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Abstract

A practical database design methodology is defined for
the design of large relational databases. First, the data
requirements are conceptualized using an extended entity-
relationship model, with the extensions being additional
semantics such as ternary relationships, optional
relationships, and the generalization abstraction. The ex¬
tended entity-relationship model is then decomposed accord¬
ing to a set of basic entity-relationship constructs, and
these are transformed into candidate relations. A set of
basic transformations have been developed for the three
types of relations: entity relations, extended entity rela¬
tions, and relationship relations. Candidate relations are
further analyzed and modified to attain the highest degree
of normalization desired. Using the processing information
additional refinements are made to the relations only if
resulting efficiency can be justified. Tradeoffs between
the degree of normalization and processing efficiency are
analyzed before the final relation definitions are
specified.

By capturing both the natural and usage relationships
among data elements, this methodology produces designs that
are not only accurate representations of reality, but are
efficient and flexible to accommodate future processing re¬
quirements. The methodology also reduces the number of data
dependencies that must be analyzed, using the extended ER
model conceptualization, and maintains data integrity
through normalization. This approach can be implemented
manually or in a simple software package so long as a "good"
solution is acceptable and absolute optimality is not re¬
quired.

Categories and Subject Descriptors: H.2.1 [Database Manage¬
ment]: Logical Design - data models

General Terms: Databases, Design, Performance

Additional Key Words and Phrases: Relational databases,
logical design, entity-relationship model, integrity, ef¬
ficiency

2



3

INTRODUCTION

Relational database design has traditionally been a low

level, bottom-up activity dealing with data elements. It

has been defined as the process of analyzing inter data ele¬

ment dependencies obtained in the requirements analysis, and

synthesizing these data elements into normalized relations

based upon these known dependencies [Codd 1970,1974; Martin

1982; Date 1984, Smith 1985]. While the traditional process

is vital to the design of relational databases, its com¬

plexity, particularly in large databases, can be overwhelm¬

ing to the point where practical designers often do not

bother to master it or even to use it (if understood) with

any regularity. The complexity of these procedures can be

dramatically reduced if the intermediate step of conceptual

design is introduced and the well "known tools of entity-

relationship modeling are employed.

The entity-relationship (ER) model has been most suc¬

cessful as a tool for communication between the designer and

the end-user during the requirements analysis and conceptual

design phases because of its ease of understanding and its

power in representation [Chen 1976], One of the reasons for

its effectiveness is that it is a top-down approach using a

high level of abstraction. The number of entities (i.e.

those objects that we want to collect information about) in

a database is typically an order of magnitude less than the

number of data elements. Therefore using entities as an

abstraction for data elements and focusing on the inter en-

3
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tity relationships greatly reduces the number of objects

under consideration and simplifies the analysis. While it

is still necessary to represent data elements by attributes

of entities at the conceptual level, their dependencies are

normally confined to the other attributes within the entity

or in some cases to those attributes associated with other

entities that have a direct relationship to their entity.

The major inter attribute dependency is between the en¬

tity keys of different entities which is captured in the ER

modeling process. Special cases such as dependencies among

data elements of unrelated entities can be analyzed upon

identification in the data analysis.

This relational database design approach uses both the

ER model and the relational model in successive stages. It

benefits from the simplicity and ease of use of the entity

relationship model and the structure (and associated for¬

malism) of the relational model. In order to accomplish

this approach it is necessary to build a framework for

transforming the variety of ER constructs into relations

that can be easily normalized. Before we do this, however,

we first define the major steps of the relational design

methodology.

The relational design methodology is both a refinement

of and an extension to the design methodology proposed in

[Teorey and Fry 1982]. The basic steps of this methodology,

as shown in Fig. 1, are summarized as follows;

Step 1. Extented ER Modeling of Requirements
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The data requirements are analyzed and modeled using an

extended ER diagram which includes semantics for optional

relationships, ternary relationships and data generaliza¬

tion. Processing requirements are specified using natural

language expressions along with the frequency of occurrence.

Logical views from multiple sources are integrated into a

common global view of the entire database.

Step 2. Transformation of the Extended ER Model
to Relations

Based on a categorization of extended ER constructs and

a set of mapping rules, each relationship and its associated

entities is transformed into a set of candidate relations.

Redundant relations are eliminated.

Step 3. Normalization of Relations

Functional dependencies (FDs) are derived from the ex¬

tended ER diagram to represent the dependencies among data

elements which are keys of entities. Additional FDs and

multivalued dependencies (MVDs), that represent the depen¬

dencies among key and nonkey attributes within entities, are

derived from the requirements specification. Candidate

relations associated with all derived FDs and MVDs are then

normalized to the highest degree desired using standard

manual normalization techniques. Redundancies that occur in

normalized candidate relations are then analyzed further for

possible elimination, with the constraint that data in¬

tegrity must be preserved.
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Step 4. Refinement of Relations for Usage Efficiency

Additional refinements can be made to the normalized

relations to increase the overall database processing

(usage) efficiency. The basic technique is to add redundant

attributes to existing relations to reduce the number of

join operations required during the execution of an applica¬

tion. Because the added attributes could lower the degree

of normalization of a relation, additional analysis is re¬

quired to determine whether such denormalization is accepta¬

ble, given the potential increase in processing efficiency.

If it is acceptable, then both the refined and unrefined

relations are used as candidate relations for physical

design.

This methodology simplifies the approach to designing

large relational databases by reducing the number of data

dependencies that need to be analyzed. This is accomplished

by introducing a conceptual design step in the traditional

relational modeling which uses an extended ER model to cap¬

ture an accurate representation of reality. Data integrity

is preserved through normalization of the candidate rela¬

tions formed from the transformation of the extended ER

model. Processing efficiency is increased through refine¬

ment of these relations for usage. Design extendability is

achieved by maintaining the natural data relationships as

much as possible during usage refinement.

Next we discuss in detail the steps of the relational

database design methodology.
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1.0 ER MODELING AND EXTENDED CONSTRUCTS

The Entity-Relationship approach initially proposed by

Chen, although modified and extended by others, still

remains the premier model for conceptual design. It is used

to represent information in terms of entities, their at¬

tributes and associations among entity occurrences called

relationships.

Numerous extensions incorporating greater semantics in

the original ER model have been proposed by others [Smith

and Smith 1977;Scheuermann et al. 1980;Atzeni et

al. 1981;Navathe and Cheng 1983;Howe 1983;Lenzerini and San-

tucci 1983;Kent 1984]. Of particular note are extensions

for generalization and subset hierarchies, relationship

relations, existence dependencies, and conditional and un¬

conditional membership classes. Although these extensions

are attaining growing acceptance, their transformations to

the relational model have not yet been well-defined or are

just beginning to be defined for many real-world problems

[Jajodia and Ng 1983,1984; Kent 1984].

1.1 Original Classes of Obiects (ER Model)

Initially, Chen proposed three classes of objects; en¬

tities, attributes, and relationships (Fig. 2a). Entities

(actually entity sets) were the principal objects about

which information was to be collected usually denoting a

person, place, thing, or event of informational interest.

(We drop the set terminology for simplicity). Attributes

were used to detail the entities by giving them descriptive
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properties such as name, color, and weight. Finally,

relationships (actually relationship sets) represented real-

world associations among one or more entities.

There are two types of attributes: identifiers and

descriptors. The former is used to uniquely distinguish

among the occurrences of a entity and the latter is purely

descriptive of an entity occurrence. Entities can be dis¬

tinguished by the "strength" of their identifying at¬

tributes. Strong entities have internal identifiers that

uniquely determine the existence of entity occurrences.

Weak entities derive their existence from the identifying

attributes (sometimes called external attributes) of one or

more "parent" entities. Relationships have semantic meaning

which is indicated by the connectivity between entity occur¬

rences (one-to-one, one-to-many, and many-to-many) and the

participation in this connectivity by the member entities

(either conditional or unconditional). For example, the en¬

tity "person" may or may not have a spouse. Finally, each

of the entities may have one or more synonyms associated

with it. The diagrams for representing entities,

relationships, and attributes are shown in Fig. 2a.

1.2 Extended Classes of Objects (EER Model)

The introduction of abstraction into the ER model

resulted in two additional types of objects: subset hierar¬

chies and generalization hierarchies. The first type is a

subset hierarchy, which is diagrammed in Fig. 2b.

Subset Hierarchy Definition:
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An entity El is a subset of another entity E2 if every
occurrence of El is also an occurrence of E2.

A subset hierarchy is the case when every occurrence of

the generic entity may also be an occurrence of the other

entities which are potentially overlapping subsets. For ex¬

ample, the entity EMPLOYEE may include 'employees attending

college', 'employees which hold political office', or

'employees who are also shareholders' as specialized clas¬

sifications .

The second type of object is the generalization hierar¬

chy which is diagrammed in Fig. 2b.

Generalization Hierarchy Definition:
An entity E is generalization of the entities El, E2,
...,En if each occurrence of E is also an occurrence
of one and only one of the entities El,E2,...,En.

A generalization hierarchy occurs when an entity (which
we call the generic entity) is partitioned by different

values of a common atttribute. For example, the entity

EMPLOYEE is a generalization of, ENGINEER, SECRETARY, AND

TECHNICIAN. The generalization object (EMPLOYEE) is called

an "IS-A" exclusive hierarchy because each occurrence of the

entity EMPLOYEE is an occurrence of one and only one of the

entities ENGINEER, SECRETARY, TECHNICIAN.

1.3 Fundamental EER Constructs

The following classification of EER constructs is

defined to facilitate development of a concise and easy to

understand EER diagram.

(1) Degree of a relationship.

The degree of a relationship is the number of en-
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tities associated in the relationship. An n-ary

relationship is of degree n. Unary, binary, and ternary

relationships are special cases where the degree is 1, 2,

and 3 respectively. This is indicated in Fig. 3.

(2) Connectivity of a relationship.

The connectivity of a relationship specifies the

mapping of the associated entity occurrences in the

relationship. Values for connectivity are either "one" or

"many". The actual number associated with the term "many"

is called the cardinality of the connectivity. Cardinality

may be represented by upper and lower bounds. Fig. 3 shows

the basic constructs for connectivity: one-to-one (unary or

binary relationship), one-to-many (unary or binary

relationship), many-to-many (unary or binary relationship),

and one-to-many-to-many ternary relationship. The shaded

area in the unary or binary relationship diamond represents

the "many" side, while the unshaded area represents the

"one" side [Reiner et al. 1985]. We will use an n-sided

figure to represent n-ary relationships for n>2 in order to

explicitly show each entity associated in the relationship

to be either "one" or "many" related to the other entities.

(3) Membership class in a relationship.

Membership class (or optionality) specifies

whether the "one" side in a one-to-one or one-to-many

relationship is unconditional or conditional. If an occur¬

rence of the "one" side entity must always exist to maintain

the relationship, then it is unconditional. When an occur-
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rence of that entity need not exist, it is considered con¬

ditional. The "many" side of a relationship is always con¬

sidered to be conditional unless explicitly defined other¬

wise. The conditional membership class, defined by a "0" on

the connectivity line between an entity and a relationship,

is shown in Fig. 3.

(4) Existence dependency of an entity in a
relationship.

A strong entity is shown with a single-bordered

rectangle, while a weak entity is depicted with a double-

bordered rectangle (Fig. 4).

(5) Object class of entities and relationships.

The basic objects are the n-ary relationships

with their associated entities. Objects resulting from

abstraction are the generalization hierarchy and the subset

hierarchy (Fig. 4). The generalization hierarchy implies

that the subsets are a full partition, such that the subsets

are disjoint and their combination makes up the full set.

The subset hierarcy implies that the subsets are potentially

overlapping.
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2.0 EER MODELING OF REQUIREMENTS (STEP 1)

The objective of requirements analysis is many fold.

It delineates the data requirements of the enterprise; it

describes the information about the objects and their as¬

sociations needed to model these data requirements; and it

determines the types of transactions that are intended to be

executed on the database. We use the extended entity-

relationship (EER) model to describe these objects and their

interrelationships, and use natural language expressions to

describe transactions. A more detailed discussion of re¬

quirements analysis can be found in [Martin 1982; Teorey and

Fry 1982; Yao 1985].

2.1 Design Step 1 Details

-Step 1♦1 Identify entities and attributes.

While it is easy to define entity, attribute, and

relationship constructs (cf Sec. 1.1), it is not as easy to

distinguish their role in modeling the database. What makes

an object an entity, an attribute, or even a relationship?

For example, stores are located in cities. Should CITY be

an entity or an attribute? Registration records are kept

for each student. Is REGISTRATION-RECORD an entity or a

relationship? What is a "normalized" entity?

The following guidelines for identifying entities and

attributes will help the designer converge to a normalized

relational database design.

(1) Entities have descriptive information, identifying at-
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tributes do riot. If there is descriptive information

about an object, the object should be identified as an

entity. If only an identifier is needed for an object,

the object should be identified as an attribute. For

example, in the above store and city example, if there

is some descriptive information such as STATE and

POPULATION for cities, then CITY should be identified as

an entity. If only CITY-NAME is needed to identify a

city, then CITY should be identified as an attribute.

(2) Multivalued attributes should be specified as entities.

If more than one value of a descriptor corresponds to

one value of identifier, this descriptor should be iden¬

tified as an entity instead of an attribute, even though

it does not have descriptors for itself. For example,

in the above store and city example, if one store (a

chain) could locate in several cities, then CITY should

be identified as an entity even it only needs an iden¬

tifier CITY-NAME.

(3) Make an attribute which has a many-to-one relationship

with another entity an entity. If a descriptor in one

entity has a many-to-one relationship with another en¬

tity, the descriptor should be identified as an entity,

even if it does not have its own descriptors. For ex¬

ample, if two entities have been identified: STORE (with

identifier STORE-NUMBER, descriptors OWNER and CITY) and

STATE. Because there is a many-to-one relationship be¬

tween CITY and STATE, CITY should be identified as an
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entity.

(4) Attach attributes to entities vhich they describe most

directly. For example, attribute OFFICE-BUILDING should

be an attribute of the entity DEPARTMENT instead of in

entity EMPLOYEE.

(5) Avoid composite identifiers as much as possible. If an

entity has been defined -with a composite identifier,

i.e. an identifier composed of two or more attributes,

and the components of the identifier are all identifiers

of other entities, then eliminate this entity. The cor¬

responding object could be defined as a relationship in

a subsequent step. If an entity has been defined with a

composite identifier, but components of the identifier

are not identifiers of other entities, then there are

two possible solutions. One is 'to eliminate this entity

and define new entities with components of the composite

identifier as entity identifiers, and in a subsequent

step define a relationship to represent this ob¬

ject. Another solution is to keep the entity with the

composite identifier if it is reasonably natural.

As an example, if an entity REGISTRATION-RECORD has

been defined, with STUDENT and COURSE as a composite

identifier, then the entity REGISTRATION-RECORD could be

eliminated, and two new entities STUDENT and COURSE

could be defined; later in a subsequent step, a

relationship between STUDENT and COURSE could be defined

to represent the object REGISTRATION-RECORD. In another
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example, if an entity VOLLEYBALL-TEAM has been defined,

with COUNTRY and GENDER as a composite identifier, then

it seems suitable to keep this entity, because defining

an entity GENDER is not very natural.

The procedure of identifying entities and attaching at¬

tributes to entities is iterative: identifying some objects

as entities, attaching identifiers and descriptors to them,

then finding some violation to the above guidelines, chang¬

ing some objects from entity to attribute, or from attribute

to entity, then attaching attributes to the new entities,

etc.

Step 1.2 Identify any generalization hierarchies
and subset hierarchies.

If there is a generalization or subset hierarchy among

entities, then reattach attributes to the relevant en¬

tities. Put identifier and generic descriptors in the

generic entity, and put identifier and specific descriptors

in the subset entities.

For example, suppose the following entities were iden¬

tified in the EER model: EMPLOYEE (with identifier EMP-NO

and descriptors EMP-NAME, HOME-ADDRESS, DATE-OF-BIRTH, JOB-

TITLE, SALARY, SKILL), ENGINEER (with identifier EMP-NO and

descriptors EMP-NAME, HOME-ADDRESS, SPECIALTY), SECRETARY

(with identifier EMP-NO and descriptors EMP-NAME, DATE-OF-

BIRTH, SALARY, SPEED-OF-TYPING), TECHNICIAN (with identifier

EMP-NO and descriptors EMP-NAME, SKILL, YEARS-OF-

EXPERIENCE). We identify that EMPLOYEE is generalization of
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ENGINEER,SECRETARY and TECHNICIAN. Then we reattach at¬

tributes to the entities. We put identifier EMP-NO and

generic descriptors EMP-NAME, HOME-ADDRESS, DATE-OF-BIRTH,

JOB-TITLE,- and SALARY in the generic entity EMPLOYEE; put

identifier EMP-NO and specific descriptor SPECIALITY in en¬

tity ENGINEER; put identifier EMP-NO and specific descrip¬

tor SPEED-OF-TYPING in entity SECRETARY; put identifier EMP-

NO and specific descriptors SKILL, YEARS-OF-EXPERIENCE in

entity TECHNICIAN.

Step 1♦3 Define relationships.

We now deal with objects which were not identified as

entities or attributes, but represent associations among ob¬

jects. We define them as relationships. For every

relationship the following should be specified; degree, con¬

nectivity, membership class, existence dependency, and at¬

tributes .

The following are some guidelines for defining

relationships.

(1) Redundant relationships should be eliminated. Two or

more relationships that are used to represent the same

concept are considered to be redundant. Redundant

relationships are more likely to result in unnormalized

relations when transforming the EER model into

relational schemas. Note that two or more relationships

are allowed between the same two entities as long as the

two relationships have different meanings. They are not
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considered redundant.

One important case of redundancy is transitive depend¬

ency (see Fig. 5). If REL1 is a many-to-one relationship

between ENTITY1 and ENTITY2, REL2 is a many-to-one

relationship between ENTITY2 and ENTITY3, REL3 is a

many-to-one relationship between ENTITY1 and ENTITY3,

and both REL1 and REL2 are unconditional, then REL3 is

redundant and should be eliminated.

(2) Ternary relationships must be defined carefully. We

define a ternary relationship among three entities only

when the concept (association) cannot be represented by

several binary relationships among those entities. For

example, there is an association among entities TEACHER,

STUDENT, and PROJECT. The meaning of the association is

that the student does a project under the instruction of

teacher(s). If each student can only be involved in one

project, but can work under the instruction of several

teachers, and one teacher can instruct many students,

then two binary relationships could be defined instead

of one ternary relationship (Fig. 6a). If, however, each

student can be involved in several projects and work

under the instruction of several teachers, but if for

every project the student works under the instruction of

exactly one teacher, and if a teacher can instruct

several students in doing their projects, then one ter¬

nary relationship could be defined (Fig. 6b).

The meaning of connectivity for ternary relationships
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is important. Fig. 7 shows that for a given pair of oc¬

currences of ENTITY2 and ENTITY3, there is only one cor¬

responding occurrence of ENTITY1; however, for a given

pair of occurrences of ENTITY1 and ENTITY2, there could

be many corresponding occurrences of ENTITY3.

Step 1.4 Integrate multiple views of entities, attributes,
and relationships.

Typically when more that one person is involved in re¬

quirements analysis, multiple views occur. These views must

eventually be consolidated into a single global view to

eliminate redundancy and inconsistency from the model. View

integration requires further use of the extended ER semantic

tools of identity (identifying synonyms), aggregation, and

generalization. A more detailed discussion of view integra¬

tion tools can be found in [Teorey and Fry 1982; Yao 1-985].

2.2 An Example Database: Company Personnel and Projects

We define a simple database design problem to il¬

lustrate the major steps in this relational database design

methodology. Let us suppose it is desirable to build a

company-wide database for a large engineering firm that

keeps track of all personnel, their skills and projects as¬

signed, departments worked in, and personal computers allo¬

cated. Each employee is given a job title (engineer, tech¬

nician, secretary, manager). Engineers and technicians work

on an average of two projects at one time, and each project

could be headquartered at a different location (city). We
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assume that analysis of the detailed requirements for data

relationships in this company results in the global view EER

diagram in Fig. 8, which becomes the focal point for

developing the normalized relations. Each relationship in

Fig. 8 is based upon a verifiable assertion about the actual

data in the company, such as those illustrated in Figs. 9-

13. Analysis of those assertions leads to the transforma¬

tion of EER constructs into candidate relations. Attributes

are not included in Figures 8-13 for simplicity, but are

defined later in this example.

As an example of view integration, the generalization

of EMPLOYEE over JOB-TITLE could represent the consolidation

of two views of the database, one based on EMPLOYEE as the

basic unit of personnel, and another based on the clas¬

sification of employees by job titles and special

relationships with those classifications such as the alloca¬

tion personal computers (PCs) to engineers.
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3.0 TRANSFORMATION OF THE EER MODEL TO RELATIONS (STEP 2)

3.1 Transformation Rules

Let us now look at each EER construct in more detail to

see how each transformation rule is defined and applied.

Our example is drawn from the company personnel and project

database EER schema illustrated in Fig. 8. All types of EER

constructs we must transform to relations are shown at least

once in the figure.

We note that the basic transformations result in three

types of relations [McGee 1974; Sakai 1983; Martin 1983;

Hawryszkiewycz 1984];

(1) entity relation with the same information content
as the original entity.

This transformation always occurs for entities with bi¬

nary relationships that are many-to-many, one-to-many on the

one (parent) side, or one-to-one where both entities are

either conditional or unconditional; entities with unary

relationships that are many-to-many or one-to-one; and en¬

tities with any ternary or higher degree relationship,

generalization hierarchy, or subset hierarchy.

(2) entity relation with the embedded foreign key of
the parent entity.

This transformation always occurs with binary

relationships that are one-to-many for the entity on the

many (child) side, and for one-to-one relationships for the

entity on the conditional side; and for the entities with

unary relationships that are one-to-many.

(3) relationship relation with the foreign keys of all
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the entities that are thus related.

This transformation always occurs for relationships

that are binary and many-to-many, or one-to-one when both

entities are either conditional or unconditional;

relationships that are unary and either many-to-many or one-

to-one; and all relationships that are ternary or higher

degree.

The general rules for null values allowed in these

transformations are simple. Nulls are only allowed for

foreign keys of any conditional entity in an entity rela¬

tion, but are not allowed for foreign keys of any uncon¬

ditional entity in an entity relation. Note that the entity

in a unary relationship is considered to be unconditional if

either side of the relationship is unconditional. Nulls are

also not allowed for any foreign key in a relationship rela¬

tion.

3.1.1 Two Entities, One (Binary) Relationship

The one-to-one relationship between entities is il¬

lustrated in Fig. 9a,b and c. When both entities are uncon¬

ditionally related (Fig. 9a), each entity becomes a relation

and the key of either entity can appear in the other en¬

tity's relation as a foreign key. One of the entities in a

conditional relationship (see DEPARTMENT in Fig. 9b) should

contain the foreign key of the other entity in its trans¬

formed relation. The other entity (EMPLOYEE) could also

contain a foreign key (of DEPARTMENT), with nulls allowed,

but would require more storage space because of the much
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greater number of EMPLOYEE entity occurrences than DEPART-'

MENT entity occurrences. When both entities are con¬

ditionally related (Fig. 9c) a relationship relation is

created containing primary keys of both entities. Nulls are

not allowed because both keys must be known for a tuple to

have any meaning. An alternative to the relationship rela¬

tion is to embed foreign keys in each of the entity rela¬

tions; however, this is less meaningful than an explicit

relationship relation and is not recommended.

The one-to-many relationship is always allowed to be

conditional on the "many" side, and it may be either uncon¬

ditional (Fig. 9d) or conditional (Fig. 9e) on the "one"

side. In both cases the foreign key must appear on the

"many" side, which represents the child entity, with nulls

allowed for foreign keys, only in the conditional case.

The many-to-many relationship is totally conditional

and requires a relationship relation with primary keys of

both entities (Fig. 9f). Embedded foreign keys are not pos¬

sible because of the "many" property in both directions.

3.1.2 One Entity, One (Unary) Relationship

One entity with a one-to-one relationship implies some

form of entity occurrence pairing, as specified by the

relationship name, and this must be either completely con¬

ditional or completely unconditional. Both the uncon¬

ditional case (Fig. 10a) and the conditional case (Fig. 10b)

are best implemented with a relationship relation that ex¬

plicitly shows the meaning of the relationship. In both
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cases the two key attributes are taken from the same domain

but are given different names to designate their unique use.

The one-to-many relationship requires a foreign key in the

entity relation for both the conditional case (Fig. 10c),

with nulls allowed, and the unconditional case (Fig. lOd),

without nulls allowed. The many-to-many relationship is al¬

ways conditional (Fig. lOe) and uses a relationship rela¬

tion.

3.1.3 n Entities, One (n-ary) Relationship (n > 2)

The allowable varieties of an n-ary relationship are

the n+1 possible allocations of entities with "many" connec¬

tivity (and cardinality from 0 to n). Thus, the 3-ary (ter¬

nary) relationship in Fig. 11 has four possible varieties.

All varieties are transformed by creating a relationship

relation containing the primary keys of all n entities;

however, in each case the meaning of the keys is different.

When all relationships are "one" (Fig. 11a), the

relationship relation consists of n possible distinct can¬

didate keys, each consisting of n-1 entity keys. This

represents the fact that there are n functional dependencies

(FDs) needed to describe this relationship. The conditional

"one" allows null foreign keys, but the unconditional "one"

does not.

When all relationships are "many" (Fig. lib), the

relationship relation is all key, and no FDs are present.

In general the number of entities with connectivity "one"

determines the number of FDs, and each determinant of an FD
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(or the case with all key) determines the candidate key of

the relationship relation. Multivalued dependencies (MVDs)

are not easily detectable from the EER model, and thus must

be determined from further requirements analysis related to

the composite keys in the model.

3.1.4 Generalization and Subset Hierarchies

The generalization hierarchy resulting in disjoint sub¬

sets is produced by partitioning the generic entity by dif¬

ferent _values of a common attribute, e.g. JOB-TITLE in

Fig. 12. The transformation of disjoint subset generaliza¬

tion produces a separate relation for the whole set (the

generic entity) and each of the subsets. The generic entity

relation contains the generic entity key and all common at¬

tributes (including the attribute used for partitioning).

Each subset relation contains the generic entity key and

only attributes specific to that subset. Update integrity

is maintained by requiring all insertions and deletions to

occur in both the set (generic entity) relation and relevant

subset relation. If the change is to the key, then all sub¬

sets as well as the set relation must be updated. Changes

to an attribute affects either the set or one subset rela¬

tion.

Overlapping subsets are produced by partitioning the

generic entity by values of different attributes (Fig. 13).

The transformation of this construct produces separate rela¬

tions for the generic entity and each of the subset en¬

tities. The key of each relation is the key of the generic
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entity; and while the generic entity relation contains only

common attributes, the subset relations contain attributes

specific to that subset entity. Thus, the transformation

rules for the disjoint and overlapping subsets are the same.

The integrity rules between these two cases are dif¬

ferent, however. With overlapping subsets, deletion from

the set (generic entity) relation cascades to anywhere from

none to all of the subsets. Also, before insertion to a

subset relation, it is necessary to check whether a tuple

with the same key value exists in the set relation. A

change to a nonkey attribute affects the set or one of the

subsets. A change to a key affects the set and at least one

subset.

3.1.5 Multiple Relationships

Multiple relationships among n entities are always con¬

sidered to be completely independent. Therefore, each

relationship produces a completely new set of entity rela¬

tions and relationship relations. Relationship relations

will be unique, but entity relations that are either equiv¬

alent or differ only in the addition of a foreign key can be

consolidated into a single entity relation containing all

foreign keys.

3.1.6 Existence Dependent (Weak) Entities

Weak entities differ from (strong) entities only in the

need for keys from other entities to establish their unique

identities. Otherwise they have the same transformation

properties as strong entities, and no special rules are
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needed. When a weak entity is already derived from two or

more strong entities in the ER diagram, it can be directly

transformed into a relationship relation without further

change.

3.1.7 Aggregation

The aggregation abstraction can occur among entities,

attributes of entities, or relate attributes to a single en¬

tity [Smith and Smith 1977], Aggregation among entities,

defined by the PART-OF relationship, is a special case of

the collection of one-to-many binary relationships and can

be transformed as defined in Section 3.1.1. As an example,

BICYCLE can represent the whole entity; while SEAT, PEDALS,

HANDLEBARS, etc. represent its parts; with each part being

an entity with its own distinct attributes.

3.2 Pesign Step 2 Details

The following steps summarize the basic transformation

rules given in Section 3.1.

Step 2.1 Transform every entity into one relation with the

key and nonkey attributes of the entity. If there is a

many-to-one relationship between an entity and another (or

same type) entity, add the key of the other (parent) entity

into the relation. If there is a one-to-one relationship

between an entity and another (or same type) entity with un¬

conditional membership class on the other side and con¬

ditional membership class on this side, then add the key of
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the other entity into the relation.

Every entity in a generalization hierarchy or subset

hierarchy is transformed into a relation. Each of these

relations contains the key of the generic entity. The

generic entity relation also contains nonkey values that are

common to all the entities so related, and the other rela¬

tions contain nonkey values specific to each nongeneric en¬

tity.

Step 2.2 Transform every many-to-many binary (or unary)

relationship, and every one-to-one binary (or unary)

relationship with either conditional or unconditional mem¬

bership class on both sides, into a relationship relation

with the keys of the two entities and the attributes of the

relationship.

Step 2♦3 Transform every ternary (or higher n-ary)

relationship into a relationship relation using the rules

given in Fig. 11.

Entity normalization is not necessarily preserved under

these transformations. The introduction of a foreign key

into an entity relation may result in additional functional

dependencies in an otherwise normalized relation [Wilmot

1984]. For example, in Fig. 14 the introduction of the

foreign key DEPT-NO into the entity relation EMPLOYEE

creates a transitive functional dependency EMP-NO -> DEPT-

NO -> OFFICE-BLDG. Relationship relations, consisting of
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two or more entity keys and possibly some intersection non-

key attributes, may also experience similar problems.

Therefore the use of preliminary normalization of entities

will not guarantee normalized relations after the EER trans¬

formations [Fong et al. 1985], However, after the transfor¬

mations such normalization can be accomplished using well-

known methods [Bernstein 1976; Fagin 1977; Ullman 1980;Lien

1981;Zaniolo and Melkanoff 1981; Martin 1983; Maier 1983;

Yao 1985].

3.3 Example

The transformation of EER diagrams to candidate rela¬

tions is applied to our example database of company person¬

nel and projects, as shown in Figs. 8-13. A summary of the

transformation of all entities and their relationships to

candidate relations (Steps 2.1 - 2.3) is illustrated in

Table 1. Primary keys are underlined. We include some of

the most typical nonkey attributes we assume have been ob¬

tained from the requirements analysis.
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Step 2.1; Entities to relations

1. DIVISION(DIV-NO HEAD-EMP-NO)
2. DEPARTMENT(DEPT-NO,DEPT-NAME,OFFICE-BLDG,...,

DIV-NO,MANAG-EMP-NO)
3. EMPLOYEE(EMP-NO.EMP-NAME.JOB-TITLE.OFFICE-BLDG....,

DEPT-NO)
4. SKILL (SKILL-NO. )
5. PROJECT(PROJ-NAME,...,LOC-NAME)
6. LOCATION(LOC-NAME )
7. EMP.MANAGER(EMP-NO )
8. EMP.ENGINEER(EMP-NO )
9. EMP.TECHNICIAN(EMP-NO )

10. EMP.SECRETARY(EMP-NO,....)
11. PC (PC-NO. )

Step 2.2: Binary or unary relationships to relations

12. MARRIED-TO(EMP-NO.SPOUSE-EMP-NO)
13. HAS-ALLOCATED(EMP-NO.PC-NO)

Step 2.3: Ternary (or any n-ary) relationships to relations

14. AVAIL-SKILL(EMP-NO.SKILL-NO,PROJ-NAME)
15. ASSIGNED-TO(EMP-NO,LOC-NAME.PROJ-NAME)

Table 1. Transformation of entities and relationships
to relations (example).
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4.0 NORMALIZATION OF RELATIONS (STEP 3)

Normalization of candidate relations is accomplished by

analyzing the FDs and MVDs associated with those relations.

Fortunately these data dependencies are easily derivable

from the same EER constructs we used to generate the can¬

didate relations in Step 2. Further analysis may lead to

elimination of data redundancies in the normalized candidate

relations.

4.1 Design Step 3 Details

Step 3.1 Derive the primary FDs from the EER diagram.

Primary FDs represent the dependencies among data ele¬

ments that are keys of entities, that is, the inter-entity

dependencies. Secondary FDs, on the other hand, represent

dependencies among data elements that comprise a single en¬

tity, that is, the intra-entity dependencies (see Step 3.2).

Table 2 shows the type of primary FDs derivable from each

type of EER construct defined in Section 1.3 and consistent

with the derivable candidate relations in Figures 9-13. In

fact, each primary FD is associated with exactly one can¬

didate relation that represents a relationship among en¬

tities in the EER diagram.

Based on the transformations in Table 2 we summarize

the basic types of primary FDs derivable from EER

relationship constructs:

(1) key (many side) > key (one side)
(2) key (one side A) > key (one side B)
(3) key (many side A), key (many side B) > key (one
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side)
(4) key (one side A), key (many side) > key (one

side B)
(5) key (one side A), key (one side B) > key (one

side C)
(6) composite-key > 0

Types (1) and (2) represent an embedded foreign key

functionally determined by the primary key in a unary or bi¬

nary relationship; types (3) through (5) apply only to ter¬

nary relationships; and type (6) applies to all degrees of

relationships in which the relation is represented as all

key. FDs for higher degree n-ary relationships can be ob¬

tained by extending (3) through (6).
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Degree Connectivity Primary FD

Binary

Unary

Ternary

1-to-l

1-to-l(opt)

Kopt)-to-l(opt)

1-to-many
1(opt)-to-many
many-to-many

1-to-l

1(opt)—to—1(opt)

1(opt)-to-many
1-to-many
many-to-many

1—to—1—to—1

1-to-l-to-many

key(one A)
key(one B)
key(one A)
key(one B)
key(one A)
key(one B)
key(many) >
key(many) >
composite-key

key(one
key(one
key(one
key(one
key(one
key(one

key(one)
key(one)

> 0

key(one A) > key(one
key(one B) > key(one
key(one A) > key(one
key(one B) > key(one
key(many) > key(one)
key(many) > key(one)
composite-key > 0

B)
A)
B)
A)
B)
A)

B)
A)
B)
A)

key(A),key(B) > key(C)
key(A),key(C) > key(B)
key(B),key(C) > key(A)
key(one A),key(many) >

key(one B)
key(one B),key(many) —->

key(one A)
1-to-many-to-many key(many A),key(many B) >

key(one)
many-to-many-to-many composite-key > 0

Generalization hierarchy
Subset hierarchy

(secondary FD only)
(secondary FD only)

Table 2. Primary FDs derivable from EER relationship
constructs.

Step 3.2 Examine all the candidate relations for MVDs and
secondary FDs.

Each candidate relation is examined to determine what

dependencies exist among primary key, foreign key, and non-

key attributes. If the EER constructs do not include nonkey

attributes, the data requirements specification (or data

dictionary) must be consulted.
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The transformation process is a potential source of

denormalization, particularly when a foreign key is embedded

in a relation (Fig. 14), so that each foreign key must be

accounted for in this analysis of secondary FDs. MVDs are

most common in candidate relations that represent ternary

relationships.

Step 3.3 Normalize all candidate relations to the highest
degree desired.

Each candidate relation now has possibly some primary

FDs, secondary FDs, and MVDs uniquely associated with it.

These dependencies determine the current degree of nor¬

malization of the relation (as defined in Appendix A). Any

of the well-known techniques for increasing the degree of

normalization can now be applied to each relation, with the

highest degree desired as stated in the requirements

specification.

Step 3.4 Eliminate redundancies in the normalized relations.-

The objective in this step is to minimize data redun¬

dancy, which in turn minimizes storage space and update

cost, but without sacrificing data integrity. Integrity is

maintained by constraining the new relation schema to in¬

clude all data dependencies existing in the candidate nor¬

malized relation schema.

First, any relation A that is subsumed by another rela¬

tion B can be unconditionally eliminated. A relation A is

subsumed by another relation B when all data dependencies in

A also occur in B. As a trivial case, any relation contain-
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irig only a composite key and no nonkey attributes is

automatically subsumed by any other relation containing the

same key attributes because the composite key is the weakest

form of data dependency.

Second, relations can also be subsumed by the join(s)

of two or more other relations. When this occurs the

elimination of a subsumed relation may result in the loss of

retrieval efficiency, although storage and update costs will

tend to be decreased. This tradeoff should be further

analyzed in Step 4.2 with regard to usage requirements to

determine whether elimination of the subsumed relation is

reasonable.

4.2 Example

In Step 3.1 we obtain the primary FDs by applying the

rules in Table 2 to each relationship in the EER diagram in

Fig. 8. The results are shown below in Table 3.

1. DIV-NO -—> HEAD-EMP-NO
2. DEPT-NO > DIV-NO
3. DEPT-NO > MANAG-EMP-NO
4. EMP-NO > DEPT-NO
5. EMP-NO > JOB-TITLE
6. EMP-NO > SPOUSE-EMP-NO
7. SPOUSE-EMP-NO —> EMP-NO
8. EMP-NO > PC-NO
9. PC-NO > EMP-NO

10. EMP-NO,SKILL-NO,PROJ-NAME > 0
11. PROJ-NAME > LOC-NAME
12. EMP-NO,LOC-NAME > PROJ-NAME

Table 3. Functional dependencies derived from the EER
diagram (example).
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In Step 3.2 we determine the secondary FDs and MVDs

from the EER diagram or requirements specification. Let us

assume that the following dependencies are derived from the

requirements specification:

1. DEPT-NO > DEPT-NAME
2. DEPT-NO > OFFICE-BLDG
3. EMP-NO > OFFICE-BLDG
4. EMP-NO > EMP-NAME
5. EMP-NO -->--> SKILL-NO
6. EMP-NO —>—> PROJ-NAME
7. EMP-NO LOG-NAME

Table 4. Secondary functional dependencies and MVDs
(example).

Normalization of the candidate relations is ac¬

complished in Step 3.3. In Table 1 all relations except 3,

14, and 15 are in 5NF already. Relation 14 is not even in

4NF because of the MVDs (dependencies 5 and 6 in Table 4).

Also, relation 15, based on dependencies 11 and 12, is-

clearly not BCNF. Relation 14 must be decomposed into two

relations containing the attributes EMP-NO and PROJ-NAME,

and EMP-NO and SKILL-NO, respectively. Relation 15 must be

decomposed into two relations containing dependencies PROJ-

NAME —> LOC-NAME and EMP-NO,PROJ-NAME —> 0 to preserve

the proper semantics while maintaining the proper form for

BCNF.

Additional problems occur with the definition of sec¬

ondary FDs (Table 4). For example, the EMPLOYEE relation

(relation 3 in Table 1) having key EMP-NO; foreign key DEPT-
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NO; and nonkeys EMP-NAME, JOB-TITLE, and OFFICE-BLDG; will

not be 3NF because of the transitive functional dependency

EMP-NO > DEPT-NO > OFFICE-BLDG. The simplest solution

is to keep OFFICE-BLDG only in the DEPARTMENT relation and

create a new relation EMP-OFF containing EMP-NO and OFFICE-

BLDG (although the latter decision violates the guideline in

Step 1.1(4)). We will see later that relation EMP-OFF will

be subsumed in Step 3.4.

The modified or additional candidate relations reflect¬

ing these normalization decisions are:

Modified Relations

EMPLOYEE(EMP-NO.EMP-NAME.JOB-TITLE....,DEPT-NO)
AVAIL-SKILL(EMP-NO,SKILL-NO)
ASSIGNED-TO(EMP-NO,PROJ-NAME)

New Relations

PROJ-LOC(PROJ-NAME,LOC-NAME)
EMP-OFF(EMP-NO,OFFICE-BLDG)

In Step 3.4 we attempt to eliminate data redundancies-

without losing data integrity. We can easily eliminate

relation PROJ-LOC because it is subsumed by relation

PROJECT. EMP-OFF can potentially be eliminated as well be¬

cause it can be recreated by a join of relations EMPLOYEE

and DEPARTMENT over the common attribute DEPT-NO. We will

assume that this elimination will not decrease retrieval ef¬

ficiency significantly, but this assumption should be

verified in Step 4.2.

These normalization and reduction decisions produce the

set of relations shown in Table 5 below.
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1. DIVISION(PIV-NO,HEAD-EMP-NO )
2. DEPARTMENT(DEPT-NO,DEPT-NAME,OFFICE-BLDG,...,

DIV-NO,MANAG-EMP-NO)
3. EMPLOYEE(EMP-NO,EMP-NAME,JOB-TITLE,...,DEPT-NO)
4. SKILL (SKILL-NO. )
5. PROJECT(PROJ-NAME,...,LOC-NAME)
6. LOCATI ON (LOC-NAME )
7. EMP. MANAGER (EMP-NO )
8. EMP♦ENGINEER(EMP-NO )
9. EMP.TECHNICIAN(EMP^NO, )

10. EMP.SECRETARY(EMP-NO )
11. PC (PC-NO. )
12. MARRIED-TO(EMP-NO.SPOUSE-EMP-NO)
13. HAS-ALLOCATED(EMP-NO.PC-NO)
14. AVAIL-SKILL(EMP-NO,SKILL-NO)
15. ASSIGNED-TO(EMP-NO,PROJ-NAME)

Table 5. Reduced normalized relations (example).
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5.0 REFINEMENT OF RELATIONS FOR USAGE EFFICIENCY (STEP 4)

Database design techniques for network and hierarchical

systems often make use of processing requirements to refine

the logical schema before the physical design phase if there

are obvious large efficiency gains to be made [Teorey and

Fry 1982; Bertaina et al. 1983; Hawryszkiewycz 1984]. The

justification for this approach is that once physical design

begins, the logical schema is considered to be fixed, and is

thus a constraint on efficiency. The database designer

would often like to remove this inflexibility if possible.

A similar technique could be applied to relational databases

if it would produce more efficient database schemas without

loss of data integrity, and would be relatively easy to im¬

plement.

Our goal is to define a relational schema refinement

algorithm based on a process-oriented or usage view that

could increase the database efficiency for current process¬

ing requirements, and yet retain all the information content

of the functional dependency or natural view of data. Thus

the database would still be an accurate representation of

real-world relationships and potentially more adaptable to

future processing requirements. The results of this al¬

gorithm could be used to specify alternative logical struc¬

tures to be considered during physical design, and thus

provide the physical designers with more feasible solutions

to choose from. More efficient databases are therefore

likely to be defined.
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5.1 The Relation Usage Model

The relation usage approach, when applied to the design

of centralized databases, is analogous to the use of frag¬

mentation, data allocation, and data replication for dis¬

tributed databases, except that it is much simpler for

centralized databases [Ceri and Pelagatti 1984], The

original data is preserved in its entirety, and vertical

fragments are replicated as extensions to current relations;

also, data allocation is trivial because the data resides at

a single site, and the replication is bounded by the number

of processes that require relation refinements.

It is assumed that all attributes are initially as¬

signed to relations based on functional dependencies, and

that the relations are at least 3NF. This will establish

the requirement for an accurate representation of reality

and for flexibility of the design for future processing re¬

quirements. Efficiency for the current query requirements

should increase by redundantly adding attributes, used

together in a query, to an existing relation so that all at¬

tributes needed for that query reside in a new relation,

called a join relation. This is known as materializing the

join [Schkolnick and Sorenson 1980], Access time will now

be greatly reduced because fewer joins will be needed.

However, the side effects of this redundancy include an in¬

crease in storage space required, an increase in the update

cost, potential denormalization and loss of integrity, and

program transformations for all applications containing
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joins that are materialized. These effects require careful

consideration.

As an example of such a effect, let us assume that the

relation PROJECT is associated with additional relations

PART and SUPPLIER as shown in Fig. 15. We use Query by Ex-

ampler (QBE) to illustrate processes because of its exten¬

sive processing semantics [Zloof 1975]. The extension of

the PART relation is shown as a means of reducing the number

of joins required in the query. This extension results in a

denormalization, with the side effects of add and update

anomalies. However, the delete anomaly cannot occur because

the original data is redundant in the extended schema. For

example, SUPP-NO > SUPP-CITY in the extended PART rela¬

tion (EXT-PART) is reproducible from PART-NO,PROJ-NAME >

SUPP-NO in relation PART and SUPP-NO > SUPP-CITY fn rela¬

tion SUPPLIER.

The storage and processing cost of a logical relational

database is to be computed for both the existing and new

join relations:

COST = Cp * ( Tq + Tu ) + Cs * Vg (1)

where

Cp = unit cost per second for query or update
processes

C = unit cost per byte for stored data
lb

T = I/O service time for query processes (seconds)
HI
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= I/O service time for update processes (seconds)

V = total volume in bytes for stored data
s

Unit costs are selected based on the computing environ¬

ment defined in the requirements specification. I/O service

time for query and update can be determined from the

processing operations, their frequencies, and the hardware

device characteristics given; while stored data volume can

be obtained from the size of the relations defined [Teorey

and Fry 1982; Hawryszkiewycz 1984]. Each query process must

be expressed in terms of basic relational algebra operations

such as selection, projection, and join. Some initial as¬

sumptions are made about sequential and random accesses

needed to efficiently accomplish the query or update at this

point, but detailed use of indexes, sorting, etc. are

deferred to physical design when the final configuration

decisions are made.

5.2 Pesiqn Step 4 Details

The relation usage strategy is to select only the most

dominant processes to determine modifications to relations

that will most likely improve performance. The basic

modification is to add attributes to existing relations in

order to reduce join operations.

Step 4.1 Select the dominant processes on the basis of

criteria such as high frequency of execution, high volume of

data accessed, response time constraints, or explicit high
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priority. As a rule of thumb any process with at least a

factor of ten higher frequency of execution or data volume

accessed than another process is considered to be more

dominant.

Step 4.2 Define join relations, when appropriate, to

materialize joins for dominant processes. Evaluate the to¬

tal cost for storage, query, and update for the database

schema, with and without the extended relation, and deter¬

mine which configuration minimizes total cost. Consider

also the possibility of denormalization due to a join rela¬

tion and its side effects. If a join relation schema ap¬

pears to have lower storage and processing cost and insig¬

nificant side effects, then consider that schema for physi¬

cal design in addition to the original candidate relation

schema. Otherwise consider only the original schema.

In general, joins based on nonkeys should be avoided.

They are likely to produce very large relations, thus great¬

ly increasing storage and update cost. For example, if two

relations have 100 and 200 tuples, respectively, then a join

based on the key of either one will result in a maximum of

200 tuples, but a join based on a nonkey of either one could

result in a maximum of 100x200 or 20,000 tuples. Null

values are also to be restricted to nonkey attributes so

that they will not be inadvertently used in join operations.

5.3 Examples

The following examples, taken from the company person-
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nel and project database design problem illustrated above,

show the extremes of applicability and nonapplicability of

the relation usage algorithm. In each case we apply the al¬

gorithm to a given relational schema and given processing

requirements. Cost tradeoffs are then evaluated to deter¬

mine if schema refinement is justifiable.

Example 5.3a

Example 5.3a illustrates the most favorable conditions

for efficiency improvement with the relation usage algorithm

(see Fig. 16). The query "display each pair of employee and

project in which the project is located in the same city

where the employee lives" is executed by a join of EMPLOYEE

and ASSIGNED-TO over EMP-NO, followed by 20,000 random ac¬

cesses to PROJECT (based on PROJ-NAME) to match LOC-NAME

with each EMP-CITY in the temporary relation resulting from

the join. To simplify the computation of query time the

relations are assumed to be accessed as: EMPLOYEE (sequen¬

tial, ordered on EMP-NO), PROJECT (indexed on PROJ-NAME),

and ASSIGNED-TO (sequential, ordered on EMP-NO).

Using the hardware configuration for the Amdahl 5860

system at the University of Michigan (MTS), the following

timing characteristics occur:

Page transfer time (at 4096 bytes per page): 3.4 ms
Average disk rotation time (half rotation): 8.3 ms
Average disk seek time: 16.0 ms
Average sequential page access = 11.7 ms
Average random page access = 27.7 ms
C = $9,00 per 1/0 hour, C = $.0031 per page-day

r ^
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Given the number of bytes in each of the relations and

the searching required for the query, we can calculate the

I/O service time (T ) for the query, and thus the total cost

(Eq. 1). The remainder of the example is to determine the

number of pages for query and update operations and storage

space, and calculate total cost.

T = scan EMPLOYEE + scan ASSIGNED-TO + 20000 random
q

accesses to PROJECT

= | 1,200,000/4096 | *11.7
+ | 400,000/4096 |*11.7 + 20000*27.7 ms

= 558.575 sec

= .155 hour

I/O cost (query) = ^p*Tq
= 9.00*.155

- 1.396

I/O cost (at 100 queries per day) = 139.6

The update operation "delete a given employee from all

associated projects" requires a random access to ASSIGNED-TO

based on EMP-NO and a scan of an additional page to delete

all tuples with a given EMP-NO.

Tu = 27.7 ms +11.7 ms
= .039 seconds
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I/O cost (update) = C *T
p u

= 9.00*.039/3600

= .0001

I/O cost (at 100 updates per day) = .01

Storage cost = Vvs
= .0031 per page day *(

+ | 100,000/4096 I +

= .0031*416 pages

= 1.29

1,200,000/4096
400,000/4096 I)

Total cost = 139.6 + .01 + 1.29

= 140.9

The extended join relation solution is to append to

ASSIGNED-TO the attributes EMP-CITY and LOC-NAME so that

only a single scan of the new relation, which we will call

EXT-ASSIGNED-TO, is needed to satisfy the query. EXT-

ASSIGNED-TO now has 40 bytes per tuple; therefore at 20,000

tuples it has a total of 800,000 bytes and is double the

size of ASSIGNED-TO. Redoing the calculations for query,

update, and storage with EXT-ASSIGNED-TO, we obtain the cost

figures shown in Table 6. We see that there is a dramatic

reduction in cost using the extended join relation and

avoiding the join and random indexing of the original solu¬

tion.
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Example 5.3b

Example 5.3b illustrates the least favorable conditions

for efficiency improvement with the relation usage al¬

gorithm. The query given in Fig. 17 is executed by a join

on the relations EMPLOYEE and DEPARTMENT over the common at¬

tribute DEPT-NO. This is accomplished by a scan of EMPLOYEE

and DEPARTMENT. DEPARTMENT and EMPLOYEE are assumed to be

accessed sequentially based on DEPT-NO.

Tg » scan of EMPLOYEE + scan of DEPARTMENT
= f 20,000,000/4096 1*11.7 ms + f15,000/4096 "1*11.7 ms

= 57131 ms + 468 ms

= 57599 ms

I/O cost (query) = 9.00*57.599 sec/3600

= .144

I/O cost (query at frequency of 100 per day) = 14.4

The update of department number of every employee is

accomplished with a scan of EMPLOYEE:

Tu = scan of EMPLOYEE
= f 20,000,000/4096 1*11.7 ms

= 57131 ms

I/O cost (update) = 9.00*57.131 sec /3600
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= .143

I/O cost (update at frequency of 100 per day) = 14.3

Storage cost = f 20,000,000/4096 ~|*.0031
+ T 15,000/4096 ~] *. 0031 per day

= 15.1 per day

The extended join relation solution is to add the at¬

tributes DEPT-NAME and OFF-NO to relation EMPLOYEE, thus in¬

creasing the tuple size from 200 to 250 bytes. The size of

the entire relation EXT-EMPLOYEE is 25 MB, compared to 20 MB

for EMPLOYEE. The cost for query, update, and storage space

for the extended relation is shown in Table 6. The results

show higher cost in all three areas due to the extended join

relation, mainly because the relation EMPLOYEE is much

larger than the relation DEPARTMENT and the extension EXT-

EMPLOYEE is larger than EMPLOYEE and DEPARTMENT combined.

Thus, the join relation schema is not a candidate for physi¬

cal design in this case.

To summarize, the extended join relation tends to sig¬

nificantly lower the storage and processing cost for one or

more joins if either the joined relations are of comparable

size, if only the smaller relation is extended, or if it can

avoid a large number of random accesses to at least one of

the relations.
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C *T
p q

C *T
P u

Cs*Vs

Example 5.3a

Original Relation Join Relation

139.6

.01

1.29

.57

.01

1.59

Query cost

Update cost

Storage cost

140.9 2.17 Total cost

C *T
p q

C *T
P U

c *vcs s

Example 5.3b

Original Relation Join Relation

14.4

14.3

15.1

43.8

18.0

17.9

18.9

54.8

Query cost

Update cost

Storage cost

Total cost

Table 6. Summary of total cost per day (examples)
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6.0 CONCLUSION

We have shown that a practical step-by-step methodology

for relational database design can be derived using the ex¬

tended ER conceptual model. The methodology has been il¬

lustrated with a simple database design problem, showing

each design step in detail. The strategy of first modeling

the natural data relationships and later refining the design

for processing efficiency was emphasized as two clearly

separable phases. The methodology produces nearly perfectly

reproducible designs and can be easily implemented as an

interactive database design tool.
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Appendix A. Basic Normal Forms [Date 1985]

INF — a relation R is in INF if and only if all underlying
domains contain atomic values only, i.e., tuples do
not contain any repeating groups, ("the key")

2NF — a relation R is in 2NF if and only if it is in INF
and every nonkey attribute is fully dependent on
the primary key. ("the whole key")

3NF — a relation R is in 3NF if and only if it is in 2NF
and every nonkey attribute is nontransitively
dependent on the primary key. ("nothing but the key")

BCNF (Boyce-Codd) — a relation R is in BCNF if and only if
every determinant is a candidate key.

4NF — a relation R is an 4NF if and only if, whenever there
exists a multivalued dependency in R, say A —>—> B,
then all attributes of R are also functionally
dependent on A. A 4NF relation cannot have
independent multivalued facts about an entity.

5NF — a relation R is in 5NF if and only if every join
dependency in R is implied by the candidate keys
of R. A relation R satisfies the join dependency
if and only if it is the join of its projections
on the subsets of the set of attributes of R
(see [Date 1985] and [Kent 1983] for examples).
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Appendix B. Summary of Logical
Relational Database Design Steps

1. Extended ER (EER) modeling of requirements.

1.1 Identify entities and attach attributes to each.

1.2 Identify generalization and subset hierarchies.

1.3 Define relationships.

1.4 Integrate multiple views of entities, attributes
and relationships.

2. Transformation of the EER model to relations.

2.1 Transform every entity into one relation with the
key and nonkey attributes of the entity.

2.2. Transform every many-to-many binary (or unary)
relationship and every fully conditional or
unconditional one-to-one binary (or unary)
relationship into a relationship relation.

2.3 Transform every ternary (or higher n-ary)
relationship into a relationship relation.

3. Normalization of relations.

3.1 Derive the primary FDs from the EER diagram.

3.2 Examine all the candidate relations for MVDs and
secondary FDs.

3.3 Normalize all candidate relations to the highest
degree desired.

3.4 Eliminate redundancies in the normalized relations.

4. Refinement of relations for usage efficiency.

4.1 Select the dominant processes on the basis of high
frequency of execution, high volume of data accessed,
response time constraints, or explicit high priority.

4.2 Define a join relation, when appropriate, to
materialize joins for dominant processes.



Step 1

Requirements
analysis and
extended ER(EER)
modeling

Itep:

EER

diagrams

Transformation of
EER diagrams to
relations

Step3 N

candidate

relations

Normalize
of relatio

jtion

ns

normalized
candidate
relations

Step4
Refinement of
relations for

usage efficiency

To physical design
and implementation

igure 1 Relational database design : basic steps
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CONCEPT REPRESENTATION CONCEPT REPRESENTATION

Entity

Relationship

Attribute

descriptor ~^)
identifier (

Subset

hierarchy | [

Generalization /\
hierarchy | I~

rS
D1}

(a) (b)

Figure 2 Extended ER(EER) model representations
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CONCEPT REPRESENTATION EXAMPLE

DEGREE

unary

binary

ternary

o EMPLOYEE
MARRIED

-TO

I LOCATION KM PROJECT

LOCATED
-AT

SKILL PROJECT

AVAIL-SKILL

EMPLOYEE

CONNECTIVITY

1 : 1

1 : n

m : n

DEPT

ANAGED-

EMPLOYEE

BY

DEPT EMPLOYEE

CONTAINS

EMPLOYEE PROJECT

WORKS-ON

OPTIONALITY
unconditional

conditional

OFFICE

OCCUPIED-BY

EMPLOYEE

Figure 3 Fundamental EER constructs : relationship types
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CONCEPT

entity

entity(strong)

entity(weak)

object class

subset hierarchy

generalization
hierarchy

EXAMPLE

order

Corder-nQ)

qty

■<5rder-nQ)

order-line <line-nd)

employee

Z\~~ 7\

emp.student emp.politician

employee

job-title >

^ it ^
mgr engr sec

Figure 4 Fundamental eer constructs : entity and object classes
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Figure 5 Transitive relationships

(a) (b)

Figure 6 Comparison of binary and ternary relationships

Figure 7 Example of connectivity for ternary relationship
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ASSIGNEDV
LOCATED ~TO

HEADED
-BY

MARRIED
-TO

/\ HAS-

Y ALLOCATED

PC'

Figure 8 Company personnel and project database (EER diagram)
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Every apprentice has one sponsor,
and every sponsor sponsors one
apprentice.

Relations:

APPRENTICE(EMP-NO, )
5PQNS0R(SPQN-EMP-N0. )
SPDNSORED-BY(EMP-NO.SPON-EMP-NQ)

(a)

(b)

Every department must have a manager.
An employee can be a manager of at
most one department.

Relations;
DEPARTMENT (DEPTHNO, IMP-NO)
EMPLOVEE(EMP-NO. ..)

Null EMP-NO not allowed in DEPARTMENT.

Some personal computer (PCs) are
allocated to engineers, but not
necessarily to all engineers.

Relations

)ENGINEER(EMP^NO, . . .

PC(PC-N0. )
HAS-ALLOCATED(EMP-NO.PC-NO)

(c)

Figure 9 Binary relationship transformation rules
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Every employee works in exactly one
department. Every department could
contain many employees.

Relations :

(d)

DEPARTMENT (DEPIzNO, )
EMPLOVEECEMP-NO, , PIPJ-NO)

Null DEPT-NO not allowed in EMPLOVEE.

SECRETARY

WORKS
FOR

ENGI NEER

(e)

ENGI NEER

BELONGS
-TO

PRF-ASSOC

Each engineer can have at most one
secretary. One secretary could work
for several engineers.

Relations :

ENGINEERCEMP-NQ, SEJ>EMP-NO)
SECRET ARV(EMP-NO, )

Null SEC-EMP-NO allowed in ENGINEER.

Every professional association could
have many members who are engineers.
Every engineer could belong to many
professional associations.

Relations :

PRF-ASSOCCPA-NO. )
ENGINEER(EMP-NO. )
BELQNGS-TQ(PA-NO. EMP-NQ)

(f)

Figure 9 continued
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APPRENTICE

PARTNER-OF

(a)

Every apprentice has exactly one of the
other apprentice as a partner in a project.

Relations :

APPRENTICE(EMP-NQ )
PARTNER-OF(EMP-NO. PA-EMP-NO)

EMPLOYEE

O o

MARRIED-TO

(b)

An employee could have one of the other
employee as his or her spouse.

Relations :

EMPLQYEE(EMP-NQ, )
MARR1EP-T0(EMP-N0, 5P-EMP-N0)

Engineers are divided into groups for
certain projects. Each group has a lead

Relation :

ENGINEER(EMP-NO. .,_ENG_-E_MP-NJ)
GROUP-LEADER-OF

(c)
Null ENG-EMP-NO allowed in ENGINEER.

Figure 10 Unary relationship transformation rules
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Every apprentice tutors one of the other
apprentices. One may be tutored by several
other apprentices.

Relation :

APPRENT1CE(EMP-NQ. APPrE_MP-_NO)

Null APP-EMP-NO not allowed in APPRENTICE.

PROJECT

SPEC-COMM-WITH

(e)

Each project may require special
communication with many other projects.

Relations :

PRQJECT(PRQJ-NQ. )
SPEC-COnn-WITH(PROJ-NAME. RELA-PROJ-NAME)

Figure 10 continued



. 62

An engineer will purchase one casebook
for a given project. Different engineers use
different casebooks for the same project.
No engineer will use the same casebook for
different projects.

Relations :

ENGINEER(EMP-NQ )
PROJECT (PROJ^NAME, )
CASEBOQK(BQQK-NQ. )
HAS-CASEBQQK(EMP-NO. PROJ-NAME,BOOK-NO)

FDs : EMP-NO, PROJ-NAME —> BOOK-NO
EMP-NO, BOOK-NO —> PROJ-NAME
BOOK-NO, PROJ-NAME — > EMP-NO

EMP-NO PROJ-NAME BOOK-NO

3 ALPHA 1001

3 BETA 1008

4 DELTA 1004

4 GAMMA 1005
8 BETA 1007

9 ALPHA 1009

9 EPSILON 1012

(a)

HAS-CASEBOOK

Figure 11 Ternary relationship transformation rules
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Employees use a wide range of different
skills on each project they are associated
with.

Relations :

EMPLQVEE(EMP-NQ. )
SKILL(SKILL-NC). )
PRQJECT(PRQJ-NAME. )
AVAIL-5KILL(EMP-N0. SKILL-NO. PROJ-NAME)

FDs : EMP-NO, SKILL-NO, PROJ-NO —> 0
(all key)

AVAIL-SKILL

EMP-NO SKILL-NO PROJ-NAME

3 A3 ALPHA

3 A3 BETA
3 B6 ALPHA
3 B6 BETA
4 G 12 DELTA
4 G 12 GAMMA
8 A3 BETA
8 C4 BETA
9 A5 ALPHA
9 A5 EPSILON
9 C8 ALPHA
9 C8 EPSILON

(D)

Figure 1 1 continued
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Employees are assigned to one or more projects,
with each project at a different location. Many
projects may reside a particular location, but
each project may have only one location.

Relations :

EMPLOYEE(EMP-NO. )
PROJECTCPROJ-NAME )
LOCATION(LOC-NAME . )
A5SIGNED-T0(EMP-N0. LQC-NAME.PRDJ-NAME)

FDs : EMP-NO. LOC-NAME —> PROJ-NAME

Additionally, PROJ-NAME —> LOC-NAME is
implied in this case by the narrative statement.
This is represented in a binary relationship
between PROJECT and LOCATION (see Fig. 8).

ASSIGNED-TO

EMP-NO LOC-NAME PROJ-NAME

3 DETROIT BETA

3 NEW-YORK ALPHA
4 CHICAGO GAMMA
4 NEW-YORK DELTA
8 DETROIT BETA

9 CHICAGO OMEGA

9 DETROIT EPSILON

(c)

Figure 11 continued
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An apprentice must have a different sponsor
for each project.

Relations :

APPRENTICE(EMP-NQ. )
SPONSOR(EMP-NO. )
PROJECT (PRQJ-NAME )
SPONSQRS(SPQN-EMP-NQ. APP-EMP-NO, PROJ-NAME)

FDs : APP-EMP-NO,SPON-EMP-NO —> PROJ-NAME
APP-EMP-NO,PROJ-NAME —> SPON-EMP-NO

APP-EMP-NO SPON-EMP-NO PROJ-NAME

101 3 BETA
101 9 EPSILON
207 3 ALPHA
207 4 DELTA
512 4 GAMMA
512 9 ALPHA

(d)

Figure 11 continued

SPONSORS
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EMPLOYEE

7Y

JOB-TITLE

~z\—

SECRETARY

Different types of employees are
partitioned by values of a common
attribute JOB-TITLE.

Relations :

EMPLOYEE(EMP^NO, JOB-TITLE,
common attributes)

EMP.MANAGER(EMP-NO.
specific attributes)

EMP.SECRET ARV(EMP-NO.
specific attributes)

EMP.TECHNICIANCEMP-NO.

specific attributes)

Figure 12 Generalization hierarchy

Employees with special situations
are shown as overlapping subsets
based on partitions on values of
different attributes.

Relations :

EMPLQYEE(EMP-NO,
common attributes)

EMP.5TUDENT(EMP-N0,
specific attributes)

EMP.POL1T1CI AN(EMP-NQ,
specific attributes)

Figure 13 Subset hierarchy
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Relation with foreign key : ^
EMP0YEE(EMP-N0 OFFICE-BLDG.DEPT-NO)

" y

Figure 14 Example ER-to-relation transformation causing
denormalization
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Original relations and process (query)

PART(PART-NO,PROJ-NAME,SUPP-NO,PRICE)
SUPPLIER(SUPP-NO,SUPP-CITY,SUPP-MGR)
PROJECT(PROJ-NAME, LOC-NAME)

Query: For a given project, display the supplier
numbers, supplier cities, and project city.

Functional dependencies

PART-NO,PROJ-NAME —> SUPP-NO | PRICE
SUPP-NO —> SUPP-CITY | SUPP-MGR
PROJ-NAME --> LOC-NAME

QBE representation of the query

PART | PART-NO | PROJ-NAME | SUPP-NO | PRICE |
* I P.X |

SUPPLIER | SUPP-NO | SUPP-CITY | SUPP-MGR |

I X I P«X

PROJECT | PROJ-NAME | LOC-NAME |

I * i p.z |

Extended relation PART in INF

EXT-PART(PART-NO,PROJ-NAME,SUPP-NO,SUPP-CITY,
LOC-NAME,PRICE)

SUPPLIER(SUPP-NO,SUPP-CITY,SUPP-MGR)
PROJECT(PROJ-NAME,LOC-NAME)

Figure 15. Relation extension causing denormalization
from 3NF to INF and 2NF.
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Relations Bytes/tuple Tuples T.Bytes

EMPLOYEE(EMP-NO.EMP-CITY...) 120
PROJECT(PROJ-NAME,LOC-NAME,..) 200
ASSIGNED-TO(EMP-NO,PROJ-NAME...) 20

10000 1200 KB
500 100 KB

20000 400 KB

Query: Display each pair of employee and project in which
the" project is located in the same city where the
employee lives.

Update: Delete a given employee from all associated
projects.

QBE representation of the query;

EMPLOYEE | EMP-NO | EMP-CITY |

P.X Z

ASSIGNED-TO | EMP-NO | PROJ-NAME

X Y

PROJECT | PROJ-NAME | LOC-NAME |

P.Y Z

QBE representation of the update:

ASSIGNED-TO | EMP-NO | PROJ-NAME |

D. | * | X

PROJECT | PROJ-NAME | LOC-NAME |

I x

Unit costs: Cp = 9.00 per disk-hour
C = .0031 per page-day

Frequency of all processes: 100/day

Figure 16. Example 5.3a relations and processes.
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Relations Bytes/tuple Tuples T.Bytes

EMP(EMP-NO.EMP-NAME,AUTO-TYPE,DEPT-NO) 200 10000 2000 KB
DEPT(DEPT-NO„DEPT-NAME,OFF-NO,EMP-NO) 250 60 15 KB

Query: Display employee number, name, office, and
department name for all employees with a
given automobile type.

Update: Scan the employee relation and make necessary
changes as specified in an in-core update list.

QBE representation of the query;

EMPLOYEE | EMP-NO | EMP-NAME | AUTO-TYPE | DEPT-NO |

I P.A | P.B | * | X |

DEPARTMENT | DEPT-NO | DEPT-NAME | OFF-NO | EMP-NO |

I X | P.C | P.D | |

QBE representation of the update:

EMPLOYEE | EMP-NO | EMP-NAME | AUTO-TYPE | DEPT-NO |

U. | * | * | * 1*1

Frequency of all processes: 100/day

Figure 17. Example 5.3b relations and processes.
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ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklrnnopqrstuvwxyz;:. /?$0123456789
ABCDEFGHIJKLMNOPQR STUVWX YZabcdefghijklmnopqrstuvwxyz;:'r,.
Greek and Math Symbols
ABTAEH0HIKAMNOII<l)P2TYnX>l'Za/378€^Si7iKA^voir((>pcrTVo)X<|»{=:F' '>•/== + = ?t°> <><>< =

ABrAE=6HIKAMNOn4>PZTYnX1'Za/3T8£5e7)iKXti.TOir<|)po-ruo)Xi);{Sq:",./^± = ^-> <><>< =

ABrAE=eHIKAMNOn<I>P2;TYnX4'Za/3y8€|9T)iKAjuvo7r<f)p<Trvo)X>l'^T". /^± = =A°> <><><=

ABrAES0HIKAMNOn<l>P2TYfiXvPZa/3y8e£0i7iKA.fAvo7r<j>pcrTy2 =

t rr

6 PT

8 PT

10 PT

6 PT

8 PT

10 PT

White

MESH HALFTONE WEDGES
i i i i

0123456
6.
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