
A Random Keys Genetic Algorithm for
Job Shop Scheduling

Bryan A. Norman
Department of Industrial Engineering

University of Pittsburgh Pittsburgh, PA 15261

James C. Bean

Department of Industrial & Operations Engineering
University of Michigan Ann Arbor, MI 48109

Technical Report 96-10

November 1996

Department of Industrial and
Operations Engineering

The University of Michigan
College of Engineering
Ann Arbor, Michigan 48109-2117

A Random Keys Genetic Algorithm for
Job Shop Scheduling

Bryan A. Norman
Department of Industrial Engineering

University of Pittsburgh Pittsburgh, PA 15261

James C. Bean

Department of Industrial & Operations Engineering
University of Michigan Ann Arbor, MI 48109

Technical Report 96-10

November 1996

A RANDOM KEYS GENETIC ALGORITHM FOR

JOB SHOP SCHEDULING

Abstract

Many manufacturing settings exhibit a job shop structure where products must be
routed through a series of different machines. We propose a genetic algorithm that uses
the random keys encoding to schedule job shops. Computational results demonstrate the
effectiveness of this approach relative to other methods that have been applied to the
problem. The proposed methodology can also be extended to more complex scheduling
domains.

Key Words: automated scheduling, genetic algorithms, job shop

Bryan A. Norman
Department of Industrial Engineering

University of Pittsburgh
1033 Benedum Hall, Pittsburgh, PA 15261

Phone: (412) 624-9841 Fax: (412) 624-9831
banorman@engrng.pitt.edu

James C. Bean

Department of Industrial & Operations Engineering
University of Michigan
Ann Arbor, MI 48109

August 1996

1 Introduction

Consider the n/m/J/Cmux job shop problem. There axe n jobs to be processed on m

machines. Each job contains m operations and must visit each of the m machines. The

operations must be completed in a specific order and each operation can only be completed
on one machine. Therefore, there is a strict precedence ordering of the machine sequence

for each job. However, the machine sequences for different jobs may vary. The objective

is to minimize the completion time of the job that completes last. This problem assumes

that all jobs are ready at time zero, there is no routing flexibility - each job has a specific

operation sequence or routing through the machines, operations cannot be preempted,

and all of the processing times are deterministic. This problem is described in detail in

several scheduling texts see [1], [2], and [3].

This problem is of sufficient difficulty that it was not possible to prove the optimality of

solutions for even small problem instances until recently. Caxlier and Pinson [4] developed
an efficient branch-and-bound method that utilized both improved bounding techniques
and a new heuristic rule for branch selection. Using this algorithm, they were the first to

prove the optimality of a solution for the 10 job and 10 machine problem proposed by [5].
The method found in [4] was enhanced by [6] who introduced improved lower bounds and
a better heuristic branch selection rule which significantly reduced the run time for the
branch-and-bound algorithm. These efforts have been extended by [7] and [8]. However,
even these latest methods encounter long run times for laxge problems.

Recently, new heuristic techniques have also been introduced for this problem. The

best constructive heuristics are the shifting bottleneck heuristic of [9] and the extension
due to [10]. This method has performed well on many problems and has been utilized in

conjunction with other heuristic methods ([11]).

Because of the difficulty of using branch-and-bound and developing effective special

purpose heuristics for job shop scheduling problems, general heuristic search techniques

1

have been applied to these problems in recent years. Three of the most promising heuristic
methods are genetic algorithms (GAs), tabu search, and simulated annealing. In this
research we focus on genetic algorithm methodologies and provide a detailed discussion of
this topic in the remaining sections. Those interested in the other methods should consult
[12] and [13] for a good overview of the mechanics of tabu search. Applications of tabu
search to job shop scheduling problems are discussed in [14], [15], [16], and [17]. Both [18]
and [19] demonstrate how to use simulated annealing to model optimization problems.

Applications to the job shop problem are discussed in [20] and [21].

2 Previous GA Approaches to Scheduling Problems

GAs have been applied to scheduling problems by several authors. The primary strategy

that has been used is a literal permutation ordering encoding ([22], [23], [24], [25], [26], [27],
and [28]). In the literal encoding strategy the chromosome has a one-to-one correlation
with the job sequence. However, this encoding leads to infeasible job sequences if the

single-point, multi-point or parameterized uniform crossover operator is used.

To overcome this difficulty several specialized operators have been developed to insure

the feasibility of generated solutions. Some of these include PMX crossover ([29]), cy¬

cle crossover ([30]), edge recombination ([31]), order-based and position-based crossover

([32]), and linear order crossover (LOX) [25]. Unfortunately, when these operators are

applied in the job shop scheduling context to ensure that the chromosomes remain feasible
much of the information concerning the job sequence may be lost.

Kobayashi, Ono, and Yamamura [26] present some interesting results using a subse¬

quence exchange crossover operator. They use a literal encoding to represent the sequence

on each machine. They permit crossovers only if both parents have a subsequence contain¬

ing the same operations for one or more of the machines. They proceed further to change

2

the resulting sequences into active ones using the active schedule generation method of
Giffler and Thompson [33].

Croce, Tadei, and Volta [28], describe a genetic algorithm that uses a direct encoding
to determine a preference list for the sequence of operations for each machine. To. avoid

infeasibility problems, crossovers can only occur between different machines. A limitation
of their schedule construction mechanism is that it only constructs nondelay schedules.

In job shop problems the best nondelay schedule may have an objective function value
that is much larger than the optimum value (see [2] for an example.) To alleviate this

difficulty they introduce a "lookahead" mechanism to insert idle time into schedules.

Both [34] and [35] use a binary GA where the chromosome contains one bit for each

possible job pair. The precedence for the jobs is determined by the presence of a 0

or a 1 for the allele. This representation still results in chromosomes that translate to

infeasible sequences following the use of single-point, multi-point, or uniform crossover.

Nakano in [35] uses the mechanisms of "harmonization" and "forcing" to ensure that
all chromosomes are translated to feasible sequences. Fox and McMahon [34] develop
two new operators that they call "union" and "intersection" to share allele information

between chromosomes. However, these operators require repairs in order to insure that

chromosomes map to feasible sequences. The adverse effects of these repair operators

on the chromosomes limit the effectiveness of these operators in the job shop scheduling

context.

Fang, Ross, and Corne [36] apply an order based encoding to the job shop scheduling

problem. Given a chromosome of length L, the possible allele values for each gene, g, are

the integers in the range (1, L +1 — g). This encoding has the advantage that crossover can

be applied to any two chromosomes and the resulting offspring will be feasible. However,

this method may perform poorly because the interpretation of genes located late in the

chromosome is highly dependent on the allele values of the genes located early in the
chromosome ([37]). A change in a single allele value early in the chromosome can have a

3

dramatic effect on the resulting schedule.

Dorndorf and Pesch [11] present two interesting GA applications. The first, referred
to as P-GA, uses a GA as a meta heuristic. Active schedules axe constructed using the

algorithm of [33]. At each step of the procedure a conflict set of operations is created.
This set contains all the schedulable operations (predecessors have already been scheduled)
that are competing for the machine that is required by the schedulable operation that
would complete first if there was no resource constraint. Instead of selecting jobs from
the conflict set randomly, or using a single priority rule, the selection of jobs from the

conflict set is determined by the allele values. This method is very similar to the heuristic

space method described in [38].

The second application of [11] is based upon using the shifting bottleneck procedure
of [9]. The GA is used to determine the order in which the single machine problems will
be solved in the enumeration tree of the procedure.

The genetic local search (GLS) methods of [21] represent an alternative GA based

procedure for job shop scheduling. They utilize the disjunctive graph representation of
the problem that was introduced by [46]. They define two neighborhood structures based
on performing arc exchanges in this graph. A GA is used to explore exchanging different
arcs and thus moving from one neighbor to another.

One of the more innovative applications of GAs to scheduling problems is the Prob¬

lem Space method of [38]. This method begins from the premise that most scheduling

problems have base heuristics that are fast and obtain good solutions, though not neces¬

sarily optimal ones. Such heuristics may include SPT, EDD, modified due date and more

complicated variations. They note that, for difficult scheduling problems, such heuristics
do not always find outstanding solutions. They go on to conjecture that if the data were

perturbed, the heuristic may find a solution that is outstanding for the original prob¬
lem. The problem space approach searches this set of perturbations using different search

4

mechanisms including GAs.

3 The Random Keys GA For Job Shop Scheduling

We now present a detailed discussion of the random keys GA (RKGA) methodology for
the job shop scheduling problem. The discussion has three components. The first, is
the random keys encoding and how it pertains to ordering problems such as those found
in the scheduling domain. Second, we introduce the concept of a delay factor and how
it enhances the effectiveness of the RKGA. The third aspect of our solution approach

concerns our choice of operators and stopping criteria for the GA.

3.1 GA Encoding Using Random Keys

The random keys representation ([39]) encodes a solution with random numbers. These
values are used as sort keys to decode the solution. These encodings are interpreted in the

fitness evaluation routine in a way that avoids the feasibility problem. A similar idea was

presented by [40]. They embedded their encoding in a genetic, algorithm that dynamically

adjusts its internal representation of the search space according to the problem being
solved.

We now provide an example of the random keys encoding for the context of job shop

scheduling. As a foundation, consider the single machine sequencing problem. Begin by

generating a uniform (0,1) random variate for each job. When such a sequence of real¬
izations is passed to the fitness evaluation routine, sort them and sequence the jobs in

ascending order of the sort. For a five job single machine problem, consider the chromo¬

some

(.29,.96,.17,.84,.48).

Because the smallest random key, .17, corresponds to gene 3, job 3 is the first job in the

5

sequence. The second job in the sequence is job 1 because .29, the second smallest random

key, corresponds to gene 1. Continuing in this fashion, the sequence is

3->l—>5—)-4->2.

The random keys encoding has the advantage, over a literal encoding, that all crossovers

produce feasible sequences. Crossovers are executed on the chromosomes, the random

keys, not on the sequences. Consider these two chromosomes.

Parent 1 = (.29,.96,.17,.84,.48) == 3 —¥ 1 —¥ 5 —4 —¥ 2

Parent 2 = (.73,.14,.43,.54,.32) = 2—¥ 5 —>3—>-4—>-1

Using a traditional one-point crossover, assume that the crossover point is after the second

gene. This results in the following two offspring.

Offspring 1 = (.29,.96,.43,.54,.32) = l-+5-»3-»4-»2

Offspring 2 = (.73,.14,.17,.84,.48) = 2-*3-»5-)-l-*4

Since any ordered set of random keys can be interpreted as a job sequence, all offspring
are feasible solutions. The random keys simply serve as tags that the crossover operator

uses to rearrange jobs. The random keys encoding works through the dynamic of the
GA. Jobs that should be early in the sequence evolve low random key values and jobs

that should be late in the sequence evolve large random key values. The random keys

encoding permits the offspring resulting from the crossover operator to retain genetic

information from both parents. Consider the previous example, offspring 1 retains the

relative ordering of jobs 1 and 2 found in parent 1 and the relative ordering of jobs 3, 4,

and 5 from parent 2.

Implementing a mutation operator for a real coded GA is difficult. For a binary en¬

coding, mutation consists of flipping one bit of the gene with a given probability. It is

6

not obvious how to translate bit flipping in a binary encoding to a real valued encoding.
Janikow and Michalewicz [42] discuss some possible mechanisms for implementing single

gene mutation for real valued encodings. One of the methods they discuss involves per¬

turbing the real value of an allele. We use a similar mechanism where each random key
and delay factor can have its value increased or decreased by a fraction, /?, of its current

value.

3.2 Delay Factor Encoding

The random keys encoding was modified to enhance performance on job shop scheduling

problems. The length of the gene is doubled so that there are two genes associated with

each job. The first gene contains the (0,1) random key value that is used to determine
the order in the sequence. Note that at each step of the algorithm only the random keys

for the schedulable jobs are sorted to determine which job is placed next in the sequence.

The second gene contains a delay factor. The delay factor is a (0,1) variate that indicates

flexibility in moving this job after placement. Due to the precedence constraints found in

job shop problems, sorting the random keys may lead to sequences with excessive inserted

idle time. By permitting jobs to move earlier in the sequence, in a manner similar to a

global left shift [1], it is possible to create schedules with significantly better objective
function values. A concept similax to the delay factor was utilized in [38].

Job Operation 1 Operation 2 Operation 3
Number Machine Time Machine Time Machine Time

1 1 10 2 5 3 2

2 2 4 3 3 1 5

3 2 9 1 6 3 3

Table 1: Delay Factor Example Problem Data.

Consider the example problem data given in Table 1. A chromosome for this problem

contains 18 genes. The value of 18 reflects the fact that there are 9 operations (3 jobs x 3

7

machines) and for each operation there is a random key (RI<) and a delay factor (DF). A
sample chromosome is given below with details about the genes associated with the first
job.

Operation 1 Operation 2 Operation 3

RK DF RK DF RK DF

T2 ,'^53\ .21, .63, .44, .09, .91, .53, .43, .37, .58, .09, .87, .53
Job 1 Job 2 Job 3

Given this chromosome it is possible to construct a schedule. Initially, the first oper¬

ation of each job is schedulable. Sorting the random keys of these operations results in

operation one of job one being schedule first. Now job one's first operation is removed

from the schedulable list and job one's second operation is added to the schedulable list.

Continuing in this fashion and ignoring the delay factors the placement sequence is

°l.l ~ °2,l — o1,2 — £>3,1 — £>2,2 — <>3,2 ~ £>1,3 — £>3,3 — £>2,3

where o,j represents operation j of job i. The resulting schedule for this placement

sequence is shown in Figure 1 and has a makespan of 35.

Machine I 1 ■■■■■ 3 2

Machine 2 2 1 3

Machine 3 2 1 3

Mil II Mil 1 II Mil Mil II 1
5 10 15 20 25 30 35

Figure 1: Schedule without Move Search.

This schedule contains undesirable idle time on the first machine between times 10

and 24, indicated by cross hatching, where o2,3 could have been scheduled. A procedure,

8

titled move search, uses the delay factor and finds these situations and moves operations

up in the schedule to utilize the idle time. The move search procedure is now described
in more detail.

A sort of the random keys finds the next candidate operation to be scheduled. If

performing the candidate operation on its assigned machine results in idle time on that

machine, as in the case of o3 2 in Figure 1, then a move search occurs. A move search

analyzes the remaining schedulable operations that utilize the same machine as the candi¬
date operation. The order in which move search reviews the operation list is determined

by the random key values of the operations. If one of these operations can be placed on

the candidate operation's machine and complete prior to the start time of the candidate

operation (Sco), then it is placed on the machine prior to the candidate operation. This
is an example of performing a global left shift. Consider the schedule shown in Figure I,

02,3 can be started on on machine 1 at time 10 and complete prior to the start time of

03 2. Therefore, move search would shift 02,3 to start at time 10 on machine 1. The result
is the schedule in Figure 2 that has an improved objective of 33 due to the reduced idle

time on machine 1.

Machine 1

Machine 2

Machine 3

10 15 20 25 30 35

Figure 2: Schedule with Move Search.

Sometimes it may be a good idea to permit a move even if the moving operation would

not complete prior to the candidate operations start time. Refer back to the 3 job and

9

3 machine example. There are 6 idle time units on machine 2 prior to Ox,2 but placing

03,1 ahead of oxt2 will delay 01,2. However, this is still a good idea because 01,2 is only

delayed three time units in exchange for eliminating 6 units of idle time on machine 2. By

permitting the move the makespan is reduced from 33 to 23. The validity of this move

would be determined by using the delay factor for 03,1, DF0s i. If the eaxliest start time

of operation 03,1 plus its delay factor times its processing time is less than the start time
for the candidate operation, or

*^03,1 ~f~ * Poatl ^ FqQ

then 03,1 moves ahead of olt2.

The move search procedure is shown in Table 2. Recall that the candidate operation

has already been selected and scheduling the candidate operation next must create idle
time on its respective machine in order for the move search procedure to be invoked.

1. Let K represent the set of schedulable operations that require the same machine
as the candidate operation. Order K based on the random key values of the
operations.

2. If K = 0, stop. Else set a = 1.

3. Let Ojj be the operation associated with element a of A:, ka.

- 4- If Soij + DF0iJ * p0iJ < Sco then becomes the candidate operation. Update
Sco-

5. If a < I, let a = a + 1 and return to step 3. Else stop.

Table 2: Move Search Procedure

There exists a trade-off between delaying the start of the candidate job and reducing
the idle time of the machines. While it is good to reduce idle time it is important not

to delay any operations that are on the longest path of the schedule that determines the

makespan. Due to the complexity of job shop problems it is not possible to determine a

general rule for determining the appropriate value for the delay factor for each operation.

For this reason the delay factor has been added to the chromosome so that the GA can

10

dynamically modify it for each operation.

The resulting algorithm lets the random keys be the principal agent determining the

operation sequence. Move searches are utilized to improve the search procedure. Deriving
schedules using the combination of random keys and move searches results in the RKGA

exploring a subset of the set of semi-active schedules that contains optimal schedules (for
a detailed proof see [41]). Thus, there exists a region within the chromosome space that

maps to the optimal solution to the problem. Note that the move search procedure does

not reduce the search space to the the set of active schedules. Any operation can move in

front of at most one previously scheduled operation. While it is desirable to reduce the

search space to set of active schedules it is too computationally expensive to insure that

all schedules constructed are provably active schedules.

3.3 GA Operators

We use standard GA operators in our implementation. Elitist reproduction is used to

guarantee that our best solution is monotonically improving. Based on preliminary test

results, we utilize parameterized uniform crossover (with a crossover probability of 0.7)
in place of the traditional single-point or multiple-point crossover. After performing the

crossover operation only the better of the two offspring is retained. Tournament selection
is used in conjunction with the crossover operation to fill the next generation.

A parallel study on multiple-choice genetic algorithms showed that, without the tour¬

nament selection, parametrized uniform crossover returns an offspring with the same

expected fitness as the average of the parents. If both offspring are added to the next

generation, this result still holds. By retaining only the better of the two offspring in

tournament selection the fitness of the offspring is substantially enhanced. We conjecture

that the tournament plays a similar role in the random keys setting.

11

4 Computational Results

The RKGA for the job shop scheduling problem is compared with other GA approaches,

simulated annealing, tabu search, and the shifting bottleneck heuristic. The test set

consists of two problems from [5], a 10 job and 10 machine problem (MlOxlO) and a

20 job and 5 machine problem (M20x5), and 40 problems from [45], LA01 to LA40,
with different sizes ranging from 10 to 30 jobs and 5 to 15 machines. These problems

comprise the standard test set of job shop problems. For the test problems the following

parameter settings were used for the RKGA: a variable population size equal to 300 plus
2 times the total number of operations in the problem, a maximum of 250 generations,

5 elite solutions, 6% of the solutions mutated with 50% of the genes mutated, a gene

modification value, /?, of 0.5, and a tournament size of 2. The degree of each mutation

is high but only used in 6% of the population. This results in a mutation effect that

is similar to introducing a few random members into the population. Empirical results
indicate that if the GA does not improve the current best solution after a fixed number

of successive generations then additional searching yields little improvement. Therefore,
the stopping criteria for the GA was either the maximum number of generations or 75

generations without any improvement in the objective function.

Six papers from the literature that represent the best GA results that have been

presented at this time include: [36], [26], [28], [11], [21], and [47]. These methods were

described in Section 2. Comparisons with each of these are described in more detail below.

Fang, Ross, and Corne [36] present results on two problems by [5] - MlOxlO and
M20x5. Their average solutions over ten runs for these two problems are 977 and 1215

respectively and the best solutions for the 10 runs are 949 and 1189 respectively. The

RKGA was run using 10 different random number seeds and the average over all 10 and

the best solution over the first 5 seeds is noted. The best of only the first 5 seeds was used

in order to provide a more fair comparison with other algorithms since some of these other

12

algorithms were run with only 5 seeds. From the data in the first two rows of Table 3

it is clear that the RKGA finds better solutions on average for these two problems. A

comparison of the best solution found yields similar results (even though only 5 of the
RKGA seeds were used) as the RKGA attained a value of 937 for the 10x10 problem and
1178 for the 20x5 problem. Fang, Ross, and Corne [36] do not present computation times
for their algorithm but they do indicate how many function evaluations the algorithm

performed. The parameter settings for the RKGA resulted in the RKGA using fewer
function evaluations. It is difficult to make strong conclusions based on only two problems,

however the RKGA seems to find solutions that are better than those found by the GA

of Fang, Ross, and Corne and with fewer function evaluations.

Kobayashi, Ono, and Yamamura [26] also only present results for MIOxlO and M20x5.

They perform 100 trials on MIOxlO and find a best solution of 930 and an average solution

of 939. These results are similar to those seen for the RKGA in Table 3. However, their

results indicate that they examine 1.6 x 106 solutions in each trial which is significantly

more than the RKGA examines. Additionally, their method must take additional time

to convert each solution to a provable active schedule. They do not provide computation

times for their approach but these two factors make it appear that it would be significantly

higher than that of the RKGA method. It is difficult to compare the methods based on

the results of only two problems. It would be" interesting to see if they can determine

robust parameter settings that would perform well on all of the problems in the test set

of [45].

Croce, Tadei, and Volta [28] tested their algorithm on MIOxlO, M20x5, and 8 of the

problems of [45]. For each problem they ran the algorithm using 5 different random

number seeds and they present the best and average solution found for these 5 seeds.

Their results are given in Table 3. Comparing their results with those of the RKGA it

is apparent that the RKGA has equal or better performance on average and for the best

solution found over 5 seeds for every problem tested. A paired t test indicated that these

13

Problem Size

Optimal
or Best
Known

RKGA
Croce
et ad.

Dorndorf & Pesch Storer
et al.

P-GA
SB-

GA(40)
SB-

GA(60)
Aarts et al.

Avg. Best Avg. Best GLSl GLS2 PSGA

MIOxlO 10x10 930 945 937 965 946 960 - - 935 945 952

M20x5 20x5 1165 1176 1165 1199 1178 1249 - - 1165 1167 -

LA01 10x5 666 666 666 666 666 666 666 - 666 666 . 666
LA02 10x5 655 661 655 - 666 681 666 - 668 659 -

LA03 10x5 597 599 597 - 666 620 604 - 613 609 -

LA04 10x5 590 592 590 - - 620 590 - 599 594 -

LA05 10x5 593 593 593 - - 593 593 - 593 593 -

LA06 15x5 926 926 926 926 926 926 926 - 926 926 -

LA07 15x5 890 890 890 - - 890 890 - 890 890 -

LA08 15x5 863 863 863 - - 863 863 - 863 863 -

LA09 15x5 951 951 951 - - 951 951 - 951 951 -

LA10 15x5 958 958 958 - - 958 958 - 958 958 -

LA11 20x5 1222 1222 1222 1222 1222 1222 1222 - 1222 1222 -

LA12 20x5 1039 1039 1039 - - 1039 1039 - 1039 1039 -

LA13 20x5 1150 1150 1150 - - 1150 1150 - 1150 1150 -

LA14 20x5 1292 1292 1292 - - 1292 1292 - 1292 1292 -

LA15 20x5 1207 1207 1207 - - 1237 1207 - 1207 1207 -

LA16 10x10 945 958 945 989 979 1008 961 961 977 977 981
LA17 10x10 784 784 784 - - 809 787 784 791 791 794

LA18 10x10 848 850 848 - - 916 848 848 856 858 860
LA19 10x10 842 853 851 - - 880 863 848 863 859 860
LA20 10x10 902 908 907 - - 928 911 910 913 916 -

LA21 15x10 1047* 1062 1055 1113 1097 1139 1074 1074 1084 1085 -

LA22 15x10 927 936 933 - - 998 935 936 954 944 -

LA23 15x10 1032 1032 1032 - - 1072 1032 1032 1032 1032 -

LA24 15x10 935 977 966 - - 1014 960 957 970 981 -

LA25 15x10 977 995 987 - - 1014 1008 1007 1016 1010 • -

LA26 20x10 1218 1218 1218 1248 1231 1278 1219 1218 1240 1236
LA27 20x10 1236* 1269 1256 - - 1378 1272 1269 1308 1300 -

LA28 20x10 1216 1241 1241 - - 1327 1240 1241 1281 1265 -

LA29 20x10 1160* 1188 1179 - 1336 1204 1210 1290 1260 -

LA30 20x10 1355 1355 1355 - - 1411 1355 1355 1402 1386 -

LA31 30x10 1784 1784 1784 1784 1784 - - - 1784 1784 -

LA32 30x10 1850 1850 1850 - - - - - 1850 1850 -

LA33 30x10 1719 1719 1719 - - - - - 1719 1719 -

LA34 30x10 1721 1721 1721 - - - - - 1737 1730 -

LA35 30x10 1888 1888 1888 - - - - - 1894 1890 -

LA36 15x15 1268 1300 1287 1330 1305 1373 1317 1317 1324 1311 1305
LA37 15x15 1397 1432 1418 - - 1498 1484 1446 1449 1450 1458
LA38 15x15 1184* 1232 1217 - - 1296 1251 1241 1285 1283 1239
LA39 15x15 1233 1260 1258 - - 1351 1282 1277 1279 1279 1258
LA40 15x15 1222 1256 1234 - - 1321 1274 1252 1273 1260 1258

Paired t test a value .005 .012 < .001 .005 .033 < .001 < .001 .004

* Represents the best known solution, no provably optimal solution
exists for this problem.

Table 3: RKGA Job Shop Comparison.
14

differences were significant at a .005 confidence level for the average solution and a .012
confidence level for the best solution found. However, there is a trade-off since Croce,

Tadei, and Volta's algorithm requires 3 to 5 times less cpu time than the RKGA.

Dorndorf and Pesch [11] tested several GA baaed algorithms using the problems fqund
in [45]. The first, referred to as P-GA, was run using only one random number seed and
these results are presented in Table 3. Because they only tested one random number

seed it is best to compare the result with the average result over 10 seeds for the RKGA.
The data indicate that the RKGA produces results that axe equal to or better than the

P-GA for every problem tested. A paired t test indicated that the average difference
was significant at a confidence level less than .001. The computation times for the two

methods are similar.

Dorndorf and Pesch's [11] second approach is based on the shifting bottleneck heuris¬
tic of [9]. This method spawned two algorithms, SB-GA(40) and SB-GA(60) (which only
differ in their population sizes), which use a GA to determine in what order the sin¬

gle machine scheduling problems should be solved in the shifting bottleneck procedure.
Both algorithms were run for two different seeds and the average of these two seeds is

presented in Table 3. Note that SB-GA(60) was only run on the larger problems that

SB-GA(40) had difficulty solving. A comparison of the RKGA with SB-GA(40) indicates
that the two algorithms provide similar solutions for many problems. As the problem

size increases, problems LA26 to LA40, the RKGA provides better solutions, on average,

for each problem. A paired t test showed that the RKGA provides better average results

with a confidence level of .005. The results for the SB-GA(60) method are closer to the
RKGA results. Again, the RKGA seems to provide better results for the larger problems
but the difference is not as significant as in the case of SB-GA(40). A paired t test for the
RKGA and SB-GA(60) indicated that the RKGA finds better results on average with a

confidence level of .033. The RKGA requires about 4 times more computation time than

SB-GA(40) and about 2 times more computation time than SB-GA(60). Additionally,

15

the RKGA has the advantage that is readily applicable to additional problem contexts

that contain release times, due times, and alternative routings while the SB-GA meth¬

ods are limited to problems without these complexities because they utilize the shifting
bottleneck procedure.

Test results for the genetic local search (GLS) methods of [21] are shown in the columns
GLSl and GLS2 (these reflect the two different neighborhood structures) of Table 3. The
values in the table represent the average solution found over 5 runs. The RKGA finds
better solutions on average than both methods. Comparisons with both GLSl and GLS2
show that RKGA finds equal or better solutions in all but 5 instances. A paired t test

comparison with both methods indicated that the RKGA finds better solutions on average

with a confidence level less than .001 for both GLSl and GLS2. The computation times

for both genetic local searches are slightly, as much as 20%, less than, those for the RKGA.

Storer, Wu, and Park's [47] problem space genetic algorithm (PSGA) presents an ad¬
ditional GA-based method. This algorithm was tested on MIOxlO and 10 of the problems
from [45]. They present the best solution for their algorithm using one large population
and for keeping the best solution generated by 20 small populations. Table 3 only contains
the results for the 20 small populations strategy because that performed better. They

only report the results for one seed for the 20 small populations so comparisons with the

average RKGA performance for each problem are most appropriate. The parameters used

for the RKGA insured that it performed fewer schedule evaluations than the PSGA. The

results show that the RKGA found equal or better solutions on average for 10 of the 11

problems and the one where it found worse solutions the difference was very small. A

paired t test indicated that the difference between the two methods was significant at a

.004 confidence level.

In addition to the six GA based procedures, simulated annealing and tabu search
have been applied to job shop scheduling problems. The best SA results are from [20].
Norman [41] presents a detailed comparison between the RKGA and the their simulated

16

annealing algorithm. Overall the two methods provided solutions of similar quality but
the RKGA solutions were slightly better and required less computation time. Tabu search

has been applied to job shop scheduling by [14], [15], [16], and [17]. The best results have
been found by the algorithms of [15] and [16]. These algorithms exploit the problem
structure in forming the neighborhood for the tabu search. The resulting algorithms
find solutions that are on average less than 1% better than those found by the RKGA
and require less computation time. However, because they exploit the specific problem

structure found in these test problems they are not as readily generalized to more complex

problems. The RKGA can be applied to job shop scheduling problems with multiple,
nonidentical machines, nonzero ready times, sequence dependent setups, tool constraints,

and precedence as seen in [41].

An additional comparison involves the RKGA and the shifting bottleneck methods of

[9] and [10]. These represent the best "constructive" methods for determining job shop
schedules. The RKGA finds solutions that on average axe 1% better than any of the

shifting bottleneck methods. But the shifting bottleneck procedures are much faster than
the RKGA because they are constructive procedures that are tailored to this specific

problem. However, the shifting bottleneck methods cannot be easily adapted to more

complex problems containing sequence dependent processing times, tooling constraints,

and alternative part routings as the RKGA can.

The final comparison involves the RKGA with delay factors and move search procedure

to the RKGA without these elements. Given the GA parameters described earlier in this

section, the RKGA with delay factors and move search finds solutions that are on average

3% better than the RKGA operating without any type of move search procedure and 1%
better than the RKGA utilizing only the move search but without any delay factors (or

essentially setting the delay factor to always equal 1.0). Paired t tests indicated that both
of these differences are significant at a confidence level less than .001.

17

5 Conclusions and Further Research

We present a new genetic algorithm encoding for the job shop scheduling problem. This
method performs well compared to other general genetic algorithm approaches in terms

of the quality of the solutions found. Moreover, the method performs well relative to

GA methods that are tailored to this specific problem structure, such as the method of

[21] and [11]. The RKGA is also competitive with other heuristic methods such as the
best simulated annealing and tabu search implementations that axe designed specifically
for this problem class. Additionally, the RKGA finds better solutions than the shift¬

ing bottleneck constructive methods although it requires more computation time. The

proposed RKGA has the added advantage that it can be readily extended for applica¬

tion to more complicated scheduling environments. These environments may include the

following complexities: multiple, nonidentical machines, nonzero ready times, sequence

dependent setups, tool constraints, precedence, and alternative routings. This makes

the random keys encoding a robust encoding that can be applied effectively to multiple

complex scheduling environments.

References

[1] Baker, K., Introduction to Sequencing and Scheduling, Wiley, 1974.

[2] French, S., Sequencing and Scheduling, Halstead Press, 1982.

[3] Morton, T. E. and D. W. Pentico, Heuristic Scheduling Systems, John Wiley and
Sons, 1993.

[4] Carlier, J. and E. Pinson, "An Algorithm for Solving the Job-Shop Problem," Man¬
agement Science, Vol. 35, 164-176, 1989.

[5] Muth, J. F. and G. L. Thompson, Industrial Scheduling, Prentice Hall, 1963.

[6] Applegate, D. and W. Cook, "A Computational Study of the Job-Shop Scheduling
Problem", ORSA Journal on Computing, Vol. 3, 149-156, 1991.

18

[7] Carlier, J. and E. Pinson, "Adjustment of heads and tails for job-shop problem,"
European Journal of Operational Research, Vol. 35, 164-176, 1994.

[8] Brucker, P., B. Jurisch, and A. Kramer, "The job-shop problem and immediate
selection," Annals of Operations Research, Vol. 50, 73-114, 1994.

[9] Adams, J., Balas, E., and Zawack D., "The shifting bottleneck procedure for job
shop scheduling", Management Science, Vol. 34, 391-401, 1988.

10] Balas, E., J. K. Lenstra, and A. Vazacopoulos, "The One Machine Problem with
Delayed Precedence Constraints and its Use in Job Shop Scheduling," Management
Science,, Vol. 41, 94-109, 1995.

11] Dorndorf, U. and E. Pesch, "Evolution Based Learning in a Job Shop Environment,"
Computers and Operations Research, Vol. 22, 25-40, 1995.

12] Glover, F., "Tabu Search - Part I," ORSA Journal on Computing, Vol. 1, 190-206,
1989.

13] Glover, F., "Tabu Search - Part II," ORSA Journal on Computing, Vol. 2, 4-32, 1990.

14] Barnes, J. W. and M. Laguna, "A Tabu Search Experience in Production Schedul¬
ing," Annals of Operations Research, Vol. 41, 141-156, 1993.

15] Dell'Amico M. and M. Trubian, "Applying Tabu Search to the Job-Shop Scheduling
Problem," Annals of Operations Research, Vol. 41, 231-252, 1993.

16] Nowicki, E. and C. Smutnicki, "A Fast Taboo Search Algorithm for the Job Shop
Problem," Management Science, Vol. 42, 797-813, 1996.

17] Taillard, E., "Parallel Tabu Search Techniques," ORSA Journal on Computing, Vol.
6, 108-117, 1994.

18] Kirkpatrick, S., C. D. Gelatt, Jr., and M, P. Vecchi, "Optimization by Simulated
Annealing," Science, Vol. 220, 671-680, 1983.

19] Cerny, V., "Thermodynamical Approach to the Traveling Salesman Problem: An
Efficient Simulation Algorithm," Journal of Optimization Theory and Applications,
Vol. 45, 41-51, 1985.

20] Van Laarhoven, P. J. M., E. H. L. Aarts, and J. K. Lenstra, "Job Shop Scheduling
by Simulated Annealing," Operations Research, Vol. 40, 113-125, 1992.

21] Aarts, E. H. L., P. J. M. Van Laarhoven, J. K. Lenstra, and N. L. J. Ulder, "A
Computational Study of Local Search Algorithms for Job Shop Scheduling", ORSA
Journal on Computing, Vol. 6, 118-125, 1994.

22] Bagchi, S., S. Uckun, Y. Miyabe, and K. Kawamura, "Exploring Problem-Specific
Recombination Operators for Job Shop Scheduling," Proceedings of the Fourth In¬
ternational Conference on Genetic Algorithms, 10-17, 1991.

19

Biegal, J. and J. Davern, "Genetic Algorithms and Job Shop Scheduling," Computers
and Industrial Engineering, Vol. 19, 81-91, 1990.

Syswerda, G., "The Application of Genetic Algorithms to Resource Scheduling,
Proceedings of the Fourth International Conference on Genetic Algorithms, 502-508,
1991.

Falkenauer E. and S. Bouffouix, "A Genetic Algorithm for Job Shop," Proceedings
of the 1991 IEEE International Conference on Robotics and Automation, 824-829,
1991.

Kobayashi, S, I. Ono, and M. Yamamura, Syswerda, G., "An Efficient Genetic Al¬
gorithm for Job Shop Scheduling Problems," Proceedings of the Sixth International
Conference on Genetic Algorithms, 506-511, 1995.

Gupta, M. C., Y. P. Gupta, and A. Kumar, "Minimizing Flow Time Variance in a
Single Machine System Using Genetic Algorithms," European Journal of Operational
Research, Vol. 70, 289-303, 1993.

Croce, F., R. Tadei, and G. Volta, "A Genetic Algorithm for the Job Shop Problem,"
Computers and Operations Research, Vol. 22, 15-24, 1995.

Goldberg, D. E. and R. Lingle Jr., "Alleles, Loci, and the Traveling Salesman Prob¬
lem," Proceedings of the First International Conference on Genetic Algorithms, 154-
159, 1985.

Oliver, I. M., Smith, D. J., and Holland J. R. C., "A Study of Permutation Crossover
Operators on the Traveling Salesman Problem," Genetic Algorithms and their Ap¬
plications: Proceedings of the Second International Conference, 224-230, 1987.

Whitley, D., T. Starkweather, and D. Fuquay, "Scheduling Problems and Traveling
Salesman: The Genetic Edge Recombination Operator," Proceedings of the Third
International Conference on Genetic Algorithms, 133-140, 1989.

Syswerda, G., "Schedule Optimization Using Genetic Algorithms," in Handbook of
Genetic Algorithms, (ed. L. Davis), Van Nostrand, 332-349, 1991.

Giffler, B. and Thompson, G. L., "Algorithms for solving production scheduling
problems." Operations Research, Vol. 8, 487-503, 1960.

Fox, B. R. and M. B. McMahon, "Genetic Operators For Sequencing Problems,"
Foundations of Genetic Algorithms, Morgan Kaufmann, 284-300, 1991.

Nakano, R., "Conventional Genetic Algorithm for Job Shop Problems," Proceedings
of the Fourth International Conference on Genetic Algorithms, 474-479, 1991.

Fang, H. L., P. Ross, and D. Corne, "A Promising Genetic Algorithm Approach to
Job-Shop Scheduling, Rescheduling, and Open-Shop Scheduling Problems," Proceed¬
ings of the Fifth International Conference on Genetic Algorithms, 375-382, 1993.

20

Grefenstette, J. J., R. Gopal, B. Rosmaita, and D. Van Gucht, "Genetic Algorithms
for the Traveling Salesman Problem," Proceedings of the First International Confer¬
ence on Genetic Algorithms, 160-8, 1985.

Storer, R. H., S. D. Wu, and R. Vaccaxi, "New Search Spaces for Sequencing Problems
With Application to Job Shop Scheduling," Management Science, Vol. 38, No. 10,
1495-1509, 1992.

Bean, J. C., "Genetics and Random Keys for Sequencing and Optimization," ORSA
Journal on Computing, Vol. 6, No. 2, 154-160, 1994.

Shaefer, C. G. and S. J. Smith, "The ARGOT Strategy II: Combinatorial Optimiza¬
tions," Technical Report, Thinking Machine Corporation, 1988.

Norman, B. A., "The Random Keys Genetic Algorithm for Complex Scheduling
Problems," Unpublished Ph.D. Dissertation, University of Michigan, Ann Arbor,
1995.

Janikow, C. Z. and Z. Michalewicz, "An Experimental Compaxison of Binary an

Floating Point Representations in Genetic Algorithms," Proceedings of the Fourth
International Conference on Genetic Algorithms, 31-36, 1991.

Goldberg, D. E., Genetic Algorithms in Search Optimization and Machine
Learning, Addison Wesley, 1989.

Davis, L., Handbook of Genetic Algorithms, (ed. L. Davis), Van Nostrand, 1991.

Lawrence, S. Supplement to "Resource Constrained Project Scheduling: An Exper¬
imental Investigation of Heuristic Scheduling Techniques." GSIA, Carnegie Mellon
University, Pittsburgh, PA, October 1984.

Roy, B. and B. Sussmann, Les Problemes d'ordonnancement avec contraintes dis-
jonctives, Note DS n.9 bis, SEMA, Montrouge, 1964.

Storer, R. H., S. D. Wu, and I. Paxk, "Genetic Algorithms in Problem Space for
Sequencing Problems," Proceedings of a Joint US-German Conference on Operations
Research in Production Planning and Control, 584-597, 1992.

21

UNIVERSITY OF MICHIGAN

3 9015 09911 4574

AIIM SCANNER TEST CHART#2
Spectra

4 PT ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz;:",./?$0123456789
6 PT ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz;:",./?$0123456789
8 PT ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmriopqrstuvwxyz;:",./?$0123456789
10 PT ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz;:'t,./?$0123456789

Times Roman
4 PT ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklrnnopqrstuvwxyz;$0123456789
6 PT ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz;:",./?$0123456789
8 PT ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz;:", ./?$0123456789
10 PT ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz;:",./?$0123456789

Century Schoolbook Bold
4 PT ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghgklmnopqrstuvwxyz;:",./?$0123456789
6 PT ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz;:",./?$0123456789
8 PT ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz;:",./?$0123456789
10 PT ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz;:",./?$012&56789

News Gothic Bold Reversed

ABCDEFGHI J KLMNOPQRSTUVWXYZabcdefghijklrnnopqrstuvwxyz;:",./? $012 34 567 89
ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghi jklmnopqrstuvwxyz;:'\./?$012 34567 89
ABCDEFGHIJKLMN0PQRSTUVWXYZabcdefghijklmnopqrstuvwxyz;:",./?$0123456789
Bodoni Italic
A HCDHh'CHIJKl.MNOI'QRSTUyWXY/MbcdefghijklmnoiHintuvwxyz:: ",./?S0123456789

ABCDEFGHIJKLMNOPQRSTUVWX YZabcdefghijklrnnopqrstuvwxyz;: ",./?$0123456 789
ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklrnnopqrstuvwxyz;:. /?$0123456789
ABCDEFGHIJKLMNOPQR STUVWX YZabcdefghijklmnopqrstuvwxyz;:'r,.
Greek and Math Symbols
ABTAEH0HIKAMNOII<l)P2TYnX>l'Za/378€^Si7iKA^voir((>pcrTVo)X<|»{=:F' '>•/== + = ?t°> <><>< =

ABrAE=6HIKAMNOn4>PZTYnX1'Za/3T8£5e7)iKXti.TOir<|)po-ruo)Xi);{Sq:",./^± = ^-> <><>< =

ABrAE=eHIKAMNOn<I>P2;TYnX4'Za/3y8€|9T)iKAjuvo7r<f)p<Trvo)X>l'^T". /^± = =A°> <><><=

ABrAES0HIKAMNOn<l>P2TYfiXvPZa/3y8e£0i7iKA.fAvo7r<j>pcrTy2 =

t rr

6 PT

8 PT

10 PT

6 PT

8 PT

10 PT

White

MESH HALFTONE WEDGES
i i i i

0123456
6.

MEMORIALDRIVE,ROCHESTER,NEWYORK14623
H >

Z o > O
_J
O z X o

03SEP
1S53j 233EJ 33EB̂ tiIf™55538355 6EE57B35 cthji^Ca)N)—*O wmrummiULJl

ffl

UlnjIUmillmmSr.Ki-HsJ
oicji4ĈOfOJ0 !"«iuifllllinBBSffi!P.niinwm

ui

WmSSSSSn̂cnrninruuinimS;;:::i%DjJI OEEE
13EB 2E35 3E35 453B 5EB5 63EB

10S3B 93BS 8335 7553

c H O z H O

x

CJ

o

a3iN30HoavasaasiavoiHdvaoas03onaoad

