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ABSTRACT

When filters of unequal optical density are placed in front of the two eyes, a

target which is actually oscillating in a frontoparallel plane appears nearer than
it really is for one direction of stroke and farther than it really is for the return

stroke (Pulfrich stereophenomenon). Measurements of the near and far displace¬

ments of a black vertical rod have been obtained for a wide range of target

velocities under each of several conditions of unequal binocular retinal illumi¬

nance.

The experimental data show that, for any given difference in binocular retinal

illuminance, the near and far displacements progressively increase as target

velocity is increased. The data show also that, for any given target velocity, the

near and far displacements progressively increase as the difference in binocular

retinal illuminance is increased.

The obtained results are analyzed in terms of an hypothesized absolute visual

latent period whose magnitude is assumed to be an inverse function of level of

retinal illuminance. The results are shown to be in good quantitative agreement

with predictions based on the geometrical theory of the Pulfrich effect.

Discrepancies at low target velocities are noted and discussed.

iii
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PREFACE

Project MICHIGAN is a research and development project in the field of com¬

bat surveillance which has been carried on by the Willow Run Laboratories of

The University of Michigan since 1953 under an Army contract supervised by the

Signal Corps. The project is engaged in research and development in various

fields of science and engineering to improve combat surveillance methods and

equipment to meet the long-range operational requirements of the Army in the

field.

Major emphasis is placed on research and development in the areas of optics,

vision, infrared, acoustics, seismics, radiometry, radar, and in the fields of data-

link, data-processing, data-display, and control and guidance systems for aerial

platforms.

In addition, the project develops new combat surveillance concepts and it

evaluates them and existing systems through simulation and analysis.

The work reported herein was conducted for Project MICHIGAN by the Vision

Research Laboratories of The University of Michigan.

V



Progress and results in all reports are continually

reassessed by Project MICHIGAN. Comments and sug¬

gestions from readers are invited.
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Distribution control of Project MICHIGAN Re¬
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1

INTRODUCTION AND SUMMARY

The present study was designed to yield basic
sensory data and to provide appropriate visual theory
on an important but relatively neglected aspect of
battle area surveillance, that is, on the binocular
spatial localization of moving stimulus targets. Of
particular interest in the present study is the inves¬
tigation of a localization error that arises when a

transversely moving target is binocularly observed
under conditions of unequal binocular retinal illumi¬
nance (Pulfrich stereoeffect). Application of the
experimental results and their accompanying explan¬
atory theory to problems of the military surveillance
task should lead to improved design and more effec¬
tive operation of binocular optical aids that are
utilized for spatial localization of moving battlefield
targets.

A target which is oscillating in a frontal plane
will appear to rotate out of its plane of oscillation
when binocularly viewed with a filter placed in front
of one of the eyes. The oscillating target appears
nearer than it really is for one direction of stroke
and farther than it really is for the return stroke.
The near and far displacements of the oscillating
target are accounted for in terms of a difference in
the hypothesized visual latent periods of the two eyes
that results from the inequality of binocular retinal
illuminance produced by the filter. When the near
and far displacements (C and C ) in the observer's

JN r

vertical median plane are determined experimentally,
it is possible by geometrical analysis of the theory
of the Pulfrich effect to calculate the corresponding
near and far latency differences (At^. and At^).

The purpose of the present experiment is to
obtain systematic data on the effects of target veloc¬
ity on C^. and C^. The apparatus used provides an
oscillating target in the upper visual field that is
free to execute constant linear motion of varying
magnitudes in a frontal plane located 100 cm from

the observer's eyes. A binocular fixation target in
the lower visual field is used by the observer to
localize the oscillating target at its apparent near
and far positions for each of 11 target velocities and
under each of four conditions of unequal binocular
retinal illuminance, Log (E /E ). The range ofK L

linear velocities used is from 2. 59 cm/sec to
68. 17 cm/sec (1. 49 deg/sec to 39. 05 deg/sec as
measured at the observer's eyes). The four values
of Log (E /E ) used are 0. 12, 0. 58, 1. 07, and 1. 58,

JL\ L

where the illuminance of the left eye, Log E , isL

kept constant at 2. 06 log trolands.

Data obtained from two practiced observers are

presented. The average values of the near and far
latency differences are plotted as a function of tar¬
get velocity for each of the four conditions of unequal
binocular retinal illuminance. The curve for

Log (E /E ) = 0. 12 shows that, in accordance withK L

predictions based on the geometrical theory of the
Pulfrich effect, the computed average latency dif¬
ference remains essentially constant as target veloc¬
ity is progressively increased; a slight upturn in
this curve is noted, however, at the lowest target
velocity. A greater departure from geometrical
theory occurs for the remaining curves; the upturn
of these curves above their respective constant
levels becomes more marked and occurs at pro¬

gressively higher values of target velocity as the
magnitude of the inequality of binocular retinal illumi¬
nance is increased.

The computed latency differences, obtained for
any given target velocity, progressively increase
as the difference in binocular retinal illuminance is

increased. This finding is shown to be entirely con¬
sistent with the assumption that the magnitude of
the hypothesized absolute visual latent period is an
inverse function of the level of retinal illuminance.

l
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2

BACKGROUND OF THE PROBLEM

The present experiment deals with a stereo¬
scopic effect that arises whenever a transversely
moving object is viewed under conditions of unequal
binocular retinal illuminance. The depth effect was
first described and analyzed by Pulfrich (Ref. 1) in
1922, and now bears his name. The stereo-
phenomenon can be simply demonstrated by means
of a pendulum-bob that is made to oscillate in a

frontoparallel plane and on a level with the observer's
eyes. A small target for binocular fixation is
positioned in his vertical median plane, directly
below the oscillating bob and midway between the
end-points of its swing. If a neutral or colored fil¬
ter is placed in front of one of the eyes while the
pendulum-bob is in motion, the bob will appear to
rotate out of its plane of oscillation in a horizontal
elliptical path that locates the bob nearer than it
really is for one direction of stroke, and farther
than it really is for the return stroke. The oscil¬
lating bob appears to rotate in a clockwise direction
(as viewed from above) when the filter is placed
before the left eye, and counterclockwise when the
filter is placed before the right eye. The stereo-
effect becomes noticeable at some threshold dif¬

ference in binocular retinal illuminance and pro¬

gressively increases in magnitude as the difference
in binocular retinal illuminance is increased.

The explanation of the stereophenomenon given
by Pulfrich (Ref. 1) is based on a suggestion by
Fertsch that increasing differences in binocular
retinal illuminance produce increasing differences
in the hypothesized visual latent periods of the two
eyes. For either eye, the magnitude of the visual
latent period (that is, the magnitude of the hypoth¬
esized time delay between the onset of stimulation
of any given retinal point in the eye and the arousal
of the visual effect that signals the position of the
stimulus target in space) is assumed to be a recip¬
rocal function of the prevailing level of retinal
illuminance. Hence, for any specified position of
the moving target in the frontoparallel plane, the
delay in the signal from the given stimulated retinal
point in the covered eye will be slightly greater than
the signal delay from the simultaneously stimulated
corresponding retinal point in the uncovered eye.
It must be further assumed that the binocular

spatial localization of the moving target, at any
given moment, is determined by the given pair of
retinal points in the two eyes that yields simulta¬

neously aroused binocular signals. Accordingly,
to yield simultaneously aroused binocular signals
from corresponding retinal points, the onset of
stimulation for the eye that is covered by the filter
must occur when the moving target is at a position
farther behind in its path than the position at which
the onset of stimulation occurs for the uncovered

eye. Thus, simultaneously aroused binocular sig¬
nals for the transversely moving target are provided
by successive pairs of noncorresponding retinal
points in the two eyes, and the magnitude of the
stereoscopic effect theoretically depends on the
amount of the retinal disparity produced as a con¬
sequence of the difference in the visual latent
periods of the two eyes.

An understanding of the geometric relations
involved in the stereophenomenon may be obtained
with the aid of Figure 1. The geometric analysis
considers the case of a target that is oscillating in
a frontoparallel plane with constant linear velocity,
V. The oscillating target is placed at eye level in
a frontal plane located at a distance d from the mid¬
point of the line Z Z which joins the centers of■Li R

rotation of the two eyes. The linear path of the tar¬
get in its plane of oscillation is denoted by W^W^.
As indicated, the filter is placed in front of the left
eye.

Figure 1 is meant to represent the stereo¬
scopic space-image in the horizontal plane of fixa¬
tion for the case in which the oscillating target,
P , is moving from left to right, and for the caseJLK

in which the oscillating target, now designated by
is moving from right to left. The points P'

and P1 represent the respective near and far positions
£

at which the oscillating target is supposedly localized
by the observer by use of a binocular fixation tar¬
get movable in the vertical median plane. The dis¬
tance OP' designates the magnitude of the near

displacement, C^. The distance OP'^ designates
the magnitude of the far displacement, C .F

In accordance with the laws of binocular space

discrimination, lines of sight from each eye are
drawn through the two respective points of target

2
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localization, P«N and P-p. The two points of tar¬

get localization are assumed to have relative posi¬
tions of depth in the median plane such that the lines
of sight drawn through point P'^. and the lines of
sight drawn through point P' intersect the line

p

WiWz at the same two points, A and B. The inter¬

section points A and B theoretically mark the respec¬
tive positions in the path of the oscillating target at
which onset of stimulation occurred in each of the
two eyes. Thus, when the target is moving from
left to right and appears to be located at the far
position, Pf , the onset of stimulation for the rightF

eye occurred when the target (now at P ) wasLR

located at point B, and the onset of stimulation for
the left eye covered by the filter occurred when the
target was located at point A, a bit farther behind
in its path. The time taken for the target to move
from B to P.

D represents the magnitude of the
— BR

visual latent period of the right eye, and the time
taken for the target to move from A to PLR

represents the slightly larger magnitude of the vis¬
ual latent period of the left eye. Consequently, the
time taken for the target to move from A to B
represents the difference, At , in the visual latentF

periods of the two eyes, based on the far position of
target localization, P! . Since the velocity of the

oscillating target is identical for either direction of
movement, it follows by the same reasoning that
when the target is moving from right to left and
appears to be located at the near position, P1-^* "the
onset of stimulation for the right eye occurred when
the target (now at P ) was located at point A, andRL

the onset of stimulation for the left eye covered by
the filter occurred when the target was located at
point B, a bit further behind in its path. In this
case, the time taken for the target to move from B
to A represents the difference, At^., in the visual
latent periods of the two eyes, based on the near

position of target localization, P'^- It should be
noted that the latency differences based on the near
and the far positions of target localization are

theoretically equal in magnitude, that is, At^ = At^_

If, for any given difference in binocular retinal
illuminance, the magnitude of the near and far dis¬

placements, and 0^, are experimentally deter¬
mined, it is possible to calculate the magnitude of
the corresponding near and far latency differences,

At^ and At^, if the linear velocity, V, of the
oscillating target is known.

It can be readily seen from similar triangles in
Figure 1 that for target localizations at P'^ and P'p*
respectively,

X=bCN/(d-Cj and X = b Cj(d + Cp)N
(1)

where X = 1/2 the distance from A to B and b = 1/2
the distance between the centers of rotation of the
two eyes. The distance of the plane of oscillation,
d, and the near and far displacements, C^. and C F'
have been previously defined.

FIG. 1 GEOMETRICAL RELATIONSHIPS Geometrical

representation of the Pulfrich stereophenomenon indicating
the stereoscopic space-image in the horizontal plane of

fixation.

For an oscillating target moving with constant
linear velocity, V , the time taken for the target to
pass through the distance X is given by the formula,

t =-
X

V
(2)

The time taken for the target to move from A
to B (or B to A) represents the latency difference,
At, between the two eyes. Since At = 2t, we obtain
from Equation 2,

At
2X

V
(3)

3
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Substituting for X the respective expressions
given in Equation 1, we finally obtain the following
relationship between the experimentally determined
near and far displacements (C and C ) and the

IN F

corresponding computed near and far latency dif¬
ferences and Atp,):

At.
N

2b

V

"N

and
2b

tF "V

d-C
— N

d + C,

(4)

- - F

It should be noted from purely geometric con¬
siderations that, for any constant difference in
binocular retinal illuminance, the magnitude of the
stereoscopic effect as measured by C and

should progressively increase as the linear velocity
of the oscillating target is increased, but the cor¬

responding calculated values of At^. and At^ should
remain constant for all target velocities used.

The present experiment is a continuation of a
research program (Ref. 2, 3) designed to obtain
systematic data on some of the important stimulus
variables that influence the magnitude of the
Pulfrich effect. The aim of the research program
is to provide appropriate data that ultimately can be
directly related to theories and data concerned with
several basic visual functions: (a) binocular space
discrimination; (b) the relationship between the
magnitude of the monocular visual latent period and
level of retinal illuminance; (c) intensity discrimina¬
tion; (d) retinal interaction; and (e) color vision.
In the present experiment, the effect of target veloc¬
ity is systematically studied. This is an important
variable whose effect on the magnitude of the stereo-
effect (that is, on C and C ) can be predicted on

JN F

the basis of the geometric theory of the Pulfrich
effect. The present experiment thus provides a
direct test of the adequacy of the proposed theory.
It will also provide data that can be related to clas¬
sical theory of binocular space discrimination and
to theories concerned with retinal interaction effects
of moving targets.

3

APPARATUS AND PROCEDURES
*

A schematic representation of the apparatus
is presented in Figure 2A. A detailed description
is available in a previous report (Ref. 3). The
apparatus consists of three major components:
(a) the oscillating target, (b) the fixation target, and
(c) the lighting and screening units.

The observer is seated in a dark room (D) and
binocularly observes the fixation target (FT) and the
oscillating target (OT) through a pair of circular
artificial pupils (E) that are 2. 5 mm in diameter and
adjustable for interpupillary separation. The arti¬
ficial pupils are attached to eye-tubes which are
mounted on the inner wall of the dark room. In

front of each eye-tube, a filter box (F) is mounted
on the outer wall so that the experimenter can con¬
trol the retinal illuminance of each eye by combina¬
tions of neutral density filters. The observer's

The apparatus was originally constructed at
Pupin Laboratories, Columbia University, partially
through funds from a research grant-in-aid
generously provided by the American Academy of
Optometry.

head is kept immobilized by means of chin and
forehead rests.

The oscillating target (OT) is a blackened steel
rod 1/8 inch in diameter. It is vertically suspended
downward to eye level from a Jacobs chuck in which
it is retained. The chuck is centrally mounted on
the undersurface of a supporting carriage which
rides on horizontal tracks (T) located in a frontal
plane at a distance of 100 cm from the observer's
eyes. The carriage receives its movement from a

horizontally oscillating drive-rod (R) which is
pivoted at position O, a point located in the
observer's median plane directly above the mid¬
point of the line joining the two eyes. Power for
the drive-rod is provided by a cam-regulated
mechanism (C) which converts constant angular
velocity into reciprocating linear velocity, with the
central 90 percent of stroke at constant speed.
The power to the drive-rod is applied at a vertical
pivot point (P) permanently mounted on the drive-
rod. The electrically driven gear train (M) shown
in Figure 2A was replaced by a Zero-Max (Revco,
Inc. , Model 143) variable speed transmission

4
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device to allow adjustments of the linear velocity
of the oscillating target over a wide range of values.
Calibration of the transmission device was achieved

by measuring the time required for the supporting
carriage of the oscillating target to move through
a fixed distance of 10 cm in the central region of
the elevated tracks (T) on which it rides. The time
measurements were performed with an Electronic
Precision Chronoscope (Wichita Apparatus Supply,
Inc. , Model 251). Thus, the linear velocity of the
oscillating target is specified for all positions of
the lever arm of the speed control link.

The fixation target (FT) is a blackened steel
rod 1 /8 inch in diameter. It is held vertically
upright to eye level in a Jacobs chuck that is
mounted on the upper surface of a supporting car¬

riage located below eye level. The comparison
rod and its supporting carriage are movable along
a horizontal metal track (J) located in the observ¬
er's vertical median plane. By means of a pulley-
wheel (W) located in the dark room, the observer
can adjust the position of the fixation target in a
direction either towards or away from his eyes.
The distance of the fixation target from the
observer's eyes, as measured along the metal
track, can be read by the experimenter from a
scale calibrated in millimeters. The use of a

vernier index permits the experimenter to estimate
the distance of the fixation target to within 0. 01 cm.
The height of the upper end of the fixation target is
set on a level with the observer's eyes. Thus, when
the oscillating target is at a position directly above
the fixation target, the targets appear contiguous
in the observer's vertical median plane. At this
distance (100 cm) from the observer's eyes, the
diameter of each rod subtends a visual angle of
10. 9 minutes of arc.

Uniform background illumination is provided by
ten 150-watt frosted lamps that are appropriately
mounted in an asbestos-lined, galvanized iron light-
box (L). The light-box is located in a frontal plane
250 cm from the observer's eyes. Lamp voltage is
maintained constant (to within ±1.0 percent) at
124 volts a-c by means of an automatic constant-
voltage output regulator. The illuminated surface
is a white-matte screen that is attached to the inner
rear wall of the light-box. The surface has a lumi¬
nance of 854 foot-lamberts as measured with a

Macbeth illuminometer. The color temperature at
the given voltage is 2735°K. With the 2. 5 mm
artificial pupil in use, the retinal illuminance with¬
out filters is 14359 trolands or 4. 16 log trolands.

FIG. 2 SCHEMATIC REPRESENTATION OF THE APPARATUS
AND OBSERVER'S VIEW OF STIMULUS TARGETS A. The
observer is seated in a dark room (D) and binocularly ob¬
serves the fixation target (FT) located in the lower visual
field and the oscillating target (OT) located in the upper
visual field through a pair of artificial pupils (E). Move¬
ment of the oscillating target in a frontoparallel plane
100 cm from the observer's eyes can be varied over a wide
range of constant linear velocities. The fixation target in
the observer's vertical median plane can be moved either
toward or away from his eyes by means of a pulley-wheel
(W) located in the dark room. Background illumination is
provided by a light-box (L). The retinal illuminance of
each eye is controlled by neutral density filters placed in
the pair of filter boxes (F). Horizontal (H) and vertical(V)
screens provide a constant rectangular field of view.
B. The upper rod is the oscilating target; the lower rod is

the fixation target. [From Lit and Hyman (Ref. 3)]

The field of view in the vertical direction is kept
constant at 4. 2° by a horizontal slit (26 cm x 1. 5 cm)
cut at eye level in a black vertical screen (H) located
21 cm in front of the observer. The field of view in

the horizontal direction is kept constant at 21. 6° by
means of a pair of vertical screens (V) [only one
screen is shown in Fig. 2A] adjusted symmetrically
in the plane of the oscillating target, 0. 5° beyond
the end-points of its reciprocating stroke. The view
of the targets as seen by the observer is shown in
Figure 2B.

Two trained graduate students who were

emmetropic served as paid observers. The monoc¬
ular visual acuity of each observer was better than
20/20, and the ductions of each were normal at
both distance and near. At a fixation distance of
100 cm, the interpupillary separation for observer
F. C. was 6. 20 cm and that for observer M. M. was

6. 70 cm. At this fixation distance, the phoria for
observer F.C. was 3^ exophoria and that for
observer M.M. was 1^ esophoria.

5
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Daily practice sessions were held for a period
of about a month during which the observers were
trained in the procedure of localizing the apparent
near and far positions of the oscillating target at
various target velocities and under different amounts
of unequal binocular retinal illuminances, Log
(E /E ). In performing his settings, the observerR L

continuously fixates the upper end of the movable
fixation rod and adjusts this rod in the vertical
median plane until it appears to lie directly below
the near and far paths of the oscillating target. The
apparent near and far positions of the oscillating
target are each localized first when the fixation red
is moved away, and again when it is moved toward
the observer. In this way, multiple pairs of
determinations of C T and C can be obtained under

N F

any given set of viewing conditions. With filters of
equal optical density in front of the eyes, only a
single path of the oscillating target was reported,
that is, no Pulfrich effect was elicited at any given
velocity under conditions of equal binocular retinal
illuminance.

Settings for the apparent near and far positions
of the oscillating target were obtained from both
observers at each of 11 target velocities, V: 2. 59,
5.90, 8.16, 10.28, 13.76, 19.96, 26.86, 35.56,

45. 01, 55. 53, and 68. 17 cm/sec. For target move¬
ment in a frontoparallel plane located 100 cm from
the observer's eyes, these values of linear velocity
correspond to the following angular velocities: 1. 49,
3.38, 4.68, 5.89, 7.88, 11.44, 15.39, 20.37, 25.78,
31. 81, and 39. 05 deg/sec. In a given experimental
session only one target velocity was used and five
pairs of settings (10 readings each for C and C )N F

were obtained from each observer for each of four
conditions of increasing inequality of binocular retinal
illuminance, Log (E /E ). The retinal illuminanceR L

of the left eye (Log E ) was held constant at 2. 06 logL

trolands by use of a neutral filter of optical density
2. 10. The retinal illuminance of the right eye
(Log E ) was successively increased by use ofR

neutral filters of optical densities 1. 98, 1. 52, 1. 03,
and 0. 52. Thus, the four values of Log (E /E )R L

used at each of the 11 target velocities were: 0. 12,
0. 58, 1. 07, and 1. 58. A total of 22 experimental
sessions was held for each observer. A counter¬

balanced order was introduced for target velocity.
That is, for the first 11 sessions, the target velocity
was presented in order of increasing magnitude,
and for the second 11 sessions, the target velocity
was presented in decreasing order.

4

RESULTS

The results for both observers are presented
in Table I. Each entry of C and C representsJN b

the mean value (in centimeters) of two sets of 10
readings obtained at each target velocity under each
of the four specified conditions of unequal binocular
retinal illuminance.

Inspection of Table I reveals that, for any given
value of Log (E /E ), C anc C progressivelyK L IN .r

increase as target velocity is increased. and

C also progressively increase as Log (E /E ) is
r_ R L

increased at any given target velocity. A character¬
istic individual difference in performance should be
noted: for observer F.C. , the values of C are

consistently larger than the corresponding values
of C ; for observer M.M. , contrariwise, the values

£-

of are consistently smaller than the corresponding

values of C_0
F

To facilitate analysis of these data in terms of
the geometric theory of the Pulfrich effect, the
corresponding latency differences, At^. and At^,,
have been computed from Equation 4 for each set of
values of CLT and CL given in Table I. The results

N F &
of the computation are shown graphically in Figure 3
where At and At (in milliseconds) are plotted forN F

each observer as a function of target velocity (in
deg/sec) with Log (E /E ) serving as parameter.R L

A similar plot of the averages of the near and far
latency differences, At, for the combined data of
both observers is shown in Figure 4.

6
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TABLE I

DEPTH-DISPLACEMENT DATA Depth displacements obtained at each of 11 target velocities under

four conditions of unequal binocular retinal illuminance / Log (E /E ). The retinal illuminance ofK L

the left eye, Log E^, was kept constant at 2.06 logtrolands. and CR refer, respectively, to
the near and far displacements of a target oscillating in a frontoparallel plane located 100 cm from

the observer's eyes. Each entry for the two observers (F.C. and M.M.) is based on the mean of

20 settings. The thickness of the stimulus target used was 0. 125 inch.

Log(ER/EL) = 0 . 12 L°g(ER/EL) = 0 .58 Log(ER/EL) = 1..07 L°g(ER/EL) = 1. 58

Target
F.LC. M. M. F. C, M. M. F. C. M. M. F\ C. M. M.

C C c C C C C C C c C c c c c cVelocity N _F N F _N F N F N F N F N F N F
(cm/sec) (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm)

2.59 0. 13 0.20 0.33 0.39 0.48 0.46 0.63 0.59 0.74 0.75 0.85 0.82 0.95 0.98 1.07 1.03
5.90 0.27 0. 19 0.44 0.42 0.80 0.70 0.85 0.94 1.28 1. 16 1.37 1.35 1.63 1.48 1.93 1.93
8. 16 0.41 0.27 0.35 0.62 1. 12 0.97 1.09 1.22 1.55 1.48 1.67 1.63 1.99 1.90 2.17 2.27

10.28 0.54 0.21 0.49 0.70 1.43 1.07 1.26 1.50 2.05 1.68 2.04 2. 18 2.45 2. 14 2.49 2.77
13.76 0.83 0.38 0.61 1.01 1.91 1.36 1.58 1.88 2.57 2.09 2.42 2.77 3.08 2.79 3.24 3.45
19.96 1.31 0. 19 0.61 1.29 2.69 1.61 2. 15 2.64 3.52 2.73 3.30 3.76 4.12 3.45 3.74 4.99
26.86 2.01 0.82 0. 72 1.67 3.54 2. 23 2.67 3.60 4.64 3.24 3.74 5. 18 5.98 4.54 4.80 6.38
35.56 2.58 0.57 0.87 2.23 4.77 2. 21 2.42 4. 21 6.07 3.49 4.52 6.74 7.41 5. 27 5.77 8.88
45.01 3. 15 0.58 0.97 2.01 5.45 2.50 3.43 4.64 7.32 4.33 5.37 7.85 9.08 6.35 6.82 9.48
55.53 3.72 0.05 0.77 2.79 6.62 2. 13 4.41 6.63 8.93 3.73 6.88 9.45 10.70 6.21 8.42 12.33
68.17 4. 22 0.02 0.60 5.70 7.50 1.45 4.46 9.89 10.66 3.46 7.64 13.30 12.57 5.95 9.40 15.74

The curves in Figure 3 and Figure 4 for Log
(E /E ) = 0. 12 show that the computed values ofIt L

At , At , and At remain essentially constant as tar-
1N F

get velocity is progressively increased. A slight
upturn occurs, however, at the lowest target velocity
for the curves representing this condition of slightly
unequal binocular retinal illuminance. For the
remaining curves, the upturn above their respective
constant levels becomes more marked and occurs at

progressively higher values of target velocity as the
magnitude of inequality of binocular retinal illumi¬
nance is increased; for the curves representing
Log (E /E ) = 1.58, the computed latency differencesK L

seem to be independent of target velocity for veloci¬
ties greater than about 20 deg/sec. It is also to be
noted from Figure 3 and Figure 4 that, at any given
target velocity, the computed latency differences
progressively increase in magnitude as Log(E^/E^)
is increased.

OCPDO-0""^
5 » B 20 25 30 35 40

TARGET VELOCITY (deg/sec)
9 10 15 20 25 30 35 40

TARGET VELOCITY (deg/sec)

3 10 15 20 25 30 35 40

TARGET VELOCITY (deg/sec)
5 10 15 20 25 30 35 40

TARGET VELOCITY (deg/sec)

FIG. 3 LATENCY DIFFERENCES FOR TARGET VELOCI¬
TIES Latency differences as a function of target velocity
for four conditions of unequal binocular retinal illuminance.

and At ) were computed fromF
The latency differences (At.

Equation 4 for the corresponding near and far displacements
(C and C ) given in Table I. The number accompanyingN F

each curve represents the prevailing magnitude of Log
(E /E ), where the retinal illuminance of the left eye, LogR L

E , is kept constant at 2.06 log trolands.J-/
Each point is

based on the mean of 20 readings.

7
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FIG. 4 AVERAGE LATENCY DIFFERENCES FOR TARGET
VELOCITIES Average latency differences as a function of
target velocity for four conditions of unequal binocular retinal
illuminance, Log (E /E ). The average latency differences,K L

At, were obtained by combining the values of At^ and At^, in
Figure 3 for both observers. Thus, each point is based on

the mean of 40 readings.

5

The individual difference previously noted with

respect to the relative magnitudes of C and C alsoN F

prevails with respect to the relative magnitudes of

ALT and At* for observer F.C. , the values of At TN F N

are consistently larger than the corresponding values

of At^,; for observer M.M. , the values of At^ are
consistently smaller than the corresponding values

of At.
F

DISCUSSION

Of all stimulus factors known to influence the

magnitude of the Pulfrich sterophenomenon, target
velocity has been the variable most frequently studied
by previous investigators. See, for example, experi¬
ments by Pulfrich (Kef. 1), Engelking and Poos
(Ref. 4), Banister (Ref. 5), Wolfflin (Ref. 6), Arndt
(Ref. 7), Holz (Ref. 8), and Liang and Pieron (Ref. 9).
Although in most of these experiments displacement
settings were obtained for only limited ranges of tar¬
get velocity or for only a single condition of unequal
binocular retinal illuminance, the results invariably
showed that the values of ChT and <2 were smallestN F

at the lowest target velocity and progressively
increased as target velocity was increased. The
corresponding absolute magnitudes of the computed
latency differences, At^ and At^, reported by these
investigators, revealed considerable variability,,
When a dense blue filter was placed in front of one

eye, Arndt (Ref. 7) found a computed latency differ¬
ence of 1917 milliseconds for a target velocity of
0.04 deg/sec and a computed latency difference of
110 milliseconds for a target velocity of 6.67
deg/sec. These data thus show a 17-fold decrease
in latency difference as target velocity undergoes a
170-fold increase in magnitude. In contrast, the data
of Holz (Ref. 8) revealed that, for a given blue filter,
a computed latency difference of 97 milliseconds was
obtained for a target velocity of 0.65 deg/sec and a

computed latency difference of 16 milliseconds was
obtained for a target velocity of 23» 23 deg/sec. In
this case, latency difference undergoes only about a
6-fold change. Holz also reported that the computed
latency difference showed no further decrease in
magnitude (below 16 milliseconds) as target velocity
was respectively increased to values of 40.42 and
130.53 deg/sec.

The data of the present experiment (that is, the
curves given in Fig. 4) seem to show better agree¬
ment with predictions based on the geometrical theory
of the Pulfrich effect. For each of the specified
differences of binocular retinal illuminance used, the
respective magnitude of the computed average latency
difference, At, remains essentially constant as target
velocity is systematically varied. Discrepancies
appear primarily at low target velocities, particularly
for the experimental curves representing large values
of Log (E /E ). These discrepancies reflect theR L

fact that, as target velocity is progressively decreased,
the values of C^. and obtained for the given curve
become systematically slightly larger than the re¬

spective theoretical values required by Equation 4
to yield a given constant At for all target velocities.

A similar discrepancy for low target velocities oc¬
curs in the so-called sensation-time (Empfindungszeit)
experiments of Frohlich (Ref. 10) in which a vertical
slit of light is moved in a frontoparallel plane directly
behind a horizontal opening in a screen. To sin
observer placed directly in front of the screen, the
moving target typically does not appear to come into
view at the entrance edge of the horizontal opening
but rather at some small lateral distance within the
border of the screen aperture. Frohlich attributed
this effect to the visual latent period (die Empfindungs¬
zeit). He proposed that the magnitude of the sensation-
time for any given set of observation conditions could
be computed from the time difference between the
actual and seen appearance of the moving target, that
is, sensation-time = d/v, where 6. is the lateral dis¬
tance from the entrance edge at which the vertical
target first appears to come into view and v is the
linear velocity of the target in its frontoparallel path.

8
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Experiments on the effects of target velocity [see, for
example, Holz (Ref. 8)] yielded sensation-time vs
target velocity curves for various target luminances
that also characteristically show an upturn at low tar¬
get velocities (that is, as target velocity is progress¬
ively decreased, the respective lateral distances from
the entrance edge at which the target is localized by
the observer become progressively smaller but at a
rate considerably slower than that required to yield a
given constant computed sensation-time for all target
velocities). Holz (Ref. 8) obtained sensation-time
measures under stimulus conditions (that is, for target
velocities and luminances) that were identical to those
prevailing in his experiment on the Pulfrich effect.
His results showed that, for each of the given target
velocities, the computed sensation-time for the target
having lower luminance minus the computed sensation-
time for the target having higher luminance yielded a
value that was numerically equal to the respective
computed latency difference obtained in his experiment
on the Pulfrich effect.

Additional experiments on the effects of target
velocity are required to clarify the reasons for the
upturns in the latency-difference vs target velocity
curves of Figure 4. Of particular interest in this
connection would be the results of additional experi¬
ments in which the thickness of the oscillating target
is systematically varied and in which specified differ¬
ences of binocular retinal illuminances are produced
at many basic levels of illuminance.

The present experiment also provides data on the
effects of specified differences in binocular retinal
illuminance on the magnitude of the near and far dis¬
placements and their corresponding computed latency
differences. The data show that, for each of the given
target velocities, displacements C and C and their

IN JD

corresponding calculated latency differences, At^
and At , progressively increase as Log (E /E ) is

-b_ K L
increased. As in the case of similar data obtained
in an earlier experiment [Lit, (Ref. 2)] , the effects
of variations in the magnitude of Log (E /E ) canK L

be accounted for if the assumption is made that the
hypothesized absolute visual latent period, _t, is an
inverse function of retinal illuminance, Log E. A
schematic representation of this relationship is shown
in Figure 5. In this figure, Log E represents theL

constant retinal illuminance of the left eye, and Log
E , Log E , and Log E represent the increasedK1 R2 R3
retinal illuminance successively produced in the right

eye. It can be readily seen with the aid of Figure 5
that the difference in absolute latency (At) theoreti¬
cally increases as the difference in binocular retinal
illuminance [Log (E /E )] is increased. The spe-K -L/

cific rate of increase theoretically depends, of course,
on the initial magnitude selected for the retinal illumi¬
nance of the left eye (Log E_ ).L

When the data of the present experiment are

plotted to show how At varies as a function of Log
(E /E ), with target velocity serving as parameter,R L

the obtained curves (not given here) are in quantitative
agreement with predictions based on the analysis of
Figure 5. The curves do not, however, overlap nor
show the same shape for all target velocities. The
curves representing low target velocities (below 10
deg/sec) are considerably displaced progressively
upward on the ordinate axis and show a relatively more

rapid rise in At as Log (E /E ) is increased. TheseK L

effects, of course, reflect the lack of parallelism
exhibited in the curves of Figure 4.

From data obtained in an earlier experiment
[Lit (Ref. 2)] , it is possible to determine an empiri¬
cal equation which describes the relationship ex¬

isting between the hypothesized absolute visual latent

RETINAL ILLUMINANCE (LOG E )

FIG. 5 THE HYPOTHESIZED ABSOLUTE VISUAL LATENT
PERIOD (_t) AS A FUNCTION OF RETINAL ILLUMINANCE
(LOG E) The curve represents an assumed relationship
proposed to account for the experimental fact that, for the
given constant retinal illuminance of the left eye (Log E^),
latency difference (At) increases progressively as the differ¬
ence in binocular retinal illuminance [Log (E /E ) | is

L -M
increased.

9
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period (t) and level of retinal illuminance (Log E).
The necessary computations were deferred pending
the outcome of additional experiments concerned with
evaluating the effects of systematic variations in dis¬
tance of observation of the oscillating target, target
velocity, and target thickness. It has since been
established [Lit and Hyman (Ref. 3)] that latency
difference is independent of distance of target oscil¬
lation. The present experiment demonstrates that for
small differences of binocular retinal illuminance,
latency difference is independent of target velocity
over a very wide range of velocities. The effects of
systematic variations in target thickness will be
studied next and the results reported separately.

Finally, mention should be made of the local¬
ization error that exists for the moving target when
viewed under conditions of equal binocular retinal
illuminance. For the observers used in the previous
experiments (Ref. 2, 3), the oscillating target ap¬

peared to be moving in a frontoparallel plane located
nearer than the plane defined by the "true" distance

of the oscillating rod. The localization error occurred
af all levels of equal retinal illuminance (Ref. 2) and
at all distances of observation (Ref. 3). A similar
localization error occurred for the observers used in

the present experiment. At all target velocities, the
oscillating target appeared nearer than the true plane
of oscillation for observer F.C. and farther than the

true plane of oscillation for observer M.M. It should
be pointed out that the magnitude of the localization
error for each observer was insufficient to establish

equality between the corresponding near and far com¬

puted latency-differences. Thus, when the corres¬
ponding values of C and were "corrected" for

the localization error, it still turned out that At^. >
At,., for observer F.C. and that ALT< At^ for observerF N F

M.M. , particularly for the displacements produced
by the larger differences of binocular retinal illumi¬
nance. In all cases, the computed average latency-
difference At, remained virtually unchanged when the
respective values of At__ and At_ were each "cor-N F

rected" for the localization error.

10
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