2=L2-1
230 IF (TIME + DT .LT. DTAC*(L2 - 1)) L2 = L2 - 1
WE WART TIME(L-1)+DT BETWEEN DTAC*(12-1) AND DTAC*L2

IP (TIXE + DT .LE. DTAC*L2) GO TO 240

L2 = 12 + 1

GO TO 230

240 PP = (TIME + DT - DTAC*(L2 - 1)) / DTAC

DO 250 T = 1, 3
250 GACC({I) = PP * G(L2 + 1,I) + (1. - PP) =* G (L2,I)

CALL FXCTR (L, 0.0, Y, DY, K1)

Do 260 T = 1, 3
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AUX1(I) = Y(I) + DT / 2. * DY(I) + DT /
ADX2(I) = DY(I) + K1(I) * DT / 2.

CALL FNCTN (L,

po 270 T = 1,

0.5,

3

AUX1, AUX2, K2)

AUX2(I) = DY(I) + X2(I) =*= DT / 2.

CALL FRCTN (L,

DO 280 T = 1,

0.5,
3

AUX1, A0X2, K3)

AUX1(I) = Y(I) + DT = DY(I) + DT / 2. *
AUX2(I) = DY(I) + K3(I) * DT

CALL FHCTR (L,
DO 290 I = 1,

Y(I) = 0Y (I)
DY (I) = ODY (I)

CALL FXNCTN (L,

1.0,

3

+ DT * (DY (I)

AUX1, AUX2, K4)

8. * K1(I) *= DT

K3(I) * DT

+ DT/6.*%(K1(I) + R2(I) + K3(I)))

+ DT / 6. = (R1(I) + 2.%K2(I) + 2.%K3(I) + K4 (L})

1.0,

Y, DY, DDY)

DISE(1) = Y (1) + EYN * Y(2) / R

DISE(2) = Y (1) - (BY - EYY) * ¥(2) /R
DISE(3) = Y(3) - BXNM * Y(2) / R

DISE(4) = ¥ (3) + (BX - EXM) * Y(2) / R
VELE(1) = DY(1) + EYM * DY (2) / R

VELE(2) = DY(1) - (BY - EYM) * DY(2) / R
VELE(3) = DY(3) - EIM * DY(2) / R

VELE(4) = DY(3) + (BX - EXM) * DY{2) / R
ACCE(1) = DDY(1) + EYM * DDY(2) / R
ACCE(2) = DDY(1) - (BY - ZYM) * DDY(2) / R
ACCE(3) = DDY(3) - EXM * DDY(2) / R
ACCE(4) = DDY(3) + (BX - BXM) * DDY(2) / R
PP(1) = OP(1) + S(1) * (DISZ(1) - ODISE(T)
PF(2) = OF(2) + S(2) * (DISE(2) - ODISE(2)
PP(3) = OP(3) + S(3) * (DISE(3) - ODISE(3)
PP (4) = 3P (4) + S(4) = (DISEB(4) - ODISE(s)
PPC(1) = PF(1) + PF(2)

PPC(2) = PF(1) * BEYN - PP(2) * (BY - EIN)

1PF (3) * EXK

PPFC(3) = PF(3) + PF(4)

FIND NEW ELEMENT STIFFNESSES

300

ODT = DT

DO 330 I = 1,
GO TO (300,

Y
310,

320y, IELBXM

CALL RMBOSG(PFP(I), OF(I), I)

GO TO 330

)
)
)
)

+ PP (8) * (BY - EIN)
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POR BILIR,CHECK IF STIFFNESS HAS CHAKRGED.

310 CALL BILYW

R(PF(I), OF (D),

1 ACCE (1), DTT, DT2, O

PIND MIN DT IF MORE THAN ONE ELEMENT HAS YIELDED

DT = AMIN
- GO TO 330
320 CALL STF¥D

1({DT,Dr2)

EG(PF(I), OF (L),

I? SO,FIND NEW DT &GTD130

DISE(I), ODISE(I), OVELE(I), OACCE(I),

DT,

DISE (I), ODISE (I),

I)

1 ACCE(I), DIrT, DT2, ODT, I)

DT = A4IN
330 CONTINUE

DO 360 I =
JOUST INSURANCE

IF (sS(I)
IF (TIERR

1(DT2,DT)

1, &

.GT. 1.001*SO(I)) IERR =

.EQ. 1) GO TO 46

0

1

OVELZE(I), OACCE(I),

IP OWE ELEMENT HAS YTELDED & ANOTHER IS UNLOADING FROY YIELD LINE
IT SHODLD CONVERGE IN ONE ITERATION

IP (IVC(T
IF (IVC(I

IF ELEMENT HAS YIELDED RESET JEW FORCES & DISPS.
SINCE WE WART TO UNDO THIS LAST TINME STEP

DO 340 7

) -.B0. 1) GO 70 360

) .BQ. O .AND. IELEM .EQ.

=1, 4

330  PF(J) = OFP(J)

DO 350 J
Y(J) =
350 DI(J) = 0@

EY
EX
SX

S(2)
S(4)
S(1)
SY = 5(3)
SR = S(1)
1 4+ 5(8) =
CALL SSK (
IBTOT = I

wnwanan

=1, 3
oY (J)
DY (J)

S(2)
S (#)

+ + % %

*

(BX - EXM) =** 2
sx, SsY, SR, BEX,
BTOT + 1

BY /7 (S(1) + S5({2))
BX / (S{(3) + sS(4))

EY'

IF (IBTOT .LT, 5) GO TO 220

IF ITS NOT CON

MASS,

1) G0 TO 360

- EINM
- EX2

PMASS,

TO THEIR OLD VALJES

R)

EYM *#* 2 + S(2) * (BY - EYM) ** 2 + S(3) * EXN ** 2

VERGINS, OR ELEMERT STIPPFNESSES ARE OSCILLATING

SET DT=DT/2 AKD TRY AGAIN

BACKGFORTH
IBTOT = 0
IF (DT .L

IP (IERR

T. 1.E-4) IERR =
.EQ.2) GO TO 460

2
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DT = DT / 2.
GO TO 220
360 CONTINUE

c

C TEHMPORARY ; TESTING STATEMENTS

C .
TIF (IPLOT .=Q. 0) GO TO 365
P1(1L) = PF (IPLOT)
D1(X) = DISE(IPLDT)

c

365 TIME = TIME + DT

c

C SIMDSON'S RULE INTEGRATION OF EIE ASSUMING LINEAR ACCELERATION PO DDY

C THE *R**2 'S ARE IN K1...K4 & VG

po 390 I = 1, 3
BIB(I) = EIE(I) + MASS * (K1(I)*VG(I) + 2.*(K2(I) + K3 (I))*(VG(
I) # DT#* (3.*0GAZC(I) + GACC(I))/8.) + KU (I)*(VG(I) + DT* (OGACC(
2 1I) + GACC(I))/2.)) * DT / 6.

-d

c
Do 3703 =1, 3

c

C *NMASS SINCE DAMP IS RONDIMZENSIONALIZED BY MASS

c .

370 CAMPDE(I) = DAMPDE(I) + DANMP(I,J) * DY(I) * DY(J) * DT * KASS

C
VG (I) = VG(I) + (OGACC(I) + GACC(I)) * DT / 2.
YCBAR(I) = YC3AR(I) + Y(I) * DT / TEND
PCBAR(I) = FCBAR(I) + PFC(I) * DT / TERD

c

DO 3803 =1, 3
VARC({I,J) = VARC(I,J) + (Y(I)*Y(J)/{M(I)*4(J))) * DT / TEYD
380 VARFC(I,J) = VARFC(I,J) + (PFC{I)=*PFC(J)) * DT / TEND

TBC(I) = TEC(I) + (OLDPPC(I)*MASS*M(I) + PTZC(I)) * (Y (I) -
1 OLDIS(I)) / (2.*¥(1))
OLDPFC(I) = PFC(I) / (MASS*N(I))
OGACC(T) = GACC(I)
390 OLDIS(I) = Y(I)

DO 800 I = 1, &
DEL = DISE(I) - ODISE(I)
TE(I) = TE(I) + (PF(I) +# OF(I)) * DEL / 2.
VARE(I) = VARE(I) + DISE(I) ** 2 * DT / TEND

VARFE(I) = VARFE(I) + PF(I) ** 2 * DT / TEND
YEBAR (I} = YEBAR(I) + DISE(I) * DI / TEND
FEBAR(I) = FEBAR (I) + PF(I) * DT / TEHND
ODISE(T) = DISE(I)

OVELE(I) = VELE(I)

QACCE(T) = ACCE(I)

0Y(I) = Y(I)
ODY (I) = DY (I)
800 OFP (I) = PP(I)
c
BY = S(2) * BY / (S(1) + S(2)) - BYAM
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BX / (S({3) + S(4)) - BXA

5(2)

S(4)

EYM ** 2 + S(2) * (BY - EYN) ** 2 + S(3) * EXNM *% 2 +

1S(4) * (BX - EXM) *=x* 2

CALL SSK(SX
COMPARE W/ HNAXI

IF (ABS (EX)
IF (ABS(EY)

DO 430 I =
IF (ABS (P
PFCHYX (I)
TPPCMX (T)
810 IF (ABS(D
ACHAX ()
TACNAX(T)
420 IF (ABS(Y
DISMX (I)
TDISMX (I)
DUCTMX (I)
430 CONTINUZ

DO 440 I =
IF (ABS(P

, SY, 5R, EX, EY, MASS, PEASS, R)

qousS
-GT. ECCMAX (1)) ECCMAX (1) = ABS (EX)
.GT. ECCIAX(3)) ECCMAX({3) = ABS(EY)

1, 3

FC(I)) .LT. PPCHMX (I)) GO T0 410
= ABS (PFC(I))

= TIME

DY(I) + GACC(I)) .LT. ACMAX (I)*GG) GO TO 420
= ABS{DDY(I) + GACC(I)) / GG
= TIME
(I)) .LT. DISMX (I)) GO TO &30
= ABS(Y (1))
TIMZ

= DISXX(I) / DYIC(I)

1, 4
P(I)) .GT. PFMAI(I)) PFMAX(I) = ABS(PF(I))

I? (ABS(DISE(I)) .GT. DISEMX(I)) DISENMX(I) = ABS(DISE({I))

pucnx (1) -
440 CONTIKOE

450 IP (TIME .L
EFD OF INTEGRAT
TEMPORAEY STATE

460 IF (IPLOT .
CALL PLTOFS
CALL PAXIS (

1 2.%FY (
CALL PAXIS (
CALL PLINE(
CALL PLTEND

470 DO 480 T =
VARFE (I)
VARE(I) =

480 TE(I) = TE(

EIET = 0.0
DANPT = 0.0
TECT = 0.0

= DISENX(I) / DYE(I)

T. TERD) GO TO 210
ION
MENTS;PLOTS PORCE DISP. HYSTERESIS POR ELEMBNTS2?1

£Q. 0) GO TO 470

(0.0, 2.*FY({1) /SO(1), 0., PY(1) /2., 7., 10.)

2., 10., 'pDISP', =0, 10., O., -10.*FY (1) /SO(1),
n/so(1), 1.)

7., 6., 'FORCE', 0, 8., 90., =2.*FY (1), FY(1) /2., 1.)
p1, F1, 1, 1, 0, 2, 1)

1, &

= SQRT (ABS(VARFE(I) - FEBAR (I)*%*2))
SQRT (ABS(VARE(I) - YEBAR(I)**2))
I) = PP(I) ** 2 / (2.*50(I))
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Do 520 I = 1, 3

DO 4903 = 1, 3
VARPC(I,J) = SQRT (ABS(VARFC(I,J) - FCBAR(I)*PZBAR(J)))
430  VARC (I,J) = SQRT (ABS(VARC(I,J) - YCBAR(I)*YZBAR(J)))

EIEB(I) EIB(I) + MASS * VG(I) =** 2 / 2.

DO 500 3 = 1, 3
S00  TEC(I) = TEC(I) - SKIKV(I,J) * PFC(J) * PPC(I) / 2.

PTRAL STRAIN € XINETIC ENERGY EVENTUALLY ARE DISSIPATED AS
DAMPING ENERGY

DO S10 3 = 1, 3
510 DANPDE(I) = DAMPDE(I) + SKINV(I,J) * PFC(J) * PPC(I) / 2.

DANPDE(I) = DAMPDE(I) + MASS * (DY(I) + VG(I)) ** 2 / 2. - 1ASS
1. * PDELTA(I) * Y(I) **= 2 / 2.
EIET = EIET + EIE(I)
DAMPT = DAMPT + DAMPDE(I)
520 TECT = TECT + TEC(I)

TEDE = DANMPT + TECT

¥RITE (IT,S530) (PPCHMX(I),TPFCMX(I),I=1,3), (ATEAX(I),TACNAX(I) ;I=
11,3), (DISMX(I),TDISMX(T),I=1,3), DUCTMX, DYC, YC3AR, VARC, FIBAR,
2VARPC, EIE, EIET, DAMPDE, DAXPT, TEC, TECT, TEDE, ECCHMAX, L, L2,
3TIXE, TERR

530 FORMAT (//'-QUANTITY X ', VITIXE R RTIYE
1Y YTIZE'//' MAX PORCE!', 6P10.3/'0ACC/3,TOTY, 6F10.3/'0
2MAX DISPL', 6F10.3, T8O, ' THETA*RY /*0ODUCTILITY', 3 (F10.3,10%)/10¥YI
3ELD DIS', 3(F10.3,10%X) /'0AVS DISP.', T11, 3(F10.3,10X)/, 'ORMNS DIS
ap. ', 3(T11,3(F10.3,10%) ), 'OAVG FORCE', T11, 3(F10.3,30X)/, '023%S
5 FORCE', 3(T11,3(P10.3,10%X)/), ' EQ. INPUT'/' ENERGY ',

6 4(F10.3,10X) /' DAMDPING'/" ENERGY ', 4 (FP12.3,10%)/' DISSIP
JATED'/' ENBRGY ', 4(P10.3,10X)/T70, 'TOTAL DISSIPATED ENERGY= ',
8 F10.3/'0¥AXECC ', 3(P10.3,10%), 10X, ' L=', IS5, * L2=¢,

9 15, * TIXE=', F10.4,'IERR= ', IS/)

WRITE (IT,Su40) (I,SO(I),FY(I),DYE{I),RO(I),DISEMX(I),DUCHX (I),
1PPMAX(I),TE(I) ,YEBAR(T) ,VARE (I), FEBAR(I),VARFE (I),I=1, 4)

540 PORNAT ("'~-ELMT #/ STIFF/YIELD FORCE/YIEZLD DISPL./R-0 COEFF/%AI.DIS
1P. /DOCTILITY/%AX.PORCE/DISS.ENERGY /AYG DISP/R¥S DISP./AVG FORIE/RY
2s PORCE, //(IS5,2%X,F9.1,3%,P9.3,1%X,P9.4,1X,F5.3,7%,8 (P9.3,1X)))

GO TO 160 :
550 STOP 1
END
SUBROUTINE PNCTE(L, PCT, Y, DY, DDY)
CoMMON SK(3,3), DAMP(3,3), PHI(3,3), D(3), OLDPPC(3), OLDIS(3i,
1 PDELTA( 3)
CORMON /GTIME/ GAZC (3), OGACC(3), G(8000,3)
DIMENSION Y (1), DY (1), DDY (1), AUX({(3)

.
==7

-C/n*Y -K/M*Y
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K*Y=PREVIOUS FPCRCE+INCRENMENTAL FORCE
=PREVIOUS PORCET+CTRRENT STIFTFNESS*INCREWENTAL DISPLACENENT
OLDPFC MUST BE NORMALIZED !

s = 0.0
DO 103 =1, 3
10 S = S+ DAMP(I,J) * DY(J)
20 AUX(I) = S
DO 40 T = 1, 3
S = 0.0
DO 303 =1, 3
30 S =85+ SK(I,J) * (¥(J) - OLDIS(J))
40 DDY(I) = - (S + OLDPPC(I)) ~- AOX(I) - OGACC(I) * (1. - PCT) -
1GACC(I) * BCT + PDELTA(I) * Y (I)
RETURK
END

SUBBOUTINE SSK (SX, SY, SR, EX, EY, MASS, PXASS, R)
COMNO¥ SK(3,3), DAMP(3,3), PEI(3,3), D(3), OLDPFC(3), OLDIS(3),

1 PDELTA (3)
BREAL MASS
SK (1,1) = SX / MASS
SK (1,2) = -EY * S / (MASS*R) -
SK (1,3) = 0.0
SK (2,2) = SR / PMASS
SK(2,3) = EX * SY / MASS / R
SK (3,3) = SY / MASS
DO 10 I =1, 3
Do 103 = 1, 3
10 SK (J,I) = SK(I,J)
RE TURN
END

SUBROUTINE BILNR(PF, OF, Y, OY, OVEL, OACC, ACC, DTT, DT, ODT, I)

BILINEAR STIPFVESS SUBROUTINE PREOGRAMMED BY M.E.BATTS 1978
FOR AN ELEMENT WHOSE FORCE IS A FUNCTION OP ONLY ONE DISPLACEMENT
SUCH A4S A LOMPED MASS SHEAR SYSTEM.
I? THE PORCE OVERSHOOIS TEE BILIBEAR ENVELOPE, THE SUBROUTINE
CONPUTES THE TIME STEP NECCESSARY TO HIT THE ENVELOPE PRECISELY (¥/T
1%)
FOR ELFMENTS WHOSE FORCE IS A PUNCTIOR OF SEVERAL DISPLACEMENTS SUC
AS MOMENTS IN A BEAM,
THE TIME STEP CALCULATION MUST BE REFORMULATED (BUT CAN BE DONE
WHERE THE CHANGE WILL BE IN THE OLD VELOCITY £ACC & NEW ACC
SOCH AS DY=M0OX/S0=2*THETAA+THETAB-3/LENGTH*PSI)
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IVC MUST BE INITIALIZED TO 1; S TO SO; PMAX TO .FY* (1-RO)/(SO=*R0)

COMMON /STIFP/ RO(4), PY(8), SO(4), IVC(4), S(4), PMAX (4), BP3MAX,
1 IBTOT

IVC (T)=0 MEANS YEW CHANRGING; IVC(I)=1 MEBAHS UNCHANGING;IVC(I)=-1
MEANS GRLOADING FROM YIELD LINE

DT = DTT _
IF (IVC(I) .EQ. 0) GO TO 20
IF (IVC(I) .EQ. - 1) IVC(I) =1

JP UNLOADING GTO 10{1? NOT GTD30. INITIALTIZE CONVERGEECE COUNTER;
IP Y IS BEYOAD FY* (1-RO)/(S0O*R0O) LOADINGEONLOADING BECOME UNCLEAR

TP (ABS (OY) .LT.PMAX (I)) GO TO 5
IF (S(I).EQ.SO(I)) GO TO 40
IF (ABS (Of) .LT. ABS(Y).AND.ABS {PF).LT.PY (I)} GO TO 10
IF (ABS (OY) .GT.ABS{U) .AND.ABS (PF) .GT.FY (I)) GO TO 10
GO TO 110
5 IF ((PF + OF)*(Y - 0Y})) 10, 30, 30
10 TP (S(I) .BQ. SO(I)) GO TO 40

ONLOADING & 2REVIOUSLY YIELDED,RESET STIFPNESS TO INITIAL,IVC(I)=-1
AND REDO THIS TIME STEPS CALCULATIONS

S(I) = SO(I)
IVC(I) = -1
DT = DTT

GO TO 110

DT WAS CHANGED. RESET IVC(I)=1 & CHECK IF PP=FY(I) SET
S(I)=S0(I) *RO(TI)

20 IVC(I) = 1.

S(I) = SJ{I) * RO(TI)

EPSLON = ABS(PP - (RO (I)*(SO(I)*Y - PF - FY(I)) + FY(I))/(1. - RO(
1I))) / ABS (PF)

EPSLOF = AMIN? (EPSLON,ABS(PP - (RO (I)*(SO(I)*f - PP + PY(I)) - PY(
1T))/(1. - RO(I)))/ABS (PF)) .

RPSMAX = ANAY1 (EPSMAY,EDPSLOY)

IF (EPSLON .LE. 0.01) RETURY

CALCOLATED DI HAS FAILED TO CCNVERGE, RECALULATE DT IF IT HAS OVERSHQT
ENVELOPE,OTHERRISE USE TEIS TIMSSTEPSCONTINUE. IP TWO ELEMENTS
HAD YIELDED, ONS PROBABLY HAS NOT CONVERGED OR OVERSHOT;THIS IS OK
S{I) = SO(I)
GO TO 40
IP NOT UNLOADING 5 NOT 2REVIDUSLY YIELDED, CHECK IO SER IF YIEBLDE)D NOW
30 IP (S(I) .EQ. SO(I)) GO T2 40

CONTINUING TO YIELD(GTO 110)
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GO TO0 110

IF PF ABOVE BOTTOHN YIBLD LIN¥E, (GTOS50) -

30 IF ((PP - (RC({I)*(SO(I)*Y - PF + PY(I)) - PY(I))/(1. - RO(I)))

1  GE. 0.0) GO TO S0
ELEMENT HAS YIELDED OF NEGATIVE SIDE. FIND NEW DT
GO TO 60

IF PP BELO¥ TOP YIELD LINE RETURH

S0 IF ((PF - (RO(I)*(SO(T)*Y - PP - PY(I)) + FI(I))/(1. - RO(I)))

1 LE. 0.0) 60 TO 110

ELEMENT HAS YIELDED ON POSITIVE SIDE. PIND NER DT (GTO 60)
GO T0 60

YTELDING. PIND NER DT S.T. NE¥ PP=YIELDPF & SET IVC(I)=0

DY=(FY (I)-OF) /SO(I)=DT*OVEL+DT **2 /6% (2*¥OACC+ACC (T+NE¥DT))
ASSUMING LINEAR ACCZELERATION DURING DTT,THIS INPLLIES A CUBIC

EQN IN DT. SOLVE FOR DT,SET IVC(I)=0,6REDO TRIS TIME STEP W/ NEW DT

60 P
Q

3. * ODT * OACC / (ACC - OACQ)
2. ®* P * OYEL / OACC

nn

PY(OF,0Y)={FY (I) +RO(I)* (SO(I)*0X-OF-PFY(X)))/(1-RO (1)}

FIYI = FY(I)

IF (Y .LT. OY) FYY = -FYI(I) -

R -6. * ODT / S (I) * ((FYY + RO(I)*(SO(I)*JY - OF - FIY))/(1. -
1 RO(I)) - OF) / (ACC - OACC)

A (3.%3 - P*p) / 3.
B (2.#P**3 - 9.*p=xQ + 27.%*R) / 27.
DT = ODT

ol

IP A>0 THERES ONLY ONE REAL ROOT,USE NEWRTON ITERATION
IP (A .GE. 0.0) GO TO 80
3 BREAL DISTINCT ROOTS, FPIND THE ONE BETWEEN O AND DTT

D = =-B/2./SQRT (-A**3/27.)

IF (ABS(D) .GT. 1.0) GO TO 80
PHI3 = ARZOS(D) /3.

C = 2. * SQRT(-A/3.)

DT = DTT

po 70 3 = 1, 3
DT2 = C * COS(PHI3 + (J - 1.)*2.094395) - P / 3.
IF (DT2 .LE. 0.0) DT2 = DTT
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IF(DT2.LT. 1. BE-4) DT2=1.E-4§
70 DT = AMIN1(DT,DT2) -

GO TO 100

80 po 90 3 = 1, 3
90 DT = DT - (DT*#*3 + DP*DT**2 + Q*DT 4+ R) / (3.*DI=*%*2 + 2.*P*DT +.Q)

IF DT IS CLOSE TO DTT, LINEAR ACC. MAY GIVE DT>DTT SINCE
BUNGE-KUTTA 5 LINEAR ACC. GIVE SLIGHTLY DIFFERENI ANSWERS.
IT SHOULD BE WITHIN 1% THOUGH. IF NOT, IBOMB WILL =5

100 IVC(I) =0
110 RETORN
END ~
SUBROUTINE RMBOSG(TT, OTT, I)

PERIOD /DT SHOOLD BE >16 OTHERWISE YCU CANT REALLY
CONSIDER THE ELEMENT TO BE LINEAR BETWEEN TIME STEPS

CONMON /STIFF/ RO(8), PY(Q), SO(4), IVC(4), S(4), PMAX (4),EPSIAX,
1 IBTOT .

DIMENSION YM({20,4), IC(4), UP(4)

GY (DY,DR) = 1. / (1. + (DR)*ABS{DY)*x (DR - 1.})

GRO (DY ,DYO,DR) = 1. / (1. + (DR)*ABS({DY - DYD) /2.)**(DR - 1.))

GY=STIFFNESS ONF SKELETON CURVE (W/ SHARPNESS COEFPF=DR& ALPHA=1.)
GRO=STIFFNESS NOT ON SXELETON CURVE

EVEN IC(I) *S= UNLOADING PTS ON SIDE OF HYSTERESIS LOOP OF MOST
RECENT UNLOADING F30M SKELETON CURVE

ODD IC(I)'S = UNLOADING PTS GOING IN OTHER DIRECTICHN

IVC MUST BE INITIALIZED TO 1, S TQO SO

T =TT / FY(I)
OT = OTT / FY(I)
‘ IP IVC(I)=1;0N SKELETON CURVE
IF (IVC(I) .NE. 1) GO TO 30
IFP (ABS(T) .LT. ABS(OT)) GO TO 20
10 S(TI) = SO(I) * GV(T,RO (I))

IC(I) =0
RETORN
UNLOADING FRON SKELETON CURVE .SET
IVC(I)=-1 & REDO THIS TINE STEPS
CALCULATIONS W/ NEW STIFPRESS
20 IVC(I) = -1
oP(I) = 1.
UP (T)=1;INCREASING JP (I) =-1; DECREASIHG
IF (T .LT. OT) UP(I) = -1.
IC(I) = 2
YN (162); HIGHEST PTS ON SKELETON CURVE
¥ (1,I) = -OT .
Y% (2,I) = OT

S(I) = SO(I) * GRO(T,OT,RO (I})
BRETURN
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IF (ABS(T) .GE. ABS(Y4(1,I))) GO TO 50

IVC(I)=0 MEANS HOT ON SKELETOR CODRVE

IVC(I) = 0
IP DELTA (FORCE) *DELIA (DISP) GTO0,GO T 20
I.E. BOT UNLOADING

IF ((T - O0T)*0P(I) .GT. 0.) GG TO 60

UNLOADING BUT NOT FROM SXELETON COURVE

C IVC(TI) =-1

o

(o]

nnnan

80

50

IVC(I) = -1
P (I) = 1
IP (T .LT. OT) OP(I) = =-1.

IC(I) = IC(I) + 1
IF (UP(I)* (T - YM(IC(I) - 1,I)) .GT. 0.) 30 TO 70

UNLOADING AGAIN §/ YM(IC(I))=OUNLOADIN3 PT
YN (IC(I),I) = OT
S(I) = SO(I) * GRO (T, YN (IC(I),I),RO(I))
RETURN
Ive(D) = 1

BACK ON SKELETON CURVE ,GTO 9

GO TO 10

CONTINOUES ONLOADING FRCY PT YM(IC(I)) TILL IT REACHES ONLOADING PT
Y®E(IC(I)-1) FEEN IT ONLGCADS FROM PT YN (IC{I)-2) TOWARDS PT ¥NM(IC(I)-3)

ETC.

60
70

1

1

1

TILL TBE SKELETON CORVE IS REACHED

IF (UP(I)* (T - Y (IC(I) - 1,I)) .LT. 0.) 50 .T3 40

IC(I) = IC(T) - 2 , :

IF (IC(I) .FO. 1) IC(I) = 2

IF (IC(I) .EQ. 2) GO TO 40

G0 TO 60

END

SUBROUTINE EIG

DOUBLE PRECISION ¢, Q, B, A, B, X, ¥

COMMON SX(3,3), DA¥P(3,3), PAI(3,3), D(3), OLDPPC(3), OLDIS(3),
PDELTA (3)

= -5K(1,1) - SK(2,2) - SK(3,3)

= SK(1,1) * (SK(2,2) + SK(3,3)) *+ SK(2,2) ‘* SK(3,3) - SK(2,3) *=*

2 - SK{1,2) ** 2

-SK{1,1) * SK{2,2) * SK(3,3) + SK(1,1) * SK(2,3) ** 2 + SK(3,

) * SK(1,2) *=* 2

(3.D0%Q - °*p} / 3.D0

(2.D0%P**3 - 3 _DO*P*Q + 27.DO*R) / 27.DO

P (B**2/4.D0+A%*%3/27.D0 .GT. 0.D0) B = 2.D0 * DSQRT(-a**3/27.D0)

/ DABS (B)

ARCOS (-B/2.D) /DSQET {(-~A*%3/27.D0)) / 3.D0

DO * DSQRT (- A/3.DO)

* DCOS(X + 4.188790200) - P / 3.DO

* DCOS(X + 2.094395103D0) - P / 3.DO

* DCOS(X) - P / 3.DO

©
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po 10xT= 1,3

DO 10J = 1, 3
PRI (I,J) = 0.0

Do 80 I =1, 3
PHI(1,I) = 1.0
IP (ABS(SK(3,3) - D(I)) .LE. 5.E-01 .AND. SK(2,3) .EQ. 0.0)

1 GO0 TO 20

GO TO 30

IP (SK(1,1) .EQ. SK(3,3) .AND. I .KE. 1} GO TO 30

PHI (1,I) = O.

PHI(2,I) = 0.0

PHI(3,I) = 1.0

GO TO 80

IP (ABS(SK(1,1) - D(I})) .LE. 5.E-01. .AND. SK(1,2) .EQ. 0.0)
1 GO TO 40

GO TO 50

PHI(1,I) = 1.0

PAI(2,I) = 0.0

PHI(3,I) = 0.0

GO TO 80

IF (ABS(SK(2,2) - D(I)) .LE. S.E-01 .AND. SK(1,2) .EQ. 0.0 .AKD.
1 SK(2,3) .EQ0. 0.0) GO TO 60

GO TO 70

PRI(1,I) = 0.0

PRI (2,I) = 1.0

PHI (3,I) = 0.0

GO TO 80

IF (SK(1,2) .EQ. 0.0} PHI(1,I) = 0.0

IF (SK(1,2) .EQ. 0.0) PHI(2,I) = 1.0

IF (SK(1,2) .NE. 0.0) PHI(2,I) = -(SK(1,1) - D(I)) / SK(1,2)

IF (SK(2,3) .NE. 0.0) PHI(3,I)
1 D(I))*PHI(2,I)) / SK(2,3)
CONTIRUE

-(SKR(1,2)*2HI(1,I) + (SK(2,2) -

DO 90 J = 1, 3
SUM = SQRT(PHI(1,J) **2 + PHI(2,J)**2 + PHI (3,J)**2)

Dosor =1, 3

90 PHI(T,Jd) = PHI (I,J) / SuM

RETURX
END
SUBROUTINE STFDEG(PP, OP, ¥, CY, OVEL, OACC, ACC, DTT, DT, ODI, I)

BILINEAR STIFPNESS DEGRADIHG HYSTERESIS(SIMPLTIFIED TAKEDA)
SUBROUTINE. CALCULATES NEW TINE STEP DT RHEN STIFPNESS CHANGES

COMMOR/STIPF /RO(4), FY(8), SO({4), IVC(4), S(4), PMAX{(4), EPSIAX,
1 IBTOT
DINENSION U (13,4, F(13,4), IC(4), IOC(4), S2(8)

IVC=1 MEANS ONCHANGINS STIFFNESS; IVC=-1 MEANS UNLOADING ,LAST STEP
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IVC=0 MBANS CHANGING STIFFNESS WHILE LOADING ,LAST STEP;CHK IF
CONVERGED

PT IC=2 IS THE® HIGHEST PT. OK BILINEAR ENVELOPE REACHED
PT IC=4 IS THE MAXY PT RPACHED ON WAY TO PT IC=2

PT IC=1 IS THE MIGRROR OY PT IC=2

PT IC=3 IS THE MAX PT RPEACHED O¥ WAY TO PT IC=1

IVC MUST BE INITIALIZED TO 1 S TO SO; PMAX TO FY

DT = DTT

IF (IVC(I) .EQ. 0) GO TO 20
IF (IVC(I) .NE. -1) GO TO 5
$2(I) = SO (I)

IVC(I) = 1

IOC(I) = IC(I) + 2

g{IoC(I),I) = 0OY
F(IOC(I),I) = OF
DT = DTT
GO TO 160

5 IF ( OF *(Y - cY)) 10, 70, 70
10 IP (S(I) .EQ. SO(I)) GO TD 60

UNLOADING & CHANGING STIFFNESS FIND DT S.T. DY=0 TO AVOID
PROBLEES WHEN TWO ELEMENTS YIELD & UNLOAD SIMULTANEOUSLY

IVC(I) = -1
DY = 0.0
GO TO 110
20 IVC(I) = 1
IP( PMAX(I) .EQ. PY(I)) GO TO 40
IF (S(I) .EQ. SO(I) .AND. OP#*(Y-0Y) .LT. 0.0) GO TO 40
EPSLON = ABS(® (I0OZ(I) + 2,I) - PF) / ABS(PF)
IF (EPSLON .GE. 0.01) GO TO 30

CONVERGED. LOADING TOWARD U (IC (T)-2)
IF (IOC(I) .LE. 0) GO TO 90
S2 (I)= {(F(TOC(I),I) -F(IOC(I)+2,I))/(0(I0C(I),I)-0(I0C(I}+2,I))}
GO TO 160

PAILED TO COSVERGE TO PT. O(IC(I))

30 I0C(I) = IC(T)
GO0 TO 70

ONLOADING TOWARDS ZERD PORCE, CBECK IF IT HIT ZERD
OR PIRST NONLINEAR EXCURSION

40 IF (ABS(PF)/PY(I) .GE. 0.005.AND.PMAX(I).NE.PY(I)) GO TO 50

ZERO FORCE, FIND NBW STIFFNESS
OR PIE ST EONLINEAR EXCURSIOHN

IP (PMAX(I) .EQ.PY(T).AND.ABS (PNAX(I)-ABS(PP)) /PMAX(I).GE.D.01)
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1 GO TO 100

IF (PMAX(I) .EQ. PY(I)) GO TO 90

1I0C(I) = IC(I) - 1

S2(I) = F(IOC(I),I) .~ (O(TocC(I),I) - Y}
PP=0.0

GO TO 160

PAILED TO CONVERGE TO ZERC PORCE
50 IOC(I) = IC(I)
UNLOADING TOWARDS ZERO FORCE:; CHECK IF BEYOND
60 S2 (I)=SO(I)
IP (PMAX(I) .BQ. PY(I}) 50 TO 160
IF (PP*OP .GT. 0.0) GO TO 160
DY = -OF / SO(TI)
IVC(I) =0
GO TO 110
CONTINUIKEG LDADING; CHECK IF BEYOKD F (IC(I),I)
70 IFP (ABS(PF) .GE. ABS (P (MAXO (IC(I),1),I))) GO TIo 80
S2 (T)=S(I)
GO TO 160
80 IF (S(I) .HE. SO(I)*RO(I)) GO TO 100
STTLL ON BILINEAR RBKVELOPE

90 S2(TI) = RO(I} * SO(I)
0

I0C(I) =

U(1,I) = -Y
P(1,I) = -PF
U(2,I) = Y

P(2,I) = PF

PMAX (I) = ABS(PF)
GO TO 163

IP STILL LINESAR,RETURR

100 S2 (I)=S(I) »
IF (PNAX(I) .EQ. FY(I) .AND. ABS(PF) .LE. FY(I)) 30 TO 160

CHANGING STIFFNESS, FIND NEW DT FIRST

DY = U (MAXO (IC(I),1),I) - OY
IvVC(I) =0
IF (PMAX(I).EQ.FY(I)) DY=(FPY(I)/SO(I)-ABS(0Y))*0Y/ABS (0Y)

JF ONE ELEMENT YIELDS & ANOTHER URLOADS, THE CHANGB IN TIME STEP %AY
CAUSE THE UNLOADING ELEMENT TO RELOAD. IN THIS CASE SINCE IC WILL
JUST HAVE BENN INCREMENTED BY 2 IN IS#3, WE DONT WANT TO DECREMENI IT
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DY.NE.0.0) IOC(I)=IC (I)-2

3. % ODT * OAZC / (ACC = OACC)
6. * ODT * OVEL ,/ (ACC - OACC)
-6. * ODT * DY / (ACC - OACC)
(3.%0-P*p) / 3.

(2.*P**3 - 9.xP*Q + 27.%R) ,/ 27.
DT = ODT
IF (A .GE. 0.0) 63 TO 130
D=-B/2./SQRT(-A**3/27.)
IP (ABS (D) .GT.1.0) GO TO 130
PHI3= ARCOS (D) /3.
C = 2. ® SQRT(=-A/3.)
DT = DTT

IF
p
Q
R
A
B

Wonnan N~

Do 120 3= 1, 3
DT2 = C * COS(PHI3 + (J - 1.)*2.094395) - P / 3.
IP (DT2 .lE. 0.0) DT2 = DTT
IP(DT2.LT. 1. E-4) DT2=1.E-4
120 DT = AHMIX1T(DT,DT2)

GG TO 150

130 DO 140 3 = 1, 3

180 DT = DT - (DT**3 + P*DT**2 + Q*DT + B) / (3.*DT**2 + 2.*P*DT + Q)
IF (DT.LT. 1.E~-4) DT=1.E-4
IF (DT .GT. DTT) DT=DTT

150 CONTIEOE

160 IP (I .NE. 4) GO TO 190
DO 170 J=1,4
IF (IVC({J) .EQ. 1) GO TO 170
GO TO 180

170 CORTINUE
DO 180 J=1,4
IC (J) = IOC(J)

180 S (J) = S2(J)

190 RETORN
EXD
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APPENDIX F

The first law of thermodyramics for a closed system that

undergoes a change in state is

2 2
(SQ = dE + (SW F-1
{2

—-_— N

2
where fsQ is the heat transferred by the process between
1

state 1 and state 2 ana f5i is the work done between state
1

1 and state 2. E 1is +the -energy of the system in a giﬁen
state and in this case represents the sum of strain energy,
SE and kinetic enerqgy,KE.

Equation F-1 can be written as

1Q2=(SEz+KE2)-(SEl+KEl) + lwz F-2
where 10, represents the dissipated hysteretic diésipated
energy,DHE, and dissipated damping energy, DDE

190,= = (DHE+DDE) .
1“2 represents the work done by the system whick is the
earthquake input enerqgy,EIE

lwz = ~-ETIE.
By writing the dynamic eguations of motion as
H0(5;+ﬁ.)+COﬁ+?(U)=O

and integra*ting these forces through the distance dU+dUg

t - @ - -
j{no(u +0 )+CoU+F(U)}-(dU+dUg)=o
5 g

the various terms in Equation F-2 can be expressed as



142

t e == + . t -
[ 0 3} F (7 oJ+ T = -
é!o( G0 ) e +dUg)+£{CoU+ ( )}°dU+L{C F(0)}d0 =0 F-3

By a suitable <change of variables and rearranging *eras,
Zquation F-3 beconmes

t . t < .t t

ja-(n+6g)o(dU+d6g)+ICo0-dU+f?(U)odU=-f{c-n+F(U)}-dUg F-4
(o) o [e] o

which satisfies the first law of thermodynamics for the

closed svstem shown in Figure F=-1,

= KX )
3 X .
— - 2zit)
T \C)\ \Q S W N WY Q !
2=0

Piqure F-1 Dynamic Model
The first term in Equation F¥-4 is the kinetic energy,kE

KE = a-[ﬁ(t)+8g(t)]2/2

The second term is the dissipated damping energy,DDE

t -
DDE = [Ce02 (t) »dt
o
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The third term represents the dissipated hysteretic energy
DHE, and the strain energy,SE
SE = KeU2(t) /2

The cight hand side of Egquation F-4 is the

earthquake input enerqgy,BEIRE

4
e

{K-u+c-6}-dug;£no(ng+5')-&g-dt-

EIE ==

Q Yt

Finally, Egquation F-4 can be rearranged as the more familiar

EIE = ASE + AKT + DDE + DHE F~5
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