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THE GENERAL
CONSISTENT LABELING (or CONSTRAINT SATISFACTION) PROBLEM

ABSTRACT

A central Problem in Artificial Intelligence and Operations Research is the Consistent Labeling (or
Constraint Satisfaction) Problem3 CLP. This paper formulates CLP at a level of generality far beyond that
usually treated, partitions it in various ways and introduces several probability models over the equivalence
classes of these partitions. One partition of CLP is into small-classes, which have the very desirable
homogeneity property that most instances within a given small-class have similar complexity of solution.
This is the partition sought (but not found) by Gaschnig in his thesis [26]. Small-class homogeneity means
that a small-class expeeted-caae value can be used as a good approximation to the exaet-eaae complexity of
solving individual subsumed instances of the class. Our small-class expected complexity expressions thus
provide for the first time a formal means of making problem-solving decisions (regarding which search-
ordering, which algorithm and even which problem representation to U9e) that are good on an instance-by-
instance basis. Various enumerative, combinatorial and probabilistic results are derived for the partitions
and the probability models introduced over CLP. Our subsequent paper [52] uses these results to derive
expected-case complexities for CLP problem-solving by three important algorithms, Backtracking,
Forward-Checking and word-wise Forward Checking.

1. INTRODUCTION

This section informally introduces the general Consistent Labeling Problem (CLP), perhaps
better known as the Constraint Satisfaction Problem. Previous related work is discussed, in particular the
contributions of Knuth [41], Gaschnig [26] and Haralick [36]. A major new theme of the present work is
introduced: the value of carrying out a complexity analysis in terms of what we call homogeneous problem
classes, so that a class expectation may be used as a good predictor of the complexity of solving individual
subsumed instances of the class. In other words, an analysis with respect to homogeneous classes, allows
expected-case values to be used as effectively exact-cade values. Such an approach should be valuable for
algorithmic complexity analysis in general; the present application to CLP should be taken as a case-
study.

1.1. The Problem and Its Algorithms
Despite the importance of the Consistent Labeling Problem in Artificial Intelligence and Operations

Research, an adequate theoretical analysis of it and its algorithms has remained lacking. Such an analysis
could lead to greatly improved problem-solving efficiency by providing a much-needed formal basis for
decision-making during problem-solving. We have recently obtained expected-complexity expressions for
three different CLP algorithms, and these have proven useful (see [51]) in guiding not only which algo¬
rithm to use, but also which search-ordering and even which problem-6oiving representation to use.

The term Consistent Labeling Problem or CLP is due to Haralick [34], [37] although it is perhaps
best known as the Constraint Satisfaction Problem [19], [46]. It has been much studied and a good many
other names also exist for CLP, among them the Satisficing Assignment Problem [26], Network Con¬
sistency Problem [46], [50], Relational Consistency Problem [49] and the Relation Synthesis Problem [23].
CLP is a slight generalization of Lieberherr's ^-Satisfiability [45] which itself generalizes Schaeffer's S-
Satisfiability [67], also referred to as Generalized Satisfiability in [24] since it in turn generalizes the well-
known Satisfiability Problem of Cook [12]. The following additional terms may also be familiar but they
describe more a solution method for CLP than the problem itself: Discrete Relaxation [65], Constraint
Propagation [6], [70], Constraint Manipulation [19], Range Constriction [79], Waltz Filtering [78], [79],
Backtracking [4], [29], [36] and Forward Checking [36].

3 The word problem will be used in two senses in this work. The first sense refers to the nsnnl kind of problem — for which a
specific inswer is sought to some question About some specific situation (or problem structure). The second sense refers to a claet of
problems of the first kind (asuAily obtained by Allowing the problem structure to ynry by use of a few pATAmeters). To reduce Am¬
biguity we will often nse Problem (with An upper cnse P) when referring to snch a cIass, And problem (with a lower cAse p), Problem
inetance or jast inetanee when referring to a cIass member. (This convention is not AlwAys Adhered to, bat the intended sense will
generAlly be cIcat from context.) Annlogonsly we nse CLP for the cIass of problems we Are interested in here, while elp will refer to
An indrndanl member of CLP.
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The problem as studied here however is much more general than the versions usually treated in the
literature under the various aliases above — and this generality is carried through in all the complexity
analyses of [51] and [52]. The main reason we have sought such generality is because of the ability of our
expected-case values to approximate well exact-case values for individual instances. Since we can thus
predict complexity for individual instances, we wish to take advantage of this ability to the full by having
results that cover a problem class general enough to include all the various CLP instances that arise in
real-world contexts. As described in [51], the results then become practical problem-solving tools, since
they can guide decision-making on an instance-specific basis for arbitrary realistic instances arising in
practice. A formal definition of CLP will appear in section 2. The following informal definition is con¬
venient at this stage.

An instance of the Consistent Labeling Problem consists of
(1) a set of variables,
(2) a finite domain of candidate values associated with each variable — different variables possibly

having different associated domains of values,
(3) a set of constraints on the values that various combinations of variables may compatibly take on,

and

(4) a goal, which is to find all ways to assign to each variable a value from its associated domain in
such a way that all constraint are simultaneously satisfied.

Consider the following example: Assign values to the three variables zx, z2 and zs from their respec¬
tive value domains {0 1}, {0 1} and {0 1 2}, in such a way that the following four constraints Cx to C4
are satisfied.

Cx: zx V z2 (1)

C 2' (£3-3)2+(zi-4)2<25

('f1 )=»*i +2Zl

CA: exp[ zx + ^2 + ^3] > 1-0

(3)

(4)

There are two solutions, or consistent labeling*, for this CLP instance. They are

{z1=rl z2== 0 2S=s2 } and {zX = 1 1 zs=2 }; that these are solutions can be readily verified by sub¬
stituting the corresponding values for the variables into each of the four constraints above. This instance
reflects many important aspects of the problem class studied here, and as such, will be used repeatedly
below as a running example. For future reference we give it the name clp0.

As in dp 0, we do not require that the variables of a CLP instance all have the same number of can¬
didate values. Also, as with C4 of clp0, we do not restrict constraints to be binary (i.e. having only two
argument variables). Neither need the constraints of an instance all have the same number of argument
variables (compare Cx and CA) and there may be more than one constraint over the same set of argu¬
ments (C2 and Cs). Some subsets of variables (such as {z2 £3}) may have no constraint over them, and
this will be explicitly modeled rather than using the usual unrealistic expedient of modeling such "missing
constraints" by universal constraints.

The following problem due to Polya [63] suggests an interesting geometrical interpretation for CLP.
Design a "multipurpose plug" that fits exactly into three different holes, circular, square and tri¬
angular. The diameter of the circle, the side of the square and the base and altitude of the isos¬
celes triangle are of equal length, as shown in figure l-l(a). The required multipurpose plug is to
have the circle, square and triangle as its three orthogonal projections.

The most extensive solid satisfying the above requirements is shown in figure l-l(b). CLP instances are
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similar to this multipurpose-plug problem in also being "volume-synthesis" problems subject to restric¬
tions on the volume projections. However, in CLP we seek the maximal volume whose projections fall
inside given regions rather than necessarily being equal to given regions as in the multipurpose plug prob¬
lem. This view is formalized in Appendix A. Freuder in particular adopts this "volume construction"
view, and accordingly has called CLP the Relation Synthesis Problem [23).

The generality of CLP as defined here, makes it relevant to such diverse applications as declarative
language design, computer vision, VLSI design, theorem proving, relational database retrieval, graph prob¬
lems including those of finding graph isomorphisms, graph colorings and cliques, as well as in a wide
variety of puzzles. Such applications will be discussed further in section 1.3. A better understanding of
CLP will therefore have considerable practical implications. Apart from this, CLP is important in provid¬
ing an excellent context for addressing many of the questions central to problem-solving in general. These
issues are discussed in the following section.

Besides the formalization, generalization and application of CLP per se, the development of CLP
algorithms has also received intense attention within Artificial Intelligence, as exemplified by [4], [11],
[23), [25], [29], (33), [34], (37], [46], {49], [50], [70], [78]. The Ph.D. thesis [26] of Gaschnig is especially
important in this regard, as is Haralick's paper [36] which contains a nice empirical comparison of seven
different CLP algorithm. Three of these algorithms, Backtracking, Forward Checking and bit-parallel
Forward Checking are generalized and analyzed in [51] and in [52]. Simplified versions of this work have
appeared in [56]-[58],

Flf. 1-I(n)» The three holes for Polya's multipurpose plug.

Fig l-l(b)t The maximal multipupose plug.

triangle
square

circle
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1.2. Related Work

Considerable work has been done on the Consistent Labeling Problem and its algorithms since the
appearance of the seminal papers [77] and [29] in 1960 and 1965 respectively. This section presents some
highlights, especially those directly relevant to the work presented here. The first attempt at an analytic
understanding of the complexity of solving CLP instances was made by Knuth [41] in 1975 for a version
of the standard Backtrack algorithm. He expresses some of our main concerns as follows

One of the major difficulties associated with the so-called backtrack technique for combinatorial problems
has been the inability to predict the efficiency of a given algorithm, or to compare the efficiency of different
approaches without actually writing and running the programs.

Knuth's success in treating these issues was only partial however. Despite the above quote, values for the
parameters of his expressions are still obtained only by actually coding and running the Backtrack algo¬
rithm — albeit for a much simpler Monte Carlo type computation on a given instance.

Gaschnig, in his dissertation [26], set himself the task of discovering empirically a set of problem
parameters (i) whose values were more accessible than those used in Knuth's analysis and (ii) in terms of
which an analysis of CLP would provide largely instance-specific predictions of complexity. These are
commendable goals. Most complexity analyses — whether worst-case, expected-case or best-case — are
relevant only to some artificial equivalence class and, for expected-case analyses, to some artificial proba¬
bility model over the equivalence class (see section 6.3 of [24]). The results have precious little relevance
in practice. Ideally what is needed are exact-case complexity results, giving in closed form the complexity
of solving an arbitrary individual instance. Unfortunately, such results are in general utoo good to be
tractable". Gaschnig envisaged however, expected-case results which could be used as effectively
instance-specific or exact-case — thus providing exact-case results "by the back door". In his own words,
[26] page 242, this idea is expressed as follows

. . . given a sufficiently fine grained partition, analytic or experimental average performance results for an
ensemble of problem instances (i.e. an entire equivalence class) can be good predictors of performance of4
an individual instance (i.e. an individual member of the equivalence class). An objective then is to define
problem specification parameters yielding such a fine-grained partition of the problem class.6

The present work is also very much in the same spirit as Gaschnig's, and aims at cost-efTective analytic
expressions that can be used predictively for individual instances. However, Gaschnig emphasizes fineness
of partition as the key to instance-specificity, but this is a little restrictive. What really counts is what we
call homogeneity. A problem partition may be quite coarse and yet the expected-complexity of an
algorithm over a given equivalence class may still be close to the complexity of solving each of its sub¬
sumed instances — so long as the complexity of individual instances in the class are nearly equal.9 Such
an equivalence class we call homogeneous (with respect to the algorithm and complexity measure of
interest) — and of course, for such a class, the worst-case, expected-case or best-case value is a good esti¬
mate of the exact-case complexity of solving any individual subsumed instance. Fineness of partition per
se, is not necessary, although it is true that refining a partition can only improve class homogeneity, and
in the limit, where every instance is in its own equivalence class, all classes are in fact perfectly homo¬
geneous. Nevertheless, a fine-grained partition is not in itself the goal, but rather a partition into homo¬
geneous classes.

4 This word "of" would be better written "on" instead.
6 It is implicit here that in any complexity analysis, the "problem specification parameters" or more accurately, the problem

parameters used for the analysis, induce a partition of the problem class into equivalence classes — where instances with the same
set of values for the features are grouped together. The expression resulting from the analysis using those parameters refers to the
generic such equivalence class; whether one obtains a worst-case, best-case or expected-case complexity expression, the value it gives
is with respect to the generic class induced by the analysis parameters.

# Note that for a perfectly homogeneous class of problems, the worst-case, expected-case and best-case complexity of solving
an instance of the class are all in fact equal — and any one of these three class-dependent complexities will be equally useful (and in
fact fully accurate) as an estimate of the exact-case complexity of subsumed individual instances. Moreover, to the extent that the
underlying class is homogeneous, the assumed probability model over the class will not effect the result of an expected-case analysis
— an expected-case value must always lie between the worst-case and best-case values, and the latter two are equal for a truly
homogeneous class. Note also that basing complexity analyses on a single parameter denoting "problem length" is virtually assured
to produce results that are hopelessly inadequate in terms of instance-specificity. There is usually far too little information in such a
parameter, to induce homogeneous equivalence classes. Analyses in terms of more natural parameters are becoming more common —

see section 4.3 of [24] — but the criterion for choice of parameters is left open. The importance of aiming for homogeneous induced
sub-classes has not yet been appreciated.
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Gaschnig did not quite succeed in. finding the set of parameters (a homogenising set) required to
induce a partition of CLP into homogeneous classes. The present work however has succeeded in this.
The key problem parameter required is a measure of the looseness of a problem constraint that we call
constraint satisfiability. It is discussed below particularly in sections 2.2 and 2.6. In earlier publica¬
tions [56]-[58] treating more specialized forms of CLP, we referred to this parameter as inter-variable
compatibility. Gaschnig got as far as partitioning CLP into what we call middle-sized classes,
whereas the partition used here, based on constraint-satisfiability, is a refinment of Gaschnig's partition
into what we call small-classes. The term big-class is reserved for the components of Haralick's parti¬
tion [36] which is still courser than Gaschnig's. Of these three types of equivalence class of CLP
instances, only small-classes exhibit the required degree of homogeneity to allow expected-case results to
be effectively instance-specific. It should be noted that on page 241, near the end of his dissertation,
Gaschnig does in fact propose a CLP partition in terms of small-classes. However, nothing more than this
proposal appears concerning them.7

Gaschnig's first-mentioned concern above, that his parameters be ''accessible" (as opposed to the
case with Knuth's parameters, where extensive preprocessing was required to determine their values for a

given instance) is also strongly shared in the present work. In general, there appears to be a three-way
trade-off between the homogenizing power of a set of parameters, the accessibility of their values and the
tractability of the resulting analysis. A reasonable degree of all three is needed, but increasing any two of
them seems to require decreasing the third. In the present work on CLP they are all at more or less cen¬
tral values in their range: class homogeneity is good but not perfect, the analysis is of course tractable
though certainly non-trivial, and accessibility is no problem for all parameters used in the analysis with
the possible exception of the constraint satisfiability parameter as discussed in section 2.6.

In spite of the above-mentioned similarity of spirit between Gaschnig's work and ours, it should be
noted that fundamental differences do exist. Gaschnig's work was essentially just an empirical explora¬
tion to determine what are the appropriate problem parameters to use. In fact he states (page 145, [26])

Our objective then is to measure in case studies the values against which a future analysis could test its
predictions, and to reveal patterns in the performances that may provide insight and direction by which to
guide the development of such analysis.

The results presented here, on the other hand, provide thoroughly analytic, closed-form expressions
for predicting the complexity of solving CLP instances. Moreover, our analysis parameters are an exten¬
sion of those used in Gaschnig's experiments and, as mentioned, they induce the effectively homogeneous
classes that he sought, while remaining reasonably accessible (unlike the parameters required by Knuth).
It would seem then that the present work attains the goals for which Knuth and Gaschnig were aiming.

An important link between the present work and the earlier work of Knuth, Gaschnig and others,
has been the recent contribution of Haralick. In [36] he empirically compares seven different CLP algo¬
rithms. Two of these algorithms, Backtracking and Forward Checking, he also compares theoretically. In
fact, Haralick's work provides the first analytic closed-form expressions for the complexity of solving Con¬
sistent Labeling Problems. However, he treats only a very specialized form of CLP defined here. Simi¬
larly, the probability model used by Haralick is quite restrictive. And most importantly, Haralick uses for
his analysis a set of parameters capable of inducing only a relatively coarse partition of CLP into the
above-mentioned big-classes, which are even less homogeneous than Gaschnig's middle-sized classes.
Haralick'8 results are therefore not useful in providing instance-specific predictions of problem-solving
complexity — although by definition, they of course provide perfectly valid8 expected-case results for big-
classes under the probability model he assumes.

Haralick's work of [36] is also important for having introduced the notion of extracting heuristic
advice from an analytic complexity expression — which has also been a major concern of our work (as
described in [57], in [51] and in anticipated future papers). Since Haralick's results are not effectively
instance specific (due to the inhomogeneity of his underlying big-classes) neither are his theory-based
heuristics. Since our results are effectively instance-specific (due to homogeneity of the underlying small-
classes) so are the theory-based heuristics derived from them. Nevertheless, we will see that big-class
expectations are useful, even for obtaining approximations to exact-case complexities. This is so because
(as discussed in section 3.5.1) using a probability model slightly more general than Haralick's, big-class

7 This proposal of Gaschnig's was noticed after we had in fact independently discovered the usefulness of a small-class parti¬
tion and had already carried ont the analysis in terms of the corresponding parameters.

• Except for a certain error in Haralick's results, pointed out in [52).
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expectations can be used to approximate — with less computational effort — the small-class expectations
which in turn provide good approximations to exact-case values.

Note that the above-mentioned two themes of

(i) performing complexity analyses with respect to a partition into homogeneous classes, so that class-
expectations can be used as effectively exact-case values, and

(ii) deriving heuristics via minimization of analytic complexity expressions
are not restricted to the context of the Consistent Labeling Problem. They are potentially useful in gen¬
eral for algorithm analysis and algorithm design respectively. Our work on CLP should be considered a
case-study in this regard.

1.3. Applications of CLP
The Consistent Labeling Problem provides a natural framework for representing a remarkably wide

range of real-world problems. It is relevant in such diverse areas as Artificial Intelligence, Operations
Research, Combinatorics, Theorem Proving, Machine Vision, VLSI design and Relational
Database Retrieval. (Chapter 7 of [51] discusses such applications in more detail.) In fact the CLP for¬
malism is so generally applicable that it provides an attractive basis for the design of declarative pro¬

gramming languages as seen in [5], [19], [27], [44], [7l]-[74].9
One of the earliest and most natural applications of CLP is in solving various puzzles such as n-

queens. The latter is the problem of placing n queens on an n X n chess board in such a way that no
two queens attack each other. It was first proposed in 1850 by Frank Nauck and has since become the
classic domain for introducing and studying CLP. A complete early history of it and related problems can
be found in [l]. More recently, the n-queens problem has appeared in many studies including [19], [21],
[26], [36]. Many other puzzles are naturally formulated as CLP instances including word-sum or cryp-
tarithmetlc puzzles [11], [19], [53], Instant Insanity [10], and the Soma Cube puzzle [20|. Also, the
book by Reingold et. al. [64] includes amongst the exercises applications to Pentominoes, Magic
Squares, Latin Squares and other puzzles.

Puzzles such as the above posses a certain regularity of structure that makes them relatively easy to
describe and understand. This has no doubt been a major reason for their centrality in the study of CLP.
However, the appeal of such regularity has inhibited the study of more general forms of the Consistent
Labeling Problem. In particular, the binary form, where every constraint involves only two variables,
has received a disproportionate amount of attention [26], [36], [46], [50]. Note that the common view of
CLP as a certain Network Consistency Problem arises from this emphasis on the binary-constraints
case, since such constraints may be viewed as links between pairs of variables, as described by Montanari
[50]. Another restriction usually imposed in systematic studies is that all variables have the same domain
of candidate values. These and many other common restrictions are removed in the version of CLP to be
treated here — allowing the natural formulation of a far broader class of real-world problems than would
otherwise be possible.

However, historically, binary CLP has been adequate to model many interesting problems —

although sometimes in rather unnatural ways. This is not surprising given the existence of a general
transformation (see [51]) for reducing a non-binary CLP instance to an equivalent binary instance. The
extension to the general form of CLP treated here is therefore not made because it increases ''representa¬
tional completeness0, but rather because it often affords more natural representations and more impor¬
tantly because it allows representations under which problem-solving may be accomplished more effi¬
ciently. Chapter 8 of [51] shows that our analytic results are capable of providing useful guidance in
choosing between such alternative representations.

Applications for which the binary form of CLP has been employed quite naturally include many
important problems such as the finding of Subgraph and Graph Isomorphisms [49], finding Hamil-
tonian Circuits in a graph [54], Graph Coloring [54] and the Bin Packing Problem of [16] which
Haralick points out in [34] is isomorphic to the problem of graph coloring. Also in [34], Haralick uses
binary CLP in formulating Boolean Satisfiability — the problem of finding a satisfying truth assign¬
ment for a conjunctive normal form expression in the propositional calculus. Haralick's formulation of
Satisfiability as binary CLP is however not as natural as the non-binary CLP version implicit in the work

9 In this context, the heuristics derived in the present work become contributions to miking such languages more practical by
allowing efficient autonomous control (to use Kowalski's expression [43]) by the language interpreter.
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of Brown and Purdom [7]-{9].10 These alternative formulations (further discussed in chapter 7 of [51]) illus¬
trate the above-mentioned need to be able to choose between competing CLP representations of a prob¬
lem.

Machine vision is another important domain of application for CLP. Waltz employed CLP to for¬
mulate the problem of interpretating lines in a drawing of a block's world scene [78]. Again, the binary
form of CLP was found to be applicable to this line labeling problem, but not altogether naturally. As
with Haralick's formulation of Boolean Satisfiability mentioned above, a more natural formulation of the
line labeling problem requires a generalization beyond binary CLP. (These alternatives for the line-
labeling problem are discussed in chapter 7 of [51] and in [65].) Mackworth also used a CLP formulation
for a related line-labeling and region-labeling problem that arises in interpreting maps [47].

At a lower level than the line labeling problem in machine vision is the line detection problem,
which has also been formulated by Haralick [34], in terms of binary CLP. Roughly speaking, it is the
solution of this problem that is the input of the line labeling problem mentioned above. In the same

way, the solution of the line labeling problem may be considered the input to the yet higher level problem
of scene labeling or object interpretation, where one seeks to assign a meaning as an object to the
various segmented regions of the scene. This also has been formulated in terms of CLP in [2], [35] and
[30]. The latter paper is particularly relevant to the present work, as it applies results from our earlier
paper [57].

CLP also arises naturally in relational database retrieval where it corresponds to the problem of
finding the Join of several relations, as explained in chapter 7 of [51]. CLP can also be applied to con¬
sistency maintenance, query-answering and redundancy-checking in databases as in [31].

Recently many extensions of the basic CLP formalism have been proposed as useful in various areas,
especially for machine vision. These include what might be called hierarchical CLP [13], [15], proba¬
bilistic CLP [17], [62], [65], fussy CLP [65], inexact or weighted CLP [68] and optimizing CLP
[17], [76]. Many applications of these extensions of CLP to machine vision are summarized in [14]. Other
applications have included code-breaking [61], handwriting interpretation [39], [60] and shape seg¬
mentation [66]. An important application of an extended form of CLP is in Kowalski's connection
graph method for theorem proving in the predicate calculus [42]. As mentioned in [42], this method
was inspired by the Waltz filtering algorithm developed for solving CLP instances (arising originally from
the problem described above of labeling lines in scenes).

1.4. Notation

Table 1-1 introduces some general notation that will be useful. Given a set Z of size n, note that the
notation ( ^ ) for the 8tt of all size-m subsets of Z, is a natural extension of the notation ( ^ ) for the
number of such subsets — in the same way that the notation 2Z for the set of all subsets of Z is
obtained from 2" , the number of subsets of Z.

2. THE CONSISTENT LABELING PROBLEM (CLP)
This section formally defines the Consistent Labeling Problem in a manner far more general than

has heretofore been systematiclly studied — whether theoretically or empirically. Problem parameters are
introduced that will be important in our later analysis of the complexity of solving CLP instances. In par¬
ticular, constraint satisfiability is introduced as a parameter characterizing the looseness of a con¬
straint. As mentioned above, this is the key problem feature that allows us to partition CLP into classes
— called small-classes — which are sufficiently homogeneous that class expectations are virtually
instance-specific, or exact-case, for most subsumed instances of the class. Section 2.7 discusses a spectrum
of approaches for obtaining constraint satisfiability values in practice. Examples of the concepts intro¬
duced are given using the 4-queens problem and the instance clp0 presented in section 1.1.

2.1. CLP Instances

A CLP instance consists of variables, their associated domains of values and a set of constraints.
The goal (for the variant we are interested in) is to find all ways to assign variables values from their
respective domains so as to simultaneously satisfy all constraints. For problem-solving purposes these

10 Analytic studies of the complexity of solving Satisfiability have recently appeared in [22], [28]. These however treat the
problem of finding a single satisfying truth assignment, whereas when our results are specialised to the context of Satisfiability, they
give the complexity of finding satisfying assignments.
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Table 1-1: Some useful notation.

Symbol Defined as

K {m m+1. . n} The set of integers from m to n inclusive

U s,
j<r

The union of mutually disjoint sets 5;

RE, The intersection of mutually independent events E3

( ")v m '
The number of combinations of n objects taken m at a time

(z)K m '
The of all size-m subsets of a set Z

2Z «(?) The set of all subsets of Z, or the power set of Z

components of a CLP instance elp may take on a variety of forms. Variables may have arbitrary names,
and their domains may contain arbitrary values of any type: integer, real, boolean, alphanumeric symbols,
or compositions of any of these into sets, tuples, or what-have-you. Constraints may be given as tables
or as expressions in arbitrary constraint-specification languages — algebraic, logical or whatever. How*
ever, for analysis purposes it suffices to model instances of CLP using the simple canonical form described
below. This is so because for the algorithms and their complexity measures of interest here, all instances
that have the same canonical form also have the same complexity of solution.

A canonical-form CLP instance clp(rt m c Z T) is a five-tuple (n m c Z T)11, where:
• n is the number of problem variables. These variables we denote zt, and the set of all problem vari¬

ables is Z = { zx z2 . . z% }.
• m = ( rru m2 . . m2 ) is the vector of domain sizes m,, where m, is the number of candidate* 1 2 ■ ' i i

values in the domain d, for variable zx. The domain itself is denoted d2 = { ztl zt2 . . ztm }, ztJ1 1 ri

being the ;-th candidate value for zx. We will also use ij to denote an arbitrary value of zt from
dJt, and d = ( d2i d2^ . . ) to denote the vector of all n domains.

• c is the number of constraints.

• A (not necessarily canonical) constraint C3 is some way of specifying which tuples of values for a
certain argument set Z; C Z of variables are mutually compatible. The algorithms discussed later
may have such constraints specified extensively as tables, or intensively as subprograms. But all that
counts for the complexity of solving a CLP instance is the canonical form C3 = (Z3 T3) for each
constraint C3 . The first component, Z; C Z, is the set of argument variables which C3 constrains.
The second component T3 is the relation induced by constraint C3; that is, T3 is the set of value
tuples that satisfies C;, where values are of course chosen for each argument variable zt from its
respective domain d, . Thus, denoting by D3 = X d2. the cartesian product of the domains of
the argument variables of constraint C3, we have that T3 C D3 consists of all value tuples
Z3 e D3 that satisfy C3.

• The two parameters Z and T of the generic CLP instance clp(n m c Z T) are the vectors of con¬
straint argument sets Z3 and of constraint relations T3 respectively

Z = (Z1Z2..ZC) and T = (TxT2..Te)

11 Note that parameters n &nd C are actually redundant since n = | m | and C = | Z | = | T | . They are however
retained for clarity.
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A consistent labeling is an assignment of values to all n problem variables which satisfies all c
constraints. The goal in solving a CLP instance is to find all consistent labelings. That is, the goal is to
find the set

T — { Z | Z t D and Z, (Z )e T, 1 < j< c } (5)
where D — "X. dt is the cartesian product of the domains of all problem variables, and Z, (Z) denotes the

zx cZ 1
projection of the value-tuple Z onto the argument set Z} .12 Several alternative characterizations of this
solution set T are given in appendix A, including one in terms of the "join" operator X of relational
database theory [48].

2.2. Constraint Satisfiability and Other Parameters
• We use M} = | D} | to denote the size of the cartesian product of (the domains of the argument

variables of) the j-th constraint. Of course, from the definition of D} we have that
Mi =11v*,mV

• We use S3 = | T3 | to denote the size of the relation T3 induced by the /-fch constraint. This is
called the satisfiability or looseness of constraint C318 since, by definition of T3, it gives the
number of value-tuples from D3 that satisfy C3. The vector of satisfiabilities for the c problem
constraints is denoted 8 = (Sx S2 . . Sc).
Constraint satisfiability is a key parameter in the present work, as it allows us to analyze CLP in
terms of classes (called small-classes) that are largely homogeneous. As a result, expected-case com¬
plexities for a small-class are good estimates for the complexities of individual instances in the class,
and may thus provide virtually instance-specific information.

• The sum SS =* ]Ci<;< c °' satisfiabilities for the c constraints of an instance is called the
summed satisfiability.

• The ratio R3 = | T3 | / | D3 | = S3 fM3 is the satisfiability ratio of constraint C3. Note that
for any CLP instance we have that

0C T3 CD3 0 < S3 < M3 0 < R3 < 1 0<SS<± M3 (6)
i

• The number of argument variables for constraint C3 is A3 = | Z3 | , called the arlty of constraint
C3. Constraints with A3 = 2 and A3 = 3 arguments are called respectively binary and ternary
constraints. Most CLP work in Artificial Intelligence has treated instances all of whose constraints
are binary.

2*3. Two Example CLP Instances
In this section the above definitions are made more concrete by means of two example CLP

instances: a CLP formulation of the 4-queens problem and the example instance clp 0 introduced in section
1.1. The latter instance is particularly important here, as it will be used as a running example throughout
the remainder of this work.

Example 1: The ra-queens problem was introduced in section 1.3 as the problem of placing n queens on
an n X n chess board so that no two queens attack each other. We henceforth rename this the ^-queens
problem, using q queens and a q X q board, to avoid confusion with the parameter n of our generic CLP
instance. The set of problem instances arising as q varies we call QUEENS, so that g-queens is the gen¬
eric instance of the class of instances QUEENS. This class has been much studied in relation to CLP, but
it should be emphasized that as presented above, g-queens is not yet a CLP instance. There are in fact
several possible ways to map g-queens into CLP (as discussed in chapter 7 of [51]). The most common of
these mappings is used below. Note that this availability of several alternate representations within CLP
for a given problem raises the issue of which representation is best. Chapter 8 of [51] shows that our

12 For exxmj>le, if Z = (§ • 37 e 12) for the variables of Z = {j1 m2 z^ zA and if Z, = {z7 z4 z J then the projection of
Z onto Z3 is Z3 (Z) = (« e 12). We will nse the convention that in tuples Z}, values J, are arranged left to right so that their as¬
sociated variables are in order of increasing index.

13 In [56] and [57] it was called the compatibility of the argument variables of C; . Volume or simply size of constraint
C3 would also be appropriate names for parameter S} .
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analytic complexity results can also be used in making such representational choices.
In formulating g-queens as a CLP instance we first note that there can be no more than one queen

per row of the board, since any multiple queens in a row would attack each other, thus violating the con¬
straints. Since there must be at most one queen per row, there also cannot be less than one queen in any
row, else there could not be a total of q queens on the board. Thus if a solution exists for g-queens it
must correspond to exactly one queen per row. It is thus appropriate to formulate g-queens as a CLP
instance by associating a CLP variable zt with each board row 1 < i < q, and allowing variable zt to take
as its value the column in which the corresponding queen is to be placed. There are then n = q CLP
variables and Z = {zx z2 - . }. Identifying columns by integers 1 to q, the domain of a% priori allowed
values for each CLP variable is then d2. = {1 2 . . g}, the same for each variable z%. Domain sizes are

therefore also the same, mx = g, for each variable.
To avoid two queens attacking each other, the CLP constraints must ensure that no two queens are

in the same row, column or diagonal of the board. That they are not in the same row is already ensured
by the interpretation given to variables zi. The remaining requirement that no two queens are in the
same column or diagonal is captured mathematically as follows

¥>*,) A ( \ZX ~2,\ *j-i) V ' < jf where »\ J e { 1 2 . . f }. (7)
This by the way assumes the usual consecutive numbering of rows from top to bottom of the board, and
consecutive numbering of columns from left to right, as in figure 2-1. The first conjunct ensures that the
corresponding two queens do not occupy the same column on the chess board, and the second conjunct

ensures that they are not in the same right- or left-diagonal.14 There are c = ( | ) separate constraints
indicated in (7), one for each pair of the q variables. Each such pair of variables constitutes the argument
set ZZfJ = {zt Zj } of the corresponding constraint C22j. Note that since there is no more than one con¬
straint having the same argument set, we are in this case able to index constraints by their set of argu¬
ment variables rather than using less descriptive, though more general, single integer subscripts. Because
the domains d, are all the same here, the domains Dggj for compound variables Z2 ^ are also all the
same. Specifically, each Dg%g is the set Dg gj = d2f X d2j of all ordered pairs of integers in {1 2 . . q}.
The sizes of Dg%g are also all the same, being Mgfgj = \ D2 2 \ = g2, while the size of the cartesian pro¬
duct of all n = g domains is M = \D \ =*g*. Since each constraint is binary, we have that

\ A2 2j \ =2 for all e constraints.
Specializing the above formulation to the case of the 4-queens problem, we have n = 4 CLP vari¬

ables, each with domains ={1 23 4} of size mJf = 4. There are c = ( * ) = ® constraints of the
form in (7). The domains of the argument sets Z; are all

D; = { (11)(12)(13)(14)(21)(22)(23)(24)(31)(32)(33)(34)(41)(42)(43)(44) }
with Mj = | Dj | =16 for all constraints.16 While the sets D, and the values A/; are the same for all
constraints, the actual constraint relations T} C Dj induced by constraint C} are not all the same, since
the particular pairs of column positions that are compatible for two queens depends on their respective
rows. (In fact it depends only on the separation of these two rows). The c = 6 relations T} for 4-queens
are shown in table 2-1 together with the corresponding argument sets Z; so as to constitute the
canonical-form counterparts C3 ** (Z; ) of the analytic constraints in (7). The T} of table 2-1 are of
course such as to include from Dj all (and only) those pairs of values that place the corresponding queens
in different columns and in different diagonals.

The sizes of the relations Tj in table 2-1 are the constraint satisfiabilities Sj =■ | T, | , so that for
4-queens the satisfiabilities are 5; = 6, 8, 10, 6, 8 and 6. We will see in section 2.6.1 that these values
can be determined analytically for all constraints of any QUEENS instance. Dividing the six 4-queens
satisfiabilities by the corresponding A/; value, which in this case is 16 for all constraints, we obtain the
satisfiability ratios » 5;/A/; shown in table 2-1. Summing the six satisfiabilities for 4-queens gives
the summed-satisfiability 55=44. The solution set for 4-queens is T = { (2413) (3142) }, so that the
number of solutions or consistent labelings is 5 = | 7* | =2. Figure 2-1 shows both these solutions as a

14 A right diagonal is one that falls as it is traversed from left to right. A left diagonal rises from left to right.
16 We now revert to the nsnal method of constraint indexing nsing single integers rather than using the constraint's set of ar-
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Table 2-1: Some parameter values for the c = ( * ) ™ ®
constraints C, of the 4-queens problem.

; z, T, M, s} *,

l {Zi z2) {(13) (14) (24) (31) (41) (42)} 2 16 6 6/16

2 {*1 «s} {(12) (14) (21) (23) (32) (34) (41) (43)} 2 16 8 8/16

3 {*1 *i} { (12) (13) (21) (23) (24) (31) (32) (34) (42) (43) } 2 16 10 10/16

4 {z2 2S} {(13) (14) (24) (31) (41) (42)} 2 16 6 6/16

5 {z2 z<} {(12) (14) (21) (23) (32) (34) (41) (43)} 2 16 8 8/16

6 {*S*t} {(13) (14) (24) (31) (41) (42)} 2 16 6 6/16

Fig. 2-lt The two solutions of the 4-queens problem,
and their projections onto the various constraint argument sets.

1 2 3 4 1 2 3 4

Q Q

z2 Q Q

*s Q Q

Z 4 Q Q

Z: (2413) (3142)

Zi(ZY (24) (31)
Z^Z): (21) (34)

ZJZJ: ( 23 ) (32)
ZJZJ: (41) (14)
ZJZ): (43) (12)
ZJZ): (13) (42)

gument vuiiblei. Any convenient linenr ordering of the constraints is npproprinte.
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board configuration and as Z the corresponding consistent-labeling of Z, and gives for each consistent-
labeling its projection Z; (Z) onto the argument sets Z; of the six problem constraints.

Example 2s Even though there are an infinite number of QUEENS instances — one for each integer q
— the corresponding CLP instances are all of a quite specialized form. Amongst other things, all such
instances have

(1) only binary constraints
(2) exactly one constraint (no more, and no less) for each possible pair of variables,
(3) all domain sizes equal to the number of variables.
These simplifications have proven seductive and at least some of them are imposed in virtually all sys¬
tematic CLP studies to date [26], [36], [46], [49], [50]. In other words, most studies have treated only q-
queens-like instances — with the main concession to generality being only to allow the relations T} to
differ from those of g-queens. As a result, precious little systematic knowledge exists about the more gen¬
eral kinds of CLP instances needed to naturally model many real-world problems.

None of the above QUEENS-type restrictions are imposed here — and this relaxation to a much
more general class of instances than is usually treated is one of the main contributions of the present
work. Instance clp q, introduced in section 1.1, has in fact been chosen in order to reflect this generality.
For convenience it is described again here, before proceeding to a more detailed discussion. Instance clp 0

involves three variables zlf z2 and z$ taking values from domains d2^ = { 0 1 }, d2^ = { 0 1 } and
= { 0 1 2 } respectively. We seek all assignments of values to the three variables so as to simultane¬

ously satisfy the following four constraints:

We see that clp0 has n = 3 variables z,, so that the variables set is Z = {zx z2 zs}. The sizes of
the domains for the three variables of clp0 are m. = 2, m. = 2 and m2 = 3. Note that these domain12 3

sizes are not all equal, and they are certainly not all equal to the number of variables (in this case 3). In
both respects this differs from the situation for QUEENS instances (as formulated above). Each QUEENS
instance has all its domains of equal size, and moreover, this size is also equal to the number of variables
for that instance.

Furthermore, whereas ^-queens instances involve one binary constraint for each pair of variables,
this is not the case in clpQ. The argument sets of the clp0 constraints are Zi={z1z2},
Z2= Zs = { Zi zs } and Z4=s{ zx z2 z$ }• The corresponding arities or numbers of arguments for the
constraints are therefore A1 = A2=AS=2 and A4=3 so that the constraints are not all binary, nor are
their arities even all the same. Moreover, not all pairs of variables correspond to exactly one constraint
— {z2 zz} is the argument set of no constraint and {zx zs} is the argument set of two different con¬
straints, C2 and C z>

Also unlike QUEENS instances, the cartesian products D} for clp 0 constraints are not all the same
since their factors d2 are not all the same. We have for clp0 that

C\i zx \j z2

O 2* (za-3)2 + (*i-4)2<25

(*)

(9)

(10)

C4: exp[ ^i + 22+2s]> 1-° (11)
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Table 2-2: CLP Instance elp 0 — our running example.

Variables: n — 3

t 2,

1 2l {01} 2

2 22 {01} 2

3 2S {012} 3

Constraints: e — 4

3 h T, M, s, *,

1 {2: 22} {(01) (10) (11)} 2 4 3 3/4

2 {21 2j} {(00) (01) (02) (10) (11) (12)} 2 6 6 1

3 {21 2,} { (12) } 2 6 1 1/6

4 {2l 22 Zt) { (001) (002) (010) (Oil) (012)
(100) (101) (102) (110) (111) (112) }

3 12 11 11/12

Fig. 2-2: The two solutions of instance clp q,

and their projections onto the various constraint argument sets.

0 12

21

Z2

2«

Z: (102) (112)

ZX(Z): (10) (11)
zm- (12) (12)
ZS(Z): (12) (12)
Z4(Z): (102) (112)
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fli-^X^-Uoo) (01) (10) (ii)}

D2 = Ds = d,x X rf,3 = { (00) (01) (02) (10) (11) (12) } (12)

D<= d,xX dl2Xd,9={ (000) (001) (002) (010) (Oil) (012) (100) (101) (102) (110) (111) (112) }

Since A/; = | D} | , we have Mx = 4, M2 = A/8 = 6 and MA = 12. The clp0 constraints in (8) to (11)
are expressed in analytic form. Table 2-2 lists the pairs (Z; T}) constituting the canonical form of each
of these analytic constraints. By definition, each T} shown contains all the labelings of Z; that satisfy
constraint . The satisfiabilities or sizes 5; = | Tj | of these relations are then 5; = 3, 6, 1 and 11.
Dividing these values by the corresponding Mj values we have that the satisfiability ratios for the four
constraints are Rx = 3/4, R2 = 6/6 =1, /fs = 1/6 and R4 = 11/12. Summing the four constraint
satisfiabilities gives a summed-satisfiability of 55=21.

Like the earlier 4-queens example, instance clp0 has 5 = 2 solutions or consistent labelings. The
solution set for clp0 is shown in figure 2-2 to be T = { (1 0 2) (1 1 2) }. This will be confirmed in [52]
where instance clp0 is solved in detail in a variety of ways. Note that in the standard formulation of
QUEENS instances as CLP instances, the board rows correspond to CLP variables and the columns to
candidate values for these variables. Whereas in clp0 no board occurs in the problem statement, it is
nevertheless convenient to display, as in figure 2-2, consistent labelings in an analogous array form with
rows corresponding to variables and columns to values. The t-th cell in each row of such arrays
corresponds to the t-th value of the corresponding variable's domain under some assumed ordering. (Note
that t-th column cells of different rows need not correspond to the same value, since different domains
need not even have values of the the same types.) Such boards are thus always left-justified but not neces¬
sarily right-justified, since domains may be of different sizes. This representation will be useful in [52]
when depicting the searches performed by our CLP algorithms.

2.4. The Class CLP

Having defined the generic CLP instance clp(n m c Z T), the class CLP is defined as the set of all
actual instances obtained from the generic instance as its parameters range over their respective allowed
values. Specifically, the number of variables may be any integer n > 1, each component domain size of m
may independently be any integer > 0 and the number of constraints may be any integer c > 0.
Each component constraint argument set of Z may independently be any subset Z; C Z (containing at
least two variables) of the set of problem variables Z, and each component constraint relation of T may
independently be any subset T} C D} of the set D} of possible value-tuples for the constraint argument
variables.

This problem class is much more general than that usually treated in the literature, whether theoret¬
ically or empirically. This is essential if the results are to be applicable to the wide range of CLP
instances that arise in practice either directly or (as discussed in chapter 7 of [51]) via transformation of a
CLP instance to an alternative representation within CLP. In particular, it should be noted that the
above definition does not require that problem variables have domains of the same size, and certainly not
that domain sizes are all equal to the number of variables, nor that constraints are all of the same arity,
and certainly not that the arities all be two (i.e. binary constraints). Nor does it require that all (and only)
pairs of variables have a constraint over them as in [36], [57], nor that all (and only) A-tuples of variables
have a constraint over them as in [58|. The above formulation allows that a given set of problem vari¬
ables may have an arbitrary number — none, one or even more than one — constraints defined over
them. Although for some purposes multiple constraints on a given argument set could be considered
equivalent to a single constraint, for a model relevant to algorithmic run-time it is necessary to explicitly
allow multiple constraints on a given set of arguments, since they will usually be implemented and
checked separately. Moreover, subsets of variables that do not have a constraint over them need no longer
be treated by the unrealistic expedient of assuming that they are constrained by a universal (maximally
loose) constraint. This is certainly not assumed in the actual problem-solving process, and our analyses
will make it possible to model the fact that in practice, missing constraints are simply not checked.
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2.5. CLP Sub-Problems

Two types of sub-Problem of CLP are particularly important for our analyses'. These we call big-
classes and smalt-classes. CLP is partitioned by either type of class, but small-classes form a finer par¬
tition, and have the important property of homogeneity as a result of which small-class expectations pro¬
vide effectively instance-specific predictions. Results are given for special-form big-classes in [36), [58] and
[57[. The latter paper also treats special-form small-classes. We have recently been able to derive results
for fully arbitrary big- and small-classes, [51], [52).

In his thesis [26], Gaschnig, besides also using (special-form) big-classes, studied CLP empirically
using yet another type of CLP sub-Problem which might be called the (special-form) mlddle-sised class.
His results show that middle-sized classes, like big-classes, do not have the desirable homogeneity pro¬
perty, and on page 241 of [26] he proposes small-classes as an improvement. Small-classes were however
independently arrived at in this work, as a refinment of Haralick's big-classes. The definitions of these
classes are as follows:

The generic bie-cla** CT.P^n m c Z) is the set of all CLP instances having the generic values n, m, e
and Z respectively for the number of variables, vector of domain sizes, number of constraints and vector
of constraint-argument sets. The component constraint-relations 7*, of an instance's constraint-relation
vector T are arbitrary subsets of the corresponding cartesian products D}.

CLP/{n m c Z) =» {elp(n a c Z T) | T} Q D} 1 < j < c } (13)

The generic middle-sized class CLPJ((n m c Z 55) is the set of all CLP instances having the generic
values n, m, c and Z for the corresponding features. In addition, the constraint-relations T, of an
instance are such that the sum of their sizes is SS.

CLP„(n m c Z 55) = {c/p(n m c Z T) | £ | T, | — 55 } (14)

The generic small-class CLP„(n m c Z 3) is the set of all CLP instances having the generic values n, m,
e and Z for the corresponding features. In addition, each constraint-relation T; of an instance has size
Sj, the ;-th component of the small-class constraint-satisfiability vector S.

CLP,(n m c Z S) — {c/p(n m e Z T) | |T; | = S7 1 < j < c } (15)

A/
In a big-class, each of the relations T} for a given instance may be an arbitrary one of the 2 1 sub¬

sets of Dj. In a middle-sized class, the pooled relation Ui<j<cTj restricted to be one of the
/ Sl<;<c
( cc J subsets of size 55 of the pooled cartesian product Ui<,<cDj * ^ a small-class each T}
is restricted to be one of the ( c ) subsets of D. having size 5;. It follows that the number of instances

I
big-class, in a middle-sized class and in a small-class, are given respectively byin a

|CLP,(n m e Z) | = ll2"' (16)
i

CLP> m c Z SS) | = ( ) (17)

| CLP,(n m«ZS)| = n( j' ) ^
Moreover the numbers of middle-sized-classes and of small-classes in a big-class CLP^n m c Z) are
respectively
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since in the former case the value of 55 may be any integer between 0 and J]i< 3< e » anc* 'n t^le latter
case each component of the satisfiability vector S = (5x 52 . . 5C) may be any value from 0 to A/;. The
number of small-classes in a middle-sized class is given by the result of the Diophantine constraint exam¬

ple of section 2.6.1, as mentioned in a footnote of that section. Summing instances over all small-classes
in a big-class we have the following interesting generalization of the binomial expansion of

since the number of instances in a big-class equals the sum of the number in each of its constituent small-
classes.

The difference between the above three types of CLP sub-Problem is the degree to which the
constraint-satisfiabilities 5; are restricted. An orthogonal kind of restriction of historic interest in induc¬
ing sub-Problems of CLP is one placed on Z, the vector of argument-sets. It is often assumed that
instances are binary, that is, have constraints only over pairs of variables. Moreover, it is often assumed,
as is the case for n-queens instances (under the usual formulation), that all possible pairs of variables have
exactly one constraint over them. Instances with exactly one constraint over each pair of variables, and
having no other constraints, we call pure and simple binary* If there is at least one constraint for each
pair of variables, and no other constraints, such instances are called pure (but not necessarily simple)
binary.

Most systematic studies in Artificial Intelligence have considered only pure and simple binary
instances. In particular, this is the case in [36] where pure and simple binary big-classes are used, in [26]
where pure and simple binary big- and middle-sized classes are used, and in [57] where pure and simple
binary big- and small-classes are used.16 The next level of generality occurs in [58] where we consider
pure and simple A-ary big-classes — big-classes of instances having exactly one constraint over each
combination of A variables, and no other constraints. (If each combination of size 2 through A variables
has exactly one constraint, and no other constraints exist, such instances are called full and simple A-
ary.) No other analysis had ever treated that general a case before. However, our results of [51], and [52]
are far more general yet, being in terms of fully arbitrary small-classes and big-classes, with no restriction
at all placed on the vector of argument sets characterizing instances of the class — and this full gen¬
erality is carried through in the expected-complexity analyses of [51] and [52].

2.6. Finding Constraint Satisfiabilities
As mentioned, the vector S = (5X 52 . . Sc) of constraint satisfiabilities is an important problem

parameter because it allows us to partition CLP into relatively homogeneous small-classes
CLPa(n m c Z S). The homogeneity of small-classes is desirable, because it means that a class-average
result will approximate well the corresponding instance-specific, or exact-case, values for the subsumed
instances in the small-class. Of course, to make this approximation for a given instance requires us to first
identify the small-class to which the instance belongs — in order that the appropriate small-class average
may be obtained.

Identifying the small-class CLP,(n m c Z S) to which a given CLP instance belongs means, by
definition, determining for that instance the values of the small-class parameters n, m, c, Z and S.
Values for the first four of these parameters will always be trivial to determine for a given instance. Such
parameters might therefore be called surface parameters. The constraint satisfiabilities 5; may also be
surface parameters for a given instance if say, the instance constraints are given in canonical form
Cj = (Zj Tj), for then we have simply that 5; =* | T; | . In several important domains — such as the
relational database and line labeling applications discussed in [51] — constraints do arise in canonical
form. However, constraints of real-world problems often are expressed in some non-canonical, symbolic
form for which the corresponding value of constraint satisfiability may not be obvious. In such cases 5; is
what we call a deep parameter as opposed to a surface parameter, and a certain computational cost is

10 In [57] the (pure and simple binary) big-classes and small-classes are called respectively, v-classes and c-ciasses.

2U = (1 + l)M
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incurred in extracting the value of S; ,17 The benefit18 obtained from knowing the 5; values must then be
weighed against any preprocessing cost incurred to extract these values. In this section we consider a

spectrum of approaches to obtaining satisfiability values S} for non-canonical constraints. An earlier ver¬
sion of the following appears in [55].

2.0.1. Exact Analysis
Sometimes satisfiabilities can be obtained exactly by analytic methods, thus incurring no machine

cost. The following are three examples where this is possible. When this is not possible one may settle
for only an approximation to S}, or be prepared to incur some machine preprocessing cost or both. These
alternatives will be described in the next sections.

Example 1: q-Queens Constraints
For the f-queens problem under the standard formulation described in section 2.3, the constraint

satisfiability and satisfiability ratio of each of the resulting ( ^ ) constraints in (7) can be expressed as
- ?2-3?+ 2| i-j |

d _ ?2 " 3? + 2 | » - j I

These are obtained as follows. Both the queen in row t and the queen in row ; can a" priori be in
any of the q squares of these rows. Therefore the two queens can a% priori be in any of q2 pairs of
squares. However, for these two queens to be placed so as not to attack each other, for each of the q possi¬
ble squares for the queen in row t, the queen in row j can not be in the square in the same column or the
same right or left diagonal. Therefore the q2 a* priori allowed pairs of positions of the two queens must
be reduced by 3#. However, this over-reduces. If the row-t queen is in a square close enough to the right
(left) of the board and rows s and j are far enough apart, then the corresponding rightmost (leftmost) of
the three positions excluded for the row j queen was not actually on the board in the first place. That is,
the diagonal from the row-t queen's position goes off the board by the time it reaches row j. A little
thought shows that an excess of 2 | t - / | positions for the queen in row j were removed. This must be
added back to q2 - 3q, giving the required result (20). The satisfiability ratio for constraint C2 ^ is by
definition R2 2 = S2 , / M2 2 . Since Af, , = a2 for all pairs of variables, we thus also obtain R2 2 of

i j i j 1 i j i j i j

(20).
Table 2-3 shows the satisfiabilities 57 2. for all constraints of the g ==4,6 and 8 queens problems.

Note that Sg g. is the same for all rows t and j that have the same separation | t - j | . This is as

expected. In fact, a little though shows that for g-queens not just the satisfiabilities S2.2 but also the rela¬
tions 77, themselves must be the same for constraints between equally-spaced variables — see for exam¬

ple table 2-1 for 4-queens. Note also that the larger the row separation, the greater is , and the looser
is the corresponding constraint. This also is as expected for the situation in an g-queens problem.

From (20), and to some extent from the examples in table 2-3, we see that as g grows, R2 2 goes to
1 for any pair of variables z,, z;. In other words, the constraints become looser and looser so that virtu¬
ally all pairs of column positions are allowed for a given pair of queens. This is why, as q grows, the
number of solutions for the g-queens problem tends to infinity.19 It is also the reason for the meager
advantage reported by Haralick (in table 1 of [36]) for the use of "optimal" as opposed to ''normal"
instantiation order in solving g-queens instances. Whereas in general, optimal ordering can make a con¬
siderable difference (as seen in table 2 of [36] and in chapter 8 of [51], where random instances were

17 This is the price paid for the extra predsion afforded by including S as an analysis parameter. Avoiding the problem by
simply dropping S from the analysis produces results in terms of big-classes — and these have in fact also been obtained in [62).
But big-class expectations are not (directly) useful for our purpose of approximating exact-case complexities, since big-dasses do not
exhibit the necessary homogeneity. (It will be seen however that big-dass expectations may be used indirectly for this purpose, by
approximating small-class expectations.)

11 Such as the computational savings obtained from use of the theory-based heuristics, derived in chapter 8 of [51) from ana¬
lytic expressions for small-class expected complexity.

10 The expected number of solutions for CLP instances is treated in section 3.5.2, after the relevant probability models have
been introduced.

v » < j € {1 2 . . g} (20)
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Table 2-3s The satisfiabilities SJ( ^ and the satisfiability ratios R, 2

for all the constraints of the g = 4, 6 and 8 queens problems.

1 5'.<,

4 i\/^ 2 3 4 X 2 3 4

1 6 8 10 1 .375 .500 .625
2 6 8 2 .375 .500
3 6 3 .375

6 2 3 4 5 6 2 3 4 5 6

1 20 22 24 26 28 l .555 .611 .666 .722 .777
2 20 22 24 26 2 .555 .611 .666 .722
3 20 22 24 3 .555 .611 .666
4 20 22 4 .555 .611
5 20 5 .555

8 2 3 4 5 6 7 8 XI 2 3 4 5 6 7 8

1 42 44 46 48 50 52 54 i .656 .688 .719 .750 .781 .813 .844
2 42 44 46 48 50 52 2 .656 .688 .719 .750 .781 .813
3 42 44 46 48 50 3 .656 .688 .719 .750 .781
4 42 44 46 48 4 .656 .688 .719 .750
5 42 44 46 5 .656 .688 .719
6 42 44 6 .656 .688
7 42 7 .656

used), this does not show up with g-queens instances simply because as q grows the constraints in a g-
queens instance all become nearly identical, virtually universal constraints. Since g-queens variables are
distinguished only by the differences in the relations Tj of the constraints for which they are arguments,
the variables of g-queens become indistinguishable and all instantiation orders tend to become effectively
equivalent as q grows.

Example 2x Logical Constraints
The satisfiability of many logical constraints may be determined analytically.20 Let C; denote a

constraint over literals /, formed from different propositions! variables z% (so that therefore, no
two literals are the same or are complementary). Letting integers 1 and 0 denote True and False respec¬
tively, allows us to use addition and multiplication to conveniently express a wide range of constraints
besides the usual ones AND, OR, NAND and NOR. Some of these are shown in table 2-4. For example,
the constraint that exactly m literals of the A; literals are True may be denoted analytically as

20 The particular cue of logical constraints that are disjunctions of literals arises in the natural CLP formulation of the Pro-
positional Satisfiability Problem. This is discussed in chapter 7 of [51] in the context of CLP applications to theorem proving. In an
analogous manner, Schaeffer's generalised Satisfiability Problem [57] results in more general logical constraints when modeled as
CLP in the natural way. However, even Satisfiability with fully arbitrary conjuncts is still of course very much subsumed by CLP,
since CLP allows fully arbitrary constraints and as well allows variables to have an arbitrary finite number of values, rather than
only the two values True and Faide that a prepositional variable may take on.
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i—i

10

(21)

since this requires that exactly m of the /, have value 1. The satisfiability of this constraint is ( ; )v m 1

( i \since there are ( ) ways to chose the m literals that will be True from the total of A. literals. Notev xn ' 1
that for m = 0, the above constraint becomes None or NOR since it requires that no literal be True.

( \
The corresponding constraint satisfiability is then 5; « (^ j = 1; there is only one way to make none
of the literals True. For m =» A} the constraint becomes All or AND since it requires that all literals be

( \
true. The corresponding satisfiability is then S3 = (^ . j = 1; there is only one way to make all of theA3
literals True.

Table 2-4 shows these and other logical constraints, together with their corresponding satisfiabilities
Sj. (Some constraints are expressed in analytic form in more than one way.) Results are also shown for
the conjunctive normal form (cnf) and the disjunctive normal form (dnf) constraints of the following
forms respectively:

e *i d c,

A, V V, .A,»*1 I 1*1 k*rn1

That is, the cnf constraint consists of c conjunct®, the »-th of which is a disjunction of dx literals, the k-th
literal in the t-th conjunct being denoted /,* . Similarly, the dnf constraint consists of d disjunct®, the i-th
of which is a conjunction of c% literals, the k-th literal in the t-th disjunct being denoted lxk. The cnf and
dnf constraint satisfiabilities are obtained as follows.

(i) For the cnf constraint, each component conjunct (being a disjunction) can be satisfied by 2*' - 1
truth assignments to its dx literals. The overall cnf expression is satisfied iff each component con¬
junct is satisfied, and this may be ensured by combining any satisfying assignments for each con¬

junct — giving a total of S; = rL<,< c (2 ' - 1) satisfying truth assignments to the
A, = Yii<><cd> literals.

(ii) A dnf constraint constraint may be expressed as the negation of a cnf constraint over complemented
corresponding literals as follows

ii,-.*
The satisfiability of the dnf constraint, as shown in table 2-4, is therefore 2 ; (the number of all
possible truth assignments to the new complemented literals lik, of which there are still A}) minus
the satisfiability of the unnegated cnf expression, this latter value being as derived above.

Remember, we are assuming above that no two of the A; literals in the constraints are repeated or are
complementary. If this restriction is removed, the satisfiability of cnf and dnf constraints is no longer a
function of just the numbers of conjuncts, disjunct® and their sizes. It will also depend on Jhe specific
literals involved in the conjuncts and disjunct®. For example, the cnf constraint (ji V 22) A (2* V 2*)
satisfiability 9 as required above, but the cnf constraint (zx \J z2) A (zi V *4) containing the complemen¬
tary literals zx and zlf has a different satisfiability, 4. For the fully general cnf or dnf constraint, the
satisfiability may however be derived as an expected satisfiability under a given probability model. For
cnf constraints the expected satisfiabilities over big-classesjand over small-classes are in fact implicit in
the big-class and small-class expected number of solutions 5 for a CLP instance, derived below in section
3.5.2. This is so because satisfying a cnf constraint is just a special case of solving a CLP instance, each
conjunct corresponding to a CLP constraint.

Note that in all cases of constraints on Aj literals formed from A} prepositional variables, the total
possible number of truth assignments is 2 ;. The satisfiability ratios R} = 5; /A/; for the constraints in
table 2-4 are therefore the corresponding 5; values divided by 2 ;.
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Table 2-4: The satisfiabilities S, for some logical constraints Ct on

A, different and non-complementary literals

Ci 5;

Common Name(s) Analytic Form(s)

1 Exactly- m £ h -»
t«i|

(AJ
2 Exactly-0, None, NOR I/-0 (Ao ) = ■

3 Exactly-A;, All, AND

or Il«-i
1—1

d;)->

4 At-Least-m IV 3 Sd;)
1—m

5 At-Least-1, Not-None, OR
AJ
E * * 1
1—1

A, A

S( i
1—1 K

6 At-Most-m jits-
I—1

m
/ A, \

s ;
tm*) *

7 At-Most-(A; - 1), Not-All, NAND

or

1
l—l

Aj
m -0
i—i

A
t —1 A

£( 'k ) = 2"'-l
1—0

8 conjunctive normal form

or

c <.
n s 'ii -1
i—i i—i

i ri
i—i i—i

11(2^-1)
1—1

9 disjunctive normal form

or

d ct

e n '.i ^1
i—i i—i

ri e (1 - /,!) = 0
1—11—1

2*' - I1(2C -1)
l—l
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Example 3: Dlophantine Constraint*
Our third example of extracting constraint satisfiability analytically applies to the important class of

linear constraints of the form

Cj : clzl + c2z2 + . . 4- cA.zA. = c0 (22)
where the c, are integers, and each variable zx takes its values from a set of consecutive integers from a,
to Pi inclusive, so that the domain of zx is = {a, 0,4-1 . . 0X }. The constraint is therefore a

Diophantine equation.21 The satisfiability of a Diophantine constraint (or the number of solutions of a
Diophantine equation), can be found by the inclusion-exclusion principle as seen in a special case on page
154 of [75]. One can also use the method of generating functions as on page 58 of [40] where the fully
general constraint (22) was used but the special case a, = 0 was assumed for the lower bound of all the
domains. The more general case above can be put in a form with lower bounds a, = 0 by transforming
to new variables x% = z, - at. The resulting constraint in terms of x% has the same satisfiability as (22)
in terms of variables zx. Extending the result of [40] accordingly we have then for the satisfiability of
constraint (22) that

^ j .

Sj = the coefficient of tc in the expansion of J|( J] * c' ) (23)
1-1 kmm0

where c = c0 - c, a, and 7, = 0X - a,
»—i

A simple example is the constraint Zzx 4- 5z2 = 1 with domains d2i = {-4 -3 . . 8} and
dj2 = {-2-1 . . 4}. By (23) the satisfiability, or number of solutions, is the coefficient of t25 in the
expansion of

(1+<s+^+..+ 1m)(14/6+110+..+ t*°)
which equals 2. This can be confirmed by drawing the appropriate line and boundaries in the cartesian
plane. One sees that there are in fact two solutions: (zx z2) = (-3 2) and (2 -1). The satisfiability ratio
for the ^constraint is in this case R3 = Sj/Mj = 2/(13x7) = 2/91. Of course in the general case
mj — rtfr.-+ !)•

j=i

2.6.2. Analytic Approximation
Sometimes, in order to maintain an analytic approach to the obtaining of satisfiability, it may be

necessary to settle for only an approximate value. As a simple example, consider the inequality constraint
azx 4- bz2 < c where zx and z2 take values in respective sets d2i and d2^ of consecutive integers. The
exact satisfiability of such a constraint is difficult to determine analytically. Hardy and Littlewood [38]
have struggled with similar problems. However, an approximation to the above satisfiability is readily
obtained as the area in the plane bounded by the line azx+bz2 = c and the horizontal and vertical lines
bounding domains d2i and d,2.

2.6*3. Monte Carlo Approximation
When no analytic method is available to determine satisfiability of a constraint exactly or to a suffi¬

ciently good approximation, an approximation may always be obtained by the obvious method of ran¬
domly sampling from the A/, value-tuples Z; e Dj for the argument set Z; of the constraint. Each such
tuple is explicitly tested to see if it satisfies constraint C}. The ratio of the number of satisfying tuples to
total tuples tested provides an approximation to the satisfiability ratio . This ratio multipled by A/;
approximates the constraint satisfiability Sj. The accuracy of the approximation of course increases with
the size of the sample, but the cost of the approximation becomes accordingly more expensive. Tech¬
niques from [32] may prove helpful. In the limit this approach becomes exhaustive testing, described next.

21 Not* that the satisfiability-vector S of a small-class in a given middle-sixed class characterised by SS most satisfy the
Diophantine equation 514*524-.c4-5c » SS, for 0 < Sj < Mj . The satisfiability of this Diophantine equation thus
equals the number of small-classes in a middle-siied class.
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2.0.4. Exhaustive Testing
If the satisfiability of a constraint is required exactly, and no analytic method is available, then

Monte Carlo sampling can be extended to exhaustive sampling in which all possible M3 value tuples
Zj £ Dj are explicitly tested for satisfaction of constraint C}. The number of tuples found to satisfy the
constraint is of course by definition the required satisfiability S}. The computational cost will be Af;
constraint checks. If all c constraints of a given CLP instance must have their satisfiabilities determined
in this way then this will incur a preprocessing cost of ^h<}<eM} checks.
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3. PROBABILITY MODELS and RESULTS for CLP

This section introduces several probability models for the distribution of instances in the CLP
small-classes and big-classes defined in section 2. These classes are thus turned from sets of instances into
sample spaces where the instances are outcomes. Various events are then defined, their probabilities
derived and certain expected-values determined over small-classes and big-classes under the different pro¬
bability models.

The results in this section are all algorithm-independent — reflecting only the problem class and the
probability model concerned. In [52], these results are used to obtain the expectations of algorithm-
dependent quantities — in particular the expected complexity of solving a CLP instance via the three CLP
algorithms: Backtracking, Forward-Checking and word-wise Forward-Checking. Note that while the
results of this section and of [52] are of course dependent on the probability-model assumed in the
corresponding derivations, this dependence is relatively minor for the expected complexities over small-
classes — this being precisely why small-classes are so important here. The homogeneity of small-classes
(see sections 1.2 and 2.5) allows our small-class expected-complexities to be largely probability-model
independent22 and moreover, allows them to provide good approximations to the exact-case values for
most subsumed instances in the corresponding small-class.

Thus our small-class expected-complexities are to be seen both as interesting expectations in their
own right, as well as being useful approximations for exact-case values. On the other hand, our big-class
expected-complexities at first glance would seem to be of interest only in the first sense — since big-
classes are far from homogeneous. However, as will be discussed in section 3.5.1, big-class expectations
can be used to provide good approximations for small-class expectations, and hence can also be used as
4'indirect" approximations for exact-case values.

3.1. Some Notation

This section presents some notation and results that will be useful. Section 3 assumes a familiarity
with the theory of probability for finite sample spaces, useful references for which are [18], [59] and [40].

Probability Spaces: We will be associating probability models with CLP big-classes and small-classes. To
emphasize that these big- and small-classes then become sample-spaces — where CLP instances are out¬
comes — we write m c Z) and m c Z S), or more simply and fic, respectively for
CLP^(n m c Z) and CLPa(n m c Z S). An instances clp(n m c Z T) or more simply clp, may accord¬
ingly be denoted as u/(n m c ZT) or u. When the distinction between big-class iip and small-class f1a is
not important we use H to stand for either one.

We will often be discussing parameterized events E = E(a x . . am ) in ft, where the a, are argu¬
ments whose values determine the specific event intended. In this case, we abbreviate probability
P(E(a1 . . am )) of the event by P(a x . . am ). Of course, for events E3, j e J that are mutually indepen¬
dent or mutually disjoint we have respectively

e(n^)-n^) p(U£,)= Em,) (24)
J c I J I I J C f J c J

We will mostly be working with the following definition of the expected value of a random variable Q(ct/)
Q = £ (25)

ucQ

which is equivalent to the more usual definition as a sum over all possible values q of Q(cj), each value
weighted by its probability P(g).

Indicator Functions: A given event E C Q can be represented by its characteristic or indicator func¬
tion

{1 if u e E0 otherwiM ,26)
When the event E is given parametrically as above, then we abbreviate S(E(a x . . am) u) as

23 Remember that an expected-cue nine must lie between the worst-case value and the best-cue value for a diss, and if ill
instances of the clus hire similar complexity mines, then the expected-cue value cannot vary mnch irrespective of the assumed
probability model.
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a i . . am w). A result that will prove useful is that the expected value of the indicator function of an
event E is equal to the probability of that event:

1(E) - £ S{E u>) P(u) - £ P(u>) - P(E) (27)

The Inclusion-Exclusion Principle: The probability of a union of not necessarily disjoint sets is given by
the following Inclusion-exclusion formula

P( U E,) = Pt - P2 + P, - . . . (-1)"+1P, (28)
; —i

where P, = £ P(E. fl . . D E.) 1 < jk < n

In words, P, is the sum of the probabilities of all /-fold intersections of events E}. When all sets E; are
subsets of a set P0 C fi, then the probability of the complement in Eo of the union of all E} can be
expressed in terms of (28) as

P( ( u E, )c(fio)) - P(E0) - P( u E,) = P0 - Pt + P2 - P, + . . . (-1)" P, (29)
; — 1 j — 1

where P0 = P(^o) a^d where A c^ denotes the compliment of set A in its superset B. In the special case
that E0 = H we have P0 = 1 in (29).

3,2. Probability Models over Big-Classes and Small-Classes
Within a given big-class or small-class, the instances clp(n mcZT) differ only in the value of their

constraint-relation vector T = (rx T2 . . Tc). Thus a probability model for the instances of a big-class
or small-class is equivalent to one for the corresponding set of T vectors. By the definition of big-class
and small-class (in section 2.5) we have that the relation-vectors T for the instances in a big-class
CLPp(n m c Z) and in a small-class CLP^n mcZS) are respectively those given by

T e X 2°' and T<X(^) (30)
J— 1 J mm 1 V Sj >

The following are three probability models for the distribution of these T vectors. Models 0 and 1 induce
a distribution on the vectors given in the first part of (30), and hence induce a distribution on the CLP
instances of a big-class. Model-2 induces a distribution on the vectors given in the second part of (30),
and hence induces a distribution on the instances of a small-class.

Table 3-lx CLP Probability Models Used

In all three models, the vector T = (Tx T2 . . Tc) of constraint relations arises by c independent
experiments, one for each component T}.

0 Model-0 on a big-class: A given arises as the result of Mj independent experiments^ each
determining for a different one of the value-tuples Z; e D} whether or not it is in T}. Each has
probability p of belonging to T}.

1 Model-1 on a big-class: As for model-0, but generalizes so that each in Z); has probability p;
of belonging to T3.

2 Model-2 on a small-class: A given arises by a single experiment of randomly selecting a subset
of Sj value-tuples from D}. All subsets of size 5; are equally likely.
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Model-0 is essentially that used by Haralick [36| except that we apply it to a more general type of
big-class. ModeH generalizes model-0 in allowing the probability for value-tuple inclusion in a relation
Tj to be pj instead of p and thus to vary with the relation. Parameter p; (and p) we call the satisfia¬
bility rate for the /-th constraint, since it is the probability that any given value-tuple Z; e D} satisfies
constraint C. = (Z; T}). Note that under model-1, selecting an instance is a compound experiment
made up of independent component experiments: Mx Bernoulli trials with success rate p lf

A/2 trials with success rate p2 . . . and Mc trials with success rate pc.

Thus probability modei-1 is characterized by a vector p (p x . . pc) of c satisfiability rates, one
for each constraint . Model-0 results when p =* (p p . . p) and is characterized by a single satisfiabil¬
ity rate p. We use Pp(E ; p) to denote the probability of the event that a random instance clp is in set
E when selected from big-class CLPm c Z) under model-1 with satisfiability-rate vector
p = (p i . . pc). The corresponding expression for model-0 is Pp(E ; p).

The simple assumptions of model-0 and model-1 are not appropriate for model-2, where instances
are constrained to belong to a small-class characterized by some vector S of constraint-relation sizes
whereas under models 0 and 1 any size 0 < S; < A/; was possible for the /-th constraint.

As with models 0 and 1, the experiment of selecting a CLP instance is a compound experiment made
up of c independent component experiments of selecting the respective individual relations T; . However
unlike models 0 and 1, the gelation T, is selected from D} as a single indivisible experiment of simultane¬
ously selecting S; tuples Z; from the A/; tuples in D}. (Equivalently, one can view the selection of a
relation T; under model-2 as corresponding to a sequence of S; independent selections without replace¬
ment, of value-tuples Zj from Dj.) Corresponding to P/(£ ; p) and P p(E ; p) above, we use Po{E) to
denote the probability that event E occurs when a CLP instance is randomly selected from a small-class
under model-2. Note that model-2 does not depend on any distribution parameter such as parameters p
and p of models 0 and 1 respectively.

For big-classes under model-0 and under model-1, and for small-classes under model-2, the expected
value of a random variable Q(dp) is given by the corresponding versions of (25), which are respectively

Qf{n m c Z ; p) — £ Q(clp) Pjf{clp ; p)
dp e Q^nm cZ)

Q}{n m e Z ; p) =» £ Q(clp) P}{clp ; p)
dp c a^nncZ)

Q?(n m c Z S) = J] Q(clp) P„2(c/p)
dp i n^noicZS)

3.3. Events

Having introduced the probability models above, we now consider some events that are of intrinsic
interest and/or that will be needed in (52) when deriving the expected complexity of solving CLP
instances. The events are with respect to a big-class or a small-class as the sample-space, and are defined
in table 3-2. In the next section, the probabilities of such events will be determined according to the vari¬
ous probability models that apply. Table 3-10 summarizes these probabilities for the events of table 3-2,
under models 1 and 2. Note that all results of section 3 are independent of any algorithm. However, they
are closely related to algorithm-dependent quantities of interest, and in [52] we employ them in deriving
algorithm-dependent events, probabilities and expectations for the Backtracking, Forward Checking and
word-wise Forward Checking algorithms.

As indicated in table 3-2, the events we consider can be divided into three types, based on (i)
whether constraints of an instance are satisfied by a given value-tuple, (ii) whether constraint relations of
an instance are equal to given sets and (iii) whether constraint relations of an instance have a certain size.
The following paraphrases and expands on the formal specification of the events in table 3-2.

• E(j Zj) is the set of instances in ft whose ;-th constraint relation (c/p) is satisfied by a given
value-tuple Z; from the corresponding cartesian product.

# E(j X) is the set of instances in Q whose j-th constraint relation Tj(clp) is satisfied by a given
value-tuple X labeling X C Z. X need notequal the list Z; of ai^ument variables for T;, but may
subsume it. In this case, T} is satisfied by X if the projection Z; (X) of X onto Z; is in T;.
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Table 3-2i Some Basic Subsets of ft = ft^n m c Z) or ft<,(n m e Z S).
(The corresponding event probabilities are in table 3-10.)

Symbol Defined aa Defined for

Events based

E{j Z,)

E(j X)

E(JX)

E(J J t X)

E(J f >IX)

on constraint satisfaction

{dp | Z} tTj(dp)}

{dp | J;(X)£r;(C/p)}

{dp | Z]{X)eT]{dp)yjtJ}

{ dp | 3 exactly t values / edf
s.t. \Z,(xT)tT,(dp)\l jtJ\ }

{clp | 3 at least one value / edf
s.t.\Z,(XT)iT,{dp)\j jtJ) }

Z, eDj, jtJ{

XCZ, Zj CX, jtJ\

xcz, jcji z, cxy jtj

XCZ,JCJi,ftX,

{/}QZ]CXV{f}\jjeJ,tejZ'

XCZ, JCJ{, ftX,

{f }QZ} cxu {f)VJeJ

Events based

E(j T,)

E(T)

on constraint equality

{dp | T](dp)=T1}

{dp | T(c/p)=T}

1
f T, t 2D> Model-1

,D , 'tJi1 T, e ( 5; ) Model-2

C

Te X 2°' Model-1
j—i

c
D

T e X ( ' ) Model-2
*j '

Event* baaed

E(jS})

E(S)

on constraint-slse equality

{dp | S}(dp)=Sj }

{C/p|S(c/pHS} 1

S; t j"' Model-1 .

Sj — S, (ft,) Model-2 n 1

1 Se X Jo' ModeH
1 ;_1IS=S(ft,) Model-2
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• E(J X) is the set_of instances in fl whose constraints in the set indexed by J are all satisfied by a
given value-tuple X labeling X C Z.

• E(J f t X) is the set of instances in fl tor which exactly t of the vif possible values in domain df
tot variable / each allow all the constraints that are indexed by_/ to be satisfied when other argu¬
ment variables take their values as given by X. Thus E(J f t X) can be viewed as the event that
exactly t values for / each "survive" all the constraints in Tj (T} | ;'«/} given the instan¬
tiations in X. Note that as indicated in table 3-2, this set of instances is well defined only for / not
in X and when each constraint in Tj has / as one argument and takes its other arguments only
from the variables X. This and the next set of instances will be important in the analysis of algo¬
rithm gFC.

• E(J f >1 X) is as for E(J f t X) except that instead of requiring exactly t surviving values from
if , we require at least 1.

• E(j T}) is the set of instances in fl whose y-th constraint relation T} (dp) is equal to a given rela¬
tion Tj .

• E(T) is the set of instances in fl whose vector T(dp) » (Ti(clp) . . Tc (dp)) of constraint relations
is equal to a given relation vector T = (Tj . . Te). As mentioned, within a given big or small-class
there is a one-to-one correspondence between vectors T and instances dp(n m c Z T), so that the
set E(T) is really just the singleton set {dp(n m c Z T)}. As a consequence, the probability of
event E(T) is the probability of outcome elp(n m c Z T).

• E(j S}) is the set of instances in ft for which the size S, (dp) = | T} (clp) \ of the y-th constraint
relation T; (dp), is equal to a given number S,.

• £(S) is the set of instances in fl whose vector S(c/p) = (5i(clp) . . Sc(dp)) of constraint relation
sizes, is equal to a given vector S = (Si . . Sc) of sizes. In table 3-2, S(Q7) denotes the satisfiability
vector S characterizing the small-class Qa — CLP„(n m e Z S), and S, (fl„) denotes its y-th com¬
ponent.

Having now defined the events of interest, table 3-3 presents some relationships between them which
will be useful when deriving the event probabilities of the next section. Remember from table 1-1, that
the symbol (•) indicates an intersection between sets which as events are mutually independent. Analo¬
gously, U denotes a union between mutually disjoint sets.
(34) follows since an instance dp has a relation vector T(c/p) = (Ti(dp) . . Tc(dp)) equal to a given

vector T = (Tj . . Tc) iff T} (dp) =* T}, \/ 1 < y < c. Most importantly, for different y the
events E(j T}) are mutually independent in all models, since the relations T; (dp) arise via
independent experiments under all models.

(35) is a direct consequence of the definitions of E(j Z}) and E(j X).
(36) follows analogously to (34).
(37) follows since at least one value for / surviving is the same as the event that one value survives, or

two values, . . , or the maximum mf values survive, these possibilities all being mutually disjoint.
It is also equal to the certain event minus the event that zero values survive.

(38) says simply that Z, e T} (dp) tor instance dp iff T}(dp) — T} where Z} t T}. Sets E(j T}) are
of course disjoint for different T} since T, (dpi) # T} (dp2) implies that dpi ^ dp2.

(39) is the only relation in table 3-3 that is not applicable under all probability models. As indicated by
the sub and super scripts, it applies for a big-class under model-1 (or model-0 as a special case). It
says that a given set T, will equal the y-th relation T; (dp) of an instance dp if1 all value-tuples
Z} of T} are in T}(dp) and all Z} not in T, are not in Tj(dp). As such, this is also true^under
model-2. However (39) also says that events E(j Z;) are mutually independent for different Z,, and
this is not the case under model-2, but only forjnodels 0 and 1 where the inclusion of Z, in T; is
decided by an independent experiment for each Zj .

(40) says simply that S; = | T}(dp)\ tor instance dp iff Tj(dp)— Tj where | T; | — S}. As with
(38), sets E(j Tj) are disjoint for different T}.

(41) follows since an instance dp has a relation-size vector S(c/p) = (S^c/p) . . Sc (e/p)) equal to a given
vector S = (5X . . Se) iff S}(dp) = Sj, I < j < c. As in (34) and (36), for different y, the
events E(j T}) are mutually independent.
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Table 3-3* Some Relationships between the Events of Table 3-2.

E(T)= REOT,) (34)
; —i

E(jX) = E(j Z3(X)) (35)

E(JX)= f\E(j X) (36)

E(J f >1 X) =- u E{J f t X) = n - E(J / 0 X) (37)
t—x

E(}Zj)= U E{j T,) (38)
Ti

Efii r,)= R E}(j Z,) R E} - E/(j ) (39)
Vf; VVr;

E(;5;)= U E(jT;) (40)
t, i-t. | r; | -5,

E(S)= R^(;5;) (41)
; —1

3.4. Probabilities

In this section we derive the probabilities of the events in table 3-2 under probability models 1 and
2. These probabilities appear in tables 3-5 and 3-6 respectively. Results for model-0 follow as a special
case of those for model-1, and are not given explicitly. For convenient comparison, table 3-10 combines
the results of tables 3-5 and 3-6 for models 1 and 2.

The relationships of table 3-3 between the events of table 3-2 can readily be converted into
corresponding relationships between the event probabilities by taking the probability of both sides of the
equations in table 3-3 and using (24) to simplify. The resulting probability equations are shown in table
3-4.

3.4.1. Probabilities Under Models 0 and 1

Table 3-5 presents the probabilities P}(E ; p) for the events E C R of table 3-2, under probability
model-1 over a big-class fl =■ (if » CLP^(n m e Z). The model-0 probabilities Pf{E ; p) follow as a spe¬
cial case by using p for all components p} of model-1 parameter vector P — (p 1 • ■ pc )•

(50) follows by definition from model-1 (since the relations T} of an instance arise independently and an
arbitrary tuple Z, from cartesian product D} has probability p} of belonging to T,). Note that the
result is the same for all Z} in D}.
Note that (46) gives an expression for P(j Z}) in terms of P{j T,). This equation will be useful for
finding the model-2 version of P{j Z,) in Uie next section, but in the present model-1 (and model-0)
case the equation is not useful since P(j Z,) follows much more directly in the manner just shown.
Nevertheless, (46) remains valid for model-1, and it is interesting to check that it is satisfied by (50)
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Table 3-4i Relationships Between Probabilities of Events of Table 3-2

(based on table 3-3)

P(T) - n m T,) (42)
J

P{jX) = P(j Z,(X)) (43)

P{JX) = UPUX) (44)
>«/

p{j/ >ix)»§p(;/ /x)— i-p(// ox)
t—i

r; ».t. ij t Tj

(45)

P(jZ,)= Tl PVT>) (46)

PfVT,)- n PiUZj) n 1 (47)
Vr,

P(jSj) = £ P(jT}) (48)
Tj I Tj | -S,

^(S)= i[PU Sj) (49)
j —i
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Table 3-St ModeH Probabilities for the Events of Table 3-2

PpU 2, ; p) — p, (50)

PpU *; P) = Pj (51)

P}(JX ; p)- JlPj
x /

p)Ut'ix-,v)-(m')[Un ]' [ i - IT pj
)<f }tl

(52)

(53)

P}(J J >lX;p)=»l-[l-nf; ]"' (54)

Ppti T) : P) = P, S' (1 - P) )V;_5; ^ere | T; | = S, (55)

P/(c/p(n m c Z T); p) = P/(T ; p) — II Pi (1 " Pj whcre I T} | = S} (56)
j —x

Pp'U s, ; P) - ( ) p,'• (1 - p, )"'■■*' (57)

Pits ; p) = ri ( f ) P,"' (1 - P, (58)

and (55) of table 3-5. This is done by partitioning the T} of (46) according to their size 5; and not¬
ing that there are ( ) different T} of size S} such that Z] e T} for a given Z;. Using (55) and
the Binomial Expansion in reverse, we then obtain — as required by (50) — for the right side of
(46)

£ ( ) P]S' (l~P] f''*' = Pj (Pj + - Pj ))"' 1 ™ Pj (59)
s} —i °j 1

(51) follow8 from (50} using (43). Note that since in (50) the result is independent of Z;, (51) is also
independent of X.

(52) follows from (51) using (44). Like (51), it is also independent of X.
(53) will be explained in the following section. Again, this probability is independent of X.
(54) follows from (53) and (45). This probability is also independent of X.
(55) follows from (47) and (50). Note that as expected, it is just the probability of a specific distribution

of | Tj | = Sj successes in A/; Bernoulli trials of success rate p}.
(56) follows from (55) and (42). Note that due to the one-to-one correspondence between instances and

relation vectors T, (56) gives the probability of outcome clp(n m c Z T) in big-class
CLP^n m c Z) under model-1.

s} J different T} of size S} that can be
selected from the M, tuples of D}. Note that as expected, (57) is just the Binomial probability of
Sj successes in Bernoulli trials of success rate p,.
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(58) follows from (57) and (49). Note that (58) gives the probability that a random instance of big-class
CLP^n ocZ) falls in the particular subsumed small-class CLPcr(n m c Z S).

3.4.2. Probabilities Under Model-2

Table 3-6 is the model-2 analog of table 3-5. It presents the probabilities P?{E ; p) for the events
E C Q of table 3-2, under probability model-2 over a small-class {1 = 0^ = CLP^n m c Z S),

(65) follows essentially by definition from model-2 (since the relations T} of an instance arise indepen-
!Ui \

dently and since there are ( c J equally-likely ways to choose relation T}). This is in contrast to
j

the model-1 case, where it was (50), the analog of (60), that followed most directly.
(66) follows from (65) and (42). Note that due to the one-to-one correspondence between instances and

relation vectors T, (66) gives the probability of outcome clp(n mcZT) in small-class
CLP^n mcZS) under model-2. Moreover, since (65) is independent of T}, (66) is therefore
independent of T and we see that model-2 does induce a uniform distribution on the CLP instances
of a small-class. This is in contrast to the highly non-uniform distribution (56) that model-1 (or
model-0) induces over the instances of a big-class.

Table 3-6i Model-2 Probabilities for the Events of Table 3-2

P/(j Z^-R, -SJM,

P?{jX) = R, = Sj/Mj

P,VX)=T[R> = USJM,

(60)

(61)

(62)
j t I j t I

(63)

p*{j ! >ix)=i (64)

-1

(65)

-1

(66)

JV(;S,) = 1.0 (67)

P/(S) = 1.0 (68)
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(67) follows simply because under model-2 all'selections T} must be of size S} by definition. More specif¬
ically, it can be obtained from (48) by adding P(j T}) of (65) once for each of the ( ) possible
selections T} since all are of size S;. ;

(68) follows from (67) and (49). Note that this is just the probability that an outcome in small-class
ft, = CLP^n m e Z S) is in that small-class, and this is of course the certain event ft,. Results (67)
and (68) are actually included here only for symmetry with their model-1 analogs (57) and (58).

(Af -1 \ —SJ j selections T} that contain a specified tuple Z; , since
the other £;-l value-tuples to make up the required total of 5; must be chosen from the other
Mj -1 possible tuples of Dj. There are thus this many terms in the sum (46), each term contributing
the same probability from (65)^ The sum, and hence P?(j Z;), is thus equal to

( ^-l V( s' ) " ^ == Rj as in (60). Note that as for (50) in the model-1 case, (60) is the
same for all Z3 in Z>;.

(61) follows from (60) and (43). Note that since in (60) the result is independent of Z; , (61) is also
independent of AT as was its analog (51) in the model-1 case.

(62) follows from (61) and (44). Like (61), it is also independent of X.
(63) will be explained in the following section. Again, this probability is independent of X.
(64) follows from (63) and (45). This probability is also independent of X.

3.4.3. The Probability of t Surviving Domain Values
We have now derived the probability, under both models 1 and 2, of all the events in table 3-2,

except for one. This is event E(J f t X) that exactly t values from the ntf values in the domain of vari¬
able / survive all the constraints indexed by /, given that other argument variables take their values as

given by the instantiation list X. The problem of finding the probabilities P / (/ f t X) and
Pc(J f t X) ot this event under models 1 and 2 is relatively difficult, at least in the model 2 case. How¬
ever, the problem is of considerable interest. Similar versions have cropped up in seemingly unrelated
alternate forms in various other disciplines; see the note at the end of [57].

Tables 3-7 and 3-9 below present four alternate forms of our problem, in the model 1 and model 2
cases respectively. Formulations Ax and A2 are our original model-1 and model-2 problems. Formula¬
tions Cx and C2 correspond to the recursive version of these problems employed in [57]. Formulations
Dx and D2 correspond to the work of Shenton [69] and of Bernard [3|. Note that in these equivalent
problems / is an integer equal to the size of the original index set so that / = | / | , and m equals the
domain size mf of the original problem.

3.4.3.I. Under Modeli 0 and 1

The probabilities sought in the four problems of table 3-7 are all equal — this being the intended
sense in which the problems are equivalent. Here, we solve our" original problem A x of finding
P}(J f t X) by finding probability PBi(J m t) ot problem Bx.

An example of the kind of /-tuple required in problem Bx is shown in figure 3-1. This depicts
/ = 3 subsets or selections T] taken from sets Z?;, 1 < j < 3. The D} are of sizes \ D x \ = Mx = 9,

\ D2\ = M2 = 7 and \ D&\ = A/$ = 8. Selected integers are shown underlined. The selections hap¬
pen to be of sizes | Tx | = Sx = 5, | T2 | = S2 = 6 and | Tz | = = 6, but note that there is
nothing in problem Bx that requires this. Exactly t = 3 of the first m = 5 integers are common to all
three selected sets. This is also true for m =» 3, 4, and 6 but not for w = 7 unless t were 4, since integer
7 is also common to all three selections. As implied in this f = 4, m = 7 case, the t integers common to
all the selections need not be the first t integers {1 2 . . t], but may be any subset ot the first m integers.

In forming the /-tuples T =* (Tx T2 . . Tj) of problem Bx each integer of Z>; independently has
probability p. of being selected for and the T; are selected independently. Therefore each integer has
probability Jj[; t jPj of being selected in all / selections. The probability that exactly t of the first m
integers is selected in all / selections is then just the Binomial probability of t successes in a run of m
Bernoulli trails with success rate JJ p;. Therefore the probability required by problem Bx is just

j< /
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Table 3-7i Four Equivalent Problems

(A J A Constraint Survival Problemi Find the probability P}(J f t X) of event E(J f t X) of
table 3-2 under probability model 1. Briefly, this is the probability that in a CLP big-class under
model 1, a random instance allows exactly t values from the domain of variable / to each satisfy all
the constraints indexed by J, when other argument variables take their values as in instantiation list
X.

(Z?i) A J-Urn Coincidence Problem: From each set of integers D; — {1 2 3 . . M} } 1 < < /, select
independently a subset T,. Each integer of D} independently has probability p, of being selected to
belong in T.. Given a number m < Min {M. }, what is the probability PB (J m t) that of the

1 £ J £ / 1
first m integers {12.. m}, exactly t are common to all / sets selected? Explicitly, we require the
probability of the event

E(J mt)-{(TlT2..Ti) : | f) T, f| J? I - <}
j —i

This is trivially equivalent to a /-urn problem where the sets Z); correspond to urns containing
numbered balls. It is also clearly equivalent to having a "chess board'' of / rows with the ;-th row
having M, squares. The rows are aligned at the left, but not necessarily at the right. In each row
balls are placed in each square with probability pj. What is the probability that exactly t of the
first m columns are filled (i.e. have all / squares occupied by a ball)?

(Cx) A Non-stationary Markov Chain Problems Let Pcx[j m t) be the probability of being in state
t of the states {0 1 2 . . m} after exactly j' steps of a non-stationary Markov chain

{1 if t as m0 otherwise

PcxU m 0 3 £ Pcx(i-l m u) P{i « 0 J * 1
u—O

having a nonstationary Binomial transition probability P(j u t) for going from state u to state t at
step ;

pu>o-(")r;e-i>,r'
Note that P(j u t) = 0 for t > u. Find Pcx{J m 0» probability of being in state t after exactly
/ steps.

(Z>x) A Single-Urn J-Cycle Addition-Deletion Problems A single urn initially contains only m red
balls. A sequence of / cycles is performed on the urn, each cycle consisting of an addition of an ad¬
dition phase where white balls are added to the urn, followed by a deletion phase where each ball in
the urn is independently deleted with probability 1 - pj. If balls are deleted at the deletion
phase of the /-th cycle, then the number of white balls added during the j'-th addition phase is

JO if;-l
a* if 2< j < /

Find the probability Pdx{J m 0 that, after / such addition-deletion cycles, there are exactly t red
balls left in the urn.
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Fig. 3-1: Three selections in which exactly t *=• 3 integers of the first m = 5
are common to all selections. They happen also to be the / irst 3 integers.

M, Sj
Di = { 123 | 4 5 | 67 89 } 9 5
D2 = { 123 | 45 | 67 } 7 6
Ds = { 123 | 45 | 67 8 } 8 6

PBi(J m t) — ) [ I[ Pj ] [ 1 " II P) ]
with special cases:

,

(69)

(70)PBl{l m <) = (7 ) [ Pi ] I1 "Pi]

PBx{J m m) — [ J) pj ] (71)
>—1

PBi(/mO)» [l-Pi] (72)

Note that (70) is a Binomial distribution and so is (69), independent of the value of J. All that
changes is the success rate. In the model 2 case below we will see that the / = 1 case is a hypergeometric
distribution, but that for larger J the hypergeometric form is not maintained. By the correspondence
between problem Bx and our original problem A x, we have

pjvt <X;p)-(7)[nc, ] [i-ne, (73)
311 }tj

P}(Jf >1X;P)-1-[i-IIP, p (74)
jit

Result (74) followjs from (73) by use of (45). Note that probabilities (73) and (74) are actually independent
of the argument X as well as being independent of the sizes Mj. The model 1 probabilities of (50) to (52)
were similar in this respect.

Solving problem Bx above to obtain (69) was quite easy. The analogous solution for problem B2 of
the next section will be considerably harder to obtain. It will require the use of the inclusion-exclusion for¬
mula (29). Actually, even though the above method of solution suffices, problem Bx can also be solved
via the inclusion-exclusion formula. We now carry out such a solution since it emphasizes the similarity
between problems Bx and B2 and much of the work can in any case be carried over to the solution of Z?2.

Let us first make explicit the sample space for problem Bx. Remember that a /-tuple T of selections
Tj is obtained by independently selecting each T3 from the corresponding set Dj. Selection Tj may be
any subset of Dj, hence any element of the power set 2 ; of D}. Thus we may consider the outcomes T
as elements from a product space ft made up of component spaces = 2 ;.

/

n = X n3 n} = 2D> (75)
j —i
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Table 3-8t Some Events in 0.

Symbol Defined as Defined for

E(J m t) {T : I n T,^ f| J? I - t}
i

0 < t < m

E(J m J') {T: n Tj f)/r = /'}
/—I

J' c /r

E0 {T : ri T, D J[ }
i

El {T : T, D J[ }

E, {T : 0 Tj D J{ U {»} }
; —i

f+1< i < m

E,J {T : Tj D /{ U {»'} } f+1 <i<M,, 1 < j < J

E>(i) {T : Tj D {»} } l<i<M}, 1 < ; < J

Problem Bx asks for the probability m t) of event E(J m t) that a random /-tuple T has
component selections Tj having exactly t integers from the first m integers in common. This event can
be written explicitly as E(J m t) of table 3-8. Now E(J m t) can be partitioned in terms of disjoint
events E(J m J') as follows

E(/mf)= U E(JmJ') ,

/* c /j* v '
I r\ -(

so that by (24)

P(Jmt)= £ P(J m /') l77)
r c /« 1 1
\r\-t

There are ( ^ ) terms in this sum corresponding to the ways to choose t integers from the first m and by
symmetry each term is equal. Thus

(78)

where E(J m /{) is any one of the ( * ) events partitioning E(J m t), let's say the one for which exactly
the first t integers are those common to all Tj from amongst the first m. The simpler events of table 3-8
can be used to re-express this latter event. But first we present some relationships between events of
table 3-8 that will be needed later. Clearly the following equalities hold.
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E<=tE'' m

E°-,iEi (80)

£/- R.B'WPlBMi) (81|

(82)

/>( £'(■))-P, (83)

We now express E(J m J{) as a compliment in E0 in term of the Ex, as follows

E(J = ( U Et)c(Bo)
I — t+1 (84)

This is valid since it says simply that T has exactly the first t of the first m integers common to all selec¬
tions Tj iff it has the first t integers common to all T} but does not have any integer from 1+1 to m
common to all selections. The probability of E(J m J{) can then be found using the inclusion-exclusion
formula (29). It therefore remains only to find Pi of (28), which in the present context is

Pi = e <+i<«•*<*. (85)

There are ( m~() terms in this sum corresponding to the different /-fold intersections formable
amongst the m-t sets E,. As above in deriving (78), all such intersections have the same probability.
Using the probability of a particular /-fold intersection as representative of all other such intersections, we
have
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p, =(mr')p< ft e,)
»— t+i

= ( m7l )P( R fl £/) by (79)
J mm

= ( V ) II #) by (24)
>.1

-(V) rip< ^ ( RE'(*)F1 £'(»'))) by (81)
> — l i —t+i * —l

-CV) ri p{ ft ^'(0)

t+t

f II Pj 1 fey I83)
l, —1 J
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(86)

(87)

(88)

(89)

(90)
1 i—l

("7') ri ffPIE' W) by (24) (91)

( Y ) [ ri p, 1 by (83) (92)LJ- 1 J

P0 — P(E0) (93)

- P( PI £<5) by (80) (94)
; —i

— n p(£<0 by (24) (95)
; —1

™ II P( ^ E 3 (0 ) by (82) (96)
7—1 »—l

™ II np(£J(0) by (24) (97)
7—11—1

(98)

Substituting these expressions for P/ into the inclusion-exclusion expansion (29) for (84) and using (78) we
obtain

pBx{jm,) = (7) em)' (7')[rip,] m*
ImmO 7 ■■ 1 J

Using the Binomial expansion in reverse to simplify this, we again obtain the Binomial probability (69) as
required. As mentioned, this more laborious route to (69) is useful in unifying the present problem Bx
with B2 of the next section. The two derivations are very similar, and many of the above results will be
cited in solving B2 below.

3A.3.1. Under Model-2

Analogously to table 3-7 above, table 3-9 shows four alternative versions of our problem of finding
the model-2 probability P?(J J t X). Here, we solve the original problem A2 of finding P<?(J f t X) by
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finding probability Pb2(J m 0 of problem B2. Probability Pb2(J m 1) can be obtained by the analogue of
the second method for finding Pb^J m 0 in the previous section. Of course, the sample space for prob¬
lem B 2 is different than that for Bv Paralleling (75) we now have

X QJ W - ( ) (100)l v Sj J

where, as defined in table 1-1, ( ) is the set of all subsets of D} having size S;. However, the events
defined in table 3-8 remain relevant (although the "Defined for" column needs some adjustment, to
correspond to precisely 5, integers now being selected in forming T).) Essentially all prior results apply
except (81) and (82) and results dependent on these two. In place of these latter two equations, we have

EtJ — rW(*)n *'(»') (101)
* — l

Ei- nE>(k) (102)
* — i

where the events being intersected are no longer mutually independent. Thus in place of (90) we have

fi-( V) E'(0) (103)
; —i » —i

This requires the probability that the first t+l integers belong to T}. There are ( ) possible T}
corresponding to the ways to choose the required 5; integers from the A/; integers in set D}. By assump¬
tion in B2, these are all equally likely. Of these, ( ^J f contain the first t+l integers since, having
chosen the first t+l integers to belong to T}, there remains S; -t-l to be selected (so that T} has size 5;)
from the remaining A/; -t-l integers of D}. Thus

Pi ri-^- (104)

(I>)
Similarly

- (f:!)
Coo)

'"(*<)
Substituting these expressions for P/ into the inclusion-exclusion expansion (29) for (84) and using (78) we
obtain

(7) E (-D1 ("y')ri ("':/:/)
PBa(J m 0 = — , /M (106)

with special cases:

, (:)(£T)M1 m '> rzn— <,07>
o
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Table 3-0: Four Equivalent Problems

(yl2) A Constraint Survival Problem: Find the probability P?(J f t X) of event E(J / t X) of
table 3-2 under probability model-2. Briefly, this is the probability that in a CLP small-class under
model-2, a random instance allows exactly t values from the domain of variable / to each satisfy all
the constraints indexed by /, when other argument variables take their values as in instantiation list
X.

(B2) A J-Urn Coincidence Problem: From each set of integers D} = {1 2 3 . . A/, } 1 < ; < J, select
independently a subset T} containing S} integers. For a given D} ail subsets of size S; are equally
likely. Given a number m 5 Min J[Mj }, what is the probability Pb^J m 0 that of the first m in¬
tegers {12.. m}, exactly t are common to all / sets selected? Explicitly, we require the probability
of the event

E(J m t) - { (Tx T2 . . Tj) : | f| T, f| J? I - <}

This is trivially equivalent to a /-urn problem where the sets correspond to urns containing
numbered balls. It is also clearly equivalent to having a "chess board" of / rows with the ;-th row
having A/; squares. The rows are aligned at the left, but not necessarily at the right. In each row j,
exactly 5; balls are placed, each choice of S7 squares in row j being equally likely. What is the
probability that exactly t of the first m columns are Tilled (i.e. have all / squares occupied by a
ball)?

(C2) A Non-stationary Markov Chain Problem: Let Pc2(j m I) be the probability of being in state
t of the states {0 1 2 . . m} after exactly j steps of a non-stationary Markov chain

{1 if t = m0 otherwise

Pc2(j »»')■ S pc2U-1 rn u) P{j u t) j > 1
u—0

having a nonstationary Hypergeometric transition probability P(j u t) for going from state u to
state t at step j

, , $-7) ft)
(";)

Note that P(j u 1) = 0 for t > ti. Find Pq2{J m probability of being in state t after exactly
/ steps.

(D2) A Single-Urn J-Cycle Addition-Deletion Problem: A single urn initially contains only m red
balls. A sequence of / cycles is performed on the urn, each cycle consisting of an addition of a3
white balls to the urn, followed by a deletion of d3 balls from the urn. To correspond to our origi¬
nal problem we require a; and dj as follows, with all subsets of size dj being equally likely to be
deleted

- m if ; = 1
Mj -5,-1 if2<y<y

dj = Mj - Sj \<j<J
Find the probability Pj)3{J m t) that, after J such addition-deletion cycles, there are exactly t red
balls left in the urn.
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Mj-tn (%■:;)
PBa{J m m) = } j (108)

n ("')
I J

s<-')'(":)n(7;:;)
P»±> -0) (109|

7—1 ^
Unfortunately, unlike (99), (106) does not collapse in general. Only when / = 1 can the sum over /

be removed using Vandermonde's identity to give (107). Note that (107) is a hypergeometric distribution
while (106) for arbitrary J is not hypergeometric. Contrast this with the model-1 analogs (69) and (70)
which are Binomial both for / =* 1 and for arbitrary /. By the correspondence between problem B2 and
our original problem A2t we have

(7) IViTV') n ("c~m )
/— 0 jtJ J

mfyJtJ >

P,V f tx) 1=2 jj—— (110)

"t (-»' (7) n
I*m0 JtJ JP?(J f >ix) = i-— (in)

M, -n(";)JtJ J

Result (111) follows fromJllO) by use of (45). Note that probabilities (110) and (111) are actually
independent of the argument X but, unlike (73) and (74), they do depend on the sizes A/;. The model-2
probabilities of (60) to (62) were similar in this respect. Expression (111) is not at all as simple as the
analogous expression (74) for the model-1 case. The latter is therefore simpler to use in numerical calcula¬
tions. This is the reason that certain model-1 expectations, derived in [52], are useful alternatives to the
model-2 versions even though the model-1 result is generally less exact as an instance-specific estimate.

It is interesting to note the close similarity between the two probabilities P(J f t) of (73) and (110)
for the model-2 and model-1 cases respectively. First note that

(£3
a)

H*-l)(*-2)- . . (6-c+l)
a(a-l)(a-2). . . (a-e+1)

1 (A _1 )(A _2 ). . . (A +1 )
a a a a a a a a

(112)
i(i-i )(i_|)... (i-i +i)a a

m for arbitrary fixed b and c, as a -► oo

Making the identifications a = A/;, b = 5; and e = t+1, we can then write for the model-2 probability
(110) that, for arbitrary fixed S; and rr\f , as A/; —► oo
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/-*> Jil IV1J

(113)

-(7)[n^]'[i-n>r'jcJ iW; jci lYli

= P}(J I t X ; p) for p = (p! . p2 . . pc) = (Si/M^ . . Sc /Mc)

where we_ have employed the Binomial expansion in reverse to eliminate the sum over I. Thus
P(J f t X) under model-2 for a small-class CLP^n m c Z S) is asymptotically equal to a model-1 ver¬
sion for big-class CLP^n m e Z) when the parameter p = (p i . . pc)
=s (Si/Mx . . Sc /Mc )=«(/?!../?,.). This generalizes the more familiar result that the Binomial distri¬
bution can be arrived at as the limit of the Hypergeometric distribution. Note that in (51) and (61) the
model-1 and model-2 versions of P(j X) are respectively P/(j X; p) = p} and P?(j X) = R} so that
these two probabilities also become equal when p is as above with = R}; and this equality holds in
general, not only in the above asymptotic limit. These equalities and near-equalities between correspond¬
ing probabilities will turn out to be the basis of our ability to approximate model-2 expected complexities,
by their model-1 counterparts. This is further discussed in the next section.

3.5. Expected Values

3.5,1. Model-2 Expectations via Model-1
Models 1 and 2 are perhaps equally relevant (or irrelevant) as models of the way CLP instances are

distributed in given real-word contexts. But model-2 expectations have the added virtue of being able to
approximate exact-case complexities, as a consequence of the homogeneity of small-classes. Since big-
classes are far from homogeneous, big-class expectations would appear not to be useful in this second
sense. However, because of the asymptotic relation in (113), big-class expectations may in fact be used as
approximations for small-class expectations and hence may be used to indirectly approximate exact-case
values.

Why is this possibility relevant, seeing that the model-2 expectations have proven tractable? The
reason is that the computation of numerical results is often far faster using model-0 and model-1 expres¬
sions than using those for model-2. This becomes particularly important when the derived expressions are
used repeatedly within an algorithm to guide the problem-solving process (see the local heuristics
developed in section 9 of [57]). Being easier to derive, model-0 and model-1 (in that order) expectations
were in fact the first to be obtained — and their ability to approximate model-2 results would have been
particularly important if the model-2 results had proven to actually be intractable. In different domains
where the sought expectation is intractable, an analogous manner of approximating it may be applicable.

Let us now be explicit about how model-2 expectations are approximated by those for modeH. We
first repeat from (32) and (33), the expressions for the expected value of a quantity Q(clp) under models 1
and 2 respectively:

Q}{n m c Z ; p) = £ Q{clp) P}{clp \ p)
clp € CXjP^* tm c 2)

Q?{n m c Z S) = J] <?(c/p) P?(clp)
dp t CLPJ^n m c Z S)

Probabilities P/(clp ; p) and P?(clp) under the two models are given by (56) and (66) for the
instance clp =. clp(n m c Z T). In the following we refer to a fixed big-class CLP^n m c Z) so that
arguments n, jn, c and Z_may be dropped where convenient. In particular we write the left sides of (114)
and (115) as Q}(p) and Q<,2(S) respectively and we abbreviate small-class CLP^n m c Z S) as CLP^(S).
The sum in (114) over the instances of the big-class CLP^n mcZ) can be broken up into several sums
over the instances of the small-classes CLPa(n mcZS) that are subsumed by the big-class — see sec¬
tion 2.5 — giving
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Table 3-10s Probabilities of the Events in Table 3-2

(Combination of Tables 3-5 and 3-6)

Prob. Model 1 2

n fIf «= CLP/n meZ) fl, — CLP,(n m c Z S)

P(E) p}(e ; p) P?{E)

PUZj) Pj Pj

P(j X) pj R,

P(JX) II *y
}<l

II*,
JC I

P(J / t X) (7)[n',]'[i-n
jti jti

/»0 jcJ J

nd;)jcj j

P{J f >1 X)
Hi

"t hi' (7) ii(%:!)
1 '—o jc J 1

n("*)
jcJ J

PU T,) P,s> (1 -P,f>-S> (1;)

P{T) = ri f/Mi-p,)"'"*'
« H 1 n, (1;f

P(clp(n meZ T))

PU S}) I"'"*' 1.0

P(3) ri (f 1.0
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_ (V, Ut)
Qt(p)*" E E P/(c/p ; p) (116)

S«-(0 0) dp (CLPJS)

Now by (56), (58) and (66) we have the following relationship between probabilities under models 1 and 2:

P0li'ip;p)-P,l{S;p)P?iciP) (H7)

where S is the satisfiability vector of instance elp. This allows (116) to be rewritten as

_ (*!••*,)
Q/(p)=~ E Pf(S;p) E Q(cip)p,2(cip) (118)

S—(0 0) dp c CLPJS)

Using (115) we have finally

_ (V, Me)_
Qp(P)= E Q,2(S)P/(S;p) (119)

S—(0 0)

which says that the expectation of Q(c/p) for a big-class under model-1 equals the sum of the expectations
of Q(clp) for each subsumed small-class weighted by the model-1 probability of the corresponding small-
class.

We see then from (119) that a model-1 expectation is a weighted average of many model-2 expectar
tions. However, from (58), the weighting probability P/(S ; p) is a product of Binomial distributions and
is sharply peaked about its modal vector S = sm'de which depends on the model-1 parameter vector
p. If the peaking of P/(S ; p) about its mode is sufficiently sharp and if, away from the mode, Qj(S)
does not grow so large as to offset its tiny weighting there, then the contribution of <?<y2(S) terms in (119)
will be virtually zero jtt all S vectors except those close (in the Euclidean metric) to the mode vector
Smode jj Q j2(s) terms in (119) for such near-modal S vectors are nearly equal then we might
expect the following approximate equality to hold

Qto)** Q?{Snti'(p)) (120)
In this way, given a vector p, the modeH expectation over a big-class could be used to approximate

the model-2 expectation over the subsumed small-class corresponding to the modal S vector induced by p.

Conversely, given an S vector characterizing a certain small-class, the model-2 expectation for that small-
class could be approximated using the model-1 result for a p vector that makes S modal. The question
then becomes: what p vector makes a given S modal in (58)? Generalizing Feller's result for an individual
Binomial distribution, page 151 [18], we propose using for the multi-dimensional Binomial case2*

p = R-(*!*,.. *c) = (^- ^ ..^-) (121)
With this value for p, the model-1 expectation Q#(n m c Zjp) over big-class CLPm c Z)

should provide a useful approximation for the model-2 expectation Qj(n m c Z S) over any subsumed
small-class CLP^n m c Z S). Of course, this approximating ability is contingent on the validity of the
assumptions made above regarding the nature of the quantity Q(clp) being averaged. Empirically, these
assumptions have been found to hold for the several c/p-dependent quantities to be studied here. The
model-1 and model-2 expected number of solutions 5 derived in the next section are in fact always exactly

23 Not* thxt this is also the majrimnm-likeiihood estimate for p based on a single instance of satisfiability vector S arising
under model-1 in CLP^(n m C Z). This however is not relevant here since we are not attempting to estimate the distribution
parameter p of any real model-1 distribution. Model-1 is being nsed here merely as a technical device for estimating model-2 expec¬
tations.
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equal when using (121). So also are all the model-1 and corresponding model-2 results for gBT derived in
[52]. Exact equality however does not hold for gFC model-1 and model-2 results, although agreement is
usually excellent.

Note, that exact equality will always hold no matter what the quantity Q(clp), in the special case of
small-classes all of whose satisfiabilities S; equal 0 or . (Such small-classes contain only a single CLP
instance.) That exact equality then holds in (120) can be seen from (58) and (119) and the fact that (121)
causes all p} parameter values in model-1 to equal 0 or 1.

3.5.2. The Expected Number of Solutions
This section presents our first application of the above probability models in finding an expected

value — the expectation S of the number S(clp) of solutions of a CLP instance. This expectation is par¬
ticularly easy to derive, since it is algorithm-independent. For this reason 5 is derived in this section, as

opposed to in [52] where algorithm-dependent expectations are obtained. In spite of its relative simplicity,
or perhaps because of it, the derivation here of 5 is important as a model for these later, more compli¬
cated derivations.

It should be noted that much of the reasoning in obtaining the expectations of [52] will be equally
valid for all three probability models. A single unified derivation can therefore be used, at least up to the
point where model-dependent differences can no longer be ignored. At this point the unified approach in
split into separate streams. An example of this is seen in this section.

Let 5(c/p) denote the number of solutions that exist for a given CLP instance clp. Specifically, it is
the number of labelings Z_e D of all ft problem variables in Z, such that Z satisfies all the m problem
constraints. The set E(J X) of table 3-2 is useful here. It is the set of all instances for which value-tuple X
satisfies all the constraints indexed by the set /. Thus, with J == J[ and X = Z, we have that E(J{ Z) is
the set of all instances having Z as a solution. Letting S(J[ Z dp) be the characteristic function of this
set, we can then express S(dp) as

S(dp) = £ 6(Jl Z dp) (122)
ZiD K '

For a fixed labeling Z, summing the value of the characteristic function over all instances dp e ft gives
the number of instances for which Z is a solution. On the other hand, for a particular instance c/p, sum¬

ming over all possible labelings Z e D, as in (122), gives the number of solutions for that instance. The
expected number S of solutions is then found as follows

S =. £ S(clp) p(clp) by (25) (123)
dp c a y '

— 2 2 clp ) P(clp) by (122) (124)
dpin ZiD

= £ £^1C Zclp)P(clp) (125)
ZiD dpta

= ZP{J{Z) by (27) (126)
ZiD

- £ ri P(iZ) by (44) (127)
ZiD i

The above derivation has been equally applicable for obtaining S under either model-1 or model-2.
This model-independence has been taken as far as possible and we now specialize to each case_ individu¬
ally. Probability P(j Z) under the models 1 and 2 is given by (51) and (61) respectively, with X — Z. In
either case, the probability is independent of Z. Thus the product in (127) may taken outside the sum,
giving respectively the final results

January 10, 1086



45

s/~~ (nm*,) ri Pj by (5i) (128)
t, i Z j— l

^-(n«0 ri*, fey(61) (129)
J, c Z 3 — 1

where we have collapsed the sum over Z by use of

x1 = iD i = i i = n i i = n m», (130)Z c D ' * J, < £ v '

Note that the above two expectations (128) and (129) provide a good example of the phenomenon dis¬
cussed in the previous section. By setting each p} of the model-1 parameter vector p equal to the
corresponding /?; = 5; /A/;, a model-1 expectation over big-class CLP^n m c Z) may provide a good
approximation for the corresponding model-2 expectation over small-class CLP^n m c Z S). In the
present case, the approximation is in fact perfect, the two expectations being always exactly the same
when Pj = Rj. Although this will not always be the case for expectations of other quantities, we have
found that the approximation is usually excellent. For some expectations found in [52], the asymptotic
equality (113) will be found to help in this regard.

3.5.3a Expected Number of Surviving Domain Values
One of the probabilities derived earlier was the probability P(J f t X) for event E(J f t X) of

table 3-2. This was in fact the most complex probability derived to date. It will prove very useful in [52]
where expected complexities of CLP problem-solving are derived. In that context, we will also require a
simplified expression for J]o<e<m/1 P[J f t X) — the expected value of t under distribution
P(J / t X). This expectadon can be re-expressed in the form of (25) by introducing the instance-
dependent quantity {(/ / X clp) which is, for the given instance dp, the number of values from the
domain of variable / that survive alHhe constraints indexed by set J when the other argument variables
take their corresponding values as in X. It is the expectation of this quantity that is expressed above and
we have that

T(J J X) = £ t P(J f t X) = £<(//* dp) P{dp) (131)
£■■0 clpcQ

The values under models 1 and 2 are obtained by using the corresponding versions of P(J f t X) or
P(clp). In the present case it is simplest to work with P(J J t X). Under model-1 this is given by (73)
which is just the Binomial probability for the number t of successes in m/ Bernoulli trials of success rate

fpj. The expected value of t is thus just the usual product of the number of trials by the success
rate, so we have that the required expectation in (131) is

lX;p)=m, Up, =mf P,(JX; p) (132)
(■0 je /

Under model-2 we obtain the expectation in (131) by using probability P*(J f t X) of (110).
Evaluating (131) for this distribution seems rather forbiding. However there is a convenient shortcut.
Using the identity (j) =« ( jl}) ca® readily show that

tp*{jf tx)=mf [n4-l
tmm 0 je / MJ r«-0

(133)

where / ' ia a variable with domain size m/- — mf -1, /' indexes | J | constraints of size Mj-1 from
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the /-th of which we choose a subset of size 5,-1. Now since P?(J' / ' /' X) is a probability distribu¬
tion for t', we have ^ P%{1' f ' t' X) = 1 and therefore

r—o

t P?(J J tX)=mf H R, - "V P?(J X)
j't

(134)
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APPENDIX A

ALTERNATIVE CHARACTERIZATIONS of the GOAL of a CLP INSTANCE

This appendix gives several alternative characterizations to that in (5) for the solution set T, which
is the goal sought in solving a CLP instance.
Characterization 2

Note that the solution set T may be considered as the relation induced by a constraint C = (Z T)
on the full set Z of problem variables — and it is for this reason that we use the symbol T to denote the
solution set, paralleling the use of T) for the relations of the original problem constraints C; = (Z; T}).
Since the value-tuples in T are precisely those that satisfy all c instance constraints, this induced con¬
straint C ® {Z T) is just the canonical form for the logical conjunction of the c instance constraints

c=kc,.
Finding the solution set T of a CLP instance thus amounts to synthesizing the induced conjunctive con¬
straint C.

Characterization 3

If _for _ each constraint we define its extension onto Z as Cf = (Z Tf) where
Tj = { Z : Zj (Z) £ Tj } , then the solution set is given by

r=hr;
l

The sets T' are 1'prisms" with cross-section T}. The solution set T is thus the intersection of the c
prisms whose cross-sections are the problem constraint-relations 7y .

Characterization 4

Any set can be characterized as the union of all its subsets. This is useful here because the subsets of
the solution set T can themselves be described independently of 7\ in terms of the givens of the problem.
Specifically, if we denote by (A) the projection onto Z; of a set A C D, so that

*,(A)-{Z}(Z) | ZiA)
then the subsets of T can be characterized by

ACT ifT*;(A) C Tj v; £ Ji
The solution set can then be expressed as the union of all its subsets, as follows

T = U A = Sup (,4)
A (A) C Tj V j e / J ^ '•t* *; M V ll 'i

The solution set is thus the largest subset of D whose projections onto the various Z; fall inside the
regions given by the corresponding T}. This and characterization 3 above correspond closely to the
1'volume-reconstruction" problem mentioned in section 1, in connection with figure 1-1.

Characterization 5

Conversely to the previous approach, any set may also be characterized as the intersection of all its
supersets. Thus we have that

T = f) A = Inf U)
AD T A 2 T

This however is not particularly useful since the supersets of T are here expressed directly in terms of T
itself. There does not appear to be a simple characterization of these supersets in terms of the givens of
the problem, as there was above for the subsets of T.
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Characterization 6

For tho6e familiar with the "join" operator M of relational database theory [48], the solution set T
may be directly characterized as

C

T — Mr.
>—1

(where we assume that Z =* Ui<y<c )• This is further discussed in chapter 7 of [51] in dealing with
database applications of CLP.
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