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Abstract

A new method for obtaining lower bounds on the computational complexity of
logical theories is presented. It extends widely used techniques for proving the
undecidability of theories by interpreting models of a theory already known to
be undecidable. New inseparability results related to the well known insepa¬
rability result of Trakhtenbrot and Vaught are the foundation of the method.
Their use yields hereditary lower bounds (i.e., bounds which apply uniformly
to all subtheories of a theory). By means of interpretations lower bounds can
be transferred from one theory to another. Complicated machine codings are
replaced by much simpler definability considerations, viz., the kinds of binary
relations definable with short formulas on large finite sets.

Numerous examples are given, including new proofs of essentially all previ¬
ously known lower bounds for theories, and lower bounds for various theories of
finite trees, which turn out to be particularly useful.



 



1 Introduction

In this paper we present a new method for obtaining lower bounds on the computational complexity
of logical theories, and give several illustrations of its use. This method is an extension of widely used
procedures for proving the recursive undecidability of logical theories. (See Rabin [47] and Ersov, Lavrov,
Taimanov, and Taitslin [21].) One important aspect of this method is that it is based on a family of new
inseparability results for certain logical problems, closely related to the well known inseparability result
of Trakhtenbrot (as refined by Vaught), that no recursive set separates the logically valid sentences from
those which are false in some finite model, as long as the underlying language has at least one non-unary
relation symbol. By using these inseparability results as a foundation, we are able to obtain hereditary
lower bounds, i.e., bounds which apply uniformly to all subtheories of the theory.

The second important aspect of this method is that we use interpretations to transfer lower bounds
from one theory to another. By doing this we eliminate the need to code machine computations into
the models of the theory being studied. (The coding of computations is done once and for all in proving
the inseparability results.) By using interpretations, attention is centered on much simpler definability
considerations, viz., what kinds of binary relations on large finite sets can be defined using short formulas
in models of the theory. This is conceptually much simpler than other approaches that have been
proposed for obtaining lower bounds, such as the method of bounded concatenations of Fleischmann,
Mahr, and Siefkes [25].

We will deal primarily with theories in first-order logic and monadic second-order logic. Given a set
E of sentences in a logic L, we will consider the satisfiability problem

sat(E) = {<r £ L | <7 is true in some model of E}

and the validity problem

val(E) = {a £ L | c is true in all models of 17}

A hereditary lower bound for 17 is a bound that holds for sat(E') and val(E') whenever E' C val(E). If
L is a first-order logic, define inv(L) to be the set of sentences in L that are logically invalid, i.e., false
in all models. If L is a monadic second-order logic, define inv(L) to be the set of sentences false in all
weak models. (See Section 2 for definitions.)

The complexity classes used here are time-bounded classes for nondeterministic Turing machines and
for the more general class of linear alternating Turing machines. In providing reductions between different
decision problems, we are always able to give log-lin reductions. That is, our reduction functions can
be computed by a deterministic Turing machine which operates simultaneously in log space and linear
time. In particular, such functions have the property that the size of a value is bounded uniformly by a
constant multiple of the size of the argument.

Let Lq denote the first-order logic with a single, binary relation symbol. Let MLq denote the
corresponding monadic second-order logic. Let T(n) be a time resource bound which grows at least
exponentially in the sense that there exists a constant d, 0 < d < 1, such that T(dn)/T(n) tends to
0 as n tends to oo. (This condition is satisfied by the iterated exponential functions and other time
resource bounds which arise most commonly in connection with the computational complexity of logical
theories.) Let sat^iLo) denote the set of sentences a in Lq such that cr is true in some model on a set
of size at most T(|cr|). (Here |<x| denotes the length of a.) Similarly define satxiMLo) for sentences of
monadic second-order logic. The inseparability results which form the cornerstone of our method are as
follows:

(a) For some c > 0, satT(Lo) and inv(Lo) cannot be separated by any set in NTIME(T(cn)).

(b) For some c > 0, satT(MLo) and inv(MLo) cannot be separated by any set in ATIME(T(cn),cn).
In proving (b) we prove another interesting result. Let ML+ be a monadic second-order logic with a
ternary relation PLUS and satx(ME+) be the set of sentences <p in this logic true in the model (T(n), -f),
where n = \<p\ and -f is the usual ternary addition relation on the set T(n) = {0,... ,T(n) — 1}. Then
for some c > 0, satT(ME+) and inv(ML+) cannot be separated by any set in ATIME(T(cn), en).
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(ATIME(T(cn), cn) denotes the set of problems recognized by alternating Turing machines in time
T(cn) making cn alternations along any branch.) We prove and discuss these results in Sections 3 and 4
respectively. In fact, we prove more: any problem separating saiT(Lo) and inv(Lo) is a hard problem
(under log-lin reductions) for the complexity class

U NTIME(T(cn))
c>0

Any problem separating saiT(MLo) and inv(MLo) is a hard problem for the complexity class

\J ATIME(T(cn),cn)
c> 0

In these results one can see a parallel between first-order logic and NTIME, on the one hand, and
monadic second-order logic and linear alternating time, on the other. This parallel persists throughout
the lower bounds for logical theories which we discuss here, and we feel that our point of view helps to
explain why the complexity of some theories is best measured using NTIME while for others the best
measure is linear alternating time.

In order to obtain lower bounds from these inseparability results, or to transfer lower bounds from one
theory to another, we use interpretations. However, sometimes we require not just a single interpretation,
but rather a sequence {Jn | n > 0} of such interpretations. Not only do we require that each In define
a sufficiently rich class of models when applied to the models of the theory under study, but also we

require that the function taking n to In should be log-lin computable.
As an example of how such interpretations are used, suppose E is a theory such that for each n > 0,

In applied to models of E yields all the binary relations of size at most T(n) (and perhaps others), for
a given time resource bound T. It follows that for some constant c > 0, sat(E) and inv(L) cannot be
separated by any set in NTIME(T(cn)). In general, it follows that E has a hereditary NTIME(T(cn))
lower bound. There is a corresponding result for the complexity classes ATIME(T{cn),cn) when the
interpretations In interpret monadic second-order logic of binary relations on sets of size at most T(n).

In making use of such sequential families of interpretations there are certain technicalities regarding
lengths of formulas which must be addressed. They can be illustrated by considering the formula p'
which results from a formula p when one replaces every occurrence of a certain binary relation symbol
P by a given formula tp. If <p has many occurrences of P and if the length of tp is of the same order of
magnitude as the length of p, then p' may well be extremely long compared to p. (This is precisely the
kind of operation on formulas used as a reduction function between theories when one uses interpretations
to obtain lower bounds.) This difficulty can be overcome if one uses sequences {In} of interpretations
in which either all formulas in each 7n are in prenex form, or are obtained by a certain kind of iterative
process. In practice, the interpretation sequences used to transfer lower bounds from one logical problem
to another can always be found satisfying one of these conditions.

We have used this approach to give a precise analysis of the computational complexity of various
theories of finite trees. For each r let Er denote the first-order theory of all finite trees of height r,
and let MEr denote the corresponding monadic second-order theory. Also let E^ and MEqq denote
the corresponding theories of all finite trees. Let expm(n) be the m- times iterated exponential function
(e.g., exp2(n) = 22 ) and let expOQ(n) be the tower of twos function:

•*2 \ •
/ \ /i \ cxO2' rn times

exPoo(n) = expn(l) = 2 J
Our results concerning the various theories of finite trees can be summarized as follows:

(a) For each r > 4 there are constants c and d > 0 such that sat(Er) is in NTIME (expr_2(dn)) but
that sat(Er) and val(Er) are hereditarily not in NTIME(expr_2(cn)). For r = 3 the upper bound
is NTIME{2dr%2) and the hereditary lower bound is NTIME(2cn).

(b) There exist constants c and d > 0 such that sat(Eoo) is in

NTIME{exp00(dn))
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but that sat(l7qo) and val(Eoo) are hereditarily not in

NTIME(exp00 (cn))

Hence, these problems are hereditarily not elementary recursive.

(c) For each r > 1 there are constants c and d > 0 such that sat(MI7r) is in

ATIME (expr (dn/ log n), dn)
but that sat(MEr) and val(MEr) are hereditarily not in

ATIME(expr(cn/ log n), cn)

It is not hard to show that E^ and ME^ are mutually interpretable, and hence have the same complexity.
In any case, for such rapidly growing time resource bounds as expOQ(n), the difference between NTIME
and ATIME has vanished.

In order to test our method for effectiveness and smoothness of use, we have used it to provide new
proofs of essentially all previously known complexity lower bounds for theories. These new arguments
avoid direct coding of machine computations, and are usually much simpler and more conceptual than
the original arguments. We present many of these proofs, or at least sketches of them, in Section 8.
In all cases our lower bounds are hereditary, and are expressed in terms of log-lin hardness for certain
complexity classes, providing new complete problems for many of these NTIME and linear ATIME
classes. In some cases we verify results which had been only announced, no published proof ever having
appeared.

It is our hope that this systematic reorganization and simplification of the subject will stimulate the
interests of many computer scientists and mathematicians, and that they will be inspired to investigate
the many decidable theories for which no detailed complexity bounds have been found.

The organization of our paper is as follows: Section 2 contains various definitions and technical
conventions. In Section 3 we present some technical machinery needed to handle the details about lengths
of formulas which arise in complexity arguments. Sections 4 and 5 contain the basic inseparability results
for logical problems; these are the analogues of the Trakhtenbrot-Vaught Theorem. In Sections 6 and 7
we discuss interpretations and set up the procedures by which they are used to obtain lower bounds for
logical theories. Here too are proved the lower bounds for the various theories of finite trees which are
treated here. Section 8 contains a lengthy series of applications of our method, yielding lower bounds
for a wide variety of theories of independent interest. In Section 9 we obtain various upper bounds
for problems treated here, in order to show that our method is capable of achieving sharp results. We
present a selected list of open problems at the end of Section 10.

In this paper we have not discussed ways in which our method can be used to obtain lower bounds
in terms of SPACE (T(n)) complexity classes. This is because there are so few known cases in which
best possible lower bounds for logical theories are expressed in terms of space complexity classes. The
exceptions are the PSPACE-complete theories such as those discussed in Stockmeyer [60] and Grandjean
[28]. These are, in some sense, the least complex theories since Stockmeyer shows implicitly that if E
is a logical theory with has at least one model with at least one nontrivial definable relation (i.e., the
relation is true of some elements and false of others), then sai(E) is log space, polynomial time hard for
PSPACE. (Note that if equality is taken as a basic relation in the language, or is definable, then the
hypothesis means simply that E has at least one model with two or more elements.) If E does not have
any such model, then it is utterly trivial, and both sat(E) and val(E) are in LOGSPACE. (We assume
throughout that the vocabularies of logics are finite.) For most PSPACE-complete theories polynomial
nondeterministic time lower bounds can be derived without too much difficulty using the methods of
this paper.

On the other hand, all "natural" logical theories which are known to be decidable seem actually to
be primitive recursive. Furthermore, among theories where a somewhat careful upper bound analysis
has been carried out, decidable logical theories seem to fall into NTIME(expOQ(dn)) for some constant
d in all but a few cases. It would be nice to have an explanation (or a convincing refutation) of this
phenomenon.
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We urge the reader not to be dismayed by the length of this paper. We believe that the method
presented here is indeed simple and can be mastered quickly. The reader who is trying to get an
overview of our method is advised to read Section 8 first. Not only does this give a summary of the
main complexity lower bounds which are known, but also we have tried to present these applications in
such a way as to give an accessible exposition of how our methods are meant to be used, and the main
technical points which arise in their use.

2 Preliminaries

In this section we present the definitions and notations used throughout the paper.
All alphabets considered will be finite. The length of a string w is denoted |w|. The empty string is

denoted e.

We use the standard "big oh" and "little oh" notations throughout, as well as the "big omega"
notation: write f(n) = fi(g(n)) if /(n) > kg(n) for some k > 0 on all large n.

All theories considered here are formulated in either first- order or monadic second-order logics. For
convenience we treat explicitly only relational languages in sections 3-7; functions are handled by using
their graphs as relations, and constants are treated as special unary relations. This restriction makes no
difference as far as the lower bounds we obtain: sentences containing function and constant symbols can
be transformed into equivalent sentences containing relation symbols with an increase in length of only
a constant factor. (It is necessary to "reuse" variables to accomplish this.)

To specify a logic in this paper, we need only give its set of relation symbols and their associated
arities (the vocabulary of the logic) and indicate whether the logic is first-order or monadic second-
order. We formulate all of our logics using finitely many symbols, so that all terms and formulas are
strings on a finite alphabet. In particular, a variable is represented by a symbol followed by a subscript
in binary notation. Thus, to represent n distinct variables we need strings with total length about
nlogn. (Logarithms will always have base 2.) To avoid subscripted subscripts we use lower case Roman
letters t,u,x,y,z—possibly with subscripts—as formal variables to denote actual variables Monadic
variables are represented by corresponding upper case letters.

A weak model for a monadic second-order logic L is a pair where M is a model for L and
T is a collection of subsets of the universe of M.. The truth value of a formula from L in (M, T) is
determined in the usual way except that monadic quantifiers range over the sets in T rather than the
collection of all sets. Throughout the paper, equivalence of monadic second-order formulas will mean
equivalence on weak models. This is stronger than the usual notion of equivalence.

The first-order and monadic second-order logics with vocabulary consisting just of a binary relation
symbol P are central to our investigation. They will be denoted Lo and MLq respectively.

We also study theories of finite trees; again the vocabulary consists just of one binary relation symbol
which, in this case, interprets the successor (or parent-child) relation. Let Lt and MLt denote the first-
order and monadic second-order logics with this vocabulary. These are essentially the same as Lo and
MLq; they differ only in the binary relation symbol used. However, it will be convenient to have a
different notation for these logics when considering trees.

When considering finite trees we will often require the notion of a primary subtree. Such a subtree is
formed by restricting to a set of vertices consisting of a child of the root and all its descendents. Thus,
we may regard a tree as being formed by directing an edge from the root of the tree to the root of each
of its primary subtrees.

As we noted in the introduction, we will consider problems of the form sat (17) and val(E). From a
computational point of view, these two problems are complementary. That is, a sentence cr is in sat(E)
exactly when -><7 is not in val(E). Hence, sat(E) is a member of a particular complexity class if and
only if val(E) is a member of the corresponding co-complexity class. If E is a complete theory, then
sat(E) = val(17). When we are in a first-order logic, val(E) is the deductive closure of E by the Godel
Completeness Theorem. There is no corresponding result for monadic second-order logic.

Often a logical theory is specified not by giving a set of axioms E, but by giving a characteristic class
of models C. In this situation we take E to be the set of sentences true in all members of C. It is easy
to verify in this case that val(E) = E and sat(E) is the set of sentences true in some member of C.
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If L is a first-order logic we define inv(L) to be the set of sentences false in all models for L. This
is just the complement of saf(0). If L is a monadic second-order logic we define inv(L) to be the set of
sentences false in all weak models for L.

Given a time resource bound T(n), let satj>(E) be the set of sentences p> true in some model of E of
size at most T(\<p\). Also, write satj»{L) for sa^(0). Let sat^{E) be the set of prenex sentences <p true
in some model of E of size at most T(\<p\).

Let M be a model for a logic L, m = mi,... ,raj. elements of .M, and <p{x\,... ,xn)yi,..., j/fc) a
formula from L. Then <pM{x) rh) denotes the n-ary relation defined by

ipM{a,rh) <=> M (= <p[a,m]

for a = ai,..., an € M.
Interpretations of one class of models in another are fundamental to many parts of logic, and we use

them extensively here. For example, to interpret a binary relation M! (i.e., a model for the logic Lq)
in a theory E from a logic L, we must produce formulas 6(x,u) and 7r(x,y,u) from L so that for some
model AA of E and some elements m of Ad, Ai' is isomorphic to the structure

Af = (SM(x,m),irM(xiy)rh))
where we require that irM(x,y,fh) C 8M(x,rh) x 5^(a:,m). There is also a more general kind of
interpretation that is often used, in which the domain of AT can be a set of k- tuples from M (not just
elements of M) and in which M! is isomorphic to a quotient of Af by an equivalence relation that is
definable in A4.

Let <p be a formula in a logic L and D a unary relation symbol. By <pD we mean the relativization of p
to D. This is formed by systematically replacing all subformulas Vy tp and 3y0 of (p with Vy(jD(y) —► ip)
and 3y(D(y) A ^), respectively. If L is a monadic second-order logic, it is not necessary to relativize the
set quantifiers since elements have already been restricted to D.

The complexity classes we use are defined by time resource bounds. A time resource bound T is
a mapping from the non- negative reals to the non-negative reals such that for each k > 0, T(kn) is
dominated by some fully time constructible function on the integers; see Hopcroft and Ullman [33] for
definitions. We will also require that T(n) > n and that for each k > 1, T(kn) > kT(n). This last
condition is not standard, but is appropriate for the kinds of problems we are considering. It says that
when input length is increased by some factor, the allowed computation time increases by at least the
same factor. It is included for technical reasons; we could get by with less, namely, that T be monotone
nondecreasing and for every / there should be a such that T{kn) > /T(n).

The iterated exponentials and tower of twos functions appear often as time resource bounds in the
problems we consider. The iterated exponentials expm(n), where m is a non-negative integer, are defined
by induction on m. Let exp0(n) = n and expm+1(n) = 2exp™(n). The tower of twos function exp0O(n) is
defined to be

•2 \ •

/^\ nl2' rn timesexpn(l) = 22 J
Recall that a problem is elementary recursive if it is recognized in time expm(n) for some m > 0.

All of our bounds are for nondeterministic or alternating Turing machines. The set of problems rec¬
ognized by nondeterministic Turing machines in time T(n) is denoted NTIME(T(n)). With alternating
Turing machines we will be concerned chiefly with the complexity classes ATIME^^^cn), the set of
problems recognized by an alternating Turing machine in time T(n) making at most cn alternations. We
will assume that alternating Turing machines have four types of states: universal, existential, accepting
and rejecting. See Chandra, Kozen, and Stockmeyer [15] for the definition of acceptance by alternating
Turing machines and a description of the computation trees associated with these machines.

We will sometimes say that a theory E has a hereditary NTIME(T(cn)) (or ATIME(T(cn), cn))
lower bound. By this we mean that there is a c > 0 such that for all Ef C Z1, neither sat(Ef) nor val(E')
is in NTIME(T(cn)) (respectively, ATIME(T(cn),crij).

A log-lin reduction is a mapping computable in log space and linear time. In some sources this
terminology is used for a log space computable, linearly bounded mapping, which is a weaker notion.
(Linearly bounded means that output length is less than some constant multiple of input length.) It is
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not crucial for most of the applications presented here that our reductions be quite so restricted; usually,
polynomial time, linearly bounded reductions suffice. However, to obtain some results in the literature,
such as those in Grandjean [28], we must restrict time bounds.

We encounter a technical problem with log-lin reductions: we do not know if they are closed under
composition. To overcome this difficulty we define a stronger notion of reset log-lin reduction. A machine
performing such reduction is a log space, linear time bounded Turing machine with work tapes, an input
tape, and an output tape. It has the capability to reset the input tape head to the initial input square
on k moves during a computation, where k is fixed for all inputs; on all other moves the input tape
head remains in place or moves one square to the right. It writes the output sequentially from left to
right. Suppose that M' and M" are two such machines using at most k' and k" resets, respectively.
We informally describe a machine M to compute the composition of the reductions computed by M'
and M". Imagine that the output tape of M' and the input tape of M" have been removed. Instead,
M' sends its output directly to M". As M" computes its output, it calls M' to supply it with a new

symbol on those moves when the input head of M" would have moved right. M7 has only to resume its
computation from the last call to supply this symbol. On those moves where M" would have reset its
input head, M' must begin its computation anew. Now the input head of M" would have passed over
each input square at most k" + 1 times during the computation, and to supply each symbol the input
head of M' passes over each input square at most k' + 1 times. Thus, M resets its input head at most
(k' + l)(fc" -hi) — 1 times. Clearly, M is log space bounded. Since the part of M corresponding to M7 is
forced to begin its computation anew at most k" times, it is easy to see that M is linear time bounded.

It is not difficult to show that the prenex formulas of a logic are closed under relativization up to reset
log-lin reductions. That is, there is a reset log-lin reduction which takes formulas of the form. <pD, where
(p is a prenex formula with no variable quantified more than once, to equivalent prenex formulas. We
use this fact often. Unfortunately, we know of no way to eliminate duplicate quantifications of variables
using reset log-lin reductions (see below), but this can be accomplished easily with polynomial time,
linearly bounded reductions.

3 Reductions between Formulas

One of our goals is to develop effective and easily used methods for transferring lower bounds from
one problem to another. Our methods are based on interpretations between theories (or equivalently,
between classes of models) and can be seen as an extension of the most widely used methods for proving
the undecidability of logical theories; see Ersov, Lavrov, Taimanov, and Taitslin [21] and Rabin [47] for
a discussion of undecidable theories from this point of view. To obtain complexity lower bounds for
decidable theories we must use interpretations which have a somewhat more general form than those
used in undecidability proofs, and there are certain technicalities about lengths of formulas which must
be addressed in this more general setting. In this section we will develop the required machinery.

A common method for proving that a theory Z in a logic L is undecidable is to show that the theory
Z0 of finite binary relations, formulated in the logic Lo> can be interpreted in Z. In the simplest case
this means that formulas 8{x, u) and ir{x, y, u) of L are given so that every finite binary relation can be
obtained (up to isomorphism) in the form

(SM(x,m),irM(x,y,m))
for M. a model of Z and m a sequence of elements of M>. The formulas 5 and it are then used to define
a reduction from formulas of Lq to formulas of L, as follows: given a formula <p of To, replace every
occurrence of an atomic formula P(z,t) by the formula ir{z,t,u) and relativize every quantifier to the
formula 6. (One must rewrite bound variables to avoid clashes and make sure that u is a sequence of
otherwise unused variables.) Call the resulting formula <p*. The reduction mapping (p i—► <p* is then used
to obtain undecidability results for Z from corresponding results for Zo.

This kind of simple interpretation is not adequate for obtaining lower complexity bounds when Z is a
decidable theory. One works instead with a parameterized family of formulas { <pn | n > 0 } from Lq and
uses a sequence of formula pairs { (£n(z, u), 7rn(z, y, u)) | n > 0 } from L. In reducing the formulas pn
to L, one proceeds as above, except that p'n is obtained from (pn using <5n and 7rn. In complexity lower
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bound arguments, it is not only necessary that the function pn p'n should be efficiently computable,
but also that \(pfn\ should be linearly bounded in \pn\. If P occurs many times in pn and |7rn| grows
without bound as n increases, or if pn has many quantifiers and \6n \ grows without bound as n increases,
then the linear boundedness condition may not hold. However, in certain cases there are methods to
efficiently replace p'n by an equivalent formula for which the linear boundedness condition does hold.
Roughly speaking, we can do this when the formulas <5n and wn are all in prenex form, or are obtained
by a certain kind of iterative procedure. The machinery developed in this section to accomplish this
task is implicit in most complexity lower bound arguments for logical problems.

In order to describe this machinery, it is convenient to introduce an extension X* of each logic X,
in which explicit definitions are allowed. (X* has no more expressive power than X, but properties can
sometimes be expressed by shorter formulas in X* than in X.) Continuing the example above, let p%
denote a formula in which all quantifiers of pn have been relativized to a new unary relation symbol D.
Then the extended language X* in this case would include a formula

[-P(s.y) = Tn(«,y,«)] [D{z) = <5„0,u)]
whose interpretation is exactly the same as that of p'n, although its length is likely to be more under
control. Here the equivalences in brackets are interpreted to mean that P is explicitly defined by 7rn
and that D is explicitly defined by 6n. The general problem, treated below in this section, is to find
situations in which certain formulas of the extended language X* can be efficiently reduced to equivalent
formulas of X, without a significant increase in the length of the formulas. (In general, it is possible
to find for each X* formula of length n an equivalent X formula of length 0(n log n); this is not good
enough for sharp complexity bounds.)

Let X be either a first-order or monadic second-order logic. Define X* as follows. Formulas of X* may
contain any of the symbols occurring in formulas of X and, in addition, auxiliary relation symbols S\ for
each i,j > 0. In each case the arity of Si is j and the subscript and superscript of Sj are expressed
in binary notation. (If L is a monadic second-order logic we need two superscripts, the first denoting
the arity of element arguments and the second denoting the arity of set arguments.) Subscripts and
superscripts of auxiliary relation symbols contribute to the length of formulas in which they occur, just
as variable subscripts do. (However, superscripts may be ignored in asymptotic estimates of formula
length because they are dominated in length by their corresponding argument fists.) We define the set
of formulas p of X* inductively, and at the same time define free(p), the set of free variables and free
auxiliary relation symbols in p. An atomic formula p of L* is either an atomic formula of X or a formula
P(xi,... ,Xj) where P denotes an auxiliary relation symbol—in the former free(p) is the same as in X;
in the latter, free((p) = {P, ..., Xj }. More complex formulas p may be constructed using the logical
connectives and quantifiers appropriate to X; in these cases free(p) is defined just as in X. The only
other way to construct more complex formulas is by explicit definition. Let ip and 0 be formulas in X*, P
an auxiliary relation symbol which does not occur freely in 0, and x = xi,..., Xj a sequence of distinct
element variables. Then p given by

[P(x) = 9]*
is also a formula of X* and

free(<p) = ((free(0) - {xi,...,xj}) U free(i>)^ - {P}
The part of p within brackets is an explicit definition which defines the interpretation of P in V*- If 0 is
a prenex formula from X we will say that it is a prenex definition. The truth value of p is the same as
that of the second-order expression

VP((V®(P(£) 0)) r/>)
Notice that the truth value is consistent with the definition of free{p). Notice also that the second-order
expression above is equivalent to

3P((Vx(P(x) ~0)) A ip)
so that -t[P(x) = 0] ip is equivalent to [P{x) = 0] -up. If free(p) = 0, then p is a sentence of X*.
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We will let sat*(E) denote the set of sentences from L* true in some model of 17, satq>(I7) denote
the set of sentences p from L* true in some model of L of size at most T(\p\), sat^(L) denote the set of
sentences p from L* true in some model of size at most T(|y?|), and inv*(L) denote the set of sentences
from L* true in no model (or no weak model when L is a monadic second-order logic).

Introduction of explicitly defined relations is standard practice in mathematical discourse. Explicitly
defined relations are also similar to nonrecursive procedures in programming languages.

Explicit definitions can be used to define reductions between satisfiability problems. To provide'good
lower bounds these reductions must be efficiently computable and linearly bounded. We will show, in
fact, that there are reset log-lin reductions, defined on certain subsets of sentences from L*, that take
formulas to equivalent formulas in L. (Unfortunately, such reductions probably cannot be defined on the
set of all sentences in L*; with a little effort we can produce a polynomial time reduction which maps
sentences in L* of length n to equivalent sentences in L of length O(nlogn).)

We inductively define positive and negative occurrences of a relation symbol Q in formulas from
L*. Q occurs positively in atomic formulas of the form Q(x). Q occurs positively (negatively) in the
formulas p A tp and (p V xl> when it occurs positively (negatively) in either of the formulas p oi ip. Q
occurs positively (negatively) in the formula -><p if it occurs negatively (positively) in the formula p. Q
occurs positively (negatively) in the formulas Vx p and 3a: p if it occurs positively (negatively) in the
formula p. Q occurs positively (negatively) in the formula [P(af) = 0] ip, where P is not Q, if it occurs
positively (negatively) in or if it occurs positively (negatively) in 9 and P occurs positively in or if
it occurs negatively (positively) in 9 and P occurs negatively in ip. We say that P occurs only positively
in a formula if it does not occur negatively (in particular, it may not occur at all).

We inductively define an iterative definition [P(a?) = 9] as follows. The iterative definition [P(af) =
0]o is equivalent to the explicit definition [P(a?) = i], where i is a sentence false in all models (or all
weak models if L is a monadic second-order logic). The iterative definition [P(x) = 0]n+1 is equivalent
to

[P(£)=[P(£) = *]„*]
We make iterative definitions part of the syntax of L*, but we require that the subscript n be written
in unary notation so that the length of an iterative definition is of the same order (O(n) and i?(n)) as
the length of the nested explicit definitions it replaces. We call 9 the operator formula for the iterative
definition.

We can think of iterative definitions as approximations to implicit definitions. We will not formally
define implicit definitions, since they do not figure directly in what follows, but an example should convey
the idea. (See Moschovakis [45] for an account.) Consider a language containing just a binary relation
symbol E denoting the edge relation on graphs. The implicit definition

[P(ar,y) = (i = yV3z(P(i,z)A%y))]
defines the path relation in each graph: P(x, y) is the least relation satisfying the equivalence, so it holds
precisely when there is a path between x and y. Now consider the related iterative definition

[P(x,y) = (x = yV3z(P(x,z)AE(z,y))]n
which defines a relation P(x, y) which holds precisely when the distance between x and y is at most n — 1
(when n > 1). Notice that this "approximation" to the implicitly defined relation does not converge
very rapidly. The iterative definition

[P(x, y) = (» = y V E(x, y) V 3z(P(x, z) A P{z, y))] n

defines a relation P(x,t/) which holds precisely when the distance between x and y is at most 2n_1 (for
n > 1), so this approximation to the path relation converges exponentially "faster". For an implicit
relation to make sense, P must occur only positively in 9, but no such restriction applies to iterative
definitions. In most of our applications P does occur positively and the iterative definitions converge to
an implicit definition. Usually, the faster the convergence, the better the lower bounds obtained by our
methods. We will see that the positivity of P in 9 does have implications in lower bound results.
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To show that we can efficiently transform iterative definitions into equivalent explicit definitions, we

require the following theorem, which will also be used to show that certain sets of formulas in L* can be
efficiently transformed into equivalent formulas from L.

Theorem 3.1 Let L be a first-order or monadic second-order logic and let V be a logic, of the same

type, whose vocabulary consists of the vocabulary of L together with relation symbols Pi,... ,P&. There
is a reset log-tin reduction that takes prenex formulas of L' to equivalent prenex formulas of L' in which
each Pj occurs at most once.

Proof: The proof follows an argument of Ferrante and Rackoff [23, pp. 155-157]. We must add some
details, however, because they were not interested in obtaining a reset log-lin reduction. We adopt the
same assumption they did there: we assume that L has a symbol for equality and that all structures
have cardinality at least 2. We could dispense with this assumption at the cost of added complications.

We deal explicitly only with the case k = 1. It will be clear from the proof that the procedure can
be iterated to treat Pi,..., P* in succession.

We describe the action of our algorithm on <p, a prenex formula from L. First add a 0 bit to the end
of every variable index occurring in <p. This will allow us to introduce variables of odd index without
creating a conflict. Now <p is of the form

{QiXi)(Q2X2)---(Qnxn)ip

where each Qi is a quantifier and ij) is quantifier free. Let

Pi(xn,... ,xu),Pi(a?2i, • • • /)> • • • J -Pifcfci, • • • I®*/)

be all the subformulas of containing Pi.
The idea is to replace each subformula Pi(a?tij • • • ,Zii) of with a Boolean variable and stipulate

with a formula containing just one occurrence of Pi that each of these Boolean variables has the same
truth value as the formula it replaces. Since we have no Boolean variable type, we instead replace each
subformula Pi(x,-i,... ,£»/) with an equation v\ = v^y We must insure for each i that b(i) is odd and
greater than 1, that b(i) is reset log-lin computable from P\(xn,..., xu), and that 6(i) ^ b(j) when i ^ j.
To produce b satisfying these conditions suppose that xu,... ,xn are formal variables denoting actual
variables with subscripts ji,..., ji respectively. In the string ji#j2# * * • #jz replace every occurrence
of 0 with 01, of 1 with 11, and of # with 10; let the result be b(i). Let if' be the result of replacing
each P\(xn,... ,xu) in by the corresponding v\ = v^y Now with a little effort we can see that (p is
equivalent to

(<9iXi) • • • (QnXn) (3wi, v6(i),..., Vj(fc)) (Vy, yi,...,yi)
(( V = Vj(») A yi = x,i A • • • A y; = xu) -»(»i=y« -Pi(y))) A ij>'^

l<i<k

where y and y = y\,..., y\ denote variables with odd indices of odd length. It is not difficult to verify
that this formula is reset log-lin computable from (p using one reset.□

Remark: The formula (p in the proof of Theorem 3.1 uses the symbol <-». If we require that formulas
use only the Boolean connectives A, V, and we must expand the subformula v\ = y <-► Pi(y)) of <p' to
obtain a formula in which P occurs twice, once positively and once negatively. It is easy to see that this
is the best we can do. Suppose that the number of occurrences of P in such a formula could be reduced
to one. If this occurrence were positive, then <p' would be monotone in P (i.e., truth is preserved when
the interpretation of P is expanded). If this occurrence were negative, then would be monotone in
P. But it is easy to produce a formula (p such that neither it nor its negation is monotone in P. However,
in the case where P occurs only positively in <p, we can construct ip' in the proof of Theorem 3.1 using
the subformula v\ = y —► Pi(y)) in place of v\ = y «-► Pi(yj). For this case the theorem is true even if
just the connectives A, V, and -» are allowed. This is one of the advantages of using positive formulas.
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Theorem 3.2 Let L be a first-order or monadic second-order logic and I be a fixed positive integer.
There is a reset log-lin reduction which takes iterative definitions of the form [P(x) = 0] , where 9 is a
formula from L* of length at most I, to equivalent explicit definitions.

Proof: Since there are only finitely many formulas from L* of length at most /, we may, given such
formula 0, find an equivalent prenex formula 9' from L in constant time. Moreover, by Theorem 3.1 we

may assume that P occurs in 9' just once, say in a subformula P(y). Define formulas 9n = 9n(x) by
induction on n. Let 9q be a sentence false in all models (or all weak models if L is a monadic second-
order logic). Form 0,-+i by substituting the variables y for corresponding free variables x in 0,- (perhaps
changing other variables to avoid conflicts) and substituting the result for P{y) in 9'. It is clear that
[P(z) = 0] is equivalent to [P(af) = 0n] • If the substitution of variables has been done in a systematic
way in the construction of 9n, then it is clear that 9n can be obtained from [P(x) = 0] by a reset log-lin
reduction. □

Often we need to make several iterative definitions simultaneously. For example, Fischer and Rabin
[24], in their lower bound proof for the theory of Real Addition, define sequences of formulas pin{x) y, z)
and 7rn(a?,y, z). Formula z) holds precisely when a: is a nonnegative integer less than 22 and
x - y = z; formula irn(x,y,z) holds precisely when x, y*, and z are nonnegative integers less than 22
and yx = z. These definitions are simultaneous: the definition of 7rn+i, for example, depends not only
on 7rn, but also on /in. Let us make the notion of simultaneous definition precise.

Let L be a first-order or monadic second-order logic, V be the logic formed by adding the relation
symbols Pi,..., P* to the vocabulary of L, and 0i,..., 0*. be formulas from L*. A simultaneous iterative
definition is denoted

Pi(xi) = 0i
P2 (*^2) = #2

. Pk(®l) = &k Jn
Fix a structure M for L and an assignment from M to the free variables of this definition (defined in
the obvious way). The simultaneous iterative definition assigns a relation from the universe of M to
each symbol Pi,..., Pfc. We define this assignment by induction on the depth n of the definition. When
n = 0 it assigns the empty relation to each symbol. When n > 0 the assignment to 0t- is determined
by letting the assignment for depth n — 1 interpret the free occurrences of Pi,..., Pk in 0,-. We can use
simultaneous iterative definitions to augment the syntax of a logic in the same way we used iterative
definitions. In particular, subscripts on definitions are expressed in unary notation.

The following theorem shows that simultaneous iterative definitions do not increase the expressiveness
of a logic. Moreover, their use does not make for appreciably shorter expressions than use of ordinary
iterative definitions. The theorem is proved along the same fines as similar results in Fischer and Rabin
[24] and Ferrante and Rackoff [23, p. 159]. Moschovakis [45, p. 12] used similar ideas to prove an
analogous theorem for simultaneous implicit definitions.

Theorem 3.3 Let L be a first-order or monadic second-order logic and Pi,...,Pj. be fixed auxiliary
relation symbols. There is a reset log-lin reduction taking each formula <p of the form

Pi(£i) EE 01
^2(^2) = 02

Pjfe(£l) = 0fc

<0

ipk,where 0 and 0i,... ,0* are formulas from L* whose only free auxiliary relation symbols are Pi,.
to an equivalent formula <p' of the form

[P{S) = 6'}nj,>
where 9' and ip' are formulas from L* whose only free auxiliary relation symbol is P. Moreover, if
Pi,..., Pk occur only positively in each of the formulas 91,... ,0fc, then we may arrange that P occurs
only positively in 9.
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Proof: As before, we assume that L has a symbol for equality and that all structures have cardinality
at least 2. Again, we could dispense with these assumptions at the cost of added complications.

Without loss of generality, we may assume that the variable sequences
xi are mutually disjoint. Let / denote a sequence z, zi,..., z*. of distinct variables disjoint
from 2i,...,iTfc. The idea of the proof is that one relation P(z*, o?i,..., /*) will code the relations
Pi(£i)> • • •) Pk(zk)- To be more precise, the relation P(/, 2?1,..., xjb) is equivalent to

Y (z = Z{ A Pi(xi))
l<i<k

Thus, a particular P,(i?t) can be extracted by writing

(3Z, Xi, . . . , £,•_!, Xi+1, . ,.,xk)(/\(z £ z, A P(z,xlt... ,xk)))
Call this formula <$,(2?) (or Si for short). Define 9' to be the L* formula

[Pi(*i)h*i] ... [Pk(xk) = Sk] ( V (z = *A0<))
1<»<*

Notice that P is the only free auxiliary relation symbol in 9'. Let 0' be the formula

[P1(x1) = 61)-..[Pk(xk) = 6k]i>
Now we can easily show that

Pi(xi) = 0i
^2(^2) = #2

_ Pfc(afi) =

is equivalent to [P(/) = 0']n 0' by induction on n.D
Remark: Notice that in the proof of Theorem 3.3 formula 0' is formed simply by inserting explicit
definitions of fixed length before 0. These definitions may be eliminated by replacing auxiliary relation
symbols in 0 with their corresponding definitions. Now if 0 is a prenex formula or a member of a

prescribed set of formulas (defined below), it is easy to arrange that 0' is a formula of the same type.

We can now say precisely which kinds of definitions are used in the reductions described at the
beginning of this section: they are prenex definitions and iterative definitions. It is useful, therefore,
to have terminology to describe sets of formulas in Z* built up from prenex formulas using prenex and
iterative definitions. We must place some restrictions on these sets to be able to efficiently translate
them into equivalent formulas from L.

Let L be a first-order or monadic second-order logic. Let L' be the logic formed by adding auxiliary
relation symbols Pi,..., P^ to the vocabulary of L, and I be a fixed positive integer. A 'prescribed set of
formulas over L is a set of formulas of the form

••• [Pk(^) = 0k}nJ
where 0 is a prenex formula from Z/, and for each i either nt- = 1 and 9\ is a prenex formula from V in
which only Pi,..., P,«i may occur as free auxiliary relation symbols (i.e., P* has a prenex definition), or
9i is a formula of length at most / from L* in which only Pi,..., Pi may occur as free auxiliary relation
symbols (i.e., Pt- has an iterative definition in which the operator formula has bounded length). We
place one further restriction on sets of prescribed formulas: each variable is quantified at most once in
0 and in each formula 0t- where P{ has a prefix definition. We impose this condition so that when we
relativize all the formulas within a set to a unary relation symbol D, there is a reset log-lin reduction
taking resulting formulas to equivalent formulas from another prescribed set of formulas. The condition
is easy to satisfy in practice.

We now present our fundamental theorem for making reductions between formulas.
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Theorem 3.4 Let L be a first-order or monadic second-order logic. For each prescribed set of formulas
over L there is a reset log-lin reduction taking each formula in the set to an equivalent formula in L.

Proof: Fix ail iterative set of formulas over L. There are auxiliary relation symbols Pi,... ,Pfc as in
the definition such that all formulas <p in the set are of the form

••• [pk(xk) = 9k]nj,
where ^ is a prenex formula in which only Pi,...,Pfc may occur as free auxiliary relation symbols,
and for each i either n,* = 1 and 0t- is a prenex formula in which only Pi,, Pt-_i may occur as free
auxiliary relation symbols, or 9{ is a formula of length at most I in which only Pi,..., Pt- may occur as
free auxiliary relation symbols.

At first glance it may seem that that Pi,..., P& are being defined simultaneously, but this is not
the case. First Pi is assigned a value by an iterative definition of depth ni which is substituted in the
remaining definitions. Then P2 is assigned a value by the next iterative definition of depth n2 which
is substituted in the remaining definitions, and so on. The proof combines this observation with the
construction used in Theorem 3.3. As in that theorem, we will code the relations Pi(a?i),..., Pfc(iffc)
into a single relation P(y) equivalent to

V (z = Zi A Pi(xij)
l<i<k

where y is the variable sequence z, zi,..., zj., ..., x^. As before, let be the formula

(3z,x1,...,xi.1,xi+1,...,xk)^/\(z ± z^ AP(z,Xi,...,xk)fj
To construct a formula ipt from L equivalent to (p we build, inductively, a sequence of formulas

<Po(y), • • • j <Pk(y)' Begin by taking (po to be a sentence false in all models (or weak models, if L is
a monadic second-order logic).

Suppose now that <pt-_ 1 is given. Consider the simultaneous definition

Pi(zi) = Pi(xi)

Pi_i(5i_i) = P<_i(5i_i)
Pi(xi) = 6i
Pt+l(f,'+l) = Pi+1(xi+1)

Pk(£k) = Pk(£k)

This definition simply defines Pt(i?i) to be 9{ and leaves the other relations-unchanged. Use the con¬
struction in the proof of Lemma 3.3 to produce an equivalent definition [P(y) = Vi(y)] • Hence, rji
is

[Pi(xi) = <5i] • • • [Pfe(iife) = <5jfc] [{z = Zi A 9i) V (y (z = Zj A Pj(xj)))
We claim that there is a reset log-lin reduction taking rji to an equivalent prenex formula 7)[ with just one
subformula P{u) in which P occurs. Whether P,- has a prenex definition, in which case 9{ is in prenex
form, or an iterative definition, in which case 9{ is of bounded length, there is a simple reset log-lin
reduction to convert tpi into prenex form. Apply the reduction given by Theorem 3.1 to the result to
obtain an equivalent formula in which each of the symbols P1?..., P#. occurs just once. In this formula,
for each j, substitute 9j(yj) for the subformula Pj(yj). Convert to prenex form again by a reset log-lin
reduction and apply the reduction of Theorem 3.1 one more time to obtain rf as desired. Notice that
if P{ has a prenex definition, rji has length less than some constant determined by I and the arities of
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If Pi has a prenex definition, form pi by substituting for P(u) in 77[. If P{ has an iterative
definition we must make several substitutions. Beginning with <pi-i replace free variables y with the
corresponding variables u and substitute the result for P(u) in 77,'. Repeat this operation nt* times. The
resulting formula is p>i.

In either case it is easy to see that <pi is obtained by a reset log-lin reduction.
Since ip is in prenex form, we can apply the reset log-lin reduction of Theorem 3.1 to obtain an

equivalent prenex formula -0' in which each of the symbols Pi,..., P* occurs at most once. As before,
there is a reset log-lin reduction to convert

[-Pi(^i) = 61] - " [PjbO?jb) = 6k] i>'
into a prenex formula with just one subformula P(u) in which P occurs. Substitute <pk(u) f°r this
subformula to obtain finally p'. Repeated use of closure of reset log-lin reductions under composition
shows that the mapping p p' is reset log-lin computable. □

Remark: Scrutiny of the preceding proof reveals two useful facts. First, if all the symbols P{ have
prenex definitions we can arrange that p' is in prenex form. Second, if we wish to restrict to formulas in
which the only connectives are A, V, and the theorem remains true providing P,- occurs only positively
in when P\ has an iterative definition. To see this, observe that by the remark following Theorem 3.1
we can always insure that the formulas each contain at most two occurrences of P. This is not a

problem when Pt- has a prenex definition because 77^ figures only once in the construction of (pk and there
are a bounded number of such definitions. When Pt- has an iterative definition we can insure, again by
the remark following Lemma 3.1, that Pt- occurs at most once in 77,- since it occurs only positively in 9{.

4 Inseparability Results for First-order Theories
Hereditary lower bound results have proofs similar to the classical hereditary undecidability results.
Young [68], for example, modified techniques used in the proof of the hereditary version of Godel's
Undecidability Theorem, which states that all subtheories of Peano Arithmetic are undecidable, to
show that all subtheories of Presburger Arithmetic have an NEXPTIME lower bound. Our starting
point is another classical undecidability result—the Trakhtenbrot-Vaught Inseparability Theorem. Many
hereditary undecidablity results have been derived from this theorem.

Recall that Lq is the first-order logic whose vocabulary contains just a binary relation symbol P.
Let fsat(Lo) be the set of sentences (p of Lo true in some finite model, and inv(Lo) the set of sentences
of Lq true in no model. The Trakhtenbrot-Vaught Inseparability Theorem states that fsai(Lo) and
inv(Lo) are recursively inseparable: no recursive set contains one of these sets and is disjoint from the
other. Trakhtenbrot [62] showed this for a first-order logic with sufficiently many binary relations in its
vocabulary and Vaught [64,65] reduced the number of binary relations to one. To see how this theorem
gives hereditary undecidability results, suppose that for some theory E in a logic L there is a recursive
reduction from the sentences of Lo to the sentences of L that takes fsai(Lo) into sat(E) and inv(Lo)
into inv(L). Clearly sat(E) is not recursive since it separates the image of fsat(Lo) from the image of
inv(Lo). Moreover, if E' C val(E), then sai(E) C sat(E') and sat(E') fl inv(L) = 0 so sat(E') is not
recursive either.

Let T(n) be a time resource bound. Recall that satT(Lo) is the set of sentences <p in Lo such that <p
is true in a structure of power at most T(\p\). Our analogue of the Trakhtenbrot-Vaught Inseparability
Theorem states that for T satisfying certain weak hypotheses, satT(Lo) and inv(Lo) are NTIME{T(cn))-
inseparable for some c > 0. That is, no set in NTIME(T(cn)) contains one of these sets and is disjoint
from the other. We show, in fact, that the result is true if we restrict to prenex sentences in Lq.
Thus, using the reductions between formulas described in the previous section, we can obtain hereditary
NTIME lower bounds for theories in much the same way that we obtain hereditary undecidability
results. In the next section we prove an inseparability theorem which gives hereditary linear ATIME
lower bounds.

Our result is a consequence of the following theorem.
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Theorem 4.1 Let T{n) be a time resource bound and A an alphabet. Given a problem A C A* in
|JC>0 NTIME(T(cn)), there is a reset log-tin reduction taking each w E A* to a prenex sentence <pw of
Lq such that if w E A, then (pw E satT(Lo) and if w £ A, then <pw E inv(Lo). Moreover, each variable
occurring in <pw is quantified just once.

Proof: Let M be a T(cn) time bounded nondeterminisitic Turing machine that accepts A. We may
assume that on all inputs, all runs of M eventually halt since we may incorporate into M a deterministic
"timer" which halts after some number of moves given by a fully time constructible function dominating
T(cn). To simplify notation we assume that M has just one tape. Extending to multitape Turing
machines requires only minor modifications. Let m be the number of tape symbols used by M. We
assume that one of the tape symbols not in A is a blank symbol, denoted #.

The proof has two parts. In the first we translate information about runs of M on input w into
formulas (p'w in a logic with a vocabulary consisting of m-f 3 binary relation symbols so that ip'w satisfies
the conditions of the theorem. In the second we transform sentences <p'w into the desired sentences tpw
by combining m 4- 3 binary relations into one.

Translating Turing machine runs into first-order sentences is an old idea in logic; see Turing [63], Biichi
[13], and for a general discussion Borger [8,9,10]. Our translation of runs into sentences is standard except
for some difficulties that must be overcome to obtain prenex sentences using reset log-lin reductions.

First we describe the intended meanings of the m + 3 binary relation symbols constituting the
vocabulary of the logic for sentences ip'w. The symbol < will interpret a discrete linear order with a
least element. For convenience we use infix notation with this symbol. We call the least element with
respect to this order 0 and denote the successor and predecessor of an element x by x -f- 1 and x — 1
respectively. In this way we identify elements of a model with consecutive non-negative integers. We
also have symbols STATE, HEAD, and SYMa for each a & A. STATE(x,t) holds if M is in state x
at time t. (States are ordered arbitrarily. We may assume that all models considered have at least as
many elements as M has states since we can precede ip'w with enough dummy quantifiers to insure that
T(\<p'w\) exceeds the number of states.) HEAD(x,t) holds if the read head of M scans the tape square
at position x at time t. SYMa(x,t) holds if the tape square at position x contains symbol a at time t.

Let <p'w be a prenex sentence asserting the following.

(a) Relation < is a discrete linear order with a least element.

(b) Each tape square contains precisely one symbol at each time. The read head scans precisely one
square at a given time. M is in precisely one state at a given time.

(c) If HEAD(x,t) does not hold and SYMa(x,t) holds, SYMa(x,t +1) also holds. If HEAD(x,t) holds,
then the values of SYMa(x, t -f 1), HEAD(x ± l,t -f- 1), and the element z making STATE {z^t)
true are determined by the values of SYMa(x,t), and the element y making STATE(y,t -f 1) true,
in accordance with the transition function of M.

(d) The read head initially scans square 0. M begins in its initial state.

(e) If STATE{x,t) holds, then t has a successor if and only if x is a final state. For some t there is a
final state x such that STATE(x,t) holds.

(f) The input tape initially contains w.

Notice that (f) is the only conjunct depending on w; the others are fixed. Thus, if we can express (f) as a
prenex sentence obtainable from w by a reset log-lin reduction, it is a simple matter to produce a prenex
sentence <p'w equivalent to the conjunction of (a)-(f) obtainable from w by a reset log-lin reduction.

Suppose that w = a0ai ... an-1 where each at- is an input alphabet symbol. We cannot just say that
there are positions vo,vi,. •. , tfn-i such that vo = 0, vt*+i = + 1, and SYMai{vi, 0) for i < n because
the combined length of variable indices is I2(nlogn). We must define two relations LEFT and RIGHT
to reduce the number of quantified variables.

Intuitively, symbols LEFT and RIGHT interpret the left and right child relations for a binary tree
r on the first n elements 0,..., n — 1 of the model. It is intended that LEFT(x, y) holds precisely when
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y = 2x and RIGHT(x,y) holds precisely when y = 2x + 1. Then r has root 0 and 0 is its own left child
(so the notion of tree is interpreted somewhat loosely).

Using the machinery of the last section it is easy to give short formulas defining LEFT and RIGHT
on long intervals. Let 9 be the formula

(«i = 2/1 Aar2 = 1/2) V (®i + 1 = yi A x2 + 2 = y2) V 3*i, z2(P(x1, x2) zlf z2) A P(zu z2,yi,2/2))
Then the relation P(xi, yi, £2,2/2) given by the iterative definition

[P(xi, £2,2/1,2/2) = 0]m
is true when 0 < £2 — xi < 2m_1 and 2(£2 — £1) = 2/2 ~ 2/i- Now LEFT(x, y) is equivalent to P(0, £, 0, y)
and RIGHT(x, y) is equivalent to P(0, £, 1, y) on the interval 0,..., 2m + 1, so we take m = L'°S(n ~ 1)J
to obtain RIGHT and LEFT on the interval 0,..., n. By Theorem 3.2 there are first-order formulas
9'n and 9'n defining LEFT and RIGHT computable by a reset Turing machine in time log n and space
log log n. By increasing time to log n log log n we can make 9fn and 9„ prenex formulas.

We will say that the height of a vertex in r is its distance from the root. Thus, the height of r is
the maximum height of a vertex in r; this value is h = |~log(n -b 1)] if the vertices are 0,..., n. Now
for every i < h and every node j of height at most h — i (i.e., for j < min(2/l"t, n)) define a quantifier
free formula 0*,j(£o, • • •, ^t+i) by induction on i. First, 9oj(xq)xi) is SYMaj(x1,0) when j < n and
(£0 > £1 —'► SYM#(xo,0)) when j = n. Next, 0i+ij(xo,..., £1+2) is the formula

(iPPT(£t-+2, 2|+l) —► 0»,2j(zo, • • • , Zt+l)) A (fiJGJTT(£<+2,«<+l) ^ 0t\2; + l(zo, • . . , Zi+l))

By induction on i we can show that for j < min(2/l~,J n) the sentence

V£o, . . . , ®t+l(^t-|-l = j ► 0, • • • , xh — »+l))
is true if and only if for every vertex k which is an ith generation descendent of r, SYMak(k, 0) when
k < n and SYM#(k;, 0) holds for k' > n when k = n. Since 0 is a left child of itself, every node in r is
an ith generation descendent of 0, so the sentence ipw given by

V£()j • • • , (^7»-f-1 = 0 * 9ji}q(^x0, . . . , £^-j-i))

says that SYMak(k) 0) holds when k < n and SYM^L{k) 0) holds when k > n; that is, it says w is written
on the input tape at time 0. We must show that there is a reset log-lin reduction taking w to from
which it follows easily that there is a reset log-lin reduction taking w to ip'w.

We describe the actions of a machine effecting such a reduction. We will suppose that indices of
variables are in unary; thus, £» is

i -{- 1 times

First, w is read from the input tape while h squares are marked off on a work tape. The input head
is reset. Now a simple algorithm utilizing a stack to keep track of subscripts will generate ipw. The
maximal stack height is h. ,Formula was defined in such a way that the information required from
the input tape can be read off from left to right as the algorithm proceeds. Variable indices are easily
computed from the stack height since they are in unary.

This computation clearly uses just log space. We need show that it takes just linear time. The time
required is less than a constant multiple of the length of 0/^0(^0,... ,£/i+i); the length of this formula
is in turn less than a constant multiple of the combined lengths of variable indices occurring within it.
By induction on i, variable £*. occurs no more than 2*""A;+3 times in 9{j when k < i + 1 and £t*+1 occurs
just twice. Hence, the combined lengths of variable indices occurring in Oh,0 is no more than

1

+ 1)2a-<!+3 = 4(2a+3 - h - 4) < 64n
k=0

Thus, the computation requires just linear time. Notice that each variable in is quantified just once
so it is easily arranged that the same is true of (p'w.
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If necessary we can add dummy quantifiers at the beginning of tp'w to make its length at least cn.
Thus, if w £ A, then <p'w is true in some model of size at most If w £ A, then <p'w is true in
no model. Suppose, on the contrary, that ip'w is true in some model AA. Consider the submodel of AA
obtained by restricting to the elements which can be reached from 0 < by finitely many applications of
successor. The values of STATE {x A), HEAD(x,t), and SYMa{x)t) on this submodel describe a run of
M on input w. Since we have incorporated a timer which halts M on every run, this submodel is finite.
But then the last element t in this submodel has no successor, so the state x for which STATE (x,t)
holds is final. Thus, M accepts w, a contradiction.

This completes the first part of the proof. We now show how to combine m + 3 binary relations into
one.

To simply notation, let us rename the relation symbols Po,-Pi, • • • , Pm+2- Suppose M! is a model
of (p'w. Before describing how to transform <p'w into <pw, we describe the model AA of (pw corresponding
to AA'. First form the disjoint union of the interpretations of Po, Pi, • • •, Pm+2 in M! • We have then
relations Po, Pi, • • •, 2 on disjoint domains Po, Pi, • • •, Pm+2- Their union is a single binary relation
R on the domain P = Ui<m+2 ^ow enlarge R so that Pfl (Po x Pt) is the natural bijection from Po
to B{ when 1 < i < m + 5. Next, enlarge P by adding elements 60, b\,..., 2>m+2 and then add the pairs
(&i, b) to R for each i < m + 2 and b £ P». Define M to be (P, R). We see that if 60, 61,..., &m+2 are
known, then the relations Po,Pi, • • •,Rm+2 can be recovered in M and in fact we may use the natural
isomorphisms from Po to B{ to define an isomorphic image of M! with domain Po.

Relativize the quantifiers of <p'w to a unary relation symbol P, thereby forming This sentence
contains relation symbols D, P0, Pi,..., Pm+2- Put the explicit definitions [D(x) = P(x0, z)], [-Po(®, y) =

P(a?, y)] and for 1 < i < m + 2,

[Pi(x, y) = 3xy' (P(x} x') A P(y, y') A P(x\ yf) A P(a?f, x') A P(xi} y7)]
before this formula. Here xo, x\,... ,xm+2 are new free variables whose intended interpretations in M
are b0j 61,..., &m+2- Now existentially quantify xq, xl5..., xm+2- There is a reset log-lin reduction that
takes the resulting formula to an equivalent prenex formula <pw. (Since each variable in <p'w is quantified
just once the relativizations may be pushed inward. Then since all of the explicit definitions are of fixed
length, conversion to prenex form is straightforward.)

If M accepts w, then (p'w is true in some model M* of power at most T{\ip'w\). It follows that <pw is
true in some model AA of power at most

(m + 3)(T(|^|)+l)
We can assume this quantity is less than T(\(pw |) by lengthening <pw with dummy quantifiers if necessary
and using the definition of time resource bound to infer that (m + 3)T(n) < T((m-j- 3)n). If M does not
accept tu, then (p'w has no models and hence neither does <pw. Finally, it is easy to arrange that every
variable in <pw is quantified just once.O

Remark: Inspection of the construction of sentences (pw in Theorem 4.1 reveals that there are constants
Co and c\ such that 1^1 < ci|u;| -f Co. Moreover, the constant ci depends only on the size of the input
alphabet A. (This will be useful in the proof of Theorem 4.3.) On the other hand, the constant Co
depends on the particular Turing machine M whose runs <pw describes.

Corollary 4.2 Let Ti(n) and T^n) be time resource bounds such that

NTIME(T2(n)) - NTIME(Ti(n)) ^ 0

Suppose that limn_oo T\(n)/n — 00. Then there is a constant c > 0 such that for each set T of satisfiable
sentences with satT2(£o) C P,

r £ NTIME(Ti(cn))

Proof: Let A be an element of iVT/AfP(T2(n)) — NTIME(Ti(n)), where A C A*. By Theorem 4.1
there is a reset log-lin reduction taking each w £ A* to a sentence <pw in Lq so that A is mapped into
satT2(Lo) and A* — A is mapped into inv(Lo). Suppose that this reduction takes at most time 6|iu|.
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Let c = 1/6 and f be a set of satisfiable sentences containing satT2(Lo). Suppose that T E
NTIME (Ti(cn)). To decide if w E A we will compute <pw in time 6|u;|, and then determine if <pw G T
using a Ti(cn) time-bounded nondeterministic Turing machine. Certainly \<pw \ < 6|u;| so the composi¬
tion of these two reductions takes time at most b\w\ + Ti(6c|u;|). We know that \w\ < Xi(|u;|) so this
time is bounded above by (6+ l)Ti(|u;|). Since lin^^oo Ti(n)/n = oo we can apply the Linear Speed Up
Theorem (see Hopcroft and Ullman [33]) to show that A E NTIME(Ti(n)), a contradiction. Therefore,
r £ NTIME(Ti(cn)).D

Remark: We see from Corollary 4.2 that application of our results relies on the ability to separate
nondeterministic time complexity classes. The strongest result in this direction for time resource bounds
in the range bounded above by expOQ(n) is due to Seiferas, Fischer, and Meyer [55]. It says that if
T2(n) is a time resource bound and Xi(/(n + 1)) E o(T2(/(n))) for some recursively bounded, strictly
increasing function /(n), then

NTIME (T2(n)) - NTIME (T^n)) ^ 0
This theorem has interesting implications for us. Let T(n) be a time resource bound. Take Ti(n) =

T(dn), where 0 < d < 1, T2(n) = T(n), and f(n) = n. The Seiferas-Fischer- Meyer Theorem tells us
that if T(dn -f d) = o(T(n)), then

NTIME(T(n)) - NTIME(T(dn)) ^ 0
By taking a slightly smaller d the hypothesis may be simplified to T(dn) = o(T(n). By Corollary 4.2
there is a constant c > 0 such that if r is a set of satisfiable sentences with saZr(Zo) C T, then
r g NTIME{T{en)).

Most time resource bounds that occur as complexities of theories satisfy the hypothesis T(dn) =

0(T(n)). Among them are the functions expr(n) when r > 1, 2n/logn, and 2n . Powers do not satisfy
this hypothesis, so when T(n) = nk where k > 1, we can only conclude that r £ NTIME{g{n)) for all
g(n) such that g(n) = o(nk).

By considering just one time resource bound T(n) we gain another advantage: we can prove a full-
fledged inseparability theorem. This will allow us to obtain NTIME lower bounds for problems of the
form va/(i7), as well as problems of the form sat(E).
Theorem 4.3 IfT is a time resource bound such that for some d between 0 and 1, T(dn) = o(T(n)),
then there is a constant c > 0 such that satT(Lo) and inv(Lo) are NTIME(T(cn))-msepara6/e.
Proof: Corollary 4.2 and the preceding remark show that there is a c > 0 such that if sa^(L0) C f and
inv(Lo) fl r = 0, then r ^ NTIME(T(cn)). (The corollary applies because lim^oo T(n)/n = oo when
T(dn) = o(T(n)).) We must show that there is a c' > 0 such that if satT(Lo) C T and inv(Lo) fiT = 0,
then r, the set of sentences from Lq not in Z7, is not in NTIME(T(cfn)).

By Theorem 4.1, if A C A* is in NTIME(T(dn)) for c! > 0, there is a reset log-lin_reduction taking
each w E A* to a sentence <f>w of Lq such that if A is mapped into satT(Lo) and A is mapped into
inv{Lo). We know also from the remark following Theorem 4.2 that 1^1 < Co|w| + ci, where cq is a
constant depending only on A, not on c; or A. Take d small enough that c'cq < c.

Now consider a set T such that satT(Lo) C T and inv(Lo) fl T = 0. We must show that T £
NTIME(T(dn)) so suppose the contrary. We can take A in the previous paragraph to be T so there is
a reset log-lin reduction mapping T into satT(Lo) C T and T into inv(Lo) C F. This reduction takes
an input w to a sentence <pw in time at most 6|u;|.

Thus, we can determine whether w E T by computing <pw and determining in nondeterministic time
T(dn) if <pw E F. Hence,

r E NTIME(bn + T(d(c0n + Ci))) C NTIME(T(cn))
a contradiction.□

Remark: For simplicity, Theorem 4.3 was stated for sets saZr(Zo) an<^ inv(Lo). By Theorem 4.1 it
remains true if we take instead sat^(Lo) and the set of prenex formulas in inv(Lo). Similarly, Theorem 4.2
holds if we restrict to prenex sentences.
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5 Inseparability Results for Monadic Second-order Theories
In this section we develop inseparability results for monadic second-order theories analogous to those
for first-order theories in Section 4. The appropriate complexity classes here are the linear alternating
time classes rather than nondeterministic time classes. Because linear alternating time classes are closed
under complementation, we do not need a special argument like the one used in Theorem 4.3 to obtain
inseparability results. Also, lower bounds are obtained by simple diagonalization, rather than more
sophisticated results such as the theorem of Fischer, Meyer, and Seiferas used in the last section.

As before, inseparability results are closely related to satisfiability problems that are hard for certain
complexity classes. The classes are of the form

(J ATIME(T(cn),cn)
c> 0

which is in many ways more natural than

(J ATIME(T{cn), n)
c>0

If there is a reset log-lin reduction from a problem jT to a class of the first form, then we may conclude
that r is also in the class. We know of no speed up theorem for alternations, so we cannot make the
same claim for classes of the second form.

One of the main results of the section is Theorem 5.2, an analogue of Theorem 4.1. We could prove
this result along the same lines as Theorem 4.1, but we obtain a somewhat sharper result if we appeal
to a result of Lynch [40] relating nondeterministic time classes to the spectra of monadic second-order
sentences. This result uses a different method for encoding Turing machine runs than the classical
method used in the last section. Rather than explicitly accounting for symbols at each tape position and
time in a machine run, it keeps track of just the symbol changed (not its position), the symbol which
replaces it, and the direction of head movement at each time. If the underlying models have enough
structure, it is possible to express derivability between instantaneous descriptions of nondeterministic
Turing machines with just this information. Lynch shows, in particular, that this is the case if the
underlying models have an addition relation PLUS(x, y1 z) which holds when x + y = 2.

We begin, therefore, by considering the monadic second-order logic ML+ whose vocabulary contains
just a ternary relation symbol PLUS, and MI7+, the monadic second-order theory of addition on initial
segments of the natural numbers. ME+ can be axiomatized by a set of first-order sentences. Explicitly
define a relation < by

[x < y = 3z PL US(x, z, y)]
Then ME+ says that < is a discrete linear order with least element 0 and, when we denote the predecessor
of an element x by x — 1,

PLUS(x,y, z) ((y = 0 A x = z) V PLUS(x) y — 1, z — 1))
Note that even though ME+ consists of first-order sentences, satT(MU+) is the set of monadic second-
order sentences <p true in some model of ML+ of size at most T(\(p\).

Theorem 5.1 Let T{n) be a time resource bound and A an alphabet. Given a problem A C A* in
Uc>0 ATIME(T(cn), cn), there is a prescribed set r of sentences over ML+, and a reset log-lin reduction
taking each w G A* to a sentence (pw in r such that if w £ A, then (pw G sat^(MZ7+) and if w £ A,
then (pw G inv* (ML+).

Proof: Fix c > 0; we may take c to be an integer. Let M be an alternating Turing machine that accepts
A in time T(cn) with at most cn alternations. By the definition of alternating Turing machines, all runs
of M on inputs of length n halt within T{cn) steps. We assume for simplicity that M has just one tape;
extending to multitape Turing machines requires only minor modifications. Let ai,..., am be the tape
symbols used by M.
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As we noted above, the interpretation of PLUS gives rise to a discrete linear order < with least
element 0. The successor and predecessor of an element x with respect to this order will be denoted
x -f 1 and x — 1.

Let r = {0,..., 7* — 1} be a finite ordinal and + be the usual addition relation on r, so that (r, -f)
is a model of MZ7+. In this model we represent an instantaneous description of M by a sequence of
sets Xi,...,Xm+2 = X, where sets Xi,..., Xm partition r and Xm+i is a singleton set, and Xm+2 is
singleton set whose element is one of the states of M, the set of states being identified with an initial
interval of r. We intend that the symbol at- is at position x when x E X{) that the head scans position x
when x E Xm+1, and that M is in state x when x E Xm+2> We will need to restrict to initial intervals in
our models because when we consider truth in weak models at the end of the proof we may not be able
to quantify over all subsets, but we can arrange to quantify over subsets of finite initial intervals. Let
ID(x, X) be the formula specifying that sets Xi,..., Xm partition the interval [0,2], Am+i and Xm+2
are singleton sets contained in this interval, and the element in Xm+2 is a state.

Recall that each state of M has one of four types: universal, existential, accepting, and rejecting.
Let

UNIV(x,X), EXIS(z,X), ACC(x,X), and REJ(z,X)
be formulas indicating that ID(x,X) holds and the state for the instantaneous description represented
by X is of the corresponding type.

Lynch [40] shows that for each nondeterministic Turing machine Mf there is a monadic second-order
formula t)m'{X^Y) that holds in (r,-f) precisely when X and Y represent instantaneous descriptions for
M' and Y can be obtained from X within r or fewer moves of M'. We can regard the alternating Turing
machine M as a nondeterministic Turing machine simply by ignoring state types. We also form the
nondeterministic Turing machine M' by eliminating transitions out of all states in M except universal
states and then ignoring state types, and M" by eliminating transitions out of all states in M except
existential states and then ignoring state types. Let 77(2, X,y) be the formula

[D(y) = y<x\TlM(X,Y)D
Let 77v(a?,X,y) be the formula

[£>(y) = y < x] (UNIV(x,X) A ttM'(X,Y))D
Let 773(x,X,y) be the formula

[.D(y) = y<x] (EXIS(x, X) A rY))d
That is, 77(x,X,Y) expresses derivability between instantaneous descriptions on the interval [0,z];
77v(x,A,y) (773(2,X,?)) expresses the same except that all states, excluding possibly the last, are
universal (existential).

Let 9(xJX) be the formula

ACC{x, X) V (EXIS(z, X) A 3Y (773(2, X, Y) A P(2, Y)))
v( UNIV(x, X) A Vy (ttv(x, X,Y)^>( UNIV(x, Y) V P(x, Y)))

Consider the relation P(x,X) given by the iterative definition

[P(x,X) = 6(x,X)]cn+1
If no instantaneous description derivable from X is derivable in more than cn moves, then P(x,X) holds
precisely when X is the root of an accepting computation tree in which there are no more than cn
alternations (from a universal to existential state or vice versa) along every branch.

Let ^(2, X) be a prenex sentence asserting the following.
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(a) Relation < is a discrete linear order with a least element and a greatest element; every element
other than the greatest has a successor.

(b) The relation PLUS(x,y, z) holds if and only if either x = z and y = 0 or PLUS(x,y — 1, z — 1)
holds.

(c) There is a set X with no elements. For every set X and element x there is a set Y = X U {a;}.

(d) P(x, X).

(e) The element x is the least element such that for all Y and Z, if 77(2, X,Y) and 77(0?, Y,Z), then
Tl(x,X,Z).

(f) The sequence X represents the instantaneous description for an input tape with w written on it,
the head scanning the first position, and M in the initial state.

Each of these items can be expressed by a fixed sentence except the part of condition (f) concerning the
input tape. The prenex formula expressing this part is constructed in the same way as in Theorem 4.1.
As in that construction, it follows that there is a reset log-lin reduction taking w to if)w.

Now let <pw be the sentence

[P(x,X,Y) = 9(x,X,Y) ]cn+1 (3x,X)r/,w(x,X)
where n = |iu|. Clearly, there is a prescribed set of sentences r containing every <pw. It is also clear that
if w £ A, then <pw is true in some model of size at most T(\<pw\).

Suppose that w £ A but <pw is true in some weak model (M,?). We must derive a contradiction by
showing the alternating Turing machine M accepts w. Two difficulties arise when we attempt to show
that all of the information about acceptance of w by M is coded in First, M may be infinite
so spurious infinite "runs" of M may be present in the model. Second, T may not contain all subsets of
the universe of M. so all of the sets required for coding may be absent. The formulation of overcomes
these problems.

We know that all runs of M on input w halt so even if M is infinite, the element x specified in
condition (d) is finite; i.e., it can be obtained by finitely many applications of successor to 0. Condition (c)
insures that T contain all finite subsets of the universe of M, so, in particular, it contains all subsets of
[0,...,*]. Thus, if (pw holds in (A4, T)> M accepts tu.D

The next theorem, the analogue of Theorem 4.1, follows from the previous theorem and a result of
Kaufmann and Shelah [35].

Theorem 5.2 Let T{n) be a time resource bound and A an alphabet. Given a problem A C A* in
|JC>0 ATIME(T(cti), C7i), there is a prescribed set T of sentences over MLo, and a reset log-lin reduction
taking each w € A* to a sentence <pw in J1 such that ifw£A, then (pw 6 sat^(MLo) and ifw^A, then
<Pw £ inv*(ML0).

Proof: By the previous theorem we need only show that there is a formula 7r(x,y,z) from MLo such
that for each finite ordinal n = {0,..., n — 1} there is a binary relation R on n such that 7^(2, y, z) is
an addition relation on 71, where M = (n,R). Kaufmann and Shelah [35] prove a much stronger result:
there is a formula 7r(x, y, z) such that for almost every binary relation R on 72, irM{x, y, z) is an addition
relation on 71, where M = (n,R).

For the sake of completeness, we sketch a proof of the simpler result that there is a formula that
codes an addition relation on some binary relation of each finite power.

First suppose that the vocabulary for the logic has three binary relation symbols P1? P2j ^3> rather
than just one, and that they interpret binary relations Pi, P2? ^3 on 171• To simplify the proof we
assume that m = r3. It is easy to specify a formula V>(X) saying the relations Pi, P2, P3 restricted
to m x X are functions, respectively denoted /1, /2, /3, and that (/i(z),f3(x)) ranges over each
triple in Xs precisely once as x ranges over n. Thus \X\ = r and we have defined a bijection between
m and X3. Since we can quantify over subsets of ttz, we can quantify over ternary relations on X when
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ip(X) holds. Therefore, we can, without much trouble, define an addition relation on X. Also, we can
extend this relation to define addition modulo r. But then it is easy to define addition on m using the
bisection between m and X3.

Using the construction in the proof of Theorem 4.1, the three binary relations J?i, R2, R3 on a set
of size m = r3 can be coded as a single binary relation on a set of size n = 3(m + 1). This set has three
disjoint subsets of size m on which addition and addition modulo m can be coded. It is not difficult now
to define addition on all of n. Thus, there is a binary relation on n from which an addition relation can
be defined when n is of the form 3(r3 -f 1). With a little effort this construction can be made to work
for arbitrary n.D

We now state an analogue of Corollary 4.2.

Corollary 5.3 Lei T\(n) and T2(n) be time resource bounds such that

ATIME(T2(n),n) - ATIME(Ti(n), n) ± 0

Suppose that Umn-^oo Ti(n)/n = 00. Then there is a constant c > 0 such that for each set T of satisfiable
sentences with satT2(MLo) C T,

T £ ATIME(Ti (cn), cn)

The proof is the same as for Corollary 4.2. Note, however, that we rely on a result that says the
Linear Speed Up Theorem applies to alternating Turing machines. We must also use Theorem 3.4 to
obtain a reset log-lin reduction from a prescribed set of sentences over MLq to equivalent sentences in
ML0.

We also have an analogue for Theorem 4.3.

Theorem 5.4 IfT is a time resource bound such that for some d between 0 and 1, T(dn) = o(T(n));
then there is a constant c > 0 such that satT(MLo) and inv(MLo) ATIME(T(cn), cn)-inseparable.

Proof: The proof is much simpler than that of Theorem 4.3. We can separate ATIME(T(n),n) and
ATIME(T(dn)) dn) using a straightforward diagonalization, so we do not appeal to the more difficult
methods used in separating NTIME classes. Then we use the previous corollary to show that for some
c > 0, if satT(MLo) C T and inv(MLo) fl T = 0 then T ^ ATIME(T(cn), cn). Since ATIME(T(cn), cn)
is closed under complementation, we have that satT(MLo) and inv(MLo) are ATIME(T(cn),cn)-
inseparable. □

Remark: By Theorem 5.1, Theorems 5.3 and 5.4 hold with sat^^ME^) and inv(ML+) in place of
satxiMLo) and inv{MLo).

It is also important to note that even though we reduced the prescribed sets of sentences in these
theorems to equivalent sets of monadic second-order sentences, it is the prescribed sets which are used
to obtain lower bound results. For example, in the proof of Theorem 5.4 we actually showed that
there is a prescribed set T of sentences over MLq such that sat^^MLo) fl T and inv*(MLo) fl jT are
ATIME(T(cn), cn)-inseparable. In Sections 6 and 7 we will find lower bounds for various theories E
from logics L by finding a reset log-lin reduction from f to T, a prescribed set of sentences over L, so
that sat^(MLo)nr is mapped into sat*(E)C\Tf and inv*(MLo)nr is mapped into 27itt*(L) fl/1'. Thus,
for some c > 0 sat*(E)nrf and inv*(L)C\r' are ATIME(T(cn), cn)-inseparable. Then by Theorem 3.4,
sat(E) and inv(L) are ATIME(T(cn), cn)-inseparable.

6 Tools for NTIME Lower Bounds

We present several useful tools for establishing NTIME lower bounds for theories by interpreting models
from classes of known complexity. We begin with some definitions regarding interpretations of classes of
models and give a general outline of how interpretations are used to obtain lower bounds. Theorem 6.2,
a specific instance of the method, follows from the results in Section 4. It tells how to obtain lower
bounds by interpreting binary relations. We then show in Theorem 6.3 how to interpret binary relations
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in finite trees of bounded height. As a consequence we obtain hereditary lower bounds for theories of
finite trees of bounded height and a tool for obtaining further lower bounds by interpreting classes of
these trees in other theories. We obtain similar results for classes of finite trees of unbounded height in
Theorem 6.6 and its corollaries.

Let E be a theory in a logic V and Co, Ci, C2,... be classes of models for a logic L whose vocabulary
consists of relation symbols Pi,..., P*. Let ..., Xk be sequences of distinct variables with the length
of Xi equal to the arity of P,-. Suppose that there are formulas 6n(x, u), 7r*(ifi, u),...,7r*(iffc,u) from V
which are reset log-lin computable from n (expressed in unary notation) so that for each M E Cn there
is a model M* of E and elements to in M! with

(xk,m))

isomorphic to M. The parameter sequence u is allowed to grow as a function of n. The sequence
{In | ft > 0} where

In =

is called an interpretation of the classes Cn in E. The interpretation is a simple interpretation if the
formulas <5n, 7r*,..., 7r* are fixed with respect to n; this is the situation traditionally found in logic.
The interpretation is a prenex interpretation if the formulas <5n, 7r*,..., 7r* are all in prenex form. The
interpretation is an iterative interpretation if the formulas <5n, 7T*,..., 7r* are given by iterative definitions.
By this we mean that there are formulas

S(x, u, D), TT^Xi, u, Pi),irk(xk, u, Pk)

and integer functions /, <71,... ,<?* which are reset log-lin computable (using unary notation) such that
Sn is the formula given by the iterative definition

[_D(x) = 5]/(n)
and irln is the formula given by the iterative definition

[p<(«) = ^]<,j(n)
as in Theorem 3.2. Notice that we may regard simple interpretations as special cases of either prenex
or iterative interpretations.

There is a slightly more general point of view toward interpretations which is sometimes useful.
Suppose Cq C C[ C Cf2 C • • • are classes of models of E such that for each n > 0 and M G Cn, the model
M' in the above definition can be found in C'n. Then we will say that we have an interpretation of the
classes Cn in the classes C'n. Sometimes we will not mention E at all when discussing interpretations in
this context. In that case we must say whether we intend the classes C'n to be models for a first-order or
for a monadic second-order logic. Thus, we will say that there is an interpretation of the classes Cn in
the first-order (or monadic second-order) classes C'n.

Interpretations, inseparability, and prescribed sets are the cornerstones of our method. Suppose we
have an interpretation of classes Cn in classes C'kn for some nonnegative integer k. (In most cases k is 1
but occasionally we need a larger value.) Suppose also that there is a prescribed set r of formulas over
L such that

{<p € r | <p is realized in some M. E Cn where \(p\ — n}
and inv*(L) are AT/Mi£(T(cn))-inseparable for some c > 0. Now map each formula (p in T to the
formula <p' given by

[D(x) = <5n] [Pi(®0 = *£] • • • [P*(«*) = **] 9°
where n = \(p\. By adding dummy quantifiers in the right places we can insure that l^'l > kn. If (p is
realized in some model in Cn (i.e., is true for some assignment to its free variables), then p' is realized in
some model in C'kn. If p is true in no model, then p' is true in no model. (There is a minor point which
should be addressed here. To be completely rigorous we should require that for all models M' that

(*) # 0 since certain formulas in inv*{L) may become true when relativized to an empty relation.
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For example, consider the sentence Vx (x ^ x). We can always meet this requirement by replacing <5n(x)
with the formula 5n(®) Wx-i<5n(x) so we can ignore this point in subsequent discussions.) When we
have a prenex interpretation, or an iterative interpretation and the definitions in p' are replaced by the
appropriate iterative definitions, the sentences (p' all belong to some prescribed set V of formulas over
U. We have now that

{p* G rf | p' is realized in some M! G C'n where \p'\ = n}
and inv*(L') are NTIME(T(cn))-msepa,iable for some c > 0. It follows by Theorem 3.4 that sat(E)
and inv(L') are NTIME(T(cn))-msepaxable for some c > 0 so 17 has a hereditary NTIME(T(cn)) lower
bound.

Now let us broaden the definition of interpretation to cover instances where the formulas Sn and
7Ti,..., 7Tjb contain free auxiliary relation symbols which also receive prenex or iterative definitions. For
example, if these formulas contain a free auxiliary unary relation symbol Q we would write

[Q(a:) = 9n] [.D(x) = <5„] [Pi(«i) s **] • • • [A(ft) 2 *£] 9°
for p', the formulas 9n having the same sort of restrictions as 6n and 7r*,..., 7r*. In this case we would
have

In = (0n,6n,*n>--->*n)
as the elements of our interpretation. If these formulas have all prenex definitions we could use Theo¬
rem 3.1 to rewrite Sn and 7r*,..., 7r* so that Q occurs just once and substitute 9n for occurrences of Q.
For iterative definitions, we know of no similar substitution which eliminates Q and keeps the length
of p' linearly bounded in n. Fortunately, such a substitution is not needed and is even undesirable.
By taking a top down approach to the construction of interpretations, building complex relations from
simpler relations, we make our task easier and exposition clearer.

We extend our definitions of simple, prenex, and iterative interpretation to this more general situation.
(In principle, some definitions could be prenex and others iterative, but this does not seem to occur in
practice.)

We see that hereditary lower bounds are obtained using interpretations to transfer inseparability
results from one prescribed set of formulas to another. One of the advantages of this method is that
by establishing lower bounds in this manner, we also establish tools for proving further lower bounds.
In the situation described above, if we have another prenex or iterative interpretation of classes C'n in
classes C„ of models of A, then we can use C'n and r' in place of Cn and r to establish a lower bound for
A. Compare with the well known methods for establishing NP-completeness of a problem by reducing
to a problem already known to be NP-complete. After the first lower bound or completeness result has
been proved one should never again have to code Turing machines.

It is worth noting what happens when the interpretation used to establish a lower bound is not
prenex or iterative. In that case we do not know that there is a reset log-lin reduction taking formulas
p' defined above to equivalent formulas in L'. As we mentioned in Section 3, the shortest equivalent
formula in V we know how to obtain has length i?(nlogn) in the worst case. We can only conclude
that sat(U) and inv(L') are NTIME(T(cn/ log n))-inseparable for some c > 0 so E has a hereditary
T(cn/ log n) lower bound. Successive applications of such interpretations give increasingly worse bounds.
After k interpretations the lower bound would be T(cn/(log n)k) rather than T(cn). In the case where
the formulas in r are in prenex form already we do not have this loss in the lower bound, but even then,
when the interpretation is not prenex or iterative, we cannot use the classes Cn to obtain further lower
bounds without a subsequent loss. We have introduced prenex and iterative interpretations to avoid
these losses. In our experience prenex and iterative interpretations not only achieve sharp lower bounds,
but also are easy to manage and occur quite naturally in applications.

Within this framework we can also accommodate the more general kind of interpretation in which the
domain of the interpreted model is not a subset of M!, but a set of ^-tuples from M!, and the equality
relation is interpreted by an equivalence relation definable in M. We have found this to be necessary
for only two theories treated here and so we avoided stating these definitions in the fullest generality.
However, it would not have been difficult to introduce these features explicitly. (See Examples 8.7
and 8.8.)
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Although we have emphasized inseparability results, we should not lose sight of the fact that the
starting point for our reductions, Theorem 4.1, is a completeness result: every set T of satisfiable
sentences with satT(Lo) C T is complete for the complexity class

(J NTIME(T(cn))
c> o

via reset log-lin reductions and for the class

[J NTIME{T(nc))
c> 0

via polynomial time reductions. Thus, all our inseparability results can be reformulated as completeness
results. We summarize the previous discussion and make this point precise in the following theorem.

Theorem 6.1 Let Co,Ci,C2,... be classes of models such that for some 'prescribed set T of formulas
over a first-order logic L,

{<p G r | (p is realized in some M G Cn where \ip\ = n}
and inv*(L) are NTIME(T(cn))-inseparable for some c > 0. Let C'0 C C[ C C'2 C • • • be classes of models
of a theory E in a logic L'. If there is a prenex or iterative interpretation of the classes Cn in the classes
C'kn for some nonnegative integer k, then the following are true.

(i) The sets sat(i7) and inv(E) are NTIME(T{cn))-inseparable for some c > 0.

(ii) If for some d between 0 and 1, T(dn) = o(T(n))} then £ has a hereditary NTIME(T(cn)) lower
bound.

(Hi) For each £' C val(E'), sat(E") and val(Z") are both hard for the complexity class

(J NTIME(T(cn))
c> 0

via reset log-lin reductions.

(iv) For each E' C val(i7), sat(£") and val(27') are both hard for the complexity class

(J NTIME(T(nc))
c>0

via polynomial time reductions.

(v) There is a prescribed set rf of sentences over L' such thai

[<p' G r' \<p* is realized in some M' G C'n where \<p'\ = n}
and inv*(T/) are NTIME(T{cn))-inseparable for some c > 0.

Usually when we apply our method we state the result as in (ii) for brevity, but the reader should
be aware that all of the conclusions hold.

The following result is an immediate consequence of the above theorem and Theorem 4.3. It is one
of the most useful tools for establishing NTIME lower bounds.

Theorem 6.2 LetT(n) be a time resource bound such that for some d between 0 and 1; T(dn) = o(T(n)).
Let Cn be the class of binary relations (i.e., structures for Lq) on sets of size at mostT(n) and E a theory
in a logic L. If there is an interpretation of the classes Cn in E, then E has a hereditary NTIME(T(cn))
lower bound.
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The first application of this result is to first-order theories of finite trees of bounded height.
Recall that we express first-order properties of trees in the logic Lt whose vocabulary contains just

a binary relation symbol which interprets the parent-child relation. Let Er be the theory of finite trees
of height at most r and Eoo be the theory of finite trees of arbitrary height. Define MEr and MEoo
similarly for the monadic second-order logic ML%.

Let Tj. be the class of finite trees of height k. We inductively define certain restricted classes of finite
trees in which the classes Cn in Theorem 6.2 are interpreted. For each m > 0 let T™ be the class 7q (all
of whose elements are isomorphic). The class T^ml consists of those trees whose primary subtrees are all
in Tfcm, but such that no more than m primary subtrees may be in the same isomorphism class. Clearly,
Tfcm C Tfc and T™ C T™ C T™ C • • ♦. Also, if Tfcm contains t isomorphism types, then 7^f.1 contains at
most (m + l)t isomorphism types.

From the following theorem we obtain hereditary lower bounds for theories of finite trees of bounded
height and another useful tool for obtaining other lower bounds.

Theorem 6.3 Let Cn be the class of binary relations on a set of size expr_2(n) and m = ra(rc) be
the least integer such that mlogm > n. Then there is a prenex interpretation of the classes Cn in the
first-order classes T™ when r > 3 and in the first-order classes Tj?m when r = 3.

Proof: Note that m = 0(n/ log n).
First, consider the case r > 3. Define (p^x^y) to be a formula, with free auxiliary relation symbol

Q, which says that for all children ti,..., tm of a?, there are children u\)..., um of y such that Q(ti,Ui)
holds for 1 < i < m, and

t{ = tj <-► ui = Uj
<m

We wish to write <pm as a prenex formula which can be computed from n (in unary) by a reset log-lin
reduction. Unfortunately, the displayed formula has length f?(n2) so we replace it with

(V^,</,u,u/)^ \J (t = UAu = Ui)A \J (tf = t{ A u' = u,)^ —* {t = t' <-+ u = u')^
1 < x <m 1 < x < m

which is reset log-lin computable from n. Hence, we can write <pm as a prenex formula which is reset
log-lin computable from n.

We will say that a vertex is at level k if the longest branch from the vertex to a leaf lying below it
has length k. When k > 0, the iterative definition

[iQ(x, y) = <pm(x, y) A fm(y, *)] k

defines an equivalence relation on the vertices at levels less than k. For k = 1, Q is an equivalence
relation on the leaves, which are precisely the vertices at level 0. This relation makes all leaves equivalent.
Increasing k to 2, we must extend the relation to vertices at level 1. These are the vertices adjacent
to a leaf and all of whose children are leaves. Two such vertices are equivalent if they either have the
same number of children or both have at least m children. In general, for larger k we extend the relation
to vertices at level k — 1 leaving the relation unchanged at lower levels. Two vertices at level k — 1
are equivalent if for each equivalence class represented among their children (on which the relation has
already been defined), they either have the same number of children in the class or both have at least m
children in the class. When k = r we have an equivalence relation on the set of all vertices in a tree of
height r except the root. By Theorem 3.2 there is a reset log-lin reduction taking the iterative definition

[Q(x,y) = ipm(x,y) A<pm(y,x)]r
to an equivalent explicit definition

[<2(a;,y) = jj?(x,y)]
Moreover, since r is fixed we can arrange that ip™ is a prenex formula. We will say that two vertices x
and y in a tree of height r have the same ip™-type if y) holds.

25



Define <5n(x) to be a prenex formula that says x is a child of the root, x has at least one child, and
no two distinct children of x have the same ip™-tyj>e. Define 7rn(z,2/) to be a prenex formula that says
6(x) and 6(y) hold and there is a child z of the root coding (z,y). By z coding (x,y) we mean that for
every Tpl^-type, if x and y have no child of that type, then neither does z\ if x has a child of that type
but y does not, then z has precisely two children of that type; if x has no child of that type but y does,
then z has precisely three children of that type; and if x and y both have a child of that type, then z
has at least four children of that type. (For this coding to work, m must be at least 4, but this is not
really a problem because if m < 4, then n < 5 and we can easily formulate interpretations of Cn in T™
when n < 5.) Both <5n(x) and itn(x,y) are reset log-lin computable from n.

Now it is easy to show by induction on k that if x and y are vertices at level at most k, where k < i— 1,
and the two subtrees formed by restricting to x and its descendents, and to y and its descendents, are
nonisomorphic trees in T™, then x and y have different V^-types. We know that

|T2m| = (m + l)m+1 > 2n
and that if |Tfcm| = t, then = (m+ 1)* so |Tfcm| > expjb_1(n) when k > 2. Thus, for vertices at level
r — 2 there are at least expr__3(n) ip™-types. If a: is a child of the root satisfying 5n(^)) its children are
at level at most r — 2 and it has either 0 or 1 children of each possible V^-type. Thus, it is possible to
distinguish between as many as expr_2(n) vertices x satisfying <5n(z)- Clearly, if <5n(z) and 5n(y) hold,
(x, y) can be coded by some child of the root. It is easy to see that every binary relation on a set of size
at most expr_2(n) is isomorphic to (5;^(x), TrjJ^x, y)) for some tree M in T™. This concludes the case
r > 3.

Now we consider the case r = 3. The construction just given shows that every binary relation on
a set of size at most 2m = 2°(n/logn) is isomorphic to (^(x), 7r;^(x, y)) for some tree M in T™. We
must work harder to remove the logn denominator in the exponent; to do this we must interpret Cn in
T32m.

We begin by specifying formulas 0m(x,y) and T7m(x,y) which will define equivalence relations on
vertices at level 2. The formula 9'm{x,y) says that for all children fi,... ,fm of x with at least 1 but no
more than m children, there are children u\>..., um of y with at least 1 but no more than m children,
such that holds for 1 < i < m, and t{ = tj «-► = Uj holds for 1 < i,j < m. The formula
Vmix, y) says that for all children t1,..., tm of x with more than m children, there are children u\,..., um
of y with more than m children, such that holds for 1 < i < m, and t{ = tj <-* m = Uj holds
for 1 < i, j < m. Using the same argument as above we can say that 0m(x, y) is a prenex formula which
is reset log-lin computable from n and equivalent to 9fm(x,y) A 0^(y,x), and similarly for 77m(x,y).

Since 0m and Tjm define equivalence relations on the set of vertices at level 2 we can speak of the
and rjm-type of a vertex x at this level. Define i^(x) to be the minimum of m and the number of

children of x with precisely i children. Define i/f (x) to be the minimum of m and the number of children
of x with at least i children. The 0m-type of x is precisely determined by the values ..., ^m(^) and
the 77m-type by the values i/m+i(a?), •. • We see then that the 0m-type and the 77m-type
of a vertex are independent, and that there are rnm+1 > 2n 0m-types and the same number of 77m-types.

Let 6n(x) be a prenex formula that says x is a child of the root and vo(x) = 0. Let 7rn(x,y) be a
prenex formula that say <5n(x) and Sn(y) hold and there is a child z of the root such that vq(z) > 1 and
0m(x,z) and 77m(z,y) hold.

It is easy to arrange that <5n(x) and 7rn(x,y) are reset log-lin computable from n. Each binary relation
on a set of size at most 2n is isomorphic to (x), (x, y)) for some tree M in 7^2m.D

Corollary 6.4 Let r > 3. Er has a hereditary NTIME(expr_2(cn)) lower bound.
Corollary 6.5 Let r > 3 and U be a theory in a logic L. If there is an interpretation of the classes
zj-n/ logn ^as a NTIME(expr_2(c7^)) lower bound.

Remark: For each r > 3 there is a constant d > 0 such that every tree in 7^.n/logn has at most
expr_2(dn) vertices. Hence, we can view Corollary 6.5 as a significant improvement over Theorem 6.2
for obtaining NTIME(expr_2(cn)) lower bounds: rather than interpreting all binary relations on sets of
size expr_2(c72) we need only interpret all trees of height r on sets of this size. In applications it is often
much more natural to interpret trees than binary relations. See also Theorems 7.5 and 7.8.

26



We next prove results similar to Theorem 6.3 and Corollaries 6.4 and 6.5 for finite trees of unbounded
height.

Theorem 6.6 Let Cn be the class of binary relations on a set of size
exp^(n — 3). Then there is a prenex interpretation of the classes Cn in the first-order classes .

Proof: Recall from the proof of Theorem 6.3 the formula which defines an equivalence relation
on the set of all vertices in trees of height r except the root. In that proof r was fixed, so we could
assume that was in prenex form, and m increased with n. In this proof we fix m = 2 and consider
formulas -02. We see now that has an iterative definition. By induction on £, there can be as many
as expOQ(k — 1) ip£-types among vertices at level k < n in a tree in 7^2.

We define 6n and irn in essentially the way as in Theorem 6.3. The only difference is that when a
vertex z coded a pair (x,y) there, z could have up to four children of the same type. Here, in trees from
7^2, we have at most two, so we refer to types of grandchildren rather than children. Thus, we interpret
binary relations on sets of size expOQ(n — 3) rather than expOQ(n — 2).Q

Corollary 6.7 E^ has a hereditary NTIME(exp00(cn)) lower bound.

Corollary 6.8 If there is an interpretation of the classes in a theory E, then E has a hereditary
NTIME(exp00(cn)) lower bound.

7 Tools for Linear ATIME Lower Bounds

The theorems in this section are counterparts of those in the last section. In order to obtain linear
alternating time lower bounds for logical theories we must introduce a stronger form of interpretability
which we call monadic interpretability. Theorems 7.2 and 7.3 tell how to obtain lower bounds by monadic
interpretation of addition relations and binary relations. We then show, in Theorems 7.4 and 7.6 that
binary relations have monadic interpretations in certain classes of trees of bounded height. From these
results we obtain useful tools for establishing linear ATIME lower bounds, and lower bounds for monadic
second-order theories of trees of bounded height.

Suppose E is a theory in a logic L' and Co, C\, C2,... are classes of models for a monadic second-order
logic ML whose vocabulary consists of relation symbols Pi,...,Pj.. Suppose that there are formulas
6n(x, if), 7r^(?i, u),..., 7r£(ifjb, u), and cn(x11) u) in Z/, reset log-lin computable from n, so that for each
M € Cn there is a model M' of E and elements m in M' with

{8?'(x,m),irlM (xk,rh)>

isomorphic to M and the sets

range over all subsets of S^4\xJm) as p ranges over M!. The parameter sequence u is allowed to grow
as a function of n but t must remain fixed. The sequence {/n | n > 0} where

In = (6n,ir*,...,ir*,<Tn)
is called a monadic interpretation of the classes Cn in E. We define simple, prenex, and iterative
monadic interpretations similarly to definitions in the last section. We also define the notion of monadic
interpretation of classes Cn in classes C'n as in the last section.

Evidently, a monadic interpretation of classes Cn is nothing more than an interpretation where the
models in Cn are regarded as models for a monadic second-order logic. Note that if we have an inter¬
pretation of classes Cn in a theory E in some monadic second-order logic L', then we can automatically
extend to a monadic interpretation by taking crn(x,X) to be the formula x £ X where X is a new set
variable.
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The framework for obtaining linear alternating time lower bounds is essentially the same as before.
Suppose we have a monadic interpretation of classes Cn in classes Ckn for some nonnegative integer k
and that there is a prescribed set T of formulas over ML such that

{<p E r | <p is realized in some M E Cn where \ip\ = n}
and inv*(ML) are AT/ME(T(cn), cn)-inseparable for some c > 0. Now given formula p in ML we form
<as follows. Replace each monadic quantification VAT or 3X with a quantification Vtx or 3tx, where
tx is a variable sequence of the same length as t, uniquely determined by X, and not in conflict with the
other variables in (p. (We may need to change other indices to avoid conflicts.) Introduce an auxiliary
relation symbol S and replace each atomic formula x € X by S(x,tx)> We can easily arrange that there
be a reset log-lin reduction taking <p to pt. Now map each formula <p in r to the formula <p' given by

\D(x) = 6n] [Pi(zi) = jr£] • • • [Pk{xk) = tt£] [5(ar, t) = <rn] (<pDy
where n = \p\. As before, it is easy to arrange that \<p'\ > kn. If (p is realized in some model in Cn,
then p' is realized in some model in Ckn\ if p is true in no weak model, then p' is true in no model or
weak model (depending on whether V is first-order or monadic second-order). When we have a prenex
interpretation, or an iterative interpretation and the definitions in p' are replaced by the appropriate
iterative definitions, the sentences pl all belong to some prescribed set J" of formulas over L'. We have
now that

y zr' \<p' is realized in some M! E C'n where \(p'\ = n}
and inv^^V) are ATIME(T(cn), cn)-inseparable for some c > 0. Then sai(X) and inv(L') are
ATIME(T(cn)f cn)-inseparable for some c > 0 so £ has a hereditary ATIME(T(cn), cn) lower bound.

As before we allow a more elaborate definition of monadic interpretation where formulas <5n,
7Ti,..., 7Tjt, and (Tn may contain free auxiliary relation symbols which also receive prenex or iterative
definitions.

We summarize these remarks in the following theorem which parallels Theorem 6.1.

Theorem 7.1 Lei Co,Ci,C2,... classes of models such thai for some 'prescribed set r of formulas
over a monadic second-order logic L,

{(p E r | <p is realized in some M. E Cn where \<p\ = n}
and inv*(T) are ATIME(T(cn),cn)-inseparable for some c > 0. Let C'0 C C[ C C'2 C • • • be classes of
models of a theory E in a logic L'. If there is a prenex or iterative monadic interpretation of the classes
Cn in the classes Cfkn for some nonnegative integer k, then the following are true.

(i) The sets sat(I7) and inv(E) are ATIME(T(cn), cn)-inseparable for some c > 0.
(ii) If for some d between 0 and 1, T(dn) = o(T(n)), then E has a hereditary ATIME(T(cn), cn) lower

bound.

(Hi) For each E' C val(i7), sat(Z,/) and val(Z") are both hard for the complexity class

[J ATIME(T(cn),cn)
c> 0

via reset log-lin reductions.

(iv) For each E' C val(Z7), sat(Z'/) and val(E') are both hard for the complexity class

|J ATIME(T(nc),nc)
c> 0

via polynomial time reductions.

(v) There is a prescribed set T' of sentences over L' such that

{<p' E r' | ip' is realized in some M! E C'n where \(p'\ = n}
and inv*(T/) are ATIME(T(cn), cn)-inseparable for some c > 0.
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The following theorems are immediate consequences of the preceding theorem and Theorems 5.1, 5.2,
and 5.4.

Theorem 7.2 LetT{n) be a time resource bound such that for some d between 0 and 1, T(dn) = o(T{n)).
Let Cn be the class of addition relations on sets of size at most T{n) and U a theory in a logic L. If
there is a monadic interpretation of the classes Cn in £, then X has a hereditary ATIME(T(cn), cn)
lower bound.

Theorem 7.3 The previous theorem holds with binary relations in place of addition relations.

From the following theorem we obtain a useful tool for obtaining lower bounds, but not the best
lower bounds for monadic second-order theories of trees of bounded height.

Theorem 7.4 Let Cn be the class of binary relations on a set of size expr_i(n). Then there is an
iterative monadic interpretation of the classes Cn in the monadic second-order classes T^n when r > 2
and in the monadic second-order classes T? n when r = 2.

Proof: The proof is very similar to the proof of Theorem 6.3. First, consider the case r > 2.
We iteratively define a relation Q'(X, Y) which says that either |X| = |Y| or X and Y both have at

least 2n elements. Write Z = X \J Y as an abbreviation forZ = XUYAXnY = 0. Let p(X, Y) be
the formula

(X = 0 AY = 0) V (|X| = 1 A |Y| = 1) V (3X1} X2, Y1} Y2)
(X = Xx U X2 A Y = Yi U Y2 A Qf(X1, Y,) A Q'(X2, Y2))

The iterative definition [Q'(X,Y) = p]n gives the desired relation.
Now let <p(x, y) be a formula, with free auxiliary relation symbol Q, which says that if X is composed

of children of x and Q(xi,x2) holds for all £i,£2 E X, then there is a set Y composed of children of y
such that <3;(X,Y) holds, and Q(yi,y2) holds for all yi,y2 E Y, and Q(#i,yi) holds for all x\ E X and
yi€Y.

When k > 0, the iterative definition

\Q{x, y) = <p{x, y) A tp(y, a:)] k

defines an equivalence relation on the vertices at levels less than k. For k = 1, Q is an equivalence
relation making all leaves equivalent. Increasing k to 2, we extend to vertices at level 1. Two such
vertices are equivalent if they either have the same number of children or both have at least 2n children.
(In Theorem 6.3 this was true only up to 0(n/ log n) children. This is the reason we get an additional
level of exponentiation here.) For larger k extend to vertices at level k— 1 leaving the relation unchanged
at lower levels. Two vertices at level k — 1 are equivalent if for each equivalence class represented among
their children (on which the relation has already been defined), they either have the same number of
children in the class or both have at least 2n children in the class. There is a reset log-lin reduction
taking the iterative definition

[Q(x, y) = <p(x, y) A <p(y, x)] r

to an equivalent explicit definition
[<2(x,y) = ff(x,y)]

Moreover, since r is fixed this can be expressed as a simple definition. The rest of the theorem proceeds
as in the proof of Theorem 6.3 except that ip? use<^ ^ place of ip™, T?" is used in place of Trm, and we
automatically have a monadic interpretation since we are interpreting in a monadic second-order theory.

We defer the case r = 2. The proof is a straightforward modification of the proof that will be
presented for Theorem 7.6.□
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Corollary 7.5 Lei r > 2 and E be a theory in a logic L. If there is a monadic interpretation of the
classes X? in E, then E has a hereditary

ATIME(expr_1 (cn), cn)

lower bound.

Remark: For each r > 2 there is a constant d > 0 such that every tree in T?" has at most
expr_1(d'n) vertices, so we can view Corollary 7.5 as an improvement over Theorem 7.3 for obtain¬
ing NTIME(expr_1(cn)) lower bounds. It is instructive to compare this result with Corollary 6.5. It
often happens that an interpretation of the classes /j'rn^logn in a theory can be modified slightly to obtain
a monadic interpretation of the classes T1?_11 even when the theory is first-order. This explains, in part,
why NTIME lower bounds can often be pushed up to linear ATIME lower bounds.

We now prove another theorem about monadic interpretations of classes of trees of bounded height.
We shall see in Section 9 that this theorem gives the best lower bounds for theories of trees of bounded
height.

Theorem 7.6 Lei Cn be the class of binary relations on a set of size
expr(n/logn). Then there is a prenex monadic interpretation of the classes Cn in the monadic second-
order classes 7^xp2(n/logn) when r > 1 and in the monadic second-order classes 7^.exPi(2n/losn) when
r = 1.

Proof: First, consider the case r > 1.
Formulas will contain parameters X — Xi,X2, •.., Xm, where m = n/logn. This is the first case we

have encountered where the parameter sequence grows with n. Let Q' be an auxiliary binary relation
symbol and Om(x)y) a prenex formula that says x and y are both leaves and

/\ xeXi^yeXi
1 < i< m

Q' will be given by the prenex definition [Qf{xyy) = 9m]. Q'(x,y) is obviously an equivalence relation
on the vertices at level 0.

Now let (p(x,y) be a formula with free auxiliary relation symbol Q which says x is not a leaf and for
every child t of x there is a child u of y such that Q(t,u) holds. Now the iterative definition

[Q{x, y) = Q'(x, y) V (<p(x, y) A <p{y, as))] k

defines an equivalence relation on the vertices at levels less than k. For k = 1, Q is identical with the
equivalence relation Q'. For larger k we extend the relation to vertices, at level k — 1 by specifying that
two such vertices are equivalent if precisely the same equivalence classes are represented among their
children. When k = r we have an equivalence relation on the set of all vertices in a tree of height r
except the root.

The iterative definition

[Q(x, y) = Q'(x,y) V (<p(x, y) A <p(y, a?))] r

can be converted to a prenex definition

[Q(x,y) = Vv (*,!/)]
of fixed length since r is constant. By Theorem 3.1 the sequence

[Q'(x,y) = em] [Q(x,y) = Vv(z,J/)]
of prenex definitions can be replaced by a single prenex definition

[Q(x,y) = ip?(x,y)\
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where i/;™(x,y) is reset log-lin computable from n. We will say that two vertices x and y in a tree of
height r have the same iffi-type if ij)™(x,y) holds.

Now it is easy to show by induction on k that there is a tree of height r and sets X\,... ,Xm of
leaves in this tree such that there are expjb+1(m) tj;™-types among vertices at level k when k < r. More
is required to see that there is such a tree in 7^expa(m) When fc = 0 there is no problem. Consider the
case k = 1. For i = 1,2,... , exp2(m) let r< be the tree of height 1 with precisely i leaves. Each of these
trees is in Without much trouble we can choose, from the leaves of each r,-, sets Xi,... ,Xm
so that the roots of rt- and Tj have different V^-types when i ^ j.

From the set of trees {t* | 1 < i < exp2(m)} choose a subset and form a tree of height 2 by directing
edges from a new vertex to the roots of trees in this subset. We can form exp3(m) such trees, each one in
j-exp2(m) Moreover, if we carry along the subsets X\,..., Xm in each subtree r;, each root has a distinct
V^-type. Continue for each k < r, forming expJb+1(m) trees in 7fcexp3(m)) with subsets Xi,..., Xm, so
that each root has a distinct V>™-type.

The interpretation of binary relations on sets of size expr(m) now uses precisely the same construction
used in the proofs of Theorems 6.3 and 7.4.

Let us consider the case r = 1. Our formulas will now have parameters X = Xi,...,Xm, Y =

Yi,... ,ym, and Z and W. Define 9m(x,y) as above and r)m(x,y) in the same way except that Y is used
in place of X. These formulas define independent equivalence relations on leaves so we can speak of the
Qm- and T7m-type of a leaf. Both relations have index 2m. Now let 5n(z) be the formula x E Z. Let
7rn(x, y) be a prenex formula that asserts the following.

(a) x G Z and y £ Z.

(b) If x ^ y there is a t £ Z such that 0m(x,f) holds and rjm(t, y) holds.

(c) If x = ?/, then x E W.

It is not difficult to see that every binary relation on a set of size at most 2m is interpreted in some tree
in Tf**1 (2n/losn) if parameters are chosen correctly.O

Corollary 7.7 Lei r > 1. MEr has a hereditary ATIME(expr(cn),cn) lower bound.

Corollary 7.8 Let r > 2 and U be a theory in a logic L. If there is a monadic interpretation of the
classes ^exPa(n/losn) ^ then £ has a hereditary

ATIME(expr (cn), cn)

lower bound:

The case r = 1 is worth stating separately. Observe that trees of height 1 do not really have much
structure. We can regard them as sets with one distinguished point, the root. Therefore, we state the
result in terms of interpretations of sets rather than trees.

Corollary 7.9 Let Cn be the class of sets of size at most 2n/loSn and E a theory in a logic L. If there
is a monadic interpretation of the classes Cn in E} then E has a hereditary ATIME(2cn/logn, cn) lower
bound.

This concludes our survey of tools for establishing lower bounds. The next section contains many
examples of their application.

31



8 Applications
In this section we use the methods developed in earlier sections to give a representative sample of
arguments for known lower bounds of theories. We believe that the details given here justify the claim
that every known lower bound for a theory can be obtained in this way, with simpler, more conceptual
proofs. In particular, there is no further need to code Turing machine computations. Moreover, in almost
all cases our approach gives technical improvements on known results: we always obtain hereditary lower
bounds; these bounds hold for both sat(ZJ) and val(E), in contrast to most published NTIME lower
bounds which are for just sat(E); and the reductions used are reset log-lin reductions rather than
polynomial time, linearly bounded reductions. In a few cases we obtain qualitative improvements in the
bounds. The most significant improvement is that we always obtain inseparability results.

To simplify the statement of results and avoid repetition, when we say a theory 27 has a hereditary
NTIME(T(cn)) lower bound, we intend each of the statements (i)-(iv) in Theorem 6.1. When we say
a theory 27 has a hereditary ATIME(T(cn)i cn) lower bound, we intend each of the statements (i)-(iv)
in Theorem 7.1. For convenience we will also use functional notation rather than relations in some

examples.

Example 8.1 The first-order theory of finite linear orders with an added unary predicate.

We show that this theory has a hereditary lower bound of

by iteratively interpreting the classes and applying Corollary 6.8. In fact, we interpret the classes Tn
consisting of the finite trees of height n.

We denote the linear order by < and the predecessor and successor of an element x by x — 1 and
x 4- 1 (when they exist). Let x < y be the formula x < y A x ^ y and LAST(x) the formula asserting
that x is the last element in the order. Let P be the unary relation symbol. We can identify each finite
model M = (m, R) of this theory (where m = {0,..., m — 1}) with a string aoai... am-i of O's and l's.
We stipulate that a< = 1 if and only if P(i) holds.

Representing a finite tree as a string of O's and l's is straightforward. Recall that the height of a
vertex is its distance to the root and the height of a tree is the maximal height of its vertices. Now with
each vertex a: in a tree of height n associate a string that begins 0n""r+1l, where r is the height of x,
followed by the strings associated with each child y of x. The tree is represented by the string associated
with the root. For example, the tree

In general, r may have many representations, since the children of each vertex are ordered arbitrarily.
Thus, the tree above is also represented by the string

However, r can be easily interpreted within each of its representations M.
Let 5n(z) be the formula P(x) (indicating that # is a position where 1 occurs). Let 9(x,y) be the

following formula with free auxiliary relation symbol Q.

NTIME (exPoo(cn))

is represented by the string
0001001010100100101

0001001001010010101

^(x = 0 V P(x - 1)) A (y = 0 V P(y - 1))^ V (-^P(x - 1) A -»P(y - 1) A Q(x - 1, y - 1))
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Then [Q(z, y) = #]n+1 defines a relation Q(x,y) which holds precisely when the number of consecutive
O's preceding position x and the number of consecutive O's preceding position y are equal and at most
n. Let 7rn(x,y) be the formula

x < y A P(x) A P(y) A ->P(x — 1) A Q(x — 1, y) A Vz(x < z < y —► z))
Thus, 7rn(x, y) holds precisely when there are l's at positions x and y, x precedes y, there is exactly one
more 0 preceding x than preceding y (but no more than n O's preceding y), and there is no position
between x and y which has as many O's preceding as x has. Now a tree r of height n represented
by a linear order M is isomorphic to (S^i(x))7r£*(x,y)) when Q is given by the iterative definition
[Q(x,j/) = 0]n+1.
Remark: Note that for some d > 0 each tree in 7^2 has at most expOQ(dn) vertices so for some d' > 0
each representation M of a tree in this class has at most exp00(d'n) elements. From Theorem 6.1 we see
that we have a tool for obtaining further lower bounds. If there is a prenex or iterative interpretation
of the classes Cn consisting of linear orders of length at most exp00(n) with added unary predicates in a
theory 27, then 27 has a hereditary lower bound of NTIME(expOQ(cn)).

Example 8.2 The first-order theory of all linear orders.

We show that this theory has a hereditary lower bound of

NTIME(exp^cn))
by a simple interpretation of the models in Example 8.1.

Consider a finite linear order (m, <) together with a unary relation R on n interpreting the predicate
symbol P. We will represent (m,<,i?) by a linear order M = (5, <) formed by replacing each i € n
with a copy of the unit interval [0,1] if i is not in R and with a single point followed by a copy of the
unit interval [0,1] if i is in R] the order is extended in the obvious way.

Now we interpret (n,<,i2) in Ad as follows. Let S(x) be the first-order formula saying that x has
no immediate successor and x is either the least element or has an immediate predecessor. Clearly, <$(z)
picks out all the left endpoints of the unit intervals in (5, <). There are precisely m elements in 8M(x).
Let -ir(x) be the first-order formula saying that x has no immediate successor but does have an immediate
predecessor y such that either y has no immediate predecessor or is the least element. Thus, 7r(z) picks
out the left endpoints of the unit intervals associated with elements i in R. Thus, (n, <, R) is isomorphic
to (5jM(x)!<>'(a:,2/),7rA<(a:)).
Remark: Stockmeyer showed in his Ph. D. thesis [59] that the first-order theory of linear orders and
the first-order theory of finite linear orders with an added unary predicate are not elementary recursive.
He obtained an

NTIME(expOQ(clog n))
lower bound for both theories, but not in the hereditary form.

Several other results in [59] can be obtained using simple interpretations of Example 8.1. For ex¬
ample, McNaughton and Papert [44] show that the theory in Example 8.1 is computationally to the
emptiness problem for *-free regular expressions. Therefore, it follows immediately that this problem is
not elementary recursive. The proof of this fact is one of the more difficult results in Stockmeyer [59],
and the proof given here seems to be simpler.

Stockmeyer shows in the same paper that if (A, <) is any infinite linear order, then the theory
of the models (.A,<,i2), where R is an added unary relation, is not elementary recursive. A simple
interpretation of Example 8.1 in this theory shows that it has a hereditary NTIME(exp0O(cn)) lower
bound.

Of course, from Example 8.1 also follows the result of Meyer [43] that the weak monadic second-order
theory of the natural numbers with successor is not elementary recursive and, hence, the same result
for other monadic second-order theories, including the monadic second-order theory of two successors
studied by Rabin [48]. In all cases we have hereditary NTIME(exp00(cn)) lower bounds.

Another result that can be immediately obtained in this way is a strengthening of a result announced
in Meyer [42].
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Example 8.3 The first-order theory of ({0,1}*, ro,ri, <), the binary tree formed by taking the prefix
order < on {0,1}*, together with successor functions ro and r\. (Thus, u <w precisely when there is a
v such that uv = w, and ro(u;) = wO, ri(w) = wl.)

We show that this theory has a hereditary lower bound of

NTIME(exp00(cn))

by a simple interpretation of the classes in Example 8.1.
Let M. = ({0, l}*,ro,ri, <). We produce formulas 8(x,w), A(x,y,w), and ir(x,w) such that

(6m(x, w), Xm(x, y, w), wm (x, w))

includes over all models (m, <,R) in Example 8.1 as w ranges over {0,1}*. The formula S(x,w) is
x < w A x ^ w. The formula A(x, y, w) is

8(x, w) A <5(t/, w) /\x <y

The formula n{x,w) is 8{x,w) A ri(ar) < w.

Example 8.4 The first-order theory of finite unary functions.

A unary function is a model (B,f) where / is a function from B to itself. We show that this theory has
a hereditary lower bound of

NTIMEiexp^icn))
by a simple interpretation of the classes T% and applying Corollary 6.8. In fact, just as in Example 8.1,
we interpret the classes Tn consisting of the finite trees of height n.

Let 8(x) be the formula x = x and ir(x, y) be the formula

X = f(y) A x £ f(x)

Clearly, every finite tree is isomorphic to a model (6M(x),wM(x,y)) for some unary function M.. M. is
formed from the tree by mapping every vertex other than the root to its parent and the root to itself.

Remark: A lower bound of NTIME(exp^(c log n)) for the first-order theory of unary functions was
announced by Meyer [42], but no proof has ever been published.

A simple interpretation in the opposite direction (interpreting unary functions in trees) appears in
Korec and Rautenberg [36]. Thus, the theory of finite unary functions and the theory of finite trees have
the same complexity up to a constant factor in the argument.

Our next example gives another family of useful theories which are not elementary recursive: the
theories of pairing functions. Lower bounds for these theories were first given by Ferrante and Rackoff
[23]. Their treatment shows that these theories are in fact hereditarily not elementary recursive. (To
obtain this from the result stated by Ferrante and Rackoff, we must use the fact that the theory of
pairing functions is finitely axiomatizable.)

Example 8.5 The theory of any pairing function.

A pairing function is a model M = (B,f) where / is a one-to-one binary function on B. We show
that the theory of any pairing function has a hereditary lower bound of

NTIMEiexp^cn))

by iteratively interpreting the classes Cn of linear orders of length exp^ (n) with an added unary predicate.
These classes were discussed in Example 8.1.

The idea behind the interpretation is to have elements of M represent sequences of length expco(n).
One way to do this, say for an element a£) is to find a pair (ao,ai) such that f(ao,ai) = a£. (There
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is at most one such pair, since / is a pairing function.) Then find a quadruple (aoo, aoi> otio> ^n) such
that /(aoo,aoi) = <*o and /(aio,an) = and repeat until we have a sequence (a^ | w G (0,l}m),
where m = exp0Q(n — 1). (The order on {0, l}m is the lexicographic order.) We could then say that a€
represents this sequence. We may not be able to carry out this construction for every element a£ because
/ may not be onto, but certainly every sequence of length exp00(n) is represented by some element, and
every element represents at most one sequence of length expQO(n).

We may regard this construction as giving a labeling of vertices in the full binary ordered tree of
height m. The root is labeled ac, its left and right children are labeled do and ai, respectively, and so
on. Unfortunately, the construction has a limitation that makes it unacceptable for our purposes: a
branch in the tree may have several vertices with the same label. We must modify the construction to
overcome this difficulty. Rather than taking awo and awi so that f(aWQ,awi) = aW) we will take b and
c so that f (bj c) — and then take @"wo and dtui so that /(^tuo> fl^i) — c. That is, Q>yjQ and ctyj^ are
chosen so that 3a; /(x, f(aWQ, awi)) = aw holds. Clearly, awq and awi are uniquely determined by aw. It
is still true that every element represents at most one sequence of length expOQ(n), but now a sequence
of length expOQ(n) may be represented by many elements.

We claim that with this modified construction, every sequence of length expOQ(n) is represented by
some element such that no branch in the associated tree has duplicate labels. Consider a sequence

(aw | w G {0,l}m)

where m = expOQ(n — 1). We can find elements aw for each w G {0,1}* with k < m) such that
3x f(x, f(aWQ,awi)) = aw always holds and whenever v is a prefix of w, av ^ aw. The elements are
selected in a bottom up fashion, i.e., working from the leaves of the tree up to the root. Suppose that
elements av are already known when \w\ < \v\ < m and we wish to find aw. Since / is a pairing
function, f(x,f(aWQ,awi)) takes distinct values as x ranges over the model. Thus, we can choose x so
that aw = /(z, /(a^oj flwi)) is not equal to av when w is a prefix of v since there are only finitely many
such v. Following this procedure we eventually reach ae and no branch has duplicate labels.

Let LEFT(x,y) be the formula (3t, u)/(tf, f(y} u)) = x and RIGHT(x,y) be the formula
(3£, u)/(tf, /(u, y)) = x. Thus, LEFT(x,y) holds when y is the left child of x in our tree, and simi¬
larly for RIGHT(x,y). Let SUCC{x, y) be the formula LEFT(x,y) V RIGHT(x,y).

We wish to specify three first-order formulas. Formula 6n(x,u) should say that a; in an element in a
sequence of length expOQ(n) which is represented by u\ that the elements of this sequence are distinct;
and that no branch in the associated tree has duplicate labels. Formula An(a;,2/, u) should say that
8n(x,u) and 6n(y,u) hold, and that either x = y or in the sequence represented by u, x occurs before y.
Formula cn(x^ x\ u, v!) should say that 5n(ar,it) and Sn(x,Ju/) both hold, and that x occupies the same
position in the sequence represented by u as x' does in the sequence represented by u'.

Now suppose that we already have relations

Q0{x,u), Qi(x,y,u), and Q2(x,x',u,u)

that hold under the same conditions as <$n(a;,u), An(x,y,u), and crn(a;, x\ u, u'), only for sequences of
length exp^(n — 1) rather than expGO(n). (If n = 0, take Qo, Qi, and to be empty relations.)

Suppose 7i > 0. Using Qq and Qi, we can say, in regard to a sequence of distinct elements of length
exp^(ti — 1) represented by v, that a particular element is first; also, that a particular element is last;
also, that one element occurs before another; and that one element occurs immediately before another.
Hence, we can say that v represents a branch of length expOQ(n — 1) from an element u. By this we
mean v represents a sequence of distinct elements of length exp^n — 1) such that when x is the first
element of the sequence, SUCC(u, x) holds, and when x occurs immediately before y in the sequence,
SUCC(x,y) holds.

Now define formulas <5, A, and a in terms of Qq, Q1, and Q2. The formula S(x,u) says that if Qq is
empty, then x = u, and if Qo is n°t empty, the following hold.

(a) There is an element v representing a branch of length expco(n — 1) from u with x as the last
element.
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'(b) For every element y occurring in a branch of length expOQ(n — 1) from u) if y is not the last element
in the branch, then when LEFT(y,z) and RIGHT(y, z') hold, z ^ z'. This is a necessary and
sufficient condition for branches in the tree to have different labelings.

(c) If v and v' are distinct elements representing branches of length
expOQ(n — 1) from u, then the last elements of these two branches are distinct.

The formula A(x, y, u) says that if Qi is empty, then x = y = u, and if Qi is not empty, then either
x = y, or the following hold.

(a) There are branches from u, represented by v and v' and with last elements x and y, of length
exPoo(« - !)•

(b) There is an element z such that if LEFT(z,t) and RIGHT(z,t') hold, then Q2(t,t', v, v') holds.
This guarantees that the branch from u to x is to the left of the branch from u to y.

The formula a{x) x', u, u') says that if Q2 is empty then x = u and x' = u', and if Q2 is n°t empty, then
the following hold.

(a) There is a branch from u, represented by v and with last element x. There is another from v!,
represented by v' and with last element x', of length expOQ(n — 1).

(b) If Q2(zj v') holds, z occurs immediately before t in the branch represented by v, and z' occurs
immediately before t' in the branch represented by v', then LEFT{z)t) just in case LEFT{z', £')
holds. This says that the same sequence of lefts and rights leads from u to x as from u' to x'.

Clearly, 6, A, and cr are first-order expressible in terms of Qo> Qi* and Q2. The simultaneous iterative
definition

Qo(x,u) = <5
Qi(x,y,u) = A

. Q2(x,x',u,u') = a J n+1

gives the desired formulas Sn, <rn and <rn. By Theorem 3.3, this simultaneous iterative definition can be
replaced by just an iterative definition.

For some element u, (6M(x,u), \M(x,y,u)) is a linear order of length expQO(n). Then as v! ranges
over the elements in M, SM(xiu) H 6M(x,u') ranges over all unary predicates on 8M{x,u'). Thus, we
can interpret every linear order of length expOQ(n) with an added unary predicate.

This is the first example we have encountered where the relations being iteratively defined do not
occur positively in the operator formulas. Hence, according to the remark following Theorem 3.1, we
cannot guarantee that the lower bounds obtained here hold if only the connectives A, V, and are
allowed in formulas. However, with slightly more effort we can overcome this difficulty and use only
formulas where the defined relation symbols occur only positively. We have not done so to simplify
exposition.

Remark: It is a long-standing open question whether the first-order theory of the free group Fk on
k > 2 generators is decidable. Semenov [56] observed that this theory is at least not elementary recursive.
He showed that it is possible to give a first-order definition of a pairing function on Fk, from which it
follows that the theory of Fk has a hereditary iVT/AfJE,(exp00(cn)) lower bound.

This use of pairing functions is a quick way to show that many decidable theories are hereditarily
not elementary recursive. For example, consider the first-order theory of the model (N, +, 2X), where N
is the set of nonnegative integers. Semenov [57] showed that this theory is decidable. Observe that the
function

f(x,y) = 22x + 22y+1
is a pairing function on this model, so the theory has a hereditary expco(cn) lower bound. Variations
on the same argument apply to the other models (N, +,^(a?)) treated by Semenov [57] when g(x) grows
rapidly enough. In particular, when g(x + 1) > 2g(x), the argument gives a hereditary expOQ(cn) lower
bound.
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This completes our discussion of theories which are not elementary recursive. Note that in all cases
treated here, there is an iterative interpretation of the classes 7^2 in the theory treated. (Sometimes,
there is an iterative interpretation of the classes 7^2 into classes Cn and another iterative interpretation
of the classes Cn in the theory; the chain of interpretations may be even longer. Nonetheless, these
situations still qualify as interpretations of 7^2.) It seems likely that almost all "natural" theories that
are hereditarily not elementary recursive interpret finite trees (in the same sense that almost all "natural"
theories that are undecidable interpret finite binary relations). Of course, an interpretation of trees can
be traced back, in Theorem 6.3, to an interpretation of binary relations on sets of size expOQ(n), and
thence, in Theorem 4.1, to a coding of Turing machines with a expOQ(n) time resource bound. However,
the Turing machine codings lie very far below the surface and are extremely complicated compared to
the original interpretation of trees.

We now treat various elementary recursive theories for which sharp lower bounds are known.

Example 8.6 The first-order theory of models (N, S, P)} where N is the nonnegative integers, S is the
successor function on N, and P is an arbitrary unary relation.

We show that this theory has a hereditary lower bound of

NTIME(exp2(cn))

by iteratively interpreting the classes 7^n/losn an(j applying Corollary 6.5.
We use the same coding of trees into strings of O's and l's that was used in Example 8.1. Given a tree

r E 7^n^logn, let aoai... am_i be a string that represents it and P a unary relation on N such that P(i)
holds if and only if either i < m and a,- = 1, or i is m or m -b 1. We want to recover r in (N, 5, P). The
problem is that we have only a successor function rather than the linear order we had in Example 8.1.
When we examine the role played by the linear order there, however, we see that we did not need the full
linear order. We needed only enough of the order to say x < y when y is a child of x, and that there is
no position between x and y which has as many O's preceding as x has when y is a child of x. Moreover,
we did not need to make either statement when x is the root because there are no other positions in the
coding which have as many O's preceding as x has. Thus, we needed only to determine if x < y when x
and y belong to the same primary subtree. For r E T^l°sn every primary subtree is in T^Xogn. It is
not difficult to see that for some d, the trees in 7^n/losn are au represented by strings of length at most
2dn. Thus, if we can define a relation which holds when x < y and y — x < 2dn we are done. Let 6 be
the formula x = y V S(x) = y V 3z(Q(x, z) A Q{z, y)). The iterative definition [Q(x, y) = 6]dn gives the
desired relation.

Remark: This proof shows that if there is a prenex or iterative interpretation of the classes Cn consisting
of successor relations of length at most exp2(n) with added unary predicates in a theory E, then E has
a hereditary lower bound of NTIME(exp2(cn)). The same argument shows that if there is a prenex or
iterative interpretation of the classes C'n consisting of successor relations of length at most 2n with added
unary predicates in a theory E, then E has a hereditary lower bound of NTIME(2cn).

Example 8.7 The theory of one-to-one unary functions.

We show that this theory has a hereditary lower bound of

NTIME(2cn)

by iteratively interpreting successor relations of length at most 2n with an added unary predicate (as
discussed in the preceding remark).

Let Cn be the class of finite one-to-one unary functions (B,f) such that the cycle decomposition has,
for each k with 1 < k < 2n, at least one and not more than two cycles of length k. We regard each such
model as coding a unary predicate P on {1,2,... ,2n}, the presence of a single k-cycle indicating that
-»P(fc) holds and the presence of two ^-cycles indicating that P(k) holds.

Define the distance between elements x and y on the same same cycle to be the least i such that
fl(x) = y. For elements x, y, and z on the same fc-cycle, we say that y is between x and z if the distance
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from x to 2 is the sum of the distances from x to y and y to z. Now it is a simple exercise to give a
simultaneous iterative definition

Qi(x,y,z) = 0i
Q2(x,y,x\y') = 62

such that Qi(£,y,z) holds precisely when the distance from x to y and the distance from y to z are at
most 2n and y is between x and z, and 2/> s', y') holds precisely when the distance from x to y is
the same as the distance from x' to y' but not more than 2n.

Assume that no cycle has length more than 2n. For Q\ and Q2 as given above, let rjn(x,y) be the
formula Q2(f(x), x,f(y)> y)- If is easy to see that Tjn defines an equivalence relation that holds precisely
when x and y lie on cycles of the same length. Let 7rn(x) be the formula

3z(-<Qi(f(x), z, x) A Q2(/(»), x, f(z),z))
Thus, 7rn(x) holds precisely when there are at least two cycles with the same length as the cycle containing
x. Let crn(x, y) be the formula

Q2(f(x),x, f{f{y)),y)
We see that an(x,y) holds precisely when x lies on a cycle of length one less than the cycle containing
y. These formulas interpret successor relations on set of size at most 2n with an added unary predicate.
The interpretation differs from interpretations discussed previously, however, in that we must take a

quotient by the equivalence relation T]n, rather than interpret the domain as a subset.

Remark: The theories in Examples 8.6 and 8.7 were treated by Ferrante and Rackoff [23], They
obtained a matching upper bound for the former and an upper bound of NTIME(2dn ) for the latter.
The inseparability, hereditary and completeness results presented here are new.

Example 8.8 The first-order theory of ({0,1}*, ro, ri), the binary tree on {0,1}* together with successor
functions ro and r\ (described in Example 8.3).

We show that this theory has a hereditary lower bound of

ATIME(2cn ,cn)

by a monadic interpretation of the classes T£n. Each tree in 7has at most 2dn vertices, for some
d > 0; therefore, each such tree can be represented by a linear order of length 2kn with added unary
predicate, as in Example 8.1.

Thus, we need only give a monadic interpretation of models

in ({0, l}*,ro,ri). (The unary predicate comes automatically, since we have a monadic interpretation.)
Specifying this monadic interpretation is straightforward: an integer I in {1,... ,2*n} is represented by
the equivalence class of strings of length /; < is given by the prefix order; and subsets of {1,..., 2kn } are
represented by strings w via

{/ | for some v of length /, ri(v) is a prefix of w}

To complete the construction it suffices to give iterative definitions for formulas \n(u,v) saying that
for some / < 2kn, u and v both have length /, and formulas irn(u,v) saying that for some / < 2kn, u
has length I and is a prefix of v. This is done analogously to the iterative definition of linear order on
intervals of length 2dn in Example 8.6. We leave the details to the reader.

Remark: Example 8.8 was first treated by Vogel [66]. He also showed that for some d > 0,
ATIME{2dn)n) is an upper bound for this theory. The hereditary lower bound can be derived from
VogePs result because the theory is finitely axiomatizable.

In Examples 8.7 and 8.8 the equality relation is interpreted by an equivalence relation rather than
true equality. Correspondingly, models M are interpreted by quotients of defined substructures, rather
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than the substructures themselves. This kind of interpretation is common in undecidability proofs (see
examples in Rabin [47] and Ersov, Lavrov, Taimanov, and Taitslin [21]) and requires no changes in the
proofs in Sections 6 and 7. In Example 8.8 the equivalence relation could be avoided by representing an
integer / by an string of / O's. However, in Example 8.7 the use of an equivalence relation in place of
equality seems unavoidable.

Example 8.9 Any extension U, with an infinite model, of the the first-order theory of Boolean algebras.

We show that £ has a hereditary lower bound of

ATIME(2cn/l°sn ,cn)

by giving a monadic prenex interpretation of sets of size up to 2cn/logn and applying Corollary 7.9.
Fix B, an infinite model of £. Let m = [n/logn] and I < 2m. Define 8n(x, u) to be a prenex formula

with parameters u = u\,..., um that says a: is an atom relative to u. By this we mean that for each
i such that 1 < i < m, either x C Ui or x fl U{ = 0, and x is a maximal element with this property
(with respect to the relation C on B). Clearly, we may take 8{x,u) to be reset log-lin computable.
By appropriately choosing elements a in B, we can arrange that 8%(x, a) has precisely / elements. Let
cTn(x, u, v) be the formula 8n(x, u) A x C v. As b ranges over the elements of B, cr^(z, a, b) ranges over
all subsets of 8B(x, a).

Remark: Lower and upper bounds for the theories of Boolean algebras were first obtained by Kozen
[37]. Note that the apparent discrepancy between Kozen's results and the results presented here arises
because Kozen regards all variables as having unit length, while we take the length of subscripts into
account.

Example 8.10 The pure logic L having infinitely many monadic predicates.

We show that this theory has a hereditary lower bound of

NTIME(2cn!logn)
Unlike the other bounds given in this section, this bound is obtained by direct interpretation of binary
relations. Also, this is the only NTIME lower bound we consider which somehow involves the expression
nj log n. We can show that there is a prenex interpretation of binary relations on sets of size 2cn/logn and
then apply Theorem 6.2. The interpretation is essentially the same as the interpretation in Theorem 7.6
for the case r = 1. The only difference is that we no longer have a monadic interpretation because we
cannot quantify over the monadic predicates.

We now turn to discussion of the fundamental lower bound results obtained by Fischer and Rabin
[24] and improved somewhat by Bruss and Meyer [12] and Berman [7].

Example 8.11 The first-order theory of real addition.

This is the first-order theory of the model (R, +), where R is the set of real numbers. We obtain a
hereditary lower bound of

ATIME(2cn,cn)

by giving a monadic iterative interpretation of sets of size 2n with an addition relation and applying The¬
orem 7.2. Fischer and Rabin give a simultaneous iterative definition of formulas //n(z, y, z), 7rn(x, y, z).
Formula //n(^, V, z) holds precisely when z is a nonnegative integer less than 22 and x • y = z\ formula
7rn(x, y, z) holds precisely when x, yx, and z are nonnegative integers less than 22 and yx = z.

From these formulas we can define directly formulas <Tn{x, u) that hold when z is a nonnegative integer
less than 2n, u is a nonnegative integer less than 22 , and the x 4- 1st bit in the binary representation
of u is 1. Thus, as a ranges over elements of R, cr^(x,a) includes all subsets of {0,... ,2n — 1}. We
thereby obtain a monadic interpretation of ({0,..., 2n — 1}, +).
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Remark: The same argument will work if the theory of real addition is replaced by any extension of the
theory of semigroups that has, for each n, a model (B, o) with an element a whose powers a0, a1,..., an
are distinct. Any such theory has an ATIME(2cn ,cn) hereditary lower bound.

Example 8.12 Presburger arithmetic, the first-order theory of addition on the natural numbers.

This is the first-order theory of the model (N, +), where N is the set of nonnegative integers. We obtain
a hereditary lower bound of

ATIME(22°n, en)
by giving a monadic iterative interpretation of sets of size 22 with an addition relation and applying
Theorem 7.2. As in Fischer and Rabin [24], we use divisibility to push the definition of the multiplication
and exponentiation relations V, z) and 7rn(a?, y, z) in the previous example up to intervals of length
g(n), where g(n) > exp3(dn); this estimate comes from the Prime Number Theorem. (In fact, a much
simpler theorem, due to Tchebychef, suffices; see Theorem 7 of Hardy and Wright [32].) We then obtain
a monadic interpretation as in the previous example.

Remark: Evidently, the basic ideas used in Examples 8.11 and 8.12 are already found in Fischer and
Rabin [24]. However, we obtain several benefits from our approach. First, by using the machinery of the
previous sections we avoid technicalities concerning coding sequences and Turing machine computations
which Fischer and Rabin needed to address. Second, by emphasizing inseparability instead of just
complexity, we obtain hereditary lower bounds. Finally, by observing that monadic quantification is
implicit in the interpretations, we see why the appropriate lower bounds are ATIME bounds rather than
an NTIME bounds.

The linear alternating time lower bounds in Examples 8.11 and 8.12 were proved by Berman [7].
A slightly weaker hereditary NTIME(2cn) lower bound for real addition was obtained by Ferrante and
Rackoff [23], and a hereditary NTIME(22°n) lower bound for Presburger arithmetic was obtained by
Young [68].

Note that since we have monadic quantification on sets of size 2cn in a model of real addition (or any
extension of the theory of semigroups as described in the remark after Example 8.11) we have a monadic
interpretation of the classes T$n from the same representation of trees used Example 8.1. Similarly,
since we have monadic quantification on sets of size 22 in a model of Presburger arithmetic, we have
a monadic interpretation of the classes T3*. These facts will be useful in the next two examples.

Fischer and Rabin [24] announced (without proofs) two other lower bounds: a lower bound of
NTIME(exp3(cn)) for the first-order theory of integer multiplication; and a lower bound of NTIME(22°n)
for the theory of finite Abelian groups. To our knowledge, no proofs have ever been published. In the
next two examples we sketch proofs of the stronger ATIME versions of these results.

Example 8.13 The first-order theory of multiplication on the positive integers.

This is the first-order theory of the model (I,-), where I is the set of positive integers. We obtain a
hereditary lower bound of

ATIME (exp3(cn), cn)
by giving a monadic iterative interpretation of the classes T^n and applying Theorem 7.5.

Let pi be the 2th prime number. Observe that (I, •) is isomorphic to a direct sum of countably many
copies of (N,+) by the mapping that takes the sequence (a^, ...), where a,* is 0 for all large 2, to
Pi1 ' vV '* '• Moreover, each direct summand (i.e., set of powers of some prime pi) can be defined. But
we saw in Example 8.12 that there is a monadic interpretation of the classes T3 in (N,+). The idea
here is that we interpret a tree from T2" in (I, •) by directing edges from a new root to the roots of trees
interpreted in each direct summand.

Clearly, we can specify a first-order formula a(x, y, z,t) that says t is a prime, x, y, and z are powers
of t, and x >y — z. Let 6n(x, u'), 7rn(:r, y, u'), and an(x, u', v') be the formulas from Example 8.12 giving
a monadic iterative interpretation of T3 in (N,-f). If we substitute a(x, y, z, t) for all occurrences of
x -f y = z we obtain formulas 8'n(x,t,u'), 7r^(#, y, 2, u'), and <r'n(x, t, v!, v') in the language of (I, •). For
each fixed prime t, these formulas give a monadic iterative interpretation of T3 in (I, •). For 8'n(x,t, u')
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to be satisfied, it is necessary that x and u' be powers of 2. Thus, except possibly for 1, which is a power
of every prime, there are no elements common to the interpretations of <%(a:,2, vf) and 8/n(xJt/iu,/) when
2 and 2' are distinct primes.

Let 77(2, u\ u) be a formula that says 2 is a prime and u' is the largest power of 2 dividing u. Define
6n(x, u) to be the formula

x = 1 V32,1/(77(2,1/, 71) A 8'n(x,t,u'))
Define 7r^(x, t/, u) to be the formula

(x= 1 A3t,u'(T](t,u',u) A6'n(y,t,u') AVz-<Tr'n(z,y,t,u'))} V (st, u'(T](t,u', u) A
The first disjunct gives an edge from 1, the root of the tree, to the root of each primary subtree; the
second disjunct gives the edges in the primary subtrees. Using 8% and 7r^ we can interpret each tree
from Tf by taking a disjoint collection of trees in T%n and 1 as a new root — we need only choose u
suitably. Define <r'n(x, 1/, v, w) to be the formula

(x = 1 A w = 1) V 32,1/, 7/(77(2, v!, u) A 77(2, t/,t;) A <r^(z,2,7/, v'))

By varying v and w we obtain all subsets of <5^(ar, u), so we have a monadic interpretation.

Remark: An upper bound of ATIME(exp3(dn), dn) for the first-order theory of integer multiplication
can be obtained from the treatment of this theory in Ferrante and Rackoff [23].

As our last example we consider the first-order theory of finite Abelian groups. Lo [39] has given an
extensive treatment of upper bounds for theories of Abelian groups. He states these bounds in terms
of the classes SPACE(22"n), but it is clear that his analysis gives ATIME(22 n}dn) upper bounds. We
derive a matching lower bound, not just for the theory of finite Abelian groups, but also for the theory
of finite cyclic groups.

Example 8.14 The first-order theory of finite cyclic groups.

We obtain a hereditary lower bound of

ATIME(22Cn ,cn)

by giving a monadic iterative interpretation of the classes T^n and applying Theorem 7.5. We use a
device similar to the one used in Example 8.13. Now rather than regarding the positive integers with
multiplication as a direct sum of copies of (N,+), we regard a finite cyclic group as a direct sum of
cyclic groups whose orders are prime powers.

Let C(l) be the cyclic group of order I. We know from the remarks following Example 8.12 that there is
a d > 0 such that when / > 22 n, there is a monadic iterative interpretation of T22n in C(/). More precisely,
there axe formulas 8n(xit/) t/), 7rn(ar, 7/, 2', t/7), and <7n(z,2', v!, 7;) given by iterative definitions such that
if u' is a generator of C(/), then each tree in 7^n is isomorphic to (^'2', t/), Vn y, 2', u')) for
some t' in C(77i), and (Tn^m\x, t', 7/, v') includes all subsets of 8%^(2:,2', u') as v ranges over elements
of C(/). (We need to mention the generator u of C(l) explicitly in these formulas because there is no
preferred generator; this necessitates only a minor modification of the formulas in Example 8.11.)

Let Pi,P2, - — ,Pk be the prime numbers less than 22<in+1 and mt- the largest power of pi less than
22<in+1. Then since pi • tti,- > 22<in+1 and pi < m,-, we know that rat- > (22<*n+1)1/2 = 22<in so that there is
a monadic iterative interpretation of in each C(mt-) as described above.

By Tchebychef's theorem (Theorem 7 of Hardy and Wright [32]) we know that fc, the number of
primes less than 22*n+1, is at least 22<in for sufficiently large n. (Tchebychef's theorem is a weak form
of the Prime Number Theorem.) By taking d large enough, we can insure that k is greater than the
maximum number of primary subtrees in each tree of 7^2 . Now take 777 = 7711- mo • • • so that

dn 2^ ^

C(m) = C(mi)®C(ra2)® • • •®C(mjfc). We see that m > (22 )k > 22 . We need to show that we can
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combine the monadic iterative interpretations of T^2* in the direct summands C(rrii) to obtain a monadic
iterative interpretation of in C(m). To do this, we will show that we can define the decomposition
of C(m) into the factor subgroups

Let /?(a;,y,tf,u) be the following formula with free auxiliary variable Q:

(i=OAy=0)V(i = tAy = u) V (3zi,x2, x3, *4,2/1, V2,y3, J/4)(<3(*i, yi,t, u)
^Q(x2, 2/2, ^li 2/i) A Q(x3,y3,t,u) A Q(x4,y4,t,u) A (1 = x2 + x3 + 2:4) A(y = y2 + y3 + 2/4))

Then by induction on n the relation Q(x,y,t, u) given by the iterative definition

[Q(x,y,t,u) =0]n
is true precisely when there is an integer j in the range 0 < j < 22" 1 such that x = jt and y = ju.
Notice that we are using an idea first exploited by Fischer and Rabin [24] in their proof of a lower bound
for Example 8.11: each integer j < 22n can be written j = jij2 + ja + j4> where ji, J21J3>J4 < 22* .

For the remainder of the proof we will assume that Q(x,yyt, u) is given by the iterative definition

[Q(x,y,t,u) = f3]dn+2
Fix a generator u of C(m). We can specify that x = ju for some integer j in the interval

I = iJ\0<j<22in+1}
2dn

by writing Q(x, x, u, u). Since m > 22 , the values ju are distinct for j E 7. Let us identify 7 with the
set of elements ju such that j E 7. The group operation restricted to 7 defines integer addition. We can
also define multiplication: if x\ = j\u and x^ = ji^ then y — jij2U precisely when Q(y,xi,a?2,u) holds.
Therefore, we can say that s E 7 is prime and also that s E 7 is a prime power.

Let a(x, y, z, s, u) be a first-order formula that says s E I is the largest power of some prime in 7, x,
y, and z are annihilated by s (i.e., Q(0, s, x, u), Q(0, s, y, u), and Q(0, s, z, u) hold), and x + y = z. Hence,
if a(z,y, z,s,u) holds, then s = mt- for some i < k and x,y, z E C(rat-). In other words, a(x, y, z, s, u)
defines addition on the direct summands C(mt).

Now every element t in C(m) can be uniquely expressed as a sum

+ ^2 + h ffc

where each 2t- is an element of C(mt). We can specify a formula r}{s,t',t,u) that says t' = when s is
m,-. We say simply that is annihilated by s and t — t' is divisible by s:

<2(0,s, t',u) A — t', s, z,u)

Thus, we can define the decomposition of C(m) into its factor subgroups. In particular, since u can be
expressed as a sum u\ 4- U2 + 1- Ufc, where izt- is a generator of C(mt), the formula 77(5, u', u, u) picks
a unique generator for each factor subgroup as s ranges over maximal prime powers in 7.

The rest of the proof proceeds as in Example 8.13. For example, we form 6n(x,t', u') by substituting
a(ar, y, z, s, u) for each occurrence of a;-f y = z to obtain 8'n(x, s, f', u', u). Then is the formula

x = 0V 3s, f', 7/(77(5, /, f, u) A 77(5, 7/, u, u) A 8'n(x, s,/, t/, u))

We define 7r^'(a?, y,f, tz) and <7^'(ar,f, u, v, u;) similarly.

9 Upper Bounds
In this section we give upper bounds that show that most of the lower bounds obtained in sections 4-7
are the best possible.

First we give upper bounds for 5^7(^0), sai^(Lo), and sat^(Lo). Recall from Theorems 4.3 that
when T(dn) = o(T(n)) for some d between 0 and 1, these sets are not in NTIME(T(cn)) for some c > 0.
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Proposition 9.1 Let T be a time resource bound. Then

satT(L0) € NTIME (T(n)n+2)
sat§.(L0) € NTIME(T(n)cn/lo*n) for some c > 0
sat^(Xo) € NTIME(nT(n)n+2)

Proof: To determine whether a sentence from Lo is in satxiLo), nondeterministically generate a
binary relation Ad on a set of size T(n); representation of this relation requires T{n)2 bits. Then use
a recursive procedure to determine whether p is true in Ad. The procedure tests the subformulas of ip
and combines results to produce an answer. We may assume that all negations have been pushed inward
so that only atomic formulas are negated. It is clear how the procedure works if <p is a conjunction or
disjunction. If <p begins with an existential quantifier, an element of Ad is nondeterministically assigned
as the value of the quantified variable and the enclosed formula is checked. If <p begins with a universal
quantifier, then each element of Ad is assigned in turn to the quantified variable and the enclosed formula
is checked. When an atomic formula is reached it can be determined in time 0(T(n)2) whether it is
true in Ad for the assignment values at that point. Since for each of at most n universal quantifiers,
T(n) values are generated, the total time is 0(T(n)2T(n)n), as claimed. If (p is in prenex normal form,
then there axe at most 0(n/ log n) universal quantifiers, so determining whether a prenex formula is in
sat^(Lo)) is in NTIME(T(n)cn/logn). If p is in Lq, then the same sort of procedure is used, except
that when an auxiliary relation symbol is encountered, it is necessary to jump to its definition (this
may take n moves), compute its value by calling our recursive procedure, and return. Total time, then,
is 0(nT(n)2T(n)n) because the tree of recursive procedure calls has height at most n and branches at
most n times at each vertex; at the leaves, there is a cost of T(n)2 moves to evaluate atomic formulas;
at the vertices corresponding to auxiliary relation references there is a cost of 0(n) moves to find the
definition.□

We see that if T(n)n+2 = 0(T(dn)) for some d > 0, then satxiLo) G NTIME(T(dn))i so we have
essentially the same upper and lower bounds. Similar remarks pertain in the other cases.

Proposition 9.2 Let T be a time resource bound. Then

satT(MLo); sat^(MLo), and sat^(MLo)
are in ATIME(T(n)2,n).
Proof: Given a sentence (p of length n in MLo, we first generate a binary relation Ad on a set of size
T(n). We can now take advantage of alternation to verify that p holds in Ad. For each set quantifier
encountered it is necessary to generate T(n) bits to assign a value to the quantified variable. There are
O(n) such variables so this part of the computation takes time 0(nT(n)). This time is dominated by
the 0(T(n)2) time needed to generate Ad and verify atomic formulas. If (p is a sentence in MLq, we use
the same procedure except that when a subformula with an auxiliary relation symbol is encountered,
the value of the subformula is guessed and verified using alternation.□

Notice that if T(n) = 0(T{cn)ll2) for some c > 0, then for some d > 0, satT(MLo) G
ATIME(T(dn),n), so again we have essentially the same upper and lower bounds.

We now turn to upper bounds for theories of finite trees. To determine if a sentence (p of length n is in
saf(i7r), we will show that it suffices to nondeterministically generate a tree in where mlogm > n,
and verify that (p holds in this tree. In fact, we prove a somewhat stronger result: given a tree of height
r or less, there is a tree in 7J.m satisfying precisely the same sentences of length n or less. Our proof
uses Ehrenfeucht games. Observe that a sentence of length n can have at most m distinct variables (i.e.,
variables with different subscripts). Therefore, we will use the formulation of Ehrenfeucht games for
logics with a bounded number of variables. These games were introduced for infinitary logics by Barwise
[3] and later used by Immerman [34] to obtain lower bounds for queries on finite relational structures.

Given two structures Ad and M for a first-order logic L, write Ad =™ AT to indicate that Ad and Af
satisfy precisely the same sentences from L of quantifier rank at most n and with at most m distinct
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vaxiables. The game used to characterize is played for n moves between players I and II on a pair of
structures AA and Af. Each player begins with m pebbles. On the first move player I places a pebble on
an element of JA (or Af) and player II responds by placing a corresponding pebble on an element of Af
(respectively, AA). On each remaining move player I has two options: he may place an unplayed pebble
on an element of AA (or Af), in which case player II places a corresponding pebble on an element of Af
(respectively, AA); or he may remove one of the pebbles on AA (or Af) and replay it (not necessarily on
the same structure), in which case player II removes the corresponding pebble from Af (respectively, AA)
and replays it in response to the move of player I. Player II wins if the mapping from the set of elements
of AA covered by pebbles at the end of the game to corresponding elements in Af is an isomorphism
between substructures of AA and Af; otherwise, player I wins.

The basic result concerning this game is that player II has a winning strategy if and only if AA Af.
We use this fact to prove two simple lemmas.

For a tree AA and a vertex x in AA, let AAX be the subtree of AA whose set of vertices consists of x
and all of its descendents.

Lemma 9.3 Suppose AA is a tree and x is a vertex of AA. Let AA' be the result of replacing AAX in AA
by another tree Af. If AAX Af then AA AA'.

Proof: We know that player II has a winning strategy for the m pebble game of length n on and
Af. Player II uses this as part of a winning strategy for the m pebble game of length n on AA and AA'.
Whenever player I pebbles an element in AA— AAX or AA' — Af, player II responds by pebbling the same
element; whenever player I pebbles an element in AAX or Af, player II responds by pebbling the element
dictated by the strategy for AAX and Jf. This is a winning strategy for player II so AA AA'.O

Lemma 9.4 Let AA and Af be trees. Suppose that for each isomorphism type, the set ofprimary subtrees
of AA and the set of primary subtrees of Af either contain the same number of trees of that type, or both
contain at least m trees of that type. Then AA Af for every n > 0.

Proof: It is easy to determine a winning strategy for player II. If player I pebbles the root of AA (or
Af), player II pebbles the root of Af (respectively, AA). If player I pebbles an element in a primary
subtree AA' of AA and no other elements of AA' have been pebbled, player II responds by pebbling the
corresponding element in a primary subtree Af = AA' of Af where no other elements have been pebbled.
Player II responds similarly if player I pebbles an element in a primary subtree Af of Af and no other
elements of Af have been pebbled. If player I chooses an element in a primary subtree AA' of AA where
some elements have already been pebbled, these elements correspond to elements already pebbled in
some primary subtree Af = AA' of Af. The isomorphism determines the response of player II. Player
II responds similarly if player I chooses from a primary subtree of Af where elements have already been
pebbled. Because no more than m elements in a structure are pebbled at any time, it is easy to see that
this strategy can always be carried out for AA and Af satisfying the hypotheses of the lemma. □

Theorem 9.5 Given a finite tree AA of height at most r, there is a tree Af G T™ such that AA Af
for all n > 0.

Proof: Modify AA in the following manner. For each nonleaf vertex x of height r — 1, consider all
children y of x and subtrees AAy; for each isomorphism type, if more m subtrees AAy are isomorphic,
delete enough of them so that there are precisely m. Continue this modification procedure for vertices of
height r — 2, r — 1, and so on, up to the root. Call the resulting tree Af. It is clear from the two preceding
lemmas that ever time we delete subtrees in this process, we obtain a tree in the same =™-class as AA.
Thus, AA Af. It is evident that Af G Trm.O

Remark: With slight modifications, this proof shows that for any tree AA of height r or less, there is a
tree Af G Trm such that AA Af for all m > 0.
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We have, as an immediate consequence of the preceding theorem, upper bounds for theories of finite
trees.

Corollary 9.6 For r > 3, there is a d > 0 such that

sat(Ur) G NTIME(expr_2(dn))

Also, sat(Z,3) G NTIME(2rfn2) for some d > 0.

Proof: When r > 3 and m is the least integer such that mlogm > n, each tree in T™ has at
most expr_2(cn) vertices. Thus, the time required to nondeterministically generate a tree in Trm and
determine whether a sentence (p of length n holds in this tree is expr_2(cn)n. This function is dominated
by expr_2(dn) for some d > 0 when r > 3 and by expr_2(dn2) when r = 3.0

Remark: This theorem gives matching upper bounds for the lower bounds obtained in Corollary 6.4
except for the case r = 3. There the lower bound is NTIME{2cn) and the upper bound is NTIME(2dn2).
Ferrante and Rackoff [23] get precisely the same bounds for the theory of one-to-one functions (cf.
Example 8.7). It is more satisfying to say that sat(£3) is a complete problem for

NEXPTIME = (J NTIME{2n")
Jb>0

via polynomial time reductions, according to Theorem 6.1(iv).
It is not difficult to show that sat(E\) and sat(E2) are in PSPACE, so since every first-order theory

with a model of power greater than 1 is hard for PSPACE (via log space reductions) we know fairly
precisely the complexity of these theories.

Write AA Af to indicate that AA and Af satisfy the same monadic second-order sentences of
quantifier rank n with at most m variables. To obtain upper bounds for monadic second-order theories
of finite trees we must introduce Ehrenfeucht games characterizing the relation .

In such a game, players I and II play for n moves on structures AA and Af. During the game they
assign subsets of AA and Af to unary relation symbols Pi, P2,..., Pm which axe not in the language of
AA and Af. Initially, each of these symbols is assigned the empty set for AA and the empty set for Af.
On each move player I picks a relation symbol P, and assigns to it a subset of AA (or Af); the previous
assignment to P,- is forgotten. Player II responds by assigning a subset of Af (respectively AA) to P,-.
Whenever player I picks a singleton set, player II must respond with a singleton set. (Singleton set moves
correspond to element quantifiers.) Now suppose that at the end of the game symbols Pi, P2,... ,Pm
are assigned subsets P1} P2, ♦ • • » Rm of JA and subsets Si, S2, • • • , Sm of Af. If the set

{(x, y) | for some 2, Ri = {x} and Si = {y}}

is an isomorphism between substructures of

(Af,Pi,...,Pm) and (Af, 5i,..., Sm)

then player II wins; otherwise, player I wins.
The basic result concerning this game is that player II has a winning strategy if and only if AA Af.
We will sometimes say that an Ehrenfeucht game is played on structures (AA, Pi,..., Rm) and

(Af, Si}... ,5m), where Pi,...,^ are subsets of AA and Si,...,5m are subsets of Af. By this we
mean that the symbols Pi,...,Pm initially have Pi,...,Pm and 5i,...,5m assigned to them. The
game then proceeds as before. We will say that (AA, Pi,..., Pm) and (Af, Si,..., Sm) are n~ equivalent if
player II has a winning strategy for games of length n on this pair of structures. Clearly, n-equivalence
is an equivalence relation.

Using monadic second-order Ehrenfeucht games we can show that =£* can be replaced by in
Lemma 9.3. In fact, we can show more.
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Lemma 9.7 Suppose that AA is a finite tree with subsets Ri,... ,Rm. Let x be a vertex of AA and
(AA',R[,... j Rfm) the structure obtained by replacing the substructure (AAX, RiC\AAX, • • •, Rm^AAx) of
(AA, i?i,..., Rm) by another structure (Af, Si,... ,Sm), where Af is a tree. If

(AAx,RiCiAAx,... ,RmC\AAx) and (Af,Si,...,Sm)

are n-equivalent, then so are (AA, Ri,..., Rm) and (Af, Si,..., Sm)-

We would also like to prove a result like Lemma 9.4, but this is not so simple. We must prove results
like Lemma 9.4 and Theorem 9.5 simultaneously. To do this we need more complicated sets of trees.

Definition: Define functions f(m,n,r) and 0(772,72,7*) as follows.

/(m, n, 0) = 2m
0(772, n, 0) = 2n+1
flf(m,0,r) = 2

and

f(m,n,r+ 1) = 2m(g(m,n,r) +
0(772, 72 + 1,7*) = f(m,n,r)g{m,ri,r)

Functions / and g are defined for all integers m,n,r >0 because we can repeatedly use the last equation
to obtain

^(m, n, r + 1) = /(m, n - 1, r + l)/(m, 72 - 2,7* + 1) • • • /(m, 0,7* + 1)
and then replace each factor /(m, i, 7* + 1) by 2m(0(771, i, r) + l)/(m»*>r).

Now define classes of trees of height at most r. U™'n contains all trees of height 0. consists
of all trees whose primary subtrees come from U™,n, no more than 0(772,77, r) primary subtrees coming
from the same isomorphism class. Define classes V™,n of structures (AA, Ri,..., Rm), where AA is a tree
of height at most r and each Ri is a subset of AA. V™'n contains all structures (AA,Ri,..., Rm), where
AA is a tree of height 0. consists of all structures {M,R\,..., Rm) such that substructures formed
by restricting to primary subtrees of M all come from V£1,n, no more than 0(771, n, r) such substructures
coming from the same isomorphism class.

Theorem 9.8 Given a finite tree M of height at most r and an integer n > 0, there is a tree fif E £/™,n
such that M N.

Proof: We prove a more general assertion. Given a structure (Af, R\,..., Rm), where M is a tree of
height at most r and R\,..., Rm are subsets of M., there is a structure (Af, Si,..., Sm) £ V™'n such
that (A4,Ri,..., Rm) and (Af, Si,..., Sm) are 72-equivalent.

The proof is by induction on r. For r = 0, the assertion is obvious. Assume that AA has height r > 0
and that the assertion holds for trees of lesser height. Consider the substructures of (Ad, R\,... ,Rm)
formed by restricting to primary subtrees. By the induction hypothesis, each such substructure is n-

equivalent to some structure in V^L'"; for each n-equivalence class replace the substructures in that class
by a structure from in the same class with the provision that if there are more than 0(772, n, r) sub¬
structures in the class we first eliminate enough of them to make their number precisely 0(772,72, r). In this
way we form a structure (Af, S\,..., Sm) € V™'n • We show that (AA, R\,..., Rm) and (Af, Si,..., Sm)
are n-equivalent.

Fix an 72-equivalence type r. Let (AA', R[,..., R'm) be the union of substructures of (AA, Ri,..., Rm)
of type r formed by restricting to primary subtrees of AA. Define the substructure (Af',S[,..., S'm) of
(Af, S\,... ,Sm) similarly. Thus, AA' and Af' are forests, and each substructure of (AA', R[,... ,R'm)
or (Af', S[,..., S'm) formed by restricting to a tree in the forest is of type r. Moreover, AA' and
Af' either contain the same number of trees or both contain at least 0(772,72, r — 1) trees. We claim
that (AA', R[,..., R'm) and (Af', S[,..., S'm) are 77-equivalent. From this claim it follows easily that
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(AA,R\,..., Rm) and (Af, S1,..., Sm) are n-equivalent because player II can combine the winning strate¬
gies on the pairs of substructures.

We establish the claim by induction on n. The case n = 0 is clear. (Notice, however, that it is
crucial that <jr(m, 0,r — 1) = 2 because 5t- must be assigned a nonsingleton set whenever Ris assigned
a nonsingleton set.) Suppose that n > 0 and that the claim is true for smaller values.

Player I will begin by assigning a subset of one of the forests — say subset R" of M.' — to a relation
symbol Pi. This gives a new structure (M', R",..., i?™), where R" = Rj when i / j. By the induction
hypothesis (for the induction on r), every substructure formed by restricting this structure to a tree in
M! is (n — l)-equivalent to some structure in Hence, there can be at most /(m, n — 1, r — 1)
(n — l)-equivalence classes represented among such substructures. Player II responds by assigning a
subset of 5" of AP to P{ to obtain a structure (AP, S",..., 5^), where S" = Sj when i ^ j. She does
this in such a way that for every (n — Inequivalence type r7, (AAf, R",..., R^) and (AP, 5",..., S'm)
either have the same number of substructures of type r' formed by restricting to trees in M' and AP,
or both have at least g(m,n — 1, r — 1) such substructures of type r'. Player II can always make such a
response because AA! and AP either have the same number of trees or both have at least g(m, n, r — 1) =
/(m, n — 1, r — l)<7(ra, n — 1, r — 1) trees.

By the induction hypothesis (for the induction on n)

(M\Rf{1...JR'Jn) and (AP, 5(7,..., )

are (n — l)-equivalent so (M', i?'l5..., R'm) and (AP, 5(,..., 5^) are n-equivalent.□

Theorem 9.9 For each r > 1 there is a d > 0 such that

sat(MUr) G ATIME(expr(dn/log n), n)

Proof: It is easy to show by induction that for each r > 1 there is a c > 0 such that

/(m, n, r) < expr+1 (c(m + log n))
flf(m,n,r) < expr+ x (c(m + log n))

If we let A(m, n, r) be the maximum number of vertices of any structure in Up,n (or V^,n), we see that

/i(m,n,0) = 1
/i(ra, n, r + 1) = /i(rn, n, r)/(m, n, r)^(m, n, r) + 1

For each r > 2 there is a c > 0 such that /i(rn, n, r) < expr(c(m -}- logn)).
When r > 2 we can determine if a sentence from ML* is in sat(MEr) by nondeterministically

generating a tree in where mlogm > n, and using alternation to verify that <p holds in this tree.
This can be done in ATIME(expr(dn/log n), n).

When r = 1 we must be a little more careful because a tree in may have 0(2n) vertices.
However a tree of height 1 has almost no structure. If we have chosen m subsets i?i,..., Rm from a tree
A4 of height 1, we need only keep track of which sets contain the root of A4 and the number of leaves
in each of the 2m minimal sets in the field of set generated by i?i,..., Rm. Thus, (A4, R\,..., Rm) can
be represented in space 0(2m logn). Using this kind of representation, the argument above shows that
sat(MEi) G ATIME(2dn! losn, n).D

10 Open Problems
We close with a list of problems, mostly concerned with lower bounds for theories arising in algebra. We
have selected only a small number of problems from the large number of theories whose complexities
deserve to be investigated.

Problem 10.1 Determine the complexity of first-order theories of finite fields.
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The first-order theory of finite fields, and several related theories, were shown to be decidable by Ax
[1] in a paper which has proved to be of great mathematical influence. Later Fried and Sacerdote [26]
gave a primitive recursive decision procedure, but it is not known if any of these theories is elementary
recursive.

It is not difficult to show that these theories have a hereditary lower bound of ATIME (exp2(cn),cn)
The method is to give a monadic interpretation of the classes of binary relations on sets of size at most
exp2(n), and then apply Theorem 7.3. We give a brief sketch of the argument. Let 7 be any infinite
field which is a model of the theory of finite fields and in which one has the coding of finite sets used
by Duret [17]. That is, given any two disjoint finite sets A,B C 7, there is an element w E 7 such
that if a £ A then a -f w is a square in 7 and if b £ B then 6 -f w is not a square in 7. Construct by
iteration formulas an(x, u) such that for each n there is a choice of parameters u so that <*n(z, u) is true
in 7 of exp2(n) values of x. For example, if 7 has characteristic 0, then an(#) can be constructed as in
Fisher and Rabin [24] so that an(x) holds in 7 exactly when x is one of the integers 0,... ,exp2(n) — 1.
Alternatively, one could use formulas an(x,y) asserting that a: is an exp2(n)fch root of y. Now consider
the formulas f3n(x,t,u) given by

3y, z(an(y, u) A an(z, u) A x = y + zt)

For an appropriate choice of t in 7, the mapping (y, z) h-f y+zt in one-to-one on a„ (x, u). This together
with the coding of finite sets gives every binary relation on sets of size at most exp2(n). The coding of
finite sets also gives every subset of the universe so we have the required monadic interpretation.

Problem 10.2 Determine the complexity of the first-order theory of linearly ordered Abelian groups.

This theory was shown to be decidable by Gurevich [29], with later improvements in Gurevich
[30]. There is a simple interpretation of the first-order theory of linear orders in this theory, so it has a
hereditary NTIME(expOQ(cn)) lower bound. (See Example 8.2.) On the other hand, a primitive recursive
decision procedure for the theory was given by Gurevich [30]. It would be interesting to improve either
of these bounds.

Problem 10.3 Determine the complexity of first-order theories of valued fields.

Ax and Kochen [2] and Ersov [20] proved the decidability of various first-order theories of valued
fields, including some power series fields and the fields of p-adic numbers Qp. Brown [11] obtained an
elementary recursive upper bound for the first-order theory of "almost all" of the fields Qp—that is, the
set of sentences true in Qp for all but finitely many p. Very little is known about lower bounds for this
theory or about the other related theories covered by the Ax-Kochen-Ersov work.

Problem 10.4 Determine the complexity of the first-order theory of Boolean algebras with several dis¬
tinguished filters.

Ersov [19] proved decidability of the first-order theory of Boolean algebras with a distinguished filter.
A more explicit and direct decision procedure has been given by Touraille [61]. Rabin [48] showed
decidability of the theory of Boolean algebras with quantification over filters by giving an interpretation
in the monadic second order theory of two successors. This gives an upper bound of NTIME(expOQ(dn)),
but nothing is known about lower bounds.

Problem 10.5 Determine the complexity of the first-order theory of the lattice of closed subsets of the
Cantor set.

Rabin [48] proved that this theory is decidable by interpreting it in the monadic second-order theory
of two successors. As in the previous problem, this gives an upper bound of NTIME(exp00(dn)). It is
not known if this theory is elementary recursive and no nontrivial lower bounds are known. A more

explicit analysis of this theory has been given by Gurevich [31].

Problem 10.6 Determine the complexity of the first-order theory of loo, the ring of bounded sequences

of real numbers.
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Cherlin [16] gave a very explicit and difficult decision procedure for this theory, but its complexity
has not been analyzed. It should be possible to extract an upper bound from Cherlin's work. While it
seems unlikely to us that this theory is elementary recursive, there are no good lower bounds known.

Problem 10.7 Determine the complexity of the theory of pairs of torsion-free abelian groups, and of
the theory of a vector space V with k distinguished subspaces (k = 1,2,3,4,).

The theory of pairs of torsion-free abelian groups was proved decidable by Kozlov and Kokorin
[38]; see also Schmitt [54]. For k > 5, the theory Tk of vector spaces with k distinguished subspaces
(over some fixed field J7) is undecidable; see Baur [4] or Slobodskoi and Fridman [58]. Here the vector
space is equipped with + and a family of unary scalar multiplication functions, one for each element
of T. If k < 4, however, the theory Tk was shown to be decidable by Baur [5]. See Prest [46] for a
discussion of how these theories are related to the representation theory of finite dimensional algebras
over T. The theories Tk are stable and hence the undecidability of T5 could not be proved by the usual
means of interpreting arithmetic or finite graphs. There does not seem to be any corresponding a priori
impediment to using.the methods of this paper to obtain lower bounds on the complexity of T\fTifTz,
or T4.

Problem 10.8 Determine the complexity of the theory of ordinals with addition.

It was shown by Ehrenfeucht [18] that this theory is the same as the theory of the ordinal uj™" with
+. Ehrenfeucht also seems to have proved the decidability of this theory; see Bxichi [14] for a proof. The
theory of ordinals with only < is in PSPACE (Ferrante and Rackoff [23]) but when 4- is adjoined, the
complexity rises to at least the complexity level of Presburger arithmetic.

Problem 10.9 Determine the complexity of the first-order theory of real closed fields and the theory of
the first-order theory of algebraic closed fields.

These theories are, respectively, the first-order theory of the real numbers and the first-order theory
of the complex numbers. Good upper and lower bounds are known for these theories, but the gap has
not been completely closed. Berman's ATIME(2cn, n) lower bound for real addition is the best bound
known for the theory of real closed fields. We discussed this bound in Example 8.11. By the remarks
following the example, we have the same lower bound for the theory of algebraic closed fields. The best
upper bound at present for the theory of real closed fields is SPACE(2dn); this was proved by Ben-Or,
Kozen, and Reif [6]. This bound holds as well for the theory of algebraic closed fields since there is
a simple interpretation of the complex numbers in the real numbers. For the same reason, any lower
bound for the theory of algebraic closed fields would hold for the theory of real closed fields.

Robinson [52] showed that if A is the field of real algebraic numbers, then the first-order theory
of (R, -f, -,^4) is also decidable. It would be interesting to know if this theory has a somewhat higher
complexity than the theory of real closed fields.

Problem 10.10 Determine the complexity of the first-order theory of differentially closed fields.

Robinson [51] proved the decidability of this theory, but essentially nothing more is known about its
complexity. See Wood [67] for a fuller discussion of this mathematically interesting theory.

Problem 10.11 Is elementary recursiveness of a theory preserved under product and sheaf construc¬
tions?

Decidability of first-order theories is preserved by many general constructions, such as products
(Feferman and Vaught [22]) and sheaf constructions (Macintyre [41]). Some upper bound results for
weak products are presented in Ferrante and Rackoff [23], where the question is raised whether, for
every model M. whose first-order theory is elementary recursive, the first- order theory of the weak
direct product is also elementary recursive. The same type of question for other product and sheaf
constructions is also open and worth investigating. (See Chapter 5 of Ferrante and Rackoff [23].)
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Problem 10.12 Give nontrivial lower bounds for mathematically interesting theories whose decidability
is still open.

Examples include the first-order theories of the field of rational functions over the complex numbers;
the real exponential field (R, +, - ,exp); the field of meromorphic functions; and many others. It may be
possible to show that some of these theories are not elementary recursive, just as Semenov [56] did for
the theory of free groups. (See the remarks following Example 8.5.)

Problem 10.13 Is there a Unatural" decidable theory which is not primitive recursive?

Problem 10.14 Is there a ^natural" decidable theory with a lower bound of the form
NTIME(expco(/(n)) where f(n) is not linearly bounded?

Problem 10.15 Determine the complexities of fragments of theories with given prefix structures.

There has been some interesting work done in this area. (See, for example, Robertson [50], Reddy
and Loveland [49], Fiirer [27], and Scarpellini [53].)

In certain cases the methods of this paper should give results under these restrictions. This is
not likely to be true where iterative interpretations are used, since iterative definitions almost always
introduce an unbounded number of alternations of quantifiers. However, where prenex interpretations
are used in conjunction with Theorem 6.1 and Corollary 6.1, it seems clear that complexity results for
sentences with specific limitations on prefix structure can be obtained.

Other syntactic limitations can also be imposed on decision problems and have been widely studied
in the setting of the decidable/undecidable distinction. For example, in algebraic theories, one may pay
attention to the degree and number of variables of occurring polynomials.

In decision problems (and, more generally, complexity problems) the refinements mentioned above,
especially limitations to a simpler and more intelligible prefix structure, often reflect restriction to
mathematically more interesting and significant problems (as has been emphasized to us by G. Kreisel).
Thus, the undecidablity of Hilbert's 10th problem is far more interesting than the undecidablity of
arithmetic; the undecidability of the word problem for finitely presented groups is far more interesting
than the undecidability of the theory of groups. One can hope for and expect to see a similar kind
of increasing maturity in the study of complexity of decidable problems, not only at the level of ,NP-
complete or PSPACE-complete problems (where it already exists to some extent), but also at higher
levels of complexity.

Problem 10.16 Characterize the PSPACE-complete theories.

We noted in Section 1 that every theory with a model of power greater than 1 is PSPACE-hard.
Thus, the PSPACE-complete theories are, in some sense, the simplest nontrivial theories. A number
of different theories have been shown to be PSPACE-complete. (See Stockmeyer [60], Ferrante and
Rackoff [23], and Grandjean [28].) It would be interesting to have model theoretic characterization of
these theories.

Problem 10.17 If one substitutes "tree" for ubinary relation" in the definitions of satT(-^o) and
satT(MLo), do Theorems 6.1 and 1.1 still hold for T(n) < expOQ(cn)?

An affirmative answer would give a generalization of Corollaries 6.5, 7.5, and 7.8.
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Spectra

4 PT ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz;:",./?$0123456789
6 PT ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz;:",./?$0123456789
8 PT ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmriopqrstuvwxyz;:",./?$0123456789
10 PT ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz;:'t,./?$0123456789

Times Roman
4 PT ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklrnnopqrstuvwxyz;$0123456789
6 PT ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz;:",./?$0123456789
8 PT ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz;:", ./?$0123456789
10 PT ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz;:",./?$0123456789

Century Schoolbook Bold
4 PT ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghgklmnopqrstuvwxyz;:",./?$0123456789
6 PT ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz;:",./?$0123456789
8 PT ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz;:",./?$0123456789
10 PT ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz;:",./?$012&56789

News Gothic Bold Reversed

ABCDEFGHI J KLMNOPQRSTUVWXYZabcdefghijklrnnopqrstuvwxyz;:",./? $012 34 567 89
ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghi jklmnopqrstuvwxyz;:'\./?$012 34567 89
ABCDEFGHIJKLMN0PQRSTUVWXYZabcdefghijklmnopqrstuvwxyz;:",./?$0123456789
Bodoni Italic
A HCDHh'CHIJKl.MNOI'QRSTUyWXY/MbcdefghijklmnoiHintuvwxyz:: ",./?S0123456789

ABCDEFGHIJKLMNOPQRSTUVWX YZabcdefghijklrnnopqrstuvwxyz;: ",./?$0123456 789
ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklrnnopqrstuvwxyz;:. /?$0123456789
ABCDEFGHIJKLMNOPQR STUVWX YZabcdefghijklmnopqrstuvwxyz;:'r,.
Greek and Math Symbols
ABTAEH0HIKAMNOII<l)P2TYnX>l'Za/378€^Si7iKA^voir((>pcrTVo)X<|»{=:F' '>•/== + = ?t°> <><>< =

ABrAE=6HIKAMNOn4>PZTYnX1'Za/3T8£5e7)iKXti.TOir<|)po-ruo)Xi);{Sq:",./^± = ^-> <><>< =

ABrAE=eHIKAMNOn<I>P2;TYnX4'Za/3y8€|9T)iKAjuvo7r<f)p<Trvo)X>l'^T". /^± = =A°> <><><=

ABrAES0HIKAMNOn<l>P2TYfiXvPZa/3y8e£0i7iKA.fAvo7r<j>pcrTy2 =

t rr

6 PT

8 PT

10 PT

6 PT

8 PT

10 PT
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