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ABSTRACT

In this paper we develop probabilistic algorithms for estimating the number of

active nodes in a multicomputer system which consists of independent computers that

are interconnected by a communication network. The algorithms are based on routine

exchange of messages among the nodes of the multicomputer, using random routing.

We show that each active node can find an <-estimate of the fraction X of active nodes

in the system in time that depends only on < and X. The underlying approach can be

used for finding various global properties of distributed systems with decentralized

control.

f On leave from The Hebrew University of Jerusalem, Israel.
* Partially supported by NSF grant MCS 83-01022
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1. INTRODUCTION

Consider a multicomputer system which consists of N independent computers and

workstations that are interconnected by an Ethernet-like communication network,

which allows a direct communication link between any pair of nodes. To utilize such a

system efficiently, each node must have global information about the system as well as

local information about other nodes. For example, information about the (global)

average load of the system allows the implementation of an efficient load balancing

policy [1]. Similarly, information about the availability and location of resources

allows individual nodes to improve their performance by making better scheduling

decisions (2).

In this paper we are interested in algorithms for finding information about global

properties of such a distributed system. More specifically, we develop algorithms such

that each node can find an estimate for the number of active nodes in the system. (An

active node is a node which is operational and is participating in the network activi¬

ties.)

One can easily come up with many different algorithms for finding the number of

active nodes. However, we are interested in algorithms which satisfy the following pro¬

perties. First, we require uniformity; this means that all the nodes use the same algo¬

rithm and that there is no central control. We also require a low communication over¬

head; therefore we do not allow network broadcasts due to the high overhead (which

results from the context switches by all the nodes, for every broadcast), and that the

length of each message is bounded by Clog N bits, where C is a small constant. (Note

that the address part of a message already requires log N bits.) We further require
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that all the nodes use the same unit of time although they are not synchronized.

Finally, we require that the total number of nodes, N, is known to all the nodes.

We assume that each node maintains a data frame which includes information

about its local resources and estimates of global (system wide) information such as the

number of active nodes. In order to allow rapid information spreading between the

nodes while at the same time reduce the communication overhead, we assume that the

information is transmitted by the nodes using (one-way) messages. To reduce the

number of these messages, we require that each node sends one message every unit of

time. Furthermore, in the algorithms that we develop we require that each node sends

its message to a randomly selected node. As proved in [3], this allows an efficient and

rapid information exchange among the active nodes. We note that while each node

sends exactly one message each unit of time, it may receive several messages or no

message at all, during this period; the probability of receiving many messages is

extremely low. To Simplify the analysis and the exposition, we assume that every

message sent to an active node, is received. The generalization to the case when a

bounded fraction of messages, sent to active nodes, is not received, is fairly straightfor¬

ward.
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2. ESTIMATION OF THE NUMBER OF ACTIVE NODES

Let N be the total number of nodes and let n be the current number of active

nodes. Let T be the common unit of time of all the nodes. For simplicity, assume

T = 1. Recall that the nodes are not synchronized. The fundamental transmission

algorithm which is used throughout this paper is that every unit of time, each active

node sends a one-way message to a randomly selected node (whether active or not). In

other words, the sending node does not know if the addressee is active.

Let the nodes be numbered 1, 2, ...,N. We assume that N and n have large values

and that the value of n does not fluctuate rapidly. Then the number of messages

received by each node, each unit of time, is a random variable whose distribution can

be approximated by a Poisson distribution. Let X be the expected number of messages

received by a node in a unit of time. Then X = n/N. Our strategy is to find an esti¬

mate for n (or X) by monitoring the number of messages received by an active node

over sufficient period of time.

2.1. Let k(t) be the number of messages received by an active node between time t

and time t + 1. Let X(f) be the estimate for X as measured over the last » units of

time. Then,

X(o- E*(f -•')/• .
i=i

Now, k(t) has a Poisson distribution with a mean and a variance equal to X [4]. There¬

fore, X( f) can be approximated by the normal distribution (by the central limit
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theorem, for large a) with a mean X and standard deviation y/\JT. We can now find

the value of a, for any required accuracy. If a standard deviation tN is required for

the estimate of n , then V\/a = e, and therefore,

t = X/ €2 . (1)

For example, if e = 0.05 (a standard deviation of 5%), then X = 0.5 yields a = 200

units of time. Note: we assume here that during the course of the computation, the

number of active nodes does not change. Therefore, it is desirable to reduce a as much

as possible, since the estimate is used until a new estimate is found after a units of

time.

2.2. An improvement of the above scheme can be obtained by continuously updating

9

X(t). When a new message is received, the sum k(t) is updated by adding the new
i=i

value k{t) and subtracting k{t - a). This requires the storage of a values of Jfc(f)

which is a drawback. To overcome this difficulty one can use the estimate

k(t - a ) X(t). This modifies the definition of X:

X(t + 1) — **(0- *(0 + *(0
a

Let 6 — 1 /a, then:

X(t+l)-(l-#)X(f ) + '*(*)■ (2)

Observe that this implies that E(X(t))—\, as t increases. Therefore, we turn our

attention to the variance V(X(f)), assuming a large value of t. It can be shown that

V(X(t)) converges to a value which is denoted by V(X). Then by (2):
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V(X) - (1 - Of K(X) + P F(jfc(0) .

Since V(k(t)) = X

V(X) -—_ X .v ' 2-0

If as before, V(£) = t2 is required, then (assuming a small value of e and thus a small

0) it is possible to use the approximation 0/ (2-0) « 0/ 2, thus

Since 0 = 1/s , the value of » in (3) is half its value in (1).

2.3. In the above discussion we assumed that n remains constant in time. Another

criterion for measuring the effectiveness of the algorithm is the time delay until X(f)

approaches a new value when n is changed. Assume that at time t0, X(f0) = X0, and

suppose that X has changed at time t0 to \v We find the time t, such that

0 — 2c2/ X. (3)

E(^(')) ™ ® (^i - ^o) (4)

for a given 0 < a < 1.

After one unit of time,

A(£(X(0)) = '(£(*('))-£(*(<)))•

The expected value of k(t) is X^ Thus, for the expected value of X(f):

(5)

with the initial condition X(f0) = *o- The solution of (5) is:
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£T(X(«)) = \, - (\, - X„) <»)

Substituting (4) into (6) and solving for t yields:

t — <0 - In (l-o) / 9 . (7)

Example: for a = 0.5 (50% of the difference accounted for), let t = 0.05 and X = 0.5 as

before, then 9 =» 0.01. By (7) t - t0 — 69 time units.

3. IMPROVING THE ESTIMATES

So far we took into account only the message arrival rate. In this section we

develop an algorithm which uses additional information to increase the rate of conver¬

gence of X(t) to X. Suppose that each node includes in its message the value of its

current estimate for X. We show that this additional information can be used to

improve the estimates for X by individual nodes.

Let X,(f) be an estimate for X(f) by node ». Initially, X,(0) can be set to 1/N.

Assume that Ar, (f) messages with estimates \u X2,... ,Xt,(i) are received by node i dur¬

ing the time interval from t to t + 1. Then the following algorithm is executed by

each node once every unit of time.

Algorithm 1:

Step 1: Calculate

k,
+ E \
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MO
*,(<) + E */

where $ ia a given constant.

Step 2: Choose a random integer m, where 1 < m < N.

Step 3: Send a message with X, (i.e., X,(f +1)^ to node m .

Step 4: Wait one unit of time, then return to Step 1.

Let pk be the probability that a node receives k messages during one unit of time.

Let the mean and the variance of X,(#) be E(t) and V(t) respectively. Assuming that

n does not change, we have:

£(<+l) = (1 - $) E{t) + $ X . (8)

It can be shown that £(f) —► X. For a large value of N, it b reasonable to assume

that the X, 's are independent variables. (This was abo verified by a simulation). Under

these assumptions,

ni+ii-ii-if (9)
4=0 *+1

Now, by the Poisson dbtribution:

Therefore,
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f Pk « V Pt = 1 - g"x
*=0*+1 4=0 * + 1 X

Thus,

Vff+lJ-fl-IJ2 V(t) + ?\.

From this one can see that F(t) converges to V, where

f2 ^
V ~

1 - (1 - f)2 (1 - «"*)/ X '

Assume that a standard deviation < is required for the estimate of X. Then:

<2i_ £X
i-o-tfo-.-1)/*'

Assuming a small t, this yields,

9 < v/(X + e"x - 1)/ X2 =» </ >/2 . (10)

This last expression is based on the approximation:

e"x « 1 - X + X2/ 2 .

Note that the analysis leading to (7) is also valid for (10) for the new value of 9,

when X, < X0 (and no new node become active in t = f0). However, when Xt > X0

(and for simplicity, no active node become passive in f = f0), the nodes which joined

the network have initial estimates for X close to zero. Therefore, £(X(0)) = X02/ Xj

rather then X0. Consequently, in order to find t which satisfies (4), a in (7) should be

replaced by
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X0 + a(Xt - X0) - X02/ Xj
-j— — o + (1 - <*)X0/ (X, + X0).Xi - x0 / Xj

The calculated values of t - t0 for various values of X are given in Table 1, in Sec¬

tion 5. Simulations confirmed these results (which are better than the results obtained

in Section 2).

4. THE COUNTER METHOD

An alternative method for estimating the number of active nodes is to monitor

the "life span" of the received messages, e.g., to count the number of nodes through

which the message has passed. As before, every active node sends one message each

unit of time.

Assume that each message has a counter C, . Each time that a message reaches

an active node, its counter is increased by one. When several messages are received by

a node, they are merged into a single message and the sum of the counters (each

increased by one) forms the value of the new counter. When a new node joins the net¬

work or when a node does not receive any message during the last unit of time, it ini¬

tiates a new message with a counter value zero.

First we find a relationship between the value of the counter and the number of

active nodes. Let C, (t) be the counter generated by node « in time t, and C(t) be the

average of all the C, (t).

Lemma 1: E(C(t +1)), the expected counters' average in time t+1, is:
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|?(C(«+1))--S(C(« H-1).

Proof: The probability that a message is received by an active node is n/N; in this

case its counter is increased by one. Note that a merge does not change C(t). Other¬

wise, a new message with counter value zero is generated. This however does not add

to the expected value.

Lemma 2: Let n(f) denote the estimate for n by means of the counter method. Then

in a steady state (i.e., when E(C(t +1)) = C(t)),

<»>

Proof: Follows from Lemma 1 by substituting £(C(f+1)) = C(t).

If we get an estimate for the counters' average, then (11) can be used to estimate

n. Further improvement can be obtained if each message includes the estimate of

C(t) by the sending node. Then an algorithm, similar to Algorithm 1 can be defined.

Algorithm 2:

Assume that = *,(0 messages are received by a node i between time t and time

t + 1. The j-th message contains a counter Cy and an estimate Cy for the average

counter of the system provided by the sending node.

Step 1: Assemble a new counter C = J] (Cy + 1).
y=i

<?+£<?/
Step 2: Find the new estimate C *— (1 - 0) — + 9 C ,

ki + 1



where 9 ia a given constant.

Step 3: Find n = N . ^ .
C + 1

Step 4: Choose a random integer m, where 1 < m < N.

Step 5: Send a message which includes C and C to node m.

Step 6: Wait one unit of time, then return to step 1.

Note: When n « N the counters may overflow since the messages remain in the sys¬

tem for a long time. Therefore, we have limited in the simulation the value of the

counters in step 2 of Algorithm 2, by a constant. For example, requiring a 5% accu¬

racy in the value of the estimate, we limit the value of the counter by 39, which

theoretically corresponds to 2.5% deviation, i.e., n = 0.975 N in (11).

5. RATE OF CONVERGENCE

In order to check the rate of convergence of the algorithms discussed in the last

two sections, we have simulated an environment which included N = 100, N = 200

nodes and X = n/N = 0.1, 0.2, ..., 1.0 . Initially, we set X = 0.1 and executed the algo¬

rithms until E(\) > X -0.05. The number of iterations was recorded. We then exe¬

cuted the algorithm until the variance of ) stabilized (on a value of about 0.052). We

then increased X by 0.1, and repeated the simulation until X = 1.0. The second phase

of the simulation was done in a reverse order, until X = 0.1. The entire simulation was

repeated ten times and the resulting average numbers of iterations are given in the

tables below.
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n increases n decreases

X N=100 N=200 0 N=100 N=200 <-<o
0.1 17.0 17.7 19.8 19.4 22.2 19.8

0.2 29.7 29.8 31.4 17.8 23.0 19.8
0.3 33.6 31.2 34.4 19.6 21.1 19.8
0.4 32.5 35.8 35.8 22.6 19.1 19.8
0.5 37.7 37.6 36.6 24.6 20.5 19.8
0.6 38.5 34.8 37.1 20.6 19.3 19.8
0.7 33.9 36.2 37.5 23.2 20.0 19.8
0.8 38.0 37.0 37.8 21.1 23.1 19.8

0.9 35.2 36.6 38.0 19.2 18.7 19.8
1.0 38.4 39.3 38.1 - - -

Average 33.45 33.60 34.65 20.90 20.78 19.80

Table 1: Average number of iterations using Algorithm 1.

n increases n decreases

X N=100 N=200 N=100 N=200

0.1 14.5 15.4 18.9 18.7
0.2 24.0 25.5 15.3 19.7
0.3 29.8 25.9 18.5 18.0

0.4 28.7 28.2 20.2 19.2
0.5 25.8 29.9 20.5 21.0
0.6 26.0 28.8 21.8 21.3
0.7 24.7 28.7 28.6 25.0
0.8 24.3 24.5 32.6 33.7
0.9 24.7 24.7 28.6 29.0
1.0 35.2 36.3 - -

Average 26.07 26.59 22.78 22.84

Table 2: Average number of iterations using Algorithm 2.

One observation is that when n increases, Algorithm 2 is better than Algorithm 1

and when n decreases, Algorithm 1 is better than Algorithm 2 for n > 0.6N.

Apparently, Algorithm 2 is better than Algorithm 1 by about 3 iterations. Another

observation is that the simulation confirms that the average number of iterations is

independent of the value of N.
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6. CONCLUSIONS

In this paper we developed a class of algorithms for estimating the number of

active nodes in a multicomputer system. We assumed that the topology of the com¬

munication network is a complete graph, that the nodes are not synchronized and that

the network control is decentralized. These algorithms use messages between the

nodes in a random routing.

We show that each node can find an estimate of the number of active nodes in

the system. Furthermore, we showed that the accuracy of these estimates is indepen¬

dent of the number of nodes in the system. A simulation that demonstrates the effec¬

tiveness of the algorithms was also given.

REFERENCES

[1] Barak A. and Drezner Z., Distributed Algorithms for the Average Load of a Multi¬
computer, Computing Research Laboratory TR-17-84, The University of Michi¬
gan, Ann Arbor, Michigan, March 1984.

[2]. Barak A. and Shiloh A., A distributed load balancing policy for a multicomputer,
Software Practice & Experience, to appear.

[3]. Z. Drezner and A. Barak, An Asynchronous Algorithm for Scattering Information
between the active Nodes of a Multicomputer System, Department of Elec. Engin.
and Computer Science, The University of Michigan, Ann Arbor, MI. 48109, March
1985.

[4]. Feller W., An Introduction to Probability Theory and its Applications, Jon Wiley
& Sons, Inc., 1971.



4MR7ISGC3 9015 09911 4871



:iLEASE iriiCOMPUTER SCIENCE DEF1??T"^SN:TASCHBO*
ttuo m*-*? .



AIIM SCANNER TEST CHART#2
Spectra

4 PT ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz;:",./?$0123456789
6 PT ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz;:",./?$0123456789
8 PT ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmriopqrstuvwxyz;:",./?$0123456789
10 PT ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz;:'t,./?$0123456789

Times Roman
4 PT ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklrnnopqrstuvwxyz;$0123456789
6 PT ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz;:",./?$0123456789
8 PT ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz;:", ./?$0123456789
10 PT ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz;:",./?$0123456789

Century Schoolbook Bold
4 PT ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghgklmnopqrstuvwxyz;:",./?$0123456789
6 PT ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz;:",./?$0123456789
8 PT ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz;:",./?$0123456789
10 PT ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz;:",./?$012&56789

News Gothic Bold Reversed

ABCDEFGHI JKLMNOPQRSTUVWXYZabcdefghijklrnnopqrstuvwxyz;:",./? $012 34 567 89
ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghi jklmnopqrstuvwxyz;:'\./?$012 34567 89
ABCDEFGHIJKLMN0PQRSTUVWXYZabcdefghijklmnopqrstuvwxyz;:",./?$0123456789
Bodoni Italic
AHCDHh'CHIJKl.MNOI'QRSTUyWXY/MbcdefghijklmnoiHintuvwxyz:: ",./?S0123456789
ABCDEFGHIJKLMNOPQRSTUVWX YZabcdefghijklrnnopqrstuvwxyz;: ",./?$0123456 789
ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklrnnopqrstuvwxyz;:. /?$0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz;:'r,.
Greek and Math Symbols
ABTAEH0HIKAMNOII<l)P2TYnX>l'Za/378€^Si7iKA^voir((>pcrTVo)X<|»{=:F' '>•/==+ = ?t°> <><><=

ABrAE=6HIKAMNOn4>PZTYnX1'Za/3T8£5e7)iKXti.TOir<|)po-ruo)Xi);{Sq:",./^± =^-> <><><=
ABrAE=eHIKAMNOn<I>P2;TYnX4'Za/3y8€|9T)iKAjuvo7r<f)p<Trvo)X>l'^T". /^± = =A°> <><><=
ABrAES0HIKAMNOn<l>P2TYfiXvPZa/3y8e£0i7iKA.fAvo7r<j>pcrTy2 =

t rr

6 PT

8 PT

10 PT

6 PT

8 PT

10 PT

White

MESH HALFTONE WEDGES
i i i i

0123456
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