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Abstract

Results delimiting the logical and effective content of

asymptotic combinatorics are presented. For the class of

binary relations with an underlying linear order, and the

class of binary functions, there are properties, given by

first order sentences, without asymptotic probabilities;

every first-order asymptotic problem (i.e., set of first

order sentences with asymptotic probabilities bounded by a

given rational number between zero and one) for these two

classes is undecidable. For the class of pairs of unary

functions or permutations, there are monadic second-order

properties without asymptotic probabilities; every monadic

second-order asymptotic problem for this class is

undecidable. No first-order asymptotic problem for the

class of unary functions is elementary recursive.
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0. Introduction.

The classification of decidable and undecidable

theories is one of the great achievements of modern logic

(see Ershov, et.al. [8] and Rabin [20]). This enterprise

and subsequent work on the computational complexity of

theories (see Ferrante and Rackoff [10]) revealed the

effective content of the axiomatic approach in mathematics -

an approach which characterizes much of algebra and

geometry. More recently, researchers have begun to

scrutinize the logical and effective content of other areas

of mathematics. This investigation carries forward that

work in the area of asymptotic combinatorics.

Asymptotic combinatorics studies the probabilities of
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properties holding in random finite structures. The

probabilities considered are the limit values as the size of

the structures increases (hence the term asymptotic) . Let C

be a class (closed under isomorphism) of finite structures

for a finite language and Cn the set of structures in C
with universe n = (0, l, n-1} (in combinatorics these

are called the lahtlM structures in C) . Let V be a sentence

(of some logic) in a language for this class. Define
r

u (f) = (f) to be the fraction of structures in that
n n n

satisfy f. We seek to determine when nn(f) will converge as
n increases to ® (call the limit 11(f) when it exists), when

n(f) is computable, and how difficult it is to compute. Our

results establish how complicated C must be for

nonconvergence, undecidability, and intractability to occur.

Our first main theorem, answers a question of Lynch

[17] .

Theorem 1. Let C be the class of structures <n, 4., R>,
n

where 4. is the usual order and R is an arbitrary binary

relation on n. Then there is a first-order f in the

language for this class such that P^C/5) does not converge.

We prove this theorem in section 1.

Glebskii, Kogan, Liogonkii, and Talanov [11] and,

independently, Fagin [9] showed that if C is the set of all

structures for a relational language, then nn(^) converges
for all first-order in fact, ji(f) is either 0 or 1. Lynch
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[17] obtains as a consequence of a more general theorem that

if one binary relation is specified as the usual successor

relation on n, then nn(^) still converges for first-order
Theorem l establishes that Lynch's result cannot be

strengthened to linear order rather than successor relation.
Ehrenfeucht has shown that nn(V) does converge for all
first-order ^ in the case of a linear order and arbitrary

unary relations (see Lynch [17]) so our result is the best

possible.

Kaufmann and Shelah [14] showed that if C is the set of

all structures for a relational language with at least one

nonunary relation symbol, then there is a monadic second-

order ^ such that does not converge. However, Blass,

Gurevich, and Kozen [2] showed that Hn(^) converges to
either 0 or l in this case for all V in least fixed-point

logic .

Our second main theorem answers another question of

Lynch [18].

Theorem 2. Let C be the class of structures <n,F>, where F
n

is a binary function on n. Then there is a first-order V in

the language for this class such that nn() does not
converge.

We prove this theorem in section 2. It is closely

related to our third main theorem.

Theorem 3. Let C be the set of structures <n,F,G>, where F
n

and G each range over either unary functions or permutations
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on n. Then there is a monadic second-order sentence in

the language for this class such that nn(^) does not
converge.

We prove this theorem in section 3.

Lynch [18] proved that if Cn is the class of
structures <n,F ,... ,F >, where each F• ranges over either

± ±

unary functions or permutations on n, then i-^^) converges
for all first-order W. A theorem in Compton [4] implies

that jxn(<^) converges for all monadic second-order ^ when CR
is the set of structures <n,F> with F a permutation on n.

The theorem does not apply when F is an arbitrary unary

function, but in a later paper Compton [3] showed that the

Cesaro probability ^ does converge for all monadic
second-order In a forthcoming paper Compton and Shelah

[7] show that Mn(f) converges for all monadic second-
order f in this case.

Theorems 1, 2, and 3, together with the papers cited,

give a fairly complete picture for convergence in relational

or functional classes. What about undecidability and

intractability?

Define an cuympiotZc pioti-Lm for a class C of structures

to be a set of sentences defined by one of the following

forms.
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n(^) l r} or {^: |i (V) < r), 0 < r i 1

(V:»jl(V) > r} or (f:n(V) £ r}, 0 £ r < 1.

The sentences f are from some specified logic and r is a

rational number. Rationality of r is not crucial: we could

require instead that r be algebraic or a recursive real.

Nor is the use of |i(f) = lim Mn(^) crucial: we could use
n-*«°

lim inf Hn(^)» lim sup Ces&ro limit, or any other
reasonable method for assigning probabilities to sentences.

Our next main theorem is insensitive to any of these

variations in the definition.

Theorem 4. Suppose C is either the set of structures

<n,l,R>, where £ is the usual order and R a binary relation

on n, or <n,F> where F is a binary function on n. Then

every first-order asymptotic problem for C is undecidable.

Suppose C is the class of structures <n,F,G>, where F

and G each range over unary functions or permutations on n.

Then every monadic second-order asymptotic problem for C is

undecidable.

We prove this result in section 4. In fact we prove a

stronger result. For each of the classes mentioned in

Theorem 4, the set of sentences (either first-order or

monadic second-order, as indicated in the statement of the

theorem) such that n(f) = 1 and the set of sentences such

that n(V) = 0 are recursively inseparable. That is, there

is no recursive set containing one of these sets and

disjoint from the other.

5



Fagin [9] noted that the set of first-order

sentences "f with = 1 is a complete, decidable theory

when C is the class of all structures for a relational

language. Grandjean [13] proved that this set and, hence,

its complement within the set of first-order sentences are

PSPACE-complete. These are the only two asymptotic problems

for this class. This result shows that determination of

truth in almost all relational structures has fairly low

complexity. Compare with the well-known undecidability for

determination of truth in all finite structures when the

language contains a nonunary relation symbol (see

Tracntenbrot [24] and Vaught [25]). Blass, Gurevich, and

Kozen [2] show that the set of sentences V in least fixed-

point logic such that n(<p) = 1 is EXPTlME-complete when C is

the class of all structures for some relational language.

Lynch [18] showed that when C is the class of

structures <n,F ,...,F >, where each F• ranges over either
j. y ±

unary functions or permutations on n, then an expression for

n('f) in terms of 0, 1, e, and the usual arithmetic

operations (including exponentiation) is computable for

first-order f. It does not follow that each first-order

asymptotic problem for this class is decidablei showing this

seems to involve difficult questions about rationality of

exponential expressions. However, a close reading of

Lynch's proof discloses that the asymptotic problems

{^ first order: n(^) =1], [v first-order: n(^) = 0}
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are decidable. Our last main result shows that these

problems are highly intractable if some F^ ranges over unary
functions. Thus, there is no significant reduction of

complexity in going from all finite unary functions to

almost all finite unary functions (the theory of all finite

unary functions is decidable but not elementary recursive-

see Compton and Henson [6] for a proof of noneiementary

recursiveness).

Theorem 5. Let C be the class of structures <n,F>, where F

is a unary function on n. Then no asymptotic problem for C

is elementary recursive.

We prove this theorem in section 5. As with Theorem 4,

it will follow from a stronger result. For C, the class of

unary functions, there is no elementary recursive set

separating the set of first-order sentences ^ such that

n('i') = l from the set of first-order sentences ¥ such that

n(<f) = 0. Recall that the elementary recursive sets are

those recognized by a Turing machine in time bounded by an

iterated exponential (see section 5 for a more formal

definition).

We will often say in our arguments that a property

holds almost 4>uKZlij in a class C. By this we mean that the

proportion of structures in Cn having the property
approaches 1 as n increases to ®. The natural logarithm of

n is denoted In n and logarithm base 2 is denoted lg n. If

X is a random variable, E(X) denotes its expected value,
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<y(X) its standard deviation, and {Xlr} the set {x: X(x) 1 r}

({X < r} is defined similarly). We denote the falling

factorial n(n-l). ..(n-i+1) by (n)^.

1. Proof of Theorem 1.

We produce a first-order sentence t such that

does not converge for the class C of structures <n,£,R>.

First specify a formula "V(x,y»z) that says that in

<n,£,R>, R restricted to interval [y,z) co<U& <vUtlmeXic on

the interval I « [0,x). More specifically, ¥ says that

0 < x < y < z and [y,z) can be partitioned into intervals

Ij = [y,w) and I2 = tw,z) such that the following hold.
(a) R n (1^1 ) is an order preserving bijection (call it f

in this discussion) from I2 to I ;
(b) R ^ (I2xi0) is a function nQ and

R ^ (I2XI1) is a function such that (nQ(t), f(n2(t)))
enumerates I0*I0 in lexicographic order as t ranges
over I2. To say this with a first-order formula is
straightforward. We say that tel2 coduu the pair

(«Q(t), f(n1(t)))e I0*I0.
(c) R n (IQ x i2) is the inverse of a partial function add

from I2 to IQ. If tel2 codes (u,0)eIoxio, then
add(t) = u; if tel2 codes (u,v)eIQxlo and add(t) < x-1,
then add(t+l) = add(t)+l (by (b) t+1 codes (u,v+l));

otherwise add(t) is undefined. Thus, when tel2 codes
(u,v)el <1 and u+v < x, odd(t) = u+v.

o o

(d) R n (I1xl2) is the inverse of a partial function mul
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from I2 to Ij. Use an inductive definition similar to
the one in (c) to say that if tel, codes (u,v)slrtxlit o o

and u * v < x» then f(mui(t)) = u*v.

Note that whenever ¥(k,l,m) holds with k,l,m e n,

llQl = 11iI = k and 1121 = k2. Hence, m = 1+k+k2 . Also,
¥(k,l,m) specifies membership or lack of membership in R for

3 2
4k +k pairs, so

3 2

iin<y(k,l. 1+k+k2 )) - 2~4k "k
2

when k £ 1 < n-k-k . Given n, choose k=k(n) such that

24k3+k*< n/ln n < n In n £ 24(k+l>3+<k+l)2
For this definition to make sense we must assume that there

4k3 +k2is no value of the form 2 between n/ln n and n In n.

This assumption is true for infinitely many n and we

restrict our attention to such n.

2
Let p=k+k . For 0 £ i < (n-k)/p , the probabilities

. 3_. 2
nn(-^(k,k+ip,k + (i+l)p)) = 1-2 4K K

are independent so

Mn(Vy,z^(k,y,z)) L (n-k)/p
, 3 , 2

£ exp(-2 K (n-k)/p)

-4k3-k2But 2 < in n/n so this approaches 0 as n increases.

Thus, nn(3y,z (k,y,z)) converges to l.
Suppose that m i k+l. Then
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-A 3- 2
l^Oy.zfOu.y.z)) i n2 m m

since there are fewer than n intervals that can code

arithmetic on [0,m). Thus,

3 2

ii (3x>k3y,z ^(x,y,z)) i n £ 2 4m mn
m>k

^ n 2-4(k+l)3-(k+l)2 £ 2-l
ii.o

i 2/In n

We have established that k(n) is almost surely the

largest x such that some interval [y,z) codes arithmetic on

[0,x) (when k(n) is defined). Mote that as n increases k(n)

assumes ail large values. Let ^ be a sentence that asserts

the largest x such that some interval [y,z) codes arithmetic

on [0,x) is even. When k is even Mn('^) approaches l; when
k is odd, ^('f) approaches 0. ,

Remark. The construction in this proof is more elaborate

than required to establish nonconvergence. By coding

arithmetic we provide the means to specify ¥ so that nn(^)
behaves very erratically. In fact, no reasonable definition

of asymptotic probability will be defined for all first-

order f.
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2. Proof of Theorem 2.

We first prove a lemma.

Lemma 2.1. Let Cn be the set of structures <n,f> where f is
a unary function on n. Define random variables

Xjn = I{xen: If_1(x)I = j}| on <Cn,nn). If
m = m(n) = 0(ln n/ln In n) then

Mjn = E(xjn) = n/(e3!) + od)

Djn = ®(Xjn ) = (n/ej!))1/2 + o(l)

uniformly for j i m, and

lim n ( Pi (Xjn 1 Mjn-Djn In n)> - 1n+» jim J J J

Proof . Our proof follows Kolchin, Sevast'yanov, and

Chistyakov [15] but requires a more careful analysis since

theirs is for m constant. By 11.1(3) and 11.1(5) of [15]

„ i\n-j
E<Xjn' " IT1 nn 1 n

2 2i (n-2)n ^
E(X. z) = E(X - ) + ^ n(n-l)jn jn 2 n

Write (n)^j = n1-1 l (l-l/n) (1-2/n) . .. (l-( ij-1)/n) and
- n11-'*'-' (l-i/n)11-"*"^ . Use the estimate

1-r/n = exp(ln(1-r/n)) = exp(-r/n-r2/(2n2)+0(r3/n3))

to show
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E(xjn ) = n exp(-l-(j2 -3j+1)/(2n)+0(j3/n2))/j!
E(X2 = n2 exp(-2-(j2 -3j+l)/n+0(j3/n2))/j!2

E(Xj2) = E(Xjn> +n(n-1)exp(-2-(2j2-5j +2)/n+0(j3/n2))/j!2
Thus,

E(Xjn) = ))(l-(j2-3j+l)/(2n)+0(j4/n2))
which establishes the first part of the lemma. Also,

E(Xjn)2 = (n/(ej!))2(l-(j2-3j+l)/n+0(j4/n2))
E(Xjn) = E(Xjn)+(n(n_1)/(e;j! ))2(1"(2j2-53+2)/n+0(j4/n2 ))

Therefore,

<r(Xjn) = (E(Xjn2)-E(Xjn)2)1/2 = (n/ (e j ! ) )1/2 (1-( j 2-2 j+2 ) / (e j ! ) )

uniformly for j£m. This establishes the second part of the

lemma.

Equations II.2(13)-(14) of [15] show that

« (X -k) - <n> BJ f (eZ-z"'/i| )""k a
n (k' 2„i(j!)Knn J _n-kj

where the integral is taken around a circle with center at

the origin. Fortunately, we do not need to find an

asymptotic expression for the integral to complete the

theorem; a crude estimate will do. Observe that the Taylor

expansion of e^-z-^/j! has only non-negative coefficients so

12



for IzI =1, |ez-z^/j!| £ e-l/j!. Using this bound for the

integrand, we have

nn(Xin = k) i aIfix (J?)(l/(ej!))k <l-l/(ej! ))n_kJ 2nn K

and consequently

(x. < M. -D,n In n) L n1/2 H (")(1/(ej!))k(1-1/(ej!))n"kjn jn jn k<M-D In n K

where M = n/(ej!), D2 = n(1/(ej!))(1-1/(ej!)). The problem

thereby reduces to an estimate for a Bernoulli trial

distribution. We use Bernstein's inequality (see Renyi [21,

p. 387]). If p = l/(ejl), q = 1-p, then

lL <£)Pk qn~k i. exp( ^ r)
k i M-eD K 2(1+e /(2D))

for 8 > 0. Now for large n and j ( m = o(ln n/ln In n),

ej! £ n1^2 so D n1^2/2. Put e=ln n to obtain

n_(X. < M. -d. ) £ n1/2 exp(- — ).n jn 3n 2(n1/2+ln n)2

We have, taking the union over j < m that

Urn , ( U ( Xjn < -Dj in n)) - 0n-+® 3 <m J J J

This establishes the third part of the lemma. H

We proceed with the proof Theorem 2. Consider a

structure <n,F> where F is a binary function on n. Let
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f(x) = F(x,x) and X^n = I{xen: |f-1(x)l = jjl. By the
lemma, Xjft 1 Mjn~Djn In n almost surely for all
j ( i = o(ln n/ln In n). Define A = {xen: lf-1(x)l = 0} and

binary relation

R = {(x,y): F(x,y)eA}. By definition R is irreflexive, but

for pairs (x,y) with x £ y, the probabilities that (x,y)eR

are independent and equal to X = |A|/n. By the lemma and
1/2

Chebyshev's inequality lx-1/el <L In n/n almost surely.

We may regard R as a random directed graph on n such that

the edge probability for each pair of points is between

XQ = 1/e - In n/n1^2 and = l/e + In n/n1^2.
Let sx = f 1(x) . The sets S , xen, partition n and the

number of partition classes S with Isl = j i m is almost

surely greater than M^n - Djn In n. Furthermore, the
partition {Sx: xen} and binary relation R are independent.

Say that a partition class S cadea (VuXhmeXlc on IQ e S
if the following hold.

(a) There is a unique peS such that p has no directed edges

to any element of S. Let I be the set of elements in S

with a directed edge to p, I2 the subset of I
consisting of elements with no directed edge from any

element in I, I = I-Ij, I2 = S-I-tp).
(b) Rf I is an irreflexive linear order < (from this define

a reflexive linear order i.) .

(c) IQ, Ij^, and I2 satisfy conditions (a)-(d) in the
proof of Theorem 1 except that the function given by

R^(I1xl0) is not required to be order preserving (this

14



would not make sense because 11 has no order specified
on it) and functions jtq, jt^ are not required to order
pairs in I0XI0 lexicographically (for the same reason:

I2 has no order specified on it). However, we still
require that (jiQ(t) ,f (n 1 <t))) enumerates each pair in
I0xl0 precisely once as t ranges over I2 • We must
define add and mul without reference to an order on I2,
but this poses no problem.

(d) If jel2 and add(j) is not defined, then there is an

edge from j to the element of I2 that codes (0,0); if
mul(j) is not defined, then there is an edge from j to

the element of I2 coding (0,1). This condition
simplifies enumeration of edges in S.

(e) There are no edges in S other than those specified

above.

A careful enumeration shows that if llQ| = k, then
Is I = m = m(k) = (k + 1) and the number of directed edges in

S is i = i(k) = (9k +5k)/2. Moreover, any S satisfying

(a)-(e) has no automorphisms so the probability that a

particular S of cardinality m satisfies (a)-(e) is

m! (l-i) , where 1 = l(k) = m2-m.
Given n, choose k=k(n) such that

el(k)(e/(e-l))1(k)_l(k) i n/ln n < n In n

^ ei(k+l)^e/r^e_1jjl(k+i)-i(k+l)

As in the proof of Theorem 1, k(n) may be undefined for some

values of n, but it is defined for infinitely many n,and k
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assumes all large values as n increases. Notice that

k(n) = 0((ln n)1''4), from which it follows that

x -i(k) (1_x )-l(k)+i(k)^ei(k)(e/e_1)l(k)-i(k)

for XQ ix i kj. Thus, by further restricting the values of
n for which k(n) is defined, we may assume

(1-Xj)+i(k) ^ n/in n < n In n
< ^ -i(k+l) ^_^-l(k+l)+i(k+l)

Again, k(n) will assume all large values as n increases.

The probability that no partition class S of

cardinality m = m(k) codes arithmetic on an interval of size

k is bounded above by

• , . M -D_„ In n
/1 mi^/1 ^ \1 mn mn(l-m!Xj(l-Xj) )

since there are almost surely at least

In n partition classes of cardinality m. But

lnn~n/(em!) and A.* (1-A,.,)1-1 > In n/n so themn mn 1 l

expression above approaches 0 as n increases. We have shown

that there is almost surely a partition class that codes

arithmetic on an interval of length k.

We now show that there is almost surely not a partition

class that codes arithmetic on an interval of length greater

than k. If there were such a partition class it would have

size at least n=m(k+l). Let us estimate

I {xen: II m(k+l)} I = n-l {xen: |Sxl < m(k+l)} I . Since
m(k+l) = 0((ln n)1^2), we know by Lemma 2.1 that
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lim (i < O (X4„ 1 M4.-D4. In nil - 1
n— n j<m(k+i) 3,1 3" :n

so almost surely

I {xen: Is I < m(k+l)} I - Y X.
x

j<m(k+l) -,n
< Y (M . -D. In n)

j<m(k+l) 3n 3n

■ + 0(<n ln n,1/2)

Subtract this from n = (n/e) Y to obtain
310

I{xsn:|S | i m(k+l)}| = (n/e) Y l/jl+0((n ln n)1'2
jlm(k+l)

The sum in this expression is bounded above by 2/m(k+l)l.

The probability that a particular partition class Sx of
cardinality at least m(k+l) codes arithmetic on an interval

is at most m(k+l) Uol(k+1) ( 1(k+1)~1(k+1) . We chose k
in a way that insures this quantity is at most

m(k+l)!/(n ln n). Therefore, the probability that there is

a partition class Sx that codes arithmetic with
ISxI 1 m(k+l) is at most 2/ln n + 0(m(k+l)!/(n In n)1^2).
This probability approaches 0 as n increases. We conclude

that there is almost surely not a partition class that codes

arithmetic on an interval of cardinality greater than k.

Now if we can almost surely compare sizes of intervals

with arithmetic coded on them with a first-order formula, we
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can specify a first-order sentence V that says the largest

interval with arithmetic coded on it will have even length .

When k is even i»n(^) approaches 1; when k is odd
approaches 0.

Let S and S' be partition classes coding arithmetic on

IQ and Iq respectively. A partition class T compcuwA S and
S' if ITI = max(ll0l ,il£l) , and Rn(Txl0> and
R^(T*I1) are one-to-one functions from T onto initial
segments of IQ and IQ'» Let r = max (|S|,|S'I). We may
assume that II I,1x^1 i k so the probability that a
particular T of cardinality r compares S and S' is

r.VrU-X ,ISMS'l-2 r ,, r|2l2k(1.l)2k2-2k
1 rl^fd-Xj)2*2-215

Note that 2k < i(k)/2 and 2k2-2k < (l(k)-i(k))/2 for large

n, so the probability that T compares S and S' is more than

r!2i1l(k)/2(l-X1)(1(k)~1(k^)/2 l r!2 (In n/n)1'2
according to our choice of k. But almost surely there are

at least Mrn - Drn In n = n/(er!)+o(l) partition classes T
with ITI = r. The probability that none of them compare S

and S' is less than

(l-r12(In n/n)1/2)n/(er"+0(1)iexp(-<n In n)1/2>

There are certainly fewer than n partition classes that code

arithmetic so the number of comparisons needed between these

18



classes is less than (^). But
so almost surely every pair of

arithmetic is comparable.

lim (0)exp(-(n In n) ) = 0
n^®
partition classes coding

•4
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3. Proof of Theorem 3.

We first present three lemmas.

Lemma 3.1. Let i,j < n, i+j 1 n. Suppose that X, Y£ n.

IxI =i, IYI = j, X and Y are chosen randomly, and p is the

probability that X ^ Y = . Then

exp(" n-i-j+l) 1 p 1 exp (- ).

Proof. Suppose X^ n has been chosen. There are (")
subsets Y Q. n. Of this number ^T1) are subsets of n-X

Thus, the probability that X and Y are disjoint is

(nTi)/(^) = (n-i)j/(n)j .

= FT
oik<j n"k

n a-r-r.
1

n-k
Oik<j

Use the inequalities exp(-t/(l-t)) 1 l-t 1 exp(-t) to show

exp(- Z i P i exp(- Z ~r )
Oik<j n 1 K oik<j n K

Bound the leftmost expression from below by replacing every

term in the sum with the last term. Bound the rightmost

expression from above by replacing every term in the sum by

the first term. The resulting inequality is the desired

conclusion. ^
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Lemma 3.2.(Goncharov[i2]). Let C be the set of structures
n

<n,F>, where F is a permutation on n. Define random

variables X. on (C^»n„) equal to the number of F-cycles of
jn n n ^ **

size at most j. Then

E(Xjn) ~ ln 3

ff(Xjn) ~ (ln j)1/2
uniformly for j i n. Hence, if j=nr, 0£r£ 1, then

E(Xjn) ~ r In n and ^xjn) ~ n)1^2.
The proof of this lemma may be found in Gonchorov [12]

or Shepp and Lloyd [23] . We will need a similar lemma for

unary functions. If F is a unary function on n, we say

x,y e n are in the same F-compamni if there exist k and 1

such that F^tx) = F^(j).

Lemma 3.3. Let C be the set of structures <n,F>, where F
n

is a unary function on n. Define random variables X. on
jn

<Cn,nn) equal to the number of F-components of size at most
j £ n. Then

E(Xjn) ~ (ln j)/z

CT(Xjn> ~ (ln j)1/2/2
uniformly for j £ n. Hence, if j = nr, 0£r£l, then

E(Xjn> ~ (r In n)/2, ~ <r In n)1^2 /2.
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Kruskal [16] was the first to determine E(X ), the
nn

expected number of components. Lemma 3.3 is not proved

explicitly in the literature, but it is not difficult to

obtain expressions for E<Xjn> and o(Xjn> by the kind of
argument Riordan [23] uses to obtain an expression for

E(Xnn>, then approximate the sums occurring in these
expressions.

We proceed with the proof of Theorem 3. Let Cn be the
set of structures <n,F,G> where F and G are both

permutations on n. Our proof is easily modified for the

cases where one or both of F and G are unary functions; the

changes involve reference to components rather than cycles,

use of Lemma 3.3 rather than Lemma 3.2, and slight

modifications in the construction that follows.

Fix <n,F,G>. Define X c n to be a matching if every

pair of distinct elements x,y e X belong to distinct F-

cycles and distinct G-cycles. We associate with <n,F,G> a

bipartite graph T that has as vertices the F-cycles and G-

cycles on <n,F,G>, with edges connecting precisely those

cycles with nonempty intersection. Thus, an element in the

intersection of an F-cycle and G-cycle represents an edge,

and a matching X£ n represents a matching in P(i.e., a set

of edges such that no two have a vertex in cgmmon).

We first show that there is a monadic second-order

sentence YtX) true precisely when X is a maximum matching

(i.e., a matching of maximal cardinality). Then we show
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that for 8>0, the cardinality m of a maximum matching is

almost surely between (1/2-8)In n and (l+e)ln n. Next we

show that quantification over binary relations on a maximum

matching is almost surely interpretable in monadic second-

order logic (using parameters). Hence, we can almost surely

say, for a given maximum matching X, that there is a linear

order £ on X and functions n and n, on X such thato 1

(« (x) ,jt1(x) ) enumerates the first m pairs of X x X in
lexicographic order as x ranges over X. Now it is an easy

matter to define addition, multiplication, and

exponentiation on the initial interval of X of length
1/2

3 = m .We know j is almost surely between

j = ((1/2-s)In n)1/2 and = ((l+e )ln n)1/2 . But

since we have exponentiation we can write a monadic second-

order sentence f saying k = lg j is even . By taking
small e and suitable n we can insure that In j„ = In j, .o J l

For such n, the value of k is the same in almost all

structures of Cn, so we regard k = k(n) as a function of n.
As in previous theorems, k assumes all large values as n

increases. Thus, nn(f) does not converge.
The formula "f(X) says that X is a matching and there is

no augmenting path for X. An augmje.nttng path for a matching

in r is a path between two vertices such that every other

edge on the path belongs to the matching, but such that the

two end vertices are not incident with any edge in the

matching. A well-known theorem, first used by Berge [1] and

Norman and Rabin [19] as the basis for an algorithm to find
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maximum matchings, states that a matching is maximum if and

only if it has no augmenting paths. Remember that we

represent an edge in T by an element in the intersection of

an F-cycle and G-cycle. Therefore, it is not difficult to

write a monadic second-order formula that says that Y £ n

represents a path in T1 and that Y is an augmenting path for

a matching X.

Let S be a collection of F-cycles and T a collection of

G-cycles. We say S and T InteAAect completely whenever every

F-cycle in S intersects every G-cycle in T. Observe that if

S and T intersect completely, there is a matching (actually,

several) between S and T of size min(ISl,|T|) this matching

may be regarded as an embedding of the smaller of S and T

into the larger.

Define to be the set of F-cycles of length at least

n^ for 0£p£l, and similarly for G-cyples.

We claim that if 0 < p,q < 1 and p+q > 1, then and

T^ intersect completely. First observe that by Lemma 3.2,

|sP|< iT^I 1 (1-e) In n almost surely. By Lemma 3.1, the

probability that a particular F-cycle in is disjoint from

a particular G-cycle in is at most exp(-n^+<^-1) . The

probability that and T^ do not intersect completely is

less than ((l+e)ln n ) 2exp(-n^+^-1) , which approaches 0 as n

increases.

Setting p = q = 1/2+6, e>0, we have that a maximum

matching has size greater than (l/2-e)ln n, almost surely
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(this bound could be improved to (1 - 8)In n with a little

more work, but this is not necessary for our purposes).

Since the number of F-cycles (or G-cycles) is almost surely

less than (l+e)ln n, this gives an upper bound on the size

of a maximum matching.

It remains to show that quantification over binary

relations on a maximum matching X is almost surely

interpretable in monadic second-order logic. We show that X

can almost surely be partitioned into sets X^, 0£il3, such
2/3

that there are one-to-one functions f^:X£»S and
2/3

9i:Xi*T which are definable by monadic second-order
2/3 2/3

formulas (with parameters). We know that S and T

intersect completely, so f^(X^) and gj(Xj) intersect
completely. Every subset of X^ x Xj corresponds to a subset
of f^(X^) x gj(Xj) which, in turn, can be represented by a
subset Yij ~ n* Thus, a binary relation R c. x * X is
represented by a sequence of sets S=n, 0 i i,j i 3. We

can quantify over the sets Y^j and hence over the sets
R £ X x x.

Let

XQ = (x e X: x is an element of an F-cycle in S7^10}
Xj = (x s X-Xq: x is an element of an F-cycle in S4^10}
X2 = {x e X-XQ-X1: x is an element of a G-cycle in

t7/10}

X3 = (x e X-X -X2-X2: x is an element of a G-cycle in
t4/10}
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By Lemma 3.2, 1x^1 < 3/10 In n. By definition, the
sets X^, 0£i<3, are disjoint. We must show that their union
is X. To do this it is enough to show that every element of

X lies either on an F-cycle in S4^10 or on a G-cycle in

T4/10. We claim that, in fact, this is almost surely the

case for every element of n. We show that if 0 < p,q < 1

and p+q < 1, then almost surely every F-cycle of length less

than n^ and every G-cycle of length less than n^ are

disjoint. Lemma 3.1 tells us that the probability that a

particular F-cycle and particular G-cycle satisfying these

bounds are disjoint is greater than exp(-n^+<^/(n-n^-n^+1))
this quantity is greater than exp(-2n^+<^ 1) for large n.

Therefore, the probability that they intersect is less than

l-exp(-2nP+<3-1) <2n^+<^-1. Almost surely there are at most

((l+e)ln n)2 F-cycle - G-cycle pairs. But

2 ((l +6 ) In n)2n^+<^-1 approaches 0 as n increases.

Therefore, almost surely every F-cycle of length less than

n^ and G-cycle of length less than n^ are disjoint. Take

p=q=4/10 to establish the claim.

It remains to show that f.:X.-?S2/'3 and g. :X •-»T2/'3,11 3i l

0iU3, can be defined.

Each element of XQ lies on an F-cycle in s7^10£ S2^3.
Let fQ map each x e XQ to the F-cycle that contains it.
Thus,-f (X ) £ S2^3. But S2^3 and t2^3 intersect completely

2/3
so f0(XQ) and T intersect completely. Recall that
IX I <3/10 In n and lT2^3l<l/3 In n. Therefore, a matching

2/3
between f0(XQ) and T represents an embedding of f0(XQ)
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2/3
into T . Let gQ be the composition of fQ and this

2/3
embedding, so g^X^T is one-to-one.

This argument shows that if one of f^ or g^ has been
defined then the other can be defined.

Now elements of all lie on F-cycles in S4^10. But
A / 1 ft 0 / 3

S and T intersect completely, so there is a matching

between the set of F-cycles containing elements in and
2/3

T . This matching represents a one-to-one function
2/3

g^X^T . Once g1 has been defined, f1 may be defined.
We define f^, g2, f3, g3 in the same way as fQ, gQ, fj,

by interchanging the roles of F-cycles and G-cycles.

We quantify over relations R X * X by saying that

there exist sets X^, 0 i i i 3, and one-to-one functions
0 i i £ 3, represented by certain matchings as

described above, such that f^(X^) and gj(Xj) intersect
completely, 0 { i,j i 3. Quantification over relations

R ^ X * X is thereby reduced to quantification over subsets

of n.

The theorem follows now from earlier remarks.
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4. Proof of Theorem 4.

Theorem 4 follows from the proofs of Theorems 1, 2, and

3, and Lemma 4.1 below. We need some preliminary

definitions.

A first-order theory £ is faCuCt&Ly ■Crv&zpa.iahU. if there is

no recursive set that separates &>cU.(Z) , the set of first

order sentences true in some finite model of H, from -cm/,

the set of inconsistent first-order sentences for this

language. That is, there is no recursive set a such that

fsat(S) £ a and -Cnvn a = * . We will say that a class D of

finite structures is -(yinAXzLy znAzpcviablz. if it is the class of

models of a finitely inseparable theory, or, equivalently,

if the set of first-order sentences true in every structure

in D is finitely inseparable (the usual definition is for

theories only, but our results are easier to state for

classes of structures). Vaught [25], extending an earlier

result of Trachtenbrot [24] , showed that the class of all

finite structures for a language with a nonunary relation

symbol is finitely inseparable. It is easy to see that the

class of finite initial segments of arithmetic (which are

structures for the language with relation symbols

interpreted by the partial operations of successor,

addition, and multiplication) is finitely inseparable. This

can be shown directly or as a consequence of Vaught's

result.

Let D be a nonempty class of finite structures for a

language consisting of relation symbols with arities
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a(i), i<m. Let C be a class of structures for some language

L. We say that D is aJbno^x. auul&Lij <LtfyLnah4jt (for a specified

logic) in C if there are formulas 6(x.u),

(xx , ... ,xq^ j ,u) , i<m, in L (from the specified logic)
such that for each M e D

lim nn(3u(<6(x,u),p^(x,u)>^<m == M)) = 1
n 00

Here <6(x,u),p^(x,u)>^denotes the structure with
universe 6 = {x e n:5(x.u) is true} and relations

{x e n0^1^: p. (x,u) is true}, restricted to 6, interpreting ,

i<m.

The following theorem is proved implicitly in

Compton [5}.

Lemma 4.1. If a finitely inseparable class D is almost

surely definable in C, then every asymptotic problem for C

is undecidable.

Proof. Given a sentence *4* in the language for D, form p' by

relativizing quantifiers to 6(x,u)» replacing relation

symbols R^(x) by formulas p^(x,u), and existentially
quantifying the new free variables u (6(x.u) and p^(x,u) are
as in the definition of almost sure definability) . If

if is true in some finite model M e D then p(<f') = l because

M is almost surely isomorphic to some structure

<6(x,u),p^(x,u)>. If V is inconsistent then iiC-i") = 0.
Now every asymptotic problem for C (or its complement)

separates (£f':p(^') = 1} from = 0}. If an
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asymptotic problem for C were decidable, it could be used to

recursively separate the sentences true in D from the

inconsistent sentences.

Inspecting the proofs of Theorems 1, 2, and 3 we see

that in each case arbitrarily large finite initial segments

of arithmetic are almost surely definable (first-order

definable in Theorems 1 and 2, and monadic second-order

definable in Theorem 3). By adding a parameter and

restricting to the initial subinterval with the parameter as

greatest element, we see that every finite initial segment

of arithmetic is almost surely definable. By the lemma,

every asymptotic problem is undecidable. -\

30



5. Proof of Theorem 5.

The proof of Theorem 5 relies on an idea similar to the

one in the proof of Theorem 4. The difference is that

rather than showing almost sure definability of a finitely

inseparable class, we use a slightly different reduction to

a set of sentences with high computational complexity.

exp (n)
Define expQ(n)=n, expr+1(n)=2 r , and

expo(n)=expn(l)• Clearly, for c>0, exp^tcn) eventually
dominates each expr(n). A set is elementary recursive if,
for some r, it is recognized by an expr(n) time-bounded
Turing machine.

The following is a theorem from Compton and Henson [6].

Lemma 5.1. Let be the set of first-order sentences

in the language of trees (i.e., containing just a binary

relation symbol interpreting the parent-child relation) true

in some finite tree of height at most h. Let -cnu be the set

of inconsistent sentences in this language. If h 1 3, there

is a c>0 such that no set in NTIME(exp^_2(cn)) contains
and is disjoint from Inv.

Let C be the set of structures <n,F>, where F is a
n

unary function on n. For a given h let 5^(x,u) be a formula
that says F1(x) = u for some non-negative ilh. Let p(x,y,u)

be the formula (F(y) = x a x £ u). Clearly

<6^(x,u),p(x,y,u)> is a tree of height at most h for each
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u s n (we regard p(x,y,u) restricted to tx e n:6(x,u)} as

relating parent-child pair (x,y)). Theorem 4.4 of Lynch

[18] implies that for every finite tree M

lim nn(3u[<8n(x,u), p(x,y,u)>^M])=1.
n-*®

Now given a sentence V of length n in the language of

trees, form f by relativizing quantifiers Vx and 3x to

5^(x,u), replacing P(x,y) (the parent-child relation symbol
applied to x and y) with p(x,y,u), and existentially

quantifying the new free variable u. Obviously,

If I = 0(|f|) and the mapping that takes f to f is linear

time computable. If V is true in a finite tree M of height

h then p(f) = l because M is almost surely isomorphic to

some tree <8^(x,u),p(x,y,u)>. If V is inconsistent then
p(f) =0. Now if for every c>0 there was a set in

NTIME(exp^_2(cn)) containing (f:p(f)=l) and disjoint from
W:p(f)=0}, we would violate Lemma 5.1. Thus, no

asymptotic problem for C is elementary recursive. In fact,

using techniques from Compton and Henson [6] it is possible

to show that there is a c>0 such that no set in

NTlME(expoo(cn)) contains {f':p(V')=l} and is disjoint from

(f :p(f)=0} . -\
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6. Conclusion.

The techniques we have introduced here play the same

role for asymptotic combinatorics as classical

undecidability methods play for algebraic theories. We

demonstrate nonconvergence, undecidability, and

intractability by showing almost sure definability of

certain simple classes. We note that although

nonconvergence and undecidability of asymptotic problems are

closely related, they are not coincident. Compton [5] shows

that one may have convergence but undecidable asymptotic

proolems. The cases considered here lie close to the

convergent-nonconvergent and decidable-undecidable

borderlines. Other borderline cases (such as structures

consisting of a pair of equivalence relations, or unary

function plus linear order, or binary relation plus unary

function, etc.) can very likely be resolved by these

methods.
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