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ABSTRACT

In is now «2ii known that Cor buildings with eccentric

centers or mass and stiffness, there is a dynamic

amplification or torque and a dynamic reduction in building

shear. The main concern with building torsion is that the

eccentricity induces a rotational motion whose contribution

to the displacement at the periphery causes an increased

aispiasameat compared to the displacement corresponding to

zero eccentricity. Other researchers have reported for a

sin^xe accelerogram as much as a 40-100% increase in the

peripheral response.

In tins dissertation, the probabilistic approach is

selected for the analysis c£ linear response. The

earthquake ground excitation is discussed and a simple

expression relating torsional earthquake power spectra to

transiationa1 earthquake pcwer spectra is developed.

Interaction relations are derived for systems with

simultaneous X, p, and ¥ ground excitations.

The peripheral response is studied using the

prouabiListic approach. It is shown that a special case

arxses where trie peripheral response is independent of the

eccentricity ratio and frequency ratio.

The state of the art of artificial accelerogram

generation is discussed. Various parameters affecting

ground rotational motion are discussed.

Nonlinear response characteristics for a four exterior

wall model are analyzed and it is concluded that parametric



resonance is not a problem for this model.

hajor conclusions from the results of this dissertation

include the following: a) the ttaximum expected increase in

peripheral response is on the order of 50%, b) the single

most, important parameter in building torsion is the torsion-

translation frequency ratio, and c) torsional ground

excitation must be quite large before it significantly

affects the response for systems with well separated

LITc£ '<2 Uc;u C ♦
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CH A PTE? I

IHTBODOCTION

According to Herodotus, when Xerxes was planning the

second Persian expedition against, the Greeks in 480 B.C., a

bridge built for the crossing at Hellespont by his

Phoenician and Egyptian engineers was destroyed by a storm.

The engineers were beheaded and the waters- of Hellespont

received three hundred lashes*1'.

In ancient Hesopotamia, the Code of Hammurabi contained

the first building code. Its design philosophy was to

prescribe the punishment for a failed building, one of which

was the death of the builder*2

As time passed, society became less barbaric and building

became more scientific.

flhile there is no written historical evidence the

Egyptians had knowledge of a theory of structural behavior,

their immense and precise civil engineering works suggest

they devised empirical rules in their building. The Greeks

contribution to structural theory was by Aristotle (384-322

B.C.), and by Archimedes (287-212 B.C.) who formulated the

equilibrium principle of statics. The Romans, while profuse

builders, designed their structures empirically. The Hiddle

Ages, as is typical of the period, seems devoid of much

civil engineering progress. Although a few of the

1
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Renaissance's versatile scientists, Da Vinci and Galileo,

discussed structural behavior in their publications, it was

not until the 13th century, the Age of Reason, that the

basis for the modern theory of mechanics of solids was

established by Hooke, the Bernoulli's,. Euler, LaGrange,

Couloumb, and Javier- The establishment of the theory

changed the emphasis of design from empirical observations

on strength to a scientific elastic analysis of stresses and

strains* 3 >.

Dedicating a bridge, Franklin Delano Roosevelt once

remarked that bridge building is the story of civilization-

It surely is the story of civil engineering- Nineteenth

century bridge failures had a profound effect on the course

of the civil engineering profession- In 1376, a Howe truss

bridge at Ashtabula, Ohio, collapsed, killing ninety

persons. It had been erected by a non-engineer, who also

had modified its design. Legislation following the

catastrophe required that the design and construction of

bridges be directed by professional engineers*.

While infamous bridge failures in wind in the 1800*s

brought about studies and design rules for wind bracing, it

took the great San Francisco Earthquake of 1906 to spur the

profession to studies of earthquake resistant design,

resulting in the first American building code for earthquake

design rules, namely the Santa Barbara code of 1925*s).

3any studies of earthquake resistant design center on

inelastic response- The present design philosophy that
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structures be able to withstand a large earthquake while

allowing structural damage is based in part on economics and

the concept of limit design, introduced by Housner<6). The

principle of limit design is to allow the structure to

dissipate energy hysteretically, which results in a

ductility demand design requirement.

Ductile moment frame buildings are typically systems of

orthogonal plane frames coupled through floor

diaphragms. For two-dimensional analysis, the plane frames

can be analyzed separately. The hysteretic energy

dissipation for a moment frame takes place through plastic

hinging of the members when yield moment capacity is

exceeded. The simplest model for such plastic hinging is

the elasto-plastic model. The elasto-plastic model was used

by Berg (7> in the inelastic analyses of plane frames and

also by Newmark <3>. The next refinement in the analysis

was the use of the bilinear model. This model was employed

by Clough <9), Iwan (10), and Giberson <n> to mention a

few. Since the moment curvature relation for typical members

was not multilinear but curvilinear, the next refinement

included the Ramberg-Osgood model <12) utilized by Jennings

<13>, Goel Cl4>, and Kaldiian <1S>.

Suggested analytical models for the hysteretic behaviour

of shear walls have been used with some success ct6 l7'.

Extensive experimental data also exists on the hysteresis

behaviour of reinforced concrete flexural members and the

parameters affecting it; however, no generally accepted
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modeling technique exists.

Many special purpose computer programs exist for

inelastic dynamic plane frame analysis; one widely used

general purpose computer program for this purpose is D8AIN2D

bv Kanaan and Powell <t«>.

The development of the computer and the increased size of

computer core space spurred the development and use of space

frame elastic programs. A space frame elastic dynamic

analysis program, TABS, developed by Wilson c 1 ? >

economically utilizes the planar structure of space frames;

however, it computes column axial strains that are not

compatible in columns common to orthogonal plane frames. In

the course of the space program, the National Aeronautics

and Space Administration developed a three-dimensional

elastic dynamic analysis computer program, HAST8AH<20>.

Other public general purpose space frame programs developed

are SAP-I7<21> and ST20DL C22>„

Three dimensional elastic dynamic computer programs are

expensive to use since each joint has six degrees of

freedom, requiring a large amount of computer time in matrix

manipulation. Simplifying techniques have been employed

with some success to show the gross structural response.

Early studies <23> of building torsion have shown that

the lateral and torsional motions of the structure are

coupled if there exists an eccentricity between the centers

of mass and stiffness of the structure. For small

eccentricities the usual method of analysis consisted of
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computing the static torque, the product of the buildina

shear and the eccentricity. Many studies <2* 2S) have shown

that the dynamic torque may considerably exceed this

product. Most of these studies have shown that a reduction

in the horizontal building shear usually occurs along with

this dynamic amplification of torque.

Hoernec C26> a study of modal coupling, meaning a

coupling between the two translational and one rotational

degrees of freedom such that each mode may contain a

component of all three degrees of freedom. Hoerner's study

showed that the amount of modal coupling is related to the

eccentricity between the center of mass and the center of

stiffness divided by the translational-torsional frequency

difference. This is confirmed by forced vibration tests

(2T),

Reidebrecht <23> used modal analysis with the frames and

shear walls modeled as prismatic shear and bending beams

respectively. With a simplification of the three coupled

differential equations of motion, he developed nomographs to

determine the higher coupled frequencies.

Berg (2,) also used modal analysis in a study of a

cantilever shear beam model to show the effect of

unsymmetric setbacks. His study showed that torsional

oscillations occur and mode shapes are coupled for

unsymmetric setbacks.

Tso <30) showed that when a symmetric building with no

eccentricity, i.e. uncoupled, is excited in only one
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direction, torsional response can arise fro® the nonlinear

coupling between translational and torsional motions, known

as parametric resonance.

The final refinement in analysis techniques is the

modeling of buildings as inelastic space frames. Okada <3i)

modeled a one story building as a space frame to show the

increased corner damage due to high eccentricity. Padilla-

Mora <32) used a four frame shear building as a model to

show the effect common column orthogonal strength

interaction has on hysteretic dissipated energy.

Shiga <33) developed a special purpose three-dimensional

inelastic dynamic response computer program for the analysis

of a building damaged by the 1S68 Tokachi-Oki

earthquake. The results correlated with the damage.

Sondkar et al <34) have developed a general purpose

inelastic three-dimensional dynamic finite element computer

program, ANSK, which is an extension of DRAIN2D <i®5. It is

very expensive to utilize.

There have been many attempts to model a building as a

beam <3S). For some purposes this technique gives the

desired result. Foe elastic analyses it is difficult, if not

impossible, to match both the higher frequencies and mode

shapes. Por a typical N-story building the beam model's

parameters can be adjusted such that the H frequencies will

match the actual building's frequencies, but then the mode

shapes may not match (and vice versa). For inelastic

analyses where higher modes may not be as important, a beam
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model cannot simulate the strength interaction of columns

common to orthogonal frames- 41so, it cannot model the

effects of unsymmetrical strength {as opposed to stiffness)

in parallel frames- These problems can be avoided by

modeling the individual frames as beams, but this creates

nev problems- For the shear beam model, a change in

stiffness at the Ith level changes the stiffness matrix

coefficients at the (1-1) , (I) and (1 + 1) rovs ar.d

columns. For a moment frame, a change in stiffness in a

member at the Ith level changes all the coefficients in the

lateral stiffness matrix. This problem can also be

circumvented by modeling the frame as a bending beam instead

of a shear beam; however, the frame's dynamic

characteristics are more like a shear beam than a bending

beam. Some attempted remedies consist of using Timoshenko

beams and series or parallel beams; yet, the modeling of a

building as a beam raises more objections than the benefits

of economics of the model can justify.

another modeling technique can be used for 1-story

buildings and buildings being analyzed in their fundamental

mode only. Kan and Chopra (36) an exhaustive study of

the parameters affecting the torsional response of linear

one story buildings. For inelastic behaviour, the single

resisting element or generalised coordinate stiffness for

aultidegree of freedom systems analysed only in the

fundamental mode, can be assigned a hysteresis loop based on

theoretical or experimental information depending on the
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tyre of building. For example, in a steel moment frame

building a bilinear or Eamberg-Osgood type hysteresis would

be appropriate {Fig, 1-1). A symmetrically braced frame

type hysteresis, illustrated in Fig. 1-2, exhibits the slip

type shape characteristic of bolted frames- A shear wall

resisting element differs from moment frame hysteresis in

that it is usually of the degrading type. The shear wall

type hysteresis is illustrated in Fig. 1-3 and is

characterized by the pinched shape near the origin.

A more rigorous method for modeling inelastic building

motion is by the member by member approach. Here the matrix

structural analysis technique is used with the global

stiffness matrix being altered in time as each member

changes stiffness in time. There are different types of

hysteresis behavior for different resisting element members

as described above.

A bifurcation of analysis methods arises in the choice of

time domain versus frequency domain analysis- The choice

partially rests on the philosophy of the analyst- Time

series analysis is generally more expensive and

statistically more variant than frequency domain analysis

which gives the expected maximum <3v> as opposed to a

maximum of a member of an ensemble of ergodic processes.

For inelastic response, frequency domain analysis cannot be

applied without using some approximate technique since the

complex frequency response function is time dependent.

At the present time there is no generally accepted method



Figure 1-3 Typical Shear Wall Hysteresis
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for determining by spectral analysis the statistical

parameters of response for a stochastically excited

nonlinear hysteretic system. The Fokker-Planck equation

approach for nonlinear systems, which involves the solution

of a partial differential equation involving the qoint

probability of displacement, velocity, and time, is not

applicable for either nonwhite excitation (38) or hysteretic

systems. Equivalent linearization techniaues (3v>f where

minimization of the mean squared error is used in finding a

statistically equivalent linear stiffness and damping

coefficient, is limited to either bilinear svstems with

nearly equal slooes or systems with small nonlinearities or

small ductilities c*(n.

Probably the most reliable method of studying the

response of inelastic hysteretic three-dimensional-

structures is by donte-Carlo methods. Statistical

parameters can be determined by analyzing an ensemble of

time series analyses of structural response to ergodic

excitations. The lonte-Carlo methods will be used in this

thesis. Chapter II recounts the state of the art in

artificial accelerogram generation, its underlying

processes, and the parameters affecting it. Ground

rotational motion is also described and discussed. Chapter

III describes the elastic torsional response of buildings

using as the foundation the excitations described in Chapter

II. The torsional response is analyzed in the frequency

domain. Chapter IT describes the model used in the
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inelastic study and the solution technique used to analyze

the response. Chapter 7 lists the results for the inelastic

studies and discusses the nonlinear response

characteristics.



CHAPTER II

DESCRIPTION OF EARTHQUAKE
EXCITATION

Observations of geologists and current thinking on the

origin of the earth make it evident that earthquakes have

been occurrinq for at least hundreds of millions of years.

Early historical and biblical references to earxhquakes

occur as far back as 1600 B.C. <+3). Historical speculation

as to the causes of earthquakes has bases in legend,

mytholoay, science, astrology and religion-

Aristotle believed that earthquakes were caused by

subterranean winds produced by an evaporation of moisture

imprisoned in the earth's crust. Pliny, a Roman

philosopher, later expanded on Aristotle's belief, writing

that earthquakes were earth's way of punishing the

wickedness of men who mine ores of gold, silver and iron, a

theme repeated in variation in different cultures around the

world.

Zooaorphic qualities are assigned to earthquakes in the

legends of many cultures and countries. In Japan, it was

thought there was a giant subterranean spider who caused the

earth to shake when he moved. In India the mythical monster

was a mole; in Mongolia, a hog; and in North America a

tortoise (44>. A BSSA account of the 1811 New Madrid,

aissouri earthquake<45> tells of a legend claiming that

12
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earthquake to be caused by a homed comet colliiinc with the

earth-

Scandinavian mythology regarding earthquakes concerned

the peccadillos of deities- Indian lore contains seven myths

concerning earthquake sources. Fascinating accounts of

causes of earthquakes abound in the mythologies of various

cultures.

Gods of earthquakes are referred to in various

mythologies. A common theme in the beliefs of different

cultures regards the earthquake as divine punishment visited

upon a wicked people. With time natural explanations of

earthquakes were expounded and received to varying

degrees. In an article in the esteemed Philosophic

Transactions of the Eoyal Society of London in 1750, a

writer in his foreword apologized to "those who are ant to

be offended at any attempts to give a natural account of

earthquakes." As late as 1930, according to newspaper

reports (London Times, July 28, 1930), the Archbishop of

Naples referred to the Italian earthquake of July 23, 1930

as God's vengeance visited upon an immoral people.

Historical legends and myths are fascinating to read.

The evolution of scientific thought is another interesting

and related aspect of earthquakes important to ,the

understanding of two geophysical topics, namely, the

mechanism and underlying causes of earthquakes. The

currently accepted predominant earthquake mechanism, the

Elastic Hebound theory, was proposed in 1908 by Harry
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Fielding Reid and \ndrev lasson. They were faced with

charges of '•mysticism" since they presented the mechanism

but not the underlying causes of the earthquakes. The

Elastic Rebound Theory postulates a slow accumulation of

strain along the fault until rupture occurs. The fault then

rebounds to a new equilibrium position radiating shock waves

outward.

Inch speculation concerns the underlying cause of the

slow accumulation of strains necessary to the Elastic

Rebound mechanism. a prevalent theory of the 19th century

was that earthquakes were caused by contraction of the earth

by cooling, .^ost theories on the origin of the earth assume

it has cooled from a molten mass. The cooling of the earth

through geologic time has solidified the earth down to the

molten core, whose existence is theorized by its inability

to transmit seismic shear waves, yet, the surficial layer of

the earth is not changing in temperature and therefore is

not. changing in volume. The crust thus becomes too large to

fit the shrinking layers beneath it, resulting in the

folding and faulting of crustal diastrophism. The major

criticism of the contraction theory is that the folding of

the crust and its associated mountain building process

should be more widely distributed over the earth's surface.

The isostatic principle has been called into play by

other theories. Experiments have shown that a plumb bob does

not deflect towards a mountain as it would if the mountain

were merely an added mass on the surface. The theory of
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isostasy states that at some depth beneath the surface, all

columns of the earth's crust are made up of lighter rocks

floating on a layer of heavier rocks requiring that

mountains have deep roots consisting of these lighter rocks.

Accompanying the process, of mountain erosion is the reverse

plastic flow of rocks beneath it.

Another popular theory regarding the underlying cause is

the convection theory. The convection theory presumes, by

various causes, temperature differences in the mantle. As a

result, convection currents develop similar to those in the

atmosphere. The horizontal current near the surface would

drag the crust with it. At points of rising convection

currents, crustal stretching occurs, resulting in grabens

and normal (tension) fault planes. At points of descending

convection currents crustal compression results in mountain

building and thrust (compression) fault planes. The general

criticism of this theory is that it requires cyclical

changes in temperature of the earth, whereas large systems

such as the earth tend to thermal equilibrium.

Brief mention should also be made of the magmatic

theory. This theory requires thermal changes in the earth's

crust, bringing about magmatic differentiation and plastic

flow of rock.

The theory of continental drift currently enjoys the most

widespread support in the scientific community. The original

proponent of the theory was Alfred Wegener <♦&>. As many a

grade schooler has observed, the continents of South
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America and Africa fit together like pieces of a puzzle.

Currrent thinking on the continental drift theory views the

earth's surface as having once consisted of one large

supercontinent called the Pangaea. Recent researchers in

paleomagnetism have reconstructed the Pangaea by analyzing

the change in orientation of land Basses by studying the

direction of the magnetic field of new rocks (lava) in time

As stated, the continental drift theory is now viewed

as the most probable source for the slow accumulation of

strain required by the Elastic Rebound Theory.

Whatever the nature of the source of earthquakes, the

earthquake succussatory ground motion causes distress in

civil engineering structures. To understand the effect on

structures it is necessary to know the nature of the ground

motions. For elastic structures the usual analysis method is

by response spectra. Techniques have been developed to

obtain the expected response spectra by the statistics of

oscillator response (37). Other methods have been used to

obtain plausible "design spectra" c*a>. These methods have

their roots in the statistics of stationary stochastic

processes, i.e. random vibration theory. Although

earthquakes are obviously nonstationary, studies have shown

that for linear systems, nonstationarity has little effect

on the expected response. However, for inelastic systems,

the response is sometimes sensitive to the time variation of

the energy of the motion^93. Thus for inelastic systems,

Sonte-Carlo methods of analysis are desirable. This in turn
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requires families or ensembles of stochastically similar

ground motions.

Ensembles of "similar" strong motion accelerograms do not

exist. In fact, the occurrence of large earthquakes is

modeled statistically as a Poisson process, a model for rare

events. Thus the need for data creates a need for

mathematical modeling of earthquake ground motion.

For low frequencies and epicentral distances large

relative to the source dimension, earthquake sources may be

approximated by point sources. The assumed force field must

be in equilibrium both before and after the earthquake. One

such point source meeting the criteria is the double couple.

It consists of two couples of opposite sign 90° out of

phase. For a pure shear rebound phenomenon in the low

frequency limit, the equivalent point source is a double

couple (so). 7^ scale parameter of the double couple is

the seismic moment necessary for the assumed source to be in

equilibrium. It can be related to the fault dimension and

average fault slip.

The energy released in an earthquake for an elastic

rebound phenomenon comes from stored elastic energy. The

energy is released in the form of frictional heat from the

fault slip and as seismic waves. Various mathematical

models exist relating the released energy to the fault area,

average displacement, and average stress drop over the

fault. The stress drop in turn can be related to the fault

displacement and geometry. Estimates of maximum ground
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acceleration can be made using the aforementioned

parameters- Some disagreement centers on the maximum near

source acceleration- For frequencies less than 10 Hz,

3rune<30> calculates the maximum acceleration as being in

the neighborhood of 2g. The maximum ground acceleration

recorded to date is 1.25a for the 1971 Pacoima Dam

accelerogram of the San Fernando earthquake <5l).

Realistically sneaking thouah, in specifying a maximum

ground acceleration, the probability of its occurrence must

be taken into account, i.e. similar to many design code

philosophies, the maximum acceleration should be related to

mean recurrence intervals (return periods). Current

proposed codes contain a design maximum ground acceleration

of 0.hg.

another quantity necessary for the stochastic description

of ground motion is the predominant frequency, the frequency

at the peak of the power spectrum- The predominant frequency

near the fault is the subject of current research by

seismologists and is not well understood. Among the

parameters related to the predominant frequency are the

crack propagation velocity, fault geometry, fault size, rock

strength, topography, and fault breakout. The site

predominant frequency is altered by the local geology- The

effect of local geologic structure is similar to passing the

motion through a filter with appropriate frequency and

damping characteristics. Nonhomogeneity of the transmission

medium, multiple reflection and refraction, and sometimes



19

focusing, cause a widening of the band width in the near

field fan earthquake ground motion. Because of this and the

shape of power spectra of actual recorded ground motions,

stochastic modelling of ground motion has become popular.

Different types of artificial earthquake ground motion

can be generated according to observed peculiar

characteristics. Jennings et al. (52) generated artificial

accelerograms to reoresent four different types of ground

motion on firm soil. Sswmark and Sosenblueth c*i) classify

earthquakes into four broader groups: 1) practically a

single shock near the epicenter of a shallow earthquake, 2)

long, wide band strocg ground motion on firm soil similar to

the 1 9'JO 'IS El Centro record, 3) long, narrow band motion on

soft soil, and' h) large scale permanent deformations with

possible landslides or soil liquefaction.

The first, type can be analyzed deterministically, using

similar recorded ground motion.

The third kind of ground motion can be obtained by

filtering the second type.

The fourth tyoe will not be dealt with here.

The second type is the major concern of this thesis.

Actual records of this type are more prevalent than other

types. Since it is a wide band process, white noise has been

used to represent it. Due to its random appearance,

communications theory offers many tools to study its

probabilistic nature.

Housner <53>, Bycroft <so# and Hosenblueth (55), among
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others, modeled ground motion of this type as stationary

white noise of limited duration by superposition of randomly

arriving short duration pulses with random frequency and

amplitude.

The average . of Fourier amplitude spectra of existing

strong ground motion accelerograms shows that the spectra

are not white noise but rather are like a broad band process

that damps out with higher frequencies. This suggests

filtering white noise with appropriate filter

characteristics to match the power spectra. Kanai and

Tajimi <57> suggested that the transfer function for total

response acceleration be selected with filter properties

which match the broad band nature of actual accelerogram

spectra. The total acceleration transfer function filter

will amplify those frequencies near the filter natural

frequency and attenuate the higher

frequencies. Singularities occur at zero frequency for

velocity and displacement. Jennings, Housner, and Tsai (52)

used a high pass filter for response displacement to

attenuate these very low frequencies. This eliminates the

problem since it causes the power at zero frequency to be

zero. The average of many accelerogram power spectra fits

closely this filtered white noise spectra.

The next refinement was to simulate the nonstationarity

of actual accelerograms. The usual procedure is to use an

envelope function to vary the intensity of the process. The

nonstationary process uses the product of the stationary
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stochastic orocess and the ie-oninis+ir: envelooe function.

Several types of envelope functions have been used.

Jennings et al.**32' separated it into an initial parabolic

phase, a constant strong action phase, and a decaying tail.

The parameters for this intensity function are chosen to

natch the intensity or variance of actual accelerograms.

Soto and Toki c 58 > used a transcendental intensity function

of the tyre

I(i) = a-(t/f) -exp[ (f -t) /f' ]»H (t) 2.1

where a, t', and Hft) are, respectively, a constant, the

tine of peak I (t) , and the Beaviside unit steo function.

Koopman 5 et al.(s,) used a transcendental intensity function

of the shape

I(t) = a*[exp( - a«t) -exp (- 3*t) ] 2.2

where a, a, and 3 are constants.

Another step in the refinement of artificial

accelerograms is the use of Berg and Housner's (s0) baseline

correction. This procedure minimizes the mean square

velocity in order to remove excessively large ground

displacements.

The necessity for including the nonstationarify in the

artificial accelerograms is determined by its effect on the

response. Amin, Tsao, and Ang<49>, Koopmans et al-C59) and

Shinoznka and Satocai', among others have studied this

effect. The theoretical information contained in extreme
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value theory is very helpful in separating the effects of

various parameters of the expected response. Also the

relation of the variance with time for nonstationary

processes resulting from zero initial conditions is

necessary to understanding these effects.

The study of Aain et al.C49) reported the deformation

spectra of elastoplastic systems (2- damping) using a

s-acionary excit ation and a nonstationary excitation of the

Jennings et ai. (52) type, both with a total duration of 25

sec. The spectra, reproduced in Figure 2-1, show a decrease

in response with increasing ductility. The spectra, reported

for initial frequency, also show the response for the

stationary ar.d nonst at ionary excitation to be approximately

equal for linear structures. The extreme of a stationary

Gaussian process is related to the duration by

T (max | y (t) |) oc^ Vln (2>s«Fe) 2.3

where T ( ) denotes expectation, s is the duration and F is
e

the average number of zero crossings/sec. of the process.

For s = 25 sec. and Fg = 5 Hz, halving the duration only
changes the expected response by approximately 6%. The

higher ductilities show a decrease in response larger than

6%, as seen in Figure 2-1. The report concludes that the

nonstationarity causes a difference in response for high

nonlinearitv.

It is possible that the difference lies in the effective

durations for the stationary and nor.stationary excitations
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used. The probability of the latter portion of the

nonstationary decaying tail containing the extreme is surely

remote, i.e. the effect of the type of nonstationarity can

be viewed as resulting in a shorter effective duration.
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5ith increasing ductilities the effective statistical or

as sometimes called equivalent linear stiffness

decreases. By viewing the elastoplastic response as an

equivalent linear system the response nonlinearities tend to

reduce the effective natural frequency and increase the

effective damping. The possible reduction in natural

frequency is presumed the same for the stationary and

nonstatioaary excitation.



The deformation spectrum in Figure 2-1 is shown for

ductilities, i.e. maximum displacement nonditaensionalized by

yield displacement. Penzien and Liu<62), who studied the

effect of duration on response, depicted the response of the

experimental distribution in the form of Gumbel <53) extreme

value Type I charts reproduced in Figure 2-2.

Gumbel Type I extreme value probability distributions

vary as

?{Q<Xmax} = exp[ -exp (-Y) ]

where Q is defined as

Q = max | x (t) |

0 is the mode of Q and the reduced variate ? is defined as

Y= °v »f Q- Q 1

cr
q

and °y depends on the number of observed extreme

values^64>. Gumbel extreme value charts plot as a straight

line with the most probable value at the reduced variate

origin. Its slope is proportional to the standard deviation

of the extreme values. The slopes in Figure 2 2 increase

with increasing nonlinearity implying an. increase in the

standard deviation of the extreme response, i.e. a larger

spread of the values. With an average of a larger number of

accelerograms the response spectra anomalies said to be

caused by nonstationarity may not be so large since the
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spread of the values increases with increasing

nonlinearity. The Am in et al. report<49> apparently ased an

average of eight accelerograms, a rather small s-tatistical

sample from which to draw conclusions-

To give an example of the effect of nonstationarity,

consider the extreme response from the level crossing

approach. Crandall<65> presents an excellent state of the

art review. a.s shown shown in 'igure 2- 3 the extreme values

have a specific probability distribution. The usual method

in first passage problems is to determine the mean, mode, or

median of the extreme values in terms of its standard

deviation, e.g. the most probable extreme is the product of

the standard deviation of the response and a peak factor, R.

The asymptote of the most orobable peak factor for white

noise is

E= -v/2»ln (2. y-H)

where N is the number of

i.e. the natural frequency

excitation the peak factor

number of zero crossings

frequency), the damping, the

duration, and a parameter

variation of the' maxima. An

neax factor E, is<66)

2.4

cycles the system has undergone,

times the duration. For nonwhite

is a function of the average

(usually near the natural

probability of exceedance, the

similar to the coefficient of

approximate expression for the
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q/^ln {2*N*[ 1- exp(-<5 • -j/T'ln (2*N)) "]} 2-5

where ^e, a measure of the spread of the power spectrum is

5e =[1- M, 2/(H0 • ) ]°°* 2.6

and , the ith moment of the power spectra about the origin

is

The equivalent parameter values derived from the Amin report

could decrease the peak factor, R, as much as 13% by halving

the duration. Although the different duration would also

affect the standard deviation, the difference is negligible

for the damping used. The decrease in response thus appears

to be caused more by the effective duration than the effect

of nonstationarity.

This says nothing, of course, for the effect of

nonstationarity of the transcendental type, e.g. Equation

2.1 or Equation 2-2- Here the time rate of change of the

intensity and the duration both combine to affect the

expected response. An exact solution for the stationary

first passage problem does not exist. However, for a

sufficient number of cycles the asymptote gives a very good

approximation-

Approximate techniques for nonstationary response are

just starting to receive attention- For nonstationarity due

2.7
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to transient response of stationary excitation, one method

is to use an equivalent duration. For nonstationary linear

response due to nonstationary excitation with a

transcendental intensity function, the most logical approach

is to consider the extreme a function of the total energy,

i.e. proportional to the integral of the intensity function.

This follows from stationary resoonse extremes being the

product of the standard deviation or power and the peak

factor which is proportional to the duration. . One approach

would be to obtain the marginal probability density function

of the maxima by integratina out time dependence of the

variance in the Da venport < 6 7 > derivation. The statistics of

nonstationary peak response are beyond the scope of this

report..

Kui>o and PenzienC68> studied the accelerograms of the

1971 San Fernando earthquake. Their resulting intensity

functions resemble the transcendental intensity function

more closely than they resemble the Jennings et al.{5'25

intensity function. kubo and Penzien also showed distinct

jumps in the phase of the cross correlation between the

horizontal ground accelerogram, possibly linked to the

arrival of different waves.

Saragoni and Hart<69) presented a method for generating

artificial accelerograms incorporating nonstationary power

spectra. They used three discrete power spectra for

different phases of the duration in order to simulate the

decrease in the predominant frequency with time. They used
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a transcendental intensity function of the form

I (t) = a • tY*exp ( - e • t) 2.8

where a,Y, and e are cons-ants determined by a best fit

analysis of existing accelerograms. This concept of

evolutionary power spectra is not new. Nevertheless, it

immensely complicates the statistics of extreme response

making it nearly intractable.

The Saragoni and dart reports show the intensity function

to vary for different earthquakes. also the phases of the

discrete power soectra would change with fault orientation

and eoicentrai distances. a method to simulate this was

presented by Kascon and Cornell*70>, who produced artificial

acceleroarams from a physically based model. Their

simulation involved a superposition of randomly arriving

dilatational and distortional single pulses with a Poisson

arrival distribution from a number of elementary foci. The

elementary foci generate the single pulses along the fault

olane, moving according to the crack preparation

velocity. Attenuation was based on spherical spreading and

multiple reflection and refraction. The duration and the

parameters were based on statistical studies relating these

parameters to magnitude, epicentral distances, etc. The

resulting simulations closely resemble actual

accelerograms.

The preceding descriptions of the various methods to

cenerate artificial acceleroarams indicate the increasing
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complexity that accompanies more faithful simulation of

ground notions. For a particular site of given local

qeoloay, many factors are being introduced that influence

the accelerograms, such as fault size, orientation, seismic

potential, distance from the fault, etc. This emphasizes

the nonuniversality of accelerograms and the care with which

they should be selected for particular sites. For these

reasons, the accelerograms used here will be generated by

the computer program PSFOGF\'c 71 > . This program generates

ensembles of filtered white noise with an intensity function

of the Jennings at ai.< 35 > tvpe to represent strong ground

motion on firm soil. The use of these artificial

acceiorogr ams should present no drawback. through its

generality since this dissertation is a study of general

building response and not a particular site.

The program P5EQGEM can generate ensembles of

stochastically similar artificial accelerograms. Individual

members of the ensemble can be used to represent the two

orthogonal horizontal ground motions. They will, however,

be uncorrelated. Penzien and Watabe(72) have shown that the

correlation between the two orthogonal horizontal ground

motions will be a minimum* in the near field when one is

pointed in the direction of the epicenter. They concluded

that ground motions generated artificially can be

uncorrelated provided the components are directed along

principal axes which are perpendicular and parallel to the

fault. The fact that the correlation is minimum and
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not surprising when you consider the na.ure of shear and

compression waves. Also, FasconC73i has shown that single

degree of freedom response is maximum when the structure is

oriented along one of these same Drincipal axes. For these

reasons and the argument expounded in Appendix 3, this

dissertation uses uncorrelated horizontal ground motions.

A complete description of the ground motion involves six

components: three translationa1 and three rotational. The

two rotational components of rocxing whose axes are in the

horizontal o'lane are not included in this analysis. In

addition, the vertical translation component will not be

included. This leaves the two horizontal translations and

the rotation whose axis is vertical. As previously

mentioned the horizontal motions will be artificially

generated to resemble actual accelerograms and will be

statistically uncorrelated. The origin of torsional ground

motion is generally thought to be Love waves which are

horizontally polarized shear waves near the surface(see

Figure 2 -U). The torsional motion arises from the quantity

dv
5x. The motion 7 (x) is related to the frequency F, wave

speed Cs, and wave length X,where

Cs=?»x 2.9

While the wave speed can be determined, the random nature of

the motion is such that there will be a random mixture of

frequencies determined by the power spectra. Artificial
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a) Lagrangian description

b) Eulerian description

Figure 2- h Elastic Earthquake Waves
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translation accelerograms are based on the average oover

spectra of many actual earthquake accelerograms. There are

yet no reported torsion accelerograms; thus, one cannot

determine the correlation between torsion and translation.

Meither can the power spectra be determined.

Some means of generating earthquake ground rotation is

desired. Starting from the assumption that horizontal

surface motion is derived from the nearlv vertical

refraction of shear waves at the base rock soil interface,

Newaarkc25 ' proposed a method to determine the rotation

based on the theory of elasticity. That the refraction is

nearlv vertical arises from a consideration of the

respective wave velocities and Snail's Law (Figure 2.5).

Thus at the free surface the refracted waves will travel at

the wave velocity of the rock not the soil. Newmark

calculates the ground rotation g, as

1
>*= —

2 c^x hv

2. 10

gith the ground motions U and V uncorreiated and

stochastically similar, the ground motion simplifies to

2. 1 1
5x

Vith the further assumption that

7=V(t-x/Cs)
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2.1 2

Rosea blueth<7H} proposed a modification of this to

account for the building size. Since Equation 2.12 is valid

for a point, the effective or average displacement

determined by assuming a rigid building an<3 neglecting back-
scattering is



and neglecting baclcscattering is
3/2

■7= 1 7(t-x/CJ «dx
3 J

2. 13

-B/2

where 3 is the building width transverse to the motion V.
For a sinusoidal translation, Fguation 2.13 reduces to

where ^ is the wavelength. Figure 2 6 depicts the effect of
the building length to wavelength ratio has in decreasing
the effective translation according to Rosenblueth's
assumption. Observations of earthquake damage reinforce
this notion that civil engineering works covering larger
ground area respond with less intensity.

Nathan and Mackenzie c?s) calculated the torsion response
spectra by use of Fguation 2.12 in a finite difference form
expressed in terms of acceleration rather than displacement

Finite difference techniques are based on small, finite
changes where the function is assumed to vary smoothly
between the points. The ground acceleration is assumed
linear between the digitized values since very high
frequencies are deemed unimportant in building response.

v= sin ( vF* 1) «sin (to*t)
2. m

ir»3 • X

<* =[ ? (t+ (t) ]/{C • t)s

2.15
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with typical values of the digitizing interval of 0,025 sec,

the maximum value allowable for the transit time would be of

the order of 0.025 sec. For a wave speed of 300 m/sec and a

buildina width transverse to the motion of 30m the transit

time of a shear wave is 0.1 sec, or h digitizing intervals.

Figure 2-7 illustrates the deficiency of the finite

difference approach.

Currently, Newt ark et al. < 76 5 are studying the effec1, of

building size or transit time by calculating the response

spectra for the input acceleration averaged over the transit

time, t, as

+*_ + T
• •

J m • • .

V = 2 I 7 (t) •dt=2[ V(t + T) -7(t) ] 2.16a
t x

t

and

7 =5 «r 7 (z+T) + 7 ft) 1 - 12»r V (t+T) ~v (t) ] 2.16b
C •T2 C *T3

S S

where g is proportional to the third derivative of V,

•m W

calculated as "E^/xr which in turn is determined by a least

• •

squares fit of V over time x (Figure 2-7) . Figure 2-8 shows

the effect of this averaging in reducing the extreme values.

The excitation used for generating Figure 2-8 was an

ensemble of ten stationary filtered white noise

accelerograms of 10 sec. duration using the filter
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characteristics of PSZQGEIT (n).

Another method for analyzing the effect this averaging

has on building response is frequency domain analysis. The

averaged response is the result of convolving the excitation

with the averaging filter. As shown in Appendix A, the

resulting power spectrum is reduced by the factor

multiplying sin(iot) in Equation 2. 1h. The resulting

reduction of the oower spectra reduces the excitation

variance, which in turn reduces the expected peak value.

The response power spectrum is the product of the input

power spectrum, averaging filter, and the complex frequency

response function. It is readily apparent that the variance

and thus the nea'x response should decrease more for higher

frequencies. This expected trend is verified in Figure 2-3.

The transit time reduction increases with, increasing

building size. Also, it is dependent on the assumed wave

speed which is dependent on the assumed wave type. For small

buildings this reduction will be slight. Another source for

the reduction of idealized input excitation is the soil-

structure interaction. Luco[77J found the effect of

embedment of the foundation to be quite significant. The

excitation used in Luco's study was obliquely incident. SH

waves. The input twist for a hemispherical foundation was

determined to be half that of a circular disk foundation.

This reduction was attributed to the effect of scattering

and the increased foundation stiffness. The results are

presented in a nondiaensionalized form via a frequency ratio
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parameter coaaonly used in foundation dynamics which is

proportional to the foundation size to wavelength ratio.

vet another reduction in the expected maximum ground

torsion is discussed by Newmark and Sosenblueth. Their

proposed reduction is due to the statistical relation

between extreme values in the orthogonal direction.

As evident, the Newmark approach to ground torsion can be

viewed as an upper limit. The vaiues determined are reduced

by building to wavelength ratios, soii-'sf ructure

interaction, scattering, etc. Since the Uniform Building

Code does not include ground rotation, Newmark's values for

ground rotation will be used in this thesis to determine its

effect.

The need for actual free-field rotation and translation

records is apparent. It is especially necessary to

determine the correlation between ground rotation and

translation and its relative effect.



CHAPTEE III

ELASTIC F^SPONSE

Buildings with coincident centers of sass and stiffness

are called uncoupled systems in this -hesis. For the

dynamic analysis of uncoupled systems, responses along the

principal directions are analyzed independently. flhen an

eccentricity between the centers of mass and stiffness

exists, the responses along the principal axes are coupled.

Analyzing the responses along the principal axes

independently may give good results if these three

frequencies are well separated and the eccentricities are

not too large. Full scale tests<27> have confirmed the

strong coupling that occurs with close natural frequencies

even if the eccentricities are small-

The usual design procedure to account for an eccentric

mass is to acid a force due to the torque, calculated as the

product of story shear and eccentricity. *any studies{24»

have shown that the dynamic story shear decreases when

there is an eccentricity and that the dynamic torque exceeds

the product of shear and eccentricity. For tall buildings

consisting of moment resisting planar frames, although

lateral-torsional coupling decreases the total story shear,

the story torque increases the shear in the peripheral

h3
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lateral force resisting elements. Thus the statement that

story shear decreases, must not be taken to imply that

lateral-r.orsional coupling is beneficial.

The torsional response of large civil engineering works

such as bridqes ar.d pipelines is a result of eccentricities

as well as the horizontal ground motion not being in phase

over the length of the structure. This type of structure

is not considered in this stud/. There is of course

torsional ground motion: however, the effect of ground

rotation as studied in this chapter is based on Mevrmark1 s

(5 treatment of the subject, which is described in

Chapter II.

The objective of this chapter is to formulate a method

to study the elastic response of torsionaliy coupled

buildinas by modal analysis based on statistical concepts

similar to that developed by Eosenblueth^, but extended

to three^dimensional systems. This method will be used

primarily to show the effect of ground rotation and the

absence of correlation between the horizontal ground

translations.

Structural Systems

*ost tall buildings are either shear wail type, moment

frame type, or a combination of the two. Shear wall

buildinas are commonly multiply connected vertical plates

like that illustrated in ^igure 3- 1a)- For this type of

building, shear flow must be considered. ^ moment frame type

'ouildina is illustrated in Figure 3-1b). Both will be
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assumed to have rigid floor diaphragms.

The origin of the principal axes of these structural

systems is the center of stiffness (sometimes called center

of rigidity,resistance,twist or torsion, or shear center).

The principal axes are orthogonal and are defined such that

a force in the direction of one of the principal axes causes

a displacement only in that direction-

The principal axes in a moment frame system consisting

of planar frames that are not orthogonal are determined by

staticsC2*}-

Qnce the principal axes have been determined the

lateral stiffness in the principal directions can be

determined as

Kx = S^xi
i

k = •lxy yi
i

while the torsional stiffness, defined about the center of

mass and neglecting individual element torsional

stiffnesses, is

p ^ xi. x ^ yi x

i i

The eccentricities are

-2Xi*Syi/Kv
i
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a) Shear Wall Tvoe

b)Moment Frame Type

Figure 3-1 Structural Systems
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Figure 3-2 Example Euilding layout
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X

for Y ^ and Y ^ as shown in Figure 3- 2.
\nalysis of an >!--story structure generally requires 3H

degrees of freedom. Shiaa(42) and Hoerner(2S) have

developed a orocedare to simplify this to 4 three degree of

freedom systems. The mode shape is

c
xn j?

ilj1 = Celn*tD j>)
cyn

for structures where the story masses are colinear , the

story stiffnesses are colinear, and the ratio of the lateral

stiffnesses is the sane for all stories. {C}n is the nth

mode of the 3D0F system and fDj} is the jth node of the NDO?
system, which is the sane for x,sf, and y.

Generally, it is assumed that the first three mode

shapes of a multistory structure are two priaarily

translation nodes and the primarily torsion mode. The

torsion frequency is nearly always less than twice the

fundamental. The second mode in the fundamental direction

is usually greater than 3 tines the fundamental; so, the

translation stiffnesses would have to be an order of

magnitude different before the assumption would not be true.

A multistory structure can be analyzed approximately as a

three degree of freedom system by using the first three-
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modes as described above.

Equations of Motion

The equations of motion for the single story three

degree of freedom system shown in Figure 3-2 are

1 *r

3 x 03X2 03 2,P /p Q
x - y ' °x n

w

<?x

^•3 0
- 03 2 • 2 /V

x - y " V yjj/E 5'D0
-

«.
- • ^ g0

;jy .

0 03 2 «T? /r 03 2
y " x7 ' ■ y

ry
U

y
a

L gy .

3. 1

where M is the mass, E is the radius of gyration, and

v(V?)05 v(V')0-5 V'W03 V*-aV
The characteristic equation for this system is

/-
03S -[ 03 2 + 03 2 + 03 2 ]*034

x Y 0
+r 00 2 • 03 2+ 03 2 • ( 03 2 - 03 2 *E 2 /F2 ) + 03 2 • ( 03 2-03 2 • E 2 /32) 1 *03 2'

x y y 0 y x x 0 x y

-[ 03 2 • o) 2 *( 0) 2- 03 2 • E 2/E2-0) 2»E 2/E2) 1=0 3.2
x y 0 y x x y

F3 +p«F2 +Q*F+H=:0

where F=o32«

Let C=(3-?2)/3, and D=(2-P3-9♦P*Q+27*3)/27

and A=[-D/2<-(D2/4+C3/27) o-5 ]i/3 , 3=[ -D/2-(D2/'4+C3/27) o.s ]i/ 3



U 9

then the coaDled frequencies car. be directly coaruted as

0)^ = - (A+B) /2- (A-3) • (-3) °-s/2-?/3

03 2? ="' ( ^ +3) /2+ ( A B) •(-3)0.5/2 ?/3 3.3

oj32 = A+3-P/3

The solution can be unstable for some extreme combinations

of eccentricities and uncoupled frequencies.

For 3.5 *0 ant co *u)
„ * he unnor taliz ed mode shaoes are

x y y x

[ A ] =

V.

00
X

/?.

( (jo 22 ^ (jo 2 )
X

a)x2"5y* ( Ua2~ ^y2'
0) 1 E * ( a)

X
2 - 00

X

~ ( 00

00

1

2 •

X

(W,2 wy2}
WE

05 2 • E •
X y

( 05 j2- 05 2 )
W 3 #i

X
( 05 2 - 05 2 )

05/-V*
{ 05 „2- 05 2 )

^ y

or if Ey?0 and S x=0
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m=

-Wx2*2/R
(0J 22-00x2)

- ( OJ 12-C0X2>
w x2'VR

and if "Ex=By=0

c&]=

1 o o

0 1 0

0 0 1

which is the mode shape of the uncoupled system.

Once the uncoupled frequencies and mode shapes have

been determined, the maxima can be estimated by modal

combination. The usual method is the root sum square (3551

Q= (2<2i2 ) o-3
i

3. 4

which is based on the assumption of near independence of

modal responses. The modal responses are nearly independent

if the frequencies are well separated. In an analysis of a

planar structure, the ratio of frequencies are approximately

113:5however, in three-dimensional systems the



51

fr9qu0nci9s c^n b 0 vsry o 1 o ? 0 to^sir«

In systems where the frequencies are close together -he

usual procedure in modal combination is to use a method

proposal by Rosenblueth(24> ir. which the distribution of the

response q(t) is assumed to be Gaussian with zero mean. The

necessary further assumption, consistent with extreme value

theory, is that the maximum response Q=maxIg(t)I is

proportional to the standard deviation,i.e.

S (0) 2 oe <q2 (t) > . 3.5

where E( ) denotes expectation and < > denotes time

a vera ge.

The response can be expressed in terms of its impulse

response function, h, as

(t) =£h (t-1') «z (t') dt'
- CO

or in discretized form

t
a (t) =Jh (t" t') •eft') *dt'= h*z£h»z+...

where z (t) is white noise of intensity

With the further assumption that each term in Equation 3.5

is independent, the variance of q becomes

<q2 (i)>=E(h2«z2) 3.7

and by the Cauchy-Schwarz inequality, £(h2 ♦ z2) < £h2*Zz2,
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t

<q 2 (t) > < Z h2 = cjh2 (t-t M *dt' = c/h2(t)*dt 3.8
CO

for Gaussian excitation. The inequality in Equation 3.8

becomes a proportionality by virtue of Parseval's relation,
OO CO

Jh2 (t) dt = [ /! H(U) I2dfcj]/(2*TT) = <q2 (t) >/ (G Q2* 2 • ir) 3.9
-co -co

where H (co) , the complex freauency response function, is the

Fourier transform of the transfer function h(t), and Gq2 is
the intensity of the white noise excitation.

For a SDOF system, by expressing the response q (t) as

the sum of its modal values

q(t)= Zq±(t)
i

and inserting this in terms of its modal transfer function

into Equation 3.8 Rosenblueth obtains

3-10

i i*j 1+Bij2

J? , "2 — 00 —00£ij di dj

Bi*00i + Bj *03j

where B^ is the ith mode's fraction of critical damping and
the ith mode's damped natural frequency. The quantity

1/(1+Eij2) can be interpreted as the correlation
coefficient.
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To understand the limita+ions of Equation 3.10 due to

its underlying assumptions, it is necessary to understand

its derivation and the effect of the assumptions. For this

reason a modal combination expression will be derived based

on Rosenblueth's approach, i.e. maximum square response

proportional to the variance: but the mathematical approach

will be in the frequency domain rather than the time domain.

The expected oeak response is likewise oresumed

proportional to the standard deviation, the root of the

variance. The mean square value in turn will be described

by the complex frequency response function,i.e.

CO

<Ym(t) •? (t) >=/G 2 (co) .doa 3.11
-°° m n

where

G„ 2(oj)=H (CJ)*H (W)'G 3.12
m n Ym Yn zmzn

and 5? 7 2(iJ is the cospectrum of the mth and nth DOF'sm^n
,

excitation.

Usually the input excitation is assumed to be white

noise to simplify the mathematics. Initially, this same

assumption will be made in the following derivation. Thus

Equation 3-11 becomes

<?m(-> <t) >=/H (w) (co) -G 2*doo . 3.13n
— m n °

Hy (w) is by definition
m

Hy (H) = 1 / {f co 2 + i • 2 • B *(0 -oj- W2]-B '} 3.14
m m m m m
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where X m' is the modal mass and and are the rath

natural frequency and fraction of critical damping,

respectively.

The resDonse is expressed in terms of its modal

responses, and thus the variance of 4he response is

expressed in terms of the modal variances and covariances.

The equations of motion for a 3D0F system with classical

modes are

[ M 1 [X] +r C ] (X) +[ K ] [X] =-[?!] {Z}

In uncoupled form where [A] is the matrix of eigenvectors

and [Y] =[ 1 ] {X} ,

... T T
OH+[ 2-3. w]fY} ♦[ u£ ]fY} =-[?!• l^C-A] [ X ] {Z} «-[ «' 3~1C A ] {?}

3.15

where [ X' ]=f A ] 1 X ][ A ].

A response quantity of interest q (t) can be expressed

as

q (t) = e crn'?n(fc^ = fCjP T# fY 3*16

and by definition,

G 2 ( w) =£ »C *Gvv2(u3) 3.17
q rm rn YmYn

m n

Combining Equations 3.12 ,3.15 ,and 3.17 gives
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G - (to) = {C} Tr H (to) ]Hf 3 "|Tf G 2 (to) K A]fd (to) ] {C] 3.13
q Y P Y

'or a t wo- tl imensiona 1 system,i.e. planar frames, each degree

of freedom is sub-jeered to the same excitation and each

element of the matrix [G 2 (to) ] is the same. Introducingz

this into Equation 3.13, rearranging terms and integrating

gives

<a-- (t) >= (C » Y ?? ) • (C ) »<Y (t) »Y (t) > 3.13
m m n n m n

:n n

where IP? is the modal participation factor for mode o,
m

defined as

MP? = ( £ Y * \ ) / ( E *A 2) 3.20m n mn; n mn

and (Y (t) } is the solution to Equation 3.15 where the right

hand side is just {Z}.

Equation 3.19 can be rewritten as

<a 2 (T) >= yy(c ♦M?F ) (C •d?F ) <Y 2(-')>os,<y z (t) >0^ .p
m m n n m n mn

m n 3.21

where P is the correlation coefficient of Y (t) and
mn m

Y jjft). Since the RMS value is assumed proportional to the
peak value,0, Equation 3.21 can be rewritten as

«2=sa3m"3n*?mn 3-2:
am
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where Qm, *he peak response of ^hs mth -node, is

0 =c •>,P7 •> foi ^ ^23
■ m m -1 m w v* V w4? z J

ana

p =8 • ( (jo • P + a) • 3 ) • ( a) ^ • B ^oo 3 « 3 ) o,5 /1 0 1 2 3.24
mn m m n ir m m n nr

!)=[ (^dm2'Jt°dn2) (a)m*°m+VBn)2^i'f2#a)dmM^m^m+%«Br^ ]

(see dogendix C for der ivat ion) . For small da m p in a Squat ion

3.24 aives values of the correlation very close to those

inherent in Equation 3.10.

Equation 3.22 has two limiting assumptions, namely

white noise excitation and identical excitation for each

degree of freedom. \s explained in iopendix 0, the effect

of the white noise assumption is not considered significant

for cases of practical interest. The effect of the second

assumorion is not so evident. It is clear though, that the

second assumption is not valid for a three-dimensional

system. For the two-dimensional system each element of the

matrix of [G 2(co) ] is the same but for the three dimensional
u

system it is

[ G z2 ( u>) 1 =

<U3>
'X SWU)
Z0Z
Z-i.Z

x

y^x

(w)

(no)
'0

(oi)

ZyZ0

zxzy

!Z^Zy
(to) G z 2 ( oj)

2 (03)

2 (03) 3. 25

where fZ}—fUgX 3*(7g^ 0 gy}
Chapter II describes the current state of the art in ground

motion description.
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Equation 3.25 can be greatly simplified by

incorporating the approximations described in Chapter II,

namely Newmarkian ground rotation and uncorrelated ground

translations. For ground rotation defined as

E

V 2
ijy _ azx
dx dy

the excitation, following Newmark's procedure is

= CZy T»/<2-os) 3.26

where Cs is the shear wave speed in the underlying
rock, since we are assuming uncorrelated ground translations

we can set Gg g 2(W)=o. The autocovariance function for the
x y

ground rotational excitation is

5Z (T)= E[2r0(t).Zr0(t»T) ]

Inserting Equation 3.26 gives

Hg (x) =C H (x)-2»S (t)+S ( t) ] • (E/ (2*C ))2
0 Z Z Z Z S^

y y x x

For uncorrelated but equal spectral density ground

translations, this reduces to

3 g (T)=2*H-£ (T) •{H/(2»C ) ) 2
y

Thus,

Gs 2 (") = (12/2*C^2) *G.-- 2 (w)
'T0 S Z

y
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= (?V2< 2(03)
w uy

and

/Gg 2 ( 03) *d03 = (R2/2*CS2) J®2 «G*2 2 ( 03) *d 03 • /G 2 2 ( 03) *d 03
-co -co ~ y -oo y

fb 2 ^ (oo) • d oo
-co y

00

= (R2/2 *CS2) • ou2 • /Gg 2 ( oj) *d 03
-co y

where 0}g. is the predominant frequency.
The crosscovariance function for rotation and

translation is

E» - (x) = E[Z At) *z (t+T) ]
z0zx x

= {S[Zy(t) •Zx(t + T) hS[Zx(t) •Zx(t+T) ]} (S/2*Cs)

=0 - E[Zx(t) •Zx(t + T) ]• (*/2*Cg)

= - R d?--
S*

2-Cs dx

where

CO

Eg ( x) = /Gy 2 ( U) »exp (- i* 03* t) *d
X -co x

Differentiating this gives

BZ 7 ( x) = (R/2*C ) • / i»03*G» 2 ( 03) *exp (-i« 03*x) *do3
0X S -co

CO

= /Gjj 2 2 (w) *exp (-i*03*x) *do3
-co rjzi x

Thus,
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"zr*Z7 2(w) = (?./2»C_) 2(U)
Jx

where Gn* 2 (co) is real, symmetric and
Jx

<2r0*2x> = lszr(!jzxJ <">) C/2*csl J1*""5Zx2 I"' •au-°
CO

For £=P."^g/(2*CS), Equation 3.25 redacts to

r

1 0 0

I. Cl rj2 ( CO) ]~ 3 2£2 0

0 0 1

For C A.
s g

bei ng

underlying rock a n I Tf

*'3- 2 (w)
x

3. 27

becomes tt*r/X, Combining

the seismic wavelength In the

the corresponding fraquencv, £

Eauation 3.27 and 3.18 and

integrating gives Equation 3.21 where i-s now

d? ^ ♦dP'P =? . *A, + A-, - ,
ra n lm lm 3m 3m

' *2* 2-i2m,t2n S. 28

The R'iS value determined by using Equation 3.23 should

be less than that calculated using Equation 3.20 because the

latter assumes all degrees of freedom have the same

exci-.ation and are thus identical.

As an example, consider the shear wall building

analyzed by Heidebrecht (28), which is shown in Figure 3-3

with the corresponding frequencies and mode shapes. The

fundamental mode is predominantly y motion, the second mode

predominantly x motion and the -third mode mostly rotation-

The values of C ^ for the v displacement of point 3, i-jj+IEm/

R.A2± are
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Figure 3-3 Example Euilding and Coupled Sodes
i Adapted from Heidebr ecirfc ^ ]
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fCl = f. 45 .17 1 . 0Q} T

The matrix of correlation

Tcruations 3.10 and 3.24 are

coefficients P , the same for

[P ] =L
mn

1.0 .09 .00
.09 1.0 .07
.00 .07 1.0

which assumes a percentage of critical damping of 57 in each

mode.

The modal participation factors as calculated by

donation 3.23 for a wavelength of 1000m, are

r.l?? ] =mnJ

0.30 -0.39 0.00
0.39 0.02 -0.00
0.00 -0.00 1.00

The matrix of the mean square modal values as determined by

Equations 3.22-3.24 and 3.23 are

1

0.00
0.00

12.27
..

for the response spectrum shown in Figure 3-4.

The HMS displacement of point B is thus 3.87

2.73 -6.02
0.02 0.02
0.00 0.00
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csntimetsirs. means of comparison / if Equation 3.20

''see used instead of Squat ion 3.28 the SMS displacement

would be h.33 centimeters, and if the absolute sum of the

modal values were used it would be 5.51 centimeters.

200

100

V, cm .

50

20

10

5

2

0.1 0.2 0.5 1.0 2 5 10
T,sec.

Fiqute 3-U Example Design Response Spectrum

The difference between the values for Equation 3.23

and 2.20 lies in the correlation of the excitations. .The

former assumes only the spectra to be the same while the

latter assumes the spectra and the excitations themselves to

be identical.

Another way of showing this effect, is by a qraoh of the

interaction equations. Rosen blueth and Slorduy and Ran

and Chopra 36 presented the effect of torsional coupling as

graohs of the dynamic forces, nondimensionalized by the
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uncoupled force in the direction of -he excitation, versus a

nondimensional frequency ratio for a flat acceleration

SDec'-.rnj.. The torque is presented as the ratio of dynamic
to static eccentricity.

For a ground excitation consisting of only X

translations, Kan and Choora36 also derived the interaction

surface of the normalized forces as

V x? + V y3 + T 2 = 1

where the bar denotes the value normalized by the uncoupled

force in the direction of the excitation,i.e. for I =3 =0.
x. y

Figure 3-5 shows the interaction between the forces for

a ground excitation consisting of only X translation with a

flat acceleration spectrum. The forces are not normalized

here.

"iqure 3-5 Force Interaction for X Ground Excitation
Only and Flat Acceleration Epectrura (E x?=0,w /w =1)jC y X

The effect of the coupling is to decrease the shear in
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the X direction while causing a shear in the Y direction and

a torque.

"or a ground excitation consisting of rotation only, a

similar interaction for a flat acceleration spectrum is

shown i.n Figure 3-6 for . different values of the radius of

gyration to wavelength ratio. Here the effect of the

coupling is to decrease the torque while inducing building

shears. The decrease in the torque for different

eccentricity ratios shown in Figure 3-5 is much less than

the decrease in the shear in the direction of excitation as

shown in Figure 3 5.

Interaction relations can also be derived for systems

with simultaneous X, 0, and Y excitations. For uncorrelatei

ground translations, and ground rotation excitation defined

by Equation 3.26, all the excitations are uncorrelated as

shown by Equation 3.27. For uncorrelated excitations the

variance of the sum of the modal responses is the sum of the

resoonse modal variances and the interaction surface is

7__2 + 7jz+tz = 2(1 +£2) •5 0 0
' X. ~ — \ ' ■ C. }

X y

Figure 3-7 shows the interaction between the forces for

excitations described by Equation 3.27 and with flat

acceleration spectra.

The increases in the shear for higher levels of the

radius of gyration to wavelength ratio are not great.

Although Figure 3*6 shows an increase in the shears due to

the ground rotation, the decrease in shear shown in
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^igure 3-6 Force Interaction for o ground Excitation
Only and Flat Acceleration Spectr um (1/3=0 , to /w = 1)X^ jT X

Figure 35 for the ground translation excitation more than

offsets this as shown in Figure 3-7. Also, it must be

remembered that the shortest wavelength of interest is of

the order of 600-1000 meters since the reasoning behind the

ground rotation excitation assumes the wavelength to be that

associated with the underlying rock and the shortest natural

periods of interest are 0-2 sec. or longer. Thus for

typical building sizes the ratio £ will be of the order

0.0-0.1. As
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With

Figure 3-7 . Force Interaction For
CJncorrelated Ground Excitations

Flat Acceleration Spectra (Hx/'8=Q,t0y/wx=1)
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seen in Fiaure -3-7, even for the worst case of for

5=0.1, only che torque is appreciably affected bv the

coupliiiq.

It is now well established that. the story shear

decreases with increasina eccentricity. If can also be said

that the story displacements ,i.e., the displacement at the

center of mass, decrease with increasing eccentricity. The

shear and displacement at the periphery of the building,

however, is generally thought to increase with eccentricity.

The reason it is thought to increase is that the

eccentricity induces a rotational motion whose displacement,

at the periphery more than offsets the decrease in the

average or s~ory displacement that occurs with increasina

eccentricity.

The method presented in this chapter can also be used to

examine the peripheral response and the parameters affecting

it. For the system shown in Figure 3-2, the displacement

at the center of mass (C.) is less than what it would be if

the centers of mass and stiffness were coincident. The

origin of the coordinate system is the center of mass. The

displacement of the point marked ? is determined by the

relation

[J = a + (S /H )-(TJJ
p x ym p

or in matrix form

rj = {1 E /a 0}*frJ} = {C}T[IJ} 3.30
P ym

With this relation, the power spectral density of 7 is
P

determined to be
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3 2 (oj) = fC}TF3 2 /a,) ] fC}
UP

= £C> T[ a (o») ]H[ A ]T[ Gz 2 (oj) ][ A ][ H (w) ] fC}
where the spectral density of the ground motion [G^Mw) ] is
letermined by Equation 3.27.

The variance of 1 then is
CO P

<rj 2> = fq 2 (aj) .do,
y — co up

= /g 2 (oj) «fc}TrH (to) fr A iTZ

1 0 0
0 2-?2 q
2 0 1

][H (co) ] fC] «d CO

which upon expanding, becomes
CO

CJ 2>=/C 2 (CO) * fd,2 (CO) • f A 2 + 2-£2 ♦ ! 2 + A 2)
P -o5 Z 1 xx 0x yx

•». <»> * 'VS~2*5,'VWVV
♦ * :,?2-V + V'1""

and after integrating, becomes

<U 2 > = <y 2>» (A 2 + 2»£2*A, 2 + 2 • E /P.* A 2)
p px xx 0x ym yx

ME /R) 2 • <7 2>*(a 2 + 2+ pz*h 2 + 2»E / E • A 2)
ym psz$ x0 ^ ym y0

+ 2 • S /7.«<T • T , > * (A -A +2*£2*A, *A , , +2*E /B • A «A )
ym px pp xx x0 jzfx ym yx y0

3. 31

The variance of the input ground translations are

assumed the same. The variance of the ground rotation is

determined by the quantity £. The area of interest in

building torsion concerns systems where the frequencies are

close together. For such systems the modal quantities

<T 2> <y 2> and <y 2> can be assumed approximately equal
PX p& py

<7 2>=<7 2>=<Y 2>=2
px p0 py °

where a is a constant.

A special case of interest arises when £ = -\/2/2.



Equation 3.31 then can be reduced to

<V>= ' V'^-V'V'V1
+ px0* 29-ym/?* Uxx* ^x0+A0x*W4yx#V '

= a2- (1 + (3^/F)* f 0) 3-32
It should be noted that Equation 3.32 is independent of

the eccentricity, i.e., the maximum response at the

periphery does not increase with eccentricity, regardless of

its value. \ value of £= i/H/2 is higher than typical

t hough.

In order to examine +he effects of the different

parameters, Figure 3 • 3 was plotted using different frequency

ratios,eccentricity ratios, distances from the center of

aassfEy^H), and different values of £. The first column of
graphs represents the response for 3 /E=0.0,i.e. at the

ym

center of mass. It shows the familiar reduction with

increasing eccentricity. The second column represents Sy^/
E = 0.6, and the third 1.22 (which would represent the

periphery of a square buildinq).

The bottom row of graphs in Figure 3-8 represents £=0.0,

i.e. no ground rotation. Tt shows a significant increase

for 3 /2=1.22. The middle row represents £=0.25 and the
ym

top row £= -v/2/2.
The maximum increase for £=0.0 and 3 /F=1.22 (the^ ym

exterior of a sauare building) is about 55% when u ,/co -1 .
0 X

This is about the same when £= -v/2/2 and 3 /3=1.22. This
ym

represents a static eccentricity of about 33% of the

building width.
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%'hat this means is that the exoecte^ maximum peripheral

response is essentially independent of the level of ground

rotation for systems where the torsional and lateral

frequencies are the saae.

This is not true, however, for systems where the

torsional and lateral frequencies are not close together.

In this case the level of ground rotation directly affects

the level of resoonse as seen in Piaura 3-3. The response

in this case can he aoproximated by the root sua square of

the torsional and lateral responses.

The single most important variable in determining the

peripheral resoonse is the torsional lateral frequency ratio

since in most cases £ should be less -han 0.1.

The method presented should give reasonable estimates

of the elastic torsional response of three-dimensional

building systems. The relative effect of the different

parameters on the expected maximum response is based on a

probabilistic description of the ground motion. The power

spectral density matrix of the ground motions is taken to be

a diagonal matrix. The expected maximum peripheral response

is determined as the standard deviation of the response

which is based on the diagonal power spectral density matrix

of around motions.



CHAPTER I?

NQMLINEAR RESPONSE MODEL

a s previously stated , t he nonlinear model bus*, be kept

simple Cor reasons of economy. Since earthquake peak.

resDonse coefficients of variatiou vary from 0.1 to 0.3,

several samples must be averaaed to interpret the results

meaningfully. Also, nonlinear systems, especially three-

dimensional nonlinear systems are complex and expensive to

simulate.

The characteristics of nonlinear torsional response are

needed though, since buildings respond inelastically to some

earthquakes. It is desired to know the effect of ground

rotation in a nonlinear system. Also, nonlinearities in an

unsvmmetrie buildina tend to increase the eccentricity. The

effect on ductility requirements of Deripherai lateral load

elements is also needed.

In order to analyze accurately and efficiently the

effect hysteretic energy dissipation has on the parameters

eccentricity ratio, frequency ratio, and strength ratio, a

simple single story model is used. The single story

building that will be studied is shown in Figure h-1. The

load resisting elements exhibit a single degree of freedom

72
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hysteresis where the force is a function of on.lv one

displacement as opposed to, say, a beam-column where the

forces are a function of several displacements. This

simplifies the nonlinear torsional response computations by

enabling the use of simple hysteresis tvpes.

Many different simple hysteresis types are available

depending on what is being modelled.. The elastoplastic

model was developed to model the a 1astic-piastic behaviour

of steel. '"he bilinear model is similar to the elasto¬

plastic model but allows strain-hardening.

For moment-resisting members the gradual yielding inward

of the cross section requires smoothing of the sharp

yielding in the bilinear model. This together with the

Bauschinger effect brought about the use of the F.amberg-

Osgood hysteresis model which is a curvilinear model very

similar to the bilinear model.

Another single degree of freedom hysteresis model is the

origin oriented shear model. In this model the unloading is

always directed through the origin giving a pinched

hysteresis loop. This model is used where nonlinear

deformations and failure characteristics are governed

primarily by shear.

The stiffness degrading model is used for members whose

stiffness degrades upon reloading, where the degree of

degradation depends on the current ductility. The stiffness

degrading and origin-oriented shear models are usually used

to model reinforced concrete members.
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The building model used tc study the nonlinear behaviour

of buildings subject to torsional motion is shown in Figure

4-1. It consists of a rigid diaphragm roof and four

independent exterior lateral lead resisting elements, e.g.,

steel moment frames or braced frames.

This model can represent many different single story

buildings in use. Some of the buildings on nuclear reactor

sites are single story four frame buildings. Industrial

buildings are commonly one story and for better utilization

of space, often have only exterior frames. Warehouses are

often similar to such industrial buildings.

Small commercial buildings are commonly one story.



Also, such buildings often have very high eccentricities.

One side of these buildings is typically all glass, leaving

only 3 exterior frames- This can result in the center of

stiffness located at the exterior which gives rise to the

very high eccentricity.

Sports arenas, auditoriums, and meeting halls are other

examples of single story exterior framed buildings.

Multistory, multibay. structures obviously don't fit the

criteria for this model; however, with some crude

approximations this model can give the multistory, multibay

gross response. For example, if the response can be

presumed to consist primarily of the fundamental mode then

this aporoximation should give reasonable results.

Some multistory structures are not suitable for

modelling as a single story structure even for gross

results. Buildings with eccentric penthouses are one

example. Buildings with sudden changes in stiffness or

changes in the eccentricity are another example.

Multibay structures reauire another approximation in

order to be modelled as a single bay structure. The frames

on each side of the center of stiffness are lumped together

each as one frame keeping the total stiffness constant so

the frequency isn't changed. For the building shown in

"igurs 2, the stiffness of the equivalent frames in the Y-

direction would be as follows

Kytl= Kyl+ Ky2
Kyt2T Ky3+ Ky4
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In order to keen an ch an fieri the rotational stiffness due to

these frames, the distances xtl'*t2 "Joul(:l be determined from

Sl'V + Ky2*V = ?ytl-Xtl2
*y3':(32 + ^y4#X42 = *yt2'*t22

where 7 ^ would be between Yand X 2«

Figure h-2 F.ultibav 8uilding

For a linear aultibay system this method of modelling

would give the same results: however, a problem arises in

nonlinear response. If the yield levels of frames 1 and 2

were Fy^ and F^' then the obvious choice for the equivalent
frame Ts yield level would be ?yi+?v2* ?or a 3?steai '•'ibh no
eccentricity and no torsional excitations, the resoonse of

the actual multibay structure and the four frame equivalent

model would not be the same unless the yield levels of

frames 1 and 2 were identical. For bilinear hysteresis with
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different yield levels for the frames labelled one and two,

the equivalent frame would have to exhibit a trilinear

hysteresis to match the response of the actual structure-

Also, when a torsional response exists, the rotational

displacement which would cause one of the frames in the

muitibay structure to yield, would not necessarily be the

same yield rotational displacement as that of the equivalent

model. The maximum moment for each system will be

approximately the same thouqh. So .aodellina nonlinear

muitibay structures as single bay structures does require

some approximations. It should model the gross response

adequately, thouqh.

iOqa.TOds 03 MOTION

For the four frame structure being analyzed, the rigid

diaphragm reduces the system to three degrees of freedom;

two lateral displacements and a rotation about a vertical

axis.

The dynamic equations of motion for the three degree of

freedom nonlinear system shown in Figure 4-1 are

[ a ] {U} +rc ] {U} + {F (u)} = ••[ d ] rigj 4.1
where

fF(gi) } = fF{Ui,1) }+[Ki_£{ni-r;i_^
and [K^] is the tanqent stiffness at time t .

The displacement vector {H"} is the same as in Equation

3.1, i.e.

{U) = {nx R.u0
The mass matrix then becomes



[M] =

3 0 0
0 3 * z. 0
0 0 m

The hysteresis oiodel chosen for this study is the

bilinear model. The numerical integration method used is

fourth order Runge^Kutta.

Fourth order Runge-Kutta numerical integration of a

second order differential equation, e.g. Equation 3.1, is

conditionally stable for T /At>2.42, where I is the oeriod
n n

of the system. The linear acceleration method, sometimes

referred to as Vewaark's 6 methodC41), is conditionally

stable for Tn//\t>1.31. In a limited test of single degree

of freedom linear responses to sine waves, the fourth order

Range Kutta method was more accurate than the linear

acceleration method in terms of peak response and earthquake

inout energy, which is defined simply as the energy input to

the structure. The linear acceleration method is more

efficient for the same T At ratio though. The reason the
n "

Runge-Kutta method is used is its accuracy and ease in

programming changes in the time step At.

For a bilinear hysteresis model the amount by which the

force can overshoot the yield envelope can be considerable;

esmecially for low values of T /At. The usual orocedure
n

taken when the force overshoots the yield envelope is to

redo this step's calculations with a much smaller time

increment, say one'-fifth the original; then, when the force

is beyond the yield envelope, presumably by a small amount,
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~he rime increment is reset to the original value and the

computations resume.

A special algorithm is used here to compute the time

step necessary to reach the yield force precisely. The

fourth order Funge-Kutta method is used to solve Equation

'4.1. The initial time steo increment At is chosen on the

basis of stability and accuracy. When the force for one of

the elements overshoots the yield envelope, this time step's

calculations are redone with a new rime steo increment.

F

Figure 4-3 Bilinear Yield Envelope

when the force overshoots the yield envelope, as shown

in Figure 4-3, the displacement necessary for the force to

equal the yield force is known. If the displacement is

assumed to be a third order function of time, i.e. linear

acceleration, then the time increment corresponding to that

displacement can be computed.. That displacement then is

AX= (Fy-F (t) ) /K = A" (t) + At2 •[ 2 • X (t) + X (t + At) ]/6 4.2

where
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X (- + At) = V(t) *r '•( (t+t • ) ■! ('} ]»At/n ' a. 3

A cubic equation in At is obtained by combining Equations

a. 1 and 4.2.

G (At) =At 3 •[ X (t+t •) - X (*) ]/(5-t • ) + At« • X (t)/2*Afi (t) -AX=0.

At can be solved for directly or by Newton iteration

At
. =At - G (At ) /G' (At )
i+l i i i

In practise, only a few iterations are required to achieve

the necessary accuracy. This *iae step increment is then

used in the fourth order B unqe Xutta integration scheme for

this step only. The computed element force is then compared

to the via id value and if it is within 1'S, the solution

proceeds with the initial time step increment. For the

simulations used in this study the accuracy has always been

within VS. The comDuter program using this algorti'nm is

listed in Appendix E-

This solution technique for bilinear systems can be

efficiently used for structures with few yielding elements.

For a structure with many yielding elements, the constant

changing of the time step would make this technique

expensive, computationally.



CHAPTER V

NONLINEAR RESPONSE RESULTS

The importance of the various torsional parameters,

eccentricity ratio, torsional around motion, and strenath

ratio for the model as described in Chapter IV are studied,

especially the peripheral response as it pertains to the

ductility demand.

Since the model is a nonlinear hysteretic system, 'lonte

Carlo methods are used. An ensemble of artificial

nonstationary accelerograms is generated as described in

ChaDter II usinq the computer program PSEQGEN c715 which

uses filtered white noise with an intensity function of the

Jenning's et alC52) type. The intensity function I(t) is

shown in Figure 5- 1d)- The accelerograms are the product of

the stationary filtered white noise and the intensity

function I (t). The power spectral density shown in

Figure 5-1c) is the product of the filter's two frequency

response functions shown in Figure 5-1a) and b) . The

acceleroqrams qenerated are intended to simulate strona

ground motion on firm so?l in the vicinity of the

epicenter<555. The generated accelerograms are shown in

Figures 5-2 through 5-6.
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Other parameters that characterize the accelerograms

include the maximum acceleration which averages O.hg for the

five accelerograms with a standard deviation of 0-01g. The

duration is 60 seconds with a duration of 31 seconds for the

strong ground motion (stationary) portion. The Arias

intensity<78> which is defined as

1= v42-g) -J Z_2 (t) •at

is 32.2 ft/sec. The rms acceleration is 0.1g.

Hi (.j) i t

G- (u)

C)

h2 (oj) ;

b)

i

i (t)

d)

«JU

0)
n

Figure 5-1 Artificial Accelerogram Data

Hoasnerfs spectrum intensity SI, is defined as

2.5

SI = /v*dT
0.1
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where 7 is the pseudovelocity response in ft/sec, often

for 20^ damping, and I is the natural period. For the five

generated accelerograms the average spectrum intensity SI is

3.9 ft for 20® damping. Ground rota-ion was included and

computed according to Eguation 2.15. The shear wave speed

used, was a conservative 1000 ft/sec. This corresponds to a

value of 0.15 for the parameter E, as described in Chapter

III for the wavelength corresponding to the predominant

frequency of excitation.

'"ad el par ameters

The normalized eccentricity ratio, 2/?, is defined as

the eccentricity between the center of mass and stiffness

divided by the mass radius of gyration. The values 0.0,

0.1, 0.2, 0.3, and an unusually high value of 1.0 were used

for this ratio. The structure's dimension ratio 8y/3x, was
2.0. The stiffness was assumed proportional to the

dimensions of the structure i.e., Xy/Kx=2.0r so the
freauencv ratio to / co was -t/2 - The torsional-lateral

x

frequency ratio w ,/oj is determined by the geometry of the
0 X

structure. For a uniform mass distribution the mass radius

of gyration is

R= V(Bx2 + 3y2)
and the torsional frequency is

u ,= V 3 • (K *8 2 + K • 8 g/MM3 ? + 3 <i)j0 v x y y x " x y

for 3 =3v and K =K , coVo) =-\/3=1.7 3. For 3 /B =K /K =2,yx yx 0x yxyx

w'0/a)x=1* 90"
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The jass of the model, assumed uniformly distributed,

was 9.5 kips *3002/11101.. Other important parameters of the

nonlinear response are the natural frequencies and a

strength oaramerer. The natural periods used were

9.2,0.6,1.0, and 1.U seconds.

The other parameter deteraininq nonlinear response

relates to the yield level. This strength parameter can be

expressed in aac7 different ways. The current rJ'*C< 7?> code

specifies the base shear V, as

V=Z •I-K*C»5»9

where Z,I,tT,C,S, and w are a zone factor, an importance

factor, a framing system factor, a natural period factor, a

site-structure resonance factor, and the building weight(or

mass times gravity) . I natural choice for the strength

parameter then is the yield shear F , divided by the weight,

'1 • g.

The values for F /(3«g) used were 1/8,1/h, and 1/2.

Results

The excitation for the first analysis consisted of

accelerogram 1 for -he X-direction, accelerogram 2 tor the

Y-direction, and using Equation 2-15 to determine the

rotational acceleration. The excitation for the second

analysis consisted of accelerogram 2 for the X-direction,

accelerogram 3 for the Y-direction, and again using Equation

2.15 to determine the rotational accelerat ion. The

excitation for the third, fourth, and fifth analyses are

similarly determined. All results presented are the average
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of the results of the five dynamic analyses.

The maximum displacements and ductilities at the center

of mass for different values of the eccentricity ratio and a

strength ratio of 1/2 are shown in Figure 5-7 as functions

of the period in the X-direction. The displacements in the

X-direction don't vary much with eccentricity. The

displacements in the Y-direction appear to increase with

eccentricity, but only slightly.

The maximum peripheral displacements and ductilities for

different values of the eccentricity ratio and a strength

ratio of 1/2 are shown in Figure 5-8. The displacements in

both directions increase with eccentricity for the most

part.

The maximum displacements of the center of mass and

their corresponding ductilities for different values of the

eccentricity ratio and a strength ratio of 1/4 are shown in

Figure 5-9 as a function of the period in the X-direction.

The displacements in the X-direction and 7-direction don't

vary much with eccentricity.

The maximum peripheral displacements and ductilities for

different values of the eccentricity ratio and a strength

ratio of 1/4 are shown in Figure 5-10. The displacements in

both directions increase with eccentricity for the most

part.

The maximum displacements and ductilities at the center

of mass for different values of the eccentricity ratio and a

strength ratio of 1/8 versus the period in the X-direction
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are shown in Figure 5-11. The displacements in the J*

direction don't show a discernible trend. The displacements

in the Y-direction appear to increase with eccentricity, but

only slightly.

The maximum peripheral displacements and ductilities for

different values of the eccentricity ratio and a strength

ratio of 1/8 are shown in Figure 5-12. The displacements in

both directions increase with eccentricity for the most

part. The values for a period of 0.2 seconds were left out

because the ductilities were in the hundreds, which for all

practical ourposes are not meaninaful.

Tarthgua ke Energy Partition

The partition of energy in the model was also computed.

The earthquake input energy (ETE) is defined as the total

acceleration integrated over the ground displacement
t

ETE = f:i* (fi +g ) .au
a g g

The dissipated hysteretic energy (DHE) is the stiffness

related force integrated over relarive displacement less the

recoverable strain energy

t
DEE = J"F(TI)*da - E2 (t) / (2 »K)

o

The dissipated nonhysteretic energy (DNHE) is the damping

force integrated over relative displacement plus the

recoverable strain energy and kinetic energy. The strain

and kinetic energy are included since they are eventually

dissipated through damping. The fraction of critical viscous

damping in all cases was 5". (See Appendix ? for
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Figure 5-12 Peripheral Displacements and

Ductilities (F / (H«g) = 1/3)
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The earthquake input energy, dissipated damping energy,

and dissipated hysteretic enercry for different values of the

eccentricity ratio and a strenath ratio of 1/2 versus the

period in the X-direction are shown in Figure 5-13- The

values for a strength ratio of 1/4 and 1/8 are shown in

Figures 5-14 and 5-15.

•Several things are noteworthy in these figures. First,

there doesn't seen to be any definite relation between the

values and eccentricity, i.e. ■'■hey don't uniformly increase

or decrease with eccentricity. Second, as would be

expected, the dissipated hysteretic energy increases for

lower values of 5^/(vi»a) . Third, the earthquake input
energy decreases for lower values of 7 y/(d-»g). The reason
for this is not clear. Finally, there is a definite peak in

the value of earthquake input energy versus period. This

can be explained. If the dissipated hysteretic energy were

viewed as an equivalent viscous damping dissipated energy,

then the total value of the damping parameter C would be the

sum of the viscous damning and the equivalent hysteretic

damning. The earthquake innut energy would be approximately

FIE = fc*n2»dt = 0<*J2>*t
o

The mean square velocity can be represented in terms of the

input power spectral density and the velocity response

function which in this case are unimodal functions,

functions with one peak.
CO

<U*> = /iHgU) 2(u))'doj
-co g
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A typical velocity response function is shown in

Figure A3-1a). The input power spectral density is shown in

Figure 5-1. It follows that <TZ> would be largest when the

peaks of the two functions were concurrent. Thus, the

largest value of earthquake input energy should occur near

the peak of the input power spectral density function. This

is the case.

The strength ratio corresponding to a given ductility

ratio is also of interest. For the ductilities, averaged

over the different eccentricity ratios, the corresponding

strength ratio is determined by interpolation from

Figures 5-7 to 5-12 and is shown in Figure 5-16.

0.5
rp
^

y
M. * g- 0.4

0.3

0.2

0.1 "

0.2 0.6 1.0 1.4
T', period

A

Pigure 5-16 Strength Batio versus Ductility

For a system with uniformly distributed mass, the

response of the element furthest from the center of

stiffness will be the largest. Due to this increased

response the stiffness will be smaller relative to the

element closest to the center of stiffness. This smaller
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stiffness increases the eccentricity and, one might exnect,

could further increase the response of the element furthest

from the center of stiffness-

This could lead to a situation where the eccentricity

causes an increasinaly nonlinear response of the element

until the ductility demand could not be met. That this is

not the case is evident from the results. The reason is

probably the type of hysteresis model used. The bilinear

model has increasingly nonlinear strength as well as

increasing dissipated hysteretic energy capacity which would

both limit the response. In any case, this does not seem to

be a problem.
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souhary and conclusions

This dissertation is concerned with the study of torsion

in buildings subjected to earthquakes. It is now well known

that there is a dynamic amplification, of torque and a

dynamic reduction in buildinq shear. a recent, detailed

study used the mode superposition and response spectrum

techniques to develop response envelopes for an excitation

in one direction. Other researchers have reported for a

single accelerogram response, as much as a 40- 100'X increase

in the peripheral response.

The analytical technique selected here for linear

response was the probabilistic approach. The probabilistic

description of earthquake excitation was discussed and a

simple expression relating torsional earthquake excitation

to translational earthquake excitation was developed.

Interaction relations were derived for systems with

simultaneous I, <3f, and Y ground excitations.

The main concern or deleterious effect of building

torsion is the increase in peripheral response. The reason

for the increase is thought to be that the eccentricity

induces a rotational motion whose displacement at the

periphery more than offsets the decrease in the storv

displacement that occurs with increasing eccentricity. The

peripheral response was studied using the probabilistic

model. The effect of the various parameters on the

104
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peripheral response was studied. It was shown that a

special case arises where the peripheral response is

independent of the eccentricity or frequency ratio.

Earthquake ground motion was described and the state of

the art of artificial generation was discussed.

Oncorrelated ground translations were used for this study.

NewraarJc's model of ground rotational motion was used and the

various parameters affectincr it were studied. The decrease

on the magnitude of this ground rotation as the rigid

building size to wavelength ratio increases was also

discussed.

A probabilistic approach cannot be used for nonlinear

hysteretic response. Monte Carlo methods are used for

nonlinear response- An ensemble of artificial accelerograms

were generated for a response analysis of a class of

nonlinear building types. For the four exterior wall model

studied, a bilinear hysteresis was used. For this type of

model the torsion-translation frequency ratio is determined

by the geometry of the structure. The results showed the

peripheral response to be only marginally higher than that

for zero eccentricity„

For an eccentric structure responding in the nonlinear

range, the eccentricity increases with the increasing

nonlinearities, possibly causing larger and larger torsional

excitation. These studies showed this is not a problem with

the bilinear hysteresis used with this model.
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Conclusions

Based on the study in this dissertation, the following

general conclusions can be made: 1) in the statistical sense

of the word expected, i.e. the mean, the maximum expected

increase in the elastic peripheral response due to both the

eccentricity and ground rotations is on the order of SOS;

2) the single most important parameter in building torsion

is the torsion-translation frequency ratio; 3) torsional

ground excitation must be quite large before it

significantly affects the response for structures with well

separated frequencies; h) the dissipated hysteretic energy

for nonlinear structures is maximum when the natural

frequency is near the predominant frequency of the

accelerogram; and 5) parametric resonance is not a problem

for the four peripheral wall structure studied herein.

Concludina Bernards

The analysis of building torsion in this dissertation

assumes the ground rotation to be related to the ground

translations by Newmaric's relation. Although the

conclusions stated are based on this assumption, it is still

felt, based on field observations of others, that ground

rotation is not much larger if different. Nevertheless, the

author still recommends the development and production of a

' torsional seismometer to determine the actual magnitude of

the ground rotations and its relation to ground

translations-
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Lastly, the importance of the torsion-translation

frequency ratio must be emphasized. It is recommended for

unusually shaped buildings where large eccentricities are

unavoidable, that the building be designed with well

separated torsion and translation frequencies.
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APPENDIX
. A

Response of single degree of freedom oscillators is

sometimes computed by the Duhamel or convolution integral.

The response to an impulse is a damped sine wave commonly

referred to as the impulse response function,h(t) of the oscil¬

lator. The summing of the response due to each impulse

becomes in the limit an integral. The summing or super¬

position of these responses is referred to as the Duhamel

or convolution integral

t
V(t) = j" h(t-t') •P(t»)dt' A .1

where
/

0 t <0

h(t)= < A .2

<
V exp (-B*w t) • sin [to* (1-B^) ^ • t] / [to* (1-B^) t> 0

which is the transfer function for the differential equation

V(t)+2'B'U'V(t)+u2'V(t) = P(t) A .3

The Fourier transform of Equation A .1, commonly

referred to as the complex frequency response function, is

H (to) =1/ [wn^-0)^+2 • B • to • u)n • iJ A .4
The transfer function and the modulus of its transform

are plotted in Figure Aa).

The power spectral density of an ergodi.c stochastic process

is defined as

s/2
G 2(a))=lim| [ p (t) • exp (-i-to • t) «dt | 2/s A .5

s"*°° -s/2
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A sample random process and its spectral density are

shown in Figure Ab). .

(59)
It can easily be shown that the response power

spectral density is the product of the square of the complex

frequency response function and the input power spectral

density.

|G 2(oj) | = j H (cu) |2-jG 2(w) | A'.6
V

The response v(t) and corresponding power spectral density

are shown in Figure Ac). It is seen that a convolution

in the time domain corresponds to a multiplication in the

frequency domain. The converse can also be shown. Put

simply, the transform of a convolution of two functions

is the product of the individual transforms; also, the

transform of the product of two functions is the convolution

of the individual transforms.

The averaging filter U T(t)

0 t <-1'

Ut, (t) =<l/'t' -t^t< t' ' A .7
0 t>t'

V

along with its transform U(f)

U (f) =sin (2 "ir* f • t') / (2 • it • f • t') A .8

are depicted in Figure Ad).

The averaged response V Ct)
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t+t'/2'
00

Vlt)=r-. )V(t)dt= U 1(t-t')'V(t,)dt,=U,,(t)*V(t) A .9t- J -co ^ r

t-t'/2

can be viewed as the convolution of Ut, with V. The
transform of V shown in Figure Ae) is the product of the

transform of Ut, and V.
The first zero of U(f) is l/(2t')/ which for the

values of interest will be well beyond the natural frequency,

f. Thus the effect of the averaging is to reduce the

ordinates of the spectral density which reduces the variance

defined as the area under the spectral density curve. Since

the expected extreme value is proportional to the variance,

the effect of the averaging reduces the expected extreme

value, as expected.



Ill
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APPENDIX B

For a single degree of freedom (SDOF) system the

expected response is a maximum when the structure i-s directed

along one of the principal axes. The -motion along the princi¬

ple axes are uncorrelated and are defined as the radial to the

epicenter and .normal to the radius.

To show this, it is first assumed that the maximum

expected response is proportional to the variance, con¬

sistent with the theory of extreme values. The variance

is expressed as the integral of the power spectral density
of the response, which is expressed as the integral of

the product of the frequency response function and excita¬

tion power spectral density.

Let R denote the excitation along the principal axis P.
Since R and C are uncorrelated, the cross-correlation

2function is zero. Thus, the cross spectrum G loo) , the
•L L*

transform of the cross-correlation function, is also zero.

Let X and Y denote the angle 0 of the structure's

to p. Then

X=C-cos(0) + R*sin(0)

and

Y=C*sin(0) + R*cos(0)

Describing the power spectral density of X and Y in terms

of R and C gives

G 2 (w)=cos2 (0) • G 2 (o))+sin2 (0) *G. 2 (w)
i. c

G 2(w)=sin2 (6) 'G 2(w)+cos2 (©) *G 2 (w)
y ^ ^
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G 2 (to) =cos (9) •■sin (0) • (G 2 (to) -G 2 (to) )

The variance of response of the SDOF system is

00

. < X2>= I I H (to) I 2 • G 2 (to) dto
-co X

00

= / | H (to) j 2 • [cos2 (0) *G 2 (to) +sin2 (6) *G 2 (to) ] da)
-oo r c

which is maximum when 9 is either 0° or 90° depending on

the relative variances of R and C.

For a multidegree of freedom (MDOF) system, the

approach is not as straightforward, and simplifying

assumptions must be made. First, the variance is expressed

as the sum of the variances and covariances of the un¬

coupled modal responses. The response quantity of interest

is

Q = fe) T {X}

where

fc} = [A]' (U>

ftj}+[2«B*oi]' (U}+ [to2]' {U}=

[A] is the matrix of eigenvectors. The response power

spectrum can be expressed as

G 2(<o)= {B}T[H]M[A]T[G 2 (to) ] [A] [Hr fe>
H. P

For a 2-DOF system this expands to

Gg2= (Gq2 • cos20+Gr2 • sin29) [H2 • A2 «B2+2 • Hj-H,-A^Bj-B/H2 - A2 -B2] +

(Gr2"Gc2) -cose-sine +H1-H2(A;1A+^1^ B-B+H2 -A^B,) +

(G 2 • sin20+G 2 • cos20 ) [H? -A2'■B12+2H1-H2-A2-JA^-BJH2-A2-B2] B.1c c



Rosenbluethargues, based on work by Rascon^2^,
that there is a deterministic relation between the ratio of

¥

spectral intensities (SI) of the grounder motions •

along the two orthogonal axes, and

that as the RMS spectrum intensity increases the expected

ratio approaches unity. For the RMS spectrum intensity>4.5,

corresponding to a Modified Mercalli intensity of around V,

the ratio exceeds 0.9.

Thus, for earthquake intensities of interest, Six-Sly.

Since the Arias intensity, the variance times duration,

is closely related to Housner's spectrum intensity, we

2 2
can say that . <X >= < Y >, or

CO GO

j Gr^(u))»da) = j Gc^(u)*da)
—00 —CD

Due to the origins of the two ground motions R and C, we

can say

1H (w) { 2 *G 2 (a)) *doj= ]H (o) |2-G 2(w) -dti> B.2
i c

Thus, in Equation B.l, the first and third terms become

dominant and the contribution of the second term approaches

zero. Also, since the two displacement coordinates,

corresponding to the two horizontal ground translations,

are orthogonal, the amount of coupling will be small even

in the worst case, i.e. • THis suggests that

Equation'B.l . will be maximum when the cos(0)»sin(0) is

maximum, i.e. 0=45°. However, Equation B.2 suggests that

the difference will be slight.
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APPENDIX C-

For a: white noise .process of intensity, ,Gq , the
covariance of modal responses is defined as

< Y (t) • Y (t) >= ? H (w)-H (w)-G 2-dw 3.13
m n -co ym yn o

where the complex frequency response function is

Hyn (OJ) =1/[o3m^+i* 2 •Bm*Um* w-w2] •
The variance is

■ ivMi2v-d"
The correlation coefficient P„, is defined asmn

. < y (t) .y (t) >•
p = HI £ /1-.3

11111
< Y 2(t)>05*<Y 2(t)>°*5

m n

Inserting C.1 into . C.2 gives

j oo G 2 • dw
< Y (t) >= / —T C . 4

~°°

[W "*"Wm * ~2) ~Wm ^mm m

This can be factored to

2
o 00 G • dw n c

<Y 2(t)>= / : 2 C*5
m [w2-wm2*exp(-2,i,9) ] • [w2-wm2,exp (2»i*9) ]

where exp (2 • i* 9) = [ (1-2 *Bm2) ] +i • [2 *Bm» (l~Bm2) and i=(-l)^
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Equation- C.5- can be expanded to

GO

2

' <Ym2(t)>= Go
—00

[u-o)m*exp(-i • 9) ] • [u+u)m*exp (—i • 0) ]

dw
^

[oj-co *exp (i» 9) ] • [co+uj *exp(i*0) ] .6.6m in

2 05
where exp(i*9)=[(1-Bm ) ' ]+i*[BmJ

Equation C.6 • has 4 poles of order 1; namely,±wm*exp

(i*0) and ±iom*exp (i • 0) . f (x) can be regarded as a line

integral along the real axis. By the method of residues:

7f(x)dx=i> f(z)*dz
- Cr

where f(z) is analytic in C^_ except at a finite number of
poles, and Cr is a semicircular path whose diameter is the
real axis. Then

6 f(z)-dz = 2*7vi» {sum of the residues in the upper
^ half of the complex z-plane}

The residue of f(z) at z', z' a pole of order 1, is

Res[f(z),z']=lim [(z-z')*f (z)]
z->-z'

The integrand in Equation C.6 has two poles, in the upper

half of the complex ~z-plane, namely, w •-exp(i,-9) and

-w •exp(-i•9).m *•
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thus,
2 2v7T*g0 'i

• <V<«> S2-
Itl

[exp (i-0) +exp (-i* 9) ] [ exp (i* 9) -exp (-i- 9) ] [exp(i* 9) +exp ( i• 9) ]

[-exp (-i • 9) -exp (i• 9) ] [exp (i• 9) -exp (— i* 9) ] [-exp (—i• 9) -exp(-i-e)]

or

, Go2-7T
. (t)> = 2^ C.7

n iti

which is the variance of the displacement of an oscillator

subjected to white noise excitation.

For the covariance, combining Equation 3.13 and C.1

. < Y(t) • Y (t) >=
m n

2
00

. G
o

[oo+u^-exp (-i* 0) ] • [co-u^exp (i • ©) ]

du C.8
[aH-ai^exp (i* 9) ] • [u-ton'exp (-i# 9) ]

By the method of residues, Equation C.8 becomes
2 >

<Y (t) *Y (t) >=2*iT*i*G • {sum of residues on upper half of
m n ° complex z-plane}
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2
2 • it • i • Gq

2*w •(1-B 2)03
m m

[w *exp (i* 0 ) +u> »exp (i* 0) ] • [co *exp (i* 0) -oj «exp (-i* 0„) ]m m n n m m n ^ n

[-(^•expt-i-e )+« -exp(i-0 ) ] [-a)m*exp(-i*6m)-wn'exp(-i«en) ]

Simplifying,

. < Ym (t) *Yn (t) >= 2*TT'i*Go2» {1/z-l/z}/(2'U)^')
=2 • 7T♦ i• Gq2• -i2-i-Im(z)/| z| 2}/(2-wm»)
=4'7T'G 2* (ui »B +a> -B )/| Z I 2 C.9o m m n n ' 1 1

where w 1 is the damped natural frequency of the mth mode

and

z= [ (a) ' 2-w ' 2) - (w *B +to *B ) 23 +.i* [2 • w ' • (to • B +to • B ) Jm n mmnn m mmnn

The correlation coefficient P^ by inserting Equation
<3.7 and C.9 into C. 3." is

P =8 * (0) *B +oj »B )«(u 3'B -a) 3*B )q3/\z\2 C-.10mn mmnn m mn n ' 1 1

which is Equation 3.24. For Bn, Bm'<< Equation C.10
is very close to the simpler Equation 3.10 developed by

Rosenblueth.
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APPENDIX D

As described in Chapter II, the power spectrum for

ensembles of accelerograms is commonly expressed in the

Kanai-Tajimi form

0 G 2* (1+4-B 2,<o2/to 2)
G 2( ) = 2 2 2 D1

'{[l-((o/«og)2]2+4.Bg2.U2/Ug2}
The response power spectrum for this type of excitation is

Gy2 (to) = |H (cu) |2-Gz2(w) D.2 ■
or

< Y2 (t) >=
G 2- (1+4 • B 2-u//to 2) -dto

2 2_
r 4^ 2 ,. _ 2 ... 2 4, rM 2, 2. 2^„ B 2 2, 2,[0) •(4'B -2) • 03 -0) J •[(1-0) /o) ) +4-B -co /a) J

n. n cf cf

=G

oo 4 2 2 2

2 f Wq * t1+4*Bg /Wg 3
* * J 2 9 7 9o 2 2 2 2

-oo [gj -go •exp(-2*i^0 ) ] [to -to •exp(2*i*0 )]n ^ n n ^ n' J

du
D. 3

2 2 2 2
[to -to -exp (-2 • i • 0 ) J [to -to •exp(2*i*0 )]

9 9 9 9"

which has eight poles of order 1 at ±ton*exp (±i • 0 ) and

±to *exp(±i*0 ). By the method of residues
5 G

2 2/
< Yn (t) >=Gq • 2 • tt • i •' {Sum of the residues in the upper half

of the complex z-plane.}

With the assuption that the spectrum for the ensemble

of excitations is a wide band process, B will be large

compared to that of the lightly damped oscillator, i.e.

B >>B
g n
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and therefore

8 >>6
g n

After some algebra

2 Go2'*
< Y (t)>=

n 0 3 _2 • to *B
n n

l+4'Bg2'(o2/tog2
1+ (co /to ) 4- (co /co ) 2; {exp [2 • i • (0 -0 ) j+exp [—2 • ± - (6 +6 ) ] }

ngng gn^ 9 n

G ^ • ir

+ ^ •
2-to -B

g g

(l+4Bg2)' {[l-a)n2/(jq2]2+4'Bq2'(Jan2/fa)q2}-4-Bq2-(un2/oog2(l-4-Bq2)
'

{[l-(a)n/wg)2]2+4-Bg2-wn2/cog2}2+ {[4.wn2/wg2-Bg]2- (1-Bg2) }

or

D. 5

2
0 (to ) 7r*F(to_)

- < Y (t) >=—J-—2- + r1— D-6
2 • to • • B 2 ♦ to • B

n n g g

= < Yn2 (t) >to.n.-Gz2 (ton) + < Z2 (t) >-F(u )
2

tfhere G (to) is defined by Equation ^-s defined

Ln Equation D.5, and. <Y^ (t)>co.n. is the response of the
oscillator to white noise. The assumption underlying

Equation D.6. gives rise to the same approximation used

Ln gust response factors, based on graphical inspection.
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Typical values for and used in Equation "D^l-1

are 15.6 radians/sec. and 0.6, respectively. For
2 2 2

w «o . F(u) ) - G_ and G„ (w„)>G_ . Also, since B_ «B_
n g n o zno gn

the first term in Equation D..6 " ' dominates and

. < Y 2 (t) >~ < Y 2(t) >w.n.-G 2(u> ) -D. 7
n n z n

Thus the variance, which is proportional to the square of

the expected extreme value, is proportional to the value

of the excitation power spectrum at the oscillator natural

frequency. For a wide band excitation where the building

frequencies are close together the effect of nonwhite

excitation cancels.
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C K0= STIFFNESS ABOUT CENTER OF MASS (HOT CENTER OF STIFFNESS)
C NOTE THAT THE HASS MATRIX IS THE IDENTITY MATRIX.THUS THE MODAL MASSES
C ARE 1.0

DIMENSION FORM AT (2 0), F1 (8000), D1{8000), SOC(3), DYC(3), DYE(4)
COMMON /"TIME/ GACC (3) , OGACC{3), G(8000,3)
COMMON SK (3,3) , DAHP(3,3), PHI (3,3), D (3) , OEDPFC(3), OLDIS (3» ,

1 PDELTA ( 3)
COMMON /STIFF/ RD(4), FY(4), SO(4), IVC(4), S{4) , PMAX(4), EPSMAX,

1 IBTOT
DIMENSION DISE (4) , ODISE(4), DISEHX(4), Y(3), DY(3), DDY (3) ,

1 ODY (4) , TITLE (20) , PF (4) , B(6,6), DUCHX(4), DISMX(3),
2 PFMAX (4) , TDISMX (3) , ACMAX(3), TACMAX(3), OF (4) ,

3 DUCT MX (3 ) , TE (4) , PFC(3), OY (4) , AUX1(3), AUX2 (3) ,

4 PFCMX (3) , TPFCHXp), VG(3), VARE(4), VARC(3,3), EIE(3),
5 DAMP DE (3) , V ARFE ( 4) , VARFC (3 ,3) , TEC (3) , P(3), FEBAR (4) ,

6 YEBAR (4) , FCB AR ( 3) , YCBAR (3) , 7ELE(4), OVSLE (4),
7 ACCE (4) , OACCE (4) , ECCHAX(3), SKINV(3,3)

REAL MASS, K1 (3) , K2(3), S3 (3) , K4 (3) , M (3)
IN = 5
INN = 7
IN 52 = 8
IT = 6

10 READ (TN,20,END=550) TITLE
WRITE (IT, 30) TITLE

20 FORMAT (20 A4)
30 FORMAT (1H1, 2 0A4/)

READ (IN, 20) TITLE
WRITE (IT, 40) TITLE

40 FORMAT (//' X GROUND ACCELERATION= «, 10A4, 10 X, • T GROUND ACCELE
1 RATION= «, 10 A4/)

READ (IN,50) EXK, EYM, BX, BY, XI, DT, MASS, TO, TEND, DTAC, GG,
1 AC MULT, CS, HGT, IELSM, IG ROT, IPDELT, IPLOT

50 FORMAT (4F1 0. 2/3F1 0 .9/7F10 . 4/415)
NSTEPS = (TEND - TO) / DTAC + 0.49
READ (IN,60) SO, FY, HO

60 FORMAT (4F10.3)
READ (IN,70) FORMAT

70 FORMAT (20A4)
PM ASS = MASS * (BX **2 + BY**2) / 12.
R = SQRT((3X**2 + BY**2)/12.)
EX = SO (4) * BX / (SO {3) + SO (4) ) - EXM
EY = SO (2) * BY / (SO (1) + SO (2) ) - EYM
IBTOT = 0
EPSMAX =0.0
SOC(1) = SO (1) * SO (2)
SOC (3) = S6 (3) + SO (4)
SOC (2) = SO (1) * EYM *» 2 + so (2) * (BY - EYM) ** 2 + SO (3) * EXM

1** 2 + SO (4) * (BX - EXM) ** 2
DET = SOC(1) * SOC (3) * (SOC(2) - SOC(1)*EY**2 - SOC (3) *EX**2)
SKINY (1,1) = (SOC (2) *SCC (3) - (SOC (3) *EX) **2) / DET
SKINV(1,2) = (SOC(1)*SOC{3)*EY) /DET
SK INV (1,3) = (-SOC (1) *SOC{3) *EX*EY) / DET
SKINV (2,1) = SKINV (1,2)
SKI57 (2,2) = (SOC ( 1)*SOC(3) ) / DET
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SKINV (2,3) = (-SOC (1) *S0C(3) *EX) / DET
SKIHV (3,1) = SKINV (1,3)
SKINV (3,2) = SKINV (2,3)
SKINV (3,1) = (SOC (2) *SOC (1) - (SOC (1) *ET) **2) /DET
H (1) = 1.0
H (2) = 1.0 * R
H(3) = 1.0
PDELTA (1) = GG * FLOAT (IPOELT) / HGT
PDELTA (2) = 0. 0
PDELTA (3) = GG * FLOAT (IPOELI) / HGT
EXR = EX / R
ETB = EY / R
WRITE (IT,80) BX, BY, EXH, EYH, XI, DT, MASS, PHASS, TO, TEND,

1DTAC, R, EXR, EYR, GG, ACMULT, IELEM, IGROT, CS, IPDELT, HGT,
2IPLOT

80 FORHAT (//'0 BX= • , F7.2, ' BY* • , 71.2, • EXM=«, F7.2, * EYH* • ,

1 F7.2, ' BETA=«, P6.4, • DT*', F6.4, « HASS*', E11.4, • M
28**2 = ', E11.4, /' TO=• , F7.3, ' TP*', F6.3, • DTAC= *, F6.4, »
3 R*', F8.4, ' EX/R*', Fo.4, • EY/R=*, F7.4, * S=«, F8-3, 4X, •
4 ACHULT*', F8.3, * IELEH*', I2/'0 IGROT*' , 12, • (SON 0=NEW MARK GRD
5ROT)•, 5X, • SHEAR HAVE SPEED*', F10.3, • PDELTA?*•, 13, • HEIGHT*
6', F10.3, ' I PLOT* * , 15)

CALL SSK(SOC(1) , SOC (3), SOC (2), EX, EY, HASS, PHASS, R)
CALL EIG

C
DO 90 I = 1, 4

90 DYE (I) = FY (I) / SO (I)
C
C AVG X S Y YIELD DISPLACEMENTS
C

DIC (1) = (DYE ( 1) +• DYE (2)) / 2.
DYC (3) = (DTE (3) + DYE (4) ) / 2.

C
C VALUE CF ROTATION (ABOUT CENTER OF HASS) WHEN ALL ELEHENTS HAVE
C YIELDED I.E. HAX TORQUE/INITIAL STIFFNESS
C

DY C (2) = (FY (1) *EYM + FY(2)*(BY - EYH) + FY (3) *EXH ♦ FY(4)*(B£ ~
1EXH)) / SOC (2)

C
C EQUAL XDAHPING IN ALL HODES:H-1K IS SYHH SS-1C = PHI* (2XIW) *?HI IS 3YHH
C SINCE THE DISPLACEMENT VECTOR IS
C Y=(U,R*T3ETA,V)
C

DO 100 I = 1, 3
P(I) = 6. 283 2 / SQRT (D (I) )

C NOTE THAT MODAL MASSES ARE 1.0*3ASS.SEE ABOVE. BUT WE WANT DAHP/HASS.
DO 100 J = 1, 3

100 B(I,J) = PHI (J ,1) * 2.0 * SQRT (D (I)) * XI * 1.0
C

c
DO 120 I = 1, 3

DO 120 It = 1, 3
sua = o.o
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c

c

DO 110 J = 1, 3
110 SUM = SOS ♦ PHI (I,J) * B(J,K)

120 DAMP (I,K) = SOH

WRITE (IT, 130)
130 FORMAT ('OPERIOD P REQtJENCY **2 BODE SHAPE', 301, • STIFFNESS MATRIX

1', 302, 'DAMPING MATRIX')
C

DO 110 I = 1, 3
mO WRITE (11,150) P(I), D (I) , (PHI (I, J) , J-1,3) , (SK (I,J) ,J=1,3) ,

1 (D AHP (I,J) , J= 1 , 3)
C

150 FORMAT ((F6.3, F9. 1,1X,3E12.4,3X,3S12.4,3X,3E12.4))
REWIND INN
REWIND INN 2

160 READ (INN, FORMAT, EKD=10) (G (1, 1) ,1=1, NSTSPS)
READ (INN2, FORMAT) (G (I ,3) ,1=1, NSTEPS)

C
DO 170 1=1, NSTEPS

TIME = TO + (I - 1) * DTAC
C
c
C IF YOO WANT 3ROOND ROTATIONAL ACCELERATION NOT=0, THEN IGBOT NOT=0
C G (I, 2) = ((G (1+1 , 1) -G a, 1)) *G (1+ 1,3)-G (1,3) ) ) / (2* SHE ARM AVE SPEED) «H(I)
C * H(I) DOE TO THE NONDIMENSIONAL EQUATIONS

G (1,2) = ACMOLT * M(2) * (G (I + 1,1) - G(I,1) + G (I +• 1,3) - G(
1 1,3)) / (2. *CS*DTAC)

IF (IGROT .EQ. 0) G(T,2> =0.0
G (I, 1) = G (I , 1) * ACMOLT

170 G (1,3) = G (1,3) * ACMOLT
C

DO 180 I = 1, 4
ODISE(I) =0.0
DISEMX(T) = 0.0
PFHAX(I) =0.0
OF(I) = 0.0
TE (I) = 0.0
VARE (I) =0.0
YARFE(I) =0.0
FEBAR (I) =0.0
TE3AR (I) =0.0
OVELE(I) =0.0
OACCE(I) =0.0
IVC(I) = 1
S(T) = SO (I)
PKAX (I) = FY (I)
IF (TELES .EQ. 3) GO TO 180
FtlAX (I) = FY (I) * (1. - BO(I)) / (SO (I) *HO (I))

180 CONTINUE
C

DO 190 I = 1, 3
ODY(I) =0.0
DISMX (I) =0.
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ACHAI(I) =0.0
OY (I) = 0.0
PFCHX(I) =0.0
FG (I) = 0.0
EIE(I) = 0.0
OGACC(I) =0.0
DAHPDE (I) = 0.0
TEC (I) = 0.0
FCBAR(I) =0.0
YCBAR(I) =0.0
ECCHAX(I) = 0.0

C
DO 190 J = 1f 3

FARC (I , J) = 0. 0
FA RFC (I,J) =0.0

190 CONTINUE
C

DTT = DT
CALL SSK(SOC(1), SOC(3), SOC(2), EX, BY, BASS, PHASS, B)
L = 0
IEBB = 0
L2 = 1
TIHE =0.0

C
DO 200 I = 1, 3

200 GACC(I) = G (1, I)
C
C 4TH ORDER BUNG E-KUTTA SINGLE STEP INTEGRATION A3R AHOWITZ P. 897
C BEGINNING OF INTEGRATION HEBE

210 L = L + 1
DT = DTT
IBTOT = 0

C
C SOLN OF EQNS OF HOTION ABE HONDIHENSIONALIZED IN 30BR PNCTN
C

220 CONTINUE
C
C BY CHANGING DT, TIHE HAY HON BE<DTAC* (L2-1) . IF SO, L2=L2-1
C

230 IF (TIHE + DT .LT. DTAC*(L2 - 1)) L2 = L2 - 1
C
C BE BANT TI HE (L -1) + DT BETWEEN DTAC*(L2-1) AND DTAC+L2
C

IF (TIHE + DT .LE. DTAC*L2) GO TO 240
L2 = L2 + 1
GO TO 230

240 PP = (TIHE + DT - DTAC* (L2 - 1)) / DTAC
C

DO 250 I = 1, 3
250 GACC(I) = PP * G(L2 +1,1) + (1. - PP) * G (L2,I)

C
CALL FNCTN(L, 0.0, Y, DY, K1)

C
DO 250 I = 1, 3
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260

270

AOX1 (I) = Y(I) + DT / 2.
AUX2 (I) = DY (I) + K 1 (I) * DT

DY (I)
/ 2.

+ DI / B. M I J.)

CALL FVCTN (L, 0.5, AOX1, AUX2, K2)

DO 270 I = 1, 3
AIJX2 (I) = DY(T) + K2 (I) * DT / 2.

CALX FNCTN(L, 0.5, ACJX1, AOX2, K3)

28 0

DO 280 I = 1, 3
A0X1 (I) = Y (I) + DT * DY (I)

AD X2 (I) = DY (I) + K3 (I) * DT
+ DT / 2. * K3 (I) * DT

CALL FNCTN(L, 1.0, ADX1, ADX2, K4)

29 0

DO 290 I = 1, 3
Y (I) = 0Y (I) «• DT *

DY (I) = ODY (I) ♦ DT /
(DY (T) + DT/6.* (K1 (I) + K2(I) + K3 (I) ))
6. * (K1 (I) ♦ 2. *K2(I) + 2.*K3 (I) + K4(t>)

CALL FNCTN<L, 1.0, Y, DY, DDY)

FIND NEW ELEMENT D,V,A

DISE(1
DISE (2
DISE(3
DI SE (4
YELE (1
YELE (2
YELE (3
YELE (4
ACCE (1
ACCE (2
ACCE (3
ACCE (4
PF(1)
PF (2)
P? (3)
PF (4)
PFC (1)
PFC (2)

1 PF (3)
PFC (3)

= Y (1) ^
= Y (1) -
= Y(3) -
- Y (3) • ■»
= DY (1)
= DY (1 )
= DY (3)
» DY(3)
= DDY (1)
= DDY ( 1)
= DDY (3)
= DDY (3)

= OF (1) +
= OF (2) +
= OF { 3) +
= OF (4) +

= PF (1) ^
= PF (1)

♦ EXH
= PF (3)

■ EYH
(BY
EXH

(BX
+ EYH
- (BY
- EXH
+ (BX

+ EYH
- (BY
- EXH
* (BX

S(1) *
S(2) *
S(3) *
S (4) *

+ ? F (2)
* EYH -

* Y (2)
- EYH)
* Y(2)
- EXH)

/
#

/

R
Y (2)
B
Y (2)

* DY (2) / B
- EYH) * DY (2)
* DY (2) / R
- EXH) * DY (2)

/ 2

/ 2

DDY (2)
- EYH) *
♦ DDY (2)
- EXH) *
(DISE (1)
(DISE (2)
(DISE (3)
(DI SE (4)

/

/
/ B
DDY (2)
/ 2
DDY (2)

R

/ 2

/ 2
ODISE (1) )
ODISE (2) )
ODISE (3) )
ODISE (4) )

PF(2) * (BY - EYH) + PF (4) * (BX - EXH)

+ PF (4)

FIND NEW ELEMENT STIFFNESSES

ODT = DT

DO 330 I = 1, 4
GO TO (300, 310, 320) , IELBH

300 CALL RHBOSG (PF (I) , OF (I) , I)
GO TO 330
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C FOP. BILHB,CHECK IF STIFFNESS HAS CHANGED. I? SO,FIND NEB DT SGT0130
C

310 CALL BIL NR (P F (I) , OF (I) , DISE (I) , ODISE(I) , OYELE(I), OACCE(I),
1 ACCE(I), DIT, DT2, ODT, I)

C
C FIND MIN DT IF SOHE THAN ONE ELEHENT HAS YIELDED
C

DT = AHIN1 (DT,Dr2)
GO TO 330

320 CALL STFDSS (PF (I) , OF (I) , DISE (I) , ODISE(I), OVSLE(I), OACCE (I) ,

1 ACCE(I), DTT, DT2, ODT, I)
DT = A3IH 1 (DT2,DT)

330 CONTINOE
C

DO 360 I = 1, 4
C
C JOST INSUBANCE
C

IF (S(I) .GT. 1.001*SO(I)) IEEE = 1
IF (IERR .EQ. 1) GO TO 460

C
C IF ONE ELEHENT HAS YIELDED & ANOTHER IS UNLOADING FROS YIELD LINE
C IT SHOULD CONVERGE IN ONE ITERATION
C

IF (IVC(I) .EQ. 1) GO TO 360
IF (IVC(I) . EQ. 0 .AND. IELEM .EQ. 1) SO TO 360

C
C IF ELEHENT HAS YIELDED RESET SEW FORCES S DISPS. TO THEIR OLD VALJES
C SINCE WE BANT TO UNDO THIS LAST TIHE STEP
C

DO 340 J = 1, 4
'

340 PF (J) = OF (J)
C

DO 350 J = 1 , 3
I (J) = OY (J)

350 DY(J) = ODY(J)
C

BY = S(2) * BY / (S(1) + S (2) ) - EYH
EX = S (4) ♦ BX / (S (3) ♦ S (4) } - EXH
SI = S(1) + S (2)
SY = S{3) + S (4)
SB = S{1) * EYH ** 2 + S (2) * (BY - EYH) *♦ 2 + S (3) * EXH *♦ 2

1 + S (4) * (BX - EXH) ** 2
CALL SSK (SX, SY, SH, BX, SY, BASS, PHASS, R)
IBTOT = IBTOT ♦ 1
IF (IBTOT .LT. 5) GO TO 220

C
C IF ITS NOT CONVERGING, OR ELEHENT STIFFNESSES ABE OSCILLATING
C BACKSFORTH
C SET DT = DT/2 AND TRY AGAIN
C

IBTOT = 0
IF (DT .LT. 1.E-4) IERR = 2
IF (IERR . EQ. 2) GO TO 46 0
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DT = DT / 2.
GO TO 220

360 CONTINUE
C
C TEBPORABY ; TESTING STATEBENTS
C

IF (IPLOT . 2Q. 0) GO TO 365
F1 (L) = ?F (IPLOT)
D1 (I) = DISS (I PLOT)

C
365 TIfiE = TISE + DT

C
C SIBPSON'S BOLE INTEGRATION OF EIE ASSOHING LINEAR ACCELERATION FOB DDI
C THE *R**2 'S ABE IN K1 K4 S ¥G

DO 390 I = 1, 3
EIE (I) = EIE (I) + BASS * (K1(I)*7G(I) + 2.*(K2(I) + S3(I))*(7G(

1 I) ♦ DT* (3.*OGASC(I) + GACC (I) )/8.) + K4 (I) * (VG (I) ♦ DT*(OGACC(
2 I) + GACC (I) )/2. ) ) * DT / 6.

C
DO 370 J = 1, 3

C
C *HASS SINCE DABP IS NONDIBENSIONALIZED BY BASS
C

370 DAHPDE(I) = DABPDE(I) + DABP (I,J) * DY(I) * DY (J) * DT * BASS
C

YG (I) = YG (I) + (OGACC(I) + GACC (I)) * DT / 2-
YCBAR(I) = YC3AP. (I) + Y(I) * DT / TEND
FCBA1 (I) = FCBAR (I) + PFC(I) * DT / TEND

C
DO 380 J = 1 , 3

VARC(I,J) = VABC(I,J) + {Y (I) *Y (J) / (B (I) *3 (J) ( ) * DT / TEND
380 YABFC (1,0) = YABFC(I,J) + (PFC {I) *PFC (J) ) * DT / TEND

C
TEC (I) = TEC (I) + (OLDPFC (I) *HASS*H (I) + PFC (I) ) * (Y(I) -

1 OLDIS(I)) / (2. * B (I) )
OLDPFC (I) = PFC {T) / (MA3S*H (I))
OGACC(T) = GACC (I)

390 OLDIS(I) = Y (I)
C

DO 400 1=1, 4
DEL = DISE(I) - ODISE(T)
TE(I) = TE (I) + (PF (I) + OF (I) ) * DEL / 2.
YAEE (I) = YARE(I) + DISE (I) ** 2 * DT / TEND
YAHFE(T) = YARFE(I) * PF (I) ** 2 * DT / TEND
YEBAR(I) = YEBAR(I) + DISE (I) * DT / TEND
FEBAB(I) = FEBAB (I) + PF (I) * DT / TEND
ODISE(T) = DISE (I)
OVELE(I) = VELE(I)
OACCE(I) = ACCE(I)
OY {I) = Y(I)
ODY(I) = DY (I)

400 OF d) = PI* (I)
C

ET = S (2) * BY / (S(1) ♦ S (2) ) - EYB
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EI = S (U) * BX / (S (3) + S (4) ) - BIS
SX = S (1) + S (2)
SY - S (3) + S(4)
SB = S (1) * EYS ** 2 * S(2) » (BY - EIH) ** 2 + S(3) » SIM ** 2 +

1S(4) * (BX - SXM) *» 2
CALL SSI (SI, SY, s R, EX, BY, BASS, PBASS, H)

C
C COMPARE 9/ MAXIMUMS
c

IP (ABS (BX) .GT. BCCMAX (1) } ECCMAX (1) = ABS (EX)
IF (ABS (EI) -GT. E CCM AX (3) ) ECCMAX (3) = ABS (EI)

C
DO 430 I = 1, 3

IP (ABS (PPC (I) ) -LT. PFC MX (I) ) GOTO 410
PFCHX(I) = ABS (PFC (I) )
TPPCMX(I) = TIME

410 IF (ABS (DDI (I) + GACC (I) ) -LT- ACMAI (I) *GG) GO TO 420
ACBAX (I) = ABS (DDI (I) + GACC (I)) / GG
TACKAX(T) = TIME

420 IP (ABS (Y (I) ) -LT. DISHX (I) ) GO TO 430
DISMX (I) = ABS (Y (I) )
TDISHX(I) = TIKE
DOCTMI (I) = DISS 1(1) / DYC (I)

430 CONTINUE
C

DO 440 I = 1, 4
IF (ABS (PF(I) ) -GT. PFMAX (I)) PFMAX(I) = ABS(PF(I))
IP (ABS (DISS (I) | -GT- DISEMX(I)) DISEKX(I) = ABS(DISE(I))
DaCHI(I) = DISEMX(I) / DYE (I)

440 CONTINUE
C

450 IF (TIME -LT. TEHD) GO TO 210
C
C END OF INTEGRATION
C
C TEMPORARY STATEMENTS:PLOTS FORCE DISP. HYSTERESIS FOR ELEMENTS#1
C

460 IF (IPLOT -SQ. 0) GO TO 47 0
CALL PLTOFS (0. 0, 2 . *FY (1)/SO (1) , 0-, FI(1)/2., 7., 10.)
CALL P AXIS (2. , 10., 'DISP', -0, 10., 0., - 10. *FY (1)/SO (1) ,

1 2 . *FY (1) /SO (1) , 1.)
CALL P AXIS (7., 6., »FOECE» , 0, 8., 90., -2.*FY{1), FY(1)/2., 1.)
CALL PLINE (D1, F1, L, 1, 0, 2, 1)
CALL PLTBND

C
470 DO 480 I = 1, 4

YARFE(T) = SQRT ( ABS (VARFE (I) - FEBAR (I) **2))
FARE (I) = SQRT (ABS (VARE(I) - YEBAR (I) **2) )

480 TE (I) = TE(I) - PF (I) ♦* 2 / (2.*SO(I))
C

EIET = 0. 0
DA MPT = 0. 0
TECT =0.0

C
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c

c

DO 520 I = 1, 3

DO 190 J = 1, 3
VARFC(I,J) = SQRT (ABS (VARFC (I, J) - FCBA2 (I) *PCBAR (J) )}

190 VARC (I, J) = SQRT (ABS (VAP.C (I f J) - YCBAR(I) *YCBAR (J) ))

EIE(I) = EIB (I) + MASS * YG (I) **2/2.

DO 500 J = 1, 3
500 TIC(I) = TEC (I) - SKINV(I,J) * PFC(J) * PFC(I) / 2.

C
C FTHAL STRAIN C KINETIC ENERGY EYEHTOALLY ARE DISSIPATED AS
C DAMPING ENERGY

DO 510 J = 1 , 3
510 DAMPDE (I) = DAMP DE (I) + SKINV(I,J) * PFC (J) * PFC(I) / 2.

C
DAMPDE (I) = DAMPDE (I) ♦ MASS * (DY(I) + YG(I)) ** 2 / 2. - 3ASS

I. * PDELTA (I) * Y{I) ** 2 / 2.
EIET = EIET + EIE(I)
DAHPT = DAMP T + DAMPDE(I)

520 TECT = TECT + TEC(I)
C

TEDE = DAMPT ♦ TECT
C

WRITE (IT, 530) (PFCMX (I) ,TPFCMI (I) ,1=1 ,3) , (ACMAX (I) ,T ACHAX (I) ,1=
II,3), (DISMX (I) ,TDISMX (I) ,1=1,3) , DTJCTHX, DIC, YC3AR, 7ARC, FCBAR,
2YARFC, EIE, EIET, DAMPDE, DAMPT, TEC, TECT, TEDE, ECCHAX, L, L2, .

3TIHE, I ERR
530 FORMAT (//'-QUANTITY I ', *ITIHE R RTIME

1 Y YTIM E'//' MAI FORCE', 6F 10. 3/'OACC/S ,TOT« , 6F10. 3/'0
2MAI DISPL', 6F10.3 , T80, •THETA*R' /'OD OCTILITY', 3(F10.3,101)/'OYI
3ELD DIS', 3 (F10.3, 1 OX)/'OAVG DISP. ' , T11, 3 (F1 0 . 3, 1 OX)/, ' ORMS DIS
IP.*, 3 (T11 ,3 (F10.3 , 10X) /) , 'OAVG FORCE', T11, 3 (?1 0. 3, 10X) /, 'OHMS
5 FORCE*, 3(T11,3(F10.3,10X)/), ' EQ. INPOT'/' ENERGY ',
6 1(F10.3,10X)/' DAMPING'/* ENERGY ', 1(F10.3,1 OX)/• DISSIP
7ATED'/' ENERGY ', 1(F10. 3,10X)/T70, 'TOTAL DISSIPATED ENERGX = *,
8 F10.3/'OMAXECC », 3(F10.3,10X), 10X, ' L=•, 15, « L2=•,
9 15, • TIME=' , F10.1, ' IERR= ',15/)

WRITE (IT, 510) (I,SO(T) ,FY (I) ,DYE(I) ,RO (I) ,DI3EMX(I) , DOC MX (I) ,

1 PFMAX (I) ,TE (I) , TE3AR (I) ,V A R 3 (I) , FE3AR (I) , YARFE (I) , 1=1, 1)
510 FORMAT (• -EL.MT \/ STIFF/YIELD FORCE/YIELD DISPL./S-0 COEFF/MAI - DIS

1P. /DOCTILITY/M AX. P ORCE/DIS S.ENERGY/AYG DISP/RSS DISP./AVG FORCE/EM
2S FORCE/* // (15, 2X, F9. 1 ,3X, F9. 3,1 X, F9. 1, IX, F5. 3 , 7X, 8 (F9 . 3 , 1X) ) )

GO TO 160
550 STOP 1

END
SOBBOOTINS FNCTN(L , PCT, Y, DY, DDY)
COMMON SK (3,3) , DAMP(3,3), PHI (3,3), D (3) , OLDPFC(3), OLDIS(3),

1 PDELTA (3)
COMMON /GTIME/ GACC (3) , OG ACC (3) , G (8000,3)
DIMENSION Y (1) , DY (1) , DD5T(1), AOX (3)

C
C • • • • •

C T =-Z — C/E *Y -K/H*T
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c
c
c
c

c

c

K*Y=PREVTOUS FCRCE+INCREMENTAL FORCE
=PREVIOUS FORCE+CTR R ENT STIFFNESS*INCBERENTAL DISPLACEMENT

OLDPFC MUST BE NORMALIZED .

DO 20 I = 1, 3
S « 0.0

DO 10 J = 1, 3
10 S = S * DAMP (I, J) * DY (J)

20 AUY(I) = S

DO 40 I 3 1, 3
S = 0.0

DO 30 J = 1f 3
30 S - S ♦ SK(I,J) ♦ (Y (J) - OLDIS (J))

40 DDI (I) = • (S ♦ OLDPFC (I)) - A OX (I) - OGACC (I)
1GACC (I) * PCT ♦ PDELTA(I) * Y (I)

* (1. - PCT) -

C

C

C
c
c
C
c
C
C
c
C
C
C
c

RETURN
END
SUBROUTINE SSK (SX, STr SR, EXr EY, MASS, PMASS, R)
COMMON SK (3,3) , DAM?(3,3), PHI (3,3), D (3) , OLDPFC(3)f OLDIS (3) ,

1 PDBLTA (3)
REAL MASS
SK (1,1) = SI / MASS
SK (1,2) = -EY * SX / (MASS*R)
SK (1,3) = 0.0
SK (2,2) = SB / PMASS
SK (2,3) 33 EX * ST / MASS / R
SK (3,3) * SY / MASS

DO 10 I® 1, 3

DO 10 J = 1, 3
10 SK (J,I) 33 SK (I, J)

RETURN
END
SUBROUTINE BILHR(PF, OF, Y, OY, OVEL, OACC, ACC, DTT, DT, ODT, I)

BILINEAR STIFFNESS SUBROUTINE PROGRAMMED BY M.E.BATTS 1978
FOR AN ELEMENT WHOSE FORCE IS A FUNCTION OF ONLY ONE DISPLACEMENT
SUCH AS A LUMPED MASS SHEAR SYSTEM.
IF THE FORCE OVERSHOOTS THE BILINEAR ENVELOPE, THE SUBROUTINE

COMPUTES THE TIME STEP NECCESSARY TO HIT THE ENVELOPE PRECISELY (I/I
IX)

FOR ELEMENTS WHOSE FORCE IS A FUNCTION OF SEVERAL DISPLACEMENTS 3UC
AS MOMENTS IN A BEAM,
THE TIME STEP CALCULATION MUST BE REFORMULATED(BUT CAN BE DONE
WHERE THE CHANGE WILL BE IN THE OLD VELOCITY SACC Z NEW ACC
SUCH AS DY-MOS/SO^3 2*THETAA + THETAB-3/LENGTH*PSI)
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C IVC BUST BE INITIALIZED TO 1; S TO SO; PBAX TO FT* (1-RO) /(SO*BO)
C

COHBON /STIFF/ RO ( 4) , FY(4) , SO (4) , IVC (4) , S(4)# PHAI (4) , EPS SAX,
1 IBTOT

C
C IVC (I) =0 BEANS NEW CHANGING; IVC (I) =1 BEANS UNCHANGING; IVC (I) =-1
C BEANS UNLOADING FROH YIELD LINE
C

DT = DTT
IF (IVC(I) .E2. 0) GO TO 20
IF (IVC (I) .EQ. ~ 1) IVC(I) = 1

C
C IP UNLOADING GTO 10;IF NOT GT030. INITIALIZE CONVERGENCE COUNTER;
C IF Y IS BEYOND FY* (1-R 0)/(SO*R 0) LOADINGS UNLOADING BECOBE UNCLEAR
C

IP (ABS (07) .LT. P3AX (I) ) GO TO 5
IF (S(I) .EQ.SO(I)) GO TO 40
IF (ABS (OY) .LT. ABS ( Y) . AND. ABS (PF) .LT.FY (I) ) GO TO 10
IF (ABS (OY) .ST. AES(U) .AND.ABS (PF) .GT.FY (I) ) GO TO 10
GO TO 110

5 IF ((PF + OF)* (7 - 07)) 10, 30, 30
10 IF (S(I) .EQ. SO (I)) GO TO 40

C
C UNLOADING S PREVIOUSLY TIELDED,RESET STIFFNESS TO INITIAL,IVC(I)=-1
C AND REDO THIS TIME STEPS CALCULATIONS
C

s (I) = SO (I)
IVC (I) = - 1
DT = DTT
GO TO 110

C
C DT WAS CHANGED. RESET IVC (I) = 1 S CHECK IF PF=FI(I) SET
C S(I)=SO(I) *RO (I)
C

20 IVC (I) =1
S(I) = SO (I) * BO (I)
EPSLON = ABS(?F - (BO (I)* (SO (I) *7 - PF - FI (I) ) + FT(I))/(1. - RO (

11) ) ) / ABS (PF)
EPSLON = ABIN1 (EPSLON, ABS(PF - (RO (I) * (SO (I) - 9? * F7 (I)) - FY (

11) )/(1. - RO (I) )) /ABS (PF))
BPSHAX = AHAI1 (EPS BAI, EPSLON)
IF (EPSLON .LE. 0.01) RETURN

C
C CALCULATED DT HAS FAILED TO CONVERGE, RECALULATE DT IF IT HAS OVERSHOT
C ENVELOPE,OTHER WISE USE THIS TIK3STEPSC0NTIHUE. IF TWO ELEMENTS
C HAD YIELDED, ONE PROBABLY HAS NOT CONVERGED OR OVSBSHOT;THIS IS OK

s (I) = SO (I)
GO TO 40

C
C IF NOT UNLOADING 5 NOT PREVIOUSLY YIELDED, CHECK TO SEB IF YIELDED NOW
C

30 IF (S(I) .EQ. SO (I)) GO TO 40
C
C CONTINUING TO YIELD (GTO 110)
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c
GO TO 110

c
C IF PF ABOVE BOTTOH YIELD LINE, (GTO5 0)
C

40 IF ((PF - (20 (I)* (SO (I) *Y - PF+ FY (I) ) - FY(I))/(1. - 20(1))) .
1 GE. 0.0) GO TO 50

C
C ELEMENT HAS YIELDED OH NEGATIVE SIDE. FIHD HEH DT
C

GO TO 60
C
C IF PF BEL02 TOP YIELD LIHE BETOBH
C

50 IF ((PF - (RO(I)*(SO(T) *T - PF - FY (I) ) ♦ FY(I))/{1. - RO(I))) .
1 LE. 0.0) GO TO 110

C
C ELEMENT HAS YIELDED ON POSITIVE SIDE. FIND HER DT (GTO 60)
C

GO TO 60
C
C YIELDING. FIND NER DT S.T. HER PF=YIELDPF 5 SET IVC (I) =0
C DY= (FY (I) -OF) /SO (I) =DT*OVEL+DT**2/6* (2*OACC+ACC (T+HE2DT) )
C ASS03IHG LINEAR ACCELERATION DOSING DTT,THIS IMPLIES A COBIC
C EQN IN DT. SOLVE FOR DT,SET IVC(I)=0,SREDO THIS TINE STEP 2/ NE2 DT
C

60 P = 3. * ODT ♦ OACC / (ACC - OACC)
Q = 2. * P * OVEL / OACC

C
C FY (OF,OY) = (FY (I) +RO (I)* (SO (I) *OY-OF-FY (I) ) ) / (1-RO (I) )

•C
FY Y = FY (I)
IF (Y .LT. OY) FYY = -FY (I)
B = -6. * ODT / SO (I) * ((FYY ♦ RO (I) * (SO (I) *01 - OF - FYY))/(1. -

1 20(1)) - OF) / (ACC - OACC)
A = (3.*2 - P*P) / 3.
B = (2. *P**3 - 9. * P*Q + 27.*R) / 27.
DT = ODT

C
C IF A>0 THERES ONLY OHE EEAL ROOT,OSE NE2T0N ITERATION
C

IF (A .GE. 0.0) GO TO 80
C
C 3 REAL DISTINCT ROOTS, FIND THE OHE BET2EEN 0 AND DTT
C

D = -B/2./SQST (-A**3/27.)
IF (ABS(D) .GT. 1.0) GO TO 80
PHI3 = ARCOS (D) /3.
C = 2. * SQRT(—A/3.)
DT = DTT

C
DO 70 J = 1, 3

DT2 = C * COS (PHI3 *■ (J — 1.) *2.094395) - P / 3.
IF (DT2 .LE. 0.0) DT2 = DTT
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c

c

IF (DT2. LT. 1. E-4) DT2=1.B-4
70 DT = AMINI(DT,DT2)

GO TO 100

80 DO 90 J = 1, 3
90 DT = DT - (DT**3 «■ P*DT**2 + Q*DT + E) / (3. *DX**2 + 2.*P*DT ■ Q)

C
C IF DT IS CLOSE TO DTT, LINEAE ACC. RAT GIVE DT>DTT SINCE
C BUNGE-KUTTA 5 LINEAR ACC. GIVE SLIGHTLY DIFFEBENI ANSWERS.
C IT SHOOLD BE WITHIN 1* THOUGH. IF NOT, IBOMB WILL =5
C

100 IVC(I) = 0
110 RETURN

END
SOBROUTINE RHBOSG(TT, OTT, I)

C
C PERIOD/DT SHOULD BE >16 OTHERWISE TCU CANT REALLT
C CONSIDER THE ELEMENT TO BE LINEAR BETWEEN TIME STEPS
C

COMMON /STIFF/ RO(4), FY(4), SO (4) , IVC (4) , S{4), PMAX (4) , EPS1 AI,
1 IBTOT

DIMENSION TM (20,4) , IC(4), OP (4)
GV (DY,DR) = 1. / (1. + (DR) * ABS (DY) ** (DR - 1.))
GEO (DY ,DY0 ,DR) = 1. / (1. + (DR) *ABS ( { D5£ - DYO ) /2. ) ** (DR - 1.))

C
C GV^STIFFNESS ON SKELETON CURVE(W/ SHARPNESS CDE?F=DBS ALPHA=1.)
C GR0=STIFFNESS NOT ON SKELETON CURVE
C EVEN IC(I) «S= UNLOADING PTS ON SIDE OF HYSTERESIS LOOP OF MOST
C RECENT UNLOADING F30H SKELETON CURVE
C ODD IC(I)'S = UNLOADING PTS GOING IN OTHER DIRECTION
C IVC MUST BE INITIALIZED TO 1, S TO SO
C

T = TT / FY (I)
OT = OTT / FY(I)

C IP IVC (I)=1;ON SKELETON CURVE
IF (IVC (I) .HE. 1) GO TO 3 0
IF (ABS (T) .LT. ABS(OT)) GO TO 20

10 S(T) = SO(I) * GV (T ,RO (I) )
IC (I) = 0
RETURN

C UNLOADING FROM SKELETON CURVE .SET
C IVC(I)=-1 S REDO THIS TIME STEPS
C CALCULATIONS W/ NEW STIFFNESS

20 IVC (I) = -1
UP (I) = 1.

C UP (I) =1;INCREASING JP (I) =-1; DECREASING
IF (T .LT. OT) UP (I) = -1.
IC (I) = 2

YH (152); HIGHEST PTS ON SKELETON CURVE
YM (1,1) = -OT
YH (2,1) = OT
S(I) = SO(I) * GRO (T,0T,R3 (I) )
RETURN
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30 IF (ABS (T) .SB . ABS (YB (1,1) ) ) GO TO 50
C
c
c

IYC (I) —0 BEANS HOT ON SKELETON COHYS

IYC(I) « 0
C
C

IF DELTA (FORCE) *DELTA (DI SP) GTO,GO TO 20
I.E. NOT UNLOADING

IF ((T - OT)«UP(I) .GT. 0.) GO TO 60
C
c UNLOADING BUT HOT FRO 3 SKELETON CUE YE
C IYC(I) =-1
C

IYC (I) = -1
UP (I) = 1
IF (T .LT. OT) UP(I) = -1.
IC (I) = IC (I) + 1
IF (UP (I) * (T - YB (IC (I) - 7,1)) .GT. 0.) 30 TO 70

C UNLOADING AGAIN H/ 13(IC(I))=UNL0ADIN3 PT
YH(IC(I),I) = OT

HO S(I) « SO (I) * GRD (T,YH (IC (I) ,1) ,RO(I) )
RETURN

50 IYC(I) = 1
C BACK ON SKELETON CURYS ,GTO 9

C CONTINUES UNLOADING FRO3 PT YM (IC (I) ) TILL IT REACHES UNLOADING PT
C YH (IC (I) —1) SHEN IT UNLOADS FBOH PT YH(IC(I)-2) T3NARDS PT IH(IC(I)-3)
C ETC. TILL THE SKELETON CURYE IS REACHED

60 IF (UP (I) * (T - YH (IC(I) - 1,1)) .LT. 0.) GO TO 40
7 0 IC (I) = IC (X) - 2

IF (IC(I) .EQ. 1) IC(I) a 2
IF (IC (I) . EQ. 2) GO TO 40
GO TO 60
END
SUBROUTINE EIG
DOUBLE PRECISION P, Q, R, A, B, X, Y
COBHON SK{3,3), DAKP(3,3), PHI (3,3), D (3) , OLDPFC{3), OLDIS (3) ,

1 PDELTA (3)
P = —SK (1,1) - SK (2,2) - S X (3,3)
Q = SK (1,1) * (SK (2 ,2) ♦ SK (3,3) ) + SK (2,2) ♦ SK (3,3) - SK(2,3) «*

1 2 - SK(1,2) **2
R = -SK (1,1) * SK (2,2) * SK (3,3) + SK(1,1) * SK{2,3) ** 2 ♦ SK (3,

13) * SK (1, 2) »« 2
A = (3.D0*Q - ?*P) / 3. DO
B = (2 .D0*P**3 - 3 . D0*P*Q + 27.D0*R) / 27. DO
IF (B*»2/4 . D0 + A**3/27. DO . GT. 0.D0) B = 2. DO * DSQBT (-A**3/27. DO)

1* B / DABS (B)
X = DARCOS (-B/2.D0 /USQET (- A**3/27. DO)) / 3. DO
Y a 2. DO * DSQ RT (- A/3. DO)
D(1) a Y * DC OS (X ♦ 4. 1887 9 02B0) - P / 3.D0
D (2) = Y * DCOS (X ♦ 2. 0943 95103D0) - P / 3.DO
D (3) = Y « DCOS(X) - P / 3.DO

GO TO 10
C

c

c
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DO 10 I = 1,3
C

DO 10 J = 1, 3
10 PHI (I, J) =0.0

C
DO 80 I = 1, 3

PHI (1,1) =1.0
IP (&BS (SK (3,3) - D (I)) .LE. 5.E-01 .AND. SK(2,3) .EQ. 0.0)

1 GO TO 20
GO TO 30

20 IP (SK (1 , 1) .EQ. SK (3,3) . AND- I .HE. 1) GO TO 30
PHI (1,1) =0.0
PHI(2,1) = 0.0
PHI (3,1) = 1.0
GO TO 80

30 IP (ABS (SK (1 , 1) - D (I)) .LE. 5.E-01 .AND. SK(1,2) .EQ. 0.0)
1 GO TO 40

GO TO 50
40 PHI(1,1) = 1.0

PHI (2,1) =0.0
PHI (3,1) = 0.0
GO TO 30

50 IF (ABS (S K (2,2) - D(I)) .LE. 5.E-01 .AND. SK(1,2) .EQ. 0.0 .AND.
1 SK (2,3) .EQ. 0.0) GO TO 60

GO TO 70
60 PHI (1,1) =0.0

PHI(2,1) = 1.0
PHI (3,1) =0.0
GO TO 80

70 IF (SK (1 ,2) .EQ. 0.0) PHI(1,I) = 0.0
IP (SK (1 ,2) .EQ. 0.0) PHI (2,1) = 1.0
IP (SK (1 , 2) .NE. 0.0) PHI {2,1) = — (S K (1, 1) - D(I)) / SK(1,2)
IP (SK (2 , 3) .NE. 0.0) PHI (3,1) = - (SK (1, 2) *PHI (1 ,1) + (SK(2,2) -

1 D(I))*PHI(2,I) ) / SK (2, 3)
80 CONTINUE

C
DO 90 J = 1, 3

SOH = SQBT(PHI(1 , J) *»2 * PHI (2 , J) **2 + PHI(3,J)**2)
C

DO 90 I = 1, 3
90 PHI (T, J) = PHI (I, J) / SOH

C
BETUBE
END
SOBBOOTIHE STFDSS(PP, OP, I, CY, OYEL, OACC, ACC, DTT, DT, ODT, I)

C
C BILINSAB STIP?NESS DEGRADING HYSTERESIS (SIMPLIPIED TAKEDA)
C SOBBOOTIHE. CALCULATES NEW TIHE STEP DT RHEN STIFPNESS CHANGES
C

COSHOK/STIFF /RO(4), PY (4) , SO (4) , IVC (4) , S(4), P»AX(4), BPS3AX,
1 IBTOT
DI SESSION 0(13,4), P(13,4), IC(4), IOC (4) , S2(4)

C
C IYC=1 BEANS 0NCHANGIN3 STIFPNESS; IVC=-1 BEANS UNLOADING ,LAST STEP



138

C IVC=0 MEANS CHANGING STIFFNESS IHILE LOADING ,L1ST STSP;CHK IF
C CONVERGED
C
C PT IC=2 IS THE HIGHEST PT. OK Bill NEAR ENVELOPE REACHED
C PT IC=4 IS THE MAI PT REACHED ON HAT TO PT IC-2
C PT IC=1 IS THE MIRROR OF PT IC=2
C PT IC=3 IS THE MAI PT REACHED OS HAT TO PT IC=1
C IVC MOST BE INITIALIZED TO 1: S TO SO; PMAI TO FT
C

DT = DTT
IF (IVC (I) .EQ. 0) GO TO 20
IF (IVC (I) .HE. -1) GO TO 5
S2 (I) = SO (I)
IVC (I) = 1
IOC (I) = IC (I) + 2
0(IOC(I),I) = OT
F(IOC(I), I) = OF
DT = DTT
GO TO 160

5 IF ( OF * (Y - OT) ) 10, 70, 70
10 IF (S (I) .EQ. SO(I)) GO TO 60

C
C UNLOADING 6 CHANGING STIFFNESS FIND DT S.T. DY=0 TO AVOID
C PROBLEMS HHEN THO ELEMENTS YIELD 6 UNLOAD SIMULTANEOUSLY
C

IVC (I) = -1
DT = 0.0
GO TO 110

20 IVC(I) = 1
IF ( PMAI(I) .EQ. FY (I) ) GO TO 40
IF (S(I) .EQ. SO(I) .AND. OF* (Y-OI) .LT. 0.0) GO TO 40
EPSLON = A BS (? (IOC (I) + 2,1) - PF) / ABS(PF)
IF (EPSLON -GE. 0.01) GO TO 30

C
C CONVERGED. LOADING TOHARD U (IC (I) -2)
C

IF (IOC(I) .LE. 0) GO TO 90
S2 (I)= (F (IOC(I) ,1) -F(IOC(I) *2,1) )/(U(IOC(I) ,1) -0 (IOC (I) *2,1) )
GO TO 160

C
C FAILED TO CONVERGE TO PT. 0(IC(I))
C

30 IOC (I) = IC{I)
GO TO 70

C
C UNLOADING TOWARDS ZERO FORCEf CHECK IF IT HIT ZERO
C OR FIRST NONLINEAR EXCURSION
C

40 IF (ABS(PF)/FY (I) . GE. 0.0 05 . AND .PMAX (I) . NE. FY (I) ) GO TO 50
C
C ZERO F0BC2, FIND NEW STIFFNESS
C OR FIRST NONLINEAR EXCURSION
C

IF (PMAI (I) . EQ . FY (I) .AND.ABS(PflAX (I) -ABS (PF) J /P MAX (I) .GE. 0.01)
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1 GO TO 100
IF (PMAX(I) .EQ. FT (I) ) GO TO 90
IOC (I) = IC (I) - 1
S2 (I) = F(IOC(I),I) / (0 (IOC (I) ,1) - T)
PF=0.0
GO TO 160

C
C FAILED TO CONVERGE TO ZERO FORCE
C

50 IOC (I) = IC(I)
c
C UNLOADING TOWARDS ZERO FORCE: CHECK IF BEYOND
C

60 S2 (I) =SO(I)
IF (PHAX(I) .EQ. FY (I)) 30 TO 160
IF (PF*OF .GT. 0.0) GO TO 160
DY = -OF / SO(I)
17 C (I) = 0
GO TO 110

C
C CONTINUING LOADING; CHECK IF BEYOND F(IC(I),I)
C

70 IF (ABS(PF) .GE. ABS (F (HAIO (IC (T) , 1) , I) ) ) GO TO 80
S2 (T) = S (I)
GO TO 160

C
80 IF (S(I) .HE. SO (I) *RO (I) ) GO TO 100

C
C STILL OH BILINEAR ENVELOPE
C

90 S2 (I) = RO (I) * SO (I)
IOC (I) = 0
U(1,I) = -Y
*(1,1) = -PF
0(2,1) = Y
F (2,1) = PF
PMAX(I) = ABS (PF)
GO TO 160

C
C IF STILL LINEAR,RETURN
C

100 S2 (I) =S (I)
IF (PHAX(I) .EQ. F Y (I) .AND. ABS (PF) . LE. FY (I) ) 30 TO 160

C
C CHANGING STIFFNESS, FIND NEW DT FIRST
C

DY = 0 (HAXO (IC (I) , 1) ,1) - 01
IVC(I) = 0
IF (PHAX (I) . EQ. FY (I) ) DY= (FY (I) /SO (I)-ABS (OY) ) *0Y/ABS (OY)

C
C IF ONE ELEMENT YIELDS f- ANOTHER ONLOADS, THE CHANGE IN TIME STEP 1 AY
C CAOSE TEE UNLOADING ELEMENT TO RELOAD. IN THIS CASE SINCE IC WILL
C JUST HAVE BENN INCREMENTED BY 2 IN IS#9, WE DONT WANT TO DECREMENT IT
C
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IF (DT. HE. 0 . 0) IOC (I)=IC (I)-2
110 P = 3. * ODT * OACC / (ACC - OACC)

Q = 6. ♦ ODT * OTEL / (ACC - OACC)
R = -6. * ODT * DT / (ACC - OACC)
A = (3.*Q-P*P) / 3.
B » (2.*P**3 - 9. * P*Q + 27.*R) / 27.
DT = ODT
IF (A .GE. 0.0) CD TO 130
D=-B/2./SQRT(-A**3/27.)
IF (ABS (D) .GT. 1 .0) GOTO 130
PHI3= ARCOS (D) /3.
C = 2. * SQBT(—A/3.)
DT = DTT

C
DO 120 J = 1, 3

DT2 = C * COS (PHI3 + (J - 1.) *2.094395) - P / 3.
IF (DT2 .LE. 0.0) DT2 = DTT
IF (DT2.LT. 1. E-4) DT2= 1.E-4

120 DT = AHIH1 (DT,DT2)
C

GO TO 150
C

130 DO 140 J = 1, 3
140 DT = DT - (DT**3 «• P*DT*»2 ♦ Q*DT ♦ R) / (3.*DT**2 + 2.»P*DT *■ Q)

IF (DT.LT. 1.E-4) DT=1.E-4
IF (DT .GT. DTT) DT=DTT

C
150 CONTIBIJE
160 IF (I .HE. 4) GO TO 190

DO 170 J=1 , 4
IF (IVC(J) -EQ. 1) GO TO 170
GO TO 190

170 COHTIHOE
DO 180 J=1 , 4
IC (J) « IOC (J)

180 S (J) = S2 (J)
190 RETORN

BHD
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APPENDIX F

The first lair of thermodynamics for a closed system that

undergoes a change in state is

2 2 2

/6Q = / dE + / <$W F-1
1 1 1

2
where J6Q is the heat transferred by the process between

1

K istate 1 and state 2 and J°W is the work done between state
1

1 and state 2. S is the energy of the system in a given

state and in this case represents the sum of strain energy,

SE and kinetic energy,KE.

Equation F-1 can be written as

1Q 2=<SE2+KS2) "(SE1+KE1) + 1*2 F~2
where 2 represents the dissipated hysteretic dissipated
energy,DHE, and dissipated damping energy, DDE

1Q2= - (DBE+DDE) .

^2 represents the work done by the system which is the
earthquake input energy,EIE

2*2 = -EIE.
By writing the dynamic equations of motion as

M* fU* +fj") +OU+F (TJ) =0
g

and integrating these forces through the distance dU+dUg
t ....

/{M*(D^+0 ) + 0&+F<U) } • (dD + dU^ =0
the various terms in Equation F-2 can be expressed as



1 '42

t . . . „ t. t.

/ » • (TJ +0 ) • (dU+dU J +r fC*0+F (1) } •dO+r fOO+F (D) } *d0 =0 F-3
o " ™ o o

By a suitable change of variables and rearranging terras,

Equation F-3 becomes

t.. . . t . . t t.

/a* (!T+u ) • {do+au ) +|c*a*du+jF (0) *do=-j fou+F(a)} •aa F-h
o o o o

which satisfies the first law of thermodynamics for the

closed svstera shown in Figure F-1.

k
h\w- m -*xlt) ,

3- - 7T7T - - -

■

_ ?fQ - ^zlt)o o o o Q
\ N \ \ \ \ \ \ \ \ \ \ \ N

\
N
\

Z=0

kx
M>X

„ p ,0 Q )JiN N N ^ > N \ N\\ N

Zlt)

z=o

kx
c

Figure F-1 Dynamic Model

The first terra in Equation F-h is the Kinetic energy,KS

KE = «•[ 0 (t) + U (t) ]2/2

The second terra is the dissipated damping energy,DDE

DDE = /C»U2 (t) »dt
o
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The third term represents the dissipated hysterstic energy

DHE, and the strain energy,SE

SE = (t) /2

The right hand side of Equation F-4 is the

earthquake input energy,EIE

t . t
EIE =-/(K*0+C«0}*dU (U +0 ) *U «dt.

o o

Finally, Equation F~4 can be rearranged as the more familiar

EIE = ASE ♦ AKE + DDE + DHE F-5
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Century Schoolbook Bold
4 PT ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghgklmnopqrstuvwxyz;:",./?$0123456789
6 PT ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz;:",./?$0123456789
8 PT ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz;:",./?$0123456789
10 PT ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz;:",./?$012&56789

News Gothic Bold Reversed

ABCDEFGHI J KLMNOPQRSTUVWXYZabcdefghijklrnnopqrstuvwxyz;:",./? $012 34 567 89
ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghi jklmnopqrstuvwxyz;:'\./?$012 34567 89
ABCDEFGHIJKLMN0PQRSTUVWXYZabcdefghijklmnopqrstuvwxyz;:",./?$0123456789
Bodoni Italic
A HCDHh'CHIJKl.MNOI'QRSTUyWXY/MbcdefghijklmnoiHintuvwxyz:: ",./?S0123456789

ABCDEFGHIJKLMNOPQRSTUVWX YZabcdefghijklrnnopqrstuvwxyz;: ",./?$0123456 789
ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklrnnopqrstuvwxyz;:. /?$0123456789
ABCDEFGHIJKLMNOPQR STUVWX YZabcdefghijklmnopqrstuvwxyz;:'r,.
Greek and Math Symbols
ABTAEH0HIKAMNOII<l)P2TYnX>l'Za/378€^Si7iKA^voir((>pcrTVo)X<|»{=:F' '>•/== + = ?t°> <><>< =

ABrAE=6HIKAMNOn4>PZTYnX1'Za/3T8£5e7)iKXti.TOir<|)po-ruo)Xi);{Sq:",./^± = ^-> <><>< =

ABrAE=eHIKAMNOn<I>P2;TYnX4'Za/3y8€|9T)iKAjuvo7r<f)p<Trvo)X>l'^T". /^± = =A°> <><><=

ABrAES0HIKAMNOn<l>P2TYfiXvPZa/3y8e£0i7iKA.fAvo7r<j>pcrTy2 =

t rr

6 PT

8 PT

10 PT

6 PT

8 PT

10 PT

White

MESH HALFTONE WEDGES
i i i i

0123456
6.



MEMORIALDRIVE,ROCHESTER,NEWYORK14623
H >

Z o > O
_J
O z X o

03SEP
1S53j 233EJ 33EB̂ tiIf™55538355 6EE57B35 cthji^Ca)N)—*O wmrummiULJl

ffl

UlnjIUmillmmSr.Ki-HsJ
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