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Abstract. Now-a-days computer science is surpassing mathematics
as the primary field of logic applications, but logic is not tuned properly to
the new role. In particular, the following two features characterize many
of the new applications: emphasis on finite structures and dynamic
character of structures. These lectures address the challenges posed by
the two features.

* This 10-hour series of lectures was a part of the Course on Computation Theory organized by the
International Center for Mechanical Sciences In Udine, Italy In September-October 1984.
** Supported In part by NSF grants MCS 83-01022 and DCR 8503275.
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SO. Introduction

These days computer science is characterized by an explosion of
activities intimately related to logic. Consider for example formal
languages. For years formal languages were a prerogative of logicians.
But what is the most popular formal language of to-day? Is it a Hilbert
type predicate calculus or is it the Genzen sequential calculus? Neither.
Host popular formal languages of to-day are programming languages.
Another kind of popular formal languages are database query languages.
Some other formal languages emerge in artificial intelligence like
languages for knowledge representation. Old discussions on names,
denotations, types, etc. are suddenly revitalized to unprecedented
magnitude.

The work on axiomatic semantics, logic programming and verification
is related to classical proof theory, the work on computational complexity
is related to classical theory of algorihtms. Even propositional logic is
not left untouched by developments in computer science; for almost any
number k between 3 and 20, there is a commercial circuit tester based on
k-valued logic.

This is altogether a good news for logicians. Logic grows more
relevant to computer science than any other part of mathematics. But the
new applications call, we believe, for new developments in logic proper.
First order predicate calculus and its usual generalizations are not
sufficient to support the new applications. On the other hand, the new
developments will most probably build on existing achievements of logic.
In this connection it is worth to try to understand what made classical
mathematical logic so successful?

Even though logic is an ancient subject, the origins of modern
mathematical logic are closely related to the discovery of paradoxes and
the subsequent crisis in foundation of mathematics [Kl]. In 1930 came the
triumph of Godel's completeness theorem. The syntax of first order
predicate calculus and its semantics were proven to match perfectly. In
addition the logic was restrictive enough to avoid paradoxes and expressive
enough to provide a basis for Zermelo-Fraenkel set theory and resolve this
way, to a large extent, the foundational crisis. This perfect match of
syntax and semantics together with an adequate expressive power made
first order logic an invaluable tool and a source of innumerable
generalizations.
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Extremely important features of first order logic are a formal
language and a clear notion of models. The models are so-called first
order structures or, simply, structures. (Some people object to the term
"first order structure" on the ground that logic is first order rather than
structures. This is a good point. But some structures are not first order,
topological spaces for example; and we all know exactly what first order
structures are.) This familiar pattern - a formal language with a clearly
defined notion of a model - persists through familiar generalizations of
first order logic.

(Let us mention another interesting feature of first order logic. Even
though a consistent first order theory has usualy a multitide of models, the
theory itself does not refer directly to different models; it "speaks" about
the model of discourse.)

Classical logic facilitated numerous and impressive achievements. Let
us mention only the Church-Turing thesis and the Godel-Cohen resolution of
the continuum hypothesis. It seems that we (the logicians) were somewhat
hypnotized by the success of classical systems. We used first order logic
where it fits well and where it fits not so well. We went on working on
computability without paying an adequate attention to feasibility. One
seemingly obvious but nevertheless important lesson is that different
application may require formalizations of different kinds, that it is
necessary to "listen" to the subject in order come up with a right
formalization. (We philisophized on this topic in [Gu3].)

An important feature of many computer science structures is
finiteness. Relational databases constitute an especially important
example. Finiteness does not seem to be such a great novelty in classical
logic. Nevertheless it poses a nontrivial challenge. Being so closely
related to foundations of mathematics, classical logic is preoccupied with
infinity. Many famous theorems collapse when only finite structures are
allowed; among them are Godel's Completeness Theorem, Craig
Interpolation Theorem, Beth Definability Theorem and Substructure
Preservation Theorem [Gu2l.

Remark I. Lyndon proved ILy] that if a first-order formula <p(P) is
monotone in a predicate variable P (which means that the second order
formula PcP' -»[<p(p) -* <p(P')l is logically true) then <p(P) is equivalent to
a first-order formula ^(P) with only positive occurrences of P. We could
not decide in [Gu2] the status of the Lyndon theorem in the finite case and
conjectured a failure. The conjecture was recently confirmed [AG}.
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Variants of first order logic serve as standard relational query
languages [Co, Ul], but the expressive power of first order logic is not
sufficient for many purposes [AU]. On the other hand, second order logic is
overly expressive. It expresses queries that are too hard to compute. Even
existential second order formulas can express NP complete queries. Of
course, the notion what is hard, may change from one application to
another. One idea is to fix a reasonable complexity level, like polynomial
time, and to devise an intermediate logic that "captures" this complexity
level i.e. expresses exactly the queries of this complexity. The idea
happen to be realizable to an extent. The pioneering papers include papers
of Aho and Ullman [AU], Chandra and Harel [CH], Fagin [Fa 1 ], lmmerman [1ml]
and Vardi [Val. In particular, lmmerman and Vardi proved that, in the
presence of linear order, the least fixed point extension of first order logic
captures polynomial time. Later lmmerman "captured" log-space and a
number of other natural complexity levels [lm2]. We have written on finite
model theory and logic tailored for complexity at length in [Gu2]. Sections
1-9 of this paper constitute a kind of update of [Gu2] though they should be
understandable without reading [Gu2] first. We also use this opportunity to
make some .remarks to different papers of ours which came to our mind
after the papers were written.

Section 1 contains provisos and definitions that are used throughout
sections 1-9. In particular, the notions of global relations and global
functions are introduced; these notions provide convenient semantics for
complexity tailored logics. In Sections 2-4 we consider some extensions
of first order logic by additional constructs; in the presence of linear
order the extended logics capture natural complexity classes. In Section 5
we consider two logics with an emphasis on functions rather than
predicates; a linear order is built-in and the logics capture natural
complexity classes. In Section 6 we consider some fixed point extensions
of first order logic without assuming the presence of linear order. On the
one side, the presence of linear order is natural if we want to treat
structures as inputs to algorithms. On the other side, one may be
interested in properties of structures that are independent of presentation.
In Section 7 we consider those properties of structures with linear order
that are preserved by any reordering. In Section 8, some evidence is given
that certain familiar complexity classes cannot be captured by any logic.
Circuit definability and topology on finite sets are briefly discussed in
Section 9.

Remark 2. Several relevant issues are left out in this lectures, in

particular, we do not discuss derivability in first order predicate calculus.
The questions of expressibility and derivability are quite different. For
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example, no first order formula <p expresses on finite graphs that (x.y)
belongs to the transitive closure of the edge relation E. This is well
known [Fa2, GV, Gu2], and remains true even if <p Is allowed to use
additional predicate symbols-' just consider the case when all additional
relations are trivial. On the other hand, the first order formula

Vuv(Euv -» Tuv) & Vuvw(Euv &, Tvw -» Tuw) -> T(x,y)

is derivable frome the diagram of an arbitrary finite graph if and only if
(x,y) belongs to the transitive closure of the edge relation E.

Another important feature of many computer science structures, which
is harder to swallow, is their dynamic character. Mathematical structures
- graphs, groups, topological spaces, etc. - do not change in time
whereas computer science structures - databases, machines, etc. -

often do. Considering time as a new dimension, a mathematician turns a
dynamic situation into a static one. Complexity considerations may make
such a transformation inadvisable in computer science. We would like to
formalize the notion of dynamic structures and develop a logic of (finite)
dynamic structure. Among other things it would provide an alternative
semantics for usual imperative programming languages. In these lectures
we only slightly touch the subject, see §10. First we argue there in favor
of a computation theory that deals exclusively with finite machines, and
then we discuss formalizing "real" finite machines as dynamic structures.

There are some logicians that consider computing a lower subject.
There are former logicians that work in computing now and consider logic
not very relevant to their new occupation. We happened to think that
computer science badly needs what logicians are supposed to do best= logic.
The situation seems to us reminiscent of that in the beginning of the
century. Again we face most basic questions like what is a right logic and
even what are right structures.

Acknowledgements. 1 thank the organizer - Dr. Egon Borger - and
the host - International Center for Mechanical Sciences - for the invitation
to lecture inUdine, and the listeners for their attention, good will and
hard work. Special thanks are due to Dr. Klaus Ambos-Spies who faithfully
recorded and subsequently prepared a good draft (of the bulk) of these
lectures; I admit some editing, altering and reorganizing the material.
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Si Global relations and functions

This section contains provisos and definitions used in sections 1-9.
We start with notions of global relations and global functions introduced
first in [Gul]; these notions will allow us to provide .semantics for
numerous logics.

Definition. Let K be a class of first-order structures of some

signature a. An r-ary K-global relation p assigns to each structure SeK
an r-ary relation ps on S. The relation p^ is the specialization of p on S.
If K is the class of all structures of a signature o we say that p is
a-global.

The notion of global relations generalizes Tarski's notion of sentential
functions [Ta]. Sentential functions are global relations of arity zero. An
r-ary global relation of signature o can be viewed as a sentential function
whose signature is an extension of a by r additional individual constant;
in this sense the domain of any global relation consists of structures.

Tarski's semantics for first-order logic can be conveniently
formulated in terms of global relations (disallow function symbols for a
moment). The meaning of a first-order formula <p with free individual
variables vj,...,vr (in the lexicographical order) is a a-global r-ary
relation where c is the signature of <p i.e. the set function and predicate
symbols in <p (individual constants are function symbols of arity 0). The
meaning is defined by an obvious induction.

Examples of global relations.

(1) Let GRAPH be the class of finite graphs (seen as structures with
one binary relation that is irreflexive and symmetric). The following
GRAPH-global relations are of arities 0, 1 and 2 respectively:

The graph is connected,
A node x has at most logn neighbors where n is the number of nodes,
Nodes x and y are connected.

(2) Let GROUP be the class of finite groups. The following
GROUP-global relations are of arities 0, 1 and 3 respectively:

The group is abelian,
The index of the subgroup, generated by an element x, is at most logn

where n is the number of elements,
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The subgroup, generated by elements x and y, contains an element z.

Even though a global relation p is, formally speaking, a function
defined on a class of structures, we think about it as a relation on the
structure of discourse. For example, we may speak about the negation of
p. If p is binary, we may speak about the transitive closure of p. We take
the same local attitude toward global functions defined below.

Definition. Let K be a class of structures of a fixed signature. A
K-global function f of type Universer -» Universe assigns to each SeK an
r-ary function fs that, given an r-tuple of elements of S, produces an
element of S.

First-order terms denote global functions. In the obvious way, global
relations and global functions of types Universer -» Universe provide
semantics for first-order logic with function symbols.

We will keep the notion of a global function informal (and very
general) and will define formally only global functions of specific types.
In particular, an r-ary global relation is a global function of type
Universe1" -> Bool where Bool = {False, True}.

Definition. Let K be a class of structures of a fixed signature. A
K- global function f of type Universe^ -* Universe^ assigns to each SeK a
function fs that, given a p-tuple of elements of S, produces a q-tuple of
elements of S. We say that f, as well as each specification fs of f, is
p-ary and q-coary. The notion of a K-global partial function f of type
Universe^ -» Universe^ is an obvious generalization; f itself is total
(defined on the whole K) but its specifications may be partial.

Examples of other types of global function:

(1) (UnverseP -» Bool) -* (Unversed -» Bool),
(2) [UniverseP * (Rower-seUUniverse))^] -> Bool.

Global functions of type (2) form a realm where meanings of second
order formulas live.

Proviso 1. A structure is — unless the contrary is said explicitly w-
a finite (first order) structure whose universe is an initial segment of
natural numbers. This proviso is in force in the rest of this section and in
sections 2-9.
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Proviso 2. The domain of a global relation comprises all structures of
a fixed signature unless the contrary follows from the context.

In order to discuss the decision problem for a global relation, we need
to agree on a standard way to represent structures as inputs for computing
devices. To simplify the exposition, we chose to represent structures by
means of several input tapes. One input tape, called the universe tape,
represents the universe {0,1,...,n-1} of a given structure S; it is of length
n, its end-cells are specially marked but the intermediate cells are all
blank. If R is a basic relation of S or the graph of a basic function of S
then R is represented by a special tape of length nr where r is the arity of
R; for all elements Xq, .... xr_j, the cell number Jxj-n1 contains 1 if
R(xr_|,...,x0) is true and contains 0 otherwise.

Definition. Let p be an r-ary K-global relation. An instance of the
decision problem for p is a structure (S,x) where S belongs to K and x is a
r-tuple of elements of S; the corresponding question is whether p(x) holds
in S (in other words, whether x belongs to ps).

Theorem 1 [Fa 1 ]. A global relation is definable by an existential
second-order formula if and only if it is recognizable by a polynomial time
bounded nondeterministic Turing machine.

Thus, existential second order logic captures nondeterministic
polynomial time. We skip the proof of Theorem 1.

It is easy to see that every first-order definable global relation is
log-space (and therefore polynomial time) recognizable. The converse is
not true. For example, the global relation "The cardinality of the universe
is even" is log-space computable but not first order definable. But some
natural extensions of first order logic express exactly log-space
(respectively polynomial time) recognizable global relations.

Definition. Let L be first order logic or an extension of first order
logic by additional constructs. (A number of such extension will be defined
in subsequent sections.) L+< is the extension of L by means of a logical
constant < (like first order logic with equality is the extension of first
order logic by means of a logical constant =) which is interpreted on each
structure S as the restriction of the usual order of natural numbers to the
universe of S.
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§2 Transitive closures

Aho and Ullman [AU3 noticed that the relational calculus, a standard
relational query language and a variant of first order logic, is not closed
under the transitive closure and suggested extending the relational calculus
by least fixed points. Immerman [Im2] explored turning the transitive
closure itself into a logical construct. The resulting extensions of first
order logic are explained in this section. The use of two-way multihead
automata allowed us to simplify somewhat the proofs.

In this section, we identify an arbitrary 2r-ary relation R over some
U={0,...,n-1} with the binary relation {(x,y)eUrxUr: the concatenation of
tuples x,y belongs to R}; this defines naturally the transitive closure
TC(R) of R. The transitive closure TC(p) of a 2r-ary global relation p is
defined in the local fashion: for each structure S in the domain of p, the
specialization of TC(p) in S is the transitive closure of ps.

Lemma 1. If a 2r-ary global relation p is nondeterministic log-space
recognizable then so is TC(p).

Proof. Let S be a structure in the domain of p, R be the specialization
of p, and a.b be r-tuples of elements of S. The desired algorithm is:

begin
x-a;

repeat
guess y;
if (x,y)€R then x--y

until x=b;
halt with output YES

end. l

We define a logic FO+TC. The syntax of FO+TC is the extension of the
syntax of first-order logic by:

Transitive Closure Formation Rule. Let r be a positive integer and
<P(x,y) be a well-formed formula where x and y are r-tuples of distinct
individual variables (all 2r variables are distinct). Then TCX y<P(x,y) is a
well-formed predicate, and [TCX y<P(x,y)](x,y) is a well-formed formula.

The construct TCX y binds the 2r individual variables in the new



predicate (but of course the additional occurrences of these variables in
the tail of the formula are free). <p(x,y) may have additional free
individual variables. A more explicit notation for the new predicate is

TCx>y<p(w,x,y) where w is the list of those additional variables. The new
formula [TCXjy<p(w,x,y)](x,y) means that (x,y) belongs to the transitive
closure of the relation Rw={(x,y): <p(w,x,y)}. The global function semantics
for first-order logic naturally extends to logic FO+TC; again the meaning
of a formula with r free individual variables is a global r-ary relation.

Remark. A simplified notation TC<p(x,y) for the formula
[TCXjy<p(x,y)Kx,y) is deficient. Try to express [TCXy<p(x,y)](s,t) in the
simplified notation. Suppose for simplicity that x and y are single
variables and <P(x,y) is an atomic formula P(x,y,x). Consider for example
s=t=x, or s=fx and t=y.

Positive and negative occurrences of a predicate P=TCX yf(x,y) in a
formula <p are defined by the obvious induction; in particular, if <p is
TCU v#(u,v) then every positive (respectively negative) occurrence of P in
$(u,v) remains so in <p. The extension FO+TC+< of FO+TC is defined with
respect to Si. Viewing 0 an 1 as logical constants yields a further
extension FO+TC+<+{0,1}.

Theorem 1. Let p be a global relation. The following are equivalent:
(1) p is nondeterministic log-space recognizable,
(2) p is definable by an FO+TC+< formula <p such that every

occurrence of a predicate of the form TCU v>Ku,v) in <p is positive,
(3) p is definable by a FO+TC+<+(0,l} formula [TCX y^(x,y)](s,t) where

^ is first order.

Proof. (3) -+ (2). The constants 0 and I are definable in FO+<.

(2) -»(1). Without loss of generality, one may suppose that only first
order subformulas can be negated in the defining formula*- use the usual
duality laws for first order logic. Then an easy induction shows that every
subformula of the defining formula is nondeterministic log-space
recognizable. The case of TC is taken care in Lemma 1.

To prove the implication (1) -+ (3), suppose that p is recognizable in
nondeterministic log-space. According to the Appendix, there is a
nondeterministic 2-way multihead automaton A that recognizes p. Let
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formula Next(w,x,y) and tuples Initial, Final be as in the Appendix. Then
the desired FOTO<*{0,1} formula is [TCX yNext(w,x,y)](Initial,Final). l

Remark. One can easily get rid of the logical constant 1 as follows.
Let Next'(x.y) be the disjunction: Next(x,y), or x=Zero & y=Initial, or
x=Final & y=Zero. Hero Zero is a tuple of zeroes of the appropriate length.
Then the desired formula is [TCX yNext(w,x,y)](Zero,Zero).

Definition. The deterministic version of a binary relation R is the
relation {(x,y): (x.y)eR and there is no z*y with (x,z)eR). The
deterministic transitive closure DTC(R) of R is the transitive closure of
the deterministic version of R.

The definition of the deterministic transitive closure extends

naturally to the case of a 2r-ary relation R over some U={0 n-1} because
we have identified R with a binary relation over if. The deterministic
transitive closure DTC(p) of a 2r-ary global relation p is again defined in
the local fashion: for each structure S in the domain of p, the
specialization of DTC(p) in S is the deterministic transitive closure of p^.

Lemma 2. If a 2r-ary global relation p is nondeterministic log-space
recognizable then so is DTC(p).

Proof. Let S be a structure in the domain of p, R be the deterministic
version of ps, and a,b be r-tuples of elements of S. R is the graph of a
partial function f on {0,1,.... n-1 }r. Compute fka for k=1,2, etc. and halt
when b comes along or NOT-DEFINED is returned or k reaches n. If b has
come along then return YES, otherwise return NO. l

The definition of an extension FO+DTC of first-order logic is similar
to the definition of FO+TC. Just change "TC* to "DTC", and "transitive
closure" to "deterministic transitive closure".

Theorem 2. Let p be a global relation. The following are equivalent:
(1) p is log-space recognizable,
(2) p is definable in FO+TC+<,
(3) p is definable by a FO+TC+<+{0,1} formula [TCX y^(x,y)](s,t) where

is first order.

Proof is similar to that of Theorem 1. l
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S3. Least fixed points

In this section we define the extension FP+LFP of first order logic by
the least fixed point operator and prove Immerman-Vardi's theorem Urn I,
Val that FO+LFP+< captures polynomial time. Again, the use of two-way
multihead automata allowes certain simplification.

Definition. Let F be a unary operation on a partially ordered set. if
Fx=x then x is a fixedpoint of F. If Fx=x and Vy(Fy=y->x<y) then x is the
least fixedpoint LFP(F) of F. If Fx<Fy for all x<y then F is monotone.

Definition. A partial ordered set is complete if every subset has the
least upper bound and the greatest lower bound.

For example* the set of relations of a fixed arity on a fixed domain is
a complete partially ordered set with respect to the inclusion. The
following theorem is well-known.

Theorem ). A monotone unary operation F on a complete partially
ordered set D has a least fixed point.

Proof. Let gO=min(D) and each g(i+l)=F(gi). By monotonicity, the
function g is increasing (though not necesssarily strictly increasing).
Hence there is i with gi=g(i+l); let m the minimal among such i.
Obviously, gm is a fixed point of F. Given a fixed point y of F, prove by
induction that each gi<y. Hence gm=LFP(F). i

Lemma 1. Let F be a a-global function of type

(Power-set(Universe))r -»(Power-set(Universe))r

which is monotone on any cr-structure. Let LFP(F) be the <?-global r-ary
relation that assigns to each tf-structure the least fixed point of Fs.
Suppose that F is polynomial time computable i.e. there is a polynomial
time algorithm that, given a a-structure S and an r-ary predicate P on S,
computes F(S). Then LFP(F) is polynomial time recognizable.

Proof. Compute Pq=0, P|=F(Pg), P2=P(pi). etc- unt'l y0" come across
Pm=Pm+i- Now check whether the given r-tuple belongs to Pm. l

The syntax of logic FO+LFP is the result of augmenting the syntax of
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first-order logic by:

LFP Formation Rule. Let r be a positive integer, x be an r-tuple
x1 xr of individual variables, P be an r-ary predicate variable, and
<P(P.x) be a well-formed formula. If <p(P,x) is positive in P (i.e. all free
occurrences of P in <p(P,x) are positive) then LFPp.x<p(P,x) is a
well-formed predicate and [LFPp.x<p(P,x)l(x) is a well-formed formula.

The construct LFPp.x binds the predicate variable P and the
individual variables x^,...,xr (but of course the additional occurrences of
these individual variables in the tail of the new formula are free). If Q is
a predicate variable different from P then every positive (respectively,
negative) occurrence of Q in <p(P,x) remains positive (respectively,
negative) in the new predicate and formula.

Remark. Substituting an r-tuple t of terms for x in [LFPp.x<p(P,x)](x)
gives a formula [LFPp.x<p(P,x)](t). We suppose that substitution is one of
the formation rules.

Remark. A simplified notation LFPp<p(P,x) for [LFPp;X<p(P,x)l(x) is
deficient: just try to express lLFPp.x<p(P,x)l(t) in the simplified notation.

To be on the safe side, let us emphasize that logic FO+LFP allows
interleaving LFP with propositional connectives (including negation) and
quantifiers; in particular, one can negate an LFP formula then use the LFP
formation rule again, etc.

The formula <p(P,x) may have additional free individual variables; let
w be the list of the additional variables. The meaning of the predicate
LFPp;X<P(P,x,w) is the least fixed point of the operator Fw(P) = {x: <P(P.x,w)}
on the set of r-place relations ordered by inclusion. Since the formula
<p(P,x,w) is positive in P, the operator Fw is monotone and therefore has a
least fixed point. The global function semantics for first-order logic
naturally extends to FO+LFP.

Theorem. Let p be a global relation. The following are equivalent:
(1) p is polynomial time recognizable,
(2) p is definable in logic FO+LFP+<,
(3) p is definable by a FO+LFP+<+{0,!} formula [LFPp;X^(P,x)](s,t)
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where ^ is first order.

Proof. The implications (3)-»(2) and (2MD are obvious. To prove the
implication OM3), suppose that p is polynomial time recognizable.
Accorrding to the Appendix, there is two-way multihead finite automaton A
that recognizes p. Let the formula Next(w,x,y) and the tuples Initial, Final
be as in the Appendix. It is easy to write down first order formulas
Existential(x) and Universal(x) asserting that the internal state of II in
configuration x is existential and, respectively, universal. Let

Accepted(w,_) = LFPp.x [ x=Final, or
Universal(x) & Vy(Next(w,x,y) ■* P(y)), or
Existential(x) & 3y(Next(w,x,y) & P(y)) ].

The desired FO+LFP formula is Accepted(w,Initial). 1

S4. Branching quantifiers

We turn now to an extension of first-order logic by branching (or
Henkin) quantifiers whose introduction was motivated by considerations
quite distant from computer science [He].

Let us start with an example. The expression

I | ^(x1,x2.y1.y2) (4-0
LVx23y2J

means that for all Xj,x2 there are yj, y2 such that yj depends only on Xj,
y2 depends only on x2, and 9(xi,x2,yJty2). In other words, there are
functions Yj(xj), Y2(x2) such that <p(x j ,x2,Y j (x j ),Y2(x2)).

In general, a branching quantifier is [Wa] a partially ordered set of
expressions Vx and 3y; an existentially quantified variable y depends
exactly on those universally quantified variables x that Vx precedes 3y in
the partial order.

Theorem 1. For any global relation p the following are equivalent
- 14 -



(OpisNP,
(2) p is expressible by an existential second-order formula,
(3) p is expressible by a formula Qf where Q is a branching

quantifier and <p is a first-order formula.

Proof. The equivalence (1)«-»(2) is Theorem 1 in §1, the equivalence
(2)«-»(3) is proved in [Wa]. l

In the rest of the section we describe a few results from [B1G1]. The
only novelty is the direct proof of Theorem 4 below. A branching
quantifier Q is called mighty if there is a first-order formula <p such that
the global relation Q<p is NP-complete under polynomial time reductions.

Theorem 2. The quantifier (4.1) is mighty.

Proof. The idea is to express 3-colorability of a graph with individual
constant 0,1 and 2. The desired <p is the conjunction of the formulas:

*1 =x2 «1 = ^2*
y, = 0 or Uj = 1 or y, = 2,
Edge(x, ,x2) -» X| *x2. l

Note that, in the proof of Theorem 2, the existentially quantified
variables range, in effect, over {0,1,2}. Let <x, 3, # range over {0,1}, and p
range over {0,1,2}.

Theorem 3. The quantifiers

f" Vx
j Vy 3ft 1
L Vz 3* J and1 are mighty.

We omit the proof of Theorem 3. The branching quantifiers

[ VxjVx2...Vxm 3<x "]
L VytVy2 ...Vyn 33 J

will be called narrow Henkin quantifiers. In the rest of this section, x and
y are tuples of individual variables, and NH(x,<x;y,3) is the corresponding
narrow Henkin quantifier. Without loss of generality, x and y always have



the same length*- just pad the shorter tuple. Let ENH(x,o<;y,,3) be the
equality bound version of NH(x,<x;y,£). ENH(x,c<;y,£)<p(x,y,o<,£) means

NH(x,o<;y,£) [ (x=y ■+ <x=£) & <P(x,y,o<,3) 1,

i.e. there is a unary function f from the universe to {0,1} such that for all
x and y, <P(x,y,f(x),f(y)). Let u, v be single individual variables. An
arbitrary NH(x,«;y,£)<p(x,y,<x,0) is equivalent to

ENH(xu,<x;yv,#)[(u=0 & v=1 -> <p(x,y,<x,0)]-

Let FO+NH be the extension of first-order logic by narrow Henkin
quantifiers. Positive and negative occurrences of a subformula
^=NH(x,<x;y,#),i'(x,y,o<,jJ) in a formula <p are defined by the obvious
induction; in particular, any positive (respectively negative) occurrence of

in 0(u,v,#,S) remains so in NH(u,£; v,S)<&(u,v,#,S). Abbreviate
"nondeterministic log-space" as "Nlog-space".

Theorem 4. For a global relation p the following are equivalent;

(1) p is co-Nlog-space recognizable,
(2) p is expressible by an FO+NH+< formula with only positive

occurrences of branching quantifiers,
(3) p is expressible by an FO+NH+< formula ENH(x,o<;y,£)<p(x,y,o<,3)

with a first order <p.

Proof. (1)-*(3). Suppose that p is co-Nlog-space recognizable and p'
is the complement of p (on each relevant structure). According to the
Appendix, there is a two-way multihead nondeterministic finite automaton
A that recognizes p\ Let formula Next(w,x,y) and tuples Initial and Final
be as in the Appendix. The desired formula expresses nonacceptance by A;

ENH(x,o<;y,3)[(x=lnitial -+ <x=l) &
(<x=1 & Next(w,x,y) -> 0=1) & (y=Final 3=0)].

The implication (3) -»(2) is trivial.

(2)-»(l). Without loss of generality, we may suppose that only first
order subformulas of the defining formula can be negated; just use the
usual duality laws of first order logic. Then every subformula of the
defining formula is co-Nlog-space recognizable. It suffices to prove that
if <P(x,y,o<,0) is co-Nlog-space then so is 9=ENH(x,o<;y,j})<p(x,y,o<,£). Thus,
suppose that IT is a log-space bounded nondeterministic Turing machine

- 16 -



that recognizes the negation <P'(x,y,o<,£) of <p(x,y,o<,,3). We have

f «-» 3f VxVy <P(x,y,fx,fy) «-> 3f VxVy not<p'(x,y,fx,fy) *->
3f TTx g notLp'(x.y>0<,3)(fx=« & fy=«) ~
3f TTx_y TTf(x or ry=e) - 3f TT9.(x>g><x>3)Crx==o< or fy*«.
For every x, view "fx=1" as a propositional variable. Then y asserts

satisfiability of the propositional formula TT^-^ y K £)(fx*<x or fy*£) in
variables "fx=r. Recall that a literal is a propositional variable or the
negation of such.

Fact [Kr]. A conjunction C of binary disjunctions of literals is
unsatisfiable if and only if there are a propositional variable p and a circle
aj-» a2~>of literals such that each implication aj-»aj+j as
well as the implication am-»aj is equivalent to a member of C and both p
and the negation of p are in the circle.

Now we are ready to describe a log-space bounded nondeterministic
Turing machine 11 that recognizes the negation of Step-by-step M
guesses a circle of literals that witnesses unsatisfiablity of the
propositional formula TT<p.(x y a g)(fx*<x or fy*£). Having guessed an
implication fx=<x -»fu*0, M uses the given machine M' to establish
<P'(x,y,cx,0). l

$5. Function logics

Restricted to finite structures, primitive recursiveness coincide with
log-space computability [Gull and recursiveness coincide with polynomial
time computability [Gufl, Sa]. These results are discussed in this section.
We give a new and simpler recursive schema that together with primitive
recursive means suffices to construct all recursive functions.

We start with setting a frame. Recall that the universe of every
structure is an initial segment of natural numbers. In this section, we
have three additional provisos:

(1) Every structure contains at least two elements. (Alternatively,
one may assume existence of an extra universe BooMFalse, True}.)
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(2) Individual constants 0, End and a unary function symbol Successor
are logical constants (like equality is a logical constant in first-order
logic with equality). In every structure, 0 denotes itself, End denotes the
maximal number in the universe, and Successor denotes the partial function
Xx(x+t). We will not count the three logical constants as members of any
signature.

(3) A certain (possibly empty) signature a is fixed. Every structure
is a (^-structure.

In this section, a (global) function means a partial (o-global) function
of type Universe? -> Universe^ for some nonnegative integer p (the arity)
and some positive integer q (the coarity). If tj,...,^ are tuples of
elements then (tj tk) will denote the concatenation of tuples tj tk
rather than a k-tuple of tuples.

Global functions are viewed as their specializations on the structure S
of discourse. Let U={0,...,n-1} be the universe of S. The value of a

nonempty tuple (xk_1,...,x1,Xo) of elements of U is the number
Jjc^Xj-n1. If one views elements of U as n-ary digits then any nonempty
tuple is an n-ary notation for its value.

Definition. The initial functions are:

(1) For every nonnegative p, the constant p-ary functions with values
0 or End.

(2) For every positive p, the p-ary p-coary successor function. Given
a p-tuple of value V<nk-1, the function produces the tuple of value V+l; it
is not defined on the p-tuple of value nk-l. We will denote the successor
of a tuple t as t+1.

(3) For all p>q>1 and every sequence 1 <ij <i2<~±iq±P. the
corresponding p-ary q-coary projection function. For example, if p=4, q=2
and ij=2, i2=4 then projection of (0,1,2,3) is (1,3).

(4) The basic (^-functions, and the characteristic functions of basic
a-predicates. (Individual constants are functions of arity 0 and coarity 1.)

The composition g(h|(x) hk(x)) of functions is defined in the
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obvious way. It is required that all functions hj have the same arity and
ar i ty(g) = coar i ty (h j) +... + coar i ty(h^).

As usual, primitive recursion schema is the schema

f(x,2ero) = g(x), f(x,t+l) = h(x,t,f(x,t)) (5.1)

which defines a new function f by means of given functions g and h of the
same coarity. Here Zero is the tuple of zeroes of the appropriate length.

Def inition. A global function is primitive recursive if it belongs to
the closure of initial global functions under compositions and primitive
recursions. A global relation is primitive recursive if so is its
characterictic function.

Theorem 1. A global function f is primitive recursive if and only if it
is log-space computable.

We skip the proof of Theorem I.

The calculus of primitive recursive functions can be made closer to
programming languages. For example, the construct

y:=F0(u); for s-=F,(u) to F2(u) do y=F3(s,u,y)

produces a primitive recursive function y=G(u) provided the given functions
Fj are primitive recursive. On the other hand, the primitive recursion
schema (5.1) can be expressed as:

y:=g(x); for s-Zero to t-l do y:=h(x,s,y)l.

Similarly, given primitive recursive functions F and G, the construct

v-=F0(u); while Fi(u,v)=0 do v=F2(u,v)

produces a primitive recursive function v=G(u) provided the functions Fj
are primitive recursive; and the primitive recursion schema (5.1) can be
expressed as:

(s,y):=(Zero,g(x)); while s<t do (s,y)--(s+1 ,h(x,s,y)).
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The classical Herbrand-Godel-Kleene definition of recursive functions
can be naturally adapted to the case of our global functions; it turns out
that a global function is recursive iff it is polynomial time computable.
Moreover, recursive functions form the closure of primitive recursive
functions under a single additional recursion schema. Two schemas are
specified for this purpose in [Gull. Let us introduce a simpler schema:

f(x,Zero)=g(x), f(x,t+l)=h(x,f(o<x,t),f(£x,t)) (5.2)

which defines a new function f by means of given functions g, h, ex and £.

Theorem 2. A global function is polynomial time computable if and
only if it belongs to the closure of primitive recursive functions by the
recursion schema (5.2).

Proof. The "only if" implication is clear. To prove the "if" implica¬
tion, let RECFUN be the closure of initial primitive recursive functions by
composition and recursion schemas (5.1), (5.2), and let RECREL be the class
of relations with characteristic functions in RECFUN. It suffices to prove
that an arbitrary polynomial time recognizable global relation p belongs to
RECREL because a polynomial time computable function can be recovered
from its graph by primitive recursive means. According to the Appendix,
there is an alternating two-way multihead automaton A that accepts a
structure (S,w) of the appropriate signature if and only if p(w) holds in S.
Let tuples Initial and Final be as in the Appendix.

Without loss of generality, every configuration of A has at most two
next configurations. There are primitive recursive functions <x and 0 such
that if y codes a configuration then <x(w,y) and £(w,y) code the next
configurations; if there is only one next configuration then<x(w,y)=0(w,y).
Without loss of generality, every internal state of A is either existential
or universal; the deterministic states (with only one next configuration)
can be counted either way. We say that a configuration is existential
(respectively universal) if so is the corresponding internal state. There is
a primitive recursive function E such that if y codes an existential
(respectively universal) configuration then Ey equals 0 (respectively I).
Schema (5.2) allows us to define an auxiliary function Ac(w,y,t):

Ac(w,y, Zero) = If y=Final then 1 else 0,
Ac(w,y, t+1) = If Ey=0 then max{Ac(<x(w,y),t), Ac(£(w,y), t)}

else min{Ac(cx(w,y),t), Ac(£(w,y), t)}.

But p(w) +-+ 3t[Ac(w,Initial,0=1}. 1
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§6. Inductive fixed points

We discuss an extension FO+IFP of first order logic by means of what
we call inductive fixed points. It is seemingly a far more liberal extension
than FO+LFP but, in the case of finite structures, its expressive power
coincide with that of FO+LFP. The section is based on paper [OS].

In this section, we are interested in logics without the built-in linear
order. On the one hand, it is natural to have the linear order around: as

inputs for computing devices, structures should be represented in some
way. One the other hand, one is interested often in properties of
structures that are independent of representation; let us call such
properties invariant. One way to ensure invariance of a property is to
express it in a logic that does not distinguish between different
representations. For example, FO+LFP sentences express only invariant
properties.

All FO+LFP expressible properties are polynomial time recognizable.
The contrary is not true: "The cardinality of the universe is even" is not
expressible in FO+LFP [CHI. However, some polynomial time complete
properties are expressible in FO+LFP [lm2]. We doubt that there is a
reasonable logic that expresses exactly polynomial time recognizable
invariant properties'- see the next section. In this connection we are
interested in natural extensions of first order logic that express big
chunks of polynomial time recognizable invariant properties. In any case,
fixed point extensions of first order logic seem to be important enough to
be studied for their own sake.

The restriction that the universes of structures are necessarily initial
segments of natural numbers may be dropped in this section (but structures
are supposed to be finite).

The formulation of LFP formation rule in §3 had one ad hoc feature. In
order to ensure that the operator F(P)={x: <p(P,x)} is monotone, <p(P,x) was
supposed to be positive in P. Unfortunately, replacing the positivity
condition by the condition that F is monotone, results in an extension
FO+LFP' of a first order logic that we would not like to call a logic the
set of FO+LFP'. formulas is undecidable [Gu2]. Fortunately, there is a good
fixed point extension of first order logic which is even more liberal than
FO+LFP'.

Definition. Let F be a unary operation on a complete partially ordered
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set D. Let gO=min(D) and each g(i+1)=F(gi). F is inductive if giig(M)
for every i. F is inflationary if X<F(X) for every XeD. It is easy to see
that if F is inductive then it has a unique fixed point of the form gi; this
fixed point will be called the inductive fixedpoint 1FP(F) of F.

Lemma l. Let F be a unary operation on a comlete partially ordered
set.

(a) If F is inflationary then it is inductive.
(b) The operation F'(X)=sup{X,F(X)} is inflationary; if F itself is

inductive then 1FP(F')=1FP(F).
(c) If F is monotone then it is inductive and LFP(F)=1FP(F).

Proof is clear, l

Examples. Consider the power set of U={0,1,2} ordered by inclusion.

(i) Define FX=Xu{the cardinality of X} if X4J, and FU=U. Then F is
inflationary but not monotone. Moreover, F does not have a least fixed
point: both {1} and {0,2} are fixed points of f but F0*0.

(ii) Define G=F exept G{1}=0. Then G is inductive but neither
inflationary nor monotone.

(iii) The constant operation H(XMO) is monotone but not inflationary.

Building on an idea of Livchak [Li], we defined a logic FO+IFP in [Gu2].
The syntax of FO+IFP is the extension of the syntax of first order logic by:

1FP Formation Rule. Let r be a positive integer, x be an r-tuple
Xj,...,xr of individual variables, P be an r-ary predicate variable, <p(P,x) be
a well-formed formula, and <P'(P,x)=[P(x) or <P(P,x)l. Then IFPp.x<p'(P,x) is a
well-formed predicate and [IFPp;X<p'(P.x)}(x) is a well-formed formula.

The meaning of the predicate lFPp.x<p'(P,x) is the inductive fixed point
of the inflationary operator F(P)={x; <P'(P,x)}. The global function
semantics for first order logic naturally extends to FO+IFP.

The statement (c) of Lemma 1 implies that FO+IFP is at least as

expressive as FO+LFP'.

Theorem 1. The logics FO+LFP and FO+IFP have the same expressive
power.
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Theorem 1 is a consequence of a stronger theorem. Let T be a global
function of the empty signature and of type

(Power-set(Universe))r * (Power-set(Universe))r * (Universe)1" —* Bool.

6iven (an arbitrary universe and) two r-ary relation P|, P2 and an r-tuple x
of elements, r produces a boolean value r(Pj,P2,x). Define an extension
FO+F of first order logic in the obvious way. More specifically, extend the
syntax of first order logic by means of the following formation rule: if x
is an r-tuple of individual variables and <p(x), <Kx) are well formed
formulas then so is r({x= <p(x)}, {x= ^(x)},x). The semantics is clear. We
suppose that r is monotone in both relational arguments (in every
universe). In other words, the following second order formula is logically
true--

lP1cP3&P2cP4l-»[r(P1,P2.x) — r(P3,P4,x)].

Treat r as a positive operator: every positive (respectively negative)
occurence of a predicate symbol in <p(x) or 9(x) remains so in
r({x: <p(x)}, {x= <Kx)},x). It is easy to see that if an FO+F formula *KQ,y) is
positive in a predicate symbol Q then the operator F(Q)={y: *KQ,y)} is
monotone; if this operator is also repetitive (i.e. the length of the
sequence y of individual variables equals the arity of Q) then F has a least
fixed point.

Theorem 2. There is an FO+r formula t such that

llFPp;x(P(x) or r(P,-P,x)](x) is equivalent to [LFP W(...).

To deduce Theorem 1 from Theorem 2, prove that every FO+IFP formula
<p is equivalent to (i.e. defines the same global relation as) some FO+LFP
formula. The proof proceeds by induction on <p. The only nontrivial case is
when <P=[lFPp.x(P(x) or <&(P,x))](x). Let r(P,P',x) be the result of replacing
all negative occurrences of P in <D by a new predicate symbol P\ Then r is
monotone in both relational variables and <KP,x) is equivalent to r(P,--P.x).
Now use Theorem 2.

Theorem 3. Every FO+IFP formula is equivalent to an FO+IFP formula
<p such that <p is either first order or of the form [1FP $](...) where <& is
first order.
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Theorems 2 and 3 immediately imply the analog of Theorem 3 for
FOLFP announced in [1ml].

Remark. Theorem 3 can be strengthen further: can be taken to be a
boolean combination of existential first order formulas [BoGl. .A similar
remarks applies to a number of other extensions of first order logic.

§7. Invariant global relations

In the previous section, we mentioned invariant properties of
structures. Here we formalize the notion of invariant global relations and
make a couple of remarks about invariant global relations.

We drop the assumtion that the universes of structures are initial
segments of natural numbers (keeping the assumtion that structures are
finite), but restrict interpretations of the binary predicate symbol < to
linear orders; structures with (an interpretation of) < will be called
ordered and structures without < will be called unordered. This is an

expository matter: each ordered structure is naturally isomorphic to a
standardly ordered structure on an initial segment of natural numbers.

Let c range over signatures without <. If ordered structures S and T
of some signature c?u{<} are equal except for the interpretations of <, we
view S and T as representations of the same unordered structure 50 of
signature O; we say that SQ is the unordered version of S, and S, T are
ordered versions of S0, and T is the result of a reordering of S.

Definition. Let p be an r-ary global relation defined on all reorderings
of an ordered structure S. Then p is invariant on S if for every reordering
T of S and for every r-tuple x of elements of S, p^(x) «-♦ pT(x).

Definition. An r-ary K-global relation p is abstract if for every
isomorphism f from a K-structure S onto a K-structure T and all elements
Xj xr inS, ps(xj,...,xr) «-♦ pT(fx1 fxr).

Definition. Let K be a class of ordered structures of a fixed signature
that is closed under reorderings. A K-global relation is invariant if it is
(i) abstract, and (ii) invariant on every structure in K.

Corollary. Let K be a class of ordered structures, p be an r-ary
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K-global relation, S range over K, S0 be the unordered version of S, and x
range over r-tuples of elements of S. Then p is invariant if and only if the
boolean value of p(x) in S depends only on the isomorphism type of (Sg.x).

Examples of invariant global relations are the center of an ordered
group (no correlation is assumed between the order and the group
structure) and the transitive closure of the edge relation of an ordered
graph. Note that the definition and computation of an invariant relation
may use the ordering of the universe, only the relation itself must not
depend on the order. For example, the following algorithm computes the
center of an ordered group:

O=0;
for x*-=(the first element) to (the last element) do
begin

f lag*-=1 ;
for y:=(the first element) to (the last element) do

if x-y*y-x then flag-0;
if flag=l then C=Cu{x}

end.

Theorem 1. The decision problem whether a given first order sentence
(that uses symbol <) yields an invariant global relation, is undecidable.

Proof. Let <x range over first order sentences without symbol < The
validity of <x on all finite structures is undecidable [Tr], hence the validity
of <x on all finite structures with at least two elements is undecidable.
Let P be a unary predicate symbol that does not occur in <x, and let £ be a
first order sentence of signature {P,<} asserting that < is an order and the
first element belongs to P whereas the last element does not. It is easy
to see that <x is valid on all finite structures with at least two elements
if and only if the disjunction (<x or £) is invariant, l

Theorem 2. There is a first-order sentence <p such that the decision
problem whether <p is invariant on a given ordered structure, is co-NP
complete.

Proof. We reduce the 3-colorability problem, which is a known NP
complete problem [GJ], to the complement of our problem. The
3-colorability problem remains NP complete if one considers only graphs
0=(V,E) such that V={0,..,n-1} for some n>3 and E*0; order any such graph
G in the standard way and call the result G<.
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The desired <j> speaks about ordered graphs. It asserts that there are
vertices x<y such that the segments {w v<x}, {v= x<v<y} and {v= y<v}
constitute a 3-coioring of the graph. If a graph G is not 3-colorable then
<p fails on any reordering of G< and therefore is invariant on G<. If G is
3-colorable then <p holds on some reordering of G< and fails on another; in
this case f is not invariant on G<. l

We conjecture that no logic (under some reasonable restrictions on the
notion of logics, see the next section in this connection) expresses exactly
invariant polynomial time recognizable global relations.

$8. Is there a logic for NPncoNP or R ?

We give some evidence that no logic expresses exactly NPncoNP
global relations or exactly R (random polynomial time recognizable)
global relations. The argument is an elaboration of a remark in [Gul] and
uses Sipser's result [SiI] that each of the two classes fails to have a
complete problem (with respect to polynomial time reductions) under an
appropriate oracle.

We suppose that every logic L determines a set of L-sentences and a
satisfaction relation (-j_. A signature is associated with each L-sentence,
and there is a Turing machine that, given a signature o, generates all
L-sentences of signature a. The satisfaction relation(-L is a set of pairs
($,<P) where <p is an L-sentence, S is a structure and the signatures of S
coincide. An L-sentence <P defines the class Mod(?)={S: S(-L«p} of models
of <p.

First we consider class NPncoNP. Nondeterministic Turing machines
11, N and a polynomial f will be said to witness that a class K of
structures of some signature a is NPncoNP if for every n and every
tf-structure S of cardinality n, (i) S6K iff M accepts S within time f(n),
and (ii) S does not belong to K iff N accepts S within time f(n).

Definition 1. A logic L captures NPncoNP if'-
(i) For each L-sentence <p. the class Mod(<p) is NPncoNP; moreover,

there is a Turing machine that, given an L-sentence <p, produces a triple (11,
N, f) witnessing that f1od(<p) is NPncoNP; and

(ii) Every NPncoNP class of structures of a fixed signature is
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definable by an L-sentence.

Theorem 1. If a logic L captures NPncoNP then NPncoNP has a
complete problem with respect to polynomial time reducibiIity.

Proof. Let d be a signature comprising one unary predicate symbol.
Fix a Turing machine A that generates all L-sentences of signature d, and
a Turing machine B that, given an L-sentence <p of signature d, generates a
triple witnessing that Mod(<p) is NPncoNP. Let Q be the set of tuples
(«,<p, $,M,N,f,S, 1^) such that (i) <x is a computation of A, <p is an
L-sentence generated by <x, £ is the computation of B on <P, (M N,f) is the
output of £, S is a d-structure, n is the cardinality of S, is a string
of I's of length n, and (ii) S(-L<p.

The condition (i) is polynomial time checkable. The condition (ii) is
NP (respectively coNP)= guess a computation of M (respectively N) on S of
length f(n) and verify that the computation is accepting. Thus the decision
problem for Q is NPncoNP. To show that this decision problem is
NPncoNP hard, we reduce to Q the decision problem for an arbitrary
NPncoNP class X of binary words. If w is a binary word cxj ...<xn let Sw be
the d-structure with universe {0,1,...,n} and relation {i= «j=l}. Since L
captures NPncoNP, there is an L-sentence <p with Mod(<p)={Sw: wcX}. Let <x
be a computation of A that outputs <p, £ be the computation of B on <p, and
(M.N.f) be the output of £. Obviously, weX iff SweMod(<p) iff
(<xt<M.M,N,f,Sw, if(n+0) belongs to Q. l

Theorem 1 contrasts with Sipser's result [Sil] that, relative to some
oracle A, NPncoNP does not posses a complete problem. (Certainly no
logic expresses exactly the global relations that are NPncoNP with respect
to A because the proof of Theorem 1 relativizes.)

Conjecture. If there is a logic that captures NPncoNP then something
trastic happens like NPncoNP=P or NP=coNP. (If necessary, restrict
further the notion of a logic capturing NPncoNP.)

One way to restrict the notion of a logic L capturing NPncoNP, is to
request that L-sentences are polynomial time recognizable.

Remark. The converse of Theorem 1 is true to the extent that, given
an NPncoNP complete problem Q, one can construct a set of "sentences"
and a satisfaction relation that capture NPncoNP. Define sentences of
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signature o as triples (M,f,cO where M is a deteministic Turing machine
and f is a polynomial. Say that a ^-structure S of cardinality n satisfies
<P=(fl,f,a) if M halts on input S within time f(n), and the result n(S)
belongs to Q. (One can speak also about "formulas" (n.f.a.Vj vr) with
free individual variables V| vr; treat the variables as additional
individual constant.)

Definition 1 and Theorem 1 generalize to other classes with well
defined witnesses. We turn now to random polynomial time. Recall that a
set K of strings in an alphabet I is R if and only if there are a
deterministic Turing machine 11 and polynomials f,g such that for every n
and every string scZ* of length n the following are equivalent;

(i) There is a string t in {0,1}^ such that M accepts the pair (s,t)
within time f(n), and

(ii) For at least one half of strings t in {0,1 11 accepts the pair
(s,t) within time f(n).

We say that (N.f.g) witnesses that K belongs to R. Without loss of
generality, we may suppose that fn>gn for all n. The definition obviously
generalizes to the case when K is a class of structures of a fixed
signature.

Definition 2. A logic L captures R if;
(i) For each L-sentence <p, llod(f) is R; moreover, there is a Turing

machine that, given an L-senterice <p and its signature, produces a triple
(11,f,g) witnessing that {S; S satisfies <p} is R; and

(ii) Every R class of structures of a fixed signature is definable by an
L-sentence.

Theorem 2. If a logic L captures R then R has a complete problem
with respect to polynomial time reducibility.

Proof is similar to that of Theorem 1. 1

Theorem 2 contrasts with Sipser's result [Sil] that, relative to some
oracle, there is no complete problem for R with respect to polynomial time
reducibility.



§9. Miscellany

9.1. A logic for log-space constructable sequences of circuits of
bounded depth.

We suppose here that every signature comprises only predicate
symbols, and every boolean circuit has a unique output gate. Recall that
the universe of a structure of cardinality n is the segment {0,l,...,n-1} of
natural numbers.

Definition. Let a be a signature, U={0,),...,n-1}, and A be the set of
sentences Q(i ^,.... ir) where Qea, r is the arity of Q and every ip£U. A
boolean circuit C is formatted to a and n if all input gates of C are
labeled by elements of A. (C may have less than | A | input gates.)

Definition. A circuit C, formatted to a and n, accepts a a-structure
S of cardinality n if C outputs 1 when the inputs gates of C are set with
respect to S (an input gate labeled Q(i j,..., ir) gets value 1 if S satisfies
Q(i j ir) and value 0 otherwise).

Definition. A a class K of a-structures is definable by a sequence of
circuits Cj every cn can be formatted to a and n in such a way
that the formatted circuit accepts a a-structures 5 of cardinality n if and
only if SeK.

Given a signature a, a first-order a-sentence f and a natural number
n, it is easy to construct a circut Cn formatted to a and n in such a way
that the depth of Cn is the logical depth of <p, and Cn accepts a a-structure
S of cardinality n iff S satisfies ?. Let an be the extension of a by
individual constants 0, I,..., n-1. By induction on the logical depth, turn
any sentence <x of signature an into a formatted circuit <xn. If <x is atomic
then <xp, is the circuit comprising one gate labeled tx. The cases of
conjunction, disjunction and negation are obvious. If <x is 3x£(x)
(respectively Vx£(x)) then join the circuits £(0)n, £(On, •••» £(n-1)n by an
additional OR (respectively AND) gate. <pn is the desired Cn.

The sequence of circuits, constructed in the previous paragraph, is
very uniform. In particular, it is log-space constructable i.e. there is a
log-space bounded Turing machine that, given the unary notation for n,
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produces (the standard code for) Cn.

Let L0 be a logic that captures exactly log-space recognizable global
predicates of the empty vocabulary. L0 can be the fragment of logic
FO+DTO< (see §3) whose formulas contain no individual constants, no
function symbols and no predicate symbols except for <. Lq can be the
calculus of primitive recursive functions of the empty vocabulary (see §6);
in this case the formulas are equations t=0. Let FO+L0 be the extension of
first-order logic by Lq. The formulas of FOLq are built from first-order
formulas and formulas in L0 by first-order means (boolean connectives and
quantifiers V,3); the semantics is obvious.

Theorem [GL]. Let K be a class of structures of some signature c.
The following are equivalent••

(i) K is definable by a log-space constructable sequence of circuits of
bounded depth,

(ii) K is definable by a sentence in FO+L0.

We skip the proof here. The theorem generalizes for many other
complexity classes [GL].

9.2. A note on topology on finite sets.

There is a definite analogy between classes of unary global relations
definable by sequences of bounded-depth polynomially-bounded-size
circuits on one side and Borel subsets of the Cantor discontinuum on the
other side. This analogy was exploited by Sipser in [Si2l. Reading Ajtai's
paper [Ajl, we found it useful to think in terms of Borel subsets of finite
topological spaces. The definition of Borel subsets of finite topological
spaces is given in this subsection.

Recall that a topology is T j [Kul if all one-point subsets are closed;
we are not interested here in topologies that are not Tt. Every finite Tt
topological space is discrete i.e. every subset is both closed and open.
Thus the theory of finite Tt topological spaces seems to be quite trivial.
However, one may ask how many intersections and unions does it take to
express a given point set in terms of sub-basic open sets. This leads to a
generalization of the Borel hierarchy to finite topological spaces.

- 30 -



Definition. Xn is the topological space whose points are subsets of
{0,1,...,n-U and whose sub-basis comprises the n point sets (P-- ieP}.

The analogous definition for u> instead of {0,1 n-1} would result in
a topological space X^ homeomorphic to the Cantor Discontinuum [Ku, §3,
IX]. Borel subsets of X^ form the closure of the sub-basis under
complements, countable intersections and countable unions. This suggests
the following:

Definition. A subset of Xn is Borel of level 0 if it is sub-basic. It is
Borel of level d>0 if it is the intersection of at most n Borel sets of
levels less than d or the union of at most n Borel sets of levels less than d
or the complement of a Borel set of a level less than d.

There is an obvious connection between Borel point sets and boolean
circuits with a unique output gate. Suppose that C is a circuit with n
input gates labeled by integers 0,...,n-l. In the obvious way, the input of
C represents a point in Top(U). C is said to accept a point P if the
corresponding output is 1. C is said to recognize the set {P= C accepts P}.

Claim 1. Let F be a family of subsets of Xn, and d be a natural
number. The following are equivalent:

(i) F is Borel of level d,
(ii) There is a circuit C with n input gates labeled by integers

0,...,n-l such that the depth of C is at most d, the fan-in of C-gates is
bounded by n and C recognizes X.

Proof is clear, i

Definition. A globalpoint set it assigns a subset of Xn to each Xn.
If there is a natural number d such that the specification of it on each Xn
is Borel of level d then it is Borel (of level d).

Claim 2. The following are equivalent:
(i) it is Borel,
(ii) There is a bounded-depth polynomially-bounded-size sequence of

circuits Cn such that each Cn recognizes the specialization of it on Xn.

Proof is clear.
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Let P be a unary predicate symbol. A first order sentence <p(P) in
signature {P} defines a Borel global point set {P- <p(P)} of level d where d is
the logical depth of <p(P). One obvious property of a first-order definable
point set 7t is a symmetry-* if and P2 are subsets of Xn of the same
cardinality then Pt belongs to is the specialization of tt on Xn if and only
if P2 does. There are symmetric Borel global point sets that are not first
order definable [DGS, FKPS].

SiO. Turing's thesis and dynamic structures

We argue in favor of a computation model based on finite computing
devices (whereas classical computation model is based on potentially
infinite computing devices like Turing machines). In order to formalize
finite machines, a special class of dynamic structures is introduced. The
section is based on [Gu4] and a forthcoming [B1G2].

Turing's thesis asserts that every algorithm can be simulated by an
appropriate Turing machine. An implicit part of the thesis is that Turing
machines are justifiable idealizations of real computing devices. But are
they? The problem is that Turing tapes are potentially infinite; in that
sense Turing machines are potentially infinite.

The answer depends on what reality one has in mind. To prove
informally his thesis, Turing analized a routine computation of a human
computer. He idealized a pile of paper sheets as a work tape. It is natural
to suppose that more paper is available than a human computer can
possibly use. In this situation potential infinity of the tape is quite
justifiable. One can think about other situations where the idealization of
potentially infinite machines is justifiable.

On the other hand, the resources of nonhuman computers are often
explicitly bounded and the computer may easily run out of some resource
(my Macintosh runs out of memory all the time). In such situations the
idealization of computers as potentially infinite machines is not
justifiable. (Imagine you buy a Turing machine and use it. After a while
you may run out of tape. The table of your Turing machine does not tell
you how and where to get an extension. Of course, the manual may contain
some useful hints but this is not precisely an algorithm.)

We restrict our attention to digital (rather than analog) finite



computing devices that work in discrete time. The finiteness means here
that the hardware is essentially fixed. Changing a bolt is not important
but extending the primary memory (or adding a new processor to a
multiprocessor machine) results in a new machine.

Now let hear our imaginary opponent.

Objection I. A computer with a fixed hardwere is just a finite
automaton.

Answer. This is true, but the classical theory of finite automata is
not very relevant unless one deals with very small devices. Even in the
case of a personal computer, the total number of different states is
overwhelming. It is not feasible to describe the behavior of a real
computer by a state transformation table or a regular expression. One has
to take into account the internal structure of computers, and we are
intending to do that.

Objection 2. A finite machine A is just a cut-off part of a potentially
infinite machine M. For example, a Turing machine with a bounded tape is
just a cut-off of a Turing machine with an unbounded tape. Accordingly,
each computation of A is just an initial segment of a computations of fl.
The only new information, gained by studying finite machines, is knowledge
of when they break down.

Answer. Some finite machines are just truncations of appropriate
infinite machines, but others are not. One distinguishing feature of finite
machines is that they may know their resources and use this knowledge.
Think about MAXINT of a virtual Pascal machine; what does it correspond
to in the case of an infinite machine? For another example, in which the
use of resource bounds is crucial, consider operating systems.

Objection 3. Potentially infinite machines are needed to define the
operational meaning of a program (say, a Pascal program). For example,
every finite machine fails to compute the factorial of a sufficiently large
natural number; so how can a finite machine give operational meaning to an
algorithm for computing factorial?

Answer. The operational meaning of a program is given by a family of
finite machines. Think for example about a family of virtual finite Pascal
machines with different values of MAXINT. For another example, consider
different implementations of UNIX.

- 33 -



More extensive answers to the objections can be found in [Gu4j. The
question of adapting Turing's thesis to finite machines is discussed there
too. Dynamic structures and families of dynamic structures seem to be the
right terms for formulating a new thesis (new theses). Here we do not
formulate new theses. We only define two very special classes SEQ and
PAR of dynamic structures and give a couple of examples.

In both cases, static structures (and in particular the static parts of
dynamic structures) are finite many-sorted first-order structures. Thus, a
static structure consists of a finite number of nonempty finite domains
(sorts, basic types) and a finite many basic relations and functions (of
specified arities) between these domains. For technical convenience we
allow functions of coarity greater than 1. The values of a function of
coarity r are r-tuples of elements; such a function could be always
replaced by r functions, its components, of coarity 1. The notion of first
order terms is easily generalizable to the case of vector terms. The
different basic types of a static structure are supposed to be disjoint and
the basic functions are supposed to be typed: each argument place and
each value place is assigned a particular basic type; as a result, vector
terms are typed. Without loss of generality, there are no basic relations
(only basic functions): just view relations as functions with values of
type Bool={True, False}.

A dynamic structure S of class SEQ evolves in discrete time. The
configurations (instantaneous states) of S are static structures of the
same signature as the static part of S; the initial configuration of S is
the static part of S. The evolution is governed by (a finite many of)
transition rules. There are two kinds of transition rules. A sequential
interna/ transition rule has the form

If SpS'j and ... and sm=s'm then f(t):=u (10.1)

where the vector terms Sj, s'j, t, u are all variable free. The rule updates
the value of the basic function f at point t provided the conditions Sj=s'j
are satisfied. A sequential externa! transiton rule has the form

If SpS'j and ... and sm=s'm then f(t):=INPUT (10.2)

where the vector terms Sj, s'j, t are variable free. It updates the value of
the basic function f at point t provided the conditions Sj=s'j are satisfied.
However, the new value comes from outside. It is a character in the input
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alphabet which is one of the basic types.

A basic function f of 5 is static if S does not have any transition rule
for updating f, otherwise f is dynamic. The two boolean values and the
propositional connectives are typical static functions (the boolean values
are 0-ary functions).

Consistent dynamic structure in SEQ are idealized sequential
computing devices. It is argued in [BIG2] that SEQ dynamic structures
satisfactory formalize arbitrary "real" sequential computers.

Example ]-• A formalization of a Turing machine with one
(inextensible) tape of length n as a dynamic structure S. For the sake of
definiteness, we suppose that if the head of the machine is located in the
leftmost (respectively rightmost) cell and is instructed to move left
(respectively right) then its position remains unchanged. The static part
of the desired dynamic structure has basic types Alphabet, Control, and
Tape. Here Tape is the initial segment {0,1 n-1} of natural numbers.
Each element of type Alphabet or Control is a static basic function. The
other static basic functions are 0, End whose values are the numbers 0,
n-l respectively, and Succesor, Predecessor of type Tape -»Tape.
Successor(i)=i+l if i*End, and Successor(End)=End; similarly
Predecessor(i)=i-l if i*0, and Predecessor(0)=0. The dynamic basic
functions are: Head of type Tape, State of type Control, and Content of
type Tape -+ Alphabet. The transition rules reflect instructions of the
machine. Every instruction yields three transition rules. For example, an
instruction pa -» qb(-l) yields:

If State=p and Content(Head)=a then State-q,
If State=p and Content(Head)=a then Content(Head);=b,
If State=p and Content(Head)=a then Head:=Predecessor(Head). 1

Example T- A partial formalization of a Von Neumann computer as a
dynamic structures in SEQ. We suppose that machine words contain 32
bits; the first 8 bits may specify an operation code, the remaining 24 bits
then constitute an address. Let Fetch. Store and Jump be operation codes
for the respective operations. There is only one basic type Bit={0,U. The
two elements 0 and 1 of type Bit are static basic function. The other
static basic functions include projections x| 0..7 and x| 8..31 of types
Bit32 -» Bit® and Bit32 -* Bit24 (with obvious meaning). The dynamic
basic functions include PC (the program counter) of type Bit24, Ac (the
accumulator) of type Bit24, and Me (the memory) of type Bit24 -» Bit32.
The transition rules include:
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If Me(PC)
If Me(PC)
If rie(PC)

0..7 = Fetch then Ac-= Me(he(PC)| 8..31),
0..7 = Store then Me(Me(PC) 18..31 )•= Ac,
0..7 = Jimp then PO= Me(PC)18..31. l

The definition of class PAR is similar to that of class SEQ but free
variables are allowed to appear in 10.1 and 10.2. The new rules are called
parallel interna! and parallel externa! respectively. Consistent dynamic
structure in SEQ are idealized parallel computing devices. It is argued in
[B1G2] that PAR dynamic structures satisfactory formalize arbitrary "real"
parallel computers.

We attempt to formalize families of real and virtual computing
devices and to develop a logic of finite dynamic structures which is
supposed to provide an alternative semantics for imperative programming
languages.

Appendix. Two-way multihead automata

To accomodate standard representations of structures (see Si), our
computing devices have in general several input tapes. One of these input
tapes is the universe tape that contains the unary notation for the
cardinality of the structure. We will ignore structures of cardinality 1 and
will suppose that the end-cells of the universe tape are specially marked.

A two-way multihead automaton is as a Turing machine without any
work tape. It seems to be a long known folklore that the recognition
power of two-way multihead automata equals that of log-space bounded
Turing machines.

Theorem \. A global relation is recognizable in log-space by a
deterministic (respectively nondeterministic, alternating) Turing machine
if and only if it is recognizable by a deterministic (respectively
nondeterministic. alternating) two-way multihead finite automaton.

Proof. The "if" implication is easy (and will not be used)-* record the
current positions of the automaton heads on a work tape.

To prove the "only if" implication, suppose that a log-space bounded
Turing machine M recognizes the global relation in question. Let n be the
length of the universe tape. Without loss of generality, we can assume the
following about 11= there is only one work tape, on each step the work tape
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head either writes or moves but not both, the work tape alphabet is {0,1}
where 0 is also the blank, and the end cells of the work tape never hold
zeroes.

Let u be the content of the initial segment of the current work tape up
to and including the position of the head, v* be the content of the
corresponding final segment, and v be the reverse of v*. The strings u and
v are binary notations for some numbers that uniquely define the content of
work tape. The symbol observed by the work tape head is exactly the
parity of u (0 if u is even and 1 otherwise). If the work tape head changes
0 to 1 (respectively 1 to 0) then u:=u+l (respectively u:=u-l) and v does
not change. If the work tape head moves to the right then u==2u+S and
v:=(v-S)/2 where 8 is the parity of v. If the work tape head moves to the
left then u==(u-8)/2 and v==2v where 8 is the parity of u.

Since the length of the work tape is bounded by a multiple of logn, the
numbers u and v are bounded by some nk. Thus,

u = Zj<k°<inl and v = 2j<k£jnl

where «j,£j<n for each i. The desired two-way multihead automaton A
represents u and v by 2k heads on the universe tape. Using a few auxiliary
heads, A is able to compute the parities of u.v and to perform the
operations u-u+1, u-2u+parity(v), u--[u-parity(u)l/2, and the same
operations with v. (Concerning the operations u:=u-1 and v==v-l recall that
the end cells of the work tape never hold zeroes and therefore u and v are
always positive.)

Some internal states of A code the internal states of M, in addition A
has some auxiliary internal states. When A is the internal state p coding
an internal state q of M, the configuration of A codes a configuration of M;
if q is existential (respectively universal) then so is p. Every auxiliary
internal state of A is deterministic. It is easy to see that A faithfully
simulates II and that A accept a given structure iff M accept it. 1

Corollary. A global relation is polynomial time recognizable if and
only if it is recognizable by an alternating two-way multihead finite
automaton.

Proof. Polynomial time equals alternating log-space ICKSl. 1

Suppose that a two-way multihead automaton A recognizes a global
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relation p. Represent the position of a head h on a tape of length rP by a
p-tuple xh0 Xh(p-1) witri trie ir>tended interpretation Zxhi*n . Here n
is the length of the universe tape and each xhj is a natural number <n.
Further, represent the j-th internal state of the automaton by a q-tuple yQ,

yq_j where q is the number of internal states, yj= 1 and yj=0 for i*j.
Thus there is an r such that every configuration of A is represented by an
r-tuple of natural numbers <n. Without loss of generality, we may assume
that A has a unique accepting configuration and that both in the initial and
in the accepting configuration of A all heads are in the leftmost positions.
Then the r-tupies Initial and Final, representing the initial and the final
configurations respectively, consist of zeroes and ones.

Claim. There is an FO+< formula Next satisfying the following. Let S
be a structure in the domain of p, w be a k-tuple of elements of 5 where k
is the arity of p, and x, y be r-tuples of elements of the unverse of S.
Then Next(w.x.y) holds in S if and only if x.y represent configurations of A
on input (S.w) and A is able to go from configuration x to configuration y
in one step.

Proof. The desired formula Next is a conjunction where each conjunct
describes (in the obvious way) one instruction of A. (The variables w
appear since there are reading heads on the corresponding input tapes.) 1

Remark. The formula Next is especially simple if one uses the
successor function (rather than order) and individual constants 0 and End.
If the universe is {0,...,n-l} then End is interpreted as n-l. To make the
successor function total, define Successor(End)=0 or Successor(End)=End.

In the rest of Appendix, a global function is a partial o-global functon
of type Universe^ •* Universe^ for some a.p.q; such global function assigns
to each (^-structure S a p-ary q-coary operation on the universe of S.

Theorem 3. A global function is computable by a deterministic
log-space bounded Turing machine if and only if it is computable by a
deterministic two-way multihead automaton.

Proof is essentially the same proof as that of Theorem 1. If the
simulated device outputs a character in a configuration x then the
simulating device outputs the same character in the configuration that
represents x. i
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8 PT ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz;:",./?$0123456789
10 PT ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz;:",./?$012&56789

News Gothic Bold Reversed

ABCDEFGHI J KLMNOPQRSTUVWXYZabcdefghijklrnnopqrstuvwxyz;:",./? $012 34 567 89
ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghi jklmnopqrstuvwxyz;:'\./?$012 34567 89
ABCDEFGHIJKLMN0PQRSTUVWXYZabcdefghijklmnopqrstuvwxyz;:",./?$0123456789
Bodoni Italic
A HCDHh'CHIJKl.MNOI'QRSTUyWXY/MbcdefghijklmnoiHintuvwxyz:: ",./?S0123456789

ABCDEFGHIJKLMNOPQRSTUVWX YZabcdefghijklrnnopqrstuvwxyz;: ",./?$0123456 789
ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklrnnopqrstuvwxyz;:. /?$0123456789
ABCDEFGHIJKLMNOPQR STUVWX YZabcdefghijklmnopqrstuvwxyz;:'r,.
Greek and Math Symbols
ABTAEH0HIKAMNOII<l)P2TYnX>l'Za/378€^Si7iKA^voir((>pcrTVo)X<|»{=:F' '>•/== + = ?t°> <><>< =

ABrAE=6HIKAMNOn4>PZTYnX1'Za/3T8£5e7)iKXti.TOir<|)po-ruo)Xi);{Sq:",./^± = ^-> <><>< =

ABrAE=eHIKAMNOn<I>P2;TYnX4'Za/3y8€|9T)iKAjuvo7r<f)p<Trvo)X>l'^T". /^± = =A°> <><><=

ABrAES0HIKAMNOn<l>P2TYfiXvPZa/3y8e£0i7iKA.fAvo7r<j>pcrTy2 =

t rr

6 PT

8 PT

10 PT

6 PT

8 PT

10 PT

White

MESH HALFTONE WEDGES
i i i i

0123456
6.



MEMORIALDRIVE,ROCHESTER,NEWYORK14623
H >

Z o > O
_J
O z X o

03SEP
1S53j 233EJ 33EB̂ tiIf™55538355 6EE57B35 cthji^Ca)N)—*O wmrummiULJl

ffl

UlnjIUmillmmSr.Ki-HsJ
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