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ABSTRACT

This investigation considers a round, turbulent buoyant jet in

an ambient crossflow that is either of uniform density or with a

linear density stratification. The primary emphasis is the develop¬

ment of a fundamental understanding of the jet properties that are

of interest in engineering design problems. These include jet

trajectories, characteristic dilutions, and in the case of a

stratified crossflow, the maximum and equilibrium heights of rise.

Most previous studies of similar buoyant jet flows have used

the integral method to solve for the jet characteristics. This

approach requires an assumed relation for the rate of entrainment of

ambient fluid by the jet, and also depends upon experimental evidence

to estimate values for the coefficients in the assumed relation. Most

previous experimental studies have been directed toward evaluating

entrainment coefficients and have not considered a systematic investi¬

gation of the effects of the various jet and ambient flow parameters.

A major objective of this investigation is to provide a basis

for the interpretation and extension of the results from previous

theoretical and experimental investigations. A systematic dimensional

analysis is performed to define the basic problem and to provide

approximate solutions without using the integral equations. The

analysis indicates the types of experiments necessary to adequately

describe general buoyant jet behavior and also provides a framework

for the presentation of experimental data.
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the tank stratified, maximum and equilibrium heights of rise, a few

trajectories, and jet dilutions were measured. The results of these

various experimental measurements are presented in a unified manner

to facilitate the application to design problems.

The experimental evidence indicated that the coefficients in the

asymptotic relations were somewhat dependent upon the initial jet

volume flux, an observation that has not been previously noted by

other researchers. This variation can be expected from the dimensional

analysis and is shown to be significant in some instances.
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CHAPTER 1

INTRODUCTION

Pollutants are often introduced into the environment as trace

species in a fluid medium. Examples of this include the release of

bacteria in a sewage discharge, heat in the cooling water from a power

plant, and sulfur dioxide in the exhaust gases from industrial combus¬

tion processes. One method of dealing with these contaminants is to

release them in such a manner that the discharge mixes sufficiently

with the ambient fluid so that contaminant concentrations are reduced

to relatively small values. A major means of accomplishing this objec¬

tive is to discharge the fluid containing the contaminant as a turbulent

buoyant jet. The initial jet mixing is expected to provide sufficient

dilution so that pollutant concentrations are lowered below undesirable

or toxic levels. Examples of buoyant jet discharges include smoke

plumes from industrial chimneys and sewage wastewater through an ocean

outfall diffuser.

Pollution control standards often specify a maximum allowable con¬

centration of a given pollutant at some distance from the source. For

example, California thermal standards require that any heated discharge

produce a temperature rise not greater than four degrees F beyond 1000

feet from the diffusion structure for more than 50% of any day.1 Design

of a jet discharge structure to meet this or similar requirements thus

1 State Water Resources Control Board, Sacramento, California, "Water
Quality Control Plan for Control of Temperature in Coastal and Inter¬
state Waters and Enclosed Bays and Estuaries of California," 8 pp.,
May 18, 1972.
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requires a satisfactory understanding of the jet mixing process in order

to ensure compliance with existing regulations.

Buoyant jets in a stagnant ambient fluid are reasonably well under¬

stood. Predictive models of the type given by Fan and Brooks (1969) ,

Abraham (1965), and others, can be used to obtain adequate estimates of

mean jet behavior such as rate of spread, dilution, etc. However, when

the ambient fluid itself is in motion, the problem becomes more compli¬

cated. Typically, most receiving fluids such as the atmosphere or ocean

exhibit wind or current patterns and also often possess nonuniform

density structure. Failure to include these effects may result in

substantial error in the analysis of buoyant jet behavior. The presence

of ambient currents or density stratification may be significant in some

instances in meeting design objectives. For example, the presence

of density stratification in the ocean can prevent a sewage discharge

from rising to the surface and an ambient current will remove the sub¬

merged sewage field from the vicinity of the diffuser preventing the

buildup of pollutant concentrations. In contrast to this situation, a

density gradient in the atmosphere can prevent smoke from an industrial

source from rising a significant distance and may result in relatively

high ground level concentrations of contaminants. The design of

adequate pollutant discharge structures thus requires an adequate under¬

standing of the complex interaction of a buoyant jet discharge with the

ambient fluid.

The present investigation was directed toward obtaining a more

thorough understanding of the behavior of a general buoyant jet in an
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ambient crossflow with either a uniform density or a linear density

stratification. The specific problem considered was the discharge of

a vertical, turbulent buoyant jet into a horizontally flowing ambient

fluid. This flow is similar to smoke plumes in the atmosphere and

other point source discharges.

The major objective of this study was to develop a straightforward

method of applying experimental results to design purposes. The jet

characteristics of interest in many applications include jet trajec¬

tories, dilutions, and in the case of a stratified flow, the maximum

or equilibrium heights of rise. Many previous theoretical and experi¬

mental investigations have been conducted to study buoyant jet trajec¬

tories in an unstratified crossflow, but the results are inconclusive

since no systematic examinations of these buoyant jet flows have been

performed. One of the study objectives was to make a comprehensive

evaluation of buoyant jet trajectories to provide a basis for inter¬

preting these previous experimental and theoretical studies. Another

objective was a detailed examination of characteristic dilutions along

the jet trajectory. An additional objective was to examine general

buoyant jet behavior in a stratified crossflow as there have been

essentially no experimental studies of this type.

Chapter 2 presents a review of previous theoretical and experi¬

mental investigations that are related to the present study. These

include the study of buoyant jets in a stagnant ambient fluid with a

linear density stratification and jets in an unstratified crossflow.

The various methods of analysis and the resulting solutions are
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described in this chapter.

The general problem is analyzed in Chapter 3. A systematic

dimensional analysis is performed to define the problem and to provide

approximate solutions describing the jet characteristics. These

approximate solutions are only valid for limiting cases where certain

effects control the flow behavior. These various asymptotic solutions

can be combined to provide approximate descriptions of general jet

behavior. The correct combination of solutions depends upon the

relative magnitudes of several length scales associated with jet flows.

The overall flow description is used to interpret the predictions from

previous theoretical studies.

Chapter 4 is a description of the experimental apparatus and

procedure. Several different types of measurements were made in this

investigation and these are discussed in detail in this chapter. The

experimental study included a detailed examination of buoyant jet

trajectories, dilutions, and heights of rise. A limited examination

of the turbulent mixing process within a buoyant jet was also conducted.

The results from the experimental investigation are presented

and discussed in Chapter 5. This includes an evaluation of the co¬

efficients in the asymptotic relations developed in Chapter 3. This
/

evaluation provides a method for the unified presentation of the experi¬

mental results and a straightforward application to design problems.

Chapter 6 is a general discussion of the results of this investiga¬

tion. This includes a comparison of the experimental results to

previous studies, suggestions for future research, and a presentation
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of figures intended to be used as design curves. These figures were

developed from the asymptotic solutions presented in Chapter 3 and

the coefficients determined from the experimental investigation.
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CHAPTER 2

REVIEW OF PREVIOUS STUDIES

Previous investigations of buoyant jets have generally considered

cases of ambient density stratification without a crossflow or of a cross-

flow in a uniform density ambient fluid. They have been primarily

concerned with predicting jet trajectories for the case of an ambient

crossflow and heights of rise for jets in a nonflowing stratified fluid.

Experimental studies have also concentrated on the measurement of these

quantities.

2.1 Methods of Solution

There are basically three approaches to the solution of buoyant jet

problems. Early attempts at solving simple jet problems consisted of

specifying constitutive relations for the turbulent transport terms in

the equations for the conservation of mass, momentum, energy, and tracer.

Examples of this approach may be seen in Schlichting (1968), but this

method has not been generally considered for the solution of more complex

problems involving ambient currents and density stratification. Another

approach has been to derive relations for mean flow properties from

dimensional analysis of the given problem. This method has also been

restricted to fairly simple problems which have only a few independent

variables characterizing the flow. The other procedure has been to

consider the integrated conservation equations mentioned above. This

approach consists of integrating the equations across a section normal

to the jet trajectory and assuming that all turbulent transport terms
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vanish at the jet boundary. This so-called "integral method" was

proposed by Morton, Taylor, and Turner (1956) and has become the

accepted method of solution in recent years.

Several variations of the general equations have been given

depending upon the flow geometry and the ambient conditions. A

thorough discussion of the development of the general equations for a

buoyant jet in a density-stratified crossflow is given by Hirst (1971a).

The equations are typically written with a coordinate system that is

oriented tangential to the jet axis as indicated schematically in Fig.

2.1. The flow is assumed to be axisymmetric about the tangential s-axis

with a radial coordinate r. This coordinate system is related to the

(x,z) coordinate system by the geometrical relations:

(2.1)

(2.2)

Ua

(z,v)

Fig. 2.1 Definition sketch of (s,r) and (x,z) coordinate system.
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The coordinate x is in the direction of the ambient current and z is the

vertical coordinate in the same direction as the buoyancy forces.

Several assumptions are generally employed in the description of

the general problem. The flow is assumed to be steady and axisymmetric

and it is further assumed to be completely turbulent such that molecular

transports can be neglected with respect to turbulent transports. The

fluid is assumed to be incompressible and the Boussinesq approximation

is made, i.e., the difference between the fluid density at any point in

the flow field and a reference density (e.g., the density of the ambient

fluid at the level of the jet source) is important only as a buoyancy

force. It is also generally assumed that the curvature of the jet is

small and that the effects of the curvature can be neglected. The

pressure variation in the flow field is assumed to be hydrostatic and

boundary layer approximations are made; i.e., gradients in the tangen¬

tial (s) direction are much smaller than those in the radial (r)

direction. This approximation also implies that the tangential velocity

u is much greater than the radial velocity u . The Reynolds type ofS r

equations are used in the analysis; all terms are written in terms of

mean and fluctuating values. It is generally assumed that the turbulent

tracer transport u 'c' and heat transport u ' T' are negligible with
s s

respect to the mean transports, u c and u T respectively, of the same
s s

quantities. Here the primes indicate fluctuating quantities, the

unprimed terms represent mean quantities, c denotes concentration of

a tracer, and T is the temperature. Finally, it is assumed that the

turbulent momentum transport ug is much less than the mean velocity
transport u ^. Given the above approximations, the conservation
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equations can be written as follows:

Mass

3u .

aT- + 7 37(rur) ■ 0 (2.3)

Vertical Momentum

3u 3u \ p -p , „

s
, s \ _J _n _ a 13 r

u « b u -r— ) sin0 = g —(ru ' u ' )sin0 (2.4)s 3s r 3r / P r 3r s r

Horizontal Momentum

3u 3u \ n .s , s \ „ 13, — r
u H u -— cos0 —(ru ' u ' )cos0 (2.5)

, s 3s r 3r / r 3r s r •

Heat

3T
, 3T 13

u_ TT + ur TT = " 7 TT(ru 1 T') (2.6)s ds r or r or r

Tracer

3c
. 3c 13

u3 37 + ur (2-7)

Equations of state are also required to relate temperature and tracer

concentration to fluid density if it is assumed that either effect

causes significant variations in fluid density. The typical assumption

is to assume a linear relationship between density and either temperature

or tracer concentration:
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p-p

kl(c"ca' + k2(T"V (2.8)

The subscript a refers to properties in the ambient fluid, and p is
o

some reference density such as the density of the ambient fluid at the

level of the jet source. This relation can be combined with Eqs. 2.6

and 2.7 to yield an equation for the conservation of buoyancy or density

deficiency:

3_ "g(p-p ) "
cL

+ ur f?
r g(p-pj ia

, _ I i_
3s L p0 J L p0 J r 3r

u ' (P-P ) '
L O r a

(2.9)

This expression is valid for the above equations of state whether the

density variations are caused by temperature differences or by salt

or other tracer variations.

The solution of the above equations requires the specification of

several terms since there are too many unknown quantities for the

number of equations. The typical approach to the solution of these

types of equations is to specify constitutive equations relating the

turbulent transport terms u 'u 1 , u 'T', and u ' c1 to mean flowr
s r ' r ' r

variables. This approach has not been generally accepted for the

solution of buoyant jet problems due to the difficulty of defining

appropriate constitutive relations.

The more common procedure is to consider the integrated conserva¬

tion equations. The form of Eqs. 2.3, 2.4, 2.5, 2.7, and 2.9 after

integrating across a section normal to the jet boundary is:
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Mass

h[f0"s^]- -lim [ru ]
r

r+R

= E (2.10)

Vertical Momentum

d_
ds

R 1
g(P ~P)

rdr - lim (ru ' u ' )sin0
po r-R 3 r

(2.11)

Horizontal Momentum

ds{/us rdr cos0 = EU. - lim (ru u )cos0A _ s r
r-»-R

(2.12)

Tracer

h[fus<c-ca,rdr] ""dT fas rdr - lim [ru c ]
s " r a

r+R
(2.13)

Buoyancy

ds

R

lb
p-P

rdr
dp

ZSl _£
p ds

o

R

■ / u rdr - lim u 'JQ 3 r+R LPo r
(P-P )'

a
(2.14)

The term R in the above equations refers to some appropriately defined

radius of the jet which is a function of distance along the jet trajec¬

tory. This term must have a finite value or some of the integrals

containing ug terms will be divergent. Generally, the radius R is arbi¬
trarily defined as the distance from the jet axis to the point where the

*See note, end of chapter (p. 32).
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mean concentration of a passive tracer is one-half the maximum value (see

Fig. 2.2) or some similar definition. The tracer conservation equation

is retained to describe the dilution of a passive tracer (one which does

not affect fluid density).

Fig. 2.2 Definition sketch of characteristic jet radius.

The turbulent transport terms are assumed to vanish at the jet boundary

R in the above equations. The term on the right-hand side of Eq. 2.10

represents the inflow of ambient fluid across the jet boundary and a

relation for this term must be assumed in order to obtain a solution of

the above equations. The assumed relation E is referred to as the

entrainment function. Assumptions are also required for the shape of

the concentration, density, and velocity profiles. Technically, it

only need be assumed that the profiles are similar at any jet cross-

section since different forms of the assumed profiles only introduce

different constant values into the equations. The profiles are generally

assumed to be Gaussian in form expressed as excess values above ambient

TIME AVERAGE
/^CONCENTRATION
- PROFILE
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levels or are considered to be top hat; that is, the velocity, concentra¬

tion, etc. are assumed to be ambient values for radial distances greater

than R and represented by a single value across the jet cross-section.

If the tracer equation is assumed to describe a tracer present only in

the jet discharge (c =0), Eqs. 2.10-2.14 can be written with a top hat
a

representation as:

h [usr2] * e <2-15)

[U 2 R2 ]sin0 = R2G (2.16)
ds s

[US2R2]cos6 = UaE (2.17)

4~ [U CR2] = 0 (2.18)ds s

4t [U GR2] = -eU R2sin0 (2.19)ds s s

Pa~P -2 dpa
Here U , G = g —— , and C are the top hat values and e = —3— . This

s P0 po dz
set of equations can be solved if the entrainment relation is specified

and constitutes the general form of the integral equations used in the

analysis of buoyant jets.

The other method of analyzing buoyant jet problems is to use

dimensional analysis to deduce the basic characteristics of jets and

plumes. This approach can be used only for fairly simple flows which

are characterized by two independent variables. The analysis of

Batchelor (1954) provides a good example of the dimensional analysis
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approach. He considered Che case of a pure plume (source of kinematic

buoyancy flux B only) in a stagnant ambient fluid. The kinematic

fRbuoyancy flux is defined as the integral / u gAp/p rdr in Eq. 2.14.
Jos °

A general dependent variable such as the velocity on the plume axis V

can only be a function of B and the vertical position z, therefore

V = (B/z)1/3 (2.20)

This approach can also be used to describe the rate of change of volume

flux, momentum flux, or other dependent variables. Similar analyses can

be performed for a pure momentum jet in a stagnant ambient fluid and

other similar problems.

2.2 Buoyant Jets in a Stagnant, Density-Stratified Ambient Fluid

Investigations of buoyant jets in a stagnant, density-stratified

ambient fluid have been performed by several researchers. Theoretical

investigations such as those by Morton, Taylor, and Turner (1956), Fan

(1967), Abraham and Eysink (1969), Fox (1970), and others have analyzed

the problem by means of the integral method. The flow configuration

for the following discussion is given schematically in Fig. 2.3 for an

axisymmetric jet flow.

Morton, Taylor, and Turner (1956) solved the integrated equations

by assuming that the entrainment relation is proportional to the local

width and velocity scales of the jet flow. They further assumed that

the velocity and density deficiency at a given jet section was self-

similar with Gaussian profiles:



Fig.2.3Schematicofabuoyantjetinastagnant,density-stratifiedfluid.
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v(z,r) = V(z) exp(-r2/R2), g' =» g

"p (z)-p (z,r)"
a =G(z)axp(-r2/R2) , (2.21)

where R is a characteristic width of the jet profile. These descriptions

of the profiles were substituted into the integrated equations, and

relations similar to Eqs. 2.15, 2.16, and 2.19 can be written:

3- (R2V) = 2aRVdz
(2.22)

dz (R2V2) =■ 2R2G (2.23)

4- (R2VG) = 2R2Ve
az

(2.24)

The constant a is an undetermined constant in the entrainment relation

and must be measured experimentally. The above equations were integrated

in non-dimensional form until the vertical velocity vanished. The

vertical position at which this occurred was taken as the maximum height

of rise for a buoyant jet. Morton, Taylor, and Turner obtained a closed

form solution for the limiting case of a buoyant plume (initial buoyancy

flux only) in a stratified fluid. Their prediction and experimental

measurements indicated that the maximum height of rise Z is given by
d

the relation

Z = 3.79 B1/4£'3/'8
in

g(pa-p.)
where the kinematic buoyancy flux B = <—4- V,DZ and £

(2.25)

^ d0
^ ]— H T7 n2 c- = la. —

4 j p dz
o

as

defined previously. Morton (1959) applied the same analysis with top



17

hat profiles and obtained solutions for various cases of initial jet

mass, momentum, and buoyancy. For the case of zero initial mass and

buoyancy flux, he obtained a solution:

Z « H1/'4e~1/'4 . (2.26)
m

IT 9 9
Here M is the kinematic momentum flux; M * y D^V. . Numerical4 j

solutions were obtained for the more general case of a jet with initial

fluxes of mass, momentum, and buoyancy.

Another similar approach was proposed by Priestley and Ball (1955).

Their method involved the use of the integrated mechanical energy

conservation equation along with the momentum and buoyancy equations.

Fox (1970) showed that combining the integrated continuity equation with

these three equations and requiring that the four equations in three

unknowns be internally consistent indicated that the entrainment function

E must follow the relation

E = RVCc^ + c^/F^2) (2.27)

where F^ is the local Froude number (F^2 = V2/GR), and and are
different constants. For a pure plume, the local Froude number is a

constant (see Rouse, et al. (1952)), indicating a constant entrainment

coefficient which is different than that for a nonbuoyant jet (F^=®).
This result has also been noted by Abraham (1965) and List and Imberger

(1973) who showed that the assumption of the same entrainment coefficient

for nonbuoyant jets and plumes was not valid.

There are several fundamental difficulties in the theoretical
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treatment of a buoyant jet at the maximum height of rise by the integral

method. The nonuniform density profile over the jet cross-section

implies that different portions of the jet will be neutrally buoyant

at different vertical rises. This results in the deceleration of

the outer edges of the jet while the central portion of the jet still

retains positive buoyancy. One assumption used in the derivation of the

general form of the integral equations is that the velocities normal to

the major flow direction are small with respect to those in the direc¬

tion of flow. This assumption is invalid near the maximum height of rise

as the flow begins to decelerate and spread radially outward. Another

assumption used in most analyses is that of a constant vertical flux of

a passive tracer present in the jet discharge. This assumption implies

an infinite jet radius where the vertical velocity vanishes.

Abraham and Eysink (1969) proposed a solution which attempted to

avoid some of these difficulties by suggesting a region of negative

entrainment near the point of maximum jet rise. The fluid within the
4

jet flows outward and becomes part of the ambient fluid in this model.

This solution is not necessarily more valid than the others by Fox or

Morton since it is the integrated equations as derived that are in¬

correct and not the particular entrainment relation. The fundamental

difference between the solution proposed by Abraham and Eysink and the

others is thus one of definition because the radially spreading jet fluid

is defined by Morton as remaining part of the jet flow, while the Abraham

and Eysink model proposes that this fluid is outflow from the jet. The

different models proposed predict nearly the same maximum heights of

rise in spite of the different entrainment relations. This is due in
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part to the fact that one or more constants in the entrainment relation

must be determined from the experimental data. Thus, while a given

model may be reasonably good at predicting experimental results, there

is no assurance that the physical model is valid. The use of the

integral method for stratified flows has inherent difficulties which

cannot be resolved on the basis of the comparison of experimental data

with predicted results.

Other theoretical work of the same nature has been proposed to

consider variable angles of initial jet discharge. Fan (1967) proposed

a model similar to that given by Morton, while Hirst (1971b) suggested

one similar to that given by Fox. These analyses can be regarded as

refinements to the theory of a vertically discharged jet.

There has been relatively little experimental work done for buoyant

jets in a density-stratified ambient fluid. Most of the investigations

have been directed at measuring maximum heights of rise and most of

these studies have been for buoyancy-driven jets. Morton, Taylor,

and Turner (1956) and Fox (1970) have presented measurements

obtained from photographs of buoyancy-driven jets in a stratified

fluid. Crawford and Leonard (1962) also performed experiments of the

same type. Abraham and Eysink (1969) discharged fresh water jets

into an ambient fluid that had been stratified with salt. They made

conductivity measurements to determine the location of the jet ceiling

level. This was defined as the vertical position where the conductivity

measurements indicated that the salt concentration was that of the jet

one-half of the time and that of the ambient fluid the rest of the time.



20

Fan (1967) also performed experiments in which buoyant jets were re¬

leased at various angles from the vertical. He determined jet trajec¬

tories and maximum heights of rise from photographs of the flow. He

also performed experiments to measure the height of rise for three

vertical momentum-driven j ets.

2.3 Buoyant Jets in an Unstratified Crossflow

The basic flow configuration for the following discussion is given

schematically in Fig. 2.4.

Some of the earliest analyses of buoyant jets in a crossflow were

made by fairly simple reasonings about the effect of the crossflow on

jet behavior. Priestley (1956) analyzed the problem of a buoyancy-driven

plume in a crossflow. He assumed that the effect of the crossflow was

to deflect the plume horizontally such that the angle with the hori¬

zontal was given by the relation
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tane = V/UA (2.28)A

He further assumed that the variation of the vertical plume velocity

V with vertical rise was similar to what it would be in the absence of

a crossflow. The resulting trajectory relation predicted for a plume

in a crossflow is

2 - B 3% (2-2?)
°A

Scorer (1959) developed trajectory relations for the cases of a

buoyant plume and a nonbuoyant jet in a crossflow by combining dimen¬

sional analysis with a simplified description of the flow behavior. He

concluded that a jet bent over by the crossflow and moving horizontally

at the crossflow velocity would develop a flow structure similar to that

of a cylindrical momentum puff for a nonbuoyant jet or a cylindrical

thermal for a plume. These analogies resulted in a trajectory relation
2/3 1/3of z ^ x for a buoyancy-driven flow and z ^ x for a momentum jet

in a crossflow.

Later attempts at analyzing the behavior of a buoyant jet in a

crossflow generally made use of the integral approach. The representa¬

tion of the jet velocity in the integral equations is somewhat more

difficult, but the general approach is to represent the tangential

velocity as the sum of the component of the ambient velocity in the

tangential direction and a top hat component:

U (s,r) = UAcos0 + u (s) (2.30)
s ' A s
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Some investigators such as Fan (1967) and Abraham (1971) include a term

representing the drag force on the buoyant jet due to relative motion

between the jet and the ambient fluid.* If U is defined as U,cos9+u
s A s

the general form of the integral equations given in Eqs. 2.15—2.19 is

Mass

j- [UR2] = E (2.31)ds s

Vertical Momentum

~ [U 2 R2] sin0 =• R2G - cose (2.32)
ds s IT

Horizontal Momentum

, F,sin9
[U 2R2]cose =» U E +-=- (2.33)ds s A IT

Tracer

~ CU CR2] - 0 (2.34)
ds s

Buoyancy

[U GR2] = 0 (2.35)
ds s

Here, is the drag force per unit length divided by the reference density

and is assumed to be due to a variation in the pressure field around

the jet due to an interaction between the jet and the free stream similar

to flow around a rigid body. The term containing U^E represents the
*This assumes that the pressure distribution is not hydrostatic as
previously assumed.
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entrainment of horizontal momentum from the ambient flow. The solution

of the above set of equations requires the specification of relations

for the entrainment and the pressure drag. The form of the solution

thus depends upon the particular assumptions employed in the specifica¬

tion of these terms.

There have been numerous theoretical studies which have considered

the integral method to analyze buoyant jets in a crossflow. The most

common approach has been to neglect the pressure drag effects and to

specify an entrainment relation which is valid for a buoyant jet in a

crossflow. Other researchers have considered the pressure drag, but

have ignored the entrainment of horizontal momentum. A few studies have

included both effects simultaneously, but this has not been a common

approach. Closed form solutions can be obtained in some instances for

relatively simple entrainment functions, but generally it is necessary

to integrate the equations numerically. Table 2.1 is a summary of the

principal types of solutions including a list of the entrainment func¬

tions, drag relations, the types of jets for which the results are

applicable, and the nature of the solutions. The term nonbuoyant jet

in this table refers to a jet with zero initial buoyancy, buoyant plumes

refer to a plume with negligible initial momentum; and a buoyant jet

is considered to possess both buoyancy and initial momentum. The

terms V and U refer to the vertical and horizontal components of the

jet velocity relative to the ambient flow and the constants in

the trajectory relations are generally related to the aTs in the

entrainment relation.



Table2.1Summaryoftheprincipalsolutionsforbuoyantjetsinacrossflow.
Investigation

Typeof
Jet

Entrainment Relation V=E/R e

Drag Relation Fd

Remarks

Abraham(1971)
buoyant
jet

a_.U+a0Usin0cos0Is2A
C ,U2sin20RdA
Solutionobtainedbynumerical integration

Abramovich(1963)buoyantjet

C.U2sin20RClosedformsolutiondA jl =_!!i i m

C^P
da

:msolution log[l+1^1-^1+^)

ChanandKennedynonbuoyantjeta1V+a(U-U) (1972)11A
Closedformsolutions,3limiting casesnear-fieldzone,curvi¬ linearzone,andfar-fieldzone far-fieldresult:z/l=k_(x/fc)

mlm
1/3

Chan,etal. (1976)

nonbuoyantjetaV+a(U-U)XZA
CdUA2R

Closedformsolutions SimilarjresultstoChanand Kennedyexceptdragforceis includedinnearfieldzone

ChuandGoldberg (1974)
Fan(1967)

buoyantjet buoyantjet

aV

2i,,2\1/2 a(U^+Vz)

Closedformsolutions
1/3

C^U^2sin20RSolutionobtainedbynumerical integration



Table2.1(Continued)

Entrainment

InvestigationTypeofJetRelation
V=E/R e

Hewett,etal.buoyantjeta1(U-Ucos0) (1971)isA
+a„Usin0LA

HoultandWeil (1972)
Fay,etal. (1970) Hoult,etal. (1969)

buoyantjeta(U-Ucos6)XSA
sin0

IA

Hirst(1971a)

buoyantjet

a.+

a^sin0
1F2

(U-UAsA

+Ct3UA(1"Sin0)

Keffer(1969)

nonbuoyantjet
a.(U-U.cos0)1sA "fa2UA(1"sin0)

Drag RelationRemarks F

Closedformsolutions-two limitingcases /v♦/u»
_z_=/jA I1a„+a1V/U. ra\21jA momentumjets

—=k/—\2/3
£bi(ib) buoyantplumes Closedformsolutions SameasHewett1s,etal.plus additionalsolutionfornon- buoyantjets

0)—Solutionobtainedbynumerical integration Solutionobtainedbynumerical integration



Table2.1(Continued) Investigation

TypeofJet

Entrainment Relation V=E/R e

Drag Relation Fd

Remarks

KefferandBaines (1963)

nonbuoyantjet

wv

—

Solutionobtainedbynumerical integration

Lin(1971)

nonbuoyantjet
ot.Usin0-faoU.Is2A

Closedformsolution D"(l+ki\)expk2r
-k

Moore(1974)

buoyantplume

aVUA1/3 A

—

Closedformsolution Bl/43/4
,-kBx

N)

z~1U

ON

Shwartzand Tulin(1972)
buoyantplume

aV

Usedmechanicalenergyequation insteadofmomentumequation. Closedformsolution k.

2/3

Slawsonand Csanady(1967) Vizaland Hostinskii (1965)

buoyantplume buoyantjet

aV

T»A2fW.5W.22x)
Closedformsolution

2/3

t"k>(t)
Closedformsolution (r)'"&-KS)
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There have also been numerous experimental studies for buoyant jets

in a crossflow. These are primarily concerned with the measurement of

jet trajectories, although other measurements have been made in some

instances. Major experimental studies are summarized in Table 2.2.

Several field studies have measured the rise of smoke plumes from indus¬

trial chimneys. Moore (1974), Slawson and Csanady (1967), Bringfelt

(1968), and the TVA (1968), present a description of many of these

studies. Briggs (1969) has also presented a good summary of measurements

on plume rise.

2.4 Buoyant Jets in a Stratified Crossflow

Several theoretical investigations of buoyant jets in a crossflow

have included the additional effect of ambient density stratification.

It is assumed that the entrainment or drag relations are not altered

by the presence of density stratification in all of these studies.

The only change necessary in the integral equations in Eqs. 2.31-2.35

is to add a term to the right-hand side of Eq. 2.35:

[U GR2] = -U R2£sin0 (2.36)ds s s

Numerical integration of the equations can be performed until the

vertical jet velocity vanishes when the jet is at its maximum height of

rise Z which is indicated schematically in Fig. 2.5. Slawson and Csanady
m

(1971) derive a relation for maximum height of rise in a stratified

crossflow which is valid for buoyant plumes only:

Z ~ (B/U.e)1/3 (2.37)
m A



Table2.2Summaryoflaboratoryinvestigationsofbuoyantjetsinacrossflow. Investigation

Typeofjet

Measurements

Method

Barilla(1968)

buoyantjet /dyedsaltsolutionsX
[infreshwater,J\ towedexperiments/

trajectories

photographs

Chan,etal.(1976)
nonbuoyantjet^airjetinwindtunnelj

jetvelocities, pressuredistributions, entrainment, trajectories

hot-wireanemometer, pitot-Prandtltube, trajectoriesfrom velocityprofiles

ChuandGoldberg(1974)
buoyantjet /dyedsaltsolution\ \infreshwater/

trajectories

photographs

Fan(1967)

buoyantjet (dyedsaltsolutionX infreshwater,some] towedexperiments/
concentrations, distribution, trajectories

-conductivityprobe, trajectoriesfrom concentrationprofiles andphotographs

Gordier(1959)

nonbuoyantjet /dyedfreshwaterjetX \infreshwater/
velocitydistribution, trajectories

pitottube, trajectoriesfrom velocityprofiles andphotographs

Hewett,etal.(1971)
buoyantjet heatedairplumes,v plumewithhelium-air mixtureinwindtunnel

temperaturedistribution, trajectories

thermocouple, trajectoriesfrom temperatureprofiles



Table2.2(Continued) InvestigationTypeofjetMeasurementsMethod
hotwireanemometer, trajectoriesfrom velocityprofiles

PratteandBaines(1967)nonbuoyantjet
/oilaerosoljetsin\trajectoriesphotographs

\windtunnel/
Vadot(1965) from(HoultandWeil (1972))KefferandBaines(1963)nonbuoyantjet /oilaerosol-nitrogen\velocitydistributions,

Vmixtureinwindtunnel/trajectories buoyantjet (saltsolutionin\trajectoriesphotographs freshwater,towed] experiments/
Weil(1968)buoyantjet

(saltsolutionin\trajectoriesphotographs freshwater,towedJ experiments/



uA

>

Fig.2.5Definitionsketchofabuoyantjetinastratifiedcrossflow.
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This result has also been derived in other analyses, including those

by Fay, et al. (1970) and Shwartz and Tulin (1972). Briggs (1969)

proposed a similar relation for nonbuoyant jets:

1/2 1/3Z ~ (M/U.e ) (2.38)in A

Results of laboratory experiments are presented by Hewett, et al. (1971)

and results from field measurements have been given by various

researchers including Bringfelt (1968), Briggs (1969) and others.

The field measurements typically consist of maximum heights of rise

and jet trajectories.

2.5 Summary of Previous Investigations

The most common procedure for the solution of general buoyant jet

problems involves the use of the integral approach. The equations

generally used are those for the conservation of mass, momentum, and

buoyancy, although in some cases, the integrated mechanical energy

equation has been used. The choice of equations is not fundamental to

the determination of a solution, as for example, the solutions of

Slawson and Csanady (1967) and Shwartz and Tulin (1972) are identical

for buoyant plumes in a crossflow even though the Slawson and Csanady

analysis considered the integrated momentum equation and Shwartz and

Tulin used the energy equation in place of the momentum equation.

Since the rate of entrainment of ambient fluid is generally specified

for closure of a given set of equations, the nature of the solution

depends more directly on the entrainment relation assumed. It can
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readily be seen from Table 2.1 that there is no general consensus as

to the form of this relation in the presence of a crossflow. Thus,

there are several different predictions for buoyant jet behavior in a

crossflow. Many of the entrainment functions specified involve two or

more arbitrary constants, the values of which are determined by fitting

the solutions to the available data. It should not be surprising,

therefore, that most of the models appear in good agreement with experi¬

mental data even though many of them do not agree qualitatively.

The use of dimensional analysis to solve problems relating to

buoyant jets in a crossflow has not generally been attempted because

of the large number of independent variables involved in the specifica¬

tion of the flow. The investigation by Scorer (1959) is a notable

exception as he derived relations for jet trajectories and dilutions

without solving the integral equations. Scorer's analysis did not

require the specification of an entrainment relation which avoids

the difficulty of assuming a relation for a quantity that is not

particularly intuitive. However, his results do agree with the predic¬

tions of several models that were derived by the integral approach

including those of Slawson and Csanady (1967), Chu and Goldberg (1974),

and others, which can be taken as a partial verification of their

entrainment relations.

Note: A recent communication with Schatzmann (1977) has indicated that
the use of a finite radius R (variable with axial distance) in the
integration adds addition terms to the above equations (from the Leibnitz
rule). This difficulty arises if the velocity does not vanish at the edge
of the jet (U^ \ 0) and has generally not been considered by other
investigators.
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CHAPTER 3

ANALYSIS

3.1 Dimensional Analysis

3.1.1 Basic Assumptions

Several assumptions are made to limit the number of inde¬

pendent variables to be considered. The analysis in this chapter

considers round buoyant jets discharged vertically to a horizontal

crossflow with either a uniform density or a linear stratification.

The jet flow is assumed to be fully turbulent such that effects

of fluid viscosity on mean flow characteristics can be neglected.

In addition, the Boussinesq approximation is made; density differences

between the jet and ambient fluids are small and important only in

causing buoyant forces. Finally, any effects of ambient turbulence on

the jet flow are not considered.

3.1.2 Jet and Ambient Flow Variables

A round turbulent buoyant jet can be represented by three

independent variables with the above limitations. Past studies have

typically considered the jet diameter D, the exit velocity V , and a

term relating to the initial density difference between the-jet and

ambient fluids g T =g(n -p.)/p where p is some reference density
o ao J o o

(generally the ambient density at the level of the jet source PaQ)•
However, List and Imberger (1973) and others have demonstrated the advan-

TT 2
tage of considering the kinematic fluxes of mass Q = ^-D V., momentum
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M«V Q, and buoyancy B3gQ'Q as the variables characterizing a buoyant
jet. Since the flux variables are independent combinations of the first

group of variables, either set is equally representative of a given

buoyant jet. The advantage of considering the flux variables is that

the volume flux can generally be neglected or accounted for by using a

virtual origin correction which extrapolates the jet to a point* source

of momentum and buoyancy. A reduction in the number of independent

variables that are important can thus be achieved.

An ambient crossflow with a linear density stratification can be

characterized by two variables; the crossflow velocity U which is
dPa

assumed constant over the flow depth, and the parameter e =*—. A
po

general dependent variable <j> (such as maximum velocity, jet width, or

minimum dilution)that is a characteristic of a buoyant jet at a given

cross-section in the flow field must then be a function of these

independent variables and the position:

4 - f(Q,M,B,UA,e,z) . (3.1)

These independent variables have units as follows:

U. LT"1
A

e T~2

z L

Q LV1
m LV2
b lV3

Since1 the variables have units of lengths and time only, the Buckingham

TT-theorem indicates that there will be five dimensionless groups of the

seven variables.
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3,1.3 Length Scales Associated with the Independent Variables

The jet and ambient flow variables can be combined into

length scales, each of which characterizes a particular aspect of the

general problem. These length scales have direct physical significance

and should be considered in the formulation of the entire problem.

Dimensionless groups can be conveniently formed as ratios of the various

characteristic lengths.

According to List and Imberger (1973), a general buoyant jet in a

stagnant, unstratified ambient fluid exhibits three regions where the

jet behavior is determined by different effects. The jet discharge is

important near the source, while further away the flow is determined by

the kinematic momentum and buoyancy fluxes. The appropriate length

scale for the flow behavior near the source is 2,^ = Q/M172, which is
proportional to the jet diameter (Jl^ = vff/4 D). In the region where z/^q
is small (on the order of 10 or less), the source geometry will have a

direct influence on the flow characteristics, but for z/£^ » 1 the
effect of the initial jet diameter becomes unimportant and only the jet

momentum and buoyancy are important. As a momentum-driven jet continues

along its trajectory, the buoyancy will generate additional momentum

which will ultimately be of the same order of magnitude as the initial

jet momentum. This will occur at a distance from the source approxi-
n / / 1 / O

mately equal to = M /B ; for z/JL^« 1 the initial momentum effect
will dominate over the buoyancy effect, but for z/£^ » 1, the flow
behavior will be controlled by the buoyancy. Thus, a general buoyant jet

with both initial momentum and buoyancy can be considered to be in
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transition from jet-like (B» 0) to plume-like (Ms* 0) flow with in¬

creasing distance from the jet source. For the special case of £.,< ln,M Q

there will be no momentum-dominated flow region and the flow will be

plume-like except near the source where the effect of the initial volume

flux is important. This phenomenon is dependent upon the ratio

which is proportional to the densimetric source Froude number, F:

K, tt -1M V.£.(J) F ,--L-
Q -/g0' D

When the ambient velocity is considered as an additional variable,

several other length scales can be defined. If the mass flux can

generally be disregarded as a minor influence except near the source,

1/2 Q
the more relevant length scales are I /U. and 1, aB/U.j . The

m A b A

length scale I relates to the interaction of a momentum-dominated jet

with a crossflow while the length scale l^ is important for buoyancy-
dominated flow. These length scales are proportional to the vertical

distance over which a jet travels before its vertical velocity decays

approximately to that of the ambient crossflow velocity. For example,

for z/l « 1 a nonbuoyant jet will be nearly rising vertically since
m

the jet velocity will be much greater than the crossflow velocity. When

z/l is on the order of 1, the jet and ambient velocities will be
m

approximately equal and the jet will be deflected by the crossflow at

an angle of approximately 45 degrees from the vertical. When z/^m>:>
the jet will be bent over by the crossflow and moving nearly horizontally.

The same arguments apply for buoyancy-dominated flow depending upon the
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relative value of z/£, . That is, for z/£, « 1, the plume will beb b

nearly vertically rising and for z/£ » 1, it will be significantlyb

bent over by the crossflow.

Length scales can also be formed with the jet variables and the

stratification parameter in a similar manner. The appropriate length
1/4 3/2

scales in this instance are i f = (M/e) and £, f = (B/e ) . The
m b

length relates to the maximum height of rise of a nonbuoyant jet

in a stagnant, density-stratified ambient fluid. Similarly, the length

is proportional to the distance that a plume will rise in a strati¬

fied fluid. These length scales can also be viewed as the distance

required for the density stratification to remove momentum (or buoyancy,

depending upon the length scale) from the jet flow in an amount equal to

the initial value. A third length scale relating to the ambient density
1/2

stratification can be formed with the crossflow velocity, I = U /e
a a

A list of the various length scales and their definitions is presented in

Table 3.1. Note that there are only four independent length scales

(e.g., in9 I , I. , and I ) and the other length scales can be formed
4 m b a

from combinations of these lengths.

Table 3.1 Definitions of length scales associated with
buoyant jets in a stratified crossflow.

jet length
scales

crossflow length
scales

stratification length
scales

£q = Q/M1/2
£=M3/'4/B1^2

M

1 = M^2/U
m A

\ • B/UA3
m

v =B1/4/e3/8b

I = U /£1/2
a A
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If the functional relationship in £q. 3.1 is expressed in non-

dimensional parameters formed from the various length scales, one

possible result is

where <J>* is a dimensionless form of <p. The choice of ratios is such

that the initial buoyancy flux and the crossflow are involved in all

terms (through £,), while the second term (lJU) is the only
d Q b

one

involving the initial volume flux 0, the term I /£, is the only one
m b

involving the jet momentum flux, and the last term includes the stratifi¬

cation parameter. This arrangement facilitates consideration of limiting

cases. For instance, the second term is of minor Importance except near

the origin, the third is negligible for buoyancy-dominated flow, and the

last can be ignored for a very weak density stratification. This

approach clearly points out the significance of the various length

scales.

An interesting point has been made by List (1976) with respect to

the more common approach to dimensional analysis of a buoyant jet in an

unstratified crossflow. His point is that most analyses have considered

the relevant non-dimensional parameters to be the velocity ratio Vj/,
^the densimetric Froude number F, and the distance normalized by the jet

diameter (z/D). These parameters can be expressed in terms of the

various length scales as

V. I V. I 3'2
0 D* ^ W
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Note that the length scale appears in each term even though it is of

relatively minor importance in defining jet behavior. Clearly, the use

of the parameters in Eq. 3.3 obscures the study of buoyant jet behavior

and the more instructive approach is to consider the parameters in

Eq. 3.2.

3.2 Approximations Used in the Analysis

3.2.1 General Approach

Dimensional analysis alone is insufficient to provide

approximate solutions because of the number of independent variables

that must be considered. It can, however, be applied to simplified

descriptions of the flow behavior to yield approximate solutions. For

instance, an obvious reduction in the number of independent variables

can be achieved by considering the effects of the jet momentum and the

buoyancy separately. A solution obtained for a nonbuoyant jet in a

stratified crossflow can then be applied as an approximate solution to

that portion of the total jet flow where the jet momentum dominates the

flow behavior. The results derived for a buoyant plume can be applied

in a similar manner to regions of buoyancy-dominated flow.

The effects of the ambient flow can also be examined separately.

That is, the density stratification can be assumed to have a relatively

minor influence on the jet characteristics until the jet travels a

sufficiently large distance from the source that it begins to approach

its maximum height of rise. The stratification effect can be neglected

relatively near the source and the problem is analyzed as that of a

buoyant jet in a uniform density crossflow. This general approach will
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not yield exact solutions, but the results can be considered as first

order approximations to the correct solutions.

3.2.2 Near-Field Flows

Near-field flows consist of the regions where z/& « 1 for
. m

momentum-dominated flows and where z/l. «1 for buoyancy-dominated flows.b

The distinction between the near-field and the far-field to be discussed

in the next section is indicated schematically in Fig. 3.1. It is also

assumed that z» 2^ so that effects of the initial volume flux can be
neglected. The jet has not been significantly deflected by the crossflow

in the near-field and is still nearly vertically rising. The assumption

made in this instance is that the effect of the crossflow is relatively

unimportant and serves primarily to advect the jet horizontally at the

ambient velocity. This assumption is not entirely valid since the jet

enters the ambient flow field with zero horizontal velocity and must be

first accelerated to the crossflow velocity. This acceleration comes

from the pressure force on the jet and from the entrainment of hori¬

zontal momentum from the crossflow due to turbulent shear from the un¬

equal horizontal velocities. It is assumed, however, that this accelera¬

tion region is only on the order of a few initial jet diameters from

the source and thus occurs in that region (z/1q small) where the analysis
that is developed in this study is not valid in any case. This argument

has been advanced by Hirst (1971a), Chu and Goldberg (1974), and others

as a justification for ignoring drag forces in the analysis of a buoyant

jet. Several buoyant jets that Priestley (1956) observed experi¬

mentally were advected horizontally at the crossflow velocity very

near the source which justifies neglecting the acceleration region.

Therefore, while the acceleration effects may influence the shape of
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the velocity and concentration profiles at a jet cross-section, it will

not significantly alter the qualitative relations that describe charac¬

teristic velocities or concentrations. The characteristic vertical

velocity should thus follow the same general relation for a jet in a

stagnant ambient fluid, as should the characteristic jet width and the

dilution of a passive tracer. The near-field is thus that region greater

than a few jet diameters from the source, but where the buoyant jet is

still rising nearly vertically.

3.2.3 Far-Field Flows

A somewhat different approach is considered in the far-field

regions (z/l^ » 1 for a momentum-driven jet or z/» 1 for a buoyancy-
driven flow). The vertical jet velocity has decayed to a value less than

that of the crossflow in the far-field and the ambient flow will have

significantly deflected the jet. The behavior of the bent-over jet at

a given vertical position is assumed to be approximately equivalent to

that of a cylindrical momentum puff or buoyant thermal at the same

vertical rise. This assumption is based on the concept that a vertical

cross-section of a nearly horizontal jet is similar to a section of an

analogous cylindrical puff or thermal. The flow similarity between a

buoyant thermal and a plume in a crossflow depicted in Fig. 3.2 has been

suggested previously by Scorer (1959) and others. A momentum puff is

an instantaneous release of nonbuoyant fluid along a horizontal line

source, while a buoyant thermal is a similar release of buoyant

fluid. As the fluid rises above the source, the flow pattern is that

of a pair of counter-rotating vortices, a phenomenon also noted for
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buoyant jets in a strong crossflow. To complete the analogy to a jet

in a crossflow, the release of the fluid must be such that the discharge

begins at one end and progresses along the line source at velocity U .
A

The resulting flow pattern would be a continuous source of momentum or

buoyancy moving at velocity through a stagnant ambient fluid.

Superimposing a crossflow on the system will complete the analogy with

a stationary jet bent over by the ambient current. The independent

variables characterizing these flows are the vertical rise z and the

momentum impulse m or the buoyant impulse b per unit length. These

quantities are related to the continuous releases per unit time for a

fixed source in a crossflow by the relations; m =» M/U and b 3 B/Ua.A A

Fig. 3.2 Schematic indicating similarity between a far-field
flow and a buoyant thermal.
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3.3 Buoyant Jets In an Unstratified Crossflow

Approximate solutions can be obtained for the prediction of mean

flow properties such as velocities, jet widths, dilutions, etc., by

using the flow descriptions presented in the previous section.

Analyses will be presented for four cases: near-field and far-field

results for both momentum- and buoyancy-dominated flows.

3.3.1 Momentum-Dominated Jets

The behavior of a nonbuoyant jet in a crossflow depends upon

the relative importance of the jet momentum compared to the ambient

velocity as discussed previously. For a relatively weak crossflow, the

resulting flow pattern should be similar to that of a jet in a stagnant

ambient fluid except that the jet is advected with the ambient velocity.

The vertical velocity variation of a nonbuoyant jet in a stagnant ambient

fluid can be shown by dimensional analysis to follow the relation

^2
1 constant (3.4)

M1/

This relation is confirmed by the experimental evidence of Albertson, et

al. (1950) except for that region near the source (z/£q less than about
6) where the mass flux must be considered. The kinematic relation for

a jet moving horizontally at the crossflow velocity is

ir = ir (3-5)
A

Substituting for the vertical velocity and integrating the above

expression yields the following relation for the momentum-dominated
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near-field (mdnf):

1/2
(3.6)

integration constant can be considered as a virtual origin correction

which is ignored for the purpose of this analysis by assuming that z =* 0

at x * 0.

For relatively larger values of z/^m> the ambient flow will have a
more direct effect on the flow pattern, and the behavior of the bent-over

jet can be likened to that of a cylindrical momentum puff. The charac¬

teristic vertical velocity of a puff must depend only upon the momentum

impulse m (Instantaneous input of kinematic momentum flux per unit

length) and vertical rise. Dimensional considerations imply that

The analogy between the momentum puff and a nonbuoyant jet in a cross-

trajectory relation for the momentum-dominated far-field is obtained

by substituting this expression into the kinematic relation and inte¬

grating which yields

m
■ constant (3.7)

flow is completed by replacing m by M/U in the above expression. The
ii

(3.8)

The constant of integration is evaluated from the values of z/l and
m
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and x/£ at the transition between the near and far-field flows and is
m

assumed to be negligible. This assumption can be verified only by

experimental determination of the constants and C^.
Relationships for characteristic dilutions within a nonbuoyant jet

can be determined by similar methods. The definition of a characteris¬

tic jet dilution at a cross-section implicitly assumes similarity of

concentration profiles, but no assumptions as to the actual shape of

the profiles are required. An appropriate dilution might be the

minimum value in the vertical plane of symmetry of the jet. Fan (1967)

measured some concentration profiles and found absolute minimum

dilutions occur to either side of the plane of symmetry. These might

also be conveniently defined as characteristic dilutions. The exact

definition is not important so long as it is consistent for different

jets.

The analysis for the dilution of a buoyant jet can be performed by

considering that the flux of a passive tracer is conserved along the

jet trajectory. The expression for the conservation of a tracer of

concentration c is given by

Flux = / cu dA = constant = G Q (3.9)J s o

where is the tracer concentration at the jet source. The assumption

of similarity implies that the integral can be represented by character¬

istic quantities at a jet cross-section:

/cu dA * CTJ R2 (3.10)J s s



47

A characteristic dilution S of the tracer can be defined as S aC /C
o o o

and is given by

U R2

So --f- (3.11)

The dilution of a tracer can thus be determined from dimensional

2
analysis by considering the characteristic volume flux y 3 UgR as the
appropriate dependent variable.

It is assumed that the crossflow does not affect the relation for

the characteristic dilutions for near-field flows. Thus, the dilution

should be the same as for a nonbuoyant jet in a stagnant ambient fluid.

Dimensional considerations imply that

constant (3.12)
sh1'2

or in terms of the dilution S « y/Q
o

S Q
<3'13)

UA2A m

Dilutions for the far-field are obtained by considering the momentum

puff analogy. The dependent variable to consider is the characteristic

volume per unit length X. This variable is related to the volume flux

parameter by X = y/U^ if the analogy between the bent-over jet and the
momentum puff is considered. The relevant dimensionless relation is

constant (3.14)
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which upon substitution for X and rearrangement gives

c*(t)Am \ m /

So<* 2

(3.15)

Relations for the characteristic jet radius R can also be determined

by dimensional analysis. A characteristic jet radius at a jet section

can be defined as the transverse distance between the location of

maximum tracer concentration and the position where the concentration

is one-half that value as depicted in Fig. 3.3.

Fig. 3.3 Definition sketch of characteristic jet radius.

The jet radius can be determined by dimensional reasoning to be pro¬

portional to the appropriate local length scale. The only length scale

associated with the two asymptotic cases of a nonbuoyant jet in a

stagnant ambient fluid and a cylindrical momentum puff is the vertical

rise z.. This implies that
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= constant (3.16)
dz

is approximately valid for both the near- and far-field flows. The jet

spread is thus linear with vertical rise but with different constants of

proportionality for the mdnf and the mdff.

3.3.2 Buoyancy-Dominated Jets

The analysis for a buoyant plume in a crossflow proceeds in

a similar manner to that of a nonbuoyant jet. For z/« 1, the flow

will be similar to a plume in a stagnant fluid, but advected with the

crossflow. The velocity variation of a plume in a stagnant ambient

fluid obtained by dimensional analysis and confirmed by the experimental

data of Rouse, et al. (1952) is

, = constant (3.17)
B

Substituting the vertical velocity variation into the kinematic relation

and integrating gives the result for the buoyancy-dominated near-field

(bdnf):

/ x3/4
cs(t) (3-18)5.

For z/ » 1, the plume should behave similarly to a buoyant thermal.

The relation between the buoyant impulse b, vertical velocity, and

vertical rise for a thermal as given by dimensional reasoning is

V21/2
. = constant (3.19)

b1'
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If b is replaced by B/U^, the analogy to a buoyant plume in a crossflow
can be made. Substituting the above expression into the kinematic

relation gives the result for the buoyancy-dominated far-field (bdff):

t"c*(t)2/3 (3-20)
The integration constants are neglected in the above relations (cf. p. 45)

Dilutions can be analyzed for buoyancy-dominated flow by again con¬

sidering the characteristic volume flux u as the relevant dependent

variable. The variation of u for the bdnf should be that for a plume

in a stagnant ambient fluid which is

5/3
u z
—r~rr~ m constant (3.21)
B

or in terms of the dilution Sq =u/Q and the length scale :

SO 5/3
(3.22)

In the far-field, dimensional considerations for a buoyant thermal

imply that

—j = constant (3.23)z^

where X is the characteristic thermal volume equal to u/U. by the
A

appropriate analogy. The result for the bdff in terms of Sq and is
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Analysis can also be performed to determine the variation of the

"width of a buoyancy-driven jet in a crossflow. For the limiting cases

of a plume in a stagnant fluid and a buoyant thermal, dimensional

reasoning implies that a characteristic jet width must scale as the

vertical rise since there are no other length scales associated with

the asymptotic flow descriptions. This again implies that the relation

4^- = constant (3.25)
a z

will be valid in both the near- and far-fields. The fact that all four

cases analyzed indicate a linear increase in jet width with elevation

does not imply that the constant of proportionality should be the same

for any of the cases. There is a different phenomenon controlling the

turbulent diffusion in each situation, so it would be unlikely that the

spreading rate would be the same. Thus although a buoyant jet would ex¬

hibit a linear spread with vertical rise in each of the flow regimes,

nonlinear variations in jet width would be expected at the transition

regions between flow regimes.

3.3.3 Summary of Results for Buoyant Jets in an Unstratified
Crossflow

The relations developed in the preceding sections are the

asymptotic solutions for the trajectories and dilutions of a buoyant

jet in a uniform-density crossflow. The analysis does not consider

the initial volume flux and is therefore not valid for vertical rises
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less than a few jet diameters above the source. It is unlikely that a

general solution for the jet behavior in that region can be developed

since the jet exit conditions vary depending on the release structure

and these must be considered. The regions of interest for most applica¬

tion are generally at .greater distances from the source and one of the

flow descriptions presented in the preceding sections can be used to

describe approximately the jet trajectory and dilution. The application
of the general model will be discussed in more detail in Section 3.5.
The various trajectory and dilution relations are summarized in Table

3.2.

Table 3.2 Trajectory and dilution relations.

Flow regime Trajectory relation Dilution relation

Momen tum-dominated
near field

1/2

m \ m /

S Q
' °

= c —

U I 2 3 1
Am m

Momen tum-domina ted
far field

1/3

t-"z r)m \ m /

S Q 2

Am \ m /

Buoyancy-domina ted
near field

3/4

Buoyancy-dominated
far field

/ v 2/3

t-'.(t) -ft-Ms)
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3.4 Buoyant Jets in a Stratified Crossflow

3.4.1 General Discussion

When the additional effect of density stratification is

considered in the analysis, the addition of another independent variable

makes the general problem intractable by the methods that have been

presented. However, if only the maximum height of rise and associated

dilution are desired, the vertical position is removed as an independent

variable and the total number of variables is still the same as in the

preceding section. Then dimensional analysis can be applied to the

simplified flow descriptions to obtain approximate solutions. The

following analysis thus predicts the maximum height of rise and the

dilution for momentum- and buoyancy-dominated jets in a linearly

stratified crossflow.

Buoyant jet behavior will again be considered to be dominated either

by the jet momentum or by the buoyancy. There will be essentially two

limiting possibilities in either case; the jet is still in the near-

field when it reaches its maximum height of rise or else it will be

significantly bent over and in the far-field before the stratification

causes it to stop rising. The results corresponding to these two situ¬

ations will be referred to in the following discussion as near-field

and far-field results. This refers to the flow regime that a buoyant
w

jet is in when it reaches its maximum height of rise.

3.4.2 Momentum-Dominated Flow

For a momentum-dominated jet, the magnitude of the ratio

i T/£ (where these length scales were previously defined as
mm
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£ ' = and I = M^^/U ) will indicate whether it will be in
m m A

the near-field or in the far-field when it reaches the maximum height

of rise. If £ '/I « 1 a nonbuoyant jet will reach its maximum risemm

Zm before it is significantly bent over by the crossflow. Dimensional
considerations imply that

Tn--t(r-) (3-26)in \ m /

where f(Z f/£ ) indicates some unknown* functional relation. As the
in or

ratio I f /1 -K) or as the crossflow velocity becomes relatively small,
mm J J

the result should be the same as for a nonbuoyant jet in a stratified,

stagnant ambient fluid. In that case, the relation

Z
= constant (3.27)

m

is the correct relation for the maximum height of rise. It follows

that the height at which the jet reaches its equilibrium position

should also be proportional to I 1 since there are no other lengths to

scale this phenomenon. Z and Z should therefore be proportional to
m e

each other.

The dilution of a jet at its ma-x-r-rrmTn and equilibrium heights of

rise should also approximately follow the relation for a nonflowing

ambient fluid. Dimensional analysis with the characteristic volume

flux u can be used to obtain a description of the dilution of a
m

tracer. The characteristic volume flux at the maximum height of rise

must scale with the stratification parameter t and the initial kinematic
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momentum flux M. The appropriate non-dimensional relation is

1/4
Pm£
—tT/— = constant (3.28)

m3M

or in terms of the dilution S =y /Q:
m m

S Q I '
m

« it- (3.29)
Ua£ 2 £mAm ni

If JI '/l » 1, a nonbuoyant jet will already be in the far-field
m m

when it reaches the elevation at which it would stop rising in a stagnant

fluid. The length scale I 1 is no longer an accurate measure of the
m

height of rise in this case. A more appropriate length scale is the

height to which a cylindrical momentum puff (with m = M/U^) would rise
in a linearly stratified ambient fluid. This distance can be obtained

from the non-dimensional relation

Z e1^6
m. ■ = constant (3.30)
m

Thus for 1, the appropriate relation for maximum and equilib¬

rium heights of rise is

or

/ \1/3
Z , Z ~ (3.31)

m e lv' )

Z Z / l ' \-1'3
<3-32)

m m \ m /
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The effect of a strong crossflow can be seen from Eq. 3.31 or 3.32 to

decrease the maximum height of rise compared to a relatively weaker

crossflow for the same jet and stratification conditions.

The characteristic volume per unit length for a momentum puff at

its maximum height of rising (A = p /U. by the corresponding analogy)
m m A

can be used to estimate the dilution of a bent-over jet. Dimensional

arguments imply that

A^e1^3
—2j2 - constant (3.33)

m

which indicates that the characteristic dilution S is given by
m

S Q ( I ' \4/3m m \

IT £ ^ \ £Vm ^ 111
(3.34)

3.4.3 Buoyancy-Dominated Flow

The same type of arguments can be applied to derive similar

results for buoyancy-dominated flow. For plume-like flow, the relevant
1/4 3/8

parameter to consider is the ratio of the length scales I, ' 3 B /e
b

and 5.^aB/U^3. If J^'/^ « 1» the general behavior should be the same
as for a buoyant plume in a nonflowing stratified fluid. The maximum

and equilibrium heights of rise should thus be directly proportional

to the length scale ':

Z Z

e—, t~"t = constants (3.35)
SV '*•
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The dilution for a plume in a stratified fluid at its maximum

height of rise is determined by the non-dimensional relation for the

volume flux y J
m

5/8
yme

0 <, ■ constant (3.36)
B

The dilution /Q of a passive tracer for buoyancy-dominated near-

field flows is given by

s q /y\5/3m «l -M (3.37)
D.l2 \ K

A b N b

A buoyant thermal in a stratified fluid will rise according to the

dimensionless relation:

Z c1/3
— ■ constant (3.38)

b

where b» B/U^ by the analogy between a thermal and a bent-over plume.
Thus, for jy/^b >:> t*le max^jnum an<* equilibrium heights of rise for
a buoyant plume in a stratified crossflow are given by the relation:

7 7 / ? ' \ ^
<3'39)

The dilution of a buoyant thermal can be obtained from the relation

x

—rjr— = constant (3.40)
b '
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where Xhas been defined previously. Expressed in terms of the dilution

S of a tracer, Eq. 3.40 becomes
m

3.4.4 Other Flow Properties in a Stratified Crossflow

There are several other characteristics of the jet behavior

that can be deduced from simple physical arguments. For example, the

jet widths must scale according to the proper length characterizing

the given limiting case. A nonbuoyant jet with I f/£ » 1 (one which
m m

reaches in the mdff) must scale according to the length

which is also proportional to the maximum height of rise. It can

therefore be concluded that the jet widths are proportional to the

maximum height of rise in each asymptotic case.

A buoyant jet will possess negative buoyancy after it reaches its

maximum height of rise due to the fact that the jet possesses a nonzero

vertical momentum when it first reaches its neutrally buoyant position

which causes it to rise above this level. The flow will oscillate with

a decreasing amplitude until it finally comes to rest at some equilib¬

rium level. The time scale associated with these oscillations which

-1/2
are a result of the stratification must be r = e . The period of

(3.41)

(3.42)
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oscillation must be proportional to x and the wavelength of an

1/2
oscillation should be proportional to the length scale & * U./ecL A

3.4.5 Summary of Analysis for Stratified Flows

The relations developed for the maximum height of rise and

associated dilutions can be summarized in a more straightforward manner

1/2if they are presented in terms of the length scale I = U /e . The
a a

preceding discussion has considered the four length scales I , I. , I T,
m d m

and in the development of the various relations. However, the

number of independent variables indicates that only three length scales

are necessary to characterize the general problem. The relations will

therefore be developed in terms of the length scales & , and The

length scales and f can be expressed as combinations of these

three lengths:

l ' = I 1/2l 1/2 (3.43)
m ma

JL ' = 3M (3.44)
b b a

The various height of rise and dilution relations are presented in Table

3.3 in terms of these definitions. The dilution relations are also

expressed in terms of Z to facilitate comparison with the results
m

for the unstratified case. Note that the exponents on the various

relations correspond directly to the equivalent trajectory or dilution

relations for an unstratified crossflow.

The equilibrium rise will be proportional to Z^ for all cases so
these relations are also valid at the equilibrium height of rise with
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different constants of proportionality.

Table 3.3 Maximum height of rise and associated dilution
relations for buoyant jets in a stratified crossflow.

Flow regime
where Zm is

reached

Height of
Rise

Relation

Dilution
Relation

Momentum-domina ted
near-field

Z /i \1/z
r-S r

m \ m /

S Q Z
m

^ r ' m
U l 2 13 I
Am m

Momentum-dominated
far-field

Z I I \1/3
r-gf

m \ m /

S Q / Z \ 2
m

= c f m l
Vm2 U \ /

Buoyancy-dominated
near-field

/ ^ \3/4
C " Cu(H)

S Q / Z \5/3

Buoyancy-domina ted
far-field

(U)'"\ l2\ lb /

S Q f Z \2
Vb2 * °l6( )

3.5 Discussion of Analysis

3.5.1 Application of the Model

The results in Section 3.3 must be interpreted in

order to apply the solution that is valid for a general buoyant

jet in an unstratified crossflow. This is accomplished by

examining the relative magnitude of various length scales, primarily

I and £, if it is assumed that the analysis is to be applied for dis-
in d

tances somewhat greater than from the source. A given buoyant jet

flow will generally be controlled by the initial momentum as discussed

previously and will ultimately be influenced primarily by the buoyancy.
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Thus, most buoyant jet flows will originate in the momentum-dominated

near-field and will ultimately reach the buoyancy-dominated far-field.

The intermediate behavior depends upon the magnitude of the ratio

which is a type of Froude number:

2-b = gQ' DvtT/4

The field of solutions is depicted schematically in Fig. 3.4

which assumes values of unity for the various constants. This figure

is intended only to indicate the nature of the model and the same type

of figure with experimental values of the constants will be presented

in Chapter 6.

If I /I, « 1, the jet momentum is relatively weak compared to the
m b

buoyancy and the jet will not be bent over significantly by the cross-

flow when the buoyancy begins to control the jet behavior. The flow

will pass from the mdnf to the bdnf and then as z/^ becomes large,
will go to the bdff. However, if I /K» 1, the buoyancy effect is

m b

relatively weaker and the momentum-dominated flow will pass from the

near-field to the far-field before the buoyancy effect begins to

dominate. Thus there are essentially two trajectory sequences with

increasing x: the flow sequence will be mdnf-bdnf-bdff (1/2,3/4,2/3

trajectory relations) when I /1. « 1 and if £ /I, » 1, the sequence
m b m b

is mdnf-mdff-bdff (1/2,1/3,2/3 trajectories). List (1976) has also

suggested this flow configuration with a similar analysis. Fig. 3.4

clearly indicates these two possibilities and also indicates that when I /I,
m b

is on the order of 1, the trajectory will go from the mdnf directly to the



Fig.3.4Schematicoftrajectoriesforbuoyantjetsinanunstratifiedcrossflow.
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bdff (1/2,2/3 variations). It is not possible for the flow to go from

the bdnf to the mdff as Fig. 3.4 clearly indicates. This is to be

expected since once the flow becomes buoyancy-dominated, there is no

mechanism for it to become controlled by the initial momentum again.

Thus, there will be no 3/4,1/3,2/3 trajectory sequences. If the

additional effect of the initial volume flux is considered, there are

several variations of the trajectories mentioned above. If I /ln « 1
m Q

then it is not possible to consider a momentum-dominated near-field

flow regime since if z/£ « 1, then z/i^ will be much less than one
m Q

and the effect of the initial volume flux cannot be ignored. Fig. 3.5

is a schematic of the various possible flow sequences with the different

power law relations indicated (i.e., 1/2 refers to the mdnf, 1/3 to the

mdff, etc.). Again, this figure is only intended to describe the

qualitative nature of the flow, and values for the various constants

were assumed to be unity. The use of actual experimental values would

change the figure somewhat but the general idea will be the same.

The dilution of a buoyant jet depends upon the flow regimes it

passes through. It is possible to use Fig. 3.4 to determine the

appropriate flow regime for a specified horizontal or vertical location

and to apply the dilution relation which is valid for that flow regime.

It is also possible to develop a figure such as that given schematically

in Fig. 3.6 from which the dilution can be obtained directly given the

vertical rise and the jet and ambient conditions. The reason that the

mdff and bdff collapse to a single curve in this figure is that a

value of unity was used for the various constants. Since these constants
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Fig. 3.6 Schematic of dilutions for buoyant jets in an

unstratified crossflow.
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would not generally be equal, the result would be that the two far-

field regimes would be indicated by parallel lines on the figure

with transition curves where the flow passes from the mdff to the bdff.

Jet trajectories in a density-stratified crossflow can be estimated

up to the maximum height of rise by considering the above results for

a uniform density flow. This can be justified, for example, if the

distance £ ' is regarded as the distance required for the density

stratification to extract the momentum flux from a nonbuoyant jet. It

seems reasonable that if z/£ ' « 1, the density structure will not
m

have removed significant momentum from the jet and the jet trajectory

will be essentially the same as for an unstratified crossflow. The

same argument should apply for a buoyant plume with respect to £^ ' . A
reasonable first approximation would then be to extend the jet trajec¬

tory and other characteristics to the maximum height of rise after

which the unstratified results are no longer valid. A further justifi¬

cation can be demonstrated by comparison of the dilution relations in

Tables 3.2 and 3.3. The relations for any flow regime agree to within

a constant, indicating that the dilution variation with vertical dis¬

tance for a buoyant jet in a uniform density crossflow is approximately

valid except downstream from the location of the maximum height of rise.

The trajectory and dilution of a buoyant jet in a stratified cross-

flow can thus be approximately obtained up to the maximum height of

rise by using the uniform density results. It is necessary to determine

which flow regime a jet will be in when it reaches its maximum rise in

order to determine the appropriate height of rise relation. This
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depends upon the relative magnitude of the three length scales, £ ,
m

2.^, and % . Fig. 3.7 presents a schematic of the maximum height of
rise as a function of these variables, again assigning a value of 1.0

to all constants. A figure similar to this with actual experimental

values for the constants could be used with figures similar to Figs.

3.4 and 3.6 to determine the trajectories and dilutions of a buoyant

jet up to the maximum height of rise.

3.5.2 Comparison of Predictions from Previous Investigations

The general model thus predicts several types of flow

behavior which are consistent with other models. The prediction from

1/2
this study for the mdnf (z) agrees somewhat with the

models presented by Hewett, et al. (1971), Hoult and Weil (1972), and

others, for the jet behavior near the source. Their predictions differ

from the mdnf model only in that their models indicate a dependence of the

trajectory coefficient on the velocity ratio V^/U^. However, their
relation for approaches a constant for large values of the velocity

ratio, or equivalently an£i only varies significantly for values

of 2, /on the order of 1 or less. For 2/2,. small, the effect of the
m Q m Q

jet geometry is important, and neither model can be assumed to be valid.

Thus the models are essentially equivalent for the domain where they

can be applied.

The buoyancy-dominated near-field result from this study agrees

with that given by Priestley (1956) which is to be expected since they

were derived from the same assumptions. The model proposed by Moore

3/4
(1974) does not agree with the present model even though the z x



Fig.3.7Schematicofmaximumheightofriseasafunctionoftheflowvariables.
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relation is similar. His trajectory relation is not dimensionally

homogeneous and is therefore questionable. Finally, the far-field

relations agree with the models presented by Scorer (1959) again because

they were derived by the same methods. Other models presenting the

same result for the momentum-dominated far-field have been presented

by Chan and Kennedy (1972) and Hoult and Weil (1972). The two-thirds

trajectory relation in the buoyancy-dominated far-field has also been

proposed by numerous researchers including Slawson and Csanady (1967),

Shwartz and Tulin (1972), and Hewett, et al. (1971).

The combined model predicts various types of flow behavior which

are consistent with the models presented by other researchers. For

example, if Z /Zn is very small and Z / Z, » 1, the mdnf will bem q m b

negligible and the model proposed by Chu and Goldberg (1974) (1/3 and

2/3 powers for trajectory relations) will agree with the present

formulation. For ^m/^« the prediction by Hewett, et al. (1971)
(1/2,2/3 powers) agrees with the present model. The general relation

of Hoult and Weil (1972) and others (1/2,1/3,2/3 power law relations) is

equivalent to the results of the present analysis if i /£, » 1. The
m b

information in Fig. 3.5 is repeated in Fig. 3.8 with the domains where

the predictions by other researchers agree with the present model.

Significantly, the case for Z /% « 1 (1/2,3/4,2/3 trajectories) has
m b

not been proposed by other researchers. Results of many previous

studies can thus be regarded as special cases of the general model,

given certain restrictions on Zn, Z , and Z, .
q m b



Fig.3.8Comparisonofprevioustheoreticalinvestigationswiththeunstratifiedcrossflowmodel.
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Predictions for the maximum height of rise in a stratified cross-

flow presented by Shwartz and Tulin (1972), Fay, et al. (1970) and

others agree with the result predicted for the buoyancy-dominated

far-field by the present model. The result for the mdff also agrees

with that presented by Briggs (1969) for a nonbuoyant jet in a

stratified crossflow. There have been no theoretical analyses which

derive the results for the maximum height of rise for the near-field

flows, although these results correspond to analyses for stagnant

ambient fluids by Morton (1959) and others.
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CHAPTER 4

EXPERIMENTAL INVESTIGATION

4.1 Experimental Objectives

The primary objective of the experimental investigation was to

study the behavior of a round buoyant jet over a wide range of jet and

ambient conditions. Initial experiments were performed in an unstrati-

fied crossflow with the objective of verifying the validity of the

trajectory and dilution relations that were presented in the preceding

chapter. Various parameters were varied including the crossflow

velocity, jet discharge, and initial density difference. These variables

were adjusted such that the jet behavior could be examined for each of
the regions of interest: near- and far-field regimes for both momentum-

and buoyancy-dominated flows. The experiments were performed to supple¬

ment previous measurements of the same type performed by Fan (1967).

The second phase of the experimental investigation involved the

additional effect of density stratification. These experiments were

performed to measure heights of rise and associated dilutions. Experi¬

ments were conducted to verify each of the relations presented in the

analysis. The jet and ambient conditions were varied to cover as wide

a range of experimental conditions as possible within the constraints of

the apparatus.
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4•2 Description of Apparatus

4.2.1 Towing Tank and Jet Discharge

All experiments were performed in a towing tank 61 cm square

in cross-section and 8.7 m in length. The effect of a crossflow was

simulated by towing 'a jet source the length of the tank at a constant

velocity. This avoided the necessity of producing a density-stratified

crossflow of uniform velocity. This arrangement also avoided any

difficulties due to nonuniformities in ambient velocity over the jet

cross-section or any effects caused by the presence of ambient turbu¬

lence.

The jet fluid was released downward from the water surface with the

density difference created by adding sodium chloride to the jet solution.

This arrangement resulted in a negative buoyant force and downward

initial momentum, which is analogous to an upward buoyant jet. This can

be justified if the Boussinesq approximation is valid, since the only

important density effects are the buoyancy of the jet with respect to

the ambient fluid. The jet discharge box was mounted so that it was

just touching the water surface so that there was no significant wake

as the jet was towed along the tank. Another advantage of this arrange¬

ment (saltwater jet into freshwater) was that the amount of salt required

to produce density differences was much less than it would have been for

a freshwater jet discharged into a saltwater tank.

The density differences for the jet discharge and for the ambient

fluid stratification were produced by using aqueous solutions of sodium

chloride. Temperatures for all fluids in the experiments were generally
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in the range of 23° ± 2°C and density variations caused by temperature

differences were negligible with respect to the variation caused by

salt concentration. The fluid densities were measured with a Troemer

Model S-100 specific gravity chain balance which was capable of

measuring to the nearest 0.0001 g/mJl. Specific gravities were measured

at the ambient temperature of the fluid, which directly considered any

variations in density due to temperature differences between different

fluids.

The experiments were performed with the jets discharging into the

towing tank which was filled to a depth of approximately 55 cm. The jet

discharge structure consisted of a lucite box approximately 8 cm on a

side with an orifice plate mounted to the bottom. A photograph and

schematic of the box and orifice plate is presented in Fig. 4.1. The

discharge box was filled with a fibrous material to ensure uniformity

of flow from the sharp-edged orifice. The jet exit diameter was taken

as 0.8 of the actual orifice diameter to allow for jet contraction.

No direct measurements of the jet contraction were made. Different

orifice plates with diameters of 0.25, 0.50, 1.00, and 1.25 cm were

used in the experimental investigation, yielding jet diameters of 0.2,

0.4, 0.8, and 1.0 cm, respectively. The discharge box was positioned

so that the bottom of the orifice plate just touched the water surface

in the towing tank.

The discharge through the box was provided from a supply reservoir

to a constant head tank, as shown schematically in Fig. 4.2. The flow

was metered through a Fischer-Porter precision bore flow meter (tube no.
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Fig. 4.1 Photograph and schematic of jet discharge box.



Fig.4.2Schematicofjetdischargesystem.
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FP-y"27-G-10/77) with a discharge range of approximately 4-55 mil/sec.
The jet Reynolds numbers (R =V.D/v) were in the r^nge of 500 to

® J

13,600 for the experimental investigation. These jets were observed

to be turbulent from the jet exit in all cases. Some flow visualiza¬

tion experiments were performed with Reynolds numbers as low as 240 and

the jets at the lowest Reynolds numbers were still turbulent. Hewett,

et al. (1971) measured jet trajectories for buoyant jets with Reynolds

numbers in the range of 156 - 573 and noticed no variations in the

trajectories for the different jets. Since the lowest Reynolds number

considered in this study (500) was substantially higher than HewettTs

lowest value of 156, it was assumed that any effects due to Reynolds

number effects could be neglected.

The jet box was attached to a carriage which was towed along the

flume at a constant velocity. The carriage was designed such that the

horizontal position of the jet source could be varied with respect to

a fixed measurement system. A schematic of the towing apparatus is

given in Fig. 4.3. The carriage was propelled by a cable which was

driven by a pulley on a DC motor. The towing velocity was regulated by

a Minarik speed control and could be varied over a range of 0.75-35

cm/sec. The carriage speed was determined by measuring the time of

travel over a distance of 3.38 m along the tank. The timer was actuated

by two microswitches and gave times to the nearest 0.1 seconds (approxi¬

mately 1% of the least time). The towing velocities for successive

operations at the same speed setting were reproducible to within

approximately 1-2% for most experiments with a maximum variation of
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Fig.A.3Schematicoftowingapparatus.
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approximately 5%.

4.2.2 Density Stratification

Linear density stratifications were produced with sodium

chloride to avoid any possible double diffusion effects which might

have occurred with a saltwater jet in a thermally stratified tank. An

additional advantage is that the molecular diffusion of salt is much

slower than for heat, which gives a longer time to conduct experiments

before the stratification decays. The stratifications were created

with a continuous filling procedure, A large mixing tank with a capacity

of about one-half of the towing tank volume (3000 liters) was filled

with tap water and mixed with enough sodium chloride to provide a

density equal to the value required for the ambient fluid at the bottom

of the towing tank, A schematic of the stratification system is given

in Fig. 4.4, The fluid in the mixing tank was kept well-mixed by means

of an air jet discharged at the bottom of the tank. Linear stratifica¬

tions were created by pumping water from the mixing tank to the towing

tank at an arbitrary discharge Q and adding tap water at a rate of Q/2 to

the mixing tank. The result of this procedure is the fluid density

discharged from the mixing tank will decrease linearly with time. The

fluid was pumped to the towing tank through a manifold onto three

floating surface spreaders 35 cm in diameter. The purpose of the

spreaders was to provide horizontal flow of the incoming fluid along

the surface, thereby preventing significant mixing with the heavier

fluid previously discharged. Any mixing that occurred at the surface

was quickly damped out and molecular diffusion tended to smooth out any
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local nonuniformities in the density profile.

The density profile for each stratification produced was determined

from salt concentration measurements made by a conductivity probe of

the type described by Cannon (1974). Fig. 4.5 is a photograph and

schematic of the probe used. This probe was constructed in the W. M.

Keck Hydraulics Laboratory shop and is 60 cm long, allowing it to tra¬

verse the entire depth of the towing tank. A single channel Sanborn

Model 151NK recorder with a 1100AS Carrier Preamplifier was used to

measure the conductivity of the solution. The bridge circuit used in

conjunction with the Sanborn recorder is given schematically in Fig. 4.6.

The recorder output from the conductivity probe was recorded on a strip

chart.

A sample of the salt solution in the mixing tank was taken before

the beginning of each experiment. This was mixed with tap water to

produce reference samples which were 0, 25, 50, 75, and 100 percent by

volume of the salt water. The sample densities were measured on the

Troemer specific gravity balance described previously, and the samples

were used for the calibration of the conductivity probe. A typical

calibration is given in Fig. 4.7. The calibration curve is nonlinear

due to the fact that the electrical conductivity is not linear with

salt concentration. Calibrations were taken before each measurement

and were checked for instrument drift after the completion of the profile

measurement.

The probe was mounted on a point gage to adjust its vertical posi¬

tion to the nearest 0.1 mm. Conductivity measurements were taken at

2.0 or 4.0 cm vertical intervals, depending upon the resolution desired.
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Most density profiles were measured about one-half hour after

filling of the towing tank was completed, a time judged sufficient for

fluid motions in the tank to damp out and for molecular diffusion to

produce a nearly linear density profile. A thin layer at the water

surface was relatively well-mixed because of a convection cell set up

at the free surface. The thickness of this layer increased with time

as shown in Fig. 4.8 for density profiles taken one-half and six hours

after filling of the tank for a typical density stratification. The

thickness of the mixed layer was typically in the range of 1 - 5 cm.

Some temperature profiles were measured along with the conductivity

measurements to observe any temperature effects on the density structure.

Temperatures were determined with a Victory Engineering Company Model

No. 32A1 thermistor. The thermistor was calibrated by immersing in

water baths of known temperatures and observing the thermistor resistance

on a Hewlett-Packard Model 34702A digital multimeter. The thermistor

was mounted on the point gage with the conductivity probe and the

resistance at each vertical position was noted. Corrections to the

density profiles were made assuming that the thermal expansion coeffi¬

cient was the same as that of fresh water. A typical temperature-

corrected density profile is compared to the corresponding uncorrected

profile in Fig. 4.9 and indicates that the only major difference is that

a slightly thicker well-mixed layer exists than indicated by conductivity

measurements alone.

Tests were also performed to observe the effect of the jet discharge

on the stratification. This was done since it was desirable to perform
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Fig.4.8Densityprofilestodemonstratetheincreaseinthicknessofthesurfacemixed-layerwithtime.



Fig.4.9Temperature-correcteddensityprofile.
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more than one experiment per stratification due to the time involved in

setting up the stratification (generally four to five hours). Buoyant

jets with an initial density difference of approximately 0.03 g/mJZ. were

discharged at approximately 10 mi/sec while being towed at a speed of

2 cm/sec. Density profiles were measured prior to any jet discharges

and again after several runs were completed. Fig. 4.10 indicates that
_2

for a fairly strong stratification (e = 0.22 sec ), the density struc¬

ture was relatively undisturbed even after thirty discharges were made.

Fig. 4.11 indicates, however, that for a relatively weaker stratification
_2

(e = 0.04 sec ) the density profile was affected by four runs, and was

significantly altered from -a linear profile by four more. The change in

the density structure is apparently due to the salt added by the buoyant

jet and is not due to the jet turbulence. These experiments were per¬

formed in fairly rapid succession and there was insufficient time for

molecular diffusion to smooth out the nonuniformity in the density

profile. Thus, it was judged that a sufficient length of time should

elapse between experiments and that only a few experiments could be

performed for relatively weaker stratifications.

4.2.3 Photographic Equipment and Technique

Flow visualization and preliminary estimates of buoyant jet

behavior were obtained by analyzing photographs taken as the jet was

towed past a stationary camera. The photographs were taken at a given

section of the towing tank with fiduciary marks taped on the glass walls

as indicators of various horizontal and vertical positions. Photographs

were taken with a 35 mm single-lens-reflex camera using either Kodak
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Fig.4.10Effectofjetdischargeondensitystructureforarelativelystrongstratification.
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Fig.A.11Effectofjetdischargeondensitystructureforarelativelyweakstratification.
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High-Contrast Copy or Kodak Photomicrography Monochrome film. The jet

properties were measured from enlargements made from the negatives.

The marks on the flume walls appearing in the enlargements were used to

scale the dimensions for a coordinate system with its origin at the jet

source. The length scale for the coordinate system was determined by

considering the reference locations to be halfway between the corres¬

ponding marks on the front and back of the tank, as indicated in Fig.

4.12a. The outline of the jet was sketched on tracing paper as in Fig.

4.12b and the jet trajectory was taken as the smooth curve visually

drawn halfway between the jet boundaries. Equilibrium heights of rise

of jets in a stratified fluid were determined in a similar manner with

the height of rise defined as the midpoint of the dye layer.

4.2.4 Fluorometer and Associated Apparatus

The concentration measurements for the examination of jet

trajectories and dilutions in an unstratified crossflow were made using

fluorescent dye, Rhodamine B Extra, as a tracer in the jet fluid. The

general procedure was to withdraw samples of the fluid in the tank at

fixed locations with respect to the jet source and to determine the

relative concentration of jet fluid at those points by fluorometric

analysis. Fluid samples were obtained with a suction-type sampling

system similar to that used by Prych (1970). This system consisted of

a rake of seven probes, a pressure box with test tubes for collection

of the samples, a vacuum pump, and a control valve. Fig. 4.13 is a

schematic of the sampling system.

The sampling rake consisted of seven L-shaped tubes and a bracket
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as shown in the photograph in Fig. 4.14. The stainless steel tubes had

a 3.18 mm outside diameter and a 1.78 ram inside diameter. This diameter

of tubing was selected so that a 15 mil sample could be withdrawn in a

length of 6 m if the sampling velocity was equal to the towing velocity.

The bracket was clamped to a horizontal bar which could be adjusted for

any vertical placement of the probes. The vertical spacing between

probes in the bracket was adjustable.

Samples were collected in 35 m£ test tubes in the lucite pressure

box. The test tubes were filled through nipples of stainless steel

tubing in the top of the box which were connected to the probes with

vinyl tubing. The pressure in the box could be made positive or negative

from either "a compressed air source or a vacuum source by adjustment of

a three-way valve. The vacuum source consisted of a 20 liter reservoir

evacuated by a vacuum pump. A needle valve was used to control the

intake rate such that the inflow velocity into the tubes was nearly the

same as the towing velocity. Since the length of tubing in all of the

probes was not equal, the inside diameters of the nipples in the top of

the pressure box were varied until test tubes filled in the same amount

of time.

The sample procedure consisted of first switching on the compressed

air source and purging the lines of any residual fluid. When the

carriage was moving forward and the jet source was discharging the

vacuum was applied and fluid was drawn up into the test tubes. At the

end of the experiment, the compressed air source was again applied and

the lines purged of fluid.

There was some initial difficulty with residual chlorine in the



Fig. 4.14 Photograph of sampling rake.
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towing tank water oxidizing the organic dye resulting in erroneous

concentration measurements. This problem was corrected by adding a

reducing agent, sodium sulfite (Na^SO^), to the tank water to react with
the chlorine or other oxidizing agents that were present.

The fluid samples were analyzed in a G. K. Turner Associates

Model 111 fluorometer to determine the relative concentrations of

fluorescent dye in the samples. Filters that were provided with the

instrument to improve the measurements of fluorescence from Rhodamine

dye were used. The output from the fluorometer was read from a rotating

dial with a scale from 0 to 100. The dial was adjusted to give a zero

reading when a sample of the ambient water from the towing tank was

placed in the fluorometer. The fluorometer output is essentially linear

for the low dye concentrations considered (10 ^ g/m£ or less) and only

one reference sample needed to be considered. This was obtained by

taking a sample of the jet fluid and diluting it with ambient water

from the towing tank. The dilution was made such that the dye concentra¬

tion in the reference sample was approximately the same as the highest

concentration of the samples to be analyzed, and generally involved a

dilution Sg between 20 and 100 to 1. The output of the reference
sample was then noted and the dilution of each fluid sample was deter¬

mined by noting its respective reading R and computing the ratio
s

s

where c is the dye concentration measured at any point.



98

4.2.5 Light Probe and Associated Apparatus

A new in-situ measurement system was developed to make

concentration measurements for the portion of the investigation involving

density stratification. The basic measurement system was based on the

attenuation of light by dye present in the jet fluid. The probe

consisted of a device to pass light across a small gap on the order of

3 mm within the jet and a photodetector to determine the amount of light

passing from a light source through the sample volume. By relating the

light attenuation to the amount of dye in the sample volume, instan¬

taneous in-situ measurements of jet dilution could be obtained.

The light source was a Spectra Physics Model 162-2 argon ion laser

with an adjustable power output and a stabilized power output to within

± 0.5%. This capability was desirable since other alternating current

light sources tested did not give uniform light output with time. The

laser was operated at a wavelength of 514.5 nm. Light from the laser

beam was passed through a 0.76 mm optical fiber, across a gap of

approximately 3 mm to another similar optical fiber which led to a

photodetector as shown schematically in Fig. 4.15. The fibers were

enclosed in a probe constructed of stainless steel tubing which is shown

in the photograph in Fig. 4.16. Precise alignment of the fiber tips

was not required since the laser beam was no longer coherent after

passing through the optical fiber. The effect of any tip misalignment

was automatically accounted for in the probe calibration. The photo¬

detector was an EG&G PV-100A photovoltaic photodiode with an operational-

amplifier circuit as shown in Fig. 4.17.
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SAMPLE VOLUME

Fig. 4.15 Schematic of light probe.
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Fig. 4.16 Photograph of light probe.
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Fig.4.17Operationalamplifiercircuitusedwiththephotodiode.
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An additional amplifier, constructed to obtain the logarithm of

the voltage signal from the photodiode-operational-amplifier unit was

designed and constructed by the Electrical Engineering Department at

California Institute of Technology; a circuit diagram of the amplifier

is given in Fig. 4.18. This amplifier was constructed in an attempt to

linearize the relation between the dye concentration and output voltage

since the attenuation of light in a fluid medium follows Beer's law

(see Wood (1934)) to a first approximation:

r -r ~ac 1 i II = I e or c log —
o a el

o

Here I is light intensity, I is the original light intensity, a is an

attenuation constant, and c is the concentration of dye or other light

adsorbing material. Since the photodiode output was not linear with

light intensity over the entire range, the logarithmic amplifier only

partially linearized the output.

The output from the logarithmic amplifier was recorded by an

analog-to-digital recorder (Digital Data Systems, series 1103) which

is described in more detail by Roberts (1977). In order to reduce the

output impedance of the logarithmic-amplifier to a level compatible

with the input impedance required by the A/D recorder, the voltage

follower circuit shown in Fig. 4.19 was used between the amplifier and

the recorder. The output from the A/D recorder was stored on magnetic

tape in a format compatible with the IBM 370/158 computer. The recorded

information was later retrieved by the computer with the use of pre¬

existing subroutines.
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Fig. 4.19 Voltage follower circuit to reduce the output
impedance of the logarithmic amplifier.
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Two different types of dye were used during the course of the

experiments. It was necessary to select a dye that absorbed light at

the wavelength generated by the laser and an additional consideration

related to the possibility of performing more than one experiment for

each density stratification. Approximately one liter of liquid swimming

pool chlorine (10% sodium hypochlorite solution) was added to the mixing

tank while the towing tank was being stratified. This served to oxidize

the dye added to the towing tank from a jet discharge which allowed

several experiments to be performed without residual dye from previous

experiments affecting the results. It was desirable that the chlorine

oxidize the dye over a time of approximately one-half hour but not

substantially less because the concentration measurements might be

influenced if the dye deteriorated too rapidly. Red Extra Concentrate

Powder A-3-G-7 produced by the 7-K Color Corporation was initially used

but it appeared that the dye was oxidized too rapidly and also left a

brown residue in the flume. Later experiments were performed with

Rhodamine B Extra dye which gave better results for the intended use.

The probe was calibrated by obtaining a sample of the jet fluid

which had been previously mixed with dye to some arbitrary concentration.

The sample was diluted with tap water to produce several reference

samples with relative dye concentrations in the range of 0.1 to 0.0001.

Sodium sulfite was added to prevent oxidation of the dye. Calibrations

were obtained by immersing the light probe into each of the reference

samples and obtaining a 20 second record of the photodiode output on

the A/D recorder. The relative concentration of the reference sample
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was recorded as header information on the data tape recorder. The

calibration curve for each set of experiments was then calculated by

the IBM 370/158 computer. Seven or eight reference samples were used

for each calibration and a curve was fitted to the negative logarithm of

the sample concentrations and the output from the logarithmic amplir-

fier. Curves from linear to fifth order were fitted to one set of

samples in a least-squares maimer to examine accuracy of fit. The

resulting curves are indicated in Fig. 4.20 with the 4th and 5th order

curves not plotted since they essentially correspond to the 3rd order

curve. A 3rd order polynomial was selected as adequate for future

calibrations on the basis of these results.

An additional test was performed to observe changes in the probe

calibration with time. Table 4.1 presents the results of this observa¬

tion for the range of relative dye concentrations measured in any jet

in this investigation. Here c/C is the concentration of the reference
o

sample relative to the value in the jet discharge. There was some

instrument drift at very high relative concentrations (on the order of

0.3 to 1.0) but this was not considered since it was outside the range

of relative concentrations measured in this study. Since it was diffi¬

cult to calibrate the probe during a set of experiments, it was concluded

that the change in the calibration was within acceptable limits and only

one calibration need be performed at the beginning of a day's experiments.

A device on the principle of a cam was constructed to raise and

lower the probe through the jet at a fixed horizontal position relative

to the jet discharge orifice (i.e., the probe was also towed through the
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Table 4,1 Results of observations of drift of
light probe calibration with time.

\ Output
Hour

c/Co\ , 1 2 3 4 5
(Volts'

0 5.49' 5.49 5.48 5.48 5.48
0.00083 5.49 5.48 5.47 — 5.47
0.0028 5.46 5.45 5.43 5.42 5.42
0.0083 5.32 5.31 5.31 5.31 5.31
0.0333 4.61 4.61 4.61 4.61 4.61
0.10 2.94 2.93 2.93 2.93 2.92

the following relative concentrations were outside
of the range of experimental measurements

0.333 1.78 1.55 1.50 1.55 1.58
1.0 1.58 1.51 1.50 1.41 1.41

tank), This device connected the probe movement to the towing mechanism

such that the probe performed the same number of passes through the jet

for an experiment regardless of towing velocity. The probe movement is

indicated schematically in Fig. 4.21. The probe made one complete cycle

for every 61 cm of carriage travel or approximately 28 passes were made

through every vertical position for each experiment. The horizontal and
* t SLzzjsd^A

LIGHT PROBE
MOVEMENT OF
PROBE TIP

\
/ \

\

//AW //AW

Fig. 4.21 Schematic of probe movement for an experiment.



109

vertical positions of the probe relative to the jet exit were adjustable

and the length of the vertical sweep could be varied between 10 and 30

cm. The vertical position of the probe was monitored by means of a

resistance potentiometer which was connected to the probe such that the

resistance varied with vertical probe position. A 7.5 volt battery was

connected to the potentiometer and the signal was recorded on the A/D

recorder simultaneously with the output from the probe. A calibration

was made for the probe position as a function of resistance across the

potentiometer by setting the probe at several known vertical positions,

the values of which were recorded as header data, and recording the

corresponding voltage outputs on the A/D recorder. A calibration curve

such as that given in Fig. 4.22 was generated by the computer fitting

of a least squares straight line to the calibration points. A typical

magnetic tape record thus consisted of: (1) an initial calibra¬

tion of the light probe; (.2) a calibration for the position sensor, and

(3) a run in which the outputs of the position sensor and the light

probe were recorded simultaneously. The second two sets of data were

recorded for each additional experiment.

Several tests were performed to observe the characteristics of the

light probe. The response time of the probe was determined by plunging

the probe into a solution of dyed water while recording the instrument

response on the A/D recorder at a rate of 1000 samples/sec. The output

frot these tests indicated that the voltage dropped from its original

level to its final value within the time for two samples to be recorded

indicating a response time on the order of 0.001 seconds or less.



VERTICALPOSITION(cm)
Fig.4.22Calibrationcurveforpositionsensor.
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Another measurement was made to observe any effect due to the motion of

the apparatus. One seven minute sample was obtained with the entire

apparatus stationary and was compared to a similar sample obtained with

the system in operation. The average stationary voltage was 2.684 volts

with a standard deviation of 0.074 volts compared to values of 2.680

and 0.080 volts when the system was in motion. It was concluded that

the motion had a relatively minor effect on the operation of the light

probe.

An estimate of the sample rate required to observe the turbulent

fluctuations was determined by connecting the probe output to a Hewlett-

Packard Model 3580A spectrum analyzer and obtaining a frequency spectrum

of the signal fluctuations at an arbitrary location within a jet flow.

The output of the spectrum analyzer was displayed on an X-Y plotter

and a sample output is given in Fig. 4.23. It was estimated from this

that a sample rate of 20 samples/sec was sufficient to observe the

major components of the motion.

An estimate of the minimum length of sample record necessary to

determine an adequate sample mean was obtained by following the procedure

discussed by Kotsovinos CL975), An experiment was performed with the

light probe at a fixed position with respect to the jet source and a

400 sec sample was recorded at a rate of 20 samples/sec. This record

was subdivided into samples of a given interval such as 5 sec. The

average voltage of each of these subsets was computed and the standard

deviation of all of the sample averages was calculated. This informa¬

tion is presented in Fig. 4.24 for several time intervals between 5
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and 60 sec. No calibration was taken to correlate the output voltage

with dye concentration but the calibration in Fig. 4.20 was used to

estimate the sample error for the same output voltage. For example, a

10 sec sample with a 0.065 volt standard deviation would have on the

order of a 5% standard deviation for the relative concentration corres¬

ponding to an output of 3.28 volts. It was decided that a 10 sec

sample was fairly adequate to obtain an estimate of the average con¬

centration at a point.

The total sample time for an experiment was limited by the length

of the flume and the towing velocity. For example, a typical towing

velocity of 2 cm/sec indicates a sample time on the order of 400 sec

for the 8 m of sampling distance in the tank. It was decided to divide

the vertical distance covered by the probe into 25 cells of equal thick¬

ness and to designate all signals generated within a particular cell as

belonging to one vertical position. For a total sample time of 400

seconds, this provided a sample time of approximately 16 seconds for

each cell. This would indicate an error in determining the sample

mean of less than 5% if the results above are valid.

One experiment was made to test the system by repeating an experi¬

ment which had been performed previously for a buoyant jet in an un-

stratified crossflow. The earlier results had been obtained by the

fluorometric method described previously, A comparison of the profiles

measured by the two methods is given in Fig. 4.25 and indicates good

agreement between the two measurements.

The system was then used to measure maximum heights of rise and
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Fig.4.25Comparisonofmeasurementsmadewiththelightprobeandthesuctionsamplingsystem.
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associated dilutions for stratified flows. Before an experiment was

made, the approximate vertical position and the horizontal location of

the maximum height of rise needed to be determined. This was accomplished

by placing the probe at some arbitrary position with respect to the

source to establish a camera reference and beginning the experiment with

the conditions to be modeled, A Polaroid photograph was taken of the

resulting flow pattern which indicated the relative position of the

probe with respect to the location of the maximum height of rise. This

was used to adjust the probe to the correct horizontal and vertical

positions. The length of the vertical sweep was also adjusted to the

approximate width of the jet. Then the actual experiment was performed

and the data collected.

4.3 Discussion of Experimental Error

4.3.1 Errors in Measurement of Flow Variables

There were several sources of error in the experimental

investigation due to the large number of experimental variables that

were considered. Table 4.2 presents a summary of the precision of the

measurements of flow variables and probe coordinates. The table also

presents the range of the experimental variables for the entire investi¬

gation and the estimated probable error (±.707a where a is the standard

deviation) associated with the measurement of these variables. No

systematic analysis of the error associated with each measurement was

undertaken since these errors are apparently small with respect to the

errors associated with the concentration measurements.
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Table 4.2 Summary of the precision of the experimental
measurements and the estimated probable error.

Typical Estimated

Measurement Precision Experimental
Values

Probable
Error (± %)

discharge Q 0.1 m£/sec 4-50 m£/sec 2-5

density difference ~0 (nonbuoyant —

Ap 0.0001 g/m£
jets)

^.015-.110 2

Po (buoyancy-driven
flows)

towing velocity
(towing time 0.01 sec 10-350 sec <2

over 3.38 m)

stratification —3 -.o _o

parameter e 2 x 10 sec 0.035-.25 sec 1-5

dp*
Z&. a
p dz

o

horizontal probe
coordinate 0.1 cm 2-45 cm 0.5-10

vertical probe
coordinate 0.1 cm 8-40 cm 0.5-2.5

There was an additional error introduced into the measurement of

the jet discharge as. the flowmeter used to measure the discharge tended

to become clogged from impurities in the jet fluid. The flow rate

through the meter then became less than indicated by the meter setting,

especially at lower discharges. It is possible that errors in flow

measurement on the order of 10-15% may have resulted in some instances,

but this was not a common occurrence. The error due to this factor
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was essentially negligible at discharges greater than approximately

20 mJL/sec and was only appreciable for flow rates less than about

10 mi/sec- Since most of the experiments to measure maximum heights of

rise were performed at low jet discharges, these measurements may have

been influenced somewhat by this effect. The other types of experiments

were generally performed at higher discharges and should not have errors

in the measurement of the jet discharge greater than approximately ± 5%.

4.3.2 Error Associated with the Measurement of Concentration

Tracer concentrations for the unstratified experiments were

measured with the fluorometer, while the light probe was used for the

measurements in the stratified experiments. The errors for each type

of measurement will be discussed separately below.

The magnitude of the error associated with the use of the fluorom¬

eter to measure concentrations for the nonstratified experiments was .

evaluated by preparing samples of different dilutions from a quantity

of dyed fluid. Several specimens from each of these samples were

analyzed in the fluorometer and the average and standard deviation of

the specimens for each sample were computed. The standard deviations

varied from 2-8% of the average reading for the different samples which

indicates probable errors on the order of 5-10% for the determination

of relative concentration with the fluorometer.

The major source of error associated with the use of the light

probe to measure jet dilutions was due to the limited length of sample

time which was controlled by the length of the towing tank arid the

towing velocity. This does not indicate a fundamental inaccuracy of
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the measurement system but is a result of the experimental procedure

and the method of data analysis. The magnitude of the instrument error

is assumed to be much less than the sampling error for relative concen¬

trations of the magnitude measured in this investigation. For very low

relative concentrations (less than approximately 0.001), the instrument

error becomes significant but since most average concentrations measured

were much greater than this amount, the instrument error is estimated

to be less than 5%.

Experiments could only be performed for a limited range of towing

velocities. A very small towing velocity would result in a nearly

vertical jet and an incorrect measure of the maximum height of rise can

occur as indicated schematically in Fig. 4.26. The maximum relative

n

VERTICAL SWEEP
OF PROBE

Fig. 4.26 Schematic of possible error involved in measuring
the maximum height of rise in a very weak cross current.
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concentration measured in this instance does not coincide with the

maximum height of rise since the dilution along the jet axis provides

for a lower concentration than would occur at some distance from the

jet axis for a smaller vertical rise.

For the experiments with larger towing velocities, the mean

concentrations were subject to larger sampling errors due to the very

short length of record. For example, one experiment with a towing

velocity of 3,5 cm/sec had only 59 instantaneous concentration measure¬

ments for one vertical location, representing only three seconds of

total sampling time. Extrapolation of the results from Fig. 4.24

would indicate a probable error of up to 20% for a sample that short.

However, the sampling error associated with a discontinuous

sample (since measurements were made at that location for each of the

approximately 28 sweeps made with the probe) should be somewhat less

than a continuous record of the same total length. Sampling errors of

this type are believed to be mainly responsible for the scatter in the

concentration profiles measured with the light probe that are presented

in the next chapter. The greatest errors are for the far-field flows

where the towing velocities are highest and the sample lengths are

correspondingly shorter.

There is probably a greater error associated with the

concentration measurements than with the determination of the

maximum height of rise from these measurements. The indicated

height of rise would probably be within one or two vertical positions

of the actual height of rise (on the order of 10% error) since the

shape of the concentration profile makes it unlikely that the apparent
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maximum concentration will be a large distance from the true maximum,

4.3.3 Errors in the Measurement of Trajectories and
Heights of Rise

Error may have been introduced into the determination of

the jet trajectories from the photographs since a photograph is

essentially an instantaneous representation of a turbulent flow. It

is necessary to obtain an exposure over a longer period of time to

provide a more nearly correct view of the mean trajectory. An instan¬

taneous representation of a typical jet is shown in Fig. 4.27. The

outside or longer boundary of the jet was always observed to be much

more irregular than the inner boundary. It was assumed that a time

exposure photograph of the jet would indicate boundaries as depicted

Fig. 4.27 Schematic of instantaneous view of a jet.
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in the figure. Since the jet trajectory was taken as a smooth curve,

it is felt that this removed a major portion of the uncertainty from

the determination of the jet trajectory and that errors associated with

the measurement of jet trajectories were small. The major errors were

probably for the measurement of very small horizontal and vertical dis¬

tances where the precision was on the order of 10% of the distances

measured.

The accuracy of the vertical position measurements that were made

with the suction probe or with the light probe was limited by the

instrument resolution. For example, the suction probes were spaced at

1 cm vertical intervals which can only give the vertical jet position

to the nearest 0.5 cm. For a 20 cm vertical rise this indicates an

uncertainty of 2.5%, The light probe had a somewhat better resolution

depending on the vertical sweep. The major errors were probably caused

by inaccuracies in the concentration measurements and are estimated

to be on the order of 5-10% for most cases.

A source of error in the stratified flow experiments was the

presence of the mixed layer at the ambient water surface. It is diffi¬

cult to assess the effect of this phenomenon quantitatively, but it

is possible to make a general observation of the influence on the

experimental results. The flow configuration is depicted in Fig. 4.28.

The influence of the uniform density layer at the surface will result

in the entrainment of relatively more dense fluid than would occur for

an idealized linear density profile. This will result in a somewhat

greater maximum height of rise than anticipated. For a large maximum
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Fig. 4.28 Schematic indicating effect of surface
mixed layer on height of rise.

height of rise, this effect should be relatively minor as it occurs

over a lesser portion of the total flow. When the maximum height of

rise is not significantly greater than the thickness of the surface

mixed layer, the effect due to this phenomena should be relatively

greater. It is assumed that the effect of this phenomena on the

maximum height of rise was small compared to the other sources of

error in the height of rise measurements.

4.3.4 Summary of Estimated Experimental Error

The estimated probable errors for each type of measurement

are summarized in Table 4.3.
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Table 4.3 Estimated probable errors for the
measurement of various parameters.

Parameter Estimated Probable Error

Trajectories
(from photographs)

< 5%

Trajectories
(from concentration
measurements)

5%

Dilutions

(with fluorometer)
5-10%

Heights of rise
(from concentration
measurements)

5-10%

Dilutions
(with light probe)

5-20% (depending
upon length
of sample)

£b 5-10%

I
m

10%

< 5%

i
a

< 5%
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CHAPTER 5

PRESENTATION AND DISCUSSION OF EXPERIMENTAL RESULTS

5.1 Experiments in an Unstratified Crossflow

5.1.1 Trajectory Measurements

Two methods were used to obtain estimates of buoyant jet

trajectories in an unstratified crossflow. Several photographs were

taken of various jets to obtain preliminary estimates of jet behavior.

These experiments could be performed quickly, so it was possible to do

experiments over a wide range of jet and ambient flow conditions. The

other method of measuring jet trajectories was with the concentration

measurement system involving the fluorometer. These experiments were

intended to supplement experimental measurements made previously by

Fan (1967). The combined experimental results were sufficient to

observe buoyant jet trajectories for each of the flow regimes described

in the analysis of Chapter 3, Experimental conditions for all experi¬

ments performed in the present investigation are presented in Appendix

A. Information regarding jet trajectories and dilutions are included

with the listing of the basic experimental parameters including the

jet discharge, the jet diameter, the density difference, and the cross-

flow velocity.

Photographs of 60 buoyant jet flows were analyzed to provide

information on jet trajectories. These experiments were performed for

a wide range of jet parameters and crossflow velocities so that

sufficient information could be obtained for each flow regime
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described in the analysis. The jet trajectories, determined by

the method described in Chapter 4, were taken as the smooth curve

visually drawn halfway between the upper and lower dye boundaries of

the jet. The trajectories were scaled from the fiduciary marks on

the photographs and were plotted on logarithmic paper so that the

trajectory slope could be easily determined. For example, if the

trajectory plot indicated a slope of one—third when plotted on

logarithmic paper, the flow was assumed to correspond to the momentum-

dominated far-field. The horizontal origin (x = 0) was taken at the

center of the jet orifice while the vertical origin (z= 0) was defined

as the upper side of the orifice plate.

A photograph that clearly corresponds to the definition of a

near-field flow (a nearly vertically rising jet) is given in Fig. 5.1

along with the corresponding trajectory plot. The slope of three-

fourths for the trajectory can be taken as an indication that this

particular flow corresponds to the bdnf. A similar photograph and

trajectory plot for a jet that is clearly in the far-field for the

major portion of the jet trajectory is presented in Fig. 5.2. The

trajectory slope of one-third indicates that this jet corresponds to

the momentum-dominated far-field regime.

Some of the more interesting trajectory plots and the corres¬

ponding photographs are presented in Figs. 5.3 and 5.4. Fig. 5.3 is

a case where % /£, = .16 and the jet trajectory clearly goes through
m b

the mdnf (1/2 slope), the bdnf (3/4 slope) and the bdff (2/3 slope)

over the portion of the jet trajectory covered in the photograph.
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This trajectory sequence is to be expected for flows with I /£., < 1 and
m b

indicates that the asymptotic solutions suggested by the analysis are

valid, A further confirmation can be seen from Fig, 5.4 which is a

trajectory plot for I /Z. = 3.6. The slopes of 1/2,1/3, and 2/3
m b

correspond to the results predicted for the mdnf, the mdff, and the

bdff respectively, which would be the expected trajectory sequence for

I /JL > 1.
m b

The collective data from all of the experiments were plotted in non-

dimensional form according to the various trajectory relations pre¬

dicted by the analysis. Each individual trajectory plot was examined

to observe the apparent slopes for that trajectory. When a portion of

the trajectory appeared to be best described by a slope of 1/2, for

instance, the results were assumed to correspond to the mdnf. The

values of the length scales were also considered in the interpreta¬

tion of the data. Trajectories for several different buoyant jets are

presented in Figs. 5.5-5.7. Fig. 5.5 presents the trajectories for

momentum-dominated jets while Figs. 5.6 and 5.7 are the results for the

buoyancy-dominated near- and far-fields, respectively. A line with the

slope appropriate for the particular flow regime is also indicated in

each figure.

A fairly obvious' observation from the examination of these figures

is that while individual trajectories indicate the correct slopes, the

collective data do not collapse onto a single curve which would be

expected from the development of the asymptotic models. However, this

observation can be expected from dimensional analysis of the entire
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problem. The trajectory relations were predicted for the limiting cases

where there was only one jet variable characterizing a particular jet.

In fact, there are three independent variables characterizing any jet,

even though one variable may have a dominating influence on the flow

behavior. Dimensional analysis thus implies that the trajectory for

a general buoyant jet can be expressed in the following form:

Even though the trajectory relation corresponding to any one of the asymp¬

totic cases presented in Chapter 3 may be valid, it can be anticipated

that the effect of the other jet variables will be observed in the value

of the trajectory coefficient. For example, trajectories corresponding

to the bdnf will exhibit a 3/4 slope, but the coefficient may depend

upon the initial volume and momentum fluxes:

When the results for the different trajectory plots are analyzed

on the basis of this reasoning, the explanation for the variation in

the collective data is apparent. The values for the various trajec¬

tory coefficients are given in Figs, 5.8-5.11 as a function of the

jet variables for which there appeared to be a correlation. The

trajectory coefficients were taken as the values which described

a line of the proper slope visually fitted to each experiment (for

example, if a trajectory plot indicated that a slope of 2/3 described

(5.1)

(5.2)
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the data, the coefficient Cr was defined as the value for a line with6

2/3 slope that appeared to fit the data best).

Each of the flow regimes indicated a dependence of the trajectory

coefficient on the initial volume flux in the form of the non-dimensional

ratio for the momentum-dominated trajectories and for the
y m Q b

buoyancy-dominated regimes. The general trend is that the value of

the coefficient decreases with increasing values of or
Q m Q b

Although the figures indicate that in some instances, the coefficients

appear to approach a constant value for small relative values of

there are insufficient data to verify this observation.

There is an additional variation for the trajectory coefficient Cg
for the buoyancy-dominated far-field with the initial momentum flux in

the form of the ratio I / &,. The data in Fig. 5.11 are presented in an
m b

alternate manner in Fig. 5.12 which clearly indicates the variation

with I /I, . The trend is that the value of the coefficient increases
m b

with increasing I /I, for ln/l, constant. The values for C, for all
m b Q b o

experiments ranged from approximately 0.7-2.7. This is a significant

variation, as all previous analyses (e.g., Slawson and Csanady (1967),

etc.) that correspond to the buoyancy-dominated far-field consider

Gg to be invariant.
Information regarding jet trajectories was also obtained from

the concentration measurements made with the fluorometer and associated

apparatus. The results obtained from this portion of the experimental

investigation cannot be compared directly with the trajectories from
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Fig. 5.12 Alternate presentation of variation of .
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the photographs since the definition of the vertical rise of the jet is

not the same for the two experimental methods. The concentration

measurements were primarily intended to supplement the same type of

information obtained in an earlier study by Fan (1967). The majority

of his data were determined to correspond to the two far-field regimes

(mdff and bdff) so most of the measurements made in this portion of

the experimental investigation were intended to examine the near-field

flow regimes more closely.

The trajectory measurements from this study and the earlier one by

Fan are indicated in Figs, 5.13-5,15 for the various flow regimes.

Each data point was assigned to a particular flow regime on the basis

of the results from the trajectory measurements from the photographs.

This was necessary since it was difficult to determine the trajectory

slope from the limited amount of data for each set of experimental condi¬

tions, The values of the vertical rise z, the horizontal distance x, and

the length scales and were compared to the results indicated

in Figs, 5.5-5.7 and each data point was assigned to the flow regime to

which the values of these variables corresponded. Since the definitions

of the trajectories were different for the two types of measurements,

some error might result in assigning a data point that was near the

transition between flow regimes, but the effect on the overall results

should be negligible.

The interpretation of these experimental results is somewhat more

difficult since there is greater experimental scatter and the experi¬

ments did not cover as wide a range of variables as the experiments for

which the trajectories were measured from the photographs. Figs.
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5.16-5.19 present the average values of the different trajectory coeffi¬

cients as a function of the jet variables. Each data point represents

the average value for all the experiments performed for a given set of

jet and ambient flow conditions. The curves in these figures represent

the shape of the curve for the same coefficient in Figs. 5.8-5.11.

These curves appear to fit the data fairly well for the range of vari¬

ables presented. These values of the trajectory coefficients are approxi¬

mately 20% greater than the corresponding values measured from the

photographs. This is due to the difference in definition of the jet

trajectory in the two cases. These latter trajectory coefficients would

probably be the ones used in applications of the results since the location

of the minimum dilution is likely to be the desired information.

Table 5.1 summarizes the experimental investigations for the

measurements of jet trajectories.

5.1.2 Dilution Measurements

The experimental data from the concentration measurements

described in the preceding section were also used to determine the

dilution within the jet along its trajectory in an unstratified cross-

flow. The experimental results from the study by Fan (1967) are also

included in the presentation of these results. The characteristic

dilution is taken as the minimum value (or maximum concentration) in

the plane of jet symmetry for a given jet cross-section. Fan made

his concentration measurements across a section taken perpendicular

to the jet axis, while the measurements in the present investigation

were obtained for vertical cross-sections of the jet. This difference

would not give substantially different experimental results except

for very low crossflow velocities where the jet is very nearly
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Table 5.1 Summary of trajectory measurements for buoyant
jets in an unstratified crossflow.

Flow

Regime
Trajectory
Relation

Data

Presented
in Figures

Values of
Coefficients Given

in Figures

Momen tum-domina ted
near-field f~"ci(

m ^

( X N
1/2

) 5.5
5.13

5.8
5.16

Momen tum-domina ted
far-field

f X >

^ ^m

1/3

) 5.5
5.13

5.9
5.17

Buoyancy-domina ted
near-field ^-C5<

' X >

< *b >

3/4

) 5.6
5.14

5.10
5.18

Buoyancy-domina ted
far-field

f X N

^b >

2/3

) 5.7
5.15

5.11 or 5.12
5.19

vertically rising.

The experimental data were assigned to the different flow regimes

on the same basis as the trajectory data discussed in the preceding

section. That is, it was determined to which flow regime the (x,z)

coordinates would correspond for the given values of the jet and

ambient flow variables. The results are indicated in Fig. 5.20 for

the two momentum-dominated regimes and in Figs. 5.21 and 5.22 for the

buoyancy-dominated near- and far-fields, respectively. Lines with

the slope indicated by the analysis in Chapter 3 are included in each

figure.
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Z/ib
Fig. 5.21 Characteristic dilution for the buoyancy-dominated

near-field.



Fig. 5.22 Characteristic dilution for the buoyancy-
dominated far-field.
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There is little apparent indication that the values for the

dilution constants depend upon the initial volume flux when the data

are presented in this manner. The data seem to follow a single curve

of the correct slope in all of these figures. However, since there

is a fair amount of experimental scatter and a wide range of experi¬

mental variables was not covered, it is not possible to conclude

definitely that the dilution relations are not affected by the initial

volume flux. The average value of the dilution constant for each flow

regime and the range of jet variables for which it was measured is

presented in Table 5.2. Note that the values of the various constants

are nearly equal for all flow regimes.

5.2 Experiments in a Stratified Crossflow

5,2.1 Trajectory Measurements

A detailed analysis of jet trajectories in a stratified

crossflow was not undertaken because of the large amount of data that

would be required to consider the many possible combinations of experi¬

mental variables. However, a preliminary investigation of the assump¬

tion that the jet trajectory would be relatively unchanged up to the

maximum height of rise was undertaken. Photographs of several buoyant

jets in a stratified crossflow were taken to observe the effect of the

density stratification on the jet trajectories. These photographs were,

analyzed in a manner similar to that described previously for the

unstratified experiments; tracings of the jet outline were obtained

from the photographs and the fiduciary marks were used to scale the

coordinates of the jet. Photographs and tracings of three of these
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Flow Regime
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AverageValue ofConstant Dilution
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Referto Figures

Momentum-dominated near-field
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jets are presented in Figs. 5.23-5.25. The maximum height of rise was

defined for this purpose as the deepest projection (greatest vertical

rise z) of the dye boundary of the jet in the photograph. The trajectory

of a jet in an unstratified crossflow with the same values of - I ,
Q m

and is indicated in each figure. The values of the trajectory coeffi¬

cients used in developing these plots were obtained from Figs. 5.8-5.11.

Fig. 5.23 is a jet that is in the near-field when it reaches its

maximum height of rise. In this particular case, the flow has become

buoyancy-dominated before the point of maximum rise and this result

would correspond to the analysis for the buoyancy-dominated near-field.

Figs. 5.24 and 5.25 are cases where the jets are bent over and in the

far-field before they reach their maximum heights of rise. Fig. 5.24

is a momentum-dominated jet while Fig. 5.25 corresponds to the

buoyancy-dominated far-field.

Each of these figures clearly indicates that the trajectory of

the jet is approximately given by the unstratified trajectory up to

the maximum height of rise. The vertical rise predicted by the un¬

stratified trajectory model deviates from the actual trajectory by

less than 10% at that point. Thus, the use of the model developed

for unstratified flow can be used with reasonable accuracy to predict

jet trajectories in a stratified fluid up to the maximum height of rise.

5.2.2 Measurements of Equilibrium Heights of Rise

The equilibrium height of rise was defined in this

investigation as the position of a buoyant jet in the stratified

towing tank when all motion had ceased after an experiment was
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completed. The equilibrium height of rise is the neutrally buoyant

position of the jet after it mixes with the ambient fluid. Measure¬

ments of equilibrium heights of rise were obtained from photographs

taken of the dyed jet discharge after all motion in the towing tank

appeared to have ceased. The equilibrium height of rise was taken as

the center of the horizontal dye patch in the tank as indicated in the

pho.tograph and schematic in Fig. 5.26.

Several experiments were performed for each stratification.

Liquid swimming pool chlorine was mixed with the fluid in the mixing

tank before the beginning of each stratification. The chlorine

oxidized the organic dye present in the jet discharge so that additional

experiments could be performed without the presence of residual dye

from previous experiments affecting the measurements.

Dilutions were not measured during this phase of the experimental

investigation. After a jet reached its maximum height of rise and

began to approach its equilibrium position, it began to spread rapidly

in the horizontal direction. The presence of the flume walls generally

restricted the horizontal spread and it was assumed that this would

have a significant effect on the jet concentration profile at the

equilibrium height of rise. It is believed that the location of the

equilibrium height of rise was not significantly affected by the wall

effects since this would only prevent further horizontal spread and

would not significantly influence the mean position of the jet. Thus,

the only measurements made at the equilibrium height of rise were the

position measurements from the photographs.
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The results from the measurements of the equilibrium heights of

rise are presented in Fig. 5.27 for momentum-dominated flow and in

Fig. 5.28 for buoyancy-dominated flow in terms of the relations developed

in the analysis. The experimental conditions for each measurement are

given in Appendix A. The experimental results were assigned to these

two figures on the basis of the unstratified trajectory data in Figs.

5.8-5.11. That is, if the values of the length scales ln, I , and £,
q m o

indicated that a jet in an unstratified flow at the same vertical rise

as the equilibrium height of rise would be in a momentum-dominated

regime, then that experiment was assigned to the momentum-dominated

data in Fig. 5.27. This approach may result in an error in assigning

the results from a few experiments where the transition between

momentum- and buoyancy-dominated flow occurs at z » Z^, but it is not
likely to significantly affect the overall results as most experiments

clearly corresponded to one flow regime or the other.

A fair amount of scatter is indicated in these figures. If the

initial jet volume flux is considered as an additional variable as

discussed in Section 5.1.1, it is apparent that much of the scatter

can be attributed to this effect. Figs. 5.29-5.32 present the values

of the coefficients in the equilibrium height of rise relations as a

function of the initial volume flux. The experiments corresponding

to the bdff were for a fairly limited range of the ratio £ /£
m b

(0.13-2.5), so it is not possible to conclude that this ratio affects

the value of the height of rise coefficient. This would be expected on

the basis of the experimental results from the jet trajectories in
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Fig.5.27Equilibriumheightsofriseformomentum-dominatedflow.



Fig.5.28Equilibriumheightsofriseforbuoyancy-dominatedflow.
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unstratified flow and it does appear that the values of the

coefficient in Fig. 5.32 for the experiments where I /1 are

slightly higher than the experiments with I /K < 1.
m b

The experimental data in Figs. 5.29 and 5.31 indicate that the

height of rise for a jet in the near-field* will decrease with in¬

creasing crossflow velocity for the same jet and stratification condi¬

tions. The theoretical considerations imply that the height of rise of

a jet in the near-field will not be affected by the crossflow velocity

U^. However, the results in Figs. 5.29 and 5.31 indicate that the height
of rise coefficient is affected such that the equilibrium height of

rise does decrease with increasing U . If all other parameters are
^ UA* Q A

fixed, increasing the value of U increases the value of -r-1 - — or
l UA3 A \ vj
0 — . Thus, the trend of decreasing height of rise coefficient

implies that decreases with increasing U^. This also can be seen
from a set of experiments in which all conditions were held constant

except the towing velocity. The results are summarized below:

Q = 11.8 mfl,/sec = .108 D = 1.0 cm e - .209 sec"2
po

Run no. 32 31 33 34

UA (cm/sec) 1.19 1.66 1.82 2.72
Z (cm) 37.8 36.3 36.0 31.5

e

All of these experiments were determined to correspond to the buoyancy-

dominated near-field, and the above observation of decreasing Z^ with
increasing is clearly indicated.

The effect of the crossflow velocity for the far-field flows is

even more pronounced since the height of rise relations depend directly
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-1/3
on (Ze~ for both the mdff and the bdff). The additional
dependence on the IJI or ratios increases this effect, since

(J IE Q b

the general trend of decreasing height of rise constant with increasing

IJI or I JI is also observed for the far-field flows.
i Q b

5.2.3 Measurements of Maximum Height of Rise

Estimates of the maximum heights of rise for buoyant jets

in a stratified crossflow were obtained from concentration profiles

measured with the light probe described in Chapter 4. The measurements

made with the light probe consisted of vertical concentration profiles

obtained at the horizontal location of the maximum penetration of the

dyed jet discharge as indicated in Fig. 5.33.

CONCENTRATION
PROFILE

Cm
DEEPEST
PENETRATION OF DYE

Fig. 5.33 Definition sketch of measurements of maximum
height of rise.

The exact horizontal location of this point is somewhat imprecise due

to the fluctuating nature of the turbulent flow. Another difficulty was

that the experimental setup required that the horizontal probe position
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be preset before the beginning of any experiment. The positioning of

the probe was accomplished by performing a test run with the experi¬

mental conditions to be modeled, visually determining the proper

horizontal alignment, and then performing the actual experiment.

The position of the maximum height of rise was defined as the

elevation of the maximum time-average concentration in the vertical

profile measured with the light probe. The concentration profile was

determined as discussed in Chapter 4. The vertical sweep of the light

probe was divided into 25 equally spaced cells and all instantaneous

measurements with vertical positions corresponding to a cell were

combined to form a time-average concentration for the average vertical

position of that cell. The cell with the maximum time-average concen¬

tration was defined as the location of the maximum height of rise.

This procedure was repeated for various jet and ambient conditions

which are summarized in Appendix A.

The results of these measurements are presented in Fig. 5.34 for

the jets that reached their maximum rise while in a momentum-dominated

regime, while Fig. 5.35 presents the data for buoyancy-driven jets.

The data were assigned to these figures on the same basis as the

measurements for equilibrium height of rise which were discussed in

the preceding section. Since the jet trajectories in a stratified fluid

are nearly the same as in an unstratified fluid up to the maximum

height of rise, the use of the unstratified experimental results to

assign a given jet to a particular flow regime is a fairly accurate

approach.



 



Fig.5.35Maximumheightsofriseforbuoyancy-dominatedflow.



182

Scatter in the data similar to that observed in previous experi-

mental results is evident in these figures. Much of this scatter can

be related to the effect of the initial^volume flux as discussed

previously. Figs. 5.36-5.39 indicate the variation of the height of rise

coefficients defined by Table 5.3 as a function of the initial volume
4

flux. The previously observed trend of decreasing values for the various

coefficients with increasing relative values of £ is also observed in all

of these figures. The bdff data were performed for a limited range of

^mf ^b anc* n° e^ect this ratio on the values for the corresponding
coefficient is apparent.

The presentation of the experimental measurements of maximum and

equilibrium heights of rise is summarized in Table 5.3.

Table 5.3 Summary of experimental results presented for the
measurement of maximum and equilibrium heights of rise.

Flow

Regime
Relation

Data
Presented
in Figure

Z Z
e m

Values for
Coefficient
Presented
in Figure

Z Z
e m

Momentum-dominated
near-field •

Z
m

I '
m
H

m

i I

\ r 5.27 5.34 5.29 5.36

Momentum-dominated
far-field

Z
m

I '
m

?-(
' £a

7~
\ m r 5.27 5.34 5.30 5.37

Buoyancy—dominated
near-field

Z
m

V *•<
'

l3.
A )■„ 5.28 5.35 5.31 5.38

Buoyancy-dominated
far-field

Z
m

SL '
b s"(

'

la.
A ^2/3 5.28 5.35 5.32 5.39
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5.2.4 Concentration Measurements

5.2.4.1 Measurements at the maximum height of rise

The concentration measurements described in the

preceding section were also analyzed to observe the characteristic

dilution of a tracer at the maximum height of rise. Instantaneous

concentration measurements were obtained from the output from the light

probe and were analyzed by dividing the vertical probe sweep into 25

cells as described previously. The data for each cell thus consisted

of a number of instantaneous concentration values. The total sample

could then be processed in a number of different way§ depending upon

the information desired.

Several of the experiments were analyzed to determine the minimum

dilution at the maximum height of rise. The minimum dilution (or

maximum concentration, S = C /c) was taken as the minimum time-average
o

value measured in the vertical cross-section which is also the value

used to define the location of the maximum height of rise. Some of

the earlier experiments were apparently affected by the oxidation of

the dye by the chlorine added to the towing tank. This resulted in

apparent dilutions which were on the order of one to two orders of

magnitude larger (lower dye concentrations) than expected. These

experiments were still used for the description of maximum heights of

rise since it was believed that the position of the maximum dye

concentration was not affected although its magnitude was incorrect.

The later experiments using Rhodamine B-Extra dye as a tracer were

assumed to be correct as it took much longer for this dye to be
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oxidized by the chlorine (approximately 45 minutes). The results of

these experiments are presented in Fig. 5.40 for momentum-dominated jets

and in Fig. 5.41 for buoyancy-dominated flows. Since there were only a

few experiments for each flow regime, it was difficult to establish a

value for the constant in the dilution relations presented in Table 3.3.

However, these dilutions can be compared to those for the same vertical

rise in an unstratified flow. The lines in the figures correspond to

the average experimental results for unstratified flow presented in

Table 5.2. The dilutions for the stratified flow experiments follow

these relations to within experimental scatter. This can be taken as

a verification of the assertion that the unstratified flow model can be

used quite adequately up to the maximum height of rise for the predic¬

tion of jet trajectories and dilutions.

Time-average concentration profiles were determined by computing

the average concentration for all of the instantaneous readings for

each vertical cell. Typical concentration profiles for several experi¬

ments are presented in Figs. 5.42 and 5.43. These experiments were

selected to correspond to each of the various flow regimes; run 146 to

the mdnf, run 153 to the mdff, run 095 to the bdnf, and run 144 to the

bdff. The complete experimental variables for these different figures

are presented in Appendix A. The variable r in these figures denotes

vertical distance from the maximum height of rise Z (positive r
m

implies greater vertical distance z), c denotes the average concentra¬

tion for a vertical position and is the maximum value measured for

that profile (or the value at z » Z ). The above data were taken from
in

vertical profiles obtained at the maximum height of rise.
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^rr/^m
Fig. 5.40 Comparison of dilutions at maximum height of rise to

unstratified flow results (momentum-dominated flow).
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^rr/^b
Fig. 5.41 Comparison of dilutions at maximum height of rise to

unstratified flow results (buoyancy-dominated flow).
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The far-field profiles (runs 144 and 153) were measured with

relatively short sample times and indicate the greatest uncertainty

in the sample averages. These experiments have the greatest apparent

scatter in the concentration profiles which is believed to be due to

the lack of adequate sample time.

The shapes of the profiles for the near-field flows (run 146 for

the mdnf and 095 for the bdnf) are not symmetrical which is probably

due to the rapid change in curvature for near-field jets at the maximum

height of rise. The nearly vertically-rising jet changes direction

fairly abruptly at its maximum rise which results in the asymmetric

profile at that point. The far-field flows, which are well bent over

at the maximum rise, tend to have more symmetric concentration profiles.

If the jet width is defined as the vertical distance between the

two locations where c is equal to cm/2, the jet widths in Figs. 5.42
and 5.43 are approximately 0.4, 0.35, 0.4 and 0.42 of the corresponding

value of for experiments 146, 153, 095 and 144 respectively. Thus,

the jet widths are nearly the same for all cases.

The instantaneous concentration measurement for each of the above

experiments were also analyzed in several different ways to examine the

of the instantaneous samples at each vertical position were computed

for each experiment and are presented in Figs. 5.44 and 5.45 normalized

by the concentration C , These figures also indicate that the far-field

flows are more symmetric than the near-field flows. The normalized

r.m.s. values (\Cf2/C ) for the far-field flows (runs 153 and 144)
m

nature of the turbulent fluctuations.
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also have greater maxima than the near-field flows (approximately 1.0 vs.

0.6 for runs 095 and 146). These maxima are located at greater vertical

rises (r positive) than the position of C in all cases.
ni

The maximum and minimum instantaneous concentrations measured at

each vertical location were also determined. The values of the

instantaneous maxima C for the four jet flows are presented in Figs.
max

5.46 and 5.47. The minimum values were essentially zero at all vertical

positions for all four cases and are not indicated in the figures. The

results for runs 144 and 153 are believed to be influenced by the

limited sampling times and may not indicate accurate values for .

It would be expected that a longer sample time might indicate greater

values of C . The near-field flows appear to have instantaneous
max rr

maxima on the order of 1.5 to 2.0 times the time-average maximum

concentration C while the far-field flows indicate somewhat larger
m

values. Even if the very large values observed for run 144 (C /C on
max m

the order of 5) are ignored as instrumental error, the implication is

that instantaneous maxima on the order of 3 to 4 times the time-average

maximum concentration can occur. Kotsovinos (1975) noted instantaneous

maxima on the order of 2.2 C for a two-dimensional jet in a stagnant
m

ambient fluid, so the values noted above would appear to be of the

correct magnitude.

These measurements indicate that the average concentration recorded

at a point is not necessarily a good indicator of the instantaneous

peak values that occur. This may be an important consideration if the

tracer present in a buoyant jet discharge is toxic to organisms present
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in the ambient fluid. The organism can encounter instantaneous peak

concentrations which can be much larger than the time-averaged concen¬

tration. The intermittent nature of the flow will also expose the

organism to rapid rates of change of contaminant concentration.

Intermittency profiles were also computed for each of the jet

flows. The intermittency I was defined as

i-^th
k=l

|l if c'^ 0.001
where L =* \

( 0 if cT < 0.001

where n is the total number of samples for a given vertical position

and cf represents instantaneous concentration values (relative to the

concentration at the-j-et source). The threshold value of 0.001 was

chosen as an estimate of the lowest concentration that could accurately

be measured with the light probe. The intermittency profiles computed

on this basis are presented in Figs. 5,48 and 5.49 for the four experi¬

ments. These results again indicate that there is a fundamental

difference between the nature of the near- and far-field flows as the

shapes of the intermittency profiles are substantially different for

these two cases.

5.2.4.2 Measurements beyond the point of maximum jet rise

Four sets of experiments were performed to observe

the variation of jet dilution beyond the point of maximum jet rise in

a stratified crossflow. These experiments were selected so that one
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r^m

r/^m
Fig. 5.48 Vertical distribution of intermittency (momentum-

dominated flow).
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set corresponded to each of the four flow regimes (the mdnf, mdff, bdnf,

and bdff). Concentration measurements of the type discussed in Section

5.2.4.1 were taken at the maximum height of rise and for several down¬

stream locations with the jet and ambient conditions repeated as

closely as possible for each experiment. The minimum dilution S

measured for each horizontal position normalized by the dilution at

the maximum height of rise is presented in Fig. 5.50 as a function of

horizontal distance. The distance x is the horizontal location of
m

the maximum height of rise and the length scale I was previously
cL

1/2defined equal to U^/e
A buoyant jet at its maximum height of rise will have zero vertical

momentum but will not be at its neutrally buoyant position and will

tend to fall back from its maximum height of rise toward its equilibrium

position. The resulting flow will be similar to that described pre¬

viously for a cylindrical thermal since the flow will be nearly hori¬

zontal. The dilution of a thermal has been shown to be related to

the square of the vertical rise. Thus it can be expected that to a

first approximation, the dilution of a buoyant jet beyond its point

of maximum rise will be dependent upon the overshoot (Z • Z^) of the
jet beyond its equilibrium height of rise:

2

isil
z

s -s
e m

S
m

<-z„rzJm e

m

where Sg is the characteristic dilution within the jet at its equilib¬
rium height of rise.
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It can be anticipated on the basis of this reasoning that further

jet dilution is related to the relative difference between Z and Z .
m e

The results in Fig. 5.50 can be explained qualitatively on this basis.

That is, the momentum-dominated near-field flow indicates the greatest

amount of overshoot and thus should experience the greatest amount of

further dilution. The mdnf has a relatively greater overshoot than

the bdnf and each near-field flow has a greater overshoot than the

corresponding far-field flow (mdnf compared to the mdff and bdnf

compared to the bdff). Thus, the qualitative results in Fig. 5.50 that

the mdnf flow dilutes more than the mdff and the bdnf more than the

bdff are to be expected. Additional experiments need to be performed

to establish the exact nature of this phenomena. The width of the

flume and other experimental limitations prevented a more thorough

examination of this flow behavior.
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CHAPTER 6

DISCUSSION

6.1 Application of the Experimental Results

The results of the experimental investigation can be presented in

a unified manner such that the trajectories and dilutions for a general

buoyant jet in a crossflow can be readily determined. The qualitative

presentation in Figs. 3.4 and 3.6 can be combined with the measured

values' of the various trajectory and dilution coefficients to develop

figures which reflect the combined experimental results for the different

flow regimes. Figures similar to Fig. 3.7 can also be used to present

the experimental results for the measurements of maximum and equilibrium

heights of rise. These figures must also reflect the additional effect

of the initial volume flux, since it was observed that the experimental

results were dependent upon this parameter.

The results from the trajectory measurements are presented in

Figs. 6.1 and 6.2, which are alternate presentations of the same

information. Fig. 6.1 is essentially the same as Fig. 3.4 with the

additional effect of the jet volume flux included, while Fig. 6.2

presents the trajectories scaled with the length scale I . When the
m

density difference between the jet and the ambient fluid becomes small,

2.^ also becomes small and the normalized trajectories may fall outside
the range of variables in Fig. 6.1, and an alternate plot scaled with

I is useful. Therefore, the information in Fig. 6.2 should be used
m

for situations where the jet buoyancy is relatively small since the
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trajectories collapse to the momentum-dominated results in this figure.

Similarly, since Fig. 6.1 presents the trajectories scaled with

the curves collapse to the buoyancy-dominated results when the jet

momentum flux becomes small.

The information in these figures is the vertical location of the

maximum centerline concentration, since this will generally be the

result of interest in the application to a design problem. The values

of the trajectory coefficients were obtained from Figs. 5.16-5.19 which

is the data from the concentration measurements. The experimental data

were extrapolated beyond the range of conditions investigated by

referring to the results of the trajectory measurements from the

photographs presented in Figs. 5.8-5.12. Although the trajectory

definitions are not equivalent for these two cases, the dependence upon

the initial volume flux (and the momentum flux for the buoyancy-

dominated far-field) should be qualitatively the same. The shapes of

the curves in Figs. 5.8-5.12 were used to extrapolate values for the

trajectory coefficients in Figs. 5.16-5.19 beyond the ranges for which

they were directly determined.

The information for jet dilution as a function of vertical rise

is presented in Figs. 6.3 and 6.4. The values for the dilution con¬

stants were obtained from Table 5.2. There was no apparent dependence

of these data on the jet volume flux so this effect is not indicated

in the figures. These two figures which are alternate presentations

of the same information, have been developed on the basis of reasoning

similar to that for the presentation of the trajectory results. Fig. 6.3
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gives the dilutions scaled with JL , and can be more easily applied tob

jets with significant buoyancy than Fig. 6.4 which is scaled with I .
m

The figures discussed above can also be used to estimate the

trajectories and dilutions of buoyant jets in a stratified crossflow

up to the point of the maximum height of rise. The maximum height of

rise can be estimated from Fig. 6.5 which is a presentation of the

experimental results in a form similar to Fig. 3.7, with the additional

consideration of the effect of the initial jet volume flux. A similar

figure scaled with the length scale i could be developed for this
m

case, but Fig. 6.5 adequately describes all of the experimental

results and the alternate presentation is not displayed. A similar

presentation of the results from the measurements of equilibrium heights

of rise is given in Fig. 6.6. The experimental results used to develop

these figures are summarized in Table 5.3.

The general procedure for the use of Figs. 6.1-6.6 is as follows:

Compute the flux variable;

Discharge Q =

Momentum M = QV^
Buoyancy B = g — Q

Po

The computation of the buoyancy flux for cases where the density

difference is caused by temperature effects is performed by relating

the temperature difference to the density difference as in Eq. 2.8

— - k, (T. - I )
P0 1V J °
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Fig.6.6Equilibriumheightsofriseforbuoyantjetsinastratifiedcrossflow.
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where T^. is the temperature of the jet discharge, is the appropriate
thermal expansion coefficient, and p and T refer to the ambient condi-

o o

tions at the elevation of the jet discharge.

Compute the flow variables;

(measured)

dp

p dz
o

In the atmosphere, the stratification parameter should be expressed in
de

terms of the potential temperature gradient r :dz

d9
£ - -S-_i

. T dz
o

Compute the magnitude of the various length scales;

=* Q/M1^2 =• ATIT D

I - M1^ 2/U
m A

JL =■ B/U 3
D A

Further calculations depend upon the information desired. Figs. 6.1-

6.6 present the different types of information as a function of the

length scales computed above. The relevant non-dimensional ratios are

calculated and the appropriate figure is consulted to estimate the

parameter of interest. These figures can be used to easily obtain

estimates of buoyant jet behavior if the results are only desired to
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within about 15%. Otherwise, the basic data summarized in Tables

5.1-5.3 should be consulted. The use of the figures can best be

demonstrated with a sample calculation. Consider the following

conditions:

A discharge of 0.5 m3/sec from a 0.5 m port is re¬

leased into the ocean. The discharge is essentially

fresh water, therefore — is approximately 0.025. The
o

current speed is 0.025 m/sec and the ambient density
Apa

difference over 50 m depth, is 0.002.
o

The flow variables are first computed:

Q = 0.5 m3/sec

M = QVj = Q2/A 3 1.27 m^sec-2
B = gTQ = g Q = .123 m^sec"3

o

U. =" 0.25 m/sec
A

-a dpa Apa -4
e =^-~- = g —7--3.9 xlO

p dz p Az
o

The various length scales are calculated:

Aq = »4T/4 D = .44 m

A -
. = 5.1 m

m A

A. = B/U.3 = 7.9 mb A

"a = V^'2 " 12.6 m

i z z
-2. = 0.056 — « 1.60 -S. ■ 0.65

z ab *b b
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The maximum height of rise can be estimated from Fig.
*a ZQ

6.5 for the given values of -— and 7-*-. The estimate
Zm

from the figure is -3—« 3%0" (marked with an ® in Fig.
b

6.5)• The flow corresponds to the buoyancy—dominated

far-field, but is near to the transition from

the momentum-dominated far-field. The

maximum height of rise of approximately 24 m can be

compared to the result indicated for the bdff in Fig.

5.39 for the given values of the flow variables. The

estimated maximum height of rise from Fig. 5.39 is on

the order of 25 m.

The dilution for this case is estimated from Fig. 6.3
I

m 2#
for — -0.65 and 7—« 3.0 • The point marked with an ®

b b S Q
on the figure is —3.6 which indicates a character-

A b
istic minimum dilution of 112 on the jet axis. The

equilibrium height of rise is estimated from Fig. 6.6.

*0 1 a
For the appropriate values of —-*• and -5—, the estimated

Z b b
value of -— is 2.8 (indicated with an <£) in Fig. 6.6)

b

yielding an equilibrium height of rise of approximately

22 m. The horizontal location of Z can be determined
m

from Fig. 6.1 as approximately 26 m downstream from the

source for the given flow variables. (This point is approxi¬

mately indicated in the figure.) This compares with the

value of '23 m obtained from the trajectory coefficient

indicated in Fig. 5.19 for the flow conditions indicated.
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6.2 Comparison of Experimental Results to Previous Studies

There have been several previous experimental investigations to

which certain portions of the data obtained in this study can be

compared. The comparisons will be made for each flow regime (the mdnf,

mdff, bdnf, and the bdff) separately. Experimental results for both

unstratified and stratified flow" measurements will be presented, if

available. An important consideration is that the initial volume flux

must be considered in any comparison since it was established that this

would influence the values of the various trajectory coefficients. Experi¬

mental results of others can only be compared with the present investi¬

gation for values of (for momentum-dominated flow) or ^ /I (for
Q m y b

buoyancy-dominated flow) that are comparable with the range of values

examined in this study. There have been no major experimental investi¬

gations of jet dilutions other than that by Fan (1967), so the following

comparisons are for trajectories and heights of rise.

6.2.1 The Momentum-Dominated Near-Field

can be estimated from the experimental results for a nonbuoyant jet in

a stagnant ambient fluid presented by Albertson, et al. (1950). Their

experimental observation of the variation of the maximum jet velocity

beyond the zone of flow establishment is

The value of the trajectory coefficient defined by

V
max z
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The average jet velocity can be computed, over a jet cross-section by

assuming that the velocity profile is given by a Gaussian distribution:

v. J-zisA. !ss .35 £!i
J*VdA

This can be substituted directly into the kinematic relation in Eq. 3.5

and integrated. The resulting value for the coefficient is

= /2 C3.5) = 2.65

This value should be compared with the experimental results in Fig. 5.16

since it is likely that the position of maximum jet velocity should also

correspond to the position of maximum concentration. The value of 2.65

corresponding to the limiting case of IJI = U./V. =0 compares
Q m A j

favorably with the extrapolated value of approximately 2.5 for small

values of .

Q m

Measurements of the maximum height of rise in the momentum-dominated

near-field can also be compared with three experiments by Fan (1967) for

momentum-driven jets in a stagnant stratified fluid. The results of

these three experiments would indicate an average value of 3*. 27 for the

coefficient which is defined by

z it = cQ (£ n )1/2mm 9am

in the limit as A /i -*■ 0. This compares with the .value of approximately
^ m

3.0 determined for the lowest value of £-./& (0.0036) examined in the
Q m
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present investigation. Fan's heights of rise were determined visually

from photographs and his definition of Z may not correspond directly
m

to that used in this study (Z is the location of the concentration
m

maximum C ).
m

There have been several studies of nonbuoyant jets in an unstrati-

fied crossflow. Hoult and Weil (1972) summarize the results of

several experimental investigations including those of Keffer and

Baines (1963) and Jordinson (1956) which considered several values of

• Those data were determined from the examination of photographs
Q m

taken of the jet flows and should correspond to the data of the present

study in Fig. 5.5 and 5.8. The apparent values of the coefficient from

the data of Keffer and Baines and Jordinson are plotted in Fig. 6.7 as

a function of . .The variation of the trajectory coefficient is
Q m

approximately the same as that observed in this study. Hoult and Weil

(1972) explained this variation of the data as caused by a wake from

the discharge structure or nonuniform crossflow velocity, but the

present results indicate that this variation is probably due to the

effect of the initial volume flux. So far as this writer is aware,

there have been no measurements of the maximum height of rise in a

stratified crossflow that would correspond to the momentum-dominated

near-field regime.

6.2.2 The Buoyancy-Dominated Near-Field

Although no experiments corresponding to the buoyancy-

dominated near-field have been performed for buoyant jets in a cross-

flow to the best of this writer's knowledge, experimental results for
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buoyant pinnies in a stagnant fluid can be compared to the present

data. The experimental study of Rouse, et al. (1952) presents the

maximum velocity variation for a buoyant plume in an unstratified

fluid:

.1/3
V

max -(f)

The average velocity will again be one-half the maximum velocity if

the velocity profiles are assumed to be Gaussian in form as was

indicated by the experimental results of Rouse. Substitution of the

relation for the average velocity into the kinematic relation indi¬

cates that the constant is given by:

3/4

C5 - ( -r (4.7) ] - 2.36

where is defined by the relation

/ \3/4

This value should be the limiting value of as ^ 0 in Fig. 5.18

for the same reasons as discussed for momentum-dominated flow. Although

the maximum value for was measured to be only 1.8, extrapolation
-3

indicates a value of approximately 2.3 for l^ss than about 10 ,

which agrees with the limiting value predicted from the simple plume

results of Rouse, et al.

Similar results for the maximum height of rise of a buoyant plume

in a stagnant stratified flow can be compared to the present data.
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Briggs (1969) summarizes the experiments of Morton, et al. (1956),

Crawford and Leonard (1962) and some large-scale field measurements

with an approximate value for the height of rise relation:

This value for the coefficient agrees almost exactly with the value

of 3.74 for the experiments in the present study for &_/£, « 0.003.
Q b

Thus, experimental results for the case of a stagnant ambient

fluid agree very well with the experimental results from this study

with very small values of

6.2.3 The Momentum-Dominated Far-Field

The only experimental results that correspond to the

momentum-dominated far-field are several determinations of jet trajec¬

tories, primarily from photographs by Chu and Goldberg (1974), Pratte

and Baines (1967) and others. These sets of experiments can be com¬

pared to the present data in Figs. 5.5 and 5.9, as these results were

also from the examination of photographs.

Chu and Goldberg present a value of 1.44 for the coefficient C^
defined by

from the results of their photographic study. Their experiments

were performed for values of ln/l between 0.02 and 0.12. For the
Q m
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present study, Fig. 5.9 indicates values of the coefficient between 1.3

and 1.6 for the same range of &n/!L . The two studies thus indicate
Q m

equivalent results as the range of values was probably insuffi-
Ci m

cient for Chu and Goldberg to observe the dependence.

Chan, et al. (1976) present a value of =• 1.5 to best describe

similar experiments by Pratte and Baines (1967) which were for
vj ni

between 0.03 and 0.2. Since this range of variables is slightly larger

than for the Chu and Goldberg study, a slightly higher value of

would be expected on the basis of the data in Fig. 5.9. This is the

case and these experimental results also agree quite well with the

present experiments.

There are apparently no measurements for the maximum height of

rise of a nonbuoyant jet in a stratified fluid corresponding to the

far-field case. Thus, no direct comparisons of the present experi¬

mental results for- this case can be compared.

6.2.4 The Buoyancy-Dominated Far-Field

There have been several experimental studies for buoyant

jet trajectories in the buoyancy-dominated far-field and some addi¬

tional measurements of maximum height of rise. These can be compared

directly to the results from the present experimental investigation.

The study by Hewett, et al. (1971) presents the trajectories for

heated air plumes and plumes of a mixture of helium and air in a

stratified crossflow. All of these experiments were for conditions

where 3 2.3 and 53 1.1* Hewett!s data can be compared

with the present unstratified trajectory results since it was
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demonstrated in Chapter 5 that the trajectory in a stratified flow

would be equivalent up to the maximum height of rise. The value for

the trajectory coefficient C, defined by
o

that was determined by Hewett was 0.98 for the definition of the length

scale corresponding to that used in this investigation. This agrees

almost exactly with the value of 1.0 that is extrapolated from Fig.

5.19 for the same conditions. Since Hewett defined the trajectory as

the location of the temperature maximum above ambient levels in the

vertical plane of jet symmetry, the appropriate comparison is to the

data in Fig. 5.19 for which the trajectories were determined from

maximum dye concentrations in the same plane.

Hoult and Weil (1972) have compiled the results of several experi¬

mental investigations including those by Vadot (1965) and Barilla (1968)

which were each for several experiments at different values of I /

and These investigations measured jet trajectories from photo¬

graphs taken of the flow pattern, which indicates that the results in

Figs. 5.11 and 5.12 should be compared with these data. The experimental

results from the studies from Vadot and Barilla are indicated in Fig. 6.8.

The apparent values of the trajectory coefficient Cg for the different
experiments are indicated on the figure along with the approximate

results from the present study. Lines of constant values of Cg indi¬
cated from the present study are indicated on the figure and the
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SYMBOL INVESTIGATOR
O BARILLA (1968)
• VADOT (1965)

PRESENT STUDY

NUMBERS BESIDE
SYMBOLS INDICATE
APPROXIMATE VALUES
OF C6

iH(tr
1.2

10'-I l0° I /luxm/l b
10' 10'

Fig. 6.8 Comparison of buoyancy-dominated far-field trajectories
measured by Vadot (1965) and Barilla (1968) with the
present results.
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experiments of Vadot and Barilla are labeled as to the approximate

values of the coefficient. The general trend of the data is in

fairly good agreement with the present results and indicates that

each of these experimental investigations was conducted such that the

values of I /£, and fall nearly along lines of constant C,.
m b b o

The measurements by Hewett, et al. (1971) described above were

made in a stratified crossflow and maximum heights of rise were also

measured. However, these results do not correspond to the range of

(0.02-0.5) covered for the present measurements of maximum
^ b

height of rise and cannot be compared directly. The maximum height

of rise measured by Hewett was determined to follow the relation

The value of 1.7 for the coefficient C^2 is slightly greater than the
value of 1.5 measured for the greatest value of £J A, (0.5) examined

Q b

in this study which would indicate that the present data indicate

slightly lower heights of rise. This apparently is due to the fact

that Hewett studied a higher value of I /I, (2.3) than the range
m d

considered in the present study (0.5 to 1.4). The possibility of a

higher value of the coefficient for larger values of is

clearly suggested by the trajectory data in Figs. 5.11 and 5.19.

The results from several sets of field measurements by the TVA

(1968), 3ringfelt (1968), and others also cannot be directly compared

to the present experimental results because the range of values of
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£q/£b do not entirely correspond to the experimental condi¬
tions in the present study. There is also a considerable amount of

scatter in the data from the field measurements due to the difficulty

in accurately defining experimental variables. The field measurements

presented by Bringfelt correspond most directly to the present experi¬

ments. Shwartz and Tulin (1972) have analyzed several of these experi¬

ments (with 0.5-5.0 and I /£,» 1.0-10.0) and have concluded
Q b m b

that the appropriate value of the height of rise constant is 1.6.

This would agree fairly closely with the experimental value of approxi¬

mately 1.5 observed for the experiments in the present study that

correspond to these ranges of parameters. Experimental measurements

need to be performed with larger crossflow velocities to cover the

typical range of variables observed at many industrial chimneys.

However, the experimental technique in the present study prevented

the examination of larger crossflow velocities in the measurements of

maximum heights of rise. This was primarily due to the difficulties

associated with the limited sampling times discussed previously.

6.3 Entrainment Relations

The results from the experimental investigation can be interpreted

along with the analysis in Chapter 3 to make some general observations

regarding the integral solution method and the associated entrainment

relation. Since some of the models proposed by other researchers

agree qualitatively with portions of the present analysis, their

entrainment functions can be viewed as adequate to predict the
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corresponding asymptotic solution. These entrainment relations can

then be interpreted in light of the experimental results.

All models proposed by other researchers which predict closed form

solutions agreeing with one of the asymptotic solutions in the present

analysis indicate the following entrainment relation E (defined

previously in Eq. 2.31):

y— (U. cos9 + u )R2] = E = ctVRds A 3

Here V is the local characteristic vertical jet velocity, R is the

characteristic radius and a is the entrainment coefficient. This form

of the entrainment relation can be anticipated from the present

description of buoyant jet flows since the flow descriptions used to

develop the asymptotic models (jet or plume in a stagnant fluid for

near-field flows and puff or thermal for far-field flows) consider

motion only in the vertical direction. There is, however, a substantial

difference between the near- and far-field cases in that the vertical

velocity V is parallel to the jet axis in the near-field while it is

perpendicular to the jet axis in the far-field. Thus, it would appear

that a general entrainment relation that would predict all of the

present asymptotic models should be composed of a term that corresponds

to motion parallel to the jet axis and another component perpendicular

to the jet axis. Abraham (1971), Hewett, et al. (1971), and others,

propose entrainment relations of this type.

There is an additional consideration that is suggested by the

present analysis. Fox (1970), List and Imberger (1973), and others
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have indicated that there is not a single entrainment coefficient a

that is valid for general buoyant' jets in a stagnant ambient fluid.

This is physically reasonable when the general problem is viewed

from the standpoint of the limiting cases of a pure jet or a pure

plume in a stagnant fluid. In these two cases, there is clearly a

different mechanism generating the turbulence (the initial momentum

for a nonbuoyant jet and the buoyancy for a plume) and hence regulating

the entrainment. Thus, an entrainment relation similar to that pro¬

posed by Fox (1970) (given in Eq. 2.27)

E = (<*i + a2/F4*)VR

would be expected to be more nearly correct than a single entrainment

coefficient. The same reasoning can be applied to the case of a

buoyant jet in a crossflow. Since there are four different asymptotic

solutions suggested by the present analysis, it would seem reasonable

that there should be independent mechanisms regulating the entrainment

of ambient fluid in each limiting case. Thus, an entrainment relation

capable of describing the entrainment of a general buoyant jet in a

crossflow should reduce to four limiting entrainment coefficients,

much as Fox's entrainment relation involves two limiting coefficients.

An additional complication is due to the fact that the asymptotic

flow descriptions are only approximately correct for a general buoyant

jet. This is readily apparent from the experimental results which

indicate that the various trajectory and height of rise coefficients

depend upon the initial volume flux. The same observation must
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therefore hold for an entrainment coefficient. It is instructive to

consider a typical closed form solution of the integral equations.

Slawson and Csanady (1967) assume an entrainment relation of the form:

They make additional assumptions that make their solution correspond to

a buoyant plume in the far field. Their resulting trajectory relation,

assuming that a is constant, is

However, the dimensional analysis in Eq. 5.1 and the experimental

results in Figs. 5.11 and 5.12 imply that

and therefore, that the coefficient a describing the entrainment in

the buoyancy-dominated far-field is a function of the same variables.

The same type of argument can be applied to any other entrainment

coefficient which is used to determine a closed form solution

corresponding to one of the present asymptotic models.

These considerations indicate the difficulty of using the integral

E = 2aVR

Thus, the trajectory coefficient CA is related to a by
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approach for solving the general problem of a buoyant jet in a cross-

flow. The difficulty of defining a conceptually correct entrainment

relation poses a fundamental restriction in obtaining exact solutions

to the integrated equations. While the models proposed by some

researchers may be sufficiently accurate to be used for design purposes,

none of the closed form solutions that have been proposed are adequate

to describe the results of the present experimental investigation.

6.4 Suggestions for Future Research

There are several areas where further research is indicated in order

to extend the present results for general application. The objective

of this investigation was to develop a sufficient understanding of a

buoyant jet in a stratified crossflow such that adequate predictions

of jet behavior could be obtained for actual design problems. There are

several phenomena associated with buoyant jets in a crossflow that have

not been resolved by this investigation.

A major area requiring study is the effect of the ambient turbulence

on the buoyant jet behavior. The self-generated turbulence within the

jet decays along its trajectory and will ultimately become sufficiently

small that the level of turbulence will be of the same order as the

ambient turbulence. The model developed in this study will no longer

accurately describe the flow behavior beyond this point. The present

experiments were conducted in a towing tank and there was no ambient

turbulence. Fan (1967) made similar towed jet experiments and experi¬

ments for a stationary jet in an actual crossflow and found no apparent

differences in the jet behavior over trajectory distances greater than
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those considered in this study. It appears likely that the effect of

the ambient turbulence can be considered in the sense of a limiting

case where the diffusion is essentially equivalent to that of a

continuous source released Into a field of ambient turbulence. This

problem has been studied extensively, so it may only be necessary to

examine the decay of the jet turbulence in order to obtain an estimate of

the transition behavior to flow dominated by the ambient turbulence.

Another area of indicated research is the study of the concentra¬

tion profiles over the entire jet cross-section. Fan (1967) noted

that the points of maxlmum relative concentration at any cross-section

along the jet trajectory occur to either side of the plane of symmetry

of the jet. The average concentration peaks were on the order of one-

and-a-half to two times the ma-yf-mrm concentration on the jet centerline

plane. The location and values of these Tn-f-n-i-rmrm dilutions need to be

determined experimentally as the absolute nn'n-fTmrm dilutions may be of

more interest in engineering applications.

Another consideration is that some jet discharges, such as those

from sewage outfall diffusers, are often released horizontally. This

is a substantially different problem-than a vertical jet discharge,

particularly when the exit momentum is significant.. The presence of

horizontal momentum instead of vertical momentum will result in greater

distances of travel for a given vertical rise and hence greater dilutions

than for a vertically discharged jet. Also, the angle of the discharge

with respect to the direction of the ambient flow becomes an additional

parameter that must be considered, so the overall problem is more

complicated.
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The jet behavior beyond the point of the Tnaxlimrni height of rise

in a stratified fluid needs to be studied further. Although the present

experimental results are adequate to predict the final equilibrium

height of rise, the flow behavior between the mfrxiTmnn rise and that

point was not studied in detail. The general jet behavior in this

region is substantial spreading in the horizontal plane and a decrease

in the vertical extent of the jet fluid. A better understanding of

this behavior would be helpful in predicting the horizontal spread of

a contaminant in the jet discharge.

Finally, it may be desirable to perform additional experiments

which more nearly model the conditions observed for the rise of smoke

plumes from industrial chimneys. Some of these jet discharges have

relatively greater mass fluxes than most of the experiments performed

in this investigation. Typical values for the ratio f°r the

field measurements by the TVA (1968) for plume discharges from large

power plants were in the range of approximately 1-1000 and corres¬

ponding values for £ /£, were in the range of 1-100. These are somewhat
hi b

larger values for both ratios than considered in this experimental

study, particularly for that portion of the investigation involving

the measurement of maxf-mum heights of rise. It is therefore suggested

that additional experiments be performed to model these conditions,

which were beyond the capability of the present experimental setup.
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CHAPTER 7

SUMMARY AND CONCLUSIONS

The objective of this study was to obtain a fundamental under¬

standing of the effects of ambient crossflows and density stratification

on the time-average behavior of buoyant jets. Round, vertically dis¬

charged, turbulent jets were considered in this investigation. The

jet characteristics of interest include jet trajectories and dilutions

of a passive tracer present in the jet discharge. Additional character¬

istics of interest in a stratified crossflow are the maximum and

equilibrium heights of jet rise.

Most previous investigations have considered the integrated

equations for the conservation of mass, momentum, and buoyancy. The

solution to these integral equations requires the specification of an

assumed relation for the entrainment of ambient fluid by the jet.

Since the nature of this entrainment is not physically intuitive for

complex jet flows, an objective of this study was to develop an

alternate approach to the solution of the general problem.

A theoretical model, based primarily on dimensional reasoning, was

developed to predict jet trajectories and other mean flow character¬

istics. The buoyant jet behavior was analyzed by making analogies to

less complex flows whose behavior is better understood. These simplified

flow descriptions can be regarded as the asymptotic behavior of a buoyant

jet as various effects become dominant in controlling the flow behavior.

The asymptotic solutions consider the behavior of the jet to be
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controlled either by the jet momentum or the buoyancy for two possible

situations; either the crossflow velocity becomes very large or it

approaches zero.

The various asymptotic solutions for jet trajectories and

dilutions in an unstratified crossflow are summarized in Table 3.2.

Similar solutions for the height of rise for a buoyant jet in a

stratified crossflow and the associated characteristic dilution are

presented in Table 3.3. The trajectory and dilution for a jet up to

the point of maximum height of rise is assumed to be essentially the

same as for a similar jet in an unstratified flow.

Portions of the general flow description developed from these

asymptotic solutions can be shown to correspond to the theoretical

predictions of other researchers. These other solutions were generally

developed from the integral analysis, and the form of the entrainment

relation and other assumptions required to obtain closed form solutions

limit their applicability. Since most of these solutions can be

regarded as special cases of the general flow description developed in

this investigation, the analysis provides a framework for interpreting

previous investigations. This also serves to clarify the differences

between the solutions proposed by other researchers.

The experimental study was conducted to verify the results of the

analysis and to provide a detailed examination of the effects of the

various jet and ambient flow variables. The verification of the

models presented in the analysis was accomplished by the experimental

investigation except that the values of the various coefficients in
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Tables 3.2 and 3.3 were shown to be dependent upon the initial jet

volume flux. This effect, which was neglected in the analysis as

being of secondary importance, can be anticipated from dimensional

reasoning and can be considered as a relatively minor adjustment to

the basic flow description. An additional observation was that the

trajectory coefficient for the buoyancy-dominated far-field model is

also dependent upon the initial jet momentum flux; an effect which

also can be anticipated from dimensional reasoning.

The experimental results for an unstratified crossflow have been

summarized in Table 5.1 for jet trajectories and in Table 5.2 for

dilutions. Experimental results from the measurements of maximum and

equilibrium heights of rise in a stratified crossflow are presented in

Table 5.3, while the measurements of jet dilutions at the maximum

height of rise are given in Figs. 5.40 and 5.41. Measurements of the

characteristics of the turbulent concentration fluctuations are

described in Section 5.2.4 along with the results from a few experiments

to determine the further dilution of a buoyant jet in a stratified

fluid downstream from the point of its maximum height of rise.

The results from the experimental investigation are presented in

a unified manner in Section 6.1. This presentation is based upon the

theoretical considerations developed in Chapter 3, and provides a

useful means for examining the combined effects of up to five independ¬

ent variables in defining the mean flow characteristics. This unified

presentation also facilitates the application of the experimental

results to design situations.
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The presentation in Section 6.1 can be used to estimate the

trajectories and dilutions of a buoyant jet in an unstratified cross-

flow up to the point where the ambient turbulence begins to control

the jet behavior. Figs. 6.1-6.4 indicate the general results of the

experimental investigation. Fig. 6.1 can be used to estimate the

trajectory of a jet with significant buoyancy, while the trajectory

of a jet with very little buoyancy can be more easily determined from

Fig. 6.2. Characteristic minimum dilutions on the jet centerline can

be obtained from Figs. 6.3 or 6.4.

Trajectories and dilutions for a buoyant jet in a stratified

crossflow can be estimated up to the maximum height of rise from

these same figures. Estimates of the maximum and equilibrium heights

of rise for a general buoyant jet can be obtained from Figs. 6.5 and

6.6 respectively.

The results of this investigation can be applied to problems

commonly encountered in the design of pollutant dispersion structures.

The primary application would be for single point discharges such as

hot gases from industrial processes, cooling tower plumes, or discharges

into lakes or oceans. Although the model conditions in the experi¬

mental study may not correspond to the jet and ambient conditions

encountered for all of these types of discharges, this investigation

has considered a wider range of variables than any previous study.
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Table A.l Summary of experiments to measure jet
trajectories from photographs.

Run Q D Ap/p U C2 C5 Cg
OA y

Number cm3/sec (cm) cm/sec AL 0

%

27 4.9 0.4 .0300 4.75 1.57 1.53
A

0.78 xV
28 17.6 0.4 .0300 4.78 1.68 1.69

0.8129 8.2 0.4 .0300 6.76 1.58
30 16.1 0.4 .0300 6.28 1.52
33 4.5 0.2 .0300 3.06 1.57 1.56 0.89 $ ^1

34 . 4.3 0.2 .0300 6.73 1.50
&

' 035 7.2 0.2 .0300 6.76 1.70
37 11.4 0.2 .0300 4.56 1.92 1.95__

2-0 8.6 0.2 .0334 2.37 1.88 1.77

1.20
2-1 5.1 0.2 .0334 .2.36 1.85
2-2 5.4 0.2 .0334 4.57 1.70 1.52
2-3 5.2 0.2 .0334 8.02 1.51 1.42 1.43
2-4 10.0 0.2 .0334 8.12 1.92 1.62
2-5 9.7 0.2 .0334 12.63 1.34 A0
2-6 15.3 0.2 .0334 12.63 1.61 1.48 A"''
2-7 5.8 0.2 .0334 12.5 1.43 1.47
2-8 5.8 0.2 .0334 20.2 1.10 1.62
2-9 13.9 0.2 .0334 20.2 1.62 1.48
2-10 18.3 0.2 .0334 20.2 1.93 1.76
2-11 18.5 0.2 .0334 42.3 1.24 2.74
2-13 21.6 0.4 .0334 25.3 1.30 1.25 1.44
2-14 33.2 0.4 .0334 25.3 1.56 1.42

v ro
1.28 ^2-15 7.5 0.4 .0334 12.1 1.37

2-16 13.9 0.4 .0334 12.0 1.61 1.43 1.38 '
2-17 29.5 0.4 .0334 12.0 1.65 1.54
2-18 29.6 0.4 .0334 7.68 1.96 1.83
2-19 5.8 0.4 .0334 2.69 1.80
2-20 25.7 0.4 .0334 6.77 2.03 1.76
2-21 6.3 0.4 .0334 16.9 1.14 1.14
2-22 8.7 0.4 .0334 37.2 1.04 1.36

1.49 4 ^2-23 17.1 0.4 .0334 37.2 0.99
2-24 25.2 0.8 .0334 19.8 0.82 0.94 0.22-^*

1.40 ^

0.85 -• 1
n 1

2-25 39.3 0.8 .0334 19.9 1.02 0.95
2-26 15.8 0.8 .0334 12.0 0.83 0.96
2-27 6.4 0.8 .0334 16.18
2-29 33.7 0.8 .0334 9.64 .1.38 1.33 1.13 v3'1
2-30 40.1 0.8 .0540 35.6 0.74 1.07

r

2-31 38.3 0.8 .0540 19.1 1.07 1.01
2-32 19.8 0.8 .0540 12.7 1.04 0.97^
2-33 32.1 0.8 .0540 12.8 1.29 1.23 1.13 . ^

2-34 6.5 0.8 .0540 7.22 1.09 0.86
2-35 6.4 0.8 .0540 5.15 0.73 ^
2-36 7.0 0.8 .0540 2.45 1.30 0.74 0.76 ^
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Table A.l (Continued)

Run Q D Ap/p0 Ci C2 C5 Cg
Number cm3/sec (cm) cm/sec

4-1 10.7 1.0 .107 1.94 1.30 1
4-2 9.3 1.0 .107 1.66 1.43
4-3 12.2 1.0 .107 1.78 1.42
4-4 9.0 1.0 .107 1.75 1.33
4-5 7.0 1.0 .107 2.10 0.88
4-6 12.0 1.0 .107 2.08 1.14
4-7 12.0 1.0 .107 1.07 1.53
4-8 10.2 1.0 .152 1.55 1.56
4-9 7.5 1.0 .152 1.65 1.39
4-10 20.3 1.0 .152 1.60 1.48
4-11 11.2 1.0 .152 2.92 0.96
4-12 11.2 1.0 .152 1.91 1.29
4-13 18.9 1.0 .152 1.99 1.47
4-14 9.9 1.0 .152 0.94 1.64
4-15 9.4 1.0 .152 1.25 1.60



Table A.2 Summary of experiments to measure jet trajectories and
dilutions from concentration measurements with suction
sampling system.

Q D 4p/p0 UA X z So
Run cm3/sec cm cm/sec cm cm

Number

1 11.8 0.4 .0963 2.57 1215 30 36.3
2 12.8 0.4 .0963 2.58 15 35 37.0
3 12.4 0.4 .0963 2.66 10 27 29.7
4 11.8 0.4 .0963 2.54 7.5 22 20.7
5 11.7 0.4 .0963 2.58 5 17 15.8
6 12.3 0.4 .0963 2.63 2.5 10 8.5

T"1 16.1 0.4 .0963 3.58 "Z. 5 8 4.1
8 14.9 0.4 .0963 3.63 5 12 7.8
9 15.0 0.4 .0963 3.43 7.5 18 16.5

10 14.0 0.4 .0963 3.40 10 22 25.0
11 13.1 0.4 .0963 3.46 12.5 25 31.0
12 12.9 0.4 .0963 3.50 15 28 62.9
13 13.4 0.4 .0963 3.62 20 33 88.9
IS 12.9 0.4 .0963 3.63 25 35 103.4
15 11.4 0.4 .102 2.42 2.5 10 10.8
16 12.1 0.4 .102 2.34 5 17 17.9
17 11.6 0.4 .102 2.50 7.5 21 23.4
18 11.2 0.4 .102 2.47 10 25 29.0
19 11.3 0.4 .102 2.55 12.5 33 52.5
20 13.0 0.4 .102 2.58 15 36 55.9
21 13.2 0.4 .102 2.58 20 39 71.6
77 13.4 0.4 .102 2.72 25 44 90.9
23 13.3 0.4 .102 3.40 25 33 62.0
24 12.7 0.4 .102 3.43 20 34 62.0
25 11.7 0.4 .102 3.40 15 32 68.2
26 12.0 0.4 .102 3.50 12.5 27 56.8
27 11.6 0.4 .102 3.59 10 23 48.7
28 11.8 0.4 .102 3.49 7.5 20 32.5
29 10.2 0.4 .102 3.46 5 14 18.2
3.Q m.i 0.4 .102 3.63 2.5 8 11
31 11.9 U.4 .102 TT3B 2.5 11 12.1
32 10.3 0.4 .102 2.01 2.5 13 18.4
33 19.3 0.4 .102 1.95 2.5 16 13.9
34 7.5 0.4 .102 .994 2.5 17 19.5
35 15.1 0.4 .102 .939 2.5 23 18.4
36 14.5 0.4 .102 .918 2.5 23 19.5
37 23.4 0.4 .102 2.41 2.5 18 15.0
38 15.4 0.4 .102 1.33 2.5 21 16.8
39 6.7 0.4 .0980 2.63 5.0 13 33.0
40 17.5 0.4 .0980 2.71 5.0 19 18.9
41 8.18 0.4 .0980 1.84 5.0 21 44.0

• 42 16.6 0.4 .0980 1.93 5.0 26 23.3
43 4.8 0.4 .0980 1.36 5.0 21 41.7
44 8.0 0.4 .0980 .909 5.0 29 48.0
45 5.0 0.4 .0980 .813 5.0 35 58.7
46 8.7 0.4 .0980 2.28 5.0 18 28.3
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Table A.2 (Continued)

Run
imber

Q

cm3/sec
D

cm

4p/p0 UA
cm/ sec

X

cm

z

cm

So

47 14.0 0.4 .0980 1.92 5 24 27.3

48 13.5 0.4 .0980 2.16 5 22 22

49 6.0 0.4 .0980 2.25 5 14 28.8

50 9.7 0.4 .0980 2.29 5 17 23.0

51 14.8 0.4 .0980 2.95 5 17 19.8

52 8.4 0.4 .0980 2.90 5 13 21.6
53 12.4 0.4 .0980 3.30 5 15 25.1

54 9.6 0.4 .0980 3.31 5 13 22.6

55 12.4 0.4 .0980 3.98 5 13 22.6

56 6.7 0.4 .0980 3.93 5 10 25.9

57 15.5 0.4 .0980 2.91 5 20 20.3

58 18.8 0.4 .0980 2.99 5 22 19.6

59 12.5 0.4 .0980 2.45 5 21 23.3

60 5.2 0.4 .0980 1.84 5 18 31.7

61 12.8 0.4 .0980 3.93 5 13 16.1
62 14.6 0.4 .0980 1.82 5 22 24.4

63 3.9 0.4 .0251 2.11 7.5 15 49.5

64 3.9 0.4 .0251 2.12 15.0 19 102
65 3.9 0.4 .0251 2.04 22.5 25 149

66 3.9 0.4 .0251 2.08 30.0 28 234

67 3.9 0.4 .0251 2.04 37.5 30 269

68 3.9 0.4 .0251 2.18 45.0 32 389
69 5.6 0.4 .0503 4.26 7.5 12 47.4

70 5.6 0.4 .0503 4.20 15.0 14 77.4

71 5.6 0.4 .0503 4.19 22.5 17 167

72 5.6 0.4 .0503 4.26 30.0 17 202

73 5.6 0.4 .0503 4.18 37.5 23 249

74 5.6 0.4 .0503 4.11 45.0 24 268

75 11.1 0.4 .0497 3.00 5 17 27.5

76 11.1 0.4 .0497 2.92 10 23 53.2

77 11.1 0.4 .0497 2.93 15 28 90.0

78 11.1 0.4 .0497 • 2.93 20 30 143

79 11.1 0.4 .0497 2.81 25 34 142

80 7.9 0.4 .0249 2.91 7.5 15 32.3

81 7.9 0.4 .0249 2.83 15 22 54.4

82 7.9 0.4 .0249 2.91 22.5 24 128

83 7.9 0.4 .0249 2.93 30 26 137

84 7.9 0.4 .0249 2.92 37.5 29 157

85 7.9 0.4 .0249 2.91 45.0 30 204

86 7.9 0.4 .0254 2.95 30 26 80.8

87 7.9 0.4 .0254 2.94 37.5 30 95.4

88 7.9 0.4 .0254 2.93 45 31 108

89 44.5 0.8 .0246 3.98 4.0 18 12.2

90 44.5 0.8 .0246 3.97 8.0 26 16.2
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Table A.2 (Continued)

Q D AP/Prt UA x z s„
n °Run

Number cm^/sec cm cm/sec cm cm

91 44.5 0.8 .0246 3.99 12.0 32 26.2 . e

92 44.5 0.8 .0246 3.97 16.0 33 30.7 ^
93 44.5 0.8 .0246 3.84 20.0 37 40.3

94 44.5 0.8 .0247 5.05 4.0 16 —

95 44.5 0.8 .0247 5.06 16.0 31 —

96 7.9 0.4 .0249 5.73 7.5 9 26.4; 1
97 7.9 0.4 .0249 5.68 15 12 39.3,'

98 7.9 0.4 .0249 5.74 22.5 13 59. V

99 7.9 0.4 .0249 5.80 30.0 15 74.8/
100 7.9 0.4 .0249 5.94 37.5 16 80.6

101 7.9 0.4 .0249 5.67 45.0 17 88.2

102 15.7 0.4 .0254 2.10 3 20 14.7

103 15.7 0.4 .0254 2.05 6 26 22.5

104 15.7 0.4 .0254 2.08 9 30 33.2

105 15.7 0.4 .0254 2.11 12 35 37.6

106 15.7 0.4 .0254 2.11 15 39 46.9

107 20.1 0.8 0 2.00 2 12.6 6.46

108 20.1 0.8 0 2.04 4 16.7 8.80

109 20.1 0.8 0 1.89 6 19.6 11.0

110 20.1 0.8 0 1.84 8 21.9 14.9

111 40.2 0.8 0 3.87 2 12.6 5.13

112 40.2 0.8 0 4.00 4 17.7 7.06

113 40.2 0.8 0 3.68 6 22.6 13.5

114 40.2 0.8 0 4.05 8 22.9 15.4

115 30.2 0.8 0 2.50 3 17.8 20.6

116 30.2 0.8 0 1.97 6 24.4 23.7

117 30.2 0.8 0 1.66 9 31.2 26.8

118 30.2 0.8 0 2.12 12 34.2 35.9

119 45.2 0.8 0 3.06 3 17.8 7.94

120 45.2 0.8 0 3.04 6 26.4 12.2

121 45.2 0.8 0 2.97 9 30.2 15.9

122 45.2 0.8 0 2.91 12 36.2 18.2

123 40.2 0.8 0 2.17 2 15.7 5.53

124 40.2 0.8 0 2.34 4 21.9 10.3

125 40.2 0.8 0 2.16 6 28.4 12.5

126 40.2 0.8 0 2.18 8 33.1 15.7
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Table A.3 Summary of experiments to measure equilibrium
heights of rise from photographs.

Q D Ap/p„ Ua e Ze
cm3/sec (cm) ° cm/sec (sec-2) cm

24.2 0.4 'U) 3.76 .112 22.1
40.3 0.4 %o 8.69 .112 26.3
45.6 0.4 M) 8.67 .112 25.1
35.9 0.4 -v.0 4.88 .112 27.5
32.1 0.4 \«0 4.40 .112 29.0
18.7 0.4 a.0 2.70 .112 17.9
19.2 0.4 'v-O 1.04 .112 21
18.4 0.4 o-o 1.37 .112 22
18.7 0.4 %o 1.91 .112 23
18.7 0.4 ^o 4.86 .112 14
18.9 0.4 ^o 9.80 .112 11

34.4 1.0 .1096 7.19 .103 32.3
54.0 1.0 .1096 7.22 .103 39.3
18.2 1.0 .1096 4.70 .103 20
11.2 1.0 .1096 4.68 .103 22.1
23.2 1.0 .1096 2.82 .103 40
8.6 1.0 .1096 2.39 .103 35
7.5 1.0 .1096 1.93 .103 35.5

49.8 1.0 .1076 13.7 .209 20.5
50.3 1.0 .1076 9.55 .209 22.5
50.4 1.0 .1076 7.04 .209 29.8
33.7 1.0 .1076 4.63 .209 31.8
26.2 1.0 .1076 3.52 .209 35.3
15.6 1.0 .1076 2.50 .209 35.8
12.2 1.0 .1076 1.68 .209 36.3
12.3 1.0 .1076 1.20 .209 37.8
9.3 1.0 .0648 1.83 .123 30
9.2 1.0 .0648 1.46 .123 31.5
9.3 1.0 .0648 3.15 .123 21
9.2 1.0 .0648 3.76 .123 20
9.2 1.0 .0648 5.47 .123 12
9.2 1.0 .0648 7.0 .123 12

46.7 1.0 .0648 10.2 .123 23
46.7 1.0 .0648 12.0 .123 22.5
47.1 1.0 .0648 4.12 .123 31.5
27.7 1.0 .0652 4.64 .0636 22.5
11.1 1.0 .0652 7.93 .0636 19.5
17.2 1.0 .0652 7.58 .0636 21.5
9.8 1.0 .0652 7.58 .0636 20.5
7.6 1.0 .0652 4.85 .0636 19.5

11.2 1.0 .0652 4.86 .0636 27.5
17.7 1.0 .0652 3.51 .0636 34
8.6 1.0 .0652 3.53 .0636 26



Table A.3 (Continued)

Run Q D Ap/p
0 UA e ze

Number cm3/sec (cm) cm/sec (sec-2) cm

71 12.3 0.2 .0303 5.08 .215 22
72 17.6 0.2 .0303 •5.04 .215 26.5
73 11.7 0.2 .0303 3.50 .215 22.5
74 21.4 0.2 .0303 7.30 .215 25.5
75 20.8 0.2 .0303 11.2 .215 20.5
76 10.8 0.2 .0303 3.67 .215 22.5
77 7.0 0.2 .0303 2.86 .215 16.5
78 13.4 0.2 .0303 2.85 .215 25.5
79 13.0 0.2 .0303 2.17 .215 29
91 18.1 0.2 .0138 6.80 .0824 27
92 8.5 0.2 .0138 6.80 .0824 15
93 7.7 0.2 .0138 9.34 . 0824 11.5
94 20.2 0.2 .0138 9.29 .0824 26.5
95 19.8 0.2 .0138 12.9 .0824 22
96 8.6 0.2 .0138 12.9 .0824 10
97 9.2 0.2 .0138 4.56 .0824 22
98 16.2 0.2 .0138 5.47 .0824 30
99 6.6 0.2 .0138 5.45 .0824 14.5

100 20.7 0.2 .0138 11.7 .0824 22.5
101 7.1 0.2 .0138 . 3.56 .0824 17.5
102 13.1 0.2 .0138 2.97 .0824 29.5
103 7.6 0.2 .0138 2.97 .0824 21.5
104 7.2 0.2 .0138 2.05 .0824 23.5
105 . 7.6 0.2 .0138 1.43 .0824 24
106 18.8 0.2 .0058 1.42 .330 25
107 12.4 0.2 .0058 1.40 .330 17.5
108 8.2 0.2 .0058 1.40 .330 14.5
109 4.8 0.2 .0058 1.39 .330 10
110 4.3 0.2 .0058 1.13 .330 10
111 17.5 0.2 .0058 1.15 .330 25
112 15.0 0.2 .0058 1.15 .330 22.5
113 6.2 0.2 .0058 1.15 .330 11.5
114 9.4 0.2 .0058 1.15 .330 15
115 12.1 0.2 .0058 1.17 .330 19 .

116 12.2 0.2 .0058 1.66 .330 19
117 16.0 0.2 .0058 1.65 .330 24
118 9.8 0.2 .0058 1.65 .330 16
119 16.8 0.2 .0058 1.64 .330 30
120 7.0 0.2 .0058 1.64 .330 12
121 4.6 0.2 .0058 1.65 .330 9
122 5.6 0.2 .0039 1.57 .227 13.5
123 16.6 0.2 .0039 1.57 .227 25
124 12.8 0.2 .0039 1.51 .227 21.5
125 10.5 0.2 .0039 1.53 .227 16.5
126 8.0 0.2 .0039 1.53 .227 15.5
127 7.0 0.2 .0039 1.39 .227 15
128 4.7 0.2 .0039 1.39 .227 10.5
129 9.2 0.2 .0039 1.39 .227 16
130 11.8 0.2 .0039 1.38 .227 21.5



Table A.3 (Continued)

Run Q D UA 2 ^e
Number cm3/sec (cm) cm/sec (sec-2) cm

131 14.4 0.2 .0039 1.39 .227 24
132 13.4 0.2 .0039 1.10 .227 23.5
133 16.4 0.2 .0039 1.11 .227 27.5
134 5.4 0.2 .0039 1.11 .227 10
135 7.6 0.2 .0039 1.10 .222 14.5
136 11.1 0.2 .0039 1.11 .227 18
137 21.1 0.2 .0039 8.05 .227 23.5
138 20.9 0.2 .0039 5.80 .227 28

139 21.0 0.2 .0039 10.0 .227 21.5
140 6.9 0.2

.
.0039 2.87 .227 14

141 15.8 0.2 .0039 4.42 .227 24
142 8.8 0.2 -.0011 4.48 .151 16
143 5.6 0.2 -.0011 4.49 .151 10

144 12.8 0.2 -.0011 5.18 .151 21
145 9.7 0.2 -.0011 5.16 .151 17
146 4.4 0.2 -.0011 5.18 .151 7.5
147 4.3 0.2 -.0011 5.88 .151 7.5
148 6.96 0.2 -.0011 5.88 .151 12
149 9.1 0.2 -.0011 5.89 .151 16
150 12.3 0.2 -.0011 5.89 .151 20

151 14.4 0.2 -.0011 5.88 .151 22.5

152 14.9 0.2 -.0011 7.46 .151 20

153 10.9 0.2 -.0011 7.46 .151 15.5
154 5.8 0.2 -.0011 7.46 .151 8.5
155 5.8 0.2 -.0011 8.67 .151 8.0
156 10.7 0.2 -.0011 9.26 .151 12.5
157 16.4 0.2 -.0011 9.26 .151 21.0
158 20.8 0.2 -.0011 9.29 .151 25.5
159 20.7 0.2 -.0011 12.7 .151 21.5
160 7.5 0.2 -.0011 12.7 .151 7.5
161 12.5 0.2 -.0011 12.7 .151 11.5
162 14.8 1.0 .1249 1.75 .273 35
163 8.8 1.0 .1249 1.50 .273 28
164 8.8 1.0 .1249 1.48 .273 27.5

165 3.9 1.0 .1249 1.50 .273 19.5
166 14.8 1.0 .1249 1.48 .273 38.5
167 14.3 1.0 .1249 2.37 .273 30
182 39.2 1.0 .1260 9.29 .125 26.5

183 21.2 1.0 .1260 9.31 .125 22

184 19.6 1.0 .1260 7.41 .125 21.5
185 9.5 1.0 .1260 7.41 .125 18.5

186 35.9 1.0 .1260 7.41 .125 28

187 36.5 1.0 .1260 5.54 .125 33.5

188 20.3 1.0 .1260 5.54 .125 27.5

189 12.8 1.0 .1260 5.53 .125 23

190 7.2 1.0 .1260 5.54 .125 18

191 16.5 1.0 .1260 4.62 .125 23.5

201 11.1 1.0 .0741 1.92 .169 29



Table A.3 (Continued) 251

Run Q D ^p/p0 e
Number cmV sec (cm) cm/sec (sec-2) cm

202 7.17 1.0 .0741 1.90 .169 24
203 4.33 1.0 .0741 1.89 .169 20.5
204 4.12 1.0 .0741 1.54 .169 20.5
205 7.44 1.0 .0741 1.53 .169 25.5
206 9.74 1.0 .0741 1.54 .169 31
207 11.9 1.0 .0741 1.53 .169 34
216 7.0 1.0 .0761 4.66 .185 17.5
217 4.7 1.0 .0761 4.67 .185 14
218 13.4 1.0 .0761 4.68 .185 22
219 17.6 1.0 .0761 4.69 .185 23
220 26.6 1.0 .0761 4.69 .185 26
221 36.9 1.0 .0761 4.71 .185 34
222 43.9 1.0 .0761 4.71 .185 36
223 43.9 1.0 .0761 7.51 .185 24.5
224 32.2 1.0 .0761 7.53 .185 23
225 21.1 1.0 .0761 7.53 .185 18.5
226 11.5 1.0 .0761 7.53 .185 14
227 7.0 1.0 .0761 7.51 .185 12
228 6.6 1.0 .0761 10.8 .185 11
229 44.4 1.0 .0761 10.8 .185 23
230 33.0 1.0 .0761 10.9 .185 20.5
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Table A.4 Summary of experiments to measure maximum heights of
rise and associated dilution from measurements with
light probe,

Run
Q D Ap/po UA e Zm S

m

Number cm^/sec cm cm/sec —2
sec ^ cm

004 6.1 1.0 .0265 1.63 .110 22.6 —

012 4.8 0.2 .0046 1.32 . .0775 24.5 77.2

013 6.5 0.2 .0046 1.32 .0775 29.8 76.0

014 8.0 0.2 .0046 1.30 .0775 32.5 72.5

015 9.6 0.2 .0046 1.31 .0075 35.0 71.9

016 4.9 0.2 .0047 1.67 .0354 27.9 —

017 6.3 0.2 .0047 1.66 .0354 36.4 —

018 7.5 0.2 .0047 1.66 .0354 37.8 —

019 8.5 0.2 .0047 1. 66 .0354 45.1 —

020 4.6 0.2 .0042 1.42 .203 18.5 43.4

021 6.1 0.2 .0042 1.39 .203 22.7 53.5

022 8.9 • 0.2 .0042 1.45 .203 29.7 48.8

023 10.6 0.2 .0042 1.45 .203 34.0 54.9
024 12.8 0.2 .0042 1.44 .203 37.5 61.9

025 4.2 0.2 .0047 1.53 .079 22.6 —

026 6.1 . 0.2 .0047 1.54 .079 27.6 —

027 7.0 0.2 .0047 1.55 .079 32.8 —

029 10.1 0.2 .0047 1.52 .079 41.5 —

030 4.3 1.0 .1061 1.53 .0871 33.6 —

031 5.4 1.0 .1061 1.58 .0871 35.8 —

032 6.9 1.0 .1061 1.56 .0871 43.1 —

034 4.3 1.0 .1061 1.45 .0935 30.2 —

035 4.8 1.0 .1061 1.38 .0935 36.9 —

036 5.3 1.0 .1061 1.44 .0935 40.1 —

037 5.9 1.0 .1061 1.39 .0935 44.9 —

038 5.1 1.0 .1061 1.33 .0935 42.5
WO 5.9 1.0 .1122 1.31 .167 31.6 3120] ■
041 4.3 1.0 .1122 1.31 .167 33.0 1430 v

042 4.8 1.0 .1122 1.31 .167 35.0 1220 > *
043 5.4 1.0 .1122 1.31 .167 34.6 1000 \
044 5.9 1.0 .1122 1.31 .167 37.0 862 J
OSl 4.3 1.0 .0528 1.91 .068 26.2

^ ■ IT

069 5.2 0.4 .0524 1.99 .105 27.9
070 5.3 0.4 .0524 2.10 .105 27.2
071 5.9 0.4 .0524 2.51 .105 27.2

072 5.7 0.4 .0524 2..89 .105 27.2

073 8.5 0.4 .0524 2.96 .105 27.4
077 6.5 0.4 .0230 2.01 .0864 24.6

078 4.7 0.4 .0230 2.01 .0864 21.2
079 5.1 0.4 .0230 2.40 .0864 20.1

080 5.5 0.4 .0230 2.77 .0864 20.5

081 7.1 0.4 .0230 1.95 .0864 22.6

086 5.6 1.0 .0233 2.17 .104 14.8
087 6.4 1.0 .0233 2.62 .104 15.4
088 8.0 1.0 .0233 3.08 .104 15.4

o1"
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Q D Ap/p U. e Z„ SRun ¥,wo A mm

Number cm3/sec cm cm/sec sec"2 cm

089 13.4 1.0 .0233 3.06 .104 22.8 —

090 12.3 1.0 .0233 2.63 .104 24.6 746")
091 11.9 1.0 .0233 2.22 .104 24.6 585 /
092 16.1 1.0 .0233 2.59 .104 24.1 422
093 17.7 1.0 .0233 2.94 .104 24.1 422 \
094 19.3 1.0 .0233 3.39 .104 24.1 422J
095 3.9 1.0 .0709 1.43 .171 23.2 128
096 5.4 1.0 .0709 1.41 .171 28.1 122
097 7.2 1.0 .0709 1.45 .171 33.5 107
098 9.7 1.0 .0709 1.44 .171 35.7 101
099 12.3 1.0 .0709 1.44 .171 38.1 93.3
100 4.7 0.2 .0232 2.44 .0890 21.6 —

101 4.8 0.2 .0232 2.73 .0890 21.6 —

102 5.4 0.2 .0232 3.02 .0890 21.6 —

103 6.8 0.2 .0232 3.33 .0890 26.7 —

104 6.4 0.2 .0232 2.95 .0890 26.7 —

105 5.4 0.2 .0232 2.55 .0890 25.5 —

106 7.5 0.2 .0232 3.39 .0890 30.8 —

107 8.6 0.2 .0232 3.57 .0890 33.0 —

108 4.2 0.4 .0236 2.53 .0371 22.4 —

109 4.3 0.4 .0236 3.01 .0371 21.7 —

110 4.2 0.4 .0236 2.17 .0371 22.4 —

111 5.9 0.4 .0236 2.21 .0371 25.7 —

112 5.9 0.4 .0236 2.76 .0371 24.5 —

113 7.6 0.4 .0236 2.74 .0371 27.2 —

114 7.4 0.4 .0236 2.35 .0371 27.8 —

115 17.1 1.0 .0286 1.60 .202 26.0 23.8
116 6.4 1.0 .0286 1.58 .202 18.6 33.1
122 4.6 0.4 .0114 2.46 .075 12.1 —

123 6.4 0.4 .0114 2.55 .075 16.0 —

124 5.7 0.4 .0114 3.18 .075 14.0 —

125 7.9 0.4 .0114 3.14 .075 17.1 —

126 7.9 0.4 .0114 3.79 .075 16.5 —

127 12.3 0.4 .0114 3.81 .075 23.0 —

128 9.4 0.4 .0114 3.23 .075 20.3 —

129 7.5 0.4 .0117 3.05 .0700 16.9 44.6
130 12.0 0.4 .0117 3.10 .0700 24.7 39.4
131 13.9 0.4 .0117 3.61 .0700 25.8 35.3
132 10.7 0.4 .0117 3.72 .0700 20.8 36.7
133 6.7 0.4 .0117 3.41 .0700 13.8 41.6
134 6.5 0.4 .0117 2.77 .0700 15.6 35.0
141 17.1 1.0 .0117 1.30 .0742 30.5 21.2 r
142 6.5 1.0 .0117 1.41 .0742 19.9 27.8
143 8.6 1.0 .0117 3.73 .0742 10.5 56.2
144 11.2 1.0 .0117 3.73 .0742 12.5 58.0
145 6.7 1.0 .0117 2.89 .0742 12.0 47.0
146 5.4 0.2 .0144 1.55 .0630 30.5 68.4
152 5.4 0.4 .0143 3.15 .0623 13.9 54.0
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Run

Number

Q

cm^/sec
D

cm

Ap/p UA
cm/sec sec—2

Zm
cm

m

158 9.6 1.0 .0144
163 9.9 1.0 .0141
153 5.4 0.4 .0143

1.56 .0470 14.4 31.3
3.11 .0595 13.2 52.9
3.17 .0623 15.4 62.3



 



AIIM SCANNER TEST CHART#2
Spectra

4 PT ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz;:",./?$0123456789
6 PT ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz;:",./?$0123456789
8 PT ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmriopqrstuvwxyz;:",./?$0123456789
10 PT ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz;:'t,./?$0123456789

Times Roman
4 PT ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklrnnopqrstuvwxyz;$0123456789
6 PT ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz;:",./?$0123456789
8 PT ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz;:", ./?$0123456789
10 PT ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz;:",./?$0123456789

Century Schoolbook Bold
4 PT ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghgklmnopqrstuvwxyz;:",./?$0123456789
6 PT ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz;:",./?$0123456789
8 PT ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz;:",./?$0123456789
10 PT ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz;:",./?$012&56789

News Gothic Bold Reversed

ABCDEFGHI J KLMNOPQRSTUVWXYZabcdefghijklrnnopqrstuvwxyz;:",./? $012 34 567 89
ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghi jklmnopqrstuvwxyz;:'\./?$012 34567 89
ABCDEFGHIJKLMN0PQRSTUVWXYZabcdefghijklmnopqrstuvwxyz;:",./?$0123456789
Bodoni Italic
A HCDHh'CHIJKl.MNOI'QRSTUyWXY/MbcdefghijklmnoiHintuvwxyz:: ",./?S0123456789

ABCDEFGHIJKLMNOPQRSTUVWX YZabcdefghijklrnnopqrstuvwxyz;: ",./?$0123456 789
ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklrnnopqrstuvwxyz;:. /?$0123456789
ABCDEFGHIJKLMNOPQR STUVWX YZabcdefghijklmnopqrstuvwxyz;:'r,.
Greek and Math Symbols
ABTAEH0HIKAMNOII<l)P2TYnX>l'Za/378€^Si7iKA^voir((>pcrTVo)X<|»{=:F' '>•/== + = ?t°> <><>< =

ABrAE=6HIKAMNOn4>PZTYnX1'Za/3T8£5e7)iKXti.TOir<|)po-ruo)Xi);{Sq:",./^± = ^-> <><>< =

ABrAE=eHIKAMNOn<I>P2;TYnX4'Za/3y8€|9T)iKAjuvo7r<f)p<Trvo)X>l'^T". /^± = =A°> <><><=

ABrAES0HIKAMNOn<l>P2TYfiXvPZa/3y8e£0i7iKA.fAvo7r<j>pcrTy2 =

t rr

6 PT

8 PT

10 PT

6 PT

8 PT

10 PT

White

MESH HALFTONE WEDGES
i i i i

0123456
6.
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